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ABSTRACT 

ABSTRACT 

Triploid rainbow trout produced by heat shock and control (diploid) 

siblings were raised separately at similar density, feeding and water quality 

regimes. No significant differences in body weight or condition factors were 

observed; however the weight of the eviscerated carcass was on average 20% 

higher (P<0.05) in triploid fish compared to diploid fish at 20 and 44 months post- 
hatching. 

The effects of triploidy on males were most evident during the final stages 

of spermatogenesis; in contrast, the gonadal development of triploid females was 

affected during its early stages, with the majority of the oogonia (30-70%) 

remaining within the oogonial clusters. A major finding was the presence of male- 
differentiating areas in most triploid females examined, which by the end of the 

sampling period appeared as gonadal hermaphrodites. 

Testicular weight, gonado-somatic index, sperm cell density and 

spermatozoa motility were significantly lower in triploid than in diploid male 

siblings, although some triploid males produced viable progeny when crossed to 

normal (diploid) females. Characterisation of this progeny by image analysis of 

nuclear DNA revealed the presence of a near-triploid genome. A single 5 month- 

old juvenile had developed testes in meiotic phase, providing a first evidence for 

the generation of limited numbers of viable progeny by autotriploid rainbow trout 

males. 

A cytogenetic analysis was carried out on monosex diploid and triploid 

populations of Nile tilapia. Synaptonemal complex analysis in diploid genotypes 

revealed the presence of an incompletely paired segment in the terminal region of 
the longest bivalent in heterogametic (XY) genotypes, which was not observed in 

homogametic genotypes. This unpaired region provides cytological evidence for 

the chromosomal basis of sex determination in 0. niloticus. Meiotic analysis in 

triploids revealed the presence of longer (P<0.0001) synaptonemal complexes in 

heterogametic (XXY) than in homogametic (XXX) genotypes, with a significantly 
different (P<0.0001) nature of pairing evident between both groups. A model to 

explain the different progress in gametogenesis observed between male and 
female teleosts is discussed. 
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Chapter I 

1.1 Introduction 

GENERAL INTRODUCTION 

Triploidy can be defined as a form of polyploidy characterised by the 

presence of three sets of homologous chromosomes in the genome, a condition 

naturally occurring in several species of plants, invertebrates, reptiles and 

amphibians (Fankhauser, 1945). Triploidy also occurs naturally in teleosts 

(Cherfas, 1966; Cimino, 1972; Cuellar and Uyeno, 1972; Thorgaard and Gall, 1979). 

Lately, new lines of thought have emerged attributing to polyploidy the provision 

of additional, uncommitted loci necessary for major steps in the evolution of 

polyploid animals (Nagl, 1978; Brodskii, 1985). 

Swarup (1956,1959a, 1959b) first reported the artificial induction of 

triploidy and sexual development of triploid fish. He used the three-spined 

stickleback (Gasterosteus aculeatus) as an experimental model, treating the eggs 

with a heat shock shortly after fertilisation and rearing the embryos until sexual 

maturation. Several anomalies in their gonadal development were found, with the 

induction of triploidy differently affecting females and males. Females showed a 

reduction in ovarian size throughout life and microscopically, the ovaries from 

adult triploid fish contained numerous undifferentiated cells with the presence of 

only a few developing oocytes. The testes of juvenile triploids were similar to 

those of controls but, at maturity, appeared smaller and contained more 

connective tissue and cell-free spaces, the latter attributed to the degeneration of 

spermatocytes. No spermatozoa were observed (Swarup, 1959a). Since then 

several authors have described similar results in a wide variety of teleost species 

including bass and bream (Garret et al., 1992; Sugama et al., 1992), carps (Gervai et 

al., 1980; Cassani and Caton, 1986), catfish (Wolters et al., 1982; Manickam, 1991), 
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cichlids (Don and Avtalion, 1986; Penman et al., 1987), flatfish (Purdom, 1972; 

Holmefjord, 1995), salmonids (Utter et al., 1982; Benfey and Sutterlin, 1983; 

Chourrout, 1984), sturgeons (Vasetskii, 1967) and others (Kavumparath and 

Pandian, 1990). 

Research on the induction and effects of triploidy in aquatic animals has 

been driven by the potential benefits offered by the manipulation of ploidy in 

these species. The primary goal pursued when generating triploid fish is their 

potential sterility, because of the multiple management options available with 

sterile populations. It has been generally accepted that the inability of triploid fish 

to undergo normal gametogenesis and produce viable gametes results from 

abnormal meiosis, in particular from difficulties in the process of chromosomal 

disjunction at the diakinesis stage of the first meiotic prophase. However, and in 

spite of the increasing application of the techniques for the induction of triploidy 

in commercially relevant aquatic species, no clear explanation of the differential 

effects of induced triploidy in male and female teleosts has been provided to date. 

Since the principles for the manipulation of ploidy in fish are based on the 

alteration of the meiotic process, a brief review of meiosis is included in this 

Chapter. 
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1.2 An overview of meiosis 

The process of meiosis, unlike mitosis, reduces the amount of DNA. While 

mitosis produces daughter cells with the same genomic complement as the 

parental cell from which they originate, meiosis produces gametes with half the 

number of chromosomes found in somatic cells. During sexual reproduction, 

gametes combine at fertilisation to restore the somatic chromosomal complement. 

Unlike mitosis, in which each paternally and maternally derived chromosomes 

behave autonomously during cell division, meiosis is characterised by the pairing 

or synapsis of homologous chromosomes (John, 1990; Klug and Cummings, 1991; 

Lewin, 1997). The alteration of the normal meiotic events taking place immediately 

before or after fertilisation of female gametes is the basis for the techniques 

devised for the manipulation of ploidy in teleosts. 

1.2.1 First meiotic division 

1.2.1.1 Prophase 

As in mitosis, DNA replication precedes meiosis. Gonial cells entering the 

first meiotic division contain a 4c amount of DNA (c= the amount of DNA found 

in the haploid genome), and receive the name of primary oocytes. The first meiotic 

prophase is divided into five substages: leptotene, zygotene, pachytene, diplotene and 

diakinesis. During leptotene (from the Greek lepto, thin, and tenia, strings), the 

chromosomes of the primary oocytes begin to condense and become visible under 

the light microscope (John, 1990). In zygotene (zygo, to bring a pair together, to 

unite) homologous chromosomes come close to each other and begin to undergo 

zipper-like pairing or synapsis resulting in the formation of bivalents. Pairing is 
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accompanied by the formation of a tripartite proteic scaffold between homologous 

chromosomes, the synaptonemal complex (Von Wettstein et al., 1984; Figure 1.1, 

A). Chromosome synapsis proceeds by the establishment of intimate associations 

between homologous AEs (usually near the telomeres), which once assembled into 

the SC are then referred to as lateral elements (LEs). The area between two LEs is 

called the central region, where densely staining, spheroidal structures called 

recombination nodules can be observed (Von Wettstein et al., 1984; Figure 1.1, B). These 

nodules are thought to be the cytological visualisation of large protein complexes 

involved in the enzymology of recombination, since their frequency and distribution 

correspond to the frequency and distribution of crossovers (Carpenter, 1988). 

In pachytene (pachy, thick), coiling and packaging of the DNA and 

associated proteins forming the chromosomes continues. It is during this stage 

when it first becomes evident that each chromosome consists of a double 

structure, providing visual evidence for the replication of DNA (John, 1990). As in 

mitosis, the two DNA double helices are connected by a common centromere and 

receive the name of sister chromatids. Each bivalent contains two pairs of sister 

chromatids, and is sometimes referred to as a tetrad (Klug and Cummings, 1991). 

While not visually evident during pachytene, crossing over, a major meiotic 

event, occurs during this stage, preceded by the synthesis of an amount of DNA 

constituting less than 1% of the total in the nucleus (Stern and Hotta, 1974; Hotta et 

al., 1984). Crossing over, a critical source of genetic variability through which new 

combinations of genetic material arise, is the reciprocal exchange of DNA between 

non-sister chromatids, and takes place within the tetrad. 
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The points of exchange become apparent as cross-like structures named 

chiasmata in the following stage, diplotene (diplo, double). Although the physical 

exchange between chromosome arms occurs during previous prophase substages, 

visible confirmation of crossing over is only possible when duplicated 

chromosomes begin to separate or desynapse (Loidl, 1994; Lewin, 1997). 

During diakinesis (dya, separation, severance; kinesis, movement) the 

chromosomes further separate, and as this separation proceeds, the chiasmata are 

laterally displaced towards the end of the tetrads, a process known as 

terminalisation which begins in late diplotene and is completed during diakinesis 

(Murray and Szostak, 1985). It is also during diakinesis when the breakdown of 

the laminar components in contact with the inner membrane of the nuclear 

envelope commences, and the two centromeres in each tetrad become attached to 

the recently formed spindle fibres (Gerace and Burke, 1988). These fibres consist of 

microtubules, which are in turn formed by the assembly of multiple protein 

dimers consisting of two closely related polypeptides, a- and ß-tubulin (Soifer, 

1986; Sawin, 1993). 

Microtubules , are dynamic structures: the assembled tubule is in 

equilibrium with a cytosolic pool of tubulin subunits, and there is a continuous 

flux of tubulin in and out of the assembled form (Soifer, 1986; Mitchison, 1988; 

Hyams and Lloyd, 1994). Accessory proteins or MAPs (microtubule-associated 

proteins) influence the state of equilibrium. This dynamic equilibrium is an 

important aspect of microtubule function, allowing the tubules to disassemble and 

reassemble in response to cellular conditions (Sawin, 1993; Hyams and Lloyd, 
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1994). Two types of microtubules have been identified in the spindle fibres. Those 

called kinetochore microtubules have one end in one of the cytoplasmic poles, near 

the centrosomal (or centriolar region), and the other end anchored in the 

kinetochore, a region within the centromere of the chromosome formed by the 

interaction of special proteins with particular repetititive sequences of DNA 

(Murray and Szostak, 1985; Mitchison, 1988). The second type of microtubules are 

called non-kinetochore microtubules, which grow from the centrosome but have their 

other ends free. Non-kinetochore microtubules interdigitate with one another 

providing a framework to the spindle and maintaining the separation of the two 

cellular poles during chromosome disjunction (Murray and Szostak, 1985; Gerace 

and Burke, 1988; Mitchison, 1988; Sawin, 1993; Lewin, 1997). 

1.2.1.2 Metaphase, anaphase and telophase 

At the metaphase of the first meiotic division the chromosomes have 

maximally shortened and thickened, and the terminal chiasmata of each tetrad are 

visible as the only points of contact between non-sister chromatids (Klug and 

Cummings, 1991; Loidl, 1994). Each tetrad interacts with the spindle fibres and 

tubulin polymerisation resumes, facilitating their movement towards the equator 

of the cell and resulting in the formation of a unique configuration called metaphase 

plate (Sawin, 1993). During the first division a single centromere holds each pair of 

sister chromatids together. It does not divide (John, 1990). At the anaphase, one 

half of each tetrad (one pair of sister chromatids) is pulled towards each pole of 

the dividing cell. The products of the separation, or disjunction of the tetrads are 

two dyads, which are pulled by the kinetochore filaments to one or the other 
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cellular pole at random (Murray and Szostak, 1985; Hyams and Lloyd, 1994). This 

random segregation of the dyads is the basis for the Mendelian principle of 

independent assortment. The telophase of the first meiotic division is marked by 

the reconstitution of the nuclear membrane around the dyads. The two daughter 

cells resulting form the first meiotic division in females receive equal amounts (2c) 

of DNA and unequal amounts of cytoplasm. Almost the totality of the cytoplasm 

of the primary oocyte remains in one of the daughter cells, the secondary oocyte. 

The other daughter cell receives a minimum amount of cytoplasm and receives the 

name of first polar body. The accumulation of cytoplasm in one of the daughter cells 

is necessary for the nourishment of the developing embryo following fertilisation 

(Klug and Cummings, 1991; Lewin, 1997). 

1.2.2 Second meiotic division 

A second division of the sister chromatids is essential to achieve haploidy 

in the cellular products resulting from the meiotic process. In the majority of 

female teleosts, the nucleus of the secondary oocyte remains arrested at this stage 

until ovulation, and progress into the second meiotic division is only resumed 

upon fertilisation (Masui, 1985). During the second meiotic prophase, each dyad 

consists of one pair of sister chromatids attached by a common centromere. 

Breakdown of the laminar components forming the nuclear envelope of the 

secondary oocyte and the formation of a new spindle take place during this phase 

(Gerace and Burke, 1988). Polymerisation of tubulin subunits yields new 

microtubules that bind to the kinetochores in the dyads (Murray and Szostak, 

1985; Soifer, 1986; Hyams and Lloyd, 1994). 
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During the second meiotic metaphase, the centromeres are directed to the 

metaphase plate by interaction with the kinetochore microtubules. In the second 

meiotic anaphase, kinetochore microtubules retract and pull the dyads in opposite 

directions, a process accompanied by the division of the centromere (Mitchison, 

1988). The second meiotic telophase reveals one-half of each dyad, named monads, 

present at each pole (Murray and Szostak, 1985; John, 1990). During this final 

stage, the nuclear envelope is restituted around each daughter cell, and the 

cytoplasm of the secondary oocyte again divides unequally, producing an ootid 

(ovum in teleost females) and a second polar body, each of them containing a 1c 

amount of DNA in their nuclei (Gerace and Burke, 1988). The ovum initiates 

development as a zygote containing a 2c amount of DNA (1c from the ovum 

pronucleus and 1c from the spermatozoon nucleus)(Klug and Cummings, 1991). 
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1.3 Ploidy manipulation in teleosts 

Two different cell divisions are disrupted for manipulating fish ploidy, 

depending on the time at which the treatment is applied after fertilisation. Early 

shocks inhibit the extrusion of the second polar body at the end of the second 

meiotic division. The outcome is a triploid zygote that contains the genome 

present in the ovum, the genome present in the second polar body, and the 

genome of the spermatozoon. Late shocks inhibit the first mitotic division (first 

cleavage) of the fertilised egg. The outcome is a zygote in which DNA has been 

replicated and contains a doubled number of chromosomes. Late shocks result in 

the generation of tetraploid individuals (Purdom, 1983; Thorgaard, 1983; Ihssen et 

al., 1990). Strategies for sex control are frequently used in conjunction with ploidy 

manipulation techniques. Inactivation of the DNA present in the male gametes 

(spermatozoa) will result in the production of individuals whose genome is of 

exclusively maternal origin (gynogenotes). Similarly, inactivation of the DNA 

present in female gametes (ova) will result in the generation of individuals whose 

genome is of exclusively paternal origin (androgenotes). For the restitution of 

diploidy in the resulting zygote, DNA inactivation must be coupled with the 

inhibition of the extrusion of the second polar body or inhibition of the first 

mitotic division for successful gynogenesis, or suppression of the first mitotic 

division in androgenesis. The manipulation of meiosis or mitosis and the 

inactivation of the genome in fish may thus result in the production of triploid, 

tetraploid, gynogenetic or androgenetic individuals (Mair, 1993; Hussain, 1996). 
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1.4 Fundamentals of ploidy manipulation 

GENERAL INTRODUCTION 

A key point in the manipulation of plant or animal genomes is the 

clarification of the cellular mechanism(s) affected by the treatments used for 

ploidy manipulation. In general, techniques for ploidy manipulation are aimed to 

cause the non-disjunction of chromosome sets during cell division. It has been 

suggested that the treatments inhibit the polymerisation of tubulin dimers into 

microtubules, either by altering the kinetics of the equilibrium established 

between dimers and free microtubules or affecting the function of MAPs. These 

techniques may also affect the synthesis or function of other structural proteins 

(e. g. actin, kinesin, dynein), the assembly or function of ribosomal subunits and 

thus, protein synthesis, or the architecture and/or function of other cellular 

organelles (e. g. kinetochore, centrosomes, nuclear envelope and/or cellular 

membranes)(Soifer, 1986; Cleveland, 1988; Livezey, 1992; Sawin, 1993; Hyams and 

Lloyd, 1994; Rutberg, 1996). 

Alternatively, the effects of the treatments applied for the manipulation of 

ploidy in teleosts may bear some relation to the dynamics of heat shock in 

vertebrate cells (Forristall, 1989; Hightower and Nover, 1991; Nover, 1991). In spite 

of the success of the techniques in use, the intimate molecular alterations involved 

in the manipulation of ploidy remain largely unclarified. 
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1.5 Techniques for the generation of triploid fish 

GENERAL INTRODUCTION 

Techniques for the generation of triploid fish are usually classified as direct 

or indirect methods. Direct methods are those in which the treatment is applied to 

the cells that will develop into triploid individuals. They include the use of 

chemicals, changes in temperature and pressure shocks. Indirect methods are 

those in which a polyploid progeny is generated first (by the use of direct 

methods) and is then used in different crosses devised to obtain the desired 

triploid individuals. Both direct and indirect methods are generally used in 

combination with sex-reversal strategies aimed to the production of monosex 

triploid progenies (Lincoln and Scott, 1983; Quillet et al., 1991; Galbreath and 

Thorgaard, 1995; McCarthy et al., 1996). 

1.5.1 Direct methods 

1.5.1.1 Chemical methods 

A number of chemicals have been used to manipulate the ploidy of 

amphibians and fish. Several substances have been used in teleosts, such as 

colchicine (Smith and Lemoine, 1979), cytochalasin B (Refstie et al., 1977), nitrous 

oxide (Sheldon et al., 1986), and several anaesthetics (Johnstone et al., 1989). 

Although they have proved very useful for research purposes, their tumorigenic 

and cytotoxic effects generally restrict their use. 

1.5.1.2 Temperature treatments 

Heat (Chourrout, 1980; Chourrout and Itskovitch, 1983; Johnstone, 1985; 

Don and Avtalion, 1986; Hussain et al., 1991, Quillet et al., 1991) or cold shocks 

(Valenti, 1975, Chourrout, 1980; Richter, 1987; Linhart et al., 1991) have been 
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successfully applied in the generation of triploids of several teleost species. They 

can be defined as sudden changes of temperature generally within a range of 10 to 

20 °C applied to the eggs shortly after fertilisation. The duration and time of 

application of these temperature shocks is species-specific, but generally varies 

between a 5-10 min (for heat shocks) and a 30-45 min (for cold shocks) treatment 

applied 5 to 90 min after fertilisation. Heat shocks are the most common 

treatments currently being used by the industry due to their simplicity, cost- 

effectiveness and efficiency, although egg quality appears to be a critical factor in 

the success of triploidy induction (Diaz et al., 1993). 

1.5.1.3 Pressure shocks 

Compared to temperature shocks, pressure shocks offer the advantage of a 

more uniform treatment of the eggs, overcoming difficulties in heat transfer, 

particularly in species with large egg volumes. The duration of pressure shocks is 

also generally shorter compared to temperature treatments, thus minimising 

mortalities (Chourrout, 1984; Lou and Purdom, 1984; Lincoln, 1989; Hussain et al., 

1991). This might explain why triploid yields are usually higher with pressure 

than with temperature shocks, although abnormal embryo development and 

chromosomal aberrations have been described following the application of 

pressure shocks (Yamazaki and Goodier, 1993). Desirable values of pressure are of 

the order of 470 to 700 atmospheres, dispensed as a quick shock, usually 4 to 10 

min long. Several commercial apparatuses are available for the induction of 

polyploidy in fish by pressure shocks. In most cases, pressure is built up by 

forcing water from a reservoir into a pressurised container where the eggs are 

kept. The rapidity on reaching the desired pressure seems to be of primary 
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importance for obtaining a good percentage of triploid individuals (Benfey et al., 

1984). 

1.5.2 Indirect methods 

Triploid fish have been produced by indirect methods, which are based on 

the expectancy of the production of diploid gametes by tetraploid individuals. 

Fertilisation of normal (haploid) ova by diploid sperm results in the generation of 

a triploid offspring. This approach is of particular interest for the generation of 

triploids in species where the use of direct methods is impaired by low fecundity 

and difficulties for artificial spawning such as territorial catfishes or mouth- 

breeding cichlids (Chourrout, 1984; Hussain, 1996). Although it was initially 

suggested that tetraploidy might be difficult to induce or it may result in inviable 

chromosomal arrangements (Purdom, 1983), the generation of tetraploid broodfish 

has been successfully accomplished in salmonids (Thorgaard et al., 1981; 

Chourrout, 1984; Chourrout et al., 1986; Diter et al., 1988). Chourrout et al. (1986) 

obtained fertile tetraploid male rainbow trout and successfully bred tetraploid 

male and diploid females to produce viable triploids. Tetraploids have also been 

produced in Oreochromis spp. (Valenti, 1975; Myers, 1986; Pandian and Varadaraj, 

1987; Don and Avtalion, 1988b) and other teleost species such as the channel 

catfish (Bidwell et al., 1985), but the poor viability and reproductive performance 

of these individuals limits the commercial applicability of this methodology 

(Thorgaard, 1986; Hussain, 1996). 
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1.6 Methodology for ploidy evaluation 

Techniques for triploidy induction are never totally effective. During the 

generation of triploid fish, some non-triploid individuals are inadvertently 

produced, and in order to eliminate undesired spawning of diploid forms only 

triploids should be stocked. Thus, presumptive triploid fish generated by the 

techniques described in the previous section must be screened and their triploid 

condition must be individually confirmed. Ideal features for the methodology of 

ploidy evaluation include accuracy, rapidity and cost-effectiveness; to be practical 

for the fish farming industry, these techniques must also be able to analyse large 

numbers of fish (Ihssen et al., 1990; Mair, 1993). The techniques that have been 

developed for ploidy assessment in fish can be classified in three categories: 

cytogenetic methods, the measurement of erythrocyte nuclear or whole-cell size 

and the measurement of nuclear DNA content. 

1.6.1 Cytogenetic methods 

Cytogenetic methods include the counting of chromosomes and nucleoli. 

The term karyotype usually refers to the arrangement of metaphase chromosomes 

in a sequence according to their length and position of the centromere. 

Karyotyping has revealed the existence of triploid individuals in natural and 

domesticated populations of teleosts (Cuellar and Uyeno, 1972; Thorgaard and 

Gall, 1979). Chromosome preparation and counting is inexpensive and requires 

little specialised equipment; although several standardised methods have been 

described, the best results are obtained with preparations from embryos or very 

young fish, unless cell culture is used (McPhail and Jones, 1966; Denton and 
Luis A. P. Carrasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 

33 



Chapter I GENERAL INTRODUCTION 

Howell, 1969; Gold, 1974; Kligerman and Bloom, 1977; Hartley and Horne, 1983; 

Thorgaard and Disney, 1990). The production of karyotypes still remains the only 

method for determining precise chromosome numbers and configuration, but it is 

a laborious process that cannot be used in the practical screening of presumptive- 

triploid fish populations. 

A more simplistic approach for the cytogenetic evaluation of fish ploidy is 

the counting of nucleoli after silver staining (Phillips et al., 1986). This is a simple 

and reliable technique, but an adequate cytogenetic background is required to 

correlate ploidy levels with the number of nucleolar-organising regions present in 

the karyotype (Foresti et al., 1981; Phillips and Ihssen, 1985; Iturra et al., 1990). 

1.6.2 Determination of erythrocyte nuclear or whole-cell size 

Nuclear size analyses are based on the increase in the nuclear volumes 

resulting from the higher amount of DNA and number of chromosomes present in 

triploid cells. The relationship between the size of the nuclei and the size of the 

cytoplasm makes the reliable assessment of ploidy by whole red blood cell 

analysis possible. Unlike mammals, fish red blood cells are nucleated which, 

added to their consistent size and ease of sampling, facilitates the use of these 

techniques in teleosts (Cimino, 1973; Benfey et al., 1984). Although the microscopic 

measurement of stained erythrocyte nuclei is simple and relatively inexpensive, 

shortcomings of these techniques include the time delay associated with fixing, 

staining and analysing the slides or smears. 

The possibility of automating the process by electronically analysing 

erythrocyte nuclear volumes was investigated by Johnson et al. (1984) who 

reported that a comparison between ploidy analyses performed by measuring 
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erythrocyte nuclei with an ocular micrometer and electronically with a particle 

counter (Coulter Counter) resulted in complete agreement. A Coulter Counter 

operates by passing particles (nuclei or whole red blood cells) suspended in an 

electrolyte solution through an appropriately sized orifice and detecting the 

resulting change in resistance which is proportional to particle size. The Coulter 

Counter provides a rapid and efficient method for estimating ploidy in fish, and 

large numbers of individuals can be accurately analysed. Relatively high operating 

costs and the need for specialised training restrict the use of this technique to 

large-scale fish farming operations (Johnson et al., 1984; Bye and Lincoln, 1986; 

Ihssen et al., 1990). 

1.6.3 Quantification of DNA 

The methods based on the colourimetric or fluorimetric quantification of 

deoxyribonucleic acid (DNA) reveal nuclear DNA with specific-affinity stains 

(DAPI, Feulgen stain, propidium iodide)(Allen et al., 1983; Teplitz et al., 1990). 

Flow cytometry is used to rapidly analyse the DNA content of large numbers of 

interphase cells with accuracy exceeding that of other quantitative techniques 

(Allen, 1983; Johnson et al., 1984; Benfey et al., 1986). Very small blood samples can 

be analysed, and somatic tissues may also be processed after nuclear isolation. The 

elevated cost of the apparatuses involved and the specialised technical knowledge 

required limit the use of these methods at the farm level. 
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1.7 Gametogenesis 

Gametogenesis is a process of cellular differentiation that results in the 

transformation of undifferentiated gonial cells (spermatogonia or oogonia) into 

fertilisable gametes. Spermatogenesis, or the generation of spermatozoa, takes place 

in the male gonad, the testis. The process of gametogenesis in females results in 

the generation of ova and receives the name of oogenesis. Gametogenesis is 

preceded by the differentiation of primordial germ cells into the male or female 

direction (Kinne, 1991). A review of spermatogenesis and oogenesis in the rainbow 

trout with special emphasis on the cellular classes observed during these processes 

is presented here with the aim of providing general background for the studies on 

gametogenesis included in the present Thesis. The correspondence between 

meiotic stages and the cellular classes observed during the spermatogenesis and 

oogenesis in the rainbow trout is summarised in Table 1.1. 
Spermatogenesis Meiotic stages Oogenesis 

S ermato onia Pre-meiotic Interphase Oogonia 
Pro phosel -' 

s IO St t - Le totene , °'. o 
ocy age e 

Stage 2 Oocytes 
Päch terie < Q 

Primary Spermatocyte Dr lotene ö Stage 3 Oocytes 
Diakinesis 

Metaphase I. ': Stage 4 Oocytes 
Ana hase I LZ Stage 5 Ooc tes 
Telophase I Stage 6 Oocytes 
Interphase 

O 
Prophase II ocytes Stage 7 

Secondary Spermatocyte Meta ]tase II ö 
Anaphase II ;: 

? 
Telophase IT; <; -;: t 

Q Ova 
Spermatid 

. 

Spermatozoa 

Table 1.1 Cellular classes and corresponding meiotic stages observed 
during the spermatogenesis and oogenesis of the rainbow trout (after 

Billard, 1986,1992; Bromage and Cumaranatunga, 1988). 
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1.7.1 Sex differentiation and puberty 

In the rainbow trout, testes and ovaries are paired organs located in the 

body cavity. The anterior end of the gonad is attached to the antero-dorsal area of 

the body cavity in which it is located, and during early stages of gonadal 

differentiation, some connections exist between the gonad and the mesonephros 

with possible cell migration between both organs (Billard, 1992). Signs of sex 

differentiation appear first in females between 18 and 28 days post-hatching at an 

incubation temperature of 11.5 °C (Van der Hurk and Sloff, 1981). Takashima et al. 

(1980) reported similar findings, with occurrence of sex differentiation shortly 

after completion of yolk sac resorption, 2 months after fertilisation. Lebrun et al. 

(1982) found that the gonads in the rainbow trout remain undifferentiated for 4 

weeks post-hatching (p. h. ) at 10-11°C; at 35 days p. h. some enlargements of the 

anterior part of the gonad occur. At 42 days p. h. the first sign of ovarian 

organisation of the gonads could be identified. The formation of the ovarian 

lamellae and the completion of the structural development of the ovary occur at 

12-16 weeks of age (Billard, 1992). Changes in the number of primordial germ cells 

in the gonads were also reported by Lebrun et al. (1982); immediately after 

hatching the average number of germ cells is low (around 50 in female gonads) 

and slowly increases to 2,000 at 5 weeks p. h. After 5 weeks, signs of meiosis can be 

observed in some of the anteriorly-enlarged gonads, with a sharp increase in the 

number of germ cells, resulting in the identification of up to 11,000 germ cells at 10 

weeks p. h., when the ovary consists mostly of meiotic oocytes (Lebrun et al., 1982). 

In the filament-like gonadal type, which is assumed to represent an 
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undifferentiated testis, the germ cells remain undifferentiated and are fewer in 

number (Billard, 1992). 

During the first meiotic prophase, the synthesis of nuclear DNA is slow 

through the leptotene and zygotene stages, rapid in early pachytene and absent in 

early diplotene (Vlad, 1976). The capacity to synthesise or metabolise sex steroids 

exists in still morphologically undifferentiated gonads at day 23 post-hatching for 

progestins, at day 73 p. h. for androgens in the testis, and at day 173 p. h. for 

oestrogens in ovaries (Van der Hurk et al., 1982). Van der Hurk and Oordt (1985) 

have shown that 11-oxygenated androstendione derivatives, possibly synthesised 

from non-gonadal corticosteroids, play an important role in sustaining the 

differentiation and early development of the testis. Sex differentiation appears 

labile at these early stages of development and sex inversion can easily be 

obtained by feeding the fry with food containing methyl-testosterone or oestradiol 

(Jalabert et a!., 1975; Hunter and Donaldson, 1983). 

It has been recently shown that steelhead trout embryos are able to form 

steroid glucuronides during very early life stages (Yeoh, 1996a, b). Steroid levels 

are relatively high at 1 day post-fertilisation in rainbow trout embryos and decline 

until 25 days post-fertilisation (Feist and Schreck, 1996). At hatching, steroid levels 

increase slightly before they fall by 78 days post-fertilisation and remain relatively 

constant thereafter. Trends toward differences in steroid content between female 

and male monosex populations of rainbow trout become evident around the time 

of morphological (based on histology) gonadal differentiation (78-90 days post- 

fertilisation; Feist and Schreck, 1996). GTH 1 and GnRH can be detected in 

rainbow trout pituitary and brain as early as 48 days after fertilisation (Feist and 
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Schreck, 1996). The activity detected in the brain-pituitary-gonadal axis during the 

process of sex differentiation, together with the fluctuations in steroid hormones 

observed at this time, have led to the suggestion that sex steroids may play a 

driving role for sexual differentiation in the rainbow trout (Feist and Schreck, 

1996; Yeoh et al., 1996a, b). 

1.7.2 Organisation of the testes in the rainbow trout 

Rainbow trout develop testes of the lobular type (Billard, 1986). In this type 

of teleostean testicular organisation, connective tissue extends from the testicular 

capsule to form irregular tubules lined with a Sertoli cell epithelium including 

germ cells (Figure 1.2, A). The blind end of the tubules is apposed against the 

testicular capsule; the tubules converge ventrally towards a sperm collection 

system or sperm duct. In the lobular structure early stages of spermatogonia are 

found along the entire length of the lobule. Later stages of spermatogonia and 

spermatogenic cells appear in cysts which are groups of germ cells dividing 

synchronously and surrounded by Sertoli cells (Figure 1.2, B). Spermatozoa are 

released into the lobule lumen from which they reach the efferent and defferent 

systems (Grier, 1981; Billard, 1986). 
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1.7.3 Gonadal cell stages in males 

1.7.3.1 Spermatogonia 

Two types of spermatogonia have been identified on the basis of 

morphological criteria in the rainbow trout. Type A spermatogonia are characterised 

by their large nuclei (8-10 pm in diameter) with one large, centrally-positioned 

nucleolus and several chromatin filaments radiating towards the periphery of the 

cytoplasm. They have few structured organelles, scattered mitochondria and little 

reticulum, and frequently show mitotic activity. Type B Spermatogonia are grouped 

in cysts in the rainbow trout and seem to be irreversibly engaged in 

spermatogenesis. They are characterised by smaller nuclei than type A 

spermatogonia (3-4 pm in diameter), more dense chromatin and a higher number 

and diversity of cellular organelles (Billard, 1986; Kinne, 1991). 

1.7.3.2 Spermatocytes 

Primary spermatocytes are distinguished from spermatogonia type B by their 

larger nuclei (4-6 pm) and by the resulting increase of the size of the cysts where 

they are contained. They are round cells with darkly-staining nuclei centrally 

positioned and scarce cytoplasm. Primary spermatocytes within a cyst are 

connected by cytoplasmic junctions which ensure the synchronous progress of 

these cells through the various phases of the first meiotic division; these junctions 

persist until the spermatid stage (Billard, 1983). Secondary spermatocytes are smaller 

in size and usually appear in a more central position within the cysts than primary 

spermatocytes. Their centrally-positioned nuclei are approximately 2-3 pm in 
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diameter, stain intensely dark with haematoxylin-eosin and have an spheroidal 

shape with irregular contours. 

1.7.3.3 Spermatids and spermatozoa 

Ultrastructural observations in the rainbow trout have identified four 

different spermatid sub-stages (Billard, 1983). Under the light microscope, 

spermatids appear as small (3-4 pm in diameter), round cells with a large, darkly- 

staining nucleus and very scarce cytoplasm, generally occupying a central position 

within the cysts. Their nucleus elongates slightly as the chromatin becomes more 

condensed during the transition spermatid-spermatozoa. Spermatozoa in the 

rainbow trout are characterised by their elongated nuclei and well-developed mid- 

piece, and lack an acrosome. Under the light microscope, they appear as round, 

darkly-staining spheroidal cells with densely packed chromatin and no distinctive 

cytoplasm, filling the central spaces of the testicular lobules in mature males 

(Billard, 1986; Kinne, 1991). 

1.7.3.4 Sertoli cells 

Sertoli cells are elongated, pyramidal cells with cytoplasmic projections that 

almost entirely surround the cells of the spermatogenic lineage (Figure 1.1, 

B)(Grier, 1981; Billard, 1986). Sertoli cells contain numerous lipid droplets in their 

cytoplasms, but under the light microscope their outlines appear poorly delimited 

because of the numerous lateral processes that surround spermatogenic cells 

(Grier et al., 1981). Unlike other teleosts, the population of Sertoli cells appears to 

be permanent in the rainbow trout, and among the several roles attributed to them 
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are (a), the support and structuration of the lobes and cysts; (b), the transfer and 

conversion of metabolites and hormones towards the spermatogenic cells; (c), the 

phagocytosis of germ cells and residual spermatozoa, and (d), the isolation of the 

cyst compartment beyond the spermatocyte stage (Billard, 1986; Kinne, 1991). 

1.7.3.5 Interstitial cells and the interlobular space 

The connective tissue in the testicular capsule of the rainbow trout is 

composed of fibroblasts bordered on the lobule side by a basal lamina against 

which Sertoli cells are apposed (Figure 1.1, B)(Billard, 1986). The fibroblasts form a 

discontinuous layer around the lobules. Other components of the interlobular 

space are myoid or perilobular cells, which possess ultrastructural characteristics 

similar to boundary cells in the mammalian testis (Grier, 1981). Ultrastructurally, 

the teleost myoid cell cytoplasm contains numerous microfilaments oriented in 

parallel to the long axis of the cell, few to numerous pynocitotic vesicles, an 

elongated nucleus and rough endoplasmic reticulum (Grier, 1981). 

Using morphological criteria, interstitial cells can be distinguished between 

the fibroblast layers. Interstitial cells appear to be homologous to mammalian 

Leydig cells in most teleosts, characterised by a fusiform or polyhedral shape, a 

central nucleus and an eosinophilic cytoplasm rich in small lipid droplets (Grier, 

1981; Van der Hurk et al., 1982). Interstitial cells are involved in steroidogenesis, as 

indicated by their positive staining for 3ß-hydroxysteroid dehydrogenase (Van der 

Hurk and Slof, 1981; Van der Hurk et al., 1982). In the rainbow trout, interstitial 

cells participate in the synthesis of 11-ketotestosterone (Van der Hurk et al., 1978; 

Kinne, 1991; Nagahama, 1994). 
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The rainbow trout testis appears to lack a lymphatic system as described irý 

mammals, but it does possess an extravascular space containing blood plasma 

which leaks between blood vessel endothelial cells (Grier, 1981). 

1.7.4 Spermatogenesis, spermiogenesis and spermiation in the rainbow trout 

The process of spermatogenesis is not synchronous in the rainbow trout: at 

the initiation of spermatogenesis in May-June some cells of the spermatogenic 

lineage reach the stage of spermatids, so that spermatozoa can be occasionally 

found in the lobular lumen before the size of the testis has markedly increased. 

The bulk of spermatogenic activity occurs later in July-August as shown by the 

change in weight of the testis as percent of the body weight, or gonado-somatic 

index. Intense activity can be observed at that time in the Sertoli and Leydig cells, 

with changes in their structure and steroidogenic activity (Loir, 1990). 

During spermiogenesis, or the differentiation of spermatids into 

spermatozoa, the majority of the cytoplasm of the spermatids is eliminated and 

phagocytosed by the Sertoli cells. Only some remnants of cytoplasm and a few 

mitochondria are found in mature spermatozoa (Billard, 1983). At the end of 

spermiogenesis the spermatozoa are released from the cysts into the lobular 

lumen. Progressively the lumen becomes filled with spermatozoa and no other 

germ cell stages are present except type A spermatogonia, which will be the 

starting point of the next spermatogenic cycle. Spermatozoa remain in the lobule 

for approximately 1 month in an apparently quiescent state, where they may 

undergo some final maturation (Billard, 1983,1992). 
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In the rainbow trout spermiation corresponds to the release of spermatozoa 

from the lumen of the lobules into the sperm duct, probably after a rise in 

hydrostatic pressure inside the lobule due to the secretion of fluid by the Sertoli 

cells under gonadotropic stimulation (Billard, 1992). Spermatozoa are then pushed 

into the efferent and defferent systems that are also secretory and contribute to the 

fluidity of the milt. The sperm duct has two parts: one is adjacent to the testis and 

collects spermatozoa at the opening of the lobule (juxta-testicular part); the other is 

a simple duct connecting the posterior part of the testis to the genital papilla 

(Figure 1.2, A)(Billard, 1992). There are no seminal vesicles in the rainbow trout. 

The free part of the sperm duct seems to have several functions: (a), regulation of 

the ionic composition of the seminal fluid (Morisawa and Morisawa, 1990); (b), 

resorption of spermatozoa (Billard and Takashima, 1983), and (c), the metabolism 

and/or secretion of hormones (Van der Hurk et al., 1978; Schulz, 1986). 
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1.7.5 Ovarian structure in the rainbow trout 

Rainbow trout develop ovaries of the gymnovarian type (Hoar, 1969; 

Guraya, 1986). In this type of teleostean ovary, the peritoneum covers the outer 

surface of the ovary only partially, and ova are directly discharged into the 

peritoneal cavity. The ovaries are supported in the body cavity by a dorsolateral 

fold of the peritoneum. A branch of the dorsal aorta and the ovarian vein run 

parallel to the long axis of the ovary along the margin where the peritoneal 

membrane comes in contact with the ovary. Arterial and venous supplies 

individually serve each developing follicle, with blood from the ovarian vein 

draining directly into the Cuverian sinus (Bromage and Cumaranatunga, 1988). 

The outer wall of the ovary, continuous with the peritoneum, is referred to as 

tunica albuginea. The tunica albuginea contains smooth muscle cells and densely 

packed collagen, elastin and reticulin fibres, it is highly vascularised, and it is 

externally lined by a squamous to cuboidal epithelium (Van der Hurk and Peute, 

1979). 

Connective tissue septae known as trabeculae extend perpendicularly from 

the tunica albuginea into the ovarian stroma. The connective trabeculae are 

organised transversally in a series of folds extending along the ovarian axis which 

receive the name of ovigerous lamellae. The inner epithelium covering the lamellae 

is referred to as germinal epithelium since female germ cells develop in association 

with this structure. 

The ovary of the rainbow trout contains germ cells that develop 

synchronously; at least two developmental phases of oocytes are observed during 

the process of oogenesis and females spawn once a year for a number of years 
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(Bromage and Cumaranatunga, 1988). Similarly to other teleosts, seven stages of 

oocyte development have been identified in the rainbow trout on a morphological 

basis. 

1.7.6 Gonadal cell stages in females 

1.7.6.1 Stage 0 (Oogonia) 

Oogonia are large cells (12-17 pm in diameter) morphologically 

characterised by a large nucleus containing one or more small nucleoli and an 

indistinct band of cytoplasm (Figure 1.3)(Browder, 1985; Bromage and 

Cumaranatunga, 1988). In teleosts and amphibians, unlike in other vertebrates, 

dividing oogonia persist in the adult ovary (Billard, 1987; Selman et al., 1993; Tyler 

and Sumpter, 1996) and they may continue to divide throughout the life cycle 

(Tokarz, 1978). Oogonia in the rainbow trout may appear isolated or forming 

clusters or nests, where they tend to be slightly larger in size and with a more 

round cytoplasm, frequently showing mitotic activity (Takashima et al., 1980). This 

different arrangement of oogonia in the rainbow trout is the basis for the 

distinction between primary and secondary oogonia, similarly to what is observed in 

males. Morphological differences between the two types of oogonia observed in 

the rainbow trout are not well documented, and thus in the present study primary 

and secondary oogonia will be described together. Oogonial cysts are frequently 

surrounded by smaller, flattened cells with a fusiform nucleus known as prefollicle 

cells, which have been described as having a mesenchymal or epithelial origin 

(Tyler and Sumpter, 1996). During the differentiation of the follicle, prefollicle cells 
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GENERAL INTRODUCTION 

Figure 1.3. Oocyte developmental cycle of the rainbow trout. Key: 0, oogonia; 1-7, 

oocytes at stage 1 to 7; POF, post-ovulatory follicle; B, blood vessels; Bm, basement 

membrane; C, connective tissue; Ca, cortical alveoli; E, epithelium; Fl, follicule lumen; G, 

granulosa; M, micropyle; Mv, microvilli; N, nucleus; Ne, nuclear envelope; Nu, nucleoli; 
Og, oogonia; Op, ooplasm; T, trabeculae; Th, theca; Yg, yolk granules; Yn, yolk nuclei; 
Yn, yolk vesicles; Zr, zona radiata. (Bromage and Cumaranatunga, 1988). 
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become increasingly flattened and migrate to form a cell layer around individual 

oocytes (Bromage and Cumaranatunga, 1988; Tyler and Sumpter, 1996). 

1.7.6.2 Stage 1 Oocytes (Chromatin nucleolar stage) 

Stage 1 oocytes are slightly larger than oogonia, with diameters ranging 

from 24 to 46 pm (Bromage and Cumaranatunga, 1988). Their nuclei contain 

several strands of basophilic chromatin positioned under the nuclear membrane, 

occupying a major portion of the oocyte with only a narrow encircling band of 

slightly basophilic cytoplasm (Figure 1.3). Oocytes at this stage have differentiated 

a primordial follicle, formed by the association of stage 1 oocytes with a 

surrounding monolayer of 3-4 flattened granulosa cells (Browder, 1985; Bromage 

and Cumaranatunga, 1988; Tyler and Sumpter, 1996). 

1.7.6.3 Stage 2 Oocytes (Balbiani body stage or Early perinucleolar stage) 

Stage 2 oocyte diameter ranges from 80 to 240 pm (Bromage and 

Cumaranatunga, 1988). Their nuclei contain one large, spherical nucleolus and 

several smaller peripheral nucleoli (Figure 1.3). At this stage of oocyte 

development the basophilic nature of the cytoplasm reaches a maximum while the 

nuclear basophilia gradually diminishes. Stage 2 oocytes are characterised by the 

appearance of shallow undulations in the nuclear envelope accompanied by the 

presence of basophilic electron-dense deposits in the juxtanuclear region termed 

Balbiani bodies. Balbiani bodies are composed of ribonuclear proteins associated to 

hetero-nuclear mRNA transported from the nucleus into the cytoplasm through 

nuclear membrane pores (Olins et al., 1993; Visa et al., 1996). Stage 2 oocytes are 

surrounded by a single squamous granulosa cell layer and one or two squamous 
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thecal cell layers (Browder, 1985). Thecal and granulosa cells play a critical role in 

the metabolism of sexual steroids and the nourishment of the growing oocyte 

(Kagawa et al., 1982; Nagahama, 1994). 

1.7.6.4 Stage 3 Oocytes (Late perinucleolar stage) 

The late perinucleolar stage is characterised by the presence of small 

spheroidal nucleoli situated closely to the nuclear membrane. During this stage 

the basophilic nature of the cytoplasm becomes reduced and the Balbiani bodies 

migrate to the cellular periphery (Van der Hurk and Peute, 1979; Takashima et al., 

1980). Stage 3 oocytes increase in size, reaching diameters ranging from 300 to 400 

pm, and by the end of the late perinucleolar stage the follicle consists of a growing 

zona radiata, a granulosa layer and an outer double celled theca layer (Bromage 

and Cumaranatunga, 1988; Kinne, 1991)(Figure 1.3). The zona radiata or vitelline 

envelope appears under the light microscope as a ring composed of a number of 

radial striations between the granulosa cells and the oocyte; it is formed by the 

proliferation of microvilli from the cellular membrane of the oocyte and the 

deposition of two to four major proteins synthesised by the liver under the 

influence of oestrogen (Bromage and Cumaranatunga, 1988; Hyllner et al., 1991, 

1994). 

1.7.6.5 Stage 4 Oocytes (Vesicle stage) 

During this stage PAS-positive, glycoprotein-rich vesicles termed cortical 

alveoli accumulate initially in the periphery of the cytoplasm, and subsequently in 

the entire cytoplasm of the oocyte, resulting in a reticulate appearance under the 

light microscope (Figure 1.3). These vesicles contain a polysialoglycoprotein 
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complex of at least 200 kilodaltons of molecular weight endogenously synthesised 

by the oocyte (Guraya, 1986; Inoue and Inoue, 1986; Ho, 1991; Hyllner et al., 1994). 

1.7.6.6 Stage 5 Oocytes (Peripheral yolk granule stage) 

Stage 5 oocytes are easily distinguished from the previous stage by the 

presence of small exogenous yolk-rich granules (yolk granules) in the cytoplasmic 

region adjacent to the zona radiata, staining pink with haematoxylin-eosin 

(Guraya, 1986; Bromage and Cumaranatunga, 1988). These yolk granules coalesce 

to form larger yolk globules positioned in the centre of the oocyte at later stages of 

development. Stage 5 oocytes contain a central nucleus and are surrounded by an 

enlarged zona radiata, a well developed granulosa and a theca which 

ultrastructurally contains an abundant rough endoplasmic reticulum (Figure 

1.3)(Kinne, 1991). 

1.7.6.7 Stage 6 Oocytes (Migrating germinal vesicle stage) 

This oocyte stage is characterised by a migrating nucleus or germinal vesicle, 

which appears in an eccentric position within the cytoplasm and with small 

peripheral nucleoli (Guraya, 1986; Bromage and Cumaranatunga, 1988). Abundant 

yolk aggregations are evident in the cytoplasm of stage 6 oocytes, with large yolk 

globules in the vegetal pole opposed to the germinal vesicle developing into 

polygonal yolk platelets by late stage 6. The follicle at this stage contains a thick 

zona radiata and a granulosa composed of flattened granulosa cells (Figure 

1.3)(Van der Hurk and Peute, 1979; Guraya, 1986). Although the migration of the 

germinal vesicle has been shown to coincide with an increase in oocyte sensitivity 
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to 17a-hydroxy-20ßdihydro-progesterone and maturational gonadotropin (Moley 

and Schreiber, 1995), the precise mechanism that results in the displacement of the 

nucleus has yet to be elucidated (Hart and Fluck, 1995). 

1.7.6.8 Stage 7 Oocytes (Germinal vesicle break-down stage) 

Stage 7 oocytes are characterised by the rupture of the nuclear membrane, a 

process known as germinal vesicle break-down. These oocytes appear as large, yolk- 

filled structures with peripherally-located and ruptured nuclear envelopes 

(Bromage and Cumaranatunga, 1988; Moley and Schreiber, 1995). The follicles 

contain a large zona radiata with prominent radial striations; within the zona 

radiata and immediately opposite to the germinal vesicle a micropyle is sometimes 

visible, covered by enlarged granulosa cells (Figure 1.3)(Bromage and 

Cumaranatunga, 1988). 

1.7.6.9 Post-ovulatory follicles 

Post-ovulatory follicles are hollow collapsed structures morphologically 

characterised by the presence of a hypertrophied granulosa and a theca which is 

continuous with the epithelial cell lining of the ovigerous lamellae (Figure 1.3). 

These structures result from the ovulation of mature stage 7 oocytes, which are 

forced out of the follicles leaving behind the granulosa and thecal layers. Oogonial 

nests are often found among the connective tissue and ovigerous lamellae 

surrounding the post-ovulatory follicles; it is from these that further cohorts of 

pre-vitellogenic oocytes arise (Bromage and Cumaranatunga, 1988). 
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1.7.6.10 Atretic oocytes 

Atresia is a degenerative process by which oocytes are resorbed before the 

completion of maturation. Atresia may affect different stages of oocyte 

development, but most studies on its incidence have been limited to oocytes in late 

stages of development (stage 4 onwards); very little is known about atresia in 

early (1-3) stages of oocyte development (Bromage and Cumaranatunga, 1988; 

Moley and Schreiber, 1995; Tyler and Sumpter, 1996). Histologically, the first sign 

of atresia is the shrinkage of the follicle, which may involve separation of the 

different follicular layers from the oocyte. Subsequently, atresia assumes a variety 

of forms depending on the oocyte stage which is being resorbed and also on the 

stage of development of the ovary. During early stages of atresia the nucleus of the 

oocyte ruptures discharging its contents into the cytoplasm; in advanced stages of 

oocyte development the yolk becomes more liquefied and vacuolated, loosing 

acidophilia. Characteristically, the granulosa layer becomes hypertrophied, 

penetrating the zona radiata and phagocytising the contents of the oocyte 

cytoplasm (Bromage and Cumaranatunga, 1988). 

There is some controversy in the current literature about the incidence and 

physiological role of atresia in teleostean gametogenesis. In the rainbow trout, 

reduced feeding results in a progressive increase in the incidence of atresia, and 

complete starvation may result in resorption of the full complement of maturing 

oocytes (Bromage and Cumaranatunga, 1988). Quantification of the degree of 

atresia is difficult; it is possible that some of the incidences of atresia reported in 

studies using non-virgin females are due to degenerating oocytes from a previous 

sexual cycle, which cannot be distinguished from oocytes maturing at the time of 
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the analysis on the basis of size alone (Tyler et al., 1990,1994). In spite of recent 

interest in the atretic process, the factors which bring about its occurrence and the 

dynamics of the resorptive process have not yet been fully clarified (Moley and 

Schreiber, 1995; Tyler and Sumpter, 1996). 

1.7.7 Oogenesis and ovulation in the rainbow trout 

The ovarian lamellae start organising at 5 weeks post-hatching in the 

rainbow trout, when they contain an inner core of mesenchymal stroma, 

fibroblasts and interstitial cells covered by a multilayered epithelium in which the 

oogonia are initially embedded (Upadhyay, 1977). At this stage of development, 

oogonia are organised into clusters and by 12-16 weeks post-hatching they become 

progressively isolated by pre-follicular cells and included in the mesenchymal 

stroma (Upadhyay, 1977; Billard, 1992). Once incorporated in the stroma, oocytes 

undergo a complex process of growth involving a massive incorporation of yolk 

into their cytoplasms. It takes at least 6 months for the growth process to be fully 

complete; this may explain the later response of the ovary to exogenous GTH 

stimulation, compared to the testis (Billard, 1992). The basic pattern of oocyte 

growth in the rainbow trout is common to all teleosts, and can be generally 

divided in four different phases: primary growth, vesicle or cortical alveolus stage, 

vitellogenesis and maturation (Wallace and Selman, 1981). 

The primary growth of the oocytes (oocyte stages 0-3) is GTH-independent 

and it is characterised by a complex accumulation of RNA (5s RNA and transfer 

RNA) and ribonucleoproteins which are generally responsible for the strong 

basophilia observed in early oocyte stages. RNA is subsequently located in storage 
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particles before being transferred for ribosomal translation (Guraya, 1986; Olins et 

al., 1994; Visa et al., 1996). 

The vesicle stage (oocyte stage 4) is considered to be the first GTH- 

dependent stage. During this phase of oocyte growth the formation of vesicles that 

eventually will form the cortical alveoli takes place. These cortical alveoli play an 

important role in the cortical reaction induced by osmotic shock at the time of 

fertilisation. It is also during this phase that the zona radiata starts to form. The 

zona radiata will become the future chorion of the hardened egg (Nosek, 1984; 

Bromage and Cumaranatunga, 1988, Tyler and Sumpter, 1996). 

The phase of vitellogenesis includes oocyte stages 5 and 6, and it is 

characterised by a dramatic increase in their cytoplasmic volume as a result of the 

incorporation of vitellogenin and other extraovarian proteins. Vitellogenin is a 

lipophosphoprotein-calcium complex synthesised by the liver in response to 

circulating oestradiol-17ß derived from the ovary (Tyler and Sumpter, 1996). The 

blood vitellogenin is taken up by the oocyte in a receptor-mediated process and 

deposited in coated vesicles in the oocyte cytoplasm (Ho, 1991; Tyler and 

Lancaster, 1993; Hyllner et al., 1994; La Fleur et al., 1995). The process of 

vitellogenin deposition within the oocytes is accompanied by the displacement of 

the nucleus or germinal vesicle towards the periphery of the cell (Hart and Fluck, 

1995). 

The final migration of the germinal vesicle, which eventually comes in 

contact with the oocyte membrane in close proximity to the micropyle, and the 

rupture of the nuclear envelope define the maturation phase. Ovulation occurs 

shortly after oocyte maturation, it is controlled by hormonal influences and results 

Luis A. P. Carrasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 

55 



Chapter I GENERAL INTRODUCTION 

from the rupture of the follicular wall (Tyler and Sumpter, 1996). At the same time 

the micropylar cell that blocks the micropyle is removed so that spermatozoa can 

penetrate the chorion after oviposition. In the rainbow trout, immediately prior to 

ovulation, the glycoproteins that accumulate in the cortical alveoli undergo 

depolymerisation into smaller 9 kilodaltons fragments (Inoue and Inoue, 1986), 

and occupy a position between the zona radiata or chorion and the egg cytoplasm. 

It is into this area, the peri-vitelline space, that water is taken after fertilisation (i. e. 

during water hardening). The contents of the cortical alveoli serve to harden the 

chorion of the egg, rendering it impervious to further movement of water and 

preventing polyspermy (Bromage and Cumaranatunga, 1988; Kinne, 1991; 

Kitajima et al., 1994; Moley and Schreiber, 1995). 
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1.8 Structure and aims of this Thesis 

GENERAL INTRODUCTION 

The present Thesis consists of one general Chapter covering the Materials 

and Methods of general relevance for the experimental work (Chapter II), and four 

experimental chapters (Chapters III to VI), in addition to this General Introductory 

Chapter. 

The species selected for the experiments described in Chapters III to V is 

the rainbow trout, Oncorhynchus mykiss (n=58 to 64, NF= 104, Ohno et al., 1965; 

Thorgaard, 1976; Hartley and Horne, 1982; Veloso et al., 1990). The rainbow trout 

is at present the mainstay of large-scale salmonid aquaculture on a world wide 

basis (Pillay, 1993). The increasing sophistication of the retail market for trout is 

demanding a continuity of product both in terms of the quality and size of fish 

produced, as well as the maintenance of regular supplies throughout the year 

(Bromage and Cumaranatunga, 1988). The accomplishment of these demands 

requires both knowledge and control of all aspects of the biology of this species, of 

which reproduction is possibly the most important. Deteriorative changes in the 

organoleptic characteristics of the flesh, together with increased mortalities and 

susceptibility to disease, particularly in males, have prompted the development of 

methods aimed to delay or prevent sexual maturation in this species (Thorgaard, 

1986; Bromage and Cumaranatunga, 1988; Hussain, 1996). The induction of 

triploidy stands today as a cost-efficient method for the control of the deleterious 

effects that sexual maturation brings about in farmed stocks of rainbow trout; 

hence the selection of this species for the present Thesis. 

The current literature on the general performance of triploid teleosts, and in 

particular the salmonids, provides conflicting evidence on the yield of triploids for 
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commercially-relevant traits such as growth, weight gain or survival (Ihssen et al., 

1991; Myers and Hershberger, 1991; Simon et al., 1993; Carter et al., 1994; Galbreath 

and Thorgaard, 1995). Chapter III is therefore intended to assess the general 

performance of autotriploid rainbow trout under controlled culture conditions, 

with special attention on yield indicators of particular commercial significance 

(e. g. weight of the eviscerated carcass). 

Chapter IV focuses on the process of gonadal development and 

gametogenesis in male and female autotriploid rainbow trout from early to late 

life stages. Although the gonadal development of triploid rainbow trout has been 

the subject of previous investigations (Lincoln and Scott, 1984; Nakamura et al., 

1987,1993; Kobayashi et al., 1993; Cerisola and Dazarola, 1996), the majority of 

these reports have focused on the histomorphology and reproductive 

endocrinology of triploid forms at the time of sexual maturation. Chapter IV was 

thus designed to provide a long-term view of the gametogenic process in triploid 

rainbow trout, with the specific goal of quantifying the degree of germ line 

development in triploid forms of this species, particularly in the light of recent 

findings on the gonadal development of triploid poultry (Lin et al., 1995a, b). 

A number of adult males in the triploid population of rainbow trout 

generated for the studies included in the present Thesis displayed secondary sex 

characters during the first spawning season. Triploidy is increasingly regarded as 

an important safety precaution in the generation of transgenic fish (Thorgaard, 

1991; Devlin et al., 1994) and in the prevention of the loss of biodiversity resulting 

from escaped fish in areas of intensive aquaculture (Johnstone, 1995); thus the 

evaluation of the fertility, however limited, of mature triploid rainbow trout 
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acquires further relevance. The objectives of Chapter V are (1), the assessment of 

the reproductive potential of maturing triploid males when crossed to normal 

(diploid) females, and (2), the characterisation in terms of ploidy and viability of 

any potential offspring. 

There is increasing evidence in the literature on the variation observed in 

the effects of induced triploidy on male and female teleosts. In general, the 

gonadal development and endocrine profiles of triploid males appear similar to 

diploid males (Lincoln, 1981; Benfey et al., 1986,1989; Kitamura et al., 1991; 

Sumpter et al., 1991; Kobayashi et al., 1993; Nakamura et al., 1993) while triploid 

females develop string-like ovaries and show very low steroid hormone levels 

(Benfey and Sutterlin, 1984; Lincoln and Scott, 1984; Nakamura et al., 1987; 

Sumpter et al., 1991; Cerisola and Dazarola, 1996). 

Only in recent years the development of innovative cytogenetic techniques 

have facilitated the study of chromosomal interaction and pairing during meiosis 

in teleosts (Foresti et al., 1983; Wise and Nail, 1987; Lin and Yu, 1991; Oliveira et al., 

1995). The combination of these techniques with the generation of monosex 

populations and the manipulation of phenotypic sex by hormonal administration 

allows for the investigation of sex-related differences during the process of 

chromosome synapsis in teleosts (Tayamen and Shelton, 1978; Okada, 1985; Mair 

et al., 1987; Johnstone, 1995). This is particularly feasible in the Nile tilapia (n= 44, 

Jalabert et al., 1971; Arai and Koike, 1980; Nijjhar et al., 1983; Majumdar and 

McAndrew, 1986), a species offering the advantages of a well-documented 

reproductive, genetic and karyological background, early puberty, an XX-XY 

system of sex determination and well-established protocols for triploidy induction 

Luis A. P. Carrasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 

59 



Chapter I GENERAL INTRODUCTION 

and sex-reversal (Hussain et al., 1991; Mair et al., 1991; Foresti et al., 1993; Mair and 

Santiago, 1994; Vera-Cruz and Mair, 1994). Using the Nile tilapia as an 

experimental fish model, Chapter VI was designed to test the hypothesis that sex- 

specific pairing behaviour during meiotic prophase I may explain the discordance 

in the degree of meiotic progression observed in male and female triploid teleosts. 

Each Chapter contains an Introduction and Materials and Methods section 

of specific relevance to the subject(s) covered; Discussion sections in the Chapters 

have been produced to address specific questions of interest to the Chapter. 

Chapter VII consists of a General Discussion of the four experimental chapters and 

summarises the Conclusions. Overall aims of the present Thesis are: 

(a), the study of the feasibility of triploidy induction in two commercially 

important species representative of cold and warm-water teleosts 

(rainbow trout and Nile tilapia), using two different techniques for 

ploidy manipulation (heat and pressure shocks); 

(b), to obtain an overall assessment of the performance of triploid teleosts 

under controlled culture conditions, with particular emphasis on the 

effects of triploidy induction on the reproductive characteristics of these 

animals; and 

(c), to investigate the causes resulting in the differential effects of triploidy 

induction on the gonadal development of male and female teleosts. 
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CHAPTER II 
GENERAL MATERIALS AND METHODS 
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Materials and methods sections describing specific protocols of particular 

relevance for individual chapters are included within Chapters III to VI. Only the 

description of the materials and methods of general interest used throughout the 

studies for fish maintenance and handling, preparation of the diets for sex 

reversal, ploidy determination and histological studies are included in this 

Chapter. 
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2.1 Fish origin and maintenance 

GENERAL MATERIALS AND METHODS 

2.1.1 Studies conducted at the University of California, Davis 

Studies on morphometric parameters and fertilising ability of triploid 

rainbow trout (Chapters III and V) were conducted at the facilities of the Institute 

of Ecology of the University of California at Davis, U. S. A. Fish used in these 

experiments were from two local strains (RTJ, 'Javier" and 'RTD', Davis) obtained 

from Mount Lassen Hatchery, Red Bluff, California. All the fish used for the 

experiments conducted at Davis (39°N 122°W) were maintained under natural 

photoperiod regimes and ambient temperature (T= 10-18 °C) in aerated standard 

fibreglass circular tanks under flow-through systems. Fish were fed twice daily 

with a commercially-available dry trout diet (Silver Cup, Corvallis, Oregon, 

U. S. A. ) at rations as specified in the company's feed tables. 

2.1.2 Studies conducted at the University of Stirling, Scotland 

Studies on the gametogenesis of triploid rainbow trout and meiosis in 

diploid and autotriploid Nile tilapia were conducted at the facilities of the 

Genetics and Reproduction Research Unit of the Institute of Aquaculture, 

University of Stirling, Scotland. Nile tilapia used in Chapter VI were obtained 

from broodstock held at the Tropical Aquarium of the Institute of Aquaculture, 

and originate from a Lake Manzala (Egypt) population. These broodfish were kept 

in aerated 100 L rectangular glass tanks linked to a recirculating system. The water 

temperature was maintained at 27 ±2 °C with a 12L: 12D photoregime. Biological 

filters in the recirculation system were cleaned twice a month and the fish were 

fed daily on a commercial cal trout feed (Trouw Ltd., Northwich, U. K. and/or 

Ewos Ltd., Bathgate, Scotland) n° 3 to 5 (54-40% protein). 
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2.2 Fish handling 

GENERAL MATERIALS AND METHODS 

Animal monitoring and handling in all experiments described in this study 

conformed to the regulated procedures on living animals established by the 

United Kingdom Animals (Scientific Procedures) Act of 1986. Handling stress 

during blood collection for ploidy determination, egg stripping or sperm 

collection was minimised by anaesthetising the fish in methyltricainesulfonate 

(MS-222, Sigma Chemical Company, St. Louis, Missouri, U. S. A. ) or in ethyl-p- 

aminobenzoate (benzocaine; Sigma Chemicals, Poole, England) at a 1: 10,000 

dilution in water. After completing the various handling tasks, the fish were 

transferred into clean aerated fresh water where they generally recovered within 

3-5 minutes. 
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2.3 Preparation of the diets for sex reversal 

GENERAL MATERIALS AND METHODS 

Diets used for sex reversal of tilapia female genotypes in Chapter VI were 

supplemented with 50 mg/kg of 17 a-methyltestosterone (Sigma-Aldrich, Poole, 

U. K. ). Strict precautions were observed when handling the steroid, wearing a 

protective laboratory coat, close-fitting mask, surgical gloves and performing all 

manipulations in the fume cupboard. 

For the treatment of the diets, a 10 mg/ml stock solution of the steroid was 

prepared, using reagent-grade 100% ethanol (BDH, Dorset, U. K. ) as a solvent. N° 3 

feed pellets (Trouw Ltd., Northwich, U. K. ) were ground using an electric coffee 

grinder, sieved to 500 -1,000 pm particle size, weighed and spread into aluminium 

foil-covered plastic trays forming a layer approximately 5 mm deep. To achieve 

the desired steroid concentration, 0.5 ml of the steroid stock solution were added 

to 9.5 ml of 100% ethanol, and the solution transferred into a small hand plant 

sprayer. The steroid solution was evenly spread onto the food from close (10-15 

cm) range to prevent loss of solution, while continuously turning the food with a 

plastic spatula in order to ensure proper mixing. 

Once the steroid solution was finished, 3 ml of 100% ethanol were added 

into the sprayer and sprayed onto the food to ensure that no traces of the steroid 

remained in the bottom of the sprayer. Untreated (control) food was ground, 

sieved and sprayed with 100% ethanol in a similar manner. The food was then 

thoroughly mixed, left to dry overnight and stored in airtight containers at -20 °C 

until use. 
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2.4 Ploidy determination 

GENERAL MATERIALS AND METHODS 

2.4.1 Sample collection 

Ploidy was determined by measuring the nuclear size (in the experiments 

described in Chapters III, IV and V) or the whole cell size (in the experiments 

described in Chapter VI) of red blood cells with a Coulter Counter model ZM 

connected to a C-1000 Channeliser (Coulter Electronics Inc., Hialeah, Florida, 

U. S. A., Figure 2.1, A). The protocol used follows those of Johnson et al. (1984) and 

Wattendorf (1986), with several minor modifications. After anaesthesia, blood 

samples were taken from the caudal vein by using either 23-gauge or 25-gauge 

sterile hypodermic needles fitted into sterilised 1 ml syringes (Terumo Europe 

N. V., Leuven, Belgium) treated with sodium heparin (1000 USP units/ml) or 

Alseyer's anticoagulant (2% glucose, 0.8% tri-sodium citrate and 0.4% sodium 

chloride in distilled water). Approximately 1 pL of blood was aspirated from the 

syringe with an Eppendorf pipette and added to an Acuvette sample vial (Coulter 

Electronics Inc., Hialeah, Florida, U. S. A. ) filled with 10 ml of Isoton II electrolyte 

solution (Appendix 1) and carefully mixed by repeatedly inverting the vial. For 

the determination of nuclear red blood cell size, 2 pL of the lysing agent 

Zapoglobin® (Curtin Matheson Scientific, Boston, Massachussets, U. S. A. ) were 

added to the vial prior to blood addition. The vials were stored at 4°C until 

Coulter Counter analysis. 

2.4.2 Sample analysis 

The Coulter Counter model ZM was set up with a 70 pm aperture tube. 

Once precalibration was completed by the half-count method described in the 
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owner's manual, optimum settings for the Counter and Channeliser were 

determined. 

The following settings were used: current, 100; full scale, 10 mA; polarity, 

negative; lower threshold, 10.0; upper threshold, 99.9; attenuation, 2 and preset 

gain, 1. The Coulter Channeliser was used with the following settings: base 

channel threshold, 5.0 and window width, 50.0. Before samples were analysed a 

background count was determined on the electrolyte (and lysing agent solution 

when applicable); with the manometer select switch at 100 pL, a count of less than 

250 particles was considered acceptable. 

Vials containing whole or lysed blood cells were placed on the sample 

stand and raised into place so that the aperture tube of the Counter was immersed 

in the solution. The orifice stopcock was then opened and when particles began 

passing through the aperture tube, as indicated by vertical pulses on the ZM 

monitor, the orifice monitor was checked to assure that no blockage had occurred. 

Particle counts were performed on 1,000 cells or nuclei in the peak channel and 

two replicate analysis were run per sample. Data output were analysed using the 

Multisizer AccuComp® Analysis software (Coulter Electronics Inc., Hialeah, 

Florida, U. S. A., Figure 2.1, B-E). 
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Figure 2.1. A, Coulter Counter (left) and Channeliser (right) used for ploidy 

determination. B, representative whole-erythrocyte analysis histogram from a diploid 

individual (tilapia). C, analysis histogram from a triploid individual (tilapia). D, 

representative nuclear erythrocyte analysis histogram from a diploid individual (trout). E, 

analysis histogram from a triploid individual (trout). 
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2.5 Histology protocols 

Tissue fixation, processing, embedding, sectioning and staining protocols 

for the experiments described in Chapters IV and V were carried out according to 

the routine procedures used at the Histopathology Laboratory of the Institute of 

Aquaculture, University of Stirling. These protocols generally follow those 

described by Carleton (1980). 

2.5.1 Tissue fixation 

Freshly collected gonadal samples were fixed in a 10% phosphate buffered 

formaldehyde solution (Appendix 2). To ensure proper fixation, a ratio 1: 10 tissue 

fragment: fixing solution was consistently maintained in the fixing vials and the 

fixative was replaced by fresh fixing solution after the initial 24 hr of fixation. 

Tissue samples were kept in 10% phosphate-buffered formaldehyde for a 

minimum of 72 hr prior to processing. 

2.5.2 Tissue processing, embedding and sectioning 

Fixed fragments of the gonads were cassetted, labelled and processed in an 

automated tissue processor (Shandon Scientific, Cheshire, U. K. ) following the 

processing schedule described in Appendix 3. After paraffin infiltration the tissue 

fragments were blocked in suitably sized moulds using molten wax and rapidly 

cooled on a cold plate. Tissue blocks were trimmed to bring the tissue to the 

surface of the block and whenever necessary (i. e. gonadal fragments containing 

large oocytes) surface decalcification was carried out by treating the surface of the 

block with a rapid decalcifier for 30-60 min (RDC-Histolab, London, England). The 

blocks were then washed in tap water, cooled on a cold plate and sections 
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(thickness= 5-6 pm) were cut on a motorised retracting microtome (Reichert-Jung 

2050, Nussloch, Germany) using standard disposable microtome blades. Thin 

sections were floated on a distilled water bath at 40 °C and collected on glass 

slides (Superfrost® BDH, Dorset, U. K. ). Tissue sections on the glass slides were 

labelled, cured in a warm plate at 70 °C for 30-50 min and dried overnight in an 

oven at 60 °C before staining. 

2.5.3 Staining procedures 

For general observations all sections were stained with the haematoxylin 

and eosin stain, following the protocol specified in Appendix 4. The periodic acid- 

Schiff (PAS) reaction, Heidenhain's iron haematoxylin and Masson's trichrome 

were used in replicate sections of the gonads for the histological analysis of 

gametogenesis described in Chapter IV. The PAS reaction was used because of its 

compatibility with formalin fixation and its efficiency to demonstrate basement 

membranes, lipochrome pigments and polysaccharides. Heidenhain's iron 

haematoxylin was used as a counterstain because of its affinity for nuclear 

components such as chromatin and nucleoli (Carleton, 1980). Masson's trichrome 

was used on the basis of its ability to differentiate the granulosa and theca layers 

of developing oocytes. Specific protocols for these stains are provided in 

Appendices 5 and 6. Stained sections were mounted on synthetic mounting 

medium (Pertex®, Histolab, London, England) and stored in opaque dust-free 

histological boxes until examination. 

Luis A. P. Carrasco PND THESIS, INSTITUPE OF AQUACULTURE, UNIVERSITY OF STIRLING 70 



Chapter II GENERAL MATERIALS AND METHODS 

2.6 Classification of cell stages in the gametogenesis of rainbow trout 

The classification of gametogenesis stages described in Chapter IV and the 

assessment of gonadal maturation in triploid rainbow trout males described in 

Chapter V are based in previous studies on the gametogenesis of this species. 

Spermatogenic stages were identified following the criteria of Billard (1983,1986, 

1992). The classification of gonadal cell stages in females primarily follows that of 

Bromage and Cumaranatunga (1988). Additional references consulted on the 

morphology of gonadal cell stages include those by Van der Hurk and Peute 

(1979), Takashima et al. (1980), Van der Hurk and Slof (1981), Lebrun et al. (1982), 

Van der Hurk et al. (1978,1982), Browder (1985), Guraya (1986), Kinne (1991), and 

Tyler and Sumpter (1996). Detailed morphological descriptions of the cellular 

classes observed during the gametogenesis of the rainbow trout are provided in 

Sections 1.7.3 and 1.7.6 of this Thesis. 
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CHAPTER III 
MORPHOMETRIC PARAMETERS IN TRIPLOID RAINBOW TROUT, 

ONCORHYNCHUS MYKISS 
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3.1 Summary 

Triploid rainbow trout were produced by a 13-minute, 27°C heat shock 

applied to pooled eggs collected from three mature females 11 minutes post- 

fertilisation. Treated (triploid) and control (diploid) siblings were raised separately 

at similar density, feeding and water quality conditions, and several 

morphometric parameters (fork length and the weight of the body, eviscerated 

carcass, gonads, pituitary and liver) were recorded at five sampling times over a 

44- month period. 

Ploidy determination by measurement of nuclear size at 5 months post- 

hatching revealed that 46% of the individuals analysed in the treated group were 

triploid. No significant differences in sex ratios, body weight or condition factors 

were consistently observed between the triploid and diploid groups throughout 

the experimental period; however the weight of the eviscerated carcass was on 

average 20% higher (P<0.05) in triploid fish compared to diploid fish at 20 and 44 

months post-hatching. 

Triploidy induction resulted in the suppression of sexual maturation in 

females. Gonadal weight was in general similar between triploid and control 

males, whereas triploid females had very low gonadal weight and gonado-somatic 

indices (maximum gonado-somatic index= 0.03% at 44 months of age). The 

commercial relevance of these results and the possible applications of triploidy 

induction for the production of large (over 1.5 kg of body weight) rainbow trout 

and/or the reproductive containment of farmed stocks are discussed. 
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3.2 Introduction 

Cultivated polyploid species today play an important part in the supply of 

food, as polyploids exhibit, in general, good growth performance and improved 

production yields. The manipulation of ploidy through the physical treatment of 

fish gametes has equally become an important commercial tool in the aquaculture 

industry, in particular the production of triploid individuals (Swarup, 1959; 

Chourrout, 1980; Thorgaard et al., 1981). 

The main goal pursued when producing triploid fish is their potential 

sterility, which is assumed to arise from the triploid genome of the germ cells 

resulting in aberrant meiosis and leading to the suppression or substantial 

alteration of gametogenesis (Thorgaard and Gall, 1979). The idea of sterilising part 

or all of the harvestable portion of a stock is attractive as a method to reduce the 

deleterious effects (i. e. growth retardation, deterioration of flesh quality and 

increased mortality) characteristic of sexual maturation in many teleosts, 

particularly in the salmonids, with the added advantage of a possible diversion of 

metabolisable energy from gonadal to somatic growth (Utter et al., 1982; 

Thorgaard, 1986; Ihssen et al., 1990; Hussain, 1996). 

By not having to harvest the fish before the time of sexual maturation, 

triploidy allows for the distribution of sales throughout the year, resulting in 

more flexible management of the stocks. In addition, if only sterile individuals are 

marketed, the producer remains in control of the line(s), capitalising on the profit 

from frequently expensive and time-consuming selection programmes 

(Thorgaard, 1983). Sterility also facilitates the release of exotic species into new 

ecosystems, prevents the loss of biodiversity caused by escaped fish in areas of 
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intensive farming, and is regarded as an important safety precaution for the 

testing of genetically manipulated (i. e. transgenic) fish (Thorgaard, 1991; Devlin et 

al., 1994; Johnstone, 1995). 

Triploidy also allows an additional dimension to the generation of hybrids, 

with the potential for increased viability in triploid hybrids due to the presence of 

a supplementary maternal genome. In some specific cases (e. g. disease resistance), 

the relative superiority of triploid hybrids may be of primary importance. An 

example is the hybrid between the rainbow trout and the brook trout, Salvelinus 

fontinalis. These hybrids maintain the favourable commercial traits of the rainbow 

trout while inheriting from the paternal S. fontinalis genome the resistance to viral 

haemorragic septicemia (VHS), a disease to which the rainbow trout is very 

sensitive (Scheerer and Thorgaard, 1983). Triploidy is thus now regarded as a 

route to increase the number of viable hybridisations (Scheerer and Thorgaard, 

1987; Sutterlin et al., 1987; La Patra et al., 1993; Habicht et al., 1994). 

The refinement of the techniques developed for the manipulation of ploidy 

in fish has been paralleled by an increased interest in the viability and 

performance of triploid individuals. The effects of artificially induced triploidy on 

the metabolism (Oliva-Teles and Kaushik, 1987,1990), physiology (Happe et al., 

1987; Virtanen et al., 1990; Biron and Benfey, 1994; McCarthy et al., 1996; Stillwell 

and Benfey, 1996), cytological parameters (Small and Benfey, 1987; Konishi et al., 

1991), tissue and organ structure (Aliah et al., 1990; Krueger and Kohlmann, 1993; 

Greenlee et al., 1995), behaviour (Kitamura et al., 1991; Kavumparath and Pandian, 

1992) and flesh quality and preservation potential (Ehira and Maruoka, 1991) on 

several species of teleosts have been investigated. 
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Commercially relevant traits such as growth and survival have been 

relatively well documented in triploid salmonids. However, information on these 

parameters remains inconclusive, as some studies have indicated a relative 

superiority of triploids compared to diploid forms (Habicht et al., 1994), some 

suggest inferior performance of triploids (Ihssen et al., 1991; Simon et al., 1993; 

Galbreath and Thorgaard, 1995) while others report no significant differences 

between both forms (Myers and Hershberger, 1991; Carter et al., 1994). These 

conflicting results may reflect variations in culture conditions and/or genetic 

differences among the strains studied (Guo et al., 1990; Myers, 1991). In addition, 

most of the research to date has focused on the development of juvenile triploid 

fish covering the first sexual maturation, while information concerning the 

performance of later stages remains scarce (Thorgaard, 1986). 

The objective of this Chapter is to provide a long-term evaluation of 

commercially-relevant morphometric parameters in triploid rainbow trout, in 

comparison to diploid forms, when maintained under controlled culture 

conditions. 
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Chapter III 

3.3 Materials and Methods 

MORPHOMETRIC PARAMETERS IN TRIPIAID RAINBOW TROUT 

3.3.1 Experimental animals 

Triploid rainbow trout were produced from broodstock selected from crosses 

of RTJ ('Javier') and RTD ('Davis') Mt. Lassen-derived strains (2 year-old, 1.2-1.5 kg 

body weight). An approximate total number of 2,000 eggs were stripped from three 

mature females, pooled and fertilised with pooled sperm collected from four 

different males (water temperature = 13.6 °C). Triploidy was induced in half of the 

fertilised eggs by a 13-minute, 27 °C heat shock applied 11 minutes after fertilisation. 

Treated and untreated eggs were incubated separately in standard wire-mesh egg 

baskets suspended in hatchery troughs at 13 ±2 °C . Unfertilised or dead eggs were 

removed daily by the siphon egg picking method (Leitritz and Lewis, 1980). 46 day 

post-fertilisation-hatchlings were transferred to 4L rearing pots where they were 

kept for 40 days. 3 month-old alevins were moved to circular fibreglass tanks 1.2m in 

diameter. Treated and untreated siblings were raised in separate tanks at similar 

density, feeding and water quality regimes (T= 10-18 °C, ambient photoperiod). 

3.3.2 Ploidy determination 

Ploidy was determined in 5 month-old juveniles by measuring the nuclear 

size of erythrocytes with a Coulter Counter and Channeliser (Coulter Instruments, 

Colorado, USA)(Wattendorf, 1986). 'True' triploid and diploid (control) siblings were 

transferred after ploidy determination to separate fibreglass tanks 2.5 m in diameter. 

1.5 yr old-adults were transferred to 5m flow-through circular tanks where they 

were kept until the end of the sampling period. 
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3.3.3 Measurement of morphometric parameters 

Triploid and diploid groups were sampled at 7,15,20,25 and 44 months post- 

hatching by overanaesthetising randomly selected individuals in a 0.01% solution of 

methyltricainesulfonate (MS-222, Sigma Chemical Co., St. Louis, Missouri, USA). 

After ploidy reassessment by Coulter Counter, the following parameters were 

recorded for each individual sampled: 

(a), Fork length (the length of the fish measured from the tip of the snout to 

the point of division of the caudal fin, expressed in centimetres); 

(b), Body weight (expressed in grams); 

(c), Carcass weight (weight of the fish after dissection of the abdominal 

contents, including the gastrointestinal tract, liver and digestive glands, abdominal 

fat and gonads, expressed in grams); 

(d), Gonadal weight (including gonadal ducts, expressed in grams); 

(e), Pituitary weight (expressed in grams); 

(f), Liver weight (after dissection of the gall bladder, expressed in grams). 

In addition, the following indices were computed for each individual sampled: 

(a), Condition factor, K= 
body weight X 100; 
(fork length)' 

carcass weight X 100; (b), Condition factor based on carcass weight, K= 
` (fork length)' 

(c), Gonado-somatic index, GSI= gonadal weight X 100; 
body weight 

(d), Hepato-somatic index, HSI= 
liver weight X 100. 
body weight 
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Sex was ascertained in every sampled individual by histological examination 

of paraffin-embedded gonadal sections (see Chapter IV). 

3.3.4 Statistical Analysis 

Morphometric parameters were compared between ploidy groups by the 

Student's t-test. Differences in condition factors, hepato-somatic and gonado- 

somatic indices were investigated by Student's t-test on arcsine-transformed 

values. Sex ratios were tested for goodness-of-fit to a 1: 1 ratio in each ploidy group 

by using the adjusted Chi-square test. Differences were considered significant at the 

P<0.05 level (Zar, 1996). 
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3.4 Results 

3.4.1 Ploidy determination 

136 juveniles were analysed for nuclear red blood cell size in the untreated 

group. 135 (99.26%) were diploid. The mean nuclear diameter value for the diploid 

juveniles was 3.66 ± 0.02 pm (average ± s. e. m. ). A total number of 296 juveniles 

were analysed in the treated group. 135 juveniles were triploid, and 161 were non- 

triploid fish. The mean nuclear diameter value observed in triploid juveniles was 

4.26 ± 0.03 pm (average ± s. e. m. ). Triploid yield was 45.61%. 

3.4.2 Sample size and sex ratios 

A total number of 160 individuals were examined during the five samples 

conducted (79 diploid and 81 triploid fish). Mortalities did not significantly differ 

between the triploid and diploid group during the experimental period. The 

number and sex of the individuals analysed per sample is presented in Table 3.1. 

Only one diploid male and one triploid male were available for examination at 44 

months post-hatching. Due to difficulties in the dissection of the gland, pituitary 

weights could only be recorded during the last three samples. Sex ratios in the 

diploid and the triploid group did not significantly depart from the expected 1: 1 

ratio. 
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Males Females 

Months Diploid Triploid Diploid Triploid 
post-hatching 

7 11 9 11 11 
15 13 11 89 
20 4466 
25 10 10 10 10 
44 115 10 

TOTAL 39 35 40 46 

Table 3.1. Sample size and observed gonadal sex in diploid and triploid groups 

at the five sampling stages. 

3.4.3 Morphometric parameters 

3.4.3.1 Fork length, Body weight and Condition factor (K) 

Although mean fork length was significantly lower in the triploid group 

compared to the diploid group at 7 months post-hatching, this trend was not 

maintained in subsequent samples (Figure 3.1). On the contrary, triploid males 

were significantly longer (47.5 ± 2.12 cm, average ± standard deviation) than 

diploid males (43.7 ± 0.62 cm) at 20 months post-hatching. No significant 

differences in body weight were observed between ploidy groups, with the 

exception of the last sample (44 months post-hatching), when triploid fish were 

significantly heavier (5,200 ± 793 g, average ± s. d. ) than their diploid counterparts 

(4,333 ± 532 g). However, sex-related differences in body weight were significant 

between ploidy groups at 20 months of age (when triploid males outperformed 

diploid males) and 25 months of age (when triploid females outperformed diploid 

females, Figure 3.2). 
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Figure 3.1 Plot of the average fork length in diploid (. ) and triploid (A) fish 

during the five experimental samples. Values in diploids are joined by a 

continuous line; values in triploids are joined by a dotted line. Bars represent 

standard error of the means. The asterisk denotes a significant difference 

(P<0.05). 
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Figure 3.2. Plot of the average body weight in diploid males (. ), diploid 

females (o), triploid males (A) and triploid females (A) for the five samples 

conducted. Bars represent standard error of the means; asterisks denote 

significant differences (P<0.05). 
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Although average condition factors were generally higher in females than 

in males, no significant differences were observed between ploidy groups 

throughout the five samples conducted. The only significant differences observed 

between condition factor averages were sex-related and inverse between sexes, 

and were noticeable at 25 months post-hatching. Among the females, triploids 

(average K= 1.76%) significantly outperformed diploid fish (average K= 1.52%), 

whereas among the males, diploids (average K= 1.49%) outperformed their 

triploid counterparts (average K= 1.32%) at this sampling time (Figure 3.3). 
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Figure 3.3. Plot of the mean condition factor in diploid males (0), diploid 

females (Q), triploid males (A) and triploid females (0) for the five samples 

conducted. Bars represent standard error of the means; the asterisk denotes a 

significant difference (P<0.05). 
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3.4.3.2 Carcass weight and Condition factor based on Carcass weight (Kc) 

The weight of the eviscerated carcass was significantly higher in triploid 

fish compared to diploid fish at 20 and 44 months post-hatching (Figure 3.4, left). 

These differences were paralleled by sex-related differences, since at 20 months of 

age the weight of the carcass in triploid males (1,417 ± 171 g) was significantly 

higher than that of diploid males (1,061 ± 68 g), while at 44 months of age triploid 

females (carcass weight= 4,384 ± 677 g) significantly outperformed diploid females 

(carcass weight= 3,573.6 ± 439 g). Differences in condition factor based on carcass 

weight were only significant between ploidy groups at 44 months post-hatching, 

and were due to higher K, values in triploid females (Kc= 1.69%) compared to 

diploid females (Kc= 1.42%) at this age (Figure 3.4, right). 
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Figure 3.4. Plot of the mean carcass weight (left) and mean condition factor 

based on carcass weight (right) observed in diploid (. ) and triploid (A) fish 

during the five experimental samples. Bars represent standard error of the 

means; asterisks denote significant differences (P<0.05). 
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3.4.3.3 Gonadal weight, Gonado-somatic index (GSI) and Pituitary weight 

Gonadal weight was significantly higher in diploid fish compared to 

triploid fish from 20 months post-hatching onwards. Differences within sexes 

were more marked in females than in males. Gonadal weight in triploid females 

was very low (<15% of the gonadal weight in diploid females) and differed 

significantly from that of diploid females throughout the entire experimental 

period (Figure 3.5). 
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Figure 3.5. Plot of the average gonadal weight observed in diploid males ( ), 

diploid females (Q), triploid males (A) and triploid females (A) during the five 

samples conducted. Bars represent standard error of the means; asterisks 

denote significant differences (P<0.05). 

Average gonadal weight in triploid males was similar to and in some cases 

(15 and 44 months post-hatching) even higher (but not significantly so) than that 

of diploid males, although it was significantly lower at 20 and 25 months post- 

hatching. 
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These differences in gonadal weight translated into differences in gonado- 

somatic indices, which were significantly lower in triploid fish compared to 

diploid fish at 20,25 and 44 months post-hatching. GSIs were generally higher in 

diploid females (reaching a maximum value of 15.1% at 25 months of age), 

followed by diploid males (with a maximum value of 3%, also at 25 months of 

age) and triploid males (maximum GSI= 1.5% at 25 months post-hatching), while 

the lowest GSI values were observed in triploid females (with a maximum value 

of 0.03% at 44 months post-hatching). Differences in GSIs were more prominent 

between diploid and triploid females than between diploid and triploid males, 

with the same pattern of sex-related differences observed in gonadal weights 

maintained in GSIs (Figure 3.6). 
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Figure 3.6. Mean gonado-somatic indices observed in diploid males (. ), 

diploid females (o), triploid males (A) and triploid females (A) during the five 

experimental samples. Bars represent standard error of the means; asterisks 

denote significant differences (P<0.05). 
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The weight of the pituitary gland was significantly higher in triploid fish 

(mean pituitary weight= 0.016 ± 0.004 g) than in diploid fish (mean pituitary 

weight= 0.013 ± 0.003 g) at 20 months post-hatching. At 25 months post-hatching, 

diploid fish had higher pituitary weights (0.058 ± 0.116 g, average ± standard 

deviation) than their triploid counterparts (0.017 ± 0.006 g), but these differences 

were not significant due to the high variation in the values recorded for diploid 

fish. No significant differences in pituitary weight were observed at 44 months 

post-hatching between both ploidy groups (Figure 3.7). Equally, no significant 

differences in pituitary weight were observed within sexes at the three sampling 

times for which this parameter was available. 
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Figure 3.7. Mean pituitary weight in diploid fish ( ) and triploid fish (A) for 

the five samples conducted. Bars represent standard error of the means; the 

asterisk denotes a significant difference (P<0.05). 
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3.4.3.4 Liver weight and Hepato-somatic index (HSI) 

The weight of the liver was significantly higher in triploid fish (average 

liver weight= 24.1 ± 10.4 g) than in diploid fish (mean liver weight= 17.4 ± 3.6 g) at 

25 months post-hatching. This difference was attributable to higher liver weights 

in triploid females compared to diploid females at this age (Figure 3.8), since no 

significant differences in liver weight were observed between diploid and triploid 

males at this sampling time, or indeed throughout the experimental period. When 

expressed as a percentage of body weight, HSIs were also significantly higher in 

triploid fish (average HSI= 1.12 ± 0.26%) than in diploid fish (average HSI= 0.95 ± 

0.14%) at 25 months of age. The general trend, however, was the observation of 

more variable and higher HSIs in diploid fish compared to triploid fish, manifest 

as significantly higher hepato-somatic indices in diploids at 15 and 44 months 

post-hatching (Figure 3.9). 
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Figure 3.8. Mean liver weights observed in diploid females (0) and triploid 

females (A) for the five samples conducted. Bars represent standard error of the 

means; the asterisk denotes a significant difference (P<0.05). 
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Figure 3.9. Mean hepato-somatic indices observed in diploid (0) and triploid 

(A) fish during the five experimental samples. Bars represent standard error of 

the means; asterisks denote significant differences (P<0.05). 
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3.5 Discussion 

MORPHOMETRIC PARAMETERS IN TRIPLOID RAINBOW TROUT 

The relatively low triploid yield (46%) observed in this study is in 

agreement with previous reports on triploidy induction in the rainbow trout 

suggesting a lower efficiency of heat shocks compared to pressure shocks in the 

inhibition of the second polar body extrusion (Lou and Purdom, 1984; Lincoln, 

1989; Yamazaki and Goodier, 1993). Presumably, higher triploid yields obtained 

with pressure shocks are related to the shorter duration of the shock and a more 

uniform treatment of the eggs, although they may also represent variations in the 

susceptibility of the strains to triploidy induction (Chourrout, 1984; Lou and 

Purdom, 1984; Benfey et al., 1988; Diaz et al., 1993). 

In spite of earlier expectations for high growth in artificially-induced 

triploid fish, subsequent trials have failed to consistently demonstrate the 

superiority of triploid stocks for this trait (Ihssen et al., 1991; Myers and 

Hershberger, 1991; Simon et al., 1993; Carter et al., 1995; Galbreath and Thorgaard, 

1995). Data from the present study seem to substantiate the view that triploid fish 

do not outperform their diploid counterparts, since no significant differences in 

body weight or condition factors were observed throughout the experimental 

period. It should be noted, however, that the lack of replications in the present 

study, conditioned by the facilities available given the time-scale of the 

experiments conducted, may have resulted in significant tank effects and thus 

positively or negatively have affected the performance of the triploid group over 

the controls. Nevertheless, the significantly higher carcass weights observed in 

triploid fish at 20 and 44 months of age (with the triploid stock outperforming the 

diploid stock in 220 g and 880 g, respectively), constitute a valuable observation 
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from a commercial perspective, since the weight of the eviscerated carcass is a 

better yield indicator than the whole body weight for the processed fish supplier. 

Triploid rainbow trout thus seem to be desirable for production schemes 

marketing large, older fish (over 1.5 kg of body weight and/or over 20 months of 

age), where the gain in carcass weight (19.4% and 24.7% higher in triploid fish at 

20 and 44 months of age, respectively) can be fully exploited. Triploidy induction 

would not provide a clear growth performance advantage in production systems 

marketing small trout, prior to sexual maturation. 

The main impact of triploidy observed in this work was the substantial 

alteration in the effects of the sexual maturation in rainbow trout, particularly in 

females. Differences between ploidy groups were generally more evident 

immediately before and after the first spawning (20 and 25 months post-hatching, 

see Chapter IV, sections 4.4.2.3 and 4.4.2.4), with a general pattern of triploid 

females showing almost negligible gonadal growth and very low gonado-somatic 

indices, and triploid males showing similar gonadal parameters to diploid males. 

Similarly, the values recorded for the weight of the pituitary and the liver in the 

triploid group seem to correspond with the alteration in the reproductive 

physiology caused by triploidy induction. Higher liver weights in triploid females 

after spawning, for instance, are probably explained by the involvement of this 

organ in vitellogenesis and nutrient deposition in the ovary of diploid females 

(Lincoln and Scott, 1984). The generally lower pituitary weight values recorded in 

triploid fish may well reflect the alteration of the interactions in the hypothalamic- 

pituitary-gonadal axis resulting from the triploidy induction, although it has been 

recently shown that the pituitary in triploid rainbow trout remains sensitive to 

exogenous steroid implantation (Breton and Sambroni, 1996). 
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The dramatic reduction in gonadal growth observed in triploid females 

was accompanied by significantly higher values than diploid females in body 

weight, condition factor, liver weight and hepato-somatic indices at 25 months of 

age. 

There was also a general trend for lower variation in these indices in 

triploid females than in their diploid siblings throughout the period studied, 

clearly reflecting the suppression of the effects that sexual maturation and 

spawning bring about in diploid females. On the contrary, the effects of triploidy 

induction on rainbow trout males in this study were much less severe and resulted 

in poor performance, as shown by the similar gonadal weight and gonado-somatic 

indices observed in triploid and diploid siblings throughout the five samples 

conducted, and the significantly lower condition factors recorded in triploid males 

at 25 months of age. These results provide a strong justification for the 

combination of triploidy induction with sex-control strategies aimed to the 

generation of all-female populations in the rainbow trout. 
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CHAPTER IV 
GAMETOGENESIS IN TRIPLOID RAINBOW TROUT, 

ONCORHYNCHUS MYKISS 
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4.1 Summary 

A long-term, quantitative analysis was conducted on the gametogenesis of 

autotriploid rainbow trout (Oncorhynchus mykiss) in order to quantify their degree 

of germ line development and reproductive potential. Triploid and diploid 

(control) trout siblings were raised separately under identical conditions and 

randomly sampled for histological analysis. 

Triploid males underwent testicular development and proliferation of germ 

cells by mitosis and meiosis, progressing through initial phases of 

spermatogenesis at a similar pace to diploid controls. The effects of triploidy on 

males were most evident during the final stages of spermatogenesis, when all 

diploid males contained free spermatozoa in the lumen of most tubules (Average 

Relative Frequency, ARF= 68.5%), whereas triploid males contained 

predominantly spermatocytes (ARF= 36.3%) and morphologically abnormal 

spermatozoa (ARF= 31.8%). 

In contrast, the gonadal development of triploid females was affected 

during its early stages; the major patterns observed being the arrest of the oogonia 

within oogonial clusters (ARF= 30.4-71.1%), the appearance of small numbers 

(ARF= 1.5-6%) of previtellogenic and early vitellogenic follicles, and the 

proliferation of non-follicular elements (i. e. vascular lacunae, fibrosis, tubular 

adenomas). A major finding was the presence of male-differentiating areas in most 

triploid females examined, which by the end of the sampling period appeared as 

gonadal hermaphrodites. It is hypothesised that the lack of proper somatic-to- 

germ cells interactions prevents the segregation of the oocytes from the gonial 

clusters and may explain the early blockage observed during the gonadal 

morphogenesis of autotriploid female rainbow trout. 
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4.2 Introduction 

Ploidy manipulation in fish has become an important commercial tool in 

recent years, centred on the production of triploid individuals (Chourrout, 1980; 

Wolters et al., 1982). The main goal of producing triploid fish is their potential 

sterility, which is assumed to arise from the triploid genome of germ cells leading 

to aberrant disjunction at anaphase I and resulting in the suppression of 

gametogenesis (Thorgaard and Gall, 1979). The production of sterile fish is of 

interest to the fish farming industry as a way of preventing the undesirable effects 

concomitant with sexual maturation in many teleosts, particularly salmonids 

(Utter et al., 1982; Thorgaard, 1986; Ihssen et al., 1990; Hussain, 1996). The 

reduction in growth resulting from a massive energetic investment in gonadal 

development (up to 10% of their body weight in males and 30% in females), the 

deterioration of flesh quality during maturation and the high mortality at the time 

of spawning can be cited among the deleterious effects that sexual maturation 

brings about in farmed stocks (Lincoln and Scott, 1984; Bye and Lincoln, 1986; 

Pillay, 1993). Ploidy manipulation is now also regarded as a useful strategy for 

preventing the loss of biodiversity resulting from genetic introgression caused 

from escaped farm fish in areas of intensive aquaculture (Johnstone, 1995). 

However, in spite of considerable commercial interest in the use of triploid 

stocks, their reproductive development remains poorly understood. Evidence to 

date indicates that the reproductive effects of induced triploidy vary in different 

fish species and sexes, from complete or partial sterility to functional 

reproduction. In the rainbow trout, as in other salmonids, there seems to be a 

marked difference in the effects of triploidy on the gonadal development of males 
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and females. Triploid males show an endocrine profile similar to diploid males, 

and their germ cells enter meiosis with no obvious delay in comparison to diploid 

males, although subsequent spermatogenesis appears to be substantially delayed 

(Kobayashi et al., 1993) resulting in the production of low numbers of 

morphologically abnormal, aneuploid spermatozoa (Benfey et al., 1986). By 

contrast, steroid hormone levels remain remarkably low in triploid females of up 

to 27 months of age (Nakamura et al., 1987). The ovaries of triploid females retain a 

string-like appearance, although low numbers of vitellogenic oocytes have been 

observed in triploid rainbow trout (Lincoln, unpublished, cited in Lincoln and 

Scott, 1984; Okada, 1985) and other triploid salmonids (Johnson et al., 1986; Benfey, 

1995). 

The majority of previous reports on the reproductive characteristics of 

triploid rainbow trout have focused on the gonadal histomorphology and steroid 

profiles at the time of their first sexual maturation, rather than on providing a 

detailed account of gametogenesis throughout their life cycle. Presented in this 

study are the results of a long term, quantitative analysis aimed to (1), obtain an 

accurate description of sexual differentiation and gametogenesis in these ploidy- 

manipulated animals, (2) to quantify their degree of germ line development and 

reproductive potential, and (3) to investigate possible histopathological 

aberrations arising during the gonadal development of male and female triploid 

rainbow trout. 
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4.3 Materials and Methods 

4.3.1 Animals 

Triploid rainbow trout were produced from broodstock selected from crosses 

of RTJ ('Javier') and RTD ('Davis') Mt. Lassen-derived strains (2 year-old, 1.2-1.5 kg 

body weight). Pooled eggs stripped from three mature females were fertilised with 

sperm collected from four different males (water temperature = 13.6 °C). Triploidy 

was induced by a 13-min, 27 °C heat shock applied to eggs 11 min after fertilisation 

to induce the retention of the second polar body. Eggs were then incubated at 13 ±2 

°C for 26 days, when hatching took place. Ploidy was determined by measuring the 

nuclear size of erythrocytes with a Coulter Counter and Channeliser (Coulter 

Instruments, Colorado, USA)(Wattendorf, 1986). Triploid and diploid (control) 

siblings were raised in separate tanks at similar density, feeding and water quality 

regimes (T= 10-18 °C, ambient photoperiod). 

4.3.2 Experimental Design 

Triploid and diploid groups were sampled at 7,15,20,25 and 44 months post- 

hatching by over-anaesthetising randomly selected individuals in a 0.01% solution of 

benzocaine. After ploidy reassessment by Coulter Counter, a separate sample was 

collected from the anterior, median, and posterior parts of the gonads when size 

made it possible, and fixed in 10% buffered formalin. Replicate sections (thickness = 

5-61u m) were prepared from a total of 346 paraffin-embedded tissue blocks, and 

stained with haematoxylin-eosin, the periodic acid-Schiff reaction, Heidenhain's 

iron haematoxylin and Masson's trichrome (Carleton, 1980). Slides were examined 

under low power magnification (4X to 40X) with an Olympus BH-2 microscope 
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(Olympus Optical Co. Ltd., Japan) linked to a Sony colour monitor via a Panasonic 

F10 videocamera (Matsuhita Co. Ltd., Japan). Three different fields were examined 

per section in order to ensure random sampling. A 'short line' multipurpose grid 

(Graticules Ltd., England) was placed in an eyepiece between the microscope and 

the videocamera, the image of the grid overlaying the gonadal section and also 

visible on the monitor. The total number of grid points on the monitor and the 

number of grid points lying within a given cell stage or category were recorded, and 

Relative Frequencies (RFs) for a given cell category computed as: 

Relative Frequency - 
Grid points laying within cell category x100 Total number of grid points 

Gonadal cell stages were classified according to previous morphological 

studies on gametogenesis in the rainbow trout (Billard, 1986,1992; Bromage and 

Cumaranatunga, 1988; see Sections 1.73 and 1.7.6 of this Thesis). 

With the exception of the first sampling, sex was easily ascertained for all 

sections according to the general morphology and staining affinity of the gonad. 

The main morphological feature to establish sex at 7 months of age was the 

appearance of the characteristic lamellar structure present in female teleosts, since 

in the majority of the individuals sampled at this time the lobular arrangement 

typical of males was still not established. Thus, individuals with gonads 

displaying the lamellar structure at this age were classified as females, and the 

remaining individuals were assumed to be males. A summary with the number 

and sex of individuals analysed at every sampling time for both ploidy groups is 

presented in Table 4.1. 

Luis A P. Carrasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 98 



Chapter IV GAMETOGENESIS IN TRIPLOID RAINBOW TROUT 

Males Females 

Months Diploid Triploid Diploid Triploid 

7 11 9 11 11 
15 13 11 89 
20 4466 
25 9 10 10 10 
44 115 10 

TOTAL 38 35 40 46 

Table 4.1. Sample size and observed gonadal sex in diploid and triploid groups 

at different age stages. 

4.3.3 Statistical Analysis 

Relative Frequencies were averaged for each fish in order to obtain the 

Individual Relative Frequencies (IRFs). Individual Relative Frequencies were 

averaged for each ploidy group to calculate the Average Relative Frequencies 

(ARFs) at every sampling time. Average Relative Frequencies were arc-sine 

transformed and compared between ploidy groups by one-way ANOVA (Sokal 

and Rohlf, 1981; Zar, 1996). Differences were considered significant at the P< 0.05 

level. 
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4.4 Results 

GAMETOGENESIS INTRIPLOID RAINBOW TROVE 

4.4.1 Males 

4.4.1.1 Gonadal structure at 7 months post-hatching. 

In ten of the eleven diploid males sampled at seven months of age the 

gonad consisted of groups of 5-6 cells at the spermatogonia A and B stages, which 

appeared cysted in circular arrangement and externally delimited by a thin layer 

of connective stroma. Typically, spermatogonia type B (ARF= 43.5%, Figure 4.1, 

Appendix 8) were found in a central position within the cysts and showing mitotic 

activity, while type A spermatogonia (ARF= 22.4%) were located peripherally. 

These cysts were surrounded by variable numbers of interstitial (Leydig) cells 

(ARF= 14.2%) characterised morphologically by flat, scarce cytoplasms and darkly 

staining spheroidal nuclei, located in close contact with the external wall of the 

cysts. In the margins of the gonad the cystic arrangement was not present, but 

instead spermatogonia (generally of type A) were in close juxtaposition with 

interstitial cells, eosinophilic fibres and myeloid-resembling cells (Figure 4.2). 

One precocious diploid male displayed a more advanced gonadal 

morphology characterised by the establishment of the lobular arrangement in 

which primary spermatocytes (IRF= 53.1%) were embedded in Sertoli cells (IRF= 

1.1%) delimited by thin trabeculae of connective stroma. A few scattered lobules 

showed signs of meiotic activity with secondary spermatocytes (IRF= 22%) and 

spermatids (IRF= 16.7%) being located in the central area of the lobules. 
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Most males in the triploid group presented a similar anatomy of the gonad, 

although showing less abundant spermatogonial cysts, more prominent Sertoli 

cells and a significantly lower number of interstitial cells than diploid males 

(ARF= 0.9%, Figures 4.1 and 4.3). In the margins of the gonad uncysted 

spermatogonia were found in close contact with scarce interstitial cells and 

eosinophilic fibres. Four out of the nine triploid males sampled showed signs of 

progress through spermatogenesis. These exhibited the nested arrangement of the 

spermatogonia previously observed in diploid males, with primary spermatocytes 

(ARF= 10.5%) in the centre of some cysts. In one precocious triploid male the 

lobular arrangement was evident, with spermatogonia type B in the periphery of 

the lobules and primary and secondary spermatocytes more centrally positioned. 

Some spermatids (IRF= 5.2%) with irregular, uneven profiles were present in the 

lumen of a few lobules. 

4.4.1.2 Gonadal structure at 15 months post-hatching. 

The testes of ten diploid males at 15 months of age were organised in the 

lobular arrangement characteristic of salmonid males (Figure 4.4). The lobules 

appeared filled with spermatogonia type B (ARF= 34.5%) and a few primary 

spermatocytes (ARF= 7.5%) embedded in Sertoli cells and loosely positioned 

around a central lumen. Thin trabeculae of connective stroma delimited the 

lobules. Interstitial cells, eosinophilic fibres and blood vessels with erythrocytes 

and myeloid-resembling cells were located in the margins of the gonad. Three 

diploid males contained morphologically normal spermatozoa in the centre of 

most lobules and spermatids in the periphery (IRFs= 63-73% and 4-8%, 

respectively). 
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Figure 4.2. Gonadal photomicrograph from a7 month-old diploid rainbow trout nwle 

stained with the periodic acid-Schiff reaction and counterstained with Heidenhain's 

haematoxylin. CB, cyst boundary; CS, cysted spermatogonia; GM, gonadal margin. 

Figure 4.3. Gonadal photomicrograph from a7 month-old triploid rainbow trout male 

stained with the periodic acid-Schiff reaction and counterstained with Heidenhain's 

haematoxylin. IC, interstitial cells; SA, spermatogonia type A; SB, spermatogonia type B. 
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Figure 4.4. Gonadal photomicrograph from a 15 month-old diploid rainbow trout male 

stained with haematoxylin-eosin. SA, spermatogonia type A; SB, sperniatogonia type B; 

S 1, primary spermatocytes; T, trabeculae. 

Figure 4.5. Gonadal photomicrograph from a 15 month-old triploid rainbow trout male 

stained with haematoxylin-eosin. SB, spermatogonia type B; S 1, primary spermatocytes; 
S2, secondary spermatocytes. 
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In these three fish spermatogonia and interstitial cells were visible within the 

trabeculae, which appeared thicker than in the previous males. Fibres and 

erythrocytes were also visible within the trabeculae. Free spermatozoa were 

present in the lumen of their spermatic ducts. The duct was lined by a single layer 

of ciliated epithelium, with large blood vessels running through its wall. 

The testes of triploid males were also organised in lobules, but contained 

significantly lower numbers of spermatogonia and showed further development 

in spermatogenesis than diploid males (Figures 4.1 and 4.5). All eleven sampled 

individuals had entered meiosis, with the bulk of most lobules being filled with 

significantly higher numbers of primary (ARF= 26.5%) and secondary 

spermatocytes (21.3%) than diploid males at this age (Figure 4.6). Spermatocytes 

had irregular shapes and in many cases their cytoplasms appeared vacuolated. 

When present, spermatids (ARF= 4.6%) were located in the central lumen of the 

lobules, showing very heterogeneous size and shape and frequently concomitant 

with cell debris. Intercellular spaces appeared filled by a basophilic substance 

reminiscent of colloid. The trabeculae delimiting the lobules appeared thicker than 

in diploid males and contained interstitial cells (ARF= 6.5%). The margins of the 

gonads contained some spermatogonia type A (ARF= 2.9%) associated with 

eosinophilic structures resembling collagen fibres. Five of the eleven triploid males 

examined had variable proportions of spermatozoa (IRFs= 0.7-41.3%) present in 

the central lumen of most lobules. Size and shape of spermatozoa was also 

variable among the lobules, although in some cases they exhibited homogeneous 

morphology and visible flagella. In one of these males most lobules were filled 

with normal-looking spermatozoa (IRF= 41.3%) while some appeared empty after 
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Figure 4.6. Gonadal photomicrograph from a 15 month-old triploid rainbow trout male 

stained with haematoxylin-eosin. IC, interstitial cells; SA, spermatogonia type A; SB, 

spermatogonia type B; S 1, primary spermatocytes; S2, secondary spermatocytes. 
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Figure 4.7. Gonadal photomicrograph from a 20 month-old diploid rainbow trout male 

stained with the periodic acid-Schiff reaction and counterstained with Heidenhain's 

haematoxylin. Si, primary spermatocytes; S2, secondary spermatocytes; ST, spermatids; 
SZ, spermatozoa. 
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apparent spermiation, delimited by thickened trabeculae containing primary 

spermatocytes embedded in Sertoli cells. In this male, spermatozoa were present 

in the lumen of the spermatic duct, which was lined by ciliated epithelium and 

highly vascularised. 

4.4.1.3 Gonadal structure at 20 months post-hatching. 

All four diploid males were completing spermiogenesis at the age of 20 

months, showing variable numbers of fully differentiated spermatozoa in the 

lumen of their lobules. Secondary spermatocytes (ARF= 32.7%) and spermatids 

(ARF= 20.8%) were observed in a marginal position within the lobules (Figure 4.7). 

Free spermatozoa (ARF= 39.8%) presented regular, even morphology and 

homogeneous size across the lobules. An extracellular basophilic substance was 

also present in the lumen of these lobules. 

In triploid males, the stromal component delimiting the testicular lobules 

appeared significantly more prominent than in diploid males at this age, and 

showing intense vascularization. Most cells within the lobules were at the stage of 

primary spermatocytes (ARF= 65.1%) with vacuolised cytoplasms, although some 

secondary spermatocytes (ARF= 11.1%) and very few spermatids (ARF= 1.1%) 

were also present. These, however, appeared in significantly lower numbers than 

in diploid males (Figure 4.1). The central lumen of the lobules contained 

filamentous, thread-like structures and cell debris. No spermatozoa were present 

in the lumen of the spermatic duct (Figure 4.8). 
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Figure 4.8. Gonadal photomicrograph from a 20 month-old triploid rainbow trout male 

stained with haematoxylin-eosin. D, cell debris; S I, primary spermatocytes; S2, 

secondary spermatocytes; ST, spermatids. 

Figure 4.9. Gonadal photomicrograph from a 25 month-old diploid rainbow trout male 

stained with haematoxylin and eosin. SZ, spermatozoa; T, trabeculae. 
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4.4.1.4 Gonadal structure at 25 months post-hatching. 

All diploid males had spermiated at 25 months of age (Figure 4.9). The 

central area of many testicular lobules appeared as an empty space, while in the 

proliferating stroma, type B spermatogonia (ARF= 4.4%) and very few 

spermatocytes (ARF= 0.4%) were observed among a relatively high proportion of 

fibres (ARF= 0.9%). Lobules which still contained free spermatozoa in their lumen 

(ARF= 68.5%) showed signs of degeneration such as cell agglutination and 

overstaining, and a basophilic substance filled the intercellular spaces. Some 

residual spermatozoa were visible in the spermatic duct of all ten males sampled. 

The majority of triploid males, on the contrary, were still completing 

spermiogenesis, with significantly higher proportions of spermatocytes and lower 

numbers of spermatozoa than diploid males (Figure 4.1). There seemed to be some 

overlap between the first and second gonadal cycles in the ten triploid males 

examined at this age. Typically, abnormal spermatozoa (ARF= 31.8%), spermatids 

(ARF= 8.1%) and secondary spermatocytes (ARF= 22.1%) were found in the centre 

of the lobules together with cell debris and colloid. The lobules were delimited by 

proliferating stroma containing type B spermatogonia (ARF= 2.3%) and primary 

spermatocytes (ARF= 14.2%). Spermatozoa and spermatids presented irregular 

morphology and variable cell size, and cytoplasmic vacuolisation was evident in 

secondary spermatocytes. Three of the ten triploid males, however, exhibited 

uniform and morphologically-normal free spermatozoa (IRFs= 48-69%) in the 

lumen of most lobules (Figure 4.10). In two of these cases normal-looking 

spermatozoa were also found in the lumen of the spermatic duct, which was lined 

by a single layer of ciliated epithelium (Figure 4.11). 
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Figure 4.10. Gonadal photomicrograph from a 25 month-old triploid rainbow trout male 

stained with haematoxylin and eosin. S2, secondary spermatocytes; ST, spermatids; SZ, 

spermatozoa; T, trabeculae. 

1ý 

Figure 4.11. Photomicrograph of the spermatic duct of a 25 month-old triploid rainbow 

trout male stained with haematoxylin and eosin. CE, cilliated epithelium; SZ, 

spermatozoa. 
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4.4.1.5 Gonadal structure at 44 months post-hatching. 

In the only diploid male available for histological analysis at 44 months of 

age, the testis had completed a new cycle and progressed to the stage of 

spermiogenesis. Free spermatozoa (IRF= 33.3%) were visible in the lumen of most 

lobules, while spermatids were located peripherally. Meiotic activity was still 

evident in some lobules where primary (IRF= 36.4%) and secondary 

spermatocytes (IRF= 15.6%) appeared concomitantly with a few spermatids (IRF= 

8.3%). No spermatozoa were visible in the lumen of the spermatic duct. The duct 

wall presented a heavy fibrous infiltration alternating with areas of fat deposits. 

The triploid male contained mostly primary spermatocytes (IRF= 56.1%) 

entering meiosis with some secondary spermatocytes (IRF= 18.2%) and spermatids 

(11.8%) in the centre of the lobules. Some lobules also contained scattered 

spermatozoa (IRF= 4.8%) with very heterogeneous size and cell morphology, 

together with cell debris. Localised areas of fibrosis were also evident throughout 

the testis. No spermatozoa were visible in the lumen of the spermatic duct, which 

appeared heavily infiltrated with fibres and adipose tissue. 
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4.4.2 Females 

4.4.2.1 Gonadal structure at 7 months post-hatching. 

In all eleven diploid females examined at 7 months of age the ovary was 

organised in a series of transverse septa extending along the ovarian axis known 

as the ovigerous lamellae. The lamellae opened into a central ovarian lumen, with 

their external surface covered by a single layer of cubical epithelium (germinal 

epithelium), and the gonad was externally delimited by the peritoneum, 

continuous with the tunica albuginea. The tunica albuginea consisted of a thin 

fibrous layer covered externally with ciliated columnar epithelium. The lamellae 

appeared filled with stage 3 oocytes (ARF= 64.8%, Figure 4.12, Appendix 7) 

embedded in a loosely bound connective stroma containing scattered oogonia 

(ARF= 3.2%), stage 1 (ARF= 1.2%) and 2 (ARF= 10.6%) oocytes and thin blood 

capillaries. Stage 3 oocytes exhibited a basophilic cytoplasm and a central nucleus 

with several nucleoli lying close to the nuclear envelope. They were surrounded 

by a single layer of flattened granulosa cells and some squamous thecal cells. A 

few oocytes had developed cytoplasmic vesicles in the periphery of the ooplasma, 

thus entering stage 4 (ARF= 0.9%). 

All triploid females examined showed a much more rudimentary gonadal 

anatomy than their diploid counterparts, with non-follicular elements 

overepresented in their ovaries (Figure 4.13). Although the lamellar organisation 

was present in all of them, the central lumen of the ovary appeared disrupted 

longitudinally as opposite lamellae were fused in bridges running through the 

width of the organ, giving it a closed appearance (Figure 4.14). 
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Figure 4.12 Average relative frequencies of gametogenic cells in diploid (o) and 
triploid (m) rainbow trout ovaries at different age stages. Bars represent standard 
deviations, asterisks denote significantly different means (P<0.05). 0, oogonia; 1-7, 
oocyte stages (after Bromage and Cumaranatunga, 1988); AT, atretic oocytes; SC, 
spermatogenic cells; POF, post-ovulatory follicles. 
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Figure 4.14. Gonadal photomicrograph from a7 month-old triploid rainbow trout female 

stained with haematoxylin and eosin. CO, cysted oogonia; GE, germinal epithelium; L, 

ovarian lamellae; OL, ovarian lumen; TA, tunica albuginea. 

Figure 4.15. Gonadal photomicrograph from a 15 month-old triploid rainbow trout 
female stained with the periodic acid-Schiff reaction and counterstained with 
Heidenhain's haernatoxylin. FC, prefollicle cells; FL, fibrous layer; GE, germinal 

epithelium; 0, oogonia. 
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The tunica albuginea appeared greatly thickened by the presence of 5-6 

layers of heterogeneous fibrous elements similar to collagen and smooth-muscle 

fibres intermixed with flattened cells with a central, ellipsoidal nucleus. Germ cells 

within the lamellae were at the oogonial stage (ARF= 71.1%, Figure 4.12). They 

had a large spheroidal nucleus positioned centrally, often showing signs of 

vacuolisation and pyknosis, and a stranded cytoplasm. In 5 of the 11 females the 

oogonia were cysted in groups of 4-8 cells surrounded by a thin fibrous layer. In 

the other 6 fish the oogonia appeared uncysted with some fibres positioned 

between them (ARF= 9.3%). Mitotic figures were frequent among the oogonia in 

all females examined. 

A moderate proliferation of tubular structures very similar to renal tubules 

was evident interspersed between the oogonia in two of the triploid females 

studied (IRFs= 7.8 and 12.6%, respectively). Localised foci of necrosis (ARF= 5.8%) 

and a moderate infiltration of eosinophilic inflammatory cells (ARF= 1.9%) were 

evident under the germinal epithelium covering the outer surface of the lamellae. 

4.4.2.2 Gonadal structure at 15 months post-hatching. 

Most of the oocytes in the ovaries of diploid females at 15 months of age 

had reached stage 4, clearly identified by the presence of yolk vesicles staining 

pale mauve in their cytoplasm (ARF= 41.7%, Figure 4.12). Radial striations of the 

zona radiata were visible between the granulosa and the oocyte membrane. The 

granulosa cells appeared cubical in shape while thecal cells showed a flattened 

appearance. Large numbers of stage 3 oocytes were still evident (ARF= 32.7%), 

together with scattered oocytes at stage 2 (ARF= 5.2%). A few atretic follicles 
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(ARF= 2.4%) were also present, recognisable by a hypertrophied granulosa 

penetrating the zona radiata and a shrinking of the oocyte which had separated 

from the theca. The stroma around the follicles contained thin fibres and few 

erythrocytes (ARF= 7.4%). 

Triploid females exhibited a closed lamellar ovarian architecture at this age. 

The gonad appeared delimited by a thick, fibrous tunica albuginea in which focal 

areas of cytolysis and necrosis were common (ARF= 5.6%). Fibres underneath the 

epithelium of the tunica infiltrated the underlying germinal tissue, which 

appeared replaced by adipose deposits in some areas. The columnar cells of the 

germinal epithelium appeared significantly enlarged (ARF= 3.9%, Figure 4.13) and 

some cell debris seemed to be washing up into the ovarian lumen. Within the 

lamellae, oogonia (ARF= 57.3%) appeared nested in groups of 4-20 cells 

surrounded by a thin fibrous layer in all 9 females examined (Figure 4.15). The 

oogonia had a stranded cytoplasm and very variable nuclear sizes with frequent 

signs of vacuolisation and karyorhexis, and occasional mitotic figures were 

observed. These cysts were surrounded by abundant pink-staining fibrous 

elements (ARF= 18.4%) with a central, elongated nuclei, and moderate amounts of 

inflammatory cells (ARF= 1.4%). Some dark-staining flattened cells with 

ellipsoidal nuclei reminiscent of thecal cells were also evident between the cysts. 

In addition, tubular structures resembling kidney tubules and abortive glomerulae 

were interspersed among the gonial cysts in three of the females examined (IRFs= 

2.3-7.8%). 
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The ovary of three of the triploid females examined seemed to be 

undergoing a significant change: isolated foci of dark-staining areas (IRF= 0.8- 

6.8%) appeared to be developing among the gonial cysts, giving these zones a 

patchy appearance. Cells within these areas had a much smaller size than oogonia, 

and appeared morphologically very similar to primary spermatocytes (thereafter 

referred to as spermatogenic cells). These areas were not clearly delimited by an 

outer layer, but instead they were located in close proximity to the gonial cysts. 

4.4.2.3 Gonadal structure at 20 months post-hatching. 

All six diploid females examined were approaching ovulation at 20 

months of age. The lamellar organisation of the ovary appeared masked by the 

large size of the oocytes which had completed growth to the late stage 6 of 

oogenesis (ARF= 50.2%, Figure 4.12). These oocytes were characterised by the 

presence of many large yolk globules in their ooplasm, the cortical alveoli being 

restricted to the area immediately adjacent to the oocyte membrane (Figure 4.16). 

Their nuclei or germinal vesicle presented a folded nuclear envelope and was 

slightly displaced from the centre. The zona radiata appeared thicker than in the 

previous sample, and the granulosa cells had also become more flattened. 

Some oocytes were still at stage 5 (ARF= 9.2%) showing smaller yolk 

granules in the ooplasm adjacent to the oocyte membrane and a centrally 

positioned nucleus. A few atretic follicles were also evident in all females (ARF= 

5.4%). These were characterised by a hypertrophied granulosa with an irregular 

basement membrane and appeared filled with acidophilic fragments of the zona 

radiata and yolk granules (Figure 4.16). 
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Figure 4.16. Gonadal photomicrograph from a 20 month-old diploid rainbow trout 

female stained with Masson's trichrome. AT, atretic oocyte; CA, cortical alveoli; G, 

granulosa; 03, stage 3 oocyte; 06, stage 6 oocyte; S, stroma; T, theca; YG, yolk granules; 

ZR, zona radiata. 

Figure 4.17. Gonadal photomicrograph from a 20 month-old triploid rainbow trout 

female stained with haematoxylin and eosin. 0, oogonia; 04, stage 4 oocyte; N, necrosis; 
TA, tunica albuginea; VL, vascular lacunae. 
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Low numbers of stage 3 (ARF= 4.2%) and 4 (ARF= 0.7%) oocytes were embedded 

in a well vascularised stroma. 

The ovaries of the triploid females sampled at this age retained the general 

morphology observed in the previous sample (Figure 4.17). The gonad presented a 

closed lamellar architecture with a heavy infiltration of fibres (ARF= 13.7%), fat 

deposits and scattered foci of necrosis (ARF= 3.2%, Figure 4). Large vascular 

lacunae expanding under the germinal epithelium were evident in 3 of the 6 fish 

examined. These appeared as distended irregular spaces delimited by a 

discontinuous endothelium and filled with myeloid-resembling cells (IRFs= 2.2- 

5.6%) and some cell debris. Oogonia (ARF= 61.4%, Figure 3) appeared nested 

within the lamellae, surrounded by a fibrous connective layer and exhibiting 

frequent pyknosis and karyorhexis. The ovary of a single female presented a few 

normal follicles (IRF= 8.9%) with oocytes at stage 4 and a normally developed 

granulosa surrounded by flattened thecal cells. In two of the females sampled the 

patchy configuration previously described was clearly evident (Figures 4.18 and 

4.19). Interspersed among the oogonia, spermatogenic cells showed dense 

chromatin staining and appeared similar in size and morphology to secondary 

spermatocytes (IRFs= 3.3% and 6.7%, respectively). No tubular formations were 

found at this age in any of the triploid females examined. 

4.4.2.4 Gonadal structure at 25 months post-hatching. 

All of the 10 diploid females sampled at 25 months of age had ovulated. 

Large numbers of post-ovulatory follicles occupied most of the gonad (ARF= 

34.6%, Figure 4.12). 
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Figure 4.18. Gonadal photomicrograph from a 20 month-old triploid rainbow trout 

female stained with haematoxylin-eosin. 0, oogonia; SC, spermatogenic cells; TA, tunica 

albuginea. 

Figure 4.19. Gonadal photomicrograph from a 20 month-old triploid rainbow trout 

female stained with the periodic acid-Schiff reaction and counterstained with 
Heidenhain's haematoxylin. FL, fibrous layer; 0, oogonia; SC, spermatogenic cells. 
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Post-ovulatory follicles appeared as collapsed structures with a 

proliferating granulosa filling the space previously occupied by the oocyte, and a 

theca which was continuous with the ciliated germinal epithelium. Variable 

numbers of atretic follicles (ARF= 9.2%) were also found in all ovaries examined. 

Atretic oocytes were separated from a hypertrophied granulosa, with the 

striations of the zona radiata still visible. The globular organisation of the yolk had 

been lost and instead a homogenous mass of acidophilic material filled the entire 

ooplasm. Post-ovulatory follicles and atretic oocytes appeared embedded in a 

loosely-bound stroma in which oocytes at stages 3,4 and 5 were developing. 

Although the general organisation noticed in the ovaries of triploid females 

during previous samples was conserved at 25 months of age, six of the ten females 

examined exhibited clear gonadal hermaphroditism at this age. Large areas of the 

ovary were occupied by small, darkly-staining cells morphologically identical to 

spermatocytes and spermatids, with no clear delimiting membrane (IRFs= 4.4- 

15.8%). Spermatogenic cells within these areas appeared to be undergoing meiosis, 

with spermatid-resembling cells centrally located and secondary spermatocytes in 

a more peripheral position. 

Macroscopically, the gonad appeared as a fibrotic organ retaining a closed 

lamellar architecture in which spermatogenic areas and nests of 15-30 vacuolised 

oogonia (ARF= 43.4%) concurred with vascular lacunae (ARF= 1.5%), necrotic foci 

(ARF= 3.2%) and fat deposits. The lamellae appeared lined by a significantly 

enlarged germinal epithelium. In three of the ten females analysed low numbers of 

stage 4 oocytes (IRFs= 1.1-10.2%) appeared to be normally developing among the 

oogonial nests, frequently in close juxtaposition with spermatogenic areas. 
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These oocytes contained cortical alveoli in their cytoplasms, and had a clearly 

differentiated zona radiata, granulosa and thecal layer (Figure 4.20). The tubular 

formations observed in previous samples had invaded large parts of the ovary in 

three cases (IRFs= 14.4-24.4%, Figure 4.21). Cylindrical tubules contained a central 

lumen filled with an amorphous eosinophilic substance. The lumen was lined by a 

single layer of cubical epithelium with spherical nuclei centrally positioned. 

4.4.2.5 Gonadal structure at 44 months post-hatching. 

Diploid females were approaching a second ovulation and spawning at 44 

months of age (Figure 4.12). The composition of the ovary appeared basically 

identical to that observed in the sample taken 25 months after fertilisation, with 

many oocytes at stage 6 (ARF= 28.9%) and a new wave of stage 3-4 oocytes 

developing within the stroma. Atretic follicles were numerous in all diploid 

females examined (ARF= 31.4%). 

The lamellar architecture had been replaced by a more lobular appearance 

reminiscent of the testicular anatomy in six of the ten triploid females sampled at 

this age (Figure 4.22). Spermatogenic areas were now present in nine of the ten 

females examined (ARF= 12.2%), in most cases concomitant with oogonial nests 

(ARF= 30.4%). Many of the male-differentiating areas appeared to be at late stages 

of spermiogenesis (Figure 4.23), with most cells resembling spermatids and, at 

least in one case, morphologically abnormal spermatozoa in the central areas of 

some cysts (IRF= 38.6%). 
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Figure 4.20. Gonadal photomicrograph from a 25 month-old triploid rainbow trout 

female stained with the periodic acid-Schiff reaction and counterstained with 

Heidenhain's haematoxylin. CA, cortical alveoli; G, granulosa; 0, oogonia; T, theca; ZR, 

zona radiata. 
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Figure 4.21. Gonadal photomicrograph from a 25 month-old triploid rainbow trout 

female stained with haematoxylin and eosin. A, adipocytes; GS, glandular structures; SC, 

spermatogenic cells; TA, tunica albuginea; VL, vascular lacunae. 
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Figure 4.22. Gonadal photomicrograph from a 44 month-old triploid ralnhoW trout 

female stained with haematoxylin and eosin. 0, oogonia; 04, stage 4 oocyte; SC, 

spermatogenic cells. 

Figure 4.23. Gonadal photomicrograph from a 44 month-old triploid rainbow trout 

female stained with haematoxylin and eosin. SI, primary spermatocytes; S2, secondary 

spermatocytes; ST, spermatids. 
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Pyknosis and karyorhexis were frequent within the oogonial nests. A few 

normally developed follicles contained oocytes at stage 4 (ARF= 3.1%), and in 

three of the females these had entered stage 5 (IRFs= 3-9.5%) showing small 

exogenous yolk granules in the periphery of the ooplasm. Fibres were abundant 

(ARF= 16.8%) throughout the gonads of all triploid females, in some cases forming 

localised dense agglomerations of neoplastic appearance. Cylindrical structures 

similar to kidney tubules were evident in two females (IRFs= 3.3% and 33.3%, 

respectively). Fat deposits, vascular lacunae and necrotic foci were observed in all 

triploid females examined (Figure 4.13). 
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4.5 Discussion 

4.5.1 Gametogenesis in triploid males 

In general, the patterns of testicular development observed in triploid 

males in this study are in accordance with previous findings (Lincoln and Scott, 

1984; Nakamura et al., 1987; Kobayashi et al., 1993). Triploid males progressed 

through initial phases of spermatogenesis (i. e. 7 and 15 months post-hatching) at 

similar or even faster rates than their diploid counterparts, and both ploidy groups 

contained precocious males that produced spermatozoa by the age of 15 months 

post-hatching. Differences were more apparent at the completion of 

spermatogenesis (20-25 months post-hatching), when all diploid males contained 

free spermatozoa in the lumen of most tubules, whereas triploid males contained 

predominantly spermatocytes and abnormal spermatids. Triploidy in rainbow 

trout males thus seems to have affected spermiogenesis (transformation of 

spermatids into spermatozoa) and spermiation rather than the proliferative 

(mitotic) or meiotic phases of spermatogenesis. 

Spermiogenesis in the rainbow trout has been characterised as a complex 

differentiation process (Billard, 1983). Abnormal spermatid development has been 

reported in triploid fowls (Lin et al., 1995b). Thus it is possible that in spite of 

mechanistic difficulties for chromosomal disjunction, progression through meiosis 

could be accomplished in a triploid cell, while the unbalanced gene expression 

that presumably unfolds in the aneuploid spermatids present in triploid males is 

insufficient in most cases to satisfactorily accomplish the differentiation into 

spermatozoa. Nevertheless, a few triploid individuals in the present study (one 

precocious male and 3 out of the 10 males sampled at 25 months of age) produced 
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morphologically normal spermatozoa. The appearance of normally differentiated 

spermatozoa may arise by chance from the random segregation of complete 

(haploid) chromosome sets. Alternatively, several cytological mechanisms capable 

of altering the chromosomal complement of triploid cells such as multipolar 

mitosis, acytokinetic mitosis, cell fusion or chromosome elimination may be 

operating in these males, as described in other polyploids (Pera, 1975; Nakai et al., 

1991, Ohtani, 1993). At present, the reasons for the individual variation detected in 

the effects of triploidy on testicular development remain unclear. 

Early stages (7 months post-hatching) of spermatogenesis in triploid fish 

were also characterised by the presence of prominent Sertoli cells and a significant 

deficiency in interstitial (Leydig) cells (Figure 1). Sertoli cells are known to have 

phagocytic activity in teleosts (Billard, 1986). A possible explanation for the 

enlargement of Sertoli cells might relate to the slight necrosis (ARF= 0.69%) 

detected in triploid males, which was not observed in the diploid group at this 

age. Although the functional role of interstitial (Leydig) cells in teleosts is still 

subject to some discussion, they are thought to participate in steroid biosynthesis, 

particularly of 11-ketotestosterone (de Vlaming, 1974; Grier, 1981, Nagahama, 

1994). The observed scarcity of these cells in triploid males might then explain the 

initially low levels of 11-ketotestosterone detected in maturing triploid trout males 

(Kobayashi et al., 1993). 
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4.5.2 Gametogenesis in triploid females 

Triploidy clearly affects ovarian development at an early stage, although in 

this study the absence of sampling before 7 months of age prevented a clear 

identification of the time of impact. The main features noticed in the ovarian 

development of triploid female trout were the persistence of the oogonial nests, 

the gradual appearance of spermatogenic areas and the extreme proliferation of 

non-follicular elements in all females examined. 

Most germ cells remained enclosed in the oogonial cysts throughout the 44 

months covered in the sampling period, with only a few oocytes developing 

outside the cysts during the last sampling. In the rainbow trout, as in other (but 

not all) salmonids and most vertebrate species, the germ cells are organised in 

clusters connected by intercellular bridges and surrounded by stromal cells 

(Takashima et al., 1980; Van der Hurk and Slof, 1981; Nakamura and Nagahama, 

1993). This organisation arises during the mitotic proliferation of oogonia, in 

which cytokinesis is frequently incomplete. The germ cells in each cluster undergo 

synchronous meiotic progression up to the late pachytene stage, and it has been 

suggested that the intercellular bridges within the gonial clusters play an 

important role in synchronising oocyte differentiation (Tokarz, 1978; Beers and 

Dekel, 1981). During early diplotene, the oocytes forming the clusters segregate 

and are gradually surrounded by somatic prefollicular cells (Peters, 1978). 

Primordial follicles formed in this way continue differentiation independently and 

asynchronously. The mechanisms leading to the disruption of the inter-oocyte 

bridges are still unclear, although it has been suggested that the thin cytoplasmic 
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digitations that stromal cells develop around the clustered oocytes could play an 

active mechanical role in this process (Andreuccetti et al., 1990). 

The presence of marginal numbers of oocytes developing outside the cysts 

to stages 4-5 in the present study would suggest that, rather than being due to the 

inability of the germ cells to progress through meiosis, the early blockage 

observed in triploid ovaries may have resulted from the sequestering of the 

oocytes within the gonial cysts. Furthermore, the observation of a normally- 

developed granulosa around these extra-cystic oocytes suggests that, provided 

that the proper interactions with the developing oocytes can be established, 

granulosa cells in triploid females retain the potentiality to differentiate correctly. 

Previous studies in salmonids have shown that the presence of a triploid genome 

results in an increase in cellular volumes (Small and Benfey, 1987). Perhaps the 

alteration in cellular dimensions interferes with the intimate cell-to-cell 

communication required for the disruption of the oogonial clusters in triploid 

females, resulting in the persistence of the oogonial nests. Further studies on the 

ultrastructure of the granulosa and oocytes in diploid and triploid female teleosts 

will be of great value for the clarification of the initial stages of the process of 

folliculogenesis. 

An alternative hypothesis would consider that the lack of a proper 

hormonal environment prevents the disruption of the gonial cysts by inhibiting 

somatic-germ cell interactions, as it has been hypothesised during sex reversal in 

Xenopus (Villalpando and Merchant-Larios, 1990). Piferrer et al. (1994) detected no 

significant oocyte development in oestrogen-treated triploid females of coho 

salmon. However, extrapolation of information obtained in this species to the 
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rainbow trout may not be valid, since oogonia were not found to be naturally 

arranged in the cysts characteristic of normal ovarian development in rainbow 

trout, and the reproductive cycle of the coho salmon consists of a single spawn 

while the rainbow trout is a multiple spawner. 

More recently, oestradiol and testosterone implants significantly increased 

sGnRH contents in the brain and pituitary of adult triploid rainbow trout (Breton 

and Sambroni, 1996). Krisfalusi and Cloud (1996) observed no differences in the 

ovarian development of triploid rainbow trout treated with 17ß-oestradiol by 

immersion of eyed eggs and alevins and oral administration, compared to 

untreated triploids. Their findings propound that the supplementation of 

exogenous steroids during early ontogeny is insufficient to overcome the blockage 

in oocyte development observed in triploid female trout, suggesting that the 

significantly lower levels of gonadal steroids observed in female triploids (Lincoln 

and Scott, 1984; Nakamura et al., 1987) are a result of reduced ovarian 

development, rather than the cause. The supplementation of exogenous 17ß- 

oestradiol, however, may not be sufficient to restore the normal endocrine balance 

necessary for the initiation of folliculogenesis, which is likely to require both the 

establishment of the proper cellular interactions and the hormonal milieu 

necessary for the differentiation of the prefollicular cells and oogonia (Tokarz, 

1978; Andreuccetti et al., 1990; Villalpando and Merchant-Larios, 1990; Moley and 

Schreiber, 1995). 

An important feature of ovarian development in the triploid females in this 

study was the gradual increase in frequency of male-differentiating areas observed 

between the ages of 15 months (3 of the 9 females examined, IRFs= 0.8-6.8%) and 
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44 months post-hatching (9 of the 10 females examined, IRFs= 1.8-38.6%). 

Interestingly, the ovarian development of chromosomally female (3A: ZZW) 

triploid chickens follows a similar pattern. Most left gonads of ZZW triploid 

chickens appear as normal ovaries at hatching, but subsequently the gonad 

becomes an ovotestes as testicular tissue develops to produce abnormal 

spermatozoa by 25 weeks of age (Thorne et al., 1988; Fitzgerald and Cardona, 1993; 

Lin et al., 1995a). Testicular differentiation also occurs in mouse foetal ovaries after 

elimination of germ cells (Hashimoto et al., 1990). In the mouse, male somatic cells 

are autonomously committed to differentiate into Sertoli and peritubular (Leydig) 

cells, while specific somatic-germ cells interactions are required for the normal 

differentiation of female somatic cells (Burgoyne et al., 1988). In the absence of 

such interactions, female somatic cells differentiate into testis cords containing 

Sertoli and peritubular cells, but no other testis-specific cells (Hashimoto et al., 

1990). 

Trout and chicken germ cells retain the potentiality to differentiate in either 

male or female directions, as shown by the readiness with which sex reversal can 

be induced in these species (Bye and Lincoln, 1986; Wartenberg et al., 1992). Thus it 

seems possible that in triploid trout females, the persistence of the oogonial cysts 

precludes the establishment of the somatic-germ cells interactions necessary for 

female somatic cell differentiation. Female somatic cells may then differentiate into 

testis-supportive cells (Sertoli and Leydig cells), which could in turn favour the 

masculine differentiation of pluripotential germ cells in the rainbow trout as well 

as in the chicken. In the absence of further information (i. e. ultrastructural studies 

Luis A. P. Cumasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 

132 



Chapter IV GAMETOGENESIS IN TRIPLOID RAINBOW TROUT 

on the ovarian development of triploid rainbow trout) this hypothesis remains 

speculative. 

Finally, the extreme proliferation of non-follicular components observed in 

triploid females is difficult to interpret, not only because of the diversity of the 

structures observed (i. e. vascular lacunae, fibrous conglomerates, tubular 

proliferation) but also in view of the current scarcity of information on their origin 

and function in the vertebrate ovary. For instance, the significant enlargement of 

the germinal epithelium detected in triploid females in three of the samples 

performed is difficult to explain, since although it seemed to be closely associated 

with the development of satellite or follicle cells for adjacent germ cells, the 

functional role of the germinal epithelium remains unclear (Duke, 1978). Wilcox 

and Mossman (1945) claimed that testis-like cords observed in the ovaries of Sorex 

vagrans, the vagrant shrew, originated in the germinal epithelium. Price (1953) 

described the thickening of the germinal epithelium in the anoestrous water 

shrew, although no significance was attributed to this seasonal activity. 

Tumour-like cell masses resembling tubular adenomas have been described 

in the ovarian development of triploid (3A: ZZW) intersex chickens (Frankenhuis, 

1988) as well as in mouse ovaries deficient in germ cells (Duncan and Chada, 

1993). The presence of extensive myeloid centres has been recorded in the ovary of 

elasmobranchs, in which haematopoietic elements from the kidney replace the 

original medullary tissue and persist there (Matthews, 1950; Franchi, 1962). 

Leukocytes infiltrate the gonads of triploid ZZW fowl (Lin et al., 1995a). The 

observation of inflammatory cells, fibrosis and necrosis would suggest the 

presence of some type of immune response during the ovarian development of 
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triploid females, which may be related to the appearance of the proliferative 

structures mentioned before. 

Overall, it seems that non-follicular components undergo abnormal 

differentiation reflecting a certain degree of pluripotentiality in the triploid 

females examined. For example, the glandular formations resembling kidney 

tubules may represent overgrown remnants of the rete ovarii, which originates in 

the tubular connection that develops between the mesonephros and the gonad 

during organogenesis. The rete ovarii, however, is normally absent in teleosts, first 

appearing in the ovaries of vertebrates in the Amphibia (Duke, 1978). Although in 

mammals it has been suggested that the rete system interacts with the ovarian 

cortex initiating the start of meiosis (Byskov, 1975), its ontogeny and functional 

role remain obscure. 
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CHAPTER 
V 

THE REPRODUCTIVE POTENTIAL OF RAINBOW TROUT 

TRIPLOID MALES, ONCORHYNCHUSMYKISS 
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5.1 Summary 

In order to evaluate the reproductive potential of rainbow trout autotriploid 

males, six adult triploid males were selected from an experimental population for the 

analysis of their gonadal parameters and breeding capacity. Testicular weight, 

gonado-somatic index, sperm cell density and spermatozoa motility were 

significantly lower in triploid than in diploid male siblings. Ova collected from 

diploid female trout were inseminated with sperm from autotriploid males, diploid 

males or with a mixture of both (2nX3n, 2nX2n and 2nX[2n+3n] crosses). Survival 

from fertilisation to hatching was 0.57% in 2nX3n crosses, 10.7% in 2nX2n crosses 

and 10.9% in 2nX[2n+3n] crosses, and it was affected by low egg quality. Survival 

from hatching to 4 months was 10%, 66% and 44% for the 2nX3n, 2nX2n and 

2nX[2n+3n] crosses (P<0.05). Hatching embryos in 2nX3n crosses exhibited 

morphological abnormalities, although some juveniles were obtained and one of 

them had developed large testes in meiotic phase. 

Ploidy of juveniles was examined by image cytometry of modified Azure A- 

stained blood and liver smears. Image analysis of nuclear DNA in erythrocytes and 

hepatocytes revealed a near-triploid genome in 2nX3n offspring and in 12.5% of 

2nX[2n+3n] progeny. Metaphase plates analysed in gill epithelia from these 

individuals revealed aneuploid figures and multiple levels of ploidy. These data 

provide first evidence for the generation of limited numbers of viable progeny by 

autotriploid rainbow trout males when crossed to diploid females. 
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5.2 Introduction 

Induction of triploidy by physical or chemical treatment of freshly fertilised 

ova has become a valuable tool in salmonid culture, enhancing growth at pubertal 

age, preserving flesh quality and minimising mortality during the spawning season 

(Purdom, 1983; Thorgaard, 1986; Ihssen et al., 1990; Hussain, 1996). Triploids are 

believed to be sterile because of abnormal meiosis, although the degree of 

reproductive suppression depends on sex and species (Lincoln, 1981; Wolters et al., 

1982; Benfey and Sutterlin 1984a; Brämick et al., 1995). 

The gonadal development in triploids has been documented in salmonids 

(Benfey and Sutterlin, 1984; Lincoln and Scott, 1984) and non-salmonid species 

(Lincoln, 1981; Wolters et al., 1982; Ueno, 1985). Gametogenesis and sexual 

maturation are arrested in triploid females, while triploid males display secondary 

sex characters and courtship behaviour (Kitamura et al., 1991), develop an endocrine 

profile similar to diploid males (Benfey et al., 1989, Nakamura et al., 1993), and 

undergo aneuploid spermatogenesis (Benfey et al., 1986). In non-salmonid species 

such as plaice and grass carp, survival of the offspring from triploid males crossed to 

diploid females was found to be extremely low due to developmental abnormalities, 

abnormal hatching and high larval mortality (Lincoln and Scott, 1984; Van 

Eenennaam et al., 1990). Ueda et al. (1991) describe the production of hypertriploid 

progeny in crosses between diploid rainbow trout females and allotriploid males 

(rainbow trout X brook trout, Salvelinus fontinalis). No direct experimental evidence 

on the generation of viable progeny by autotriploid males in rainbow trout has been 

provided to date. 
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As described in Chapter 4, during the first spawning season a number of 

males in the triploid group displayed secondary sex characters (dark coloration 

and changes in body shape), although they did not exhibit natural spermiation. 

This Chapter describes the assessment of the reproductive potential of these 

individuals and the characterisation of any potential offspring. 
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5.3 Materials and Methods 

5.3.1 Experimental animals 

Triploid rainbow trout were produced from crosses of Mt. Lassen-derived 

strains. Triploidy was induced by a 13-min, 27°C heat shock applied to eggs 11 min 

post-fertilisation. Triploid and diploid (siblings) were raised in separate tanks at 

similar density, feeding and water quality regimes (T= 10-18 °C, ambient 

photoperiod). Six triploid males (age= 20 months post-hatching, 1.85 kg mean body 

weight) and six diploid males (same age, 1.9 kg mean body weight) were injected 

intramuscularly with 25 mg/kg LHRH analogue (Sigma Chemical Co., St. Louis, 

Missouri, U. S. A. ) to induce spermiation. Forty-eight hours after injection, they were 

anaesthetised (tricaine methansulfonate, Sigma Chemical Co., St. Louis, Missouri, 

U. S. A. ) for sperm collection, and later necropsied to obtain blood, liver samples and 

morphometric parameters. Ploidy was evaluated by nuclear size of red blood cells 

measured with a Coulter Counter and Channeliser (Johnson et al., 1984). Sperm was 

shipped on ice in oxygenated plastic bags and analysed for cell density and 

spermatozoa motility in the laboratory of Dr. G. Thorgaard (Washington State 

University, Pullman, Washington, U. S. A. ). Evaluation was conducted 48 hr after 

sperm collection. 

Approximately 1 ml of sperm from each male was used to inseminate eggs 

stripped from diploid females. Random batches of 300 eggs collected from 3 diploid 

females were used for insemination. The following crosses were conducted: six 

2nX3n crosses, six 2nX2n crosses and three 2nX[2n+3n] crosses (1: 1 volume mixture 

of sperm from triploid and diploid males). All precautions were taken to prevent the 

possibility of sperm cross-contamination. Ova were stripped into a dry bowl, sperm 
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was added by pipette and briefly mixed, and hatchery water was added with gentle 

stirring for 2 min. Fertilised ova were rinsed in hatchery water and stocked in indoor 

15 L fibreglass tanks covered with dark plastic screens to reduce illumination (T=13.6 

± 0.8°C). Photoperiod was adjusted to natural light cycles, and unfertilised ova and 

dead embryos were removed and counted daily for the computation of survival 

rates. At 5 hr after insemination all tanks were sampled for fertilisation success by 

fixing -100 eggs in Stockard's solution. Swim-up fry were fed a commercial diet ad 

libitum. At 4 months of age, all surviving progeny were sacrificed and blood and 

liver imprints prepared and fixed in 10% phosphate-buffered formalin. 

5.3.2 Ploidy determination 

DNA content (pg/cell) was examined on formalin-fixed smears by using a 

CAS-200 Image Analyser (Cell Analysis Systems, Elmhurst, Illinois, U. S. A. ) fitted 

with Quantitative DNA Analysis® software and a 280 pm filter with a 20 nm 

bandpass (Teplitz et al., 1990). Rat liver nuclei (DNA=6.6 pg/cell) were used as 

external standards. A total of 90 smears were analysed (45 blood smears, 45 liver 

smears), with a mean number of 116 nuclei examined per slide (erythrocytes and 

hepatocytes). After a 70 min acid hydrolysis (0.1 N HC1), smears (blood and liver) 

were dipped in modified Azure A stain for 60 min, washed in 0.05 N HCl and 

dehydrated in acid alcohol (1: 100 solution of 37% HC1 and 70% ethanol), 100% 

alcohol and xylene. Four separate quadrants of a smear were analysed in order to 

ensure random sampling. Cell types used for ploidy determination were verified on 

adjacent serial paraffin sections stained by haematoxylin-eosin. 
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5.3.3 Chromosomal analysis 

Several individuals among the offspring were karyotyped. For the 

preparation of the chromosomes, fragments of the gill arches were dissected, cut in 

small pieces and incubated in phosphate buffered saline containing 25 pg/ml 

colchicine for 5 hr at 14°C. Tissue fragments were washed in cold sodium citrate and 

stored in 3: 1 methanol: acetic acid. After fixation, the specimens were gently minced 

in 45% glacial acetic acid and dropped onto clean microscope slides heated to 40- 

50°C. Slides were stained with undiluted Giemsa, transferred to NH4OH, rinsed in 

acetone, xylenes and mounted (Thorgaard and Disney, 1990). Metaphase plates and 

histological sections were photographed with an Olympus BH-2 microscope. 

5.3.4 Statistical analysis 

Student's t-test was used to compare morphometric parameters of broodfish. 

Proportions of surviving individuals from fertilisation to hatching and from hatching 

to 4 months were arcsine-transformed, and survival in all crosses was compared by a 

one-way analysis of variance using a random block design (block= individual 

females). Significant differences in DNA content were evaluated by a one-way 

analysis of variance for unbalanced data (GLM Procedure, SAS Institute Inc., Cary, 

North Carolina, U. S. A. ), and Scheffe's confidence intervals with a 95% joined level of 

confidence constructed when appropriate (Neter et al., 1990). The significance level 

reported for all observations was P<0.05. 
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5.4 Results 

5.4.1 Broodstock 

Data on males morphometry and sperm quality are shown in Table 5.1. 

Weight of testes and gonado-somatic index were significantly lower in triploid males 

compared to diploid males. Sperm collected from triploid males had a very low cell 

density (including two males with no spermatozoa) and immotile spermatozoa at 48 

hr after sample collection. 

5.4.2 Survival of the Progeny 

The failure of the fixation protocol for consistently preserving cellular 

structure in triploid and control groups made impossible the determination of 

fertilisation success at 5 hr post-fertilisation. Eyed embryos were noticed in all 

crosses at day 11 after insemination, and hatching took place 20-24 days after 

insemination. The survival of embryos from incubation to hatching was low and 

variable in all crosses including control (2nX2n) matings (Table 5.2). The analysis of 

variance revealed a significant female effect and no significant differences between 

the three crosses within a single egg source. Hatching success was 0.6%±1.4, 

10.7%±16.7 and 10.9%±9.8 for the 2nX3n, 2nX2n and 2nX[2n+3n] crosses, with only 

one cross in the 2nX3n group (triploid male number 2, Table 5.1) producing hatched 

fry (8 individuals of 235 eggs stocked, 3.4%). The majority of the embryos in the 

2nX 3n group exhibited abnormal morphology with bent notochords and tail 

deformities. They seemed to have difficulties at hatching, only partially exiting the 

egg shell. 
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MALE BW FL K GW GSI LW HSI M SCD 
(g) (cm) (g) (%) (g) (%) (%) (cells/mm3) 

TRIPLOIDS 

1 2244 56 1.28 33.1 1.47 19.8 0.88 0 17.300 

2 1869 53 1.26 37.2 1.99 20.8 1.11 0 27.050 

3 1155 46 1.19 9.1 0.78 10.5 0.91 0 3.100 

4 1921 54 1.19 12.8 0.66 22.0 1.15 0 ABSENT 

5 1635 47 1.57 19.9 1.22 15.1 0.92 0 1.450 

6 2312 56 1.33 49.3 2.13 20.1 0.87 0 ABSENT 

MEAN 1856 52 1.30 26.9 1.38 18.1 0.97 0 8.150 

SD 388 4 0.13 14.2 0.55 4.0 0.11 10.361 

DIPLOIDS 

1 1901 53 1.28 61.8 3.25 19.6 1.03 n. a. n. a. 

2 2155 54 1.37 73.1 3.39 26.2 1.21 60 20.27x 106 

3 1658 47 1.60 55.8 3.37 15.9 0.96 90 NORMAL 

4 2218 55 1.33 52.4 2.36 15.9 0.72 80 19.78x 106 

5 2056 53 1.34 70.3 3.42 17.4 0.85 90 NORMAL 

6 1361 44 1.60 52.8 3.88 13.1 0.96 10 19.28x 106 

MEAN 1892 51 1.42 61.0 3.28 18.0 0.95 66 19.77x106 

SD 300 4 0.13 8.2 0.46 4.1 0.15 30 0.40x 106 

Table 5.1. Morphometric data and sperm quality in triploid and diploid 

rainbow trout males. Key: BW, body weight; FL, fork length; GSI, gonado- 

somatic index (gonadal weight/body weight)x100; GW, gonadal weight; HSI, 

hepato-somatic index (liver weight/body weight)x100; K, condition factor 

(body weight/fork length 3)x100; LW, liver weight; M, sperm motility; n. a., not 

available; SCD, Sperm Cell Density; SD, standard deviation. Diploid males 
labelled NORMAL were not examined due to small volume of sample, but 

their cell density appeared to be similar to the diploids that were analysed. 
Underlined values denote significantly different means (P<0.05). 
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Dark pigmentation was first observed in 2nX2n and 2nx[2n+3n] groups by 

day 8 after hatching and by day 16 in the 2nx3n group. Exogenous feeding started in 

2nX2n and 2nx[2n+3n] groups on day 15 post-hatching. The majority of the fry in the 

2nX3n group remained on the bottom of the tank, although some individuals in this 

group appeared normal, actively swimming to the water surface and accepting food. 

Significant differences in survival between groups were observed at both swim-up 

and fingerling stages (Table 5.2). 

PERCENT SURVIVAL 

STAGE 2nX2n 2nX3n 2nX[2n+3n] 

fertilisation to 'eyed' 46.5±35.5(n=6) 45.0±35.5(n=5) 50.6±43.3(n=3) 
(day 11) 

fertilisation to hatching 10.7±16.7(n=2) 0.6±1.4(n=1) 10.9±9.8(n=2) 
(day 20) 

hatching to swim-up 66.0±3.5a(n=2) 30.0`(n=1) 45.6t1.7b(n=2) 
(day 35) 

hatching to 4 months 65.6t3.0a(n=2) 10.0`(n=1) 44.4t2.9b(n=2) 
(day 113) 

Table 5.2. Percent survival for the three types of crosses performed at different 

developmental stages. Values are means ± standard deviations. n= number of 

crosses examined at each stage. Different superscripts denote significantly 

different means (P<0.05). 
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Overall survival from hatching to four months was 10`%,, 66'%, ±3 and 44'X, ±3 

for the 2nx3n, 2nX2n and 2nX[2n+3n] groups. Out of a total of 15 crosses performed, 

one 2nX3n, two 2nX2n and two 2nX[2n+3n] crosses yielded viable individuals at 4 

months of age. A single 2nX3n cross produced a4 month-old juvenile (10.2 cm fork 

length, 14 g body weight, Figure 5.1, A). Histological analysis of the gonads of this 

individual revealed the presence of testes in meiotic phase of spermatogenesis 

(Figure 5.1, B). 
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Figure 5.1. 

A, 4 month-old maturing male from a 2nx3n cross. Scale of rule is in centimetres. 

B, Microphotograph of a testicular section from the fish in Figure 5.1 A showing 

meiotic phase of spermatogenesis (haematoxylin-eosin stain). Scale bar= 150 [inn. 
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5.4.3 Image Cytometry of DNA 

Average DNA values observed for parents and offspring on blood and liver 

smears are summarised in Table 5.3. Three different kinds of DNA distribution were 

found in blood and liver smears: a narrow distribution with a coefficient of variation 

under 5% and an average DNA value of 5.28-5.71 pg/cell was found in diploid 

broodfish, 2nX2n offspring and in 87.5% of the 2nX[2n+3n] offspring (66 analyses 

performed in 32 fish, Figure 5.2, A). A similar distribution with a coefficient of 

variation under 5% but with an average value of 8.19-8.43 pg/cell of DNA was 

observed in triploid male parents (12 analyses performed in 6 fish, Figure 5.2, B). 

Finally, a wider histogram with a coefficient of variation over 5% and an average 

DNA value ranging from 8.19 to 8.83 pg of DNA per cell was recorded in 2nX3n 

offspring and in 12.5% of the 2nX2n+3n progeny studied (12 analyses in 3 fish, 

Figure 5.2, C). 

GROUP DNA (pg/cell) 
BLOOD LIVER 

2n PARENTS 5.46±0.21a 5.28±0.16a 
(n=9) (n=9) 

3n MALES 8.43±0.19 b 8.19±0.40b 

- 
(n=6) (n=6) 

OFFSPRING 
2nx2n 5.57±0.27a 5.64±0.248 

(n=11) (n=11) 
2nx[2n+3n] 5.44±0.33a 5.71±0.15a 

(n=12) (n=12) 
8.83±0.47` 8.82±0.20` 

(n=2) (n=2) 
2nx3n 8.81-±0.70 8.63±0.62` 

(n=1) (n=1) 

Table 5.3. Average DNA content observed on blood and liver Azure A-stained 

smears. n, number of fish. Data are means ± standard deviations. Different 

superscripts denote significantly different means (P<0.05). 
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Differences among these three types of DNA distribution were statistically 

significant (P<0.0001), and multiple comparison of means by Scheffe's confidence 

intervals revealed three different ploidy levels: diploid, triploid and aneuploid /near- 

triploid. 

Polyploid cells were detected in liver smears from all three ploidy groups 

(diploid, triploid and aneuploid/near-triploid), and in both parents and offspring. 

Polyploid hepatocytes were most abundant in diploid offspring (an average of 

3.74% of the cells analysed per individual), followed by aneuploid/hypertriploid 

offspring (3.72%), diploid parents (1.65%) and triploid parents (0.57%). The 

average DNA values of the polyploid cells fell within the tetraploid range for the 

diploids (10.71±0.38 pg/cell for the parents, 11.34±0.56 pg/cell for the offspring) 

and the hexaploid range for the triploids/hypertriploids (17.05±0.25 pg for the 

triploid parents, 16.87±0.80 for the aneuploid/hypertriploid offspring). Polyploid 

cells were not found in blood smears. 
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Patient id : D-12 BLOOD 
Accession #: 000-27 
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Cell types 123456 
Avg DNA 5.66pg. 
CV 2.56 % 

Main Peak 
Mass 5.6 pg. 
Index 1.00 
Area 40.1µm2 

Second Peak 
Mass 0.0 pg. 
Index 0.00 
Area 0.00µm2 

Count 
Total 104 
Shown(ABC) 104 
Outlier(D) 0 
Off scale 0 
Area A 0.00% 
Area B 100.00% 
Area C 0.00% 

Cell types 123456 
Avg DNA 8.48pg. 
CV 2.76 % 

Main Peak 
Mass 8.4 pg. 
Index 1.50 
Area 46.9µm2 

Second Peak 
Mass 17.3pg. 
Index 3.09 
Area 84.6µm2 

Count 
Total 109 
Shown(ABC) 109 
Outlier(D) 0 
Off scale 0 
Area A 0.00% 
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Figure 5.2. Representative histograms of nuclear DNA content obtained by image 
cytometry of Azure A-stained smears. A, Diploid male broodstock (blood). B, Triploid 
male broodstock (liver). Polyploid cells in the hexaploid region are indicated by the arrow. 
C, 4-month old offspring from a 2nx3n cross (blood). Note the presence of aneuploid cells 
to the left and right sides of the main DNA peak (arrows). 
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5.4.4 Chrormsonrral au alº/sis 

Metaphase plates obtained from gill epithelia of the three aneuploid/near- 

triploid individuals revealed the presence of aneuploid figures with a variable 

number of chromosomes (mean fundamental number=147±22, mean±s. d., n=7), but 

were in general similar to the triploid karyotype (3n=90, fundamental number= 15(, ). 

In addition, contrasting metaphase plates showing a grossly different number of 

chromosomes within the same individual were found in these three fish (Figure 5.3, 

A and B). 

I 

10 µm 
r----ý 

A 
ý 
ý. 

10 µm * +ý ý 
ý--ý 

B 

Figure 5.3. 

A, Metaphase plate from gill epithelium of the fish 111 Figure 5.1 A. Scale har= It) pin. 

B, Metaphase plate from gill epithelium of a4 month-old individual from a 2nxI? n+3nß 

cross. Scale har= 10 p iii. 
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5.5 Discussion 

Triploid males used in this study displayed secondary sex characters and 4 

of 6 were able to produce low-density sperm, although they had a significantly 

lower gonado-somatic index than diploid males. The motility of spermatozoa was 

not examined in freshly collected sperm, but the lack of sperm motility in triploid 

males 48 hr after sperm collection would not have precluded fertilisation 

capability. The significant motility detected in diploid spermatozoa after the same 

storage time indicated a higher viability and quality of the normal spermatozoa. 

The survival of embryos reported in this work was unusually low for trout in 

all the crosses performed. The high mortality observed in all matings from the 

beginning of the incubation period was most likely associated with poor egg quality 

resulting from high water temperature (18°C) in the broodstock rearing tanks at the 

end of vitellogenesis, as well as the elevated temperature in the experimental tanks 

throughout the incubation period. In spite of these technical limitations, this study 

provides clear evidence for the occasional generation of limited numbers of progeny 

by autotriploid rainbow trout males. 

The results obtained by image analysis in the present study were in full 

agreement with our findings obtained by flow cytometry of erythrocytes (Perez- 

Carrasco et al., 1994). Aneuploid/near-triploid progeny were obtained in one 2nX3n 

cross (triploid male number 2) and was also detected in two 2nX[2n+3n] crosses 

(triploid males numbers 1 and 2). Both triploid males had the highest sperm 

densities among the males used in this study, although their GSIs and sperm 

densities were significantly lower compared to the diploid males (Table 5.1). In the 

case of the two 2nX[2n+3n] crosses, theoretical (calculated on the basis of sperm cell 
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density) proportions of normal haploid (from diploid males) to presumably 

aneuploid spermatozoa (from the triploid males) were 1115: 1 and 750: 1 respectively. 

Under natural fertilisation conditions it seems unlikely that sperm from triploid 

males with low cell density and low or absent sperm motility could contribute to the 

fertilisation of eggs, but using the dry in vitro fertilisation technique the chances of 

fertilisation success may be determined by the presence of viable spermatozoa near 

the micropyle region. Since 1/9 (male number 1) and 1/5 (male number 2) of the 

offspring obtained in these crosses exhibited near-triploid genomes, they may have 

originated from aneuploid/near-diploid sperm collected from those triploid males, 

although the possibility of fertilisation by near-haploid sperm and spontaneous 

gynogenesis cannot be totally excluded. 

Ueda et al. (1991) describe the generation of progeny by allotriploid trout 

males crossed with diploid rainbow trout females. Their chromosomal analysis 

revealed the presence of hyperdiploid and hypertriploid individuals among the eyed 

embryos, while the 5 fingerlings karyotyped exhibited a hypertriploid genome. They 

concluded that hyperdiploid embryos had originated from the fertilisation of normal 

(haploid) ova by 1.5n spermatozoa, and hypertriploid fingerlings were the result of 

unreduced (diploid) ova fertilised by 1.5n spermatozoa. Although spontaneous 

second polar body retention cannot be ruled out in our study, uniform diploid 

values observed in all 2nX2n crosses rather suggests that near-diploid spermatozoa 

from triploid males participated in amphimixis. The mechanism by which near- 

diploid spermatozoa could be produced in triploid testes is unknown, but 

spermatozoa in triploid testes are larger in size compared to normal haploid 

spermatozoa (Lincoln, 1981). A possible mechanism to produce diploid sperm in 
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triploid trout could proceed through polyploidization of the germ cell line to 

hexaploidy and then by reduction to diploid values via multipolar mitosis. The 

formation of multipolar spindles during early mitosis or during the first meiotic 

division, and the preferential elimination of chromosomes during spermatogenesis 

are plausible processes that may yield near-diploid gametes in a triploid gonad and 

have been described in other polyploids (Pera, 1975, Onishchenko et al., 1979; Nakai 

et al., 1991, Ohtani, 1993). In addition, some cyprinids and their hybrids are capable 

of modifying the meiotic division of their germ cells (Cherfas and Tzoy, 1984). 

In agreement with previous data for diploid X triploid carp crosses (Van 

Eenennaam et al., 1990), the developmental rate of progeny obtained from 2nX3n 

matings was slower in comparison to diploid fish, as indicated by the late 

appearance of fry pigmentation and the delay in swim-up stage. Similar findings 

have also been reported in plaice (Lincoln, 1981) and another rainbow trout study 

(Lincoln and Scott, 1984). Similarly, the detection of polyploid hepatocytes in this 

study confirms previous work, as the liver is known to be one of the organs that 

includes a naturally polyploid cell population in fish (Brasch, 1980). 

The presence of one precociously maturing male in the 2nX3n offspring 

illustrates the possibility that triploid trout may generate fertile sperm and thus 

perpetuate themselves. A potential, although highly restricted fertility of triploid 

males should be considered in the evaluation of the reproductive capacity of triploid 

salmonids, particularly if they are to be released into the wild. 
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CHAPTER 1/I 
AN ANALYSIS OF CHROMOSOMAL PAIRING DURING MEIOSIS IN 

DIPLOID AND AUTOTRIPLOID NILE TILAPIA, 

OREOCHROMIS NIL0TICUS 
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6.1 Summary 

A cytogenetic analysis was carried out during the first meiotic prophase of 

diploid and triploid Nile tilapia, Oreochromis niloticus (2n= 44). In order to obtain the 

desired genotypes, homogametic diploid and triploid populations were sex-reversed 

by oral administration of 17a-methyltestosterone at first feeding (XX'°' and XXX' 

males), and compared to heterogametic control and treated groups (XY, XY"`T, XXY 

and XXY'°'T males). The pattern of chromosomal synapsis was investigated in all 

groups by transmission electron-microscope (TEM) analysis of synaptonemal 

complex (SC) spreads. 

Administration of 17a-methyltestosterone resulted in an increase of the SC 

lengths in XY' males, but did not significantly alter the pattern of synapsis in 

comparison to XY controls. TEM analysis in diploid nuclei revealed the presence of 

22 fully paired bivalents during pachytene in homogametic males. In heterogametic 

males (XY and XY), an incompletely paired segment was frequently observed 

(24.2% and 28.6% of the cases examined, respectively) in the terminal region of the 

longest bivalent, suggesting the existence of a non-homologous segment in this 

chromosomal pair in the longest bivalent, and providing cytological evidence for the 

chromosomal basis of sex determination in O. niloticus. 

TEM meiotic analysis in triploids revealed the presence of longer (P<0.0001) 

SCs in heterogametic (XXY and XXY'") than in homogametic (XXX') genotypes. No 

significant differences were found in the extent of pairing between the three groups 

analysed; however, the nature of pairing was significantly different (P<0.0001) 

among groups, with a preferential bivalent + univalent association present in 

heterogametic XXY'"T males and absent in homogametic XXX'°' males. Based on these 

results, a model to explain the different progress in gametogenesis observed between 

male and female teleosts is discussed. 
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6.2 Introduction 

Meiosis is the division during which homologous parental chromosomes are 

separated from each other to reduce diploid sets to the haploid level. Diploidy is 

restored through fertilisation by haploid cells; therefore meiosis is the necessary 

compensatory event to sexual reproduction. Pairing of homologous chromosomes at 

meiotic prophase is a precondition for their orderly segregation (Loidl, 1995). 

The analysis of the fine configuration of chromosome pairing is possible by 

the study of the synaptonemal complex (SC), a protein scaffold which mediates in 

chromosomal pairing and recombination during the zygotene and pachytene stages 

of meiotic prophase I (Moses, 1956; Loidl, 1994; Egel, 1995; Hasenkampf, 1996). SC 

morphogenesis can be first visualised by the appearance of short stretches of protein 

cores called axial elements (AEs) along each pair of sister chromatids (Figure 1.1, A). 

Chromosome synapsis proceeds by the establishment of intimate associations 

between homologous AEs (usually near the telomeres), which once assembled into 

the SC are then referred to as lateral elements (LEs). The area between two LEs is 

called the central region, where densely staining, spheroidal structures called 

recombination nodules can be observed (Von Wettstein et al., 1984; Figure 1.1, B). These 

nodules are thought to be the cytological visualisation of large protein complexes 

involved in the enzymology of recombination, since their frequency and distribution 

correspond to the frequency and distribution of crossovers (Carpenter, 1988). After 

pachytene, the SC proteins begin to disassemble and chiasmata are visible as sites of 

attachment between non-sister chromatids (Jones, 1987). 

Although the precise role of the SC in recombination is the subject of active 

ongoing research, its analysis stands as a useful tool to investigate abnormal pairing 
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configurations associated with chromosomal differences between the parents, having 

been successfully used for the meiotic analysis of many plant and animal species, 

including teleosts (Foresti et al., 1983; Wise and Nail, 1987; Lin and Yu, 1991; Oliveira 

et al., 1995). 

In triploid organisms, two possibilities have been identified for how sets of 

three homologous chromosomes can synapse (Von Wettstein et al., 1984). An SC may 

connect only two chromosomes at any site, the third being excluded from synapsis 

(bivalent + univalent, 11+1 synapsis), or a triple SC can connect all three 

chromosomes along some distance or even along their whole length (triple pairing, 

III synapsis). In most organisms only II+I synapsis has been observed, whereas in a 

few only III synapsis occurs. In the triploid basidiomycete Coprinus cinereus 

(Rasmussen et al., 1981), solanaceous plants (Sherman et al., 1989), triploid domestic 

fowl (Comings and Okada, 1971; Solari et al., 1991), triploid Lolium multi orum 

(Thomas and Thomas, 1994) and triploid Saccharomyces cerevisiae (Loidl, 1995) both 

types of pairing have been reported in the same nucleus. However, III synapsis 

seems to be the exception; normally an SC is formed between only two LEs in a 

region and the three AEs compete for participation in the SC which results in one or 

more pairing partner switches (PPSs) between paired LEs. If crossovers occur to both 

sides of a PPS, the bonds between the chromosomes are stabilised and a pachytene 

trivalent is maintained as a metaphase I trivalent (Sybenga, 1975). Although previous 

data are not conclusive, the frequency of trivalent formation seems to depend on 

factors such as SC length, recombination frequency and number of chiasmata 

produced (Kuspira et al., 1986; Loidl and Jones, 1986; Gillies, 1989; Chandley, 1993). 

Triploid organisms segregate the chromosomes of trivalents randomly in meiosis, 
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which leads to the production of aneuploid gametes. On fertilisation these produce 

zygotes with multiple trisomy, which are frequently inviable (Loidl, 1995). 

The SC analysis in triploids has revealed a number of peculiarities. In many 

triploids (e. g. Allium sphaerocephalon, Lolium multiflorum, rye) there seems to be a 

drive in early pachytene to maximise pairing irrespectively of homology, 

presumably to increase the stability of unpaired AEs before the onset of 

chromosomal disjunction. Unpaired AEs engage in heterologous synapsis which 

results in the formation of complex multivalents, since often synapsis occurs 

between unpaired AEs of different trivalents (Loidl and Jones, 1986; Thomas and 

Thomas, 1994; Santos et al., 1995). This process is termed synaptic adjustment. In 

addition, in some (but not all) triploids in which synaptic adjustment takes place, a 

second mechanism known as pairing correction operates to reduce the number of 

multivalents (including trivalents) by late pachytene. SCs in multivalents are 

partially dissolved and reformed by pairing correction so that bivalents and 

univalents are preferentially formed (Jenkins and Rees, 1991; Thomas and Thomas, 

1994). A classical example is the elimination of multivalents and the formation of 

bivalents and univalents during prophase I in autotriploid female Bombyx 

(Rasmussen, 1977), which requires that SCs formed between homologous AEs are 

dismantled to eliminate multivalents. This is considered to be possible due to the 

achiasmatic nature of meiosis in female Bombyx. In other autotriploids the loss of 

multivalents may be because of insufficient chiasmata or the absence of crossovers 

between heterologous AEs (Thomas and Thomas, 1994). Such a mechanism for 

multivalent elimination is however absent in several triploids such as Coprinus 

cinereus (Rasmussen et al., 1981), Crepis capillaris (Vincent and Jones, 1993) and Lolium 
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multiflorum (Thomas and Thomas, 1994), where most trivalents formed at meiotic 

prophase I are retained into metaphase I. 

There are few reports on the meiotic behavior of chromosomes in autotriploid 

teleosts. In parthenogenetic triploid, all-female populations of Poeciliopsis (Cimino, 

1972), premeiotic endoreduplication occurs which results in the formation of 

hexaploid oogonia. This even number of 6 homologous chromosomes allows for 

only bivalents to be formed during prophase I in primary oocytes. The resulting 

secondary oocyte regains triploidy through the second meiotic division. 

Chromosome synapsis during meiosis has also been studied in autotriploid males of 

rainbow trout (Oliveira et al., 1995b). In this species the formation of SCs at zygotene 

occurs in II+I fashion, and the unpaired AEs engage in different synaptic 

configurations resulting in the formation of complex multivalents which remain in a 

closely restricted region of the nucleus. These multivalents are eliminated by a 

mechanism of pairing correction so that by the end of pachytene almost exclusively 

bivalents are observed, with a probable extensive heterologous synapsis involving 

the extra set of chromosomes. 

In this Chapter an analysis of meiosis in diploid and autotriploid Nile tilapia 

was carried out in order to investigate possible differences in the pairing behavior of 

chromosomes that may explain the differential effect of triploidy on the reproductive 

development of male and female teleosts. This species has been selected because of 

the advantages offered by a fully documented reproductive, genetic and 

karyological background (Majumdar, 1984; Rothbard et al., 1987; Alvendia-Casasuay 

and Carino, 1988; Nakamura and Nagahama, 1985,1989), fast growth and early 

puberty, an XX-XY system of sex determination (Mair et al., 1991) and the ease with 
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which its ploidy and phenotypic sex can be manipulated (Hussain et al., 1991; Mair 

and Santiago, 1994; Vera-Cruz and Mair, 1994). In addition, this is one of the few 

teleost species in which the technique for the analysis of the SC has been previously 

applied (Foresti et al., 1993). 

Previous reports on the effects of sex in the pairing behavior of chromosomes 

have shown pronounced differences in average SC lengths between males and 

females of a given species, with a substantial correlation to sex-specific 

recombination frequencies (Von Wettstein et al., 1984; Jones and Croft, 1989). During 

pachytene, the SC is consistently longer in women than in men, and the 

recombination frequency and number of chiasmata are also higher in women (Bojko, 

1983; Wallace and Hulten, 1985). Recombination frequencies in some teleost families 

(i. e. salmonids) are generally higher in females than in males (May and Johnson, 

1989). On the basis of this background, it is hypothesised that sex-specific 

chromosome pairing behavior conditioned by structural and mechanical differences 

present during meiotic prophase I (length of the SC, number of chiasmata and 

frequency of trivalent formation) may explain the differences in degree of meiotic 

progression achieved by male and female triploids. 
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6.3 Materials and Methods 

6.3.1 Experimental animals and design 

0. niloticus (2n= 44) individuals used in this study derive from a Lake 

Manzala (Egypt) population which has been extensively characterised by mitotic 

and meiotic karyology, electrophoresis and recombination rates studies 

(McAndrew and Majumdar, 1983; Majumdar and McAndrew, 1986; Mair et al., 

1991). In preliminary studies of SC spreads, oocytes were less amenable than 

spermatocytes to the spreading process and yolk interfered with the staining 

method. Consequently, it was decided to use masculinised genetic females 

(neomales) as a source of XX and XXX genotypes (Mair et al., 1991; 1997). An 

outline of the experimental design is presented in Figure 6.1. Two monosex 

populations were generated by fertilising pooled eggs collected from two mature 

0. niloticus females with pooled sperm collected from either two progeny-tested 

XX 'neomales' (to produce an all-female population) or two progeny-tested YY 

'supermales' (to produce an all-male population: Myers et al., 1995). Triploidy was 

induced in half of the eggs from both populations by an 8,000 psi, 2 min-long 

pressure shock applied 9 min after fertilisation (Hussain et al., 1991). At swim-up 

stage, hatchlings were transferred from incubation jars to 4L aerated aquaria and 

maintained in heated (T= 27 ± 2°C) static systems with daily water replacement 

under similar photoperiod (14L: 10D) and density (15 fish/L) regimes. Both 

populations were randomly divided into three replicates each of control and 

treatment groups. 

Luis A. P. Carcasco PHI) THEsis, INSrITUIEOFAQUACULTURE, UNIVERSITY OF STIRLING 

160 



Chapter VI MEIOSIS IN DIPLOID AND AuToTRIPLOID NILE TILAPIA 

-4.... 
  . ýt ..... 1 f ...  . u.. r........... 

3n ý :. 3n: . 

3n 

F MALE 

.1 

XXX XXX-MT 
FEMALE : 'NEOMALE 

2n < 
SUPERMALE 

2n 
XY 

MALE 
Itt 

.ý ................... 3n 
MÄLE 

............. ........... j......  ... r..  ....... 

3n ý: 
.. 

3n 
XXY ýe: ": XXY-MT 

MALE N, MALE. 

Figure 6.1. Origin, ploidy, presumptive genotypes and phenotypes of the all- 
female (top) and all-male (bottom) populations generated for the experiment. 
Double arrows signal triploidy induction, solid arrows indicate treatment with 
17 a-methyltestosterone (MT). Control groups appear in white, treatment 

groups appear in grey, lines in boxes for triploid groups appear dashed. 
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Control groups were fed a finely ground (500-1000 pm) commercial broodstock 

diet three times per day; treatment groups were fed the same diet supplemented 

with 50 mg/kg of 17a-methyltestosterone (Sigma-Aldrich, Dorset, UK) during 30 

days after first feeding (Mair et al., 1991). All groups were transferred to 10 L 

recirculated tanks at 50 days post-fertilisation (p. f. ) where they were held until 

sacrifice. 

6.3.2 Ploidy and Sex determination 

Ploidy was evaluated at 5 months p. f. in diploid and triploid control groups 

by measuring the nuclear size of red blood cells (RBC) with a Coulter Counter and 

Channeliser (Johnson et al., 1984). Sex ratios were assessed by the aceto-carmine 

squashing technique (Guerrero and Shelton, 1974) at 5 months p. f. in diploid control 

groups. 

6.3.3 Synaptonemal complex spreading 

In order to monitor the degree of meiotic progression and to identify 

individuals suitable to be used as a source of abundant meiotic spreads, gonadal 

samples were collected weekly from one individual per replicate from each group. 

Treatment groups of the all-female population (presumed XX and XXX genotypes 

treated with 17(x-methyltestosterone, XX'°`T and XXX' thereafter) and control and 

treatment groups of the all-male population (XY, XY'°'`, XXY and XXY'°' genotypes) 

were sampled starting at 10 weeks p. f. 

The preparation of SC specimens was carried after the protocol of Foresti et 

al. (1993) with several minor modifications as follows. After overanaesthetising the 

males by immersion in a 0.01% benzocaine solution and recording their 
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morphometric parameters, the gonads were dissected, placed in a Petri dish 

containing 3 ml of Hank's saline solution (Sigma-Aldrich, Dorset, UK; adjusted to 

pH 8.5 with 1N NaOH) and carefully minced with two razor blades. The resulting 

cell suspension was aspirated with a Pasteur pipette and transferred into a sterile 

centrifuge tube placed in ice, where it was allowed to settle for 1 hr. The cell 

suspension, spreading medium (0.2% Lipsol® (LIP, Yorkshire, England) in 

distilled water adjusted to pH 8.5 with 0.01 M sodium tetraborate buffer) and a 0.2 

M sucrose solution were added to treated histological slides in 1: 2: 2 proportions 

and gently mixed. Histological slides (Superfrost® BDH, Dorset, UK) had been 

thoroughly washed in soapy water, rinsed in distilled water, air dried and dipped 

in a 0.75% (w/v) solution of pioloform® plastic (Agar Scientific, Essex, UK) 

dissolved in reagent-grade chloroform. After 5 min exposure to the spreading 

medium, 1 ml of 4% paraformaldehyde fixative (buffered to pH 8.5 with sodium 

tetraborate) was added to each slide, and they were then left to dry overnight in a 

vertical position in a fume cupboard. The slides were rinsed and air dried before 

staining. 

6.3.4 Staining and preparation of specimens for transmission electron microscopy (TEM) 

Plastic-coated slides bearing surface-spread nuclei were coverslipped with 

250 pm nylon cloth mesh (Plastok Associates, Merseyside, UK) and stained with a 

50% silver nitrate solution at 50 °C for 50 min (Kodama et al., 1980). Suitably 

spread nuclei were identified under the light microscope (Olympus Optical Co., 

Japan) and their position was recorded on the plastic coating using a permanent 

marker. The plastic was scored with a sharp razor blade along the edges of the 
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slide and floated off in distilled water. After 50 pm-mesh TEM copper grids (Agar 

Scientific, Essex, UK) were carefully positioned over the marks, a small piece of 

absorbent paper was dropped over the plastic film, and the resulting sandwich 

was quickly picked up and left to dry with the plastic film facing up. After drying, 

the TEM grids were detached from the plastic by scoring around their edge with a 

fine paint brush dipped in chloroform. The grids were examined at 80 kV using a 

Philips 301 TEM. 

6.3.5 Synaptonemal complex analysis 

Negatives from TEM pictures showing well-defined, unstretched and 

complete SC spreads were scanned at high resolution into a computer and 

analysed after enlarging the images to 1OX -50X their original magnification using 

the Image Pro-Plus® image-analysis software (Media Cybernetics, Maryland, 

USA). Whenever possible a minimum of 4 meiotic nuclei at the pachytene stage 

were analysed per individual, and 6 individuals were analysed per group (two per 

each of three replications). The pictures were spatially calibrated using an internal 

standard, individual LEs and/or AEs were manually traced and total axial 

element length (TAEL) computed for every nucleus. Percent pairing values in a 

nucleus were calculated as: 

Lateral Element Length 
X 100 

Total Axial Element Length 

The number of bivalents in triploid nuclei was counted manually. Only bivalents in 

which LEs were fully traceable from telomere to telornere were considered. 
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6.3.6 Statistical analysis 

Parameter normality was assessed by the Kolmogorov-Smirnov normality 

test. Differences in TAEL length were investigated using a one-way ANOVA on 

logarithm-transformed values. Length measurements for the longest bivalent in 

diploids were expressed as a percentage of TAEL, arc-sine transformed and 

compared between groups by one-way ANOVA. Differences in percent pairing and 

number of bivalents between groups were investigated using a one-way ANOVA on 

arc-sine or square-root transformed values, respectively. Tukey's pairwise 

comparisons with a 95% joined level of confidence were constructed for mean 

ranking. In order to determine the degree of correlation between the parameters 

measured, the Pearson product moment or the Spearman ranking correlation 

analyses were used as appropriate (Neter et al., 1990; Zar, 1996). 
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6.4 Results 

6.4.1 Ploidy and sex ratios 

Triploid yield in the all-female population was 94.59%. RBC diameter was 

5.35 ± 0.08 pm (mean ± s. e. m) in the diploid control group (21 fish analysed) and 6.04 

± 0.03 pm in the triploid control group (37 fish analysed). In the all-male population, 

triploid yield was 100%. RBC diameter was 5.56 ± 0.09 pm in the diploid control 

group (10 fish analysed) and 6.25 ± 0.11 pm in the triploid control group (27 fish 

analysed). Overall triploid yield was 96.87%. 

Sex ratios were 100% female in the all-female population (30 fish sexed in 

diploid control) and 100% male in the all-male population (18 fish sexed in diploid 

control). No differences in sex ratios between replicates, undifferentiated or 

hermaphroditic gonads were observed. 

6.4.2 Sample size and morphometric parameters 

Table 6.1 summarises the number, age and morphometric parameters of the 

males included in the experiment by group. The required number of individuals 

with sufficiently abundant meiotic spreads was first obtained in diploid and triploid 

neomales from the all-female population (XX'°' and XXX'r' genotypes). They were 

considerable younger (5 months p. f. ) and with a lower mean gonado-somatic index 

(<0.4%) than their counterparts in the all-male population. Individuals suitable for 

analysis in the all-male population were first detected in the diploid control group 

(XY, 7.3 months p. f. ) followed by the XY' group (8.3 months p. f. ) and the XXY 

control group (8.4 months post-fertilisation). 
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no of BW FL GW GSI 

(months p. f. ) nuclei (g) (cm) (g) (%) 

XXMT 1 5.1 5 26.8 11.5 0.09 0.32 
2 5.1 6 34 12.5 0.26 0.76 
3 5.1 5 29.2 11.5 0.06 0.19 
4 5.1 8 31.5 12.2 0.14 0.44 
5 5.1 7 28.9 11.5 0.08 0.27 
6 5.1 7 22.9 11 0.06 0.24 

mean ± s. e. m. 5.1 6.3 28.9±1.6 11.7±0.2 0.11±0.03 0.37±0.09 

XXXMT 1 5.1 4 74.6 15.5 0.26 0.35 
2 5.1 4 63.6 15 0.30 0.47 
3 5.1 4 36.7 12.2 0.24 0.65 
4 5.5 6 67.3 15 0.11 0.16 
5 5.5 4 69.3 15 0.05 0.07 
6 5.5 4 55.7 14.5 0.09 0.16 

mean ± s. e. m. 5.3 4.3 61.2±5.5 14.5±0.5 0.17±0.04 0.31±0.09 

XY 1 5.3 2 33.9 12.5 0.13 0.38 
2 6.0 5 35.3 12.5 0.22 0.62 
3 6.0 4 51.9 14 0.51 0.98 
4 8.4 2 83.1 17 1.06 1.28 
5 8.4 4 82.3 16.5 1.04 1.26 
6 8.4 14 67.7 16 0.92 1.36 
7 8.4 2 79.7 16 1.04 1.30 

mean ± s. e. m. 7.3 4.7 62.0±8.2 14.9±0.7 0.70±0.15 1.03±0.15 

XYMT 1 8.3 2 54.6 15 1.22 2.23 
2 8.3 3 45.6 14.7 1.67 3.66 
3 8.3 2 54.5 14.5 0.45 0.83 

mean ± s. e. m. 8.3 2.3 51.6±3.0 14.7±0.1 1.11±0.36 2.24±0.82 

XXY 1 8.4 1 72.6 16.5 0.78 1.07 
2 8.4 1 92.8 17.5 0.60 0.64 
3 8.4 1 79.8 16.5 0.63 0.79 

mean ± s. e. m. 8.4 1 81.7±5.9 16.8±0.3 0.67±0.06 0.84±0.13 

XXYMT 1 9.5 2 97.1 16.2 0.34 0.35 
2 9.5 3 108.4 16.7 0.44 0.41 
3 11.3 6 90.1 16.8 0.75 0.83 
4 9.5 5 119.6 18 0.9 0.75 
5 11.3 6 89.6 16 0.24 0.27 
6 11.3 5 102.6 17 0.9 0.88 

mean ± s. e. m. 10.4 4.5 101.2±4 16.8±0.3 0.60±0.12 0.58±0.11 
TOTAL 31 134 

Table 6.1. Genotype, number, age, number of nuclei analysed and morphometric 
parameters of the males and neomales included in the experiment. BW= body 

weight, FL= fork length, GW= gonadal weight, GSI= gonado-somatic index 
(GWBWX 100), s. e. m. = standard error of the mean. 
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Individuals suitable for meiotic analysis were only detected in the XXY' group at 

10.4 months p. f. Only three males in the XY'°'T group (7 nuclei in total) and the XXY 

control group (3 nuclei in total) yielded suitable SC spreads. A total of 134 nuclei 

collected from 31 males were included in the analysis. 

6.4.3 Synaptonemal complex analysis in diploids 

In the 78 spermatocytes where complete nuclei were examined, SC spreads 

contained 22 silver-stained bivalents at the pachytene stage of meiotic prophase I, 

according to the staging criteria set by Villagömez (1993)(Figure 6.2). Their lateral 

elements appeared as two well-differentiated parallel filaments spanning the 

bivalents from telomere to telomere, with a distinctly stained attachment plaque 

visible at both of their ends and surrounded by a lighter halo of chromatin. 

Although visible in a few cases (Figure 6.3), no clear structure was consistently 

revealed by the silver-staining technique in the central region of the SCs, and the 

kinetochores could not be consistently visualised in each bivalent. The spreads 

appeared frequently in close association with spermatozoa heads, but no obvious 

bouquet arrangement of the bivalents was observed (Figures 6.4 and 6.5). Equally, 

no broken lateral elements were observed, and chromosomal interlocking, 

although present in some cases, was rare. A SC karyotype and the mean lengths of 

the 22 fully-paired SCs for the XX'°' and XY genotypes arranged in decreasing 

order of size are presented in Figure 6.6. One of the bivalents is conspicuously 

longer than the other 21 in all nuclei analysed, measuring 15.07±0.47 pm in XXMT, 

14.42±0.66 pm in XY and 17.27±1.95 pm in XYMTgenotypes (mean ± s. e. m. ). 
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Figure 6.2. Complete synaptonernal complex spread in a male from the XY group. n, 

nucleolus. Scale bar= 3 µm. 

Figure 6.3. Detail of the lateral elements and central region (arrow) in the 

synaptonemal complex of a male from the XY group. Scale har= 0.5 µm. 
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Figure 6.4. Complete synaptonemal complex spread in a male from the XYM r group. 

Scale bar= 3 µm. 

Figure 6.5. Complete synaptonemal complex spread in a male from the XX group. 

Scale bar= 3 µm. 

Luis A. P. Cartasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 1 70 



Chaptrr l'I 

16 

14 

10 

1 

1 

c 
16 

Illlliiiiiiiiiiiiii 
0 

11 

ý lU 
v 

y rs 
ý C 

ý. 
u 

.ý1 

I2 

ti !) lU 11 1'<' 13 1.1 1:, 16 1,1 Im ts) ; 'u : 'I 

chromosome number 

ßJ 10 11 1; ' 1: 4 1-1 i`, 1h 11 lii 1'1 , 'O 

Chromosome Illllllbl't' 

Figure 6.6. Synaptoneinal complex karyotype and pooled mean lciigth' of tlu. 
lolly-paired hivalents for the XXNºº ncomalcs (n=37, top) and XY m Acs (11=25, 
hottom) arranged in decreasing order of sire. Lines in the karyotypes run across the 
presumptive location of the kinetochores. Magnification hors= 3 pm. Graph hill"', 

represent standard errors of the means. 
Lw, A I' l': niu. ý I'll l )ýIl11515, IN. S'IITUIIi UP A11UACUCIl; kL, I IryI VF. kSflv Ul' Si IHI. IN, I 

171 

L, 



Chapter VI MEIOSIS IN DIPLOID AND AUTOTRIPLOID NILE TILAPIA 

These differences in length of the longest bivalent were neither significant between 

genotypes nor between males when expressed as a percentage of the total axial 

element length (TAEL). 

The lateral elements of the 21 shorter bivalents paired in full along their 

length in all nuclei examined, presenting the normal SC morphology characteristic 

of other vertebrate groups. The AEs in the longest bivalent, however, showed 

some degree of unpairing in 8 nuclei of the XY group (24.2% of the nuclei analysed 

in XY genotypes, Figures 6.7 and 6.8), 2 nuclei of the XYMT group (28.6% of the 

observations) and 1 nucleus of the XX'y`T group (2.6% of the observations, Figure 

6.9). Unpaired axial elements in the terminal region of the longest bivalent were 

observed in 4 of the 7 XY males and 2 of the 3 XYMT males examined. Unpairing of 

the axial elements was restricted to the terminal and/or subterminal region of the 

longest bivalent in XY and XYMT genotypes, while it affected the central and 

subterminal region of the longest bivalent in the single nucleus of the XXMT 

genotype where unpairing was observed (Figure 6.9). Unpaired AEs in the XY 

genotype averaged 4.7 pm in length (32.6% of the average length of the longest 

bivalent in this genotype). When no region of unpairing was visible in the longest 

bivalent (97.4% of the cases examined in XXMT males, 75.8% in XY males and 71.4% 

of the cases examined in XYMT males) the lateral elements paired uniformly along 

its length (Figure 6.10). There was a significant, negative correlation between the 

length of the longest bivalent (expressed as a percentage of TAEL) converted to 

angles and the extent of pairing (r= -0.432, P<0.001). 
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Figure 6.7. Unpaired axial elements (arrows) in the terminal region of the longest 

bivalent (XY male). Scale bar= 3 µm. 

Figure 6.8. Unpaired axial elements (arrows) in the terminal region of the longest 

bivalent (XY male). Scale bar= 3 µm. 
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Figure 6.9. Unpaired axial elements in the central and subterminal region of the 

longest bivalent. The spread is from a male belonging to the XXMT group. 
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Scale bar= 1.5 µm. 
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Figure 6.10. Fully-paired lateral elements in the longest bivalent of a male from the 
XY group. Scale bar= 2 µm. 
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1 

Mean TAEL values were 264.04±5.34 pm for the XX"'T, 249.00±5.49 pm for the 

XY and 347.32±20.61 for the XY' genotypes (mean ± s. e. m. ). Differences in TAEL 

mean values were significant between genotypes (P<0.0001). Tukey's pairwise 

comparisons ranked TAEL mean values as XY"'T>XX"'T=XY. Differences in TAEL 

mean values were also significant between males (P<0.001). 

6.4.4 Synaptonemal complex analysis in triploids 

Meiotic spreads in triploid genotypes appeared as dense, circularly-arranged 

SC aggregations in frequent association with bi-flagellate spermatozoa (Figure 6.11). 

Pairing generally comprised the telomeric regions in all genotypes, with the shortest 

SCs appearing as bivalents or trivalents and the longer SCs engaging in variable 

numbers of pairing partner switches (Figures 6.12 and 6.13). Almost the totality of 

pairing observed in the 56 SC spreads analysed in triploid groups occurred in 11+1 

fashion, with a very low frequency of triple associations observed in all genotypes. 

Triple associations represented 0.10±0.07% of the total axial element length in XXXMT 

and 0.26±0.01% of the TAEL in XXY"" genotypes (mean±s. e. m. ), and were not 

observed in the 3 nuclei from XXY genotypes analysed. When present, they 

appeared as short stretches of three parallel LEs invariably located in the telomeric 

regions (Figure 6.14). 

A different pattern of synapsis was clearly evident in the different triploid 

genotypes examined. LEs engaged in multiple synapsis in XXX and XXY 

genotypes, giving the spreads a complex, entangled appearance and making it 

difficult to identify individual trivalents/multivalents (Figures 6.15,6.16 and 6.17). 
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Figure 6.11. Full synaptonemal complex spread from a male belonging to the 

XXXMT group. The arrow denotes the position of a biflagellate spermatozoon. Scale 

bar= 3 µm. 
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Figure 6.12. A trivalent from a nucleus of a XXY male. Scale bar= 2 µm. 
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Figure 6.13. A trivalent from a synaptoncmal complex spread in a male belonging to 

the XXY group. Scale bar= 2 µm. 

Figure 6.14. Triple association (arrow) in the terminal region of a multivalent. The 

spread is from a male in the XXXMT group. Scale bar= 2 gm. 
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Figure 6.15. Full synaptonemal complex spread from a XXX"11 male. Scale bar= 4 µnß. 

Figure 6.16. Full synaptonemal complex spread in a male belonging to the XXXMT 

group. Scale bar= 4 µm. 
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In the XXY"'T genotype, however, the most common arrangement consisted of 

relatively high numbers (up to 16 in two nuclei of male 3) of fully-paired, well- 

defined bivalents located in the periphery of the spread, with one or several complex 

multivalents confined to a particular region of the nucleus, frequently in the centre of 

the spread (Figure 6.18,6.19 and 6.20). Fully-paired bivalents in the XXYMT genotype 

were frequently accompanied by the third unpaired AE running parallel at some 

distance to the SC formed by its two partners. Unpaired AEs appeared thickened 

and with noticeably darker staining intensity than paired LEs (Figure 6.21). One 

nucleus of the XXY" group (male 6) showed exclusively bivalent pairing, containing 

66 fully-paired bivalents representing 132 chromosomes (the expected hexaploid 

ploidy level for O. niloticus) (Figure 6.22). 

A summary of TAEL mean values, percent pairing (expressed as a percentage 

of TAEL) and the mean number of bivalents by genotype is presented in Table 6.2. 

GROUP n TAEL PAIRING N° of 

(µm) (%) BIVALENTS 

XXXMT 26 405.6±16.8a 58.72±0.02 3.7±0.4a 

XXY 3 543.3±38.5b 56.04±0.04 4.7±0.5a 

XXYMT 27 471.1±11.3b 59.51±0.01 9.8±0.6b 

1 
I 

Table 6.2. Sample size, total axial element length (TAEL), percent pairing and 

mean number of bivalents observed in triploid genotypes. n= number of 

pachytene cells analysed. Values are mean ± s. e. m.; different superscripts denote 

significantly different means. 
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Figure 6.17. Full synaptonemal complex spread from a male in the XXY group. 

Scale bar= 3 µm. 

1 
Figure 6.18. Full synaptonernal complex spread from a male belonging to the 

XXYMT group. Scale bar= 3 µm. 
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Figure 6.19. Complete nuclear spread in a XXYMT male. Scale bar= 4 µm. 

Figure 6.20. Complete synaptonemal complex spread from a male in the XXYMT 

group. Scale bar= 4 µm. 
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Figure 6.21. Example of bivalent + univalent pairing in a XXYMT male. Notice the 

thickening and darkening of the unpaired axial element. Scale bar= 1.5 From. 
14 

Figure 6.22. Synaptonemal complex spread from a male in the XXYMT group. The 

number of bivalents in the spread is 66. Scale bar= 5 µm. 
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Differences in mean TAEL values were highly significant (P<0.0001) between 

genotypes. Tukey's pairwise comparisons ranked mean TAEL values as 

XXY=XXYMT>XXX"T. Differences in TAEL values were significant (P<0.007) between 

males, although they were limited to differences in TAEL values between 3 of the 15 

males included in the analysis. Differences in average percent pairing were not 

significant between genotypes or between males. The mean number of bivalents 

differed significantly between males (P<0.0001) and genotypes (P<0.0001). Mean 

ranking was XXY'"T>XXY=XXX'"T. There was no significant correlation between 

TAEL values and percent pairing (r= -0.08, P= 0.54). There was a moderate, positive 

significant correlation between TAEL values and the observed number of bivalents 

(r= 0.308, P<0.03)(Figure 6.23). 
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Figure 6.23. Total axial element length (TAEL) and number of bivalents observed in 

the three triploid genotypes analysed. Data labels denote male number. 
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6.5 Discussion 

MEIOSIS IN DIPLOID AND AUTOTRIPLOID NILE TILAPIA 

6.5.1 Effects of 17a -methyltestosterone (MT) on chromosomal pairing 

No previous reports have investigated the effects of oral administration of MT 

during gonadogenesis on chromosomal pairing in teleosts. In an analysis of the 

effects of testosterone, oestradiol and/or anti-androgenic substances on 

chromosomal pairing conducted in mice, the neonatal administration of oestradiol 

was found to have harmful effects on chromosomal pairing. Injection with oestradiol 

resulted in a high frequency (23.7% of pachytene cells examined) of SC anomalies 

such as asynapsis of the AEs, SC breakage, LE fragmentation and abnormal 

telomeric associations resulting in the formation of multivalents (Masumbuko et al., 

1992a, 1992b, 1993). Injection with testosterone enanthate during the neonatal period 

resulted in a reduction of testicular weight and a low frequency (2.6%, n=344) of 

similar SC lesions (Masumbuko et al., 1993). These pairing anomalies, however, were 

not correlated with the reduction in testicular weight, and administration of 

testosterone to animals pre-treated with oestradiol significantly reduced the 

frequency of the SC lesions. The authors concluded that the observed effects of 

oestradiol were partially due to a testosterone deficiency induced by the oestrogen 

treatment. Other drugs with oestrogenic action, presumed to be operating by 

different primary mechanisms, also have the capacity to induce alterations in the 

synaptic process (Allen et al., 1987; Goldstein, 1992; Mahmood and Vasudev, 1992; 

Sharpe et al., 1993). The data from this work suggest that oral administration of MT 

after first feeding does not result in similar pairing alterations in O. niloticus. Mean 

testicular weight in XY`"T males was higher than in XY males, and very similar 

between XXY'"T and XXY males. 
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No significant alterations in SC morphology were observed in MT-treated 

males, and the pattern of pairing was not different between XY'°`T and XY males, 

including a similar proportion (28.6% in XY' and 24.2% in XY males) of unpaired 

AEs in the longest bivalent. The relatively low number of pachytene cells examined 

in testosterone-treated males in this work (n=98), however, would limit the 

possibility of detecting such a low level of alterations. 

Mean total axial element length values in 0. niloticus MT-treated diploid 

males were significantly higher than in XY controls, but the failure to determine 

objective criteria for pachytene sub-staging in 0. niloticus (i. e. kinetochore staining, 

presence of bouquet arrangements or nucleolar morphology), together with the 

small sample size in XY'°' (n=7) and XXY (n=3) genotypes makes the reliable 

assessment of the effects of MT administration on TAEL difficult. Furthermore, the 

biological significance of variations in the length of the SC is not obvious. Significant 

inter- and intra-individual variations in SC length are common among vertebrates 

(Table 6.3). It has been argued that the range of SC lengths observed in several plant 

species is a reflection of stage-related differences in chromosome length during 

pachytene (Anderson et al., 1985). Progressive variation in SC length during 

pachytene has also been analysed in Drosophyla oocytes, where SC lengths were 

found to decrease during early to mid pachytene (Carpenter, 1979). In tomato (Stack 

and Anderson, 1986), Zea mays (Gillies, 1983) and Crepis capillaris the SCs undergo a 

progressive shortening throughout pachytene. If a similar pattern of variation is 

present in 0. niloticus, the differences in SC length observed in this study between 

XY'"T and XY males may well reflect the attainement of a more advanced stage in 

pachytene in XY males than in XY' males, when most pairing had already been 

accomplished in both groups. 
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Species 

Homo sapiens 
Homo sapiens 
Dendrocoelum lacteum 
Triticum aestivum 
Cricetulus griseus 
Fells catus 
Zea mays 
Lilium longiflorum 
Lycopersicon esculentum 
Secale cereale 
Schizophyllum commune 
Crepis capillaris 
Oreochromis niloticus 

Mean SC Range 
length (pm) 

231 1.30x 
258.7 1.36x 
94.6 1.45x 
1474 1.65x 
116.2 1.67x 
207.6 1.71x 
421 1.85x 
3149 1.93x 
207.4 1.94x 
664.2 1.95x 
23.2 2.38x 
163.4 2.53x 
132.5 2.33x 

MEIOSIS IN DIPLOID AND AUFOTRIPLOID NILE TILAPIA 

Reference 

Holm and Rasmussen (1977) 
Solari (1980) 
Jones and Croft (1989) 
Holm (1986) 
Moses et al. (1977) 
Gillies and Cowan (1985) 
Gillies (1981) 
Stack et al. (1989) 
Sherman and Stack (1992) 
De Jong et al. (1989) 
Carmi et al. (1978) 
De Azkue and Jones (1993) 
This study 

Table 6.3. A summary of published data on synaptonemal complex (SC) length 

variation. Range= maximum/minimum value observed within a species. 

The significant, negative correlation observed between the length of the longest 

bivalent and the extent of pairing in diploid genotypes seems to substantiate the 

view that increased extent of pairing through pachytene stages is accompanied by a 

shortening of the SC lengths. The higher SC lengths observed in XY' males would 

thus represent an earlier stage in the synaptic process in this group. The absence of 

significant differences in mean TAEL values between XXY and XXY' genotypes 

would also suggest that the variation in SC lengths observed in this study is within 

the normal range of pachytene stages in O. niloticus. Oral administration of MT may 

thus have had a delaying effect on the onset of the synaptic process in O. niloticus, 

but had not resulted in a significant alteration of the pattern of synapsis in the 

diploid specimens analysed in the present study. 
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6.5.2 Chromosomal pairing in diploids 

The results from this work are in agreement with the mitotic karyotype 

reported by several authors for O. niloticus (Jalabert et al., 1971; Arai and Koike, 

1980; Nijjhar et al., 1983; Majumdar and McAndrew, 1986), with a diploid number 

of 2n= 44 corresponding to the 22 bivalents observed in this study. The number 

and morphology of the bivalents observed in this work are also in agreement with 

the previously reported SC karyotypes of O. niloticus (Lin and Yu, 1991; Foresti et 

al., 1993), although the kinetochores or chromosomes bearing nucleolar-organising 

regions (NORs) could not be consistently identified, possibly as a result of 

technical limitations in the staining protocol. 

A tentative classification of bivalents in this study identified four telocentric 

pairs (bivalents number 10,19,20 and 22), three subtelocentric-submetacentric 

pairs (bivalents number 2,6 and 8) and 14 subtelocentric pairs (bivalents number 

1,3,4,5,7,9,11,12,13,14,15,16,17,18 and 21, Table 6.4). Lin and Yu (1993) 

identified one telocentric pair (bivalent number 1), four submetacentric pairs 

(numbers 6,8,15 and 19) and the remaining seventeen pairs of subtelocentrics. 

Majumdar and McAndrew's karyotype (1986) identified 1 metacentric pair 

(number 6), 9 pairs of submetacentrics (numbers 3,5,7,8,11,12,14 and 15), seven 

pairs of subtelocentrics (numbers 1,2,9,17,20,21 and 22) and the remaining five 

pairs of submetacentric-subtelocentrics. It appears that although most or even the 

totality of (with the possible exceptions of bivalents number 6 and 8) the 

chromosomal pairs in 0. niloticus are subtelocentric/submetacentric, the 

resolution of the analyses performed to date in this species cannot reliably 

discriminate between telocentric, subtelocentric or submetacentric chromosomes. 
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Chromosome Chromosome type 
number 

M. &M. L. &Y. This study Consensus 
1 st t st st 

2 st st st-sm st 

3 sm st st st 

4 sm st st st 

5 sm st st st 

6m sm st-sm sm? 

7 sm st st st 

8 sm sm st-sm sm 

9 st st st st 

10 st-sm st t st? 

11 sm st st st 

12 sm st st st 

13 st-sm st st st 

14 sm st st st 

15 sm sm st sm 

16 st-sm st st st 

17 st st st st 

18 st-sm st st st 

19 st-sm sm t sm? 

20 st st t st 

21 st st st st 

22 st st t st 

Table 6.4. A comparison of previous meiotic karyotypes with the tentative 

chromosomal classification considered in this study for 0. niloticus. M. &M., 

Majumdar and McAndrew (1986); L. &Y., Lin and Yu (1993). m, metacentric; 

sm, submetacentric; st, subtelocentric; st-sm, subtelocentric/submetacentric; t, 

telocentric. 
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6.5.3 The chromosomal basis of sex determination in Oreochromis niloticus 

Perhaps the most significant observation of this study in diploid genotypes 

is the presence of unpaired segments in the terminal region of the longest bivalent 

in the heterogametic genotype, in agreement with the findings of Foresti et al. 

(1993). The relatively high incidence of unpaired segments in this terminal region 

observed in 6 of the 10 heterogametic males examined (25% of the nuclei 

examined), together with the much lower incidence of unpairing observed in the 

homogametic genotype in this study (2.6% of the nuclei examined, non-terminal) 

suggests the presence of a higher degree of non-homology in the heterogametic 

genotype than in the homogametic genotypes between the parental chromosomes 

forming the longest bivalent. 

A similar cytogenetic analysis on XY wild type males also revealed similar 

levels of unpairing in the terminal region of the longest chromosomal pair 

(Carrasco et al., 1997, Appendix 10). In that study, unpaired axial elements in the 

longest bivalent were observed in 5 of 6 XY wild type males, with a frequency of 

unpairing of 25.7% of the 35 nuclei examined in these males. A number of 

structural anomalies (i. e. self-folding of the terminal region, interaction of the 

longest bivalent with other bivalents and differential staining) previously 

described in the sex chromosomes of other vertebrate groups were also observed 

in XY wild type males. In addition, the analysis of 20 whole-nuclear SC spreads 

collected from YY 'supermales' showed the absence of unpairing in the terminal 

region of the longest bivalent, similarly to what was found in XX' males in the 

present work. These observations strongly support the hypothesis that the 
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terminal region of the longest bivalent in 0. niloticus is undergoing a process of 

sex-chromosome differentiation. 

A general requirement in the process of sex chromosome differentiation is 

the restriction of recombination in the heterogametic genotype between the 

regions containing the sex-determining genes (Solari, 1994). It is now widely 

accepted that the SC helps in the conversion of crossovers into functional 

chiasmata which assist in the orderly disjunction of the bivalents (Loidl, 1994). 

Thus the observation of unpaired axial elements in the terminal region of the 

longest bivalent may signal a change in the pattern of recombination in this region 

of the heterogametic genotype. This would be in agreement to the establishment of 

an XX/XY mode of sex determination mechanism in this species, supporting the 

hypothesis that the main sex-determining locus in 0. niloticus is distally located to 

the centromere (Mair et al., 1991). 

However, two of the present observations require further interpretation: the 

presence of full synapsis between the lateral elements of the longest bivalent in 

75% of the cases examined in the heterogametic genotype, and the observation of 

unpairing in the subterminal region of the same bivalent in the homogametic 

genotype (2.6% of the cases examined). Chromosomal pairing behaviour is 

affected by a mechanism termed axial equalisation which is characteristic of the sex 

chromosomes of most avian species studied (Hogan et al., 1992; Solari, 1992). The 

ZW pair of avian sex chromosomes at early pachytene consists of two unequal LEs 

partially synapsed. During mid-pachytene, the Z axis gradually shortens until it 

becomes equalised and pairs in full with the W chromosome by late pachytene. 

Thus it is possible that the fully-paired lateral elements observed in the longest 
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bivalent in the heterogametic genotype represent non-homologous associations of 

the terminal region of the sex chromosomes of 0. niloticus which would increase 

the stability of this bivalent by the end of pachytene. Regions of unpairing were 

also observed in the longest bivalent of the homogametic genotype, but both their 

low frequency and localisation (subterminal as opposed to terminal in the 

heterogametic genotype) suggest that rather than signalling regions of non- 

homology, they are a consequence of the delay in the completion of the synaptic 

process resulting from the length of this bivalent (Solari, 1994). 

The pattern of synapsis observed in the meiotic behaviour of the longest 

bivalent in the present study seem to indicate the development of some degree of 

sex-chromosome differentiation of this chromosomal pair in the Nile tilapia. It 

should be noted that chromosomal heteromorphism is generally a late 

consequence of the establishment of a stable genetic sex-determining mechanism 

or 'master switch', in which a change in the recombination patterns between the 

heterogametic genotypes is the most likely primary event (Solari, 1994). In 

comparison with vertebrate species in which well-differentiated heteromorphic 

chromosomes are present, the Nile tilapia appears to be at a primitive stage in the 

process of sex-chromosome differentiation. 

A final interesting observation in diploid genotypes is that, in spite of the 

lower mean gonadal weights and gonado-somatic indexes observed in XXMT males, 

nuclei at the pachytene stage of meiosis were detected earlier (5.1 months p. f. ) in 

XX' males than in heterogametic males (7.3 months p. f. in XY and 8.3 months p. f. 

in X'"' males). This may represent an early commitment in genetically female 
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spermatogonia to enter meiosis, which would seem to accomodate the current 

views on the chronology of the early gonadal differentiation in 0. niloticus 

(Alvendia-Casasuay and Carino, 1988). The totality of the spreads analysed in 

diploid genotypes show almost all SCs having completed the process of synapsis. 

Thus, in agreement with previous observations on SC formation in the rainbow 

trout, a classical leptotene with complete but still unsynapsed AEs does not appear 

to exist in 0. niloticus (Von Wettstein et al., 1984; Oliveira et al., 1995). 
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6.5.4 Chromosomal pairing in triploids 

The observations recorded in this work on the nature of pairing in triploid 

genotypes deserve careful consideration. The presence of nuclei at the pachytene 

stage of meiosis was delayed in triploid genotypes compared to diploid genotypes 

(average male age of 6.65 months p. f. in diploids and 7.96 months p. f. in triploids). 

As observed in diploid genotypes, the first group in which nuclei at the pachytene 

stage of meiosis were detected was the XXX'' group (at 5.3 months p. f. ), which also 

had the lowest mean gonadal weight values (0.17 g) and gonado-somatic indices 

(0.31%) among the three triploid groups examined. The same age order observed in 

diploid genotypes was repeated in triploid groups, with nuclei at the pachytene 

stage of meiosis observed in the XXY group at 8.4 months p. f. and in the XXY'°" at 

10.4 months p. f. This may represent, as noted for diploid genotypes, an earlier 

commitment in genetically female spermatocytes to enter the first meiotic prophase, 

and perhaps a delaying effect of methyltestosterone on the synaptic process in the 

XXY genotype. 

The differences observed in TAEL length are difficult to interpret, since as 

noted for diploid genotypes, variations in TAEL are common among vertebrates and 

may indicate the attainment of different pachytene sub-stages at the moment of 

examination. Assuming that longer TAEL values represent earlier pachytene stages, 

the most advanced group examined was the XXX'' genotype (with a mean TAEL 

value of 405.6 um), followed by the XXY'T genotype (TAEL= 471.1 um) and the XXY 

genotype representing the earliest pachytene sub-stage (TAEL= 543.3 um). The small 

sample size in the XXY group (n= 3), however, limited the sensitivity of the statistical 
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analysis to detect significant differences in mean TAEL values between the XXY and 

the XXY'' genotypes, making a reliable assessment of the pattern of synapsis in this 

group difficult. 

A helpful indicator for pachytene sub-staging may be the ratio of mean TAEL 

values between triploid and diploid genotypes. TAEL ratios are 1.53 for the 

XXXr/XX`'' ', 2.18 for the XXY/XY and 1.35 for the XXY''/XY"" genotypes. The 

XXX'' and XX' groups seem thus to be at a very similar stage of pachytene, 

indicated by a ratio which is very close to the expected TAEL ratio between triploid 

and diploid nuclei (1.5). Considering that the XX''' group are probably at a late 

pachytene sub-stage (which can be inferred from the lowest mean TAEL values and 

highest pairing extent among the diploid genotypes observed in this group), it seems 

reasonable to assume that the males in the XXX' group are also at a late pachytene 

sub-stage. TAEL ratios between triploid and diploid genotypes are also in good 

agreement with the previous interpretation that males in the XY"'T group are at an 

early sub-stage of pachytene (thus displacing the ratio XXY'/XY'' below 1.5), and 

equally suggest that the XXY group are at an early sub-stage of pachytene (resulting 

in a displacement of the ratio XXY/XY above 1.5). 

Taking into account the absolute TAEL values and the triploid/diploid ratios, 

a plausible interpretation of the data from this study would consider the XXY group 

to be at an early pachytene sub-stage, and the XXY''" and XXX' at later sub-stages of 

pachytene. No comparative assessment on the pachytene sub-stage of the XXY'' 

group with relation to the XXX'''T group is possible in this analysis: the higher TAEL 

values observed in XXY' males may indicate an earlier pachytene stage compared 

to the XXX'' group; they may represent a genuine larger size of the SCs or they may 

originate from a superimposition of both factors in this group. Interestingly, the 
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finding of shorter TAEL values in homogametic genotypes in the present study 

resembles the situation described for diploid rainbow trout oocytes (Oliveira et al., 

1995) and some insects such as Ephesia kuehniella (Von Wettstein et al., 1984), and 

differs from other vertebrates such as Xenopus laevis (Loidl and Schweizer, 1992) and 

humans (Wallace and Hulten, 1985) in which oocyte SCs have been found to be 

twice as long as spermatocyte SCs. 

A different parameter considered in this study is the extent of pairing 

observed in triploid genotypes. Although lower in the XXY group, the extent of 

pairing did not significantly differ in the three groups examined (59% for the XXX' 

and XXY'"T groups, 56% for the XXY group) and it was close to the theoretical 

maximum extent of pairing in triploids (66%), excluding triploid pairing which was 

negligible (<0.3%) in all the groups examined. Again, the low sample size in the XXY 

group may have prevented the identification of a significantly lower extent of 

pairing in this group, but the high extent of pairing observed in all groups (89.4% of 

the theoretical maximum in MT-treated groups and 84.8% in the XXY group) 

suggests that a mechanism to ensure the maximum extent of pairing operates from 

an early stage in the process of synapsis in all groups examined. This would be in 

agreement with the process of synaptic adjustment previously described for other 

triploids (Loidl and Jones 1986; Thomas and Thomas, 1994; Oliveira et al., 1995; 

Santos et al., 1995). 

The observed discrepancy in number of bivalents between the three groups 

analysed deserves special attention. It is important to note that the mean number of 

bivalents computed in this study probably represent the minimum number of 
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bivalents detectable in every nucleus, since the classification criteria used were very 

restrictive and biased towards preferentially scoring fully-paired bivalents rather 

than partially-paired ones, which were more difficult to trace. It seems obvious that 

pre-meiotic endoreduplication to hexaploid values (as described in Poeciliopsis), 

although possible, is a rare occurrence observed only in 1 of the 56 triploid nuclei 

examined, and does not represent the normal pairing pattern in triploid 0. niloticus. 

An accurate assessment of the nature of pairing in triploid 0. niloticus would require 

the direct observation of chiasmata; nevertheless the presence of a number of 

bivalents 2.6 times higher in the XXY'°' than in the XXX' group provides a strong 

indication for a mechanism of pairing correction to be operating in XXY'"T males. 

The observation of a lower number of bivalents in XXY males (at an early sub- 

stage of pachytene) compared to XXY'"T males (at a late sub-stage of pachytene), with 

both groups showing a similar degree of pairing, suggests that the number of 

multivalents is reduced in favour of bivalents by late stages of pachytene in XXYMT 

males. The corrective mechanism seems thus to modify the pairing pattern in 

heterogametic genotypes from a more random association of the AEs in early 

pachytene (as seen in XXY males with a mean bivalent number of 4.7) to a 

preferential II+I mode of pairing later in pachytene, indicated in XXY'"T males by a 

mean bivalent number of 9.8, with some males close to the maximum possible 

number of 22 bivalents (i. e. 16 bivalents observed in XXY'"T male number 3, Figure 

6.23). This mechanism of pairing correction does not seem to operate in XXX'"T males, 

with a mean number of 3.7 bivalents per nucleus, and a maximum number of 

bivalents of 8 (XXX'y'T neomale number 3, Fig. 6.23). 
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It is difficult to speculate on the significance of the positive correlation 

observed between mean TAEL values and the number of bivalents in triploid 

genotypes, because the present knowledge on meiotic pairing and recombination is 

limited, and because previous information remains inconclusive. There are several 

reports in the literature providing evidence for a correlated variation between mean 

TAEL values at pachytene and mean chiasma frequency at diplotene-metaphase I. 

Most of these emerge from analyses of sex-related differences in SC length and 

chiasma or crossover frequencies (Bojko, 1985; Wallace and Hulten, 1985; Jones and 

Croft, 1989), or from analysing the effects of additional heterochromatin in 

meiocytes, such as B chromosomes (Jones et al., 1989) or heterochromatic knobs 

(Mogensen, 1977). A few of them, however, show correlated variation between both 

parameters within different families, unrelated to sex differences (Fox, 1973; 

Quevedo et al., 1997). 

In these studies, longer SCs are generally associated with higher 

chiasma/crossover frequencies. Similarly, organisms with low DNA/SC ratios 

generally have high recombination frequencies (Loidl, 1994), as exemplified by the 

correlation between the less dense DNA packaging and increased rate of 

recombination displayed by human-derived yeast artificial chromosomes compared 

with human DNA in its natural environment (Loidl et al., 1995). 

Considering that the 1C DNA (haploid content) of 0. niloticus is 0.95 pg/cell 

(Majumdar and McAndrew, 1986), mean packing density is 7.2X 10-3 pg of DNA (of 

one chromatid) per micrometer of SC in the Nile tilapia, according to the mean SC 

length calculated in this study (Table 6.3). Information on mean packing densities is 

scarce; however this value is lower than the mean packing density reported for the 
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rainbow trout (9.5X 103 pg of DNA/yim, Oliveira et al., 1995), and the value 

observed in man (11.7X10' pg/ycm). It is however higher than the mean packing 

density calculated for the domestic fowl (5.8X 10"3 pg/ytm) and for Xenopus laevis 

males (5.5X 10-3 pg of DNA/yim, Loidl and Schweizer, 1992), the lowest value 

reported among vertebrates. If the same relationship between TAEL or packing 

densities and recombination frequency was valid for O. niloticus, the longer SCs 

observed in XXY'' males should correspond with a higher number of chiasmata, 

which might in turn make the operation of the suggested correcting mechanism in 

this group in resolving trivalents/multivalents with multiple chiasmata very 

difficult. 

In the absence of detailed information on sex-specific recombination rates, the 

following model is proposed to explain the pairing pattern observed in triploid 0. 

niloticus in this study. Triploid nuclei in 0. niloticus enter the first sub-stage of 

pachytene meiosis, and by this time a process of synaptic adjustment maximises 

pairing and results in extensive, non-homologous synapsis with the probable 

occurrence of crossing-over involving both homologous and non-homologous 

chromosomes. This would be the situation observed in the XXY group. 

Later in pachytene, a mechanism for pairing correction operates to rescue 

trivalents/multivalents and results in the preferential formation of bivalents and 

univalents. This mechanism transforms crossovers between homologous strands into 

functional chiasmata, resolves non-homologous crossovers and is somehow 

favoured by the presence of longer SCs. Perhaps the enzymatic machinery of 

recombination, known to be large protein complexes travelling along the DNA 

Luis A. P. Carrasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 

198 



Chapter VI MEIOSIS IN DIPLOID AND ADTOTRIPLOID NILE TILAPIA 

strands, benefits from a lower packing density in the resolution of the crossovers. 

This is what is observed in XXYmT males, where higher TAEL values may have 

facilitated the operation of the recombination machinery in resolving the crossovers 

in multivalents, driving the pairing pattern towards a II+I preferential mode of 

association. The subsequent normal (1: 1) segregation of bivalents and a random 

segregation of the third set of univalents allows for the resolution of chromosomal 

disjunction in meiotic prophase I, and results in the production of aneuploid 

spermatozoa with ploidy levels which are between the haploid and the diploid 

values, as observed in other teleosts (Benfey et al., 1986). 

In homogametic genotypes, the operation of the mechanism for pairing 

correction is impaired, even despite possibly lower recombination rates than in 

heterogametic genotypes, and related perhaps to physical constrains for the 

enzymatic machinery of recombination to resolve the crossovers. The SCs in 

homogametic males may be inherently shorter than in normal heterogametic males, 

a situation already described for such genotypes in diploid rainbow trout oocytes 

(Oliveira et al., 1995). The mechanism for pairing correction cannot resolve the 

crossovers in females, the chromosomes remain entangled as a result of crossovers 

between homologous (and possibly non-homologous) DNA strands, and the cell is 

prevented from entering the next meiotic division, causing an early arrest of 

gametogenesis in triploid females. 

Although only a tentative model, it provides an explanation for the sex 

differences observed in the gametogenic progress in several species of triploid 

teleosts (Swarup, 1959b; Lincoln, 1981; Wolters et al., 1982; Benfey and Sutterlin, 1984; 

Lincoln and Scott, 1984; Nakamura et al., 1987,1993; Piferrer et al., 1994; Krisfalusi 
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and Cloud, 1997), and accomodates the data on structural differences (TAEL values) 

and pairing pattern (mean number of bivalents) observed between homogametic 

and heterogametic genotypes in this study. It would also provide some basis for the 

observation of some triploid rainbow trout males progressing further than others 

through spermatogenesis, as described in Chapter 5. These males may contain 

spermatocytes with larger SCs, which in turn may (or may not) be related to inter- 

individual varitions in the levels of endogenous testosterone. Residual amounts of 

triploid or near-triploid spermatozoa could also originate in some males from the 

divisional reduction of hexaploid spermatogonia, as observed in the present work. 

On fertilisation, these may generate low numbers of aneuploid hypertriploid 

offspring, providing a possible explanation for the hypertriploid offspring observed 

in Chapter 5. Improvements in the techniques designed to obtain SC spreads in 

tilapia oocytes and the collection of sex-specific data on recombination rates in this 

and other species of teleosts will be of great help for assessing the accuracy of the 

model. 
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Triploidy induction results in an increase of cellular volumes and possibly, 

a decrease in cell numbers. In a cytomorphometric analysis conducted on Atlantic 

and coho salmon, the cell size of erythrocytes, leukocytes, brain and retinal cells 

was larger in artificially-produced triploids than in diploids (Small and Benfey, 

1987). The authors inferred that since organ and body size were the same, cell 

numbers were proportionally reduced to cell size in triploids. Strüssman and 

Takashima found larger hepatocyte size in triploid pejerrey compared to diploids 

(1990). Swarup (1959b) reported a lower number of cells in the pronephric ducts of 

triploid G. aculeatus compared to diploids. 

Concomitant with the increase in cell size resulting from triploidy induction 

and the subsequent alteration in volume: surface cellular ratios, the physiology, 

metabolism and behaviour of triploid individuals is also altered. Larger red blood 

cells of triploid fish transfer oxygen at lower rates than diploids, possibly because 

of their lower surface area: volume ratio (Holland, 1970). Graham et al. (1985) 

found reduced loading of oxygen on haemoglobin, lowered blood haemoglobin 

concentrations and a 68% reduction in maximum blood content in triploid Atlantic 

salmon relative to diploids. Triploidy decreases the aerobic swimming capacity of 

rainbow trout (Virtanen et al., 1990). Protein energy catabolism and oxygen 

consumption was lower in triploid rainbow trout compared to diploids (Oliva- 

Teles and Kaushik, 1987). Phosphorylase and acid-a-glucosidase activities in 

hepatocytes differed between diploid and triploid masu salmon (Konishi et al., 

1991). 
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Triploids exhibited less aggressive behaviour than diploid fighting fish 

(Kavumparath and Pandian, 1992). Triploid ayu have lower sensitivity to sound 

and light than diploids (Aliah et al., 1990). Triploid salamander larvae learn less 

quickly than diploids how to negotiate a simple maze (Fankhauser, 1955). Triploid 

grass carp do not grow as well as diploids when reared in direct competition with 

diploids for a limited amount of food, but do grow well when reared in all-triploid 

groups (Cassani and Caton, 1986). Results on growth performance of triploids 

must thus take into account the alteration in the metabolism and physiology 

brought about by triploidy induction, since digestive mechanisms or assimilation 

efficiencies may not be necessarily identical between triploid and diploid forms. 

From a commercial perspective, the increase in carcass weight observed in 

triploids at 20 and 44 months of age in this study constitutes a valuable 

observation, illustrating the growth potential of triploid rainbow trout under a 

controlled culture environment. However, the optimisation of feeding regimes, 

taking into account the possibly different energetic requirements for artificial 

triploids, may result in further reduction in production costs and thus, more 

efficient production schemes. Wiley and Wike (1986) found a 10% decrease in 

ingestion rates for triploid grass carp compared to diploids. Special attention 

should thus be devoted to the preparation of rations and level of feeding when 

farming triploid teleosts, since much remains unknown about their energetic 

demands. 

Luis A. P. Carrasco PHD THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 203 



Chapter V! / GENERAL DISCUSSION 

While the results from Chapter III on gonadal weights and gonado-somatic 

indices clearly illustrate the different impact of triploidy on male and female 

rainbow trout, Chapter IV provides new information on the pattern of 

gametogenesis in triploid rainbow trout. The findings on male gametogenesis are 

in general agreement with previous investigations (Lincoln and Scott, 1984; 

Nakamura et al., 1987; Kobayashi et al., 1993); however, the early blockage in 

oogenesis and the progressive masculinisation observed in triploid female gonads 

at late stages of their life cycle warrant further investigation. Similar to what has 

been reported in triploid female poultry (Thorne et al., 1988; Fitzgerald and 

Cardona, 1993; Lin et al., 1995a, b), triploid female trout seem mostly unable to 

differentiate a follicle. The suggestion discussed in Chapter IV of a possible 

alteration in somatic-to-germ-cells interactions resulting in the disruption of 

folliculogenesis in triploid females merits elucidation. The alteration in surface- 

volume ratios caused by triploidy induction may affect the number, distribution, 

structure and/or functionality of receptors in the cellular membrane of oocytes, 

granulosa or thecal cells, disrupting the intimate cell-to-cell communication events 

characteristic of folliculogenesis in vertebrates (Peters, 1978; Beers and Dekel, 1981; 

Browder, 1985; Guraya, 1986; Tyler and Lancaster, 1993; Moley and Schreiber, 

1995). 

It is difficult to speculate on the origin of the gonadal hermaphroditism 

observed in triploid females, since much remains unknown about the dynamics of 

sex differentiation in non-mammalian vertebrates. While the observation of 

gonadal hermaphrodites in homogametic (presumptive XXX) triploid female trout 

is somewhat puzzling, the appearance of spermatogenic areas in the gonads of 
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genetically-female triploids may be more easily explained in triploid 

heterogametic (ZZW) chickens, which are likely to contain in their chromosomal 

constitution the gene(s) responsible for male and female sexual differentiation 

(Thorne et al., 1988; Fitzgerald and Cardona, 1993; Solari, 1994). Allen and 

Downing (1990) also report a significantly higher number of gonadal 

hermaphrodites during the gametogenesis of chemically-induced triploid oysters, 

possibly at the expense of triploid females. In the mouse, gonadal somatic cells are 

autonomously committed to differentiate in the male direction, independently of 

their genetic constitution; specific somatic-germ cells interactions are required for 

the normal differentiation of female somatic cells (Burgoyne et al., 1988; 

Hashimoto et al., 1990). Lately, new evidence obtained by studying the 

temperature-dependent process of sex determination in reptilians suggests that 

the male sex may be the default state of differentiation in these animals, and that 

the female condition must be imposed upon it (Merchant-Larios et al., 1997). 

Perhaps male differentiation is also the default state in the rainbow trout, thus 

explaining the appearance of gonadal hermaphrodites after the arrest of the 

oogonia observed in triploid females. Complex as it may be, the study of the 

dynamics and genetic basis of sex differentiation in non-mammalian vertebrates 

looks increasingly fascinating. 

The study of the reproductive potential of triploid rainbow trout males 

described in Chapter V provides valuable evidence for the generation, although in 

very limited numbers, of viable offspring by triploid trout males when crossed to 

normal (diploid) females. Limited fertility of triploid teleosts may not be exclusive 
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to males; some triploid female salmonids (Benfey, 1995) and non-salmonid teleosts 

(Cimino, 1972; Penman et al., 1987; Brämick et al., 1995) have been shown to 

develop large gonads containing seemingly mature ova. Thus triploidy may 

greatly reduce the possibility of genetic interaction between genetically 

manipulated, farmed (transgenic or not) and natural populations, but caution 

should be exercised when recommending triploidy induction for the reproductive 

containment of teleost populations, since the manipulation cannot totally prevent 

the production of gametes. Comprehensive analyses of the reproductive potential 

of artificially-induced triploids in different teleost species (and aquatic organisms 

in general) are needed to further assess the reliability of the technique. 

The use of innovative cytogenetic techniques (i. e. synaptonemal complex 

analysis; Moses, 1956; Loidl, 1994; Egel, 1995; Hasenkampf, 1996) appears very 

promising for improving our understanding of the genetics of sex determination 

in many teleost species, as exemplified by the findings presented in Chapter VI on 

the cytological basis for sex determination in the Nile tilapia. These techniques 

have also proven to be of great value in the meiotic analysis of polyploid plants 

and fungi (Rasmussen et al., 1981; Sherman et al., 1989; Vincent and Jones, 1993; 

Thomas and Thomas, 1994). The application of the analysis of the synaptonemal 

complex in polyploid teleosts should thus become an essential tool for improving 

our understanding of the alterations of the meiotic process brought about by 

triploidy induction in these animals. 

The observation of a different pattern of chromosomal pairing during the 

meiosis of male and female autotriploid Nile tilapia described in Chapter VI 

deserves special consideration. Meiotic arrest in female triploid tilapia seems to be 
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independent of phenotype; in other words, the inability of genetically female 

spermatocytes to successfully progress through chromosomal disjunction bears no 

relation to the disruption of folliculogenesis observed in triploid ovaries. It thus 

seems reasonable to interpret the failure of the mechanism for pairing correction 

observed in triploid females as the primary cause of meiotic arrest in triploid 

female gametogenesis; the disruption of folliculogenesis observed in triploid 

ovaries would thus be subsequent to the meiotic arrest of nested triploid oogonia. 

Oyster eggs, and those of molluscs in general, do not have to complete any meiotic 

divisions before oocyte growth (Masui, 1985; Allen and Downing, 1990; John, 

1990). This may explain the considerable development of female gametes observed 

in artificially-produced triploid oysters and other molluscs (Allen et al., 1986, 

1990). In these species, the alteration in cellular dimensions caused by triploidy 

induction may result in the disruption of folliculogenesis, thus driving the 

differentiation of somatic cells into the male direction, which would explain the 

observation of high numbers of hermaphroditic individuals among triploid 

populations of oysters (Allen et al., 1990). Oogonia in the rainbow trout enter the 

first meiotic division at a much earlier stage in the process of folliculogenesis than 

oogonia in molluscs (stages 1-2 of primary oocyte growth; Masui, 1985; Bromage 

and Cumaranatunga, 1988; Tyler and Sumpter, 1996). Thus in the rainbow trout, 

and triploid finfish in general, the main cause of the disruption in oogenesis 

would be the meiotic failure resulting from the nature of pairing in genetically 

female primary oocytes; the disruption in folliculogenesis would be the 

consequence rather than the cause of oogonia/primary oocyte arrest in triploid 

ovaries. 
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Nevertheless, the observation of low numbers of ova developing to 

maturity in several triploid finfish requires further explanation. It is possible to 

speculate, in a similar way to that suggested in Chapter VI to explain the 

observation of some triploid males progressing further in meiosis, that oocytes 

with longer synaptonemal complexes or lower DNA packing ratios may be able to 

overcome the difficulties during the resolution of crossovers in prophase I, 

escaping the meiotic blockage and further advancing in folliculogenesis and 

oocyte growth. Longer SCs or lower packing ratios may represent a random 

occurrence resulting from inter-cellular variations present within the oocyte pool, 

or perhaps sustained levels of endogenous testosterone over time, which is 

present at reduced (but not significantly so) levels in triploid female rainbow trout 

(Nakamura and Nagahama, 1987) may result in longer SC lengths and thus 

facilitate the resolution of the crossovers. Much remains to be known about the 

somatic-to-germ cells interactions in the developing gonad; in view of the present 

information these explanations remain merely speculative. 

Triploidy is a lethal condition in mammals, with most triploid mammalian 

embryos dying at some stage between implantation and term (Kaufman, 1991; 

Henery and Kaufman, 1993). On the contrary, triploid fish are easily produced and 

their overall viability does not appear to be seriously compromised (Swarup, 1959; 

Cuellar and Uyeno, 1972; Chourrout, 1980; Hussain, 1996). The induction of 

triploidy can be easily accomplished in most commercially-important aquatic 

species, and results in a severe limitation of their reproductive potential. 
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Taking into account the results from the present Thesis on the genotype- 

related differences observed in chromosomal pairing pattern during meiosis, it 

seems clear that further progress in our understanding of the basic mechanisms 

involved in the reproductive blockage observed in triploid teleosts will open new 

possibilities for the generation of sterile fish (and aquatic organisms in general) 

stocks. 

In addition to the practical applications of triploidy induction in the 

prevention of sexual maturation in cultivated teleost species, triploid fish stand as 

a very promising model for the study of the effects of multiple gene dosage on 

gene expression and gene regulation in polyploid vertebrates. 
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APPENDIX 1 

i 

Isoton II composition: 

Sodium chloride 

Sodium hydrogen orthophosphate 

EDTA, disodium salt 

Potassium chloride 

Sodium dihydrogen orthophosphate 

Sodium fluoride 

(Filtered to 2 microns) 

Luis A. P. Carasco 

7.9 g/L of water 

1.9 g/L of water 

0.4 g/L of water 

0.4 g/L of water 

0.2 g/L of water 

0.3 g/L of water 
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APPENDIX 2 

10% Phosphate-buffered Formalin composition: 

Formaldehyde 40% 100m1 

Distilled water 900 ml 

NaH2P0; 2H20 4g 

Na2HPO4 6g 

NaCl 4g 
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APPENDIX 3 

Processing schedule for paraffin embedding: 

50% methylated spirits 

80% methylated spirits 

100% methylated spirits 

100% methylated spirits 

100% methylated spirits 

100% ethanol 

Chloroform 

Chloroform 

Chloroform 

First infiltration in paraffin wax at 60°C for 2 hr 

Second infiltration in paraffin wax at 60°C for 2 hr 

Luis A. P. Carrasco 

1 hr 

2 hr 

2 hr 

2 hr 

2 hr 

2 hr 

2 hr 

1 hr 

1 hr 
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APPENDIX 4 

i 

Haematoxylin-eosin staining protocol (modified from Carleton, 1980): 

Xylene 

100% Ethanol 

Methylated spirits 

Tap water wash 

Haematoxylin 

Tap water wash 

1% acid alcohol 

Tap water wash 

Scott's tap water substitute 

Tap water wash 

Eosin 

Tap water wash 

Methylated spirits 

100% Ethanol 

100% Ethanol 

Xylene 

Xylene 

Mount 

Luis A. P. Carrasco 

5 min 

2 min 

1.5 min 

0.5 min 

5 min 

0.5 min 

4 quick dips 

1 min 

0.5 min 

1 min 

2 to 3 min 

0.5 min 

1 min 

2 min 

1.5 min 

5 min 

5 min 
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APPENDIX 5 

Staining protocol for the periodic acid-Schiff reaction counterstained with 

Heidenhain's iron haematoxylin stain (modified from Carleton, 1980): 

Preparation of the reagents: 

(a) The iron alum mordant 

Ferric amonium sulphate 5g 

Distilled water 100 ml 

(b) The iron alum solution 

Ferric amonium sulphate 2.5 g 

Distilled water 100 ml 

(c) The haematoxylin bath 

Haematoxylin 0.5 g 

100% Ethanol 10 ml 

Distilled water 90 ml 

Staining protocol: 

Tap water wash 1 min 

1% aqueous periodic acid 5 min 

Tap water wash 5 min 

Distilled water 0.5 min 
Schiff's reagent 15 min 
Tap water wash 30 min 
Iron alum mordant 30 min 
Distilled water 1 min 
Haematoxylin 30 min 
Tap water wash 5 min 
Iron alum solution 10-20 min 

I 
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Differentiate in the iron alum solution, controlling microscopically by removing 

the slide from the alum solution and washing briefly in tap water to halt the 

process during examination. Continue differentiation and examination until 

sections are suitably de-stained, noting that red blood cells take up and retain the 

stain strongly. 

Tap water wash 10 min 

90% Ethanol 2 min 

100% Ethanol 2 min 

100% Ethanol 1.5 min 

Xylene 5 min 

Xylene 5 min 

Mount 

I 
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Staining protocol for the Masson's trichrome stain (modified from Carleton, 

1980). 

Preparation of solutions: 

Cytoplasmic (plasma) stain: 

1% Ponceau de Xylidine in 1% acetic acid 2 parts 

1% Acid fuchsin in 1% acetic acid 1 part 

Differentiator and mordant: 

1% phosphomolybdic acid in distilled water 

Fibre stain: 

2% Light green in 1% acetic acid 

Weigert's iron haematoxylin: 

Solution A (stain): 

Haematoxylin 1g 

Absolute alcohol 100 cm3 

Solution B (mordant): 

30% aqueous ferric chloride (anhydride) 4 cm3 

Concentrated hydrochloric acid 1 cm3 

Distilled water 95 cm' 

Solutions A and B are stored separately and mixed immediately before use to 1: 1 

proportions. 
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(Appendix 6) 

Protocol: 

Weigert's iron haematoxylin 10 min 

Wash well in distilled water 

0.5% HCl in 70% ethanol 0.5-1 min 

Wash well in distilled water 

Cytoplasmic stain 6 min 

Wash well in distilled water 

Differentiator 0.5-1 min 

Wash well in distilled water 

Fibre stain 2-5 min 

1% Acetic acid 1.5 min 

100% Alcohol 0.5 min 

Xylene 

Mount 
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APPENDIX 7 

Average relative frequencies of cell types observed in diploid and triploid 

ovaries at different age stages. 

Values indicate means ± standard deviations. Significantly different means 

(P<0.05) appear underlined. 

Key: 

0, oogonia; 

1-7, oocyte stages (after Bromage and Cumaranatunga, 1988); 

ATR, atretic oocytes; 

SPT, spermatogenic cells; 

POF, post-ovulatory follicles; 

STR, stroma; 

G. E., germinal epithelium; 

G. S., glandular structures; 

NCR, necrosis; 

INF, inflammatory cells; 

MYE, myelocytes. 

I 
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AGE 7 MONTHS 15 MONTHS 20 MONTHS 25 MONTHS 44 MONTHS 

PLOIDY 
(N) 

2n 
(11) 

3n 
(11) 

2n 
(8) 

3n 
(9) 

2n 
(6) 

3n 
(6) 

2n 
(10) 

3n 
(10) 

2n 
(5) 

3n 
(10) 

0 3.20±4,31 71.14±10.13 0 00±0.00 57.32±103 0.00±0.00 61.42±6.78 . 00 0±0.00 43.43±11.13 0.00±0.00 30.37±17.33 

1 1.16±2.22 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

2 10.56±3.30 0.00±0.00 5.21±3.94 0.00±0.00 0.07±0.12 0.00±0.00 0.11±0.15 0.00±0.00 0.00±0.00 0.12±0.38 

3 64.8415.93 0.00±0.00 32.73±14.0 0.00±0.00 4.17±2.13 0.00±0.00 7.88±1.84 0.11±0.36 1.37±1.30 1.26±3.34 

4 0.99±2.21 0.00±0.00 41.68±16.6 0.00±0.00 0.72±0.70 1.49±3.66 9.59+-4,28 1.92±3.81 0.69±0.94 3.07±3.15 

5 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 9.18±22.43 0.00±0.00 7.62-+4.28 0.00±0.00 1.20±2.23 1.59±3.09 

6 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 50.18±24.84 0.00±0.0 0 0.00±0.00 0.00±0.00 28.88±14.9 0.00±0.00 

7 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

ATR 2.76+36 6 0 11±0.35 2.40±1.3 0.00±0.00 43±2.7 0.00±0.00 9.21±3.77 0.00±0 00 31.3915.60 0.00±0,00 

SPT 0.00±0.00 0.22±0.70 0.00±0.00 0.96±2.23 0.00±0.00 1.67±2.79 0,00±0.00 4,48±4.93 0.00±0. 12.21±13.17 

POF 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 34.63110.92 0.0 . 00 9.79±11.37 0.00±0.00 

STR 3.22±5.42 0.44±1.41 7.39±2.56 0,38±1.15 2.20±1.74 1.85±4.54 6.61±5.0 9 1,42±2 6 7.87±4.41 0 00±0.00 

G. E. 0.31±0.75 0.34±0.77 . 00±0.00 
. 93 4±2.34 0.00±0.00 3.34±3.92 0,00-+0.00 7.02±4.9 6 0,00±0.00 4 39±3.95 

G. S. 0.00±0.00 2.04±4.46 0.00±0.00 1.42±2.62 0.00±0.00 0.00±0.00 0,00±0.0 6,28±10,1 8 0.00±0.00 3.67±10.48 

FIBRES 0.00±0.00 9.27±10.24 000±0.00 18.41±6.86 0.0 0.00 13.70±5.14 0.00±-0.00 13.36±10.12 0.00±0.00 16 84±9.49 

NCR 0.00±0.00 5.81±8.76 20 ±0. QO 5.57±5,68 0.05±0.12 1.88±3.08 000±0.00 3.24±5,01 0.00±0.00 11.99±12.27 

INF 0.00±0.00 1.86±3.61 0.00±0.00 1.38±2.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

MYE 0.00±0.00 0.00±0.00 0.05±0.14 0.06±0.19 0.16±0.26 1.85±2.30 0.29±0.51 1.45±2.51 0.00±0.00 4 1.15±1.4 
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Average relative frequencies of cell types observed in diploid and triploid testes 

at different age stages. 

Values indicate means ± standard deviations. Significantly different means 

(P<0.05) appear underlined. 

Key: 

GON A= type A spermatogonia; 

GON B= type B spermatogonia; 

SPC 1= primary spermatocytes; 

SPC 2= secondary spermatocytes; 

SPT= spermatids; 

SPZ= spermatozoa; 

INT= interstitial cells; 

SER= Sertoli cells; 

STR, stroma; 

NCR= necrosis. 

i 

(after Billard, 1983; 1986; 1990). 
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AGE 7 MONTHS 15 MONTHS 20 MONTHS 25 MONTHS 44 MONTHS 

PLOIDY 
(N) 

2n 
(11) 

3n 
(9) 

2n 
(13) 

3n 
(11) 

2n 
(4) 

3n 
(4) 

2n 
(9) 

3n 
(10) 

2n 
(1) 

3n 
(1) 

GON A 22.43±14.21 26.33±9.90 15.10±13.8 2.97±5.03 0.00±0.00 0.00±0.00 0.07±0.19 0.00±0.00 0.00 0.00 

GON B 43.50±18.40 33,48±16.89 34.58±19.5 15.05+16.48 0.00±0.00 0.78±0.86 4.42±2.96 2.30±1.90 0.00 0.00 

SPC 1 4.83±15.27 10.53±20.08 7.54±9.54 26.47±14.95 0.53±0.59 65.13±3.50 0.15±0.29 14.21±9.81 36.46 56.17 

SPC 2 1.99±6.29 1.50±4.26 1.39±2.71 21.34±18 53 32.74±1.17 11.11±4.06 0,31±0.66 22.12±17.42 15.63 18.24 

SPT 1.52±4.79 0.58±1.64 4.60±8.20 4.64±5.13 20.78±1.95 1.12±0.74 5.05±5.11 8.12±5.43 8.33 11.88 

SPZ 0.19±0.60 0.00±0.00 15.42±28.2 6.92±13.02 39.88±3.03 0.00±0.00 68.491-6.28 31.77±22.63 33.33 4.86 

INT 14.21±10.5 0.9312.62 6.68±4.69 6.50±4.81 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 0.00 

SER 0.66±1.7 9 12.42±7.14 0.80±1.76 0.25±0.61 0.26±0.45 2.13±3.69 0.00±0.00 0.00±0.00 0.00 0.00 

STR 7.47±6.98 8.38±4.39 2.37±2.26 3.32±3.13 32. _ 4±1.33 13.80±1.38 12.85±3.42 11.80±4.30 5.21 1.56 

NCR 0.00±0.00 0.69±1.39 0.21±0.42 0.13±0.27 0.26±0.29 3.25±2.59 0.21±0.42 1.11±1.99 0.00 3.99 

FIBRES 2.46±3.42 4.69±7.23 7.72±5.01 6.00±7.58 0.26±0.45 0.00±0.00 0.89±2.52 0.14±0.42 0.00 0.35 
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ABSTRACT 

A cytogenetic analysis of chromosome synapsis was carried out during the first 

meiotic prophase of the Nile tilapia, Oreochromis niloticus. Three different genotypes 

were studied: XX sex-reversed males, `wild-type' (XY) males and YY `supermales'. 

Transmission electron-microscope analysis of synaptonemal complex spreads revealed the 

presence of 22 fully paired bivalents during pachytene in both homogametic genotypes. In 

the heterogametic genotype, an incompletely paired segment was frequently observed 

during the process of meiotic synapsis in the terminal region of the longest bivalent. The 

presence of this unpaired segment, together with several features characteristic of sex- 

chromosome behaviour during meiosis, suggests the existence of a non-homologous region 

in this chromosomal pair in the heterogametic genotype, and provides cytological evidence 

for the chromosomal basis of sex determination in O. niloticus. The usefulness of 

synaptonemal complex analysis for the understanding of sex determination and its 

relevance in the management of species of aquacultural importance are discussed. 

KEY WORDS: Cytogenetics, Meiosis, Sex Chromosomes, Synaptonemal Complex. 
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INTRODUCTION 

Sex control in farmed fish stocks remains a critical objective for the aquaculture 

industry, since in most commercial species growth patterns and energy investment into 

reproduction differ between sexes. In the Nile tilapia (Oreochromis niloticus), one of the 

most important commercial species for food production world-wide, strategies for the 

generation of all-male populations are designed to combine the benefits of faster growth 

rates in males with the suppression of the problems posed by precocious sexual maturation, 

early breeding and competition from progeny, particularly under pond culture conditions. 

The production of all-male populations has been successfully achieved by the oral 

administration of natural or synthetic androgens to masculinise sexually-undifferentiated 

fry (Tayamen and Shelton, 1978). Although this is a technique widely used today it 

presents a number of practical limitations, which combined with the increasing consumer 

resistance to the use of hormones in food production, limit its general applicability (Mair et 

al., 1987). An alternative strategy in the production of monosex populations is the use of 

novel YY `supermale' genotypes (Scott et al., 1989; Myers et al., 1995), which when 

crossed to `normal' XX females should yield large numbers of all-male progeny. The 

genetic rationale underlying this approach is the presence of a Lygaeus type of sex 

determination in O. niloticus in which males are the heterogametic sex (Penman et al., 

1987). On the basis of the sex ratios observed in sex reversal, gynogenesis and triploidy 

experiments, a monofactorial model for sex determination has been hypothesised in which 

sex is predominantly determined by a single locus located distantly to the centromere, 

albeit possibly influenced by one or several secondary sex-modifying factors (Mair et al., 

1991). A number of constraints are also evident in this methodology: the initial phase in 

the generation of YY supermales is complex and time consuming, hormone treatment is 

still required for the feminisation of male genotypes and more importantly, some YY 

supermales do not yield the predicted all-male ratios (Mair et al., 1991). It is thus clear that 
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further progress in the development of reliable techniques for sex control requires a better 

understanding of the sex determination mechanism operating in 0. niloticus, with the 

ultimate goal of identifying and understanding the modus operandi of the sex-determining 

gene(s) present in this species. 

A serious obstacle standing in the way is the absence of genetic markers for sex in 

0. niloticus. Avtalion et al. (1976) identified male-specific proteins in 0. niloticus using 

polyacrylamide gel electrophoresis, but their use for the large-scale identification of sex is 

impaired by the complexity and cost of the technique, and they appear to be sex-limited 

rather than sex-linked (Mair et al., 1991). Although Nijjhar et al. (1983) reported the 

presence of a size heteromorphism in the longest chromosomal pair of 0. niloticus 

females, suggesting the existence of a ZZIZW sex determination mechanism, later light 

microscopy-based studies failed to reveal sex-linked morphological differences in the 

karyotype of this species (Majumdar and McAndrew, 1986). A more powerful tool for 

karyotypic analysis is the electron-microscopical observation of the synaptonemal complex 

(SC), a protein scaffold which mediates in chromosomal pairing and recombination during 

the zygotene and pachytene stages of meiotic prophase I (Moses, 1956; Loidl, 1994; Egel, 

1995; Hasenkampf, 1996). SC morphogenesis can be first visualised by the appearance of 

short stretches of protein cores called axial elements along each pair of sister chromatids. 

Chromosome synapsis proceeds by the establishment of intimate associations between 

homologous axial elements (usually near the telomeres), which once assembled into the SC 

are then referred to as lateral elements. The area between two lateral elements is called the 

central region, where densely staining, spheroidal structures called recombination nodules 

are observed (Von Wettstein et al., 1984). These nodules are thought to be the cytological 

visualisation of large protein complexes involved in the enzymology of recombination, 

since their frequency and distribution correspond to the frequency and distribution of 

crossovers (Carpenter, 1988). After pachytene, the SC proteins begin to disassemble and 
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chiasmata are visible as sites of attachment between non-sister chromatids (Jones, 1987). 

Although the precise role of the SC in recombination is still the subject of ongoing 

research, the analysis of the SC stands as a useful tool to investigate abnormal pairing 

configurations associated with chromosomal differences between the parents, having been 

successfully used for the meiotic analysis of many plant and animal species, including 

teleosts (Foresti et al., 1983; Wise and Nail, 1987; Lin and Yu, 1991; Oliveira et al., 1995). 

The analysis of SCs in O. niloticus wild-type males has revealed the occurrence of 

a size heteromorphism in the lateral elements of the largest bivalent, associated with the 

presence of an incompletely paired segment in the terminal region of this chromosomal 

pair (Foresti et al., 1993). In this work we present the results of a cytogenetic analysis of 

chromosome synapsis designed to investigate the possible sex-linkage of such 

heteromorphism by studying the three different sexual genotypes of O. niloticus: XX, XY 

and YY. 
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MATERIALS AND METHODS 

Experimental animals 

0. niloticus individuals used in this study derive from a Lake Manzala (Egypt) 

population which has been extensively characterised by mitotic and meiotic karyology, 

electrophoresis and recombination rates studies (McAndrew and Majumdar, 1983; 

Majumdar and McAndrew, 1986; Mair et al., 1991). All fish were maintained in warm 

water (T= 27 ±2 °C) recirculation systems under similar photoperiod (14L: 1OD), density 

and feeding regimes. In preliminary studies of SC spreads, oocytes were less amenable 

than spermatocytes to the spreading process and yolk interfered with the staining method. 

Consequently, it was decided to use sex-reversed males as a source of XX genotypes. An 

all-female population was produced by crossing XX sex-reversed males with wild-type 

females and progeny testing for all-female offspring. Six XX males (5 months of age, 30 g 

body weight, 12 cm fork length) were selected from a stock generated by oral 

administration of 17a-methyltestosterone (50 mg/kg of food during 30 days after first 

feeding) to this XX population. Six `wild type' males of similar age, body weight and fork 

length to the XX sex-reversed males were selected on the basis of their gonadal 

appearance. Three progeny-tested YY `supermales' were available for this study. One of 

these (4 years of age, 0.6 kg body weight, 40 cm fork length) was generated by 

androgenesis (Myers et al., 1995). The other two (2 years of age, 250 g body weight, 30 

cm fork length) were produced by crossing YY males to sex-reversed YY females and then 

progeny testing for all-male offspring. 
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Synaptonemal complex spreading 

The preparation of SC specimens was carried out following the protocol of Foresti 

et al. (1993) with several minor modifications. After overanesthetising the males by 

immersion in a 0.01% benzocaine solution, the gonads were dissected, placed in a Petri 

dish containing 3 ml of Hank's saline solution (Sigma-Aldrich, Dorset, UK; adjusted to pH 

8.5 with IN NaOH) and carefully minced with two razor blades. The resulting cell 

suspension was aspirated with a Pasteur pipette and transferred into a sterile centrifuge 

tube placed in ice, where it was allowed to settle for 1 hr. The cell suspension, spreading 

medium (0.2% Lipsol® (LIP, Yorkshire, England) in distilled water adjusted to pH 8.5 with 

0.01 M sodium tetraborate buffer) and a 0.2 M sucrose solution were added to treated 

histological slides in 1: 2: 2 proportions and gently mixed. Histological slides (Superfrost® 

BDH, Dorset, UK) had been thoroughly washed in soapy water, rinsed in distilled water, 

air dried and dipped in a 0.75% (w/v) solution of pioloform plastic (Agar Scientific, 

Essex, UK) dissolved in reagent-grade chloroform. After 5 min exposure to the spreading 

medium, 1 ml of 4% paraformaldehyde fixative (buffered to pH 8.5 with sodium 

tetraborate) was added to each slide and they were then left to dry overnight in a vertical 

position in a fume cupboard. The slides were rinsed and air dried before staining. 

Staining and preparation of specimens for electron microscopy (EM) 

Plastic-coated slides bearing surface-spread nuclei were coverslipped with 250 pm 

nylon cloth mesh (Plastok Associates, Merseyside, UK) and stained with a 50% silver 

nitrate solution at 50 °C for 50 min (Kodama et al., 1980). Suitably spread nuclei were 

identified under the light microscope (Olympus Optical Co., Japan) and their position was 

recorded on the plastic coating using a permanent marker. The plastic was scored with a 

sharp razor blade along the edges of the slide and floated off in distilled water. After 50- 

mesh EM copper grids (Agar Scientific, Essex, UK) were carefully positioned over the 

marks, a small piece of absorbent paper was dropped over the plastic film, and the 
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resulting sandwich was quickly picked up and left to dry with the plastic film facing up. 

After drying, the EM grids were detached from the plastic by scoring around their edge 

with a fine paintbrush dipped in chloroform. The grids were examined at 80 kV using a 

Philips 301 transmission EM. 
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RESULTS 

In the 95 spermatocytes where complete nuclei were examined, SC spreads 

contained 22 silver-stained bivalents at the pachytene stage of meiotic prophase I, 

according to the staging criteria set by Villagömez (1993)(Fig la). Their lateral elements 

appeared as two well-differentiated parallel filaments spanning the bivalents from telomere 

to telomere, with a distinctly stained attachment plaque visible at both of their ends (Fig 

lb). No clear structure was revealed by the silver-staining technique in the central region 

of the SCs, and the kinetochores, although evident in some cases, could not be consistently 

visualised in each bivalent. No obvious bouquet arrangement of the bivalents was 

observed. Equally, no broken lateral elements were observed, and chromosomal 

interlocking, although present in some cases, was rare (Fig lc). One of the bivalents was 

conspicuously longer than the other 21 in all nuclei analysed, measuring approximately 16 

gm in length (Fig Id). The lateral elements of the 21 shorter bivalents paired in full along 

their length in all nuclei examined, presenting the normal SC morphology characteristic of 

other vertebrate groups. In the longest bivalent, however, the following anomalies were 

observed: partially unpaired axial elements, self-folding, interaction with other bivalents 

and differential staining. Unpairing of the axial elements affected the terminal region of the 

longest bivalent when it was observed in the heterogametic males, while it was restricted to 

the central and/or subterminal region of the longest bivalent in the two nuclei of the 

homogametic genotypes where unpairing was observed (Figs. le and If). Table I 

summarises the pairing patterns in the terminal region and structural anomalies observed in 

the longest bivalent by genotype. Unpaired axial elements in the terminal region of the 

longest bivalent were observed in 5 of the 6 heterogametic males examined (Figs. 2 a-c). 

Unpaired axial elements appeared of unequal length in 3 of the 9 cases recorded in wild- 

type males (Figs. 2c and 2d), while no obvious size heteromorphism was visible in the 2 

cases observed in the homogametic genotypes. When no region of unpairing was visible in 
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the longest bivalent (97.5% of the cases examined in XX males, 74.3% in wild-type males 

and 95% in YY males) the lateral elements paired uniformly across its length (Fig 2e). The 

terminal region of the longest bivalent formed a loop folding on itself in one nucleus of a 

wild-type male (2.8%)(Fig 2f), while in another male of the same group the unpaired axial 

elements of this bivalent established partial synapses with three other bivalents forming a 

complex multivalent (Fig 2g). Staining intensity was noticeably darker and the lateral 

elements of the longest bivalent appeared slightly thickened in 2 of the nuclei examined in 

XX and wild-type males (5% and 5.7%, respectively)(Fig 2h). 
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DISCUSSION 

The results from this work are in agreement with the mitotic karyotype reported by 

several authors for 0. niloticus (Jalabert et al., 1971; Arai and Koike, 1980; Nijjhar et al., 

1983; Majumdar and McAndrew, 1986), with a diploid number of 2n= 44 corresponding to 

the 22 bivalents observed in this study. The number and morphology of the bivalents 

observed in this work are also in agreement with the previously reported SC karyotype of 

0. niloticus (Foresti et al., 1993), although we could not consistently identify the 

kinetochores or chromosomes bearing nucleolar-organising regions (NORs), possibly as a 

result of technical limitations in our staining protocol. Similar features to the ones we 

observed in the longest bivalent (i. e. self-folding, interaction with other bivalents, 

differential staining) have been reported in the sex-chromosomes of other vertebrate 

species (Solari, 1994). Perhaps the most significant observation is the presence of unpaired 

segments in the terminal region of the longest bivalent in the heterogametic genotype, in 

agreement with the findings of Foresti et al. (1993). The relatively high incidence of 

unpaired segments in this terminal region observed in 5 of the 6 heterogametic males 

examined (25.7% of the nuclei examined), together with the much lower incidence of 

unpairing observed in the homogametic genotypes in this study (3.3% of the nuclei 

examined) suggests the presence of a higher degree of non-homology in the heterogametic 

genotype than in the homogametic genotypes between the parental chromosomes forming 

the longest bivalent. This observation supports the hypothesis that the terminal region of 

the longest bivalent in 0. niloticus is undergoing a process of sex-chromosome 

differentiation. A general requirement in the process of sex chromosome differentiation is 

the restriction of recombination in the heterogametic genotype between the regions 

containing the sex-determining genes (Solari, 1994). It is now widely accepted that the SC 

helps in the conversion of crossovers into functional chiasmata which assist in the orderly 

disjunction of the bivalents (Loidl 1994). Thus the observation of unpaired axial elements 

Luis A. P. CaRasco PND THESIS, INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING 

268 



APPENDICES 

i 

in the terminal region of the longest bivalent may signal a change in the pattern of 

recombination in this region of the heterogametic genotype. This would be in agreement to 

the establishment of an XX/XY mode of sex determination mechanism in this species, 

supporting the hypothesis that the main sex-determining locus in O. niloticus is distally 

located to the centromere (Mair et al., 1991). However, two of the present observations 

require further interpretation: the presence of full synapsis between the lateral elements of 

the longest bivalent in 74.3% of the cases examined in the heterogametic genotype, and the 

observation of unpairing in the subterminal region of the same bivalent in the 

homogametic genotypes (3.3% of the cases examined). Chromosomal pairing behaviour is 

affected by a mechanism termed axial equalisation characteristic of the sex chromosomes 

of most avian species studied (Hogan et al., 1992; Solari, 1992). The ZW pair of avian sex 

chromosomes at early pachytene consists of two unequal lateral elements partially 

synapsed. During mid-pachytene, the Z axis gradually shortens until it becomes equalised 

and pairs in full with the W chromosome by late pachytene. Thus it is possible that the 

fully-paired lateral elements observed in the longest bivalent in the heterogametic genotype 

represent non-homologous associations of the terminal region of the sex chromosomes of 

0. niloticus which would increase the stability of this bivalent by the end of pachytene. 

Our finding of a length heteromorphism in the unpaired axial elements of the longest 

bivalent in the heterogametic genotype (8.6% of the cases examined), which was not 

observed in other nuclei of the same individuals, provides further support for the presence 

of a mechanism of axial equalisation operating in O. niloticus. Regions of unpairing were 

also observed in the longest bivalent of the homogametic genotypes, but both their low 

frequency and localisation (subterminal as opposed to terminal in the heterogametic 

genotype) suggests that rather than signalling regions of non-homology, they are a 

consequence of the delay in the completion of the synaptic process resulting from the 

length of this bivalent. 
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Considered as a whole, the features observed in the meiotic behaviour of the 

longest bivalent seem to indicate the development of some degree of sex-chromosome 

differentiation of this chromosomal pair in the Nile tilapia. It should be noted that 

chromosomal heteromorphism is generally a late consequence of the establishment of a 

stable genetic sex-determining mechanism or `master switch', in which a change in the 

recombination patterns between the heterogametic genotypes is the most likely primary 

event (Solari, 1994). In comparison with vertebrate species in which well-differentiated 

heteromorphic chromosomes are present, the Nile tilapia appears to be at a primitive stage 

in the process of sex-chromosome differentiation. 
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CONCLUSIONS 

The investigation of chromosome synapsis during meiosis by the analysis of the 

synaptonemal complex has provided valuable information on the process of sex- 

chromosome differentiation taking place in the Nile tilapia. The observation of several 

features characteristic of sex-chromosomes in the longest bivalent (unpaired axial 

elements, self-folding and interaction with other bivalents in the heterogametic genotype) 

provides cytological evidence for the chromosomal basis of sex determination in 0. 

niloticus. The combination of synaptonemal complex analysis with well-established 

methodologies for sex reversal offers new possibilities for the advancement in our 

understanding of the sex-determining mechanisms operating in aquaculturally-important 

species. 
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TABLES 

Table 1. Pairing patterns in the terminal region and number of structural anomalies 

observed in the longest bivalent during the pachytene stage of meiosis in 0. niloticus. 

Genotype No. of nuclei Pairing pattern in terminal region Structural anomalies 
analysed 

Unpaired AEs Paired LEs SID 
xx 

male 1505001 

male 2707000 

male 3606000 

male 4808000 

male 5707000 

male 6707001 

TOTAL 40 0 40(100%) 002 (5%) 

XY 
male 1716000 

male 2523001 

male 3615000 

male 4505100 

male 5624000 

male 6633011 

TOTAL 35 9 (25.7%) 26 (74.3%) 1 (2.8%) 1 (2.8%) 2 (5.7%) 

YY 
male 1 (*) 707000 

male 2707000 

male 3606000 

TOTAL 20 0 20 (100%) 000 

AEs, axial elements; LEs, lateral elements; S, self-folding; I, interaction with other 

bivalents; D, differential staining. The asterisk denotes the androgenetic origin of YY male 

1. 
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FIGURES 

Figure 1. a, Whole synaptonemal complex spread showing 22 bivalents in XX male. b, 

detail of a bivalent in wild-type male. c, interlocking in wild-type male. d, whole SC 

spread showing 22 bivalents in wild-type male. e, longest bivalent showing unpaired axial 

elements in central and subterminal regions, XX male. f, longest bivalent showing 

unpaired axial elements in subterminal region, YY male. Key: AP, attachment plaques; 

CR, central region; I, interlock; K, kinetochore; LB, longest bivalent; LE, lateral elements; 

PL, paired lateral elements; UA, unpaired axial elements. Scale bars represent 3 µm in a, 

0.5 pm in b, 3 µm in c-f. 
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Figure 2. a, Longest bivalent showing unpaired axial elements in the terminal region, wild- 

type male. b, Longest bivalent showing unpaired terminal region, wild-type male. c, 

longest bivalent showing unpaired axial elements of different length, wild-type male. d, 

longest bivalent showing unpaired axial elements of different length in the terminal region, 

wild-type male. e, fully paired lateral elements in the longest bivalent, YY male. f, self- 

folding terminal region in the longest bivalent, wild-type male. g, multivalent involving the 

longest bivalent, wild-type male. h, whole SC spread showing differential staining of the 

longest bivalent, XX male. Key: F, self-folding lateral elements; K, kinetochore; LB, 

longest bivalent; PL, paired lateral elements; UA, unpaired axial elements. Scale bar 

represents 3 gm. 
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