Journal of Heuristics
https://doi.org/10.1007/s10732-022-09501-8

®

Check for
updates

A systematic approach to parameter optimization and its
application to flight schedule simulation software

Alexander E. I. Brownlee'® - Michael G. Epitropakis? - Jeroen Mulder3 -
Marc Paelinck® - Edmund K. Burke*

Received: 2 February 2021 / Revised: 9 March 2022 / Accepted: 17 June 2022
© The Author(s) 2022

Abstract

Industrial software often has many parameters that critically impact performance. Fre-
quently, these are left in a sub-optimal configuration for a given application because
searching over possible configurations is costly and, except for developer instinct,
the relationships between parameters and performance are often unclear and complex.
While there have been significant advances in automated parameter tuning approaches
recently, they are typically black-box. The high-quality solutions produced are returned
to the user without explanation. The nature of optimisation means that, often, these
solutions are far outside the well-established settings for the software, making it dif-
ficult to accept and use them. To address the above issue, a systematic approach to
software parameter optimization is presented. Several well-established techniques are
followed in sequence, each underpinning the next, with rigorous analysis of the search
space. This allows the results to be explainable to both end users and developers,
improving confidence in the optimal solutions, particularly where they are counter-

B Alexander E. I. Brownlee
alexander.brownlee @stir.ac.uk

Michael G. Epitropakis
m.epitropakis @ gmail.com

Jeroen Mulder
Jeroen.Mulder @klm.com

Marc Paelinck
Marc.Paelinck @klm.com

Edmund K. Burke
edmund.burke @leicester.ac.uk

Computing Science and Mathematics, University of Stirling, Stirling, UK

2 The Signal Group, Athens, Greece

3 Air France KLM Group; Mulder with Technology Innovation inside Corporate Information
Office, and Paelinck with Operations Research, IT, Amstelveen, Netherlands

4

University of Leicester, Leicester, UK

Published online: 05 July 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-022-09501-8&domain=pdf
http://orcid.org/0000-0003-2892-5059

A.E. . Brownlee et al.

intuitive. The process comprises statistical analysis of the parameters; single-objective
optimization for each target objective; functional ANOVA to explain trends and inter-
parameter interactions; and a multi-objective optimization seeded with the results from
the single-objective stage. A case study demonstrates application to business-critical
software developed by the international airline Air France-KLM for measuring flight
schedule robustness. A configuration is found with a run-time of 80% that of the
tried-and-tested configuration, with no loss in predictive accuracy. The configuration
is supplemented with detailed analysis explaining the importance of each parameter,
how they interact with each other, how they influence run-time and accuracy, and how
the final configuration was reached. In particular, this explains why the configura-
tion included some parameter settings that were outwith the usually recommended
range, greatly increasing developer confidence and encouraging adoption of the new
configuration.

Keywords Parameter tuning - Optimization - Statistical methods - Multi-objective
optimization - Search-based software engineering - Explanation

1 Introduction

Many industrial software applications are developed to a tight time budget. In a
commercial setting there is frequently a lack of developer time to fine tune appli-
cation parameters, whereby “good enough”, no matter how sub-optimal, is tolerated.
“Programming by optimization” (Hoos 2012), whereby decisions about appropriate
parameter settings are not made by the developer but instead exposed for later tuning
to a particular application by a metaheuristic or other search-based solver, represent a
great opportunity to resolve this situation. However, essentially black-box optimisation
methods such as metaheuristics are poorly understood by practitioners, with multiple
surveys (Hornby and Yu 2007; Tiwari et al. 2015; Vincalek et al. 2021) indicating
that this brings a lack of trust in the results and a reluctance to interfere with param-
eters that have often been fine-tuned by hand and left with “do not touch” warnings
in place. Yet where a piece of software is critical to a business (e.g. our case study),
substantial impact can result from such fine tuning, if the tuned results are put into
practice. Enabling machines to explain their decisions is crucial to maximising their
real-world utility (Le Bras et al. 2018), so to realise the potential gains of software
parameter optimisation, approaches are needed to gain insight into the optimisation
problem and processes that solved it. For optimisation problems, users need confi-
dence that the solution solves the problem rather than exploiting an error or loophole
in the problem’s definition: examples of such loopholes from the broader metaheuris-
tics community include a simulated robot that maximised its walking speed by simply
growing tall and falling over, or the tic-tac-toe Al that triggered a memory overflow
in its opponent (Lehman et al. 2020). Users also need to know whether unexpected
values found by the optimisation are just the result of the random processes in the
metaheuristic, or whether they are related to a more fundamental property of the soft-
ware being tuned. This latter point is particularly relevant in a real-world application
where a single solution from a single algorithm run is typically desired to be put into

@ Springer

A systematic approach to parameter optimization...

practice, rather than the multiple repeat runs over multiple algorithm configurations
that are the norm in academic research.

We propose a simple, systematic, approach to parameter tuning that allows devel-
opers to focus on the software, yet still achieving optimal parameter settings. Our
approach incorporates statistical testing and analysis reminiscent of the current trend
in Explainable Al, whereby analysis of each parameter’s importance and sensitivity is
also presented to the developer to add confidence to the results. If the approach reveals
that the optimisation found a variable to be unimportant, then apparently “strange”
values that are the result of the random processes inherent to metaheuristics can be
ignored. If a variable is shown to be unimportant, but is regarded as important by the
decision maker (or vice versa), this indicates a potential issue with the fitness defini-
tion needing closer inspection, to ensure that the variable is correctly interpreted by
the target application, and to avoid the algorithm exploiting a loophole. If a variable
has been tuned outside of its expected range, knowing something of its relationship
to be the optimisation objective and the other variables will provide some explanation
for why the selected value was chosen.

Explanation of this nature is deeply rooted in the application; so the main focus of
this paper is a worked example following a real world case study. In this case study
we focus on Opium, an application developed in-house by the Operational Research
department of the international airline KLM, which carries over 35M passengers per
year to 171 destinations using 214 aircraft. Opium was designed to measure the robust-
ness of a global flight schedule, and was in use for a further two years after the study
we report in this paper.

Revenue and performance of a flight schedule is highly dependent on its robustness.
A lack of robustness in a schedule can seriously affect airline operations, where a delay
to one flight caused by weather, breakdown or staff availability escalates to impact
on many other flights. Consequently, accurate estimations of a schedule’s robustness
before that schedule is brought into operation are crucial to the business. Frequent reg-
ular evaluation (daily, weekly) enables improvements to the schedule, leading to more
reliable service for customers and increased revenue. Thus our goal was to improve
Opium so that it can assess schedule robustness in a shorter time, while maintaining or
exceeding the original version’s accuracy. Simultaneously, the proposed methodology
takes into account the important factor of justifying the trade-offs between the different
parameters to facilitate understanding and improved business decision making.

This paper’s contributions lie in the overall process, and the real-world case study.
Though none of the individual stages are themselves new, the proposed process is
designed to shed much greater light on the optimisation than any one step by itself, in
the spirit of explaining the results. The systematic approach to parameter tuning is also
shown to realise real-world benefits. The case-study application runs more quickly,
allowing more alternative schedules to be tried, and runs more accurately, reducing
real-world delays for the millions of customers that complete their journeys with KLM
each year. The tuned configurations are justified, or explained, by statistical analysis
and search-based exploration of the space, improving trust in the results, motivating
their take-up in practice, and providing valuable feedback to the developers of the
case-study application. The approach should be applicable to the configuration of

@ Springer

A.E. . Brownlee et al.

other simulation-based applications, where we anticipate that similar benefits might
be realised.

The remainder of the paper is organized as follows. Sect. 2 introduces related work
in parameter tuning and search-based software engineering. The software targeted in
our study is described in Sect. 3.1, and the optimization methodology is described in
Sect. 3. We then move on to demonstrate the process through a series of experiments
in Sect. 4, before drawing our conclusions in Sect. 5.

2 Related work

The present study centres around improving an existing piece of software by tuning its
parameters. This fits into the much broader field of search-based software engineering
(Harman et al. 2012), whereby search-based optimisation methods are used to tackle
problems in software. Our systematic approach is also designed to offer explanations
to improve trust in the results. We now briefly summarise relevant related work on the
topics of parameter tuning and trust in optimisation results.

2.1 Automated parameter tuning and software improvement

The importance of parameter tuning is well-known within the machine learning (Yu
and Zhu 2020) and metaheuristics (Stiitzle and Lépez-Ibafiez 2019) communities,
though its use in more general software applications (like the simulation tool we
focus on) are less common. Several years ago, Hoos (2012) advocated the concept of
programming by optimization, whereby developers commit to as few decisions as pos-
sible. Instead, a program’s parameters are all exposed for later search and optimization,
greatly increasing the applicability of a piece of code to different applications.

Automated parameter tuning can be broadly divided into offline tuning, where we
tune then fix the parameters and run the algorithm (Eiben and Smit 201 1; Hutter 2009;
Birattari and Kacprzyk 2009; Stiitzle and Lopez-Ibafez 2019) and online parameter
control (Karafotias et al. 2015; Alabas-Uslu and Dengiz 2020) where the parameters
are tuned during the run. The framework proposed in the present paper focuses on
offline tuning.

Several tools have now been developed to aid this process: among the most popular
are iRace by Lopez-Ibafiez et al. (2016), SMAC by Hutter et al. (2011) and ParamILS
by Hutter et al. (2009). These only require the end-user to implement a wrapper for
their program that takes a particular algorithm configuration and returns a number
representing some concept of fitness or performance.

Loépez-Ibafiez et al. (2016) proposed iRace, which implements iterated racing for
algorithm configuration and has been shown to be effective in parameter tuning for
many different applications. Iterated racing involves sampling probabilistic distribu-
tions to choose algorithm parameters, then repeatedly running the configurations on
different problem instances, removing configurations that perform statistically worse
than at least one other. The distributions are updated periodically with a bias towards

@ Springer

A systematic approach to parameter optimization...

the surviving configurations, until the algorithm converges on a good configuration or
some other termination criterion is met.

Sequential model-based algorithm configuration (SMAC), developed by Hutter
etal. (2011), follows a Bayesian optimisation process, using models based on random
forests to estimate likely good configurations. These are refined as more configurations
are tested, until no further improvement can be found or a cap on computational time
is reached.

ParamILS (Hutter et al. 2009) uses an iterated local search algorithm to find good
configurations. ILS simply makes random changes to a base configuration, and keeps
changes that offer an improvement. If a predefined number of evaluations are made
without improvement, a larger change (“kick”) is applied. A disadvantage is that it
works only on categorical parameters and, hence, requires discretising numerical ones.

Several algorithmic approaches have also been developed beyond the publicly avail-
able tools above. Bennett et al. (2008) used a bilevel approach for tuning machine
learning algorithms, where the upper level seeks to minimise the validation set loss,
with respect to some hyperparameters, and the lower level minimises the training set
loss, with respect to the model parameters. This has recently also been shown by Sinha
et al. (2020) to work for deep learning. Sinha et al. (2014) formulated the tuning of
optimisation algorithms themselves as a bilevel problem, where the low level was the
optimisation algorithm being targeted and the upper level was the parameter tuning
stage. To improve runtimes, performance of the lower level algorithm was sometimes
approximated using a quadratic regression model. They demonstrated the approach
using a stochastic algorithm in the upper level for tuning differential evolution and
Nelder-Mead algorithms at the lower level. Liang and Miikkulainen (2015) took a
similar approach for tuning the parameters of neurovolution, albeit using a random
forest model to approximate performance at the lower level. Recently, Mejia-de Dios
et al. (2021) has formulated the parameter tuning problem as a bilevel optimisation,
whereby one level of the optimisation selects the hardest instances on which the tun-
ing focuses, in order to improve the efficiency of the optimisation process at the other
level.

Also related, transforming the static configuration parameters of an application into
variables that can be tuned dynamically has also resulted in programs that consume
substantially less energy with little reduction in functional performance (Hoffmann
etal. 2011). The concepts of parameter tuning and programming by optimization have
also been taken further in the form of deep parameter tuning, whereby hard-coded
constants within code are exposed to an external tool for tuning with respect to various
objectives (Wu et al. 2015; Bruce et al. 2016; Sohn et al. 2016).

2.2 Multi-objective parameter tuning

A number of publications have discussed the concept of parameter tuning with respect
to multiple objectives. These are well covered in a review by Bezerra et al. (2020),
who also explore approaches for tuning of multi-objective optimisers. The potential
of automatically tuning algorithms for multiple objectives was raised by Dréo (2009),
who considered the trade-off of speed vs accuracy (in terms of the solution qual-

@ Springer

A.E. . Brownlee et al.

ity reached by the metaheuristic being tuned), when setting a single parameter of a
metaheuristic using NSGA-II and evaluating each configuration a number of times.
Smit et al. (2010) considered a similar approach, using a multi-objective EA, but this
time exploring trade-offs in performance of a single-objective GA on different tar-
get problems. Further motivation for multi-objective configuration of optimisers was
also given by Dang and De Causmaecker (2014), who also considered the question of
trade-off between algorithm speed and solution quality, extended this idea by includ-
ing historical information in the fitness calculation to allow for tuning algorithms for
different evaluation budgets, and by adding noise handling techniques to cope with
the stochastic nature of the metaheuristics being tuned.

Zhang et al. (2013) proposed S-Race, an extension of I-Race, to tackle multi-
objective configuration tasks by extending racing procedures to the multi-objective
context, using non-parametric sign test to identify pair-wise dominance relationships
between models.

A multi-objective extension of ParamILS (MO- ParamILS) was proposed by Blot
etal. (2016). The main addition over ParamILS is the use of an archive of configurations
to approximate the Pareto front, using dominance (i.e., solutions that outperform others
in all the objectives), as a measure of quality.

The key difference with our approach from approaches using a single multi-
objective algorithm (whether metaheuristics or a Bayesian-optimistion approach) for
the whole optimisation is in seeking to underpin the optimisation results with expla-
nation. Our framework is designed to provide statistical evidence and exploratory
analysis of the importance of variables and their interactions to justify the optimal
results produced. These vary per objective, and change when multiple objectives are
considered together (Brownlee et al. 2020), even for white-box benchmark functions
where the relationships between variables (separability) for each objective is well
understood (Li et al. 2016). This motivates the multi-stage approach where we con-
sider the objectives in isolation prior to the multi-objective search, but this approach
also brings the benefit of putting maximal effort into approximating the bounds for
the objectives before finding the trade-off between them.

2.3 Trust in optimisation results

The machine learning community has seen Explainable AI become a hot topic in recent
years. Many advances have been made towards explaining the decisions of black-box
systems like deep neural networks (Hendricks et al. 2016; Ribeiro et al. 2016), with the
goal of increasing people’s trust in the decisions of these techniques. Explainability
also highlights where bias or poor formulation of the problem have led to errors.
“Explanations” generally mean reasons or justifications for particular outcomes,
rather than a description of the inner workings or the logic of reasoning behind the
decision-making process in general (Adadi and Berrada 2018). Similar questions have
been raised around search-based optimisation approaches, where justification for the
results is also important for making the solutions acceptable (Urquhart et al. 2019).
Standard techniques for explaining or justifying the solutions of search-based optimi-
sation remain rare. “Innovization”, proposed by Deb and Srinivasan (2006), targets

@ Springer

A systematic approach to parameter optimization...

design principles common to Pareto-optimal solutions in multi-objective optimisa-
tion, and the final stage of our framework bears some resemblance to this. Some
ad-hoc approaches to mining surrogate fitness models for sensitivity of variables and
key characteristics of good solutions have been proposed by Brownlee et al. (2013);
Brownlee (2016); similarly, mining of probabilistic models in estimation of distribu-
tions algorithms was proposed by Santana et al. (2009). Urquhart et al. (2019) proposed
generating a diverse set of solutions and using an interactive decision making process
to increase trust in the solutions of a metaheuristic for a transportation problem. Our
framework is designed to complement and build on these approaches by taking a
structured approach to gaining insight into the underpinning relationships between
variables and the optimisation objectives for parameter tuning problems.

3 Parameter tuning as an optimization problem: Proposed
methodology for real-world applications

We now present our proposed methodology for parameter tuning software applica-
tions. The overall goal here is to provide tuned configurations of the application, with
supporting analysis and explanation of the results in the form of identification of the
critical parameters and their relationship with the one or more objectives to be opti-
mised. The motivation is to achieve both confidence in the results and vital feedback
to developers for the application.

The steps are as follows:

1. Statistical sensitivity analysis. Using formal Design of Experiments to sample
the search space and standard ANOVA testing with response surface methodology,
this stage identifies the most sensitive variables at a global level, and locates high
quality solutions for each objective. This provides a sanity-check grounded in
statistics for the subsequent stages, and provides indications as to the suitability of
the chosen parameters, their bounds and their granularity, with alow computational
cost.

2. Single-objective parameter tuning. Using standard parameter tuning tools, this
stage approximates the lower bounds achievable for each objective when ignoring
all others.

3. Functional ANOVA. Using a model-based optimiser for the previous stage, we
are able to exploit the knowledge embedded in the resulting models to bring further
insight into the parameters and the relationships between them.

4. Seeded multi-objective optimization. Using a well-established multi-objective
optimisation algorithm, configurations spanning the trade-off between the objec-
tives are found, revealing any knee or tipping points that can be exploited. This
optimisation is seeded with the results from the single-objective optimisation stage,
giving it a head start and ensuring that any solutions found at least match the perfor-
mance of the single-objective optima. The idea of seeding the MO search with SO
optima, and analysis of the variables among the Pareto front, can be traced back to
the Innovization of Deb and Srinivasan (2006). Here, we enhance this concept by
also building on the insights gained from the statistical SA and fANOVA stages.

@ Springer

A.E. . Brownlee et al.

Trends in the values assigned to variables along the Pareto front are also identified
to further explain the chosen configurations.

The individual steps in this framework are not in themselves novel, but the overall
procedure offers a systematic approach that is useful for real-world applications and,
crucially, explains the results. The idea is to take a reasoned approach to parameter
tuning that offers:

— an optimal configuration;

— statistical evidence supporting the optimal configuration;

— insight into important parameters and how they interact that might be of use to the
application developers;

— involvement of the decision maker in guiding the process to increase frust in the
outcome.

We now consider the application that forms the focus of our study and specific
implementation details before proceeding to our experimental results.

We focus on one application in the case study to allow us to concentrate on the
individual analysis of each variable, and its relationship with the outcomes of an opti-
misation run. In principle, the approach will work for tuning any software with some
measure of solution quality (simulation accuracy in this case), and a non-functional
property such as run time. The application in our case study has a variety of variable
types (boolean, integer, continuous, categorical/nominal). It also includes dependent
variables (i.e. those that are only operational when particular values are taken by other
variables): Opium’s HSFTO, HSFTI, and HSFT parameters only apply when HSFO is
TRUE. There is no reason why the techniques should not be applicable to other appli-
cations with discrete parameters of these types, but given the space required to discuss
further applications in appropriate detail, we leave consideration of other applications
for future work.

3.1 OPIUM: The software under consideration

Opium is a standalone application developed and maintained in-house by the Opera-
tional Research Department at KLM. It is implemented in Java, following a ‘building
block’ model whereby different components of the simulation process are combined
in stages. Much of Opium’s code is highly-specific to the application, with the core
simulation logic built on a freely available Java library DSOL developed at TU Delft
by Jacobs (2005).

A single run of Opium estimates robustness for a schedule. Distributions for events
such as aircraft breakdowns are specified in a set of data files. Opium stochastically
samples these distributions over a number of repeat runs, computing resulting delays
and knock-on effects from distributions, and computing an overall cost through a series
of sanctions.

Schedules cover periods of three months; there are separate schedules for flights
within Europe (EUR) and for those reaching international destinations (ICA). A typical
schedule contains around 17 000 flights. All KLLM flight schedules passed through
Opium for testing prior to approval. Since the work in this paper was completed,
Opium was superseded by new applications based on it.

@ Springer

A systematic approach to parameter optimization...

Table 1 Opium’s 14 configuration parameters, with the recommended ranges provided by the application’s
developers. Abbreviations (Abbrev.) are used in the rest of the paper

Parameter Abbrev. LB UB Type
Max Maintenance Reduction MMR 0 0.2 Real
Ground Factor Out GFO 1.0 1.3 Real
Slack Selection BB3 SSBB3 0 50 Integer
Max Legs Swap MLS 2 6 Integer
HSF threshold Out HSFTO 0 5 Integer
HSF threshold In HSFTI 0 15 Integer
Max Legs Cancel MLC 1 7 Integer
HSF threshold HSFT 0 15 Integer
Cancel Measure On CMO 0 1 Boolean
Break Maintenance Measure On BMMO 0 1 Boolean
Create Gamma CG 0 1 Boolean
Rounding off method ROM Regular, Down, Up, Math, None Categorical
Swap Measure On SMO 0 1 Boolean
HSF Measure On HSFMO 0 1 Boolean

Opium has 14 control parameters, listed in Table 1, with the ranges originally
specified by the application’s developers. The majority of these are application specific:
methods by which the simulation attempts to resolve problems caused by disruptions.

For the work in this paper, KLM were able to provide historical schedules to be
used as training data. These comprise ten 3-month periods from 2007 to 2010, for both
ICA and EUR.

3.2 Objective functions

In this study, we have utilized two objective functions that could have significant
commercial impact to an airline company, the accuracy and the execution time of the
simulation process. Intuitively, a decision maker requires the simulator to provide as
accurate results as possible that fit the real historical operational data of the company.
This will enable the airline firm to accurately estimate the robustness of the sched-
ule under testing based on its “normal” historical operational behavior patterns. In
addition, given that a large number of possible schedules have to be checked through
the robustness simulator within a scheduling period, the execution time of the sim-
ulator has a major impact on the timely and efficient scheduling optimization phase
of the firm. It is worth also noting that a very fast simulator could be integrated in
the scheduling optimization process of the airline firm to simultaneously optimize
operational costs, and robustness of schedules. In such a case, it is crucial to develop
a simulator that is executed in the scale of seconds, in order to facilitate a timely
schedule optimization phase.

The operational performance of the schedules is tested by Opium by repeatedly
introducing possible disruptions such as delays and breakdowns to the planned sched-

@ Springer

A.E. . Brownlee et al.

ule. The impact of these on aircraft movements is then quantified in terms of the 0,
15, 30, and 60 minute on-time performance (denoted by OTPO, OTP15, OTP30 and
OTP60), that is, the number of aircraft which have actually left on-time, or 15, 30 or
60 minutes after their scheduled departure time. Opium also quantifies the number of
swaps, and the number of cancellations, required in order to make the schedule fea-
sible given a disruption (feasible meaning that all aircraft and crews are in physically
the right place at the right time to complete their scheduled movements).

The historically measured punctuality for each schedule is used as the basis for
measuring the accuracy of the simulation. Punctuality is measured by 22 metrics for
each of 6 aircraft types (i.e., 132 metrics in total), capturing statistics like number of
aircraft delayed by 0, 5, or 15 minutes, broken down by whether they are inbound
or outbound at KLM’s hub airport, Amsterdam Schipol. We formulate the problem
of fine-tuning the Opium software package as a min-max optimization problem that
essentially minimizes the worst case (maximum) deviation from the real historical
operational data (accuracy), or minimises the program’s run time (time), or both.

Accuracy: find a parameter configuration ¢ € C, where C is the configuration
search space, that minimises the worst case deviation from reality (max mean square
error — MSE)

Acc(c) = min max (Z/;/l(mh - mo(C))2> , (D

where m, and m,(c) are the historical and output metric values respectively, for each
metric m in the set M of 132 schedule punctuality metrics, when running Opium with
parameter configuration c.

In all of our experiments, the measured accuracy was the mean MSE over ten
historical flight schedules with associated real-world punctuality statistics. MSE 1is
chosen because the errors are squared before they are averaged, so MSE gives a
relatively high weight to large errors, compared to other measures such as Mean
Absolute Error (MAE). This makes MSE more useful when large errors are particularly
undesirable. That applies here: KLM are keen to avoid a high error on any single
scheduling period, because in practice Opium is used to test one period at a time.

Time: find a parameter configuration ¢ € C, where C is the configuration search
space, that minimises the wall-clock execution time of the simulator that is required
to simulate a given scheduling scenario.

Execution time is a noisy quantity that has to be carefully measured, since the
environment in which the execution time has to be measured can be affected by many
factors, including the hardware, memory caching, configuration of the system, and
other running applications. To test the impact of this, we performed 100 repeat runs
of Opium in its default configuration, measuring the wall-clock run time of each. The
distribution of these times, shown in Fig. 1, is approximately normal.

To mitigate the stochastic nature of the measurements, we define as the execution
time of the simulator its average execution time over k independent executions. Specif-
ically, we calculate the execution time of a given configuration ¢, Time(c), according
to the following equation:

@ Springer

A systematic approach to parameter optimization...

Times

40
|

30
|

Frequency
20
|

10

I I S—

[T T T T T 1
1580 1600 1620 1640 1660 1680 1700

time (s)

Fig. 1 Run times for 100 repeat runs of the default configuration of Opium, showing an approximately
normal distribution

k
Time(c) = %Zt(OPIUM(c)),)
i=1

where t(OPIUM(c)) is the wall-clock time of an independent execution of the
software under parameter optimization (Opium), which is configured with the given
parameter configuration c. If the times did not follow a normal distribution, or it was
not possible to confirm normality, then the median time could be used instead.

In all of our experiments, due to the long running times of Opium (around 15-20
minutes for all ten historical scheduling data sets), we used k = 5, except where we
explicitly note the use of 30 repeats in runs to confirm the optimal solutions. However,
as each of these repeats covered a run of the simulation on each of the ten historical
data sets, in effect the time calculation covers fifty runs of the simulation.

4 Case study and experimental results

The proposed methodology has been evaluated on tuning the Opium tool using real
world scheduling data from KLM Royal Dutch airlines. KLM provided us operating
schedules that were run during the second part of summer 2007 and the first part of
summer 2010. KLM operates a single hub-and-spoke network with dominant hub-
banks. Its European fleet consists of 45 aircraft of 4 (interchangeable) sub-types. 10
different sub-schedules, having different fleet compositions and different sizes, were
derived from the initial schedules.

4.1 Research questions

Our overall goal is to determine how the proposed framework answers the following
research questions for our case study software:

@ Springer

A.E. . Brownlee et al.

— RQ1: Can we identify important variables / parameters, as a means of justifying
the solutions that are eventually chosen?

RQ2: Can we find “optimal” configurations that approximate reality better (fit to
historical data)?

RQ3: Can we minimise Opium’s execution time?

— RQ4: Can we identify any trade-off between accuracy and execution time?

RQ1 and 2 specifically target whether relevant explanations are generated through
the approach, while RQ3 and 4 consider whether the approach still produces results
of sufficient quality.

RQ1 is answered in stages 1, 3 and 4 of our framework (statistical sensitivity
analysis, functional ANOVA and multi objective optimisation followed by Pareto front
analysis); RQ2 and RQ3 are answered in stage 2 (single objective optimisation); and
RQ4 is answered in stage 4 (multi objective optimisation).

4.2 Stage 1: Statistical parameter sensitivity

We begin with a structured approach to parameter tuning based on the procedure
outlined by Petrovski et al. (2000, 2005) and examined in more detail by Czarn et al.
(2004). This approach was implemented in version 17 of the Minitab statistical package
(Minitab, Inc 2014). The procedure begins with a screening experiment: an exploration
of the parameter search space using a fractional factorial (Plackett-Burman) Design of
Experiments (DoE) procedure, considering low and high values for each parameter.
The low value for each parameter was the minimum as specified by the company’s
developers. The high value was the value currently used for each parameter by the
company in practice, which we refer to as the default values. Over years of manual
tuning, the values in use had settled on the upper end of the ranges as anticipated by
the program’s developers.

There are 14 parameters: while a full factorial (Latin hypercube) exploration of this
space would take 16 384 evaluations, the fractional factorial considers 48 evaluations,
evenly distributed around the space. Each of these 48 runs were repeated 5 times for
the ten historical data sets, and the mean running time of these was used for the time
objective. This is followed by an ANalysis Of the VAriance (ANOVA) to determine
the parameters that have a significant impact on the objective when changing from
their lower bound to their upper bound. More precisely, the ANOVA tests for the
null hypothesis that there is no difference between the responses for each objective
at the different levels. We reject this hypothesis where p-value for the test is <0.05,
where we consider the hyperparameter to have a statistically significant impact on
the objective. The ANOVA operates the assumptions that the residuals are normally
distributed and variance is homogeneous between samples; these were confirmed by
plotting the residuals after each test. Although ANOVA is robust to non-normality
(Schmider et al. 2010), in the case where the residuals are not normally distributed
it may be preferable to switch to a non-parametric test such as Kruskal-Wallis. Four
parameters with a significant impact were found for accuracy, and six were found for
time (Table 2).

@ Springer

A systematic approach to parameter optimization...

Table 2 Screening experiment. Parameters with a statistically significant influence are in bold

Parameter LB UB P-value (accuracy) P-value (time)
MMR 0 0.2 0.177 0.544
GFO 1.0 1.3 0.311 0.000
SSBB3 0 50 0.505 0.142
MLS 2 0.404 0.578
HSFTO 0 0.794 0.987
HSFTI 0 15 0.789 0.386
MLC 1 7 0.018 0.021
HSFT 0 15 0.625 0.215
CMO 0 1 0.006 0.000
BMMO 0 1 0.980 0.762
CG 0 1 0.000 0.000
ROM Regular None 0.514 0.000
SMO 0 1 0.000 0.000
HSFMO 0 1 0.714 0.961

Table 3 Exhaustive search

parameters: accuracy Parameter LB UB
MLC 1 14
HSFT False True
CG False True
SMO False True

Note also that the use of a fractional factorial design of experiments means that the
experimental data is orthogonal. Depending on the resolution of the design (i.e., how
close to a full factorial it is), this means that we can treat each of the main effects and 2-
way interaction terms independently. The implication is that we do not need to control
for family-wise error in the ANOVA with a technique like Bonferroni correction of
the p-values (Field 2018). With the design used here, we can safely reject the null
hypothesis where the p-value is <0.05.

The second stage explores the parameters with a significant impact more closely
to determine their optimal values. For accuracy, these are all discrete, taking either
binary or integer values as listed in Table 3. This means that an exhaustive search
over all combinations is possible. The remaining parameters were held at their default
values during this search.

The results of the exhaustive search are given in Fig. 2. Following the same visual-
isation procedure as Brownlee and Wright (2012); each row represents one solution,
with the columns representing the parameters and the objective. The range for each
column is normalised so the bars represent the full range of possible values for that col-
umn. Solutions are sorted by one of the objectives to show any relationships between
the parameters and the objectives. A suitable alternative visualisation would be a par-

@ Springer

A.E.l. Brownlee et al.

CMO SMO Accuracy
1___I:l 2716
200 I (o716
sl 1 (2716
a1 (o716
s I (o7
6 1A (2716
7T A 2716
sl I (o716
g I (o716
P I 2716
P I o716
L A o1s
ST (015
s I (o1

.14 o 2716
2.1 ol 2927
I 1 oM 3065
.14 0 ol 3069
2.4 1 o[3662
2.1 0 o[asz3
I 1 0
1.14 o 0
I 1 0 0
1..14 0 0 0

Fig. 2 Exhaustive experiment on accuracy (mean square error, so lower accuracy values are better). The
first four columns represent the parameters explored: MLC, CMO, CG, and SMO (refer to Table 1). The
final column is the accuracy measured for each given configuration. MLC and CMO do not appear to have
any substantial effect on accuracy; consequently the final few rows show the accuracy obtained for different
CMO, CG and SMO values for all MLC values. 1...14 and 2...14 indicate where identical accuracy was
obtained using each of the values in the range [1,14] and [2,14] respectively

b=

=

allel coordinates (PC) plot, although the approach we have used has the advantage of
making correlations between specific variables and the objectives easier to see, with-
out having to follow the lines representing individual solutions as would be the case
on a PC plot.

The results reveal that SMO has the greatest influence on accuracy. All configu-
rations with SMO true yield better accuracy than those with SMO true. The second
most important parameter is CG, which also yields better accuracy when true. The

@ Springer

A systematic approach to parameter optimization...

Table 4 Response surface

parameters: time. Opt are the Parameter LB UB Levels Opt
optimal values found GFO 1 26 5 1.62858
MLC 1 14 5 14
CMO 0 1 2 1
CG 0 1 2 0
ROM Regular, Down, Up, Math, None 5 Regular
SMO 0 1 2 0

results show that MLLC and CMO have only a slight impact on accuracy. When CMO
is false, MLC has no measurable impact. When CMO is true, all values for MLC yield
the same accuracy, except 1, which is slightly poorer.

A confirmation experiment was run to check the best configuration from the search
(top row in Fig. 2) against the default configuration. The best configuration found
had a MSE of 271.628. This exactly matches the MSE for the default configuration
271.628.

For running time there are six parameters with a significant impact (Table 4),
including two continuous parameters, ruling out an exhaustive search. Instead, a further
DoE procedure was followed using a central composite design, with each parameter
having a fixed number of levels indicated in Table 4. This design required 520 solution
evaluations. A polynomial response surface was fitted to the results of these evalua-
tions, having six linear terms, two squared terms, and 15 terms for pairs of parameters,
with an R? of 0.8674. An ANOVA carried out on this model found 14 significant
terms, listed in Table 5. Finally, Minitab’s optimisation tool is used to find the optimal
values for the six parameters, listed in Table 6. This tool finds the values obtained by
differentiating the linear regression model with respect to each factor in turn, setting
each derivative equal to zero and solving the resulting system of equations (Petrovski
et al. 2005). As a confirmation, Opium was run with these parameters 30 times, tak-
ing a mean of 476.5s (std. dev. 4.9s) to complete each run with an accuracy (MSE)
of 426.988. This compares to the corresponding value for the default parameters of
1406.7s (std. dev. 354.6s) and accuracy (MSE) of 271.628. These experiments clearly
show that there is much potential for improvement in both accuracy and run time at
the cost of the other, with the hyperparameters under consideration, and it is worth
moving to the second stage of optimisation. The statistical significance tests will also
be used to confirm the results produced in subsequent stages, identifying the important
variables as part of the explanation of the results.

4.3 Stage 2: Single-objective parameter tuning
Having achieved an improvement in run time, and confident that improvement is

possible for accuracy, we proceeded to automated algorithm configuration to attempt
to find parameters that lead to higher accuracy. Here, we used iRace (Lopez-Ibafiez

@ Springer

A.E. . Brownlee et al.

Table 5 Response surface
parameter significance results:
time

Source P-Value

Linear
GFO
MLC
CMO
CG
ROM
SMO

c oo o

Square
GFO*GFO 0
MLC*MLC 0.114

2-Way Interaction

GFO*ROM 0.114
GFO*SMO 0
GFO*ROM 0.114
GFO*SMO 0
MLC*CMO 0
MLC*CG 0.125
MLC*ROM 1
MLC*SMO 0.197
CMO*CG 0
CMO*ROM 0.627
CMO*SMO 0
CG*ROM 0
CG*SMO 0.893
ROM*SMO 0
Taple 6 Response Surface: Parameter Value
optimal parameter values for
time GFO 1.62858
MLC 14
CMO TRUE
CG FALSE
ROM REGULAR
SMO FALSE

etal. 2016), as implemented in the R irace package' and SMAC (Hutter et al. 2011),
from the reference Java implementation?.

I Version 1.07, http://iridia.ulb.ac.be/irace
2 Version 2.08, http://www.cs.ubc.ca/labs/beta/Projects/ SMAC/

@ Springer

http://iridia.ulb.ac.be/irace
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

A systematic approach to parameter optimization...

Table 7 Single-objective:

parameter tuning Parameter LB UB Type
MMR 0 1 Real
GFO 1 2.6 Real
SSBB3 0 100 Integer
MLS 2 12 Integer
HSFTO 0 10 Integer
HSFTI 0 30 Integer
MaxLC 1 14 Integer
HSFT 0 30 Integer
CMO 0 1 Boolean
BMMO 0 1 Boolean
CG 0 1 Boolean
ROM Regular, Down, Up, Math, None Categorical
SMO 0 1 Boolean
HSFMO 0 1 Boolean

For runs with iRace and SMAC, the default configuration supplied by KLM was
used as a seed. This ensures that the runs would at least match the existing performance.
Where possible, parameter bounds were extended to double the upper bound specified
by KLM (using the performance on the model as a target, if the original bounds
were correct then configurations excluding them ought to be excluded by the search,
but the statistical results at stage one has already shown that it is worth expanding
the bounds and letting the search decide). The updated bounds were as specified in
Table 7; for example, GFO now has an upper bound of 2.6. Optimization of accuracy
was performed with no limitation on execution time (allowing for the possibility of the
highest-accuracy runs having very large run times). Both tools were limited to 1000
evaluation runs.

Table 8 gives the best configurations found by iRace and SMAC. Although the
screening experiment failed to improve on the default parameters for accuracy, an
improvement was achieved here. Note, however, that the parameters found to be sig-
nificant in the screening experiment have taken the optimal values determined in that
stage: CG, SMO and CMO are 1, and the value for MLC is not 1. This provides some
confidence that values for these variables found by the stochastic searches are not
simply random noise but crucial contributors to the quality of the solution that cannot
be improved much further. In the next section we consider that further by analysing
the models generated during the SMAC run.

The optimal results obtained here for accuracy, and at stage one for time, were then
used to seed the multi-objective optimization stage, to identify the trade-off between
optimal configurations for each objective.

@ Springer

A.E. . Brownlee et al.

89vI1 ! I NMOd ! ! I 8 € S € 14 L1 61'C 680

LI'STI 0 I NMOd ! 0 0 01 S S € 01 Sl SC 660 DVIAS

orrct [I NMOd I 0 0 14 € 0¢ S 6 9 9wc S0

0Leel 0 I NMOd [0 0 14! € 94 9 L CL 9¢'c 100 orY!
(ASW) Aoemady ONASH OIS WOd DO ONWNWd ONWD I4dSH DTN IIdSH OIdSH STAN €ddSS OdD AN

synsar Surun) 1ojowered :0an09[qo-o[3uls g d|qe]

pringer

AQs

A systematic approach to parameter optimization...

Table 9 Ten largest fANOVA

main/pairwise effects Effect size Parameters
57.93% due to main effect SMO
3.75% due to interaction SMO x SSBB3
3.55% due to main effect SSBB3
3.07% due to main effect CMO
3.06% due to interaction SMO x CMO
2.11% due to interaction SSBB3 x HSFTI
1.36% due to main effect HSFI
1.35% due to interaction SMO x HSFTI
1.25% due to main effect ROM
1.22% due to interaction SSBB3 x CMO

4.4 Functional ANOVA

Atthis stage, we performed a deeper analysis of the sensitivities for accuracy by mining
the models constructed by SMAC during the single-objective optimization. As noted
above, the models used by SMAC are based on random forests, a machine learning
tool for regression and classification. Random forests are collections of regression
or decision trees, where the data is split at each leaf according to a threshold value
in one of the variables. A linear sum over the leaves in one tree for a particular
variable or combination of variables allows us to make a marginal prediction of the
relationship between that variable and the response (accuracy in this case). In turn,
marginal predictions for a forest are the average of marginals over the trees. Variance
in the marginals over the trees shows uncertainty. This is known as functional ANOVA,
implemented in the FANOVA tool (Hutter et al. 2014)* for the models generated by
SMAC. In essence this is rather like an average over all possible configurations for
the other parameters, but without having to run an extensive search over the space of
parameter configurations.

The top ten effects as determined by fANOVA are given in Table 9. Note that of the
parameters identified by the screening experiment as significantly impacting accuracy
(Table 2), SMO and CMO feature heavily among these effects; both were shown to
be strong drivers of accuracy in the exhaustive experiment Fig. (2). In contrast, CG
and MLC do not feature at all (and were also confirmed as having less influence in
the exhaustive experiment). By accounting for higher-order interactions, fANOVA is
able to avoid being misled. This highlights the importance of deploying search-based
methods: the human developer is unable to capture the higher order interactions and
patterns, simply because there is too much data to do it.

fANOVA is also able to reveal helpful insights via the continuous marginal distri-
butions — that is, how accuracy relates to the parameters over the whole space. The
most helpful example in this work is given in Fig. 3 for GFO. Here, the recommended
bounds specified by the company were 1.0-1.3, determined over years of fine-tuning.
It is clear from the plot that there is a leap in accuracy (lower MSE) at the upper

3 http://www.automl.org/fanova.html

@ Springer

http://www.automl.org/fanova.html

A.E. . Brownlee et al.

270-

N

[}

o
T

Performance

250-

240-

1.0 25

15 2.0
Ground_Factor_Out
Fig. 3 Continuous marginal distribution — GFO. The solid line and shaded area are the mean =+ one
standard deviation for the configurations covered by the fANOVA

bound of this range, which we were able to capture by allowing the search a higher
upper bound. It is possible that due to interactions with other variables, this trend was
never seen in the manual experimentation but could only be picked up by the wide
search used to train SMAC’s models. The important thing to note here is the value
added to the optimisation process by providing this analysis: we are able to explain
the recommended parameter choice in a very accessible way, backed up by the exten-
sive exploration of the space. This increases confidence in the results, improving the
chance that the recommendations will be adopted.

4.5 Seeded multi-objective parameter tuning

A multi-objective optimisation was conducted using the well-known algorithm NSGA-
II by Deb et al. (2002) to explore the trade-off between the conflicting accuracy and
time objectives. In this work, we are not particularly concerned with search algorithm
performance, only an improvement to Opium over the status quo, so the parameters for
NSGA-II were not tuned extensively beyond some reasonable assumptions based on
the problem size and limited empirical tuning. We are also not comparing against other
algorithmic performances, but rather seeking to identify a manageable set of solutions
to present to the decision maker, so only a single run was performed. The precise
implementation used a Gray-encoded bit string representation so that all parameters
could be handled by the same variation operators. Solutions comprised 45 bits for
the step sizes and bounds listed in Table 10. The algorithm used a population size of
30, bit flip mutation at a rate of 1/n (n being the number of bits), uniform crossover
with a rate of 100%, and binary tournament selection. Recall from Sect. 3 that the
noise in the run-time objective is handled by taking the average from multiple runs of
Opium using the same configuration. At each iteration, Pareto optimal solutions were

@ Springer

A systematic approach to parameter optimization...

Table 10 Multi-objective optimisation: parameter bounds and step sizes

Parameter LB UB Type Step Size
MMR 0 1.0 Real 0.05
GFO 1 1.8 Real 0.05
SSBB3 0 100 Integer 10
MLS 2 12 Integer 1
HSFTO 0 30 Integer 1
HSFTI 0 60 Integer 1
MLC 1 10 Integer 1
HSFT 0 30 Integer 1
CMO 0 1 Boolean 1
BMMO 0 1 Boolean 1
CG 0 1 Boolean 1
ROM Regular, Down, Up, Math, None Categorical n/a
SMO 0 1 Boolean 1
HSFMO 0 1 Boolean 1

stored in an archive to allow Pareto fronts larger than the population size to be found.
The algorithm was terminated after 2000 unique evaluations. The bounds for each
Opium parameter were extended (Table 10) to allow the search to explore outwith the
human-defined limits. However, in light of the earlier results we were able to reduce
the upper bounds considered earlier for some variables to allow the search to focus
on the remaining variables. GFO and MLC were found to have a clear threshold after
which accuracy could not be improved further, so their upper bounds were reduced to
1.8 and 10 respectively.

The Pareto front approximated by NSGA-II is plotted in the objective space in
Fig. 4, with a point representing the default parameter configuration for comparison.
The important result arising from this experiment was that the Pareto front dominates
the default parameter settings. That is, it is possible to improve run time considerably,
while also improving the accuracy (MSE). Four solutions from the Pareto front are
highlighted in Table 11. The first two columns give the accuracy (MSE) and run-
time for each of the configurations, with Default giving these values for the default
parameter configuration. The next two rows give the values for the solutions with the
lowest overall MSE and run-time, also expressed as percentages of those for the default
configuration. The final two rows give the values for the solutions with the lowest MSE
and lowest run-time, while keeping the other objective equal or less than that for the
default configuration. This table shows that it is possible to achieve a run-time of 80%
of that of the default configuration, with no loss in accuracy.

Figure 5 shows the Pareto front rendered to illustrate the relationships between the
parameters and the objectives. As in Fig. 2, each row corresponds to one solution in the
Pareto front, and the columns show the values taken by the solution for the parameters
and the objectives. The solutions are sorted by ascending order of the accuracy (MSE)
objective.

@ Springer

A.E. . Brownlee et al.

A
A Source
2000 Default
A PF
2 A
2 1500
[A
5 A
14
A
1000
A A 4
5004 A
250 300 350 400
Accuracy (MSE)

Fig.4 Multi-objective optimisation results for all operating periods. The Pareto-optimal front (PF) approx-
imated by NSGA-II dominates the default configuration

Table 11 Multi-objective optimisation: best solutions found

All OP12 OP34
Accuracy Run-time Accuracy Run-time Accuracy Run-time
(MSE) (MSE) (MSE)
Default 271.628 1633.9 252.528 1589.6 271.628 1360.4
Lowest MSE 216.748 1557.2 198.048 1016.2 216.748 849.9
(80%) (95%) (78%) (64%) (80%) (62%)
Lowest run-time 422.548 498 30%) 390.748 401.4 390.748 401.4
(156%) (155%) (25%) (144%) (30%)
Lowest MSE, 237.648 1284.5 251.748 727.6 268.188 714.4
matching default (87%) (79%) (100%) (46%) (99%) (53%)
MSE
Lowest run-time, ~ 216.748 1557.2 198.048 1016.2 216.748 849.9
matching default (80%) (95%) (78%) (64%) (80%) (62%)
run-time

All of the Pareto-optimal solutions have CMO set TRUE, which matches the DoE
/ ANOVA analysis in Sect. 4.2. We can say with statistical confidence that this value
is required to reach the Pareto front, and has not simply “floated” to 1 as a result
of the random processes of the search. SMO is correlated with the objectives, with
low-MSE and long-running configurations having SMO set TRUE and high-MSE,
short-running, configurations having MSE set FALSE. This also matches the DoE
analysis for accuracy (where SMO was significant) and time (where SMO was not
significant). GFO tends to have values around 1.8, supported by the evidence from
the statistical analysis and the functional ANOVA. CMO is all TRUE (matching the
statistical analysis); CG is TRUE for low MSE / high runtimes and shows random
variation for the shorter runtimes (also matching the statistical analysis; see Fig. 2).
MLC does not show a particularly clear pattern (also matching the statistics, which

@ Springer

A systematic approach to parameter optimization...

MMR GFO SSBB3 MLS HSFTO HSFTI MLC HSFT CMO BMMO (G ROM SMO HSFMO MSE RunTime

o[21b.7a8
o I I o[21b.728
o I I o[21h.748[_1570.9
o I I o[21b.728[_1537.2
o I I o[223.988[14114
o I o0[237.648 [1sas
o [o[28628 do75.0
0 0 [] 8258
0 0 [769.4
o I 332.1Bs[| 7450
10 I I - - I 0 o[Caz25ag[] a98.0

Fig. 5 Multi-objective optimisation results, showing the parameter values taken by each Pareto-optimal
solution. The solutions are sorted by the objectives, revealing that SMO is correlated with the run time, and
suggesting that CMO is required to be TRUE (1) for optimality

showed that it has no significant effect on accuracy, and possibly taking higher values
for lower run times). HSFMO is mostly FALSE, but with one solution having it TRUE:
the statistical analysis suggested that this variable is unimportant and can be ignored
(potentially valuable developer feedback if the measure really should impact on one of
the objectives, which would suggest a potential bug: in this case it was indeed deemed
to only have a minor effect). For the other parameters, there is a lot of noise among the
Pareto front: it is difficult to say what, if any, influence the other parameters have on
the trade-off between accuracy and run-time, but this matches the statistical analysis.
We can say with confidence that the values for these do not matter much, explaining
the random variation in the solutions that can be off-putting to an end user.

4.6 Confirmation experiments

As a sanity check on the process we applied two different multi-objective optimisation
algorithms to the optimisation stage. The goal here is not a comparison of algorithm
performance, but simply to confirm that the explanations hold true for solutions gener-
ated by a different stochastic optimisation approach. Thus we do not compare Pareto
fronts or show multiple repeat runs, but instead compare on the basis of the fronts
from single runs, as a decision maker would need to do in practice. (A practitioner is
only interested in having a single solution to implement, or a single Pareto front to
choose a single solution from. This is especially true where single runs take weeks to
complete.)

While NSGA-II remains extremely popular (and competitive) for 2-objective prob-
lems like the one at hand, for this experiment we choose two approaches from recent
years: a multi-objective genetic algorithm, GWASFGA (Saborido et al. 2017), and the
tuning tool based on a multi-objective iterated local search, MO-ParamILS (Blot et al.
2016). Both algorithms were seeded with the default, minimal MSE, and minimal time
configurations found in the earlier stages.

GWASFGA was implemented in the jMetal (Nebro et al. 2015) framework (v5.10),
using default configurations of integer SBX crossover (probability 1, distribution 0.5),
integer polynomial mutation, binary tournament selection using ranking and crowding
distance comparisons, epsilon 0.01, population size 30, and maximum evaluations
2000 (to match that for NSGA-II). Solutions were encoded as integer solutions, with

@ Springer

A.E. . Brownlee et al.

MMR GFO SSBB3 MLS HSFTO HSFTI MLC HSFT CMO BMMO CG ROM SMO HSFMO MSE RunTime
I - 4o NN 7 G- S N > I - . o I I [226.948 [958214
[1 N) Bl 3 7 I o I 17 I . . | o I | 0[262.888 [884754
[] 40 I s S 1 5 I I I . | ol ol o I [422548 [459548
| o 1 4 30 I | J EJ Bl e A ol o| ol o| 0[(426.548 [430913
| o 7 10 G BN 2 So B N o .| ol ol ol ol 0429308 [386275
| o 7 o I | oMzl 2 G . | ol ol ol ol 0[241.348 [383522

w

Fig. 6 Multi-objective optimisation results, showing the parameter values taken by each Pareto-optimal
solution found for GWASFGA. Similar patterns are seen to those in Fig. 5, for the variables found to be
important by the statistical analysis

iMMR GFO SSBB3 MLS HSFTO HSFTI MLC HSFT cMOo BMMO CG ROM SMO HSFMO MSE RunTime
o 3 s 6ol BN Nl :E I D B B B B (226968 (1299354
K TH o 2N vEEaE E s I N B R (1278919
B o1 TS will 4B 12 S N | 1 - | ol ol o I (1030707
N 0.1 TS ONNEN 6 o NN BEEE:E o | ol ol o I I (278548 (1010963
B 0.1 TS ol 2 D N :c IS o I | ol ol o I I (288988 1003051
N o. NS ol 2 S0 N EEE:E | ol ol o I I [311.948[992716
ol s will 201 3l 2l I N | o I [314.508 [827629
oS TS so I I 2l vE 2 s . o I: | ol 0[395.588 [536530

Fig. 7 Multi-objective optimisation results, showing the parameter values taken by each Pareto-optimal
solution found for MO-ParamILS. Similar patterns are seen to those in Fig. 5, for the variables found to be
important by the statistical analysis

continuous parameters being mapped to a finite list of values at the same granularity
as used for NSGA-II in the previous section (Table 10).

MO-ParamlILS used the default configuration, with an evaluation budget of 2000,
and also specified the continuous parameters using the same granularity for NSGA-II
in (Table 10).

Despite the different algorithms used, for the parameters that were found to be
important by the statistical testing, the same patterns can be observed as for the NSGA-
I run (Figs. 6, 7). Those patterns also align with the trends suggested by the statistics,
offering confidence in these results and explaining what the algorithm has found.
Specifically:

All the Pareto-optimal solutions have CMO set TRUE.

SMO is TRUE for low-MSE / long-running configurations and FALSE for high-
MSE, short-running, configurations.

GFO tends to have values around 1.8

e CG is TRUE for low MSE / high runtimes, but shows random variation with high
MSE / low runtimes

While HSFMO does show a pattern in the MO-ParamILS results (TRUE for low
MSE, FALSE for low runtime), this differs from the results with the other two algo-
rithms. The statistical analysis suggested that this variable is unimportant and can be
ignored: thus we can conclude that the apparent pattern is simply a product of the
stochastic processes involved in the search. Likewise, SMMO shows a pattern (TRUE
for low MSE, FALSE for low runtime) for GWASFGA but not the other algorithms,
but the statistics show that this parameter can be ignored.

For the other parameters, as with NSGA-II, they show no clear pattern among
the Pareto front. This result is explained by the statistical testing showing that these
parameters are unimportant.

@ Springer

A systematic approach to parameter optimization...

4.7 Separate operating periods

The flight schedules for KLM are divided into four operating periods (OP) per year.
The characteristics of the schedules vary over the year: obviously traffic at peak times
(e.g. summer holiday period) is different to the off-peak times in both density and
distribution. Discussions with the airline suggested that this may have an impact on
the accuracy of Opium’s simulation. Treating parameter tuning as an optimisation
problem allows us to test whether different parameter configurations are suited to the
different OPs. Multi-objective optimisation was applied to Opium running on OPs 1 &
2 together (OP12), and 3 & 4 (OP34). In terms of the objectives, both yielded similar
improvements to those found with running on all OPs together. Table 11 shows that
run times of 78% and 80% that of the default configuration can be found for OP12
and OP34 respectively, with no loss in accuracy.

For both OPs, CMO is always TRUE and GFO centres around 1.8 in the Pareto-
optimal solutions. This matches the trend seen when tuning for all OPs. However,
several of the parameters show differences. For OP12, SMO and HSFMO show no
discernible trend. For OP34, SMO tends from TRUE to FALSE as MSE decreases.
HSFMO tends from FALSE to TRUE as MSE decreases.

For OP12, MLC is negatively correlated with MSE, for OP34 is positively correlated
with MSE. For both OP12 and OP34, BMMO is mostly TRUE, in contrast to tuning
for all OPs where BMMO was mostly FALSE.

Having already done the implementation work in order to optimise Opium for
the full data set, specialising to particular data sets is now trivial. Overall, then, the
systematic procedure was able to find improved configurations, tailed to the specific
sets of input data, with little additional cost in terms of personnel time.

5 Conclusion and discussion

Bespoke industrial software applications often carry a legacy of incremental fine-
tuning and configuration that leaves them performing sub-optimally. Configuration
parameters are left with a “do not touch” warning attached: as with so many appli-
cation areas, a radical change to the configuration must be rooted in a methodical
approach backed up by evidence if it is to gain acceptance. This motivates the sys-
tematic approach to exploring and optimising such parameters that we have proposed.
Each of the components of our approach is not novel in itself but the idea is that the
combination of techniques brings optimisation of the software hyperparameters with
explanation, and will allow practitioners to tackle similar problems for other industrial
software.

In a case study to prove the concept, we worked closely with partners at the inter-
national airline KLM to apply the methodology to a real-world software application,
Opium. All flight schedules were passed through Opium before implementation so the
software represents a critical part of the business workflow with global impact: if you
have flown with KLM, this software has impacted on you! We were able to improve
both accuracy and speed of Opium, with the optimised configurations being adopted
by the company until the application was superseded by new applications based on it.

@ Springer

A.E. . Brownlee et al.

This led to direct commercial impact by improving the robustness of schedules based
on estimation models.

Importantly, our approach was also able to show how various parameters influence
the objectives, and how they interact, backed up up by well-accepted statistical testing.
In contrast to the current parameter-tuning tools built on application of search-based
optimisation, this offers some explanation as to why the approach settled on specific
configurations, and adds confidence to the results. It was noted by the developers at
KLM that this explanation was enough to justify the counter-intuitive results found by
the optimisation process. Initially, the allocation of values outside the normal range
was met with skepticism, but the additional statistical analysis and trends revealing
how the variables influenced the objectives meant that the solutions could be adopted
with confidence. Thus we see the benefit of this form of explanation: increasing the
likelihood of adoption and so increasing the chance that the benefits of the optimisation
will be realised in practice.

A potential limitation with the approach is the reliance on important of single and
two-way variable relationships for explanations. For many benchmark and real-world
problems, even those with highly non-linear fitness functions, algorithms using only
1 and 2-variable groups are still able to capture much higher-order structures in the
problem for locating the optimum (Brownlee et al. 2008, 2009), so these do represent a
strong foundation for explaining solutions to a human. However, further investigation
in to what degree of inter-variable relationship is critical to explanation represents one
direction for future work.

Having followed this process for the real-world application described in the case
study, we are able to make some key recommendations for others seeking to optimise
an existing piece of software:

1. Do not underestimate the potential for simple parameter tuning. Most applications
have such ‘baked in’ configurations that are ripe for improvement. We originally
approached this problem with the intention of advancing to more sophisticated
SBSE techniques. Of course, SBSE approaches that seek to improve (for example)
the source code itself offer much potential but, at least in this case, we were able
to demonstrate substantial improvement through simply tuning the parameters.

2. Once a wrapper for the tool has been implemented that returns quality measures
for a particular configuration, additional search techniques come almost for free,
so the multiple stages in our workflow did not take much extra development time.

3. As part of the process, embed analysis of the sensitivity of the objectives to the
parameters in order to explain results; this adds confidence (particular in the case
of ‘unusual’ values being selected) and improves the chance of uptake. This can
be particularly important because staff tend to have strong belief that a certain
parameter should have a certain value; if the optimisation process confirms that
pre-determined value it is easily accepted, but if not, then additional evidence is
needed to support the change. Each stage of our workflow (from the standard
statistical testing through to multi-objective optimisation) adds a different layer of
insight to support such analysis.

@ Springer

A systematic approach to parameter optimization...

4. Following the previous point, if it is technically possible to do so, increase the
lower and upper bounds of each parameter beyond the defaults for the search
process.

5. Seed the search with default and known good configurations to guarantee at least
matching the original software’s performance.

6. Consider exploration of trade-offs between non-functional and functional prop-
erties. In our case this meant looking at time and accuracy. As it happens, we
were able to improve both, but there was also great interest from the developers
in potentially trading off some accuracy for much faster results).

The proposed approach has been demonstrated to work well for the case study
application, and the logical next step is to explore further applications. Real-world
parameter tuning problems usually comprise a mixture of variable types and ranges,
in contrast with the majority of existing evolutionary computation benchmarks (a
notable exception being (Tusar et al. 2019)), so further work towards explanation of
metaheuristics for optimisation will also need the development of new benchmarks
with clearly defined “explanations” to discover.

Acknowledgements Work carried out under the DAASE project (UK EPSRC Grant Number EP/J017515/1).

Data Access Statement The data and software application used in the case study is unavailable due to
commercial sensitivities.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adadi, A., Berrada, M.: Peeking inside the black-box: A survey on explainable artificial intelligence. IEEE
Access 6, 52138-52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052

Alabas-Uslu, C., Dengiz, B.: Parameter tuning problem in metaheuristics: A self-adaptive local search
algorithm for combinatorial problems. In: Women in Industrial and Systems Engineering, Springer,
pp. 93-111 (2020)

Bennett, K.P., Kunapuli, G., Hu, J., Pang, J.S.: Bilevel optimization and machine learning. In: IEEE World
Congress on Computational Intelligence, Springer, pp. 25-47 (2008)

Bezerra, L.C.T., Lopez-Ibafiez, M., Stiitzle, T.: Automatic Configuration of Multi-objective Optimizers and
Multi-objective Configuration, Springer International Publishing, Cham, pp. 69-92. doi:10.1007/978-
3-030-18764-4_4 (2020)

Birattari, M., Kacprzyk, J.: Tuning metaheuristics: a machine learning perspective, Studies in Computational
Intelligence, vol. 197. Springer (2009)

Blot, A., Hoos, H.H., Jourdan, L., Kessaci-Marmion, ME Trautmann, H.: MO-ParamILS: A multi-
objective automatic algorithm configuration framework. In: Festa, P., Sellmann, M., Vanschoren,
J. (eds.) Learning and Intelligent Optimization, pp. 32—47. Springer International Publishing, Cham
(2016)

Brownlee, A.E.I.: Mining Markov network surrogates for value-added optimisation. In: Proc GECCO
Companion, https://doi.org/10.1145/2908961.2931711 (2016)

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1145/2908961.2931711

A.E. . Brownlee et al.

Brownlee, A.E.I., Wright, J.A.: Solution analysis in multi-objective optimization. In: Proc. Building Sim-
ulation and Optimisation Conference, IBPSA-England, Loughborough, UK, pp. 317-324 (2012)

Brownlee, A.E.IL, Pelikan, M., McCall, J.A.W., Petrovski, A.: An app.lication of a multivariate EDA to can-
cer chemotherapy. In: Proc. GECCO, pp. 463-464, https://doi.org/10.1145/1389095.1389179 (2008)

Brownlee, A.E.I.,, McCall, J.A.W., Shakya, S.K., Zhang, Q.: Structure Learning & Optimisation in a Markov-
network based EDA. In: Proc IEEE CEC, pp. 447-454 (2009)

Brownlee, A.E.I., McCall, J.A.W., Zhang, Q.: Fitness modeling with Markov networks. IEEE T Evol Comp
17(6), 862-879 (2013). https://doi.org/10.1109/TEVC.2013.2281538

Brownlee, A.E.I., Wright, J.A., He, M., Lee, T., McMenemy, P.: A novel encoding for separable large-scale
multi-objective problems and its app.lication to the optimisation of housing stock improvements. Appl.
Soft Comput. 96, 106650 (2020)

Bruce, B.R., Aitken, J.M., Petke, J.: Deep parameter optimisation for face detection using the viola-jones
algorithm in opencv. In: International Symposium on Search Based Software Engineering, Springer,
pp. 238-243 (2016)

Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic algo-
rithms. IEEE Trans. Evol. Comput. 8(4), 405421 (2004). https://doi.org/10.1109/tevc.2004.831262

Dang NTT, De Causmaecker P (2014) Motivations for the development of a multi-objective algorithm con-
figurator. In: Proceedings of the 3rd International Conference on Operations Research and Enterprise
Systems, SCITEPRESS, pp. 328-333

Deb, K., Srinivasan, A.: Innovization: Innovating design principles through optimization. In: Proceedings
of the 8th annual conference on Genetic and evolutionary computation, pp. 1629-1636 (2006)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE T Evolut Comput 6(2), 182-197 (2002)

Mejia-de Dios, J.A., Mezura-Montes, E., Quiroz-Castellanos, M.: Automated parameter tuning as a bilevel
optimization problem solved by a surrogate-assisted population-based app.roach. App.lied Intelligence
pp. 1-23 (2021)

Dréo, J.: Using performance fronts for parameter setting of stochastic metaheuristics. In: Proceedings of
the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late
Breaking Papers, pp. 2197-2200 (2009)

Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm
Evol. Comput. 1(1), 19-31 (2011)

Field, A.: Discovering statistics using ibm spss statistics 5th ed (2018)

Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Empirical software engineering and verification. Springer,
Berlin, chap Search Based Software Engineering: Techniques, Taxonomy, Tutorial, pp. 1-59 (2012)

Hendricks L, Akata Z, Rohrbach M, Donahue J, Schiele B, Darrell T (2016) Generating visual explanations.
In: European Conference on Computer Vision, Springer, pp. 3—19

Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.: Dynamic knobs for
responsive power-aware computing. In: Proc. Int’l Conf. on Architectural supp.ort for programming
languages and operating systems, ACM, Newport Beach, CA, pp. 199-212, https://doi.org/10.1145/
1950365.1950390 (2011)

Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70-80 (2012). https://doi.org/10.1145/
2076450.2076469

Hornby, G., Yu, T.: EC practitioners: results of the first survey. ACM SIGEVOlution 2(1), 2-8 (2007)

Hutter, F.: Automated configuration of algorithms for solving hard computational problems. PhD thesis,
University of British Columbia (2009)

Hutter, F., Hoos, H.H., Leyton-Brown, K., Stiitzle, T.: ParamILS: an automatic algorithm configuration
framework. Journal of Artificial Intelligence Research 36, 267-306 (2009)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm
configuration. In: Proc. of LION-5, pp. 507-523 (2011)

Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient app.roach for assessing hyperparameter importance. In:
Proceedings of the 31st International Conference on International Conference on Machine Learning -
Volume 32, JMLR.org, ICML’14, pp. I-754-1-762 (2014)

Jacobs, P.H.: The DSOL simulation suite. PhD thesis, TU Delft, Delft University of Technology (2005)

Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter Control in Evolutionary Algorithms: Trends and
Challenges. IEEE Trans. Evol. Comput. 19(2), 167-187 (2015)

Le Bras, P., et al.: Imp user conf in concept maps: Exploring data driven explanations. In: Proc. CHI Conf.,
pp. 404:1-404:13, https://doi.org/10.1145/3173574.3173978 (2018)

@ Springer

https://doi.org/10.1145/1389095.1389179
https://doi.org/10.1109/TEVC.2013.2281538
https://doi.org/10.1109/tevc.2004.831262
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1145/2076450.2076469
https://doi.org/10.1145/2076450.2076469
https://doi.org/10.1145/3173574.3173978

A systematic approach to parameter optimization...

Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., Beaulieu, J., Bentley, P.J., Bernard, S., Beslon,
G., Bryson, D.M., et al.: The surprising creativity of digital evolution: A collection of anecdotes
from the evolutionary computation and artificial life research communities. Artif. Life 26(2), 274-306
(2020)

Li, K., Omidvar, M.N., Deb, K., Yao, X.: Variable interaction in multi-objective optimization problems. In:
Parallel Problem Solving from Nature — pp.SN XIV, Springer Nature, pp. 399-409, https://doi.org/
10.1007/978-3-319-45823-6_37 (2016)

Liang, J.Z., Miikkulainen, R.: Evolutionary bilevel optimization for complex control tasks. In: Proceedings
of the 2015 annual conference on genetic and evolutionary computation, pp. 871-878 (2015)

Lépez-Ibafie,z M., Dubois-Lacoste, J., Céceres, L.P., Birattari, M., Stiitzle, T.: The irace package: Iterated
racing for automatic algorithm configuration. Operations Research Perspectives 3:43 — 58, https://doi.
org/10.1016/j.0rp.2016.09.002 (2016)

Minitab, Inc: Minitab 17 statistical software. Software (2014)

Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jmetal multi-objective optimization framework. In:
Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, Association for Computing Machinery, New York, NY, USA, GECCO Companion
’15, p. 1093-1100, https://doi.org/10.1145/2739482.2768462 (2015)

Petrovski, A., Wilson, A., McCall, J.: Statistical identification and optimisation of significant GA factors.
In: Proceedings of the 5th Joint Conference on Information Sciences (JCIS’2000), Atlantic City, USA,
pp. 1027-1030 (2000)

Petrovski, A., Brownlee, A.E.I., McCall, J.A.W.: Statistical optimisation and tuning of GA factors. In: Proc.
IEEE CEC, IEEE Press, vol. 1, pp. 758-764 (2005)

Ribeiro M, Singh S, Guestrin C (2016) Why should I trust you?: Explaining the predictions of any classifier.
In: Proceedings of the SIGKDD Conference on Knowledge Discovery & Data Mining, ACM, pp.
1135-1144

Saborido, R., Ruiz, A.B., Luque, M.: Global WASF-GA: An evolutionary algorithm in multiobjective
optimization to approximate the whole Pareto optimal front. Evol. Comput. 25(2), 309-349 (2017).
https://doi.org/10.1162/EVCO_a_00175

Santana, R., Bielza, C., Lozano, J., Larrafiaga, P.: Mining probabilistic models learned by EDAs in optimiza-
tion of multiobjective problems. In: Proc. GECCO, pp. 445-452, https://doi.org/10.1145/1569901.
1569963 (2009)

Schmider, E., Ziegler, M., Danay, E., Beyer, L., Biihner, M.: Is it really robust? Methodology (2010)

Sinha, A., Malo, P., Xu, P, Deb, K.: A bilevel optimization app.roach to automated parameter tuning. In:
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 847-854
(2014)

Sinha, A., Khandait, T., Mohanty, R.: A gradient-based bilevel optimization app.roach for tuning hyperpa-
rameters in machine learning. arXiv preprint arXiv:2007.11022 (2020)

Smit, S.K., Eiben, A.E., Szldvik, Z., et al.: An moea-based method to tune ea parameters on multiple
objective functions. In: IICCI (ICEC), pp. 261-268 (2010)

Sohn, J., Lee, S., Yoo, S.: Amortised deep parameter optimisation of gpgpu work group size for opencv. In:
International Symposium on Search Based Software Engineering, Springer, pp. 211-217 (2016)
Stiitzle, T., Lopez-Ibédiiez, M.: Automated Design of Metaheuristic Algorithms, Springer International Pub-

lishing, Cham, pp. 541-579. https://doi.org/10.1007/978-3-319-91086-4_17 (2019)

Tiwari, A., Hoyos, P.N., Hutabarat, W., Turner, C., Ince, N., Gan, X.P., Prajapat, N.: Survey on the use of
computational optimisation in UK engineering companies. CIRP J. Manuf. Sci. Technol. 9, 57-68
(2015). https://doi.org/10.1016/j.cirpj.2015.01.003

TusSar, T., Brockhoff, D., Hansen, N.: Mixed-integer benchmark problems for single- and bi-objective
optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, Association
for Computing Machinery, New York, NY, USA, GECCO ’19, p 718-726, https://doi.org/10.1145/
3321707.3321868 (2019)

Urquhart, N., Guckert, M., Powers, S.: Increasing trust in meta-heuristics by using map-elites. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, Association for
Computing Machinery, New York, NY, USA, GECCO 19, p. 1345-1348, https://doi.org/10.1145/
3319619.3326816 (2019)

Vincalek, J., Walton, S., Evans, B.: It’s the journey not the destination: Building genetic algorithms
practitioners can trust. In: Proceedings of the Genetic and Evolutionary Computation Conference

@ Springer

https://doi.org/10.1007/978-3-319-45823-6_37
https://doi.org/10.1007/978-3-319-45823-6_37
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1145/2739482.2768462
https://doi.org/10.1162/EVCO_a_00175
https://doi.org/10.1145/1569901.1569963
https://doi.org/10.1145/1569901.1569963
http://arxiv.org/abs/2007.11022
https://doi.org/10.1007/978-3-319-91086-4_17
https://doi.org/10.1016/j.cirpj.2015.01.003
https://doi.org/10.1145/3321707.3321868
https://doi.org/10.1145/3321707.3321868
https://doi.org/10.1145/3319619.3326816
https://doi.org/10.1145/3319619.3326816

A.E. . Brownlee et al.

Companion, Association for Computing Machinery, New York, NY, USA, GECCO ’21, p. 231-232,
https://doi.org/10.1145/3449726.3459483 (2021)

Wu, E, Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, ACM, New York, NY, USA,
GECCO 15, pp. 1375-1382, https://doi.org/10.1145/2739480.2754648 (2015)

Yu, T., Zhu, H.: Hyper-parameter optimization: A review of algorithms and app.lications. arXiv:2003.05689
(2020)

Zhang, T., Georgiopoulos, M., Anagnostopoulos, G.C.: S-race: A multi-objective racing algorithm. In:

Proceedings of the 15th annual conference on Genetic and evolutionary computation, pp. 1565-1572
(2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1145/3449726.3459483
https://doi.org/10.1145/2739480.2754648
http://arxiv.org/abs/2003.05689

	A systematic approach to parameter optimization and its application to flight schedule simulation software
	Abstract
	1 Introduction
	2 Related work
	2.1 Automated parameter tuning and software improvement
	2.2 Multi-objective parameter tuning
	2.3 Trust in optimisation results

	3 Parameter tuning as an optimization problem: Proposed methodology for real-world applications
	3.1 OPIUM: The software under consideration
	3.2 Objective functions

	4 Case study and experimental results
	4.1 Research questions
	4.2 Stage 1: Statistical parameter sensitivity
	4.3 Stage 2: Single-objective parameter tuning
	4.4 Functional ANOVA
	4.5 Seeded multi-objective parameter tuning
	4.6 Confirmation experiments
	4.7 Separate operating periods

	5 Conclusion and discussion
	Acknowledgements
	References

