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Abstract 
 

 

As planted forests mature and are clearfelled in patches, second rotation tree crops 

(restocks) become available to black grouse, a species of conservation concern in the 

UK.  Currently, only a limited amount is known about the resources provided by this 

habitat to black grouse and their broods.  The aims of this study therefore, were to 

investigate the recovery of field-layer vegetation and the invertebrate population from 

restock through to canopy closure of planted trees, assess the duration of habitat 

availability and food resources to black grouse, and understand how forest management 

could improve provision.  Changes to the abundance of predators resulting from habitat 

management were also considered.  The comparative habitat quality of restocks was 

assessed in a wider landscape context. 

  

Field-layer vegetation in 72 restocks in two afforested areas in the north-east and the 

south-west of the Scottish Highlands was surveyed.  On average, only 60% of ground in 

restocks was re-planted with second rotation trees, with the remainder left unplanted.  

Initial vegetation recovery was generally impeded by timber harvest residues (mainly 

brash), which comprised up to 50% of total ground cover two years after restock.  

Increased cover of heather Calluna vulgaris, often an important component of black 

grouse habitat, and decreased brash cover were recorded in areas of restocks where first-

rotation timber was removed by cable-winch (compared with harvester and forwarder 

removal) and in planted areas (compared with areas left unplanted).  Bilberry Vaccinium 

myrtillus and cotton grass Eriophorum spp. occurrence was recorded infrequently 

irrespective of restock age or management.  Heather generally dominated the field-layer 

six years after restock, reaching a height and density reported to be suitable for black 

  



 

grouse nesting and brood cover in other studies.  The onset of tree canopy closure as 

early as eight years suggests that suitable black grouse habitat availability in restocks is 

likely to be severely limited in duration.   

 

Brash removal, or break-up and re-distribution of the brash layer, positively affected the 

recovery of field-layer vegetation species potentially of use to black grouse.  Extending 

the fallow period prior to restock resulted in an extended period of suitable habitat 

available to black grouse prior to canopy closure.  However, habitat created by 

extending the fallow period also attracted a higher number of mammalian predators of 

black grouse.  In the longer term, areas of restocks left unplanted should provide a 

valuable open-ground resource after canopy closure of the planted crop, although results 

suggest that management to prevent encroachment of naturally regenerating non-native 

trees is likely to be necessary.   

 

Invertebrate taxa selected by chicks in previous black grouse studies were available in 

all ages of restock studied.  Taxa abundance differed as restocks aged and field-layer 

vegetation developed, although contrasting habitat preferences of taxa meant that each 

was affected differently by restock management.  No single forest management method 

positively increased abundance of all taxa.  Abundance of Lepidoptera larvae, a key 

food item for black grouse chicks, was positively related to dwarf shrub cover.  An 

extended fallow period prior to restock should prolong increased larvae availability to 

chicks. 

 

Provision of preferred field-layer vegetation habitat and invertebrate abundance in 

restocks was comparable to habitat surrounding leks - areas likely to be occupied and 

  



 

utilised by black grouse.  Restocks had a comparatively low occurrence of key plant 

species, including bilberry Vaccinium myrtillus and cotton grass Eriophorum spp.  

Cover of the dwarf shrub bog myrtle Myrica gale, positively associated with 

Lepidoptera larvae abundance in habitat surrounding leks, was absent from restocks.  

The abundance of other invertebrate taxa considered was similar between leks and 

restocks. 

 

Study findings are discussed with reference to black grouse conservation and 

commercial forestry systems in Europe.  Management recommendations to improve 

habitat for black grouse in second rotation planted forests in Britain are provided. 
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Chapter 1: General Introduction 

 

1.1 The Black Grouse Tetrao tetrix 

 

1.1.1 Taxonomy & Morphology 

The black grouse Tetrao tetrix (Linnaeus 1758) is one of 18 species of grouse 

recognised worldwide (Storch 2007), with four species of the genus Tetrao exclusively 

inhabiting Eurasia.  There are currently seven (del Hoyo et al. 1994) or eight (Potapov 

& Flint 1989) recognised subspecies, based upon geographical variations in morphology 

(colour patterns in males and females).  Only the British subspecies T. t. britannicus is 

geographically separate.   

 

The black grouse is a large woodland bird adapted to the cold climes of the boreal forest 

zone.  Birds are sexually dimorphic; males (or ‘blackcock’) have glossy blue-black 

plumage with a white wing bar and coverts, distinctive lyre-shaped tail, and red eye 

comb.  Females (or ‘greyhen’) are cryptically coloured rufous-brown, with a forked tail 

and pale white wing bar. 

 

1.1.2 Distribution & Conservation Status 

Black grouse occupy an extremely large range in Northern Eurasia, distributed 

continuously across the boreal forest zone from Scandinavia to South Eastern Siberia 

(Storch 2007) and are also recorded in most western and central European countries 

(Storch 2000).  The population is considered to be stable throughout its contiguous 

range and listed as ‘least concern’ in the IUCN Red list (Birdlife International 2009), 
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with estimates of between 2.5-3.2 million pairs in Europe in 2004 (Sim et al. 2008).  

However, negative population trends have been reported from Fennoscandia (Wegge 

1983; Helle et al. 1987; Linden & Helle 2003) and many European populations have 

declined rapidly during the past century (Niewold 1990; Hudson & Baines 1993), 

particularly since the 1970’s (Birdlife International 2004).  Long-term range 

contractions and population declines in western and southern areas of the range have 

resulted in vulnerable, fragmented populations (Bergmann & Klaus 1994; Schmitz 

1997). 

 

The dramatic decline of black grouse in Britain is well documented.  Widespread across 

Britain until the 20th century, they were ‘commonly found in virtually every English 

county at the end of the 19th century…’ (Gladstone 1924). Their range extended from 

southern to northern England, most of Wales, throughout mainland Scotland and some 

of the Inner Hebridies (Johnstone 1967; Holloway 1996).  Many populations are now 

extinct; the current range is restricted to upland areas of Scotland, northern England and 

Wales.  Currently listed as a species of high conservation concern (Gregory et al. 2002) 

and UK BAP priority species (UK Biodiversity Action Plan 2008), numbers continue to 

decline.  The most recent national survey in 2005 estimated 5078 displaying males in 

Britain (95% CI 3920-6156) (Sim et al. 2008), 22% less than the first full national 

survey conducted 10 years previously (Hancock et al. 1999), and 80% less than the 

25000 males estimated in the early 1990’s (95% CI 13800-36700) (Baines & Hudson 

1995).  There is considerable regional variation in population fluctuations over the past 

decade.  In Scotland, which holds nearly 70% of the British population, numbers 

declined significantly by 29% between surveys, with large declines of up to 69% in 

southern Scotland, and smaller, statistically non-significant declines in north and 
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northeast Scotland (Sim et al. 2008).  In England, populations declined by 11%, but 

there is evidence for recent range expansion (Warren & Baines 2008).  In Wales, 

numbers increased by 39% between surveys, although the total population remains 

small (c. 213 males).  In addition to population declines, there is evidence that the 28% 

contraction in range reported in Britain between the early 1970’s and early 90’s 

(Gibbons et al. 1993) is continuing in core areas (Sim et al. 2008).     

 

1.1.3 Reasons for the decline  

Population declines across Europe have been linked with numerous factors, many of 

which are likely to work in combination, including: increased predation by red fox 

Vulpes vulpes, crows Corvus spp. and raptors (Angelstam 1983; Baines 1991b; Baines 

1992; Summers et al. 2004) modern forestry methods, blanket afforestation and forest 

maturation (Klaus 1991; Helle & Helle 1991; Kurki et al. 2000; Haysom 2001; Pearce-

Higgins et al. 2007); habitat loss and deterioration through agricultural improvement 

(Kurki & Linden 1995; Ludwig et al. 2009a; Ludwig et al. 2009b); decline in chick 

survival (Baines 1991b; Baines et al. 1996); collision with deer fences (Catt et al. 1994; 

Baines & Summers 1997); increased disturbance in breeding and wintering grounds 

(Miquet 1990; Zeitler & Glanzer 1998; Zeitler 2000; Herzog & Kruger 2003; Arlettaz et 

al. 2007; Patthey et al. 2008); overgrazing by sheep Ovis aries and red deer Cervus 

elaphus (Baines 1996; Calladine et al. 2002); exploitation by hunting (Storch 2007) and 

climate change (Baines 1991b; Loneux 2003; Summers et al. 2004; Ludwig et al. 

2006).  Although black grouse can respond positively to conservation management 

(Grant et al. 2009), many efforts to reverse declines have failed, suggesting that further 

understanding of mechanisms driving the decline is needed. 
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1.1.4 Reproduction & survival 

Black grouse exhibit a promiscuous mating system whereby males defend small 

territories on traditional leks in spring, displaying and fighting to mate with females.  

Females lay a clutch of 5-11 eggs in a shallow ground scrape that hatch around mid-

June in Scotland, suggested to coincide with the main peak of preferred invertebrate 

food for chicks (Baines et al. 1996), and need to raise 1.5-2 young per year to maintain 

a stable population (Baines 1996).  Declines in chick survival are thought to have 

contributed to decreases in breeding success of up to 60% across Europe in the latter 

part of the 20th century (Baines 1991b), although some populations still appear to have 

good breeding success (Baines 1991a; Baines 1996), and juvenile and adult survival 

may contribute more to observed declines instead (Baines et al. 2000). 

 

1.1.5 Habitat & diet 

Black grouse are a relatively sedentary woodland species, found in a wide variety of 

habitats across their range.  In the natural boreal forest, where low temperatures 

predominate, they inhabit the forest edge and early successional stages of forest 

regeneration created following wild-fire, disease or storms.  Outwith the boreal forest, 

they utilise structurally similar transitional habitats, such as young open woodland, 

often with a large deciduous component (Seiskari 1962; Swenson & Angelstam 1993); 

ancient pinewoods (Summers et al. 2004) with open glades maintained by browsers; 

pine or spruce bogs (Angelstam & Martinsson 1990; Wegge & Kastdalen 2008); 

intensively managed forests with large-scale clearfelling (Swenson & Angelstam 1993); 

and newly planted commercial forests (Johnstone 1967; Cayford 1990a).  The presence 

of trees is generally believed to be essential for black grouse (Johnsgard 1983), although 

some populations in northern England exist in relatively treeless areas.  Black grouse 
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prefer areas with young or stunted trees, although tree density is more important than 

tree age or height, due to the shading out of important ericaceous plants upon canopy 

closure (Cayford et al. 1989) 

 

In Britain, black grouse mainly inhabit the upland moorland transitional zone, where 

native woodland, agricultural land or exotic commercial tree plantations border heather 

Calluna vulgaris moors.  This may create a positive ‘edge effect’ attractive to black 

grouse where the boundary of the two habitats is richer than either habitat on its own 

(Odum 1959), but may also have negative consequences for other species, or no effect 

at all (Avery 1989).  In addition to Calluna moorland, black grouse require a diverse 

mosaic of habitats depending on seasonal requirements, including forests with an 

understory of dwarf shrubs such as bilberry Vaccinium myrtillus, wet moors with 

cottongrass Eriophorum spp., forest bogs rich in invertebrates, and mature deciduous 

trees, particularly birch Betula spp., from which catkins and twigs are eaten when snow 

covers the ground (Baines 1995).  Chicks feed almost exclusively on invertebrates 

during the first 2 to 3 weeks after hatching, before changing to a predominantly 

herbivorous diet (Kastdalen & Wegge 1985; Picozzi 1986; Cayford et al. 1989; Cayford 

1990b; Wegge & Kastdalen 2008).  A wide range of beetles, spiders and other 

arthropods are consumed according to abundance and local availability, but dietary 

studies have revealed ants, Lepidoptera larvae and sawfly larvae as some of the most 

favoured items taken by black grouse chicks (Picozzi 1986; Cayford et al. 1989; 

Starling-Westerberg 2001).   

 

The quality, size and distribution of suitable forest habitat patches explain most of the 

variation in spatial and temporal differences in black grouse abundance (Angelstam & 
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Martinsson 1990; Storch 2007).  Results from British radio telemetry studies suggest 

that for an area to be occupied, black grouse need an adequate winter food source, a 

protein and energy rich food source for hens in spring, and insect-rich, tall vegetation 

for chicks, within a home range of 300-500 ha per lekking group (Picozzi & Hepburn 

1984; Cayford 1990b).  In Sweden, variation in the density of males attending leks 

strongly correlated with the number and size of raised bog, clearcut and young forest 

habitats, with the presence of these preferred habitats explaining 84% of the variation in 

abundance (Angelstam 1983). 

  

1.1.6 Breeding habitat 

Females tend to nest within 1 km of the lek they are mated on (Picozzi 1986) and rear 

young in tall, dense vegetation (Borset & Krafft 1973; Bernard 1982; Parr & Watson 

1988).  However, some authors have found no relationship between habitat type or 

cover and nesting success (Storaas & Wegge 1987), whereas others found that black 

grouse nested more successfully in younger forest classes, but irrespective of the degree 

of nesting cover (Brittas & Willebrand 1991).  Rate of vegetation growth and levels of 

primary production are also important to black grouse (Angelstam 1983).  In mature, 

native Scots pinewood Pinus sylvestris at Abernethy in Scotland, where vegetation was 

released from heavy grazing by culling red deer and removing sheep, Watson and Moss 

(2008) reported the number of cocks at leks were more closely associated with the rate 

of growth in height of the recovering field layer than with breeding success the previous 

year.  As vegetation matured and growth slowed, black grouse numbers declined.  

Possible explanations suggested included that vegetation in the early stages of growth 

was more nutritious for black grouse, increasing bird condition for breeding, or that 
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improved vegetation structure or increased invertebrate density for chicks was provided 

by a young, fast-growing sward than a mature or heavily grazed one.   
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1.2 Background to the Present Study:  Commercial 

forestry and Black Grouse Habitat 

 

1.2.1 Forestry in Britain during the last century 

Britain’s forests have experienced considerable change during the 20th century, most 

significantly in the extent of forest cover, but also species composition.  Heavy demands 

for timber from Britain’s forests followed the outbreak of World War in 1914 as 

imports could no longer be relied upon, and the Forestry Commission was established in 

1919 to rebuild and maintain a strategic British timber reserve.  Following extensive 

harvesting during both World Wars, major re-forestation occurred across Britain from 

the 1950’s, with non-native conifers planted on existing and newly acquired sites, often 

as extensive plantations on marginal upland agricultural land (Mason 2007).  

Developments in silvicultural techniques allowed establishment of fast-growing, high-

volume producing forests on sites not previously considered suitable for trees.  The 

rapid expansion of afforestation slowed only in the 1980’s with the reduction of 

financial incentives (Foot 2003), by which time a fast-growing, even-aged forest 

resource was well established across the British uplands.   

 

The forest area of Great Britain has more than doubled since 1947, now covering 3 

million hectares, or 12% of the land area (Forestry Commission 2009a).  In 2005, the 

Forestry Commission reported over 16% of Scotland’s land as forested, nearly 70% of 

this with conifers (Smith & Gilbert 2003), with recommendations for forest cover to 

expand to 25% by 2050 to help reduce the impact of climate change and to increase 

Scotland’s sustainable timber resource (Forestry Commission 2006).  Forest species 
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composition has changed dramatically during the last 50 years with a major shift from 

Scot’s pine Pinus sylvestris to non-native Sitka spruce Picea sitchensis, now the major 

commercial timber species (Smith & Gilbert 2003).  Most conifer plantations are 

managed on a rotational clearfell patch system (Hibberd 1991), where four stages of 

growth are recognised: pre-thicket, thicket, pole (economically mature timber) and 

clearfell (harvest), creating a patchwork of even-aged stands throughout the forest.  

Many Sitka spruce plantations are now approaching the end of their first rotation, which 

is generally 40-60 years in duration (Mason 2007).  In 2000, 77% of conifer stands were 

categorised as ready to harvest within the next 20 years (Mason 2007).  

 

1.2.2 Commercial forestry and upland birds 

Black grouse have long been associated with commercial forestry, attracted into 

plantations by early-successional habitats, and numbers rapidly increase in newly 

forested areas (Thom 1986).  Despite widespread black grouse population declines 

across the UK, local increases were reported from the 1940’s following large-scale 

afforestation of upland habitats in Scotland and Wales (Mead 2000).  However, the 

benefits of young forest habitats are often short-lived; commercial forest canopies close 

after little more than a decade and most of the ground vegetation is shaded out (Pearce-

Higgins et al. 2007), rendering the habitat unsuitable for black grouse.  Populations will 

only persist if trees are widely spaced to allow sufficient light to the understory, or if 

substantial areas of open, unplanted ground, or margins and corridors remain within the 

plantation (Cayford et al. 1989). 

 

When black grouse density is high in newly planted commercial forests, considerable 

damage can be caused to young trees by buds and needles being eaten (Johnstone 1967).  
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In the early part of the 20th century, young plantations were repeatedly targeted by black 

grouse (Gladstone 1923), with some planting schemes in Scotland abandoned altogether 

due to severe damage (Gordon 1915).  Even as late as the 1960’s large populations were 

damaging new plantings across Scotland; of a questionnaire survey returned from 337 

forests in 1963, 20% reported ‘appreciable damage’ by black grouse (Jenkins 1963).  

Extermination was advocated within an open season, however even in the 1960’s there 

were so many black grouse present ‘it is very difficult to shoot enough to make a 

significant difference to the population…’ (Johnstone 1967).   

 

In addition to black grouse, other birds benefited from the early stages of upland conifer 

afforestation including short-eared owl Asio flammeus (Fuller et al. 2007), willow 

warbler Phylloscopus tochilus (Moss 1979), red kite Milvus milvus (Newton et al. 

1996), sparrowhawk Accipiter nisus (Moss 1979), hen harrier Circus cyaneus (Petty & 

Anderson 1986), and some song-birds (Bibby et al. 1985).  Some species are now 

closely associated with introduced conifers, such as firecrest Regulus atricapillus, 

mainly found in Norway spruce Picea abies and Douglas fir Pseudotsuga menziesii 

plantations (Peterken 2001). Other taxa also benefited from the early-successional 

habitats created by afforestation, such as voles Microtus spp., red squirrel Scirius 

vulgaris and invertebrates (Staines 1983; Avery & Leslie 1990; Lurz et al. 1995; Evans 

et al. 2006).  Rather than being influenced by tree species, many of which are non-

native in commercial plantations, black grouse and other birds select habitat based upon 

structure, productivity and patch patterns (Moss 1978; Angelstam & Martinsson 1990; 

Fuller 1997; Wilson et al. 2006).  Research on communities of bird species using 

plantations suggests that population density and abundance increases when vegetation 

and tree growth is vigorous (Moss 1979).  Bird density in a young spruce plantation in 
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Sweden was found to be one-ninth of that found in natural forest, with lower species 

diversity (Nilsson 1979).  Bird species diversity in managed boreal forests was greater 

in older forest stands and mixed tree species, and lower in young forest and clearcuts 

(Jansson & Andren 2003).  British studies have also found greater bird diversity in 

mature than younger plantations (Moss 1979; Currie & Bamford 1982), and twice as 

many bird pairs in natural pine stands than planted stands (Newton & Moss 1977).  

 

Although conifer plantations attract a greater range of species at higher densities than 

open hill-ground (Moss et al. 1979), losses of moorland species are considerable; 

upland waders are thought to have been displaced by afforestation (Stroud et al. 1987) 

and raven Corvus corax numbers have been impacted by loss of sheep carrion resulting 

from afforestation (Marquiss et al. 1978).  Golden eagle Aquila chrysaetos foraging 

habitat has also been negatively affected resulting in decreased breeding success and 

population declines (Marquiss et al. 1985; Whitfield et al. 2001).  

 

Commercial forests also provide habitat for predators of ground-nesting birds, such as 

red fox and pine marten Martes martes (Hewson & Leitch 1983; Kurki et al. 1998), and 

nesting sites for crows (Petty 1985), which were previously limited by the lack of 

suitable tree nesting sites on moorland (Stroud et al. 1987).  Fragmented forest 

(compared with continuous forest) may lead to increased numbers of generalist 

predators (Thompson 2007) and may also increase their searching efficiency (Storaas et 

al. 1999), potentially reducing black grouse breeding success (Kurki et al. 2000).  

Although there is evidence that predator control can benefit black grouse breeding 

success and increase their abundance, studies have so far failed to identify significant 

associations between the presence of gamekeepers and black grouse breeding success or 
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density in Britain (Baines 1996). Indeed, it has been suggested that improving brood 

cover in black grouse habitats may be a better long-term solution than predator control 

(Hannon & Martin 2006). 

 

1.2.3 Impacts of forestry 

When moorland and heathland are afforested with non-native conifer plantations, major 

changes to ground vegetation occur (Hill 1979), particularly when grazers are fenced 

out (Baines 1996).  Deep ploughing and drainage used during establishment of forests 

rapidly dry out soils leading to losses of moisture-loving species (Stroud et al. 1987) 

and existing moorland vegetation is eliminated during early successional stages of tree 

growth, replaced by woodland ground vegetation (Wallace & Good 1995).  When trees 

close canopy, ground vegetation is shaded out and the forest floor is covered with 

needle litter until timber harvesting.  After clearfell, vegetation species richness often 

peaks (Ferris et al. 2000; Roberts & Zhu 2002; Eycott et al. 2006) as soil disturbance 

and increased light availability allows vigorous growth of open ground colonisers such 

as rosebay willowherb Chamaenerion angustifolium and tufted hair-grass Deschampsia 

caespitosa (Abdy & Mayhead 1992), woodland herbs, and dormant heathland 

vegetation established from the seed bank (Hill & Stevens 1981; Peterken 2001) or seed 

rain (Mayer et al. 2004).  Re-vegetation after clearfell is dependent upon many factors, 

including soil type, soil fertility, harvesting method, and slope and aspect of the site 

(Wallace & Good 1995; Ferris et al. 2000; Astrom et al. 2007).  The modern managed 

forestry system cannot equate to the natural boreal forests (Stroud et al. 1987).  Non-

native coniferous planted forests result in an even-aged structure, changes to forest light 

regimes, and a lack of graded ecotones (Peterken 2001). 
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The impact of afforestation on abiotic site factors is complex.  Not only are there 

obvious effects resulting from ground preparation and planting, but unplanted ground 

and freshwater habitats outside the forest are also affected to varying degrees.  Intensive 

management operations can result in various modifications, including: changes to soil 

profiles; soil compaction and erosion during and following cultivation, drainage and 

harvesting; nutrient losses through removal of timber and brash from site and through 

leaching; and changes to water status and aeration.  However, it has been suggested that 

the impacts of forestry may be balanced by the capacity of sites to recover naturally 

(Worrell & Hampson 1997).   

 

Afforestation of moorland with conifers has been controversial for many decades, being 

widely regarded as ecologically damaging (NCC 1986; Lindsay et al. 1988).  However, 

it has been suggested that that the effects of intensive agriculture on biodiversity would 

be far worse than those caused by forestry (Peterken 2001) and that upland afforestation 

has a net beneficial effect by increasing biodiversity (Garthwaite 1983) and potentially 

acting as a carbon sink (Zerva & Mencuccini 2005).   
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1.2.4 Commercial forest restocking 

Restocking is the replanting of existing forest areas that have been harvested, usually by 

clearfell.  Between 2008 and 2009, nearly 16 000 ha of forest land was restocked in the 

UK, 60% in Scotland, of which 85% was with conifers (Forestry Commission 2009).  

Restocking has increased since the 1970’s, whilst new plantings on previously un-

afforested ground have decreased (Forestry Commission 2009).   

 

Substantial changes to forest policy have taken effect in recent decades, meaning that 

restocking of the forest estate is approached differently to the original post-war first-

rotation plantations.  Plans for current productive forests now incorporate a more 

diverse range of tree species planned according to soil type and underlying geology, and 

promote a more varied forest age structure (The UK Forestry Standard 2004).  High 

density plantings of Sitka spruce coupes containing 5-10% open space were common 

between the 1950’s and 1980’s to obtain government grants, however, up to 40% of 

coupes are now left unplanted for conservation and aesthetic value.  Open, unplanted 

ground now amounts to 10% of the total forest area in Scotland (Smith & Gilbert 2003), 

which is likely to benefit black grouse, particularly breeding hens (Baines et al. 2000).  

Appropriate steps to protect soils and watercourses whilst extracting timber and 

preparing sites for restocking are now routine (The UK Forestry Standard 2004).  

Fertilisation of young trees, once an essential requirement for newly established first-

rotation upland conifer plantations (Taylor & Worrell 1991) is no longer necessary, as 

decomposing brash, leaf litter, stumps and roots from the previous crop release nutrients 

at a critical point of sapling growth on restocks (Smith & McKay 2002).  Forestry has 

progressed significantly since the harsh ploughing, fertilisation and drainage systems of 

post-war plantations.  Well informed decisions on felling and future management of 
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forests are critical to avoid the straight-edged monocultures which previously caused so 

much controversy (Avery & Leslie 1990).  Restocking forests after clearfell can provide 

the opportunity to adjust forest management practices to the benefit of wildlife, whilst 

improving the aesthetic value of plantations.   

 

1.2.5 Black grouse and restocks  

It is unclear whether second rotation restocks provide equally good habitat for black 

grouse as new plantings, although this seems to be the case for European nightjar 

Caprimulgus europaeus (Ravenscroft 1989), wood lark Lullula arborea (Langston et al. 

2007), short-eared owl (Bibby et al. 1985) and tree pipit Anthus trivialis (Burton 2007).  

Ground-nesting hen harrier in Ireland have recently shown preference for nesting in 

restocks over all other available habitats, although results must be viewed with caution 

as this relatively new habitat may not prove to be the best choice in the long-term 

(Wilson et al. 2009) .  Density and species richness of songbirds in Wales were found to 

be higher in restocks than newly afforested ground (Currie & Bamford 1981; Leslie 

1981), increasing with forest succession (Bibby et al. 1985), although comparisons were 

made between only small numbers of restocks and new planting sites in these studies.     

 

Black grouse were expected to flourish in restocks as they did in newly afforested areas 

in the 1960’s (Watson & Moss 2008), however comparable population increases have 

not been apparent, possibly indicating that the quality of habitats produced by modern 

silviculture are not as suitable for black grouse (Hjeljord & Fry 1995), or that other 

aspects of the forest environment have changed in the intervening period (e.g. increased 

predator populations).  Restocks are evidently used by black grouse in Britain for 

feeding and roosting (Bibby et al. 1985; Cayford 1993) and in one study in Argyll, were 
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found to be occupied as readily as the first rotation of young trees (Haysom 2001).  

Outwith the UK, black grouse use clearfells or restocks in many areas where modern 

forestry practices take place (Kolstad et al. 1985; Klaus 1991; Brittas & Willebrand 

1991; Swenson & Angelstam 1993), having been recorded on leks (Willebrand 1988), 

nesting in regenerating scrubby vegetation (Sonerud 1988), and recorded in clearfelled 

areas with young broods, although fresh clearfells are generally avoided (Borset & 

Krafft 1973; Marcstrom et al. 1982).  Population increases in Sweden in the 1990’s 

followed large-scale clearfelling, although this was not evident in the Urals, where it 

may have been prevented by other unknown factors (Watson & Moss 2008).  However, 

the black grouse population decline in Finland appeared wholly independently of 

changes in forest structure (Helle & Helle 1991), and even where habitat remained 

intact during the 1990’s, widespread European grouse populations mostly declined.  

This was possibly due to a common factor operating over large-scales and over-riding 

potential land-use effects, such as weather patterns (Watson & Moss 2008). 

 

There may be a number of reasons for black grouse failing to flourish in restocks.  

Important vegetation for feeding and cover such as heather and bilberry do not 

regenerate as readily after clearfelling (Hill & Jones 1978; Kardell 1980; Atlegrim & 

Sjoberg 1996a; Bergstedt & Milberg 2001; Lakka & Kouki 2009), leading to reduced 

levels of food for both black grouse and capercaillie Tetrao urogallus (Kastdalen & 

Wegge 1985; Stuen & Spidso 1988; Atlegrim & Sjoberg 1995; Atlegrim & Sjoberg 

1996b; Wegge & Kastdalen 2008).   Cayford & Hope Jones (1989) suggest that whilst 

restocks may be of benefit to black grouse in the short-term, low levels of regenerating 

heather and bilberry make them inferior to new plantings and more permanent semi-

natural forest habitats.  Invertebrate density is reduced following clearfell (Stuen & 
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Spidso 1988) and brood habitat quality reduced through drainage of the ground to 

stimulate wood production in restocks (Cayford & Hope Jones 1989; Wegge et al. 

1982), possibly affecting chick survival.  Drainage of restocks is common-place in 

second rotation plantings (Morgan & Ireland 2004). 

 

In addition to rapid re-growth of vegetation following clearfell, pre-thicket restocks 

contain the additional element of brash (tree tops and branches left on site after 

harvesting) distributed around the site in ‘wind rows’ or raked into mats (Moffat et al. 

2006), which aid heavy machinery to cross the site during timber extraction without 

damaging soils (Wood et al. 2003).  On steep slopes, brash is removed completely as 

whole trees are winched to the roadside using a cable crane (Moffat et al. 2006), 

although this can have negative impacts for the following generation of trees (Proe & 

Dutch 1994; Walmsley et al. 2009).  The retention of brash on restocks can potentially 

have negative consequences for black grouse by inhibiting growth of important 

vegetation species (Abdy & Mayhead 1992), additionally, planted trees can begin to 

close canopy before brash has degraded enough to allow vegetation to recover or set 

seed (Watson & Moss 2008).  Brash breakdown also enhances the nutrient status of the 

soil, having negative effects on heather growth.  However, brash may have beneficial 

effects for black grouse, limiting movement of mammalian predators through restocks 

(Truscott et al. 2004), providing refuges and cover for chicks (K. Kortland, pers. 

comm.), and by increasing the abundance and species diversity of chick food, such as 

beetles (Michaels & Bornemissza 1999; Selonen et al. 2005; Nitterus & Gunnarsson 

2006). 
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1.3 Thesis objectives  

 

In order to make informed decisions regarding management of second rotation restocks 

for black grouse and their broods, a thorough assessment of habitat and invertebrate 

availability in restocks from planting to canopy closure is necessary.  The overall 

objectives of this study were therefore: 

 

1. To investigate the determinants of field-layer vegetation in second rotation 

restocks, and to understand how forest management could increase suitable 

habitat for black grouse prior to canopy closure of planted trees. 

 

2. To assess whether management-influenced changes to restock habitat result in 

changes to abundance of black grouse predators. 

 

3. To quantify abundance of invertebrate food available in restocks to black grouse 

broods, and to identify management methods that could increase provision in 

restocks. 

 

4. To assess objectively the ‘quality’ of restocks to black grouse and their broods. 

 

5. To identify implications of the results with respect to forest management and 

conservation of black grouse in and around Scotland’s plantation forests, and 

relate findings to other studies in Europe and Scandinavia.   
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1.4 Thesis structure 

 

Data were collected in the field from two study sites in the Highlands of Scotland in 

The Trossachs and in Sutherland.  Further details of study sites are given in Chapter 2.   

 

Chapter 3 is the first of four data chapters; in this chapter field-layer vegetation is 

assessed in a chronosequence of second rotation restocks representing sites from re-

planting to the onset of canopy closure.  Implications of management methods used 

during restocking upon field-layer vegetation species commonly utilised by black 

grouse are considered. 

 

Chapter 4 investigates the abundance of invertebrate taxa preferred by black grouse 

broods available in second rotation restocks from re-planting to canopy closure.  

Findings are related to field-layer vegetation characteristics, site factors and restock 

management methods. 

 

Chapter 5 describes changes in field-layer vegetation and invertebrate abundance when 

the standard fallow period of two years left prior to re-planting in restocks is extended 

to between three and five years, or further extended to between six and seven years.  

Consequences of habitat change upon avian and mammalian predator abundance are 

investigated. 

 

Chapter 6 compares field-layer vegetation and invertebrate abundance in restocks with 

that in habitat surrounding leks to allow a quantitative, objective assessment of restock 

‘quality’ to black grouse and their broods. 
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Finally, Chapter 7 summarises the main findings presented in the preceding chapters, 

and provides discussion surrounding the main issues.  Management recommendations 

and suggestions for further research are made. 
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Chapter 2:  Study Areas 

 

Fieldwork was conducted at two sites in the Highlands of Scotland:  The Trossachs in 

the south-west and Sutherland in the north-east (Figure 2.1).  Ten commercial forest 

plantations under clearfell rotation management were used in the study, all with recent 

records of black grouse using either the forest or forest edge. 

 

 

 Sutherland 

The Highlands 

The Trossachs 

Inverness

Glasgow 
Edinburgh 

Figure 2.1: Study areas in Scotland: The Trossachs, south-west Highlands, and 
Sutherland, north-east Highlands.  
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2.1 The Trossachs 

The Trossachs study area was located in Queen Elizabeth Forest Park, part of Loch 

Lomond and The Trossachs National Park (56º10´ N, 4º23´ W), a 167 km2 area 

consisting of three large planted forests owned and managed by the Forestry 

Commission (Loch Ard, Strathyre and Achray; Figure 2.2).  In addition to the planted 

forest, the study area also contains mountains, moorland, semi-natural forest, rivers and 

lochs.  The climate is cool and humid with an annual mean daily temperature of 4.9ºC 

minimum and 11.9ºC maximum, with 1344 mm mean annual precipitation [1971-2000 

annual means, recorded at Ardtalnaig meteorological station, located approximately 40 

km NE of the centre of the study area; Met Office (www.metoffice.gov.uk)].  

Underlying geology of the area comprises old, hard Dalradian metamorphic rocks 

within the Highland complex, more recently sculpted by glaciation to create their 

current landform. Soils are strongly acidic and generally based from schists, with 

predominant mineral soils being surface water gleys, iron pans, and wetter areas turning 

peaty-gleys to deep peat.  

 

2.1.1 Planted conifer forests 

Fieldwork was conducted in Loch Ard and Strathyre forests (Figure 2.2), geographically 

separate by approximately 8 km. 
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Figure 2.2: Study sites in Queen Elizabeth Forest Park: 1. Loch Ard forest and 2. 
Strathyre forest.  Achray forest (broken line) was not used in the study due to a lack of 
suitable restocks.  Stars represent black grouse leks used in the study.   
 

Both forests were established between 1920 and 1980, planted mainly on heather 

moorland, and have been under clearfell and replant silviculture since the 1970s.  Sitka 

spruce Picea sitchensis has remained the predominant planted species throughout the 

first and into the second rotation, currently covering approximately 75% of the forest 

(Table 2.1).  Forest restock plans for forthcoming years aim to broaden species diversity 

through both restocking and continuous cover management.  Both forests are 

surrounded by mountainous open hillsides containing rough grazing heather moor, with 

elevations from 0 to 890 m above sea level (a.s.l.).  The forest contains a network of 

tracks restricted to forestry vehicles but open for non-vehicle recreation to the public.  

Red and roe deer Capreolus capreolus utilise the open hill and the forest, although 

recent culling efforts have reduced the population size.  The Forestry Commission 

operates a fenceless environment in commercial plantations, with the exception of areas 
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where temporary fences are erected to prevent deer browsing of particularly vulnerable 

stands of trees.  Fenced areas in plantations are infrequent, cover small areas (<2 ha) 

and fences are generally marked with wooden droppers to prevent black grouse 

collisions.   

 

Forestry Commission staff and forestry contractors regularly report black grouse 

sightings in and around parts of both plantations, although Loch Ard holds a 

significantly greater and more stable population.  Leks are recorded on forest edges, 

although in Loch Ard birds also lek on open ground within the forest (Table 2.2).  

Numbers of lekking males are apparently increasing in Loch Ard forest; however, the 

Strathyre population has remained small and fragmented over the past decade.   

 

Crows and red fox are routinely controlled by the Forestry Commission, unlike pine 

marten, numbers of which are increasing.  Other potential predators of black grouse 

adults, eggs and broods, include the wildcat Felis sylvestris, stoat Mustela erminae, 

American mink Mustela vison, buzzard Buteo buteo, goshawk Accipter gentiles, hen 

harrier and golden eagle.   

 

2.1.2 Leks adjacent to plantations 

Black grouse leks used in the study are directly adjacent to Loch Ard Forest (Figure 2.2) 

within the newly designated ‘Greater Trossachs Forest’, a 1400 ha native woodland 

planting scheme designed to improve landscape and wildlife habitats, particularly for 

black grouse.  Land is owned by Scottish Water but leased and managed by the Forestry 

Commission.  Following the removal of 14 000 sheep between 2003 and 2005, a four 

year planting programme commenced in 2009, with 460 ha of a planned 800 ha net area 
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of Scots pine and native broadleaves planted to date.  All new planting is contained 

within 32 km of dropper-marked deer fence.  Leks are outwith fences, although other 

newly-established ‘satellite’ leks have increasingly been found close to or within fences 

over the past two years as the black grouse population increases.  Highland cattle have 

recently been introduced at low density to control and break up rank vegetation which 

developed as a result of sheep removal and deer population control.  

 

2.2 Sutherland 

The Sutherland study area covers approximately 716 km2, a larger total area than The 

Trossachs study area, due to the wider geographic spread of study plantations (Figure 

2.3).  A variety of habitats is encompassed, from lowland sheep pasture to steep-sided 

gorges, with topography generally flatter and less dramatic than in The Trossachs.  

Precipitation is low in the north-east Highlands, with 994 mm mean annual 

precipitation, and an annual mean daily temperature of 3.1ºC minimum and 11.1ºC 

maximum [1971-2000 annual means, recorded at Kinbrace meteorological station, 

located approximately 30 km NE of the centre of the study area; Met Office 

(www.metoffice.gov.uk)]. Soils types in the study area are diverse but generally 

comprise peaty gleys, peaty podzols, humus iron podzols, with brown earth on some 

lower slopes. 
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Figure 2.3: Sutherland study area. Study forests outlined: 1. Dalchork, 2. Shinness, 3. 
Lairg, 4. Inveroykel, 5. Raemore, 6. Balblair, 7. Rogart, 8. Morangie.  Stars denote 
black grouse leks used in the study. 
 

2.2.1 Planted conifer forests 

Fieldwork was undertaken in eight commercial plantations: five owned and managed by 

the Forestry Commission, the remainder owned privately and managed by independent 

forestry companies Fountains Forestry Plc. and Scottish Woodlands Ltd. (Table 2.1).  

All companies use the same timber harvesting and ground preparation methods for 

restocking, and although the private companies often have much smaller forest areas, 

these are often adjacent to large Forestry Commission plantations.  Forests are 

geographically separate by at least 8 km, with the exception of Shinness and Dalchork, 

separated by 2 km of moorland but managed by differing forestry companies.   

 

Landscape is varied, ranging from relatively flat boggy peatlands to hilly areas, with 

elevations ranging from 0 to 396 m a.s.l..  As in The Trossachs, tree species particularly 
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vulnerable to deer browsing on Forestry Commission land are generally enclosed within 

temporary deer fences marked with droppers or high-visibility orange barrier netting to 

prevent bird collisions.   

 

Black grouse have been recorded in or around all forests studied in Sutherland (Table 

2.2), with the largest known population in Dalchork.  Leks have been recorded either 

within forests or up to 1 km from the edge, with the exception of Rogart and Inveroykel, 

where the closest lekking males were 3 km and 5 km respectively.  Capercaillie Tetrao 

urogallus are present at relatively high density in areas of thinned commercial 

woodland in Morangie forest.   

 

Potential predators of black grouse are as recorded for The Trossachs study area, though 

are not routinely controlled.  The deer population is regulated on all Forestry 

Commission land by regular culling. 

 

2.2.2 Leks adjacent to plantations 

Fieldwork was undertaken at five leks in 2009 (Figure 2.3), located within or adjacent 

to study plantations.  Unlike the Trossachs study area, no new planting has occurred 

near to any of the leks in recent years, apart from routine commercial restocking 

operations.  The black grouse population in the study area is generally low but stable. 



 

Table 2.1: Forest characteristics in the Trossachs and Sutherland study areas. 
 
Study area Forest 

name  
Managed  
by 

Forest 
area 
(ha) 

Altitudinal 
range (m) 

Percentage 
of forest in 
2nd rotation  

Predominant 
planted species 

Predominant soil types  

Loch Ard 
 

FC 10 000 50-450 50 Sitka spruce  The Trossachs 

Strathyre 
 

FC 4000 100-650  60 Sitka spruce 

Peaty gleys, intergrade 
iron-pans, peat, brown 
forest soils  

Morangie FC 6100 0-400 5 Scots pine/    
lodgepole pine 

 

Dalchork FC 7900 120-370 6 Lodgepole 
pine/Sitka spruce 

 

Lairg Fountains 
Forestry 

30 70-110 28 Sitka spruce  

Rogart Fountains 
Forestry/FC

300 
30 

30-290 
50-190 

17 
100 

Scots pine   

Shinness Scottish 
Woodlands 

60 140-160 40 Scots pine   

Raemore FC 1000 60-260 14 Sitka spruce/ 
lodgepole pine 

 

Balblair FC 300 40-230 51 Scots pine/           
Sitka spruce 

 

Sutherland 

Inveroykel FC 2700 60-360 10 Sitka spruce/ 
lodgepole pine 

Peaty gleys, peaty podzols, 
humus iron podzols, brown 
earth on lower slopes, 
shallow peat over boulder 
clay 

 

 

 



 

 

Table 2.2: Records of black grouse within and around study area forests reported by FC or RSPB staff 
between 2007 and 2009. 
 
Study area Forest name Birds recorded within 

or <1 km from 
plantation edge since 
2007 

Distance to closest lek 

Loch Ard Yes Lekking in open area within plantation Trossachs 

Strathyre Yes <100 m from plantation edge 

Morangie Yes Lekking in open area within plantation 

Dalchork Yes Lekking in open area within plantation 

Lairg Yes <2 km from forest edge 

Rogart No* <3 km from forest edge 

Shinness Yes <1 km from forest edge 

Raemore Yes <100 m from forest edge  

Balblair Yes <100 m from forest edge  

Sutherland 

Inveroykel Yes <5 km from forest edge 
*area not formally surveyed



 

Chapter 3:  Field-layer habitat availability to black 

grouse in restocks  

 

3.1 Introduction    

Planting of second rotation crops (restocks) in plantations has increased in Britain since 

the 1950’s, with nearly 16 000 ha of forest land restocked between 2008 and 2009, 60% 

of this in Scotland, of which 85% was conifers (Forestry Commission 2009a).  In 2000, 

77% of conifer stands were categorised as ready to harvest within the next 20 years 

(Mason 2007).  As forests are restocked, opportunities exist to re-create habitat suitable 

for black grouse Tetrao tetrix, a moorland/forest ecotone species once widespread 

throughout the lowlands and uplands of Britain, which has declined considerably during 

the first half of the 20th century (Parslow 1973) and is now a UK BAP priority species 

(UK Biodiversity Action Plan 2008) and red-list species of conservation concern 

(Birdlife International 2009).  Declines have been due, in part, to degradation and loss of 

semi-natural habitat, often comprising open mature Scots pine Pinus sylvestris forests, 

birch Betula spp. and hazel Corylus avellana scrub woodland on moorland fringes.  

Local population increases and temporary range re-expansion occurred with the 

commencement of afforestation from the 1950’s (Thom 1986) as black grouse adapted 

well to pre-thicket habitats in young conifer plantations (Avery & Leslie 1990), mostly 

planted on heavily grazed heather moorland and semi-natural grasslands.  However, as 

plantation trees mature and field-layer vegetation is shaded out, populations once again 

decline (Pearce-Higgins et al. 2007).  Outwith remaining semi-natural forest and forest 

edge habitats, black grouse populations are now mainly associated with commercial 

forest plantations across much of their Scottish range.    
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Pre-thicket, second rotation restocks create open space for black grouse in commercial 

forests, providing a mosaic of different aged habitats as coupes are patch-felled around 

the forest.  However, the development of field-layer vegetation in restocks is likely to 

differ from that in newly afforested habitats on moorland or grassland.  Soil chemistry is 

altered by the clearfelling process (Adamson et al. 1987), by residues from the first-

rotation crop, such as needle litter (Hill & Jones 1978) and soils are further compacted 

by timber extraction machinery (Hutchings et al. 2002).  By the start of the second 

rotation, seed banks are depleted (Hill & Stevens 1981) and regeneration of the field-

layer and its rate of growth are affected by grazers, particularly deer (Bergquist et al. 

1999), which were usually fenced out in the first rotation.  Heavy grazing can potentially 

affect black grouse breeding success indirectly, through reduced abundance of key food 

plants, poorer quality nest cover, and reduced chick survival from decreased invertebrate 

densities (Baines 1996).  Vegetation recovery may be further restricted by brash cover 

(tree tops and branches left on-site after harvesting), so that a field-layer of a suitable 

height and density for black grouse may only be available for a comparatively short time 

prior to canopy closure (often just 10 to 12 years after planting; Hill et al. 1984), after 

which virtually all vascular plant species under non-native crops such as Sitka spruce 

can be lost (Hill 1986).   

 

The extent to which field-layer vegetation is used by black grouse for food and cover is 

relatively well-documented.  Habitat requirements include a field-layer with variable 

height and density, usually rich in dwarf shrubs such as heather or bilberry Vaccinium 

myrtillus, boggy areas with Eriophorum spp. and damp flushes containing sedges Carex 

spp. and rushes Juncus spp. (Baines 1995; Picozzi & Hepburn 1984; Cayford 1990b) 
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Starling-Westerberg 2001; Baines 1994, Niewold 1990; Parr and Watson 1988).  

Previous research has suggested that first-rotation plantations can provide some of these 

types of habitat, providing food, nesting habitat, open areas for lekking and shelter in 

mature trees (Haysom 2001, Picozzi 1986; Baines et al. 2000; Cayford 1990b). 

 

To date, no detailed assessment of habitat availability to black grouse within second 

rotations has been made, nor any attempt to investigate methods to improve or 

temporally increase availability of suitable habitat conditions.  Previous research 

suggests that black grouse are well adapted for the modern clearfell system used in 

Fennoscandia, particularly if good pre-thicket shrub habitat is available (Borset & Krafft 

1973; Swenson & Angelstam 1993), and that use of second rotation restocks by black 

grouse in Scotland may be to the same extent as first-rotation plantings (Haysom 2001).  

This study also found that greater availability of pre-thicket habitat in commercial 

plantations was associated with both an increased likelihood of a black grouse lek being 

present and with larger lek size.  Additionally, larger clearfell patches were more likely 

to contain a black grouse lek, up to a maximum of 200 ha.   

 

Through detailed studies of field-layer recovery from planting through to canopy 

closure, this chapter evaluates habitat quality and availability to black grouse in second 

rotation restocks.  The effect of forest management upon the plant community as a 

whole is described, and key species of interest to black grouse (Calluna vulgaris, 

Vaccinium myrtillus, and Eriophorum spp.) are examined in more detail to determine if 

forest management can increase the quality and the length of time that suitable habitat is 

available.  Two management methods are considered: i) the timber extraction method 

(Extraction Type) used to remove harvested trees from site during clearfell, and ii) 
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whether areas were replanted with trees or left unplanted (Planting Type), the latter of 

which may prolong the availability of field-layer vegetation to black grouse in restocks 

upon canopy closure of the planted crop.  In 2004, The Forestry Commission, the UK 

Government’s forestry service, set a target of 10 to 20% of open space to be left in 

newly planted forests to encourage development of wildlife habitats (The UK Forestry 

Standard 2004).  Whilst no specific guidance is given for open space in restocked 

forests, design principles are ‘no less than for new woodlands’, and targeted action to aid 

black grouse recovery in Scotland’s forests forms part of the Scottish Forest Strategy 

(Forestry Commission 2006).  The value of this prescription in creating or maintaining 

black grouse habitats in commercial forests in Scotland has not yet been assessed.   

 

3.2 Methods   

3.2.1 Study area  

The study was conducted in eight commercial forest plantations in Highland Scotland - 

two in Queen Elizabeth Forest Park, a 167 km2 area in The Trossachs, planted mainly 

with Sitka spruce Picea sitchensis, and six in Sutherland, a less productive forest area 

planted predominantly with Sitka spruce and lodgepole pine Pinus contorta, spread over 

a 716 km2 area (see Chapter 2).  Extensive clearfell and second rotation planting 

programmes are ongoing in both areas. The topography of Trossachs plantations is 

relatively steep and high, whereas plantations in Sutherland are flatter and restocks are 

generally located at lower altitude (Table 3.1) 
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Table 3.1: Characteristics of restocks in The Trossachs and Sutherland study areas.  
 

Study area 

No. of 

 restocks  
No .of     

transects 

Mean  altitude 

m a.s.l. (range) 

Mean size 

ha  (range) 

Trossachs 36 337 254.1 (80-580) 28 (3-57) 

Sutherland 13 104 142.3 (50-213) 16.6 (6.1-30) 
 

Black grouse leks have been recorded within 1 km from the edge of study plantations 

within the past three years, with two exceptions, where the closest lekking males were 

recorded less than 2 km and 3 km from the edge.  As the main aim of the study was to 

assess habitat availability to black grouse in restocks rather than habitat usage, black 

grouse were not systematically searched for.   

 

3.2.2 Forestry terminology 

‘Felling year’ is the year that first-rotation trees are clearfelled within a forest coupe, 

which is followed by an 18-month to two-year fallow period.  A ‘restock’ is a clearfelled 

forest coupe re-planted with second rotation trees.  ‘Years since restock’ is the number 

of years elapsed since these trees were planted, hence does not take into account the 

fallow period, during which field-layer vegetation is scarce and unlikely to be of use to 

black grouse. 

 

3.2.3 Field data collection 

3.2.3.1 Restock selection 

Fieldwork took place in 49 restocks where mature un-thinned, spruce or pine stands had 

been clearfelled then restocked between 0 and 10 years previously.  This type of 

retrospective chronosequence approach, comparing similar sites from different dates, is 

widely used in ecological and forest research (Hill 1986; Walker et al. 2010) particularly 

when long-term experimental studies are not possible.   
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Only restocks in a location likely to be used by black grouse were selected for the study.  

Black grouse are generally birds of the forest edge (Watson & Moss 2008) and in 

commercial forests prefer areas with 15 to 40% canopy cover, avoiding areas where the 

canopy cover exceeds 70% (Cayford 1990b).  Therefore, selected restocks were those 

located on the plantation and grassland/moorland edge, or connected to the edge by 

unplanted or other, pre-thicket, restocks.  Habitat within these restocks is likely to differ 

from restocks within the centre of the plantation, which are further from moorland seed 

sources.  Restocks that did not meet the ‘location’ criteria described, but where black 

grouse had been sighted within the last 2 years, were also included.   

 

3.2.3.2 Transect placement in restocks 

Habitat data were collected between May and September from 337 transects in 36 

Trossachs restocks in 2008, and 104 transects in 13 Sutherland restocks in 2009.  Due to 

the highly heterogeneous habitats in restocks, stratified random sampling was used for 

transect placement.  In The Trossachs, transects were located in restocks according to 

Planting Type (PT), i.e. replanted with trees (PL) or left unplanted (UNP), and to the 

method of timber extraction during clearfell: Extraction Type (ET), i.e. removed by 

mechanical harvester and forwarder (HF), or by cable winch (WI).  Therefore, each 

transect is a combination of either: PL/HF, UNP/HF, PL/WI or UNP/WI.  On flatter 

ground in restocks, timber is felled by ‘conventional harvesting’; trees are de-branched 

in-situ by heavy machinery (harvesters) and stems extracted from site by large, 

articulated machinery with a load capacity of up to 18 tonnes (forwarders: HF).  On 

ground inaccessible to heavy machinery due to site topography, chainsaws and cable 

winches are used manually to cut and drag timber across the surface of the site to 
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roadside, where branches are removed (WI).  Often, both extraction methods are used 

within a restock, according to topography, however, in Sutherland, timber was extracted 

by HF only as ground was relatively flat.  Generally, areas of restocks to be left 

unplanted are designated by planning foresters at the forest design stage, and take into 

account landscape value, with an avoidance of linear edges that can be created by tree 

planting, but also leaving areas unplanted near to streams and watercourses, reducing 

acidification and nitrification.  Areas may also be left unplanted at the tree-planting stage 

where soils may be damaged by heavy machinery and where timber crops are unlikely to 

grow well, e.g. boggy areas (J. Mulgrew, pers. comm.).     

 

Following a standard 1 to 2 year fallow period, second rotation trees are planted onto 

machine-excavated soil ‘mounds’ in HF areas to provide well-drained microsites for tree 

growth.  In WI areas inaccessible to excavators, trees are ‘flat-planted’ directly into 

undisturbed soils, which are generally freer-draining, with a reduced brash cover.   

 

A maximum of 16 transects were placed in each restock, up to 4 transects per Planting 

Type/Extraction Type combination, i.e. 4 x PL/HF transects, 4 x UNP/HF, 4 x PL/WI 

and 4 x UNP/WI.  Transects were separated by at least 50 m and located no less than 50 

m from the restock edge.  If restocks were small and 4 transects per combination could 

not be fitted, the maximum up to 4 were assigned, according to the 50 m distance 

criterion stated above.  

 

3.2.3.3 Measurement of ground-, field-layer and canopy cover composition  

Vegetation composition and tree canopy-cover were recorded at 5 equally spaced sample 

points along each 20 m transect.  At each sample point, a bamboo cane of 1 m length 
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marked at 5 cm intervals was placed horizontally on the ground and percentage 

composition of all ground-layer, field-layer and tree canopy cover was estimated by eye 

to the nearest 5%.  Percentage cover at each sample point could therefore exceed 100%.  

Vascular plants were identified to species where possible and mosses to genus.  Non-

vegetative groups included bare ground, mounds (excavated soil heaps for trees to be 

planted into), brash (discarded tops and branches from first rotation trees) and needle 

litter.  Height of vegetation, trees and brash at each sample point were also recorded.  

Three measures of each (to the highest vegetative shoot, tree leaf or brash branch within 

20 cm of the cane) were recorded at each sample point, one taken at arms length in front 

of the recorder when standing on the 20 m transect tape, one to the left and one to the 

right.  The three scores were averaged to produce one height per sample point for each 

of the following groups: graminoid vegetation, ericaceous heather species, overall 

maximum vegetation height, brash and tree height.  If vegetation, brash or trees were not 

present at one of the three points, the group was treated as missing when calculating the 

average (rather than zero).  All measurement was to the nearest 5 cm height marker on 

the cane.  Graminoid height did not take into account inflorescences.  For trees, height 

up to 3 m was measured with the marked cane, but above this a visual estimation only 

was made.  The sampling programme in each study area was designed to take into 

account vegetation growth throughout the four-month sampling period - restocks were 

sampled in a random order to prevent bias.  An index of field-layer density was 

measured by counting the proportion of 5, 1 cm thick white marks obscured on the 

bamboo cane by field-layer cover (a single group comprised of vegetation, brash and 

trees) at 0, 10, 20, 30 and 40 cm height when the cane was placed vertically at each 

sample point. The proportion of marks covered was estimated by eye when the observer 

knelt on the ground with the cane at arms length in front.  Three density measures were 
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recorded at each sample point and averaged as described above for height 

measurements.  To interpret community composition in relation to soil moisture content, 

mean cover-weighted Ellenberg indicator values for moisture (Hill et al. 1999) were 

calculated from plant species cover values at each vegetation sample point (Hawkes et 

al. 1997).  Mosses were assigned Ellenberg indicator values for moisture (Hill et al. 

1999) based on expert opinion (N.J. Willby, University of Stirling). 

 

Response variables were tested in relation to temporal variables, management variables, 

and site factors within restocks (Table 3.2).  Data collected at the restock level were 

provided electronically by FC Forest Districts.  Previous first-rotation crop species were 

determined using original FC planting maps.   

 
Table 3.2: Time (T), management (M), and site (S) variables considered for statistical 
models to assess field-layer vegetation 

Variable 
Data 
type¶ Description 

Level of 
data 
collection 

 

Restock age T Years since restock Restock 
Study area M Sutherland or The Trossachs Study area 
Planting 
Type (PT) 

M Planted with trees (PL) or left unplanted (UNP) Transect 

Restock size  S Total restock area (ha), includes planted and 
unplanted 

Restock 

Open space S Total restock area (ha), unplanted only Restock 
Distance to 
edge 

S Restock edge to nearest plantation edge (m) Restock 

Previous 
crop 

S* First rotation crop: spruce or pine Transect 

No. of 
trees# 

S Number of planted trees in a 10 x 10 m square Transect 

MTH# S Mean tree height (m) in 10 x 10 m square 
described above 

Transect 

Tree cover# S Cover (%) by planted trees Transect 
Altitude S Average of 5 equidistant points  Transect 
Slope# S Average of 5 equidistant points  Transect 

# not included in analyses due to inter-correlation within the Model (see Appendix, Table 1). ¶ indicates 
how data were represented in statistical models: T - continuous age covariate; M - 2-level management 
factor; S - continuous site-dependent variable; S* - 2-level site factor. 
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3.2.4 Statistical analyses 

3.2.4.1 Correspondence Analysis 

Canonical correspondence analysis (CCA), a constrained, multivariate analysis, was 

used to relate the general community composition of restocks to known variation in the 

environment.  In CCA, percentage cover transect scores are regressed against 

environmental variables scores at each ordination point, resulting in axes constrained to 

be linear combinations of environmental variables (ter Braak 1986).  Variables 

determined by CCA as having a significant effect on species composition were plotted 

passively onto a DCA (Detrended correspondence analysis) ordination, which allows 

interpretation of the influences of environmental variables upon species composition.   

 

CANOCO 4.5 (ter Braak and Smilauer 1998) was used for community analysis, with 

data square-root transformed and rare species (less than 5% cover) down-weighted, and 

all other parameters set to default.  Species occurring only once were not included in 

analyses.  As initial ordinations showed strong differences in restock community 

composition between the study areas, Trossachs and Sutherland data were analysed 

separately.  Explanatory variables inter-correlated at r ≥ 0.60 with the main variables of 

interest in this study, i.e. Planting Type or Extraction Type (which represent 

fundamental aspects of restock management) were identified and removed, i.e. number 

of trees, mean tree height, tree cover, and, for Trossachs data only; slope (Appendix 

Table 1).  Monte Carlo tests with 999 unrestricted permutations were used to test 

significance of environmental variables at the probability level P=0.05.   
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3.2.4.2 Generalised Linear Mixed-effects Models 

Generalised linear mixed-effects models (GLMMs) were used to examine variation in 

three individual plant species or taxa considered of particular importance to black grouse 

(Calluna vulgaris, V. myrtillus and Eriophorum spp.).  Mixed effect models account for 

non-independent errors that may occur due to more than one level in sampling design 

(Millar & Anderson 2004), i.e. multiple transects in restocks in this case.   

 

3.2.4.2.1 Model building 

Two separate analyses were undertaken; i) to assess the effects of conventional 

harvesting (HF management only) upon field-layer vegetation in restocks in The 

Trossachs and Sutherland, and ii) to assess the effects of harvesting in restocks with a 

more varied topography (HF and WI management), for which data for The Trossachs 

only was available.  Details of datasets used are summarised in Appendix Table 2. 

 

Inter-correlated explanatory variables at ≥0.60 were identified and excluded from 

analyses (for reasons described in 3.2.4.1 above; Appendix Table 1), removing variables 

correlated with study area, restock age, Planting Type or Extraction Type.  Initial 

investigations were carried out to determine if inclusion of quadratic terms was justified 

for the following variables: restock age, size, slope, altitude, and amount of structural 

open space in the restock.  In these cases, the quadratic and linear terms of the particular 

explanatory variable were used in the full analyses if when added to a model that 

included the linear term, the quadratic term had a significant effect (at P<0.05) on the 

response variable.  First-order interactions between restock age and each forest 

management variable (Planting Type or Extraction Type) were included, whilst restock 

identity was specified as a random effect.  Minimal adequate models were produced by 
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fitting all of the relevant main effects and interactions, and then removing terms 

according to their level of significance, until only those significant at P<0.05 remained.  

Interaction terms were tested for removal before main effects.  Stepwise model selection 

techniques such as these have been criticised, and alternative approaches based upon the 

use of information criteria and model averaging have been suggested (Gibson et al. 

2004; Rushton et al. 2004).  However, these approaches were not feasible in this study 

due to a relatively large number of variables to consider in models.  Stepwise selection 

allowed sequential addition and deletion of variables in a biologically meaningful 

manner.  The removal of inter-correlated explanatory variables (outlined above and in 

3.2.4.1) helped to minimise problems associated with stepwise approaches. 

 

3.2.4.2.2 Modelling approaches 

C. vulgaris cover data contained a high proportion of zeros (absent from 28% of 441 

transects) and could not be transformed to a normal distribution.  Therefore, data were 

modelled using the penalized-quasi likelihood (PQL) method (Venables & Ripley 2002) 

to account for an unknown distribution (cover values not being based upon a set of trials 

as for true binomial data), using the glmmPQL function in the ‘MASS’ library of R, 

version 2.8.1 (R Development Core Team 2008).   

 

Height and structure of ericaceous heather species and graminoids were analysed with a 

normal error distribution using linear mixed effects models, hence the lme function in 

the ‘nlme’ library of R (Pinheiro et al. 2007).   

 

Both V. myrtillus and Eriophorum spp. occurred with a low frequency across transects 

(absent from 81% and 92% of 441 transects, respectively).  Therefore, they were treated 
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as presence or absence data, using the glmer function in the ‘lme4’ library (Bates et al. 

2008), based on the binomial logistic regression model.   

 

3.3 Results  

Thirty-four vascular plant species, 4 graminoid groups identified to genus only 

(Agrostis, Festuca, Holcus and Luzula spp.) and 4 moss genus groups (Polytrichum, 

Sphagnum, Pleurozium and Racomitrium spp.) were recorded in Trossachs restocks.  

Twenty-five of these species and all of these genera were also recorded in Sutherland 

restocks, with the addition of Galium aparine.   

 

3.3.1 Field-layer composition in restocks 

Non-vegetative cover (brash, needles and mounds) dominated following restock and 

vegetative cover was mostly grasses (Figure 3.1).  Ericaceous heather species (Calluna 

vulgaris, Erica tetralix and E. cinerea) dominated 6 to 7 years after restock, covering 

39% of the field-layer.  Graminoids (Juncus spp., Carex spp. and grasses) were sparse 

after restock, with maximum cover between 2 and 5 years.  Eriophorum spp. 

(Eriophorum angustifolium and E. vaginatum) and V. myrtillus, species occurred 

infrequently and cover was generally low where present.  Planted trees dominated field 

layer vegetation from years 8 to 9.   
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Figure 3.1: Proportion of vegetative and non-vegetative cover between planting and the 
onset of canopy closure on 441 transects in 49 restocks in The Trossachs and Sutherland. 
*comprises 78 % brash, 11 % needles and 11 % mounds.  
 

Planted tree cover increased exponentially from restock to over 40% at years 8 to 9 

(Figure 3.2a).  Tree species mainly comprised non-native spruce (Sitka - 63%, Norway - 

7%), as well as pine (Scots - 11%, lodgepole - 6%), and larch (13%).   

 

Naturally regenerated trees were recorded on 94 of 441 transects, comprising birch 

(53%), Sitka spruce (39%) and western hemlock Tsuga heterophylla (8%; Figure 3.2b).  

Regeneration was locally variable, mainly occurred in areas left unplanted, and on 

average trees generally covered less than 4% of restock ground. 
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Figure 3.2: Proportion of field-layer cover by a) planted trees and b) naturally 
regenerated trees on 441 transects in 49 restocks in The Trossachs and Sutherland.  Box 
plots show median (central line), quartiles (box), 5% and 95% centiles (whiskers) and 
outliers (stars).   

 

3.3.2 Field-layer height and structure 

Mean height of ericaceous heather species (Calluna vulgaris and Erica spp.) reached a 

maximum of 41.7 cm (± 4.44 cm SE) between 8 and 9 years after restock, whereas 

graminoids reached a maximum mean height of 64.5cm (± 9.1 cm SE) 6 to 7 years after 

restock (Figure 3.3).   

 

Graminoids mostly remained above a mean height of 50 cm from restock to the onset of 

canopy closure between years 8 to 9.  Field-layer density increased to year 7, decreasing 

thereafter (Figure 3.4).  Relatively high density estimates, despite sparse vegetative 

cover from restock to year 1, can be attributed to the extensive cover of brash.   
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Figure 3.3: Mean height (cm ±1 SE) of ericaceous heather spp. (Calluna vulgaris, Erica 
cinerea, E. tetralix) and graminoids (grasses, Juncus, Carex and Eriophorum spp.) on 
441 transects in 49 restocks in The Trossachs and Sutherland.   
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Figure 3.4: Index of field-layer density on 441 transects in 49 restocks in The Trossachs 
and Sutherland.  Bars show mean density (±1 SE) of vegetative and non-vegetative field-
layer between 0 and 40cm in height.  
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Planted tree height increased each year from restock, reaching a mean height of 3.5 m at 

8 to 9 years after planting (Figure 3.5a).  Mean height of naturally regenerated trees 

increased at a slower rate, as new annual cohorts of seedlings kept averages low (Figure 

3.5b). 
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Figure 3.5: Mean height of a) planted trees and b) naturally regenerated trees on 441 
transects in 49 restocks in The Trossachs and Sutherland. Box plots show median 
(central line), quartiles (box), 5% and 95% centiles (whiskers) and outliers (stars).   

 

3.3.3 Ordination analyses of the plant community in restocks 

3.3.3.1 Canonical correspondence analysis 

In both study areas, restock age exerts the strongest influence upon community 

composition (axis 1; Table 3.3), explaining 6.2% (Trossachs) and 8.9% (Sutherland) of 

community variance.  A further 3.2% of variation in the Trossachs community is 

explained by axis 2, which is most strongly correlated with Extraction Type.  Axis 2 of 

the Sutherland data explains 4.7% of the variation, and is most strongly correlated with 

Planting Type.  
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Table 3.3: Significant correlations of restock age, management variables and site factors 
in Trossachs and Sutherland restocks with coefficient axes, tested by canonical 
correspondence analysis (CCA).  Each axis is a linear combination (a multiple 
regression model) of all explanatory variables.  Canonical coefficient columns show 
which variable(s) are important to explain each axis.  Intra-correlation coefficient 
columns describe the strength of the relationship between environmental variables and 
the ordination axes. 

  Canonical coefficients  Intra-correlation coefficients 
Variable       Trossachs       Sutherland       Trossachs       Sutherland 
  Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2
         

Eigenvalues 
 

0.202 0.117 0.255 0.137 - - - - 

Restock 
ageT,S 

-0.426 0.037 0.509 -0.180 -0.336 -0.055 0.372 -0.101

ETT 

 
0.051 0.215 Na na 0.062 0.261 na na

PTT,S 

 
-0.014 0.088 0.028 0.269 0.028 0.069 0.030 0.194

AltitudeT,S 

 
0.134 -0.079 0.365 0.221 0.157 -0.102 0.271 0.006

Slope 
 

§ § -0.006 0.099 § § 0.054 0.048

Restock 
sizeT,S 

-0.132 0.077 -0.044 -0.140 -0.087 0.121 -0.072 -0.042

Open 
spaceT,S 

0.047 -0.078 -0.255 -0.310 0.027 -0.075 -0.031 -0.186

Previous 
cropS 

-0.023 -0.020 0.283 0.047 -0.060 -0.002 -0.093 -0.013

Distance 
from edgeS 

-0.012 0.040 -0.308 -0.017 -0.091 0.117 0.112 0.014

For further axes eigenvalues see inset graphs in Figure 3.6. Superscript indicates variable was significant 
in CCA analyses (P<0.05) TrossachsT, SutherlandS. ET refers sto timber Extraction Type (HF or WI). 
PT refers to Planting Type (PL or UNP).  § Slope not included in Trossachs analyses due to inter-
correlation with Extraction Type. na: ET variable not considered in Sutherland.  See Table 3.2 for 
further description of variables. 

 

3.3.3.2 Detrended correspondence analysis 

DCA ordinations suggest that temporal, management and site factors are associated with 

field-layer vegetation in each study area differently, but each is generally associated with 

restock age, the amount of structural open space in the restock, and altitude (Figure 3.6a 

and 3.6b).  Additionally, in Sutherland, the field-layer community is associated with the 
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size of the restock, the distance from the restock to the plantation edge, and the previous 

tree crop (spruce or pine; Figure 3.6b).   

 

In both study areas, field-layer vegetation is generally species-poor following restocking, 

particularly in planted HF areas (Figure 3.6a and 3.6b).  Cover predominantly consists of 

brash, needles, bare ground and mounds, with grasses and remnant woodland plants in 

Sutherland, and mosses in The Trossachs.  HF areas are mainly colonised by Carex, 

Juncus and Eriophorum spp. in The Trossachs, with a community later dominated by 

Molinia caerulea and heather species.  WI areas mostly occur at higher altitude and in 

smaller restocks than HF areas and are associated with more structural open space, re-

colonising quickly with early-successional herbs followed by grasses and Erica cinerea 

prior to canopy closure.  Low densities of Cirsium spp. and Sphagnum spp. occur in 

Trossachs restocks at the onset of canopy closure, and Blechnum spicant and Pteridium 

aquilinium in Sutherland restocks.   

 

3.3.3.3 Influence of topography 

In The Trossachs, Extraction Type was strongly associated with the second axis of CCA 

analyses (Table 3.3) and DCA ordinations (Figure 3.6a).  However, the Extraction Type 

variable may merely be a surrogate for ‘slope’ (which was omitted from analysis due to 

inter-correlation with Extraction Type), as the timber extraction method used at clearfell 

is pre-determined by slope.  Further investigations of the data using mean weighted 

Ellenberg moisture indicator values suggest that HF areas contain species indicative of 

wetter conditions and poorly draining soils (i.e. flatter areas), whereas WI areas contain 

less moisture-demanding species, indicative of well-drained soils on steeper ground 

(Figure 3.7).  HF areas in Trossachs restocks contain more V. myrtillus, Carex spp., 
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Juncus spp. and Eriophorum spp., whereas WI areas contain more grasses and early 

successional herbs.  C. vulgaris is more likely to occur in HF areas, whereas E. tetralix 

and E. cinerea occur more in HF and more in WI areas, respectively. 
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Figure 3.6: DCA ordinations for a) Trossachs restocks (n=36) and b) Sutherland restocks (n=13). Environmental variables are represented by 
arrows pointing in the direction of maximum change, with longer arrows representing more important variables (Ter Braak 1987). Location 
of species relative to arrows indicates environmental preferences of those species. Black diamonds represent key vegetation species for black 
grouse, grey diamonds are species of a genus recorded as used by black grouse, empty diamonds are ‘other’. Variables are: restock AGE, 
restock SIZE, restock ALTITUDE, amount of structural OPEN SPACE left unplanted within the restock, DISTANCE to edge, with 2-level 
categorical variables represented by: PLANTED (vs. UNP), HF (vs. WI) and PREV.SPRUCE, which denotes the PREVIOUS CROP (spruce 
vs. pine).  Eigenvalues for the first four CCA axes (shown on inset bar charts) are measures of the explanatory power of each axis.  See 
Appendix Table 6 for species list. 



 

 

Figure 3.7: Mean weighted 
Ellenberg moisture values for 
vascular plants in Trossachs 
restocks. Each sample point 
represents a transect. Envelopes 
enclose transects with similar 
scores. Wetter communities 
occur in HF areas towards the 
top of the diagram (mean 
weighted Ellenberg indicator 
values 7.0 to 8.2, black 
rectangles), mid-range moisture 
communities in the middle 
(values 6.0 to 6.9, grey 
rectangles) and drier 
communities mainly occur in 
WI areas towards the bottom of 
diagram (values 5.0 to 5.9, 
white rectangles).  

3.3.4 GLMM analyses of field-layer species of particular importance to black grouse  

3.3.4.1 Conventionally harvested sites  

3.3.4.1.1 Development of Calluna vulgaris  

Differences in C. vulgaris cover in restocks were greatest between study areas; 

recovery was significantly greater in Sutherland than Trossachs restocks (Table 3.4).  

Cover increased with restock age and was significantly greater in planted than 

unplanted areas (Table 3.4; Figure 3.8).  The estimated mean cover by year 8 in 

planted areas reached c.25% and c.42% in Trossachs and Sutherland, respectively, but 

only c.15% and c.35% in unplanted areas, respectively.  C. vulgaris cover increased in 

a curvilinear manner with slope (Table 3.4) to an optimum gradient of 15°.   
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Figure 3.8: Calluna vulgaris cover in relation to planting type - Unplanted or Planted 
(P=0.011; Regression equations: C. vulgaris cover = 3.205*Restock age + 0.846 and 
+3.621*Restock age + 6.560, respectively), on 441 transects in 49 restocks in the 
Trossachs and Sutherland study areas.  See methods for further details relating to 
Planting Type. 
 

3.3.4.1.2 Influence of brash cover on C. vulgaris development 

A possible underlying cause for reduced C. vulgaris recovery in unplanted areas is 

brash cover, which is likely to inhibit vegetative growth (Figure 3.9).  Brash cover is 

greater in unplanted areas and greater in Trossachs than in Sutherland restocks, 

decreasing as restocks age (Table 3.4).  Therefore, brash cover was inserted into the 

final C. vulgaris minimum adequate model to determine whether it accounted for 

further variation in C. vulgaris cover, or replaced other effects.  As expected, brash 

cover was negatively correlated with C. vulgaris cover when added to the model (t=-

2.540, P=0.012), and the inclusion of this effect caused the difference between 

planted and unplanted areas to become non-significant (t=-1.876, P=0.062).  The 

insertion of brash cover had a small effect only on the study area variable (making it 

marginally non-significant; t=-1.992, P=0.054), suggesting that whilst brash may have 

52 



 

a negative effect on C. vulgaris recovery, additional factors probably also account for 

C. vulgaris cover differences between study areas.   
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Figure 3.9: Cover of brash in relation to planting type - Unplanted or Planted 
(P<0.001; Regression equations: Brash cover = (-4.764*Restock age + 46.640 and -
3.872*Restock age + 31.980, respectively), on 441 transects in 49 restocks in the 
Trossachs and Sutherland study areas.  See methods for further details relating to 
Planting Type. 
 

3.3.4.1.3 Other taxa examined 

As expected from the low occurrence of both Eriophorum spp. and V. myrtillus, there 

were few significant effects detected on the likelihood of occurrence for these plant 

taxa.  Both had a greater likelihood of occurrence in Trossachs restocks than 

Sutherland restocks (z=2.56, P=0.010 for Eriophorum spp. and z=3.382, P=0.001 for 

V. myrtillus), whilst Eriophorum spp. occurred more frequently in flatter areas 

(z=3.700, P<0.001 for effect of slope).  There was no effect of Planting Type upon 

probability of occurrence of either species (P>0.073 in both cases), and the amount of 

variation explained by each model was relatively low (R2=0.261 for V. myrtillus and 

R2=0.353 for Eriophorum spp.). 
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It is likely that detectability of differences was hindered by low species occurrence - 

V. myrtillus was present on 15% of transects in planted areas and 34% of transects in 

unplanted areas of Trossachs restocks, but just 4% of transects in Sutherland, 

occurring in unplanted areas only.  Eriophorum spp. occurred on 7% and 12% of 

transects in Trossachs restocks in planted and unplanted areas, respectively.  In 

Sutherland occurrence was rare, with Eriophorum spp. recorded on less than 2% of 

transects in either Planting Type.  

 

3.3.4.1.4 Vegetation height 

Height of ericaceous heather species (C. vulgaris, E. cinerea and E. tetralix) 

significantly increased with restock age (Table 3.5) but did not exceed 40cm until 6 

years after restock.  A maximum height of c. 45 cm was reached at the onset of 

canopy closure.  Heather spp. were taller in Sutherland than Trossachs restocks, and 

taller in planted than unplanted areas, but only by approximately 3.5 cm (Table 3.5).   

 

The height of graminoid vegetation (Juncus, Carex, Eriophorum and grass spp.) also 

increased as restocks aged (Table 3.5).  Graminoids were taller in unplanted areas, 

being on average 9.4 cm taller than in planted areas.  As expected from their different 

life-history strategies, the effects of restock age were less marked on graminoid than 

on dwarf shrub heights, and overall the explanatory power of the model was 

considerably lower (Table 3.5). 
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3.3.4.1.5 Field-layer density 

Field-layer density increased with restock age, and was greater in Sutherland restocks 

(Table 3.5), with these two effects alone accounting for much of the variation in field-

layer density and there being no significant differences between planted and unplanted  

areas (P=0.984).   



 

Table 3.4: Minimum adequate GLMM models describing the effects of management and site factors upon cover of Calluna vulgaris and 
brash on 441 transects in 49 restocks in conventionally harvested areas only of Sutherland and Trossachs restocks.   
 

Model Parameter Estimate SE df 
 

    t value

 Direction 
of effect Statistical test R2#

         

Calluna vulgaris cover Intercept -3.319 0.448 243 -7.404  glmmPQL 0.539
 Planting Type -0.359 0.140 243 -2.571** PL>UNP
 Study area -0.748 0.346 38 -2.165* S>T
 Restock age 0.286 0.062 38 4.595*** +
 Slope 0.171 0.045 243 3.825*** 
 Slope2 -0.007 0.002 243 -3.460*** 
     
Brash cover Intercept -1.102 0.208 245 -5.293 glmmPQL 0.515
 Planting Type 0.734 0.116 245 6.327*** UNP>PL  
 Restock age -0.272 0.034 38 -7.979*** -   
 Study area 0.529 0.189 38 2.799** T>S   
          

Study area (S: Sutherland; T: The Trossachs). Planting Type (UNP: Unplanted; PL: Planted). Positive effects are indicated by + symbols, negative effects by – 
symbols. Where a curvilinear fit of an independent variable was more appropriate than a linear fit, represents the type of curve. #R2 calculated by the square of the 
correlation between the model's predicted (fitted) values and the observed values. Levels of significance: ***P<0.001; ** P<0.01; * P<0.05. 

 



 

 
Table 3.5: Minimum adequate GLMM models describing the effects of management and site factors upon height of heather (C. vulgaris, 
E. cinerea and E. tetralix), graminoid (Juncus, Carex, Eriophorum and grass) spp. and field-layer density on 441 transects in 49 restocks 
in conventionally harvested areas only of Sutherland and Trossachs restocks.   
 

Model Parameter Estimate SE df 
 

t value
Direction 
of effect Statistical test R2#

         

Heather spp. height Intercept 22.791 3.416 137 6.671 lme   0.697
 Restock age 3.103 0.511 35 6.073*** +
 Planting Type -3.568 1.391 137 -2.566** PL>UNP
 Study area -7.571 2.753 35 -2.751** S>T
     
Graminoid spp. height Intercept 44.485 3.672 205 12.115 lme 0.333
 Restock age 1.929 0.719 38 2.684** +
 Planting Type 10.491 2.591 205 4.049*** UNP>PL
     
Field-layer density Intercept 1.347 0.126 246 10.720 lme 0.561
 Restock age 0.120 0.020 38 5.978*** +
  Study area -0.253 0.115 38 -2.199* S>T  
Study area (S: Sutherland; T: The Trossachs). Planting Type (UNP: Unplanted; PL: Planted). Positive effects are indicated by + symbols. #R2 calculated by the square 
of the correlation between the model's predicted (fitted) values and the observed values. Levels of significance: ***P<0.001; ** P<0.01; * P<0.05. 

 



 

3.3.4.2 Restocks with a more varied topography   

3.3.4.2.1 Development of Calluna vulgaris  

When considering HF and WI areas in Trossachs restocks, C. vulgaris cover 

increased in a curvilinear manner with restock age and was greater in WI areas from 

restock to the onset of canopy closure (Table 3.6; Figure 3.10).  As in the HF only 

models (Table 3.4), cover was greater in planted than unplanted areas (Table 3.6), but 

the difference was relatively small (c.5%).   
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Figure 3.10: Cover of C. vulgaris in relation to timber Extraction Type - WI; cable-
winch or HF; harvester and forwarder (P<0.001; Regression equations: C. vulgaris 
cover = (8.358×Restock age)+(-0.6321×Restock age2)-1.662, and (4.814×Restock 
age)+(-0.2913×Restock age2)-0.255, respectively), on 337 transects in 36 restocks in 
the Trossachs study area.  See methods for further details relating to Extraction Type. 
 

3.3.4.2.2 Influence of brash cover on C. vulgaris development 

As described for the HF-only model, it was possible that differences in brash cover 

could explain the observed management effects on C vulgaris cover in this model.  

Therefore, brash cover was again inserted into the final minimum adequate model.  As 

with the HF-only data, there was a strong negative correlation between brash cover 

and C. vulgaris cover (t=-3.556, P=0.001), and this caused Planting Type to be 
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dropped from the model, as it was no longer significant (t=1.498, P=0.135).  

However, Extraction Type remained significant (t=2.802, P=0.005), suggesting 

additional influences upon C. vulgaris cover between WI and HF areas over and 

above the differences in brash cover between the two extraction methods.  Differences 

in slope is a further possible cause of the observed differences between extraction 

methods (since WI is undertaken on steeper ground), however, there was no 

significant effect of slope when added to the C. vulgaris model (t=1.177, P=0.240) 

and both management factors remain significant, suggesting that greater C. vulgaris 

cover in WI areas is likely to be due to forest management factors, rather than 

topography alone. 

 

3.3.4.2.3 Other taxa examined 

As found previously, few significant effects were detected on likelihood of occurrence 

of Eriophorum spp. and V. myrtillus on transects.  Only V. myrtillus had a greater 

likelihood of occurrence in unplanted areas of restocks (z=3.891, P<0.001), however, 

the amount of variation explained by the model was low (R2=0.152).  Brash cover did 

not affect probability of V. myrtillus occurrence when added to the final model (z=-

0.859, P=0.390).   

 

3.3.4.2.4 Vegetation height 

In addition to greater C. vulgaris cover in planted areas, ericaceous heather species 

were also 5.4 cm taller (Table 3.7).  There was a quadratic relationship between 

ericaceous heather species height and restock age (Table 3.7), peaking at c.35 cm 

between 6 and 8 years.  Graminoid height also increased in a quadratic manner with 

restock age, peaking at c.60 cm at year 5, and graminoids were c.8 cm taller in HF 
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than WI areas (Table 3.7).  Graminoids were also taller in restocks where the previous 

first-rotation crop was spruce (Table 3.7), but only by c.4.5 cm.  As with the previous 

graminoid height model (Table 3.5), fit to the data was relatively low (r2=0. 373). 

 

3.3.4.2.5 Field-layer density 

Field-layer density increased in a curvilinear manner with restock age (Table 3.7), 

peaking between years 6 and 8 at c.60% density.  Density was marginally (c.4%) 

greater in HF areas (Table 3.7).   

 

 



 

Table 3.6: Minimum adequate GLMM models describing the effects of management and site factors upon cover of Calluna vulgaris and 
brash on 337 transects in 36 restocks in The Trossachs study area.  Restocks had a more varied topography than conventionally harvested 
areas only, thus different methods of timber extraction (Extraction Type) could be investigated.   
 

Model Parameter Estimate SE df t value
Direction 
of effect Statistical test R2#

      

Calluna vulgaris cover Intercept -4.450 0.498 299 -8.940 glmmPQL 0.407
 Planting Type -0.321 0.129 299 -2.492** PL>UNP  
 Extraction Type 0.740 0.149 299 4.971*** WI>HF
 Restock age 1.074 0.246 33 4.372*** 
 Restock age2 -0.081 0.023 33 -3.548*** 
         
Brash cover Intercept -0.442 0.160 299 -2.771    
 Planting Type 0.645 0.119 299 5.439*** UNP>PL glmmPQL 0.459
 Extraction Type -1.045 0.128 299 -8.151*** HF>WI  
 Restock age -0.228 0.034 34 -8.433*** -  
         

Planting Type refers to UNP: Unplanted; PL: Planted. Extraction Type refers to HF: timber extraction with mechanical harvester and forwarder; WI: extraction with 
cable-winch. Negative effects are indicated by – symbols. Where a curvilinear fit of an independent variable was more appropriate than a linear fit, represents the 
type of curve. #R2 calculated by the square of the correlation between the model's predicted (fitted) values and the observed values. Levels of significance: 
***P<0.001; ** P<0.01; * P<0.05. 
 
 
 
 
 
 
 
 

 



 

 

 
Table 3.7: Minimum adequate GLMM models describing the effects of management and site factors upon height of heather (C. vulgaris, 
E. cinerea and E. tetralix) and graminoid (Juncus, Carex, Eriophorum and grass) spp. and field-layer density on 337 transects in 36 
restocks in The Trossachs study area.  Restocks had a more varied topography than conventionally harvested areas only, thus different 
methods of timber extraction (Extraction Type) could be investigated. 
 

Model Parameter Estimate SE df 
 

t value 
Direction  of 

effect Statistical test R2#
         

Heather spp. height Intercept 12.898 4.229 174 3.050 lme 0.641
 Restock age  6.764 1.921 32 3.521* 
 Restock age2 -0.507 0.197 32 -2.567* 
 Planting Type -4.719 1.201 174 -3.931*** PL>UNP
   
Graminoid spp. height Intercept 20.713 7.308 267 2.834 lme 0.373
 Restock age  13.123 2.350 32 5.584*** 
 Restock age2 -1.275 0.255 32 -4.994*** 
 Extraction Type -6.294 2.442 267 -2.577** HF>WI
 Previous crop 11.401 5.343 267 2.134* Spruce>Pine
     
Field-layer density Intercept 0.950 0.154 300 6.162 lme 0.520
 Restock age  0.282 0.076 33 3.725*** 
 Restock age2 -0.022 0.008 33 -2.684** 
 Extraction Type -0.127 0.057 300 -2.237* HF>WI  
         

Planting Type refers to UNP: Unplanted; PL: Planted. Extraction Type refers to HF: timber extraction with mechanical harvester and forwarder; WI: extraction with 
cable-winch. Where a curvilinear fit of an independent variable was more appropriate than a linear fit, represents the type of curve. #R2 calculated by the square of 
the correlation between the model's predicted (fitted) values and the observed values. Levels of significance: ***P<0.001; ** P<0.01; * P<0.05. 
 



 

3.4 Discussion  

Previous research suggests that pre-thicket, second rotation commercial forests may 

contain habitat suitable for black grouse (Baines et al. 2000; Cayford 1990b, Haysom 

2001, Borset & Krafft 1973, Picozzi 1986), although availability of this habitat may be 

limited by forest maturation and canopy closure (Pearce-Higgins et al. 2007).  Results 

from this study suggest that commercial forest restocks are potentially useful to black 

grouse for a limited number of years after re-planting.  During this period, field-layer 

vegetation attains the height and density preferred by black grouse and their broods, 

however percentage cover of Calluna vulgaris can remain relatively low.  C. vulgaris 

dominates the field-layer between six to eight years after planting and is greater in 

planted compared with unplanted areas of restocks.  Cover decreases with the onset of 

canopy closure, which occurs as early as eight years after restock in steeper areas, where 

brash was mainly removed at clearfell.  Forest management can increase temporal 

availability of this resource to black grouse.   

 

3.4.1 Initial development of field-layer vegetation in restocks 

Development of the plant community in restocks is initially slow, restricted by 

harvesting residue from clearfell.  Results show that in the first 2 years following 

restock, brash forms the main component of the field-layer, with moss, needles from 

extracted trees and mounds excavated for tree planting.  Initial recovery of the field-

layer is sparse, comprising heather, grasses, sedges and rushes, which are likely to have 

regenerated from the seed bank during clearfell and, to a lesser extent, from seed rain 

blown in from adjacent moorland (Good et al. 1990; Hill & Stevens 1981; Abdy & 

Mayhead 1992).  Recovery of the plant community will depend upon soil type (Hill 

1986; Wallace & Good 1995, Eycott et al. 2006; Hill & Jones 1978), but can also 
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depend on other factors, such as species of the previous tree crop (Hill 1979).  Restocks 

are highly heterogeneous habitats; vegetation development varies not only within the 

restock but between adjacent restocks, even when on the same soils (Hill & Jones 

1978).  Furthermore, considerable variation in vegetation biomass can occur between 

restocks and between years (Örlander et al. 1996).  These factors make assessment of 

management prescriptions within restocks difficult, although ordination analyses 

suggest that development of the field-layer community over time is predominantly 

determined by the timber extraction method used during clearfell or related 

topographical factors, and whether trees are planted on the site or not. 

 

3.4.2 Influences of management upon the development of field-layer vegetation 

Heather is capable of rapid regeneration following clearfell (Summerhayes & Williams 

1926).  In this study, C. vulgaris was mostly absent at restock, but dominated the field-

layer between years six and eight.  Heather also reached a mean height generally 

considered suitable for black grouse nest cover (40 to 55 cm; see Grant & Dawson 2005 

for a review) during this period.  Heather is an important component of black grouse 

habitat and its cover provides many benefits, including roosting and nest cover (Parr & 

Watson 1988).  Heather shoots also represent a significant part of the adult diet (Picozzi 

& Hepburn 1984; Cayford 1990b), particularly in late-autumn and winter (Starling-

Westerberg 2001; Baines 1994).  

 

Brash directly suppresses heather growth, firstly by shading, then in later years by soil 

enrichment from nutrient leaching as brash degrades (Proe et al. 1999; Stevens et al. 

1995; Rosen & Lundmark-Thelin 1987), and brash cover is reported to be the main 

factor in affecting both numbers and cover of plant species in clearfells (Abdy & 
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Mayhead 1992).  Results from this study demonstrate that for the first two years after 

planting, approximately 50% of ground cover in restocks was covered by brash; 

comparatively less than found in other sites two years after clearfell (Abdy & Mayhead 

1992; Walmsley et al. 2009).  Brash cover decreased every year; however, cover 

remained above 20% up to four years after planting, which is likely to have had a 

substantial effect on the plant community.   

 

In this study, C. vulgaris cover was generally greater and heather grew taller in planted 

areas of restocks than in unplanted areas, where less brash covered the ground.  It is 

well established that C. vulgaris is not a shade-tolerant plant, needing full light and soils 

with low nutrients (Gimingham, 1972; Iason & Hester 1993, Hester 1987), hence the 

reduction or removal of brash can positively affect C. vulgaris cover (Bergquist et al. 

1999).  During ground preparation for planting in restocks, mounding excavators re-

distribute and pile brash, reducing its overall cover, whereas areas left unplanted do not 

receive this treatment.  It is also likely that soil disturbance from heavy machinery 

created additional regeneration niches for heather.   

 

3.4.3 Field-layer recovery in restocks with a more varied topography 

In cable-winched areas of restocks, where brash was mainly removed at clearfell, field-

layer vegetation recovered quickly and cover of C. vulgaris was greater than in areas 

where timber was mechanically extracted by harvester and forwarder.  Other studies 

have also reported faster vegetation growth in these areas; as much as 50% greater 

vegetation biomass can accumulate two to five years after harvesting than on 

conventionally harvested areas, predominantly due to reduced suppression by brash 

(Fahey et al. 1991).  Furthermore, soil nutrients are reduced as four times the quantity 
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of N, P and K is removed in tree biomass from winched areas compared with 

conventional harvesting (Walmsley 2009).  In this study, greater C. vulgaris cover in 

winched areas are likely to have resulted from a reduced brash cover, but analyses 

suggest that factors additional to this may have contributed.  A reduction in soil nutrient 

status as a result of winched areas usually being on slopes may contribute (Tsui et al. 

2004), although slope was not found to be a significant additional factor in analyses.  

The dragging of timber across the site by cable-winch to roadside may prepare soils for 

improved C. vulgaris seedling establishment as the surface layer is effectively scarified, 

re-distributing needles and seeds near to the surface, and exposing soil underneath to 

light and rain (Good et al. 1990).   

 

However, in winched areas, C. vulgaris cover began to decline earlier – just eight years 

after restock - as cover of planted trees increased and their canopy began to close.  

Temporal availability of this key heather resource to black grouse is therefore very 

limited.  Heather plants are unlikely to accumulate enough fresh seed within this time 

period to fully replenish the seed bank prior to canopy closure (Hill & Stevens 1981).  

As buried heather seed set from several decades of heather growth prior to the first 

rotation is unlikely to survive beyond the second (Hill & Stevens 1981; Hill 1986), 

third-rotation restocks may need to rely mostly upon seed rain for heather re-

establishment (Eycott et al. 2006). 

 

3.4.4 Recovery of other field-layer taxa important to black grouse 

In conventionally harvested areas (timber felling and removal by harvester and 

forwarder, respectively), field-layer density and graminoid height are greater than in 

cable-winched areas, providing improved concealment for nesting hens and their 
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broods.  Additionally, a wetter plant community establishes in conventionally harvested 

areas due to topography, potentially providing better brood-rearing habitat likely to 

contain more invertebrates.  Mean graminoid height exceeded 60 cm in most years, 

greater than the 24 to 40 cm reported as optimal for black grouse brood use (Grant & 

Dawson 2005), although more recent research in the Highlands of Scotland typically 

located broods in vegetation taller than this, between 43 cm and 58 cm (RSPB unpubl. 

data).  Tall graminoid and herb vegetation is often utilised by nesting hens and young 

broods both in Scotland (Parr & Watson 1988; Picozzi & Hepburn 1984) and in Europe 

(Borset & Krafft 1973; Glanzer 1980; Bernard 1982).  Niewold (1990) found that 

clutches of eggs under taller vegetation (60 to 80 cm in height) seemed to have 

increased survival compared with clutches under lower vegetation.  Tall vegetation 

provides increased concealment from predators (Baines 1996), and densities of 

preferred invertebrates are often increased, particularly in wet flushes (Cayford et al. 

1989; Parr & Watson 1988; Baines et al. 1996; Pulliainen 1982; Picozzi & Hepburn 

1984; Starling-Westerberg 2001; Niewold 1990).  Additionally, tall, rank vegetation 

provides good winter habitat, although a lack of open areas with shorter vegetation may 

prevent chicks drying out in wet weather conditions (Warren et al. 2003).   

 

Leaving areas of restocks unplanted did not appear to affect the probability of 

occurrence of Vaccinium myrtillus or Eriophorum species, other key species preferred 

by black grouse, although infrequent occurrence and low cover where present meant 

that analyses had very limited power to detect effects.  V. myrtillus is a facultative shade 

plant that commonly occurs in woodland, particularly along edges (Ritchie 1956) - 

habitat similar to that inhabited by black grouse.  It is abundant in the habitat and diet of 

many black grouse populations (Pulliainen 1982; Picozzi & Hepburn 1984; Cayford 
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1990b), but scarce in the location of others and hardly found in their diet (Baines 1994; 

Starling-Westerberg 2001).  Clearfelling severely affects V. myrtillus by exposing plants 

to direct sunlight and drought, resulting in reduced growth and poorer quality shoots 

(Atlegrim & Sjoberg 1996a).  Recovery is slower than C. vulgaris, which is able to 

spread more rapidly on bare ground after conifer felling (Watt 1931).  If not extensively 

established before canopy closure, it may be eliminated from future rotations of Picea 

spp. (Hill & Jones 1978).  Eriophorum species are particularly favoured by feeding hen 

black grouse in spring (Baines 1994; Niewold 1990; Parr & Watson 1988; Starling-

Westerberg 2001; Cayford 1990a), because the flower heads contain high nutritional 

value (Trinder 1975), so they may be important in determining pre-breeding condition 

of hens, and subsequent productivity (Watson & Moss 2008).  However, occurrence in 

restocks in this study was very low.  Lack of information in the literature regarding 

Eriophorum species growth in clearfelled forestry plantations perhaps points to the 

relative infrequency of occurrence within this habitat.  Eriophorum species were found 

to occur in flatter areas in this study, which is typical of the species, often found in wet 

acid peaty habitats, such as bogs and marshes (Phillips 1954).  Extensive drainage to 

promote growth of first-rotation crops is likely to have restricted growth of Eriophorum 

species. 

 

3.4.5 Limitations of correlative studies 

An inevitable limitation to the study is that, by the very nature of forestry, variables 

considered are non-independent.  For example, where foresters choose to plant trees and 

leave areas unplanted on a site is not only determined by aesthetic considerations but 

also by environmental factors including restock topography, hydrology, soil type, etc..  

These factors ultimately determine vegetation type that will grow in the restock and the 
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rate of growth.  When assessing effects of forest management upon vegetation, the 

influence of environmental factors is inextricably linked.  For example, the method of 

tree extraction from a harvested forest coupe will influence the recovery of field-layer 

vegetation as a result of soil disturbance levels, however vegetation recovery will also 

be influenced by environmental factors such as slope, which will ultimately determine 

site hydrology, etc..  The gradient of the slope determines the method of tree extraction 

appropriate for timber harvesting; as variables are correlated, cause and effect become 

difficult to establish.  Conclusions, as with any correlative study, must therefore be 

drawn with caution. 

 

3.4.6 Management conclusions 

As 40% of ground in restocks is (on average) left unplanted, these areas could help to 

offset the near total loss of field-layer habitat for black grouse upon canopy closure of 

adjacent trees, whilst maintaining a viable commercial timber crop.  Whilst heather 

cover in these areas is initially limited by brash, the potential longer-term role of 

unplanted areas in retaining vegetation growth and a seed bank of species preferred by 

black grouse may be crucial for populations to exist in commercial forestry.  Open areas 

in forestry plantations have been found to have beneficial effects for black grouse: more 

open space can result in a higher density of hens, a delayed peak in hen density, and an 

extended period of habitat suitability for black grouse (Baines et al. 2000), although can 

also quickly re-fill with unwanted non-native tree species, which invade some areas 

densely, but others not at all (Fahey et al. 1991; Walmsley 2009).  

 

Further research into vegetation development is necessary to determine guidelines for 

brash management and the long-term maintenance of unplanted areas in restocks for 
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black grouse.  Height and density of mature heather may exceed that preferred by black 

grouse within just a few years of canopy closure of the planted tree crop, thus 

management of unplanted areas may be necessary to re-invigorate patches of vegetation 

growth.  Previous studies have shown that black grouse prefer to feed and roost in cut 

heather moorland strips to those left uncut (Cayford et al. 1989), whilst swiping of 

field-layer vegetation to reduce the height of rank vegetation and stimulate new growth 

can attract more nesting hens, leading to increased breeding success (Warren et al. 

2003).  Effects of creating additional black grouse habitat in the ecotone between 

planted and unplanted areas by thinning trees, rather than a hard linear edge, should be 

also investigated.  Appropriate consideration must be made for topography and 

requirements of the current timber crop however, as effects of wind-throw must be 

taken into account when thinning (Mason & Quine 1995).  In addition to topographical 

constraints, geographical location must be taken into consideration when making 

management recommendations for restocks - cover, height and density of field-layer 

vegetation differed consistently between study areas in this study.  A single, broad-

scale, country-wide management approach for creating habitat suitable for black grouse 

in restocks may not be suitable for Scotland’s planted forests.   
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Chapter 4:  Invertebrate availability to black grouse in 

restocks  

 

4.1 Introduction 

In the latter part of the twentieth century, a general Europe-wide decline in breeding 

success of black grouse was reported (Baines 1991b) and there is some evidence that 

levels of breeding productivity remain low (Baines 1993; Watson & Moss 2008).  It 

seems likely that chick survival is an important factor in determining growth of black 

grouse populations, with factors affecting survival (e.g. June rainfall) often important in 

determining breeding productivity (Summers et al. 2004; Grant et al. 2009).  

Furthermore, changes in the numbers of lekking males often relate to breeding success 

in the previous year (Baines et al. 2007; Grant et al. 2009; RSPB, unpubl. data).   

 

Black grouse chicks feed almost exclusively on invertebrates during the first 2 to 3 

weeks after hatching, before progressively switching to a predominantly herbivorous 

diet (Kastdalen & Wegge 1985; Picozzi 1986; Cayford et al. 1989; Cayford 1990b; 

Wegge & Kastdalen 2008).  High chick mortality is sometimes correlated with low 

invertebrate abundance (Picozzi & Hepburn 1984), and starvation of chicks due to lack 

of invertebrate prey is an important mortality factor in some populations (Niewold 

1990).  Higher growth rates of chicks are positively associated with invertebrate 

availability in red grouse Lagopus lagopus scoticus chicks (Park et al. 2001).   

 

Broods of black grouse selectively forage in invertebrate-rich habitats (Picozzi & 

Hepburn 1984) taking a wide range of arthropods according to local availability, 
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although dietary studies have revealed ants and larvae of both Lepidoptera and sawflies 

to be some of the most frequently taken items (Picozzi 1986; Cayford et al. 1989; 

Starling-Westerberg 2001).  Damp grass or rushy mire habitats tend to have a high 

abundance of these items, and young broods are often found to select these habitats 

(Niewold 1990; Parr & Watson 1988; Picozzi & Hepburn 1984; Baines et al. 1996; 

Starling-Westerberg 2001).    

 

Studies relating to black grouse chick habitat use and diet within and around 

commercially planted forests in Britain are rare, yet black grouse are often associated 

with this habitat (Cayford et al. 1989; Haysom 2001).  Most dietary studies within 

commercially managed forests have been conducted in Fennoscandia, where a less 

intensive form of forest management is practised; clearfelling on the scale typically seen 

in Britain is rare, seed trees are left to restock felled areas rather than large-scale re-

planting, and commercial crops are usually of native origin and slow-growing, 

compared with non-native, rapidly growing species’ such as Sitka spruce Picea 

sitchensis that are commonly planted in Britain. 

 

This objectives of the research presented in this chapter are to determine how the 

abundance of invertebrate taxa important in the diet of black grouse chicks vary with 

management in second rotation restocks.  The format of the analysis uses a 3-step 

procedure, which examines how: 1) invertebrate abundance varies in relation to 

vegetation conditions in restocks; 2) whether restock age, aspects of restock 

management and site characteristics within restocks appear to contribute to the observed 

variation (in a similar way to that undertaken for plant taxa – Chapter 3); and 3) whether 
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variation in restock age, management and site conditions can explain the effects of 

vegetation conditions upon invertebrate abundance.   

 

4.2 Methods  

4.2.1 Field data collection  

Invertebrate sampling was conducted on 78 transects in 31 restocks in The Trossachs 

study area in 2008.  Transects were chosen from the 337 vegetation sampling transects 

previously described (Chapter 3, section 3.2.2), randomly selecting one transect per 

Planting Type (PT)/Extraction Type (ET) combination available within each restock.  

Invertebrate abundance could therefore be related to vegetation characteristics, forest 

management factors, and site factors recorded at each transect.  Methods for sampling 

field-layer cover, height and density on transects are described in Chapter 3 (section 

3.2.2).  Details of datasets used are summarised in Appendix Table 2.  All transects 

were more than 100 m apart and no less than 50 m from the restock edge. 

 

Sampling was conducted between 9 June and 11 July 2008, to coincide with the period 

when British black grouse chicks are generally hatching and largely dependent upon 

invertebrate food (Robel 1969a; Starling-Westerberg 2001; Picozzi 1986; Baines et al. 

1996).  In the Trossachs study area, anecdotal records suggest that black grouse chicks 

mainly hatch from early- to mid-June (D. Anderson, pers. comm.).   

 

Two invertebrate sampling methods were used on each transect in 2008; pitfall trapping 

primarily assessed epigeal invertebrate abundance, whereas suction sampling assessed 

the abundance of fauna upon field-layer vegetation (Standen 2000).   
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4.2.1.1 Pitfall trapping 

One pitfall trap (7 cm mouth diameter) was placed at either end of each 20 m transect 

and invertebrates collected for four consecutive one-week sampling periods.  Traps 

were one-quarter filled with ethylene glycol diluted with water (1/3 v/v; Schmidt et al. 

2006) and a small amount of surface-tension reducer (dish-washing detergent), with foil 

lids held 2cm above the ground to prevent flooding by rainwater and capture of non-

target species.  Catches from traps located along a single transect were pooled and 

stored in 70% ethanol.  In order to avoid repeated measures of invertebrate abundance 

from the same transect and to reduce the frequency of zero counts in the data, weekly 

data were pooled for each transect. 

 

Pitfall trap data may best reflect availability of prey for birds (Atlegrim & Sjoberg 

1995), since more active invertebrates may be more readily detected by birds.  

However, data from pitfall traps must be treated with caution (Oxbrough et al. 2005).  

Differences in vegetation structure surrounding traps affects capture rates, making 

interpretation of absolute abundance data problematic (Melbourne 1999) and unlikely to 

reflect relative density of the same species on different sites (Briggs 1961).  Catches can 

only be compared reliably if species activity, behaviour and density remain constant 

across the study area (Downie et al. 1996).  Taking this into account, the ‘abundance’ 

term used henceforth refers to the number of invertebrates captured in pitfall traps, and 

not necessarily abundance per se. 

  

4.2.1.2 Suction sampling 

Suction sampling was undertaken using a commercially available backpack leaf blower 

(PB-265ESL; Echo Power Tools Ltd, UK) with a vacuum attachment and 

74 



 

comparatively small suction tube of 6.5 cm (compared to 34.3 cm diameter for the D-

vac; Dietrick 1961), allowing easy sampling of invertebrates on vegetation between and 

upon dense brash branches.  At full throttle, air tube velocity reached 62 m sec-1, 

exceeding that required to gain high rates of arthropod extraction (27 m sec-1; 

Southwood 1978), as well as that reported for similar equipment in other studies 

(Buffington & Redak 1998; Stewart & Wright 1995).   Suction sampling was conducted 

within two 30 x 30 cm quadrats on each transect, each placed 1 m from the transect 

ends, to reduce disturbance to pitfall traps.  Quadrats were sampled by slowly passing 

the suction nozzle vertically and horizontally through the vegetation and/or along and 

between any brash branches, with sampling carried out for 45 s, a period exceeding that 

considered necessary to capture 90% of the larger invertebrate orders in grasslands, e.g. 

beetles and arachnids (Brook et al. 2008).  Each sample was captured in a 30 cm long 

fine-mesh nylon collection bag inverted into the suction tube (Stewart & Wright 1995), 

which was emptied into a plastic bag and frozen prior to identification.  As with pitfall 

traps, the two suction catches located along a transect were pooled.  Suction sampling 

was conducted on all transects twice during the study period, in week one and week 

four, and was undertaken between 09.00 h and 18.30 h on dry days with no more than a 

light breeze.  Captures from each sampling occasion were pooled, for the same reasons 

that pitfall catches were pooled. 

 

In this initial investigation of invertebrate abundance in restocks, suction sampling was 

used in preference to sweep net sampling due to the perceived problems of obstruction 

of vegetation by brash, which is present in all restocks, and commonly snags in nets. 

However, suction sampling failed to sample Lepidoptera larvae adequately, which are 

often a major component of the chick diet (Table 4.1). Lepidoptera larvae were recorded 
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in the pitfall catches, but this is not a recognised sampling method for this taxon 

(Sutherland 1996), and may provide a poor representation of their abundance and/or 

availability to black grouse chicks. Therefore, sweep netting (a recognised method for 

sampling Lepidoptera larvae - Sutherland 1996; Haysom and Coulson 1998) and further 

pitfall trapping were carried out from 7 to 14 June 2009, across 26 of the 78 transects 

used in 2008, to assess whether the 2008 pitfall data could provide a reliable measure of 

Lepidoptera larvae abundance.  Pitfall trapping was conducted as in 2008, but traps 

were collected after just one week.   

 

4.2.1.3 Sweep netting  

Sweep netting was conducted once along the length of each 20 m transect, sweeping 

field-layer vegetation to either side a total of 25 times per transect.  To overcome the 

problem of sweep netting in areas with brash, standard sweep net bags were replaced 

with bags of 45 cm diameter constructed of sailcloth (Kayospruce Ltd, UK), a 

lightweight, rip-proof fibre previously used for invertebrate sampling in habitats where 

standard nets are easily damaged (Buffington and Redak 1998).   

 

Counts of Lepidoptera larvae by the two sampling methods were significantly, but 

relatively weakly, correlated across the 26 transects (r=0.425, P=0.03; Regression 

equation: Pitfall captures = 1.60*Sweep net captures+0.378).  Thus, analyses of 

Lepidoptera larval abundance were carried out using the 2008 pitfall trap data, although 

it is accepted that they were likely to provide a relatively poor assessment of abundance. 
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4.2.2 Taxa selection and sampling method 

Invertebrates were identified to Order following Chinery (1993), with the exception of 

Hymenoptera, which were further identified to Formicidae (ants), Symphyta (sawfly 

larvae) and Ichneumonidae (parasitic wasps).  Invertebrates measuring ≤2 mm in overall 

length were considered too small to make an important contribution to black grouse 

chick diet (Niewold 1990) and are excluded from analyses.  Spiders (Araneae) and 

harvestmen (Opiliones) were not distinguished, but combined and termed ‘arachnids’ 

for analyses. 

 

Previous data from black grouse chick dietary studies were used to focus statistical 

analyses upon potentially important invertebrate groups.  Invertebrate taxa were 

included in this study if recorded in at least 5% of crop samples or 5% of faecal samples 

(percentage composition) in previous studies.  This 5% level of selection has been used 

previously for assigning ‘importance’ of invertebrate taxa groups to birds, because it 

marks a major discontinuity in the decline in contribution of individual invertebrate 

taxon to the diet of moorland birds (Buchanan et al. 2006).  Of the ten invertebrate taxa 

occurring above this 5% level in previous studies, seven were captured frequently 

enough in this study to be considered in statistical analyses (Table 4.1). 

 

Most taxa considered for statistical analyses were caught by both pitfall trapping and by 

suction trapping.  As described above, these methods sample different components of 

the ground and field-layer habitat, and for some taxa are likely to produce different 

results due to differences in their suitability for sampling those taxa.  To avoid 

producing multiple, and potentially contrasting, abundance measures for the same 

taxon, the trapping method considered to be most appropriate for each taxon was 
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selected for use in statistical analyses based upon recommendations in Sutherland 

(1996) and Standen (2000).  Therefore, pitfall data were used for beetles, arachnids, and 

ants (as predominantly active, surface-living taxa on bare ground or low vegetation), 

whilst suction sampling data were used for true flies and bugs due to their stronger 

association with field-layer vegetation.  As explained previously, analyses of 

Lepidoptera larvae were also based on pitfall trapping data.  

 
Table 4.1: The contribution (>5%) of invertebrate taxa to the diet of black grouse 
chicks, as determined by numerical percentage composition in seven study areas.  Data 
are derived from crop or faecal samples.  Taxa were included in the present study (bold 
type) if captured in sufficient quantities for statistical analyses. 

Taxon considered in analyses in this study highlighted in bold type, all adult form unless specified. 
†Spiders and harvestmen considered in one taxonomic group ‘arachnids’ in this study. ataxon not 
recorded during this study. bnot considered in this study due to insufficient captures.  Sources:  1 – 
Niewold (1990). 2 – Cayford et al. (1989), study sites: a) Rhyd Wen, b) Penaran.   3 – Borchtchevski 
(2000).  4 – Starling-Westerberg (2001).  5 – Wegge and Kastdalen (2008).  6 – Picozzi (1986), study 
sites: a) Birse; b) Etnach, c) Drum.  7 – Ponce (1992), study sites: a) Cervières, b) Frêtes. 

Reported proportion of diet 
Taxon 

No. of 
studies  5-25% 26-50% 51-75% 

     

Beetles (Coleoptera) 7 1, 2a, 3, 4, 
5, 6a, 6b, 
6c, 7a, 7b 

  

Spiders (Araneae)† 1 6a, 6b, 6c   

Harvestmen (Opiliones)† 1 2a   

True flies (Diptera) 4 2b, 4, 5, 6a, 
6b, 6c 

  

True bugs (Hemiptera) 2 1, 5   

Ants (Hymenoptera; 
Formicidae) 

5 2a, 3, 5, 7a, 
7b 

6a, 6b, 6c  2b  

Moth larvae (Lepidoptera) 5 3, 4, 5 2a 1 

Sawfly larvae (Hymenoptera: 
Symphyta)a 

2 2a, 2b 4  

‘Larvae’ (moths and sawflies 
not distinguished)   

2 6a, 7b 6b, 6c  

Predatory wasps (Hymenoptera; 
Ichneumonidae)b 

2 2b, 4   

Grasshoppers (Orthoptera)b 1   7a, 7b 

 
 
 

78 



 

4.2.3 Biomass estimate 

All invertebrates from the seven taxa selected for statistical analyses were assigned to 

one of five body length categories; 3-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, >20 mm.  

Twenty-five individuals from each body length category per taxon were dried in an 

oven at 60° C for 48 hours, to allow calculation of an average dry weight for each body 

length category per taxon.  Taxon biomass estimates on each transect were then 

calculated by multiplying the number of individuals captured in each size category by 

their respective average dry weight, and summing these to give a total biomass estimate 

for each taxon on each transect.  Estimated biomass for each taxon was strongly 

correlated with abundance data across transects (r=0.69 to 0.92 for all taxon), hence 

further analyses were conducted on abundance data only. 

 

4.2.4 Statistical analyses 

4.2.4.1 Model building 

Invertebrate abundance is likely to be affected directly by cover and structure of field-

layer vegetation, which in themselves reflect management and site factors operating at a 

restock site, all underpinned by time since management.  As demonstrated in Chapter 3, 

field-layer vegetation is itself a product of time, management and site factors.  

Therefore, abundance of each invertebrate taxon was first examined in relation to 

temporal and management variables, and site factors (Model 1; Table 4.2).  Secondly, 

abundance of each invertebrate taxon was examined in relation to vegetation variables 

(Model 2; Table 4.2), which were simplified into the two broad plant functional types 

(PFTs; Wookey et al. 2009) that dominated the field-layer (i.e. percentage cover of 

dwarf shrubs and graminoids), cover of brash, field-layer vegetation height, field-layer 
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density, and Ellenberg moisture score values, which represent a position on a moisture 

gradient.   

 

Having produced these two models, significant effects from Model 1 were tested for 

entry to Model 2, to produce a third minimum adequate model (Model 3), which 

considered the field-layer vegetation, restock age, management variables and site 

factors.  Vegetation variables were removed if the inclusion of significant time, 

management, or site variables caused them to become non-significant (at P<0.05). 

 

To provide a check on whether the order in which models were combined affected the 

variables retained within Model 3, the process was reversed, i.e. variables from Model 2 

were tested for entry into Model 1.  In all but one case Model 3 remained unchanged, 

with the exception being for ants.  In this case, two variables of marginal significance 

(‘open space’ and ‘altitude’) were not selected for entry when the management and 

environmental variables were added to Model 1. 
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Table 4.2: Variables considered for statistical models of invertebrate abundance. 

Variable 
Data 
type¶ Description 

Level of 
data 
collection 

 

Model 1. Time (T), management (M), and site (S) variables 
    

Restock age T Years since restock  Restock 

Planting 
Type (PT) 

M Planted with trees (PL) or left unplanted (UNP) Transect 

Extraction 
Type (ET) 

M First-rotation timber extraction by 
harvester/forwarder (HF) or by road-side cable-
winch (WI) 

Transect 

Restock size  S Total restock area (ha), includes planted and 
unplanted 

Restock 

Open space S Total restock area (ha), unplanted only Restock 

Distance to 
edge 

S Restock edge to nearest plantation edge (m) Restock 

Previous 
crop 

S* First rotation crop: spruce or pine Transect 

No. of 
trees# 

S Number of planted trees in a 10 x 10 m square Transect 

MTH# S Mean tree height (m) in 10 x 10 m square 
described above 

Transect 

Tree cover# S Cover (%) by planted trees Transect 

Altitude S Average of 5 equidistant points  Transect 

Slope# S Average of 5 equidistant points  Transect 
 

Model 2. Vegetation variables 
Moisture 
score# 

C Mean cover-weighted Ellenberg moisture values  Transect 

Vegetation 
height  

C Maximum height of all vegetation (cm) Transect 

Field-layer 
density 

C Index (0 to 3) of field-layer density from ground 
level to 40cm tall, includes vegetation and brash  

Transect 

Dwarf shrub 
cover 

C Combined cover (%) of Calluna vulgaris, Erica 
tetralix, E. cinerea, Vaccinium myrtillus  

Transect 

Graminoid 
cover 

C Combined cover (%) of Carex, Eriophorum, 
Juncus, Luzula, Deschampsia, Agrostis, Molinia, 
Nardus, Festuca and Anthoxanthum spp.) 

Transect 

Brash cover C Cover (%) by brash Transect 
‘Moisture score’ refers to the mean cover-weighted Ellenberg moisture score (Hill et al. 1999) of species 
recorded along a transect: wetter habitats have a higher score. # not included in analyses due to inter-
correlation within the Model (see Appendix, Table 3). ¶ indicates how data were represented in statistical 
models: C - continuous vegetation variables; T - continuous age covariate; M - 2-level management 
factor; S - continuous site-dependent variable; S* - 2-level site factor. 
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4.2.4.2 Statistical analyses 

Variables inter-correlated at r ≥ 0.60 were identified within Model 1 (Appendix Table 

3a) and Model 2 (Appendix Table 3b).  For Model 1, variables inter-correlated at r ≥ 

0.60 with the effects of main interest in this study, i.e. restock age, Planting Type or 

Extraction Type (which represent fundamental aspects of restock management) were 

removed, i.e. number of trees, mean tree height, tree cover and slope.  No other 

variables were inter-correlated within this model.  For Model 2, to determine which one 

of a pair of inter-correlated vegetation variables was included in analyses, univariate 

correlation tests were run for each invertebrate taxon, with each vegetation variable as 

the explanatory variable and the taxon as the response variable.  For each taxon, the 

vegetation variable most highly correlated with abundance was used in subsequent 

analyses, which resulted in the exclusion of the Ellenberg moisture score from Model 2 

for all taxa.   

 

Having removed variables inter-correlated at r ≥ 0.60, minimal adequate models were 

produced by fitting all of the relevant main effects and interactions of main interest, and 

then removing terms according to their level of significance, until only those significant 

at P<0.05 remained. Interaction terms were tested for removal before main effects. 

Quadratic terms of each continuous explanatory variable were also tested, and included 

if significant at P<0.05.  First-order interactions between restock age and both Planting 

Type and Extraction Type were included, as invertebrate abundance response to 

management is likely to change as restocks age.    
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Analyses for each invertebrate taxon were undertaken using generalised linear mixed 

models (GLMMs), specifying restock identity as the random effect.  Abundance of flies 

was analysed with a Poisson error distribution using the ‘glmer’ function in the ‘lme4’ 

library (Bates et al. 2008) of R, version 2.8.1 (R Development Core Team 2008).  

Beetle, arachnid, ant, and true bug abundance data were over-dispersed, hence the 

‘glmmPQL’ function in the ‘MASS’ library (Venables & Ripley 2002) of R was used 

specifying ‘quasipoisson’ errors.  This function automatically estimates over-dispersion 

using a Penalised Quasi-Likelihood method (Zuur et al. 2009).  Lepidoptera larvae data 

conformed to a zero-inflated Poisson distribution (Zuur et al. 2009), i.e. a higher 

number of zeros than expected in the dataset for a Poisson distribution, and were over-

dispersed, hence the glmmPQL function was also used for this taxon 

 

4.2.4.3 Calculation of R2 values 

The R2 value produced for each model indicates how much of the variation in the data is 

explained by the model.  For glmer, R2 values are calculated by (null deviance - residual 

deviance / null deviance).  For glmmPQL, R2 is calculated by the square of the 

correlation between the model's predicted values and the observed values.        

 

4.3 Results 

4.3.1 Invertebrate abundance 

A total of 13 676 invertebrates were captured during the trapping period in 2008.  Of the 

six taxa considered to be important in the diet of black grouse chicks (Table 4.1), 6888 

individuals were recorded in pitfall traps (2986 arachnids, 2341 beetles, 852 ants, 520 

true flies, 106 Lepidoptera larvae, and 83 true bugs), and 1186 were recorded in suction 
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traps (693 true bugs, 245 true flies, 140 arachnids, 68 beetles, 39 ants and 1 Lepidoptera 

larva).   

 

Pitfall trap catches were dominated by open-ground hunters, predominantly beetles, 

arachnids, and ants (Figure 4.1a), whilst true bugs and true flies dominated suction trap 

catches (Figure 4.1b).  Catches of Lepidoptera larvae were scarce in all restock ages in 

both years, and predominantly consisted of Northern Winter Moth Operophtera fagata.  

Differences in taxa abundance between trapping methods were most apparent for 

arachnids; pitfall trap captures generally decreased from restocking to year 9, whereas 

suction trap captures increased to year 5 then decreased.  When considering biomass 

rather than abundance (Figure 4.2), results suggest that beetles are likely to comprise a 

substantial proportion of the food available to black grouse in restocks.  Biomass of 

pitfall captured ants is comparatively low compared with abundance in restocks ages 6 

to 9 years (Figure 4.2), suggesting that although individuals of this taxon are numerous, 

they are relatively have a relatively small biomass. 

 

Of the remaining 5602 invertebrates not included in statistical analyses, 2891 were not 

identified by previous studies as important food items in the black grouse chick diet, 

including Collembola (91%), Acari (4%), Isopoda (1.5%), Myriapoda (1.5%), adult 

Lepidoptera, Trichoptera and terrestrial larvae spp. (all <1%).  The remaining 2711 

individuals were excluded either due to having a body length of ≤2 mm, or comprised 

too few individuals for analysis, i.e. Ichneumonidae and Orthoptera (two and four 

individuals, respectively).  Symphyta larvae were not recorded at the study site in 2008, 

or during the 2009 re-survey.  
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b. Suction trap captures 

Figure 4.1: Abundance of invertebrate taxa considered to be important in the black 
grouse chick diet on 78 transects in 31 restocks in The Trossachs study area, captured 
by a) pitfall trapping (means consist of 4 weeks of pooled data), and b) suction trapping 
(means comprise 2 sampling occasions, pooled).  Note scale differences between 
graphs. Arachnida group comprise spiders and harvestmen. * Dataset used in statistical 
analyses. 
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b. Suction trap captures 

Figure 4.2: Biomass (g) of invertebrate taxa considered to be important in the black 
grouse chick diet on 78 transects in 31 restocks in The Trossachs study area, captured 
by a) pitfall trapping (means consist of 4 weeks of pooled data), and b) suction trapping 
(means comprise 2 sampling occasions, pooled).  Note scale differences between 
graphs. Arachnida group comprise spiders and harvestmen. * Dataset used in statistical 
analyses. 
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4.3.2 Performance of statistical models to assess taxa response 

Restock age, management and site variables explained between 10 and 67% of the 

variation in taxa abundance (Model 1; Table 4.3).  For four of the six taxa studied, 

vegetation variables explained between 19 and 63% of the variance in taxon abundance 

(Model 2; Table 4.4).  However, no vegetation effects were retained in the model for 

beetles and true flies; abundance of these taxa could not be related to differences in 

field-layer composition, height or structure.   

 
Table 4.3: Taxon response to time, management and site variables (Model 1).  
Significant relationships listed in order (P<0.05; most highly significant first). 
 
Taxon Model 1 parameter R2

BeetlesP ET (WI>HF), Altitude+, Restock age x ET, Restock age+ 0.532

ArachnidsP Altitude+ 0.582

AntsP Restock age+, Open space
-
, Altitude

-
 0.674

Lepidoptera  larvaeP Restock age 0.101
True bugsS Restock age, ET (HF>WI), PT (UNP>PL) 0.452
True fliesS Restock age 0.346
Arachnids group comprises spiders and harvestmen. Superscript in first column refers to trapping method: 
P indicates capture by pitfall trap, S by suction trap. Positive effects of variables upon taxa abundance are 
indicated by superscript + symbols, negative effects by – symbols. Where a curvilinear fit was more 
appropriate than a linear fit, symbols  and represent the type of curve. For calculation of R2 values see 
methods. ET refers to Extraction Type (HF: harvester/forwarder extraction; WI: cable-winch extraction), 
PT refers to Planting Type (UNP: Unplanted; PL: Planted).  See Table 4.2 for further variable 
descriptions. 
 
Table 4.4:  Taxon response to vegetation variables (Model 2).  Significant relationships 
listed in order (P<0.05; most highly significant first). 
 
Taxon Model 2 parameter R2

BeetlesP NA NA

ArachnidsP Field-layer density
-
 0.631

AntsP Dwarf shrub cover, Graminoid cover
-
 0.774

Lepidoptera  larvaeP Brash cover
-
, Graminoid cover

-
, Vegetation height

-
 0.194

True bugsS Brash cover
-
, Graminoid cover 0.407

True fliesS NA NA
Arachnids group comprises spiders and harvestmen. Superscript in first column refers to trapping method: 
P indicates capture by pitfall trap, S by suction trap. Negative effects of variables upon taxa abundance are 
indicated by superscript – symbols. Where a curvilinear fit was more appropriate than a linear fit, 
symbols  and represent the type of curve. For calculation of R2 values see methods See Table 4.2 for 
further variable descriptions. NA denotes no significant variables in model. 
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When significant vegetation variables from Model 1 were added into Model 2 to create 

Model 3, explained variation in abundance increased by c. 5% for true bugs, but 

decreased by 1% for arachnids, and by c. 5% for ants and Lepidoptera larvae, (Table 4.4 

and 4.5).  R-sq values can decrease in a GLMM because at each stage of the model 

building procedure, parameters are estimated for both fixed and random effects.  The 

addition of further fixed effects to the model may change the parameter estimates of the 

random effects.  Ultimately, the R2 value or the ‘fit’ of the model is only estimated from 

the fixed parameter estimates of the model.  If the parameter estimates of the random 

effects hardly change then the R-sq value would be expected to increase for a more 

complex (i.e. larger number of fixed effects) model, but if the random parameter effects 

change dramatically for this more complex model, then these random terms could then 

account for an increased amount of the variation, leaving the fixed parameters 

accounting for less.  The R-sq value decreases as it only related to the fit of the fixed 

effects, and not the fixed and random effects combined.  Random parameter estimates 

can change across models as a result of lack of orthogonality and confounding in the 

data, such as model variables having different minimum/maximum ranges for different 

levels of the random effect (restock).  

 

Therefore, Model 3 is reported for all taxa.  For beetles and true flies, where a 

significant response was only recorded in response to time, management and site 

variables (and not to vegetation variables), Model 1 is reported.   
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4.3.3 Invertebrate response to habitat variation in restocks 

Invertebrate taxa varied in their response to habitat variation in restocks, however, for 

most taxa, a strong response in abundance was recorded as restocks aged.  A positive, 

linear response between restock age and abundance was recorded for active ground 

predators caught by pitfall trapping, i.e. ants (Table 4.5; Figure 4.3) and beetles in 

harvester/forwarder sites (Table 4.5; Figure 4.4).  Beetle abundance differed with age 

according to timber Extraction Type; abundance was 50% greater in cable-winched than 

harvester/forwarder areas in year zero restocks.  Ant abundance was at least three times 

as high in restocks over six years old than in younger restocks.  Abundance of arachnids 

was not related to restock age, however, abundance declined as field-layer density 

increased.  Ant abundance was negatively related to graminoid cover and positively 

related to dwarf shrub cover; captures were optimum between c.45% and 55% cover.  
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Figure 4.3: Abundance of ants (as measured by pitfall trap catches) in relation to restock 
age on 78 transects in 31 restocks in The Trossachs study area (P<0.001; Regression 
equation: Ant abundance = 3.61*Restock age-4.07). Mean abundance calculated by 
summing 2 pitfall traps per transect, with 4 weeks of trapping data pooled.  
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Figure 4.4: Abundance of beetles (as measured by pitfall trap catches) in relation to 
timber extraction method (Extraction Type) and restock age on 78 transects in 31 
restocks in The Trossachs study area (P<0.045; Regression equations: Beetle abundance 
= -0.698*Restock age+36.1 in winch areas, and = 0.897*Restock age+23.5 in harvester 
forwarder areas). Mean abundance calculated by summing 2 pitfall traps per transect, 
with 4 weeks of trapping data pooled.  
 

For taxa more associated with the field-layer, i.e. Lepidoptera larvae, true bugs and true 

flies, a quadratic response in abundance was recorded, such that these taxa increased in 

abundance during the first four to five years following restocking (Table 4.5; Figure 

4.5).  Thereafter, abundance either decreased (for true bugs) or levelled off up to the 

onset of canopy closure at eight years (Lepidoptera larvae and flies; Figure 4.5).  The 

abundance of true bugs was greatest between three and six years after restocking, and 

was 10 times greater in five year old restocks than newly re-planted restocks.  However, 

the increase in abundance of true flies was marginal only, whilst the apparent increase 

in Lepidoptera larvae abundance has to be treated with caution given that catches were 

low in restocks of all ages, but with the highest catch in five year old restocks (Figures 

4.1 & 4.5). 
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No relationship between dwarf shrub cover and Lepidoptera larvae was detected, 

although there was a negative response of this taxon to areas with taller vegetation and 

increased cover of graminoids.  Abundance of Lepidoptera larvae and true bugs was 

negatively related to brash cover.   
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Figure 4.5: Abundance of taxa mainly associated with field-layer vegetation in relation 
to restock age on 78 transects in 31 restocks in The Trossachs study area. Regression 
equations: Lepidoptera larvae abundance = (0.894×Restock age)+(-0.069×Restock 
age2)-0.641; P=0.012; true bugs abundance = (9.237×Restock age)+(-0.945×Restock 
age2)+1.460; P<0.001; true flies abundance = (2.195×Restock age)+(-0.177×Restock 
age2)+3.178; P=0.004. Mean abundance calculated by summing 2 suction traps per 
transect, with 2 occasions of trapping data pooled (for true flies and true bugs) or 
summing 2 pitfall traps per transect, with 4 weeks of trapping data pooled (for 
Lepidoptera larvae).  
 

Only true bugs showed a direct response in abundance to both of the main restock 

managements examined (Planting Type and Extraction Type; Table 4.5).  Abundance 

was c.50% greater in harvester and forwarder (HF) than cable-winched (WI) areas, and 

c.50% greater in areas left unplanted (UNP) than planted (PL).  Addition of the Planting 

Type variable into Model 3 removed significance of the graminoid cover variable, 
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suggesting that Planting Type explained more variation in the model than graminoid 

cover (a positive quadratic association; true bug abundance was optimum at c.70 to 90% 

graminoid cover).   

 

Significantly more beetles and arachnids were found in restocks at higher altitude, 

(Table 4.5).  Restock size, the previous planted (first-rotation) crop, or the distance of a 

restock from the plantation edge had no discernable effect upon abundance of any taxa. 



 

Table 4.5: Minimum adequate GLMM models describing the abundance of invertebrate taxa preferred by black grouse in relation to 
significant time, management, site and vegetation variables on 78 transects in 31 restocks in The Trossachs study area.  The table reports 
the overall minimum adequate model (Model 3) constructed by stepwise addition of significant variables from a restock 
age/management/site variables model (Model 1; Table 4.3) to a vegetation model (Model 2; Table 4.4).  
 

Taxon Model 3 parameters Estimate SE df t value

 Direction 
of effect Statistical test 

Model 2     
R2# 

Model 3      
R2# 

     
 

     

Beetles Intercept 2.475 0.302 44 8.204  glmmPQL NA NA 
 Restock age 0.080 0.038 29 2.093* +    
 ET 0.492 0.189 44 2.609* WI>HF    
 Restock age x ET -0.088 0.041 44 -2.156* §    
 Altitude 0.001 <0.001 44 2.553* +    
         
Arachnids Intercept  3.083 0.295 45 10.447  glmmPQL 0.631 0.621 
 Field-layer density -0.238 0.117 45 -2.034* -    
 Altitude 0.003 <0.001 45 3.973*** +    
         
Ants Intercept 0.307 0.405 44 0.757  glmmPQL 0.774 0.722 
 Dwarf shrub cover 0.034 0.011 44 3.241**     
 Dwarf shrub cover2 -0.001 <0.001 44 -3.095**     
 Graminoid cover -0.012 0.004 44 -3.050** -    
 Restock age 0.354 0.065 29 5.469*** +    
         
Lep.  Intercept -3.475 2.307 44 -1.506  glmmPQL 0.194 0.133 
Larvae Brash cover -0.066 0.027 44 -2.480* -    
 Graminoid cover -0.014 0.006 44 -2.211* -    
 Vegetation height -0.013 0.005 44 -2.371* -    
 Restock age 1.887 0.809 28 2.332*     
 Restock age2 -0.149 0.067 28 -2.218*     

                 

 



 

 

Table 4.5: Continued. 
 

Taxon  
Model 3 
parameters Estimate SE df† 

t/z 
value 

 Direction 
of effect 
 

Statistical test 
Model 2      
R2# 

Model 3      
R2# 

 
 

         

True bugs Intercept 2.175 0.529 44 4.110  glmmPQL 0.407 0.459 
 Brash cover -0.031 0.008 44 -3.664*** -    
 Restock age 0.555 0.199 28 2.786**     
 Restock age2 -0.059 0.019 28 -3.056**     
 PT‡ 0.657 0.155 44 4.247*** UNP>PL    
 ET -0.867 0.177 44 -4.908*** HF>WI    
         
True flies Intercept 1.132 0.238 - 4.765  glmer NA NA 
 Restock age 0.383 0.108 - 3.536***     
 Restock age2 -0.032 0.011 - -2.885**     

 

Arachnids group comprises spiders and harvestmen. Restock age/management/site variables italicised. ET refers to Extraction Type (HF: harvester/forwarder 
extraction; WI: cable-winch extraction), PT refers to Planting Type (UNP: Unplanted; PL: Planted).  See Table 4.2 for further variable descriptions. Positive effects 
are indicated by + symbols, negative effects by – symbols. Where a curvilinear fit of an independent variable was more appropriate than a linear fit, symbols  and 
represent the type of curve.  § Relationship illustrated by Fig. 4.4. NA indicates no significant Model 2 vegetation variables (Table 4.4) to formulate Model 3. ‡ PT 
replaced the ‘graminoid cover’ variable.  # For calculation of R-sq values refer to methods. † For calculation of parameter estimates using ‘glmer’, the R statistical 
programme uses REML (residual maximum likelihood); estimates are not based on observed and expected mean squares or on error strata, hence degrees of freedom 
are not given (as all F ratios use the same denominator). Levels of significance: *** P<0.001; ** P<0.01; * P<0.05. 
 
 

 

 

 



 

4.4 Discussion 

 

Black grouse hens select invertebrate-rich habitats for chick feeding (Baines et al. 

1996).  As in most gallinaceous birds, habitats with sufficient cover to evade predators, 

but where vegetation is not too dense to impede brood movement are also selected 

(Bergerud & Gratson, 1988).  It has been suggested that one of the most direct 

management actions for future grouse conservation is the retention or restoration of 

these brood-rearing habitats (Hannon & Martin 2006).  Results from Chapter 3 suggest 

that second rotation restocks may contain suitable habitat for black grouse and their 

broods, whilst this chapter indicates that restocks contain invertebrate taxa found 

important in the diet of black grouse chicks elsewhere.  Results suggest that restock age 

is an important determinant of invertebrate availability to black grouse chicks.  

Manipulation of forest management methods during the felling and restocking process 

can alter the vegetative field-layer and affect the abundance of some invertebrate taxa, 

however, effects which are consistent across the majority of the taxa considered are 

difficult to discern. 

 

4.4.1 Restocks and Lepidoptera larvae 

Several studies investigating the content and composition of black grouse chick crops 

and droppings report Lepidoptera larvae as one of the most frequently taken food items, 

which, together with ants and sawfly larvae (the latter of which was not captured in 

restocks this study), often make up the greatest proportion of the chick diet (see Table 

4.1).  In terms of energy expenditure for nutritional value return, Lepidoptera larvae are 

likely to be the most important food source available to chicks, representing a large, 
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protein-rich, easy to catch food item (Starling-Westerberg 2001) when compared with 

ants, which have a smaller biomass and are probably more difficult to catch.   

 

In this study, Lepidoptera larvae were most abundant five years after restocking, 

however, catches were infrequent and abundance was low relative to other taxa 

captured.  In Britain, Lepidoptera larvae are closely associated with heather Calluna 

vulgaris moorland (Webb 1989; Fielding 1992; Coulson 1988), however, no 

relationship between larval abundance and dwarf shrub cover was recorded in our study.  

Other studies have reported larval density to be greater on taller vegetation and 

positively associated with the taller ‘building’ and ‘mature’ phases of Calluna growth 

(Haysom & Coulson 1998), however, a negative relationship was recorded with 

vegetation height in this study. 

 

It is unlikely that pitfall trapping provided reliable estimates of Lepidoptera larvae 

abundance or reliable associations of this taxon with field-layer vegetation.  Whilst 

pitfall trap and sweep net data from the 2009 re-survey were correlated (albeit weakly), 

providing a reasonable reflection of abundance, it is likely that associations with field-

layer vegetation, hence the effects of different forest management methods, were not 

adequately assessed, and an effect of dwarf shrub cover on abundance was not detected.  

Data from pitfall traps are more likely to represent movement of larvae on the ground 

than their association with food plants, possibly recording movement of larvae when 

locating suitable pupation sites either in or on top of soils in spring (Skinner 1984).  

Therefore, significant yet weak relationships between Lepidoptera larvae and field-layer 

vegetation variables in statistical models in this study must be treated with caution.  To 

gain a more reliable and informative assessment, a more appropriate trapping method 
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(such as sweep netting) should be deployed, which would allow more reliable 

interpretation of associations and easier comparison with other studies. 

 

Lepidoptera larvae abundance is likely to be highest in restocks with a greater density of 

suitable host plants, such as bog myrtle Myrica gale (Baines et al. 1996) or bilberry 

Vaccinium myrtillus (Baines et al. 1994; Fielding 1992; Welch et al. 1994), however, 

these were recorded infrequently in restocks.  The reduction in quantity of bilberry in 

clearfelled areas of commercial forests is well-documented in Scandinavia (Atlegrim & 

Sjoberg 1996a), and can result in a decrease in the abundance of Lepidoptera larvae 

(Kvasnes & Storaas 2007) and herbivorous insect larvae in general (Atlegrim & Sjoberg 

1996b; Lakka & Kouki 2009).  Development of suitable field-layer vegetation in 

restocks is likely to be further impeded by brash cover for a number of years after 

clearfell.  Increased brash cover was negatively associated with larval abundance in this 

study, as suitable habitat for oviposition by adults and feeding opportunities for larvae 

were likely to be reduced. 

 

4.4.2 Effect of restock age and management upon invertebrate abundance  

The number of years since restocking affected the abundance of all invertebrate taxa, 

with the exception of arachnids.  Since changes in taxa abundance are most likely to be 

related to changes in field-layer vegetation, information from Chapter 3 is used to aid 

interpretation of results forthwith.   

 

Invertebrate taxa differed in their response to restock age.  Ant abundance increased 

with restock age; numbers were three times higher in older restocks.  Most ants are 

generalist predators, scavengers and indirect herbivores (Wilson & Hölldobler 2005) 
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and greater abundance in older restocks probably reflects a greater availability of 

suitable food and habitat resources.  Species richness of ants commonly increases from 

forest planting to c.20 years (see Niemelä 1997 for a review), and subsequent increases 

in abundance are likely to result.  Increased ant abundance in restocks with a moderate 

dwarf shrub cover and decreased graminoid cover suggests preference for better-

developed habitats, compared with more sparsely-vegetated, young restocks.  This 

habitat is further enhanced for ants in restocks with a greater proportion of planted trees 

(i.e. decreased open space), where a more complex forest habitat is available. 

 

Beetle abundance generally increased with restock age, although levels of abundance 

differed according to the timber extraction method used at clearfell.  In the year 

following restock, beetle abundance in cable-winched areas was double that recorded in 

harvester/forwarder extracted areas, although numbers were similar by the onset of 

canopy closure.  The method by which timber is extracted from forest coupes following 

clearfell affects field-layer re-vegetation and density in restocks; cable-winched areas 

are largely free from brash after harvesting and generally re-vegetated much faster than 

harvested/forwarder extracted areas (see Chapter 3).  Beetles can take advantage of this 

early vegetative cover, which seems likely to increase prey abundance, whilst providing 

cover during hunting. 

 

Increases in the abundance of true bugs and true flies were most prominent in the initial 

years following restocking; a period when non-vegetative ground cover (composed of 

brash and needles) had mostly degraded, and re-vegetation of field-layer species 

commenced (see Chapter 3).  Decreases in abundance of Lepidoptera larvae and flies 

mainly occurred with the onset of canopy closure at around eight years, when tree 
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growth began to out-compete field-layer vegetation.  Abundance of true bugs was 

greatest between three and six years after restocking, a period when cover by graminoid 

species was optimal, and food resources abundant for this plant-sap feeding group 

(Brusca & Brusca 2003).  Apart from beetles, true bugs were the only taxon to respond 

to differences between forest management methods in restocks, i.e. Planting Type or 

Extraction Type.  Abundance was significantly lower in planted areas, possibly due to 

the greater cover of non-native trees and C. vulgaris providing less suitable habitat than 

in unplanted areas. The wetter plant community that established in harvester/forwarder 

extracted areas, mainly composed of graminoids: Carex, Juncus and Eriophorum spp 

and later Molinia caerulea (see Chapter 3), also apparently benefit true bugs, which 

were significantly more abundant in these areas than in cable-winch extracted areas.  

Cable-winched areas also have a significantly greater cover of C. vulgaris, which may 

out-compete the non-woody vegetation preferred by true bugs.  Abundance of true flies 

was comparatively low, and flies were not found to respond to any variable measured.  

This could be a consequence of the suction trapping method used; as more mobile 

species, flies were occasionally observed to fly clear of the suction nozzle whilst (or 

even before) vegetation was sampled, which is a recognised disadvantage of this 

method (Sutherland 1996) that may result in a biased sample and an unclear result. 

   

Although overall abundance of arachnids did not change significantly as restocks aged, 

it is likely that forest specialists replaced open ground specialists as vegetation 

developed (Oxbrough et al. 2005).  However, other factors may contribute to this 

apparent lack of relationship with restock age.  Statistical analyses were conducted 

using pitfall trap data, which was most likely to bias catches towards wolf spiders 

(Lycosidae) - an active, ground-hunting group - and against less active groups, notably 
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money-spiders (Linyphiidae), which build webs in field-layer vegetation to trap prey 

(Oxbrough et al. 2005; Atlegrim & Sjoberg 1995).  By using only pitfall trapping data, 

and hence sampling mainly the ground-level group, the group most likely to increase 

with age-related changes to the field-layer was less well represented, reducing the 

chances of detecting an effect of restock age.  For the arachnid group in particular, 

consideration should be given for the use of both pitfall trapping and suction sampling 

when assessing abundance in restocks. 

 

Existing studies investigating the response of invertebrate taxa to plantation forest 

management in Britain mostly focus upon Carabid beetle and spider assemblages - taxa 

that are easily captured by pitfall traps - which often respond to changes in forest 

structure, and are taxonomically well-known (Oxbrough et al. 2010).  In comparison 

with this study, which focussed upon the period between restock and the onset of 

canopy closure, previous work has investigated invertebrate response through a 

complete forest rotation from planting to maturity (e.g. Day & Carthy 1988), or has 

compared invertebrate response between forest plantations and surrounding habitats 

(e.g. Butterfield et al. 1995).  In Fennoscandia, research often focuses upon differences 

resulting from timber felling type, particularly the comparison between clearfelling, 

single-tree selective felling, and uncut controls (Atlegrim & Sjoberg 1995; Nitterus et 

al. 2007).  Whilst studies describing the recovery of field-layer vegetation within 

second-rotation forests are relatively common (see Chapter 3), data relating to the 

response of invertebrates in this habitat are rare. 
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4.4.3 Invertebrate provision in restocks for black grouse chicks. 

This study represents one of the most intensive invertebrate sampling studies covering 

the most diverse range of invertebrate taxa conducted in second rotation commercial 

forest restocks to date in the UK.  Restocks appear to provide a resource of most 

invertebrate taxa preferred by black grouse chicks, particularly of true bugs in restocks 

around five years old and ants six years after restock.  Whereas ants are commonly 

recorded in the diet of black grouse chicks and often occur as a major component, true 

bugs are recorded in fewer studies, and often represent a relatively minor proportion of 

the diet (See Table 4.1).  Both taxa have a relatively low biomass, hence large numbers 

are likely to be required to equate to a larger, easy to catch protein-rich meal, such as 

Lepidoptera larvae.    

 

Previous dietary studies suggest that beetles commonly occur in the diet of chicks, 

although comprise a relatively small proportion of the overall invertebrates consumed.  

Beetles are common in second rotation plantations in Britain, where clearfelled areas 

often result in higher species diversity than closed-canopy areas (Day & Carthy 1988; 

Butterfield et al. 1995).  Furthermore, increased structural diversity provided by brash 

piles in restocks can result in increased abundance of certain taxa, such as spiders 

(Oxbrough et al. 2010), although brash cover was found to be negatively associated 

with true bug abundance in this study.  Indirect effects of brash upon black grouse 

broods may be important however; roost droppings observed underneath brash piles 

suggest that black grouse may use brash in restocks for cover (J. Owen, unpublished 

data), thus the retention of well-distributed brash piles in restocks may provide 

beneficial shelter and cover prior to the recovery of field-layer vegetation. 
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If Lepidoptera larvae abundance is low in restocks due to the lack of suitable field-layer 

vegetation (rather than inadequacies of the sampling method), availability of other 

invertebrate taxa may be important in providing a food source for chicks.  Invertebrate 

taxa recorded in this study were similar to those recorded in first-rotation forests in 

Wales (Cayford et al. 1989).  Analyses of brood droppings from in and around forest 

plantations suggested that ants and Lepidoptera larvae formed the greatest proportion of 

chicks’ diet, but locally abundant taxa such as harvestmen were also important.  Chicks 

also foraged opportunistically to some degree (Cayford et al. 1989), taking a wide range 

of invertebrate groups, and abundance of taxa differed between study sites. Variation in 

the abundance of different taxa can be important in determining diet composition; in 

two study areas in the French Alps, grasshoppers formed a major component of chick 

diet (Ponce 1992), and Lepidoptera larvae were comparatively rare. However, 

grasshoppers are not a commonly recorded item in either chick diet or in black grouse 

habitat in Britain (present study; Picozzi 1986; Cayford et al. 1989; Starling-Westerberg 

2001; Baines Baines et al. 1996; Baines 1996).  In addition to Lepidoptera larvae, 

chicks are reported to favour other slow-moving, soft-bodied invertebrates, such as true 

bugs (Niewold 1990), and larvae of other species, such as sawflies, which comprised a 

high proportion of the chick diet on grass-dominated moorland in Northern England 

(Baines et al.1996; Starling-Westerberg 2001).   

 

4.4.4 Management conclusions  

Identifying and improving potential areas of brood habitat is likely to be important for 

maintaining black grouse populations.  When suitable habitats are reduced, hens are 

forced into sub-optimal habitats containing fewer insects in which more chicks starve 

(Niewold 1990).  Willow grouse broods travel further to find food when suitable habitat 
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is limited (Erikstad 1985), and predation risk is increased with the aggregation of 

broods on small areas of remaining suitable habitat (Kastdalen & Wegge 1985; Lakka & 

Kouki 2009).   

 

Understanding the factors involved in the development of better brood habitat is 

necessary so that management resources can be directed appropriately.  Whilst there is 

no clear evidence that the application of one particular forest management method 

considered (either Planting Type or Extraction Type) results in an increased abundance 

of all invertebrate taxa in restocks preferred by black grouse, an increased abundance of 

most taxa was detected in response to restock age.  In areas that contain black grouse 

and where the provision of brood habitat is a priority, restocks of five years or older 

where planted trees have not yet closed canopy should be made available throughout the 

second rotation of plantation forests, although this age may vary slightly between FC 

forest districts across Scotland due to factors such as climate, soils, topography, and tree 

species planted.  Alternatively, the extension of fallow periods before restocking (where 

appropriate) may increase the duration of suitable habitat to invertebrates, hence 

prolong optimum taxa abundance prior to canopy closure.   

 

Whilst the size of restocks or their distance from the plantation edge did not appear to 

be important factors for the invertebrate taxa studied, previous studies suggest that 

habitat is more likely to be used by black grouse if located on the plantation/moorland 

edge (Watson & Moss 2008).  Whilst somewhat surprising that areas left unplanted 

provided no greater benefit in terms of increased invertebrate abundance, it is likely that 

the comparative importance of these areas will become apparent after trees have closed 

canopy in restocks subject to a two year standard fallow period.  As mentioned 
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previously in Chapter 3, correlative studies are subject to limitations due to the 

difficulty in establishing cause and effect (see 3.4.5).  Forest management methods such 

as leaving areas unplanted influence the recovery of vegetation, which in turn is likely 

to influence invertebrate abundance.  However, which areas are left unplanted in a 

restock can be a result of site topography, meaning that in a restock on flat ground all 

unplanted areas may be left in boggy areas, making it difficult to discern the influence 

of environmental factors upon invertebrate abundance from those resulting solely from 

forest management.   

 

Comparisons with productive, natural black grouse habitat are necessary to quantify the 

potential quality and value of restocks to black grouse and their broods within and 

around commercial forests. 
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Chapter 5: Potential effects to black grouse from 

extended fallow periods in restocks  

 

5.1 Introduction 

Alternatives to chemical insecticides used for control of pine weevil Hylobius abietis, a 

pest of commercial conifer crops, are currently sought by the Forestry Commission 

(FC).  Whilst permethrin-based insecticides can prevent damage to young trees (Leather 

et al. 1999; Langstrom & Day 2004), and are relatively low cost (von Sydow 1997), 

growing economic and environmental concerns have resulted in a change of policy 

aimed at reducing and eventually discontinuing chemical use on the national forest 

estate.  However, without preventative measures to guard against Hylobius attack, 

losses of planted trees average around 50%, and in some cases whole sites can fail 

without adequate protection (Willoughby et al. 2004).   

 

Previous research suggests that planted trees are particularly at risk from Hylobius 

attack up to two years after clearfell (Willoughby et al. 2004).  Hylobius beetles are 

attracted by volatiles emanating from the resin of freshly cut conifer stumps in newly 

clearfelled areas, which act as breeding material for the development of eggs through to 

the pupal stage.  The subsequent emergence of adults from stumps can result in 

widespread damage to newly planted saplings in a restock, as adults feed on the bark.  

Populations often remain at high levels for four to five years after clearfell, resulting in 

high tree mortality over a prolonged period (Eidmann 1974; von Sydow 1997; Orlander 

& Nilsson 1999).  One possible alternative to annual prophylactic pesticide use is to 

increase the current ‘standard’ fallow period between clearfell and restocking; from the 
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current prescription of two years, to between three and five years, thereby allowing the 

Hylobius population to naturally build up, decrease, and stabilise at low levels before 

restocking commences (Moore 2004; Willoughby et al. 2004).  Whilst not feasible for 

all sites due to subsequent increased competition from ground vegetation (Nilsson & 

Örlander 1999), extended fallow period restocks have been trialled experimentally by 

FC since the late 1990’s to ascertain best practice for weevil control (Heritage & Moore 

2001; Willoughby et al. 2004).  In 2010, recommendations were made to extend fallow 

periods in restocks within FC forests across Scotland, following publication of 

successful management trials in the North Highlands Forest District in Sutherland 

(Forestry Commission 2009b). 

 

Restocks with an extended fallow period could provide a number of benefits to black 

grouse Tetrao tetrix.  In addition to semi-natural woodland and moorlands, black grouse 

use young commercial conifer plantations and the recovering vegetation in pre-thicket 

clearfells and restocks of the second rotation for feeding, lekking, nesting and brood 

rearing (Cayford et al. 1989; Haysom 2001).  However, suitable habitat within 

commercial plantations is often available for a limited time only prior to tree canopy 

closure (this study; Pearce-Higgins et al. 2007).  In second rotation restocks, where 

there is also an initial period of vegetation development (Chapter 3), extending the 

fallow period may allow better re-establishment of slower-growing ericaceous and other 

dwarf shrub species that are of particular importance to black grouse, such as heather 

Calluna vulgaris and bilberry Vaccinium myrtillus, and also increase the duration of 

their availability.  This may in turn influence the availability of invertebrate foods for 

black grouse chicks, as well as having potential effects on the abundance of species that 

may predate black grouse adults, eggs and chicks.  Vegetation development may 
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influence small mammal populations (Sullivan et al. 2001; Fernandez et al. 1994; Ecke 

et al. 2002) which are likely to be important prey items for a range of avian and 

mammalian predators, and can affect populations of such predators (Hamerstrom 1979; 

Hörnfeldt et al. 1986).  Thus, as large areas of the forest estate remain to be clearfelled 

over the coming decades (Mason 2007), the practice of extending fallow periods may 

represent a substantial increase in the amount of potentially useful habitat available to 

black grouse and their broods, and influence the abundance of invertebrate food items 

and potential predators. 

 

The objective of this chapter is to assess the influence that extended fallow periods may 

have upon black grouse and their broods using second rotation restocks, by examination 

of changes in: 1) field-layer vegetation composition, 2) abundance of invertebrate taxa 

preferred by black grouse, and 3) predator abundance.  Changes are assessed by 

comparing restocks subject to an extended fallow period with restocks subject to a 

standard fallow period in the same geographical area, allowing quantification of 

potential benefits to black grouse.    

 

5.2 Methods 

5.2.1 Field data collection 

Field data were collected from 36 restocks in 8 commercial forest plantations in 

Sutherland between May and September 2009 (see Chapter 2 for study area information 

and map).  Restocks previously contained mature crops of un-thinned Sitka spruce 

Picea sitchensis and/or lodgepole pine Pinus contorta, all of which had been clearfelled 

using heavy machinery (harvester and forwarder).  Restocks were located on the 
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forest/moorland edge, or connected to the edge by other open ground of potential use to 

black grouse, i.e. pre-thicket restocks or unplanted areas (see Chapter 3, section 3.2.2). 

 

A range of restocks was selected, from newly replanted (year 0) through to closing-

canopy (9 years since restock).  Each restock had been subject to either to a ‘Control’ 

fallow period of up to 2 years, an ‘Extended’ period of 3 to 5 years, or a ‘Super-

extended’ period of 6 to 7 years.  Fallow period length of each restock was assigned 

randomly, as part of a previous, unrelated FCS trial (Table 5.1).   

 

5.2.1.1 Vegetation sampling 

Habitat data were collected from a total of 288, 20 m transects in 36 restocks.  Eight 

transects were located in each restock; 4 in areas planted with trees and 4 in areas left 

unplanted, using stratified random sampling for transect placement.  All transects were 

more than 100 m apart and no less than 50 m from the restock edge.  Methods for 

collection of habitat data in restocks are described in Chapter 3 (section 3.2.2).     

 

5.2.1.2 Invertebrate sampling 

Invertebrate data were collected from 72 of the 288 transects described in 5.2.1.1.  Two 

of the eight transects in each restock were randomly selected for use; one in a planted 

area and one in an area left unplanted.  Invertebrates were sampled by pitfall trapping, 

suction sampling and sweep netting, as described in Chapter 4 (section 4.2.1). 

 

Sampling was conducted between 8 June and 15 July 2009 to coincide with the brood-

rearing period when chicks are largely dependent upon invertebrate food (Robel 1969a; 

Starling-Westerberg 2001; Picozzi 1986; Baines et al. 1996).  In the Sutherland study 
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area, brood records suggest that black grouse chicks hatch from approximately early-

June to at least mid-June (K. Kortland, pers. comm.), although dates are likely to vary. 

 

5.2.1.2.1 Taxa selection and sampling method 

Invertebrates were identified to Order following Chinery (1993), with the exception of 

Hymenoptera, which were further identified to Formicidae (ants), Symphyta (sawfly 

larvae) and Ichneumonidae (parasitic wasps).  Spiders (Araneae) and harvestmen 

(Opiliones) were not distinguished, but combined and termed ‘arachnids’ for analyses.  

Invertebrates measuring ≤2 mm in length (predominantly Collembola) were considered 

too small to make an important contribution to the black grouse chick diet (Niewold 

1990) so were discarded and not included in overall counts.  

 

Six invertebrate taxa of potential importance to black grouse chicks were selected for 

statistical analyses based upon data from previous dietary studies (Chapter 4, Table 4.1).   

For the 2009 invertebrate studies, adult Tipulids were separated from other true flies 

(Diptera) and considered as a seventh group, because they represent one of the most 

important dipteran families within upland bird diets (Buchanan et al. 2006).   

 

Taxa considered for statistical analyses were caught in restocks using three invertebrate 

sampling methods, as described in Chapter 4 (section 4.2.1).  To avoid producing 

multiple, and potentially contrasting, abundance measures for the same taxon, the 

trapping method considered to be most appropriate for each taxon was selected for use 

in statistical analyses, as described in Chapter 4 (section 4.2.2; based upon 

recommendations in Sutherland 1996, and Standen 2000).  Therefore, as in Chapter 4, 

pitfall data were used for beetles, arachnids, and ants (as predominantly surface-living 
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taxa, which are active on bare ground or low vegetation), whilst suction sampling data 

were used for true flies and bugs due to their stronger association with field-layer 

vegetation.  Sweep netting data were used for Lepidoptera larvae and Tipulids, as these 

groups (also commonly associated with the field-layer) were considered to be 

ineffectively sampled using the other trapping methods.   

 

5.2.1.3 Predator abundance 

Potential avian predators and scats of mammalian predators of black grouse, and their 

broods and nests, were recorded along 1 km transects in a randomly selected sub-

sample of 24 of the 36 study restocks.  One transect was established through each 

restock using linear habitat features such as quad-bike tracks (used for deer 

management), or forest vehicle tracks that passed directly alongside or through the 

restock.  Each transect was first walked in mid-April to clear it of mammalian (red fox 

Vulpes vulpes and pine marten Martes martes) scats, and mammalian and avian data 

were then collected once per month from mid-May to mid-August 2009, which 

encompassed the period when hens were on eggs through to when juveniles are likely to 

have fledged.  When walking transects, potential avian predators were counted if taking 

off or landing within 250 m of the transect line, or if in flight over the restock.  Upon 

completion of avian observations along a transect, faecal scats were collected on the 

return journey.  As scats of fox and pine marten are difficult to distinguish between 

reliably (Davison et al. 2002), all scats were classed in one ‘mammalian predator’ 

group.  In order to avoid repeated measures of predator abundance from the same 

transect and to reduce the frequency of zero counts in the data, counts of avian 

observations and mammalian scats collected each month were pooled for each transect. 

 



 

Table 5.1: Description of fallow period prescriptions, location of restocks used and number of transects per age group in the 2009 Sutherland 
study. 
 

Fallow group  Description  Plantations 
No. of 
restocks  

Total 
transects Age group 

No. of 
transects 

Control                 
(2 years) 

‘Standard’ fallow period -
recommended for most restocks up 
until mid-2010 

1, 2, 3, 6, 7, 8 13* 104 Young  

Intermediate 

Closing canopy  

32 

32 

40 

Extended               
(3-5 years) 

Now current recommendation for all 
restocks in Scotland, except sites 
particularly prone to weed growth 

1, 4, 5, 8 14 112 Young 

Intermediate 

Closing canopy 

40 

32 

40 

Super-extended    
(6-7 years) 

Part of FC trial in late 1990’s to assess 
pine weevil population dynamics 

1, 4, 5, 8 9 72 Young 

Intermediate 

Closing canopy 

32 

40 

0^ 

Plantations: 1. Dalchork, 2. Shinness, 3. Lairg, 4. Inveroykel, 5. Raemore, 6. Balblair, 7. Rogart, 8. Morangie. Refer to Chapter 2 for study area and plantations information. 
*Data also used in Chapter 3.  ^Restocks of this fallow period/age group not available for study. 

 



 

5.2.2 Statistical analyses 

5.2.2.1 Model building 

5.2.2.1.1 Field-layer vegetation 

Explanatory restock variables (Model 1; Table 5.2) inter-correlated at r≥0.60 were 

identified (Appendix Table 4a), and those inter-correlated with the effects of main 

interest in this study, i.e. Fallow group, Restock age and Planting Type (which represent 

fundamental aspects of restock management) were removed.  Variables included in 

analyses were: Restock age, Fallow group, Planting Type, Restock size, Open space, 

Distance to edge, Previous crop, Altitude and Slope (see Model 1; Table 5.2 for variable 

descriptions).  Quadratic terms of each continuous explanatory variable were tested, 

with a significance level of P<0.05.  First-order interactions between Fallow group and 

Planting Type, and Fallow group and Restock age were included in analyses, as 

vegetation response is expected to differ with the length of fallow period, and results 

from the Chapter 3 suggest that Planting Type and Restock age are likely to be two of 

the main variables affecting vegetation response (section 3.3).   

 

GLMM models were fitted specifying restock identity as the random effect.  Minimal 

adequate models were produced by fitting all of the relevant main effects and 

interactions, and then removing terms according to their level of significance, until only 

those significant at P<0.05 remained.  Interaction terms were tested for removal before 

main effects.  Posthoc, pairwise tests using the ‘relevel’ function in R were used to 

compare three-level factors (i.e. the three fallow period groups), and the ‘anova’ 

function was used to generate an overall minimum adequate model. 
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Calluna vulgaris cover data contained a high proportion of zeros (absent from 50 of 288 

transects) and could not be transformed to a normal distribution.  Therefore, data were 

modelled using the penalized-quasi likelihood (PQL) method (Venables & Ripley 2002) 

to account for an unknown distribution (cover values not being based upon a set of 

trials), using the glmmPQL function in the ‘MASS’ library of R, version 2.8.1 (R 

Development Core Team 2008).  Both V. myrtillus and Eriophorum spp. (E. vaginatum 

and E. angustifolium) occurred with very low frequency across transects and were 

therefore treated as presence or absence data, using the glmer function in the ‘lme4’ 

library (Bates et al. 2008), based on the binomial logistic regression model.  Height of 

heather (Calluna vulgaris, Erica tetralix, E. cinerea), graminoids (grasses, Juncus and 

Carex spp.), and field-layer density (0 to 40 cm height, including brash) were analysed 

with a normal error distribution using linear mixed effects models, hence the lme 

function in the ‘nlme’ library of R (Pinheiro et al. 2007).   

 

5.2.2.1.2 Invertebrates 

Explanatory variables in the invertebrate Model 1 (Table 5.2) were removed if inter-

correlated at r≥0.60 with the effects of main interest in this study, i.e. Fallow group, 

Restock age or Planting Type (which represent fundamental aspects of restock 

management).  This resulted in removal of the variables: number of trees, mean tree 

height, and tree cover (Appendix Table 4a).  None of the vegetation variables in Model 

2 (Table 5.2) were inter-correlated at r≥0.60 (Appendix Table 4b).  Quadratic terms of 

each continuous explanatory variable were tested, with a significance level of P<0.05.   
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Table 5.2: Explanatory variables considered in statistical models. Model 1 contains time 
(T), management (M), and site (S) variables in restocks. Model 2 contains field-layer 
vegetation variables. 

Variable 
Data 
type¶ Description 

Level of 
data 
collection 

 

Model 1. Time (T), management (M), and site (S) variables 
    

Restock age T Years since restock  Restock 

Fallow 
group 

M Number of years spent fallow prior to restock, 
categorised into: Control (0-2 years), Extended 
(3-5 years) or Super-extended (6-7 years) 

Restock 

Planting 
Type (PT) 

M Planted with trees (PL) or left unplanted (UNP) Transect 

Restock size  S Total restock area (ha), includes planted and 
unplanted 

Restock 

Open space S Total restock area (ha), unplanted only Restock 

Distance to 
edge 

S Restock edge to nearest plantation edge (m) Restock 

Previous 
crop 

S* First rotation crop: spruce or pine Transect 

No. of 
trees# 

S Number of planted trees in a 10x10 m square Transect 

MTH# S Mean tree height (m) in 10x10 m square 
described above 

Transect 

Tree cover# S Cover (%) by planted trees Transect 

Altitude S Average of 5 equidistant points  Transect 

Slope S Average of 5 equidistant points  Transect 
 

Model 2. Vegetation variables 
Moisture 
score 

C Mean cover-weighted Ellenberg moisture values  Transect 

Vegetation 
height  

C Maximum height of all vegetation (cm) Transect 

Field-layer 
density 

C Index (0 to 3) of field-layer density from ground 
level to 40cm tall, includes vegetation and brash  

Transect 

Dwarf shrub 
cover 

C Combined cover (%) of Calluna vulgaris, Erica 
tetralix, E. cinerea, Vaccinium myrtillus  

Transect 

Graminoid 
cover 

C Combined cover (%) of Carex, Eriophorum, 
Juncus, Luzula, Deschampsia, Agrostis, Molinia, 
Nardus, Festuca and Anthoxanthum spp.) 

Transect 

Brash cover C Cover (%) by brash Transect 
‘Moisture score’ refers to the mean cover-weighted Ellenberg moisture score (Hill et al. 1999) of species 
recorded along a transect: wetter habitats have a higher score. # not included in analyses due to inter-
correlation within the Model (see Appendix, Table 4). ¶ indicates how data were represented in statistical 
models: T - continuous age covariate; M - 2-level management factor; S - continuous site-dependent 
variable; S* - 2-level site factor; C - continuous vegetation variables. 
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First-order interactions tested are as described for vegetation analyses above (section 

5.2.2.1.1).  Interaction terms were tested for removal before main effects. Minimal 

adequate models were produced in the same way as for vegetation models above.   

 

Analyses for each invertebrate taxon were undertaken using generalised linear mixed 

models (GLMMs), specifying restock identity as the random effect.  Data for all 

invertebrate taxa were over-dispersed, hence the ‘glmmPQL’ function in the ‘MASS’ 

library (Venables & Ripley 2002) of R was used specifying ‘quasipoisson’ errors., 

which automatically estimates over-dispersion using a Penalised Quasi-Likelihood 

method (Zuur et al. 2009).   

 

5.2.2.1.3 Predator abundance 

As only one transect per restock was used for the assessment of predator abundance, 

data were analysed using a standard GLM.  Data were from a non-normal distribution 

and were over-dispersed, hence the ‘quasipoisson’ error term was used.  Only main 

variables of interest were tested, i.e. length of fallow period (i.e. ‘Fallow group’), 

restock age, and their interaction. 

 

5.2.2.2 Calculation of R2 values 

The R2 value produced for each model explains how much of the variation in the data is 

explained by the model, with a higher R2 value meaning more variation has been 

explained.  For glmer, R2 values are calculated by (null deviance - residual deviance / 

null deviance).  For glmmPQL, R2 is calculated by the square of the correlation between 

the model's predicted values and the observed values.   
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5.3 Results 

5.3.1 Field-layer vegetation 

Thirty-three vascular plant species, two graminoid groups identified to genus only 

(Agrostis and Luzula spp.) and four moss genus groups (Polytrichum, Sphagnum, 

Pleurozium and Racomitrium spp.) were recorded in restocks.    

 

5.3.1.1 Ground-, field-layer and canopy-cover development  

From replanting to 2 years old, restocks with a standard 2 year fallow period (‘Control’) 

are predominantly composed of graminoids (Juncus, Carex, Eriophorum spp. and 

grasses), and non-vegetative ground cover (mainly brash), with sparse dwarf shrub 

cover (predominantly Calluna vulgaris, but also Erica tetralix, E. cinerea and 

Vaccinium myrtillus; Figure 5.1 and Figure 5.2a).  Up to 2 years after restock, 

‘Extended’ fallow restocks have more than double the dwarf shrub cover of restocks 

subject to a ‘Control’ fallow period, and ‘Super-extended’ fallow restocks have three 

times the dwarf shrub cover of Controls (Figure 5.1).  Graminoid cover is similar 

between the fallow period groups, however Controls have a greater non-vegetative 

cover (which is predominantly composed of brash). 

 

At 3 to 5 years old, cover in restocks subject to a ‘Control’ fallow period is still 

dominated by graminoids (Figure 5.1 and Figure 5.2b).  ‘Extended’ and ‘Super-

extended’ fallow restocks have nearly double the cover of dwarf shrubs and a reduced 

graminoid cover.   

 

Dwarf shrub cover in Controls only reaches levels in ‘Extended’ fallow restocks at the 

onset of canopy closure, 6 to 9 years after replanting (Figure 5.1 and Figure 5.2c).  C. 
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vulgaris dominates over other dwarf shrubs at every stage, on average representing 

more than 93% of dwarf shrub cover on transects. 
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Figure 5.1: Vegetative and non-vegetative cover on 288 transects in 36 restocks subject 
to differing lengths of fallow period. Restocks grouped by developmental stage: Young, 
0-2 years since replanting; Intermediate, 3-5 years since replanting; and Closing-
canopy, 6-9 years since replanting.  Length of fallow period: C – Control, 2 years 
fallow; Ex – Extended, 3-5 years fallow; Su-Ex – Super-extended, 6-7 years fallow. No 
restocks were available for study in the Closing-canopy/Su-Ex fallow group.    
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a)  Young restocks (0-2 years since replanting), n=13 

b)  Intermediate restocks (3-5 years since replanting), n=14 

c)  Closing-canopy restocks (6-9 years since replanting), n=9 

Grass spp.
Eriophorum spp. 

Carex spp.
Juncus spp.
Vaccinium myrtillus

Heather spp.

Grass spp.
Eriophorum spp. 

Carex spp.
Juncus spp.
Vaccinium myrtillus

Heather spp.

Figure 5.2: a-c) Community composition of vascular component of field-layer 
vegetation on 288 transects in 36 restocks subject to varying fallow periods in the 
Sutherland study area.   Fallow period groups:  C - Control, 2 years fallow; Ex - 
Extended, 3-5 years fallow; Su-Ex – Super-extended, 6-7 years fallow.  No restocks in 
the closing-canopy/Su-Ex fallow group were available for study. 
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5.3.1.2 Development of Calluna vulgaris  

Calluna vulgaris cover significantly increased with restock age (Table 5.3; Figure 5.3) 

to a maximum of c.40% between 5 and 6 years.   Cover decreased thereafter, as planted 

tree cover increased.    C. vulgaris cover was positively related to slope, with greatest 

cover at a gradient of 8 to 12º (Table 5.3; Figure 5.4).      

 
Table 5.3: GLMM models describing significant effects of an extended fallow period 
(Fallow group), restock age, management variables and site factors on cover of C. 
vulgaris and brash on 288 transects in 36 restocks in the Sutherland study area 

Variable  Parameter df F

 Direction 
of effect  

Statistical 
test  

         
R2# 

    
 

   

C. vulgaris Intercept 1,247 48.318  glmmPQL 0.442 
Cover PT 1,247 0.113 n.s.   
 Fallow group 2,31 2.556 n.s.   
 Restock age 1,31 11.865** +   
 Restock age2 1,31 4.455    

 Slope 1,247 4.809*    
 Slope2 1,247 5.009    

 PT x Fallow 
group 

1,247 3.817** §   

       
Brash  Intercept 1,251 375.287  glmmPQL 0.400 
Cover PT 1,251 38.303*** UNP>PL   
 Restock age 1,34 18.134*** -   
 

      

‘Fallow group’ levels consist of: Control, 2 years fallow; Extended, 3 to 5 years fallow; Super-
extended, 6 to 7 years fallow. PT refers to Planting Type (UNP: Unplanted; PL: Planted). Positive 
effects of variables upon cover are indicated by + symbols, negative effects by – symbols. Where a 
curvilinear fit was more appropriate than a linear fit, symbols  and represent the type of curve. See 
Table 5.2 for description of explanatory variables. § Relationship illustrated by Figure 5.5. # For 
calculation of R-sq values refer to methods.  Levels of significance: ***P<0.001, ** P<0.01, * P<0.05, 
n.s. P>0.05. 
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Figure 5.3: Calluna vulgaris cover in relation to restock age on 288 transects in 36 
restocks in the Sutherland study area (P<0.002; Regression equation: C. vulgaris cover 
= (8.647×Restock age)+(-0.782×Restock age2)+14.35). 
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Figure 5.4: Calluna vulgaris cover in relation to slope on 288 transects in 36 restocks in 
the Sutherland study area (P<0.026; Regression equation: C. vulgaris cover = 
(2.53×Restock age)+(-0.125×Restock age2)+23.42. 
 
 

A significant interaction between Planting Type (planted vs. unplanted) and Fallow 

group (i.e. fallow period duration) was detected (t247=-2.747, P=0.007; Table 5.3; Figure 

5.5).  In areas left unplanted, ‘Extended’ fallow period restocks had double the C. 

vulgaris percentage cover than Controls at year zero, and cover was greater in all years 
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up to year 8.  In planted areas, extended fallow periods also resulted in an increased 

cover of C. vulgaris, however, cover was only greater than in Controls up to year 5 and 

the difference wasn’t as marked.  No data were available for ‘Super-extended’ more 

than 4 years after restock, however up to this point, C. vulgaris cover was greater in the 

‘Super-extended’ than in the ‘Extended’ or ‘Super-extended’ fallow groups.  The model 

was a relatively good fit to the data (R2=0.442).  
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Figure 5.5: Calluna vulgaris cover in relation to planting type a) Planted and b) 
Unplanted, and fallow period length (Control, 2 years fallow; Extended, 3-5 year 
fallow; Super-extended, 6-7 years fallow) on 288 transects in 36 restocks in the 
Sutherland study area (Regression equations - a) Planted: C. vulgaris cover; Control = 
(10.770×Restock age)+(-0.959×Restock age2)+7.030); Extended = (11.900×Restock 
age)+(-1.325×Restock age2)+14.68; Super-extended = (16.140×Restock age)+(-
1.497×Restock age2)+7.40. b) Unplanted: C. vulgaris cover; Control = (-3.720×Restock 
age)+(1.091×Restock age2)+6.541); Extended = (7.995×Restock age)+(-0.617×Restock 
age2)+20.23; Super-extended = (12.730×Restock age)+(-3.187×Restock age2)+27.13). 
 

5.3.1.3 Influence of brash cover on C. vulgaris development 

Similarly, in the Sutherland study area, brash cover was significantly greater in 

unplanted areas and decreased as restocks age (Table 5.3; Figure 5.6).  Apparent 

increases in brash cover in unplanted areas are probably an artefact of a relatively small 

sample of restocks in the 0 and 1 year old ‘Super-extended’ fallow group. 
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No statistically significant effect of fallow period was detected (F2,31=0.980, P=0.387), 

however restocks subject to ‘Extended’ fallow periods had c.17% less brash cover in 

unplanted areas than Controls in the first year following restock (Figure 5.6b).  By year 

6 to 7, brash cover levels were the same irrespective of the fallow period length.  The R2 

value indicated that the model was a relatively good fit to the data (R2=0.400). 
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Figure 5.6: Brash cover in relation to planting type a) Planted and b) Unplanted, and 
fallow period length (Control, 2 years fallow; Extended, 3-5 year fallow; Super-
extended, 6-7 years fallow) on 288 transects in 36 restocks in the Sutherland study area 
(Regression equations - a) Planted: brash cover; Control = (-2.818×Restock 
age)+24.34); Extended = (-1.465×Restock age)+14.980; Super-extended = (-
2.536×Restock age)+13.600. b) Unplanted: brash cover; Control = (-3.550×Restock 
age)+34.900); Extended = (-1.022×Restock age)+20.53; Super-extended = 
(2.310×Restock age)+12.620). 
 

5.3.1.4 Other taxa examined 

Eriophorum spp. (E. vaginatum and E. angustifolium) were recorded on 61 of 288 

transects.  Variability between restocks was high, mainly due to the majority of 

transects (60%) with Eriophorum present being located in one forest plantation.   
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There was a significant difference in the likelihood of Eriophorum spp. occurrence 

between fallow period groups (χ2=12.307, P=0.002; Figure 5.7).  Restocks subject to 

‘Extended’ and ‘Super-extended’ fallow periods had a significantly greater likelihood of 

Eriophorum spp. occurrence than Controls (z=-2.158, P=0.031 and z=-2.596, P=0.009, 

respectively).  There were no differences between ‘Extended’ and ‘Super-extended’ 

fallow period restocks (z=0.867, P=0.386).   

 

Eriophorum spp. were also more likely to occur in unplanted than planted areas 

(χ2=5.052, P=0.025), and in restocks at higher altitude (χ2=5.438, P=0.020).   The 

model fit to the data was relatively good (R2=0.698). 
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Figure 5.7: Cover of Eriophorum species (E. vaginatum and E. angustifolium) in 
relation to fallow period length prior to restock (Control, 2 years fallow; Extended, 3-5 
year fallow; Super-extended, 6-7 years fallow) on 288 transects in 36 restocks in the 
Sutherland study area. Box plots show median (central line at 0), quartiles (box), 5% 
and 95% centiles (whiskers) and outliers (stars).   

 

Vaccinium myrtillus presence was infrequent, occurring on 13 of 288 transects at 11% 

(SE± 2.5%) mean cover where present.  Although presence was most likely in restocks 

subject to a ‘Super-extended’ fallow period compared with those subject to a ‘Control’ 
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or an ‘Extended’ fallow period, the relationship could not be tested statistically due to 

infrequent occurrence of the species, which meant there were insufficient data to allow 

model convergence. 

 

5.3.1.5 Vegetation height 

In young restocks, height of heather species (C. vulgaris, Erica tetralix, and E. cinerea) 

was greater in restocks subject to an ‘Extended’ fallow period than to a ‘Control’ fallow 

period (t27=2.473, P=0.020), but in older restocks, the reverse was recorded (Table 5.4; 

Figure 5.8).  Heather was taller in restocks where the previous crop was pine (Table 

5.5), but did not exceed 40 cm in height until 6 to 9 years after restock, irrespective of 

the fallow period duration or effects of management or site factors (Figure 5.8). 

 

Graminoids (Juncus, Carex, Eriophorum spp. and grasses) were c.20 cm taller in 

restocks subject to a ‘Control’ than a ‘Super-extended’ fallow period, but only in 

unplanted areas (t208=-2.335, P=0.021; Table 5.4) and generally remained between 55 

cm and 80 cm from restocking to the onset of canopy closure.   

 
 
5.3.1.6 Field-layer density 

There was no effect of fallow period length on field-layer density (F2,31=1.88, P=0.169).  

Density increased with restock age (F1,34=32.604, P<0.001) and was greater in planted 

than unplanted areas (F1,251=18.751, P<0.001).  The model provided a reasonable fit to 

the data (R2=0.492). 
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Table 5.4: GLMM models describing significant effects of an extended fallow period 
(Fallow group), restock age, management variables and site factors on height of heather 
and graminoids on 288 transects in 36 restocks in the Sutherland study area 

Variable Parameter df F

 Direction 
of effect  

Statistical 
test 

         
R2# 

    
 

   

Heather   Intercept 1,195 870.802  lme 0.569 
Height Restock age 1,27 29.279*** +   
 Fallow group 2,27 0.648 n.s.   
 Previous crop 1,27 4.600* Pine> 

Spruce 
  

 Restock age x 
Fallow group 

2,27 3.475* §   

       
Graminoid Intercept 1,208 521.550  lme 0.381 
Height PT 1,208 2.562 n.s.   
 Fallow group 2,33 0.799 n.s.    
 PT x Fallow 

group 
2,208 2.957(*) §1   

 
 

      

‘Fallow group’ levels consist of: Control, 2 years fallow; Extended, 3 to 5 years fallow; Super-
extended, 6 to 7 years fallow. PT refers to Planting Type (UNP: Unplanted; PL: Planted). Positive 
effects of variables upon cover are indicated by + symbol. Heather comprises C. vulgaris, Erica 
tetralix, and E. cinerea. Graminoids comprise grasses, Eriophorum, Juncus and Carex spp. See Table 
5.2 for description of explanatory variables. § Relationship illustrated by Fig. 5.8. §1 see text. # For 
calculation of R2 values refer to methods.  Levels of significance: ***P<0.001, ** P<0.01, * P<0.05 
(*)P=0.05, n.s. P>0.05.   
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Figure 5.8: Height of heather (C. vulgaris, Erica tetralix, and E. cinerea) according to 
fallow period length (Control, 2 years fallow; Extended, 3-5 year fallow; Super-
extended, 6-7 years fallow) on 288 transects in 36 restocks in the Sutherland study area 
(Regression equations - heather height: Control = (3.82×Restock age)+20.8); Extended 
= (1.78×Restock age)+29.37; Super-extended = (1.71×Restock age)+30.78). 
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5.3.2 Invertebrate abundance 

A total of 17 714 invertebrates of >2 mm body length were captured during the trapping 

period in 2009.  Of the 7 taxa identified as important in the diet of black grouse chicks 

(see methods) and used in statistical analyses, 7875 were recorded in pitfall traps (3192 

beetles, 1716 arachnids, 1568 ants, 920 true flies, 406 true bugs, 55 Lepidoptera larvae 

and 18 Tipulids), and 1830 in suction traps (1146 true bugs, 397 true flies, 195 

arachnids, 58 beetles, 27 ants, 4 Tipulids and 3 Lepidoptera larvae.  The additional 

sweep netting method captured a total of 6779 invertebrates comprising 2844 true bugs, 

1862 true flies, 848 beetles, 575 arachnids, 278 ants, 221 Lepidoptera larvae and 151 

Tipulids.   

 

The remaining 1230 invertebrates comprised Acari, Isopoda, Myriapoda, adult 

Lepidoptera, Trichoptera and terrestrial larvae species.  Orthoptera comprised only three 

individuals and were not considered in statistical analysis.  Symphyta larvae were not 

recorded at the study site.  

 

5.3.2.1 Performance of statistical models to assess taxa response 

Restock age, management and site variables explained between 21 and 68% of the 

variation in taxa abundance (Model 1; Table 5.5).  For six of the seven taxa studied, 

vegetation variables explained 55 to 68% of the variation in taxa abundance (Model 2; 

Table 5.6).  No vegetation variables were retained in the model for true flies, as also 

found in The Trossachs study area (Chapter 4, Table 4.4).  When significant site and 

management variables from Model 1 were added into Model 2 to create Model 3 (Table 

5.7), explained variation in abundance decreased for most taxa, for reasons described in 

Chapter 4 (section 4.3.2).   
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Table 5.5: Taxon response to restock age, management variables and site factors (Model 
1).  Significant relationships listed in order (P<0.05; most highly significant first).   
 
Taxon Model 1 parameter R2

BeetlesP Distance from edge, Altitude
-
, PT (UNP>PL) 0.594

ArachnidsP Distance from edge, Altitude 0.207

AntsP Restock age+, Previous crop (Pine>Spruce) 0.488
Lepidoptera  
larvaeSW Restock age, Open space+, Altitude

-
 0.338

True bugsS PT (PL>UNP) 0.677
True fliesS PT (PL>UNP) 0.344

TipulidsSW Restock age+ 0.518
Arachnids group comprises spiders and harvestmen. Superscript in first column refers to trapping method: 
P indicates capture by pitfall trap, S by suction trap, SW by sweep net.  Positive effects of variables upon 
taxa abundance are indicated by superscript + symbols, negative effects by – symbols. Where a 

curvilinear fit was more appropriate than a linear fit, symbols andrepresent the type of curve. For 
calculation of R2 values see methods. PT refers to Planting Type (UNP: Unplanted; PL: Planted).  See 
Table 5.2 for description of explanatory variables. 
 
 
Table 5.6: Taxon response to restock vegetation (Model 2).  Significant relationships 
listed in order (P<0.05; most highly significant first). 
 
Taxon Model 2 parameter R2

BeetlesP Moisture score, Dwarf shrub cover 0.675

ArachnidsP Dwarf shrub cover
-
 0.594

AntsP Dwarf shrub cover 0.551
Lepidoptera  
larvaeSW Dwarf shrub cover+, Vegetation height+ 0.663

True bugsS Graminoid cover, Moisture score
-
 0.671

True fliesS NA NA

TipulidsSW Dwarf shrub cover
-
, Vegetation height+ 0.558

Arachnids group comprises spiders and harvestmen. Superscript in first column refers to trapping method: 
P indicates capture by pitfall trap, S by suction trap, SW by sweep net.  ‘Moisture score’ variable refers to 
the Ellenberg moisture score (Hill et al. 1999): wetter habitats have a higher score. Positive effects of 
variables upon taxa abundance are indicated by superscript + symbols, negative effects by – symbols. 
Where a curvilinear fit was more appropriate than a linear fit, symbols  and represent the type of 
curve. For calculation of R2 values see methods. See Table 5.2 for description of explanatory variables. 
NA denotes no significant variables in model. 
 

5.3.2.2 Invertebrate response to vegetation variables and restock management  

Fallow period length (categorised by the ‘Fallow group’ variable) did not significantly 

affect the abundance of any invertebrate taxon considered.  However, abundance of 

most taxa was influenced by the proportion of dwarf shrub cover, although the effect 
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size was relatively small (Model 3; Table 5.7).  C. vulgaris, which comprised the 

majority of dwarf shrub cover in Sutherland restocks, increased with extended fallow 

periods (in unplanted areas; section 5.3.1.2).  This suggests that although the ‘Fallow 

group’ variable was adequate for assessing changes in vegetative field-layer cover, it 

may not have detected more subtle and localised changes in invertebrate abundance.   

 

The relationship between dwarf shrub cover and ground-active invertebrates caught in 

pitfall traps varied among taxa; arachnid catches decreased, ant captures were highest at 

c.40% cover, and beetle catches were greatest at either relatively low or relatively high 

dwarf shrub cover (Table 5.7; Figure 5.9).  For taxa more associated with field-layer 

vegetation, increased dwarf shrub cover was negatively associated with the abundance 

of Tipulids but positively associated with the abundance of Lepidoptera larvae (Table 

5.7; Figure 5.10).  Larval abundance was twice as high in areas with 70% dwarf shrub 

cover when compared with areas with only 10% cover, although capture numbers were 

relatively low at c.4 per transect.  Larval abundance was also greater in areas with more 

structural open space (i.e. less trees) and in restocks at lower altitude (Table 5.7).    
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Figure 5.9: Abundance of ground-active taxa in relation to dwarf shrub cover 
(predominantly Calluna vulgaris, but also E. tetralix, E. cinerea, and V. myrtillus) on 72 
transects in 36 restocks in the Sutherland study area. (Regression equations – Ant 
abundance = (0.630×Restock age)+(-0.007×Restock age2)+8.583); Beetle abundance = 
(-1.358×Restock age)+(-0.015×Restock age2)+55.520; Arachnid abundance = (-
0.189×Restock age)+(0.0003×Restock age2)+23.560). Mean abundance calculated by 
summing 2 pitfall traps per transect, with 4 weeks of trapping data pooled. 
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Figure 5.10: Abundance of Lepidoptera larvae and Tipulids in relation to dwarf shrub 
cover (predominantly Calluna vulgaris, but also E. tetralix, E. cinerea, and V. myrtillus) 
on 72 transects in 36 restocks in the Sutherland study area.  Mean abundance calculated 
by pooling 5 sweep net samples, collected weekly. (Regression equations – Lepidoptera 
larvae abundance = (0.028×Restock age)+1.688); Tipulid abundance = (-0.006×Restock 
age)+1.692). 
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As reported in the Trossachs, restock age was also relatively strongly related to Tipulid 

and ant abundance, which increased from restocking, whereas Lepidoptera larvae 

abundance peaked after c.5 years, then decreased (Table 5.7).   

 

The abundance of true bugs was related to graminoid cover rather than dwarf shrub 

cover (Table 5.7); abundance increased up to about 50% cover, levelling off thereafter.  

More true bugs and beetles were captured in areas with a low Ellenberg moisture score, 

indicating a preference for drier habitat conditions, although a small proportion of 

beetles was also found in relatively wet habitats (Table 5.7).  The Ellenberg moisture 

score (which reflects habitat moisture) was relatively strongly related to the abundance 

of both taxa. 

 

The previous first-rotation crop had a relatively large effect upon the abundance of ants, 

which were significantly more abundant where the previous crop was pine (Table 5.7).  

Planted areas contained significantly more true flies than unplanted areas (Table 5.7), 

but true fly abundance was not related to any of the restock vegetation variables 

measured. 



 

Table 5.7: Minimum adequate GLMM models describing the abundance of invertebrate taxa preferred by black grouse in relation to 
significant time, management, site and vegetation variables on 72 transects in 36 restocks in the Sutherland study area.  The table reports 
the overall minimum adequate model (Model 3) constructed by stepwise addition of significant variables from a restock 
age/management/site variables model (Model 1; Table 5.5) to a vegetation model (Model 2; Table 5.6).  
 

Taxon Model 3 Parameters 
 

Estimate SE df t value

 Direction of 
effect 
 

Statistical test 
Model 2    
R2#  
 

Model 3      
R2# 
        

Beetles Intercept 27.271 6.727 35 4.054  glmmPQL 0.675 0.675 
 Moisture score -6.985 2.053 32 -3.403**     
 Moisture score2 0.512 0.155 32 3.300**     
 Dwarf shrub cover -0.029 0.011 32 -2.716*     
 Dwarf shrub cover2 <0.001 <0.001 32 2.373*     
         
Arachnids Intercept  1.852 0.602 33 3.078  glmmPQL 0.594 0.466 
 Dwarf shrub cover -0.009 0.002 33 -3.921*** -    
 Distance from edge <-0.001 <0.001 33 -1.506n.s.     
 Distance from edge2 <0.001 <0.001 33 2.309*     
 Altitude 0.021 0.008 33 2.537*     
 Altitude2 <0.001 <0.001 33 -2.763**     
         
Ants Intercept 1.901 0.317 34 5.992  glmmPQL 0.551 0.487 
 Dwarf shrub cover 0.036 0.015 34 2.371*     
 Dwarf shrub cover2 <-0.001 <0.001 34 -2.373*     
 Restock age 0.207 0.055 33 3.786*** +    
 Previous crop -0.824 0.285 33 3.786*** Pine>Spruce    

 
 
 
 
 

 



 

 

Table 5.7: Continued. 
 
 
Taxon Model 3 Parameters Estimate SE df 

t 
value

 Direction 
of effect 

Statistical 
test 

Model 2      
R2# 

Model 3        
R2# 

      
 

    

Lep. Intercept -1.601 0.720 34 -2.223  glmmPQL 0.633 0.435 
Larvae Dwarf shrub cover 0.009 0.004 34 2.154* +    
 Open space 0.055 0.011 32 4.991*** +    
 Restock age 0.616 0.181 32 3.410**     
 Restock age2 -0.062 0.021 32 -3.026**     
 Altitude‡ -0.009 0.003 34 -3.017** -    
         
Tipulids Intercept -0.602 0.420 34 -1.434  glmmPQL 0.558 0.522 
 Dwarf shrub cover -0.014 0.005 34 -2.923** -    
 Vegetation height 0.009 0.003 34 2.642* +    
 Restock age 0.175 0.063 34 2.752** +    
         
True bugs Intercept 5.602 1.725 35 3.247  glmmPQL 0.671 0.671 
 Moisture score  -0.706 0.288 33 -2.452* -    
 Graminoid cover 0.062 0.017 33 3.686***     
 Graminoid cover2 <-0.001 <-0.001 33 -2.345*     
         
True flies Intercept 1.776 0.118 35 14.991  glmmPQL NA NA 
 PT -0.542 0.178 35 -3.054** PL>UNP    

 

Arachnids group comprises spiders and harvestmen. ‘Moisture score’ variable refers to the Ellenberg moisture score (Hill et al. 1999): wetter habitats have a higher 
score. Restock age/management/site variables italicised. PT refers to Planting Type (UNP: Unplanted; PL: Planted).  See Table 5.2 for further variable descriptions. 
Positive effects are indicated by + symbols, negative effects by – symbols. Where a curvilinear fit of an independent variable was more appropriate than a linear fit, 
symbols  represent the type of curve.  NA indicates no significant Model 2 vegetation variables (Table 5.6) to formulate Model 3. ‡ Altitude replaced the 
‘vegetation height’ variable. # For calculation of R-sq values refer to methods. Levels of significance: ***P<0.001; ** P<0.01; * P<0.05. 
 
 
 



 

5.3.3 Abundance of potential black grouse predators in restocks 

A total of 31 observations of potential avian predators to black grouse, their chicks or 

eggs were recorded, predominantly corvids (18 observations of carrion crow Corvus 

corone, 7 of raven C. corax), and 6 of common buzzard Buteo buteo.  Fallow period 

length (categorised by the ‘Fallow group’ variable) had no influence on the number of 

avian predators sighted (χ2= 6.378, P=0.351; Figure 5.11).   
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Figure 5.11: Number of sightings of potential avian predators of black grouse recorded 
in restocks subject to differing lengths of fallow period (Control, 2 years fallow; 
Extended, 3-5 year fallow; Super-extended, 6-7 years fallow), assessed monthly 
between May and August 2009 along a fixed 1 km transect in 24 restocks in the 
Sutherland study area, with monthly data pooled for each transect. Box plots show 
median (central line), quartiles (box), 5% and 95% centiles (whiskers) and outliers 
(starts).   
 

A total of 109 mammalian (red fox Vulpes vulpes and pine marten Martes martes) scats 

were recorded.  Fallow period length had a significant effect upon the numbers of 

mammalian scats recorded in restocks (χ2= 10.760, P=0.024; Figure 5.12), with five 

times as many scats recorded in restocks subject to an ‘Extended’ and 2.5 times as many 

scats in ‘Super-extended’ fallow restocks, when compared with controls.  Numbers of 

mammalian scats also differed according to restock age (z=22.256, P<0.001), most 

commonly recorded in restocks between four and five years old. 
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Figure 5.12: Number of scats of mammalian predators of black grouse recorded in 
restocks subject to differing lengths of fallow period (Control, 2 years fallow; Extended, 
3-5 year fallow; Super-extended, 6-7 years fallow), assessed monthly between May and 
August 2009 along a fixed 1 km transect in 24 restocks in the Sutherland study area, 
with monthly data pooled for each transect. Box plots show median (central line), 
quartiles (box), 5% and 95% centiles (whiskers).   
 

5.5  Discussion 

Findings suggest that extending the fallow period in restocks from the standard two 

years, to between three and five years, resulted in significant increases in the cover of C. 

vulgaris (particularly in unplanted areas), and increased the occurrence of Eriophorum 

spp..  Extending the fallow period further to between six and seven years did not result 

in significant further cover of C. vulgaris or occurrence of Eriophorum spp., however 

the period during which suitable restock habitat was available to black grouse prior to 

canopy closure was increased.  No direct effect of fallow period length upon 

invertebrate abundance was detected, however, abundance of most taxa was associated 

with the proportion of dwarf shrub cover (which was predominantly composed of C. 

vulgaris).  Although an extended fallow period appears to improve field-layer habitat 

for black grouse in restocks, results suggest that a more attractive habitat may also 

inadvertently be created for mammalian predators. 
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5.4.1 Extended fallow periods, dwarf shrubs and Lepidoptera larvae 

Unplanted areas of restocks are likely to provide the most suitable black grouse habitat 

in restocks in both the short- and long-term.  As C. vulgaris cover in planted areas starts 

to decrease with the onset of canopy closure, cover in unplanted areas of restocks 

subject to an extended fallow period is double that in restocks subject to a standard 

fallow period, which represents an increased cover of heather to black grouse for an 

extended amount of time.  Furthermore, this cover will remain available after canopy 

closure of the planted crop. 

 

Presence of the dwarf shrub Vaccinium myrtillus was scarce in all restocks surveyed in 

Sutherland, as also reported in restocks in The Trossachs (see Chapter 3).  There may be 

a number of reasons for its infrequency, which are described in detail in Chapter 3 

(section 3.4).  In restocks with an extended fallow period of six to seven years, there 

was an indication that occurrence of V. myrtillus may be increased, but records were so 

infrequent that statistical analysis was not possible. 

 

Dwarf shrubs are an important component of black grouse habitat, providing roosting 

and nest cover (Parr & Watson 1988) and representing a significant part of the adult diet 

(Picozzi & Hepburn 1984; Cayford 1990b), particularly in late-autumn and winter 

(Starling-Westerberg 2001; Baines 1994).  Black grouse utilise habitat containing dwarf 

shrubs adjacent to or within commercial forests (Cayford et al. 1989; Haysom 2001),  

particularly where timber crops have failed and tree canopy cover is reduced to between 

15 and 40% (Cayford 1990b).  Lepidoptera larvae, a key food item for black grouse 

chicks (see Chapter 4, Table 4.1) were found to be positively associated with dwarf 

shrub cover and taller vegetation in restocks in this study, as also reported by other 

135 



 

studies conducted on upland moorlands in Britain (Webb 1989; Fielding 1992; Coulson 

1988).  Haysom & Coulson (1998) reported an increase in Lepidoptera larvae 

abundance in older ‘building’ and ‘mature’ phases of Calluna growth, and increased 

species diversity in taller stands, which may also contain larger larvae (Niewold 1990).  

In this study, restocks subject to extended fallow periods contained taller heather than 

standard fallow restocks (by c.7 cm), but only for the first four years after restock, and, 

irrespective of the fallow period, heather did not exceed 40 cm in height until six years 

after restock.  Previous studies suggest a height of 40 to 55 cm to be suitable for black 

grouse nest cover (Grant & Dawson 2005), thus it is unlikely that restocks provide 

suitable nest sites in heather stands until at least year seven after restock, although 

graminoids are likely to be of a suitable height and cover much earlier than this.   

 

5.4.2 Response of other invertebrate taxa to changes in field-layer vegetation 

Tipulids are commonly recorded in the diet of upland moorland birds (Buchanan et al. 

2006; Pearce-Higgins et al. 2005), so a negative relationship with dwarf shrub cover 

was unexpected and difficult to interpret.  As described in Chapter 4 (section 4.4), 

changes in abundance of other taxa are most likely to reflect species turnover as dwarf 

shrub and other field-layer species cover increases with restock age - from open-habitat 

specialists to forest-edge specialists (Heliölä et al. 2001).   

 

Extended fallow periods resulted in a greater occurrence of Eriophorum species, 

particularly in unplanted areas, which are left un-drained, providing suitable wet flushes 

and acid-bog conditions (Phillips 1954).  Previous studies have indicated the importance 

of flushes or damp/tall grassy habitat within brood habitat (see Grant and Dawson 2005 

for a review) possibly due to an increased abundance of invertebrates in these areas. 
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However, in this study there was no evidence that invertebrate abundance was increased 

in wetter habitats.  The drainage of planted areas of restocks means that naturally 

occurring wet flushes are unlikely to occur, and steep-sided man-made drains are likely 

to be a cause of mortality for chicks in these areas.  Findings from a Welsh radio-

tagging study investigating the mortality of black grouse chicks demonstrated that a 

small proportion of tagged chicks had died from starvation and/or hypothermia after 

falling in to deep-sided forest drains (RSPB, unpubl.).  Subsequent habitat management 

included the collapse of drains using a mechanical digger or the cutting back of 

overhanging vegetation 2 m either side of the length of the drain.   

 

5.4.3 The importance of open space in restocks 

Extended fallow periods allowed additional time for brash to degrade and for C. 

vulgaris cover to develop prior to canopy closure of the planted crop, after which areas 

of suitable habitat for black grouse remain in unplanted areas.  This differs from first 

rotation crops, where trees were planted up to the edges of watercourses, and little open 

space was left unplanted (Avery & Leslie 1990).  In these plantations, the closure of the 

tree canopy left only small areas of suitable habitat for black grouse, which possibly 

contributed to population decreases and range contraction in Scotland (Pearce-Higgins 

et al. 2007).  In the present study, on average, 40% of ground was left as unplanted open 

space in restocks, which had a greater cover of C. vulgaris (particularly in restocks 

subject to an extended fallow period) but also an increased abundance of Lepidoptera 

larvae.  Restocks in The Trossachs had similar proportions of open space (c.38%; 

Chapter 3), which were associated with an increased abundance of ants.  Well-

established stands of C. vulgaris in these areas provide seed to third-rotation restocks, 

which may rely upon seed rain for heather re-establishment (Eycott et al. 2006), as the 
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C. vulgaris seed bank is unlikely to persist under more than one timber crop rotation 

(Hill & Stevens 1981; Hill 1986; Owen, pers. obs.) unless it is sufficiently well-

replenished by seed production during the second rotation establishment stage.  

Whether the suitability of habitat for black grouse created in areas left unplanted can be 

attributed to forest management, or alternatively, due to the ‘type’ of areas that are 

initially selected to be left unplanted, mean that the specific cause for suitability is 

difficult to establish.  Leaving an area of a restock unplanted will not necessarily result 

in greater C. vulgaris recovery as environmental factors such as soil type and moisture 

content, fundamental environmental factors for vegetation growth, will underpin plant 

community re-establishment in restocks, as discussed previously (see 3.4.5).  

 

5.4.4 Performance of statistical models 

Changes in field-layer vegetation resulting from extended fallow periods are likely to 

induce knock-on effects in the invertebrate community.  All taxa were significantly 

affected by an increase in dwarf shrub cover as restocks aged (with the exception of the 

true bugs and true flies), however no significant differences were detected when 

comparing the abundance of each invertebrate taxon between restocks with differing 

lengths of fallow period.  This suggests that changes in abundance of invertebrate taxa 

may have been detected at different spatial scales, i.e. detected by the more ‘sensitive’ 

and localised dwarf shrub cover variable collected at the transect level, but not detected 

by the ‘fallow period length’ management variable at the restock level.  This variable 

may also have been less effective in detecting change in invertebrate abundance due to 

the small sample size of restocks from which data were collected.  Additionally, 

‘restock age’ and ‘fallow group length’ variables may have been confounded in 

statistical analyses; as extended fallow periods were introduced in Sutherland in the late 
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1990’s, young restocks with standard fallow periods are fairly uncommon, and restocks 

subject to a six to seven year fallow period are mostly still under four years old.  As a 

result, sample sizes of both groups were insufficient in analyses, and significant effects 

of fallow period length may have been missed. 

 

5.4.5 Restock habitat modification and predator abundance 

In commercial conifer forests in Britain, small mammals are a principal component in 

the diet of pine marten (Caryl 2009) and red fox (O’Mahony et al. 1999).  An increase 

in the abundance of small mammals such as field voles Microtus agrestis (Petty 1999) 

may occur in restocks with extended fallow periods as a result of changes to field-layer 

vegetation, which in turn may attract more predators into these restocks.  Abundance of 

small mammals was not directly assessed in this study, however there was no clear 

explanation why restocks with extended fallow periods should attract more small 

mammals and subsequently, more mammalian predators.  Abundance of small 

mammals is positively influenced by increased structural heterogeneity and taller 

vegetation in managed forests (Ecke et al. 2002), however neither of these effects were 

recorded in restocks with an extended fallow period. 

 

Increased mammalian abundance may be linked with factors not assessed by this study, 

such as geographical location of restocks or physical aspects of transect location, 

including track width, presence of linear habitat features, level of human disturbance, 

etc., which require further investigation.  Nonetheless, the period when habitat in 

restocks may be most attractive to black grouse - around years five to six - during which 

cover of C. vulgaris is optimum and abundance of Lepidoptera larvae is greatest, is also 

when mammalian scats were recorded most frequently in restocks.  
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Habitat in restocks created by extended fallow periods was not related to an increase in 

the observation of avian predators of black grouse.  The most frequently recorded 

predator was the carrion crow Corvus corone which will consume eggs and chicks, and 

may influence breeding productivity of black grouse (Summers et al. 2004).  Crows are 

unlikely to be attracted by changes in ground vegetation to the same extent as terrestrial 

mammalian predators, although changes may influence nest detection.     

 

5.4.6 Management conclusions 

Generally, results suggest that further extending the fallow period from three to five 

years (extended), to six to seven years (super-extended), had no further significant 

effect upon field-layer vegetation commonly used by black grouse.  However, the 

‘super-extended’ fallow period represents an increase in the amount of time that suitable 

open-ground habitat is available to black grouse prior to canopy closure of planted trees.  

As this further extension does not seem to influence predator abundance, it is likely to 

be the most beneficial for black grouse.  Further research is necessary however, as the 

‘super-extended’ group comprised a relatively limited dataset, as older (>4 years old) 

super-extended fallow restocks were not yet available for study.   

 

Management methods applied to increase the cover of dwarf shrubs and prolong their 

availability as a mature stand are likely to result in the increased abundance of 

Lepidoptera larvae and ants in restocks, which are key food items and make up a large 

proportion of the diet of black grouse in other British studies (Picozzi, 1986; Cayford et 

al. 1989).  Although larval abundance appeared to be low on transects in this study, 

food items in shorter supply can often be highly selected for by grouse chicks, and food 
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abundance does not necessarily indicate chick preference.  For example, in commercial 

forestry plantations in Wales, fewer Lepidoptera larvae were recorded per pitfall trap 

from a brood’s home range than in this study, yet they were highly selected by chicks, 

and comprised 33% of the diet (Cayford et al. 1989).   

 

Forest restock management must take into account many factors, including the 

economical production of timber, reduction of chemical usage, and habitat requirements 

of protected wildlife species.  Delayed planting involves a number of direct cost 

implications, such as higher site preparation costs for planting due to increased 

vegetation growth, but also indirect costs, including increased incidences of heather 

check on planted trees (particularly Sitka spruce) and the slower growth of planted trees 

that may result from asynchrony between brash nutrient release and critical tree growth 

stages (Proe et al. 1999).   

 

Benefits to black grouse populations will mainly be gained by long-term maintenance of 

unplanted areas, including un-drained locations that are likely to develop cover of 

Eriophorum species.  Extended fallow periods will contribute in the short-term by 

generally increasing heather cover in restocks, with subsequent increases in the 

abundance of some invertebrate food items preferred by black grouse.  For black grouse 

populations that rely on patches of commercial forestry, these management options may 

be critical.   
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Chapter 6: Differences in habitat and invertebrate 

availability to black grouse between leks and restocks 

 

6.1 Introduction 

Habitat quality can be critical in influencing the survival of black grouse and their 

broods (Cayford 1993).  Black grouse require a diverse mosaic of habitats depending on 

seasonal requirements, including Calluna moorland for feeding, nesting, roosting and 

cover from predators, forests with an understory of dwarf shrubs such as bilberry 

Vaccinium myrtillus, and wet moors with cotton-grass Eriophorum spp. and mature 

deciduous trees, particularly birch Betula spp., from which catkins and twigs are eaten 

in winter when snow covers the ground (see Baines 1995 for a review).  Prior to 

breeding, hens utilise habitats with vegetation that provides a protein- and energy-rich 

food source, such as cotton grass Eriophorum species (Baines 1994; Starling-

Westerberg 2001), which are likely to improve body condition and subsequent breeding 

success (Watson & Moss 2008).  Nesting habitats are selected that provide adequate 

vertical cover by species such as heather Calluna vulgaris, at a density that also allows 

easy movement for hens with broods (Erikstad 1985), with tall vegetation in wet 

flushes, which often contain an invertebrate-rich food source for chicks (Picozzi & 

Hepburn 1984; Cayford 1990b).  Adult birds also utilise tall field-layer vegetation for 

cover from predators, particularly when moulting (Parr & Watson 1988). 

 

The ‘lek’ mating system exhibited by black grouse, whereby males display and fight to 

mate with females on small territories at lek sites, takes place at traditional sites where 

males return each spring (Watson & Moss 2008).  Both males and females are relatively 
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sedentary (Toms 2002; Cramp & Simmons 1980) and generally remain within a few 

kilometres of the lek throughout the year (Cayford 1993), with hens often nesting within 

1 km of the lek (Robel 1969a; Picozzi, 1986).  The home range of broods after leaving 

the nest is often relatively small (30 to 60 ha: Wegge et al. 1982; under 50 ha: Starling 

1990), although some broods travel large distances in a day within the range (Cayford et 

al. 1989; Haysom 2001).  Movements of some broods have been recorded as up to 5.6 

km in a 7-day period (Wegge et al. 1982), which may be related to poorer habitat 

quality and the need to travel further to locate suitable invertebrate densities (Erikstad 

1985).  The home range of adults is larger and likely to contain both moorland and 

forest (Robel 1969b).  In north-east of Scotland, the home range of individual radio-

tracked males varied between c.3 and 6.9 km2 (Robel 1969b), however much smaller 

home ranges for groups of lekking males, as little as 1 to 2 km2, are often recorded 

(Watson & Moss 2008).  Females are more mobile, but generally have a home range of 

c.5 km2 (Watson and Moss 2008).  As black grouse appear to be selective in their 

habitat use (Haysom 2001; Picozzi 1986; Cayford et al. 1989) and remain relatively 

close to the lek, it is likely that this habitat contains field-layer vegetation and 

invertebrates suitable for all life stages.  Consequently, management for black grouse is 

often focussed at the lek scale; habitat within 1.5 km2 of known leks is often targeted by 

management (Calladine 2002).     

 

Research from this study has suggested that second rotation restocks located on the edge 

of commercial plantations, or connected to the edge by open habitat, often contain field-

layer vegetation suitable for black grouse adults and broods (Chapter 3), and that 

invertebrates preferred by chicks are commonly recorded in these restocks (Chapters 4 

and 5).  However, measurements of vegetation and invertebrate abundance in restocks 
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are difficult to interpret and place into context without comparable data from habitat in 

the vicinity of leks.  Therefore, this chapter aims to quantify the cover, height and 

density of field-layer vegetation and to assess the abundance of invertebrates preferred 

by black grouse chicks in two habitats: i) areas within 1 km of leks, and ii) second 

rotation restocks.  By quantification of field-layer vegetation and invertebrate provision 

to black grouse around leks (which are likely to represent suitable habitat), the 

comparative quality of second rotation restocks can be gauged. 

 

6.2 Methods 

6.2.1 Field data collection 

6.2.1.1 Field-layer vegetation sampling 

Sampling took place in 72 restocks and in habitat surrounding 8 black grouse leks in 

The Trossachs and Sutherland study areas, (see Chapter 2 for study area information 

and map) along a total of 701, 20 m transects (Appendix Table 2).  Thirty-six restocks 

and 3 leks were sampled in The Trossachs study area and 36 restocks and 5 leks in 

Sutherland (Table 6.1).  Restocks were aged between 0 and 9 years since re-planting.  

Vegetation sampling was conducted between May and September, 2009. 

 

Table 6.1: Sample size and site characteristics of restocks and leks in The Trossachs and 
Sutherland study areas.  
 

Study area No. of restocks No. of leks 

Mean  altitude 

m a.s.l. (range) 

Mean slope 

(degrees (range)

Trossachs 36 3 265 (150-262) 16 (0-27) 

Sutherland 36 5 168 (160-298) 7 (0-20) 
See Chapter 2 for further description of study areas and Appendix Table 2 for transect information. 
 

In restocks, stratified random sampling was used for transect placement, with 288 

transects located in Sutherland and 337 transects in The Trossachs.  Transects were 
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located more than 100 m apart and no less than 50 m from the restock edge. Methods 

for collection of vegetation data from transects are described in full in Chapter 3 

(section 3.2.2).  Details of datasets used are summarised in Appendix Table 2.   

 

Leks were selected for sampling if:  

 

(i) Situated on open ground within commercial plantations containing study 

restocks or within 2 km of the edge of a plantation containing study 

restocks, and 

(ii) Black grouse males had been counted at each lek for the previous 3 

years, and ≥2 males had been present each year, with the number of 

males counted being either stable or increasing over the 3 years (i.e. 

numbers did not decrease in any year), indicating that habitat around leks 

may either be suitable or improving.  The exception to this is two 

Trossachs leks (lek T2 and T3; Table 6.2) where the general population 

has recently rapidly expanded to a size where birds have dispersed from 

the main leks to form additional surrounding ‘satellite leks’ nearby 

(Dave Anderson, pers. comm.), indicating good quality surrounding 

habitat despite a decline in the main lek count.  Lek counts were 

conducted by Forestry Commission and RSPB staff. 

 

 



 

Table 6.2: Number of black grouse counted at study leks and general habitat description within 1 km radius of lek. 
 
Study area Lek code Habitat within 1 km radius of lek centre 2006 2007 2008 2009 

T1 40% loch, 35% ericaceous heather moorland, 20% bog myrtle Myrica gale, 5% 
birch Betula spp. scrub/woodland 

6 12 16 18 

T2 40% boggy areas (bog myrtle Myrica gale, bog asphodel Narthecium ossifragum,, 
Juncus, Carex and Eriophorum spp.), 30% ericaceous heather moorland, 20% birch 
Betula spp. and willow Salix spp. scrub/woodland, 10% improved grassland 

9 11 14 5† 

Trossachs 

T3 40% loch, 40% bog myrtle, 10% boggy areas (Juncus, Carex and Eriophorum 
spp.), 10% improved grassland 

1 5 5 2† 

S1 60% commercial conifer 2nd rotation restock, 20% ericaceous heather moorland,  
20% Eriophorum spp. 

^ 1 2 2 

S2 30% loch, 20% commercial conifer 2nd rotation restock, 20% mature, thinned 
commercial conifer forest with bilberry Vaccinium myrtillus understory, 20% 
boggy areas (predominantly Eriophorum spp.), 10% mature Scot’s pine Pinus 
sylvestris woodland regeneration 

^ 2 2 4 

S3 40% ericaceous heather moorland, 30% boggy areas (predominantly Eriophorum 
spp.), 20% Scot’s pine Pinus sylvestris woodland regeneration, 10% mature 
commercial conifer forest 

^ 2 2 2 

S4 45% ericaceous heather moorland, 45% boggy areas (predominantly Eriophorum 
spp.), 10% mature commercial conifer forest 

^ 1 2* 5 

Sutherland 

S5 40% loch, 20% ericaceous heather moorland, 20% boggy areas (predominantly 
Eriophorum spp.), 10% Molinia grass, 10% bog myrtle 

^ 0 0 2* 

       

^2006 information not available. †Additional satellite leks formed nearby. *Birds heard lekking rather than seen.  

 



 

Vegetation data were collected from 36, 20 m transects around leks in The Trossachs, 

and 40 transects in Sutherland.  Sampling was conducted within a 1 km radius from the 

centre of each lek - the area most likely to contain nests of black grouse hens (Robel 

1969a; Picozzi 1986), and therefore likely to be utilised by broods, particularly during 

the early invertebrate-feeding stage.  Using OS maps, an equal number of transects were 

randomly assigned to each quarter of the circular radius, and grid references generated 

for later location in the field using GPS.  Methods for vegetation sampling on transects 

were identical for restocks and for leks.   

 

6.2.1.2 Invertebrate sampling 

Invertebrate data were collected from 45 restocks and 8 leks, utilising a sub-sample of 

130 of the 701 transects described in 6.2.1.1.  Invertebrate sampling was conducted 

between 5 June and 15 July 2009 in both study areas to coincide with the brood-rearing 

period when chicks are largely dependent upon invertebrate food (Robel 1969a; 

Starling-Westerberg 2001; Picozzi 1986; Baines et al. 1996).   

 

Of the 36 restocks in Sutherland, two transects in each restock used for vegetation data 

collection (described above in 6.2.1.1) were randomly selected and used for invertebrate 

sampling.  In The Trossachs, only 9 of the 36 restocks containing vegetation transects 

were sampled for invertebrates.  Up to four vegetation transects within each restock 

were sampled for invertebrates.  At leks in each study area, four vegetation transects 

were selected at random, such that one transect was used for invertebrate data collection 

in each quarter of the 1 km radius around the lek centre.         
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6.2.1.2.1 Taxa selection and sampling method 

Taxa selection and sampling were as described in Chapter 4 (section 4.2.2), although, 

suction sampling was not used to capture invertebrate taxa in 2009 due to time 

restrictions.  Therefore, beetles, ants, and arachnids were sampled using pitfall trapping, 

and Lepidoptera larvae, tipulids, true bugs and true flies were sampled using sweep 

netting.  Further details relating to invertebrate sampling methods are provided in 

Chapter 4 (sections 4.2.1.1 and 4.2.1.3).   

 

In The Trossachs, invertebrate sampling at restocks and leks was conducted over a one-

week period.  Two sweep net samples were collected from each transect in restocks and 

in leks (the first on 9 June and the second a week later).  In order to reduce the 

frequency of zero counts and to avoid repeated measures of invertebrate abundance 

from the same transect, sweep net data for both weeks were pooled for each transect.  

Additionally, two pitfall traps were set along each transect for a 7-day period, which 

were also collected on 16 June.  Catches from pitfall traps located along a transect were 

pooled and stored in 70% ethanol.  In Sutherland, sampling took place over a longer 

period (5 weeks).  Sweep netting and pitfall trapping were conducted on transects every 

7 days over the 5-week period, thus five sweep net samples and four pitfall trap samples 

per transect were collected.  As with the Trossachs data, weekly data were pooled for 

each transect. 

 

It is accepted that comparisons of invertebrate abundance between study areas are likely 

to be biased (i.e. higher in Sutherland), as captured invertebrates were pooled on each 

transect for the study duration, yet duration differed between study areas (5 weeks in 

Sutherland and only 1 week in The Trossachs).  Differences in abundance between 
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habitat type, however, are directly comparable, as sampling at leks and restocks was 

conducted over the same period within each study area, e.g. transect data from 

Sutherland restocks are comprised of 5 weekly samples, as are lek data.  

 

6.2.2  Statistical analyses 

6.2.2.1 Model building 

Restock management factors considered in previous chapters, i.e. Planting Type, 

Extraction Type, and Extended fallow period were not considered in this chapter.  

Instead, a two-level ‘Habitat Type’ factor was used for comparison of restock habitat 

and lek habitat in statistical models, in addition to two continuous site variables -

‘altitude’ and ‘slope’ (see Model 1; Table 6.3 for further variable information) and a 

two-level ‘Study area’ factor, which compared Sutherland and Trossachs data, although 

differences in abundance between study areas will partly reflect differences in sampling 

effort.  Whilst it is acknowledged that restock habitat will vary according to 

management (reported in Chapters 3 to 5), the ‘Habitat Type’ factor allows comparisons 

between restocks and leks to be made in analyses based upon current habitat and 

invertebrate availability to black grouse, irrespective of management. 

 

6.2.2.1.1 Vegetation 

None of the explanatory variables were correlated at r ≥ 0.60 (Appendix Table 5a).   

Quadratic terms of each continuous explanatory variable were also tested, with a 

significance level of P<0.05.  Interactions between explanatory variables were not 

tested as none were relevant to the aims of the study.  GLMM models were fitted 

specifying restock/lek identity as the random effect.  Minimal adequate models were 
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produced by fitting all of the relevant main effects, and then removing terms according 

to their level of significance, until only those significant at P<0.05 remained.  

 

Calluna vulgaris cover data contained a high proportion of zeros (absent from 158 of 

702 transects) and could not be transformed to a normal distribution.  Therefore, data 

were modelled using the penalized-quasi likelihood (PQL) method (Venables & Ripley 

2002) to account for an unknown distribution (cover values not being based upon a set 

of trials), using the glmmPQL function in the ‘MASS’ library of R, version 2.8.1 (R 

Development Core Team 2008).  Both V. myrtillus and Eriophorum spp. (E. vaginatum 

and E. angustifolium) occurred with very low frequency across transects and were 

therefore treated as presence or absence data, using the glmer function in the ‘lme4’ 

library (Bates et al. 2008), based on the binomial logistic regression model.  Height of 

heather (Calluna vulgaris, Erica tetralix, E. cinerea), graminoids (grasses, Juncus and 

Carex spp.), and field-layer density (0 to 40 cm height, including brash) were analysed 

with a normal error distribution using linear mixed effects models, hence the lme 

function in the ‘nlme’ library of R (Pinheiro et al. 2007).   

 

6.2.2.1.2 Invertebrates 

Explanatory variables considered in invertebrate models are listed in Model 1 (Table 

6.3).  None of the explanatory variables were inter-correlated at r ≥ 0.60 (Appendix 

Table 5a & 5b).  Quadratic terms and interactions were tested as described in 6.2.2.1.1, 

and minimal adequate models were produced in the same way as described for 

vegetation models (see 6.2.2.1.1).  
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Analyses for each invertebrate taxon were undertaken using Generalised Linear Mixed-

effects Models (GLMMs; Zuur et al. 2009), specifying restock/lek identity as the 

random effect.  Data for all invertebrate taxa were over-dispersed, hence the 

‘glmmPQL’ function in the ‘MASS’ library (Venables & Ripley 2002) of R was used 

specifying ‘quasipoisson’ errors, which automatically estimates over-dispersion using a 

Penalised Quasi-Likelihood method (Zuur et al. 2009).   

 

Invertebrate abundance is likely to be affected directly by cover and structure of field-

layer vegetation, which in themselves reflect factors specific to study sites.  As 

demonstrated in Chapter 3, field-layer vegetation is itself a product of site factors.  

Therefore, a three-step model building procedure was used to construct invertebrate 

models, as described previously in Chapters 4 and 5.  Abundance of each invertebrate 

taxon was first examined in relation to site factors (Model 1; Table 6.3).  Secondly, 

abundance of each invertebrate taxon was examined in relation to vegetation variables 

(Model 2), which were simplified into the two broad plant functional types (PFTs; 

Wookey et al. 2009) that dominated the field-layer (i.e. percentage cover of dwarf 

shrubs and graminoids), field-layer vegetation height, field-layer density, and Ellenberg 

moisture score values (Hill et al. 1999), which represent a position on a moisture 

gradient (Model 2; Table 6.3).   

 

Having produced these two models, significant effects from Model 1 were tested for 

entry to Model 2, to produce a third minimum adequate model (Model 3), which 

considered both field-layer vegetation and site factors.  Vegetation variables were 

removed if the inclusion of significant site factors caused them to become non-

significant (at P<0.05). 
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6.2.2.2 Calculation of R2 values 

The R2 value produced for each model explains how much of the variation in the data is 

explained by the model, with a higher R2 value meaning more variation has been 

explained.  R2 is calculated by the square of the correlation between the model's 

predicted (fitted) values and the observed values (Fuentes-Montemayor et al. 2011). 

 

Table 6.3: Explanatory variables considered in statistical models. Model 1 contains site 
variables, Model 2 contains field-layer vegetation variables. 

Variable 
Data 
type¶ Description 

Level of 
data 
collection 

 

Model 1. Site variables 
    

Habitat 
Type 

S* Within restocks or within a 1 km radius of a 
black grouse lek  

Restock 

Study area S* Sutherland or The Trossachs Restock 

Altitude S Average of 5 equidistant points  Transect 

Slope S Average of 5 equidistant points  Transect 
 
Model 2. Vegetation variables 
Moisture 
score 

C Mean cover-weighted Ellenberg moisture values  Transect 

Vegetation 
height  

C Maximum height of all vegetation (cm) Transect 

Field-layer 
density 

C Index (0 to 3) of field-layer density from ground 
level to 40 cm tall, includes vegetation and brash  

Transect 

Dwarf shrub 
cover 

C Combined cover (%) of Calluna vulgaris, Erica 
tetralix, E. cinerea, Vaccinium myrtillus and 
Myrica gale 

Transect 

Graminoid 
cover 

C Combined cover (%) of Carex, Eriophorum, 
Juncus, Luzula, Deschampsia, Agrostis, Molinia, 
Nardus, Festuca and Anthoxanthum spp.) 

Transect 

¶ indicates how data were represented in statistical models: S* - 2-level site factor, S - continuous site-
dependent variable, C - continuous vegetation variable. ‘Moisture score’ refers to the mean cover-
weighted Ellenberg moisture score (Hill et al. 1999) of species recorded along a transect: wetter habitats 
have a higher score.  
 

 

 

 

152 



 

6.3 Results 

6.3.1 Field-layer vegetation 

Nineteen vascular plant species were recorded in lek habitat in Sutherland.  Similar 

species were present around leks in The Trossachs, with the addition of the dwarf shrub 

bog myrtle Myrica gale.  Additionally, in both study areas, two graminoid groups 

identified to genus only (Agrostis and Luzula spp.) and 3 moss genus groups 

(Polytrichum, Sphagnum and Pleurozium spp.) were recorded.   

 

In restocks, 32 vascular plant species were recorded in Sutherland and 39 species in The 

Trossachs.  Three graminoid groups were identified to genus only (Agrostis, Luzula and 

Festuca spp.) plus 3 moss genus groups (Polytrichum, Sphagnum, Pleurozium spp.).  

Additionally, in Trossachs restocks, the moss genus Racomitrium was recorded.        

 

Generally, restocks had an increased non-vegetative ground cover (consisting mainly of 

timber harvest residue), in addition to a greater cover of trees, moss and Juncus spp. 

(Figure 6.1).  Leks had a greater cover of dwarf shrubs (Calluna vulgaris, other heather 

spp. consisting of Erica tetralix and E. cinerea, and Vaccinium myrtillus), Eriophorum 

spp., bog myrtle Myrica gale, and bog asphodel Narthecium ossifragum. 
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Figure 6.1: Proportion of vegetative and non-vegetative cover on 76 transects within 1 
km of 8 leks and 625 transects in 72 restocks in the Sutherland and Trossachs study 
areas. *comprises 67% brash, 15% needles and 12.2% mounds and 6.3% bare ground, 
**comprises Erica tetralix and E. cinerea, ***comprises planted and naturally 
regenerated trees, **** Cumulative total of species with <5% cover. See Appendix, 
Table 5 for species information.  
 
 

6.3.1.1 Cover of Calluna vulgaris 

Mean Calluna vulgaris cover was greater in lek habitat than in restocks, however, the 

difference was not statistically significant (t=-1.184, P=0.240; Figure 6.2).  Cover, 

however, changed significantly with slope and was greater in Sutherland than in the 

Trossachs study area (Table 6.3; Figure 6.3).  A quadratic relationship between C. 

vulgaris cover and altitude indicated greatest cover between c.50 and 200 m, decreasing 

thereafter (Table 6.3; Figure 6.4).  The model was a relatively good fit to the data 

(R2=0.451). 
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Figure 6.2: Percentage cover of Calluna vulgaris on 625 transects in 72 restocks, and on 
76 transects within 1 km of 8 leks, in the Sutherland and Trossachs study areas. Box 
plots show median (central line at 0), quartiles (box), 5% and 95% centiles (whiskers) 
and outliers (stars).   
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Figure 6.3: Percentage cover of Calluna vulgaris in relation to gradient of slope on 625 
transects in 72 restocks, and on 76 transects within 1 km of 8 leks, in the Sutherland and 
Trossachs study areas. (Regression equations – Leks: C. vulgaris cover = 
(0.945×Altitude)+22.7; Restocks – C. vulgaris cover = (-0.257×Altitude) +24.7. 
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Figure 6.4: Percentage cover of Calluna vulgaris in relation to altitude on 625 transects 
in 72 restocks, and on 76 transects within 1 km of 8 leks, in the Sutherland and 
Trossachs study areas. Regression equations: Leks – C. vulgaris cover = 
(1.104×Altitude)+(-0.002xAltitude2)-106.300; Restocks – C. vulgaris cover = (-
0.014×Altitude)+(<-0.001xAltitude2)+28.92. 

 
 
Table 6.4: GLMM models describing effects of study area, Habitat Type, altitude and 
slope upon cover of C. vulgaris on 625 transects in 72 restocks, and on 76 transects 
within 1 km of 8 leks, in the Sutherland and Trossachs study areas. 

Variable  Parameter df t 
Direction of 
effect  

Statistical 
test  

         
R2# 

       

C. vulgaris Intercept 618 -4.277  glmmPQL 0.451 
Cover Study area 78 -4.068 S>T   
 Altitude 618 2.304    
 Altitude2 618 -2.812    

 Slope 618 4.946 +   
 

      

Study area: S: Sutherland; T: The Trossachs. Positive effects of variables upon cover are indicated by + 
symbols. Where a curvilinear fit was more appropriate than a linear fit, represents the type of curve. 
See Table 6.3 for description of explanatory variables. # For calculation of R-sq values refer to 
methods.  Levels of significance: ***P<0.001, ** P<0.01, * P<0.05.  

 

6.3.1.2 Other taxa examined 

Both Eriophorum spp and Vaccinium myrtillus occurred relatively infrequently; they 

were present on 133 and 113 of 701 transects, respectively.  The likelihood of 

Eriophorum spp. occurrence was significantly greater around leks than in restocks (z=-
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3.413, P<0.001) and occurrence increased in flatter areas (z=5.112, P<0.001) and with 

increased altitude (z=2.693, P=0.007).  This model explained 50% of variation in the 

dataset (R2=0.499).   

 

The likelihood of V. myrtillus occurrence was also greater around leks than restocks 

(z=-2.010, P=0.045), although differences were marginal.  Likelihood of occurrence 

was significantly greater in the Trossachs than the Sutherland study area (z=5.446, 

P<0.001), however, the model fit was poor (R2=0.183), possibly due to low occurrence 

of the species.   

 
 
 
6.3.1.3 Vegetation height 

Heather (Calluna vulgaris, Erica tetralix and E. cinerea) was c.5 cm taller in lek habitat 

than in restocks, however, the difference was not statistically significant (t=1.332, 

P=0.187).  Mean heather height was 34.3 cm (SE ± 1.4 cm), which increased on steeper 

ground (t=3.26, P=0.001) and at lower altitude (t=4.09, P<0.001); at 100 m height was 

c.40 cm, but at 500 m, height was c.20 cm.  This model explained 64% of variation in 

the dataset (R2=0.640). 

 

Graminoid height (Juncus, Carex, Eriophorum spp. and grasses) did not differ between 

leks and restocks (t=1.08, P=0.284).  Mean height was 67.5 cm (SE ± 3.3 cm) and 

graminoids were c.5 cm taller in the Trossachs than the Sutherland study area (t=3.05, 

P=0.003) and taller at lower altitude (t=2.72, P=0.007).  This model explained 38% of 

variation in the dataset (R2=0.381). 
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6.3.1.4 Field-layer density 

Field-layer density was greater around leks (mean density 68% ± 7%) than in restocks 

(55% ± 2%), although this difference was marginally non-significant (t=1.922, 

P=0.057).  Density decreased with altitude (t=3.70, P<0.001).  This model explained 

53% of variation in the dataset (R2=0.528). 

 

6.3.2 Invertebrate abundance 

A total of 20 447 invertebrates of >2 mm body length were captured during the trapping 

period in 2009.  Of the seven taxa identified as important in the diet of black grouse 

chicks and used in statistical analyses, 10 453 were recorded in pitfall traps (4029 

beetles, 2446 arachnids, 2281 ants, 1107 true flies, 463 true bugs, 89 Lepidoptera larvae 

and 38 Tipulids; Figure 6.5), and 9477 in sweep nets (3394 true bugs, 2385 true flies, 

1176 beetles, 971 Lepidoptera larvae, 814 arachnids, 362 ants and 375 Tipulids (Figure 

6.6).   

 

The remaining 517 invertebrates were taxa not identified by previous studies as 

important food items in the black grouse chick diet, thus were not included in statistical 

analyses, including Isopoda, Myriapoda, adult Lepidoptera, Ichneumonidae, Trichoptera 

and terrestrial larvae spp. (all <1%).  Symphyta larvae were not recorded at either study 

site in 2009. 
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a) Sutherland pitfall trap data 
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b) Trossachs pitfall trap data 

Figure 6.5: Abundance of invertebrate taxa considered to be important in black grouse 
chick diet in a) the Sutherland study area (72 transects in restocks and 20 transects 
within 1 km of leks), and b) The Trossachs study area (26 transects in restocks and 12 
transects within 1 km of leks).  Invertebrates captured by pitfall trapping (means consist 
of 4 weeks of pooled data for Sutherland and 1 week for The Trossachs).  Note scale 
differences between graphs. *Dataset used in statistical analyses. Arachnida group 
comprise spiders and harvestmen.  
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b) Trossachs sweep net data 

Figure 6.6: Abundance of invertebrate taxa considered to be important in black grouse 
chick diet in a) the Sutherland study area (72 transects in restocks and 20 transects 
within 1 km of leks), and b) The Trossachs study area (26 transects in restocks and 12 
transects within 1 km of leks).  Invertebrates captured by sweep netting (means 
comprise 5 sampling occasions pooled for Sutherland and 2 sampling occasions pooled 
for The Trossachs).  Note scale differences between graphs. Arachnida group comprise 
spiders and harvestmen. * Dataset used in statistical analyses. 
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6.3.2.1 Performance of statistical models to assess taxa response 

Habitat type (lek or restock) and other site variables explained between 19 and 60% of 

the variation in taxa abundance (Model 1; Table 6.5).  Vegetation variables explained 

between 32 and 66% of the variance in taxa abundance (Model 2; Table 6.6).   

 

Table 6.5: Taxon response to Habitat Type (Restock or Lek) and other site variables 
(Model 1).  Significant (at P<0.05) relationships listed in order (most highly significant 
first).   
 

Taxon Model 1 parameter R2

BeetlesP Study area (S>T), Slope+ 0.602
ArachnidsP Study area (S>T) 0.194
AntsP Study area (S>T), Altitude 0.495
Lepidoptera  
larvaeSW Altitude

-
, Habitat type (Lek>Restock), Slope

-
 0.350

True bugsS Study area (S>T), Slope 0.526
True fliesS Study area (S>T), Slope 0.581

TipulidsSW Study area (T>S), Slope
-
, Habitat type (Restock>Lek) 0.509

Arachnids group comprise spiders and harvestmen. Superscript in first column refers to trapping method: 
P indicates capture by pitfall trap, S by suction trap, SW by sweep net. Positive effects of variables upon 
taxa abundance are indicated by superscript +, negative effects by –. Where a curvilinear fit was more 

appropriate than a linear fit, symbols and represent the type of curve. Study area: S – Sutherland, T –
Trossachs. R2 calculated by the square of the correlation between the model's predicted (fitted) values and 
the observed values. See Table 6.3 for further description of explanatory variables. 
 
 

Table 6.6: Taxon response to restock vegetation variables (Model 2).  Significant (at 
P<0.05) relationships listed in order (most highly significant first). 
 

Taxon Model 2 parameter R2

BeetlesP Moisture score 0.662

ArachnidsP Dwarf shrub cover
-
, Field-layer density 0.500

AntsP Graminoid cover 0.447
Lepidoptera  
larvaeSW Dwarf shrub cover+, Moisture score+, Field-layer density 0.340

True bugsS Moisture score
-
 0.655

True fliesS Moisture score
-
, Field-layer density 0.643

TipulidsSW Vegetation height+, Dwarf shrub cover
-
 0.517

Arachnids group comprise spiders and harvestmen. Superscript in first column refers to trapping method: 
P indicates capture by pitfall trap, S by suction trap, SW by sweep net. The ‘Moisture score’ variable refers 
to the Ellenberg moisture score (Hill et al. 1999): wetter habitats have a higher score. Positive effects of 
variables upon taxa abundance are indicated by superscript + symbols, negative effects by – symbols. 
Where a curvilinear fit was more appropriate than a linear fit, symbols  and represent the type of 
curve. R2 calculated by the square of the correlation between the model's predicted (fitted) values and the 
observed values. See Table 6.3 for further description of explanatory variables. 
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When significant Habitat Type and site variables from Model 1 were added into Model 

2 to create Model 3 (Table 6.7), explained variation in abundance decreased for most 

taxa, for reasons described in Chapter 4 (section 4.3.2).   

 

6.3.2.2 Invertebrate response to vegetation, habitat type and other site characteristics 

Although abundance of Tipulids was generally low, more Tipulids were recorded in 

restocks than around leks (Model 1; Table 6.5), partly due to outbreaks in abundance 

not recorded as often around leks (Figure 6.7a).  Conversely, in habitat around leks, 

double the number of Lepidoptera larvae were recorded compared with restocks (Model 

1; Table 6.5).  Again, abundance on transects was generally very low in both habitat 

types, with the exception of outbreaks of northern winter moth Operophtera fagata 

larvae recorded on six transects in habitat containing M. gale surrounding leks (Figure 

6.7b).  Lepidoptera larvae were most abundant in areas where dwarf shrub cover was 

increased, in areas with wetter habitat conditions, and where field-layer density was 

moderate to high (Table 6.7).   

 

The abundance of arachnids and true flies was also positively related to field-layer 

density (Table 6.7); arachnids were more abundant at moderate field-layer density and 

true flies more abundant between moderate and high density.  Tipulids were the only 

taxon related to vegetation height, and were most abundant on vegetation c.80 to 90 cm 

tall.   
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Figure 6.7: Abundance of a) Tipulids and b) Lepidoptera larvae on 625 transects in 72 
restocks, and on 76 transects within 1 km of 8 leks, in the Sutherland and Trossachs 
study areas.  Mean abundance calculated by pooling sweep net samples from each 
transect (5 samples per transect in Sutherland and 2 samples in The Trossachs). Box 
plots show median (central line at 0), quartiles (box), 5% and 95% centiles (whiskers) 
and outliers (stars).   



 

Table 6.7: Minimum adequate GLMM models describing the abundance of invertebrate taxa preferred by black grouse in relation to 
significant site and vegetation variables on 625 transects in 72 restocks, and on 76 transects within 1 km of 8 leks, in the Sutherland and 
Trossachs study areas.  The table reports the overall minimum adequate model (Model 3) constructed by stepwise addition of significant 
variables from a site variables model (Model 1; Table 6.4) to a vegetation model (Model 2; Table 6.5).  
 

Taxon Model 3 Parameters Estimate SE df t value

 Direction 
of effect 
 

Statistical 
test 
 

Model 2         
R2# 

Model 3        
R2# 

         

Beetles Intercept 14.180 4.224 75 3.356   glmmPQL 0.662 0.600 
 Moisture score -3.395 1.250 75 -2.715**     
 Moisture score2 0.260 0.917 75 2.831**     
 Study area -1.448 0.279 50 -5.188*** S>T    
 Slope 0.031 0.011 75 2.853** +    
          
Arachnids Intercept  2.160 0.451 75 4.797   glmmPQL 0.500 0.422 
 Field-layer density 1.196 0.523 75 2.287*     
 Field-layer density2 -0.324 0.141 75 -2.312*     
 Dwarf shrub cover -0.009 0.002 75 -4.038*** -    
 Study area -0.554 0.154 50 -3.598*** S>T    
          
Ants Intercept 2.449 0.211 76 11.618   glmmPQL 0.447 0.434 
 Graminoid cover 0.026 0.012 76 2.084*     
 Graminoid cover2 <-0.001 <0.001 76 -2.291*     
 Study area -0.698 0.310 50 -2.248* S>T    
          

 
 
 
 
 

 



 

 

Table 6.7: Continued. 
 
Taxon Model 3 Parameters 

 

Estimate SE df 
 

t value
 Direction of 

effect 
Statistical 
test 

Model 2   
R2# 
 

Model 3      
R2# 
       

Lep. Intercept -2.518 1.661 73 -1.516  glmmPQL 0.340 0.340 
Larvae Moisture score 0.609 0.135 73 4.494*** +    
 Field-layer density 1.613 1.276 73 1.264n.s.     
 Field-layer density2 -0.760 0.329 73 -2.307*     
 Dwarf shrub cover -0.031 0.007 73 4.703*** +    
 Altitude -0.011 0.003 73 

 

-3.125** -    
         

Tipulids Intercept -0.706 0.408 76 -1.731  glmmPQL 0.517 0.509 
 Vegetation height 0.009 0.003 76 2.848** +    
 Slope‡1 -0.053 0.012 76 -4.371*** -    
 Study area 1.748 0.285 49 6.130*** T>S    
 Habitat type 0.837 0.352 49 2.378* Restock>Lek    
          

True bugs Intercept 2.760 0.158 76 17.441  glmmPQL 0.655 0.526 
 Study area -1.604 0.269 50 -5.965*** S>T    
 Slope 0.116 0.032 76 3.592***     
 Slope2‡2 -0.004 0.001 76 -2.547*     
          

True flies Intercept 2.657 0.134 76 19.814  glmmPQL 0.643 0.582 
 Study area‡3 -0.934 0.222 50 -4.202*** S>T    
 Slope 0.074 0.026 76 2.784**     
 Slope2 -0.002 0.001 76 -2.342*     

 

Arachnids group comprises spiders and harvestmen. ‘Moisture score’ variable refers to the Ellenberg moisture score (Hill et al. 1999): wetter habitats have a higher 
score. Restock site variables italicised. Study area: S – Sutherland, T – The Trossachs. See Table 6.3 for further variable descriptions. Positive effects indicated by +, 

negative effects by –. Where a curvilinear fit of an independent variable was more appropriate than a linear fit, symbols  andrepresent the type of curve. ‡1 

replaced the ‘Dwarf shrub cover’ variable, ‡2 replaced the ‘Moisture score’ variable, and ‡3 replaced the ‘Moisture score’ and ‘Density’ variables. #R2 calculated by 
the square of the correlation between the model's predicted (fitted) values and the observed values. Levels of significance: ***P<0.001; ** P<0.01; * P<0.05. 



 

The abundance of beetles, true bugs and true flies were associated with habitat moisture 

(measured by the weighted mean Ellenberg moisture score), although relationships were 

negative, indicating a preference for drier habitat conditions (Table 6.7).  The inclusion 

of the ‘slope’ variable (in the case of true bugs) and the ‘study area’ variable (in the case 

of true flies) caused the Ellenberg moisture score variable to become non-significant, 

suggesting that whilst habitat moisture may affect abundance of these taxa, this may be 

partly explained by site topography (i.e. wetter in flatter areas) and the study area (drier 

conditions in Sutherland); thus moisture co-varies with topography and with study area.  

Previous analyses of invertebrate data from restocks also associated beetle and true bug 

abundance with drier habitats (measured by the Ellenberg moisture variable; Chapter 5 

only), however, a relationship with Lepidoptera larvae or true fly abundance was not 

recorded in previous chapters.   

 

As expected, Sutherland had a greater abundance of most taxa, as the trapping period 

duration was longer than in The Trossachs (see 6.2.1.2.1).  Despite differences in trap-

period duration, abundance of Lepidoptera larvae was similar between study areas, and 

Tipulid abundance was higher in The Trossachs, suggesting that if the trapping period 

length had been equal between study areas, abundance of these taxa would far exceed 

those available further north in Sutherland. 

 

6.4 Discussion  

Results suggest that the percentage cover and height of Calluna vulgaris was marginally 

greater in habitat surrounding leks than in second rotation restocks, although differences 

were not statistically significant.  Field-layer density was greater around leks and there 

was also a higher chance of occurrence of Eriophorum spp. and Vaccinium myrtillus 
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than in restocks, but neither species was recorded frequently, and variation in the V. 

myrtillus dataset explained by statistical models was particularly low.  Lepidoptera 

larvae were more abundant in habitat surrounding leks, but, conversely, Tipulids were 

more abundant in restocks.  The abundance of other invertebrate taxa considered was 

similar between leks and restocks. 

 

6.4.1 Comparative quality of field-layer habitat between leks and restocks 

Lek habitat had a reduced non-vegetative cover, which is predominantly composed of 

brash and often covers a large proportion of ground in younger restocks, suppressing 

heather recovery and the abundance of some invertebrate taxa important to black grouse 

chicks (see Chapters 3 to 5).  In terms of habitat provision to black grouse, field-layer 

vegetation around leks and restocks was not markedly different, although there was an 

indication that habitat surrounding leks contained significantly more V. myrtillus and 

Eriophorum spp. than restocks, together with cover of the dwarf shrub M. gale – species 

that are often of particular importance to black grouse (see Baines 1995 for a review; 

Baines et al. 1996).  Despite their relatively infrequent occurrence in this study, it is 

likely that black grouse will be highly selective of habitats containing these species, and 

their comparative rarity in (or absence from) restocks could be of potential importance 

for future management of black grouse habitat in second rotation forests.      

 

Differences between restocks and lek habitat may be attributable to previous 

afforestation of the latter with non-native trees species such as Sitka spruce Picea 

sitchensis and Lodgepole pine Pinus contorta, which are likely to have restricted light 

availability to V. myrtillus during the 40 to 60 year rotation (see Chapter 3).  

Furthermore, drainage of plantations to improve planted tree establishment and confer 
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stability against windthrow created drier, less favourable habitat for Eriophorum spp. 

(Angelstam 2004; this study, Chapter 3).  Both plant species are likely to be beneficial 

to black grouse by improving body condition at important times of the year; autumn 

berries of V. myrtillus help build reserves prior to winter, and flower-heads of 

Eriophorum spp. are likely to contribute to pre-breeding condition of hens in spring 

(Watson & Moss 2008).  Body condition during nesting probably exerts an influence on 

the frequency of breaks needed for feeding and therefore reduces incubation duration, 

which may reduce predation risk (Storaas & Wegge 1997). 

 

6.4.2 Invertebrate availability in field-layer vegetation surrounding leks and within 

restocks 

Increased field-layer density recorded around leks may provide better cover from 

predators for nesting hens and young broods (Baines 1996), and may also result in an 

increased density of invertebrate food for chicks (Erikstad 1985).  In this study, 

increased field-layer density was associated with a greater abundance of Lepidoptera 

larvae, a key food item for black grouse, and abundance remained high even in very 

dense vegetation.  Larval abundance was also positively related to an increased cover of 

dwarf shrubs and wetter habitats; abundance was increased in areas with greater heather 

cover, but large outbreaks of larvae (>50 individuals per 20 m transect) predominantly 

occurred in habitats containing M. gale, with large areas up to 100 m2 visibly defoliated 

by caterpillars, primarily of northern winter moth Operophtera fagata (J. Owen, unpubl. 

data).  Previous studies have reported a positive relationship between Lepidoptera 

larvae abundance and the presence of M. gale on moorland in Scotland, furthermore, in 

these areas, hatching of black grouse chicks appeared to be timed to coincide with the 

peak biomass of larvae (Baines et al. 1996).  In this study, M. gale was only recorded in 
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habitat surrounding leks and not in restocks (Figure 6.1), and Lepidoptera larvae 

numbers around leks were approximately double that recorded in restocks.  Although 

M. gale is present around the edges of some restocks within the Trossachs study area (J. 

Mulgrew, pers. comm.), as a light-loving plant and a wet site indicator (Hill et al. 1999; 

Skene et al. 2000), its presence is unlikely in the majority of restocks, where sites are 

drained and the early canopy closure of planted trees further restricts growth (see 

Chapter 3).   

 

Drainage of restocks not only results in a habitat that is potentially less attractive to 

black grouse in terms of field-layer species composition, but may also pose a threat to 

the survival of chicks utilising restocks.  Forest drains are approximately 1 m wide and 

up to 1 m deep with steeply sloping sides, and restocks are often crossed by a network 

of connected drains (J. Mulgrew, pers. comm.).  Chicks can easily become trapped and 

drown in man-made forest drainage systems (Ludwig et al. 2008), particularly in the 

first 4 to 5 days of life before they are able to fly (Ludwig et al. 2006).  Furthermore, in 

years when predator densities are high, nest predation can be higher in drained than un-

drained areas (Ludwig 2007).   

 

6.4.3 Importance of other invertebrate taxa 

Other invertebrate taxa were as common in restocks as in habitat surrounding leks, 

which suggests that, with the exception of Lepidoptera larvae, invertebrate provision to 

black grouse chicks in restocks is at least comparable to lek habitat in terms of quantity.  

Selection of invertebrate taxa by grouse chicks may be dependent upon more than just 

availability of the most nutritious food items, and these other taxa are likely to be 

important.  In Norway, willow grouse chicks selectively fed on Lepidoptera larvae 
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during a warm summer, however, in a cold summer, their preference switched to 

smaller food items, such as true bugs and true flies (Erikstad & Spidso 1982).  Rather 

than changes in taxa availability, the switch was thought to reflect changes in habitat 

use by chicks during wet weather; an avoidance of dense vegetation (which contained 

the best food supply) probably resulted in reduced nutrient intake, but prevented chicks 

from getting wet and risking hypothermia.  The decreased field-layer density in restocks 

may allow easier movement of broods and the drying out of chicks in wet weather, 

however, decreased cover may also increase susceptibility to predation (Baines 1996).  

Furthermore, the generally drier habitat that appears to be present in restocks may be 

more suitable for beetles, true bugs and true flies, abundance of which decreased in 

wetter vegetation.  The increased abundance and outbreaks of Tipulids in restocks and 

on taller vegetation of 80-90 cm may be linked to a preference of final instar larvae for 

Juncus spp. (Coulson 1962), cover of which is greater in restocks, although this link is 

tenuous and requires further investigation.   

 

An obvious limitation in the comparison of habitats to determine relative ‘quality’ is 

that the quality of the lek habitats, against which restocks were compared, was itself 

unknown.  By sampling around leks that had a stable or increasing number of males 

present at spring lek counts, it is presumed that habitat quality was either suitable or 

improving; therefore, comparisons with habitat in restocks should be meaningful.   

 

6.4.4 Restock quality for black grouse and their broods 

This is the first study to directly address differences between occupied black grouse 

habitat and potential habitat for black grouse in planted forest restocks.  Results provide 

an important insight into how managed forest habitats differ from that utilised by black 
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grouse around leks, and how differences in vegetation can affect abundance of food 

items (i.e. invertebrates).  An obvious limitation to the study is the relatively small 

sample size of habitat data collected from transects around leks, and further data 

collection is necessary to determine the wider applicability and reliability of 

conclusions.  Data collection limitations, however, were merely a result of simple 

logistical and time constraints, rather than inadequacies of study design, sampling or 

effort.  

 

In terms of ‘quality’, field-layer vegetation provision to black grouse in restocks is 

poorer than around leks, as potentially important species such as V. myrtillus, 

Eriophorum spp. and M. gale occur less frequently or are absent.  Presence of species 

such as V. myrtillus does not, however, appear to be critical for black grouse, and 

populations persist in areas where this species is virtually absent (Baines 1994).  By 

contrast, the presence of Eriophorum spp. is likely to be important to black grouse 

during the egg-laying period (Angelstam 2004).  As M. gale often supports large 

quantities of Lepidoptera larvae (this study; Baines et al. 1996), its presence is likely to 

indicate good quality habitat for broods.  In terms of invertebrate abundance, the quality 

of second rotation restock habitat to black grouse broods appears to be similar to that 

recorded around leks, with the exception of reduced Lepidoptera larvae abundance, 

although this may be offset to some degree by the greater Tipulid abundance in 

restocks.   

 

Although a temporal effect was not assessed in this chapter, habitat quality will be 

further reduced in younger restocks when compared with lek habitats, as suppression of 

field-layer vegetation by brash will delay development and limit invertebrate 
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abundance.  Furthermore, where preferred field-layer species are available in restocks, 

their presence is likely to be limited by canopy closure of planted trees, making restock 

habitat less attractive to black grouse.  Therefore, future restock management for black 

grouse, which may aim to restore or encourage habitats containing preferred field-layer 

species, should be focussed on areas left unplanted where temporal constraints are not 

an issue. 
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Chapter 7: General Discussion 

 

Black grouse have long been associated with commercial forestry in Britain and 

populations often flourish when new forests are planted (Thom 1986).  As planted 

forests mature and are felled, second rotation restocks become available, although little 

is known about resources provided for black grouse and their broods in this habitat.  

The broad aims of this study therefore, were to investigate the determinants, 

composition and structure of field-layer vegetation in second rotation restocks, and to 

understand how contrasting forest management methods could increase suitable habitat 

for black grouse prior to canopy closure of planted trees.  Subsequent changes to the 

abundance of predators resulting from habitat modification in restocks were also 

assessed.  Furthermore, the influence of forest management upon the abundance of 

invertebrate food potentially available to broods in restocks was determined, and the 

comparison of restock and lek habitat allowed an objective assessment of restock 

‘quality’ in terms of food and cover provision.   

 

As a large proportion of afforested land is still to be felled and restocked in Britain 

(77% of conifer stands were categorised as ready to harvest within the next 20 years in 

2000; Mason 2007), the current chapter will review how second rotation restocks and 

restocks of future rotations may influence future black grouse population trends, using 

findings from the present study. 

 

7.1 Main overview of findings 

Black grouse require a mosaic of habitats throughout the year (see Baines 1995 for a 

review) and as a relatively sedentary species throughout much of their range (including 
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in Britain), they require these habitats to be within reasonably close proximity.  This 

makes the species difficult to manage for, as a number of field-layer habitats are 

required, and field-layer height and density requirements differ according to seasonal 

requirements; i.e. nesting, brood cover, seasonal variation in adult dietary requirements 

and hence food plants, cover for moulting and from predators.  Habitat requirements 

will also change with weather: tall, high density vegetation to provide adequate shelter, 

low-density vegetation for movement of chicks in wet weather, open areas for dust-

bathing, etc. - no single habitat can provide for all requirements and no single 

management recommendation can be made that will improve all restock habitat. 

 

In Britain, second rotation commercial plantations often form part of the home range of 

black grouse (Cayford et al. 1989; Haysom 2001), however, the relative ‘value’ 

provided by such habitats to black grouse (in terms of cover, food, and shelter) may 

differ between restocks and between forests.  Topography strongly underpins field-layer 

habitat development in restocks; results from this study suggest that restocks on steeper 

ground are more likely to develop heather-dominated habitats likely to be more suitable 

for feeding, nesting and cover of black grouse adults, whereas flatter ground is more 

likely to be associated with wetter vegetation communities with taller graminoid 

vegetation and an increased field-layer density likely to be more suitable for young 

broods.  These habitats may be further manipulated to benefit black grouse by forest 

management at the restocking stage.  The redistribution of brash and subsequent 

reduction in its overall cover that occurs when preparing a site for restocking can lead to 

increased cover and height of heather in restocks, when compared with areas left 

unplanted.  Thus, in planted areas, suitable field-layer vegetation is available to black 

grouse for a longer period between restock and canopy closure. 
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In the longer term, unplanted areas are likely to provide more suitable habitat for black 

grouse through the retention of open habitats, whilst also maintaining a viable seed 

source for apparently important species, such as Calluna vulgaris.  On average, restocks 

in study plantations had c.40% of ground left unplanted in both study areas, which 

represents a large area of potentially suitable habitat that was not available during the 

first rotation.  These open areas will need to be managed in the long-term, however, to 

prevent the natural regeneration of non-native tree species such as Sitka spruce, 

seedlings of which are present when clearfelled forest coupes are restocked.   

 

One of the main restrictions preventing second rotation restocks from providing habitat 

of use to black grouse is likely to be the length of time that suitable field-layer habitat is 

available prior to canopy closure of planted areas, as also reported for forests of the first 

rotation (Pearce-Higgins et al. 2007).  Results from this study suggest that in the south-

west Highlands of Scotland (The Trossachs study area) where timber crops are mostly 

Sitka spruce and tree growth is rapid, the duration of availability of C. vulgaris to black 

grouse in restocks may be restricted to only six to seven years prior to the onset of 

canopy closure, with percentage cover being above 25% for just a few of these years.  

Results from the north-east Highlands (Sutherland study area) suggest that the duration 

of availability of preferred field-layer vegetation can be successfully increased by 

extending the fallow period prior to planting, however from a forestry perspective, this 

option may not be suitable in all areas due to increased weed growth within some 

restocks.  Increasing the total length of time that habitats remain open from clearfell to 

canopy closure is likely to benefit black grouse, but increases in the abundance of some 

predators recorded in these modified habitats may offset these habitat benefits, and this 
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possibility requires further investigation.  An evaluation of trophic cascades must be 

integral to any assessment of the relative advantages and disadvantages of alternative 

management prescriptions for conservation of black grouse, or other species of potential 

conservation concern. 

 

Prior to the current study, research into the provision of invertebrate food in second 

rotation restocks to black grouse chicks had not been conducted in Britain.  Whilst 

dietary studies have highlighted the importance of several invertebrate food items to 

black grouse chicks, most emphasise Lepidoptera larvae as a key item, which is often 

recorded in relatively large quantities in the diet, and is taken frequently even when in 

short supply.  Findings from this study suggest that increases in dwarf shrub cover 

(particularly heather) are likely to result in the increased abundance of Lepidoptera 

larvae, and that extended fallow periods are likely to prolong this increased availability 

to chicks.  However, not all invertebrate taxa are positively associated with dwarf shrub 

cover, and the contrasting habitat preferences of each taxon highlight the benefits of a 

variety of dwarf shrub and graminoid habitats in restocks to ensure a diverse food 

supply, particularly in years when some taxa may not be so abundant (e.g. when the 

abundance of Lepidoptera larvae is reduced in wet summers; Erikstad & Spidso 1982).          

 

7.2 Restocks in the wider landscape context 

Results from the comparative study of second rotation restocks and leks, suggest that 

restocks are likely to provide habitat and food suitable for black grouse and their 

broods.  Restocks lack cover of Vaccinium myrtillus and Eriophorum spp., which are 

likely to be an important food item for black grouse, and Myrica gale, which was 

positively related to the abundance of Lepidoptera larvae in this study.  As the latter two 
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species are associated with wetter habitats and all three species are unlikely to survive 

under the low-light conditions of a closed-canopy Sitka spruce plantation, it is 

unsurprising that their occurrence in young second rotation restocks was scarce.  

However, these species may colonise suitable areas of restocks left unplanted and 

undrained in future years, so it is vital that these areas are managed to prevent natural 

regeneration of non-native trees.  Regeneration of native species, however, such as low-

density birch scrub, is likely to be of further benefit to black grouse, however, careful 

consideration should be given to the loss of any suitable open habitat. 

 

7.3 Main limitations of the study 

One inevitable limitation is that the work could only be conducted as a correlative 

study.  Therefore, whilst statistically significant results suggest associations of 

potentially important variables, caution is required in drawing conclusions until 

relationships are tested using replicated experiments (Green 1994).  For example in this 

study, increased C. vulgaris cover and an increased abundance of food items for black 

grouse chicks recorded in areas of restocks left unplanted may result from forest 

management, but may also occur in some cases as a result of the ground type selected 

by foresters to be left unplanted, e.g. heathery areas.  In forestry, replicated experiments 

are often impractical (due to the large areas that are required for fully-replicated and 

blocked research plots, and the decadal time-scales involved). This problem is not 

unique to this study, however, and is a routine element of much research in the earth 

sciences.     

 

Further investigation into the use of second rotation restock habitat by black grouse is 

currently being undertaken in Perthshire, Scotland using radio-tagged birds, and data 

177 



 

will provide valuable complementary information to this study.  Although habitat use by 

black grouse in restocks in this study could not be formally assessed, black grouse are 

known to use some of the second rotation restocks sampled in this study frequently (J. 

Owen, pers. obs.).  Results from the Perthshire study may shed light upon which 

habitats in restocks are used by black grouse, particularly in relation to seasonal usage. 

 

7.4 Future considerations for restock management 

The removal of brash from restocks for biofuel energy generation is a relatively new 

consideration for restock management (Moffat et al. 2006), and may contribute towards 

the achievement of Government renewable energy policies (Department of Trade and 

Industry 1999).  Indications from this study suggest that brash can suppress heather 

recovery, particularly in the early years following restock.  However, as the whole tree 

(including brash) is removed by cable-winch from areas of restocks with a more varied 

topography, cover of heather is increased in these areas.  Cable-winched areas of 

restocks represent one of the greatest opportunities for the supply of brash to the biofuel 

market (Alexander 1996; Drake-Brockman 1996), but may also benefit black grouse, 

not only through the provision of increased heather cover, but also through the 

subsequent increase in abundance of some food items preferred by chicks.  Thus, there 

may be potential benefits for black grouse and their broods from brash removal in 

restocks.  

 

7.5 Conservation management for black grouse in European managed forests 

Changes to the forest structure in Scandinavia, from natural forest to managed single-

species and single-cohort stands (Peltola 2006) have probably contributed to the decline 

of black grouse and other woodland grouse, although the mechanisms of this interaction 

178 



 

are not yet well understood (Lakka & Kouki 2009).  Changes to forest structure and 

management are often implicated in the decline of black grouse, along with Capercaillie 

Tetrao urogallus and hazel grouse Bonasa bonasia (Gregersen & Gregersen 2009; 

Aberg et al. 2003; Helle & Helle 1991).  In Britain, changes to forest structure resulting 

from tree maturation within planted forests are likely to have contributed to declines 

(Pearce-Higgins et al. 2007).   

 

Whilst clearfelling was the dominant forestry method in parts of Scandinavia from the 

1950’s (Bernes 1994), the use of felling methods that do not leave the ground 

completely bare have increased during the last two decades (Hannerz & Hanell 1997), 

and the intensive form of forest management common to Scotland, i.e. clearfelling large 

forest blocks then restocking with fast-growing, non-native trees, is rarely practised.  

Research often aims to assess the results of different timber-felling regimes in forests 

that provide an alternative to clearfell and allow a vegetative under-storey to develop, 

such as selection-felling at varying intensities (e.g. Jalonen et al. 2001; Bergstedt & 

Milberg 2001; Khanina et al. 2007).  Many studies report clearfelling to be detrimental 

to forest biodiversity, particularly when compared with less-intensive forms of forest 

management (e.g. Atlegrim & Sjoberg 1995), although this is not necessarily the case 

for all species (e.g. Atlegrim et al. 1997).   

 

Changes to black grouse populations as a result of forestry are difficult to separate from 

climate-induced changes (Ludwig 2007), which have resulted in warmer weather and 

the push of climatic zones northwards, imposing a demonstrable effect upon living 

systems (Parmesan & Yohe 2003).  In some areas, black grouse have responded to 

warmer weather in spring by advancing egg-laying, however, early summer has not 
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advanced, and chicks now have to face colder post-hatching conditions and an increased 

risk of mortality (Ludwig et al. 2006).  Therefore, in addition to the current challenges 

of a changing landscape, black grouse will also need to adapt to a changing climate, 

with possible effects upon demography, geographic range and breeding phenology. 

 

7.6 Management recommendations 

As a direct result of this study, a number of recommendations can be made for the 

management of second rotation restocks for black grouse: 

 

1. When excavators are preparing ground for re-planting, brash should be piled or 

redistributed to ensure maximum light availability to recovering field-layer 

vegetation. 

 

2. Areas of suitable C. vulgaris habitat within restocks should be encouraged to 

grow to maturity, to an age, height and density preferred by nesting black 

grouse hens and to ovipositing female Lepidoptera (>40 cm).   

 

3. Where weed growth is unlikely to be a major issue for foresters, an extended 

fallow period should be considered to maintain habitats suitable for black 

grouse for the maximum number of years possible prior to canopy closure of 

planted trees. 

 

4. A greater diversity of invertebrates, of taxa known to comprise a substantial 

part of the black grouse chick diet, is likely to result from a more heterogeneous 

habitat in restocks.  Whilst mature, tall stands of heather are likely to provide 
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suitable habitat for adults and nesting hens, a more species-diverse field-layer 

containing additional dwarf shrub species and graminoids is likely to benefit 

chicks. 

 

5. Regenerating non-native trees naturally encroach onto areas of restocks left 

unplanted.  These areas should be maintained to keep unplanted areas open and   

allow regeneration of native birch and willow scrub. 

   

6. Trees should not be re-planted in boggy, wet areas of restocks, or around areas 

of Eriophorum spp., V. myrtillus or M. gale.  Cover of these species should also 

be encouraged. 

 

7. Minimum drainage in restocks should be considered to allow suitable black 

grouse habitat to develop.  In unplanted areas, any remaining operational drains 

should be blocked. 

 

8. Whilst results can be extrapolated to other afforested areas in Scotland, the re-

vegetation of restocks will differ considerably according to a number of factors, 

including: geographical location; topography; slope; altitude; soil moisture 

content; timber harvesting regime and brash management.  These factors should 

be taken into consideration before management recommendations are actioned. 

 

7.7 Suggestions for further work 

Results from the current study have prompted further questions that warrant 

investigation: 
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1. Further research into the development of field-layer vegetation in areas of 

restocks left unplanted is necessary, particularly to investigate the recovery of 

important species such as Eriophorum, and to ascertain how much of a problem 

the encroachment of non-native tree seedlings is likely to be on open, unplanted 

ground in the future. 

 

2. Radio-tracking of adult black grouse should aim to determine which aspects of 

field-layer vegetation in restocks are important, and if there is seasonal usage of 

restocks. 

 

3. Black grouse chicks should be radio-tracked and faecal analysis conducted to 

determine the most important invertebrate taxa taken by chicks in restocks, and 

to determine if food items differ from those selected in other habitats. 

 

4. Implications of permethrin spraying in restocks (to reduce damage to planted 

trees by pine weevil Hylobius spp.) upon non-target invertebrate taxa of 

importance to black grouse should be assessed.   

 

5. Forest drains pose a significant threat to chick survival (Ludwig et al. 2008), 

and the risk to chicks using second rotation restocks should be assessed.    

Alternatives to standard drainage systems in restocks should be discussed, and 

the effectiveness of current management options, including back-filling of 

drainage trenches with tree stumps should be assessed. 
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6. Trials of planting or sowing to accelerate re-colonisation of black grouse 

friendly species (Myrica gale, Eriophorum spp., Vaccinium myrtillus, Calluna 

vulgaris) should be conducted soon after felling on areas of restocks to remain 

unplanted. 

 

7. Further studies into C. vulgaris seed bank and seed rain availability in second 

rotation restocks should be conducted, to inform management of this resource 

in the third and future rotations.  It is unknown whether areas currently left 

unplanted are sufficient to provide adequate seed sources to colonise the next 

generation of restocks. 

 

8. Further investigation into the abundance and movement of predators in second 

rotation restocks should be conducted, particularly in restocks where the fallow 

period has been extended.  Additionally, any temporal variation in predator 

abundance should be assessed over the period from egg-laying to chick 

fledging.  The practice of leaving standing deadwood of native tree species in 

restocks should be investigated, as single trees remaining in restocks appear to 

provide good perching posts for avian predators such as goshawks. 

 

9. The viability of restock management options suggested, i.e. leaving areas 

unplanted and extending fallow periods, should be assessed in terms of forest 

economics.  
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10. As brash is removed from restocks for biofuel, studies should be conducted to 

investigate potential benefits (or otherwise) to black grouse from subsequent 

changes to field-layer vegetation. 

 

11. To date, a limited set of third-rotation restocks is currently available for study 

in Scotland.  As forests are clearfelled in the future, studies should focus upon 

re-vegetation of the field-layer to determine changes in species composition 

that may be of importance to black grouse in restocks of the third rotation. 
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Appendix



 

Appendix Table 1: Inter-correlated variables in restock field-layer vegetation sampling data (Chapter 3).  Top right of table considers variables used in 
analyses of restocks with a more varied topography (timber extraction by harvester/forwarder or cable-winch; Trossachs dataset only), bottom left of table 
refers to variables used in analyses of vegetation in restocks where only harvesters/forwarders were used (Trossachs and Sutherland datasets). 
 

  
Restock 

age PT ET
Restock 

size
Open 
space 

Previous 
crop

No. of 
trees MTH

Tree 
cover

Study 
area Altitude Slope  

Restock age  0.057 -0.087 -0.08 -0.036 0.040 -0.023 0.602 0.509*2 - -0.243 0.079  

PT 0.053  0.070 -0.064 -0.136 0.059 0.724 [0.579] [0.475] - -0.075 -0.037  

ET - - 0.180 0.035 0.001 -0.079 0.056 0.047 - -0.204 -0.765  

Restock size -0.016 -0.010 - -0.055 0.173 -0.003 -0.132 -0.191 - -0.041 -0.139  

Open space  0.005 -0.082 - -0.209 0.016 -0.102 -0.190 -0.147 - -0.113 0.110  

Previous crop 0.024 -0.028 - [-0.407] 0.156 -0.045 0.083 0.054 - -0.108 0.016  

No. of trees 0.045 0.758 - 0.028 -0.041 -0.075  0.319 0.220 - -0.007 0.026  

MTH 0.622 [0.523] - -0.071 -0.205 -0.028 0.359 0.860 - -0.304 -0.038  

Tree cover 0.510*1 [0.498] - -0.104 0.121 -0.033 0.336 0.778 - -0.223 0.007  

Study area 0.088 -0.055 - [-0.479] 0.064 0.851 -0.076 0.055 - -  

Altitude -0.186 -0.037 - 0.250 -0.017 [-0.529] -0.022 -0.221 -0.146 [-0.524] 0.251  

Slope 0.108 0.121 - 0.127 0.075 -0.078 0.157 0.046 0.059 -0.058 0.194   
PT denotes: Planting Type, ET: Extraction Type, MTH: mean tree height. *1when considering transects in planted areas only, r=0.744, *2: r=0.738. Bold type denotes strong 
correlation r>0.6. Square brackets denote 0.6>r>0.4. Refer to Table 3.2 for further description of variables. 

 



 

Appendix Table 2: Datasets used in statistical analyses to investigate the influence of forest management upon vegetation and 
invertebrate availability to black grouse. Light grey fill indicates datasets used, dark grey fill indicates dataset not used. Management 
types considered are ‘Tree extraction method’ (conventional harvesting HF or cable-winch WI) and ‘Fallow period length’ (Standard, 
Extended or Super-extended).   

  
  Trossachs data    

(2008)  
Sutherland data 

(2009)  
   

  
          

Data 
chapter 

Dataset 
analysed 

Number of 
restocks/leks 

Number of 
transects 

Tree extraction   
method  

Fallow period 
 Length 

Vegetation1  49 441 HF WI Standard Extended Super-extended 
3 

Vegetation2 36 337 HF WI Standard Extended Super-extended 

Vegetation 36 78 HF WI Standard Extended Super-extended 
4 

Invertebrates 36 78 HF WI Standard Extended Super-extended 

Vegetation 36 288 HF WI Standard Extended Super-extended 

Invertebrates 36 72 HF WI Standard Extended Super-extended 5 

Predator 24 24 HF WI Standard Extended Super-extended 

Vegetation3 
72 625 (restocks)     

78 (leks) 
HF WI Standard Extended Super-extended 

6 

Invertebrates3 
8 20 (restocks)     

12 (leks) 
HF WI Standard Extended Super-extended 

1Conventionally harvested sites only. 2Sites with more varied topography. HF refers to tree extraction by mechanical harvester and forwarder; WI refers to removal 
by cable-winch. Fallow period lengths are Standard (2 years), Extended (3 to 5 years) and Super-extended (6 to 7 years). See methods section of relevant chapter 
for further information.3Vegetation and invertebrates collected from all management types, but types not differentiated between in analyses. 

 



 

Appendix Table 3: Inter-correlated variables in a) Model 1: time, management and site variables, and b) Model 2: vegetation variables; 
recorded in restocks in The Trossachs study area (Chapter 4).   
 

a) Model 1 
 

Restock 
age PT ET

Restock 
size

Open 
space 

Dist. from 
edge

Previous 
crop 

No. of 
trees MTH

Tree 
cover Altitude

PT 0.028           
ET -0.084 0.083          
Restock size -0.185 -0.109 0.162         
Open space  0.017 -0.106 0.051 -0.037        
Dist. from edge 0.139 -0.003 0.115 0.003 [-0.411]       
Previous crop 0.001 0.096 -0.002 0.168 0.043 -0.026      
No. of trees -0.072 0.611 -0.192 -0.106 -0.119 -0.029 -0.084     
MTH [0.548] 0.604 0.040 -0.240 -0.145 0.106 0.054 0.298    
Tree cover *0.466 [0.516] -0.027 -0.288 -0.107 -0.004 0.079 0.245 0.893   
Altitude -0.299 -0.040 -0.165 -0.033 -0.100 -0.348 -0.107 0.006 -0.309 -0.24  
Slope 0.083 -0.020 -0.710 -0.093 0.156 -0.214 -0.027 0.079 -0.046 0.015 0.155

PT denotes: Planting Type, ET: Extraction Type, Dist. to edge: Distance from restock to plantation edge, MTH: mean tree height. Refer to Chapter 4, 
Table 4.2 for further description of variables. *when considering transects in planted areas only, r=0.732. Bold type denotes strong correlation r>0.6. 
Square brackets denote 0.6>r>0.4.  
 
b) Model 2 Moisture 

score 
Brash 
cover

Field-layer 
density

Vegetation 
height

Dwarf shrub 
cover

Brash cover 0.044     
Field-layer density 0.214 -0.242    
Vegetation height 0.111 [-0.402] [0.412]   
Dwarf shrub cover -0.137 [-0.420] [0.563] 0.170  
Graminoid cover 0.603 -0.247 0.039 0.166 -0.300

‘Moisture score’ variable refers to the Ellenberg moisture score (Hill et al. 1999). Refer to 
Chapter 4, Table 4.2 for further description of variables. Bold type denotes strong correlation 
r>0.6. Square brackets denote 0.6>r>0.4. 

 



 

Appendix Table 4: Inter-correlated variables in a) Model 1: time, management and site variables, and b) Model 2: vegetation variables; recorded in restocks 
in the Sutherland study area (Chapter 5).   
 
a) Model 1 

Restock 
age 

Fallow 
group PT

Restock 
size

Open 
space 

Previous 
crop

No. of 
trees MTH

Tree 
cover Altitude

Fallow group -0.200          
PT 0.000 0.000         
Restock size -0.050 0.320 0.000        
Open space  -0.098 0.057 0.000 -0.173       
Previous crop -0.317 0.033 0.000 -0.342 0.183      
No. of trees -0.021 0.106 0.798 0.051 -0.024 0.024     
MTH 0.627 -0.152 [0.411] -0.087 -0.209 -0.203 0.317    
Tree cover *0.485 -0.101 [0.489] -0.053 -0.092 -0.209 0.359 0.699   
Altitude 0.171 0.164 -0.026 0.168 -0.015 -0.130 0.007 0.137 0.041  
Slope -0.043 -0.216 0.030 -0.013 -0.002 0.077 0.020 -0.092 -0.083 -0.263

PT denotes: Planting Type, MTH: mean tree height. Refer to Chapter 5, Table 5.2 for further description of variables. *when 
considering transects in planted areas only, r=0.788. Bold type denotes strong correlation r>0.6. Square brackets denote 0.6>r>0.4.  
 
 
 b) Model 2 Moisture 

score 
Brash 
cover

Field-layer 
density

Vegetation 
height

Dwarf 
shrub cover

Brash cover 0.100     
Field-layer density -0.267 -0.235    
Vegetation height -0.036 -0.001 0.208   
Dwarf shrub cover -0.277 -0.328 0.452 0.109  
Graminoid cover 0.327 -0.065 -0.316 0.117 -0.504

‘Moisture score’ variable refers to the Ellenberg moisture score (Hill et al. 1999). Refer to 
Chapter 5, Table 5.2 for further description of variables. Bold type denotes strong correlation 
r>0.6. Square brackets denote 0.6>r>0.4.  

 



 

 

Appendix Table 5: Inter-correlated variables in a) Model 1: Site variables, and b) Model 2: vegetation variables; recorded in restocks 
and in habitat within 1 km2 of black grouse leks in the Trossachs and Sutherland study areas (Chapter 6).   
 
 
 a) Model 1 

Study area 
Lek vs. 
restock Altitude

Lek vs. restock -0.041   
Altitude [-0.512] 0.031  
Slope [-0.478] 0.190 0.374

Refer to Chapter 6, Table 6.2 for further description of variables. Bold 
type denotes strong correlation r>0.6. Square brackets denote 
0.6>r>0.4.  
 
 
 
b) Model 2 

Moisture 
score 

Field-layer 
density

Vegetation 
height

Dwarf 
shrub cover

Field-layer density -0.026    
Vegetation height 0.160 0.245   
Dwarf shrub cover -0.301 0.372 -0.051  
Graminoid cover 0.387 -0.188 0.157 [-0.519] 

‘Moisture score’ variable refers to the Ellenberg moisture score (Hill et al. 1999). 
Refer to Chapter 6, Table 6.2 for further description of variables. Square brackets 
denote 0.6>r>0.4. 
 
 
 



 

Appendix Table 6: List of species recorded in restocks and in habitat surrounding leks 
in the Trossachs and Sutherland study areas. 
 
Code Scientific name Common name 

Agr_spp Agrostis spp. Bent grass spp. 
Ant_odo Anthoxanthum odoratum Sweet vernal grass 
Ble_spi Blechnum spicant Hard fern 
Call_vul Calluna vulgaris Ling heather 
Car_bin Carex binervis Green-ribbed sedge 
Car_ech Carex echinata  Star sedge 
Car_nig Carex nigra Common sedge 
Car_ova Carex ovalis Oval sedge 
Car_vir Carex viridula  Common yellow sedge  
Cha_ang Chamaenerion angustifolium Fireweed 
Cir_spp Cirium spp. Thistle spp. 
Des_cae Deschampsia caespitosa Tufted-hair grass 
Des_fle Deschampsia flexuosa Wavy-hair grass 
Dig_pur Digitalis purpurea Foxglove 
Eri_ang Eriophorum angustifolium Common cottongrass 
Eri_cin Erica cinerea Bell heather 
Eri_tet Erica tetralix Cross-leaved heath 
Eri_vag Eriophorum vaginatum Hare’s-tail cottongrass 
Fes_spp Festuca spp. Fescue grass spp. 
Gal_apa Galium aparine  Goosegrass 
Gal_sax Galium saxatile Heath bedstraw 
Hol_spp Holcus spp. Grass spp. 
Jun_art Juncus articulatus Jointed rush 
Jun_bul Juncus bulbosus Bulbous rush 
Jun_con Juncus conglomeratus Compact rush 
Jun_eff Juncus effusus Soft rush 
Jun_squ Juncus squarrosus Heath rush 
Luz_spe Luzula spp. Woodrush 
Mol_cae Molinia caerulea Purple moor grass 
Nar_str Nardus stricta Mat grass 
Oxa_ace Oxalis acetosella Wood sorrel 
Ple_spp Pleurozium spp. Moss spp. 
Pol_spp Polytrichum spp. Moss spp. 
Pot_ere Potentilla erecta Tormentil 
Pte_aqu Pteridium aquilinum Bracken 
Rac_spp Racomitrium spp. Moss spp. 
Rub_fru Rubus fructicosus Bramble 
Sph_spp Sphagnum spp. Moss spp. 
Vac_myr Vaccinium myrtillus Blaeberry 
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