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Abstract 

Stochastic Hybrid Systems: Modelling and Verification 

by 

Manuela-Luminita Bujorianu 

Stirling, FK9 4LA, Scotland, UK 

Submitted to the Department of Computing Science and Mathematics 
on November 24, 2005, in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

Hybrid systems now form a classical computational paradigm unifying discrete and continuous 
system aspects. The modelling, analysis and verification of these systems are very difficult. 
One way to reduce the complexity of hybrid system models is to consider randomization. The 
need for stochastic models has actually multiple motivations. Usually, when building models 
complete information is not available and we have to consider stochastic versions. Moreover, 
non-determinism and uncertainty are inherent to complex systems. The stochastic approach 
can be thought of as a way of quantifying non-determinism (by assigning a probability to each 
possible execution branch) and managing uncertainty. This is built upon to the - now classical 
- approach in algorithmics that provides polynomial complexity algorithms via randomization. 

In this thesis we investigate the stochastic hybrid systems, focused on modelling and analysis. 
We propose a powerful unifying paradigm that combines analytical and formal methods. Its 
applications vary from air traffic control to communication networks and healthcare systems. 

The stochastic hybrid system paradigm has an explosive development. This is because of its 
very powerful expressivity and the great variety of possible applications. Each hybrid system 
model can be randomized in different ways, giving rise to many classes of stochastic hybrid sys­
tems. Moreover, randomization can change profoundly the mathematical properties of discrete 
and continuous aspects and also can influence their interaction. Beyond the profound founda­
tional and semantics issues, there is the possibility to combine and cross-fertilize techniques from 
analytic mathematics (like optimization, control, adaptivity, stability, existence and uniqueness 
of trajectories, sensitivity analysis) and formal methods (like bisimulation, specification, reach­
ability analysis, model checking). These constitute the major motivations of our research. We 
investigate new models of stochastic hybrid systems and their associated problems. The main 
difference from the existing approaches is that we do not follow one way (based only on contin­
uous or discrete mathematics), but their cross-fertilization. For stochastic hybrid systems we 
introduce concepts that have been defined only for discrete transition systems. Then, techniques 
that have been used in discrete automata now come in a new analytical fashion. This is partly 
explained by the fact that popular verification methods (like theorem proving) can hardly work 
even on probabilistic extensions of discrete systems. When the continuous dimension is added, 
the idea to use continuous mathematics methods for verification purposes comes in a natural 

way. 
The concrete contribution of this thesis has four major milestones: 
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1. A new and a very general model for stochastic hybrid systems; 
2. Stochastic reachability for stochastic hybrid systems is introduced together with a ap­

proximating method to compute reach set probabilities; 
3. Bisimulation for stochastic hybrid systems is introduced and relationship with reachabil­

ity analysis is investigated. 
4. Considering the communication issue, we extend the modelling paradigm. 

Thesis Supervisor: Savi Maharaj 
Title: Dr. 
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Chapter 1 

Introduction 

1.1 Hybrid systems 

Continuous models have been a long-held standard in natural sciences, ranging from New­

tonian mechanics to fluid dynamics. Their biggest advantage is their fidelity: since the models 

described detailed interactions in a physical system, accurate predictions and conclusions can 

be drawn based on these models. 

Often, it is difficult to obtain a faithful continuous model of a system, or, it might be 

difficult to reason about a given complex continuous model. In these cases, the engineering 

practice consists in dividing the model into a finite set of behavioral modes whose dynamics 

are given by different sets of equations. Such a model is called hybrid, because it contains both 

continuous and discrete variables. 

The term "hybrid" is used to characterize systems that combine time-driven and event­

driven dynamics. The former are represented by differential (or difference) equations, while the 

latter may be described through various frameworks used for Discrete Event Systems, such as 

timed automata, queueing networks, or Petri nets (see [51]). 

Hybrid systems can be thought of as interacting networks of digital and continuous systems. 

These systems typically contain variables or signals that take values from a continuous set and 

also variables that take values from a discrete, typically finite set. These continuous or discrete­

valued variables depend on independent variables such as time, which may also be continuous 

or discrete. The evolution of the hybrid systems is given by equations of motion that generally 
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depend on all variables. In turn these equations contain mixtures of logic, discrete-valued 

dynamics, and continuous-variable dynamics. The continuous dynamics of such systems is the 

time-driven dynamics, whilst the discrete-variable dynamics of hybrid systems is the event­

driven dynamics. The continuous and discrete dynamics coexist and interact with each other 

and because of this it is important to use models that accurately describe the dynamic behavior 

of such hybrid systems. 

The modelling and verification techniques developed for discrete systems are not directly 

applicable because the state space is now uncountably infinite and from a given state, a hybrid 

system can make a transition such that the next state comes from an uncountable set of states. 

The safety-critical nature of numerous hybrid systems, such as automated transportation 

systems. has encouraged the formal modelling and validation through deductive reasoning. 

The first step is to chose suitable models for hybrid systems. Broadly speaking, two cate­

gories of modelling framework have been proposed to study hybrid systems: those that extend 

event-driven models to include time-driven dynamics; and those that extend the traditional 

time-driven models to include event-driven dynamics; for an overview, see [32]. 

Roughly speaking, the nature of these systems suggests that their models should be com­

binations of models of dynamic systems (continuous variables+differential equation systems) 

with models of discrete machines (automata+discrete data structures). 

Hence, adequate models for hybrid systems are obtained by considering finite control location 

graphs supplied with discrete data structures (counters, stacks, etc) and real valued variables 

that change continuously at each control location. The transitions between control locations are 

conditioned by constraints on the values (or configurations) of the (discrete and / or continuous) 

variables and data structures of the system; the execution of these transitions updates or resets 

the discrete data structures and the continuous variables of the system. 

Theoretical analysis deals with issues such as: 

1. the analysis of potential capabilities of classes of systems, both as models of systems to 

be controlled and as controllers, 

2. the derivation of necessary and sufficient conditions characterizing properties such as 

controllabili ty, 
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3. the classification of systems under natural equivalence relations (changes of variables, 

action of "feedback group"), or 

4. theorems guaranteeing existence and uniqueness of "internal" black box representations 

of given "external" behaviors. 

In order to model hybrid systems, a number of formal models have been studied which 

capture the behavior of plants in various levels of abstraction: 

1. Timed Automata. Timed automata are probably the most popular modeling formalism, 

but for many applications timed automata are not sufficiently expressive, because they 

cannot handle hybrid phenomena. 

2. Hybrid Automata. Hybrid automata [93] are essentially an extension of state machines 

in which nodes model continuous input/output behavior and guarded transitions model 

discrete changes in system state. Whereas the reachability problem for timed automata 

is decidable, reachability is undecidable even for seemingly very minor extensions of this 

model. 

3. Other Hybrid Formalisms. For instance, hybrid I/O automata [125], which specialize 

hybrid automata by an additional distinction between input and output. In this model, 

the continuous behavior of a system is described by a set of trajectories. 

Hybrid systems have been proposed as a source of new models for capturing the mixed 

nature of real-world behaviours. The strong expressive power of hybrid systems makes them 

promising for their use in the challenging area of embedded control. Hybrid systems play the 

role of an interchange format, which allows the integration of tools and methods available for 

hybrid controller design. 

1.2 Probabilistic Hybrid Models 

Probabilistic hybrid models can be thought of as extensions of discrete models, such as hidden 

Markov models [72], Markov chains, semi-Markov processes [122], or dynamic Bayesian networks 

[58] to continuous dynamical models. In practice, the modelling of many phenomena requires 
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the integration of both probabilistic and hybrid (mixed discrete - continuous) aspects. Even 

though deterministic hybrid models can capture a wide range of behaviours encountered in 

practice, stochastic features are very important, because of the uncertainty inherent in most 

real world applications. As compared to more traditional hybrid systems, such as I/O automata, 

probabilistic hybrid models have properties crucial for reasoning under uncertainty, including 

probabilistic transitions between modes or noisy observations. 

In Probabilistic Hybrid Automata (PHA) [101]' a system is modeled by a hybrid automaton 

that has both discrete and continuous variables. This framework can be viewed as an extension 

of a hidden Markov model. The Hidden Markov Model is a finite set of states, each of which is 

associated with a probability distribution. Transitions among the states are governed by a set 

of probabilities called transition probabilities. In a particular state an outcome or observation 

can be generated, according to the associated probability distribution. It is only the outcome, 

not the state visible to an external observer and therefore states are hidden to the outside. that 

incorporates discrete and continuous inputs, stochastic continuous dynamics and autonomous 

mode transitions. Simpler versions of PHA can be found in [150]. These are variants of hybrid 

automata augmented with discrete probability distributions. 

1.3 Stochastic Hybrid Systems 

In the real world there exist complex systems whose hybrid dynamics can not be specified using 

only simple discrete probability distributions, but have to be described in terms of continuous 

time Markov process, diffusion processes, stochastic kernels, etc. Moreover, the mode transitions 

for these systems depend also on the continuous dynamics inside the modes. Then it is naturally 

to introduce the concept of Stochastic hybrid systems (SHS). 

SHS are used as a paradigm for modelling embedded systems with safety critical perfor­

mance requirements. Embedded systems of this type have to operate in an uncertain and often 

adversarial environment. Stochastic analysis and control of hybrid systems is therefore essential 

to study and improve the performance of embedded systems in the presence of uncertainty. 

In the last three years, I have been involved in two EU projects: HYBRIDGE and COLUM­

BUS. In these projects, we have used hybrid systems for modelling embedded systems, involved 
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in Air Thaffic Management (ATM), with safety critical performance requirements. Embedded 

systems of this type have to operate in an uncertain and often adversarial environment. Sto­

chastic analysis and control of hybrid systems is essential to study and improve the performance 

of ATM systems in the presence of uncertainty. 

The problem of safety analysis is addressed from the perspective of the current centralized 

AT11 systems, where aircraft are prescribed to follow certain flight plans, and all flights are 

controlled by an Air Thaffic Controller (ATC) from gate to gate. In the context of ATM, different 

safety relevant operation cases might occur as follows: vertical crossings; overtake manoeuvres 

in unmanaged airspace; ATC sector transitions; missed approaches (see [137] for a detailed 

presentation), aircraft-to-aircraft conflict and aircraft-to-airspace conflict. For example, the 

ATCs are responsible for maintaining a sufficiently large distance between aircraft to avoid 

dangerous situations and ultimately collisions, by issuing trajectory specifications to the pilots. 

Separation assurance forms a major part of the current ATC workload. If the level of automation 

in the AT~I process increases, some of the separation assurance tasks can be transferred to the 

automated system. One approach for doing this is to rely on conflict detection and resolution 

(CDR) strategies to assist ATC. These strategies try to predict the trajectories of aircraft 

within managed airspace, analyse these trajectories in order to decide if there is a substantial 

possibility of loss of separation (conflict detection) and, if there is, issue advisories to the ATC 

and/ or pilots on how to resolve the problem (conflict resolution). 

The model for predicting the aircraft future position should incorporate information on the 

aircraft flight plan, the aircraft dynamics, and the flight management systems. Each aircraft 

has to follow a flight plan, which typically consists of airways (straight lines between given way 

points traveled at constant speed). The actual aircraft motion might deviate from the planned 

motion because of different sources of uncertainty. We assume that wind is the main source 

of uncertainty on the actual aircraft dynamics. The hybrid nature of the model is due to the 

change in the dynamics when a way-point is reached. The stochastic component is due to the 

wind described by a random field, which is used to model the spatial perturbation to the aircraft 

motion due to the wind. 

Intuitively, SHS can be thought of as traditional hybrid systems augmented with some sto­

chastic features. These systems typically contain variables or signals that take values from a 
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continuous set and also variables that take values from a discrete (finite or countable) set. Dif­

ferential equations or stochastic differential equations generally give the continuous dynamics 

of such systems. A Markov chain generally governs the discrete-variable dynamics of SHS. The 

stochastic features might be present in the continuous dynamics or in the discrete dynamics, 

or in both. The continuous and discrete dynamics coexist and interact with each other and 

because of this it is important to use models that accurately describe the dynamic behaviour 

of such hybrid systems. 

We have named this class of systems 'stochastic' and not 'probabilistic' because their dynam­

ics is stochastic, that means it can be perturbed by a noise process, or it can have mode jumps 

according with a stochastic kernel, which depend also on the continuous dynamics ('hybrid 

jumps'). This dynamics can be thought of as a 'deterministic dynamical system parametrised 

by the sample probability state', i.e. the realization of an SHS is given by the possible trajec­

tories of a stochastic process. 

1.4 Thesis contributions 

The main contributions of this thesis consist of the following issues: 

1. General models for SHS and distributed SHS: modelling, properties, etc. These models 

encompass almost all models for SHS proposed in the literature. This point will be briefly 

explained in Chapter 3. For a detailed comparison of the different classes of SHS models 

existing in the literature and how these models can be embedded in a very general class 

of models, the reader is referred to [137]. 

2. An incremental presentation of the different possible ways to tackle the SHS verification: 

from analytical approaches to the formal methods. 

3. New approaches for stochastic reachability. In this thesis, we develop some methodologies 

for verifying temporal properties of stochastic hybrid systems. We define the reachability 

problem in the stochastic framework and we investigate some possible analytical and 

statistical solutions. Our framework does not require explicit computation of reachable 

states. Instead, we use Markovian properties of the SHS models to prove properties 

14 



as safety or reachability. Moreover, it is possible to treat safety verification of SHS by 

computing upper-bounds on the probability of reaching the unsafe states. The results, 

which we have obtained, have rather difficult mathematical expressions and make use of 

the 1Iarkov process theory. This drawback can be remedied if an abstraction theory for 

SHS would be available. This motivates our further work in the direction of defining 

bisimulation concepts for SHS (see next item). 

4. ~ew concepts of bisimulation for SHS. By introducing bisimulations preserving the reach 

set probabilities the solutions obtained for reach ability become computationally feasible. 

As welL these new concepts of stochastic bisimulation can be viewed as the basis for 

further development of model checking for SHS. 

1.5 Thesis layout 

The thesis is structured as follows. In Chapter 2 we give a mathematical background which 

·wi.ll be used in this thesis. As well, we briefly present the concepts of hybrid automata and 

probabilistic hybrid automata which have already been studied in the literature. This is moti­

vated by the fact that we will develope further these concepts in this thesis to the stochastic 

case obtaining different models for stochastic hybrid systems. In Chapter 3 we introduce a very 

general model for SHS and we study its properties. The proofs of these properties require a 

strong background in the Markov process theory, but it is worth doing since these properties 

will be further employed in the verification process of this model. In Chapter 4, the model 

will be augmented with parallelism and communication features. In Chapter 5 we give a brief 

overview of the verification methods existing in the literature for deterministic hybrid systems. 

In Chapter 6, we study different verification methods for stochastic hybrid systems. We start 

with probabilistic hybrid system verification methods, which have been recorded in the litera­

ture. The lifting of these methods to the case of SHS is not straightforward. The passing from 

discrete probability distributions to continuous ones makes difficult the use of formal methods 

for verification of SHS. Then, in a first instance we formulate the problem of SHS verification 

as a stochastic reachability problem and we give analytical solutions. The main difficulty is 

that the computation of these analytical solutions is at least as hard as is the finding of these 

15 



solutions. In order to ease the methodology of solving reachability problem for SHS we develop, 

in Chapter 7, a new concept for SHS bisimulation. This will constitute the theoretical base for 

model-checking for SHS. 
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Chapter 2 

Terminology and Models 

2.1 Overview 

This chapter provides a literature review of preliminary ideas and definitions that the reader 

must understand in order to appreciate this work. 

2.2 Preliminaries 

Throughout this thesis, we assume familiarity with the notation and concepts of ordinary dif­

ferential equations (ODE), dynamical systems, stochastic differential equations (SDE), Markov 

processes, and diffusion processes. 

2.2.1 Ordinary Differential Equations 

In this thesis, the continuous dynamic behavior of some stochastic hybrid system models can 

be expressed using ordinary differential equations (ODE): 

dx 
dt = f(t, x) (2.1) 

where x(t) EX eRn. Function f : X ---+ Rn is called vector field on Rn. 

A system of ODEs is called time-invariant if its vector field does not depend explicitly on 

time. It is known that given the initial value for x, i.e. x(O) = Xo the solution of the (2.1) is 
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unIque. 

A plant or an ODE with inputs and outputs is given by 

x (t) f(x(t),u(t)) 

y(t) g(x(t)) 

where the number of components of the state vector, n, is called the order of the system. The 

input u and the output y have p and q components respectively, i.e. u(t) E U c ~.P, y(t) c Rq, 

f : Rn x RP ---+ Rn, and 9 : Rn ---+ Rq. 

2.2.2 Dynamical Systems 

A dynamical system, roughly speaking, is a set of objects which are allowed to change over 

time, while obeying a set of rules. 

Examples of dynamical systems include a chemical plant, the population growth of a country, 

the behavior of a country economic structure, etc. Many complex dynamical systems have to be 

systematically analysed. A well-developed theory of dynamical systems is available in literature 

(see. for example, [12, 147]). Systems in this class are associated, in one way or another, with 

algebraic, difference or differential equations, which are used to represent the behavior of the 

dynamical system. 

In engineering and mathematics, a dynamical system is a deterministic process in which a 

function's value changes over time according to a rule that is defined in terms of the function's 

current value. Generally, dynamical systems come in two flavors: discrete and continuous. A 

discrete dynamical system involves step-by-step state changes. A dynamical system is called 

discrete if time is measured in discrete steps; these are modeled as recursive relations. If time is 

measured continuously, the resulting continuous dynamical systems are expressed as ordinary 

differential equations. In contrast, a discrete dynamical system's behaviour is described using a 

transition relation or state space graph. For instance, a finite automaton is a discrete dynamical 

system. 
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2.2.3 Stochastic Processes 

Stochastic processes concern sequences of events governed by probabilistic laws. In finance 

and economics problenls, sequences of events take time, so we can think on random events 

parameterized by time. Formally, a stochastic process M = {Xt It E T} is a collection of 

random variables. That is, for each t in the index set T, Xt is a random variable. Note that 

we fix a probability space (0., F, P) (see below) and all random variables are defined on this 

probability space. 

\Ve often interpret t as time and call Xt the state of the process at time t. The index set T can 

be countable set and we have a discrete-time stochastic process, or non-countable continuous 

set and we haye a continuous-time stochastic process. Any realization of M is named a sample 

path, which can be discrete or continuous. 

A.lthough in most applications the index set is simply a set of time instants tk, for the case 

of technical uncertainty it is not true. Imagine a sequential investment in information process 

to determine the volume of a oil reserve. In the sequence of information revelation random 

variables the index set is a sequence of investments in information (a set of events, each event 

being one investment in information). That is, they are event-driven processes (evolves only if 

a new investment in information is performed) and not time-driven processes as most stochastic 

processes, which evolve with the pure passage of time. 

We assume that the reader knows the basic ideas of measure theory and probability as 

expounded, for example in [123] or the appendix of [65]. In the following, we briefly recall some 

definitions: 

• A O"-algebra (or O"-field) on a set X is a family of subsets of X which includes X itself and 

which is closed under complementation and countable unions. A set X equipped with 

a O"-algebra (denoted by 2:x) is called a measurable space and is denoted by (X,2:x)· 

Given a topological space (X, T), we can define the O"-algebra, often written B or B(X), 

generated by the open sets (or, equivalently, by the closed sets). This is usually called 

BoreIO"-algebra . 

• A function f : (X, Lx) ~ (Y, 2:y) between measurable spaces is said to be measurable 

if VB E LY ·f-l(B) E 2:x· 
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A probability space (0, F, P) is a measurable space (0, F) provided with a probability 

measure P : F ---+ [0,1] (i.e. P is a measure such that P(O) = 1). A filtered probability space 

(O,F,Ft,P) is a probability space (O,F,P) together with a filtration (Ftlt E T), a filtration 

being any family of sub-a-algebras of F such that Fs C Ft for s < t. 

A process AI is adapted to a filtration Ft if for each t, Xt is an Ft random variable. In this 

case, we say that the family {Ft} is an admissible filtration. An admissible filtration {Ft} is 

right continuous if Ft = Ft+ = n{ Ft' it' > t}. 

Given an admissible filtration {Ft}, a [0, oo]-valued function T on 0 is called an {Ft}-stopping 

time if {T < t} E Ft , Vt > o. 

Levy processes 

Levy processes are stochastic processes with stationary independent increments and continuous 

in probability. Stationary increment property means that the probability distribution for the 

changes in the stochastic variable x, depends only on the time interval length. Independent 

increments means that for all time instant t, the increments are independent. The two most 

basic types of Levy processes are Wiener processes and Poisson processes. 

Martingales 

A process M = {Xt It E 114} is a martingale if, given all the information until the time t 

(expressed by Xt), the expected value of x in the future instant t + s is Xt. In math notation: 

Et [Xt+s] = Xt 

where the subscript in the expected value operator Et denotes that the expectation is conditional 

to the information available at time t. Note that a martingale has constant expectation, i.e. 

EXt = EXQ, Vt E 1R.+. 
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~arkov Processes 

Afarkov processes have the following property: given that its current state is known, the prob­

ability of any future event of the process is not altered by additional knowledge concerning its 

past behaviour. Formally, a stochastic dynamical system satisfies the Markov property (formu­

lated by A.A. Markov in 1906) if the probable (future) state of the system at any time t > s is 

independent of the (past) behavior of the system at times t < s, given the present state at time 

s. This is the stochastic analogue of an important property shared with solutions of initial value 

problems involving ODEs, and so stochastic processes satisfying this property arise naturally. 

One can consider a stochastic process taking values in a measurable space (X, B), called the 

state space. If X is a Hausdorff (or separated) topological space we use to denote by B(X) or 

B its Borel O"-algebra. 

Usually, the stochastic processes which appear in this work take values in open subsets of dif­

ferent Euclidean spaces. Then these spaces might have nice topological properties. Concretely, 

we deal 'with Markov processes whose the state space can be: 

• A Polish space is the topological space underlying a complete, separable metric space, i.e. 

it has a countable dense subset. 

• a Borel space, i.e. a topological space, which is homeomorphic (i.e. it can be "identified" 

as a topological space) to a Borel subset of a complete separable metric space. 

• a Lusin space, i.e. a topological space, which is homeomorphic with a Borel subset of a 

compact metric space. 

• an analytic space, i.e. a topological space which is the image of a Polish space under a 

continuous function from one Polish space to another. 

The classical theory of Markov processes is typically carried out in the setting of Polish 

spaces rather than on abstract measure spaces. The analytic spaces generalize Polish spaces. 

In Chapter 3, we work with Borel spaces, which seem to be the most appropriate for SHS. In 

Chapter 7, we define bisimulation of Markov processes defined on analytic spaces (i.e. in a very 

general framework). 
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Formally, a stochastic process M = {Xtlt E ~+} with the state (X, B), defined on a filtered 

probability space is a Markov process if for any times t, s with t > s and any bounded measurable 

function f : X -f lR the following equality holds 

E[f(Xt) IFs] = E[f(Xt) Ixs] 

where E is the expectation with respect to P. This says that the only information relevant to 

evaluating the behaviour of the process beyond time s is the value of the current state, Xs. It 

implies in particular that M is adapted to Ft. 

Wiener Process and White Noise 

A Wiener process is also a special case of a strong diffusion process that is a particular class of 

a continuous time ~larkov process. 

A continuous time Wiener process (also called Brownian motion) is a stochastic process 

with three properties: 

1. It is a ~larkov process. This means that all the past information is considered in the 

current value, so that future values of the process depends only on its current value not 

on past values. The future values are not affected by the past values history. In finance, 

this is consistent with the efficient market hypothesis (that the current prices reflect all 

relevant information). 

2. It has independent increments. Change in one time interval is independent of any other 

time interval (nonoverlapping). 

3. The changes of value over any finite time interval are normally distributed. So, it has 

stationary increments, besides the property of independent increments. Therefore, it is a 

particular Levy process. 

Formally, the standard m-dimensional Wiener process W(t) = {W1(t), ... , Wm(t)}, defined 

for t > 0 has lRm as its state space and is a stochastic process whose components Wj(t), - , 
j = 1, ___ , m, are independent scalar standard Wiener processes, i.e. each Wj is a scalar process 

22 



,yith independent, stationary, and normal distributed increments Wj(t) - Wj(s) and satisfying 

n~j(O) = 0 with probability 1. 

Diffusion Processes 

A 1Iarkov process (Xt) with t E [to, T], state space Rn , and continuous sample paths with 

probability 1 is called a diffusion process if its transition probability p( s, x, t, B) is smooth, i.e. 

it satisfies the following three conditions for every s E [to, T], x E Rn , and c > 0 : 

• lim t~s ];ly-xl<e:(Y - x)p(s, x, t, dy) = a(s, x) 
t"-"s -

• ~~ t~s ~y-xl5:e:(Y - x)(y - x)T p(s, x, t, dy) = B(s, x) 

where a(s, x) and B(s, x) represent well-defined Rn and Rnxn_ valued functions respectively. 

These functions, called the coefficients of the diffusion process, are referred as follows: a is 

called the drift vector and B the diffusion matrix. 

The reason for this terminology is that processes of this kind were first encountered in 

physics in studying diffusion phenomena. 

2.2.4 Markov Process Characterizations 

In what follows, (0, F, P) will denote a probability space, X an analytic space, B its Borel 

u-algebra, T an interval of the real line. For each t E T, Xt : (0, F, P) ---+ (X, B) a measurable 

function. Usually, T = [0,00). 

Let Bb(X) be the lattice of bounded positive measurable functions on X. This is a Banach 

space under the norm 

IIIII = sup I/(x)l· 
xEX 

Operator Methods 

Operator methods begin with a local characterization of the Markov process dynamics. This 

local specification takes the form of an infinitesimal generator. The infinitesimal generator is 

itself an operator mapping test functions into other functions. From the infinitesimal generator, 
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one can construct a family (semigroup) of conditional expectation operators. The operators 

exploit the time-invariant Markov structure. Each operator in this family is indexed by the 

forecast horizon, the interval of time between the information set used for prediction and the 

object that is being predicted. Operator methods allow us to ascertain global, and in particular, 

long-run implications from the local or infinitesimal evolution. 

The stochastic analysis identifies concepts (like infinitesimal generator, semigroup of oper­

ators, resolvent of operators) that characterize in an abstract sense the evolutions of a Markov 

process. Under standard assumptions, all these concepts are equivalent, in the sense that given 

one concept then all the others can be constructed from it. For a detailed presentation of these 

notions and the connections between them, the reader can consult, for example [126]. 

There are several different but essentially equivalent ways to parameterize continuous time 

:\larkov processes. In this section we briefly describe four possible parametrizations. 

Transition functions 

A functionp : (XxB) is a transition probability or a stochastic kernel ifp(x,·) is a probability 

measure in B, and p(., B) is measurable, for each (x, B) E (X x B). 

A transition function is a family Ps,t, with (s, t) E T2, S < t that satisfies for each s < t < u 

the Chapman-Kolmogorov equation: 

Ps,u(x,B) = J Pt, .. (y, B)PsAx,dy) 

A transition function is time homogeneous if Ps,t = Ps' ,t' whenever t - s = t f 
- Sf. In this case 

we write Pt-s instead of Ps,t· 

Let M t C F an admissible filtration for a stochastic process AI. M is Markov with the 

transition functionps,t if for each non-negative Borel measurable f : X ~ lR and each (s, t) E T2, 

s < t, 
lE[f(xt)IMsl = J f(Y)Ps,t(xs,dy). 

Given a transition function Ps,t on (X, B) and a probability measure /-L on (X, B), there exists a 

unique probability measure Pp on (X[O,oo), B[O,oo)), such that the coordinate process is Markov 

with respect to o-(Xu/u < t), with transition function Ps,t and the distribution of xo given by /-L 

[133] . 
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Suppose we are given a homogeneous transition function Pt and an initial probability J-l = 8x, 

where 8x denotes the Dirac measure at x E X defined by 8x(A) = 1 if x E A and 8x(A) = 0 if 

:r ~ A. We can then construct a Markov process M = {xtlt E lR+} having Pt as its transition 

function and P( Xo = x) = 1. It is however possible that the same construction J-l = 8x ' for 

some x' =1= :r would lead to a process defined on some other probability space. A Markov family 

is a collection (0, F, Ft, Xt, (Px)xEX), where (0, F) is a measurable space, (Ft) a filtration, 

(xtlt E lR+) a family of X-valued random variables such that Xt is Ft-measurable for each t, 

and, for each x E X, Px is a probability measure on (O,F) such that (Xt) is a Markov process 

on (0, F, Px) with transition function Pt and initial distribution 8x, i.e. Px(xo = x) = 1. We will 

write lEx for the expectation w.r.t. Px . Note that the measure Px and the transition function 

Pt are related by 

(2.2) 

In a Markov family, only the measure Px depends on the initial point x EX; all the other 

ingredients are the same for every x. This provides yet another way of expressing the Markov 

property: because the transition function is the same for every Px we easily see that for f E 

f3b(X) and s, t > 0 we have 

Thus the behaviour of the process beyond time s is just another process started at Xs· 

From now on we will generally consider Markov families rather than Markov processes, and 

use the notation M = (0, F, Ft , Xt, (Px)xEX) for a Markov process. 

Semigroup of operators 

Let Pt be a homogeneous transition function. For each t define conditional expectation 

operator by 

Pd(x) = f J(y)pt(x,dy) = ExJ(xt), 'Ix EX (2.3) 

where lEx is the expectation w.r.t. Px . The Chapman-Kolmogorov equation guarantees that 

the linear operators Pt satisfy 

This suggests another parameterization for Markov processes: the semigroup of (conditional 
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expectation) operators P = (Pt)t>o. The operator semigroup associated to M, maps Bb(X) 

into itself. The semigroup P = (Pt)t>o can be thought of as an abstraction of M, since that 

from P one can recover the initial process [25]. This kind of abstraction can be related with 

the concept of abstract control system from [156], but in our case due to the stochastic features 

of the model, the domain of the abstraction is not longer the state space X, but Bb(X). 

A one-parameter family of linear operators in a Banach subspace of Bb(X), {Ptlt > O} is 

called a strongly continuous contraction semigroup if (a) Po = I (the identity), (b) Pt+s = PtPs 

for all t, s > 0, (c) limt~o Ptl = I and (d) IIPtl1 < 1. Let Bo be the subset of Bb(X) consisting 

of those bounded, measurable functions I for which limt'"o IIPtl - III = O. The semigroup is 

strongly continuous on Bo. Bo is a closed linear subspace of Bb(X). 

The resolvent 01 operators V = (VaJa>O associated with the semigroup P is given by formula 

Let denote by V the initial operator Vo of V, which is known as the kernel operator of Markov 

process M. 

A function I is excessive (w.r.t. the semigroup (Pt ) or the resolvent (va)) if it is measurable, 

non-negative and Ptl < I for all t > 0 and Ptl / I as t ~ O. Let denote by eM the set of 

all excessive functions associated to M. The strong Markov property can be characterized in 

terms of excessive functions [133]. 

Let Ll be the cemetery point for X, which is an adjoined point to X, Xfl. = X U {Ll}. The 

existence of Ll is assumed in order to have a probabilistic interpretation of Px(Xt E X) < 1, i.e. 

at some 'termination time' ((w) the process M escapes to and is trapped at Ll. 

Infinitesimal generators 

Associated with the semigroup (Pt ) is its strong generator which, loosely speaking, is the 

derivative of Pt at t = O. Let D(L) C Bb(X) be the set of functions I for which the following 

limit exists 

lim ~(Ptl - f) 
t'"O t 

(2.4) 

and denote this limit Lf. The limit refers to convergence in the norm 11·11, i.e. for f E D(L) we 
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have 

lim 11~(Ptl - I) - LIII = O. 
t'\.o t 

Specifying the domain D(L) is an essential part of specifying the operator L. 

If (Pt ) is a strongly continuous contraction semi group then D(L) is dense. In addition, L 

is closed, that is if In E D(L) converges to I and Lin converges to 9 then j E D(L) and 

LI = g. If (Pt ) is a strongly continuous contraction semigroup we can reconstruct Pt using 

its infinitesimal generator L (e.g. [73] Prop. 2.7 of Chapter 2). This suggests using L to 

parameterize the Markov process. The Hille-Yosida theorem (e.g. [73], Th.2.6 of Chapter 1) 

gives necessary and sufficient conditions for a linear operator to be the generator of a strongly 

continuous positive contraction semigroup. Necessary and sufficient conditions to insure that 

the sernigroup can be interpreted as a semigroup of conditional expectations are also known 

(e.g. [73], Th. 2.2 of Chapter 4). 

Proposition 1 (Martingale property) [62} For I E D(L) we define the real-valued process 

(C!h2:o by 

cf = f(xt) - f(xo) -l Lf(xs)ds. (2.5) 

Then for any x EX, the process (C!)t2:0 is a martingale on (0" F, Ft , Px). 

There may be other functions j, not in D(L), for which something akin to (3.27) is still true. 

In this way we get the notion of extended generator of the process. 

Let D(L) denote the set of measurable functions I : X ---+ lR with the following property: 

there exists a measurable function h : X ---+ lR such that the function t ---+ h(xt) is integrable 

Px - a.s. for each x E X and the process 

cf = f(xtl- f(xo) -l h(x.)ds 

is a local martingale. Then we write h = LI and call (L, D(L)) the extended generator of the 

process (Xt). 

Quadratic forms 

Suppose D = L2(X, J-l) (the space of square integrable J-l-measurable extended real valued 
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functions on X) where we have the natural inner product 

< J, 9 >= J J(x)g(x)d/1(x). 

If 1 E 1)(L) and 9 E L 2 (J.L) then we may define the (closed) form 

£(1,9) = - < LI,9 > 

This leads to another way of parameterizing Markov processes. Instead of writing down a 

generator one starts with a form. As in the case of a generator it is typically not easy to fully 

characterize the domain of the form. For this reason one starts by defining a form on a smaller 

space and showing that it can be extended to a closed form in subset of L 2 (J.L). When the 

~larkov process can be initialized to be stationary, the measure J.L is typically this stationary 

distribution. ~Iore generally, J.L does not have to be a finite measure. 

This approach to Markov processes was pioneered by Beurling and Deny [22] and Fukushima 

[76] for symmetric Markov Processes. In this case both the operator L and the form £ are 

symmetric. A stationary symmetric Markov process is time-reversible. If time were reversed, 

the transition operators would remain the same. On the other hand, multivariate standard 

Brownian motion is a symmetric nonstationary Markov process that is not time reversible. The 

literature on modelling Markov processes with forms has been extended to the non-symmetric 

case by Ma an Rockner [126]. 

2.2.5 Strong Markov Processes 

In this thesis, we make use some standard notions in the Markov process theory as: underly­

ing probability space, natural filtration, translation operator, Wiener probabilities, admissible 

filtration, stopping time, strong Markov property [25]. To ease the reading of this thesis we 

briefly recall in the following some useful definitions from the Markov process theory. 

Suppose that M = (0" F, F t , Xt, Bt , Px ), is a Markov process. We denote the state space of 

M by (X,8). Here, (0" F, Px ) denotes the sample probability space for each process with initial 

start point x. The family of cr-algebras {n} denotes the natural filtration, i.e. n = cr{ X s , S < 

t}, i.e. the smallest cr-algebra in F with respect to all the random variables x s , s E [0, t] are 
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measurable. Let us take :F! = V t.:FP. The trajectories of M are modelled by a family of X­

valued random variables (Xt), which, as functions of time, have some continuity properties (as 

the cadlag property, i.e. right continuous with left limits). This means that, for each t > ° 
the function .1't : (0, F) -t (X, B) is a p:> /B-measurable function for all t > 0. Then.:FP is the 

minimum admissible filtration. The shift operator or translation operator (h : ° -t 0, for all 

t > 0, has the following property 

Xs 0 ()t = Xt+s, t, s > 0. 

The (Wiener) probability Px : (0, F) -t [0,1] is a probability measure such that Px(Xt E A) is 

B-measurable in x E X, for each t E [0,00) and A E B, and Px(xo = x) = l. 

If JL is a probability measure on (X, B), written as JL E P(X), then we can define 

We then denote by F (resp. Ft ) the completion of .r! (resp. :J=i» with respect to all P{L' 

probability measure on (X, B). This has the advantage that the class of null sets is the same 

for every t E lI4. From now on, we will refer to the family {Ft h as the natural filtration of M. 

For an admissible filtration {M t }, we say that M is strong Markov with respect to {M t } 

if {Mt } is right continuous and 

JL E P(X), E E B, t > 0, for any {Mt}-stopping time T. 

2.2.6 Stochastic Differential Equations 

Ordinary differential equations, which have the general form (2.1) provide simple deterministic 

descriptions of the laws of motion of physical systems. The solution x(t) of an initial value 

problem consisting of (2.1) together with the initial value 

X(to) = Xo (2.6) 
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represents the state of such a system at time t > to, given that the state (2.6) was attained at 

time to· If random aspects in the physical system are to be considered, a number of modifications 

can be made in the formulation of the initial value problem (2.1), (2.6). The initial point Xo 

may be replaced by a random variable Xo; the deterministic function f(t, x) may be replaced by 

a random function F(t, X, Y), where Y = Y(t) designates a random input process uncoupled 

with the solution variable X; or, in the latter case, Y may represent the random coefficients of a 

linear or nonlinear operator whose form is specified by F. The first of these three possibilities for 

randomizing (2.1), (2.6) is exemplified by the motion of a space vehicle whose state consisting of 

position and momentum components changes according to a deterministic law but whose initial 

values may be subject to some uncertainty. An ac electric power circuit with state described by 

voltages and phase angles of nodes whose rates of change are forced by noise is a particular case 

of the second type of randomness. An example of the third type arises by considering intrinsic 

birth-death rates and interaction rates as stochastic processes in differential equation models of 

multispecies population evolution; a random initial value problem where the stochastic input 

is coupled with the solution results. The term random differential equation is reserved for the 

last of these three types, while stochastic differential equation refers to equations of the second 

type, which are driven by noise and interpreted mathematically as Ito equations. 

The ultimate goal of the analysis of any random initial value problem 

dX(t) 
dt 

X(to) 

F(t,X(t), Y(t)) 

Xo 

(2.7) 

(2.8) 

generally, is to obtain the distribution of the solution process X(t) in terms of the distributions 

of Xo, Y(t), and the statistical and deterministic properties of F, determining the sample 

path structure of X (t) is even more ambitious. When randomness enters the problem only 

through the initial condition, a situation sometimes called "cryptodeterministic", the solution 

is a deterministic transformation of the random variable Xo. The mean square theory for the 

random initial value problem, in this instance, is a direct analogue of the ordinary differential 

equations (ODE) theory. For ODE, closed-form expressions for solutions are often unobtainable, 

and so one must be satisfied with numerical approximations or less than complete qualitative 
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information about solutions. It is unreasonable to expect otherwise for random or stochastic 

differential equation case. 

In general the function F from (2.7) is given by 

F(t,X(t), Y(t)) = f(t,X(t)) + g(t,X(t))Y(t) (2.9) 

with Y(t) representing a Gaussian white noise process. The definition of the stochastic integral 

in the corresponding integral equation shows that such an equation is at best mathematically 

ambiguous. More precisely, usually the interest is to interpret (2.7), (2.9) as the Ito equation 

[9] 

dX(t) = f(t, X(t))dt + g(t, X(t))dW(t) (2.10) 

where W(t) denotes a Wiener or Brownian motion process; in (2.10) f and g are deterministic 

functions, but with slight modifications, the theory extends to explicitly random functions. 

Stochastic differential equations (SDE) were introduced by K. Ito in 1942, and the basic theory 

was developed independently by Ito and 1. Gihman during the 1940s. Applications to control 

problems in electrical engineering motivated by the need for more sophisticated models spurred 

further work on these equations in the 1950s and 1960s. In the last period applications have 

been extended to many other areas including population dynamics in biology. 

2.3 Jump Diffusion Processes 

The State Process 

In this section, we give a short presentation of controlled Markov Jump-Diffusion-Processes 

on a probability space (0, F, IP') equipped with a filtration {Ft }, that satisfies the usual assump­

tions, i.e. IP'-completeness and right-continuity with left hand limits. 

Let denote X C IRk the state space and U C IRl the metric and compact control space. 

The evolution of the controlled state process in is governed by an SDE of the following type 

(2.11) 
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where (Wt ) denotes a k-dimensional Brownian Motion and 

N(w, t, A) := N(w, t, A) - h(t, A) 

is a compensated homogeneous Ft-Poisson random measure [73] on JR x JRk with deterministic 

compensator 

h(t, A) = At x Q(A) 

for any (t, A) E B X Bk and fixed A E JR. 

The bounded measurable function 

q(t,x,p,B) : JR x X X JRk X U --+ JRk 

computes the state- and control-dependent jump-size. The Levy-measure Q(x) is assumed to 

have a compact support r c JRk. If the closure of of A E Bk does not contain point 0, then 

1'1(t, A) < 00 with probability l. 

The meaning of the measure N(·, t, A) is as follows: 

Observe the random variable 

I-£(t) = f uN(t, du) 
JJRk 

Then N(·, t, A) is equal to the number of jumps of the process I-£(t) with values in the set A, 

i.e. the number of instances of time s, s < t such that I-£(s) - I-£(s-) E A. 

Alternative Definition of the Jump Term 

The process 

Nt := llr N(ds, dp) = lr N(t, dp) 

is a Poisson counting-process with paramete A and arrival times Ii = inf{ tiNt = i}. The inter­

occurence times {Ii+l -Ii} are exponentially distributed with mean value 1/ A. Furthermore 

Pi = fTi f pN(dt, dp) 
JTi - 1 Jr 
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is a sequence of i.i.d. random variables with distribution Q and {1i+l - 1i, Pi' i < oo} are 

mutually independent. Hence, the Poisson-measure can be written 

N(w, dt, dp) = z= 8(Ti(W),Pi(W)) (dt, dp) 
T,(w) 

where 8 denotes the Dirac-measure. Then 

( q(s, ·1's-, p, Bs)N(ds, dp) = z= q(1i, X T.-, Pi, BTJ. 
i[o,tjxr T,.<t t 

t_ 

Existence and uniqueness of a solutions to the state-process SDE 

To ensure the existence of the (stochastic) integrals and the existence and uniqueness of 

a solution of (2.11) we need the following conditions, to which we will refer as the standard 

assumptions in the remaining sequel. 

For any B E U we assume the following conditions: (standard assumptions) 

There exist constants C, L E ]R such that 

loT £ Iq(t,x(·),p,O)12Q(dp)dt < 00 

Ib(t,x,OW + lu(t,x,OW + A £ Iq(t,x,p,O)12Q(dp) < 0(1 + Ix12
) 

Ib(t,xl,B) - b(t,x2,B)1 < Llxl - x21 

lu(t, Xl, 0) - u(t, X2, oW + A £ Iq(t, Xl, p, 0) - q(t, X2, p, 0) 12Q(dp) < L 21xl - x212 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Theorem 2 (Existence and uniqueness) If the functions b( t, x, B), 0'( t, x, B) and q( t, x, p, B) 

are linearly bounded by the constant C and satisfy a uniform Lipschitz-condition with the con­

stant L, i.e. they satisfy the standard assumptions, then the SDE (2.11) has for every B E U 

a unique solution Xt E <1>, where <1> := <1>k(Ft , [0, T]) denotes the class of random processes ¢(t), 

t E [0, T] adapted to the filtration F t with values in]Rk and sample paths, that are continuous 

from the right and have left-hand limits. 
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If for any tl E [O,T) and x E x equation (2.11) possesses a unique solution (X~lX)SE[h,Tl' 

satisfying the initial condition x~~x = x, then the family {X~lX,S E [tI,T], (tI,X) E [O,T) x X} 

is a ~Iarkov Process with the transition kernel 

P(t, x, s, B) = lP'{ X~lX E B}, B E B(X). 

For any transition kernel we have the following requirements 

• P(t, .1', s.·) is a probability measure for all fixed (t, x, s) E [0, T] x X x [0, T] 

• P(t.·. s. B) is B(X)-measurable for all fixed (t, s, B) E [0, T] x [0, T] x B(X) 

• P(t . .r,t.{x})=l 

• The Chapman-Kolmogorov-Equation 

P(t,x,s,B) = L P(r,y,s,B)P(t,x,r,dy) 

holds for t < r < s E [O,T]. 

2.4 Hybrid Automata 

:\"ow we will introduce the formal definition of a hybrid system as given in [5]. 

A hybrid system is a sextuple H = (Loc, Var, Lab, Edg, Act, Inv) where: 

1. Loc is a finite set of vertices called locations; 

2. Var is a finite set of real variables. There is a function, called a valuation, v : Var --+ 1R 

which assigns values to the variables: if x E V ar, then v( x) E 1R is the value assigned to 

x. V denotes the set of possible valuations of v. We define a state of the hybrid system 

H to be a pair (l, v) where l E Loc and v E V. Denote the set of possible states by L' 

3. Lab is a finite set of synchronization labels that contains the shutter label T E Lab. The 

meaning of the shutter label is described below. 
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4. Edg is a finite set of edges called transitions. Each transition is a quadtuple e = (l, a, J.l, l') 

where 1 E Loc is a source location, l' E Loc is a target location, a E Lab is a synchronization 

label, and J.l E V2 is a transition relation. For every location 1 E Loc, there is a set 

Conl C Far of controlled variables and a stutter transition (l,T,Idcon,l) where 

(v,v') E Idcon {::} \Ix E Var,x E Conl => v(x) = v'(x). 

A transition e is enabled in a state (l, v) if for some valuation v' E V, (v, v') E J.l. The 

state (l', v') is then a transition successor of (l,v). 

5. Act is a labeling function that assigns a set of activities to each location 1 E Loc. An 

activity is a function from R+ to V. Each activity must be time-invariant: for every 

1 E Loc, f E Act(l), and t E R+, we require that (f + t)(t') = f(t + t') for all t E R+. For 

every I E Loc, f E Act(l), and x E Var, we define fX : R+ -+ R so that fX(t) = f(t)(x). 

6. Inv is a labeling function that assigns an invariant Inv(l) C V to each location I E Loc. 

The hybrid system H is time-deterministic if for every location I E Loc and every valuation 

v E V, there is at most one activity f E Act(l) with f(O) = v. 

2.5 Probabilistic Hybrid Automata 

Formally, a PHA is defined as a tuple < M,xe,Ye,U,Fe,Ge, T > [101]' where: 

• The finite set M denotes the modes mi E M of the automaton; 

• Xc and Ye denotes the set of independent continuous state-variables and output variables 

respectively. The set of input variables, U = U e U Ud U V e , is divided into continuous 

control variables U e , continuous exogenous variables V e , and discrete control variables 

Ud. Components of continuous variables range over different Rn , whereas components of 

discrete variables range over finite domains D . 

• The set Fe and Ge associate with each mode mi E M functions fei and gei that govern 

the continuous dynamics exhibited at mode mi by (in terms of discrete-time difference 
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equations and algebraic equations) 

Xc, (k+ 1) = f ci ( Xc, (k), lic( k ), v c( k) ) 

Yc(k) = gci(Xc(k)' Vc(k)) 

• T specifies for each mode mi(k) a set of transition functions 7i = {Til, "" Tin}. Each tran­

sition Tij has an associated guard condition Cij (Xc,(k)' Ud,(k)) and specifies the probability 

distribution over target modes ml(k+l) together with an assignment for Xc,(k+l)' 
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Chapter 3 

Stochastic Hybrid Systems 

3.1 Overview 

In the face of the growing complexity of control systems, stochastic modelling has attained 

a crucial role. Indeed, stochastic techniques for modelling control and hybrid systems have 

attracted the attention of many researchers and constitute one of the most important issues in 

contemporary research. 

Hybrid systems have been extensively studied in the past decade, both concerning their 

theoretical framework, as well as relating to the increasing number of applications they are 

employed for. However, the subfield of stochastic hybrid systems is fairly young. There has 

been considerable current interest in stochastic hybrid systems due to their ability to represent 

such systems as maneuvering aircraft [110], switching communication networks [98]. Different 

issues related to stochastic hybrid systems have found applications to insurance pricing [61], 

capacity expansion models for the power industry [64], flexible manufacturing and fault tolerant 

control [80, 81], etc. 

A considerable amount of research has been directed towards this topic, both in the direc­

tion of extending the theory of deterministic hybrid systems [106], as well as discovering new 

applications unique to the probabilistic framework. 

3.1.1 Objectives of the chapter 

This chapter has three objectives: 
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1. Introduce a very general framework for modelling stochastic hybrid processes: General 

Stochastic Hybrid System, abbreviated with GSHS . 

• ) Develop a theoretical construction for mixing Markov processes which preserves the 

11arkov property. The result of this mixing operation will be called Markov string. 

3. Show how GSHS can be embedded in the Markov string constructions and hence deduce 

the basic properties of GSHS as Markov property, strong Markov property 

A GSHS might be thought of a 'conventional' hybrid system enriched with three uncertainty 

characteristics: 

1. the continuous-time dynamics are driven by stochastic differential equations (SDE) rather 

then classical ODE, 

2. a jump takes place when the continuous state hits the mode boundary or according to a 

transition rate 

3. the post jump locations are randomly chosen according to a stochastic kernel. 

Intuitively, GSHS can be described as an interleaving between a finite or countable family 

of diffusion processes and a jump process. Our goal is to prove that GSHS is indeed a 'good 

model'. This means that we need to investigate the stochastic properties of this model. A 

natural property we were looking for is the Markov property. Analysing the form of the GSHS 

executions (paths or trajectories), the first observation is that these are, in fact, 'concatenations' 

of the diffusion component paths. The continuity inherited from the diffusion trajectories is 

perturbed by the jumps between the diffusion components. 

This observation leads to the investigation of a general mechanism for mixing Markov 

processes that preserves the Markov property. Given a finite or countable family of Markov 

processes with reasonably good properties, this machinery will allow us to get a new Markov 

process whose paths are obtained by 'sticking' together the component paths. Roughly speak­

ing, Markov strings are sequences of Markov processes. The jump structure of a Markov string 

is completely described by a renewal kernel given a priori and a family of terminal times associ­

ated with the initial processes. We require that the Markov string have finitely many jumps in 
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finite time. Under these assumptions we prove that the Markov strings, as stochastic processes, 

enjoy useful properties like the strong Markov property and the cadlag property. 

We then return to GSHS and show how GSHS can be embedded in the framework of Markov 

strings. The class of GSHS inherits the strong Markov and cadlag properties from Markov 

strings. 'Ye have to stress that the strong Markov property is a fundamental hypothesis in 

defining of the stochastic reachability. 

Finally, we develop the expression of the infinitesimal generator associated to GSHS. 

3.1.2 Related work 

A well-known and very powerful class of continuous time stochastic processes with stochastic 

jumps (for the discrete state and also for the continuous state) is the piecewise-deterministic 

~Iarkov processes (PDMP). introduced in [62], and applied to hybrid system modelling in [40]. 

The other modelling approaches are those presented in [106] (stochastic hybrid systems, abbre­

viated SHS~I), [19] (stochastic hybrid models abbreviated SHM) , [81, 82] (switching diffusion 

processes~ abbreviated SDP), [27] (general switching diffusion processes abbreviated GSDP), 

see, also, [137] for quick presentation and comparisons. A very general formal model for sto­

chastic hybrid systems is proposed in [41], which extends the model from [106], where the 

deterministic differential equations for the continuous flow are replaced by their stochastic 

counterparts, and the reset maps are generalized to (state-dependent) distributions that define 

the probability density of the state after a discrete transition. In this model transitions are 

always triggered by deterministic conditions (guards) on the state. Another model for stochas­

tic hybrid processes are switching jump-diffusion developed in [23]. Switching jump-diffusion 

processes (SJDP) have jumps which: i) happen simultaneously with mode switching, and ii) 

depend on the mode after switching. Jumps satisfying both i) and ii) are referred to as hybrid 

jumps. There are two types of hybrid jumps: a forced jump that happens at an instant of 

hitting some boundary, and a Poisson type of jump that happens at a sudden instant. It is 

important to point out that the term of hybrid jump has been introduced for the first time in 

?? and the mathematical basis for this has been developed in [24]. 

GSHS generalize PDMP allowing a stochastic evolution (diffusion process) between two 

consecutive jumps, while for PDMP the inter-jump motion is deterministic, according to a 
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vector field. As well, GSHS might be thought of as a kind of extended SHSM for which the 

transitions between modes are triggered by some stochastic event (boundary hitting time and 

transition rate). Moreover, GSHS generalise SDP also permitting that the continuous state to 

have discontinuities when the process jumps from one diffusion to another. The table 3.1.2 

shows the how GSHS generalize different models of stochastic hybrid systems. 

PDMP SHSM SDP SJDP GSHS 

Stochastic Continuous Evolution non V V V V 
Forced Transitions V V non V V 
Spontaneous Transitions V non V V V 

Table 3.1.2 

For a detailed comparison of the first three models, the reader is referred to [137]. 

It can be shown also that the class of SJDP models can be considered as a subclass of GSHS 

whose stochastic kernel, which gives the post jump locations, is chosen in an appropriate way 

such that the change of the discrete state and continuous state at a jump depend on the post 

jump location (continuous and discrete). 

3.2 General Stochastic Hybrid Systems 

3.2.1 Informal Discussion 

General Stochastic Hybrid Systems (GSHS) are a class of non-linear stochastic continuous­

time hybrid dynamical systems. GSHS are characterized by a hybrid state defined by two 

components: the continuous state and the discrete state. The continuous and the discrete parts 

of the state variable have their own natural dynamics, but the main point is to capture the 

interaction between them. 

The time t is measured continuously. The state of the system is represented by a continuous 

variable x and a discrete variable i. The continuous variable evolves in some "cells" Xi (open 

sets in the Euclidean space) and the discrete variable belongs to a countable set Q. The 

intrinsic difference between the discrete and continuous variables, consists of the way that they 

evolve through time. The continuous state evolves according to an SDE whose vector field and 

drift factor depend on the hybrid state. The discrete dynamics produces transitions in both 
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(continuous and discrete) state variables x, i. Switching between two discrete states is governed 

by a probability law or occurs when the continuous state hits the boundary of its state space. 

\\ nenever a switching occurs, the hybrid state is reset instantly to a new state according to a 

probability la,,, which depends itself on the past hybrid state. Transitions, which occur when 

the continuous state hits the boundary of the state space are called forced transitions, and 

those which occur probabilistically according to a state dependent rate are called spontaneous 

transitions. Thus, a sample trajectory has the form (qt, Xt, t > 0), where (Xt, t > 0) is piecewise 

continuous and qt E Q is piecewise constant. Let (0 < Tl < T2 < ... < Ti < Ti+l < ... ) be the 

sequence of jump times. 

It is easy to show that GSHS include, as special cases, many classes of stochastic hybrid 

processes found in the literature PDMP, SHSM, etc. 

In the following we make use of some standard notions from the Markov process theory 

as: underlying probability space, natural filtration, translation operator, Wiener probabilities, 

admissible filtration, stopping time, strong Markov property [25]. The basic definitions from 

the ~larkov process theory are summarized in the Chapter 2. 

3.2.2 The Mathematical Model 

If X is a Hausdorff topological space we use to denote by B(X) or B its Borel O"-algebra (the 

O"-algebra generated by all open sets). A topological space, which is homeomorphic to a Borel 

subset of a complete separable metric space is called Borel space. A topological space, which is 

homeomorphic with a Borel subset of a compact metric space is called Lusin space. 

State space. Let Q be a countable set of discrete states, and let d : Q ----* N and X : Q ----* }Rd(.) 

be two maps assigning to each discrete state i E Q an open subset Xi of }Rd(i). We call the set 

X(Q,d, X) = U {i} X Xi 
iEQ 

the hybrid state space of the GSHS and x = (i, xi) E X (Q, d, X) the hybrid state. The closure 

of the hybrid state space will be 
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where 

ax = U{i} x axi. 
iEQ 

It is clear that, for each i E Q, the state space Xi is a Borel space. It is possible to define 

a metric p on X such that p(xn,x) -+ 0 as n -+ 00 with Xn = (in,x~n), x = (i,xi) if and 

only if there exists m such that in = i for all n > m and x:n+k -+ xi as k -+ 00. The met­

ric p restricted to any component Xi is equivalent to the usual Euclidean metric [62]. Each 

{i} x Xi. being a Borel space, will be homeomorphic to a measurable subset of the Hilbert 

cube, 'H (Urysohn's theorem, Prop. 7.2 [21]). It is known that 'H is the product of countable 

many copies of [0, 1]. The definition of X shows that X is, as well, homeomorphic to a mea­

surable subset of 'H. Then (X, 8(X)) is a Borel space. Moreover, X is a Lusin space because 

it is a locally compact Hausdorff space with countable base (see [62] and the references therein). 

Continuous and discrete dynamics. In each mode Xi, the continuous evolution is driven 

by the following stochastic differential equation (SDE) 

dx~ = b(i, xndt + a(i, x~)dWt, (3.1) 

where (Wi, t > 0) is the m-dimensional standard Wiener process in a complete probability 

space. The discrete component remains constant, i.e. 

Assumption 1 (Continuous evolution) Suppose that b : Q x X(·) -+ Rd
(-), (j : Q x X(·) -+ 

lRd(.)xm, mEN, are bounded and Lipschitz continuous in x. 

This assumption ensures, for any i E Q, the existence and uniqueness (Theorem 6.2.2. in [9]) 

of the solution for the above SDE. 

In this way, when i runs in Q, the equation (3.1) defines a family of diffusion processes 

Mi = (Oi,:p,:Ff, xL ()~, pi), i E Q with the state spaces Rd(i) , i E Q. For each i E Q, the 

elements :P, :Ff, ()~, pi, P~i have the usual meaning as in the Markov process theory. 

The jump (switching) mechanism between the diffusions is governed by two functions: the 

42 



jump rate ,\ and the transition measure R. The jump rate ,\ : X ---+ IR+ is a measurable bounded 

function and the transition measure R maps X into the set P(X) of probability measures on 

(.X, B(X)). Alternatively, one can consider the transition measure R : X x B(X) ---+ [0,1] as a 

reset probability kernel. 

Assumption 2 (Discrete transitions) (i) for all A E B(X), R(·, A) is measurable; 

(ii) for all x E X the function R(x, .) is a probability measure. 

(iii)'\: X ---+ ~+ is a measurable function such that t ---+ '\(i,x~(wi)) is integrable on [O,c(wi )), 

for some c(wi ) > 0, for each wi E ni. 

Since ~y is a Borel space, then X is homeomorphic to a subset of the Hilbert cube, 1i. 

Therefore, its space of probabilities is homeomorphic to the space of probabilities of the corre­

sponding subset of 1i (Lemma 7.10 [21]). There exists a measurable function F : 1i x X ---+ X 

such that R(x, A) = PF-1 (A), A E B(X), where p is the probability measure on 1i associated 

to R(x,·) and F-1(A) = {w E 1iIF(w,x) E A}. The measurability of such a function is guar­

anteed by the measurability properties of the transition measure R. 

Construction. We construct an GSHS as a Markov 'sequence' H, which admits (Mi) as 

subprocesses. The sample path of the stochastic process (Xt)t>o with values in X, starting from 

a fixed initial point xo = (io, xtO) E X is defined in a similar manner as PDMP [62]. 

Let wi be a trajectory which starts in (i, xi). Let t*(wi ) be the first hitting time ofaXi of 

the process (xn. Let us define the following right continuous multiplicative functional 

F(t, Wi) = I(t<t.(w'» exp[-l.x(i, x~(wi))dsl· (3.2) 

This function will be the survivor function for the stopping time Si associated to the diffusion 

(xn, which will be employed in the construction of our model. This means that "killing" of 

the process (xn is done according to the multiplicative functional F(t, .). The stopping time 

Si can be thought of as the minimum of two other stopping times: 

1. first hitting time of boundary, i.e. t* Ini ; 
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2. the stopping time Sil given by the following continuous multiplicative functional (which 

plays the role of the survivor function) 

lII(t, Wi) = exp( -l >.( i, x~(wi)) )ds. 

The stopping time Sil can be defined as 

where ~\~ is the following additive functional associated to the diffusion (xD 

and mi is an R+-valued random variable on ni , which is exponentially distributed with the 

survivor function P~dmi > t] = e- t . Then 

(3.3) 

\Ve set w = wio and the first jump time of the process is T1(w) = Tl(WiO ) = SiO(wio). The 

sample path Xt(w) of the hybrid process up to the first jump time is now defined as follows: 

if Tl (w) = 00: Xt ( w) = (io, x~o ( w io ) ), t > 0 

if Tl(W) < 00: Xt(w) = (io, x~O(wiO)), 0 < t < Tl(W) 

XTI(W) is ar.v. w.r.t. R((io,X~I(wiO)),.). 

The process restarts from XTI (w) = (iI, xiI) according to the same recipe, using now the process 

X~I. Thus ifTl(W) < 00 we define w = (wio,Wil ) and the next jump time 

The sample path Xt(w) between the two jump times is now defined as follows: 
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if T2(W) = 00: Xt(w) = (it, X~~Tl (w)), t > Tl(W) 

ifT2(w) < 00: Xt(w) = (il,X;l(W)), ° < T1(w) < t < T2(W) 

XT2(W) is a r.v. w.r.t. R«il,X~2(W)), .). 

and so on. 

We denote 

Assumption 3 (Non-Zeno executions) For every starting point x E X, ENt < 00, for all 

t E ]R+. 

3.2.3 Formal Definitions 

We can introduce the following definition. 

Definition 3 A General Stochastic Hybrid System (GSHS) is a collection H = « Q, d, X), b, a, I nit, A, R) 

where 

• Q is a countable set of discrete variables; 

• d: Q ---+ N is a map giving the dimensions of the continuous state spaces; 

• X: Q ---+ ]Rd(.) maps each q E Q into an open subset xq of ]Rd(q) ; 

• b: X ( Q, d, X) ---+ ]Rd(.) is a vector field; 

• a: X(Q, d, X) ---+ ]Rd(.)xm is a XO-valued matrix, mEN; 

• Init : 8(X) ---+ [0,1] is an initial probability measure on (X,8(S)); 

• A: X (Q, d, X) ---+]R+ is a transition rate function; 

• R: X x 8(X) ---+ [0,1] is a transition measure. 

Following [146], we note that if Rc is a transition measure from (X x Q, 8(X x Q)) to (X,8(X)) 

and Rd is a transition measure from (X,8(X)) to (Q,8(Q)) (where Q is equipped with the 
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discrete topology) then one might define a transition measure as follows 

R(Xi, A) = L Rd(Xi , q)Rc(xi, q, Aq) 
qEQ 

for all A E B(X), where Aq = An (q,xq). Taking in the definition of a GSHS this kind of 

reset map, the change of the continuous state at a jump depends on the pre jump location 

(continuous and discrete) as well as on the post jump discrete state. 

This construction can be used to prove that the stochastic hybrid processes with jumps, devel­

oped in [23], are a particular class of GSHS executions. 

A GSHS execution can be defined as follows. 

Definition 4 (GSHS Execution) A stochastic process Xt = (q(t), x(t)) is called a GSHS 

execution if there exists a sequence of stopping times To = 0 < Tl < T2 < ... such that for each 

kEN, 

• Xo = (qO, xgO) is a Q x X -valued random variable extracted according to the probability 

measure Init; 

• Fort E [Tk, Tk+l), qt = qTk is constant and x(t) is a (continuous) solution of the SDE: 

(3.4) 

where Wt is a the m-dimensional standard Wiener; 

• Tk+l = Tk + Sik where Sik is chosen according with the survivor function (3.2). 

• The probability distribution of X(Tk+l) is governed by the law R ((qTk , x(Tk+1)) , .). 

3.3 Markov strings 

In this section we formulate a very general class of Markov processes, which will be called 

Markov strings, loosely based on the so-called "melange" operation of Markov processes [132]. 

A Markov string is a hybrid state 'jump Markov process'. The 'continuous state' component 

switches back and forth at random moments of times among a countable collections of Markov 

46 



processes defined on some evolution modes. The 'discrete component' keeps track of the index 

of which Markov process the continuous component is following. This discrete component plays 

the role of an 'evolution index'. The continuous state is allowed to jump whenever the evolution 

index changes. For a Markov string the sojourn time in each mode is given as a stopping time 

with memoryless property for the process which evolves in that mode. Moreover, the continuous 

state immediately before a switching between modes is allowed to influence that jump. 

3.3.1 Informal description 

We start with: 

1. a countable family of independent Markov processes with some nice properties, for ex­

ample the strong Markov property, the cadlag property. 

2. a sequence of independent stopping times (for each process is given a stopping time with 

memoryless property). 

3. a renewal kernel is a priori given. 

The stopping times play the role of the jump times from one process to another and the 

renewal kernel gives the distribution of the post-jump state. The probabilistic construction of 

the ~Iarkov string is natural: 

1. start with one process, which belongs to the given family; 

2. kill the current process at the corresponding stopping time; 

3. jump according to the renewal kernel; 

4. restart another process (belonging to the given family) from the new state; 

5. return to 2. and repeat. 

The pieced together process obtained by the above procedure is called Markov string. The main 

aim of this section is to prove that the Markov string inherits the properties (like the strong 

Markov property and the cadlag property) from its component processes. 

The Markov string construction is closely related to the mixing operation of Markov processes 

from [132] and the random evolution process construction from [146].Markov strings differ from 

the class of processes considered in [132], in that: 
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1. The jump times are essentially given stopping times, not necessarily the life times of the 

component processes; 2. After a jump, the string is allowed to restart following another process, 

which might be different from the pre-jump process. 

The mixing ("melange") operation in [132] is only sketched and the author claims that it can 

be obtained using the renewal ("renaissance") operation. We consider that the passing from 

renewal to mixing is not straightforward. It is necessary to emphasize the construction of all 

probabilistic elenlents associated with the resulted string. Lifting the renewal construction 

to the mixing construction, remarkable changes should be introduced in the Markov string 

definitions of the state space, probability space, probabilities on the trajectories. 

As well, Markov strings can be obtained by specializing the base process and the 'instan­

taneous' distribution in the structure of the random evolution processes developed by Siegrist 

in [146], but the proof of the strong Markov property is not given in [146]. There, the author 

claims this can be derived from the strong Markov property of revival processes introduced by 

Ikeda, et. al. in [111]. To our knowledge, this property is completely proved by Meyer, in [132]' 

for revival processes. 

3.3.2 The Ingredients 

Suppose that Mi = (ni , .1\.r;, xL (}t pi, P~i)' i E Q is a countable family of Markov processes. 

We denote the state space of each Mi by (Xi, Hi) and assume that Hi is the Borel a--algebra 

of Xi if Xi is a topological Hausdorff space. We denote by ~ the cemetery point for all Xi, 

i E Q. The existence of ~ is assumed for reasons that will be clear below. For each i E Q, the 

elements:P fi,o :F1
t
' (}tt' pi pi. have the usual meaning as in the Markov process theory. , t, , , 'xt 

Let (Pf) denote the operator semi group associated to Mi, which maps Hi(Xi) into itself, given 

by 

where Ei. is the expectation w.r.t. pii' Then a function fi is p-excessive (p > 0) w.r.t. Mi if 
xt x 

Assumption 4 For each i E Q, we suppose that: 

1. Mi is a strong Markov process. 
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2. pi is a complete probability. 

3. The state space Xi is a Borel space. 

4. Ali enjoys the cadlag property, i. e. for each wi E ni , the sample path t 1-+ xHwi) is right 

continuous on [0,00) and has left; limits on (0,00) (inside X~). 

5. The p-excessive functions of Mi are pi -a.s. right continuous on trajectories. 

Part 3. implies that the underlying probability space ni can be assumed to be D[o,oo) (Xi), 

the space of functions mapping [0,00) to Xi which are right continuous functions with left 

limits. Let us consider w~ the cemetery point of ni corresponding to the 'dead' trajectory of 

Ali (when the process is trapped to ~). 

In the terminology of [131]' parts 1., 3. and 5. of the Assumption 4 imply that each Mi is 

a right process. 

Using this family of Markov processes {MihEQ, we define a new Markov process whose 

realizations consist of concatenations of realizations for different Mi. To achieve this goal, 

we need to define the transition mechanism from one process to the others. The jumping 

mechanism will be driven by: 

1. A stopping time (which gives the jump temporal parameter) for each process; 

2. A renewal kernel, which gives the post jump state. 

Formally, in order to define the desired Markov string, M, we need to give: 

1. (Si)iEQ' where, for each i E Q, Si is a stopping time of M i, 

2. The jumping mechanism between the processes Mi is governed by a renewal kernel, which 

is a Markovian kernel 

w: {U ni} x 8(X) ~ [0,1] 
iEQ 

Assumption 5 (i) For each i E Q, Si is terminal time, i.e. stopping time with the 'memory-

less' property: 

(3.5) 

(ii) The renewal kernel W satisfies the following conditions: (a) If Si(wi) = +00 then w(wi,.) = 

cf1 (here, cD.. is the Dirac measure corresponding to ~); (b) If t < Si(wi) then W(O;wi,.) = 

w(wi ,.). 
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Note that the component processes have the cadlag property, therefore they may also have 

jumps, which are not treated separately in the construction of the Markov strings. The sequence 

of jump times refers to additional jumps, not to the jumps of the trajectories of component 

processes. 

We consider now, for each i E Q, the killed process Mi = (ni , P,:Fi, xL B!, pi, P~i) where 

_"(") {XHW
i
), if t < Si(wi) --:-i" {B~(Wi), if t < Si(wi) 

xt w" = and Bt(wl) =" " " 
~, if t > Si(wi) w~, if t > Sl(Wl) 

In this case, ni should be thought of as a subspace of ni x [0, 00), the above embedding is made 

through the map wi ~ (wi,Si(wi
)). The killed process is equivalent with the subprocess of Mi 

corresponding to the multiplicative functional Mf = I[o,si)(t) (see Chapter III, [25]). 

3.3.3 The Construction 

Using the elements defined in the section 3.3.2 we construct the pieced-together stochastic 

process M = (0., F, Ft , Xt, Bt , P, Px ), which will be called Markov string. We have to point out 

that AI is obtained by the concatenation of the killed processes Mi. 

To completely define the Markov string we need to specify the following elements: 1. (X, 8) 

- the state space; 2. (0., F, P) - the underlying probability space; 3. Ft - the natural filtration; 

4. Bt - the translation operator; 5. Px - Wiener probabilities. 

State Space (X,8). The state space will be X defined as follows. X is constructed as the 

direct sum of spaces Xi, with the same cemetery point ~, i.e. 

X = U{(i,x)lx E Xi}. (3.6) 
iEQ 

In the same manner as in the section 3.2, it results that X is a Borel space. 

The space X can be endowed with the Borel a-algebra 8(X) generated by its metric topol-

ogy. Moreover, we have 

8(X) = a{U{i} x ~}. (3.7) 
iEQ 

Then (X, 8(X)) is a Borel space, whose Borel a-algebra 8(X) restricted to each component Xi 

gives the initial a-algebra Hi [62]. 
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We can assume, without loss of generality, that Xi n xj = 0 if i =1= j. Thus the relations 

(3.6) and (3.7) become 

X (3.8) 

8(X) (3.9) 

Therefore, we can assume, as well, that Oi n oj = 0 if i =1= j. 

Probability Space. The space 0 can be thought as the space generated by the concate­

nation operation defined on the union of the spaces Oi (which are pairwise disjoint), i.e. 

o = (UiEQ Oit· Note that, for each i E Q, an arbitrary element wi of Oi must be thought 

as a trajectory of the killed process Mi. The cemetery point of 0 is denoted by Wtl. = (W~)iEQ. 

We use to denote by w (resp. w or wi) an arbitrary element of 0 (resp. U Oi or Oi). 
iEQ 

The (I-algebra F on 0 will be the smallest (I-algebra on 0 such that the projection 

ni : 0 ~ Oi are FIP measurable, i E Q. The probability P on F will be defined as a 'product 

measure'. Let F be the (I( U P) defined on U Oi. 
iEQ iEQ 

Recipe. We give the procedure to construct a sample path of the stochastic process (Xt)t>o 

with values in X, starting from a fixed initial point Xo = x~o E Xio. Let wio be a sample path of 

the process (x~O) starting with Xo. In fact, we give a recipe to construct a Markov string starting 

with an initial path wio. Let Tl(WiO ) = SiO(wiO). The event wand the associated sample path 

are inductively defined. In the first step 

The sample path Xt(w) up to the first jump time is now defined as follows: 

if Tl(W) = 00: Xt(w) = x~O(wiO), t > 0 

if Tl (w) < 00: Xt (w) = x~o (w io ), 0 < t < Tl (w ) 

XTl is a r.v. according to \lI(w iO , .). 
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The process restarts from XTI = xiI according to the same recipe, using now the process (X~I). 

Let w
il 

be a sample of the process (X;I) starting with xiI. Thus, if T1(w) < 00 we define the 

next jump time 

Then, in the second step 

where '*' is the concatenation operation of trajectories. The sample path Xt(w) between the 

two jump times is now defined as follows: 

if T2(W) = 00: Xt(w) = x~~TI (Wil ), t > Tl(W) 

ifT2(u:) < 00: Xt(w) = X;I(Wil ), 0 < Tl(W) < t < T2(w) 

XT2 is a r.v. according to W(Wil , .). 

then the next jump time is 

rr' () rr' (iO il ik) rr'(iO il ik-I)+Sik(ik) .L k+ 1 W =.L k+ 1 w , W , ... , w = .L k W , W , ... , w w 

The sample path Xt(w) between the two jump times Tk and Tk+l is defined as: 

Xt(w) = X;~Tk (Wik ), t > Tk+1(W) 

Xt(w) = X;~Tk(wik),O < Tk(W) < t < Tk+1(W) 

XTk+1 is a r.v. according to W(Wik , .). 

(3.10) 

(3.11 ) 

We have constructed a sequence of jump times 0 < Tl < T2 < ... < Tn < ... Let Too = lim 
n-too 

Tn. Then Xt(w) = ~ if t > Too. A sample path until Tko (where ko = min{k : Sik(W) = 

oo}) of the process (Xt), starting from a fixed initial point Xo = (io, x~O), is obtained as the 
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concatenation: 

We denote Nt(w) = L I(t~Tk) the number of jump times in the interval [0, t]. To eliminate 

pathological solutions that take an infinite number of discrete transitions in a finite amount of 

time (known as Zeno solutions) we impose the following assumption: 

Assumption 6 (Non-zeno dynamics) For every starting point x E X, ENt < 00, for all 

t E ~+. 

Under Assumption 6, the underlying probability space n can be identified with D[o,oo) (X). 

Wiener Probabilities. One might define the expectation EX f, x E X, where I is a F­

measurable function on n, which depends only on a finite number of variables, by recursion on 

the number of variables. 

Stepl. If w = wioand f(w) = fl(W iO ) with 11 a pO-measurable function on nio , then 

• if x = xio E Xio then Ex f = E~~o I, where E~~o is the expectation corresponding to the 

probability P~?o ; 

• if x = xi E Xi, j =1= io then Ex! = o. 
... n . 

Step2. If w = wio *wi1 * ... * Win and I(w) = In(w'/,o *W'/,l * ... *w'/,n) with In a II pLmeasurable 
k=O 

n . 
function on II n'lk then 

k=O 

g(w) 

(3.12) 

Thanslation Operators. Let us define now the translation operator (Bt) associated with (Xt). 

If t > Too(w), then we take Bt(w) = WtJ.,. Otherwise, there exists k such that Tk(W) < t < 
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Tk+l (u.'). In this case we take 

(3.13) 

Lemma 5 (Bt ) is the translation operator associated with (Xt), i.e. 

Proof. If t > Too(w), then Bt(w) = W~ and xs+t(w) = ~ = xs(Bt(w)). 

Suppose that there exist k, i > 0 such that Tk(W) < t < Tk+1(W) and 1i(Btw) < s < 1i+l(Btw). 

Then 

Since Bt(w) is given by (3.13) and Tk+l is given by (3.10) we obtain 

Then 

Therefore 

• 

Sik(B;~Tk(W)(Wik)) = Sik(Wik ) - (t - Tk(W)) 

Tk+1(W) - t. 

Natural Filtrations. Let (Ft) be the natural filtration with respect to (Xt). The natural 

filtration (Ft) on n is built such that we have the following definition of Ft-measurability: 

Definition 6 A F -measurable function f on n is Ft -measurable if the following property holds: 

For each k, the function f . I{Tk(w)~t<Tk+l(w)} is equal to h 0 'TJk, where the function h(wio * 
wil * ... * Wik ) is such that for a fixed (w iO * wi2 * ... * Wik- l ) with Tk(WiO * Wi2 * ... * Wik- l ) < t, 

wik ~ h(wiO * Wi2 * ... * wik- l * Wik ) is measurable with respect to .r;~Tk' 
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Because the families of filtrations (.7=1) are nondecreasing and right continuous, one can 

verify that the family (Ft) has the same properties, as follows. 

Proposition 7 (i) The family (Ft ) is nondecreasing and right continuous. 

(ii) The mndom variables Tk are stopping times w.r.t. (Ft ). 

(iii) Let T a stopping time with respect to (Ft). For each kEN, T /\ Tk is a function on 0 

which depends only on wio * wil * ... * wik- l • On the other hand, if wio * wil * ... * wik- 1 is fixed, 

the function (T /\ Tk+l - Tk)+ with wik as argument is a stopping time with respect (.r;k). 

Proof. The proof can be obtained with small changes from the similar result proofs given in 

[132] for the case of rebirth processes .• 

3.3.4 Basic Properties 

Mainly, in this section we prove that the Markov string (Xt) constructed in section 3.3.3 is a 

right Markov process. The proof engine is based on the Markov property of the discrete time 

Markov chain (Pn), which will be built in the following. 

(Pn) is a discrete time Markov chain associated to (Xt) with the state space (U Oi, F) and 
iEQ 

the underlying probability space (0, F). The chain (Pn) is essentially 'the n - th' step of the 

process (Xt). If its starting point is wio (a trajectory in Oio starting in x~O) then Pn(w) = win. 

The transition kernel associated with (Pn) can be defined as follows: 

H(w, A) = Pw(w, A), A E F. 

The construction of Px from subsection 3.3.3 is such that 

• H is the transition function of (Pn); 

• Px is the initial probability law of (Pn); i.e. if w E U Oi which starts in x E X 
iEQ 

Let 'TJk be the projection (PO,Pl, ... ,Pk), i.e. 'TJk(w) = (wiO * wil * ... * W ik ). 

One might construct a jump process ('TJt) associated to a Markov string (Xt) following a 

similar algorithm such that used for Piecewise Deterministic Markov processes, in [62]. We do 
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not have a one-to-one correspondence between the sample paths of (Xt) and (rJt), as in the case 

of PDMP. Then the jump process will not serve to study the Markov string. Its role is taken 

by the Markov chain (Pn). 

Remark 1 For each k on the set {Tk(W) < t < Tk+l(W)} we have: Xt = X!~Tk 0 Pk. 

Proposition 8 (Simple Markov property) Under Assumptions 4-6, any Markov string M = 

(0, F, Ft , Xt, ()t, P, Px ) is a Markov process. 

Proof. The simple Markov property of (Xt) is equivalent to the following implication [132]: 

If f is a positive Ft -measumble function and g is a F -measurable function then 

The identity (3.14) can be unfolded into two separated equalities 

lEX[f· 9 0 ()t . I{t;~Too}] 

lEX[f . go ()t . I{Tk(w)~t<Tk+l(w)}] 

The identity (3.15) is clear because on {t > Too} 

lEX [f ·lEXt [g] . I{t;~T co}] 

lEx [f ·lEXt [g] . I{Tk(w)~t<Tk+l(w)}] 

Let us prove now the identity (3.16). Let W E O. By the definition of F t we have 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where h is a measurable function as in the definition 6 and is equal to zero outside of the set 

{Tk(W) < t < Tk+l(W)}. 

In order to prove (3.16) it is enough to treat the case when the function 9 depends only on 

a finite number of variables (because the expectation lEx is defined by the recursion (3.12)). 

We start with the case when the function 9 depends only on a single variable, wio
, i.e. g( w) = 
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a(w iO ), where a is pO-measurable on nio. In this case, the left-hand side of (3.16) is equal to 

(3.18) 

Because the term between [ ... ] depends only on (w iO * wi1 * ... * W ik ), (3.18) becomes 

(3.19) 

Again, the integrand between { ... } depends only on (w iO * wi1 * ... * W ik - 1). Since the function 

wik -+ h(wiO * W i1 * ... *Wik ) is :r;~Tk -measurable, we can use the Markov property of the process 

Ark and (3.19) becomes 

(3.20) 

Since Xt(u)) = X~~Tk(wik) on {Tk(W) < t < Tk+1(W)} the computation of the right-hand side 

of (3.16) gives 

(3.21) 

Using the recursive procedure, as before, (3.21) gives (3.20). 

Suppose now that (3.16) is established for all functions 9 which depend only on (wiO * wi1 * 
... * W ik - 1). We have to prove that (3.16) is true for 

Let 

Using the recursive procedure, one can check that the functions 

h( ... )g 0 ()t and h( ... )c 0 ()t 

have the same expectations. 

On the other hand, the functions 

57 



have the same expectations. Since c depends only on k -1 variables, this implies (3.16) for the 

general case.D • 

Proposition 9 ( Cadlag property) Under Assumptions 4-6, any Markov string M = (0, F, F t , Xt, Bt , P, 

has the cad lag property, i. e. for all w E ° the trajectories t f---+ Xt (w) are right continuous on 

[0,00) with left limits on (0,00). 

Proof. The result is a direct consequence of two facts: 

1. the sample paths of (Xt) are obtained by the concatenation of sample paths of component 

process (Le. the concatenation is done in such way it preserves the right continuity and the left 

limits); 

2. the component processes enjoy the cadlag property. 

Then the ~Iarkov string inherits the cadlag property .• 

Proposition 10 Under Assumptions 4-6, any Markov string M = (0, F, F t , Xt, Bt , P, Px) is a 

strong Markov process. 

Proof. Each Tk is a stopping time for (Xt) (see proposition 7 (ii)). For each k > 1, Tk can be 

obtained by the following recursion 

Let us prove now that the process (Xt) is a strong Markov process. The filtration (Ft ) is 

nondecreasing and right continuous (see proposition 7 (i)). Then the process (Xt) satisfies the 

right hypothesis. 

Let (Pt ) be the semigroup of the whole Markov process (Xt), Ptg(x) = lExg(Xt) , where 9 is 

bounded B-measurable function. Let (Up)p>o the resolvent associated to the semigroup, i.e. 

It is known that the strong Markov property is equivalent with each from the following assertions 

[133] : 
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1. If 9 is a positive bounded continuous function on Xf).. then f = Upg (p > 0) is nearly Borel 

and right continuous on the process trajectories. 

2. Each p-excessive function (p > 0) is nearly Borel and right continuous on the process 

trajectories. 

Recall that a real function defined on the state space Xf).. is nearly Borel for the process (Xt) if 

there exist two Borel functions hand h' on Xf).. such that h' < f < hand 

P{wl:3t, h' 0 Xt(w) < h 0 Xt(w)} = O. (3.22) 

Let 9 be a positive bounded continuous function on X. We have 9 = 2: gi, where gi = glxi 
iEQ 

are bounded continuous functions on Xi. Then Ptg = 2: pi gi and 
iEQ 

It is known that I = Upg (p > 0) (the restriction to X) is p-excessive function with respect to 

(Pt ) and for each i E Q and the function Ii = U;gi is p-excessive function with respect to (Pi). 

Therefore, Ii is nearly Borel and right continuous on the trajectories of the process (xD. It is 

clear from the construction that the function I is right continuous on the trajectories of the 

process (Xt). 

Let hi, hi' two Borel functions on X~ such that h' < fi < hi and 

(3.23) 

Let us consider the function h, h' defined as below: 

h =L hi, h' =Lh
i
'. (3.24) 

iEQ iEQ 

It is clear that 
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Let us compute the probability of the following event: 

We have Ak E F. Let ak = IAk which depends only on w io *Wi2 * ... *wik . The recursive method 

to compute the probability of Ak on {Tk < t < Tk+1} gives 

(3.25) 

Since ak(w
iO * W i2 * ... * W ik

) on nik is exactly the indicator function of 

using (3.23) we obtain that the integral (3.25) is zero. Therefore the functions h, h' defined by 

(3.24) verify the condition (3.22). Then f will be a nearly Borel function relative to the process 

(Xt) .• 

The Propositions 8, 9, 10 can be summarized in the following theorem: 

Theorem 11 Under Assumptions 4-6, any Markov string M = (n, F, F t , Xt, Bt , P, Px ) has the 

following properties: 

(i) It is a strong Markov process; 

(ii) It has the cadlag property; 

(iii) It is a right process. 

3.4 Properties of GSHS 

Strong Markov property. GSHS, being constructed as particular Markov strings, they 

inherit the properties of their diffusion component, namely they are strong Markov processes 

with cddlag property. 

Proposition 12 (Strong Markov process) Under the standard assumptions 1-3, any Gen­

eral Stochastic Hybrid Model H is a strong Markov process. 
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Proof. To prove that H is a strong Markov process, it is enough to check that a GSHS is, indeed, 

a Markov string, i.e. it satisfies the Assumptions 4-6 from the Markov string construction. It 

is easy to see that 

• Ass.1 implies Ass.4; 

• Ass.3 implies Ass.6. 

It remains to prove only that Assumption 2 and the construction of a GSHS implies Assumption 

5. We can suppose without loss of generality that Oi n oj = 0. Then, the kernel W can be 

defined as follows 

W : {U Oi} X 8(X) --+ [0,1] such that w(w i ,A) = R(X~i(wi),A) 
iEQ 

For any GSHS, we need to check 

( a) the memoryless property of kernel, i.e. if 0 < t < Si (wi) then W (B~wi , .) = w (wi, .) {:} 

R(X~i(O~Wi)") = R(X~i(wi)' .). 
(b) the memory less property of the stopping times Si. 

Since the component diffusions are strong Markov processes (b) implies (a). In fact, we have 

to prove that, if 0 < t < t + s < Si(wi) then stopping times (Si) 

(3.26) 

We have, for each i E Q, 

1. the hitting time of the boundary axi of the diffusion process (xD has the memoryless 

property, i.e. t*(B~wi) = t*(wi) - t. 

2. the stopping time Sil with the survivor function (3.3) has the memoryless property because 

" "I PXi{wilmi(wi) > A~+s(wi)} 
Pxi(S"-1 > t + slS"- > t) = Pxi{wilmi(wi) > AHwi)} 

PXi{wilmi(wi ) > AHwi) + A~(B~wi)} 
Pxi{wilmi(wi) > AHwi)} 

= PXi{wilmi(wi) > A~(B~wi)} 
t 
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(we have used the fact that mi has the memoryless property, being an exponentially 

distributed random variable, and the additivity of A~ w.r.t. t since this is an additive 

functional) . 

Since, for each i E Q, the stopping time Si is the infimum of t* and Si', the two above 

facts easily implies the 'memoryless' property of Si (it is easy to prove that the infimum of two 

memoryless stopping times is still a memoryless stopping time). 

Thus, H is a Markov string obtained by mixing diffusion processes. Therefore, it inherits the 

strong Markov property from the component diffusions.D • 

Corollary 13 Any General Stochastic Hybrid Model H, under the standard assumptions of 

section 3.2.2, is a Borel right process. 

Proof. The statement of the corollary is immediate, since the state space is a Lusin space and 

H is a right process.D • 

As we discusses in the context of Markov strings, a GSHS might be thought of as a 're­

striction' of a random evolution process [146], whose components are diffusion processes defined 

on different state spaces. We can consider each diffusion component evolving on X. The first 

difference is that while a GSHS is defined only on UiEQ{ i} x Xi a random evolution process 

should be defined on the entire product space Q x X. The second difference is that whilst for 

a random evolution process the jump times from one process to another are driven only by 

transition rates, for a GSHS these might be also boundary hitting times of modes. 

However, contrary to [146], GSHS are not always standard processes as the random evolu-

tion processes. 

The Process Generator. We denote by Bb(X) the set of all bounded measurable functions 

f : X ---+ JR. This is a Banach space under the norm Ilfll = SUPXEX If(x)l. Associated with 

the semigroup (Pt ) is its strong generator which is the 'derivative' of Pt at t = O. Let D(L) C 

Bb(X) be the set of functions f for which the following limit exists limt'\.o t(Ptf - f) and 

denote this limit Lf. This refers to convergence in the norm 11·11, i.e. for f E D(L) we have 

limt'\.o IIt(Ptf - f) -Lfll = O. Specifying the domain D(L) is an essential part of specifying L. 
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Martingale property (Prop. 1) says that for f E D(L) we define the real-valued process 

(C!h~o by 

ct = f(xt) - f(xo) -l Lf(xs)ds. (3.27) 

Then for any x E X, the process (C!)t~O is a martingale on (O,F,Ft,Px ). 

There may be other functions f, not in D(L), for which something akin to (3.27) is still true. 

In this way we get the notion of extended generator of the process. 

Let DeL) be the set of measurable functions f : X ~ JR with the following property: there 

exists a measurable function h : X ~ JR such that t ~ h(xt) is integrable Px - a.s. for each 

x E X and the process 

ct = f(xt) - f(xo) -l h(xs)ds 

is a local martingale. Then we write h = Lf and call (L, D(L)) the extended generator of the 

process (Xt). 

Following [62], for A E 8(X) define p,p* and p as follows: 

00 

p(t, A) = L I(t~Tk)I(xTkEA); 
k=l 

p(t, A) = l R(x.,A)>.(xs)ds + l R(A,xs-)dp*(s) 

p(t, A) = L R(XTk-,A). 
Tk5:t 

Kote that p,p* are counting processes, p*(t) is counting the number of jumps from the boundary 

of the process (Xt). p(t, A) is the compensator of p(t, A) (see [62] for more explanations). The 

process q(t, A) = p(t, A) - p(t, A) is a local martingale. 

Given a function fECI (JRn , JR) and a vector field b : JRn ~ JRn
, we use Lbf to denote the Lie 

derivative of f along b given by Lbf(x) = 2:~ 1 ;t(X)fi(X), Given a function f E C
2(JR

n
, JR), we 

use JH[' to denote the Hamiltonian operator applied to f, i.e. JH[' (x) = (hij (x) )i,j=1...n E JR
nxn

, 
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where ~j (x) = a~:JXj (x). AT denotes the transpose matrix of a matrix A = (aij )i,j=1...n E 

IRnxm and Tr(A) denotes its trace. 

Theorem 14 (GSHS generator) Let H be an GSHS as in definition 3. Then the domain 

D(L) of the extended generator L of H, as a Markov process, consists of those measurable 

functions f on Xu8X satisfying: 

1. f: X ~ lR, B-measurable such that for each i E Q the restriction fi = flxi is twice 

differentiable. 

2. the boundary condition 

f(x) = fx f(y)R(x,dy), x E ax; 

3. B f E Lioc(P) (see 1) where 

Bf(x, s,w) := f(x) - f(xs-(w)). 

For f E D(L), Lf is given by 

Lf(x) = Lcontf(x) + A(X) i (f(y) - f(x))R(x, dy) (3.28) 

where: 

(3.29) 

Proof. Let (L, D(L)) be the extended generator of (Xt). We want to show that (L, D(L)) = 

(L,D(L)). Suppose first that f satisfies 1-3. Then Bf E LiOC(p) and J[O,tjxxBfdp = h +12, 

where 

II r ~(f(Y) - f(xs))R(xs,dy))..(xs)ds 
i[o,tj ix 

12 r ~(f(Y) - f(xs_))R(xs-,dy)dp*(s). 
i[o,tj ix 

1 Following [62], f is in Lioc(P) if for some sequence of stopping times an i 00 

Ex L If(xTiI\O'n) - f(xTiI\O'n-) I < 00 

i 
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Now the support of p* is contained in the countable set {s : Xs- E aX} and because of the 

boundary condition 2. the second integral 12 vanishes. Thus 

This is a local martingale because of condition 3. Let Tm denote the last jump time prior or 

equal to t. Then 

where 

L (f(XTk) - f(XTk-)) = {f(xt) - f(XTm)} + 8m 
Tk-.5:.t 

m 

8m = L (f(XTk) - f(XTk_1 ))} - {f(xt) - f(XTm)+ 
k=l 

m 

+ L (f(XTk-) - f(XTk_J)}· 
k=l 

The first bracketed term on the right is equal to f(xt) - f(x). Note that XTk- = X~k-~Tk_l' if 

XTk_1 = (ik-l, X~k~t). Then ItO-formula [73] gives the second term 

The second term is therefore equal to I~ Lcontf(xs)ds+ I~ < a(xs), \1f(xs) > dW(s) and we 

obtain 

ct := f(xt) - f(x) - I~ Lf(xs)ds = I~ < a(xs), \1 f(xs) > dW(s) + iro,tlxX Bfdq 

is a local martingale (the sum between a continuous martingale and a discrete martingale), 

where L is given by (3.28). Thus f E D(L) and Lf = Lf. 
~ t 

Conversely, suppose that f E D(L). Then the process Mt := f(xt) - f(x) - 10 h(xs)ds is a 

local martingale, where h = L f. Then M t must be the sum between a continuous martingale 

Mtc and a discrete martingale Ml. From Th.(26.12), p.69 [62], we have Ml = Mf for some 

predictable integrand P E LiOC(p), where 

Mf = IxxJR pI(s-.5:.t)dq = L P(XTk' Tk,W)- I~ Ix p(y, s,w){R(xs, dy) .. (xs)ds-R(xs-, dy)dp*(s)}. 
+ T. <t k_ 

Since Ml and Mf agree, their jumps D..Ml and D..Mf must agree; these only occur when t = Tk 

for some k and are given by: D..Ml = f(xt)- f(xt-); D..Mf = p(Xt, t,w)- Ix p(y, t,w)R(Xt-, dy)l(xt_EoX)' 

Thus p(Xt, t,w) = f(xt) - f(xt-) on the set (Xt- tt aX), which implies that p(x, t,w) = 
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f(x) - J(Xt-) for all (x, t) except perhaps a set to which the process 'never jumps', I.e. 

G c lR+ x X such that lEz fGP(dt,dx) = 0, Vz EX. 

Suppose that z = Xt- E ax. Then equating D..Mf and D..Mf gives J(Xt) - J(z) = p(Xt, t,w) -

Ixp(y,t,u))R(z,dy) and hence J(x) - J(z) = p(x,t,w) - Ixp(y,t,w)R(z,dy), except on a set 

A. E B(X) such that R(z, A) = O. Integrating both sides of the previous equality with respect to 

R(z,dx), we obtain Ix J(x)R(z,dx) - J(z) = Ixp(x,t,w)R(z,dx) - Ixp(y,t,w)R(z,dy) = O. 

Thus J satisfies the boundary condition. For fixed z, define p(x, t,w) = p(x, t,w)-(J(x)- J(z)). 

Using the boundary condition we get Ixp(y,t,w)R(z,dy) = Ixp(y,t,w)R(z,dy) = p(x,t,w). 

Then p(x, t,u-') = Ix p(y, t,w)R(z, dy). 

However, the right-hand side does not depend on x, and hence p(x, t,w) = u(t,w) for some 

predictable process u. The general expression for p is thus 

p(x, t,w) = J(x) - J(Xt-) + u(t,w)I(Xt_ EoX)' 

Inserting this in the expression of Mf we find that Mf does not depend on u, then we can take 

u = O~ obtaining P = B J; hence the part 3 of theorem is satisfied. 

Finally, consider the sample paths of Mt , M: f + Mt
C

, for t < T1(w), starting at x EX. We 

have 

while, because p = p* = 0 on [0, T1), 

Mt
Bf = - ~O,tl Ix (J(y) - J(xs(wiO)))R(xs(wiO ), dy) .. (xs(wiO))ds. 

So, since M t = M:f + M{ for all t a.s., it must be the case that M t = M{ for t E [0, T1 ) 

and the generator coincides with the generator Leont associated to the stochastic equation, the 

function J(Xt(wiO )) should have second order derivatives on [O,Tl)' The general case follows by 

concatenation. Similar calculations show that 

........ 

with L given by (3.28). Hence J E D(L) and LJ = Lf. • 

66 



3.5 Examples of Stochastic Hybrid Systems 

In this section we prent a collection of SHS examples which can be modeled in the GSHS 

modelling framework. 

3.5.1 Single-server Queues 

This example was presented in [63], as a model belonging to the class Piecewise Deterministic 

~Iarkoy Processes, which is a particular class of GSHS. 

Customers arrive at a queue at random times T I , T2, ... , and the customer arriving at time 

Ii requires Yi > 0 units of time for processing. The total service load (in time units) presented 

up time t is 

L t = Lo + L YiI(t~Ti) 
t 

where Lo > 0 is the service load existing at time 0, and the virtual time Vt is the unique solution 

of the equation 

The first term on the right is the total service load presented while the second is the amount 

of carried out processing; i.e. Vt is the amount of unprocessed load at time t, or equivalently 

the time a customer arriving at t would have to wait for service to begin. The queue has 

two possible configurations, namely busy and empty, and we will denote these by an indicator 

variable q with q = 1 when the queue is busy and q = 0 when it is empty. 

The queueing systems are characterised via the conventional classification AlBin, where 

A refers to the arrival process, B to the distribution of Yi and n to the number of servers 

(n = 1 in this case). Let us consider the MIG/1 queue, where M (for 'Markov') means that the 

interarrival times are independent and exponential (Le. the arrivals form a Poisson process), and 

G (for 'general') means that Yi are independently identically distributed with some arbitrary 

distribution F. Yi are assumed to be independent of the arrivals process. 

When 

• q = 1, Vt decreases at unit rate between jumps; 
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• q = ° there is an exponential waiting time for a new arrival (because of memory less 

property of the exponential distribution). 

The state space of this model is 

x = {O,O} U {I} x (0,00) 

and take It = (qt, Vt), where qt is the current configuration of the queue and vt is the virtual 

waiting time. Then (.l't) is a Markov process, which evolves as follows: when vt hits zero, Xt 

jumps to (0,0) and ,Yaits there until the next arrival, at which point it jumps to (1, Y), where 

Y is the service requirement of the arriving customer. 

In the case of the G I / G /1 queue: G I (for 'general independent ') means that the interarrival 

times are independently identically distributed with general distribution. In order to get a 

~Iarkov process, it is necessary to include the supplementary variable T, the time since the last 

arrival. The state space is 

x = {O} x [0,00) U {I} x [0,00) x (0,00) 

When q = L ( = ((1, (2) is two dimensional with (t = T and (; = vt, the virtual waiting time. 

Denote Xt = (qt, (t)· When q = 1, (t and (; increase and decrease respectively at unit rate. If 

the queue becomes empty (i.e. (2 = 0) then it is necessary to continue accumulating the time 

since the last jump, so Xt jumps from (1, (1, 0) to (0, (1). If the next arrival occurs t time units 

later, bringing service requirement Y, then Xt jumps from (0, (1 + t) to (1, (0, Y)). 

3.5.2 A Hybrid Manufacturing System Model 

This model has been studied in [84] and is motivated by the structure of many manufacturing 

systems. In these systems, discrete entities (referred to as jobs) move through a network of 

workcenters which process the jobs so as to change their physical characteristics according with 

certain specifications. Associated with each job is a temporal state and a physical state. The 

temporal state of a job evolves according to event-driven dynamics and include information such 

as arrival time, waiting time, service time, or departure time of the job at the various workcen-
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ters. The physical state evolves according to time-driven dynamics modeled through differential 

equations which, depending on the particular problem being studied, describe changes in such 

quantities as the temperature, size, weight, chemical composition, bacteria level, or some other 

measures of the "quality" of the job. The interaction of time-driven with event-driven dynam­

ics leads to a natural trade-off between temporal requirements on job completion times and 

physical requirements on the quality of the completed jobs. 

Consider a single-stage manufacturing process modeled as single-server queueing system. 

The server processes one job at a time on a first-come first-served nonpreemptive basis (Le., 

once a job begins service, the server cannot be interrupted, and will continue to work it until 

the operation is completed). Identical jobs arriving at the system with rate A wait in an infinite 

capacity queue until they are processed by the server operating at rate U E U. Exponential 

interarrival times are assumed. The controller is assumed to select processing rates from a finite 

set 

U = {U1' U2, ... , urn} where Ui < Ui+1, i = 1, ... , m - 1 

As job i is being processed, its physical state, denoted by Xi evolves according to time-driven 

dynamics of the general form 

(3.30) 

where 7i is the time when processing begins and x? is the initial state at that time. The control 

variable Ui(t) is used to attain a final desired physical state corresponding to a target "quality 

level". On the other hand, the temporal state of the ith job is denoted by Tie and represents 

the time when the job completes processing and departs from the system. Letting Ii be the 

arrival time of the ith job and Si be the service time which is a function of Ui(t) during the 

process, the event-driven dynamics describing the evolution of the temporal state is given by 

the following "max-plus" recursive equation: 

(3.31) 

where To = -00 in which case 71 = T1 and the first job begins service as soon as it arrives. 
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Equation (3.31) is known in queueing theory as the Lindley equation. 

The system is hybrid in the sense that it combines the time-driven dynamics (3.30) with 

the event-driven dynamics (3.31). If we suppose that there are no delays, i.e. Ti~l = Ii for 

i = 2, ... , m then this model is a particular case of GSHS. 

3.5.3 A Simplified Model of a Truck with flexible Transmission 

This example has been used in [91, 116]. The system is described by 

dX3 -X2 + 9q(X2)udt + adw 

q 1,2, - 0.1 < u < 1.1 a = 0.01 

where Xl, X2 and X3 are the position, velocity, and the rotational displacement of its transmission 

shaft respectively. The efficiency for gear q is 9q(X), u is the throttle, and dw is a scalar Wiener 

process. In [116] the model is modified in comparison with that one presented in [91], by 

assuming that gears switches occur at the speed of equal efficiency between the gears (X2 = 0.5) 

and therefore, the switching boundary is defined by A = {XIX2 = 0.5}. 

The objective is to drive the state (xo, qo) to the target set 

3.5.4 The Stochastic Thermostat 

This is an example of GSHS with two discrete states, which models the temperature in a house 

with n rooms, n > 1, regulated by a single thermostat. This is the generalization of the 

one-dimensional process that was studied in [130]. 

Let Z = (Zl' Z2, •.. , Z3) E lRn describe the temperature in the n rooms of the house, and 

q E Q = {O, I} the binary state of the thermostat. The global state of the system is then 

described by the hybrid state x = (q, z) E Qx lRn , which has both a discrete and a continuous 

component. For a given discrete state q E Q of the thermostat, the temperature Zt evolves in 
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jRn according to an SDE of the form 

dZt = b(q, Zt) + adWt (3.32) 

where a E jRnxn and bq = b(q,.) describe the action of the thermostat, the effect of the exterior 

environment, and the coupling between the temperatures of adjacent rooms. The switching of 

the thermostat is controlled by a linear criterion w(z) = L~=l QiZi. The thermostat switches on 

when w(Zt) crosses some threshold Wmin downwards, and switches off when it crosses another 

threshold Wmax > Wmin upwards. This can be described in the GSHS framework as follows: we 

define 

Xo {z E IRnlw(z) > Wmin} 

Xl {Z E IRnlw(z) < Wmax} 

and then the hybrid state space will be 

X = {O} x Xo U {I} X Xl C Q x IRn. 

The process Zt evolves continuously in Xq according to the SDE (3.32) as long as the thermostat 

is in state qt = q, and Qt switches when zt reaches axq . Therefore, the hybrid process Xt = 

(qt, zt) is a GSHS with only forced discrete transitions. 

3.6 Some Remarks 

In this chapter we set up the notion of Markov string, which is roughly speaking, a concatenation 

of Markov processes. This notion has raised as a result of our research on stochastic hybrid 

system modelling [106, 40, 41, 137] and it aims to be a very general formalization of all existing 

models of stochastic hybrid systems. The Markov string concept has been proved to be a 

very powerful tool in the studying of the general models of stochastic hybrid processes GSHS 

introduced at the beginning of the chapter. 

One of the main contributions of this work is the proof of the strong Markov property. Since 

71 



GSHS are a particular class of Markov strings, this property holds also for them. 

In the end of this chapter, based on the strong Markov property of GSHS we have developed 

the extended generator of this model. 

Further developments of our model will include two main tracks . 

• First it is necessary a study of the reachability problem for GSHS. One possible approach 

in this direction is the introduction of a bisimulation concept for GSHS. Reachability 

analysis and model checking are much easier when a concept of bisimulation is available. 

The state space can be drastically abstracted in some cases . 

• Second it is natural to generalize the results on dynamic programming, relaxed controls, 

control via discrete-time dynamic programming, non-smooth analysis, from PDMP to 

GSHS. 
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Chapter 4 

Further Developments of GSHS 

4.1 Overview 

This chapter is a first step in the direction of stochastic hybrid system composition. The DSHS 

model, which will be defined in the following, extends the CPDMP model (communicating of 

Piecewise Deterministic Markov Processes) defined in [154] towards GSHS. In this way, the 

DSHS can be viewed as an extension of the composition formalism for Markov models a la 

[96], since CPDMP extends that formalism without considering equational theories (process 

algebra). 

4.2 Distributed Stochastic Hybrid Systems 

In real life, distribution is present in many various ways. Finding its adequate definition in a 

specific context is often a difficult task. In ATM systems one can easily discover that centralised 

control coexists with many (semi) autonomic behaviours. This situation is not very common 

for discrete systems. Moreover, what can be logically seen as centralised control is distributed 

from a physical point of view. In example analysis, where space aspects are important, one 

might need a distributed model. Simultaneous executions in ATM are, obviously everywhere. 

From a continuous mathematics viewpoint parallelism (simultaneous executions) is very easy 

to be modelled essentially because of the lack of interaction. Basically, the Cartesian product 

of two (continuous) processes does the job. 
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But also, it is known that the interaction is an essential aspect in all distributed systems 

we are talking about. These systems are large scale, possibly involving the collaboration of 

multiple agents (both human and non-human). Sensing and control are often distributed, and 

information exchange and co-ordination has to be achieved through communication. Pilots 

talk to controllers and sometimes one with each other. Embedded controllers usually control 

components that interact and are aware of each other existence. In the case of ubiquitous 

systems controllers are even self-aware having the possibility to modify their own behaviour. 

Due to the distributed nature of air traffic management, even advanced engineering design 

approaches have proven to fall short. It is quite relevant to know that in the Europe and the 

USA this has already led to the involvement of distributed control theorists and stochastic 

analysis in air traffic management studies. 

Taking in account the above considerations about the features of the ATM systems, a further 

development which we make in this chapter is to enrich the GSHS model with two capabilities: 

compositionality and communication. The result is what we have called distributed stochastic 

hybrid systems (DSHS). In ATM , these models can illustrate architectures for handling conflicts 

between multiple aircraft, while maintaining the situational awareness of human operators. 

4.2.1 Model Description 

In this section we introduce the DSHS formalism. First we formally define its structure and 

after we give an algorithm which describes its executions. 

Definition 15 A DSHS, denoted by V'li, is a collection (( Q, d, m, X), (f, cr), L, A, P) where 

(i) (Q, d, m, X) describes the state space, which is countable union of open sets from an euclid­

ean space (modes), each one corresponding to a discrete location. Note that the dimension of 

embedding euclidean space might be different for different locations. 

(ii) (f, cr) gives the continuous dynamics between jumps of the continuous state within the 

locations. 

(iii) L is the set of labels. 

(iv) A are the set of active transitions. These are the union of the forced (boundary-hit) 

transitions B and the spontaneous transitions S. The forced transitions B depend on the 
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transition-choice function C. P is the set of passive transitions. Passive transitions are dis­

crete transitions defined in a similar manner as the forced transitions which take place in the 

communication process with the environment. 

Formally, the elements of (i) are defined as follows: 

• Q is a countable set of locations. 

• d: Q ---+ N is a map giving for each location the dimension of the continuous state space 

in that location. 

• m : Q ---+ N is a map giving the dimension of the Weiner processes that govern the 

evolution of the continuous state. 

• X : Q ---+ JRd(.) maps each q E Q into an open subset X(q) = x q of JRd(q); this means that 

for each q E Q, x q is the mode (the invariant set) associated to the location q. Let us 

denote by X the whole space, X = U{(q,Xq)lq E Q}. We also define the boundary set 

axq := Xq\Xq of x q and the boundary of the whole space ax = U{(q, aXq)lq E Q}. 

The continuous motion parameters from (ii) are given as follows: 

• f : X ---+ JRd(.) is a vector field and (J" : X ---+ JRd(.)xm(.) is a X(·Lvalued matrix. For all 

q E Q, the functions f q : X q -+ JRd(q) and (J"q : x q ---+ JRd(q)xm(q) are bounded and Lipschitz 

continuous and the continuous motions is governed by the following stochastic differential 

equation (SDE): 

dx(t) = fq(x(t) )dt + (J"q(x(t) )dWt (SDE) 

where (Wt, t > 0) is an m(q)-dimensional standard Wiener process in a complete proba­

bility space. 

The active transitions of (iii) are given as follows: 

• B is the set of forced transitions. Each element b E B is a quadruple (q, l, q' , Rb) where q 

is the origin mode (discrete state), l is the label of the jump, q' is the target mode, and 

Rb is the reset map of the jump, i.e. for each x E axq with C(b, q, x) > 0 (see next item) 
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and for all Borel sets E of Xql the quantity Rb(X, E) is the probability to jump in the set 

E when the transition b is taken from the boundary state x . 

• The function C : B x Q x ax ---+ [0,1] is defined such that for all q E Q, all x E axq , and 

all b E B, which are outgoing transitions of q, the quantity C(b, q, x) is the probability of 

executing a forced transition b. Moreover, L: C(b, l, x) = 1 where Bq--+ is the set of all 
bEBq-+ 

elements of B that are outgoing transitions of q . 

• S is the set of spontaneous transitions. Each element s E S is a pentuple (q, l, q', Rs , A), 

where q is the origin mode, 1 is the label of the jump, q' is the target mode, Rs is the reset 

map of the jump, and As is the jump rate (it determines the rate of process jumping). 

The passive transitions of (iv) are given as follows: 

• P is the set of passive transitions. Each element pEP is a quadruple (q, l, q', Rp), where 

q is the origin mode, 1 is the label of the jump, q' is the target mode, and Rp is the reset 

map of the jump. 

A GSHS can be defined in a similar way as DSHS. The only difference is that the discrete 

transitions do not have labels and there is no choice function defined on the boundary. 

Remark 2 In the case of GSHS the parameters A, R are globally defined. For DSHS these 

functions can be globally defined as following: 

1 . .x: s X X ---+ lR+ is a transition rate function (a bounded Borel measurable function), i. e 

for all spontaneous transitions s E S, with s = q ~ q', the function .x(s, x) is nonzero iff 

x E X q and is the transition rate associate to the transition s. 

2. R: (B U SUP) x X x 8(X) ---+ [0,1] is a transition measure such that, for all transitions 

t E BUS U P with t = q "-"+ q' (where q, q' E Q), we have that for each x E X
q 

and 

all Borel sets A of X ql the quantity R(t, x, A) is the probability to jump in A when the 

transition t is taken from state x to A. 

Since a DSHS inherits the stochastic features of its associated GSHS, then it allows: 
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1. Diffusion processes in the continuous evolution (Le. the continuous evolution is governed 

by some stochastic differential equations); 

2. Spontaneous discrete transitions (according to a transition rate); 

3. Forced transitions (driven by a boundary hitting time); 

4. Probabilistic reset of the discrete and continuous state as a result of discrete transitions. 

~loreover, for DSHS there exist passive transitions whose stochastic parameter is the reset map 

of the post jump location. 

A realization of a DSHS given by the definition 15, generates a stochastic process. The 

above remark and the structure of a DSHS assure that this process is a realization of a GSHS. 

We will refer to this process as the associated GSHS to the given DSHS. In this context, a 

DSHS execution can be defined as a sample path of this stochastic process. For the generation 

of the DSHS executions we assume that no communication takes place, i.e. we consider that 

the passive transitions do not play any role in the generation of executions. 

To eliminate pathological solutions that take an infinite number of discrete transitions in a 

finite amount of time (known as Zeno solutions) we impose the following assumption. 

Assumption 7 For each location q E Q the number of outgoing transitions is finite. 

Execution of a DSHS 

We assume that an initial hybrid state (qO, xo) is given. The continuous dynamics in the 

mode X qO is determined by the stochastic differential equation (SDE) with q replaced by qo. Let 

WqO be an arbitrary diffusion sample path starting in Xo· Suppose that WqO reaches the boundary 

axqO at time Tb and suppose that location qo has no outgoing spontaneous transitions. During 

the continuous motion, for every outgoing spontaneous transition, can generate a hybrid jump. 

The probability density functions of these processes is equal to Ai(Xt(Wqo )) exp( - J~ Ai(Xt(Wqo ))), 

where Ai is the jump rate of the i-th outgoing spontaneous transition Si· Define 

where Ti is the jump time corresponding to the i-th outgoing spontaneous transition Si· 
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There are two possibilities: 

1. If Tb < T qo' the boundary is hit before any spontaneous transition is about to be executed, 

which means that a forced transition is executed at time Tb. 

2. If T qo < Tb, the spontaneous transition corresponding to T qo causes a jump at time T qo 

before hitting the boundary. 

Remark 3 The above discussions show that the first jump time (corresponding to the diffusion 

path U-'qo) is a minimum of no + 1 stopping times (the first boundary hitting time and the 

stopping times given by the Poisson probability distributions corresponding to the no outgoing 

spontaneous tmnsitions from X qO ). 

A forced transition at time Tb from the boundary state XTb (wqo ) E axqO is executed as 

follows. It could be the case that multiple forced transitions are active in state XTb (Wqo ) , 

therefore we use the choice function C to choose one of the active transitions. A transition 

b E Bqo-+ is taken according to the probability measure determined by C(·, qo, XTb ). Then 

b = (qo,h, ift,,~) is the transition which takes place. The post-jump location is q~ and the 

continuous state after the jump is x' E xq~ which is drawn according to the reset measure 

~(., XTb). From the new hybrid state (q~, x') at time Tb, the above recipe can be repeated to 

continue the execution. 

A spontaneous transitions s = (qo,ls, r/s, Rs) at time T qo from the continuous state X TqO (wqo ) E 

X qO is taken as follows. The target location is q~ is given according to the probability measure 

RS(xTqO (w qo ), .). Starting with the new location (q~, x') we can repeat the recipe given above to 

continue the execution. 

The executions of the DSHS can be thought of as being generated by the following algo-

rithm. 

Algorithm. Generation of DSHS Executions. 

set T = 0 

select X-valued random variable x 
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repeat 

set q = X- 1(x), nq the number of spontaneous transitions from x q 

set ;l~t as solution of (SDE) with initial condition equal to x 
select Wq a sample path for the process (Xt) with the start point x 
select IR+ -valued random variable S such that 

S(Wq) = min( T1 (wq), ... T nq (wq), Tb(Wq)) 

where Ti is the jump time of the i-th outgoing spontaneous and 

Tb is the first hitting time of the boundary axq 

select the transition t = q ~ cj associated to S 
I 

select x q -valued random variable x according to R t (., x;S) 

--setT=T+S 

until true 

In the structure of DSHS we can take some particular cases for the continuous evolution 

or for the discrete transitions. The results will be constituted in some particular distributed 

models for stochastic hybrid system. As a conjecture, we examplify: 

1. If the continuous motion within the modes is deterministic then its associated stochastic 

process is a piecewise deterministic Markov process. The result is the notion of distributed 

piecewise deterministic Markov process; 

2. If there is no forced transition then its associated stochastic process is a switching-jump 

diffusion. The result is the notion of distributed switching-jump diffusion. 

3. If there is no spontaneous transition and the choice function is deterministic then its 

associated stochastic process is exactly the model proposed in [41]. Evidently, the result 

is a distributed variant of that model. 

4.3 Parallelism and Communication of DSHS 

In this section we introduce a composition operator lion the set of DSHS. In the DSHS frame­

work, communication takes places by means of the passive transitions. The execution of an 

active transition is always independent on the environment. In a context with two composed 
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DSHS, one of DSHS can execute a passive transition with labell if and only if at the same time 

the other DSHS executes an active event with labell. 

We have to point out that we introduce the communication and parallelism for GSHS in the 

same style it has been done for Piecewise Determisnistic Markov processes in the paper [154]. 

The main difference is that our model allows diffusions between jumps. The main problem 

which results from here is related by the parallel composition of diffusions. Mathematically, 

this leads to the concept of product of stochastic processes [49]. The infinitesimal generator of 

the product of two processes is not the product of component generators [28]! 

N . UT . l,R, l,R ,.) l,R,).., d h' f . 1 £ d otatlons. vve wnte q 1---+ q , q ~ lJ. ,q ~ q to enote t e eXIstence 0 respectlve y orce , 

passive and spontaneous transitions from q to q' with label l, reset map R and, in the case of 

spontaneous transition. jump rate A. 

Parallelism 

The parallel composition of two DSHS is defined as follows: 

Definition 16 Let 1J1ti = ((Ql,di,mi,Xi,fi,ai),L,Bi,Ci,Si,Pi) be two given DSHS for i = 

1,2. The pamllel composition 1J1t = 1J1t1111J1t2 is the collection ((Q, d, m, X, f, a), L, B, C, S, P) 

whose components are defined as following: 

4. X : Q ~ ]Rd(.) such that X(ql,q2) = Xl (ql) x X2(q2); 

5. f(ql,fl2) = ( f
q1 

) and a(Ql,Q2) = ( a
Q1 

); 
fQ2 a Q2 

6. b E B, s E Sand pEP if b, sand p can be derived from the rules r 1 till r6 defined below, 

and rl' till r6' which are the mirrored versions of rl till r6. These rules are derived in 

a classical process algebra style (see, for e.g. [96), for similar rules defined for Markov 

chains). The nominator represents the transitions of the components and the denominator 

gives the transition of the composed agent. 
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l,Rl I l l,Rl I l,R2 I 

rl. 
q1 ~ q1, q2 -++ 

r2. 
q1 ~ q1, q2 -+ q2 

( q1 , q2) ~ (~, q2) ( ) l,R (' ') q1,q2 ~ q1,q2 
l,Rl,Al q', l l,~Al I l,R2 rE 

r3. 
q1 ~ l' q2 -++ 4 q1 q1, q2 -+ 2 

( ) l,R,A (' ) 
r. 

( ) l~A (' ') q1, q2 ~ q l' q2 q1,q2 q1,q2 
I,Rl q', l l,Rl I l,R2 I 

r5. 
q1 -+ 1 , q2 -++ 

r6. 
q1 -+ q1, q2 -+ q2 

( q1 , q2) l.!} (~, q2) ( ) l,R (' ') Q1,Q2 -+ Q1,Q2 

7. R, the reset map is given as the product measure, namely in case rl, r3, r5 

and in the case r2, r4, r6 

where Xl E axQ1 in case rl, r2, and Xl E X Q1 (for the cases left) and X2 E xQ~; 

8. the transition map .A for cases r3 and r4 is given by 

9. the choice function C should be specified for any q = (q1, q2) E Q and any b : (ql, q2) ~ 

(~ ,~) E B. It is clear that b has been derived from one of the following cases: 

cl 

c2 

c3 

Then for all (Xl? X2) E aX(q) the function is defined as 
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Cl(bli,ql,Xl); ci, i = 1,2, Xl E 8Xq1 , X2 E XQ2 

C2(b2i , q2, X2) ci, i = 3,4, Xl E XQl, X2 E 8XQ2 

undefined; 
and C takes the zero value in rest. 

Remark 4 The idea to obtain the coefficients of the diffusion processes for the composed agent 

V1i by superposition operation of coefficients of components is natural. It can be shown that 

under mild assumptions the product of two diffusion processes is again a diffusion process. For 

this kind of results the reader is referred to [28]. 

Communication 

The parallel composition of two DSHS can be defined by the following four possible cases: 

• If one agent is able to execute an active transition and the other agent does not have a 

matching passive transition, then no communication takes place (the active agent executes 

the transition whilst the second agent stays in the same location, according to the rules 

rl, rl', r3, r3'). 

• If contrary, the first agent is able to execute an active transition and the second agent has 

a matching passive transition, then the communication takes place (both agents execute 

respectively the active and passive transition at the same time, according to the rules r2, 

r2', r4, r4'). 

• If the first agent has a passive transition with label 1 and the second agent has no passive 

transition with label l, then the composed system has a passive transition with label 1 

outgoing from the joint location, which gives the possibility to interact with other systems, 

in another composition context (rules r5, r5'). 

• If both agents have a passive transition with the same label, then the composed system 

inherits the passive transition with this label. Then both agents can execute the passive 

transitions at the same time in another composition context where a third agent executes 

an active transition with the same label (rules r6, r6'). 

A state (Xl, X2) is a double boundary state if both Xl and X2 are boundary points. 
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Remark 5 [154} The choice function C is undefined for the double boundary states. In the 

composed system execution, these points are considered only when the two components reach 

their boundary at exactly the same time. This kind of situation is nondeterministic. Two forced 

tmnsitions have to take place simultaneously in time. If the two transitions have different labels 

then a simultaneous execution of these transitions gives difficulties in the composition operation: 

If a third agent has both labels available in passive transitions, which passive transition should 

be chosen? As a theoretical assumption one might suppose that the probability that two separate 

agents reach their boundary at exactly the same time is almost zero. Then the case of double 

boundary states remains open and we say that the composed DSHS is undefined on the double 

boundary states. 

Remark 6 Because the reset maps are not defined for the double boundary states, the forced 

transitions are not defined for these states. 

Remark 7 The choice function C defined by the point (9) of the definition 16, being defined 

by using the choice functions C1 , C2 of the components, meets the conditions imposed to the 

choice function from the definition 15 of DSHS. 

From the definition 16 and the remarks 6, 7, 4 it results that the parallel composition 1)11, 

of the two DSHS 1)11,1 and 1)11,2 is a DSHS which is undefined on double boundary states. The 

proof can be derived from the similar result presented in [154]. 

4.4 Implementation in Charon 

General models of stochastic systems are specified with enough accuracy in the classical language 

of continuous mathematics (topology, functional analysis, and differential equations). After 

adding concurrency the system dynamics become very complex, thus there is the danger of 

confusion. In this context system specification is becoming increasingly important. The tools 

of traditional control engineering specifications like block diagrams are not sufficient to deal with 

distributed systems. Modern control engineering specification is based on various extensions 

of the UML. A specific implementation of UML, considering extensions to support control and 

hybrid systems is the Charon system [7, 8J. 
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In the following, we sketch how it is possible to implement our model in an extension of the 

modelling language Charon obtained in a similar manner as in [20]. 

First, we provide a very brief summary of Charon. Charon is a modelling language for 

hierarchical hybrid automata. In the Charon formalism the specifications are constructed as 

networks of communicating agents, internally modeled by hybrid automata with a hierarchical 

structure. Charon provides formal semantics which constitute an important aspect necessary 

for reasoning about the model. The language permits specification of architectural as well as 

behavioral hierarchy. Charon only allows communications through the shared variables. 

The behavioral hierarchy of Charon is encoded as the hierarchy of modes. Each mode 

describes a continuous behavior and a single thread of discrete control. Each mode has its 

own constraints in terms of differential equations, algebraic equations, and invariants, just 

as a location in a simple hybrid automaton. As well, a mode in Charon model may also 

contain a set of submodes. At any given moment, at most one submode is active in an active 

mode. Transitions link a mode with its sibling modes, parent mode, and child modes. The 

constraints imposed by an active mode is a collection of constraints of the modes and all its 

active descendant modes. 

The architectural hierarchy of Charon is implemented by agents. Each agent stands for a 

hybrid automaton. An agent may be compositional, in which case it contains several subagents, 

or atomic. Atomic agents are building blocks of architectural hierarchy, and a compositional 

agent functions as the composition of all its descendant atomic agents. 

The language supports the operations of composition of agents to model concurrency, hiding 

of variables to restrict sharing of information, and instantiation of agents to support reuse. 

The Charon capability of resource hiding is implemented by defining the scope of variables. 

At any level of hierarchy, a mode or an agent may specify the attributes of variables, it can asses 

as "read" meaning that a variable defined in a higher level can be read in the current agent or 

mode ''write'' meaning that a variable defined in a higher level may be read and written to, , , 
and "private", meaning that a new variable is introduced. Resource hiding will help define the 

interface between the tester and the system by specifying what variables mayor not be seen 

by the tester. 

The definition of semantics of an agent is based on the definition of the semantics of modes. 
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Basically, for hybrid systems there are ways of acting: either some transition is taken, where 

variables are changed instantaneously, or some time passes, where the system resides in the 

same control location (modeled by a mode) and the continuous variables change according to 

their specified constraints (differential equations, algebraic equations, etc). 

In order to make Charon suitable for implementation of DSHS, it is possible to extend the 

current version with syntax for specifying initial probabilities, jumps, and stochastic differential 

equations. In the terminology of Charon any DSHS is an agent. 

The syntax for specifying an invariant is 

inv <condition> 

where condition can depend on the variables of the agent. 

Specification of stochastic systems in Charon is facilitated by a number of predefined (Java) 

functions, that can generate, for example, the transition probabilities. These functions call the 

predefined distributions such as: 

1. randUnif orm (begin, end) specifies uniform distribution on the interval [begin, end] ; 

2. randPareto (parameter _a , parameter_b) specifies Pareto distributions; 

3. randExp (parameter) specifies exponential distribution; 

4. randNorm(mean, variance) specifies normal distribution. 

Therefore the syntax for specifying a jump can be defined as follows 

jump from <source_mode> when <guard> 

(to <destination_mode> do {<update_cv>} 

weight <weight»+ 

where the guard depends on the variables of the agent and defines a part of the complement 

of the invariant assigned to the source mode. The union of the guards of all jumps from a 

mode must be equivalent to the complement of the invariant of the mode. A jump has multiple 

transition branches. Each branch is specified by its destination mode, post jump location, and 

the weight assigned to it. The weight can depend on the variables of the agent. The post jump 

location <update_cv> is an assignment of the following form: 

variable_name=f( ... ) 

where f is a function specifying the distribution of the transition measure. Function f can 

depend on the variables of the agent. The post jump location specifies the probability measure 
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on the set of valuations of the destination mode. The function f is built using the predefined 

distri bu tions. 

The syntax for specifying an SDE is 

SDE {d «variable name» ==f (. .. ) *dt+a (. .. ) *dW (t)} 

where f( ... ) and a( ... ) are functions which depend on the variables of the agent. 

For each DSHS (agent) we can introduce some extra variables which are associated to the 

passive/active transition and capture the communication. A passive transition (with a label a) 

of an agent 1)111 and an active transition with the same label of another agent 1)112 must have 

associated the same communication variable. For the first agent this variable is an external 

variable (input) and for the second agent is an observable variable (output). In this way the 

communication defined in section 4.3 can be described in the Charon formalism. 

4.5 Some Remarks 

The next steps towards an extended DSHS model might be: 

• Introduce active synchronization and guards for the active transitions. 

• Investigate possible ways to define continuous dynamics interaction. 

These extensions would make the DSHS model more expressive, however: 

• Non-determinism is introduced by the guards and this means diverging from the GSHS 

model. 

• The continuous interaction could cause non-trivial problems concerning the stochastic 

reset-maps. 

The problems listed might find elegant solutions using the mappings between GSHS and 

Stochastically and Dynamically Coloured Petri Nets [74]. This approach does not make the 

subject of this thesis. For a detail presentation of this approach the reader is referred to [74] 

and the references therein. 
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Chapter 5 

Hybrid Systems Verification 

5.1 Overview 

The verification problem consists in deciding whether some system satisfies some given invari­

ance property describing the set of correct (safe) behaviors. In fact, safety requirements are the 

most important part of the specification of a hybrid system. Invariance properties are expressed 

as constraints on the values of the variables of the system. 

It is well known that invariance properties are duals of the reachability properties asserting 

that some (dangerous) configuration is reachable. Hence, the verification problem of invariance 

properties reduces to reachability problem in the considered models of hybrid systems [31]. 

The safety criticality of many applications requires the use of formal methods to guarantee 

that an unsafe region of the state space is not reachable from a set of initial conditions. A 

reach ability problem is to answer the following question: given a set of initial condition, will a 

target set be reached by some trajectories of a hybrid system? 

There are two different approaches in hybrid system verification: 

• engineering methods: simulations. 

• formal methods: theorem proving and model checking. 

Simulation is a procedure of generating partial traces by executing the model, and then checking 

the set of partial traces against its specification. This standard approach to verifying certain 
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properties of a hybrid system consists of finding an equivalent transition system called a bisimu­

lation with a finite number of states. Bisimulations are reachability preserving quotient systems, 

in the sense that they preserve the closed properties of the original systems and can be used 

to reduce the complexity of verifying properties of very large systems. If a hybrid automaton 

has a finite state bisimulation, then checking properties for the hybrid automata can be equiv­

alently performed on the finite, discrete, quotient graph. Since the quotient graph is finite, the 

algorithm will terminate. However, a finite state bisimulation exists only for certain classes of 

hybrid automata for which the reachability problem is decidable [121]. 

In this chapter we present a quick tour of the (classical) formal verification methods for 

(deterministic) hybrid systems. 

5.2 Formal Verification Methods 

Formal verification is a hot topic nowadays in the field of system engineering, specially for 

the development of critical dependable systems. The use of formal methods for specification 

and verification of properties of systems is one methodological improvement of the system 

production process, which together with other techniques, can make it possible to reach high 

quality standards: the use of formal methods is increasingly required by the international 

standards and guidelines for the development of safety critical systems. 

Formal methods are mathematically-based techniques that can offer a rigorous and effective 

way to model, design and analyse computer systems, and they have been a topic of research for 

many years and the question now is whether these methods can be effectively used in industry. 

To achieve this aim, there is a clear need for tool support and for improved integration of formal 

method techniques with other software engineering practices. 

Formal verifications methods and tools can be roughly classified into two categories, the 

so-called model-theoretical approaches and proof-theoretical ones. 

In the proof theoretical approaches, the system state is modelled in terms of set-theoretical 

structures on which invariants are defined, while operations on the state are modelled by spec­

ifying their pre- and post-conditions in terms of the system state. Properties are described by 

invariants, which must be proved to hold through the system execution, by means of theorem 
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provIng. 

~!lodel theoretical approaches give, on the other hand work on a finite state representation 

of the system behaviour. Verification is usually carried out by checking the satisfiability of 

some desired properties over the system model by checking algorithms or equivalence relations. 

In particular, safety requirements may be expressed as temporal logic formulae and may be 

checked on the model of the system. 

Model theoretical approaches give a direct automatic verification method of system prop­

erties. Unfortunately, this approach suffers of the so called "State Space Explosion" problem: 

systems composed of several subsystems can be associated to a finite state model with a num­

ber of states which is exponential in the number of the component subsystems. Moreover, 

systems which are highly dependent on data values, share the same problem producing a num­

ber of states exponential in the number of data variables. Hence, traditional model checking 

techniques have shown themselves not powerful enough to cope with many real systems. 

On the controverse, proof-theoretic approaches, which can exploit their generalization ca­

pability in order not to be affected by the state explosion problem, require in general more 

skill in the use of theorem proving tools, and, therefore, more investment, in terms of knowhow 

and training. This is because proofs usually need to be guided by humans and so the theorem 

proving process is not entirely automatic. 

5.3 Formal Verification Methods for Hybrid Systems 

Complex behaviors that can be exhibited by hybrid systems make the verification of such 

systems both important and challenging. Netherless, the ever-increasing presence of hybrid 

systems in safety critical applications makes it evident that verification is an issue that has 

to be addressed. Scalable automated methods for verification of hybrid systems are definitely 

in demand. From computer science, there exist comprehensive bodies of techniques for veri­

fying temporal logic for discrete /hybrid/probabilistic systems; they fall into two mainstream 

approaches: model checking and deductive verification. 
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5.3.1 Model-checking and theorem proving 

The most effective methods to verify systems from control engineering are model-checking and 

theorem proving. 

Deductive verification verifies system properties through formal deduction based on a set of 

inference rules. Deductive verification is applicable to infinite state systems, but has a drawback 

in the sense that guidance from a user is almost always needed in the process. Theorem proving 

for control engineering has been introduced and developed by U. Martin and collaborators 

(see [30] for an overview). Essentially, specific control system properties are formalised in a 

kind of model logic, and the proving support is based on huge continuous mathematics formal 

theory libraries. This approach, although perfectly legitimated, encountered resistance from 

control engineers. The method requires a very specialised background, complex interdisciplinary 

collaborations and time-consuming activities. The ongoing project of Queen Mary University 

of London [45] might produce stronger arguments in favour of this method. 

Model-checking is by far more effective and it has achieved a relatively wider acceptance 

in control engineering. In model-checking, a property is given as a formula of a propositional 

temporal logic and automatically compared with a state-transition graph representing the actual 

behavior of the system. One of the advantage of this method is its efficiency: model-checking 

is linear in the product of the size of the structure and the size of the formula, when the logic 

is the branching-time temporal logic CTL (computation tree logic) [57]. The model checkers 

can be entirely automated and now many of them can support system descriptions that contain 

plenty of continuous mathematics. Model checking is applicable usually to finite state systems, 

and basically performs an exhaustive exploration of all possible system behaviors in a fully 

automated way. The drawback of model checking is the state explosion problem, i.e., the number 

of system trajectories that need to be explored grows very quickly as the number of states 

increases, although the use of an efficient data structure called ordered binary decision diagrams 

[35] has allowed model checking of systems with an astronomical number of states. Still, when 

the number of possible states is infinite, such as when the state space is continuous, model 

checking is no longer applicable. The disadvantage of this approach is that only specialised 

situations can be checked and in many cases infinite state systems can not get finite abstractions. 

Indeed, the main difficulty of applying model checking to hybrid systems is caused by the 
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continuous part of their state space. 

Symbolic model-checking procedure and its implementation HYTECH for linear hybrid 

automata have been developed using manipulating and simplifying (R, <, + )-formulae [92, 6]. 

The underlying system model is a hybrid automata, an extension of finite automata with 

continuous variables that are governed by differential equations. The requirement specification 

language is the integrator computation tree logic ICTL, a branching-time logic with clocks 

and stop-watches for specifying timing constraints. Safety, liveliness, real-time, and duration 

requirements of hybrid systems can be specified in ICTL. Given a hybrid automaton describing 

a system and an ICTL describing a requirement, HYTECH computes the state predicate that 

characterizes the set of system states that satisfy the requirement. 

The core of HYTECH is a symbolic model-checking procedure, whose primitive are pre, 

post, and boolean operations on regions. The original implementation of HYTECH repre­

sented regions as state predicates and manipulated regions by syntactic operations on formulas. 

The performance of HYTECH was improved by representing and manipulating regions geo­

metrically: each data region is representing as a union of convex polyhedra. The current 

implementation of HYTECH consists of a MATHEMATICA main program and a collection of 

C++ subroutines that make use of a polyhedron-manipulation library by Halbwachs. 

UPPAAL [90] is a tool suite for automatic verification of safety and boundness liveliness 

properties of real-time systems modeled as networks of timed automata. It includes: a graphical 

interface that supports graphical and textual representations of networks of timed automata, 

and automatic transformation from graphical representations to textual format, a compiler that 

transforms a certain class of linear hybrid systems to networks of timed automata, and a model­

checker which is implemented based on constraint-solving techniques. UPPAAL also supports 

diagnostic model-checking providing diagnostic information in case verification of a particular 

real-time systems fails. The current version of UPPAAL is implemented in C++. UPPAAL 

allows linear hybrid automata where the speed of clocks is given by an interval. Hybrid automata 

of this form may be transformed into ordinary timed automata using a specific translator. 

In the current version UPP AAL is able to check for reachability properties, in particular 

whether certain combinations of control-nodes and constraints on clocks and integer variables 

are reachable from an initial configuration. 
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5.3.2 Testing for Hybrid Systems 

An alternative method to tackle the hybrid system validation is software testing. We must 

point out, from the beginning, that software testing for hybrid systems necessarily implies the 

use of a formal language to specify the system considered. 

Hybrid systems can be considered a class of real-time reactive systems. The term reactive 

was introduced by Harel and Pnueli in [88] to designate systems that continuously interact with 

their environment. When the behavior of the reactive system depends on time, the system is 

called a real-time reactive system. 

According to [135], test cases for reactive systems can not be simply described by means 

of a pre-state. test inputs and the expected state after the execution of program. Because 

of the continuous interaction between system and its environment, test cases must verify the 

correct causal relationships between inputs and outputs, the promptness to engage into specific 

actions, real-time requirements. In the reactive system context a Test Execution denotes a Trace 

observable at the interface between the test driver and the component under consideration. 

A test case for hybrid systems (or reactive systems, too) consists of: 

• input data and causal execution conditions: This describes initial inputs and consecutive 

inputs depending on the target system reactions. 

• timed execution conditions: This describes time-dependent conditions necessary to stim-

ulate a certain input. 

• (timed) expected results: This describes the traces which are regarded as correct execution 

of the test case. 

Some characteristics of the hybrid system testing [135] might be summarized as follows. 

Testing hybrid systems requires a combination of very different techniques for test generation, 

execution and evaluation because such systems have a specific construction. Usually, hybrid 

systems are built from components of the following types: 

• sequential components; 

• untimed concurrent components; 
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• discrete-time concurrent components; 

• dense-time/ discrete value concurrent components; 

• dense-time/ continuous value concurrent components. 

In [135] test cases for hybrid systems are generated using Hybrid CSP specifications. This 

methods reduce to the theory for testing against timed or untimed CSP specifications. 

It seems that testing reactive systems in a black-box fashion requires a model based speci­

fication language (which can specify the system state changes) as Z, Object-Z, VDM, Charon 

[7], ~lasaccio [95], Shift. Rigorous methods exist to generate test cases from Z, Object-Z, VDM 

[127], Larch. In the literature, in general, we can not find much work for rigorously testing 

timed systems. A recent example is [149]. This approach is based on timed input/output 

automata. 

5.4 Other Verification Methods 

From control theory, there exist also comprehensive bodies of techniques for verifying properties 

of continuous systems such as stability, performance, robust stability, robust performance, and 

so on [161]. These techniques are deductive in nature, since the systems considered have 

an infinite number of states. If the systems have a special structure (e.g., linear), then the 

verification can be automated. Unfortunately, the techniques are geared to verify properties 

that are expresses in terms of Lyapunov stability or signal/system norms, and as such are 

not directly applicable to verification of properties such as safety, reachability, let alone more 

general temporal logic formulas. 
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Chapter 6 

Verification Methods for General 

Stochastic Hybrid Systems 

6.1 Overview 

Stochastic hybrid systems can exhibit very complex bahaviors, which makes their analysis 

both critical and challenging. Verification of SHS is an area where deductive formal methods, 

relying on mathematical inferences and proofs to produce exact statements about the system, 

are indispensable. Formal methods are also needed in system synthesis, particularly when 

correctness, robustness, and optimality are of paramount importance, which renders design by 

informal reasoning combined with trial and error ineffective. 

Besides the more traditional properties such as stability and performance, properties of 

interest in (probabilistic or stochastic) hybrid systems also include safety and reachability. In 

principle, safety verification aims to show that starting from any initial condition in some 

prescribed set, a system can not evolve to some unsafe region in the state space. On the other 

hand, reachability verification aims to show that for some initial conditions in some prescribed 

set, the system will evolve to some target region in the sate space. The above properties are the 

most relevant when the system specifications are given in temporal logic formulas [108, 129]. 

These verification questions are no mean easy to answer, as for very simple classes of hybrid 

systems they are known to be undecidable already [94]. 

One of the most important goals of this thesis is to develop methods for verification of 

94 



stochastic hybrid systems. Since these systems are specified using complex tools of stochastic 

analysis, the first main step is to define the mathematical formulation of the verification problem 

in this context. Then we have to investigate mathematical properties, analytical solutions of this 

problem. The ultimate goal is to investigate if the formal verification methods can be further 

developed for SHS. This can be a long research track because SHS being multidimensional 

systems (continuous time/ state space, stochastic dimension, hybrid dimension) do not always 

admit finite state abstractions. 

In the next section we briefly encounter different formal verification methods for different 

probabilistic systems developed in the literature. Then we define the reachability problem for 

SHS and develop some possible mathematical approaches based on stochastic analysis. 

6.2 Formal Verification Methods for Probabilistic Systems 

There is an increasing awareness that unexpected behavior from interacting processes cause 

serious problems .. This observation applies not only to programs and digital systems, but also 

to physical processes, such as robots, automobiles, manufacturing processes, and so on. 

Formal verification of these systems seeks mathematical methods for reasoning about their 

behavior. Automatic formal verification is particularly promising, because it requires far less 

labor than the manual techniques. 

Physical systems work in real time and behave probabilistically, so we need formal methods 

for analyzing real-time stochastic systems. 

In the last fifteen-twenty years, model-checking has been extended to models of real-time 

and probabilistic systems. Model-checking algorithms have been devised for several different 

models of real time [4, 2], for discrete-time Markov chains (DTMC) [136, 59], for semi-Markov 

Processes [3]. In [87], it is introduced a branching-time logic PCTL for DTMC and several 

model checking algorithms are presented for this logic. 

More recently, model-checking techniques have been extended to stochastic processes as 

continuous-time Markov chains (CTMC). In particular, efficient verification algorithms have 

been developed for CSL (Continuous Stochastic Logic [13, 14, 15]), a stochastic variant of CTL. 

CSL supports the specification of sophisticated steady-state and time dependent properties. 
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The initial proposal for a temporal logic for specifying performance properties over CTMC is 

given in [14]. In [14], it is shown that the model checking problem for this logic is decidable 

for rationale time bounds. The first full proposal for CSL, its formal semantics, and Volterra 

fixpoint characterization for the probabilistic time-bounded until operator are presented in [15]. 

The paper [16] describes how model checking of probabilistic timed-bounded until-formulas can 

be done using transformations of the Markov chains, yielding a standard transient analysis 

problem. Besides it is shown that lumping preserves the validity of all CSL formulas. CTMC 

are widely used in practice, mainly because they combine a reasonable modelling flexibility with 

well-established efficient analysis techniques for transient and steady-state probabilities. The 

stochastic processes described by CTMC are characterised by the fact that the state holding 

times, indicating the amount of time the system has spent in a state, are restricted to negative 

exponential distributions. As a result of their memoryless property, the probability of moving 

from one state to another is independent of the amount of time the system has spent in the 

current state. 

6.3 Stochastic Reachability 

Stochastic analysis tools have been proposed [40, 41] as an alternative verification method for 

situations when uncertain/probabilistic systems do not admit finite state abstractions. Al­

though computer science communities do prefer understandably, probabilistic models, many 

more complex stochastic models record a wide spread use in different branches of engineering. 

The most important verification method for these models is reachability analysis. The stochas­

tic features of these models have to be captured in the formulation of the reachability problem. 

This leads to the concept of stochastic reachability. 

6.3.1 Motivation 

Understanding the reachability problem is one of the most important objectives in the context 

of a stochastic hybrid modelling. 

In general terms, a reach ability problem consists of determining if a given system trajectory 

will eventually enter a prespecified set starting from some initial state. For deterministic hy-
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brid systems, the reachability analysis refers to the problem of computing bounds on the set of 

states that can be reached by system trajectories. Reachability analysis is relevant to a variety 

of control applications. The available reachability tools consider various uncertainty. In this 

context 'uncertainty' is synonym with nondeterminism. descriptions such as differential inclu­

sions [140, 158], polygonal approximations [56], ellipsoidal approximations [119], and general 

nonlinear systems with set disturbances [124]. 

In many control applications, the dynamics of the system under study is subjected to the 

perturbation of random noises that are either inherent or present in the environment. Typically, 

a certain part of the state space is "unsafe" and the control input to the system has to be chosen 

so as to keep the state away from it, despite the presence of the random noises. This can happen 

in many safety-critical situations. Therefore, in these applications it is very important to have 

some measure of criticality for evaluating whether the selected control input is appropriate 

or a corrective action should be taken to timely steer the system out of the unsafe set. A 

natural choice for the measure of criticality is the probability of intrusion into the unsafe set 

within a finite/infinite time horizon: the higher the intrusion probability, the more critical is 

the situation. Within the ATM context, safety critical situations arise during the flight when an 

aircraft comes closer than a minimum allowed distance to another aircraft or enters a forbidden 

region of the airspace. In the current ATM system, air traffic controllers are in charge of 

guaranteeing safety by issuing to pilots correcting actions on their flight plans when a safety 

critical situation is predicted. The limit to the air traffic system capacity due to its human­

operated structure can be pushed forward by introducing automatic tools for supporting air 

traffic controllers in detecting safety critical situations. 

One of the most important goals of our work [40,41,137] was to develop formal mathemat­

ical models for the safety critical air traffic management situations. A central problem in air 

traffic control is determining the collision probability (rare events [18]), i.e. the probability two 

aircraft come closer than a minimum allowed distance. If this probability can be computed, an 

alert can be issued when it exceeds a certain threshold. 

In the context of stochastic hybrid systems, the computation of the conflict probability 

reduces to a reachability problem: computing the probability that the stochastic hybrid process 
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modelling the aircraft motion reaches an unsafe part of the state space (where two aircraft 

come closer than the minimum allowed distance). This is the key approach in new air traffic 

control philosophies like the free flight concept [103]. Free flight - sometimes referred to as 

self sepamtion assumnce [103] - is a concept where pilots are allowed to select their trajectory 

freely at real time, at the cost of acquiring responsibility for conflict prevention. It changes air 

traffic management in such a fundamental way, that one could speak of a paradigm shift: the 

centralised control becomes a distributed one, responsibilities transfer from ground to air, air 

traffic sectorization and routes are removed and new technologies are brought in. In the RTCA 

Free Flight Task Force, Free Flight is presented as a range of concepts, allowing self optimization 

of the routes by the airlines. The document also describes a mechanism for airborne separation 

as a part of the Free Flight concept. The basic assumption is that the collision probability is 

getting smaller as the sky is getting less crowded. Safety analysis of the Free Flight is essentially 

stochastic. The Achilles heel is then that reachability analysis needs to be stochastic. 

GSHS could be used. as the aircraft dynamics model, which incorporates the information 

on the aircraft flight plan, and takes into account the presence of wind as the main source 

of uncertainty on the aircraft actual motion. Therefore, the problem of estimation of the 

probability that the aircraft enters in an "unsafe" set can be formally specified as the reachability 

problem for GSHS. 

Developing a methodology for the reach ability analysis of SHS will involve dealing with two 

aspects: 

1. the theoretical aspect of the measurability of the reachability sets (the set of trajectories 

which enter a prespecified set of state space); 

2. the computational aspect regarding how to estimate the probability of the reachable events 

and how to quantify the level of approximation introduced. 

6.3.2 Mathematical Formulation 

The Markov property holds for almost all hybrid system models discussed in this thesis, in 

particular for GSHS (see section 3.2). Because of this, we formulate the reachability problem in 

the general setting of Markov processes. Assume that we have a given strong Markov process, 
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(J't). 'Ve further assume that (Xt) has the state space (X, B) (where X is a Borel and B is the 

Borel O"-algebra of X) and it has the cadlag property, 

Let E a Borel set of the state space X, i,e. E E B(X). In this context the trajectories of 

the system can be identified with the elementary events of the underlying probability space n. 
Thus the reachable "event" associated to E (Le. the set of trajectories that reach E within a 

finite/infinite time horizon) can be defined as follows: 

ReachT(E) 

Reachoo(E) 

{w E n I :It E [O,T] : Xt(w) E E} 

{w E n I :It > 0 : Xt (w) E E} 

(keep in mind that an element wEn is, in fact, a trajectory of the system). 

(6.1) 

(6.2) 

Problem 1: We would like to have some information about the measure P[RT(E)] and 

P[Roo(E)] of these sets in the underlying probability space. But, for this, we should know 

if we can apply the measure P to the sets defined by (6.1) and (6.2). Thus the first problem 

can be formulated as follows: Are RT(E) and Roo(E) really events? 

Remark 8 Note that if RT(E) is an event then Roo(E) is also an event, since Roo(E) 

U~oRn. 

Problem 2: If it turns out that we can assign a probability to RT(E) and Roo(E). Can we 

compute this probabilities? 

The measurability of the reachable events can be proved employing some standard tech­

niques for Markov processes using the properties of the so-called analytic sets [46]. The method 

is very general and it works for all stochastic hybrid system models provided that they are 

Markov processes with cadlag property. 

6.3.3 Estimation of reach set probabilities. Possible Approaches 

We encounter, in the following, some different approaches used to estimate the probabilities to 

reach a Borel set belonging to the state space. 
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Via Markov process theory 

A very first approach used to estimate the reach set probabilities is based on hitting times and 

hitting time moment approximations. This approach has been investigated in [40]. The main 

advantage of this approach is the fact that many analytical results for exit (hitting) times are 

known. The method, proposed in [40], allows to estimate the number of steps after a certain 

set is reached and is based on a very old result (of Dynkin) about hitting times. The difficulty 

of this method is that, in many cases, the computation of the hitting time expectations is quite 

complicated. 

Via Potential theory 

This method employs potential theory notions such as: excessive functions, Choquet capacities 

[54] and potentials. 

The reach set probabilities can be related to the so-called hitting probabilities associated to 

a Borel set E (which are, roughly speaking, probabilities to hit E). Then, it is known that the 

hitting probabilities can be treated as excessive functions for the corresponding Markov process 

[25]. Therefore, we can invoke approximation results for the excessive functions in order to 

obtain approximations of the hitting probabilities. 

Another direction is to write the reach set probability associated to E as a Choquet capacity 

(in the way described in[126]), which is, roughly speaking, a nonlinear extension of a measure. 

Then we can employ approximation results for capacities. The main advantage is that the 

analytical and numerical theories of capacities are very well-developed, richer than the similar 

theories for hitting times, so this approach could be better than the first one. But again, because 

of the overlapping between the hitting time theory and capacity theory; we expect the same 

big computational effort in the approximations of these capacities. 

Another very interesting method is based on the so-called Dirichlet forms (that are the 

quadratic forms, defined in section 2.2.4, which satisfy some supplementary axioms [126]) and 

it was investigated by the author in [41]. This approach shows how bounds on the measure 

of the reach event can be computed using the infinitesimal generator of the process and the 

corresponding Dirichlet forms. It has already been proved in the literature that Dirichlet forms 
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constitute a powerful tool for studying Markov processes (see, for example, [1, 126] and the 

references therein). Dirichlet form techniques have found striking applications in the study of 

stochastic partial differential equations [1, 29]. This is mainly due to the fact that they allow 

to develop a highly nontrivial stochastic analysis under some minimal regularity hypothesis, 

for instance, on very irregular spaces without differentiable structure like fractals, or on infinite 

dimensional spaces like path spaces or spaces of measures. 

For Dirichlet forms, a lot of work was carried out on axiomatizations and representation 

results. This provides a mathematical vehicle for zooming in and out at different levels of 

abstraction in a consistent way. For example, in the most abstract view, the Dirichlet forms 

can be seen as mixing a linear space structure with a partial order structure, by providing 

simple compatibility axioms. In more concrete applications, a Dirichlet form defines a logical 

type of functions with an inner product given explicitly by a logical expression. The advantage 

of Dirichlet forms which derives from this is that they might be easily implemented. There are 

two main streams: one is symbolic (like using a model-checker or a theorem prover or their 

combination like PVS) and another one is numerical [52]. 

For the reachability problem the symbolic approach has been intensively applied (see e.g. 

the papers in [128]), especially because the accessible states can be generated. In the case of 

PVS, we can link these techniques with the huge mathematical libraries made available by the 

theorem provers. 

Via Optimal Control 

This method consists of drawing parallels between the computations based on the extended 

generator of the stochastic hybrid system model (as Markov process) and the Hamilton-Jacobi 

equations [60]. It involves the following steps: 

• Start point: for any Borel set E belonging to the state space, take 

P[Reachr(E)] 

P [Reachoo (E)] 
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• The possibility to characterize the previous probabilities as viscosity solutions [60] to a 

partial differential equation. 

6.4 Reachability Estimation via Hitting Times 

In this section, reachability questions are characterized as hitting time problems. We extend 

our approach for Piecewise Deterministic Markov Processes from [40] to GSHS. This is possible 

since in Chapter 3 we have studied the main properties of this model and we have obtained the 

expression of the generator. 

Let H be a GSHS. Let us consider a fixed starting point Xo E X and the sequence T1 < 

T2 < ... Tk < ... of jump times associated with Xo. Let E a Borel subset of X. Let L be the 

generator of the process H, given by formula (3.28), and let 1)(L) denote the domain of the 

generator. It is known that the process (Cf)tEIR+ defined by 

G' = u(xtJ- u(xo) -l Lu(xs)ds 

is a martingale for each u in the domain 1)(L). This fact implies that for each t > 0 we have 

Since, we have supposed that TE < 00 almost sure with respect to P, letting t ~ 00 gives 

We define the occupation measure /-10 and hitting distribution /-11 by 

/-10 (B) 

/-11 (B) 

rTE 

E[}o IB(xs)ds] 

P(XTE E B) 
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for all B E B(~Y), where lB is the indicator function of B. 

It is clear that if BeE then J-Lo(B) is zero, and if B C E C = X\E then J-Ll (B) is zero. 

This means that J-Lo is concentrated in E C and J-Ll is concentrated in E. With an integrability 

argument one can obtain from formula (6.3) the so-called adjoint equation, as follows: 

( Lu(x)J-Lo(dx) + u(xo) - { U(X)J-Ll (dx) = O. 
lEc lE 

(6.4) 

It is clear that 

(6.5) 

We consider (xt) the process (Xt) 'killed' when it enters to E. Then the adjoint equation (6.4) 

becomes 

( L*u(x)J-Lo(dx) + u(xo) = 0 
lEc 

if we suppose that Xo tj: E. Note that L* has a similar expression with L, i.e. 

L* f(x) = Lcuntf(x) + A(X) '-(f(y) - f(x))R(x,dy) 
lEc 

where Lcuntf is given by (3.29). If we take U = lEc E 1)(L*) then the adjoint equation becomes 

or 

( L * lEc(X)J-Lo(dx) + 1 = 0 
lEc 

( A(X) '-(lEc(y) - lEc(X))R(x, dY)J-Lo(dx) + u(xo) = 0 
lEc lEc 

If y E Ec - E C then lEc(y) = 0 then (6.6) becomes 

(6.6) 

Thus, once the measure /-La has been determined (using for e.g. linear programming methods), 

the hitting time mean can be obtained from (6.5). 

The following lemma is extremely useful to estimate the expectations of the moments of 

hitting times. 

103 



Lemma 17 [68} Let E be a Borel subset of X, T = TE and let m(t) = sup{Px[T > t], x EX}. 

Then, for all t > 0, x E X we have ExT < l-!(t). Moreover, if m < 1, for 0 < p < -t In m 

then Exe
pT 

is an analytic function of p in a neighborhood of the origin, i. e. we have ExepT = f: 
t.. k k! ExT. 

k=l 

If we suppose that TE is finite then there exists Tk such that TE E [Tk, Tk+l). Using lemma 17 

and the survivor function execution of a GSHS leads to the following estimation for all k > 1 

Then we compute the quantities Tk = Ex:'!r
E

, k = 0,1,2,3, ... (with the convention To = 0) and 

let Tko be the biggest one. Then TE E [Tko, Tko+1), i.e. the number of steps after the set E is 

reached is ko. 

6.5 Reachability Estimation via Quadratic Forms 

This section is developed using our paper [41]. 

The basic idea of the reachability method proposed here is to employ the characterization 

of the strong Markov processes based on the associated quadratic forms, called Dirichlet forms, 

defined using the process generator (see Section 2.2.4). A Dirichlet form makes possible the use 

of the operator theory for a given Markov process. Also, it comes with a nonlinear extension 

of a measure, called capacity. The capacity associated with a Dirichlet form can be expressed 

in terms of the hitting times of the corresponding Markov process [126]. We investigate the 

possible benefits of applying a Dirichlet form based method to study the reachability problem 

of GSHS. 

Let us briefly explain the methodology to obtain upper bounds for reach set probabilities. 

First we suppose that the target sets in the state space of H are given as level sets. Then 

we start with a Borel set E given by a nice function F. Markovian properties of the GSHS 

model H allow us to define the corresponding quadratic form £.. This form is a special kind 

of Dirichlet form (i.e. it satisfies the axioms of the Dirichlet form definition since H is a Borel 

right process). 
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\Ve do not give in this thesis the background for Dirichlet forms. For this, the reader is 

referred to [126]. We consider that for the reach ability problem studied in this section is not 

relevant to present the axioms which define a Dirichlet form. Intuitively, a Dirichlet form is a 

quadratic form with some Markovian properties. What is very important for us is that we can 

obtain results on the estimation of reachability probabilities using properties of the capacity 

associated to a Dirichlet form. 

Secondly, using the function F we define the induced process F(xt), which is a stochastic 

process with values in R, and the induced Dirichlet form £,* (see formula (6.9) below). The 

form £,* is associated with F(xt) if the induced process is Markov. 

The mechanism used to obtain the upper bounds for the reach set probabilities is based on 

the inequality which exists between the capacity of the initial Dirichlet form £, and the capacity 

corresponding to the induced Dirichlet form £,* (the inequality (6.13) below). The relation 

existing between hitting times and capacities allows us to get the result we are interested in, 

namely, the formula (6.14). 

6.5.1 Target Sets 

Usually a target set E in the state space is a level set for a given function F : X -+ 1R, i.e. 

E = {x E XIF(x) > l}; 

(F can be chosen as the Euclidean norm or as the distance to the boundary of E). The 

probability of the set of trajectories which hit E until time horizon T > 0 can be expressed as 

6.5.2 Dirichlet Forms 

P{ sup F(xt) > l}. 
tE[O,Tj 

(6.7) 

The strong Markov property of GSHS allows us to define an associated quadratic form, as 

follows. 

Let H be a GSHS. Let D(L) be the domain (not the extended domain) of its infinitesimal 

generator L. Using the Lebesgue measure Ai on Rd(i), we define a new measure m on the state 
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such that for each i E Q the projection of m to each mode Xi is exactly the restriction of the 

Lebesgue measure Ai to that mode, Ailxi, i.e. 

Let Tn * the image of m through the map F. 

Remark 9 Since any GSHS is a Borel right process, the process semigroup (Pt ), defined by 

{2.3}, may be viewed as a strongly continuous semigroup of operators on L2(X, m) [126]. Its 

genemtor is defined by the same limit 

lim ~(Ptf - f) 
t~O t 

(6.8) 

with respect to the norm of L2(X, m). The domain of the generator consists of those f E 

L2(X, m) for which the limit {6.8} exists in the norm of L2(X, m). 

Remark 10 [126] Under the standard assumptions of section 3.2.2, there exists a quasi-regular 

Dirichlet form l (£, D[£]) on L2(X, m) associated with the process (Xt), given by 

{ 

D(L) C D[£] 

£(u,v) = (-Lu,v), u E D(L), v E D[£]. 

We can think of a Dirichlet form £ as a recipe for a Markov process (Xt)t~O, in the sense that 

£ describes the behavior of the composed process u(Xt) for every u in the domain of £. There 

is no guarantee that the 'coordinates' (u(Xt))u can be put together in a consistent way to form 

a process with reasonable sample paths. 

6.5.3 Induced Dirichlet Forms 

Let us denote the sub-lT-algebra of B, generated by IT(F), and the projection operator from 

L2(X, B, m) to L2(X, IT(F), m) by F.F = lEm['IF] in case m is a probability measure. 

More precisely, the function F induces a form £* on L2(JR, m*) by 

£*(u*,v*) = £(u* of,v* of); u*,v* E D[£*] (6.9) 

1 See the definition 3.1 from [126} 
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where 

D[£*] = {u* E L2(JR, m*)lu* 0 F E D[£]}. 

Proposition 18 [112} If F(TJ) c D[£] where TJ is some L2-dense subset of D[£], then £* is a 

Dirichlet form on L2(JR, m*). 

Assumption 8 Suppose that the Dirichlet form £* is quasi-regular-. 

In [112], it is shown that, under a mild condition on the function F, the assumption 8 can be 

accomplished. This assumption ensures that there exists a right Markov process, (xt), with 

the state space JR, associated with the Dirichlet form £* [1]. If F(xt) happens to be Markovian 

then £* is its associated Dirichlet form (see [141], for conditions on F which imply the Markov 

property of F ( Xt) ) . 

Assumption 9 Suppose that the Dirichlet forms £, £* are symmetri~ 

£ ( u, v) = £ ( v, u), u, v E D [£] ; 

£*(u*,v*) = £*(v*,u*), u*,v* E D[£*]. 

Assumption 9 is not restrictive (any result valid for regular Dirichlet forms and invariant under 

quasi-homeomorphisms is applicable to quasi-regular Dirichlet forms [53]). 

Each (quasi-regular) symmetric Dirichlet form can be expressed as the sum of its parts: con­

tinuous, jumping and killing corresponding to the same parts of the Markov process considered. 

Precisely, a regular Dirichlet form £ can be decomposed using the Beurling-Deny representation 

[76]: 

£(u,v) 

+ L u(x)v(x)k(dx), u, v 

£c(u,v) + r [u(x) - u(y)][v(x) - v(y)]J(dx,dy) -(6.10) 
}xxX\d 

E D[£] n Co(X). 

Here £c is a symmetric form with domain D[£c] = D[£] which satisfies the property 

2See the definition 3.1 from [126J 
3 See [76, 126J for the theory of symmetric and non-symmetric Dirichlet forms. 
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Ec( a,l') = 0 if u, v E D[E] have support compact and v 

is constant on a neighbourhood of supp[u] 

J is a symmetric positive measure on X x X\d, d being the diagonal; and k is a positive 

measure on X. The form Ec and measures J and k are uniquely determined by E; Ec is called 

the diffusion part of E, and J and k are called the jump measure and the killing measure, 

respectively, associated with E. 

Note if E* is open in R and E = P-l(E*) then we can define for p > 0, the p-capacity of E 

Capp(E) = inf{£(u,u) + p(u,u)mlu E D[£], u > 1 m - a.e. on E} (6.11) 

where (', ')m is the inner product of L2(X, m) and the p-capacity of E* 

Cap;(E*) = inf{ E* (u*, u*) + p( u* ,u*)m* lu* E D[£*], u* > 1 m* - a.e. on E*} (6.12) 

where (', ')m* is the inner product of L2(R, m*). 

Proposition 19 [112} Under the assumptions 8 and 9, if E* is open and E = P-l(E*) then 

(6.13) 

We can consider the two first hitting times TE (with respect to (Xt)) and TE* (with respect 

to (xn). Intuitively, the capacity (7.4.1) (resp. (6.12)) is the Laplace transform of the hitting 

time TE (resp. TE*) of the target set (resp. of the 'induced' target set). 

6.5.4 Upper Bounds for Reach Set Probabilities 

An upper estimation for the probability (6.7) will be given in terms of the Dirichlet form induced 

by P on IR. This form corresponds to the process F(xt). 

Assumption 10 Assume that m(X) < 00, 1 E D[E] and k(X) < 00, where the killing measure 

k is described in the Beurling-Deny representation (6.10). 

The translation of the capacitary inequality (6.13) into probabilistic terms for the right 

Markov processes (Xt) and (xi) associated with E and £* gives rise to the following result: 
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Proposition 20 {112} Under the assumption 10, if E* c IR is an open set of finite Cap*­

capacity and E = F-l(E) then for all p > 0, 

where k* is the killing measure associated with the killing part of £*. Also 

Pm(TE < T) <p-1ePmin{T£*(u*,u*) +p(u*,u*)m*lu* E D[£*], u* > 1, m* -a.e. onE*} 

(6.14) 

One might, for instance, use the small induced processes rather then the huge original process 

to deal with the reachability problem. The induced Dirichlet form capacity (of E* = (l, 00)) 

plays an essential role in obtaining the reach event probability estimation. If the model H 

is discretized. then the induced process is a one-dimensional jump process and therefore the 

computation of Laplace transform and the mean level-crossing time is feasible. It is interesting 

to note that the capacity of the target set is sub additive. So even if the target set were very 

complex, then the capacity of target set is at most the sum of capacities of its parts. 

6.6 Some Remarks 

In this chapter we have presented some different analytical approaches used to obtain estima­

tions reach set probabilities. These approaches we have investigated in our papers [40,41]. By 

far~ it is clear that the theoretical results we have obtained are very nice from the mathematical 

point of view, but, to make them practically useful we have to deal only with quite simple mod­

els of stochastic hybrid systems. Then, naturally, our next research investigation was directed 

towards methods for abstractions of SHS models. To achieve this goal the next step is to define 

the concept of bisimulation for SHS (see the following chapter). 

On the other hand, the method based on Dirichlet forms to obtain estimations for reach 

set probabilities gives us the idea to define a coarser version of bisimulation for SHS which 

preserves these probabilities with respect to some certain sets of their state spaces. Intuitively, 

two SHS will be bisimilar with respect to some target sets if the induced Dirichlet forms are 

'equivalent'. We have not investigated yet this idea, but we believe this might be worthy since 
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in practice we want to be ensured that, in the abstraction process, we preserve the reach set 

probabilities for the unsafe sets. Then this bisimulation concept will not imply anymore the 

equivalence of the initial processes, but the equivalence of the induced process (which are much 

more simpler since they take real values). 
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Chapter 7 

Bisimulation for Stochastic Hybrid 

Systems 

7.1 Overview 

Significant progress in verification of probabilistic systems has been done mostly for discrete 

distributions or ~Iarkov chains. Continuous stochastic processes are notably more difficult 

to verify. It is notorious that theorem proving of stochastic properties (with the probability 

one) can be carried out on the unit circle only. Model checking and reach ability analysis are 

strongly conditioned by abstraction techniques. When the state space is not only infinite but 

also continuous, abstraction techniques must be very strong. Hybrid systems add an extra level 

of complexity because of the hybrid nature of the state space (discrete and continuous states 

coexist) and stochastic hybrid systems push further this complexity by adding non-determinism 

and uncertainty. Therefore, it is imperious necessary to have an abstraction theory for stochastic 

processes that can be used for verification and analysis of stochastic hybrid systems. 

Reachability analysis and model checking are much easier when a concept of bisimulation 

is available. The state space can be drastically abstracted in some cases. In this chapter, we 

focus on defining bisimulation relations for stochastic hybrid systems, as a first step towards 

creating a framework for verification. 

Besides of different bisimulation concepts in the concurrency theory, the notion of bisimu-
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lation is present 

• in the 'deterministic world': continuous and dynamical systems [142] or hybrid systems [85]; 

• or in the 'probabilistic world': probabilistic discrete systems [120], labelled Markov processes 

[26], piecewise deterministic Markov processes [153]. 

In this chapter we define different concepts of bisimulation for a very large class of Markov 

processes. This work is motivated by the fact that different models for stochastic hybrid systems 

are indeed Markov processes. Our interest is related with the general stochastic hybrid systems, 

introduced in Chapter 3. We mainly present two approaches of defining stochastic bisimulation: 

The first one is based on category theory tools. The definition of bisimulation builds on the 

ideas of Edalat [26,70] and of Larsen and Skou [120] and of Joyal, Nielsen and Winskel [114]. We 

extend the Edalat's definition of bisimulation for labelled Markov processes to continuous time 

strong ~larkov processes defined on analytic spaces. The main result is that this bisimulation is 

indeed an equivalence relation. This turns out to be a rather hard mathematical result, which 

employs the whole stochastic analysis apparatus associated to a strong Markov process defined 

on analytic space. 

Being defined in a category theory context, this stochastic bisimulation, as a notion of system 

equivalence, enjoys some fundamental mathematical properties. Moreover, we give a charac­

terization of this bisimulation through a measurable relation between the state spaces which 

induces equivalent quotient processes. For the case of GSHS, we prove that, this is a natural 

notion of bisimulation because the bisimilarity of two GSHS implies the bisimilarity of their 

diffusion components and respectively of their jumping parts. 

The second approach to define bisimulation between Markov processes is more robust. Two 

processes are bisimilar if there exist a relation between their state spaces which induces two 

quotient processes with the same probabilities to reach the bisimilar measurable sets. The 

reach set probabilities are described by the statistical notion of Choquet capacity associated 

to a Markov processes. A capacity is non-additive set-function used to represent uncertainty. 

The mathematical theory of non-additive set-functions got its first contribution with Gustave 

Choquet's "Theory of Capacities" [54] in 1953. Choquet's interest was applications to statistical 

mechanics and potential theory. Later this theory found applications in decision theory [66, 143], 
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robust Bayesian inference [104], Artificial Intelligence and automated reasoning [67], finance and 

asset pricing [69], etc. 

The rest of the chapter is organized as follows. Next section presents some specific aspects of 

stochastic hybrid systems. In section 3, we present two alternative ways to define the concept of 

stochastic bisimulation for the category of strong Markov processes defined on analytic spaces. 

The difference lies in the methodology to define the arrows in the respective category. A 

characterization of this concept of bisimulation is also given. Specific properties for the case 

of GSHS are also derived. In section 4 a bisimulation concept "free of category theory" is 

proposed. This can be considered as a weak version of bisimulation because its purpose is to 

preserve only some statistical parameters of the initial processes. The chapter ends with some 

conclusions and further work. 

7.2 Stochastic Hybrid Systems 

7.2.1 Models 

In the Chapter 3 we have defined a general model for SHS which encompasses most of the 

models for SHS studied in the literature. SHS can be described as stochastic hybrid automata, 

which can be thought as the syntax, and then their executions represent the semantics. 

7.2.2 SHS Realizations 

The realization of a GSHS (which might be considered as the most general model of SHS) is 

built as a Markov string H obtained by the concatenation of some diffusion processes together 

with a jumping mechanism given by a family of stopping times. We have proved that the 

realization of any GSHS, H, under standard assumptions (about the diffusion coefficients, non­

Zeno executions, transition measure, etc see Chapter 3) is a strong Markov process. 

In this chapter, different concepts of stochastic bisimulation for SHS will be defined between 

their realizations. From this perspective, the most important aspect of SHS is that their real­

izations are stochastic processes. Then we can combine stochastic analysis tools with classical 

concepts of bisimulations, in order to get new definitions for stochastic bisimulation. 

Stochastic processes, we consider here, are non-deterministic systems with a continuous 
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state space, where "non-deternlinism" can be measured using transition probability measures. 

11arkoy processes form a subclass of stochastic systems for which, at any stage, future evolutions 

are conditioned only by the present state (in other words, they do not depend on the past). 

A probability space (n, F, P) is fixed and all X -valued random variables are defined on 

this probability space. The trajectories in the state space are modelled by a family of random 

variables (Xt), where t denotes the time. The reasoning about state change is carried out by a 

family of probabilities Px one for each state x EX. The construction is similar to the coalgebraic 

reasoning in the semantics of specification languages: the system behavior is described by given 

for each state the possible evolutions. For Markov processes, for each state x, the probability 

Px(Xt E A) to reach a given set of state A C X (provided that A is measurable) starting from 

x describes the system evolution. We remark two ingredients that make the difference from 

the deterministic case: the evolutions are described from an initial state to a set of final set 

(nondeterminism) and all we know is a probability to have such trajectories (uncertainty). 

Formally, let M = (n, F, Ft, Xt, Px) be a strong Markov process. In the following sections, 

usually AI will represent the realization of a stochastic hybrid system model, H. 

:Yloreover, we suppose that M is a transient Markov process (i.e. there exists a strict positive 

Borel measurable function q such that V q is a bounded function). The transience means that 

for any Borel set E in X for almost all trajectories there exists a finite stopping time t*such that 

Xt ~ E for all t > t* (for more explanations about the transience property see [55]). On the state 

space X we define a preorder relation -<M given x -<M Y ~ VI(Y) < VI(x), 'VI E Bb(X), I > 

O. Intuitively, -<M is the order on the trajectories of M. In particular, if M degenerates in a 

semi-dynamical system, -<M is exactly the order relation on the trajectories. 

One can define on X the fine topology [133], which consists of the sets G C X with the 

following property: for each x E G there exists a measurable set A :) X\G and Px(TA > 0) = 1, 

where 

is the first hitting time of A. Intuitively, this means that each trajectory starting from x remains 

for a while in G. The fine topology is separated and is finer than the initial topology. 
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7.3 Categorical Approaches for Defining Bisimulation of Markov 

Processes 

Having defined the structure of stochastic hybrid systems and their abstractions, we now con­

sider relationships between abstract realizations that preserve their structure and therefore can 

be seen as homomorphisms of (abstractions of) Markov processes. We shall introduce simu­

lation morphism which transfer the study of properties of an initial system to the study of 

properties of a smaller system. In this context we will define a notion of bisimulation as a 

special simulation. This concept will induce a new stochastic bisimulation for those models of 

stochastic hybrid systems, whose realizations are strong Markov processes (for example: Piece­

wise deternlinistic Markov processes [40], stochastic hybrid systems [41], switching diffusion 

processes [81], general stochastic hybrid systems [43]). The state space of these processes is 

usually a Borel space. In most of the cases, the state space can be identified with the Euclidean 

space or an open subset of it. In the following we consider a slightly more general case, namely 

we consider the case of strong Markov processes defined on analytic spaces. An analytic space 

is the image of a Polish space under a continuous function from one Polish space to another. A 

Polish space is a topological space homeomorphic with a complete separable space. Any Borel 

space is an analytic space. 

In the first subsection, we discuss a general view of the methodology for defining bisimulation 

for ~larkov processes. In the next two subsection we give two possible methods to define the 

category of strong Markov processes with analytic state spaces. The difference consists in the 

way to define the arrows in such category. In each case we define the concept of bisimulation 

and we show that the respective category has semi-pullback. The later result implies that the 

bisimulation is an equivalence relation. The resulting concept of bisimulation will be compared 

with a concept of bisimulation via open maps (as introduced by Winskel et.al. and applied to 

continuous dynamical system by Tabuada et.al.) for semi-dynamical. After that we present 

some specific properties for bisimulation of GSHS. 
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7.3.1 Defining the methodology 

The definition of bisimulation builds on the ideas of Edalat [70] and of Larsen and Skou [120] 

and of Joyal, Nielsen and Winskel [114]. 

The classical paper of Joyal, Nielsen and Winskel [114] presents a general categorical view 

of what bisimulation is for deterministic systems. The bisimulation concept is given in terms 

of open maps and simulation morphisms. 

For the continuous case of the Markov processes, this definition can not be adapted straight­

forward. The main problem is how to define the simulation morphisms and the open maps. 

In this case, we say that a Markov process MI simulates another Markov M2 if there exist 

a surjective continuous morphism 'ljJ : X2 ----+ Xl between their state spaces such that each 

transition probability on X2 'is matched' by a transition probability on Xl. The meaning of 

this 'matching' is that for each measurable set A C Xl and for each u E X2 we have 

'It > 0 

where (p;) and (pi) are the transition functions corresponding to M2, respectively to MI. A 

such morphism 'ljJ is called simulation morphism. 

The open maps are replaced by the so-called zigzag morphisms, which are simulation morphism 

for which the above condition holds with equality. 

Practically, a simulation condition as before is hard to be checked because the time t runs 

in a ; continuous , set. Then, it is necessary to require supplementary assumptions about the 

transition probabilities of the processes we are talking about. This kind of simulation morphisms 

and zigzag morphisms have been defined for some particular Markov processes: for labelled 

~arkov processes and for stationary Markov processes with discrete time defined on Polish 

or analytic spaces (see [70] and the references therein). The categories considered there have 

the above Markov processes as objects and the zigzag morphisms as morphisms. Then the 

bisimulation notion for these processes is given in a 'classical' way. Two labelled Markov 

processes, for example, are probabilistic ally bisimilar if there exists a span of zigzag morphisms 

between them. In this context, we can point out another reason why only some special kind of 

Markov processes are considered, as follows. This bisimulation relation is always reflexive and 

symmetric. But, the transitivity of a such relation (the bisimulation must be an equivalence 

relation) is usually implied by the existence of semi-pullbacks in the Markov process category 
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considered [114, 70]. That means, in the respective category, for any pair of morphisms 'P1 : 

All ~ AI and '1'2 : AI2 ~ AI (M1, M2, M are objects in that category) there exist an object 

AfJ and morphisms 1[i : MO ~ Mi (i = 1,2) such that 'P1 01[1 = 'P2 01[2. 

The construction of the semi-pullback in the above categories of Markov processes is strongly 

based on the stationarity property of the Markov processes considered [70]. In this case the 

transition probabilities do not depend on time! Then the construction mechanism of the semi­

pullback in a such categories of Markov processes is reduced to the construction of the semi­

pullback in the category of transition probability functions and surjective transition probability 

preserving Borel maps (as morphisms in the respective category) (see [70] for the detailed 

construction) . 

We develop a novel concept of stochastic bisimulation for strong Markov processes defined 

on analytic spaces. The novelty consists of the way to define the simulation morphisms and 

the zigzag morphisms. Specifically, we replace the condition (*) by a 'global condition' given in 

terms of kernel operators. A zigzag morphism between two Markov processes should 'commute' 

with the kernel operators of the processes considered. Then the bisimulation relation is naturally 

given via zigzag morphism spans between Markov processes. Moreover, the category of strong 

Markov processes defined on analytic spaces with these zigzag morphisms as arrows has semi­

pullback. Therefore, the bisimulation relation is an equivalence relation. 

The zigzag morphisms for Markov processes can be defined in an alternative way not between 

the state spaces, but between their cone of excessive functions. These kind of functions can 

be thought of as general solutions associated to the processes generator. In this case the 

zigzag morphisms change the directions of arrows. The simulator process has a larger cone of 

excessive functions. Then the zigzag morphism spans between Markov processes used to define 

the bisimulation relation become co-spans of morphims between the excessive function cones. 

Also, in this case the category of strong Markov processes defined on analytic spaces with these 

zigzag morphisms as arrows has semi-pullback. 

7.3.2 First Approach 
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The Category of Markov Processes 

\Ye consider the category GMP of the strong Markov processes, defined on analytic spaces, 

with continuous time, as objects. In this category, the arrows will be the zigzag morphisms, 

which will be defined in the following. The aim of this subsection is to give an appropriate 

definition of these zigzag morphisms (and of simulation morphisms) between such processes, 

which will allow us to give a 'natural' concept of stochastic bisimulation in this category. 

Comparing with the similar notions from [70], the main difference is that we impose to these 

morphisms to satisfy some global conditions written in terms of kernel operators associated to 

the ~Iarkov processes considered. Our choice is motivated by the fact that, in the non-stationary 

case, the transition probabilities of the two processes depend on time and their computation, 

for each moment of time t > 0, is not practically possible. 

Let .1.\£1 and J.\£2 be two objects of GMP. The state space of M1 (resp. M2) is X(1) (resp. 

X(2»). 

Definition 21 A simulation morphism between the processes M2 and M1 (the process M1 

simulates the process M2) is a measurable, monotone, finely continuous application 'ljJ : X(2) ~ 

X(1) such that 

where V 1 (resp. V2) is the kernel operator associated to M1 (resp. M2). 

In some papers [138], an application 'ljJ as in the Def. 21 is called H -map. The Def. 21 illustrates, 

in terms of kernel operators, that the simulating process can make all the transitions of the 

simulated process with greater probability than in the process being simulated. 

A surjective H-map 'ljJ : X(2) ~ X(l) induces an equivalence relation i".J..p on X(2) 

U i".J..p V {::} 'ljJ(u) = 'ljJ(v). (7.1) 

In this way, to each x E X(1) we can associate an equivalence class [u]..p w.r.t. i".J..p such that 

[u]..p = 'ljJ-l(x). We call i".J..p the simulation relation induced by'ljJ. 
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Definition 22 A surjective simulation morphism 'l/J between the processes M2 and MI is called 

zigzag morphism if the condition from the Def. 21 holds with equality, i. e. 

(7.2) 

Proposition 23 A surjective simulation morphism 'l/J between the processes M2 and MI is a 

zigzag morphism iff for almost all t > 0 (i. e. except with a zero Lebesgue measure set of times) 

the following equality holds 

(7.3) 

where (pl) {resp. (P?)) is the semigroup of operators associated to MI (resp. M2). 

Remark 11 The monotonicity of a zigzag morphism 'ljJ can be derived from condition satisfied 

by a zigzag morphism. Roughly speaking, this means that whilst the process M2 evolves from u 

to'ljJ-I(A) (A E B(X(I))) on a trajectory with a given probability, the process MI evolves from 

'IjJ( u) to A with the same probability. 

Remark 12 A zigzag morphism 'ljJ : X(2) ---+ X(I) induces a morphism between the lattices of 

measurable functions associated with the two processes: W : Bb(X(I)) ---+ Bb(X(2)) such that 

w(f) = f 0 'ljJ (7.4) 

for all f E Bb(X(I)). Then the condition (7.3) can be written as follows 

w(pl f) = pl(w(f)) (7.5) 

for all f E Bb(X(I)), or equivalently the following diagram commutes 

The Remark 12 shows that a zigzag morphism from two Markov processes can be thought of 
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as a generalization for the stochastic case of the simulation concept for abstract control systems 

defined in [156]. 

More explicitly, the operator semi groups (pl) and (pl) define two dynamical systems (the 

abstmctions of All, resp. M2) on the Banach spaces Bb(X(l») and Bb(X(2»), respectively 

4} R+ x ~(X(l») --t Bb(X(l»); 4}(t, f) = pl f 

4} R+ x Bb(X(2») --t Bb(X(2»); ¢2(t, f) = p? f. 

A zigzag morphim between M2 and Ml implies that ¢l is simulated by ¢2. The condition (7.5) 

is. in fact, the characterization of an open map between these dynamical systems [86]: when ¢l 

evolyes from f to pi then ¢2 evolves from 'I! f to 'I!(pl f) = p?'I! f. 

Stochastic Bisimulation 

\Ve consider the category GMP with the strong Markov processes, defined on analytic spaces, 

with continuous time as objects and with zigzag morphisms as arrows. 

Then, we define the stochastic bisimulation between two processes in this category as the 

existence of a span of zigzag morphisms between them. 

Definition 24 Let Ml and M2 be two objects in GMP. Ml is stochastic bisimilar to M2 

(written Ml rv M2) if there exists a span of zigzag morphisms between them, i.e. there exists a 

Markov process M12 (object in GMP) and the zigzag morphisms 'ljJl (where 'ljJl : X 12 
--t X(l) ) 

and 'ljJ2 (where 'ljJ2 : X12 --t X(2) ) such that 

Proposition 25 Ml and M2 are stochastic bisimilar iff there exists a co-span between their 

lattices of measurable functions, i. e. there exists a Markov process M12 and the zigzag mor­

phisms'ljJl (where 'ljJl : X 12 --t X(l») and'ljJ2 (where 'ljJ2 : X12 --t X(2) ) such that 
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Bb(Xl) Bb(X2) 

where WI and w2 are induced from 'ljJl and'ljJ2 by the formula (7.4). 

Theorem 26 The category GMP has semi-pullbacks. 

Proof. Let All, AI2, AI be three strong Markov processes defined on the analytic spaces 

X(l), X(2) ,4\, respectively. Suppose that there exist two zigzag morphisms 'ljJl : X(1) ~ 

4\,U,2 : X(2) ---+ X. \Ve have to prove that there exist another object MO (a strong Markov 

process defined on a analytic space X(O)) and two zigzag morphisms 1[1 : x(O) ~ X(l) and 

1[2 : x(O) ~ X(2) such that the following diagram commutes 

X(O) 

11"1 11"2 

./ '\. 
X(l) X(2) 

'\. ./ 
1fJ1 1fJ2 

X 

Let X(O) = {(x l ,x2)I"pl(xl ) = "p2(x2)} equipped with the subspace topology of the product 

topology on X(l) x X(2). Note that X(O) is nonempty since "pI and "p2 are supposed surjective. 

Clearly, X(O) is a analytic space and it is a closed subset of the analytic space X(I) x X(2). We 

take AfO as the part of the product of the Markov processes MI, M2 restricted to X(O), i.e. M O 

is the product process MI ® M2 "killed" outside of X(O). More explicitly, MO is the subprocess 

of Ml ® M2 with respect to the multiplicative functional Nt = f[O,T)(t), where T is the first 

exit time of X(O) and f[O,T) is the indicator function of [0, T) (see [25], Ch.3 for background on 

multi plicati ve functionals and subprocesses). 

Let (p/), (P?) be the operator semi groups associated with MI and M2. 

semigroups defined on Bb(X(l) x X(2)) by 
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....-.........-..... .....-..........-..... 
The semigroup associated with AIl 0 M2 is Pt = Pl P? = P? pl [49]. Then according with 

the Th. 3.3 [25], the process MO is a Markov process and the semigroup associated with it is 

Qtf(·r
l
, x

2
) = lEx [J(x£ 0 xl)Nt} for any f E Bb(X(1) x X(2)) or, equivalently, QtJ(xl , x2) = 

Ptf(xl , x2) for any f E Bb(X(O)). 

Moreover, W is a strong Markov process since Nt is a strong functional multiplicative (see 

Prop. 3.12 [25]). 

Then 7r
l 

and 7r
2 

can be taken as the projection maps. Using product semigroup and the 

Prop.23, it follows that these projection maps are indeed zigzag morphisms. For example, for 

7r
l

, we have J 0 7r
l (for J E Bb(X(l))) depends only on xl and p? does not change it. Then 

Qt(f 0 7r
l
)(1-'l,x2) = (PlJ)(7r l (xl ,x2)) for all (xl ,x2) E X(O). The surjectivity of7rl or 7r2 can 

be easily derived using the sujectivity of 'ljJl and 'ljJ2 and the definition of X(O). The equality 

~,l 0 7r l = 'ljJ2 0 7r2 trivially holds.D 

An immediate consequence of the existence of semi-pullbacks in the category GMP, proven 

in Th.26 is the following result: 

Proposition 27 The stochastic bisimulation in the category GMP is an equivalence relation. 

7.3.3 Second Approach 

The Category of Markov Processes 

-We consider the category GMP of the strong Markov processes defined on analytic spaces as 

the objects and the E-zigzag morphisms (which will be defined in the following) as the arrows. 

The zigzag morphisms between Markov processes can be defined also as morphisms between 

their cones of excessive functions. Let Ml, M2 be two strong Markov processes defined on 

analytic spaces X(l), respectively X(2). Let EMl, EM2 the associated cones of excessive functions. 

Definition 28 An E-morphism (between these two cones) can be defined as an application 

(7.6) 

such that the following properties hold: (i) W(J + g) = w(f)+ W(g), \/J,g E EMl; (ii) J < 9 =} 
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w(f) < \I!(g); fk /' f => \I!(fk) /' \I!(f); (iv) \I!(f· g) = \I!(f)· w(g), Vf,g E CMI; (v) \I!(1) = l. 

An £-morphism \I! is called finite if f < +00 => \I!(f) < +00. 

Proposition 29 If'ljJ: X(2) ~ XCI) is a H-map then \I! : CMI ~ CM2 given by 

\I! (f) = f 0 'ljJ (7.7) 

for all f E CAll, is a finite C -morphism. 

Intuitively, in the formula (7.7) the H-map 'ljJ can be thought of as a variable change, i.e. 

for all f E CAll 

\I!(f)(u) = f('ljJ(u)) , Vu E X(2). (7.8) 

Remark 13 (i) The map \I! defined by (7.7) can be extended as a map between the two cones 

of measurable positive functions defined on X(1), respectively X(2), loosing the property of finely 

continuity. Prop.29 shows how a function between the state spaces of Ml, M2 can provide an 

[; -morphism. 

(ii) Conversely, if \I! is an C -morphism as in (7.6) then there exists a unique measurable 

monotone and finely continuous application 'ljJ from X(2) to an extension of x(1) such that: 

'I!(f) = f 0 'ljJ, Vf E CM!. To obtain this result one can use results from [138j. 

Using (7.8), each function 9 belonging to the range of \I! can be extended to X(2) / rv'IjJ, i.e. 

g([u)'IjJ) = f(x) provided that [u)'IjJ = 'ljJ-l(x) and 9 = \I!(f)· 

Proposition 30 If 'ljJ : X(2) ~ X(1) is a surjective and finely open H -map such that each 

excessive function 9 E C M2 has the property 

U fV'IjJ V => g(u) = g(v) (7.9) 

then the c-morphism \I! : CMI ~ CM2 given by formula (7.7) is surjective. 

Proof. For each 9 E CM2 we have to define f E CMI such that \I!(f) = g. Let f : XCl) ~ [0,00) 

defined by f(x) = g(u) for each x E XCl), where u E X(2) is such that 'ljJ(u) = x (there exists 

a such u since 'ljJ is surjective). The function f is well defined because of (7.9). Then f can be 
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written as f = go 'ljJ-l and for any open set D C [0,00) we have f-l(D) = 'ljJ(g-I(D)). Since 

4' is a finely open map we obtain that f-l(D) is finely open in XCI). Then f E £'M1.D 

Remark 14 It is easy to check that if in the Prop. 29 both 'ljJ and'l! are surjective then 'l! must 

be bijective. Therefore the two excessive function cones can be identified and the two processes 

are equivalent. 

Definition 31 A simulation E -morphism between Ml, M2 is an £' -morphism such that 

(7.10) 

A surjective E-morphism 'l! is called zigzag E-morphism if 

(7.11 ) 

i.e. the following diagram commutes 

Remark 15 It is clear that if'ljJ is a H -map which is a zigzag morphism in the sense of the 

first approach, i. e. it satisfies the condition (7. 2) then the E -morphism generated by (7.7) is a 

zigzag £' -morphism. 

Stochastic Bisimulation 

We can define a weak version of the stochastic bisimulation via E-morphisms: 

Definition 32 Let Ml and M2 be two objects in GMP. Ml is stochastic bisimilar to M2 

(written Ml rv M2) if there exists a cospan of £'-zigzag morphisms between them, i.e. there 

exists a Markov process M12 (object in GMP) and the £'-morphisms 'l!1 and'l!2 between their 

excessive function cones 
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q,l 

/' 

-Proposition 33 The category G MP has semi-pullbacks. 

Proof. If we define the stochastic bisimulation defined via zigzag £-morphisms, then the 

semi-pullback existence for the category of Markov processes (with morphisms given by zigzag 

E-morphisms) is equivalent with the pushout existence in the category of their excessive function 

cones (with the morphisms given by zigzag £-morphisms). Let us take the following span of 

morphims between the excessive function cones 

X aturally. we consider £ as the product £ Ml ® £ Ml of the cones £ Ml , £ Ml (which correspond 

to the product of operator semigroups or to Markov process product defined on X(1) x X(2)). 

rl ~ 
Then the 'inclusions' £Ml ~ £, r 1(fl) = \J!1(f) ® \J!2(f) if fl = \J!1(f) and £M2 ~ £, 

r 2(f2) = \J!1(f) ® \J!2(f) if f2 = \J!2(f) (essentially, \J!1 and \J!2 are surjective) gives the desired 

pushout construction, i.e. the following diagram commutes 

£M 
WI q,2 

./ '\,. 

£Ml £M2 

'\,. ./ 
r 1 r 2 

£ 

---Proposition 34 The stochastic bisimulation defined by Def· 32 in G MP is an equivalence 

relation. 

7.3.4 Characterization of stochastic bisimulation 
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Let us consider two bisimilar processes MI and M2 and 'ljJI and 'ljJ2 are zigzag morphisms as in 

the Def.2-1. Then we can define a relation n c X(I) x X(2), called bisimulation relation, given 

by 

Proposition 35 x Inx2 if and only if 

{(X I ,x2)lxI E AI,xInx2} 

{(xI ,x2)lx2 E A2,xInx2} 

(7.12) 

n is called measurable if for all Al x A2 E B(X(I)) x B(X(2)) the sets n-I(AI), n-I (A2) are 

measurable w.r.t. IT-algebra product B(X(I)) ® B(X(2)). 

Then we can extend the bisimulation relation (7.12) to the measurable sets 

or, equivalently, 

n is called weak measurable if for all Al x A2 E B(X(I)) x B(X(2)) with AInA2 then n-I(AI ), 

n-I (A2) are measurable w.r.t. IT-algebra product B(X(I)) ® B(X(2)). 

Let n c X(1) x X(2) be the equivalence relation given by (7.12). This relation will induce 

other two relations n I and n2 define on X(1) and X(2), respectively, as follows. 

(7.13) 

and a similar definition for n2. 
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Lemma 36 xln lyl iff there exist u, v E X 12 such that xl = 'ljJlu and yl = 'ljJlv provided that 

u "',p2L'. Similarly, for n2. 

Proposition 37 n l and n2 are equivalence relations. 

Proof. The previous lemma ensures the transitivity property and the surjectivity of 'ljJl, 'ljJ2 

gives the reflexivity property. The symmetry is clear.D 

Remark 16 In a similar way, for a relation n c X(l) x X(2) with rrl('R,) = X(l) and rr2('R,) = 

X(2) we can define the induced equivalence relations 'R, 1 , 'R,2 {If it is necessary we have to take 

the transitive closure of these relations}. 

Let 

be the collection of all Borel sets in which any equivalence class of X(1) is either totally contained 

or totally not contained. Here, for xl E X(l) (resp. x2 E X(2)) we denote its class of equivalence 

by [xl] (resp. [x2]) w.r.t. 'R,l (resp. 'R,2). It can be checked that B*(X(l)) is a o--algebra. Let 

X(1) / 'R,1 be the set of equivalence classes of X(1), let 1r X(l) : X(l) ~ X(l) /1V be the mapping 

that maps each xl E X(l) to its equivalence class and let 

Then (X(l)/'R,l,B(X(l)/'R,l)), which is a measurable space, is called the quotient space of X(1) 

with respect to 'R,l. The quotient space of X(2) with respect to 'R,2 is defined in a similar way. 

Clear, B(X(i) /'R,i) can be identified with B*(X(i)). Then, for i = 1,2, the space X(i) /'R,i can be 

endowed with the o--algebra B*(X(i)), which is the "saturation" of the Borel o--algebra of X(i) 

w.r.t. ni. 

The following proposition shows that only the saturated sets can be bisimilar. 

Proposition 38 If Al E B(X(l)) is such that there exists A2 E B(X(2)) with Al'R,A2 then Al 

is saturated, i. e. Al E B* (X(l)). 
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Proof. If y1R I xl E A 1 then there exist u, v E X 12 such that yl = 'ljJlu and xl = 'ljJ1v with 

U,2 u = 'ljJ2p. Since 'ljJ2v E 'ljJ2 ('ljJ1 ) -1 (A I) = A 2 there exists x2 E A 2 such that 'ljJ2v = x2. 

Therefore, 'ljJ2u = x2 E A2 and 'ljJlu E 'ljJI('ljJ2)-1(A2) = AI, i.e. yl E AI. That means A1 is 

saturated. 0 

Lemma 39 If 'ljJ\ 'ljJ2 are finely open H -maps then 

(i) A1RA2 iff ('ljJ1)-1(A1) = ('ljJ2)-I(A2). 

(ii) R, is a weak measurable relation. 

Proof. (i) It is clear that A1RA2 iff 

Al 'ljJI[('ljJ2)-lA2] 

A2 'ljJ2[('ljJ1)-lA1]. 

Then U E ('ljJ1)-lA1 implies 'ljJ1u E A1 = 'ljJ1[('ljJ2)-lA2], i.e. there exists v E ('ljJ2)-lA2 such that 

?i,lu = ~,lv and 'ljJ2v E A2. Since A2 is saturated we get that 'ljJ2u E A2, i.e. ('ljJ2)-1 A2. Then 

('ljJI )-l(A 1) C ('ljJ2)-1 (A2). The inverse inclusion is similar. 

(ii) The conclusion is clear since for Al x A2 E B(X(l)) x B(X(2)) we have 

{(xl, x2) Ix1 E Al and x2 E 'ljJ2 [( 'ljJ1 )-lx1]} 

{(x1,x2)lx2 E A2 and xl E'ljJ1[('ljJ2)-lx2]}.D 

Proposition 40 If'ljJI, 'ljJ2 are finely open H -maps then the quotient spaces (X(l) /1V, B*(X(I))), 

(X(2) / 'R,2, B* (X(2))) are homeomorphic .. 

Proof. We can define an application <p: (X(I)lR),B*(X(I))) ---+ (X(2)/n2 ,B*(X(2))) such that, 

for all [xl] E X(l)/'R,l we have 

(7.14) 

provided that x l Rx2. Definition of R1 and R,2 ensure that <p is well-defined and bijective. For 

measurability, let us consider an arbitrary A2 E B*(X(2)) then 
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is a measurable set in X(1), where A2 is considered as a measurable set in X(2). The Prop.35 

and the fact that A2 is saturated w.r.t. n 2 ensure that cp-I(A2) is saturated w.r.t. nl. Then 

-; is measurable. Similarly, cp-l is measurable. 0 

Remark 17 The map (7.14) from the previous proposition shows that an equivalence class 

[x
2
] E X(2) 1'R2 is identified with an equivalence class [xl] E X(l) Inl where xl corresponds to 

[U]",l given by (-,p2)-1 ([U]",l) = [x2]. 

Proposition 41 (reachability equivalence) If MI and M2 are stochastic bisimilar via finely 

open zigzag morphisms then for all pairs (xl, x2) E X(1) xX(2) and (AI, A2) E B(X(I)) XB(X(2)) 

such that x
lnx2 and A InA2 the equality between the transition probabilities 

(7.15) 

is fulfilled for almost all t > O. 

Proof. Since A lnA2 then, from the Prop.38, we get that (AI, A2) E B*(X(I)) x B*(X(2)). 

Formula (7.3) can be written for the sets Al and A2 as follows 

But, from Lemma 39 

p;(x\ AI) 

p;(x2, A2) 

p;2[U, ('ljJI)-I(AI)), U E ('ljJl)-I(x1) 

p;2[v, ('ljJ2)-I(A2)), v E ('ljJ2)-I(x2) 

Al 'ljJI[('ljJ2)-IA2] 

A 2 'ljJ2 [ ( 'ljJ I) -1 AI] 

which implies that (-,pl)-I(AI) = ('ljJ2)-I(A2) since AI,A2 are saturated. In fact, the equality 

(7.15) results from the definition of zigzag morphism and the existence of the homeomorphism 

cp between the quotient spaces (see PropAO).O 

Now with these two results (PropAO and Prop.38) in hand we can introduce the quotient 

stochastic processes MI In and M2 In with 

• the quotient spaces (X(l) I nl, B* (X(l))), (X(2) I n2, B* (X(2))), respectively, as state spaces; 
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• transition probabilities given by 

pi([Xl],Al) = pi(xl,Al ), for all Al E B*(X(l»);xl E Xl 

p;([x
2

], A2) = pi (x2, A2), for all A2 E B*(X(2»); x2 E X2 

defined for all t > O. The way to define the induced equivalence relations n\ n2 en­

sures that these transition probabilities are well-defined, i.e. they do not depend on the 

represent ants of equivalence classes [xl] or [x2]. 

Proposition 42 The quotient stochastic processes Ml In and M2 In are Markov processes. 

From Prop.40, we are able now to make the connection between stochastic bisimulation and 

equivalence of stochastic processes as follows. 

Proposition 43 If 'ljJl , 'ljJ2 are finely open H -maps then the quotient stochastic processes Ml In 

and 1\12 In are equivalent. 

Proof. According to the Prop.40 the quotient spaces (X(l) In1,B*(X(l»)), (X(2) In2 ,B*(X(2»)) 

are homeomorphic. Then the equality (7.15) becomes 

for all Al E B*(X(l»); xl E Xl; A2 E B*(X(2»); x2 E X2 and for almost all t > 0 provided that 

<p([xl]) = [x2] and cp(Al) = A2 with cp defined as in the Prop.40. This means that n preserves 

the transition probabilities, i.e. Ml In and M2 In are equivalent.D 

The properties of the bisimulation relation n induced by the existence of a span of zigzag 

morphisms between Ml and M2 give the idea to introduce a general concept of bisimulation 

relation, which will not depend on a given span. 

Definition 44 A relation n c X(l) x X(2) is called a bisimulation relation between Ml and 

M2 if the following conditions are satisfied: 
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2. R is measurable; 

3. the quotient stochastic processes MI / Rand M2 / R are equivalent. 

For a bisimulation relation R, let us define 

(7.16) 

1') • 
The a-algebra of .oY ~ IS defined as the product a-algebra 

(7.17) 

Assumption 11 (Analiticity of R) We suppose that if X(1) and X(2) are analytic spaces 

then X l2 is analytic. 

Theorem 45 (Characterization of Stochastic Bisimulation) Under the Ass.ll the fol­

lowing assertions hold: 

(A) .AII is stochastic bisimilar with M2 via finely open zigzag morphisms then there exists a 

weak measurable bisimulation relation R c X(l) x X(2) between them. 

(B) If there exists a measurable bisimulation relation R C X(l) x X(2) between MI and M2 

then they are stochastic bisimilar. 

Proof. Given two bisimilar processes Ml and M2 via finely open zigzag morphisms, the 

construction of the bisimulation relation R is given by (7.12) and the assertion (A) follows from 

Prop.40, Prop.37, and Prop.43. 

Suppose now there exists a bisimulation relation R c X(l) x X(2) which satisfies the conditions 

of Def.44. The direct sum of the quotient spaces (X(I)/Rl,B*(X(l))), (X(2)/R2,B*(X(2))) is 

embedded in (XI2, B(X12)). 

We construct the Markov process Ml2 with the following transition probabilities 

pi2 [(xl, x 2), R-I (A I)] 

pi2[(x l , x 2), R-I(A2)] 
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Then we define for i = 1 2 two maps "I,i from X 12 to X(i) th . 1 . . 
''f/ as e canonIc a prOjectIOns 

Clear, V,i are surjective since rri(R) = X(i), i = 1,2. If A(i) is a measurable set of X(i) then 

i.e. 1/;i is measurable. On the other hand we have 

but for i =1= j we do not have the measurability of 1/;i[R-I(Aj)]. If Ai'R,Aj then R-I(Ai) = 
'R,-I(Aj) and 

Then 1/;i are open maps only w.r.t. the IT-algebras generated by bisimilar sets.D 

7.3.5 Specific Features of Bisimulation for GSHS 

Let HI and H2 be two GSHS with the realizations MI and M2, respectively. 

Definition 46 HI and H2 are stochastic bisimilar if their realizations MI and M2 are sto­

chastic bisimilar. 

Properties of zigzag morphims 

A zigzag morphism 1/; : X(2) ---+ X(I) between MI and M2, induces a relation 'R",p c X(2) x X(I) 

as follows: u'R",px <=} 1/;( u) = x. Then the equivalence relation f"'V1jJon X(2) can be thought of as 

the equivalence relation induced by R1jJ in sense of [153], i.e. u f"'V1jJ v iff there exists x E X(1) 

such that uR,px and vR1jJx (which is exact the meaning of (7.1)). The equivalence relation 

induced by R,p on X(2) is the trivial one (x can be equivalent only with itself). 
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The space ~y(2) / "',p can be endowed with the O"-algebra B*(X(2)), which is the "saturation" 

of the Borel O"-algebra of X(2) w.r.t. rv1jJ (i.e. the collection of all Borel sets of X(2) in which 

any equivalence class of X(2) is either totally contained or totally not contained). A function on 

g : ~y(2) ---+ IR, which is measurable w.r.t. B*(X(2)) will be called saturated measurable function. 

It is clear that a function measurable 9 is saturated measurable iff (7.9) holds. Each function 

f : XCI) ---+ IR measurable w.r.t. B(X(l)) can be identified with a saturated measurable function 

g such that 9 = f 0 'ljJ. 

The morphism 'ljJ can be viewed as a bijective mapping 'ljJ : X(2) / "',p ---+ X(1). It is clear 

that 71' is a nleasurable application. To identify the two above measurable spaces 'ljJ-l must be 

measurable. The main idea, which results from this reasoning, is that the measurable space 

(X(l),B(X(l))) can be embedded in the measurable space (X(2),B(X(2))) and the measurable 

function on X(I) can be identified with the saturated measurable functions on x(2). 

Based on the theory of semigroups of Markov processes, one can obtain from the zigzag 

condition (7.2): for almost all t > 0 (i.e. except with a zero Lebesgue measure set of times) the 

following equalities hold 

p; (u, 'ljJ-I (A)) 

pl(f 0 'ljJ)(u) 

p;(x, A), Vx E X(1), Vu E [uJ1jJ = 'ljJ-I(x), VA E B(X(I)) 

pl f(x), Vx E X(I), Vu E [uJ1jJ = 'ljJ-I(x), V f E Bb(X(l)) 

(7.18) 

Xote that 'ljJ-l(A) E B*(X(2)). Therefore the transition probabilities of MI simulates 'equiva­

lence classes' of transition probabilities of M2. 

Remark 18 The connection between the kernel operator and the infinitesimal generator of the 

strong process Markov process allows us transform the conditions (7.11) and (7.2) as follows 

(7.19) 

where L(I) (resp. L(2)} is the infinitesimal generator of MI (resp. M2). The equality (7.19) 

holds provided that for each f E 1J(L(l)) (the domain of LI) the function f o'ljJ belongs to 1J(L(2)) 

(the domain of L(2)). 
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Since for a GSHS realization the expression of the infinitesimal generator is known, to check if 

the formula (7.19) is true for two given GSHS is only a computation exercise .. 

Recall that the realization of an GSHS has been constructed as a Markov string, i.e. a sequence 

of diffusion processes with a jumping structure. Then the cone of excessive functions associated 

to a GSHS can be characterized as a 'sum' of the excessive function cones associated to the 

diffusion components. This characterization 'explains' the following result. 

Proposition 47 A zigzag morphism 'ljJ between the realizations of two GSHS HI and H2 defined 

as in Def. 22 preserves the continuous parts of the two models. 

Proof. Suppose that the two GSHS state spaces are X(l) = U {i} x Xi (1) and X(2) = U 
iEQl qEQ2 

{q} x X q(2). We can suppose without loosing the generality that each two modes have empty 

intersection and therefore X(l) = u Xi(l) and X(2) = U X q(2). The function 'ljJ maps X(2) 
iEQl qEQ2 

into X(l). From the construction of HI, as Markov string, we have VI f = 2: ViI f i , VIE 
iEQl 

8>(X"(l)).where. for each i E Ql, ViI is the kernel operators of the component diffusion of HI 

which operates on Xi(l) and Ii = Ilxi(l) E Bb(Xi(l)). A similar expression can be written for 

V2 (i.e. V 2g = 2: V q2gq, 9 E Bb(X(2))). 
qEQ2 

Let f be an arbitrary positive bounded measurable function on X(1). Then for each i E Ql 

consider fi as before. Let yi(2) = 'ljJ-l(Xi(l)) (note that yi(2) is an open set) and 'ljJi be the 

restriction of 'ljJ, which maps yi(2) into Xi(l). Denote gi = fi 0 'ljJi E 8 b(yi(2)) and giq = 

gilyi(2)nXQ(2)' The zigzag condition (7.2) becomes W i2 (fi 0 'ljJi) = ViI fi 0 'ljJi, where Wi2 is the 

'restriction' of V2 to yi(2), i.e. W i2gi = 2: V q2giq (more intuitively, Wi2 is the sum of kernels 
qEQ2 

associated to the component diffusions of H2, which operate on yi(2)). Then, for all x E Xi(l) 

we have 

(7.20) 

provided that 'ljJi(u) = x. Because ViI corresponds to a diffusion process, it must be the case 

that in the left hand side of (7.20) the 'jumping part' to not longer exist (at least for the 
"2 • saturated measurable functions). Then the kernel WZ corresponds to a contInuous process 

(which might be a diffusion or a switching diffusion process).D 

Any zigzag morphism 'ljJ can be extended by (finely) continuity to the boundary of the 
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state spaces. Or, we can suppose from the beginning that the zigzag morphims operate on the 

closures of the state spaces. We have to assume that the zigzag morphims 'keep' the boundary 

points, or, in other words, 'l/J : ax(2) ---+ ax(l) is surjective. 

Remark 19 The finely continuity of a zigzag morphism between the realizations of two GSHS 

is important only when we use the connection with the associated excessive function cones. 

Otherwise. we can replace this continuity with the continuity w. r. t. to the initial topologies of 

the state spaces. 

Proposition 48 A zigzag morphism'l/J between the realizations of two GSHS HI and H2 defined 

as in Def. 22 preserves the jumping structure of the two models. 

Proof. For each x E X(l) there exist, by surjectivity of 'l/J, some elements U E X(2) such that 

"p(u) = x. Then, for each f E 1)(L(l)), a simple computation of the right hand side of (7.19) 

gIves 

(7.21) 

and after, the left hand side of (7.19) is 

From the Prop. 47 we have the equality of the continuous parts of (7.21) and (7.22). Then the 

jumping parts (7.21) and (7.22) must coincide. Then 

The construction of GSHS HI and H2, as Markov strings, shows that the transition measures 

Rl and R2 play the role of the transition probabilities when the processes jump from one 

diffusion to another. Then they satisfy (7.18), i.e. 

It easily follows that ,Al(x) = ,A2(U) , \fu E [u]1JI = 'l/J-l(x).D 
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Properties of bisimulation 

Consider now two bisimilar GSHS, HI and H2, with the realizations Ml and M2, respectively. 

Let .1,1
12 

and ~,1, 1jJ2 as in the Def.24. Define the bisimulation relation n c X(1) x X(2) by 

formula (7.12). 

If ~,1 ,li,2 are finely open maps then the quotient processes Ml In and M2 In are equiva­

lent (Th.45, (A)). This means that families of trajectories starting in bisimilar points can be 

identified in the quotient processes. The trajectories of the quotient processes will be classes of 

equivalent trajectories of the initial processes. 

The stochastic bisimulation between two GSHS reduces to the bisimulations between their 

continuous components and between their jump structures. In this way our concept of bisimu­

lation can be related with the bisimulation for piecewise deterministic Markov processes (which 

are particular class of GSHS) defined in terms of an equivalence relation between the determin­

istic flows and the probabilistic jumps [153]. 

7.4 A Non-Categorical Approach for Defining Bisimulation of 

~arkov Processes 

In this section we define a new concept for stochastic bisimulation which better suits to sto­

chastic hybrid system models whose realizations are Markov processes. This section is based 

on our paper [48]. This new concept of bisimulation is motivated by the idea to construct 

bisimulations which preserve the reach set probabilities. It is well known that reachability 

analysis can provide useful information for diagnosis purposes and corrective action design like 

controller design based on reachability analysis. In this context it is worthy to remind that 

model checking consists of automatic methods for safety verification through reach sets com­

putation, i.e. it requires to be able to "compute" with sets (to represent and to manipUlate). 

This bisimulation concept is very robust because it is not based on the equality of transition 

probabilities of the quotient processes as in the previous section. In practice probabilities are 

approximated by various statistical methods and therefore equality of transition probabilities 

is difficult to be checked. In this context, the preservation of reach set probabilities is major 

breakthrough result towards applying model checking to reachability analysis. 
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The probability of the reachable defines a statical concept of capacity used to model impre­

cise probabilities. 

The information input into different real-world models may be imprecise for several reasons. 

Prior information is sometime recorded in the literature as intervals without any information 

about probability distributions [66] . 

The extension of probabilistic analysis to include imprecise information is now well established 

in the theory of imprecise probabilities [165], robust Bayesian analysis [105] and fuzzy statistics 

[160] . 

The imprecise probabilities are modelled by sets of probability measures which might generate 

upper flower probabilities [66, 77], Choquet capacities [54, 104] and others. 

In the following, first, we shortly present the concept of Choquet capacity and then we give 

the construction of the capacity associated to a Borel right Markov process. This later concept 

will be connected with the stochastic reach ability and then used to give a new definition for 

stochastic bisimulation. 

7.4.1 Capacity 

Intuitively. a capacity is a set function which extend the concept of measure. The additivity 

property is not longer true for a capacity. For every space X and algebra A of subsets of X a 

set-function c : A ---+ [0, 1] is called a normalized capacity if it satisfies the following: 

(i) c(0) = 0, c(X) = 1, 

(ii) VA,B E A: A c B => c(A) < c(B). 

A capacity is called convex (or supermodular) if in addition to (i)-(ii) it satisfies the addi-

tional property 

(iii) VA, B E A: c(A U B) > c(A) + c(B) - c(A n B). 

A special type of convex capacities are the belief functions presented and discussed by 

Dempster [66] and Shafer [144]. A capacity is called a probability if (iii) holds everywhere with 

equality, i.e. it is additive. If a capacity satisfies the inverse inequality in (iii) then it is called 

submodular or strongly subadditive. 

Since we allow the possibility that c is not additive, we can not use the integral in the 

Lebesgue sense to integrate with respect to c. The notion of integral we will use is due originally 
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to Choquet [54] and it was independently rediscovered and extended by Schmeidler [143]. If 

f : ~y -+ IR is bounded A-measurable function and c is any capacity on X we define the Choquet 

integral of f with respect to c to be the number 

j.,J(X)dC(X) = 10'><> e( {x E Xlf(x) > a})OO + I: [e( {x E Xlf(x) > a}) -l]da 

where the integrals are taken in the sense of Riemann. 

7.4.2 Capacity associated to a Markov process 

Suppose that AI = (o',F,Ft,Xt,Px), E Q is a Markov process. We denote the state space of M 

by (X, B) and assume that B is the Borel O"-algebra of X if X is a topological Hausdorff space. 

Let ~ be the cemetery point for X, which is an adjoined point to X, Xtl. = X U {~}. The 

existence of ~ is assumed in order to have a probabilistic interpretation of Px(Xt E X) < 1, 

i.e. at some 'termination time' ((w) when the process M escapes to and is trapped at ~. 'Fhe 

elements F, n, Ft , Px have the usual meaning as in Section 2.2.5. 

In the following of this chapter, M = (0" F, Ft , Xt, Px) will be a Borel right Markov process 

(see. for example, [62] and the references therein) on (X, B). This means that: 

• Its state space (X, B) will be in a Lusin state space (i.e. X is a separable metric space 

homeomorphic to a Borel subset of some compact metric space, with Borel O"-algebra 

B(X) or shortly 8) and it will be equipped with a O"-finite measure m . 

• M is a strong Markov process with cadlag property. 

We assume also that M is transient. More, we suppose that SUPxEX Vl(x) < 00 (where V f = 

Jooo Ptfdt is the kernel operator). For each x E X, the kernel V will provide a measure Vx 

defined by 

and for any measurable positive function f on X we have V f(x) = J fdVx. 

More, we have 

Vx(A) = (m®Px)({(t,w)lxt(w) E A}). 
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Therefore, Vx(A) 'measures' two aspect: (i) the length of time spent by the process in A and 

(ii) the probability of the trajectories which start in x and reach A at some times t E [0,00). 

One can take the sample space 0 for M to be the set of all paths (0,00) 3 t ~ w(t) E XI). 

such that (i) t ~ w(t) is X-valued and cadlag on (0, ((w)) where ((w) := inf{s > Olw(s) = ~}, 

(ii) u.'(t) = ~ for all t > ((w), and (iii) ((w) < 00. In this way, M is realized as the coordinate 

process on 0: Xt(u.') = w(t), t > O. We complete the definition of M by declaring xo(w) =lim 
t'\,o w(t), t > O. 

Because of transience condition, the measure m is purely excessive [79]: 

lim (m < Pt > )(A) = 0, VA E B with m(A) < 00, 
t-+oo 

where (m < Pt > )(A) = J Pt(x, A)m(dx) and Pt(x, A) = Pt(IA)(x) = Px(Xt E A). 

Consequently there is a unique entrance law (j.11 )t>o (a family of IT-finite measures on (X, B) 

with f.1t < Ps >= J.Lt+s for all t, s > 0) such that 

m(A) = l>O J.Lt(A)dt, 1;1 A E B. 

See, for example, [79] for more details. Then there is a IT-finite measure lP on (0, Jf,?) (see 

[78]) under which the coordinate process (Xt)t>o is Markovian with transition semigroup (Pt)t~O 

and one-dimensional distributions 

lP(Xt E A) = JLt(A), VA E B, t > o. 

The capacity associated to M is defined as follows (see [78] and the references therein): for 

all BE B 

CapM(B) = lP(TB < 00) = lP(TB < (), 

where TB is the first hitting time of B, i.e. TB = inf{t > OIXt E B}. 

The initial definition of this notion gives the capacity CapM as an upper envelope of e non­

empty class of probability measures on B. It can be shown that this capacity is monotone 

increasing, submodular, count ably subadditive [78]. Then its conjugate CaPM [143], defined 

by CaPM(B) = 1 - CapM(X - B) is a belief function in sense of [144]. Beliefs about the 
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evolution process (w(t)) conform to a time-homogeneous Markov structure. In standard models, 

this would involye a stochastic kernel giving conditional probabilities. We assume that beliefs 

conditional on w(t) are too vague to be represented by a probability measure and are represented 

instead by a family of probability measures whose lower envelope is CaPM' 

7.4.3 Stochastic Reachability Analysis 

Let us consider ~~I = (0., F, Ft , Xt, Px ), as in the previous subsection, the realization of a 

stochastic hybrid system H. To address the reachability problem assume that we have a given 

set E E B(X) and a horizon time T > 0. Let us define 

ReachT(E) 

Reachoo(E) 

{w En I :3t E [O,T] : Xt(w) E E} 

{w E 0. I :3t > ° : Xt (w) E E}. (7.23) 

These two sets are the sets of trajectories of H, which reach the set E (the flow that enters E) 

in the interval of time [0, T] or [0, 00). The reachability problem consists of determining the 

probability of such sets. That means we have to determine JP(TE < T) or JP(TE < 00). In this 

way~ the reachability problem is related with the computation of the capacities associated to 

the processes MT and M, where MT is the process M "killed" after the time T (see [62] for the 

details about the killed process). 

On the other hand, we would like to characterise the sets 

ReachJ;it (E) 

Reach:it (E) 

{x E XI:3w E o.,:3t E [O,T]: ¢(t,w,x) E E} 

{x E XI:3w E o.,:3t E [0,00): ¢(t,w,x) E E} 

where ¢( t, w, x) is a trajectory of M starting with x EX. These are thought of as sets of initial 

points, which give trajectories of M with nonempty intersection with E. 

Lemma 49 For any measurable set E E B and for T > 0, we have 

ReachfFit(E) = {x E XI sup PtIE(x) > O}. 
tE[O,T] 
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Proposition 50 If.AI has the cddldg property and G is an open set of X then 

Reach~it(G) = {x E X/Vx(G) > O}. 

Remark 20 The measure Vx does not have enough ability for our purposes: a trajectory w 

that reaches the set E is accounted for every 'visit' in E. This weakness is eliminated when 

considering the measure IP'(TE < 00). 

1.4.4 Stochastic Bisimulation 

In this section we define a stochastic bisimulation concept which preserves the probabilities of 

reachable sets. 

Let (X(1), B(~y(l»)) and (X(2), B(X(2»)) be analytic spaces and let n c X(l) x X(2) be a 

relation such that rrl(n) = X(l) and rr2(n) = X(2). Let n l and n2 be the equivalence relations 

induced on X(l) and X(2), respectively, by n (see formula (7.13)). Consider the quotient spaces 

(X(i) I Ri. B* (X(i»)). i = 1,2. 

\Ye define a bijective mapping 

X(l) I'R} -+ X(2) I n2 

[x2
] 

provided that (xl, x 2) E n for some xl E [xl] and some x2 E [x2]. 

\Ve say that the relation n is measurable if for all Al E B*(X(I») we have cp(AI) E B*(X(2») and 

vice versa, i.e. c.p is a homeomorphism. This concept of measurable relation coincides with the 

weak measurable relation from Subsection 7.3.4. Then the real measurable functions defined 

on X(1) I'R} can be identified with those defined on X(2) In2 through the homeomorphism cp. 

We can write 

Moreover, these functions can be thought as real functions defined on X(l) or X(2) measurable 

with respect to B*(X(1») or B*(X(2»). 

Definition 51 Suppose we have the capacities cx (1) and CX (2) on analytic spaces (X(1), B(X(I»)) 
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and (X-(2), B(X(2))) respectively. Suppose that we have a measurable relation n c X(I) x 

~\l2). The capacities CX(I) and CX(2) are called equivalent with respect to n if they define the 

same capacity on the quotient space ofX(1) and X(2), i.e. if we have CX(l)(7r~~I)(AI)) = 

CX(2)(7r~~2)[y(AI)]) for all Al E B(X(I)/nl ). 

Suppose we have two Borel right Markov processes MI and M2 with the state spaces X(1) 

and ~\(2). 

Definition 52 A measumble relation n c X(I) x X(2) is a bisimulation between MI and M2 

if their associated capacities Cap All and Cap M2 are equivalent with respect to n. 

It is known that if two processes are symmetric and are defined on the same state space, 

the equality of their capacities implies that they are time changes of one another [78]. 

We can define now a pseudometric with respect to a measurable relation n c X(I) x X(2) 

between the processes MI and M2 as follows: 

where B*b(X(I)) is the set of bounded real B*(X(I))-measurable functions on X(I). 

Remark 21 We can define a distance between two processes if and only if there exists a re­

lation on the product of their state spaces X(1) x X(2) such that the two quotient spaces are 

homeomorphic. Or, equivalently, if there exists a third measurable space (Z, B(Z)) and two 

surjective measurable mappings ¢I : X(I) ---+ Z and ¢2 : X(2) ---+ Z then 

where Bb(Z) is the set of bounded real Bb(Z)-measurable functions on Z. 

Proposition 53 A measurable relation n c X(1) x X(2) is a bisimulation between MI and M2 

if and only if 
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Suppose we have given two stochastic hybrid systems H and H' with the realizations Ml 

and 1'12 (with the state spaces X(1) and X(2»). 

Definition 54 H and H' are bisimilar if there exists a measurable relation R c X(l) x X(2) 

such that R is a bisimulation between Ml and M2. 

Proposition 55 R c X(l) x X(2) is a bisimulation relation between H and H' if and only if 

the probabilities of reachable events (7.23) associated to "saturated" (with respect to R) Borel 

sets are equal, i. e. 

for all E E B*(X(l»). 

The proof is a clear consequence of definition of a bisimulation relation between two Markov 

processes. 

The above proposition shows that our definition of bisimulation between stochastic hybrid 

systems is natural since the probabilities of the reachable events are preserved. Then naturally, 

the reachability analysis of a stochastic hybrid system can be performed using much simpler 

stochastic hybrid systems bisimilar with the given one. 

7.5 Some Remarks 

In this chapter we have investigated some ways to define the concept of stochastic bisimulation 

for classes of ~arkov processes which can represent realizations of different models for stochastic 

hybrid systems. One way is based on the category theory: define an appropriate category of 

strong Markov processes defined on analytic spaces. The morphisms in this category are the 

zigzag morphims. A zigzag morphism between two Markov processes is a surjective (finely) 

continuous measurable functions between their state spaces which 'commutes' with the kernel 

operators of the processes considered. An important technical contribution is the proof that 

this stochastic bisimulation is indeed an equivalence relation. We also give a characterization 

of this bisimulation. Then we derive the properties characteristic to the bisimulation relation 

for GSHS. 
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The second approach to define stochastic bisimulation between Markov processes is based the 

concept of Choquet capacity. Each process can have associated, in a canonical way, a Choquet 

capacity, which for each measurable set of the state space is the probability to reach that set. 

Then a bisimulation relation between two processes is defined as a measurable relation that 

"preserves" the capacity. Further, we have employed this bisimulation to define bisimulation 

between stochastic hybrid systems whose realizations are Markov processes as above. This 

bisimulation is more robust since the computation of the capacities associated to our models is 

possible using Bayesian statistics algorithms. 

From the verification and analysis of stochastic hybrid systems perspective, a concept of 

stochastic bisimulation can facilitate the way towards a model checking of stochastic hybrid 

systems. 

The work presented in this chapter and the above discussion allow us to point out some 

possible research directions in the stochastic hybrid system framework: 

• Use the stochastic bisimulation to get manageable sized system abstractions; 

• Use the stochastic bisimulation to investigate the reachability problem; 

• Make a comparative study of the different approaches on reach ability analysis for stochastic 

hybrid systems: 

1. the approach based on the hitting times and hitting probabilities for a target set [40]; 

2. the approach based on the so-called Dirichlet forms and excessive functions [41]; 

3. the approach based on Lyapunov function (for the switching diffusion processes) [164]. 
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Chapter 8 

Conclusions and Further Work 

~lany practical systems such as automobiles, chemical processes, and autonomous vehicles are 

best described by dynamics that comprise continuous state evolution within a mode of opera­

tion and discrete transitions from one mode to another, either controlled or autonomous. Such 

systems often interact with their environment in the presence of uncertainty and variability. 

Stochastic hybrid systems can model complex dynamics, uncertainty, and multiple modes of 

operations and they can support high-level control specifications that are required for design 

of autonomous or semi-autonomous applications. Stochastic hybrid system models have been 

successfully used to represent abrupt value changes in the parameters of economic systems, 

component/sensor failures in power, aircraft, and manufacturing systems, sudden system in­

terconnection reorganization in power systems and large flexible structures, pilot commands in 

target tracking, and sudden environmental disturbances like clouds in isolation levels of a solar 

receiver. Meanwhile, this type of systems are used to model the random jump behaviour of 

integrated communication networks, which are used to transmit, on a single medium, different 

classes of traffic, such as voice, images and data. These models have been applied to describe 

the bahaviour of continuous systems driven by discrete event models. 

Several modelling paradigms for stochastic hybrid systems have been already proposed in 

literature . 

• A stochastic hybrid scheme that allows the continuous flows at each discrete location to 

be characterized by stochastic differential equations is described in [106]. An extension of 
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this model that satisfies the strong Markov property is presented in [41] and a method to 

study the reachability problem is proposed. 

• A similar model based on Piecewise Deterministic Markov Processes is presented in [40] 

for studying a probabilistic reach ability problem. 

• Probabilistic hybrid automata are introduced in [101] for estimation and fault diagnosis. 

• Communicating Piecewise Deterministic Markov Processes are proposed as compositional 

specifications for stochastic hybrid systems in [154] with emphasis on modelling concur-

rency. 

• Applications of stochastic hybrid systems to air traffic management systems are presented 

in [137, 83]. 

• A stochastic hybrid system with application to communication networks is presented in 

[98, 100]. This SHS model has been developed from the necessity to provide accurate 

models for TCP (Transport Control Protocol) congestion control in communication net­

works. There exist various strategies to deal with congestion control of TCP, known as 

active queue management (AQM) policies (see [162] and the references therein). One 

commonly used AQM is the Random Early Detection (RED) [163]. The use of hybrid 

models to characterise the behaviour of congestion control was proposed first in [97], and 

after [75]. In [75], it is proposed a hybrid system model to capture the interaction between 

TCP and RED for a simple network connection experiencing congestion. In [100], it is 

constructed an SHS model (particular case of GSHS) for on-off TCP flows that considers 

both the congestion-avoidance and slow-starts modes and takes directly into account the 

distribution of the number of bytes transmitted. 

• A particular class of stochastic hybrid systems with applications in the modelling of some 

chemical processes is presented in [99]. 

• A modelling framework and a simulation environment for concurrent stochastic hybrid 

systems is presented [20]. 
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• For those hybrid systems, whose discrete state transitions depend on both deterministic 

and stochastic events, a suitable model called Discrete Hybrid Stochastic Automaton 

has been introduced in [18]. The Discrete Hybrid Stochastic Automaton model can be 

seen as a discrete time counterpart of the Piecewise Deterministic Markov process. The 

differences between these models are in the way randomness affects the continuous and 

the discrete dynamics in their interaction. 

In this thesis we have developed a very general modelling framework for stochastic hybrid 

systems - General Stochastic Hybrid Systems. We have studied different mathematical char­

acterizations of this general model (Markov property, strong Markov property, infinitesimal 

generator, cadlag property). These constitute the foundation of the stochastic reachability 

analysis for General Stochastic Hybrid Systems. As well, we have proposed Distributed Sto­

chastic Hybrid Systems as compositional specifications for General Stochastic Hybrid Systems. 

Another very important issue we have tackled in this thesis is the setting of the stochastic 

reachability problem as the main verification tool for stochastic hybrid systems. First achieve­

ment was to well-define the reachability problem in probabilistic framework. Then we have 

proposed some analytical solutions to estimate the reach set probabilities. Since the computa­

tion of these analytical solutions is hard because of the complicated mathematical formulas we 

were looking to find a way to simplify the stochastic hybrid system models preserving the reach 

set probabilities. In order to achieve this goal, we have introduced a concept of bisimulation 

for stochastic hybrid systems, which allows us to simplify the initial models and to deal with 

the reachability problem for much friendly probabilistic models. We believe that this stochastic 

bisimulation concept will constitute the basis for probabilistic model checking for stochastic 

hybrid systems. 

In the following, we sketch some possible research directions which can be derived from the 

work presented in this thesis. 

1. Study different ways to introduce abstracting equivalences for hybrid systems. We have 

seen that the categorical bisimulation concept for SHS, introduced in Chapter 7, is quite 

strong because it implies the equivalence of the stochastic processes which represent the 

semantics of the respective SHS. The bisimulation preserving the reach set probabilities, 
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developed in the second part of the same chapter, represents a significant step in the 

abstractization process for SHS. We need weaker versions of bisimulations which preserve 

only the properties we are interested in. One way to get this goal is to consider SHS 

bisimulations which preserve different statistical parameters of the respective SHS (first 

order moments, variance, expectation of some hitting times, etc). This direction can lead 

to very nice approximation results for SHS since the statistical analysis provides us a rich 

collection of tools which allow to estimate the behaviour of a stochastic process from its 

statistical parameters. 

C) InYestigate the decidable classes of SHS. It is clear that we can not obtain decidability 

results in the general framework of SHS. This goal is very demanding and may seem 

impossible to achieve without being restrictive in some way or another. Therefore, we 

propose an incremental approach. Start, for example, in a first instance, with PHA 

'with general probability distributions and aim to generalize the results from [152]. After 

that, in order to deal with stochastic differential equations we have to use approximation 

results for diffusion processes. In this direction, the results developed in [116] can be 

really useful since they offer the possibility to approximate a particular class of SHS, with 

diffusions between jumps, by Markov Decision Processes. For the later ones, there exists 

a well-developed theory of abstractions (see, e.g., the survey [109]). 

3. Set up the foundations of formal specification of Stochastic Hybrid Systems. One candi­

date to specifying formally SHS seems to be process algebra and its stochastic and hybrid 

extensions. This approach requires a bisimulation concept for SHS that we have intro­

duced in this thesis and we have extended it to general Markov processes. However, from 

the control and software engineering perspectives a model theoretic approach like Z might 

be also suitable. 

4. The above research directions should not be seen disjoint. The ultimate goal is to combine 

the results from computer science, mathematics, and control theory, to develop method­

ologies for verifying temporal properties of SHS. In our view, however, what is still missing 

is a unified framework (although such a framework may not necessarily be the only one 

that can be proposed) that can directly handle systems with hybrid dynamics, nonlinear-
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ity, uncertainty, constraints, stochasticity, and so on. Moreover, many of the currently 

available techniques suffer from scalability issues: their computational cost grows expo­

nentially with respect to the system size. We have to mention that the first proposed 

computational method that can provide a verifiable upper bound on the reach probability 

is that proposed in [139}. Needless to say, the area of verification for stochastic hybrid sys­

tems is still in its infancy, and we expect to see many more developments in the upcoming 

years. 
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