
THE USE OF GEOMETRIC INFORMATION

IN HEURISTIC OPTIMIZATION

Thesis submitted in accordance with the requirements
of the University of Stirling for the degree of
Doctor of Philosophy

by

Anthony Ian Hinxman

May 1977
F

II

/

Best Copy
Available

ACKNOWLEDGEMENTS

This thesis owes its birth to Austin Tate, its
growth to Robert Ross, and its completion to Brian
Boffey. Particular thanks are due to them.

Thanks are also due, for their
various ways, -to Professor J. Leech,
Dr. R. G. Dyson, Mr. R. Bagnall, members
intelligence community at Edinburgh
Pilkington Brothers Ltd., the Scieni
and the University of, Stirling.

contributions in
Dr. P. D. Smith,
of the artificial
University,

,e Research Council,

I am grateful for access to computing services at
Edinburgh University and the Edinburgh Regional
Computing Centre. Further computing facilities were
provided by the Liverpool

_-University
Computer

Laboratory.

This thesis was produced using the GATE text
editing system on the Computati: bnal and. Statistical
Science departmental computer system at Liverpool
University. Many of the diagrams and tables were
prepared by Miss«, M. Ross. Other secretarial services
were provided by Liverpool University.

CONTENTS

Chapter 1 Introduction 1
1.1 Motivation and structure 1
1.2 The 1#-dimensional trim-loss problem 3
1.3 The 2-dimensional trim-loss problem 4
1.4 The optimal network problem 8

Chapter 2 Combinatorial search methods 10
2.1 Introduction 10
2.2 Some concepts in graph theory 10
2.3 State-space search 11

2.3.1 Definitions 11
2.3.2 Computational practice 14
2.3.3 More sophisticated search methods 20
2.3.4 Ordered operator search 21

2.4 Problem reduction 23
2.4.1 AND/OR graphs 23
2.4.2 Construction of a solution 25
2.4.3 Preferred reduction search 28

. 2.4.4 Relationship to state-space search 31
2.4.5 Combined search methods 32

2.5 Branch-and-bound 34
2.5.1 Structure of the method 34
2.5.2 An example 36
2.5.3 The use of heuristic information 38
2.5.4 Relationship to state-space search 41

Chapter 3 An abstract 1*-dimensional trim-loss
problem 42

3.1 Statement of the problem 42
3.2 Choice of method 42
3.3 Solution of the subproblems 44

3.3.1 Designated positions 44
3.3.2 Ordering of operators 45
3.3.3 Feasibility of states 47
3.3.4 Search strategy 48

3.4 Results 48

Chapter 4A 2-dimensional trim-loss problem
with varying stock costs 51

4.1 Statement of the problem 51
4.2 Preliminary analysis 51
4.3 Choice of method 53 4.4 New plate operators 55
4.5 Rectangular plate operators 56
4.6 Irregular plate operators 59
4.7 Results 64

..

Chapter
5.1
5.2
5.3
5.4
5.5
5.6

5 The optimal ni
Statement of the
Choice of method
Ordered operator
Branch-and-bound
Results
Conclusions

ýtwork problem 69
problem 69

search 70
73
76
87

Chapter 6 An abstract 2-dimensional trim-loss
problem 88

6.1 Introduction 88
6.1.1 Statement of the problem 88
6.1.2 Choice of method' 88
6.1.3 Structure of the description of the

solution method 92
6.1.4 Definitions 93

6.2 General strategy 93
6.2.1 Urgency of pieces 93
6.2.2 Cost control 97

6.3 The routine REGULAR 101
6.3.1 Structure of the routine 101
6.3.2 Search strategy 103
6.3.3 Functions associated with T* 104

6.3.3.1 T* non-tessellating 105
6.3.3.2 T* semi-tessellating 111
6.3.3.3 T* tessellating 115

6.3.4 The learning lists 115
6.3.5 Rectangular and L-shaped fragments 118

6.4 The routine IRREGULAR 121
6.4.1 Structure of the routine 121
6.4.2 Spiral configurations 122

6.5 Results 125

Chapter 7 -A 2-dimensional trim-loss problem
with sequencing constraints 131

7.1 Statement of the problem 131
7.2 Choice of method 136
7.3 The top-level state-space 136
7.4 Structure of the problem reduction 138
7.5 Details of a program 141

7.5.1 Scrap evaluation 141
7.5.2 Orientations 141
7.5.3 Urgency and minimum scrap 142
7.5.4 Control structures 145
7.5.5 USED-PAIR-SELECT 148
7.5.6 MID-SHAPE-SELECT 148
7.5.7 MID-ORDER-SELECT 149
7.5.8 MOST-URGENT-PIECE-CONSIDER 150
7.5.9 SUB-PATTERN-EXTEND 150
7.5.10 SUB-PATTERN-DESIGN-CONTINUE 151
7.5.11 SUB-PATTERN-CONTINUE-KNOWN-SHEET 153
7.5.12 LEG-ALLOCATE 154

7.6 Results 156
7.7 Conclusions 159

Chapter 8 Efficacy of the methods 161

References 166
Appendix A Test data sets for 2-dimensional

trim-loss problem with sequencing
constraints 170

Appendix B Some notes on programming 178

Sources of diagrams

Figure 2.3.1 Nilsson (1971) P3
Figure 2.3.2 ibid. p47
Figure 2.4.4 ibid. p127
Figure 2.5.1 Lawler and Wood (1966) p708

1

Chapter 1 Introduction

1.1 Motivation and structure

The trim-loss, or cutting stock, problem arises

whenever material manufactured continuously or in large

pieces has to be cut into pieces of sizes ordered by

customers. The problem is so to organize the cutting as to

minimize the amount of waste (trim-loss) resulting from it.

Brown (1971) remarks that no practical solution method

has been found for the generalized 2-dimensional trim-loss

problem. This thesis discusses the applicability of

heuristic search methods as solution techniques for this

and other problems.

Chapter 2 describes three types of combinatorial

search method, state-space search, problem reduction, and

branch-and-bound. There is a discussion of the ways in

which heuristic information can be incorporated into these

methods, and descriptions of the versions of the methods

used in the work described in succeeding chapters.

In the 1-dimensional trim-loss problem order lengths

of some material such as steel bars must be cut from stock

lengths held by the supplier. Gilmore and Gomory (1961,

1963) have formulated a mathematical programming solution

of this problem, which also arises with the slitting of

steel rolls, cutting of metal pipe and slitting of

cellophane rolls. Their approach has been developed by

Haessler (1971,1975) who is particularly concerned with

problems arising in the paper industry.

In the 1* -dimensional case the material is

manufactured as a continuous sheet of constant width and it

2

is required to minimize the length produced to satisfy

orders for rectangular pieces. In the 2-dimensional case

the orders are again for rectangular pieces, but here the

stock is held as large rectangular sheets. In both cases

there may be restrictions as to the way in which the

material may be cut; the generalized problem in each case

occurs when no such restrictions exist.

The 11-dimensional problem appears to be easier of

solution than the 2-dimensional case since in the latter it

is necessary not only to determine the relative positions

of the required pieces in a cutting pattern, but also to

partition the pieces into sets to be cut from separate

stock sheets. A solution method for the easier problem

might provide some insight into possible methods of

solution of the more difficult. In chapter 3a state-space

search method for the solution of generalized

1# -dimensional problems where the number of pieces in the

order list is fairly small and the dimensions are small

integers is described.

This method can be developed to solve 2-dimensional

problems in which the order list is fairly small and the

size of stock sheets variable but affecting the cost of the

material. This development is described in chapter 4.

A similarly structured state-space search can be used
for finding solutions to optimal network problems. Such

searches do not prove the solutions they find to be

optimal, so it is of interest also to develop a method for

finding solutions to the problems that proves them to be

optimal. In chapter 5 the state-space search method is

compared with one using branch-and-bound.

3

It transpires that the characteristics of trim-loss

problems change when large numbers of identical pieces are

ordered, so a solution method with a different structure is

required. Chapter 6 describes a problem reduction method

for generalized 2-dimensional problems in which the order

lists are large and the dimensions are small integers.

Even when there are restrictions on the way in which

the material may be cut, the presence of other constraints

may make a mathematical formulation of the 2-dimensional

trim-loss problem intractable, so again a heuristic

solution method may be desirable. In a problem where there

are sequencing constraints on the design of successive

cutting patterns, problem reduction is again found to

provide a useful solution method. This is described in

chapter 7.

Some conclusions about the efficacy and potential of

the methods used are drawn in chapter 8. The remainder of

the present chapter is concerned with setting the work

described in this thesis in the context of other work on

the same and related problems.

1.2 The 1* -dimensional trim-loss problem

There has been little work published on the

1k -dimensional trim-loss problem. Abraham, Kirby, and Ng

(1976) remark, "the amount of literature dealing with the

cutting stock problem is very limited due to the fact that

many models, procedures and programming have been developed

commercially and hence kept confidential".

The problem they consider is one in which there are

severe constraints on the design of cutting patterns and

1

there are sequencing constraints to which the patterns must

conform. Both a generalized linear programming and an

heuristic approach are discussed and the conclusion is

reached that both produce acceptable production schedules.

They also consider the problem of optimization of the width

in which the material is produced.

The problem considered in chapter 3 of the present

work is one in which there are no restrictions on the way

in which the material may be cut. This is reduced to one or

more generalized 2-dimensional sub-probems. Pfefferkorn

(1975) solves small problems of this type as a specific

application of his Design Problem Solver. This he describes

as slow, which is to be expected of a program which does

not incorporate knowledge specific to the problem. With the

size of problem considered here it would seem essential to

do so.

There is no evidence that the results obtained in the

present work could be improved on in terms of accuracy, and

the program runs at an acceptable speed.

1.3 The 2-dimensional trim-loss problem

With materials such as glass there is a restriction

that when they are cut all cuts must be guillotine cuts.

For the 2-dimensional trim-Q3ss prolQem this means that a

cut must be a straight line from one side of the sheet to

the opposite side, or a similar cut in a sub-sheet

resulting from previous such cuts (see figure 1.3.1). The

number of stages of cutting may be limited. In two-stage

cutting the sheet is cut into strips and the strips into

the ordered pieces; in three-stage cutting the strips are

cut into sub-strips which are then cut into the ordered

5

1 : DC

_ý.

/b

two-stage guillotine
cutting

non-guillotine cutting

Tyke : cuilt1 n

Figure 1.3.1

Gilmore and Gomory (1965)]ive a formulation of' the

two-stage cutting problem which can be solved by solving

two knapsack problems, and a formulation as a staged linear

programming problem. They then present applications of

their knapsack formulation to a number of other problems.

In some circumstances it may be necessary to divide the

strips resulting from the first stage cutting into p groups

where all the strips in the same group must be cut in the

same manner. They discuss the two-stage problems in which

p=1 and p=2, three-stage cutting, and problems with many

stock sizes and free two-stage cutting. They then consider

the three-stage 3-dimensional problem, in which cuboids are

cut into layers, the layers into strips and the strips into

cuboids, and two-stage problems in which the value of a

rectangle depends on its position in the parent rectangle.

They finish by presenting a practical application of their

multi-stage guillotine
cutting

6

methods to a problem arising in the manufacturing of

corrugated boxes.

Hahn (1967) describes a dynamic programming method

using an adaptation of an algorithm of Gilmore and Gomory

(1966) for minimizing the trim-loss occurring in the

three-stage cutting of sheets that include flaws. Escudero

and Garbayo (1973) consider a two-stage cutting process.

They enumerate all patterns conforming to certain criteria

and use mixed integer programming to find a combination of

them that optimizes the objective function.

Dyson and Gregory (1974) are concerned with a

two-stage problem in which it is desirable that the cutting

patterns used should conform to certain sequencing

requirements. Their method is to generate a set of cutting

patterns using the techniques of Gilmore and Gomory and

then to treat the problem of sequencing these in the most

desirable way as a travelling salesman problem to which is

applied the method of Little, Murty, Sweeney and Karel

(1963).

Adamowicz and Albano (1972,1976), considering the

unrestricted problem, group identical pieces into "strips"

and then use dynamic programming to arrange these strips

into optimal cutting patterns. In their work the pieces

have sizes that are small in comparison with the size of

the stock sheet.

Haims and Freeman (1970), and Herz (1972) address
themselves to a re&ted probem. Here the sizes of pieces

to be cut are specified, but the numbers are not. The

problem is to find arrangements of pieces that minimize the

trim-loss when the stock sheets are cut. Chambers and Dyson

7
(1976) consider the problem of what size sheets should be

held as stock.

None of this work directly indicates a solution method

for the 2-dimensional trim-loss problem with varying stock

costs discussed in chapter 4. The technique presented there

is known to produce sub-optimal solutions, but the degree

of sub-optimality appears to be small. In the absence of

any other solution methods, such a technique may well be

useful.

Preliminary analysis of the abstract 2-dimensional

trim-loss problem considered in chapter 6 shows that most

of the cutting patterns in the solution will be of the

multi-stage guillotine form. The only work in the summary

above that might point to a solution method is then that of

Adamowicz and Albano.

This method, however, would run into end-effect

difficulties on the type of data being considered. Having

designed a cutting pattern for one sheet, they eliminate

from the order list the pieces cut in that pattern and

design the next pattern using the reduced order list. Their

choice of pieces to be cut from a sheet is made purely on

immediate trim-loss considerations. They do not consider

the possibility that certain selections of pieces to be cut

in early patterns in a sequence can mean that later

patterns must involve more trim-loss than would have been

the case if other selections giving the same trim-loss had

been made in the early patterns.

During the writing of this thesis, Christofides (1977)

published work on the multi-stage guillotine cutting

problem. This develops the methods of Gilmore and Gomory

8

and could be applied to the present problem. Of the work

that is described here it can be said that it produces

solutions which there is reason to believe cannot be

improved upon, and also allows non-guillotine cutting to be

specified in the small number of cases where this is

necessary for minimal trim-loss solutions to be found.

Dyson and Gregory's problem is similar to the

2-dimensional trim-loss problem with sequencing constraints

of chapter 7. Their method is optimal for trim-loss, but by

no means fully satisfies the sequencing desiderata. The

method developed here considers sequencing requirements

during, instead of after, the design of cutting patterns.

By this means the sequencing desiderata can be fully

satisfied. It is known from consideration of particular

cases that it is possible to produce solutions satisfying

the sequencing requirements and giving less trim-loss.

However the degree of sub-optimality of the present method

again appears to be small.

1.4 The optimal network problem

The optimal network problem problem, which is one of

minimizing user costs in a communication network subject to

a limit on the construction cost of that network, has been

thoroughly reviewed by Pearman (197+). The best results in

previously published work for the version of the problem

considered in chapter 5 are those of Boyce, Farhi and

Weischedel (1973), who apply an adaptation of an algorithm

of Beale (1970) for selecting optimal subsets.

The branch-and-bound method described here has

distinctly better performance. The state-space search

method in most cases finds an optimal solution and has

9

always found one that is nearly optimal. There is some

evidence that on problems for which the branch-and-bound

method fails to terminate the state-space method is more

efficacious in finding good solutions.

10

Chapter 2 Combinatorial search methods

2.1 Introduction

For a large class of problems it is the case that a

solution can be constructed by selecting a finite subset of

a finite or denumerably infinite set of elements and

arranging them in one of a finite number of ways. Finding

a solution can be regarded as searching through the set of

alternative combinations until one is found. For such

searching to be a practicable proposition it must be

suitably organized. In this chapter are described three

methods of search organization, all of which can be

expressed in graph theoretic terms using trees.

In section 2.2 some graph theoretic terminology is

introduced. Section 2.3 describes state-space search,

section 2.4 problem reduction and two ways in which problem

reduction and state-space search can be combined, and

section 2.5 branch-and-bound. Adaptations of the methods

for the problems dealt with in the present work are

explained, some illustrative examples given, and the

relationships between the methods discussed.

2.2 Some concepts in graph theory

A graph G consists of a set V of nodes together with

a prescribed set X of unordered pairs of points of V. Each

pair x=(v, , v2? in X is an are in G. A subgraph S of G is a

subset of the nodes of G together with those arcs 1v, , v2}

of G for which both v, and vz belong to S.

A path in G is a sequence of nodes v�vA, , v� where

the {vj , vj,,) , i=1,2,..., n-1, are arcs of G. G is said to

be connected if for every pair of nodes v, , v; L of G there is

11

a path between v, and v2. If G is not connected then it may

be divided into components. A component C of G is a

subgraph of G with the property that if v, and v2 are nodes

of C then there is a path in G between them and if v, is a

node of C and v2 a node of G not belonging to C then there

does not exist a path in G between them.

A directed graph D consists of a set V of nodes

together with a prescribed set X of ordered pairs of points

of V. Each pair x=(v�v2) in X is a directed arc in D.

If D has a directed arc (v,
, v2.), then node v. 2 is said

to be a successor of node v� and node v, is said to be a

parent of node vl .A sequence of nodes v, , v1 , , vn with

vL a successor of vß, _1 for i=2,, n is called a path of

length n-1 from node v, to node v� . If a path exists from

node v, to node v2, then node vz is said to be a descendant

of node v, and node v, is said to be an ancestor of node v1.

D may have a cost function P associated with it,

P(v, , vz) being the cost of (v,, vx). The cost of the path

v�vz,...., vn is then P(v, , v,)+P(vz, v,,)+.... +P(vn_, , v�).

A tree is a directed graph with a distinguished node,

called the root node, from which each other node can be

reached by one and only one path. A node in a tree which

has no successors is called a terminal node. The distance

of a node from the root node, i. e. the length of the path

to it from the root node, is called its depth in the tree.

A binary tree is one in which each non-terminal node has

exactly two successors.

2.3 State-space search

2.3.1 Definitions

Consider the 15-puzzle. This consists of 15 numbered,

12

moveable tiles set in a 4x4 frame. One cell of the frame is

always empty, making it possible to move an adjacent

numbered tile into the empty cell, leaving the cell from

which it came empty. The problem is to find a sequence of

moves that will transform a given initial arrangement of

the tiles into some other specified arrangement (see figure

2.3.1). Not all such problems are soluble. The arrangements

may be divided into two sets with the property that any

arrangement in a set can be transformed into any other

arrangement in that set and no arrangement in one set can

be transformed into an arrangement in the other set

(Johnson and Story, 1879; Tait, 1880).

11 94 15 1234
1 30 12 5678
75869 10 11 12
13 2 10 14 131415

e: x Initial Goal

The 15-puzzle. kr/

Figure 2.3.1

In this and many other problems we have a set of

configurations and a set of rules describing the possible

ways in which one configuration may be transformed into

another. From this description can be abstracted the

concept of a state-space (Ernst and Newell, 1969).

A state is a configuration in the development of a

solution to the problem. An operator is a rule for

converting one state into another. The state-space is the

set of all possible states and the operators that can be

applied to them.

A solution to a problem expressed in these terms will

be a sequence of states and the operators that transform

13

each into the next. So the original problem is converted

into that of searching for an appropriate sequence in the

state-space.

A significant sub-class of state-space

representations for problems is that in which the initial

state, the starting point for the solution of the problem,

is the empty set and other states are partial solutions. As

an example, consider a representation of the travelling

salesman problem.

The problem is to plan a trip in a network of n towns

such that each town, other than that from which the trip

started, is visited once and once only, that the town from

which the trip started is visited only after every other

town has been visited, and that the trip has minimal

length. In the representation the states are ordered lists

of towns so far visited. The initial state is the empty

list and one state is transformed into another by adding a

town to the list of the earlier state. States which are

lists satisfying the routing constraints of the problem are

candidates as solutions of the problem. That candidate for

which the trip distance is least is the required solution.

There is a natural representation for a state-space as

a directed graph. The states label nodes of the graph and

the operators label arcs. The solution, of a 15-puzzle is

given by the sequence of labels of arcs forming a path from

the initial state to the goal state, the required

configuration. The solution to the travelling salesman

problem is given in the label of the state representing the

solution.

Nilsson (1971) states that for a complete state-space

14

representation of problem three things must be specified:

i) the form of the state description and, in

particular, the description of the initial state,

ii) the set of operators and their effects on state

descriptions,

iii) the properties of a goal state configuration.

Observe that for problems such as the travelling

salesman, where a solution is required satisfying a

number of requirements including an optimality condition,

all states satisfying the requirements with the

optimality condition ignored are regarded as goal states.

They represent feasible solutions to the problem. Amongst

their number will be found the optimal solution, which

also satisfies the optimality condition.

2.3.2 Computational practice

When a state-space representation of a problem has

been established the task of finding a solution to the

problem becomes equivalent to the task of finding a path

in the state-space graph from an initial state to a goal

state. Usually the state-space graph is not specified

explicitly. Instead the specification consists of a set
6j of start nodes and a successor operator r that can

be applied to any node to give all the successors of that

node and the associated arcs. The process of searching

through a state-space for a path from an initial state to

a goal state then corresponds to making explicit a

sufficient portion of an implicit graph to include the

required goal node.

State-space search methods can hence be modelled by

a graph theoretic process.

15

i) A start node is associated with the initial state

description.

ii) The successors of a node are calculated by applying

r to the node. This process is called developing the

node.

iii) Pointers are set up from each successor back to its

parent node. These pointers indicate a path back to

the start node when a goal node is finally found.

iv) The successor nodes are checked to see if they are

goal nodes. If a goal node has not yet been found,

the process of developing nodes continues. When a

goal node is found, the pointers are traced back to

produce a solution path.

The model as stated is over-simplified. One

complication arises from the fact that the state-space

graph is not usually a tree. This means that nodes

labelled with the same state can be generated by the

application of r to different nodes. A second

complication arises when the search is for an optimal,

rather than simply a feasible, solution. Goal states must

be generated until the optimal solution has been

produced. It is necessary to determine when this has

occurred. A third complication is that a decision must be

made as to the order in which the nodes are developed.

The third of these points will be considered first,

the other two being ignored for the moment. The

state-space is a tree and any feasible solution is

acceptable. Such a space may be searched by a method

which takes no account of any information as to

whereabouts in the search space the solution is likely to

be fcund. Such methods are called blind-search

procedures. A typical blind-search procedure is

breadth-first search. Its steps are:

i) Put the start node on a list called OPEN.

ii) If OPEN is empty, exit with failure, otherwise

continue.

iii) Remove the first node from OPEN and put it on a list

called CLOSED; call this node n.

iv) Develop node n, generating all of its successors. If

there are no successors, go immediately to (ii). Put

the successors at the end of OPEN and provide

pointers from these successors back to n.

1{n�I

wmlv

The tree produced by a breadth first search.

Figure 2.3.2

v) If any of the successors are goal nodes, exit with

the solution obtained by tracing back through the

17

pointers; otherwise go to (ii).

Breadth-first search will find the path containing

the minimal number of arcs if any solution exists. If no

path exists it will exit with failure for finite graphs

and will never terminate for infinite graphs. Figure

2.3.2 shows a breadth-first search for an 8-puzzle

problem.

The tree generated by a search process is a fragment

of the entire state-space and is known as the search

tree. A state-space in which a search is being conducted

may be referred to as a search space. Search spaces are

often extremely large, and a blind search tends to cover

a large proportion of a space, producing a large search

tree.

Heuristic search methods, such as the Graph

Traverser of Doran and Michie (1966), attempt to reduce

the size of the search tree generated by using

information about the particular space in which the

search is being conducted. Such problem-dependent

information is used to decide the order in which nodes of

the search tree should be developed.

In the Graph Traverser and related methods the

heuristic information is used to construct an evaluation

function which takes as its argument a state description

and produces as a result the value of the state. This

value is an estimate of the cost of constructing a path

from the present state to the goal state. The values can

be used to order the undeveloped nodes of the search

tree. Thus instead of developing the first node on OPEN

as in breadth-first search, each iteration of the

18

heuristic search develops the undeveloped node with lowest

value.

Consider again the case where the state-space graph is

not a tree. In this case the development of a node may

result in the generation of a node labelled by a state

which also labels a node that has been generated in some

previous development. In other words, a development can

result in duplicated state labels. In a blind search for a

feasible solution the only addition necessary to the basic

search algorithm is not to add to OPEN any node whose

generation brought about a duplication of state labels. If

the search is for an optimal solution then consideration

must be taken of the possibility that the cost (the

quantity which is tested in the determination of

optimality) of a goal state may be a function of the path

to it being considered. Now when duplicated state labels

arise the paths to the relevant nodes are considered. One

of these paths taken together with a path from the

duplicated state to a goal state will result in a better

cost than the other. If the node just generated is on this

path it is put on OPEN and the other node is put on CLOSED,

otherwise the node just generated is put on CLOSED.

Similar considerations arise if an heuristic search is

being conducted. Here the differing paths to nodes labelled

with the same state may be associated with differing values

given to this state by the evaluation function. The node

for which the value is least is the one that will be

retained as a candidate for future development.

19

Thus the steps of an heuristic search of a

state-space graph are:

i) Put the start node, s, on a list called OPEN and

compute f(s), where f is the evaluation function.

ii) If OPEN is empty, exit with failure; otherwise

continue.

iii) Remove from OPEN that node, n, for which f(n) is

smallest and put it on a list called CLOSED.

(Resolve ties for minimal values arbitrarily, but

always in favour of any goal node).

iv) If n is a goal node, exit with the solution path

obtained by tracing back through the pointers;

otherwise continue.

v) Develop node n, generating all of its successors.

If there are no successors, go to (ii). For each

successor, nL, compute f(ni).

vi) Associate with the successors not already on either

OPEN or CLOSED the values just computed. Put these

nodes on OPEN and direct pointers from them back to

n.

vii) Associate with those successors that were already

on OPEN or CLOSED the smaller of the values just

computed and their previous values. Put on OPEN

those successors on CLOSED whose values were

lowered, and redirect to n the pointers from all

nodes whose values were lowered.

viii) Go to (ii).

The problem of determining when an optimal solution

has been found in the case where several feasible

solutions exist has been considered by Hart, Nilsson and

20

Raphael (1968). They give an algorithm (A*) of the Graph

Traverser type which, by requiring the heuristic

evaluation function to satisfy certain conditions,

ensures that the first feasible solution found is

optimal. Harris (1973) describes a "bandwidth" search

which by a different restriction of the evaluation

function ensures that the first feasible solution found

differs in cost from the optimal solution by a bounded

amount. Pohl (1973), in his Heuristic Path Algorithm,

uses dynamic weighting of the heuristic information and

guarantees the production of a near optimal solution.

2.3.3 More sophisticated search methods

The branching ratio of a graph is the average number

of successors possessed by a node of the graph. If a

search is being conducted in a graph with a high

branching ratio, development of a small number of nodes

will result in the generation of a large number of nodes.

This causes difficulty in terms of the use of a computer

since a large amount of storage would be required to hold

representations of all the nodes.

A possible strategy in such a case is the partial

development of nodes (Michie, 1967). When a node is first

selected for development a subset of the available

operators is applied to it and it remains a candidate for

development at some future time. If it is later again

selected for development a subset of the available

operators not already used are applied to it. It will

remain a candidate for development until all possible

operators have been applied to it.

Michie (1967) also considers the possibility of

21

synthesizing compound operators from simple ones. The

application of a compound operator to a state will

generate a sequence of successors corresponding to the

successive application of the simple operators of which

it is composed, each to the state generated by the

previous one. Attempts to make use of this technique

encounter the problem that a large number of compound

operators could be constructed and it is difficult to

determine which of them will in practice be useful. In

the same paper, consideration is given to the use of

information about a state to select the operator to be

applied to the state. This idea can be extended to that

of the ordering of operators (Michie and Ross, 1969) to

determine which shall be applied during successive

partial developments.

Means-end analysis (Ernst and Newell, 1969)

hypothesizes that certain states will occur on the path

between the present state and a goal state and then

attempts to construct the path fragments linking them. It

is of use when such hypotheses can be made using

information about the current state, but this is not

possible in the work described in this thesis.

2.3.4 Ordered operator search

Where state-space search has been used in the

present work satisfactory evaluation functions have not

been available. Instead a search method, which will be

referred to as ordered operator search, in which the

heuristic guidance for the search is provided by an

ordering of operators, is used. When a node is generated

the set of operators that may be applied to it is

22

ordered, that operator which it is thought most likely

will, when applied, produce a node on the desired

solution path being placed first, and the ordering being

in decreasing order of likelihood. When a node is

selected for development the first operator in its list

of operators is applied and removed from that list.

The value of a node is thus no longer a simple

measure of the probability that the node lies on the path

to the desired solution, but rather of the probability

that the operator, if any, which will generate the

successor node on the path from this node to the desired

solution, remains to be applied. A simple mechanism has

been found adequate for the generation of such values.

When a node is first generated it is given value 0.

Whenever an operator is applied to a node an increment is

added to the value of that node. The size of the

increment may be related to the operator applied. A large

value will reflect the belief that the application of

operators not yet applied is unlikely to produce a node

on a solution path. This mechanism is similar to that of

local smoothing (Michie and Ross, 1969) where the initial

value assigned to a state by an evaluation function is

adjusted in the light of information gained during the

development of that state.

A limitation of the use of operator ordering instead

of an evaluation function for the guidance of the search

is the absence of a means of determining that an optimal

solution has been found, when such is wanted. It is now

necessary to terminate the search after some arbitrary

number of search steps which experience suggests will be

23

sufficient to include a solution which, if not optimal,

is close enough to optimal for the purpose for which it

is needed. A similar problem arises in deciding on the

point at which a search which has not yet found any

feasible solution should be abandoned on the ground that

if a solution has not yet been found it is unlikely that

one exists at all.

2.4 Problem reduction

2.4.1 AND/OR graphs

Suppose a solution is required to a complex problem.

It may be possible to break the problem into component

parts whose solutions taken together provide a solution

to the original problem. More formally, a goal, G, can be

achieved by the achievement of a conjunct of subgoals

G1 G,,..... The assumption will be made throughout the

present discussion that the subCoals are independent,

that is, that the way in which one is achieved does not

affect the possibility of achieving another. If this is

not the case then a different approach is needed, see,

for example, the work of Sacerdoti (1975).

It may be the case that a subgoal can be split into

further subgoals. A subgoal that cannot be divided in

this way is called a primitive subgoal. It may also be

the case that there is more than one way of achieving a

subgoal. For example the achievement of G2 may require

the achievement of either subgoals G 2, and G.., or

subgoals G 23 and G24 .

24

u21,

4ý

aýA
aw a

: º.
;ý

ý,
}

A44

G31 , yý

Graphical representation of goal structure

Figure 2.4.1

This sort of situation may be represented graphically.

The goal is represented by the root node of a tree; other

nodes of the tree are labelled with subgoals, successor

nodes being labelled with subgoals of the subgoal which

labels their parent node. The requirement that all of a set

of subgoals must be achieved for the achievement of the

subgoal of which they are components is indicated by a

brace across the arcs connecting the nodes they label to

their parent. Such a graph is shown in figure 2.4.1. In

this case Go can be achieved by the achievement of G� or

of both G, 2 and Gil . The achievement of G� requires the

solution of both G2% and G22, whilst the achievement of G13

requires the solution of either G23 or G24. The achievement

of G23 requires the achievement of G31.

Such graphs may be converted into a canonical form in

which the set of arcs originating from a node either

consists of one braced group or contains no braced groups.

In the first case we have an AND node; all the subgoals of

the subgoal labelling the node must be achieved for that

subgoal to be achieved. In the second case we have an OR

node; the achievement of any one of the subgoals of the

25

subgoal labelling the node will enable that subgoal to be

achieved. Graphs of this canonical form are called AND/OR

graphs (Slagle, 1963). Figure 2.4.2 shows the AND/OR form

of the graph in figure 2.4.1.

"r,,;;
4., SýH. .:,

#ý{ x
r!

-I I

a

}µ ttJ.

_
_. x ýl

G21

ý. ýýý:
u, `
i'y -, ., y

-°ý#"
ýý,

ý,: ss

i

` ý. '
±ý'

ý

$ý ýýi ý,
>>ý

ýý. ý

3:
ýi

AND/OR form of figure 2.4.1

Figure 2.4.2

2.4.2 Construction of a solution

The terminal nodes of the AND/OR tree representing the

relationships of the subgoals for the solution of a problem

are labelled with primitive subgoals. When a primitive

subgoal is considered, it will either be the case that it

can be achieved, in which case the node it labels is

soluble, or that it cannot be achieved, in which case the

node is insoluble. Recursively it can be determined whether

a non-terminal node is soluble:

i) If the node is an OR node, then it is soluble if and

26

only if at least one of its successors is soluble,

ii) If the node is an AND node, then it is soluble if and

only if all its successors are soluble.

' .. -Travel trom, Bi adf ord
to Birmingham '''. 'J

Travel via
Manchester

f, r Train from
-. Bradford to

`Manchester

,;;
Victoria

Walk from
Manchester
Victoria to
Manchester.
Piccadilly

Travel via
Leeds

Träiii, frörii ". Manchestý` ' `, " F'
Piccadiilyýtö °%
Birming11arn <

J
"0.

t! _

AND/OR search graph for travel problem

Figure 2.4.3

The AND/OR tree will be constructed piecewise by the

repeated application of problem reduction to subgoals

labelling nodes. When a sufficient portion of the tree

has been constructed it can be determined whether the

root node is soluble. If it is, the information as to how

the subgoals were determined to be soluble can be

collected and organized into a statement as to how the

problem can be solved. Figure 2.4.3 shows how this can be

done for the problem of planning a journey from Bradford

to Birmingham.

As when searching a state-spacq

it may be required to find not

27

simply a feasible solution, but an optimal solution. A

solution tree is defined to be a subtree of an AND/OR

tree containing the information that is both necessary

and sufficient to prove that the root node is soluble.

Nilsson (1971) dives two alternative definitions of the

cost of a solution tree, both of which are based on costs

associated with arcs of the tree. The sum cost is the sum

of all the arc costs in the solution tree. The max cost

is based on the costs of paths from the root node to

terminal nodes in the solution tree. For any such path

the cost is the sum of the costs of the arcs making up

the path. The max cost is defined to be the highest such

path cost. These definitions are illustrated in figure

2.4. x+.

44
Sol ution A Solution B

5526

t6317

Fz '. Solution A Solution B
Sum cost - 20 Sum cost - 18
Max cost - 15 Max cost - 17

Two solution trees and their coats., +ný

Figure 2.4.4

The problem of finding an optimal solution is

equivalent to that of finding a solution tree having

minimal cost within the entire AND/OR tree. Such a

solution tree is called an optimal solution tree. Let

c(nL, nj) be the cost of the arc between node ni and its

successor nj. Let h(s) denote the cost of the optimal

28

solution tree rooted at the start node s. h(s) is defined

recursively in terms of the minimal cost, h(n), for a

solution tree rooted at any node n.

i) If n is a terminal node (labelled with a primitive

problem) h(n)=O if n is soluble and is undefined if

it is not.

ii) If n is an OR node having successors n,,...... nk

then

h(n)=min [c(n, n j)+h(n1)]

iii) If n is an AND node having successors n,,...., nk

then
k

h(n)= ; [c(n, nL)+h(ný)] for sum costs,

h(n)=max[c(n, n-,)+h(n,)J for max costs.

During the construction of the AND/OR tree it may be

possible to use an heuristic function, ý, to estimate the

costs of nodes which are being made explicit. Nilsson

(1969,1971) gives an algorithm which ensures that if ti

satisfies certain conditions the first solution tree

constructed is optimal.

2.4.3 Preferred reduction search

Where problem reduction trees are used in the

present work satisfactory heuristic functions have not

been available. The development of a search tree has been

guided by a combination of the association of values with

nodes and the ordering of possible methods of reduction

of a node.

The basic iteration of the process, which will be

referred to as preferred reduction search, is:

i) Look for the node with the lowest associated value.

ii) Perform the most preferred of the remaining possible

29

problem reductions for this node (some may have

already been performed). This may provide a solution

for the problem at this node, or cause the creation

of one or more new nodes.

iii) Increment the value of the node to which the problem

reduction was applied. The size of the increment

will determine the frequency of return to this node

during the search. Thus the increment will be small

when it is desirable that a large number of

alternative reductions should be made and large when

it is not.

This search process differs from the theoretical

model described above in that a subgoal for which a

solution could be directly identified, and which might

therefore be regarded as primitive, may be instead

reduced, leaving a subgoal remaining to be solved. The

reason for this derives from the fact that the goal of

the search will be one of a sequence which must be

achieved for the solution of the overall problem. The

details of the solution of the present goal will affect

the nature of later goals in the sequence, and use of the

directly identified subgoal solution could lead to the

resultant solution sequence being sub-optimal.

The form of the reduction may be to identify a

category of reductions that might be performed and to

create a new node at which the subgoal is associated with

this category of reductions. This is a reduction in the

complexity of the problem of choosing possible

reductions. Alternatively the reduction may be a simple

splitting of the subgoal into component subgoals. A third

30

possibility is that the reduction may be of the form "the

solution is to consist of primitive element X and such

other elements as are necessary to complete the

solution", the determination of these other elements

constituting a new subgoal. A representation of this type

of reduction in terms of an AND/OR graph is shown in

figure 2.4.5. P denotes the subgoal being reduced. Other

reductions may already have been applied to it; these are

indicated by the dotted lines. N denotes the new subgoal

being set up. A is a constructed AND node linking N to

the primitive element X. A simpler notation can be used

and is shown in the third part of the figure. Here the

arc connecting P to N is labelled with X. The way in

which the components of a solution represented in this

manner can be collected together is obvious.

i, I
' 41

/
/

e

_ ", p. a:
ý

'ßi
4_

, y. i

1+p.. vr. r".; `,
ýy', ^... 1't-e; "ýi! 'Gi"ý°c; 'd_ý*v se`t .? My "p

.' +ý. ., ", y ý.
ý;

,. +
.., ý""ý

7t 'S,
ýv , ". lnN^K , y'ý i`. ,

"i"ý.,
Yý^s, ý. lt ý, '. P, 'Y

.

¢"`

s -'. {ý+
>i.

^
y, %. k.. r.

.. /ý
r'

ýf"i.
ýI+Y, rý.

iSýýýt: ýs:,
`6''. "ý .

Y..
ýl., c, ".

"ý
.F fq"

"ý.
_ý

. 4ý. ý'
r rý ý*r., es

ýý. J ý">. ý"ý`. 2+44,: l.
tý+: ýýý. fy

i, 'ý"
5+ýý-. +'ý '%y

k, y fý; ýýtýý, ý'; `. '.. 'ý'ýY s ýý ýF'ýýa
ý y"ýnR .r iý' ý

ýi,
Rr ; ae

ton
ý..

...,
y

ýýý"�ýx+"!

'iý: f
ý.

d ý, ý t Yuri ý 7"i
.1i ýP , 't1 Y

.. ' t'4 .; *ý e Zj' 'k
sc

tiý är z±1V f^. ' i ýy ' i" i ,, ý' ...
ýr

t, ' ""'t ,ý 1i ",.,. " r'. " tom.
. ., ý, ý "y.

V-k
yý

'"ý
£. L }, K"' �"

Pý 3 sý
mar

5, t_ "_ ri ''Z
17

ý
't

, f.. e
SY.

1
ý

'"K 2
.1.. Y ký t8r ., .ýt, s`yy :.,. ý,?, ýP '. x .t ý" `$ý" >M *

""
1. _. * " , "Y'1'ý,

_ýrp
..

ýý.
"-, ý, ý ý':

ý"jrx. ýr {3: ý h_ !. týttti.
4ti; 4, u

`4a' G. '"a
.GX yy. w"k#t: J. ü! +.? °ßdÄ. 4"

Representation of problem reduction form

Figure 2.4.5

Whenever the search process produces an explicit

solution for a subgoal some collection will occur. This

may involve the modification of ancestor nodes to take

31

account of the solution information now available or

evaluation of a feasible solution of the goal. Again the

problem of a criterion for terminating the search arises.

In the absence of other criteria, searches are terminated

after they have consumed an amount of computing resources

which experience indicates usually produce a feasible

solution where one exists and an optimal solution when

such is being sought. Note also at this point that the

trees used in the actual computation differ in their

detailed structure from the abstract trees that have been

used to describe the method.

2.4.4 Relationship to state-space search

The process of solving a problem by problem

reduction can be represented as a state-space search.

Each state is a partially constructed problem reduction

tree. The operators are the problem reduction operations

that extend that tree. The start state is the unreduced

problem, and the goal states are trees that include

solution trees.

Conversely a state-space graph can be regarded as an

AND/OR tree containing only OR nodes. If the alternative

notation introduced in section 2.4.3 is extended by

replacing terminal nodes labelled with primitive problems

by the sequence: node, arc labelled with solution to

primitive problem, terminal node, the correspondence

becomes obvious.

The name applied to a problem solving method may

thus on occasion be regarded as somewhat arbitrary. A

particular example of this is the case where all the

nodes of the tree developed during problem solving are OR

32

nodes, but the operations used to determine the

successors of different nodes are of essentially

different types. Clearly this may be regarded as a

state-space search, but it can be convenient to regard it

as problem reduction, the operations at different nodes

being the reduction of different types of subgoal.

2.4.5 Combined search methods

When an optimal solution for a problem is being

sought it may be the case that the possible costs of

solutions can be listed in ascending order as a sequence

that proceeds by discrete steps. In this case a certain

amount of computing resources can be devoted to trying to

find a solution with the least cost. If one is not found,

a certain amount of resources are allocated to trying to

determine a solution with the next least cost, and so on.

This strategy, which will be referred to as cost

alternative reduction, corresponds to the OR graph shown

in figure 2.4.6. Finding an optimal cost solution for

goal G can be reduced to the problem of finding a

solution with the least cost, C1, or finding a solution

with the next least cost, C2, and so on.

Within the cost alternative reduction, a method must

be selected for attempting to find a solution with a

given cost. For the abstract 11-dimensional trim-loss

problem (chapter 3), where the distinct costs correspond

to distinct alternative amounts of material that may be

produced, an ordered operator search is used to search

for a solution with a given cost. The total solution

technique will be referred to as ordered operator search

within cost alternative reduction.

33

"ý -, ... s,,. -,

C, (C2

Cost alternative reduction

Figure 2.4.6

Alternatively it may be the case that the cost of

solving subgoals is such that once a subgoal has been set

up and a solution to it found that is judged to be a

component part of the most desirable solution to the

overall goal, resources can only reasonably be allocated

to finding a solution to the residual problem, and

similarly with subsequent reductions. This strategy

corresponds to attempting to find a path from the start

node to a goal node in a state-space graph allowing only

one attempt to determine which successor of a given node

lies on the path to the most desirable goal node that can

be reached from that node. The success of such a strategy

is limited by the precision of methods available for

selecting such successors.

A method must be selected for finding solutions of

individual subgoals. Where this method is that of

preferred reduction search, the total solution technique

will be referred to as preferred reduction within

non-backtracking search.

34

2.5 Branch-and-bound

2.5.1 Structure of the method

Branch-and-bound (Lawler and Wood, 1966) uses the

construction of a tree as a vehicle for the determination

of optimal solutions. The discussion here will be phrased

in terms of a search for a minimal cost solution. Each

node of the branch-and-bound tree is labelled with a set

of features that a feasible solution may pomss, the

presence or absence of some features being undecided for

that node. A node is added to the tree by considering

some extant node and creating as a successor to that node

one which has all the features determined for its parent

and some other determined feature, the inclusion or

exclusion of one that was previously undecided. A

terminal node of a branch-and-bound tree is one whose

label specifies sufficient determined features to define

a unique feasible solution.

For branch-and-bound to be an applicable method for

the solution of a problem it must be possible to

construct a bounding rule. This is a function which,

given a set of features of a solution, determines a lower

bound on the cost of any solution possessing these features.

A common convention, which will be followed here, is

to construct branch-and-bound trees as binary trees. Each

time a node is considered two successors are created, one

having all the determined features of its parent and some

previously undecided feature included, the other having

all the determined features of its parent and the same

previously undecided feature excluded. The parent node is

35

then marked as unavailable for further consideration. The

method used, when considering a node, to select which

currently undecided feature shall be a determined feature

of the successors is called the branching rule.

There are several strategies for selecting the order

in which nodes are developed, i. e. have their successors

constructed. One possible strategy is to develop always

that undeveloped node having least lower bound. This can

be expensive in terms of computing resources, since each

development iteration will involve a complete

reconstruction of the solution details labelling the

current node. Often it is more economic to repeatedly

develop newly created nodes. Suppose a node has been

selected for development, as being the undeveloped node

with least lower bound. Its successors are created. The

successor which includes the previously undecided feature

becomes the next node to be developed. The process

repeats until either a terminal node is reached or the

lower bound of the node due to be developed exceeds the

cost of a known feasible solution. This is the go-right

strategy. The go-left strategy is similar, the choice of

successor for development being that in which the

previously undecided feature is excluded. The advantage

obtained with either of these strategies is that the

iterations involving the development of successors do not

require a complete reconstruction of solution details,

but only a modification of those already stored to take

account of the decision that has just been made.

Whichever strategy is used, the determination of a

feasible solution will be followed by an analysis of the

36

tree so far constructed to establish whether nodes as yet

undeveloped can be eliminated as candidates for

development. When a feasible solution is determined its

cost is evaluated. If this is less than the cost of any

previously determined feasible solution then the lower

bound of each undeveloped node is compared with it. Any

node whose lower bound is greater than the cost of a

feasible solution can be eliminated as a candidate for

development. This can be done by marking it as "already

developed".

The root node of the tree, which will be the first

node to be developed, has no determined features.

Development of the tree continues until all nodes are

marked as "already developed". The lowest cost feasible

solution found during the development is then the optimal

solution.

2.5.2 An example

To explicate some of the points in the description

above, the approach of Little, Murty, Sweeney and Karel

(1963) to the travelling salesman problem will be

considered, using the asymmetric 10-city problem defined

by the matrix in figure 2.5.1 as an illustrative case.

Here and elsewhere where problems derived from graphs are

being described, vertex and link will be used as synonyms

for "node" and "arc" when the problem graph is being

referred to, "node" and "arc" being reserved to describe

the graph developed by the problem solving method.

37

a
1: ßt ; , Býö. 24 : 18 : 31 ,ý 22 19 . 33 ., = }25 '. 30 _ . 26 r

19 -2T ~-26 ': 32, , 25'< :. 31y : 28 '1K

.
22 23.. 23 10 29 27 - 16

,
'27

24' 31= =1$'- °00 10'" 13- '2S -9 19 27-, ' '
. ̀., . 23 18 34 20 co 31 24 15 25,

.8
67- 24"' 12' ' i7 - , 15 10 11 16 21 31'
7 28 15 27 35 19 18 - 21 21 19

8 13 24 18 13 13 22 25 00 29 24
9 17 21 18 24 27 24 34 31 co 18

10 18 19 29 16 23 17 18 31 23

Data for travelling salesman problem

Figure 2.5.1

The bounding rule is:

i) Set the lower bound to zero.

ii) For each explicitly included link (i, j) add its cost

to the lower bound and delete row i and column j of

the matrix.

iii) For each path consisting of explicitly included

links determine the starting vertex p and the ending

vertex m and set element (m, p) of the matrix to oo.

iv) For each explicitly excluded link (k, l) set element

(k, 1) of the matrix to oo .

v) Subtract the smallest element of each row of the

matrix from every element of that row, and, having

done that, subtract the smallest element of each

column from every element of that column. Add all

these elements to the lower bound.

The branching rule is:

i) Let «(k) be the second smallest element in row k of

the matrix constructed by the bounding rule and, (1)

the second smallest element in column 1.

38

ii) Find the pair (k, l) for which the (k, l) element of

the matrix is 0 and (3(k, l)=¬(k)+, &(1) is largest.

This chooses (k, l) so that the successor node having

(k, l) excluded has the largest possible lower bound.

The development strategy is that of always

developing the node with least lower bound. The resultant

branch-and-bound tree is shown in figure 2.5.2. The

circles represent the nodes; inside the circle is shown

the inclusion or exclusion which created it, to the left

the sequence number of its creation, and to the right its

lower bound. Full details of the determined features at a

node are obtained by collecting the inclusions and

exclusions from the node and its parents. Such collection

would occur if the method were implemented on a computer.

Consideration of this point indicates the possible merits

of go-right or go-left as development strategies.

2.5.3 The use of heuristic information

In the example just described the branching rule

takes no account of the particular problem being

considered. Branching to maximize the bound at one of the

successors could be equally applicable to other problems

to which branch-and-bound was applied. Its merit is that

it is likely to restrict the size of the tree

constructed. This is usually desirable when

branch-and-bound is being used. Such a branching rule may

be called domain-independent, as it is independent of any

particular problem domain.

However, it may be useful to construct a branching

rule which takes account of the particular problem

domain. Such a rule may be called domain-specific. One

39

I(Root) 139

2 (5,1O)'147 3
re,

, 'IO) 139
Figure 2.5.2

Branch-and-bound tree
for travelling
salesman problem

4 (399)
1455

(3,9) 139

50 145 148
22 (428) 23 (4,8) 6 (4)7 (4,8) 143

151 145 143

24 95 2 (395) 8 (1,3) 9 (1,3) 143

150 'I 143 152

Z6 ý8, 'I) ($, ý) (7 (1
96) (2-9-1 (2,1) 145

21
10 1

149 143
153

14 (7,2) (7,2) ($95) (8,5) 146
1 20 21

151 143 150

16 (1094) (10,4) (792) (7,2) 146

81

28 29

154 153 50

18 (6,7) (697) 6,7 (6,7) 146

19 3 31

40

advantage of a domain-specific branching rule is that it

may cause the optimal solution to be generated early in

the construction of the branch-and-bound tree, in which

case, as nodes will be marked as unavailable for

development which would not be if their lower bounds were

compared with the cost of a non-optimal feasible

solution, the size of the branch-and-bound tree

constructed is reduced.

As an example of a domain-specific branching rule,

let us consider one used in finding p-medians (Boffey and

Hinxman)1976). A p-median of a graph with n vertices is a

subset, V, of the vertices such that tVý=p and . hjd(V, j)
J

is minimal, where d(V, j)=rain d(r, j) . hj> 0 is the weight
rev

of vertex j and d(r, j) is the shortest distance between

vertices r and J. A feasible solution of this problem is

then any subset of p vertices, the optimal solution

satisfying the minimality condition.

If VF is a feasible solution and j any vertex in the

graph, then there is some vertex reVF for which d(r, j) is

minimal. j will be said to be associated with r. On

average n/p vertices are associated with a vertex in VF.

The heuristic assumption is that in the optimal solution

the sets of vertices associated with the different

vertices of V are of approximately equal size.

At a node x of the branch-and-bound tree some

vertices will have been explicitly excluded from

appearing in any descendant solution, some will have been

explicitly included, and the remainder will be undecided.

Denote these sets respectively by Ex, Ix., Ux. The

branching rule is:

41

i) Let Wx(i) be the `n/pi vertices nearest to 16I.

(including i itself), where rl denotes the smallest

integer not less than. Let Wx=UWx(i).

ii) For each jtW2v E,
-

find the sum of the 1n-IWxIEx_l

p- I, X)
I

smallest values of d(j, k), keWxv Ex.

iii) Branch on the j for which the sum is smallest..

2.5.4 Relationship to state-space search

Branch-and-bound may be regarded as a special case

of state-space search. The states are lists of determined

features. The operators applicable to a state are the

feature exclusion and inclusion defined by the branching

rule. A goal state is one containing sufficient

determined features to define a feasible solution.

Development of the tree continues until it can be proved

that a generated feasible solution is optimal.

42

Chapter 3 An abstract 11 -dimensional trim-loss problem

3.1 Statement of the problem

Material of constant width is produced as a continuous

sheet. Orders for rectangles of the material are received

and it is wished to minimize the amount of material

produced in order to satisfy the orders. There are no

constraints on the way in which the material may be cut.

The width of the sheet and the dimensions of the order

rectangles are integers. The dimension of the sheet

perpendicular to the width is referred to as the depth.

3.2 Choice of method

The basic operation in the solution of the problem is

to specify the cutting of one of the order rectangles from

the sheet. Recognition of this fact leads to a natural

state-space representation of the problem. An operator in

this representation is either the specification cutting of

an order rectangle from the sheet, or the designation of a

unit area of the sheet as scrap, i. e. not included in any

order. The states are partial cutting patterns, that is,

instructions as to how part of the order set is to be cut.

An evaluation function for this representation would

have to estimate the effect of successively applying best

operators. It is not clear how such an estimate could be

expressed as a numeric value, and most of the computation

involved in creating the states resultant from applying

these operators would in any case have to be done to

provide the estimate. These facts, together with experience

that ordered operator search was a useful method for finding

solutions to pentomino puzzles (Golomb, 1965), suggested

43

ordered operator search as a suitable method to be applied

to the problem.

At first sight it would seem that one search could be

conducted which would be guided towards solutions which

required the minimal amount of material to be used.

However, in order to provide this guidance it would be

necessary to predict accurately the depth of material

required by the best cutting pattern which included a given

partial cutting pattern. To do so would involve solving in

essence the original problem. In addition, the amount of

geometric information that can be extracted from the states

of this search is far less than that which can be extracted

from a state of a search for a solution to the problem of

finding a cutting pattern having a specified depth. For

these reasons the method adopted is ordered operator search

within cost alternative reduction.

Define the theoretical minimum sheet depth for an

order set to be the minimum sheet depth necessary for the

total area of the order rectangles not to exceed the area

of the sheet. A search is made for a solution of

theoretical minimum sheet depth. If no such solution is

found before the resources available for the search are

exhausted, 1 is added to the sheet depth for which a

solution is sought and a new search initiated. The process

is repeated until a solution is found. The apparent

inefficiency of discarding the search tree generated for

each sheet depth is more than compensated for by the

advantages of seeking solutions to better defined problems.
The following discussion relates to the solution of

these subproblems. Hence the sheet can be regarded as

44

having both dimensions fixed.

3.3 Solution of the subproblems

3.3.1 Designated positions

Consider the uncut area in a partial cutting pattern.

Its boundary may be regarded as including a number of

segments of the form shown in figure 3.3.1, possibly with

sides in common. Consider the lines of type BC. The shorter

such a line is, the stronger the constraint as to which

order rectangles can have sides lying along it. It would

therefore seem desirable that when an operator is applied

to a state it should be one that specifies the cutting of

an order rectangle with a side along the shortest such

line. In fact such a strategy leads to an

over-concentration on lines parallel to the shorter side of

a significantly non-square sheet. Better results are

obtained by considering the line for which

length of BC x sheet dimension perpendicular to BC

is smallest.

1///

Segment of boundary of uncut area

Figure 3.3.1

The operator applied should be chosen so as to make as

weak as possible the constraints on the development of the

resultant state. This can be regarded as maximizing the

number of ways it can be developed. Clearly, for this to be

case in the example, a corner of the order rectangle to be

cut must correspond to either ABC or BCD, otherwise new,

45

stronger constraints will be generated (see figure 3.3.2).

Consider, however, an order rectangle for which the side

that will be perpendicular to BC is longer than AB but no

longer than CD. Fewer constraints will be created if this

side lies along CD (see figure 3.3.3).

s
a

5

CD

is preferable to
1a

or

f. ýw

+fs
ý5ýý'ý"1 ý

BA

Effect of positioning at corner

Figure 3.3.2

Al

4ý
rý

is preferable to

Effect of choice of corner

Figure 3.3.3

Hence the corner BCD is defined to be the designated

position for the state under consideration. One corner of

any order rectangle specified to be added to this partial

cutting pattern will fit against this corner.

3.3.2 Ordering of operators

A grid of unit squares will be considered to be

imposed on the sheet. For each non-square order rectangle

two orientations are possible; its longer side may be

46
parallel to the width or the depth of the sheet.

Given that any order rectangle cut will be at the

designated position the operator set for a state can be

considered to consist of the (rectangle, orientation) pairs

that specify the cutting of order rectangles not yet cut at

the designated position, together with scrapping the grid

square at that position, provided such scrapping is

consistent with the solution of the problem.

The operator set can be ordered on the criterion of

flexibility of the resultant state. The most significant

factor is whether or not the edge placed along B. C is equal

in length to BC. Operators for which this is the case are

preferred to those for which it is not. Within this, those

operators for which the edge placed along CD is no longer

than CD are preferred to those for which this is not so.

Within the classes so defined the operators are arranged in

descending order of the areas of the order rectangles to

which they relate. The scrapping operator is least

preferred.

Certain possible operators are regarded as redundant.

These are:

i) operators which have the same dimension in the BC

direction as the order rectangle on the other side of

the C end of BC where the other end of this side of

that order rectangle is at B and its area is smaller,

(see figure 3.3. k),

47

=.. 1' y {. .ýv, ä ý1 R. ý+i!
'ý +`Y r "' ýq, i i Mý, 7". "C tir', $ei:.,. [. 'hr""'v'"t'1 -; K +, y

, j4 ,i ._ý. AkA W 'YY ý,. ýyýý ý.
ý

ýý
' 'iJ 1 iý i iýý A"ý ýA'!. ýý ýK M. Y L'. i. ý+Y, ýjF.. -ý ý'; "'

.5 .
1s, "k

't", d :R
. N`'. Y; "; > C", ý-'" «" :. "-V rki . F. -. ASS.

4"S°r ýi. 'ý. ''e, M1
. ý... -" ,y . a. iw

.
}- ä l4,

tq
ý ýý-.

ý. iFS ý; .L,
': J . C: :. ", ý ,

i' '"s "ýiý
ý-',

,,, .:
'44,

..
'ß'i7

, ý:: ̀ ; ýaýý"ýk++; ý, " [,
1' , ý. +e)ý,. Yf i, - <' o. ýi`ý'.

ýý" +: ý[e'S. ý; ý
"pý. r, ý ; ý:

ý1.: ý'ý`+-..
"ý>.

ýýtý, ä; '+ n'

_
'Ä. ý" .ý ; "ý -,. ý "'r-, rte r["iIý

y'
ý'"'

"'±
4ýR

`"*,

a: "w %i JA! 1 . +;; cr: t^`"tY'"

y,:
' ý r. ý

rs, ý". ýý_ . i,, r 'i ' t_" Y' :n : -.
`.

__
ýt't , sý., ýj. }', ý' r s". "r. ýj. . "- yip ,, ýs'k ,...

: 'RV'; kti

can be. forinedý. ZU:,

... r reclund. in. týýto °forin - ýý ., r' xý =x

Redundancy due to equal side length

Figure 3.3.4

ii) operators which involve placing at a corner of the

sheet other than the top left-hand corner an order

rectangle which has been placed with that orientation

in the top left-hand corner of the sheet in another

state, (see figure 3.3.5).

'ýIf

Xý.

4

-------------- - --- --

ý.
ý ý:. >
ýý,:

,ý ýp ýý a

'R
MME-a

.'Yw.. _ýý..

is on the tree then

and

i ar

, -ýsi tes that are descendants of. it.

are. 'equivale:

ti' aý

- �.

Redundancy due to symmetry

Figure 3.3.5

These operators are not included in the operator list.

3.3.3 Feasibility of states

When an operator is applied to a state, the

following checks are made on the resultant state:

i) that there is at least one operator that can be

applied at the designated position,

ii) that there are no more isolated unused grid squares

dwi'. Ri? 'h':

I

__ .?
" '. T

49

System 4-75. The results of these tests are shown in

table 3.4.2.

Where solutions of minimum theoretical sheet depth

were found the computing time required never exceeded 4

minutes. In the case where the solution found did not

have minimum theoretical sheet depth there were strong

indications that no such solution existed. The long time

taken to find the solution of this problem (^' 10 minutes)

would have been smaller if a different criterion had been

used for the termination of the first search.

Table 3.4.1

Listing of test data

In all cases the sheet is 20 units wide.

±" ýYýý..,.. E: 2x 10,1 x 7,1 x 2,2 x 8, 2 x 3, 1 x 7,
y ä> ry 5x 6x 9 6,3 x 8,6 x 1, 10 x 2, 1 x 10,3 x5 ,

x 6,1 x 10,5 x 1,5 x 5, 9 x 2, 5 x 2,

4x 4,2 x 5,7 x 4,14 x 9, 10 x 4, 4 x 9,3 x6

1. ýM1

4'

Rý
. 1=QÄ±;

`ý

G: 10 x 3,10x1,1 x 10,3 x 3,5 x 3,7 x 10,

1x'1,5x4,4 x 8,6 x 3,9 x4,6x 10,3 x 3,5 x2

H: 9x 4+, 4+ x 9,5 x 7,3 x 8,9 x 4,7 x 10,
kx9,3 x 1,3 x 8,6 x 7,2 x 3,4 x 2,2 x2

I: 2x9,6 X 5,4 x 10,8 x 8,7 X 8,7 x 1,
3x7.1 x8,4x8,6x4,10 x 6,5 X7,5x 1

J: 2x2,1 x5,7x8,1x5,6x9,8x4,
3x2,5 x 2,3 x 2,5x4,1 x 5,1 x 2,3x5

K:

t 1'" tiýý4 i`

: ROC, tal'ilýfý#17ýic 1ºr.: iilf V

5X 14,10 x 2,10 x 1,3 x 7,3 x 8,3 x 7,

1x -9' X -2 -X 9,1X21x8
ý4

! '-ý"ý"ýý'P "T.. ', 'ý' .. ý, , yam Jý'

ZC; x; ' ý 3? 'X "10, "' 3X -10,5 x 5,9 x 1 8. x'7, y
5 xý; 10> 5.:,

ý
7,5 x 8, '5 x

. 1,4 X_9,3X64, i:; 3De
ý: F +lie'+ýiaW. iwA4isaý": R(ar. 'Ir>-. 7Jir:: ýa,. woJ;:. ý5..: k'1Yr:. i.. ryi. 'ý'º4, i1"iAi. 'i.. i4` 1ý'r: ce. +it'^ie

51

Chapter 4A 2-dimensional trim-loss problem with varying

stock costs

4.1 Statement of the problem

The problem considered in this chapter is based on

one arising in the oil-rig construction industry. A set

of steel rectangles (pieces) is required. Large steel

plates of the appropriate thickness can be ordered from

the steel works. The cost per unit area of such plates

depends upon their dimensions. The problem is to

determine a set of sizes of plates to be bought from the

steel works, and the way in which these plates are to be

cut into the required pieces, such that the total cost of

the steel is minimized.

4.2 Preliminary analysis

The length of a piece or plate is defined to be its

longer dimension and its breadth its shorter dimension.

The cost of a plate with length 1 metres and breadth b

metres is calculated as 1*b*(c+e(l, b)), where c is the

basic cost of steel in i/sq m and e(12b) the excess cost,

in I/sq m, charged for a plate of those particular

dimensions. Here the values taken are c=10 and e as given

by table 4.2.1. c and e have been chosen arbitrarily, but

the relationships between the values of e are based on a

practical case.

For given 1 and b, c+e(l, b)) will be referred to as

the directed unit area cost, denoted by d(l, b) and

min(c+e(l, b), c+e(b, l)) as the (undirected) unit area

cost, denoted by u(l, b). It can be observed that for

fixed 1 the directed unit area cost is minimal when b is

5U

X9X fj X" 9.91 0 X. lU +ý)f v ,ýf

' ýi)Y ;: "+.,,
-,
ý

x
sX

5
r1' . '$". Xxºj/ »`tý. i Q

rX , ýr'v s: ̂ 'XY ý. 'ý 21nXý",
'c"v.

x X_sr 7^. jý^ý
7

IG5 3,
7

: Xf ý:. W'ýý�a{ ", - + ,

4"-

,, "t
Le

i

ýx, /ýR}
ý" i 'iýý 1 ý !

'l. " " ý` ý'Sr. ±T. 'f°

4x 1 9X 1 9 4x `9 `8 x 9 x 9,3 x 9"
i, y.

` :i ,

`ý'(I

R.
ýe

A "ý
"ý

ice'
N

` : , . , , . , , ., a', ý

x 6x 10, 1x8,3 x 7,5 x2 ,

1.. '

ýº 4 Siv ý ri'ýRý4 'M ̀

10 6 4 6 2 2 x x6

r+
`

ýý!. '*+4,..
w`

ß'h'
"+i

4 ý. ýi V

,7 7, x ,5 ,7x 9, ,
10 x 8,5 x 1, 2x5,5 x 7,1 x 6,2 x 3, 2x7

ý ; w, ti t gis: r: r 10 10 X3 x4 1X 10 3x3 5x3 7x 10; , , , , ,

1x 1,5 x i, 4 x 8,6 x 3,9 x 1,6 x 10, 19 x1

R: 9x 1,10 x 2,1 x 9,9 x 6, 14 x 7,5 x 9,

x 5,2 x7,8 xii, 3 x 10,9 x2

6x 3,3 x 7,2 x 6,2 x 4, 2 x 3,6 x6 ,
'ý 10 x4,5 x10, 6x5, 10x 4, 6x5, 6x5

Table 3.4.2

G'äse Trim Loss

ý. y. * .,. E 0
-, 'F 0

H 0

I 0

J 0

K 0

L 0

M 0

Results of test runs

C. P. U. secs STCT

212.16

28.97

113.73

25.93

149.59
4. x+7

18.02

27.26

12.12

ko7

.
59

191

40
207

12
43
16

16

r3,
ýLý

4

Comments°` `F"3

e, ', ý'a:

;

t'ä"ßr

F r=

N0 52.71 63

0 20 596.75 500 + 110 Apparently best possible

p0 82.76 1140

Q0 152.55 175

R 19 46. o6 87
Q1.1 1(ý 110

"rt, 'ý�r^1t"! tyX', 7'^ t ; e''-, ;. ýi, rý-7 i "i'y7

5.01

..,

ý
t. ý 9;!, ýr r;

ý, c, «', "
^ýý.., ", ,

k' 'ý
y

STCT. 'denotes; th nii ber , of"' developable states generated during the, seäx'ch.
S{ 1*' ýt", jz'`4, ýý>yr`'' 4.4, J , ý. srS"ý: f. V., if+"; `j `t i', t" t: ý; '°r" "ý. 't: t-2 `ti t

' ; ý: º"ý 'r K abaacýiitün nt: oi; seich ; in: a ccurred when` STCT '`'"ý r, The" subproblem ö reächec " OQ,
i? Ny>.. iý ti:, ý, a ;... "ý:;, -ý'4". s 'r'< s'. K- ýS,, t _ .".,. ýr., " ,... .., : ý. �-, q

.*ýE, i' +a tr` Are, ; i. 7'ryri f" ", E"
.ý ̀ ry:

Jä

7ý 1'ýý as
ý

, r, `ý+. ki.. '*a > K'v .
iý`ýý ý' t*+ `S ýý "-ý -ý ? r1ý "FF t sr t""" 'a, *ý'ý!

ýýý v'', G
ýýtrý;. y ý'

Pf; ýf'..;
ýi

ý 'ýý. ý 5: r$. ". ý sY_ "f-rý* : Eý
ýk

r+s'v : ýý'.. , _ý"ý=.?.
ý*`ý° ti" " ýý''ý'.: ýza'ý":

"; i.. ýq+ýb �»i . 4-l ý1 14'ý "ýv9ý. 1 r_1 ýS `: $i. 5iý.. $ýlý "Ls. `Va, t"ýa ý:... ý i".... 'ß.. 9 i' Sýýw'. e w. .

51

Chapter 4A 2-dimensional trim-loss problem with varying

stock costs

4.1 Statement of the problem

The problem considered in this chapter is based on

one arising in the oil-rig construction industry. A set

of steel rectangles (pieces) is required. Large steel

plates of the appropriate thickness can be ordered from

the steel works. The cost per unit area of such plates

depends upon their dimensions. The problem is to

determine a set of sizes of plates to be bought from the

steel works, and the way in which these plates are to be

cut into the required pieces, such that the total cost of

the steel is minimized.

4.2 Preliminary analysis

The length of a piece or plate is defined to be its

longer dimension and its breadth its shorter dimension.

The cost of a plate with length 1 metres and breadth b

metres is calculated as l*b*(c+e(l, b)), where c is the

basic cost of steel in k/sq m and e(l, b) the excess cost,

in I/sq m, charged for a plate of those particular

dimensions. Here the values taken are c=10 and e as given

by table 4.2.1. c and e have been chosen arbitrarily, but

the relationships between the values of e are based on a

practical case.

For given 1 and b, c+e(l)b)) will be referred to as

the directed unit area cost, denoted by d(l, b) and

min(c+e(l)b), c+e(b, l)) as the (undirected) unit area

cost, denoted by u(l, b). It can be observed that for

fixed 1 the directed unit area cost is minimal when b is

52

in the range 2.251 to 2.5 and that for fixed b the

directed unit area cost is minimal when 1 is in the range

k. o to 7.999. The directed unit area cost considered as a

function of 1 and b has an unique minimum.

Table 4.2.1

Table of excess costs e(l, b)

: ": }.
min(mm
max(mm)

Length
1500' 3000
2999

1
4000

u.,.
8000 .' 12001 ,; 12000 16000

Breadth b ", 'd '
, min(mm)
= 450

max(mm) 599, 9.0 8.0 7.0
`I

9: os
600 799 8.0 7.0 6.0 6.5 7.5
800 999 7.0 6.0 5.0 5.5 6.5

1000 1299 6.5 5.5 4.5 5.0 6.0
1300 1600 5.5 4+. 5 3.5 4.0 5.0
1601 1800 4.5 3.5 2.5 3.0 4.0
1801 2100 3.5 2.5 1.5 2.0 3.0
2101 2250 3.0 2.0 1.0 1.5 2.5
2251 2500 2.0 1.0 0.0 0.5 1 . 5
2501 2750

.
3.0 ' 2-0 1.0 . ;, 1.5 N" `2.5'ý '

2751 3000"' 3'. 5 2.5 2.0 2.5,; y 35
3001 3250 4.5 3.5 3.0
3251 3500 5.5 4.5 , k'. 0 ? +: 5..: =': '. Y5: ýu
3501 3750 6.5 5.5 5.0 .5 3751 3950 8.0 6.5 6.0 6.5w °ý-'; 8,: 5'',. ý

For given 1 and b there can be determined the

minimum value of the unit area cost for any plate from

which a piece with these dimensions can be cut. This

value will be referred to as the minimal unit area cost

for that piece and denoted by m(l, b). Let Ptb denote a

piece of length 1 and breadth b and 'P a set of such

pieces (PL, 6,, PLn61 . Then a lower bound for the

cost of obtaining'p is given by 1e bt m(l1, b,,) . If any ýSl
1i or b1 exceeds the largest corresponding value in table

1+. 2.1, then there is no way of obtaining P and the cost

of l' may be regarded as infinite. Such sets will be

ignored. Let 1L, bL denote the length and breadth of the

smallest plate that can be ordered from which a piece of

53
length 1, and breadth b? can be cut. It is only in the

case where lj or b; is less than the corresponding

minimum value in table 4.2.1 that these lengths and

breadths will not be equal. An upper bound for the cost
n

of obtaining P is given by 1L b/I u(1L , b`) .
4.3 Choice of method

The geometry of the problem, a small order set and

no restrictions on the way in which a sheet can be cut,

is similar to that of the 1# -dimensional trim-loss

problem. As the use of ordered operator search has proved

a satisfactory approach to that problem, it is reasonable

to investigate it as a method for finding solutions to

the present problem.

A stepwise method for the solution of the problem

will have the structure:

i) Label all the pieces " unallocated' .
ii) Select a subset of the unallocated pieces to be cut

from a single plate, and determine the size of the

plate and the instructions as to how it should be

cut. (The plate size and cutting instructions

together form a cutting pattern).

iii) Mark the pieces belonging to the subset as
%Iallocated".

iv) If any pieces remain unallocated, go to (ii),

otherwise exit with a feasible solution to the

problem.

As a state-space search is being employed these

steps must be broken down into a sequence of simple

operations that will be the operators in the state-space

search. A suitable formulation of the problem Will now be

54

described.

Each state of the space will be a list of cutting

patterns, together with a list of pieces not yet

allocated to cutting patterns. One of the cutting

patterns in the list may be incomplete, that is, it may

specify certain pieces to be cut from a plate and their

positions in it and certain areas of it that are to be

regarded as scrap (trim-loss), but not specify the

dimensions of it or the disposition of a possible

remaining part of it. The start state has no list of

cutting patterns, only a list showing all the pieces as

unallocated. States in which the list of unallocated

pieces is empty label terminal nodes of the state-space

search tree. The conventional notion of goal state is not

applicable; any state not including an incomplete cutting

pattern represents a feasible solution. Let S,, denote a

plate of length 1 and breadth b. Then a feasible solution

will consist of cutting patterns for plates

5(1b
,,....,

Stjb and a list of unallocated pieces

PL 3+1bitt' - "'Pýkbk" The cost of this solution is

Operators for this representation fall into three

categories. Suppose a non-terminal state does not contain

an incomplete cutting pattern. Then in a successor of it

one of the currently unallocated pieces will be allocated

as the first piece of a new (incomplete) cutting pattern.

An operator which does such an allocation will be called

a new plate operator. If a state contains an incomplete

cutting pattern, the set of positioned pieces together

with the areas designated as scrap may form a rectangular

55

area. It is possible to complete the pattern by giving

the dimensions of this area as the dimensions of the

plate from which it is to be cut, or alternatively some

unallocated piece may be added to the incomplete pattern,

giving another incomplete pattern. Operators applicable

in this case will be called rectangular plate operators.

The third possibility is that the state includes an

incomplete cutting pattern that does not describe a

rectangular area. Either an unallocated piece can be

added to the cutting pattern, or an area can be

designated as scrap. Operators applicable in this case

will be called irregular plate operators.

Heuristic guidance for the search is based on

operator ordering. When a node is added to the

state-space search tree it is given a value of 0 and the

operators that may be applied to it are arranged in an

order of preference. Each iteration of the search has the

form:

i) Locate the node with lowest value which has an

operator that has not yet been applied,

ii) Apply the most preferred such operator to generate a

new node.

iii) Increment the value of the node to which the

operator was applied.

4.4 New plate operators

The broader a piece is, the more constrained are the

dimensions of possible cutting patterns including it.

Therefore the pieces may be ordered in decreasing order

of breadth as a first step towards constructing an

ordered operator list. However, an operator must specify

56

not only which piece is to be cut, but what its

orientation is to be. This is done by relating the

direction of longer dimension of the piece to the

direction of the dimension of the plate from which it is

to be cut which is expected to be larger when the design

of the cutting pattern is complete. When these are the

same the piece will be said to be oriented along the

plate; when they are different the piece will be said to

be oriented across the plate. At this stage of the design

of the cutting pattern the best available estimate of the

breadth of the plate is the minimum value it must have

for the piece specified by the operator to be cut with

the specified orientation. So, for each piece there is a

pair of operators, one for each orientation. The pairs

are sequenced on the breadth of the pieces; the

sequencing within pairs is done by comparing the directed

unit area costs for the two orientations, c+e(l, b) for

orientation along the plate and c+e(b, l) for orientation

across the plate. The orientation for which the directed

unit area cost is less is the one that appears first in

the sequencing. The quality of the heuristic information

in this ordering is poor compared with the other operator

orderings used, so the increment added to the cost of a

node when one of these operators is applied is 5.

4.5 Rectangular plate operators

When these operators are to be applied, an

incomplete cutting pattern exists which specifies how a

rectangular area of a plate is to be cut. As possible

operators are determined they are assigned values. The

lower the value of an operator the more it is preferred.

57

The first operator to be considered is that which

completes the cutting pattern by defining the dimensions

of this area to be the dimensions of the plate from which

it is to be cut. This operator is given value 0.
a,

42
.k : sec ..

*-. '^

Alternative operator positions

Figure 4.5.1

The other operators involve the addition of

instructions for cutting pieces to the incomplete cutting

pattern. Let P be the rectangular area for which cutting

instructions already exist (see figure 4.5.1). Let A be a

piece with fixed orientation the instructions for cutting

which are to be added to the cutting pattern. Then these

instructions are such that one of the sides of A is

juxtaposed with one of the sides of P and another side of

A is collinear with a side of P. This can be done so that

it is the longer side of P which is collinear with a side

of A (position AL) or the shorter side of P which is

collinear with a side of A (position A.). Let lP be the

length of P. bp the breadth of P. 1A the dimension of the

oriented piece A in the direction of the length of P, bA

the other dimension of As and mA the minimal unit area

cost for A. The possibility of placing each unallocated

piece with each orientation in the AIg position is

considered and if the application of such an operator

58

would not create a pattern which could not be cut from a

plate of an allowable breadth the operator is given value

(d(1p, bp+bA)-d(lp, bp))*1UU-mA. This reflects the

desirability of producing patterns to be used on plates

which by virtue of their-breadth have low unit area cost,

and within this of finding patterns that include pieces

of high minimal unit area cost.

Similarly, it is desirable that the length of the

plate on which a pattern is to be used should be such

that the plate has low unit area cost. If already

lp>' 14.000, then no benefit is likely to accrue from

placing a piece in the AL position. Increasing the plate

length will not reduce the unit area cost, and it is more

likely that the piece being considered can be

economically included in a new cutting pattern in which

there is still flexibility as to the possible breadth

than in the present one, where the breadth is constrained

by the value of bp. So no such operators will be included

in the operator list for this state.

If, on the other hand, 1P< 4.000, then it may be

worth placing a piece in the AL Position. Given an

oriented piece As all possible oriented pieces C that

could be placed with one edge juxtaposed with an edge of

A and another edge juxtaposed with an edge of P are

considered. Let be be the length of the edge of C to be

juxtaposed with an edge of P, and let 'e be the set of

all oriented unallocated pieces that can be placed in the

required position without the maximum possible pattern

width being exceeded, together with an imaginary piece

with edge lengths 0. Then for A, s(A) is defined as

59

minjd(1p, b, ý+bc
)-d(1r, bp)I . The value of the operator of

placing the oriented piece A in the Al position is then

s(A)*100-mA. The application of a rectangular plate

operator may be regarded as the start of the design of a

rectangular sub-pattern to be juxtaposed with an existing

rectangular sub-pattern. The value assigned to the

operator reflects that the two sub-patterns should have

approximately equal breadth and that within this

desideratum it is desirable to find patterns that include

pieces of high minimal unit area cost.

Whenever a rectangular plate operator is applied at

a node, 10 is added to the value of that node.

4.6 Irregular plate operators

An irregular plate operator is either an addition of

instructions for the cutting of another piece to an

incomplete cutting pattern or an addition of instructions

for designating an area as scrap. An individual

designation as scrap is always for a rectangular area,

and may be considered as instructions for cutting a dummy

piece of the size of the scrap area.

In the generation of such operators the first

decision made is as to the location on the plate at which

the new cutting is to take place. Whilst this location is

being decided the incomplete cutting pattern is

considered to relate to the smallest plate size

consistent with the pattern dimensions. The areas of the

plate not covered by the cutting instructions have

boundaries which include a number of segments of the form

shown in figure 4.6.1, possibly with sides in common.

60

EINV

Segment of boundary of uncut area

Figure 4.6.1

ý' G
r ý1

i ;ý

C.

4f'
(a)

f
'M

{
G I 44,

a' k 1

B
.; ýri,.., yr K I, /ýt ý ý

, "V

Inscribed rectangles

Figure 4.6.2

The shortest line of type BC is determined. Reasoning

similar to that in section 3.3.1 leads to the decision that

the next piece whose cutting is to be specified should have

an edge along BC and that one of its corners should be as

near to B as possible if AB is longer than CD or otherwise

that one of its corners should be as near to C as possible.

However, since in this case the locations of the pieces on

the plate are not yet finally fixed, some further analysis

is necessary. The outline of the uncut area opposite BC is

consid ed. This may be irregular, as shown in figure

lt. 6.2(a). The set of distinct maximal rectangles that may

be inscribed in the uncut area is determined. In the

example these are BIEK, BMGL, BNJC, as shown in figure

'1.6.2(b).

For an orientation of an unallocated piece

61

consideration is given to the possibility of the piece

being cut with one of its sides along BC, with one of its

corners corresponding to the corner of a maximal rectangle

determined by the required proximity to B or C described

above. Some oriented pieces may exceed in at least one

dimension the size of a maximal rectangle. When the

possibility of placing such a piece is being considered in

terms of such a rectangle, account is taken of the fact

that the dimensions of the plate have not been specfied and

so the positions in the plate of pieces already mentioned

in the cutting pattern may be altered. Given such a piece

and rectangle, changes to the positions of pieces in the

pattern are hypothesized as follows:

i) Let WXYZ be the minim rectangle with XY coincident

with BC.

ii) Consider the pieces already mentioned in the pattern

to be rectangular objects positioned according to

the pattern and capable of sliding in the plane of

the plate.

iii) If the side of the oriented piece corresponding to

XY is longer than XY, displace YZ in the direction

of XY by the excess amount. The displacement will

push other pieces in the direction of XY. The

process is illustrated in figure 4.6.3.

iv) If displacement was necessary in (iii), replace WXYZ

by the rectangle into which it was transformed.

v) If the side of the oriented piece corresponding to

YZ is longer than YZ, displace ZW in the direction

of YZ by the excess amount. This displacement will

push other pieces in the direction of YZ.

62

`rr,

ý. ., ra' at'1fPaldf ie rýtmiäitC ä"r`
:. hýý''tt`w` ' `* ý"{a. ',. r `lý3 ̀ . Y. ýý

ýýý `t . '4 'f o; `"ý fý" - n. .,, yy 'i"" '"`+.
f . 't

ýl"cf yý' .!
ý'x

ý'' `ý''. 7 'f

IL y+., G ý+;
Sý; i:

y. ý ý"
äff'

.3 . r`.
ti 't

. +'1f

-

'ý.
' a_",

ý'
'.

f'"+..

a
may:..

ý<. Y .; rte

'J4ý AM

t, 6t

y
,p(, ýý.
f'h ä. itý ýýR19

Displacement of pieces

Figure 4.6.3

Let c be the length of BC and a the length of the

shorter of AB and CD. Let sa, to be the dimensions in the

direction of BC and AB respectively of the minimal size

plate to which the original cutting pattern could be

applied and sN, tN the corresponding dimensions of the

minimal size plate to which the cutting pattern

transformed by (i) to (v) above can be applied, if these

plate dimensions are allowable. If they are not allowable

then the following calculation does not take place. The

value of the operator of positioning an oriented piece of

dimension p in the direction of BC and q in the direction

of AB is calculated as:

J) if there is no displacement in steps (iii) and (v)

above,

(c-p)*a*u(so, to)

ii) if there is a displacement only in step (v),

u(sNatN)*(a*(c-p)+q*(so-p)+s, *to)-ü(so, ta)*So*to

iii) if there is a displacement only in step (iii),

u(SWtN)*(p*(to-q)+so*to)-u(so, Oto
)*so*t0

iv) if there are displacements at both steps (iii) and

63

(v),

u(s ,
tN)*(Q*(s0-p)+p*(to-Q)+s0*tp)-u(sv

Ito
)*sO*t0

These values reflect the costs of areas of the resultant

pattern that are likely to become scrap, and the benefit,

or otherwise, of the change in estimated plate size.

For each oriented piece the calculation of this

value is considered for each maximal rectangle. If the

calculation can be done for at least one rectangle, an

operator corresponding to the smallest value calculated

is added to the operator list, which is ordered in terms

of ascending order of these values. This operator

consists of instructions to make the necessary

displacements in the existing cutting pattern and to add

to it the cutting of the oriented piece in the specified

position.

One further operator is added to the operator list.

This is the operator of designating a rectangular area

having BC as one side and the other of length a as scrap.

The value of this operator is a*c*u(so, t0). It is fairly

unlikely that the application of an operator with a

higher value than the scrap operator will lead to the

generation of a useful cutting pattern, so when the scrap

operator is appted at a node, 20 is added to the value of

that node. When any other operator is applied at that

node, 10 is added to the value.

Suppose a displacement is made in a cutting pattern

which includes areas designated as scrap. The designation

of these areas as scrap may not be appropriate in the

resultant cutting pattern. For this reason, the pattern

produced by the application of an operator involving

64
displacement consists of all the pieces (not scrap) of

the parent pattern displaced suitably, together with the

additional piece in the position specified by the

operator. It may now be necessary to designate areas of

this new pattern as scrap.

4.7 Results

A program embodying these concepts has been written

in Algol 68-R (Woodward and Bond, 1972) and tested on an

ICL 1906S against the 16 sets of data based on random

numbers shown in table 4.7.1. The program performed 1500

iterations of the search for each set of data. It took

approximately 1.25 minutes to process each set of data,

although this time was strongly dependent on the amount

of store allocated to the program. The results of these

runs are shown in table 4.7.2.

It can be seen that the average value of the

percentage excess of the solution cost over the lower

bound is of the order of 10% and the maximum excess of

the order of 15%. Simple consideration of the numeric

properties of the data shows that solutions with costs

equal to the corresponding lower bounds cannot be

achieved, so these figures exceed the true difference

from optimality.

Results obtained during the course of program

development using other heuristics indicate that in

specific cases the cost of the solution given by the

present program may exceed the cost of the best possible

solution by up to 3.6% of the lower bound. Whether such

solutions could be regarded as adequate would depend on

details of the practical situation to which they were to
be applied.

65

Table 4.7.1

Listing of Test Data

Data Set I Data Set 2 Data Set 3

2226 x 603 2688 x 2016 2277 x 693
2712 x 2232 2574 x 2082 3090 x 1230
3.147 x 2841 3180 x 1203 2169 x 1158
1734 x 663 2835 x 1767 2094 x 1296
2 796 x 2736 1131 x 348 3090 x 1119
1431 x 1350 3078 x 1920 1497 x 1083
1347 x 597 1527 x 1239 2982 x 2679
1173 x 486 2511 x 2007 1941 x 597
3195 x 3135 2007 x 426 1968 x 1746
3051 x 981 2436 x 1005 3108 x 493
3108 X- 1377 2820 x 1572 1743 x 1287
2700 x 1872 2679 x 2247 20? 9 x 2034
3285 x 1830 1962 x 1506 2949 x 1842
2670 x 1170 1983 x 1482 1263 x 861
3051 x 699 1539 x 588 3180 x 1572
1947 x 825 2241 x 1923

.
1296 x 1029

1722 x 1470 1191 x 552 1605 x 315
1491 x 1311 2580 x 1965 2916 x 1899
1866 x 606 3093 x 2397 2640 x 2457
2331 x 1464 3216 x 900 2928 x 1299
3261 x 861 2700 x 2442 2271 x 900
2877 x 2394 1614 x 786 2193 x 516
2871 x' 1137 2943 x 2178 3138 x 2112
3171 x 2874 3267 x 336 2559 x 1125
1689 x 1674 1116 x 428 3021 x-, -z973

Data Set 4 Data Set 5 Data Set 6

2049-x 1872 3258 x 3063 1476 x 1215
2853 x 975 1344 x 345 2214 x 1335
3174 x 2634 2634 x 1224 1711-6. x 1611

3231 x 2724 762 x 453 2622 x 1269
3099 x 696 2274 x 1515 1182 x 870
1714 x 1635 2094 x 1509 3078 x 2052
2352 x 480 3201 x 2292 2652 x1 890
1323 x 1035 1290 x 834 2274 x7
2370 x 1821 1650 x 1383 23 ? 771
3060 x 2157 2364 x 681 88 x 1182
3219 x 2172 624 x 576 3060 x 1494
3237 x 2349 2301 x 570 12520 x 1365
3054 x 2607' 2199 x 1530 2469 x 2094
2988 x 1011 1812 x 1566 1584 x 5? 9
2919 x 2349 2676 x 2142 3 84 x X200
2943 x 2625 x 0
2268 x 2067 705 x 606 3054 x 2433
2988 x 1530 3036 x 2577 2004 x 498
2733-, x 1455 1695 x 1428 1635 x 1293
1770 x 1548 2562 x 663 3189 x 612
3742 x 585 0 2700 993 x

702 x6 654 4 1386 x 696 1 695 x 384
3228 x 3135 729 x 708 1644 x '6'' 517
3090 x 2472 1362 x 702 1935 x 1395
2544 x 2301 2853 x 1239 2919 2199

66

Data Set 7 Data Set 8 Data Set 9
1776 x 1545 1944 x 1824 1971 x 483
3282 x 2838 2685 x 2118 2958 x 1167
2544 x 1113 2325 x 552 3030 x 927
3039 x 2214 3060 x 1986 2148 x 870
1836 x 1479 2142 x 1689 2178 x 1854
2355 x 1554 1509 x 726 2133 x 423'-
1824 x 1776 2610 x 1377 1830 x 1698
2178 x 1899 2751 x 813 2826 x 2454
2664 x 1197 2424 x 2166 1470 x 306
2424 x 531 1764 x 1.455 2499 x 426
3117 x 1557 3'159 x 3081 1062 x 351
1 470 x 981 2691 x 2052 3234 x 2808
3204 x 1899 3168 x 2979 2745 x 825
3003 x 1584 2868 x 1185 2877 x 2535
1656 x 1455 2601 x 2001 1716 x 387
3279 x 1341 1869 x 1674 1056 x 918
1989 x 1278 2226 x 1440 2589 x 1185
2778 x 2709 1611 x 1341 3084 x 888
2391 x 1680 2502 x 1941 1902 x 1332
2811 x 1791 2202 x 1968 3281 x 2121

666 x 312 2520 x 576 2811 x 1845
660 x 579 3027 x 2268 3054 x 2031

3216 x 2076 1077 x 699 2724 x 690
3012 x 2688 2676 x 1677 3078 x 2682
1578 x 1098 1470 x 351 2547 x 1698
Data Set A Data Set B Data Set C
1563 x 1347 2451 x 351 579 x 384
2685 x 1893 2316 x 1083 2184 x 1134
1977 x 1215 3075 x 1353 - 3198 x 2502
2445 x 390 1 476 x 756 3084 x 1044
3093 x 2499 2772 'x 2127 501 x 480
1200 x 300 2379 x 2100 3129 x 2550
-1491 x 717 2304 x 633 1812 x 1026
1068 x 1026 3012 x 2991 2721 x 1299
1 809 x 1284 1878 x 663 1359 x 1080
2076 x 2016 3039 x 774 3297 x 2055
2757 x 1164 2610 x 1284 2091 x 1071
1419 x 1113 2961 x 1131 960 x 321 3222 x 1950 2685 x 588 3261 x 1026
2763 x 2427 1758 x 819 2847 x 2751
3012 x 2994 2454 x 1308 2304 x 1188 3255 x 2823 3117 x 1575 2829': x . 1005
2010 x 1557 2427 x 678 1002 x 969 2844 x 747 1845 x 492 2892 x 363
1974 x 1881 2544 x 978 2127 x 981
3009 x 1 15 2832 x 1851 2547 x 1842

x 8 3252 x 1968 1746 x 513 1917 x 1623 2787 x 2013 2955 x 2106 2856 x 654 2400 x 561 2232 x 1635
3081 x 2793 2577 x 2235 2712 x 1617 3255 x 576 ' 2721 x 1239 3234 x 468

67

Data Set D Data Set E Data Set F-
2202 x 1926 2991 x 570 2328 x 1086
2526 x 2409 3054 x 1338 3012 x 2571
2772 x 1746 1959 x 1200 2967 x 753

513 x 318 1968 x 1887 2565 x 729
2508 x 1581 1179 x 711 2352 x 1209
2778 x 1584 2550 x 987 1203 x 1080
2718 x 1134 1443 x 1002 1917 x 96C

807 x 471 2499 x 2028 2553 x 1272
3057 x 1974 1866 x 321 2340 x 1137
2169 x 1695 1170 x 510 2331 x 744
1770 x 1173 1821. x 438 2076 x 1452
3168 x 333 2709 x 1113 "1647 x 951
3078 x 357 2544 x 1938 3249 x 3222
3117 x 1128 2037 x 1278 3156 x 1347
3093 x 2115 2766 x 2547 2332 x 378
2892 x 864 3081 x 372 3252 x 2400
1236 x 318 1686 x 1179 2217 x 405
2352 x 1656 1 731 x 588 2682 x 2145
1599 x 1296 3048 x 963 1977 x 786
2994 x 2784 2943 x 1917 2268 x 504
2310 x 10111 2658 x 2370 3288 x . 3114
3255 x 1881 2196 x 1053 3138 x 621
2355 x 1665 2436 x 1242 1755 x 1428
2220 x 1947 2652 x 2070 1458 x 957

732 x 501 2772 x 1515 1167 x 717

Data Set G
1572 x 966
3129 x 2982
2469 x 2271
1836 x 846
3174 x 1875
2400 x '1263
1176 x 822
3024 x 2883

- 3111 x 330
1851 x 378

732 x 318
2367 x 1911
3129 x 2484
3252 x 1911
1533 x 465
2166 x 1245
1620 x 1065
2841 x 1494
2454 x 1311
2535 x 1851
2961 x 2010
2250 x 1914
1326 x 720
2313 x 1212
2754 x 1947

68

Table 4.7.2

Results of t : st: rtiius - %=

Data Lower bound Upper bound Actual cost %age difference
Set on solution on solution of solution between actual

cost cost solution and
9 £ £ lower bound

1 1050 1380 1135 8.1

2 895 1271 993 10.8

3 897 1269 1000 11.5

4 1305 1641 1404 7.6

5 873 1198 934 6.9
6 767 1133 837 9.0
7 1034 1416 1193 15.4

8 1048 1399 1133 8.1

9 907 1245 1014 11.8

A 1003 1334 1125 12.2

B 860 1246 956 11.2

C 837 1199 946 13.0

D 871 1257 976 12.0

E 761 1136 816 7.3

F 892 1222 955 7.1
G 974 1311 1053 8.1

Mean 10.0

69

Chapter 5 The optimal network problem

5.1 Statement of the problem

A communication network is to be set up between a set

of n locations. The distances and traffic flows between the

locations and the costs of constructing possible links of

the network are given. It is required to minimize the user

costs of the network constructed subject to a budget

constraint on the cost of the network.

Formally, the problem can be stated in the following

way. Let G be a graph with vertices 1,2,....., n and links

Ltd, i<j. Let there be associated with this graph matrices

(1ýj) giving the length of the link between i and j, (tLj

giving the traffic flow from i to J, and (p. j) giving the

if project cost" of the link between i and J. The budget is

B and it is required to find a subgraph H of G such that

LýH
p; j <B and t;, j dLj is minimal, where d, j is the

length of the shortest path from i to j in H, the distance

between vertices not joined by any path being considered to

be infinite.

5.2 Choice of method

A state-space formulation of the problem presents

itself immediately:

i) the states (nodes) are lists of links to be included

in the final network,

ii) an operator (arc) is the addition of a link to a

list,

iii) the start state is an empty list,

iv) a goal state is a list satisfying the budget

constraint on H with the property that no link may

70

be added to it without violating the budget

constraint.

It is required to find the goal state for which the user

costs are least.

There are a large number of applicable operators at

each node of the state-space graph. An initial

consideration of the geometry of the problem suggests an

ordering of the operators, so ordered operator search

appears to be an appropriate solution method. The manner

of its application is described in section 5.3.

It is also possible to formulate the problem as one

of branch-and-bound and it is of interest to compare the

efficacy of the two methods. The branch-and-bound method

is described in section 5.4, the results obtained from

the application of both methods to a selection of test

problems are presented in section 5.5, and some

conclusions drawn in section 5.6.

5.3 Ordered operator search

More detailed consideration of the geometry of the

problem indicates that some selectional restriction on

the operators that may be applied at a node should be

imposed. If the network at a node is not connected, the

list of operators that may be applied at that node is

restricted to links which will improve the connectivity,

i. e. if such a link is added to the network a path will

exist between two vertices between which there is not

currently a path. Such a list of operators will be called

a connecting operator list. It is ordered by the

cheapness of the project costs of the links. The lowest

cost link that improves connectivity is first on the

71

list, the second lowest cost second, and so on.

Otherwise the traffic flows that there would be if

the network so far constructed were the one finally used

are considered. Let ftj denote the traffic flow there

would be from i to J. For each Lýj not present in the

network for which the addition of pLj to the cost of the

network would not violate the budget constraint the

quantity

(dLJ-1tj)*fLj /PLj

where dL) denotes the distance between i and j in the

network, is calculated. The pair (i, j) for which this

expression is positive and has its highest value is

called the focus at the current node. If no such pair

exists then a terminal node of the search tree has been

reached.

At
CU4

a
(no

-terminal node a focal operator list is

constructed. This consists of the set of links with the

property that the addition to the current network of any

one of them would shorten the path from i to j without

violating the budget constraint. To make the search a

complete search of the state-space an additional

operator, the focus banning operator, must be added to

the focal operator list. When the focus banning operator

is applied, the generated successor state consists of the

same network, but with the additional specification that

when the focus of this or any descendant state is being

determined (i, j) is not a candidate as focus. In

practice, however, the focus banning operator can be

dispensed with.

Let Lgh be a link in a focal operator list. Define

72

v9k by

v9h =(d9`, -19A)*ffh

The links in the focal operator list are ordered in

descending order of vgh .
The development of the search tree is based not on

an evaluation function but on the use of heuristic

information embodied in the ordering of the operators in

the operator lists. The form of an iteration in the

development of the search tree is:

i) Find the non-terminal node with lowest cost (an

undeveloped node has cost 0). This is the current

node.

ii) The first operator in the operator list for the

current node becomes the current operator and is

deleted from the operator list. Add 10 to the cost

of the current node.

iii) Construct the new node resulting from the

application of the current operator at the current

node.

iv) If the new node is terminal, compare the user costs

for it with those of the best solution found so far.

If they are lower, note the new node as being the

best solution found so far. If the new node is not

terminal, construct its operator list.

v) If there are fewer than 500 nodes on the tree,

return to (i).

For the range of problem sizes considered, experience

indicates that after 500 nodes have been constructed a

solution will have been found that is either optimal or

very nearly optimal. It is to be expected that if larger

73

problems were considered a larger number of iterations

would be necessary.

5.4 Branch-and-bound

The problem also admits a branch-and-bound

formulation. Each node of the branch-and-bound tree,

other than the root node, is labelled with the inclusion

or exclusion of a link, L jýj, that might occur in the

solution network. Associated with each node is a network

class. This is the set of networks which contain the

links whose inclusions label nodes on the path from the

root node to the given node, and do not contain the links

whose exclusions label nodes on the path from the root

node to the given node, and also satisfy the budget

constraint. At a terminal node the network class has the

property that it has a member of which all the members

are sub-graphs. That member is the feasible solution of

the problem defined by that terminal node.

It is found that solutions to the problem can be

efficiently determined by the use of a go-right strategy

for the development of the branch-and-bound tree. There

are three aspects to the strategy: the branching rule,

considerations of connectivity, and the calculation of

the bound.

The branching rule uses heuristic information about

the problem to select at each iteration the link, whose

status (included or excluded) is undecided, that is

thought most likely to occur in the optimal solution.
Corresponding to each link, Lq , there is a distance,

M. i, which is the shortest distance between i and j in

the network consisting of all the links except L. -. Let

74

E, j =max(O, mýj -1ij). Then for each pair (i, j)

býj =(t-j +tj)*c /pq is calculated. At each iteration

the link with undecided status for which 5iß is largest

is selected by the branching rule. Note that the

calculation of the 5LJ'S need only be done once, at the

start of the construction of the tree.

For a given network class, consider the graph formed

by the links that are definitely included. This graph may

or may not be connected. If it is not, then it consists of

a number of separate connected components. A feasible

solution is a connected graph, so it is known that any

feasible solution descendant from such a node must have

added to the list of included links a set of links that

connect the presently separate components. Using a result

of Kruskal (1956) on minimal spanning trees, it is

possible to calculate the minimum possible cost of such a

set of links. If this cost added to the cost of the

definitely included links exceeds the budget, then the

node with which the network class is associated can be

marked as undevelopable. This analysis is done for a node

when it is being considered for development.

Let x be a network class. Let Ex, Ix, Uz denote

respectively the set of links that are definitely

excluded in x, the set that are definitely included, and

the set that are undecided. If W is a set of links then

let C(W) be the user costs for the network they form.

When a node labelled with an exclusion and associated

with a network class, y, is added to the tree, its lower

bound is calculated as C(IyuU,). When a node labelled

with an inclusion and associated with a network class, z,

75

is added to the tree, the calculation is first done of

rz=B-
2

pik , that is, that part of the budget not yet
L; j&__

committed. If there is some link L9h in U such that

p', >r= , then the set A =(L9h I L9hE UZp'h4 rzj is determined

and the lower bound of the node is calculated as

C(I=vAz).

Let s, h be the shortest distance from g to h in the

network formed by (IZUUZ)-'EL9ti) . Let -ý9h=max(O, sj4 -19h)"

Let V be any subset of Uy, then

C(IZuV) ' C(I=uUZ) + (t31%+th,)'19h

L9h, & Ux-V

since at least the additional costs over C(IZvUZ) are

incurred that traffic between g and h must follow some

path other than the direct link between them. This

inequality can be rewritten as

(I) C(IzvV) >i C(IZVUZ) + (tjh+th9)-q9ti

Leh & UZ

' (t3h+thJ1,

L9h&V

Now, any terminal node descendant from the node with

which z is associated will define a network whose set of

links is IZvV,, where
LZy

p, h<rZ and VI, c:, Uz. So for the
y

node with which z is associated

min C(Ixuvv)

iv-v 1Z PSrx} L9ýE V, e

is the best possible lower bound. Using inequality I

above it can be seen that a weaker lower bound can be

calculated as

76

min lC
(IZu Uz) +

7v P
L 9hýrZ5

(tgh+thl)%jh

Llh& Uz

(t9h +tti,)rllh

Lgh6Vil

This can be rewritten as

C(IJuUZ) + (tqh+tß3) rl9h

L9ý, &UZ

- max (t
gh +t h3)r9h

VýL9h
VY

pIhrz
Lß, 6V 9 9ý

The finding of an upper bound for this maximum can be

done by solving a simple knapsack problem (Garfinkel and

Neinhauser, 1972). Using this upper bound in place of the

maximum gives a lower bound for the node. As the 1'L9ýs,

and the related quantities whose values are needed in the

solution of the knapsack problem, calculated at one node

will be the same for the successor node labelled with an

inclusion, this lower bound can be economically

calculated for nodes labelled with inclusions, and this

is in fact done for nodes other than those the

calculations of whose lower bound has already been

described.

5.5 Results

Programs using the two strategies were written in

Algol 68-R (Woodward and Bond, 1972) and tested against

the four sets of data shown in table 5.5.1. BFW531 is the

graph described by Boyce, Farhi and Weischedel (1973); it

has all the ttj 's equal to 1 and the pij$s equal to the

1 jj 's. BFWD1 0 has the same 1gi) s, but the týj)s are

random integers in the range 1 to 10, and

77

pq =(1 U+Ptj) *1tj where the pLj fs are random integers in

the range 0 to 9. ND1O1 is another 10-vertex graph, based

on a different set of random points, with the t;, i> s and

pjj)s derived as before. ND2O1 is a similarly constructed

20-vertex graph.

The results of these tests are shown in table 5.5.2.

The column "budget fraction" contains the budget

constraint expressed as a fraction (approximate in the

case of BFW531) of the total cost of the links of the

graph. "Budget" contains the budget constraint,

"solution" the best solution found by the program,

''solution node no. " the number of nodes on the tree at

the time the best solution was found, and "total no. of

nodes" the number of nodes on the tree at the time the

program terminated or was abandoned.

The column "proved? " for the branch-and bound method

contains "Y" if the program successfully terminated,

if the program was abandoned, and "NN" if the best

solution that had been produced by the program at the

time it was abandoned is known not to be optimal.

Abandonment occurred if the job containing the program

had consumed more than 30 minutes CPU time. Asterisks

occur against the number of nodes for the cases where

abandonment occurred when other programs were run in the

same job.

The column "diff from B&B" contains the difference

between the best solution found by the state-space search

and the best solution found by the branch-and-bound

method, expressed in absolute terms and as a percentage.

For comparison the results obtained by Boyce, Farhi, and

78

Table 5.5.1

Test data

Q o00 VOUn p, U4 -ý-" '
'. p

`.
Ul vi C) W 1-A V1 N 00 .R (D

-4 rno0CD LO 00UI A
VOVWWOWOO rt
0CD Co CD ý'ýNF 00 F-+

A
F-A º-+ 0

Qi W 1-' O 00 F-+ fV N" (/1
Q1 VINNN Vi 00-J V rP
00U -1p. vuiCi O cn
1-+NM N01 WOa100 N

I_a Fý N F_a Fr
(DV'1NW -4 u b. -4 r%3 Co
WNW 00 Vi 00 N3 VW
47)--a LO _A 4r r-i %. n (» C:)
O (Z O 01 Oi .rOOO W

F--+
lOI-+IV00WW F- NN

1" Ol WVO NOoCo
e" WV F-+ Z, Lo %n F- u
... OOOOOON P"

NH
W V7F-A 00 W WF-+tm
1J7CD N117c0 C)00 0, LO
010WOV (DNVO
-p' O) V1 OOOO. W 4' U,

VN P, V7 ClW V00I&
cicic (. 0 V V7 N0

Q1NC0 1--4 VF -; r WW
ON Cl OOO Q1 Ci Ci

f" I OVN 1J9 O Co W (O W
v, U7 0Mn OO N OO
V CO W F-+ O t-+ V F-+ W
N Q) NOOO C1 ONO V

F_+ N
vi WN 41-1 h" N) N.) I-+ 01
01-+ OON01 W NC)
uW WOWVto VV
VQIONNvi 4rCD 4r 00 Co

I-' N
O VN%il>_Avi WU1
V1 F" V7 cm CD F+Nl11 V
Co t (. O N Q1 W I-' Vi Q
. 97 OQ1 cnCDM -=I to NQ tD

F-+ 1-J

O%nOVWto Uornvi
u, OU, ývi WrnPl Co %n VQ1(n F" BOO V iý

OF V N.. O>-+O O

ni CD (0(»-4c)ITI» W NN- -1

vi %W W WNV .
a -Coto al wk. -9 v

vO'W. (. 0Oi as i-' (D
Z WN CO M F-& N lD ." gq

to (Z to vi 00 M 00 Co V rt
W Ci CO 1--4 Co W 1-' NOO N z'

N
cDCo 00NVlOOV t0 V7
W C:) 00 4: 2 %A C» Ln CO F--1
-; r I--atJ1ýto . OONto W

U hA vi IVN V NN
Ni 00to (Dhi . l7100 W
W F-'F-A i: " CD QiOOF-+O1 F

NNV Na CO NW
(0(M (0 Vi l-+ MQiFCi
-J Co vi CD CD CD cm 4r u4 Co vi

OiN WW Pl NU7P'
NQ1lO V 1-" NV CO to
ea N 1--& P' OOO lD Co Q]

0001 VWV U1N00LJ
OoWvi VU1tDCD vi 00
1--& W NO4r OFpl 1--'W V

WNVW F-+ 00 W
00N Vi (0(0(000(M V

>_A Co 00

Vi NQiNN Co pa W
Co NWQ1(0 00to CD
03O. - vi NCo F-+F-+ciCD to

Vi W Co CiNV7to VI Vi
OOCo 00NLO hi W (D. - F-+

O O0 I0 I- NVWFWV O

E-+ rr 0 LO co V O) U" WNN -'-.
Oj

I-A -11
WOi-+-Ir . P* 10NtO VO I-&

I-+ (i
-Ir M -Mkn j4NFCD CD

N ..
VlJ1NCO 0NhA O4,1.4 W0

NNNN
00 W F-+-; r LO CD 0(D V

hAa.) DtDVOV -'O. Cr Ui

V Vi t- LDON00LO FN Q1

F-+ N
V OOO40I-A -+u1. ß NV

113 -P'OLDV00 V9F-+L000 Co

OOF-+OoWQ)W ON tp

OtJ1to(M V la 00 WWp

Ui

Co
11

f-+
O

79

OcmCo VQ1VIýWIV F-&-
t_. 0

NN F-r L..
Ui F" 1-+(0 MV N000 (p
NOWý. rW 000 n
Co NVWI--&Co ViN00 rt
OPl COCi0CD 1' 00 F-+

n
0

OOOom40I_i MM Co N
CiCD CiCi V(0000 O r-t
WFVi"WIVl-a Co Ul
(vi K)vi 0o000V0CD N

OO W FýOOOONF . g` O
OO U7 lD V OO F-& N Cl 0
LO 10 %. n un -M oo 4: 7 "
U7 00 LD OFOVF

F-+NCD V NF .- r3
OOW WVW N00CD
000Ql u1c c, 00 1--& V1
WV NJ CD 0000Q. 'OOFý F

Q1 MC0 vi al . 9r NI-+V
F-+ NI" 00 W I-' lo W
Col-+C0-9r (D Oll-+N 00
00F-a(NCD 000. rCD CD %A

I_a f-+
1--4 N V7 WM ha Co 0
hi (7) CD Co Co -400-4 M
%A %. q VlIa CM O)FWF+
C) Vi . 9r C) 00 00 00o0 C)

WWCo WU, 4000CO
00 LO uD V1 WV Q1 P -pr -
" 1-A O F-+ 4-r V'1 V7 F-+ W
V9 OO Qn NO to vi M

N NN
-i t. 4 CO w00 CD F-& Co F--A
(Z tn (M ONwýo rnw

co oOwtiD C» %n vv ý421 O.. 9r rIJ h.) a 00 pp

i-+ F-& f. +
40 W WNWNWOIF-4
O vi-P-c1N to V100
O CO 1-a FýOIDp» N
Co OFO In h-4 J CO VA ý Up

ED VW F- (» F-+ OO rn %. n
>-4

OONW 00 00 to W Co F+
OOCZ- "cn00Wvi Ql0 O

ý+ d O cD OO V a1 V1 4r ko4
'. n

-M 00I--+O. M, Q1(OV V7
000-4; r -+K21 I-- C>
O oo c" . P- º-+ vn J v, O I- (D

F U, =* %n F-+ 4r N Ui Qq
V O.. -. R OW F-+ O r7
ýWNI-- 14 000WOIn Nom'

UINV. =- C)I-+N NV
to V1 Q) 00 %n W Fý N
%A -4-41-- CD 1-& 00 C) V4 0) W

a) FýID; r VW N=* (D
l0 Ui .M (0 (0 W WN
ýD WNO 00 NO 00 00 V -'

N Q) W kn W F-+ 1--& O)
FAWN W 1-+VIM)F

VO(7) OO1% 4: D vi

F-+0)WW V9V01V . 9"
CD cnCiin %A to 00 -r-" P*
W V1I-+01CD CD CO O1-A1-+ (1

NWM W W. rýý'M

-M "A U, VIN10a) .MV UI I 0) 0 V) rn 0 F-+ r-+ . -4

moo rnwMLO-4 nf-+ I I. WCl w. P, -M . -0 C)1 00

V1 00WQlNF-N. 00
O1 . Ir P* M kn %J9O='
W0001- Ul-4WVW00 LO

C) F-+ no.; r (D to V 00 F -A OWQ %. n v4" o%A gr O O

F-A
CD lo Co V01V1 MWNF-+ -

F-+ F. a "h
OI-ýW I-+01 p- OWVO l-+ -h

k-4 P' M UD (0 vi lD 0 vi Ný

1--4 S+ N -r CO 0CZ W OOV70CD 01CO WO

F" f-+
N

Co C:) cz Vi Co Co CD vi 3Vi .

i-+NNNNptp(M Ul ,ý Ui

F--a)-+
b-a00 01 00 00 00 0 V00 Ci

00"to ONWIV4r c to v

to 00 j1 b- --4 N Q1 V Co

F-+ N
000WOCo Ovi VN to

Otn(»(MvitoviC1oN
0

z
v
0

80

Ni 1--a F-i F-+ I-4 F-+ F-& Fý Si e--4 N cJ
O1D00-1cm%n 7WN1--4 OtD00V01V . WNF. a - -

ý. n
NN 1-+ N

to O CC W 1--4 to 1NV 00 . 10 CD 4r C3 V -+ Q1CD Ni (DmW Vi. Co VF-'0000V (3 vi V IV (D
to CiN I- 000 NFCD WW OF-403.4 +W Co t00 F+7

00
W Vi F-' 01 %n IJ 1-+ F-+ Ql i- Co IV W IV Vi . p- VmV

M- r-}
?

0000(0 V. OOOON V 00. t' V C) V1.0 N
OCo Cf W>-ACiN. LO 001-ºV Vi(0C)00C' V CD (M N

N WW Ool-+sun P- WtO V1F-+V7 4 IVN000) cD
(M DN CD VO.; r W tT1 F-A ý" %xi Vi ;r %J7 OV
000F. J VIF-+ON=* N Cr U I- IA J "NNO V 00 W

V1 P. CO V7 U1 Cl Cl %n 00 CO CO LO W 00 F l0 Ci V (0
aa)W OO V9 to Vcn ON tt]-ýNll1 V Ui. Ui
F- WQI VBW NNMNOOOO-; r F-JLO ON.; r W

v(0 rnLn (Z u mU. n�J Ncm Co (000 C» F
00NOto al 1-aCD -F'OOND V; r OVCD -4 CI WO
ýWhA 4r OFto . fi'cDNOWOto O»O(DNOOF-+ V'1

F-+ F-a C+' OO F--a vi -m uwN Q1 00 MI Oo MN VI O
tD Co O F-+ Co to %. n b--6 47 F-+ cm F-+ R to V1). -4 C:) vi
OOOhi 4r vi CD Na P" to M V700 Pl 00]1-+«m 0-r-, O

1-+ W Q1 UD pr -4r UJWCo"C)"Um
«mcno0NNCD P' O 00 CD cm Pl r%) Co 00 Ci Co pp FVN V1 vi 00

F-& FýI-A N ha U, NClC0UlC)C) FGa. r V 0000 V

V 00 Vl CM 00 NW .- .-W V7 W V1 CO Fý CO VW . -
O0) OF+VVi C)=' NV4: 001. "OFll CO
W C)K)MMNOOV-P' N N. CCD 00O0CD F-+V11-+ 00

V7VfVOOCn W NW V co WNQ1. 'I %. n" CO
-M VOWOOIn cDco p* W00 -9700M.. NCD N C7) to cn V F- . p- F Q1 F-+ NWO ;r .ntn kA oo F-+ n cD to 1-'

NI 1--6 $-A b-a
OO(DýNO VCo NCo Co fl i+ptQ$-+00
W %A to h-+F+CD NF-+OUi CO ViCi1-'-. J (0 m CD -4 NCOP' W CD ONF-IOQlO W NO CD CD V1 F... & t-4

,. n V NOOQIvi NW V 00 WN01-; r (a IFýV W 1J100 V" Q) O'1 F-+ Ui W pp - NN! -+V Co F-ý
©00 cm vi 0W CF-ANO(n N0 .O IVN4r 00 UI F-ý

F-+
00000ON04r V1cn VN Vý'00(a Wpp(cn1--A W cn tb.) N; r F-+ 1-4 O. 9* r-* 00 V F. . F-+ 1. nCD cn4D"-; r Nto OIli CD F-+ Q) laQlNLO LO

"-Mt. A l M"' & 01WOOW-sr kA V4ul%. 9WFýV
-M 1-4 OO0 NW. 01 1-+011-+00M"ul=, cnW 00=* F+ NCD NLO F-+VOCD LO NF-+MVNNMN

-M . P, %A

nNU, VrN VI NVNwWF C" -; r N (n V -M tD V Vi N ;r ;r a) " Lo " 4r to OVm c) Vi F-+ 0) Q1N1-+NNOCD NF" rr co unCD (ONNNN

-plcm Pl P» Q1 l-a Pi -m W cn WN. 9rviu4 1VINV7 VSAC>CoUl NWNhi OV1vi al 00k"to Q» OW ti to OWWOOONVF W CD 4r NNvi v1 acia ui
h-' f-+ ! -a >"N34r(0 Q1 vi -P'00fecn00-P- Ntovi -+Vi Fý 00 to 00 I--A vi V1 N i-+ V F-+ 00 VN 1- Q1 V7 V ij» F' >" ON V F-+ a Co PF-+F-40CD ciV. "Op. 1-& -i 00 p»

V -4 Co LO -C» V7 V7NOOC" CO 0lDCo Vi ulc» W V100 F-+00 VOO(» O F+W! -+CD O(MCo (M to F. + NO O0 -'%k-cm 0Vl WV Q) NN 'V V1 W>" V

'. MC Co -9: » r, Na VJ OO Na to N V1 . 91 Q1 00 W hr to W m000tGCD NCD to cm 0Co 00CD W"to N >-A 01000 VW NF-4(DC) e"CoNQ11-+Q1 N 00

F-A N NVN 91 Vier po VOV CO (n N (D NW V1 0 Q1 W OtDF-+ 1-a O1 VI Vl V QlOto NQ1im 00O b" NCD OONa OQ10000CO CM CD F-+OW W 00 Co (n to

NW _A >-A WN00vi CD V1V W)"V V1HW to Q1 V %n 00 VV .rwwwFOFN Co O Q1 00 M Na ONmNO (0 cN %A ON O- W >-A OF 1-a OO to O

81

Nrrrrrrrrrr rt
O(000 JC)U). * W NrCD co 00. JC) lß. W Nr-ý

r -h 00 VWNFWN IV . R' W V. O WW .OOO r-h

rrn
VOV7000ONVNrV7fV 167 CO W OoLO OW N -Cr

-h
r f. +

NNVWW. O U7 V1 WWNVrOV Ql c) N Q) WQ

N r týl1
WQ1tD000-4 VOOW U7-P'ONNOO VIOW V4 4r 4r

rr
0Ui00 W. NOO J0000)00 r0 r0) 00 U, V1

rri. +
NrNOVNWOrV ll1 V ONO V9 LO pNr C)

r
. CO Vi00(DN WW rrr-P"O W (D O 4. V

rr
OV1OV Q1 1VfVOW (0 V9OVO lD VO Cm Q1 00

r Q1N V VI %. n000000OQ1 V OV.; r tp V 4'00000 l0 Z
C3 I"A rrrr fV

. 9* 00O 00 r lD NNOWOO co Or V1 00 W-M MOO
r

rr
-; r OV WOui 1 0o000W00 ;r r1ý4 r47 P* Wtp r

r f., N3 J VI Un %A 40 N 00 0VON. VI W Q) WNr (D N

r 1. " ýOOVtD VtD000lDFNOONlALO 000U, C). ý W

VF00-P*00CD OOOCD rVlto V7CO%n%n V OlU7V P'

rrr
V Vt rOO 10 W Oo rOWW 00 (O 4-7 FrO %n

- ''' r V1Oco . OQ1(OOV Oocnt0Q)WNNOOW Q100 Q)

I. -& r"' rr C)VOOLO 0ý Nr00 N (0 Ui N.) (0U, V 0U1 V

OVO CO W WD U7 C) 00 O C1 W U7 %n 00 CO NM la %1 co

ýO(Df" (0 C)0 JQ1 V VOOCD NIM NOOVrN ILO

0(0 Ui C) -4 -; r -V N W.. M" NOQI WW Ci 1-4 (0 O

82

Nrrrrr k" b --a F-& b -A F -+
0(Co VOV' 4? W Nr0(003 VC»1. M M 1-4 K) r -"

'-" O
rrrrrrNr ý-.
r0rwo0Unrn0r. arCo rnoCD rn(Z -4 ca
OOOcOCi0o Ui. Pl tD Co c2 to N Co CD 00 UiN. M n
NO'1QlrWWha rW WNF-+Uli 01NrWC» V rt Oo OO Co OO Q1 VONOW 0001 VO oo VO

0
0

OCU4 V ONrNrNCo vi Ui 4? (D UiM01 to to
OO OO rN Q1 00WWOO OO MONM Ln -' rt
HIV WO VV NNNrIJV CiCiCD Un M>" -4 N
0 OQ1 W LOOOOMN4r CD DUiN0cn 00 NO V

SalJ9ýG1Nto V V11--6 U9 r%. n 00 WNto fa Ol V
((M_P"ka%A V7 to C» P» Gi Co V N00-1r V1)
NV CD F-4 WNV1VN tl1 Co W cl %. n 00 Q1 00 i-+ Pl
OOO Q1 0 al 00 . P- -P' %. n F-& º-A V1 NNOON Co W

ºr l -+ f+ ºA 1-4 t-+ N º-A f-+ D I'. 3 '. n Q '. 0 V VNl11F-+ClQ)NV9M (ONLO
OOOWLo CD WW 000)00 F-A(D W RQ1 -4 01111

F. ALD. ýLO V CZ COCD LO V)--A P* 00-; r W
00W 00NNLO NQIQI; r OQM00N W 00000 . P,

I -+ F-+ F-+ N 1-4
V Q1 O Oo +N WMVW Cf V .r F-+ tD -M Q1 LO V1 QJ
COMNCON. R "O00 V -4700 V UlW QlNN00
-'" F-+ F- oo%n W VLD vi NV OOW 4r CIV1F-
O4--- VOOý VI NCD NOW 001M0 W NQ1 V V7

I-' F-+ F+ NN
1-+Wvi 1VNV VC D000Jcm Co V Fvi hi tm C:)
Wrno0CO FrOOOWOFW(01-+V7 WFVOO
Nº-a%nvi(1N4' W VIW OV 004 W F- 000N
CD OC, NOCD OQ1. p' -4 co viCD Co ClNNCD Ci Ci

F-+ Nr º-+ º-+
WO VýnV VtWNV FV1Ui V: týNWF0 N cn 00 F-a Ln W F-+ %. n 1. J1 F Co P' 00 %Ä 111 W co Qf 0o

I--4(D W V1 C0 V FF- WF F-PO M QC, V101Q1
U, Ci -B Co SA N 1. n r%3 00 -pl C> i CD C: 2 00 Ci V1 1V Co V

N F-+ F-A N Ql O) Oo Co F Ul um vi vi Co t! 1 U1 Co >-. & O CO V1 01
On%NV90VONFrW V00 1--a Co F+V 12 N00N
VI PI re OQIW F WNto WO CD COCD IV C1cm Um FCD 070001.)Co 40001 p. c> CD CD CD 00p-svi W 00

F-+ 1--4 F_+ F-+ p-i O)COWFF+01 vi tl1N O Ui Uiua M C»"W CO VI WU'1Nvi W ui FU'1 %-4 F-ß F(M00>-+VCD to WFON VV 00 O(DUlu2 Q) F"+V V>-AV I-+ N Co N to VNOFVNQ100 Vi Vi t-4 C» U, Q (Z

1-+ N F-+ Np& 1-+ FA F-+ D" 1-+ s F-+ Nvi Qvi hi 0W NW CO 0004" %N V FJFOOI-+ W 00(OWt2 NV(M N V1 UlOOCoWvi 00Co c
Co -4 WQ1(CCD I-+VOQ1 UD W FQiN00Co 1-+N 1" FCD Fto CD 00001CD 00Q1NOCo mCD "0N O

z

O
I-I

83

N1-+I-&F-+F+h+$-+F-+b-aF"N 10
OLOCo VOIUi P» WIV F-'0 COVQIV). WNh-'-" -1

%-. O
C) 00UI00Co 01 W0N Co ViU1000) V1 vi N) V fD
WWV COO! -' C)Pl Co UiU V.. V C) C) W 00 Ci
Q1WCD V1Z, u LO IDN 0) Ui %. qW Vl -4 UM UI 1-a rt 000001! 10 V MCo C»CD ONcm P" VN4. O !r

f+ F-+ pa 1-+ 1-+ t-+ 1-+ t-+ 1-' O
. MI000Ni Na VVi1.0 NWNVi 0UINF-& -+ F-+ Ul
F. -3 P» N)COF-+N&O Co (0 r"F
(0C»c)0)WOCICD F-'CD 1Dhi F-I i1.01DNNW 1-+M
Ui 000N Co Ný 0 0) 0V 00 Co .0 0) .NV N

O%4 LM QiFU1U1W0 V VIJl? VCD
F-+vi0Civi Ni 0 1D im LD-9r F-'vi WO WQ10.
FAF_ae-+0 JC C» CD to VOW. 91 WVOV NN F-+

CD CD IV 00 000. COOP" -Ir. 3Gip O100P» KM W

%n -4 W VQ)I-+ Ili V1 WW V1%. nVI-4m VVt-'a,
N OV1 OW Q1 CO C) V \l713F-A 001-&WlDOVi
C) 'DON V- G1 C) 0F- 00P'V. W'OVINN F- 4F'00. F' W NNOONO CoCicov10vir4c as -

F -A F-& FA
co 0)0 $-+ýVOOOi-M VVW 0L0 P,) Vi Q] V7 .N V7 WNN 1-+ NWOW O-m O V1 O oo

Lo WVNQfOWOVW 4D NtnONVW
NOW LO 00 ON Q1 00 VONNNO. LO O 03 O v1

1-4 I-A FJ N 1-A Fý $-+ I---
NW000 DcnN00N! -400Ul 4oN000
V VNCD tJ1(D V91-+Oto V, Vown i-+NCOVNW
Cl IOVW N141-41.4 cCVQ)V10100VWVO) I-+ OOto NCD 00NOONCD OV ONOcnl"cn LO 00 01

1-+ 1-A F-j F-A 1-4 I -+ F-+ 00; r 001 VONOOtn; r00VN00CO Q1 VW
V $-+ O l0 P P' 0) 00 CO WNO F-+ co 0W F-+ . c0 VON W VN00)V1(31NOW W NtpNOI.. & OOOO IV to WNO Vt to '0 Co co NONOWO V

I-i I"a F-+ - F. +
co ;r 00.7W WOoWOW Q1 U1CD ViFWF-+

vi Fa 0)N. c'vi0N V tD V7 Vi Cocapo. paa
NOF. VWO ! -+ 01 Cl WON LO 1.4 I-+ NOOOi %AX0000-'pi Q)F-A Q1 V 00 -M Q1 00

1-4 F-+ I-+ F-+ 1-+ W 00 t0 W 1-+V47 1000 Vi 0 C) Lo W Q11JV7030
F-A 1- F-+VuiOvi. mW CO W WQl01Qlco to co 0
- (-0CD LO toLO MFOW V -; r . MF--+1-+1-+. OVNQ1 F+ 'OOOQ100OaCD COCl c0CD 0CD F W000 ko

F-' F-& 1-+ - WFtONOOIn m()NONwlF-+V wF-aO1F-
NV9V VOINF-&F-&W W V1 Q1 F- %AOOOtoCo01
fNVONcn -A to Q1p0%n V1MN P* -ANON O -cr NQ10N. 9* =*Un0 ;r N=* V100co CD 000 0

Z

O
F"

84

Table 5.5.2

Results of test runs

000000000 -h c7
NNw

ie
Vi Cv 00 (0 da

n aq
rt(D
-" rt 0

00000000 -t, cr

NNW 'U, O -400
410

n,
CO.

n On
rt0
ýrt
O
7

H+ NNHI -A v- F+ I"+ I-+ f-+ 1-+ IT
NýQl000Nýd7C0 C N. F'0000N=* 000 C
00000000o Cl Oo0000000 a o00000000 Oq 000000000 on 000000000 tD 000000000 CD

rt rt

In
In 0
0

V V4 N F-+ 1--+ F-+ F-+ I-+ F-+ rt C VWH Q) WNNNVWNN iý Mr NNN r't 004'WCD CD 0IPW 0 VVI 014? WNNN Oo O4 N 00 (7) NN4? OO4W (D O Ql .? W0
co 0-P, N00 (3) 4r

-NO
rt° °U -n fD '' °° cr Z

W'C to
,r Ui rt -O r

fD C 0) W
-00 i-' '* 0

I-+ $-+ t-+ N F-+ I-+ t-+ t-+ Fr 0K -I 00 . 9* v to rn v %4 CO 00= 7 C) 4'NON004? 000lN "7 CD 0)
°N°

rt a
-n 01

CD r 0) Ö

-" 7 rt oo - h+ 0 -' C rt 0Si Q(ON).., I-' a0 CO Cl o) i-+ Me 0oW o) .n ui to O "4 co CD 32 OOOW F+ QN)Oo. p'N00cocn0ON t! ° -0
OOO IV U4
Cl CD O(D 00rt -h

N0 0

ZZZ-<-<-<-<-« 'p

.1a ° "J

(D

a
0

;r Jr ;rm. c
cn VWNNN 1-4 F-+ f. + N rt r VWF+Q1ýWNNN

-. 01 00 0)0001.. ' W 00CD FCD co 00N
0 rt
0 CD

N
3 1A X)
00 0º
a -" n
°C0

ýNWOIOW WWI fD Vl N I-+ 1--' r,) V1 Co
OO

1-& "0N

OOOt.) OO.. pp CALL?
11

.1 t2° "'
OW -h

4

1
0
El

85

CD 00000000
NNW. RtJ7Qý VOOtD flJ 0.

n Oq
rP fD

O

000000000 -h c7
NNwvda

A Oq
Z

rt
0
7

1-4F11-1NNa ha Q' 1-. & F--4 F+IVhi N cr
W01 (D Nv10oN Vi 00 C Nvi Co F-3 F VOW ci c:
F" %A -ito QNVw a caoovcm vi . 97 WNº-+ ci %n C) vi O%nCD vi I-O W OI-rNN W vi uici pq
k" :a P» "c -4 to (D F-& (D V Ui N (Q O1 v. 1 F-+ oo vi (D
SV O Ui Ci (0 N.) Vi 00 rt p* 1-+WUI sJt01-+vi UI rt

N y
O 0 W NNNNNNN -" NNNNNNNNN -+ vi ci ci ci Vi Vi Vi Vi C V1 W WtV NNNNN C

V NI-+(0(0(0(0 rt cA V OV Qi GMCiCiC) rt
N F-a Co F-+ 00 %11 MW -" h")-+ NVOW F-+ OO -"
of F_ vl O Un vi E-+ to 0 to io O Ci (o to co 00 0i O
vI cal-JCi .i CD rna> CWCo CD . . 4. Ci to

N 000 000

fD C tL tD C 0)
1. -+ rn rº re (0 Co Cl vt 7 -" n vi C1 1-& - f)
O (l to (Z) rnvCo00 007 NvioiUiCiaiv -i Co O O= 01 1 Q1 ONNON P' "Z1 Z 00 O 00 IV OO 00 00 F "71W

01 v 0) -n r Z
Ort c2. CD Orta0

hO1 I-+ -A O1 1-+
rc re v- O Z of O r , -+ 300 ON 0TC UlWN 0 .. C W lD O Co 7 NMFW 1-J F" I-a O. 7

I-+ -mLnMLO to CD 00 fD GL 01-8 J(0N))W 00 Co fD Za Q1 1 Q10NOC1 M Co Uf 0 W NOOOF OONM N0

zV
1 -1 o0

a , Z.

(0 W
WNNNNNNNN NNNNNNNNN -+

0
W OOOOCikn UiUi Vi a Vf V1 WWN IV NNNN C U1 i-+Pi VNt-+lOlDLO lO rt Pt tO VOV CM MMM0 rt rt I-A V1 00 O I-+ 00 vi . ir W -" CI 1- co WV Cl WNOO -" QI O 1-4 1. -& V7 V1 V1 vi N Ui 0 rt V1 00 00 Q1 Lo V1)-& 00 (n 0 rt V010Fýt0ý'OýOI i Q1W NOS VlJt0t0 M

N
1

N th ENV
00'0) 00 of a--0 a-'n fDCtD CDC(D

'P
rr

7 -"N N F-&ýfV IV WN m
r.

ý OOONIV V UI W W. 00 CJ U. CON VOW ID. OO (a
. Nl-IV1Co N%n001-. & "3 01 Ui IV V7 %nF-ANV1-. tJ " no

n
O1 O) CD uiCD OCOO coo. 7 00 F- 000NOO

A
Q7aT lD W 11

I-+ II
a*-

-
t0 V F. + c .--,

II
W h

-ft
O. ' 11

11
CO "f1 ö0

" "
IV NW
O o\0 o\P

-h
11

NO I-A
Lo 00 pip

-

86

000000000 hC
......... -1 C
NNWU, (» V Co to a) a

rt (D
-"rt 0
Z

r º- tT
1-+WFCD VtDONW C
V70 VIF-MQ -+VNV a
W01to W0)(DWcn(D Qq
WNLo NVI 001--ate V CD
F-+ NW . t: VI Cn V 00 lO rt
V1 Vi V1 V7 V! 9 V1 %n V1 V7

N
1-+ º-+ º-A ý+ 0
N M- N F-
cn oo 00 00 C
00 1! i F rt
cn O00 00
a, co 00 o, 0
w11t11 U7 In ;

OOO-
C. -
fD Cw

0--A rt :3
DTI . C" WW7-. n

to ww 00 ='
N11111 ßl C1 IV "1Z

tvv

OrtC. O
-h OI t-+

rT D'
O Ot O

w OC
t--' . 1" ßwC. 7

owv, cD ma N11111W co NN0

zz Iili z-c-<
1 0
CD
a

N
rrrrrrrrrO
NNr i- rrrrr -+ Ui 1.0 CO 000003 Co Co CN
I. 1%) CO Ci Vi Vi . p- rtrt 1--+NIM 0NP" N(0Co -cu ýOý(» caanrCo cm O re r00 V IV . P' vi NW. p- :i (D

1

OO Cý
a-. n
fD fD

NrN W rrrl-+f-+
ýN

Co VirNwtnrno-, OO (D
CD-I"- -+orni- %n (0 " 01

n
N000 CA G.?

Co
v -h ,
bi OO
NOO -fý

NV IN
oý oýP 0

E3

87

Weischedel (1973) for graph BFW531 are included in the

tabulation of results for this graph.

5.6 Conclusions

The methods described here represent a substantial

improvement on those previously available in terms of

efficiency. The state-space method, although not

guaranteeing the optimality of the solution produced, for

the problems considered always yielded solutions that are

nearly optimal, the maximum error being . 297.. There are

some indications (see the 0.1 level result for ND2O1)

that when the complexity of the problem causes the

branch-and-bound method to break down the state-space

method will continue to produce acceptable results.

It is of interest to note that the difference

between the user costs at the 0.1 level and the 0.9 level

ranges from 28% (ND101) down to 5% (ND201). This suggests

that dense networks are not cost effective and that in

practical problems methods appropriate to the finding of

optimal sparse networks would be important.

88

Chapter 6 An abstract 2-dimensional trim-loss problem

6.1 Introduction

6.1.1 Statement of the problem

Material is held in rectangular stock sheets from

which an order list of smaller rectangular pieces must be

cut. All the stock sheets have the same dimensions. The

dimension of the longer side is called the length and that

of the shorter side the breadth. A similar terminology is

applied to the pieces. All dimensions are small integers.

For each piece there are three integers, the length, the

breadth, and the number ordered. The totality of these

integers defines the order list.

A cutting pattern is a set of instructions as to how

a sheet is to be cut. There is no restriction on the type

of cutting that may be specified. However, it has been

found that for the type of data under consideration

satisfactory solutions can be found in which much of the

cutting is guillotine cutting.

6.1.2 Choice of method

There is a resemblance in this problem to the abstract

1}-dimensional trim-loss problem, and an attempt was made

to apply a similar ordered operator search as a solution

technique. This attempt, however, revealed that a more

significant feature of the geometry of the present problem

is the large degree of repetition in the order list. The

implication of this repetition is that a number of regular

features will recur during the construction of a solution.

Consideration of these features suggests a classification

of the types of subgoal that would be created if problem

89

reduction were used for the solution of the problem.

The regular features are:

i) Given an order list, a type of piece can be

identified as being the one of which it is most

important that instructions to cut at least one

should be included in the instructions for cutting

the next sheet.

ii) A number of such pieces, similarly oriented and

juxtaposed, can be cut from a stock sheet either

leaving an L-shaped or rectangular fragment of the

sheet uncut, or consuming the entire sheet.

iii) An L-shaped fragment can be divided into two

rectangular fragments (see figure 6.1.1).

i

,ý
ý`

{_ý ..

ý`; ý
, L`°

'
rte

t'ý,
ý v

Lyra "+:. y, ý, x. " ý; i... .. .
i. l

The L-shaped fragment;. aeft;
.

after the rectangle °ABOD,
has been out __may. be; , ='. ,

'.; a, = <? r , divided into` two rectangles' x"44
by a cut along DE.

. 01

Division of an L-shaped fragment

Figure 6.1.1

iv) A number of similarly oriented and juxtaposed pieces

can be cut from a rectangular fragment, either

consuming it completely, or leaving an L-shaped or

rectangular fragment uncut.

The related types of subgoal are:

i) specify the set of juxtaposed and similarly oriented

most important pieces that is to be cut from the

next stock sheet,

ii) specify the way in which an L-shaped fragment is to

E

9o

be divided into rectangular fragments,

iii) specify the way in which a rectangular fragment is

to be divided into pieces.

The decision having been made to make use of a problem

reduction method, the process of forming a cutting

pattern under it can be regarded as a search in the

subgoal tree for a set of subgoal solutions which

together define a cutting pattern. A simplified version

of the subgoal tree that will be set up under this

formulation is shown in figure 6.1.2.

The geometry of the problem suggests both the

possible reductions of the subgoals and an ordering on

these reductions. It is apparent that the overall goal of

constructing a set of cutting patterns must be reduced

into a sequence of subgoals of designing cutting patterns

in which each pattern is appropriate to an order list

produced from the original order list by the removal of

orders for pieces whose cutting is specified by preceding

patterns in the sequence. Preferred reduction within

non-backtracking search is therefore indicated as a

suitable method.

The basic method can, for this problem, be enhanced

by carrying forward information accumulated during

attempts at the solution of one subgoal for use in

attempts at the solution of others. This is done by

maintaining lists describing the action taken when an

L-shaped or rectangular fragment was encountered during

the preparation of earlier cutting patterns, or earlier

in the preparation of the current cutting pattern.

The cutting patterns produced by application of the

': "''1. "sý 7'r 'ýl! ' ', 1ý V .',. l ý'. ", '" :r : lt'
ý;

J. J t
V'ý'!

1' ^+'ý'
w"

Cý"..
ý R. ,ý. 1ý",

ýý7 s°
`N.

ý
~f

ý fir, e

yt ', ' " :: tk",.
t:. j

ý</ Y!
'

{?

M'ý' ''". i "b %ý
3i1, "

1: +ý ""
J1` ý , ýý'ýaYýý. ý; _ä jt;.

'" .vý" `s ýt
'

, ý""j,
ýlý ý.. t

ý', ,
ý! yiý"c ,

ýY" yl, ', 1?
+"03.

+ ýý ""t'd"
y ,

'i'.,
';, x,

ý'ý'. L ýý,

"+.
ý'

;
ý$ý'"..

iýýr,
k. }r";

ýI
fý.

'J'ý 4

f "" '}Ii'. " ý" ý+ýt.
"/ä:

Q`
'7'tj'`ý:,; ý yi" ý%.

"

y'='

ö ý_ ý ^r'-",. i, "}' 'ý6"
'ý

a,
"r'` ? '-. ".

i
,

".
'fit "-t, '''"

, 1r:. TZ, d. . nY 7' .
ý,

. "týýYY .. rte. .,.
ý, '4! ""'. ., .)n ::! -'

.
fý,

... rrt
L~,. y r`: ,.

: 5'''-;
, '" . "ý.

ti`
... .. ', s

t'ýiý^. K ,"
ý1' ''

Initial order list Notation: Q-definition of Set of Subgoals,
10 of 4x4. solution of one or more of which
25 of 10 x1 is necassary for solution of
25 of 8xI current goal
15 of 6xI A- alternative selected from Q

of parent
Sheet size 10 x6 S-explicit solution of subgoal

Q: Which sub-tessellation with 11. x4 pieces should
be used?

A: One 4x4. piece, leaving L-shape

,46
A: Two 4x4. pieces, leaving L-shape 4ö

kI
$A

ff

R6
z 10

Q: Should L-shape be divided along AB or AC?

A: Along AB A: Along AC
Q: How my 10 x2 fragment Qt How mmy 8x2 fragment be divided

be divided and how may. i and how may 6x2 fragment be
4x2 fragment be divided? divided?

A: 10x2 fragment A: 4x2 fragment A: 8x2 fragment A: 6x2 fragment
S" Ttýo 10x1 pieces :. NO sgIFION S: Two 8x1 pieces S: Two 6x1 pieces

': -i irý ý'ý r
/+. ý. ý !

ýý ýý, ý'
yýyý L" i; r "ý

A.. . X

ý
11

4X4 ''`ý'xý'j ä
ýý X X

,., ... k ..) 'w

,.. -Resultant. "cütti attern used r. " Y r° 'r" ;: s- t"p ."r5
tames , ý. e v ýa cier li `ý

"ý. x`.

-
4"' J`

4". ,ý r�t:
ý" t';, ý7

'
M1{.

;ý
."

25 bf'; 4ý
0` ý�t

"..
(`{"+Y'r+

hý'ý
i

, ßd+'.
1...

.. ti 'r.

yä
! *.

ý.. ''. +, i, ý.
'r ý"ºs1i

:.
1

ýJ , ̀ Viýr.
V5'' 1igi-Y"'Ný!.

aw
Ott,

Zvi ýý : 7. eýý'. " ý. xý, i. Y"ýýr. ý'^
. ti

,, . ., ý %°'ý.. ý,; ýg ý, ý""ýr4ý^+;
ý r y yAý

"_t ,ý ,
'v; 1; 'il`. »Y ý'ir'r*n+`'. s : '4w i `ils` :, ii.? ß"S''"(: 11: ? f. ; '; y,. "<ý. ' 4

Simplified subgoal tree

Figure 6.1.2

92

problem reduction method will always be ones in which all

the cutting is guillotine cutting. There remain, however,

a small number of instances where it is desirable to

search for pat erns involving non-guillotine cutting and

here ordered operator search is appropriate.
6.1.3 Structure of the description of the solution method

The method of solution adopted will be described in

terms of a program that produces instructions as to how a

required set of pieces should be cut from a set of stock

sheets. The program has two main routines, REGULAR which

uses problem reduction based on the formulation above to

produce cutting patterns in which all the cutting is

guillotine cutting, and IRREGULAR which uses an ordered

operator search based on the method applied to the

abstract 1}-dimensional trim-loss problem to produce

cutting patterns that may involve non-guillotine cutting.

The way in which these routines are connected is

described in section 6.2. They both operate on an order

list on which a sequencing has been imposed. The way in

which this sequencing is determined is described in

sub-section 6.2.1. Control must be passed between the

routines, and decisions made as to the maximum level of

trim-loss (scrap) which they should be allowed to include

in a cutting pattern at a given time. These matters are
discussed in sub-section 6.2.2.

Section 6.3 describes the routine REGULAR,

sub-section 6.3.1 its general structure, 6.3.2 the way in

which the development of its Subgoal tree is managed,
6.. 3.3 routines for handling 'most important pieces"., and
6.3.4 the "learning lists" that accumulate information

93

acquired by the routines for handling rectangular and

L-shaped fragments described in 6.3.5.

Section 6.4 describes the routine IRREGULAR,

sub-section 6.4.1 its general structure, and 6.4.2 the

way in which it determines sub-patterns with a "spiral"

structure. The results produced by the program are

presented in section 6.5.

6.1.4 Definitions

A piece is tessellating if its length divides the

length of the sheet and its breadth divides the breadth

of the sheet, or if its breadth divides the length of the

sheet and its length divides the breadth of the sheet.

A piece is semi-tessellating if it is not

tessellating and one of its dimensions divides one of the

dimensions of the sheet.

A piece is non-tessellating if it is neither

tessellating nor semi-tessellating.

A sub-tessellation is the Juxtaposition of a number

of similarly oriented identical pieces to form a

rectangular area that can be included in a sheet. A

sub-tessellation is maximal if no larger sub-tessellation

could be formed with the given pieces in the given area.

Figure 6.2.1 shows a maximal sub-tessellation of a 20x20

sheet consisting of 7x4 pieces.

A partial cutting pattern is an incomplete set of

instructions as to how a sheet is to be cut. A lobal

step is the design of a cutting pattern.

6.2 General strategy

6.2.1 Urgency of pieces

In order to keep the resources required by the

94

program to an acceptable level the degree of backtracking

is restricted. Once a usable cutting pattern has been

designed the maximum number of times it can be used is

determined. The total numbers of pieces resulting from

such cuttings are then subtracted from the order list and

the resultant order list used in the next global step.

The pieces can be ranked in terms of the urgency of

finding a cutting pattern that includes them. The urgency

of disposing of a piece that is not tessellating is

greater than that for a tessellating piece, since if only

one type of piece is left at the last global step waste

is unavoidable if it is not tessellating. The problem of

using the area remaining in a sheet after a

sub-tessellation with a semi-tessellating piece has been

cut from it can be more easily solved than the

corresponding problem for a non-tessellating piece. So

the urgency of disposing of the semi-tessellating piece

is less. Within each category, the smaller the piece the

less the urgency of disposing of it.

When the problem of using the area remaining in a

sheet after a sub-tessellation with a piece that is not

tessellating is being considered, it is in general not

the case that it will be specified that a piece with area

equal to a quarter of the area of the sheet should be cut

from it. In figure 6.2.1 it can be seen that the

specification of sub-tessellations including large

numbers of 7x4 pieces precludes the subsequent cutting of

a 1Ox1O piece, and also that the fragment remaining after

the cutting of a smaller sub-tes&alation of 7X4 pieces

and a 10xlO piece is potentially difficult to divide.

95

Suppose instructions to cut one or more pieces of quarter

sheet area were included in a cutting pattern that would

result in trim-loss. Then it is in general the case that

the amount of trim-loss per unit area of pieces that are

not tessellating in that cutting pattern will be higher

than that for a cutting pattern that does not include

instructions to cut pieces of quarter sheet area whilst

still including instructions to cut the pieces that are

not tessellating. For example, the maximum number of 7x4

pieces that can be cut from a 20x20 sheet with guillotine

cutting is 12 (the sub-tessellation of 10 shown in figure

6.2.1 plus 2 with the other orientation) giving a

trim-loss per unit area of pieces that are not

tessellating of . 19, whereas if a 10x1O piece is cut from

the sheet the maximum number of 7x4 pieces that can be

cut from the remainder is 8 (the 7 in figure 6.2.1 not

overlapped by the 10x1O piece plus 1 with the other

orientation) giving a trim-loss per unit area of pieces

that are not tessellating of . 53.

For these reasons the urgency of a piece P is

calculated as:

area(P)+if area(P)*L = sheet area then 500

elseif non-tessellating(P) then 500

elseif semi -tesselating(P) then 250

else 0

close

The order list is sequenced in descending order of the

urgencies to which each order relates.

t 96

ý �n, yrý. yý,.. ý+: 'a"vfui+: S': . #»,
c'ý r'')i"*J" ýf "ý'4ý. 4q

;. i v
. ", ý ':; " ý± ºr. ql: ' . f}. ý'ýwä

? k; t". 4; / aT ', ý
xýr" ,,. ý: rti'.. r. %; ' ;ý: a'w: t ý

+ý "' ..
v;

..
.
'Y,

ý,
"., ý". f .:

ý ly: s1.

~

YyrFµ
ýý-. " yý,

`. T y77. ý. tiýý 1ý w"ti
y

ýy. t :,
f, ý `ý ýi

. "ý"y+c 'ý
. e. "f,,

ý ºýf'ý}" zýýr. ' "`f"?, ýý Y-, r; Äaß r, {, ?%

i, ',
ýý�

'r

-' 1
ý.

ýi, ýj
A

. ýý5

k

, 4.:

It'

" "
Fam.. `ý k' ý4.

,
YÄ. ' k.. ur., Fek

"'
ý*`r" "1

,i
r,

t
J..

i
i

f

maxima ; sub r. tess. ellat. %'ötý. t
of '7x4` -piecesýý

---- shows position
10x10 piece would
occupy

rH #1
i(ýyýý R j.

ý y

h`.
'12 1

-t�AW.

Effect of a quarter sheet piece

Figure 6.2.1

At each global step the goal is to find a cutting

pattern which includes pieces of a specified type. Call

this type T*. At nearly every global step T* will be the

highest sequenced type still in the order list. The

exceptional case occurs when the total area of pieces

that are not tessellating and are still to be cut is less

than the area of a sheet and there is at least one

tessellating type such that the total area of pieces of

that type not yet cut is not at least equal to the area

of a sheet. In this case T* is the first such

tessellating type in the order list.

The reason for introducing the special case in the

choice of T* relates to the special condition that holds

when the last sheets are cut. It is known that the last

cutting pattern will normally involve trim-loss, since

normally the total area of the remaining orders is not

equal to the area of a sheet. The cutting of the last

97

pieces that are not tessellating is likely to involve

trim-loss. The aim is to defer this cutting until use can

be made of the known necessary trim-loss in the end

condition.

6.2.2 Cost control

Two types of cost are incurred by the program, the

cost of the computation and the cost of the trim-loss

resulting from the set of cutting patterns produced. The

routines do not attempt to determine the minimum amount

of scrap that is essential for the next cutting pattern

to be formed. Instead they operate on an order list to

which a number of pieces of unit area, which will be

scrap in the determined cutting pattern, have been added.

The number of such pieces in the order list will be the

maximum amount of scrap per sheet that is to be

considered allowable in the current search for a cutting

pattern. If a cutting pattern has not been formed by a

routine after it has used 3 minutes of CPU time it will

report failure. When a routine reports failure the

alternatives available are:

i) invoke the other routine,

ii) increase the amount of scrap per sheet allowable,

iii) change the urgencies of the pieces,

iv) some combination of (i) - (iii).

The choice from these alternatives is made in such a way

as to provide the balance between the two types of cost.

An explanation is necessary for (iii) above. The

urgencies of the pieces affect the decisions taken inside

REGULAR. Once it is clear that scrap will be necessary

the justification for assigning a low urgency to

98

tessellating pieces no longer holds, and the change in

urgencies may allow REGULAR to find patterns, possibly

not involving scrap, that it would not otherwise

determine.

In certain circumstances the need for the

introduction of scrap can be easily established. Three

such cases are identified:

i) If the total area. remaining to be cut is less than

that of one sheet then sufficient scrap must be

introduced to make the total area up to that of one

sheet.

ii) If the total area of pieces that are not

tessellating is less than that of one sheet and this

total is not divisible by the highest common factor

of the areas of the uncut tessfllating pieces then

sufficient scrap must be introduced to give the

total this divisibility property.

iii) If the sheet area is not divisible by the highest

common factor of the areas of the uncut pieces then

an amount of scrap equal to the remainder of this

division must be introduced.

The function ESTABLISH-SCRAP-PARAMETERS returns two

values which are used when additional scrap is introduced

into the order list. INITIAL-SCRAP is the amount of scrap

to be introduced initially. It is calculated in the

following way:

i) Initialize INITIAL-SCRAP to the area of a sheet.
Look at the order for T*.

ii) Subtract from INITIAL-SCRAP the area of the largest

possible number of pieces of the current type. This

99

is either the largest number which does not give a

negative result to the subtraction, or, if it is

smaller, the number remaining to be cut.

iii) Look at the next order that has not been completed

(number required not zero) and that is for pieces

whose area is not greater than the current value of

INITIAL-SCRAP. If any such order exists, go to (ii).

iv) Find the smallest number of sheets whose total area

is not less than the total area of the pieces still

to be cut and the difference between these two

totals. Hence calculate the average scrap per sheet

that is inevitable. INITIAL-SCRAP is the greater of

this value and the one previously calculated.

SUBSEQUENT-SCRAP parameterizes the amount of scrap to be

introduced subsequently. It is the larger of the area of

a piece of the smallest area for which the number

required is not zero and the result of dividing the area

of a sheet by the number of sheets that must necessarily

be cut.

It is now possible to consider how the control

function of the program invokes REGULAR and IRREGULAR,

and the action it takes when they report failure. The

sequence of events is:

i) Establish the ord er list with urgencies calculated

as in 6.2.1.

ii) Determine T* and set TOTAL-SCRAP, the amount of

scrap to be added to the order list, to the amount
it is known must be introduced.

iii) If TOTAL-SCRAP is not zero, determine

SUBSEQUENT-SCRAP and go to (vi).

100

iv) Call REGULAR. If a cutting pattern is found, go to

(Xi).
v) Call ESTABLISH-SCRAP-PARAMETERS. If INITIAL-SCRAP

is not greater than TOTAL-SCRAP, go to (ix),

otherwise make TOTAL-SCRAP equal to INITIAL-SCRAP.

vi) Make the urgency of each piece equal to 250 + its

area.

vii) Call REGULAR. If a cutting pattern is found, go to

(xi).

viii) Call IRREGULAR. If a cutting pattern is found, go

to (xi).
ix) If SUBSEQUENT-SCRAP is greater than TOTAL-SCRAP,

make TOTAL-SCRAP equal to SUBSEQUENT-SCRAP and go

to (vii).

x) Double SUBSEQUENT-SCRAP. Go to (ix).

xi) Determine the maximum number of times the cutting

pattern can be used without causing an excess

quantity of some piece to be cut. Print cutting

instructions and update the order list.

xii) Determine T* and the amount of scrap

(MAXIMUM-SCRAP) that must be introduced for the

revised order list. If all the orders have been

satisfied, stop.

xiii) If the new T* differs from the old one then:

a) if MAXIMUM-SCRAP is zero and TOTAL-SCRAP is not

zero, restore the urgencies of the pieces to

their original values,

b) set TOTAL-SCRAP equal to MAXIMUM-SCRAP and go to
(iii).

101

xiv) The amount of scrap in the order list will be the

larger of MAXIMUM-SCRAP and the amount of scrap in

the previously generated cutting pattern.

xv) If this amount is zero and TOTAL-SCRAP is not zero..

restore the urgencies of the pieces to their

original values. Set TOTAL-SCRAP to this amount.

xvi) If the last cutting pattern was found by IRREGULAR,

go to (viii). Otherwise go to (iii).

6.3 The routine REGULAR

6.3.1 Structure of the routine

The principal data structure maintained by the

routine is a tree of subgoals. The label at each node

includes:

i) The name of a function that will either solve the

subgoal or set up additional subgoals.

ii) A marker that indicates the status of the node as

''active" , "suspended"., or "inactive".

iii) A cost used to determine which subgoal should be

considered next.

The functions whose names occur in node labels can

be divided into two sets. Those in the first set are

concerned specifically with the cutting of pieces of type

T*; they can be further divided according to T*:

i) T* tessellating: TESSEL

ii) T* semi-tessellating: SEMITESS, CONDB,

CONDB-MAX-FIND,

NOT-CONDB-LEVELI,

NOT-CONDB-LEVEL2

iii) T* non-tessellating: NONTESS, CONDA,

CONDA-MAX-FIND, FILLOUT,

FILLOUT-COMPLETE

102

The second set consists of two functions which

attempt to find a way in which a fragment of a sheet

having a certain shape can be divided into pieces.

RECTFILL handles rectangular fragments, whilst

LSHAPE-FILL handles L-shaped fragments.

,
ýý

.ý
t
«. TESSEL

REGULAR :

: : '::

SEMITES

CONDB- NOT-CONDB
MAX-FIND LEVEL2

CONDB � JNOT-CONDB
-LEVEL1

NONTES

FILLOUT

CONr)A-
MAX-F I ND

RECTFIL

COND

FILLOUT-
COMPLETE(2)

1
. tý..

Il ýl Y'1nt uý
rf'

`t .,
vrýrýý1.

}I

1 /ý
`` e4 } " .

sniäP "ý""
R'^ý l,. ̀ "

r. ýy ;. i. t yrp11' fir'

Relationships between reduction functions

Figure 6.3.1

The relationships between all of these functions are

outlined diagrammatically in figure 6.3.1. An arrow

pointing from one function name to another indicates that

the first function can set up subgoals which the second

function will be invoked to solve. In most cases the

combination of the subgoal solution with information

"memorized" by the function that set up the subgoal will

103

result in a solution of the subgoal this latter function

was required to solve. In certain cases (those in which

"(2)" follows the function name in the diagram), however,

the solution of a subgoal must be combined not only with

the memorized information, but also with the solution of

a second subgoal, which will not be set up until a

solution of the first subgoal is found. In these cases

arrows pointing to functions that may be invoked to solve

the first subgoal of a pair are labelled "111., and those

pointing to functions invoked to solve the second are

labelled u2u.

Three lists, RECT-OCCURS, RECT-PENDING and

RECT-SUCCESS are used to hold the information "learnt" by

RECTFILL as to how rectangular fragments may be cut into

pieces. The list LSHAPE-OCCURS holds similar information

learnt by LSHAPE-FILL.

6.3.2 Search strategy

A search is being conducted in a problem reduction

tree for a set of subgoal solutions which together define

a usable cutting pattern. A step in this search may

result in the solution of a subgoal. First, however, the

case in which the previous step did not result in such a

solution will be considered. In this case a search is

made for the node which is active and has the lowest cost

in its label. The function in this label is then executed

with the values of its local variables set from

information in the label. The function will execute until

one of three things happens:

i) it finds a solution of the subgoal,

ii) it creates a new subgoal,

104

iii) it terminates having failed to do either of these

things.

If its action is (i) or (ii) it may add to the costs of

any of the present node, the parent of the present node,

and the grand-parent of the present node. The size of the

increment reflects the number of alternative reductions

of the subgoal at the node at which it is made that it is

thought should be attempted. The larger the increment the

less frequently attempts will be made to reduce the

subgoal. The cost of an ancestor is incremented when the

fact that the reduction of the descendant has been made

makes it less desirable to perform alternative reductions

of the ancestor. The node associated with a new subgoal

will have initial cost zero and will be marked active,

unless information on one of the learning lists relating

to it indicates that this should not be dase. If the

action of the function was (i) or (iii) the current node

is marked inactive.

If, on the other hand, the previous step did result

in the solution of a subgoal, the parent node of that

subgoal is considered. The function in its label is

reinstated with its local variables set from information

in the subgoal solution. The function will either report

the solution of the current subgoal, in which case the

node is marked inactive, or create a new subgoal.

6.3.3 Functions associated with T*

For each of the three categories of T*,

non-tessellating, semi-tessellating, and tessellating,

there is a sequence of subgoals that can be set up, each

105

subgoal being the completion of a partial cutting pattern

that includes pieces of type T*. Sub-sections 6.3.3.1 to

6.3.3.3 describe these sequences of subgoals and the

operation of the functions that create them.

6.3.3.1 T* non-tessellating

Any sub-tessellation starting from the north-west

corner of the sheet will result in a partial cutting

pattern of the form shown in figure 6.3.2. All the

subgoals are completions of such cutting patterns. Note

that, depending on whether the sheet or T* are square, up

to 4 pairs of values of L, and L2 can result from

sub-tessellations with m pieces in one direction and n

pieces in the other.

I.
ý

0-,

.M5`.

1ý
..

ý
ýava.

'R,
ý.

i
FuF.. + ..

ýt!

t,.

3.. j
A, "ý -)

ip 4ý lt ý.

r. P. . °f
tannt F. 4. V't-.

. _w .,
i y-nCW. $

,4; ýf 5
ýseý'' Bfz ^ ý: `ýSý

nu"ý: ý, tý: 'Rý. ý : y�4ý ^4'`r- (, `Yý'';;
T":

i-.. t- _ ..
<: äý:..

_ . "4J
Xis -ýýýy° r "' tjý `.

Sheet with sub-tessellation cut

Figure 6.3.2

There may be a number of ways in which a value of L,

or L2 is divisible by the length of a side of a piece

with urgency not less than 250. The function

BEST-REMAINDER-FIND is used to evaluate the alternatives

for values of L, and L2 resulting from a given

orientation of the pieces of type T* in the

sub-tessellation. The evaluation for the L1 case will be

106

described. Cz is held constant at its largest possible

value. The initial value of L, is the smallest possible

consistent with the requirement that the sub-tessellation

should not include more pieces of type T* than remain in

the order list. The pieces that remain to be cut are

considered in the sequence in which they occur in the

order list. For each such piece both possible

orientations are considered. A check is first made that

there is not some piece of higher urgency for which the

divisibility property has been found. Suppose there is

not, that side length Pi of the piece divides L,, and

that the other side of the piece has length P2. If PI

divides C2 or Si and the number of pieces of this type

remaining in the order list is sufficient to form a

sub-tessellation with dimensions L, and Ca or S2 (as

appropriate) then BEST-REMAINDER-FIND exits with a value

of 1000 + urgency of this piece. Otherwise, if the number

of pieces of this type remaining is at least Lj/P1 the

details of the piece and orientation are noted. If these

are the details finally returned by BEST-REMAINDER-FIND

the value will be the urgency of this piece. When all

pieces have been considered for a particular value of Li,

the next largest value of Li is considered. The

evaluation for L. is similar, for a description simply

interchange the 1's and 2's in the subscripts in the

above.

If one of the evaluations of BEST-REMAINDER-FIND

identifies such a divisibility condition then condition A
is said to hold. If both evaluations identify such
divisibility conditions, condition A refers to the one

107

with the higher value. The aim of establishing condition

A is to devise partial cutting patterns which, when

completed, would produce cutting patterns that, when

used, would simultaneously reduce the number of pieces

uncut for two pieces, whilst making the completion of

such partial cutting patterns a relatively easy problem.

Let LA denote the value of L, or Lz specified by

condition A. Let T. denote a sub-tessellation consisting

of a set of the specified pieces with the specified

orientation juxtaposed so that the sides whose lengths

divide LA together form a side of the sub-tessellation of

length LA and the other side length of the

sub-tessellation is equal to the other side length of the

piece. An example of such a sub-tessellation is shown in

figure 6.3.3.

'k
i*ý",

ry
.

"``, itar. +;

,"'

.. eAbp ; y'C ems� 4_ :t+
ýr

Via.

TA sub-tessellation

Figure 6.3.3

CONDA-MAX-FIND is invoked if it has been established

that condition A holds. It first determines the largest

sub-tessellation using sub-tessellations of type TA with

their sides of length LA juxtaposed that can be formed in

the remainder of the sheet starting at the edge of length

L. and with a sub-tessellation side of length LA along

this edge. A possible form of this sub-tessellation is

shown in figure 6.3.4.

108

ýýläp'F C�
'' Eta ýi . ", 4 "_. 1rn' 'rYf! t "N, kri" {" 'ý. -: t ` ý--'

T. "

ý. ý ̀ :'_ , f sý eces of
+f

<c
r

.
,, " ý . ; i

a+ 4 <}ýjý
' '° 'ýS 3r ' s' ' ý

/
FF i' , '6

+ . 4`" i4 ý± '4ý 1 ^ri t. rw -i b :
rýý! ,:

6", - _ .. "y.
4'tß ">ý, sýiýi `ýK"hýý'1 ý +t*

C ... I. ti.. ý,;, .

L ý d. T T T T A A A A A a

State generated by CONDA-MAX-FIND

Figure 6.3.4

The first subgoal set up by CONDA-MAX-FIND is the

completion of this cutting pattern. Subsequent subgoals

are to complete a cutting pattern of this form in which

the number of T. sub-tessellations in this

sub-tessellation is reduced by 1 each time until it

reaches 1. In terms of figure 6.3.4, in the creation of

subsequent subgoals the sub-tessellation is successively

ABGH, ABEF, and ABCD. Each time it sets up a subgoal

CONDA-MAX-FIND adds 1 to the cost of the current node, 1

to the cost of the parent node, and 1 to the cost of the

grandparent node.

CONDA is given an orientation of T* and determines

whether condition A holds for this orientation. If it

does, CONDA sets up a subgoal to be solved by

CONDA-MAX-FIND and adds 1 to the cost of the current

node.

The first goal set up by NONTESS is for CONDA to

establish whether condition A holds with the breadth of
T* parallel to the breadth of the sheet. If neither the

sheet nor T* are square the next subgoal set up is for

109

CONDA to establish whether condition A holds for the

other orientation of T*.

NONTESS next determines the upper bounds for M and

N. the number of pieces in each row and column of a

sub-tessellation using pieces of type T*. For descending

values of M+N, for descending values of M within M+N, and

for both orientations of T* within N when neither the

sheet nor T* are square, subgoals are set up, at

successive entries to NONTESS, to complete a partial

cutting pattern that starts with an M by N

sub-tessellation using pieces of type T*, where MxN is

not greater than the number of pieces of type T* still in

the order list.

The last subgoal set up by NONTESS has FILLOUT as

the function in the label of the node. The strategy

controlled by FILLOUT is as follows:

i) Consider a sub-tessellation using all the remaining

pieces of type T*, if such a sub-tessellation

exists.

ii) Consider a type occurring later in the order list

than T* for which pieces remain to be cut.

iii) Determine the minimal sub-tessellation with pieces

of this type such that the lengths of both sides of

the sub-tessellation are not less than those of the

corresponding sides of the sub-tessellation in (i).

iv) If the sub-tessellation in (iii) would leave an

L-shp ed fragment uncut, determine a partial cutting

pattern that includes the sub-tessellation in (i)

and defines the cutting of a rectangle whose sides

are equal to the sides of the sub-tessellation in

110

(iii).

v) Determine a way in which the remaining L-shaped

fragment may be cut.

Note that in (i) it is required that all remaining

pieces of type T* be used and that in (iv) it is required

that the remaining fragment be L-shaped. This strategy is

specifically designed to "embed" the remaining pieces of

type T* in a sub-tessellation with another type to

produce a solution that would not otherwise be found.

Figure 6.3.5 shows how this strategy might generate a

solution.

*Order list

, ,. .i of 3: c 2

3-of`-5

Sheet` sizex90°x"8' 6s

Figure 6.3.5

,; ý, '

jY

.y

44C

, ý.
ý. ý. ý r
s ý'+yq,

ýl"]
at. N
: "yt.,

ý

ýý1

If the piece into a sub-tessellation with which the

remaining pieces of type T* are to be embedded is not

square there are two distinct subgoals for creating a

partial cutting pattern of the type specified in (iv)

above. These will be created on successive entries to

FILLOUT-COMPLETE that are not consequential upon the

solution of a subgoal having been found. If the piece is

square only one subgoal is set up. If FILLOUT-COMPLETE is

entered following the solution of such a subgoal it sets

up the subgoal of completing the resultant partial

&r "ý Yn; ü. 'J.. ý td
^ ýý- vS. 1}ýht i

f
'. ti 'ý p

"

77
\4 " 1

,t ý ý a 1ý .i
ý'

ý1
`. 9.

"x

," ýa ^ ý':
.:. ae

N
+

ir
ýy

". ý ý M " "
ý;

tý

r , rv. "ý ýý.
i äi

iýl d. . ý.,
ýý ; ýa

ý ýý
nt

" " ,a i vt

Ay
r ' "

r
V

ý
ý vit'

k
^ý

j{4

_

S 3Yý,
Y4

Strategy of FILLOUT

111

cutting pattern.

Successive entries to FILLOUT set up subgoals to be

solved by FILLOUT-COMPLETE in the fiollowing order:

i) Consider in turn each type following T* on the order

list for which pieces remain to be cut.

ii) For each type in (i) consider firstly those

sub-tessellations in which the breadth of the pieces

of type T* is parallel to the breadth of the sheet

and the length of the sub-tessellation is

successively 1,2,.... pieces, where such

sub-tessellations exist. Secondly, if neither T* nor

the sheet are square, consider in turn the

sub-tessellations in which the length of the pieces

of type T* is parallel to the breadth of the sheet.

Each time FILLOUT-COMPLETE sets up a subgoal not

consequential upon the solving of a previous subgoal it

adds 1 to the value of the current node. Each time

FILLOUT sets up a subgoal it adds 1 to the value of the

current node. Each time NONTESS sets up a subgoal it adds

6 to the cost of the current node.

6.3.3.2 T* semi-tessellating

Suppose that sheet dimension S, is divisible by

dimension Pi of type T*, so that S1/P1 =R, . Then a

sub-tessellation of R pieces of type T* with their sides

of length Pi along the sheet side of length S, can be

formed. Call such a sub-tessellation a row. Note that

either of the piece dimensions might divide either of the

sheet dimensions, so it may be possible to form more than

one type of row.

When a sub-tessellation is formed by juxtaposing

112

several rows, the uncut fragment of the sheet will be

rectangular, as in figure 6.3.6. There may be a number of

ways in which L is divisible by the length of a side of a

piece with urgency not less than 250. The function

BEST-REMAINDER-FIND is used to evaluate these

alternatives; in the account in section 6.3.3.1, Ca is

equal to S, and L, denotes L. If BEST-REMAINDER-FIND

identifies a divisibility condition, condition B is said

to hold.

Rý--_.

C'. U T,

'`iý ice ýt

.M it . t"

Sub-tessellation with semi-tessellating pieces

Figure 6.3.6

Let Lia denote the value of L specified by condition

B and let Tg denote a sub-tessellation analogous to TA in

section 6.3.3.1.

CONDB-MAX-FIND is invoked if it has been established

that condition B holds. It first determines the largest

sub-tessellation using sub-tessellations of type To with

their sides of length LB juxtaposed that can be formed in

the remainder of the sheet starting at a side of length

Lg and with a sub-tessellation of length Lg along this

side. A possible form of this sub-tessellation is shown

in figure 6.3.7.

113

44

j[.
ý, 1 ICY i"! .

il A
rY.

Yl
ýY'Y` i+l"

,
(ý5

«ýi/1 1!
iE. " ý,

. '.. iY r'} .,
ý ±.

iýr.
ýd'S

art ý Y" !`.. f. L
3jý

'ý. ý. eCeýý

type, 2*

C

L

...
B

7T
TB

State generated by CONDB-MAX-FIND

Figure 6.3.7

The first subgoal set up by CONDB-MAX-FIND is the

completion of this cutting pattern. Subsequent subgoals

are to complete a cutting pattern of this form in which

the number of TB's in this sub-tessellation is reduced by

1 each time until it reaches 1. In terms of figure 6.3.7,

in the creation of subsequent subgoals the

sub-tessellation is successively ABGH, ABEF, and ABCD.

Each time it sets up a subgoal CONDB-MAX-FIND adds 1 to

the cost of the current node, 1 to the cost of the parent

node, and 1 to the cost of the grandparent node.

CONDB is given an orientation of T* and a direction

in which rows can be formed given this orientation of T*,

and determines whether condition B holds in this case. If

it does, CONDB sets up a subgoal to be solved by

CONDB-MAX-FIND and adds 1 to the cost of the current

node.

NOT-CONDB-LEVEL2 is given an orientation of T*, a

direction in which rows can be formed given this

orientation of T*, and a number of rows. It checks that
the number of pieces of type T* still in the order list

114

is not less than that required to form the requested

number of rows. If this is case, it sets up the subgoal

of completing the partial cutting pattern that starts

with the given sub-tessellation with pieces of type T*

and adds 6 to the cost of the current node.

NOT-CONDB-LEVEL1 determines the upper bound on MR,

the number of rows that can be formed given either

orientation of T* and either direction of the sheet. For

descending values of MR, and for both orientations and

both directions within MR, where these would result in

distinct subgoals, subgoals are set up, at successive

entries to NOT-CONDB-LEVEL1, for a partial cutting

pattern that starts with MR rows of T* with the given

orientation and direction to be considered by

NOT-CONDB-LEVEL2. Each time a subgoal is set up, 6 is

added to the cost of the current node and 6 to the cost

of the parent node.

The first sequence of subgoals created by SEMITESS

is for CONDB to establish whether condition B holds for

each of the possible rows. Rows whose shapes are the same

as those already considered, because T* or the sheet are

square, are ignored. Each time such a subgoal is created,

1 is added to the cost of the present node. The next

subgoal set up is for NOT-CONDB-LEVELI to create a

cutting pattern The last subgoal that can be created is

for NONTESS to create a cutting pattern. The

sub-tessellations with pieces of type T* that are

examined by NONTESS are distinct from those that have

previously been considered; also, in this case, NONTESS

will not investigate the possibility of condition A

,:
115

holding.

6.3.3.3 T* tessellating

If the total area of pieces of type T* still in the

order list exceeds the area of a sheet, TESSEL can

immediately create a cutting pattern. Otherwise a subgoal

for SEMITESS to create a cutting pattern is set up.

6.3.4 The learning lists

The assumptions on which the maintenance of the list

LSHAPE-OCCURS is based are:

i) if the subgoal of dividing an L-shaped fragment of

certain dimensions into pieces has been set up a

number of times but never solved, then the greater

the number of times it has been set up the less the

likelihood that a solution will ever be found,

ii) if in a global step a number of subgoals of dividing

an L-shaped fragment of certain dimensions have been

set up and no solution has yet been found to any

such subgoal, only one such subgoal should be active

at one time, as this will avoid the parallel pursuit

of solutions to a possibly insoluble problem,

iii) if in a global step a number of subgoals of dividing

an L-shaped fragment of certain dimensions have been

set up and a solution has been found to one such

subgoal, then all such subgoals should be active,

since it is likely that all the subgoals have

solutions.

Each element of LSHAPE-OCCURS has three parts, the

dimensions of an L-shaped fragment, a count, and a flag.
Whenever a subgoal to be solved by LSHAPE-FILL is set up,
this list is inspected. If there is not an element

116

corresponding to the L-shape to be handled in this

subgoal, an element consisting of the dimensions of this

L-shape, a count of 1, and a set flag is added to

LSHAPE-OCCURS. If there is an element corresponding to

the L-shape then the cost of the node is made equal to

twice the value of the count and 1 is added to the count.

If the flag was set the node is marked as suspended,

otherwise the flag is set. When LSHAPE-FILL solves a

subgoal the corresponding element is removed from

LSHAPE-OCCURS, and all subgoals for the handling of

L-shapes of those dimensions currently marked suspended

are re-marked active. If LSHAPE-FILL is executed and

terminates without solving the current subgoal or setting

up a new subgoal, the current node therefore being marked

inactive, one subgoal for the handling of an L-shape of

those dimensions currently marked suspended is re-marked

active. At the end of each global step all flags are

cleared. If the amount of scrap allowable is increased

the existing elements of LSHAPE-OCCURS are discarded,

since it may now be possible to generate instructions to

divide a fragment that could not be divided into pieces

when less scrap was allowable.

The elements of the list RECT-SUCCESS are sets of

instructions for dividing rectangular fragments into

pieces. When such a set is found it is added to

RECT-SUCCESS. When instructions for dividing a

rectangular fragment are sought, RECT-SUCCESS is

inspected to determine whether it includes instructions

for dividing a fragment of the dimensions of the one

being considered. If it does, and if the use of these

117

instructions would not result in the cutting of pieces in

excess of the order quantities, the instructions provide

a solution of the subgoal. Retrieving of subgoal

solutions in this way not only reduces search time, but

also makes it possible for solutions found when one set

of urgency values was in use to be used when the other

set of urgency values is in use. In this case the search

might not otherwise reach a solution before the search

time expired. At each global step all sets of

instructions that would necessarily result in the cutting

of pieces in excess of the order quantities are removed

from RECT-SUCCESS.

When the subgoal under consideration is the cutting

of a rectangular fragment into pieces, there will be a

sequence of alternative actions, both the setting up of

subgoals and the generation of cutting instructions, that

can be taken. This sequence may be of considerable

length. If each of a number of subgoals, all for the

cutting of rectangular fragments of a certain size, are

treated independently, it may be expected that the same

sequence of events will occur for each of them, resulting

in the same (possibly abortive) search pattern. The list

RECT-PENDING is used for avoidance of this situation.

If some, but not all, of the possible actions for a

fragment of a particular size have been considered,

details of the last action taken, which will have

resulted in the setting up of a subgoal, are stored in

RECT-PENDING. On the next occasion that the subgoal of

dividing a fragment of that size is encountered, these

details will be used to determine the action to be taken,

118

this being the next after the one whose details were

found in RECT-PENDING, if any such action exists.

RECT-PENDING is retained from one invocation of REGULAR

to the next, unless the values of the urgencies are

changed, in which case the order in which the

alternatives are to be considered will be changed. This

means that actions for a subgoal of dividing a

rectangular fragment of a given size that have not been

considered in a previous global step can be preferred to

those that have.

Where all possible actions for the subgoal of

dividing a rectangular fragment of a given size have been

considered, an entry is made in the list RECT-OCCURS.

RECT-OCCURS is used similarly to LSHAPE-OCCURS, to allow

only one node relating to a fragment of a given shape to

be active at any one time and to weight such nodes

according to the frequency with which they occur. In the

case of rectangular fragments, the cost of a new node

relating to a rectangle is made equal to the count for

that rectangle.

6.3.5 Rectangular and L-shaped fragments

A check is made at the time that a subgoal is

created that the smallest dimension of a rectangular or

L-shaped fragment that is to be divided into pieces is

not less than the smallest dimension of any order piece.

Subgoals in which this condition would be violated are

not set up.

119

*46

, ,. ý CU,,, T
- "nth

BC

Alternatives for LSHAPE-FILL

Figure 6.3.8

The division of L-shaped fragments into pieces is

handled by the function LSHAPE-FILL. In figure 6.3.8, EF

is less than BC. The first entry to LSHAPE-FILL for this

L-shape would set up the subgoal of dividing the

rectangle DEFG into pieces. An entry to LSHAPE-FILL

consequent upon the solution of this subgoal will set up

the subgoal of dividing the rectangle ABCG. When this is

solved the entire subgoal for this L-shape is soved. The

second entry to LSHAPE-FILL not consequent upon the

solution of a subgoal sets up the subgoal of dividing the

rectangle AFEH. An entry to LSHAPE-FILL consequent upon

the solution of this subgoal sets up the subgoal of

dividing the rectangle BCDH. For L-shapes in which AF is

equal to AB and BC is equal to EF, this second case does

not occur. When a subgoal is set up as the result of an

entry not consequent upon the solution of a subgoal, 1 is

added to the cost of the current node.

The division of rectangular fragments into pieces is

handled by the function RECTFILL. On the first entry to

RECTFILL a check is made that the tota area of pieces

120

with breadth not greater than the breadth of the fragment

is at least equa to the area of the fragment. If this is

not the case, the insolubility of the subgoal is

reported.

Each entry to RECTFILL causes the specification of a

sub-tessellation to be cut from the rectangular fragment.

If the dimensions of the sub-tessellation are equal to

those of the fragment then a solution to the subgoal has

been found. Otherwise a subgoal is set up for the

division of the remaining fragment, which may be either

rectangular or L-shaped, into pieces.

For each piece with which a sub-tessellation that

could be cut from the fragment can be formed, there is a

preferred orientation. If the maximal sub-tessellation

formed with the pieces having one orientation contains

more than that with the pieces having the other, the

orientaion which allows the larger number of pieces in

the maximal sub-tessellation is preferred. Otherwise, if

the orientation with the breadth of the piece parallel to

the breadth of the fragment results in one of the

fragment dimensions being divisible-by the corresponding

piece dimension then this orientation is preferred, as a

subgoal can be created for the cutting of a rectangular

fragment. Otherwise the other orientation is preferred.

Let M and N be the number of pieces in each row and

column of a maximal sub-tessellation for a given piece

and orientation. Then a sequence of sub-tessellations

with that piece and orientation can be defined by taking

descending values of M+N and descending values of M

within M+N. Only those sub-tessellations in which M*N is

121

not greater than the total number of pieces remaining to

be cut are "usable".

The sequence of sub-tessellations that can be

generated by RECTFILL is:

i) in order of urgency of types for which pieces remain

to be cut and sub-tessellations can be formed that

can be cut from the fragment, the first usable

sub-tessellations with the preferred orientation,

ii) in the same order, the first usable

sub-tessellations, if any, with the other

orientation,

iii) in the same order, the next usable

sub-tessellations, if any, with the preferred

orientation,

iv) and so on, until there are no usable

sub-tessellations with either orientation.

Whenever RECTFILL creates a new subgoal, 1 is added

to the cost of the current node.

6.4 The routine IRREGULAR

6.4.1 Structure of the routine

The routine is based on the program for the solution

of 1*-dimensional trim-loss problems described in chapter

3. In this routine, however, the successors of the root

node of the search tree are specified explicitly. They

are:

i) a partial cutting pattern consisting of a piece of

type T* with its north-west corner coincident with

the north-west corner of the sheet and its breadth

parallel to the breadth of the sheet,

ii) if neither T* nor the sheet is square, a partial

122

cutting pattern consisting of a piece of type T*

with its north-west corner coincident with the

north-west corner of the sheet and its length

parallel to the breadth of the sheet,

iii) partial cutting patterns found by the routines

described in section 6.4.2.

This explicit specification ensures that any cutting

pattern developed will include at least one piece of type

T*.

6.4.2 Spiral configurations

A category of non-guillotine instructions for the

cutting of a number of non-square pieces from a sheet can

be identified in which the pieces are arranged in a

spiral manner. A simple example is shown in figure 6.4.1.

Such sets of instructions leave a fragment of the sheet

to be divided into other pieces.

41

Ih y.
.

3a`Pfý,.. a >' "r'a':
ý" : ý' " 4' ýYa tt" tý

yý ý``
rý_ý» p. ý ". ýý .s. ý 'Rý "g , Sheetý, size j47' x`

rr`,,
ý,

ti . "' -. .; M
ýý"

e;. . ý;, .
v'r. ýý ; ý'_

. S.
"

':
ý"

, ý:
ý'. ý; aý. J -r ."

äa'r
, ', Y"., y.

, 'ý_'.
'Mý ý`fi'4. . "º.

-,.
',

. _: .K a", 'ýI
> e4,

ä .
"> Y 'gý, u`.. ýý'Y'+"^ýl"+ Piece'.

Size., 4-- 0::
i 3"ß"

ýv_,

r
. ý., qtt. -'ý., I , t; i', «'%' '+ýn

.a --_ ; ""'týt. e ..
'4-ß.

p., taý;;
ý 1

,,

ý4P

Simple spiral arrangement

Figure 6.4.1

Several different ways of constructing spiral

4

configurations are possible. The piece in the north-west

corner of the sheet may have its length or its breadth

parallel to the breadth of the sheet and the spiral may

be constructed in a clockwise or anti-clockwise

., ýý

123

direction. The algorithm is described in terms of the

case where the breadth of the first piece positioned is

parallel to the breadth of the sheet and the spiral is

constructed in a clockwise direction.

i) Check that the length of the piece does not divide

the length of the sheet.

ii) Let PB denote the breadth of a piece, PL its length,

SB the breadth of a sheet, and SL its length. Find

the largest value of N, such that SL=N, *PL+M, *PB if

any such positive values of M, and N, exist. Lay out

N, pieces with their breadth sides adjacent,

starting in the north-west corner of the sheet, as

in figure 6.4.2.

MA.

ýf V i(i n, Yý
1

ýý
j ý; k i. '.
ý,
�ý ý'" rß

Out= to ýW1QL13' ! ti 'U: ý`"r
^ 'aý't"ý5'i'+9°.. i e"n^`ý, A,

ý, ý"'".: ýrrº''"r
ý^e'ý. ý, y1ýfý.

f.

. µ.. w 'iece size "ý 3x "
a4ý Fyn -ÄktV! it 41.

First stage of spiral

Figure 6.4.2

iii) Find the largest value of Na such that

SB=N2*PL+Ma*PB if any such positive values of M2 and

K,.
- exist. Lay out N2 sub-tessellations, each

consisting of M. pieces with their length edges

adjacent, starting in the north-east corner of the

sheet.

124

1+"ý"ý.
["r. rt� ""ý. ý id1ýn; ̀ '; iw {ý`. Y, S"'ýý., 'ý". r.,, b s 'S

V. 1"'". d-`. "`' 'Ä. '4IQJ
.

. eý
? ýI^"l"tl rL 7'

µJpý
.yN. J", iý', awi : Its. r

Etrý#=,.
;,, ý,:,

.ý

. iAfr:,
ýNltV

#; , ßy'1 ýý ? ('! 'ý "v
ý`,,, ýa

ý,
o
f

"y
ýtýi

4 "' `(, 'motp.
y,
(., !

tSýf
tz 9. "

"mý'n
ýsr;

ý
if ýtýý

4xß'
ý _

., .

T9ý? ýr`D. iI. CGlii 1. C'paKMUýýýc" . Eýlr

e
ý. ýT

A' ýý

Possible second stage of spiral

Figure 6.4.3

iv) This may leave a rectangular fragment uncut, as in

figure 6.4.3. If so, treat the remaining fragment as

the original sheet, starting in the corner labelled

A. Note that for this fragment it may be the case

that SL=N*PL for some N. Laying out pieces in the

manner of (ii) will now reduce the fragment to a

smaller rectangle and subsequent pieces should be

laid out parallel to the previous set.

' +ýc, ý . v. `1 9, J'tV !)ý. £-,
n-`4t"ß 'r "

Y ý'. "ýý s

rºSheet

e i 14, D-
: Piece

Ji.
ýp"ýjw.;, fr*"k

..
Y

T�4 i'�: A. ý'.
ý':

ýý`ýý""ýi
4ý" vi"yi-rw(- , "w

T'

r

!ý

Vii. i 4ý. y' 'e , -aý
*'.

ä. '.. üýh.. ý" ý"} týý -i +1{ý +k ýý : 'eý,

ý
ý

S"i
.
ý"ý"{N3r; ý t x "

ýý
. 4, '`"W-n'71. t, ýýA. foil i ýi"

.K i-
.:

)ý ; 7

"" ir
ß

"
ip M

1 ý'/ r l ýx7 'ý,
R

ý
.r C

ýy . f. j+, 7, +: i", t ... ttý'
ý"d }

ý ý "S

r'yý
ýg1""rp '. is . ""ýCi4: V'Jý.. ý+ý. 7Vr1' .. r1ý,

Alternative second stage of spiral

Figure 6.4.4

v) Alternatively the fragment left uncut may be

L-shaped, as in figure 6.4.4. In this case the

reduction required is that described in (iii) with

the changes necessitated by a rotation through 90°.

125

Reduction of L-shapes can continue until a

rectangular fragment remains unless the rectangular

part of the current L-shape (ABCD in figure 6.1.4)

could have pieces laid out in it, whilst the

rectangular part of the reduced L-shape could not.

If this is so, lay out pieces in the rectangular

part and exit.

vi) If at any point no appropriate values of N and M in

(ii) and (iii) exist, exit.

This technique can be extended to deal with the case

in which a number of different types of piece have one

dimension in common and the other multiples of one

another, e. g. 7x4,7x2,7x1. The spiral configuration is

generated using the smallest piece, the partial cutting

pattern then being transformed by replacing

sub-tessellations with the smallest piece with individual

larger pieces. A check is necessary here to ascertain

that some pieces of type T* are included in the resultant

partial cutting pattern.

6.5 Results

A program using the techniques described above has

been written in POP-2 (Burstall, Collins and Popplestone,

1971) and tested using the 16 sets of data described in

table 6.5.1, on an ICL 4130 using the Multi-Pop system

(Dunn, 1972). The results of these tests are shown in

table 6.5.2. On 14 sets of data the results clearly

cannot be improved upon. In the remaining two cases there

is no evidence that better solutions are possible.

In all cases except 5,7 and C the computation time

is less than 15 minutes. In these three cases, however,

126

the computation time is very large (35 mins, 78 mans and

29 mins), particularly considering that it does not

include garbage collection time, which is a system cost

under Multi-Pop. Considerable improvement could be

expected if the program were rewritten in a compiled,

rather than an interpreted, language, and the ICL 4130 is

not a fast machine by present-day standards. Nonetheless,

these times do indicate that considerable saving could

result from the development of heuristics to avoid

abortive searches.

127

Table 6.5.1

Listing of test data

Set 1 Set 2 Set 3

736 of 9 x 3 752 of 9 x 8 945 of 9 x 7
529 of 6 x 3 354 of 8 x 7 119 of 8 x 7
192 of 10 x 8 391 of 10 x 9 574 of 9 x 6
903 of 9 x 5 1353 of 10 x 6 715 of 7 x 7
548 of 8 x 5 447 öf 9 x 5 595 of 8 x 6

1242 of 10 x 3 296 of 6 x 4 803 of 7 x 3
711 of 8 x 2 327 of 9 x 2 801 of 6 x 3
248 of 4 x 3 645 of 5 x 3 159 of 10 X 6
214 of 6 x 1 992 of 9 x 1 10 of 9 x 5
304 of 3 x 2 853 of 8 x 1 981 of 8 X 5
235 of 10 x 2 447 of 3 x 2 630 of 9 x 4
607 of 5 x 4 883 of 3 x 1 139 of 7 X 5

55 of 10 x 1 953 of 10 x 5 597 of 8 x 4
1173 of 4 X 2 171 of 10 x 4 514 of 7 x 2

7 of 2 x 1 559 of 5 x It 1326 of 6 x 1
424 of 1 x 1 721 of 10 x I 66o of 5 x 4

699 of 5 x 2 352 of 5 x 1
592 of 4 x 1

Set 4 Set 5 Set 6

836 of 9 x 8 899 of 10 x 10 278 of 8 x 8
587 of 7 x 6 430 of 9 x 9 306 of 8 x 6 51 of 6 x 3 665 of 9 x 8 657 of 7 x 3

1871 of 10 x 8 94 of 9 x 6 423 of 10 x 8
445 of 8 x 5 734 of 7 x 7 996 of 10 x 6
897 of 8 x 2 963 of 9 x 3 596 of 9 x 5 "801 of 9 x 1 482 of 10 x 6 222 of 9 x 4
653 of 8 x 1 526 of 9 x 5 850 of 8 x 4
744 of 3 X 2 807 of 9 x 4 503 of 7 x 4
881 of 6 x 1 1289 of 7 X 5 956 of 8 x 2 466 of 5 x 4 413 of 10 x 3 92 of 7 x 2 642 of 10 x 1 138 of 8 x 2 279 of 3 X 2
820 of 5 x 2 873 of 4 X 3 830 of 10 X 5
333 of 4

4
x 2 384 of 9 x 1 1174 of 10 x 4

630 of X 1 588 of 10 x 1+ 996 of 5 x 2 646 of 2 x 1 543 of 10 x 2 439 of 4 X 2
289 of 1 x 1 99 of 4 x 2 440 of 5 x 1

128

Set 7 set 8 Set

230 of 10 x 10 246 of 9 x 7 597 of 8 x 8
875 of 9 x 9 885 of 7 x 7 452 of 8 x 7
405 of 8 x 8 479 of 6 x 6 136 of 9 x 3
200 of 8 x 6 180 of 9 x 3 978 of 3 x 3
753 of 6 x 6 959 of 8 x 3 265 of 10 x 6
437 of 10 x 7 471 of 7 x 3 990 of 9 x 5
591 of 9 x 5 218 of 10 x 8 941 of 7 x 4
765 of 8 x 5 49 of 10 x 7 499 of 5 x 3
592 of 9 x 4 596 of 8 X 5 395 of 4 x 3
940 of 10 x 3 967 of 6 x 5 233 of 6 x 2
991 of 5 X 3 1588 of 5 x 3 873 of 9 x 1
212 of 8 x 1 155 of 6 x 2 604 of 3 x 2
757 of 7 x 1 473 of 7 x 1 375 of 3 x 1
128 of 3 x 2 632 of 6 x 1 987 of 1C x 5
233 of 5 x 5 245 of 10 x 2 42 of 5 x 4
546 of 5 x 2 260 of 4 x 1 1080 of 4 x 1
539 of 4 x 2 265 of 2 x 1
322 of 5 x 1
498 of 2 x 1

Set A Set B Set C

275 of 9 x 9 81 of 9 x 8 841 of 9 x 6
178 of 9 x 6 710 of 8 x 7 547 of 7 x 6
769 of 7 x 3 278 of 7 x 7 1540 of 6 x 3
506 of 10 x 3 1034 of 9 x 3 281 of lo x 8
274 of 7 x 4 98 of 8 x 3 424 of 10 x 7 713 of 9 x 2 93 of 3 x 3 1036 of 7 x 4
928 of 6 x 2 416 of lo x 9 278 or 9 x 2 948 of 4 x 3 796 of 10 x 7 419 of 8 x 2 1025 of 9 x 1 863 of 6 x 5 968 of 7 x 2 504 of 7 x 1 544 of 5 x 3 61 of 6 x 2 775 of 5 x 5 689 of 4 X 3 435 of 4 x 3 400 of 5 x 4 414 of 9 x 1 669 or 9 x 1 887 of 10 x 2 944 of 7 x 1 1674 of 7 x 1 1522 of 4 x 2 397 of 6 x 1 1303 of 10 x 4

1505 of 5 x 1 463 of 3 x 2 355 or 5 x 5 710
84 of 5 x 4 374 of 10 X 2 9 of 5 x 2

129

Set D Set E Set F

822 of 9 x 6 255 of 9 x 8 480 of 8 x 8
940 of 8 x 6 11 of 8 x 3 626 of 9 x 7

1085 of 10 x 9 661 of 3 x 3 687 of 6 x 3
232 of 10 x 7 12 of 10 x 9 610 of 8 x 5
67 of 8 x 5 872 of 8 x 5 1018 of 6 x 5

527 of 10 x 3 620 of 9 x 4 488 of 6 x 4
938 of 9 x 2 813 of 8 x 4 533 of 9 x 2
173 of 8 x 2 734 of 6 x 5 13 of 4 x 3
804 of 4 x 3 804 of 7 x 2 553 of 9 x 1
721 of 8 x 1 250 of 6 x .2 778 of 8 x 1
836 of 10 x 5 379 of 4 x 3 871 of 7 x 1

1535 of 10 x 4 727 of 3 x 2 1 of 3 X 1
366 of 4 x 4 806 of 10 x 2 1146 of 10 x 4
305 of 2 x 2 519 of 10 X 1 901 of 5 X 1
924 of 2 x 1 509 of 5 x 2 346 of 2 x 2

906 of 4 x 2 692 of 2 x 1
177 of 4 x 1 722 of 1 x 1

Set G

422 of 7 x 6
866 of 9 x 3

.
650 of 10 x 9
393 of 10 x 8
515 of 9 x 4
521 of 6 x 4
212 of 9 x 2
728 of 4 x 3
54 of 6 x 2

529 of 9 x 1
173 of 7 x 1
431 of 6 x I
720 of 10 x 5

1417 of 10 x 1
910 of 4 x 2
911 of 2 x 1

In all cases the sheet size is 20 x 20.

130

Table 6.5.2

Results of test runs

Data Set
CPU time
in secs

Number of
sheets cut

Units of
scrap

Number of full
sheets waste

Percentage
sheets waste

1 224 476 107 0 0

2 253 836 320 0 0

3 355 802 370 0 0

4 201& 802 298 0 0

5 2059 1077 688 1 . 09

6 286 846 37 0 0

7 4567 845 2369 5 . 59

8 387 566 83 0 0

9 477 614 141 0 0

A 276 b6o 197 0 0

B 710 660 17 0 0

C 1709 737 98 0 0

D 533 923 120 0 0

E 502 1+72 389 0 0

F" 785 585 96 0 0

G 183 608 80 0 0

131

Chapter 7A 2-dimensional trim-loss problem with

sequencing constraints

7.1 Statement of the problem

The material under consideration is glass. Each

order received from a customer consists of a demand for

specified numbers (demands) of pieces of each of one or

more shapes, a shape being specified by its length

(longer dimension) and breadth (shorter dimension) and

the order to which it belongs. Each order is designated

by a code. If the order is for glass with high quality

edges, the first character of the code is "F°. These are

referred to as type F orders, and the remainder are

referred to as type M orders.

The cutting of the stock sheets is a two stage

process, and corresponding to each stage of the cutting

there is a stripping process, to produce edges of the

required quality, that may be manual or automatic. During

the first stage of the cutting the sheet is moving in the

direction of its longitudinal axis and may be considered

to have a "leading" and a "trailing" edge with respect to

this motion. The first set of cuts are perpendicular to

the direction of motion and are cross cuts. The

sub-sheets resulting from the first stage of cutting will

be cut into pieces according to the corresponding

sub-patterns.

Operational constraints on the design of cutting

patterns due to the design of the cutting machinery are:
i) A sub-pattern may contain at most two shapes,
ii) The number of sub-patterns in a pattern may not

4 132

exceed five, and if there are five two must be the

same,

iii) If the leading sub-pattern includes type F pieces

then the first cross cut must be at least 626mm from

the leading edge of the sheet, and in any case this

cut must be at least 432mm from the leading edge of

the sheet,

iv) Any sub-pattern other than the leading one must have

a length before stripping of at least 813mm,

v) If the trailing sub-pattern includes type F pieces

then there must be a cross cut at its trailing edge

at least 203mm from the trailing edge of the sheet.

The pick-off length of a sub-sheet or piece is its

dimension in the direction of the sheet from which it was

cut, its other dimension being its pick-off breadth (see

figure 7.1.1). If the stripping following the first stage

cutting is manual the pick-off length of the sub-sheet is

reduced by 25mm; if it is automatic the reduction is

76mm. However, if the trailing sub-pattern contains only

type M pieces it need not undergo such stripping.

In the stripping following the second-stage cutting

the pick-off breadth of a type M piece is reduced by

51mm. The pick-off breadth of a type F piece is reduced

by 152mm if it is stripped manually or by 302mm if it is

stripped automatically. A piece whose pick-off length is

greater than 2540mm must be stripped manually at this

stage.

sub-pattern

sub-pattern

sub-pattern

a ! ýý yý'ýCn c 'H E"'::

s

leadiniz edsze

+ýj! ýr" ý',, ý yA
ý'ý "ý ter

. 4`ýM
rf v7ý

, FSa4"!

pick-off Pic
breadth 1en

4--

cross cut

k-off
gth

cross cut

direction
of travel

`(., K,
yI. y'.

wt`s

`cröäa
'"

ý""""
4(`i IS`ý4

Fýjt
ý}T'

trailing
,- ecke. ' >` >xr; iý.;. º: s ct .. c;.;

Typical cutting pattern

Figure 7.1.1

The pieces resulting from the cutting and stripping

process are picked off for despatch from one of four

legs, a leg being a conveyor belt with its associated

washing and handling facilities. All the pieces resulting

from the cutting of a sub-pattern must be routed to the

same leg and the routing of pieces to legs must be

consistent with the dimension constraints shown in table

7.1.1, and also with the requirement that type F pieces

must be picked off from legs with washing facilities.

Hence any type F piece of length exceeding 2540mm must be

cut with its length oriented parallel to the sheet

length. There is a further restriction that pieces for

134

not more than three different orders may be picked off

any one leg during the cutting of any one pattern.

Table 7.1.1

Lei
_

Maximum dimensions for pick-off

1ength(mm) Breýdt i tnm) Iashiýäg ýfäci ities'

K :D , 2 40 t., ý . x..,. 1219 01 . , i. ".
ý :' ` "; º ýý ý' e 2540

.9 Q_ý. ýä, .;: Y 121 s' '}ý
ýýw,, . :

3948 3048"`°' No
ý'ý.;

' 3048 2540 Yes

The restrictions on the design of the individual

cutting patterns having been described, it is now

necessary to consider how a set of cutting patterns may

be arranged to provide instructions for cutting all the

orders in an order list.

Initially a cutting pattern is selected. It will

specify the size of stock sheet to be used and the pieces

to be cut from this sheet. For each shape, s, in the

pattern, there is a number ns, such that if the pattern

is repeated ns times the demand for that shape will be

satisfied, whilst if the pattern is only repeated of-1

times this will not be the case. The number of stock

sheets cut to this pattern will be the smallest of the

ns1 s.

When this has been done, the original order list

will be converted to a new one reflecting the demands

that have not yet been satisfied. A new cutting pattern
is selected and the process repeated until all the

demands have been satisfied.

135

Operational costs associated with the picking off

and packing of orders will affect the choice of the next

cutting pattern to be used. The next cutting pattern

should include all the shapes in the previous cutting

pattern the demands for which were not completed with the

use of that pattern. In addition, if there were any

shapes, the demands for which were satisfied at this

point, belonging to orders which include other shapes,

the demands for which have not yet been satisfied, then

such a shape from each such order should be included in

the new cutting pattern. For each failure to make the

appropriate inclusion in the new cutting pattern the

sequence break cost is incurred.

There is also an absolute constraint on the sequence

of cutting patterns. If a shape belongs to a loose load

order, which will have a code starting with the

characters "FD", then it must not be cut until the

demands for all larger shapes in that order have been

satisfied.

Table 7.1.2 shows the dimensions of the stock

sheets. A cutting pattern defines implicitly the size of

stock sheet on which it is to be used.

Table 7.1.2

Sizes of stock sheets

ýý: LengthCmm)ý: -Breäcith(ainn): ýýý

Fýr46k8. z

136

7.2 Choice of method

Because of the sequencing constraints it is clear

that the pattern sequence must be generated in a stepwise

manner. Each pattern is selected as being the best

continuation of the sequence in the context of the state

of the order list and the sequencing constraints

resulting from the use of the previous pattern. Good

results were obtained for the abstract 2-dimensional

trim-loss problem by applying preferred reduction within

non-backtracking search, which generated patterns in a

stepwise manner. It therefore appears appropriate to

apply this method to the present problem.

In section 7.3 some remarks are made about the

representation in terms of a state-space of the stepwise

generation of a pattern sequence. Section 7.4 outlines

the problem reduction process used to generate a pattern

in the sequence. In section 7.5 a program applying these

ideas is described. Section 7.6 presents results obtained

from this program and in section 7.7 some conclusions are

drawn as to the success of the approach taken to the

problem.

7.3 The top-level state-space

The process of choosing and utilizing cutting

patterns described above can be represented in terms of a

state-space. The states are lists of unsatisfied orders,

and the operators are cutting patterns together with the

number of times they are used. The start state is the

original order list and the goal state the empty order

list. It is required to find the path between the two for

which the combined cost of trim-loss and sequence breaks

137

is minimal.

In order that the time taken by a program to compute

a sequence of cutting patterns may be kept within

reasonable bounds, backtracking must be restricted. A

certain amount of time is allocated for the generation of

possible first patterns. At the end of this time the

"best" of the generated patterns is selected. The number

of times it is to be used is calculated, the demands in

the order list are adjusted to take account of the pieces

cut by the use of this pattern, and the adjusted order

list together with the first pattern defines the starting

point for the generation of possible second patterns. The

process is repeated until all the demands in the order

list have been satisfied.

This method of working corresponds to the

development of a path across the state-space graph

without backtracking. The generation of a subset of the

possible cutting patterns at each step corresponds to

partial development of the corresponding node, and the

selection of the "best" pattern represents the

application of an evaluation function. The quality of

solutions generated will be limited by the correctness of

the partial development (whether an operator

corresponding to an are from this node belonging to a

solution path is generated) and the accuracy of the

evaluation function (whether when generated such an

operator is correctly identified).

The generation of the set of cutting patterns from

which the "best" is selected is done in the work

presented here by a problem reduction technique. This is

138

described below.

7.4 Structure of the problem reduction

Each node of the problem reduction tree includes in

its label a local variable list which is initially a

subgoal description and the name of a function that is

capable of generating a sequence of alternatives for the

reduction of that subgoal. For a primitive subgoal such a

reduction is a solution. An occurrence of a function at a

node will be referred to as an instance of that function.

In an iteration of the problem reduction process, a

node of the problem reduction tree is selected. The

function at a node will generate at successive

invocations a sequence of alternative reductions. When a

node is selected the function named in its label is

invoked, and will give the next reduction in the

sequence.. If the subgoal is not primitive, it may create

a new node in whose label are included the subgoal

resulting from the reduction and the name of the function

to be used for reducing this subgoal, whilst if the

subgoal is primitive it may generate a solution of it.

Alternatively, in either case it may report that the

sequence of reductions has been exhausted. Iterations of

the process continue until what is regarded as an

adequate number of alternative solutions of the goal have

been generated.

It has been said that when a function creates a node
it places a function name in its label. Figure 7.4.1

shows the relationships of the subgoal processing

functions in this respect. An arrow directed from one

function name to another indicates that the label of a

139

node created by the first may include the name of the

second. Where more than one arrow leaves the name of a

function, this indicates that a choice of functions is

made according to the features of the subgoal set up.

,, , ̀ b °ý;. «ý,. . may sýa" .,.. c ": P" C-ý
, ý.. -ý. ý=

'USED--PAIR-SELECT
4"rr', r :. A-.. ̂ a..,. ̀ . , ýi , f. ýt; , _a. kwr . t4r? ý1ý,

" i

MID-SHAPE-SELECT' ` ". . i'. ""SM1 V.
gj..

f"}
.

A1

afA

4ti. J ,., ý"T
'ýT

-
S� MID=OPDER=SELECT "*'r

qri
.'`.; " .F..

MOST-URGENT-PIECE-CONSIDER

-PATTERN-EXTEND. 'AN
SUB-PATTERN-DESIGN- CONTINUE.

. y..
'yy"

a. rh'..

ýý_
to"-, t e". 'za .., ý3a:., aa..

"v1" S

SU-PATTERN-CONTINUFr-KNOWN-SHEET +;

.
LEG-ALLOCATE

Hierarchy of subgoal processing functions

Figure 7.4.1

Consider the situation that can occur at the

generation of any cutting pattern other than the first.

The previous cutting pattern may have included one or

more sub-patterns that each included two shapes (pairs),

If the demand for a shape belonging to a pair has not yet

been satisfied, then there is a choice to be made as to

whether it should belong to a pair with the same or a

related partner in the proposed new pattern. The choices

on the retention of pairings are made in

USED-PAIR-SELECT.

There may be a number of shapes included in the

previous pattern the demands for which have not yet been

satisfied. Some of these may have been included in the

proposed pattern by choices made in USED-PAIR-SELECT. The

choices as to which of the remainder should be included,

140

and what their orientations should be, in the proposed

pattern, are made in MID-SHAPE-SELECT.

There may be one or more shapes, the demands for

which were satisfied at the end of the use of the

previous cutting pattern, that belong to orders

containing shapes the demands for which have not yet been

satisfied. In MID-ORDER-SELECT the choices are made as to

which shapes, if any, from such orders should be included

in the proposed pattern, and what their orientations

should be.

For each shape in the order list there is calculated

an urgency. When a pattern Is being generated there is a

shape in the order list, the demand for which has not yet

been satisfied, which has maximal urgency. If this shape

has not yet been included in the proposed pattern, the

choice is made in MOST-URGENT-PIECE-CONSIDER as to

whether it should be, and, if so, what its orientation

should be.

The choices made in MID-SHAPE-SELECT,

MID-ORDER-SELECT and MOST-URGENT-PIECE-CONSIDER are that

shapes shall be included in a pattern in separate

sub-patterns. Each instance of SUB-PATTERN-EXTEND is

concerned with one such sub-pattern and chooses whether

it should include one or two shapes. If the choice is for

two shapes, the choice of the the second shape is made.

The choice of stock sheet size to be used by the

proposed pattern is made in SUB-PATTERN-DESIGN-CONTINUE.

A further sub-pattern may also be included in the pattern

by this function.

Each instance of SUB-PATTERN-CONTINUE-KNOWN-SHEET

141

chooses whether a further sub-pattern should be included

in a partially completed pattern, and, if so, what this

sub-pattern should be.

In LEG-ALLOCATE an allocation of sub-patterns to

legs is made if a feasible one exists. If it does not,

then the proposed pattern is ruled out of further

consideration, otherwise an evaluation is made of the

"merit" of the proposed pattern. The allocation of

sub-patterns to legs is a primitive subgoal.

7.5 Details of a program

7.5.1 Scrap evaluation

Material stripped from the cut sub-pattern or piece

to produce the required edges is not part of the

trim-loss, or scrap. If the difference between the

dimension of the initial cut and the required final

dimension is less than that required for automatic

stripping, thus making manual stripping necessary, no

trim-loss is deemed to have occurred. Any excess of the

difference over that required for automatic stripping is

deemed to constitute trim-loss. Trim-loss is measured in

square centimetres.

7.5.2 Orientations

A piece being cut from a stock sheet may be oriented

in one of two ways. If the length of the piece is

parallel to the length of the sheet, the piece is said to

be placed along the sheet, otherwise it is said to be

across the sheet. The restrictions on cutting pattern

design may force a shape always to be placed along the

sheet, whilst square pieces always effectively have this

orientation. Such pieces are unswingable.

142

For each shape a preferred orientation can be

defined. For an unswingable shape this is necessarily

along the sheet. For any other shape all possible

sub-patterns that could be cut from any stock sheet and

which include this shape with either orientation are

considered. The orientation in that sub-pattern which

gives least trim-loss within the sub-pattern is the

preferred orientation. If the same minimal internal

trim-loss would result from two sub-patterns in which the

shape has different orientations then the across the

sheet orientation is preferred, since placing the shape

with this orientation leads to a smaller reduction in the

number of choices as to how the remainder of a stock

sheet is to be cut.

7.5.3 Urgency and minimum scrap

During the initial processing of the order list two

quantities are calculated for each shape. These are

referred to as urgency and minimum scrap.

The urgency of a shape reflects the difficulty of

designing a cutting pattern including that shape when

sequencing desiderata are applied or the order list has

been depleted from its initial status. In other words,

this is a quantification of the desirability that the

shape should feature in the early cutting patterns or the

solution sequence.

In the initial calculation or urgency two

quantities, LF and BF, are used. These are defined by:

LF - (4445 - minimal length of non-trailing

sub-pattern including this shape oriented along

143

the sheet) + 838

BF = number of pieces of this shape in a sub-pattern

consisting only of this shape oriented along the

sheet cut from the broadest stock sheet and

assuming manual stripping

LF is an estimate of the number of sub-patterns other

than that containing the shape under consideration that

will occur in patterns containing this shape.

denotes integer division.

Two special cases are identified. If the shape must

be cut in a leading sub-pattern then its urgency will be:

(5000 + demand for this shape) + BF

If the shape is type F with a length of more than 2540mm

then its urgency will be:

(if LF=1 then 5000 else 20000 close + 100 * demand

for this shape)-.: - BF

The first case must be distinguished because if such a

shape were left until late in the cutting pattern

sequence this might be forced to finish with patterns

consisting only of leading sub-patterns, with consequent

extremely high trim-loss. The second case is

distinguished because of the difficulty of designing

sub-patterns including such shapes if sequencing

desiderata require the inclusion of several other shapes.

The urgency of any other shapes is based on the

amount of trim-loss that would result from the most

economic choice of pattern containing only this shape.

This is divided by the number of pieces in the pattern.

It is further divided by LF*LF*BF if the shape is square

and LF*LF*BF*BF otherwise. This division factor reflects

144

the ease of including the shape in an economic cutting

pattern. The resultant quantity is then multiplied by

(demand for this shape * 100) to give the urgency. The

multiplication factor particularly raises the urgency of

shapes that will be relatively difficult to include in an

economic cutting pattern and will be continued over

several cutting patterns. This means that they are made

likely to occur in cutting patterns designed when more of

the order list is not yet satisfied and there is

therefore a greater range of choices for each of the

cutting patterns in which they will be included.

After the initial calculations the urgencies are

adjusted to take account of sequencing problems. If the

urgency of a shape in a loose load order is less than

that of a smaller shape in the same order, the urgency of

the larger is made equal to the urgency of the smaller

plus 2. This takes account of the fact that the smaller

cannot be cut before the larger and therefore its own

higher urgency would still not lead it to be introduced

into an early cutting pattern. If a shape with urgency

greater than 10000 occurs in the same order as a smaller

shape, 5000 is subtracted from its urgency. Suppose two

shapes each of length L occur in the order list, one in

an order by itself and the other in an order with a

smaller shape. If the one which occurs by itself is

included in a pattern, then the next pattern may include

the other together with the other sub-patterns of the

previous pattern. If they are taken in the reverse order

then sequencing desiderata will lead to the smaller shape

of the second order being included in the next pattern

145

and it is almost certain that other new sub-patterns will

be introduced. The need to include these in the following

pattern will make it impossible to include the shape of

the first order.

For some shapes it will be the case that whatever

sub-pattern they are included in there will be trim-loss

resulting from the cutting of that sub-pattern. For each

shape all possible sub-patterns in which it might be

included are considered. For some sub-pattern the

quotient of the trim-loss resulting from the cutting of

that sub-pattern and the number of pieces of the shape

under consideration in the sub-pattern is minimal. This

minimal quotient is the minimum scrap for that shape.

Note that the sum of the terms (minimum scrap * demand)

over all the shapes in an order list provides a lower

bound on the trim-lost resulting from the cutting of that

order list.

7.5.4 Control structures
The control of generation of possible cutting

patterns is based on a representation of the subgoal

tree. Each node of the tree has attached to it a label

including a cost, the name of a subgoal processing

function, an entry point and local variable list for that

function, and a flag indicating whether the node is still

active.

At each iteration of the generation process the tree

is scanned to find the active node with lowest cost. The

function attached to this node is then entered at the

current entry point, using the current variable list. It

will execute until one of three conditions occurs:

146

i) if the function is LEG-ALLOCATE, then it either

reports that there is no possible allocation of

sub-patterns to legs for a proposed pattern, or it

returns a possible pattern with its merit, otherwise

ii) it sets up a new subgoal, the node representing

which will have initial cost 0, or

iii) it reports that no further subgoals can be set up

and the current node should be labelled inactive.

An addition, of 10 unless otherwise specified, is

then made to the cost of the node and the next iteration

commenced. The size of the increment reflects the number

of alternative reductions of the subgoal it is thought

should be attempted. The larger the increment, the less

frequently attempts will be made to reduce the subgoal.

The generation process is terminated after 100 iterations

if it has not exhausted all alternatives previously.

The merit of a pattern is reported by LEG-ALLOCATE

in the form of three integers. SCRAP is the trim-loss per

sheet resulting from the use of the pattern, MERIT is an

adjustment factor indicating the merit of the pattern

sequence that would follow the pattern, and

SEQ-BREAK-COUNT is an estimator that, when scaled,

indicates the cost of sequence breaks that may result

from the use of the pattern. The quantity

SCRAP - MERIT + SEQ-BREAK-COUNT * SEQ-BREAK-WEIGHT ,

where SEQ-BREAK-WEIGHT is set to 1,000,000 to indicate

the total undesirability of sequence breaks, is

calculated for each proposed pattern. At the end of the

generation process the pattern for which it was lowest is

147

chosen as the next pattern to be included in the

" sequence.

When a pattern has been selected, the number of

times it is to be used is calculated and the order list

adjusted accordingly. Three lists are constructed to be

used in the application of the sequencing desiderata to

the design of the next pattern.

MIDSHAPE is a list of the shapes which occurred in

the last cutting pattern the demands for which have not

yet been satisfied. It is sorted on the lengths of the

shapes, and within this on their breadths. MIDORDER is a

list of the codes of shapes, the demand for which was

satisfied by the cutting of the last pattern, belonging

to orders in which there are other shapes the demand for

which has not yet been satisfied.

If the demands for neither of the shapes in a pair

in the last pattern have been satisfied, then the pairing

of these shapes is recorded in the list USED-PAIRINGS. If

the demand for one shape in a pair has been satisfied,

the other shapes in the same order are inspected. If

there is outstanding demand for one that can be formed

into a pair with the other shape in the pair under

consideration, then a pairing of these two shapes is

recorded in USED-PAIRINGS. If the demands for both shapes

in a pair were simultaneously satisfied, the remaining

shapes in both orders for which demand has not been

satisfied are inspected for possible pairings of one

shape from each order. If such a pairing exists, it is

recorded in USED-PAIRINGS.

148

7.5.5 USED-PAIR-SELECT

USED-PAIR-SELECT is the function which is used to

reduce the goal of "design a pattern". A selection is

made of the pairings in USED-PAIRINGS; these will lead to

pairs in the resultant pattern. The first entry to

USED-PAIR-SELECT selects all the pairings in

USED-PAIRINGS. Subsequent entries will select subsets

that get progressivkely smaller. The statement that these

pairings shall occur in the pattern is the start of a

proposal for the design of a pattern which will be passed

to MID-SHAPE-SELECT. After an entry to USED-PAIR-SELECT,

40 is added to the cost in the label of the corresponding

node on the subgoal tree.

7.5.6 MID-SHAPE-SELECT

MID-SHAPE-SELECT adds to the proposal statements

that shapes occurring in MIDSHAPE and not involved in the

included pairings shall occur in separate sub-patterns of

the pattern and gives the orientation of these shapes. If

MIDORDER is empty then the sequence of alternatives

generated in MID-SHAPE-SELECT starts with that including

all shapes with their preferred orientations. The

generation then gives fewer and fewer of the shapes their

preferred orientation, then repeats the sequence for

subsets which get progressively smaller. Some of the

alternatives generated may violate the constraints on

pattern design imposed by the dimensions of the stock

sheets. These alternatives are ignored for the purposes

of subgoal creation.

If MIDORDER is not empty then an attempt is made to

149

find orientations of all the shapes which is consistent

with some shape from each of the orders in MIDORDER being

included in the pattern, each such shape occurring in a

distinct sub-pattern. If such a set of orientations is

found, it is used as the starting point for the sequence

of alternatives, which again includes all orientations of

all the pieces before starting with subsets of them.

The ordering of MIDSHAPE means that it is the

alternatives with small shapes not having their preferred

orientations which are generated first. These.

alternatives are more likely to produce good pattern

designs as large pieces not having their preferred

orientations are extremely likely to require unnecessary

trim-loss. When a subgoal is created by MID-SHAPE-SELECT,

20 is added to the cost in the label of the corresponding

node.

7.5.7 MID-ORDER-SELECT

To the proposal for pattern design received from

MID-SHAPE-SELECT, MID-ORDER-SELECT adds statements that

shapes belonging to the orders in MIDORDER shall occur in

separate sub-patterns and gives the orientation of the

shapes. The generation of alternatives starts with the

selection of one shape from each order not already

represented by a shape included by USED-PAIR-SELECT. The

first choice of orientation is that all shapes should

have their preferred orientations. Generation proceeds

through the choices of orientation for this set of

shapes, then through the choices of orientation for other

choices of shapes representing the orders, then by a

similar process through subsets of the orders.

150

7.5.8 MOST-URGENT-PIECE-CONSIDER

If the shape with unsatisfied demand for which the

urgency is highest has not yet been included in the

proposal for pattern design, the decision as to whether

it should occur in a separate sub-pattern is made in

MOST-URGENT-PIECE-CONSIDER. The order of generation of

alternatives is: that it should occur with its preferred

orientation, that it should occur with the other

orientation, then, finally, that it should not occur.

7.5.9 SUB-PATTERN-EXTEND

Decisions are made in MID-SHAPE-SELECT,

MID-ORDER-SELECT and MOST-URGENT-PIECE-CONSIDER that

certain shapes should occur in separate sub-patterns in

the final pattern. In SUB-PATTERN-EXTEND one such

sub-pattern is considered, and the decision made as to

whether the shape should occur by itself, or be one of a

pair. The first alternative generated is that the shape

should occur by itself. The subsequent ones are the

feasible pairings, in order of urgency of the second

shape to be included in the pair.

If there are other such sub-patterns which have not

been considered then the node created on the subgoal tree

will have SUB-PATTERN-EXTEND as the function attached to

it and the initial local variable list will include an
indication of which of the other sub-patterns is to be

considered by that instance of SUB-PATTERN-EXTEND. When

all such sub-patterns have been considered, the proposal
for pattern design is passed to

SUB-PATTERN-DESIGN-CONTINUE.

151

7.5.10 SUB-PATTERN-DESIGN-CONTINUE

The decisions taken in SUB-PATTERN-DESIGN-CONTINUE

may be considered to be nested. The most inclusive is

that as to the size of stock sheet from which the pattern

being designed should be cut. The proposal for pattern

design received from SUB-PATTERN-EXTEND states the shapes

that shall occur in each of a number of sub-patterns. For

each stock sheet size the manner in which each

sub-pattern can be constructed so as to include the

stated shapes with minimum trim-loss is determined. The

aggregates of these minimum trim-losses for each sheet

size are calculated and the sheets ranked with the lowest

aggregate indicating the most preferred size.

The next level of decision is concerned with the

addition, if this is possible, of a further sub-pattern

to the partial cutting pattern designed so far. The

decision is taken in the form of stating a shape which

should occur with a given orientation in that

sub-pattern. The order of preference of shapes and

orientations is given by estimation of the amount of

trim-loss likely to result from the inclusion of each

oriented shape, i. e. a shape with its orientation

specified, in the next sub-pattern. This estimation is

converted into a numeric value, V, of which the highest

value denotes the most preferred oriented shape, in the

following way:

i) Let V take the value 200,000. If the shape is

already included in the partial cutting pattern, add

10 to V. This discriminates in favour of such a

shape where another shape of the same dimensions

152

(belonging to a different order) exists. Inclusion

of the second shape would lead to unnecessary

complications in the pattern sequencing.

ii) Within any sub-pattern including the given oriented

shape, the breadth, T, of the scrap glass can be

calculated. Let R be the minimum of the value of T

for the sub-pattern including only that oriented

shape and T+200 for any sub-pattern in which the

oriented shape is one of a pair. Again note is being

taken of the fact that the more shapes there are

included in this cutting pattern, the more

desiderata will be imposed on the design of the

next. Let F be the number of pieces of the given

shape included in the sub-pattern associated with

the minimum value of R. Calculate

(R -= 10) * (length of sub-pattern -;. 1 U) -F
(minimum scrap for this piece + urgency for this

piece)

Subtract the result from V.

iii) Let R be the usable length of that part of the sheet

remaining after the sub-patterns already specified

and a sub-pattern including the given oriented shape

have been cut. Consider the possible lengths of

sub-patterns that might be cut from this remaining

part. Let T be the shortest possible length of the

part that could remain after one had been cut. If

T+200 is less than R, replace R by T+200. Calculate

(R -. 10) * (width of sheet - 10)

and subtract the result from V. Preference is being

given here to the cutting of large shapes. Premature

153

inclusion of small shapes in cutting patterns causes

the sequence to end with patterns that include only

large pieces and have a high trim-loss.

The final alternative in this set of decisions is not to

cut an additional sub-pattern.

Once it has been decided which oriented shape is to

be included in the sub-pattern, the sub-pattern must be

designed. The first leg, using the ordering of table

7.1.1, that can be used to pick off the given oriented

shape is determined. The sub-pattern including the given

oriented shape and not including an oriented shape that

cannot be picked off this leg which results in minimum

trim-loss is determined. This is the first alternative at

this level of decision. The legs later in the ordering

are then considered in order. If a more economic

sub-pattern would result from assuming pick off from such

a leg then that sub-pattern is an alternative.

In the overall generation of alternatives, when all

possibilities at a less inclusive level have been

considered the next alternative at the next more

inclusive level is used. If there is a possibility of

adding a further sub-pattern to the existing partial

cutting pattern, it is passed to

SUB-PATTERN-CONTINUE-KNOWN-SHEET. Otherwise it is passed

to LEG-ALLOCATE.

7.5.11 SUB-PATTERN-CONTINUE-KNOWN-SHEET

The generation of alternatives in

SUB-PATTERN-CONTINUE-KNOWN-SHEET is similar to that in

SUB-PATTERN-DESIGN-CONTINUE, except that the sheet size
has already been decided one so this level of choice does

154

not exist.

7.5.12 LEG-ALLOCATE

LEG-ALLOCATE receives a cutting pattern. It

calculates SEQ-BREAK-COUNT and MERIT (see section 7.5.4)

and allocates the sub-patterns to legs.

At the beginning of the calculation of

SEQ-BREAK-COUNT it has value 0. For each shape in

MIDSHAPE and each order in MIDORDER not represented in

the cutting pattern, 2 is added to it. If one shape of a

pair in this pattern was cut in the previous pattern then

sequencing desiderata mean that both shapes should be

picked off the leg from which the first was previously

picked off. If any shape belonging to the order that the

second shape belongs to cannot be picked off, in either

orientation if it is not unswingable, from this leg then

there is a possibility of a sequence break at some future

time and 1 is added to SEQ-BREAK-COUNT.

Other calculations involving SEQ-BREAK-COUNT and

MERIT consider the possibility that the next pattern in

the sequence will differ from the present one only in one

sub-pattern. For a pair this means that sequencing

desiderata require that any remaining shape belonging to

one order involved in the pair should be capable of

forming a pair with any remaining shape belonging to the

other order, the sub-pattern length of any such pair

being no greater than that of the present one. If this is

not the case, 1 is added to SEQ-BREAK-COUNT. At the same

time note is made as to the maximum necessary width of

such sub-patterns, and whether any require to be cut at
the leading edge of a sheet.

155

The initial value of MERIT is the sum of the urgency

and minimum scrap for every piece in the pattern. An

upper bound on the length of the sheet size that would be

required to satisfy sequencing desiderata in subsequent

patterns is obtained by adding together the lengths of

the distinct sub-patterns and any excess that must result

from the replacement of a shape occurring by itself in a

sub-pattern by another unsatisfied shape in the same

order which could only occur in a longer sub-pattern. If

there is a shape occurring by itself in a sub-pattern

belonging to an order in which another unsatisfied shape

can only occur in a sub-pattern that is no longer if it

is oriented across the sheet then 5000 is subtracted from

MERIT. This reflects the tendency of such orientations to

be wasteful and also the loss of flexibility in the

design of patterns when orientations of pieces are

forced. Upper bounds on the width of the sheet size and

on the number of sub-patterns requiring to be cut at the

leading edge of a sheet that might occur simultaneously

if sequencing desiderata were to be satisfied are

calculated at the same time as the upper bound on length

and using the same assumptions about sub-pattern design

in subsequent patterns.

If the upper bounds on width and length together are

not compatible with any stock sheet size, 1 is added to

SEQ-BREAK-COUNT, to reflect the possibility of a future

sequence break. If they are not compatible with the

current sheet size, 5000 is subtracted from MERIT, to

reflect the likelihood that subsequent patterns

156

satisfying the sequencing desiderata would result in high

trim-loss. If the upper bound on the number of

sub-patterns requiring to be cut from the leading edge of

a sheet is greater than 1, the excess over 1 is added to

SEQ-BREAK-COUNT.

For each sub-pattern there is a preferred leg from

which it should be picked off. For a sub-pattern

containing a shape belonging to an order that occurred in

the previous pattern, it is the one from which pieces

belonging to this order were picked off when that pattern

was cut. Otherwise the preferred leg for a sub-pattern is

the first leg in the order of table 7.1.1 from which any

shape belonging to any order involved in that sub-pattern

can be picked off, with either orientation if such a

shape is not unswingable. The first attempt to assign

sub-patterns to legs assigns each sub-pattern to its

preferred leg. If such an assignment is not feasible, the

preferences are relaxed, starting with the sub-patterns

not involving shapes belonging to orders that occurred in

the previous pattern. For each shape belonging to an

order assigned to a leg in the previous pattern which is

assigned to a different leg in this pattern, 1 is added

to SEQ-BREAK-COUNT.

7.6 Results

A program using these techniques has been written in

Algol 68-R (Woodward and Bond, 1972) and tested on an

ICL 1906S using 16 sets of data (see appendix A). These

data sets are random subsets of a set of data supplied by

Pilkington Brothers Ltd. The results obtained from these

test runs are shown in table 7.6.1. The derivation of

157

Table 7.6.1

Results of test runs - main problem

0 -n m0 c) ca > co oo -4 a) vi ;-w"o. -

0000000ooooocoo
............ .

W4
L ;

l3 7nZI nV ýýý OONýOI Wi

fD NN0001-+NNOF-+Nt-+NO NN

WC, 0003 D%n (D 00 1-'. C, V Vý

00 CLO Um v00 cm CO (0 VV0)Co vvCo co .. .N...........

O l! 1
.of

ilNO V tDcO U1t01-ý V tON

rn (Z Um v CO v-4 rn v rn M rn v ., . cn 1 .7 .Nzo1: . 01 N. .W .N .O0..;.
N

:4.
Qn

000O1-aOONNOONOO i-+N ... "". "". ". """"..
ONOW WOO rVnQn00U'I nZn V1NC71

fN p
0)

rt rt
0i

-'O r
NZ

g
rrm

n-

x1o

our 0.

-arta un
rt 3c

n1 0)
3 -" -

0
x N1

N
I-'
O

v

3w -i
rr
(Dc\o3
-a1
ýq- a cD 0

N
0N

c -n
fD
CL

rr W
oý+ -s cD

Oa 3 rr
Ol

OO
wO
Nz

7

cr o-%
fD Q.
n-.
ý -n

fD cD

C) Rý cD

N

w

F

vi

158

Table 7.6.2

Results of test runs - subsidiary problems

C) -n MZ C) W>LO covCVI 47 %A" -+ CND 0)
rt rt

d

rr

- 0140
-P- U, CiCVI 00 knt. 4M VivnCn14 -M 3a
CO CD 1-

ZO
NOV C1 Ci NN F-+ V

ZO
co -+ CD

0
N
N

N
fD

Z
CC
CD 3

NN Fr 1ý F-ý ý-+ F-+ Fý F-ý t-+ F+ F-+ 1 p'
000i. ý. LO 00U1Q101NC3 . ri 1c n fD

CD

Q'0
'S -h
CD
cu

y

rP

M0 Vi .1 CO O 00 0 Co -i 00 a o» N f-+ ci 2a1.. Oq
tO F U7 Ui N CO NO OO CO Ot .? (00 NO- (D

0

In
co
m --P
cc
(D3
Z v- CD f-+(2 CD n)0CD 000CD ý0 0P. in ro
CD-I
O' O
1 -h
cD
oº
7r
N

M
A

m

m_
C,

-I
N

z
c
3

cD

0
-h

0
1
0.
fD

CD

0

N

159

column 2 is given in section 7.5.3. During the

development of the program a considerable number of

heuristics were experimented with. Some of these produced

very good results with some sets of data whilst

performing unacceptably badly on others. These results

were collated to produce column 5. Column 6 thus shows

the known deficiencies of the program. The execution time

of the program depends on size of the data set, the

format of the output, and whether the object code

incorporates run-time checking. However, 4 minutes may

reasonably be regarded as an average execution time. No

sequence breaks occur in any of these pattern sequences.

Table 7.6.2 shows the results when the program is

used to attempt the solution of two related problems. If

sequence breaks are considered to be of minor importance,

the program can be run with SEQ-BREAK-WEIGHT (see section

7.5.21) set to 1. In the second case the sequencing

desiderata of the main problem are imposed, but the

number of orders that may be picked off one leg at one

time is restricted to 2.

7.7 Conclusions

The program succeeds in producing sequences of

cutting patterns with no sequence breaks, which was one

of the design aims. Its trim-loss behaviour is known not

to be optimal. However, on the test data used the

percentage of material lost at scrap never rose to 10%

and the average discrepancy between the solutions

produced and the known best solutions was 17, of the

material used. Whether this behaviour is good enough

would depend on details of the industrial environment.

S

160

Further development of the technique would have to be

closely linked to these.

The heuristic nature of the method used for avoiding

sequence breaks is illustrated by their occasional

occurrence in the results of the subsidiary problem with

the number of orders picked off each leg restricted to 2.

Even here they average only 0.5 per sequence and this

suggests a superiority to the work of Dyson and Gregory

(197+) in this area.

The extremely problem-dependent nature of the

heuristics being used is illustrated by a comparison of

the results in table 7.6.1 with those under

SEQ-BREAK-WEIGHT=1 in table 7.6.2. As a particular

example take data set 3, the results from which indicate

that in the latter case a different treatment is

necessary for pieces that must occur in leading

sub-patterns.

161

Chapter 8 Efficacy of the methods

For convenience of reference in this chapter, the

problems considered in the present work will be labelled

A-E as follows:

A) abstract 1} -dimensional trim-loss problem (chapter 3),

B) 2-dimensional trim-loss problem with varying stock

costs (chapter 4),

C) optimal network problem (chapter 5),

D) abstract 2-dimensional trim-loss problem (chapter 6),

E) 2-dimensional trim-loss problem with sequencing

constraints (chapter 7).

The results obtained are good and indicate that

heuristic search methods are appropriate to the solution

of the problems considered. The quality of solutions

obtained by methods of this type depends on the degree of

use that can be made of problem-specific information. In

the present work this is information about the geometry

of the problems.

The geometric information is utilized in three ways.

Firstly, it can be used to decide on the search method,

as shown for example in section 6.1.2. All the problems

required some adaptation of the basic methods of

state-space search and problem reduction and some

required methods to be combined. These adapted and

combined search methods may well have more general

applicability.

Secondly, the geometric information may be used to

order the alternatives within a search. This ordering is

necessary for the use of ordered operator search or

162

preferred reduction search. Thirdly, the geometric

information may be used, as shown for example in section

3.3.3, to eliminate alternatives in a search.

For three of the problems considered (A, C and D)

the methods applied produced solutions that were near

perfect. For the remaining two (B and E) there was an

apparently small, but perceptible, deviation from

optimality. At present methods of getting better

solutions to these problems are not apparent, and this is

clearly an area for further research.

The question may be asked as to whether there is any

difference in type between the two groups of problems.

The answer would appear to lie in the perceived

complexity of the problems. Development of an heuristic

solution method is a process of man-machine interaction.

Initially a structure is hypothesized for the solution

method, a set of plausible heuristics incorporated into

it, and the resultant computer program run. The details

of the program are reviewed in the light of this run. The

review may lead to a complete change in the structure of

the program. This happened with problem D; the first

solution method tried was an ordered operator search

based on the method used on problem A. Certainly the

review of results will lead to changes in the heuristics.

Each subsequent run will indicate inadequacies in

the existing heuristics. The response to this situation

may be to adjust the relative weightings of existing

heuristics. On the other hand a completely new heuristic

may be introduced. Some salient feature of the problem

may be completely overlooked in the creation of the

163

initial set of heuristics, but its importance can become

apparent from the consideration of poor program results.

Similarly, a program containing heuristics which in

general perform unacceptably badly, or even logical

errors, may produce a good solution for a particular set

of data. An analysis of what makes this solution "good"

may lead to the revaluing of existing heuristics or the

introduction of new ones.

An important limiting factor, then, on the

development of heuristic methods is the amount of insight

that can be gained into the nature of good solutions. In

the group of problems for which near perfect solutions

were found are those for which it was possible to

perceive the form of good solutions. For the other group

it was not possible to specify this form tightly enough.

Observe particularly that for problem E two different

types of constraint (trim-loss and sequencing) are

involved and the difficulty is in determining the nature

of their interaction.

In extremis this limitation is in the human being

writing the program, but the nature of the computing

facilities available for program development will have a

significant effect. Most importantly it should be noted

that program development will involve a large number of

runs to evaluate different combinations of heuristics. If

the time taken by a single run is not small then a

considerable amount of computer time will be required.

The development process is one of man-machine interaction

and the computing facilities must allow this in a

satisfactory form.

164

The more information that is available about the

intermediate steps performed by the program, the more it

is possible to determine how they should be modified. The

evaluation of an intermediate step may require

considerable computation, and there may also be

difficulty in displaying the features of the step. These

considerations suggest that the availability of

interactive graphics facilities would be useful in the

development of the solution methods for complex problems.

Another aspect of the need for graphics facilities

arises when the 3-dimensional analogues of the

2-dimensional problems investigated here are considered.

The representation of solutions, let alone steps in their

creation, raises problems in this area.

It is in the nature of the methods used that the

details of the solutions they produce cannot be

predicted. There is therefore no possibility of proving

such a program correct or exhaustively testing it. In

view of this it is even more essential than usual that

the programming system being used not only be appropriate

to the problem, but also provide adequate diagnostic

aids. This point is expanded in appendix B.

In the same way that it is never certain with this

type of method that the program implementing it is

bug-free, it is never certain that the heuristics are

totally stable. By a stable set of heuristics is meant

here one which, whatever set of data is presented to the

program in which it is embodied, will not produce

seriously sub-optimal results. If such a method were

165

implemented in a practical case, it would be necessary to

monitor its behaviour to ascertain whether such events

were occurring, and, if so, to make adjustments to it.

166

References

Abraham, P. M., S. J. Kirby and Y. G. Ng (1976) Production
schedule of a float glass process plant. Systems
Engineering Project-Report. University of Liverpool.

Adamowicz, M. and A. Albano (1972) A two-stage solution of
the cutting stock problem, in Information Processing
71 (ed. C. V. Freiman), 1086-1091. Amsterdam:
ftörth-Holland.

Adamowicz, M. and A. Albano (1976) A solution of the
rectangular cutting stock problem. IEEE Trans. Systems,
Man, Cybernetics, SMC-6,302-310.

Beale, E. M. L. (1970) Selecting an optimum subset, in
Integer and Non-Linear Programming (ed. J. Abadie),

- sterdam: North-Holland.

Boffey, T. B. and A. I. Hinxman (1976) An algorithm for
finding p-medians, in Proceedings of EURO-II.
Stockholm.

Boyce, D. E., A. Farhi and R. Weischedel (1973) Optimal
network problem: a branch-and-bound algorithm.
Environment and Planning 5,519-533.

Brown, A. R. (1971) Optimum packing and depletion. London:
Macdonald.

Burstall, R. M., J. S. Collins and R. J. Popplestone (1971)
Programming in POP-2. Edinburgh: Edinburgh University
Press.

Chambers, M. L., and R. G. Dyson (1976) The cutting stock
problem in the flat glass industry - selection of
stock sizes. Opl. Res. Q. 27,949-957.

Christofides, N. (1977) Personal communication concerning
paper in Opns. Res . 25.

Doran, J. E. and D. Michie (1966) Experiments with the graph
traverser program. Proc. Roy. Soc. A 294,235-259.

Dunn, R. D. (1972) POP-2/4100 Users Manual. School of
Artificial Intelligence, University o Edinburgh.

Dyson, R. G. and A. S. Gregory (1974) The cutting stock
problem in the flat glass industry. Cpl. Res. Q. 25,

1-53.

Ernst, G. and A. Newell (1969) GPS: A case study in
generality and problem solving. New York: ca emic
Press (AGM Monograph Series).

Escudero, L. F. and E. Garbayo (1973) The cutting stock
problem: application of combinatorial techniques and
mixed integer programming. VIII International
Symposium on Mathematical Programming unpu ished).

167

Garfinkel, R. S. and G. L. Nemhauser (1972) Integer
Programming. New York: John Wiley and ns

Gilmore, P. C. and R. E. Gomory (1961) A linear programming
approach to the cutting-stock problem. Opns. Res. 9,
849-859.

Gilmore, P. C. and R. E. Gomory (1963) A linear programming
approach to the cutting-stock problem - part II. Opns.
Res. 11,863-888.

Gilmore, P. C. and R. E. Gomory (1965) Multistage cutting
stock problems of two and more dimensions. Opns. Res.
13,94-120.

Gilmore, P. C. and R. E. Gomory (1966) The theory and
computation of knapsack functions. Opns. Res. 14,
1045-1074.

Golomb, S. W. (1965) Polyominoes. New York: Charles
Scribner's Sons.

Haessler, R. W. (1971) A heuristic programming solution to
a non-linear cutting stock problem. Management Science
17, B-793 -. B-802.

Haessler, R. W. (1975) Controlling cutting pattern changes
in one-dimensional trim problems. Opns. Res. 23,
483-k93.

Hahn, S. G. (1968) On the optimal cutting of defective
sheets. Opns. Res. 16,1100-1111.

Haims, M. J. and H. Freeman (1970) A multistage solution of
the template layout problem. IEEE Trans. Sys. Sci.
Cybernetics SSC-6,145-151.

Harary, F. (1969) Graph Theory. Reading, Massachusetts:
Addison-Wesley.

Harris-, L. R. (1973) The bandwidth heuristic search, in
Advance papers of 3rd International Joint Conference

ord,

Hart, P. E., N. J. Nilsson and B. Raphael (1968) A formal
basis for the heuristic determination of minimal cost
paths. IEEE Trans. Sys. Sci. Cybernetics SSC-l,
100-107.

Herz, J. C. (1972) Recursive computational procedure for
two-dimensional stock cutting. IBM J. Res. Develop.
16,462-469.

Johnson, W. W. and W. E. Story (1879) Notes on the '15'
puzzle. Am. J. Math. 2,397-404.

168
Kruskal, J. B., jr. (1956) On the shortest spanning subtree

of a graph and the travelling salesman problem. Proc.
Amer. Math. Soc. 7,48-5O.

Lawler, E. L. and D. E. Wood (1966) Branch-and-bound methods:
a survey. Opns. Res. 14,699-719.

Lindley, D. V. and J. C. P. Miller (1958) Cambridge Elementary
Statistical Tables. Cambridge: Cambridge vers y
Press.

Little, J. D. C., K. G. Murty, D. W. Sweeney and C. Karel (1963)
An algorithm for the travelling-salesman problem.
Opns. Res. 11,972-989.

Michie, D. (1967) Strategy-building with the graph
traverser, in Machine Intelligence 1 (eds. N. L. Collins
and D. Michie), --T357-152. Edinburgh: liver and Boyd.

Michie, D. and R. Ross (1969) Experiments with the adaptive
graph traverser, in Machine Intelligence 5 (eds.
B. Meltzer and D. Michie , 301-61b. nur : Edinburgh
University Press.

Nilsson, N. J. Searching problem-solving and game-playing
trees for minimal cost solutions, in Information
Processing 68, (ed. A. J. H. Morrell), vo , 155b-1562.
Ams er am: orth-Holland.

Nilsson, N. J. (1971) Problem-Solving Methods in Artificial
Intelligence. New York: c raw- 0

Pearman, A. D. (1974) Heuristic approaches to road network
optimization. Engineering Optimization 1,37-49.

Pfefferkorn, C. E. (1975) A heuristic problem solving
design system for equipment or furniture layouts.
C. A. C. M. 18,286-297.

Pohl, I (1973) The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and
computational issues in heuristic problem solving, in
Advance papers of 3rd International Joint Conference
cm -Artificial Intelligence (IJCAI-3), 12=l-7. Stän-fo-rd..

0V"n0

Sacerdoti, E. D. (1975) The non-linear nature of plans, in
Advance papers of 14th International Joint Conference
on Artificial to ei ence kIJCAI-4), 20b-214.

bs,.

Slagle, J. (1963) A heuristic program that solves symbolic
integration problems in freshman calculus. J. A. C. M.
101 507-520.

Stephens, P. D. (1974) The IMP language and compiler. Comp.
J. 17,216-223.

Tait, P. G. (1880) Note on the theory of the 415 puzzle'. Proc. Roy. Soc. Edinb. 10,664-665.

169

Woodward, P. M. and S. G. Bond (1972) Algol 68-R Users Guide.
London: H. M. S. O.

170

. APPENDIX A Test data for 2-dimensional trim-loss problem
with sequencing constraints

DATA SET 1

WIDTH
1219
1800
1200
1000
1200
1.300
1400
1bOU

600
44U
900

1000
1200
1300
1400
1000
1100
1200
1400
1800
1829
2134
2134
1219

762
762
914

1219
1219

600
720
960
680
920

1219
1219

b40
b60
920
680

1800
610

1220
1800

b59

DE MA NL)
300

66
225
140
245

35
35

140
488
295

96
35

164
35
35
70
35

175
70

300
20
16
18
85

210
150
200
406
250
149
198
127
105

/8
70
65

100
129

60
39

616
52
50
58

107

CODE LENGTH WIDTH DEMAND
BLANK 1219 6I0 1200
F43860 3046 2100 54
FA8983 1923 1140 264
FA8983 1923 1440 99
FA8983 1930 840 165
FA9325 2490 1000 50
FA9325 2490 1100 25
FA9325 2490 1200 25
FC8006 720 720 JJO
FC9010 1200 600 291
FC9010 1520 440 190
FD6459 2540 1500 25
FD6459 2540 1600 25
FD6459 2540 1700 25
FD6459 2540 1800 175
F08854 2440 1830 250
F09288 2540 1800 300
FN3564 2490 1500 25
FN3b84 3048 1500 2.0
FN3867 1930 1372 42
FN3867 2540 1524 56
FN3867 2743 2134 20
FN3913 2438 1880 242
FN4004 1219 610 24
FN4004 1219 762 öU
FN4004 1219 1219 180
FN4004 1524 1219 214
FN4033 1219 610 1848
FN4U33 1219 1219 92
FN4057 2032 914 38
F03778 2438 1524 50
ME2443 980 920 100
MF3473 960 720 45
MF3473 1520 920 100
MH0879 1320 700 100
11H2126 1560 620 240
MS3776 2280 2000 21
N3276 1220 915 28
N3283 2480 1500 20
P81"225 1219 610 50
PS1225 1250 457 115
STf3CK 2490 1800 112

.ý

DATA SET 2

CODE LENGTH
BLANK 1219
FA3864 3048
FA9113 2660
FA9418 2490
FA9418 2490
FA94183 2490
FA9418 2490
FA9418 2490
FC8429 1200
FC8429 1520
FC9237 1520
FD8779 2540
FD8779 2540
FD8779 2540
FD8779 2540
F09088 2540
FD9088 2540
FD9088 2540
FD9088 2540
FD9346 2540
FN3763 3048
FN3763 3048
FN3875 2489
FN3922 1829
FN400b 1219
FN4006 1524
FN4006 1b24
FN4034 1219
FN4034 1829
FP3704 1120
FP3704 1120
FP3704 1320
FP3704 1400
FP3704 1400
F03824 2134
F03ä24 2438
ME3520 1300
MF3485 860
MHO886 1340
MH4200 1120
MR3971 2540
MS3929 1320
N3279 122C
PS0107 249C
PS1226 836
PS1226 1046
PS1226 1098
PS1226 125C
PS1226 125C
ES_1.226____ 1250

111 38
457 210
457 95
b33 60
55; x---.

_24

171

DATA SET 3

CODE
BLANK
FA9142
FA9142
FA9142
FA9142
FA9430
FA943C
FC8644
FC9292
FC9292
F0878C
FD878(
F0912%
FD9671
FN381 E
FN388(
FN400ý
FN400;
FN400i
FN4004
F'N4O3!
FP37?;
F0384!
F0407i
MF269
MF416
MH269
M0377
MS332
N3252
N3280
N3280
N3280
PS014
PS? 11

LENGTH WIDTH
1524 914
2490 1000
2490 1200
2490 1600
2490 1800
2490 1/00
3048 1600
1000 620

980 740
1040 540
2540
2540
2420
2540

3 2438
1930

? 1829
7 1930
7 2032
7 2032
5 1524
7 1624
5 1520
6 1524
4 1360
6 840
2 1220
5 1920
5 762

1220
1220
1220
1220

3 1651
1200

1500
1aoU
1700
1400
2134

864
1219
1168

813
914
914
914
440

1219
560
680

1U60
1200

762
610
610
762
915
610
600

DEMAND
150

2b
25
25
25
50
50

120
70

135
75
60
43

140
30
84

250
125
170
110
241
130
528

20
565
100

26
26

1363
20
50
33
68
25

216

DATA SET 4

CODE
FA3783
FA8779
FA9143
FA9143
rA9143
FA9143
FC7792
FC7792
FC89b2
FD6458
FD645E
FD645F
FD645E
FD865;
FD915e
FN356
FN3a5%
FN390:
FN400:
FN400:
FN400f
FN4001
FN4001
FN4001
FN404!
F0315.
F©377i
MF 269'
01H0ß7
MH087
MH271
MH271
MH271
MQ394
MS344
MS344
N3272
N3281
N3261
N3281
N3281
PS122
PS122
STOCK

LENGTH
2240
2240
2240
2240
2240
2240

760
1200
1520

I 2540
2540

1 2540
I 2I4C
c 244C

244C
f . 504E
f 249C
5 304E
S 152
3 182
3 24.3E
3 2431
3 2431
8 2431
5 . 3041
3 2491
8 243
5 901
5 74
5 144
5 9b
5 156,
5 205
3 252
9 152
9 180

180
181
183
183
183

4 83
4 104

249

WIDTH
1100
130U
1000
1200
1600
1800

600
900
440

lbOU
1600

1 1100
1800
1E330

) 1630
S 1700

1700
1829

610
610
610

3 762
3 914
3 1219
9 2000
0 1500
B 1524
0 60U
0 406
0 b80
0 720
0 620
0 120
0 1500
4 bob
3 660
0 1070
0 610
0 762
0 91b
0 1220
8 b35
6 711
10 1500

DE MA NO
10e

45
Jo
130 so
30

140
86

522
25
25
25

175
250
500

äb
22
16

600
135
184
1bO
116

95
90

6
50

228
344

1012
786
364
347
4U0
126

66
54
33
27
23
37
40
38
to

-« -r.

172

DATA SET 5

CODE
FN3853
F A8983
FA898J
FA8983
FA7636
F03153
FD9123
PS0107
N3280
N3280
N3280
FC9292
FC9292
FA386C
MS3325
MR3971
FC901C
FC901C
FQ377e
BLANK
MR393;
FN400?
FN400i
FN4UUi
FP377;
FD878(
FD878(
FN387.
FN386;
FN386;
FN366;
FD9,341
FA9411
FA9411
FA9411
FA9411
FA9411
PS211
PS122'
PS122!
MS344'
MS344!
FC842'
FC842'

LENGTH WIDTH
2490 1/00
1923 1140
1923 1440
1930
2240
2490
2420
2490
1220
1220
1220

98U
1040
3048

762
2540
1200
1520

I 2438
1219
1020
1930
2062
2032
1524

) 2540
7 2540
i 2469

1930
2540
2743

5 2540
9 2490
B 2490
9 2490
3 2490
E3 2490

1200
5 1219
5 1250
9 1524
9 1803
9 1200
9 1520

840
1200
1500
1700
1ä0U
610
762
915
740
540

2100
762

1800
b00
440

1524
1219

406
1168

813
914
914

1500
1800
2134
1372
1524
2134
1500
1000
1200
1300
1400
1500

600
610
457
508
660
600
440

DEMAND
22

264
99

16S
225

6
43
58
50
33
68
70

135
54

1363
618
291
190

b0
300
520
125
170
110
130

75
50
18
42
56
20

300
140
245

35
35

140
216

50
115
126

66
488
295

DATA SET 6

CODE LE
FN3818
FN3763
FN376J
ME2443
FD6459
FD6459
FD6459
FD6459
FA3864
N3283
F03824
F03824
FC9237
FN3913
M03775
FA3783
FC89b2
FC8006
BLANK
MH2715
MH2716
MH27lb
FN4006
FN4006
FN4006
FP3704
FP3704
FP3704
FP3704
FP3704
FN4057
FN4004
FN4004
FN4004
FN4004
FD8779
FD8779
FD8779
FD8779
FN4034
FN4034
MS3776
FA9325
FA9325
FA9325
FN4033
FN4033
FD9152
FA9142
FA9142
FA9142
FA9142

; NGTH
2438
3048
3048

960
2540
2540
2540
2540
3048
2480
2134
2438
1520
2438
192C
224C
1520

72C
121S

96C
156(
206(
1215
152,
152,
1121
112
132'
1401
1401
20J
121
121
121
152
254
254
254
254
121
182
228
249
249
245
121
121
20

WIDTH 0
2134
1829
2134

92U
1500
1600
1700
1800
1800
1600
1219
1219

900
1880
1200
1500

440
720

º 610
720
620
72U

9 762
4 762
4 914
U 600
D 720
0 96U
0 680
0 920
2 914
9 610
9 762
9 1219
4 1219
0 1000
0 1200
0 1300
0 1400
9 1219
9 1219
0 2000
10 1000
10 1100
00 1200
9 610

l9 1219
40 1830

E MA ND
3o
2u
16

100
25
25
25

175
66
20
/0
65
90

242
26

108
522
330

1200
/86
3b4
347
210
15u
200
149
198
127
105

78
38
24
60

180
214

35
1b4

35
35

406
250

21
50
25
25

1848
92

500
2490 1000 25
2490 1200 25
2490 16OU 25
2490 1800 25

173

DATA SET 7
CODE LENGTH WIDTH DEMAND
FA9113 2660 1200 225
P51224 838 635 40
PS1224 1046 711 38
ME2438 1600 640 70
F06458 2540 1500 25
FD6458 2540 1600 25'
F06458 2540 1700 25
F06458 2540 1600 175
FN4008 2438 610 184
FN4008 2438 /62 150
FN4006 2438 914 116
FN4008 2438 1219 95
N3281 1830 b10 . 33
N3281 1830 762 27
N3281 1830 915 23
N3281 1830 1220 37
FN3922 1829 1219 85
FN3584 2490 1500 25
FN3584 3048 1500 20
MF3473 960 720 45
MF3473 1520 920 100
MH4200 1120 680 39
FN3905 3048 1829 16
N3276 1220 915 28
N32b2 1220 610 20
MF2694 1360 560 565
FD9671 2540 1400 140
FD8854 2440 1830 250
FC7792 760 600 140
FC7792 1200 900 86
FN4045 3048 2000 90
FN403b 1524 914 241
STOCK 2490 1800 112
FD9288 2540 1800 300
FN4002 1829 1219 250
FA9143 2240 1000 30
FA9143 2240 1200 30
FA9143 2240 1600 30
FA9143 2240 1800 30
MHO886 1340 920 60
Mt1067: h 740 406 344
MH0875 1440 580 1012

DATA SET 8

CODE L
FA8719
MF4166
FQ4076
MF3485
PS0143
FQ384S
N3279
FD9088
FD9088
P09088
FD9086
MF2695
FN3583
BLANK
N3272
MH2726
ME3520
MQ3943
FD8853
FA9430
FA9430
FN3880
F N4003
FN4003
MS3929
MM2692
STOCK
PS1226
PS122b
PS 1225
PS 1226
PS1226
P51226
MH0879
FC8644

, ENGTH
2240

840
1524

860
1651
1520
1220
2540
2540
2540
2540

900
3048
1524
1800
1560
1300
2520
2440
2490
3048
1930
1524
1829
1320
1220
2490

833
1046
1098
1250
1250
1250
1320
1000

+IUTH
lion

680
1219

660
610
440

1220
1000
1100
1200
1400

600
1700

914
107U

620
540

1500
1ti30
1700
1600

864
610
610
b10

1060
1500

559
711
457
45,
533
5b3
700
620

DEMAND
45

IOU
20

129
25

528
50
70
35

115
70

228
b5

150
54

240
100
400
250

50
50
84

600
135

b2
2b
10

i0)
38

210
95
60
24

100
120

174
DATA SET 9 DATA SET A
CODE, LENGTH W
FN4057 2032

IDTH
914

DEMAND
38

CODE LENGTH 'W JUTH DEMAND
FC8429 1200 600 488

FP3704
FP3704

1120
1120

600
720

149
198 FC8429

MF3485
1520

860
440
660

295
129

FP3704 1320 960
'

127
FD9152 2440 1830 500

FP3704 1400 680)0b
FA9418 2490 1000 14U

FP3704
FC8644

1400
1000

920
620

78
120 FA9418

FA9418
2490
2490-

1200
1300

245
35

FN404b 3048 2000 90
FA9418 2490 1400 . 35

FC9292
FC9292

960
1040

74U
540

10
135 FA9418 2490 1500 140 MS3929 1320 610 52 FC7792

FC7792
760

1200
600
900

140
86 FN4003 1524 610 600

FCy237 1520 900 96 FN40U3 1829 610 135
FN3905 3048 1829 16

F03824 2134 1210 7O
FN4007 1930 1168 129 F03824 2438 1219 65
FN4007 2032 813 170 MH4200 1120 680 39
FN4007 2032 914 110 MS3449 1524 508 126
P31225 1219 610 5U MS3449 1803 660 66
PS1225 1250 457 115 FD8854 2440 1810 250
N3272 1800 1070 54 BLANK 1524 914 150
PS211 1200 600 216 Fp9288 2540 180U 300
FD9123 2420 1700 43 MP39S3 1020 406 520
N3281 18 0 610 33

BLANK 1219 1219 300
N3281 1830 762 27 F03153 2490 1500 6
N3281 1830 915 23

FN4008 2438 610 184
N3281 1830 1220 220 S7 2438 762 1bU
FA3783 2240 1500 108 FN4008 2438 914 116
MH08 75 740 406 344 FN4008 2338 1219 95
MH087: i 1440 580 1012 FCgplp 1200 600 291
FD645L 2540 1500 25 FC9010 1520 440 190
FD6458 2540 1600 25 FA7636 2240 1200 225
FD6458 2540 1700 700 25 1600 840 70
F06458 2540 1800 175 PS1226 838 559 107
FN391. ý 2438 1680 242 PS1226 1046 711 38
FN3U5,3 2490 1700 22 PS1226 1098 457 210
STOCK 2490 1800 112 PS122b 1250 457 95
F08853 2440 1E330 250 PS1226 1250 b33 60
FN4034 1219 1219 40e

PS1226 1250 553 24
FN4034 1829 1219 250 MS3776 2280 2000 21
FA9143 2240 1000 3G Fp8779 2540 1000 35
FA9143 2240 1200 30

F08779 2540 1200 164
FA9143 2240 1600 30

F08779 2540 1300 , i5
FA9143 2240 1800 30 FD8779 2540 1400 35
M53325 762 762 13b3

FA9113 2660 1200 225
FN4002 1829 1219 250

FA3860 ; 3048 2100 54
FN4035 1 24 914 241 F08780 2540 1500 75

FD8780 2540 1800 50
-- . -. - ý.. _.. _ .

FN3763 3048 1829 20
FN3763 3048 2134 16

175

DATA SET B

CODE LENGTH WIDTH DEMAND
FN4006 1219 762 210
FN4006 1524 762 150
FN4006 1524 914 200
BLANK 1219 b10 1200
MH2692 1220 1060 26
N3280 1220 61U 50
N3280 1220 762 33
N3280 1220 915 68
FD9346 2540 1800 300
F04076 1524 1219 20
FC8006 720 720 330
FA3864 3048 1800 66
FD6459 ' 2540 1500 25
FD6459 2540 1600 25
FD6459 2540 1700 25
FD6459 2540 1800 175
FN3867 1930 1372 42
FN3867 2540 1624 56
FN3867 2743 2134 20
FN3583 3048 1700 85
FN3880 1930 864 84
FC8952 1520 440 522
FQ3778 2438 1524 bo
FA8779 2240 1300 45
FD9671 2540 1400 140
M0377b 1920 1200 26
FA8983 1923 1140 264
FA8983 1923 1440 99
FA898J 1960 840 165
MR3971 2540 1800 616
N3252 1220 610 20
FN3875 2489 2134 18
FN4004 1219 610 24
FN4004 1219 762 60
FN4004 1219 1219 180
FN4004 1524 1219 214
F03845 1520 440 528
P50143 1651 610 25'
PP3777 1524 914 130.

DATA SET C

CODE U
MH2715
MH2715
MH2715
FN3818
FA9142
FA9142
FA9142
FA9142
PN4033
FN4033
FA9325
FA9325
FA9325
MF4166
N3283
MF3473
MF3473
FN3584
FN3584
MH272b
MF2695
PS0107
FN3922
F09088
F09088
F09088
FD9088
N3279
MF 2694
FA9430
FA9430
MH0879
PS1224
PS1224
N3276
MQ3943
MH0686
STOCK
ME2443
ME3520

: NGTH WIDTH DEMAND
960 720 786

1560 62U 364
2060 720 347
2438 2134 30
2490 1000 25
2490 120U 25
2490 1600 25
2490 1800 25
1219 610 1848
1219 1219 92
2490 1000 50
2490 1100 25
2490 1200 25

840 680 100
2480 1500 20

960 72U 45
1520 920 100
2490 1500 25
3048 1500 20
1560 62U 240

900 600 228
2490 1600 58
1829 1219 85
2540 1000 70
2540 1100 35
2540 1200 175
2540 1400 70
1220 122U 50
1360 560 555
2490 1700 50
5048 1b00 50
1320 700 100

838 635 40
1046 711 38
1220 915 28
2520 1500 400
1340 920 60
2490 1500 1U

960 920 100
1300 540 100

176

DATA SET 0 DATA SET E

CODE LENGTH WIDTH DEMAND CODE LENGTH WIDTH DEMAND
MF2695 900 600 228 FN4003 1524 610 600
FN3763 3048 1829 20 FN4003 1829 610 135
FN3763 3048 2134 16 FC8644 1000 620 12U
FD8780 2540 1500 75 FA3860 3048 2100 54
FD8780 2540 1800 50 MS3776 2280 2000 21
PN4035 1524 914 241 MS3325 762 762 1363
MS3929 1320 610 52 FN4U33 1219 610 1848
BLANK 1219 1219 300 FN4033 1219 1219 92
FC9292 980 740 70 FD6459 2540 1500 25
FC9292 1040 540 135 FD6459 2540 1600 25
FC9010 1200 600 291 F06459 2540 1700 25
FC9010 1520 440 190 FD6459 2540 1800 175
FN3818 2438 2134 30 FN4045 3048 2000 90 FP3777 1524 914 130 MR3933 1020 406 520
FD9123 2420 1700 43 FA3783 2240 1500 108
F03153 2490 1500 6 FA9143 2240 1000 30
FD9152 2440 1830 500 FA9143 2240 1200 30
ME2443 980 920 100 FA9143 2240 1600 30 FN3853 2490 1700 22 FA9143 2240 1600 . 30
F09346 2540 1800 300 STOCK 2490 1800 112
N3252 1220 610 20 FC8006 720 720 330
MH0879 1320 700 100 STOCK 2490 1500 10
PS211 1200 600 216 F04076 1524 1219 20
MH0875 740 406 344 FN3584 2490 1500 25 MH0875 1440 580 1012 FN3584 3048 1500 20 N3272 1800 1070 54 MH2692 1220 1060 26 PS1225 1219 610 50 FN3913 2438 1880 242
P31225 1250 457 115 N3279 1220 1220 50 M03775 1920 1200 26 ME3520 1300 540 100 FN3905 3048 1829 16 PS0107 2490 1800 58 FN3880 1930 864 84 FQ3845 1520 44U 528 FN3583 3048 1700 85 FD9671 2540 1400 140

F03778 2438 1524 50
--- - --- ---- FD8854 2440 1830 250

FN4057 2032 914 38

DATA SET F

CODE LENGTH WIDTH
MF3473 960 720
MF3473 1520 920
MF4166 840 b80
FA9113 2bb0 1200
FN4002 1829 1219
FA9325 2490 1000
FA9325 2490 1100
FA932b 2490 1200
FN3867 1930 1.572
FN3867 2540 1524
FN3067 2743 2134
MFid38 1600 840
FA9418 2490
FA9418 2490
FA9418 2490
FA9418 2490
FA9418 2490
FA3664 3048
FN4008 2438
FN4008 2438
FN4008 2438
FN4008 2438
FN4034 1219
FN4034 1829
PS0143 16b1
MF'348b 8b0
MHO886 1340
N3276 1220
FN3875 2489
BLANK 1219
BLANK 1524
FA9430 2490
FA9430 3048
FD9088 2540
F09088 2540
FD9068 2540
FD9088 2540
FN3922 1829
FA8983 1923
FA8983 1923
FA8983 19jo
MH4200 1120
F03824 2134
Pca3824 2438
FC9237 1520

1000
120U
1300
1400
1ä0U
1800

610
762
914

1219
1219
1219

610
660
920
915

2134
61C
914

170C
160C
1000
1100
120C
140C
1215
1140
144(

U4
68(

121`
121!

901

DEtiAND
45

100
100
225
250

50
25
25
42
b6
20
70

140
245

35
35

140
66

184
150
116

95
406
250

25 V

129
60
28
18

1200
150

50
50
70
35

175
70
85

264
99

165
39
70
65

D 95

. DATA SET G

CODE L
N3283
FP3704
FPJ704
FP3704
FP3704
FP3704
F08779
FD8779
FD8/79
FD8779
MH2726
PS1226
PS1226
PS122b
P51226
PS1226
P51226
FC7792
FC7792
FA7636
FA9142
FA9142
FA9142
FA9142
MH271b
MH2715
MH2715
N3281
N3281
N3281
N3281
FD8853
FD9288
FC8429
FC8429
M03943
PS1224
PS1224
N3280
N3280
N3280
MR3971
MF2694
FD6458
P06458
FD6458
FD64ä8
FN4U06
FN4006
FN4000
MS3449
MS3449
FN4007
FN4007
FN4007
FA8779
FC8952
FN4004
FN4004
FN4004
FN4004

ENGTH
2480
1120
1120
1420
1400
1400
2540
2540
2540
2540
1560

838
1046
1098
1250
1250
1250
760

WIDTH
1b00

6U0
72U
960
660
920

1000
1200
1300
1400

62U
559
711
457
457
533
553
600

1200
2240
2490
2490
2490 2490

960
1560
20b0
1830
1830
1830
1830
2440
2540
1200
1520
2520

838
1046
1220
1220
1220
2540
1360
2540
2540
2540
2540
1219
1524
1524
1524
1803
1930
2032
2032
2240
1520
1219
1219
1219
1524

900
1200
1000
1200
1600
1600

720
620
720
610
762
915

1220
1830
1800

600
440

1500
635
711
610
762
915

1800
56U

1500
1600
1700
1800

! 62
762
914
508
660

1168
813

'914
1300

440
610
762

1219
1219

Dt t AND
20

149
198
127
10b

78
35

164
35
35

240
107

j8
210

95
60
24

140
t36

225

2i
P. 5
2b
2b

786
364
347

33
27
23
3,

2b0
300
488
29b
400

40
38
50
33
68

616
565

25
25
25

175
210
150
200
126

66
125
1/0
110

45
522

24
' 60

180
214

178

Appendix B Some notes on programming

The choice of programming systems made for different

parts of the present work was more influenced by

availability than desirability. The Multi-Pop system

(Dunn, 1972) proved easiest to work with, both in terms

of the suitability of the language for the work and of

the user interface to the system.

Much of the work on trim-loss problems required the

expression in programming terms of the spatial

relationships between rectangles and, in one case, the

way in which these could be changed. Such ideas proved

difficult to express in an efficient and easily

manipulable form, and in each case an ad hoc method was

adopted. The development of a simple vehicle for these

ideas would be an extremely useful piece of work.

Had it not been for contact with Algol 68-R

(Woodward and Bond, 1972), the present author would not
have thought it necessary to make the observation that a

compiler should flag illegal constructs, not simply
"compile rubbish". The remainder of these remarks will be

concerned with run-time events.

As has been remarked in chapter 8 it must be

expected that the programs being developed will contain

bugs. It is therefore desirable that as much useful

information as possible be available to the programmer on

program failure:

i) The reporting of run-time errors should be related as

closely as possible to the source text. It is of
limited value to know that function A called function

179

B if it could have done this from any one of half a

dozen places. Likewise it is unhelpful if the precise

point of failure cannot be diagnosed because at the

time of program abort the garbage collector was in

execution and it is constructed in such a way as to

prevent this information being extracted.

ii) A post-mortem facility is extremely desirable as much

useful information will be held in complex data

structures. The process of extracting the relevant

parts of it is much easier if the post-mortem is

interactive.

A separate issue is that of information available to

the user about the actions of the garbage collector. It

should be possible to collect details of execution times

including and excluding the time spent in the garbage

collector. It should also be possible to determine the

store occupancy of a program at various points in its

execution. Only with this information is it possible to

determine the real cost of running a program and the

nature of possible time/space trade-offs.

