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Chapter 1 Introduction 

1.1 Motivation and structure 

The trim-loss, or cutting stock, problem arises 

whenever material manufactured continuously or in large 

pieces has to be cut into pieces of sizes ordered by 

customers. The problem is so to organize the cutting as to 

minimize the amount of waste (trim-loss) resulting from it. 

Brown (1971) remarks that no practical solution method 

has been found for the generalized 2-dimensional trim-loss 

problem. This thesis discusses the applicability of 

heuristic search methods as solution techniques for this 

and other problems. 

Chapter 2 describes three types of combinatorial 

search method, state-space search, problem reduction, and 

branch-and-bound. There is a discussion of the ways in 

which heuristic information can be incorporated into these 

methods, and descriptions of the versions of the methods 

used in the work described in succeeding chapters. 

In the 1-dimensional trim-loss problem order lengths 

of some material such as steel bars must be cut from stock 

lengths held by the supplier. Gilmore and Gomory (1961, 

1963) have formulated a mathematical programming solution 

of this problem, which also arises with the slitting of 

steel rolls, cutting of metal pipe and slitting of 

cellophane rolls. Their approach has been developed by 

Haessler (1971,1975) who is particularly concerned with 

problems arising in the paper industry. 

In the 1* -dimensional case the material is 

manufactured as a continuous sheet of constant width and it 
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is required to minimize the length produced to satisfy 

orders for rectangular pieces. In the 2-dimensional case 

the orders are again for rectangular pieces, but here the 

stock is held as large rectangular sheets. In both cases 

there may be restrictions as to the way in which the 

material may be cut; the generalized problem in each case 

occurs when no such restrictions exist. 

The 11-dimensional problem appears to be easier of 

solution than the 2-dimensional case since in the latter it 

is necessary not only to determine the relative positions 

of the required pieces in a cutting pattern, but also to 

partition the pieces into sets to be cut from separate 

stock sheets. A solution method for the easier problem 

might provide some insight into possible methods of 

solution of the more difficult. In chapter 3a state-space 

search method for the solution of generalized 

1# -dimensional problems where the number of pieces in the 

order list is fairly small and the dimensions are small 

integers is described. 

This method can be developed to solve 2-dimensional 

problems in which the order list is fairly small and the 

size of stock sheets variable but affecting the cost of the 

material. This development is described in chapter 4. 

A similarly structured state-space search can be used 
for finding solutions to optimal network problems. Such 

searches do not prove the solutions they find to be 

optimal, so it is of interest also to develop a method for 

finding solutions to the problems that proves them to be 

optimal. In chapter 5 the state-space search method is 

compared with one using branch-and-bound. 
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It transpires that the characteristics of trim-loss 

problems change when large numbers of identical pieces are 

ordered, so a solution method with a different structure is 

required. Chapter 6 describes a problem reduction method 

for generalized 2-dimensional problems in which the order 

lists are large and the dimensions are small integers. 

Even when there are restrictions on the way in which 

the material may be cut, the presence of other constraints 

may make a mathematical formulation of the 2-dimensional 

trim-loss problem intractable, so again a heuristic 

solution method may be desirable. In a problem where there 

are sequencing constraints on the design of successive 

cutting patterns, problem reduction is again found to 

provide a useful solution method. This is described in 

chapter 7. 

Some conclusions about the efficacy and potential of 

the methods used are drawn in chapter 8. The remainder of 

the present chapter is concerned with setting the work 

described in this thesis in the context of other work on 

the same and related problems. 

1.2 The 1* -dimensional trim-loss problem 

There has been little work published on the 

1k -dimensional trim-loss problem. Abraham, Kirby, and Ng 

(1976) remark, "the amount of literature dealing with the 

cutting stock problem is very limited due to the fact that 

many models, procedures and programming have been developed 

commercially and hence kept confidential". 

The problem they consider is one in which there are 

severe constraints on the design of cutting patterns and 
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there are sequencing constraints to which the patterns must 

conform. Both a generalized linear programming and an 

heuristic approach are discussed and the conclusion is 

reached that both produce acceptable production schedules. 

They also consider the problem of optimization of the width 

in which the material is produced. 

The problem considered in chapter 3 of the present 

work is one in which there are no restrictions on the way 

in which the material may be cut. This is reduced to one or 

more generalized 2-dimensional sub-probems. Pfefferkorn 

(1975) solves small problems of this type as a specific 

application of his Design Problem Solver. This he describes 

as slow, which is to be expected of a program which does 

not incorporate knowledge specific to the problem. With the 

size of problem considered here it would seem essential to 

do so. 

There is no evidence that the results obtained in the 

present work could be improved on in terms of accuracy, and 

the program runs at an acceptable speed. 

1.3 The 2-dimensional trim-loss problem 

With materials such as glass there is a restriction 

that when they are cut all cuts must be guillotine cuts. 

For the 2-dimensional trim-Q3ss prolQem this means that a 

cut must be a straight line from one side of the sheet to 

the opposite side, or a similar cut in a sub-sheet 

resulting from previous such cuts (see figure 1.3.1). The 

number of stages of cutting may be limited. In two-stage 

cutting the sheet is cut into strips and the strips into 

the ordered pieces; in three-stage cutting the strips are 

cut into sub-strips which are then cut into the ordered 
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two-stage guillotine 
cutting 

non-guillotine cutting 

Tyke : cuilt1 n 

Figure 1.3.1 

Gilmore and Gomory (1965) ]ive a formulation of' the 

two-stage cutting problem which can be solved by solving 

two knapsack problems, and a formulation as a staged linear 

programming problem. They then present applications of 

their knapsack formulation to a number of other problems. 

In some circumstances it may be necessary to divide the 

strips resulting from the first stage cutting into p groups 

where all the strips in the same group must be cut in the 

same manner. They discuss the two-stage problems in which 

p=1 and p=2, three-stage cutting, and problems with many 

stock sizes and free two-stage cutting. They then consider 

the three-stage 3-dimensional problem, in which cuboids are 

cut into layers, the layers into strips and the strips into 

cuboids, and two-stage problems in which the value of a 

rectangle depends on its position in the parent rectangle. 

They finish by presenting a practical application of their 

multi-stage guillotine 
cutting 
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methods to a problem arising in the manufacturing of 

corrugated boxes. 

Hahn (1967) describes a dynamic programming method 

using an adaptation of an algorithm of Gilmore and Gomory 

(1966) for minimizing the trim-loss occurring in the 

three-stage cutting of sheets that include flaws. Escudero 

and Garbayo (1973) consider a two-stage cutting process. 

They enumerate all patterns conforming to certain criteria 

and use mixed integer programming to find a combination of 

them that optimizes the objective function. 

Dyson and Gregory (1974) are concerned with a 

two-stage problem in which it is desirable that the cutting 

patterns used should conform to certain sequencing 

requirements. Their method is to generate a set of cutting 

patterns using the techniques of Gilmore and Gomory and 

then to treat the problem of sequencing these in the most 

desirable way as a travelling salesman problem to which is 

applied the method of Little, Murty, Sweeney and Karel 

(1963). 

Adamowicz and Albano (1972,1976), considering the 

unrestricted problem, group identical pieces into "strips" 

and then use dynamic programming to arrange these strips 

into optimal cutting patterns. In their work the pieces 

have sizes that are small in comparison with the size of 

the stock sheet. 

Haims and Freeman (1970), and Herz (1972) address 
themselves to a re&ted probem. Here the sizes of pieces 

to be cut are specified, but the numbers are not. The 

problem is to find arrangements of pieces that minimize the 

trim-loss when the stock sheets are cut. Chambers and Dyson 
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(1976) consider the problem of what size sheets should be 

held as stock. 

None of this work directly indicates a solution method 

for the 2-dimensional trim-loss problem with varying stock 

costs discussed in chapter 4. The technique presented there 

is known to produce sub-optimal solutions, but the degree 

of sub-optimality appears to be small. In the absence of 

any other solution methods, such a technique may well be 

useful. 

Preliminary analysis of the abstract 2-dimensional 

trim-loss problem considered in chapter 6 shows that most 

of the cutting patterns in the solution will be of the 

multi-stage guillotine form. The only work in the summary 

above that might point to a solution method is then that of 

Adamowicz and Albano. 

This method, however, would run into end-effect 

difficulties on the type of data being considered. Having 

designed a cutting pattern for one sheet, they eliminate 

from the order list the pieces cut in that pattern and 

design the next pattern using the reduced order list. Their 

choice of pieces to be cut from a sheet is made purely on 

immediate trim-loss considerations. They do not consider 

the possibility that certain selections of pieces to be cut 

in early patterns in a sequence can mean that later 

patterns must involve more trim-loss than would have been 

the case if other selections giving the same trim-loss had 

been made in the early patterns. 

During the writing of this thesis, Christofides (1977) 

published work on the multi-stage guillotine cutting 

problem. This develops the methods of Gilmore and Gomory 
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and could be applied to the present problem. Of the work 

that is described here it can be said that it produces 

solutions which there is reason to believe cannot be 

improved upon, and also allows non-guillotine cutting to be 

specified in the small number of cases where this is 

necessary for minimal trim-loss solutions to be found. 

Dyson and Gregory's problem is similar to the 

2-dimensional trim-loss problem with sequencing constraints 

of chapter 7. Their method is optimal for trim-loss, but by 

no means fully satisfies the sequencing desiderata. The 

method developed here considers sequencing requirements 

during, instead of after, the design of cutting patterns. 

By this means the sequencing desiderata can be fully 

satisfied. It is known from consideration of particular 

cases that it is possible to produce solutions satisfying 

the sequencing requirements and giving less trim-loss. 

However the degree of sub-optimality of the present method 

again appears to be small. 

1.4 The optimal network problem 

The optimal network problem problem, which is one of 

minimizing user costs in a communication network subject to 

a limit on the construction cost of that network, has been 

thoroughly reviewed by Pearman (197+). The best results in 

previously published work for the version of the problem 

considered in chapter 5 are those of Boyce, Farhi and 

Weischedel (1973), who apply an adaptation of an algorithm 

of Beale (1970) for selecting optimal subsets. 

The branch-and-bound method described here has 

distinctly better performance. The state-space search 

method in most cases finds an optimal solution and has 
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always found one that is nearly optimal. There is some 

evidence that on problems for which the branch-and-bound 

method fails to terminate the state-space method is more 

efficacious in finding good solutions. 
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Chapter 2 Combinatorial search methods 

2.1 Introduction 

For a large class of problems it is the case that a 

solution can be constructed by selecting a finite subset of 

a finite or denumerably infinite set of elements and 

arranging them in one of a finite number of ways. Finding 

a solution can be regarded as searching through the set of 

alternative combinations until one is found. For such 

searching to be a practicable proposition it must be 

suitably organized. In this chapter are described three 

methods of search organization, all of which can be 

expressed in graph theoretic terms using trees. 

In section 2.2 some graph theoretic terminology is 

introduced. Section 2.3 describes state-space search, 

section 2.4 problem reduction and two ways in which problem 

reduction and state-space search can be combined, and 

section 2.5 branch-and-bound. Adaptations of the methods 

for the problems dealt with in the present work are 

explained, some illustrative examples given, and the 

relationships between the methods discussed. 

2.2 Some concepts in graph theory 

A graph G consists of a set V of nodes together with 

a prescribed set X of unordered pairs of points of V. Each 

pair x=(v, , v2? in X is an are in G. A subgraph S of G is a 

subset of the nodes of G together with those arcs 1v, , v2} 

of G for which both v, and vz belong to S. 

A path in G is a sequence of nodes v�vA, .... , v� where 

the {vj , vj,, ) , i=1,2,..., n-1, are arcs of G. G is said to 

be connected if for every pair of nodes v, , v; L of G there is 
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a path between v, and v2. If G is not connected then it may 

be divided into components. A component C of G is a 

subgraph of G with the property that if v, and v2 are nodes 

of C then there is a path in G between them and if v, is a 

node of C and v2 a node of G not belonging to C then there 

does not exist a path in G between them. 

A directed graph D consists of a set V of nodes 

together with a prescribed set X of ordered pairs of points 

of V. Each pair x=(v�v2) in X is a directed arc in D. 

If D has a directed arc (v, 
, v2. ), then node v. 2 is said 

to be a successor of node v� and node v, is said to be a 

parent of node vl .A sequence of nodes v, , v1 , .... , vn with 

vL a successor of vß, _1 for i=2, ...., n is called a path of 

length n-1 from node v, to node v� . If a path exists from 

node v, to node v2, then node vz is said to be a descendant 

of node v, and node v, is said to be an ancestor of node v1. 

D may have a cost function P associated with it, 

P(v, , vz) being the cost of (v,, vx). The cost of the path 

v�vz,...., vn is then P(v, , v, )+P(vz, v,, )+.... +P(vn_, , v� ). 

A tree is a directed graph with a distinguished node, 

called the root node, from which each other node can be 

reached by one and only one path. A node in a tree which 

has no successors is called a terminal node. The distance 

of a node from the root node, i. e. the length of the path 

to it from the root node, is called its depth in the tree. 

A binary tree is one in which each non-terminal node has 

exactly two successors. 

2.3 State-space search 

2.3.1 Definitions 

Consider the 15-puzzle. This consists of 15 numbered, 
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moveable tiles set in a 4x4 frame. One cell of the frame is 

always empty, making it possible to move an adjacent 

numbered tile into the empty cell, leaving the cell from 

which it came empty. The problem is to find a sequence of 

moves that will transform a given initial arrangement of 

the tiles into some other specified arrangement (see figure 

2.3.1). Not all such problems are soluble. The arrangements 

may be divided into two sets with the property that any 

arrangement in a set can be transformed into any other 

arrangement in that set and no arrangement in one set can 

be transformed into an arrangement in the other set 

(Johnson and Story, 1879; Tait, 1880). 

11 94 15 1234 
1 30 12 5678 
75869 10 11 12 
13 2 10 14 131415   

e: x Initial Goal 

The 15-puzzle. kr/ 

Figure 2.3.1 

In this and many other problems we have a set of 

configurations and a set of rules describing the possible 

ways in which one configuration may be transformed into 

another. From this description can be abstracted the 

concept of a state-space (Ernst and Newell, 1969). 

A state is a configuration in the development of a 

solution to the problem. An operator is a rule for 

converting one state into another. The state-space is the 

set of all possible states and the operators that can be 

applied to them. 

A solution to a problem expressed in these terms will 

be a sequence of states and the operators that transform 
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each into the next. So the original problem is converted 

into that of searching for an appropriate sequence in the 

state-space. 

A significant sub-class of state-space 

representations for problems is that in which the initial 

state, the starting point for the solution of the problem, 

is the empty set and other states are partial solutions. As 

an example, consider a representation of the travelling 

salesman problem. 

The problem is to plan a trip in a network of n towns 

such that each town, other than that from which the trip 

started, is visited once and once only, that the town from 

which the trip started is visited only after every other 

town has been visited, and that the trip has minimal 

length. In the representation the states are ordered lists 

of towns so far visited. The initial state is the empty 

list and one state is transformed into another by adding a 

town to the list of the earlier state. States which are 

lists satisfying the routing constraints of the problem are 

candidates as solutions of the problem. That candidate for 

which the trip distance is least is the required solution. 

There is a natural representation for a state-space as 

a directed graph. The states label nodes of the graph and 

the operators label arcs. The solution, of a 15-puzzle is 

given by the sequence of labels of arcs forming a path from 

the initial state to the goal state, the required 

configuration. The solution to the travelling salesman 

problem is given in the label of the state representing the 

solution. 

Nilsson (1971) states that for a complete state-space 
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representation of problem three things must be specified: 

i) the form of the state description and, in 

particular, the description of the initial state, 

ii) the set of operators and their effects on state 

descriptions, 

iii) the properties of a goal state configuration. 

Observe that for problems such as the travelling 

salesman, where a solution is required satisfying a 

number of requirements including an optimality condition, 

all states satisfying the requirements with the 

optimality condition ignored are regarded as goal states. 

They represent feasible solutions to the problem. Amongst 

their number will be found the optimal solution, which 

also satisfies the optimality condition. 

2.3.2 Computational practice 

When a state-space representation of a problem has 

been established the task of finding a solution to the 

problem becomes equivalent to the task of finding a path 

in the state-space graph from an initial state to a goal 

state. Usually the state-space graph is not specified 

explicitly. Instead the specification consists of a set 
6j of start nodes and a successor operator r that can 

be applied to any node to give all the successors of that 

node and the associated arcs. The process of searching 

through a state-space for a path from an initial state to 

a goal state then corresponds to making explicit a 

sufficient portion of an implicit graph to include the 

required goal node. 

State-space search methods can hence be modelled by 

a graph theoretic process. 
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i) A start node is associated with the initial state 

description. 

ii) The successors of a node are calculated by applying 

r to the node. This process is called developing the 

node. 

iii) Pointers are set up from each successor back to its 

parent node. These pointers indicate a path back to 

the start node when a goal node is finally found. 

iv) The successor nodes are checked to see if they are 

goal nodes. If a goal node has not yet been found, 

the process of developing nodes continues. When a 

goal node is found, the pointers are traced back to 

produce a solution path. 

The model as stated is over-simplified. One 

complication arises from the fact that the state-space 

graph is not usually a tree. This means that nodes 

labelled with the same state can be generated by the 

application of r to different nodes. A second 

complication arises when the search is for an optimal, 

rather than simply a feasible, solution. Goal states must 

be generated until the optimal solution has been 

produced. It is necessary to determine when this has 

occurred. A third complication is that a decision must be 

made as to the order in which the nodes are developed. 

The third of these points will be considered first, 

the other two being ignored for the moment. The 

state-space is a tree and any feasible solution is 

acceptable. Such a space may be searched by a method 

which takes no account of any information as to 

whereabouts in the search space the solution is likely to 



be fcund. Such methods are called blind-search 

procedures. A typical blind-search procedure is 

breadth-first search. Its steps are: 

i) Put the start node on a list called OPEN. 

ii) If OPEN is empty, exit with failure, otherwise 

continue. 

iii) Remove the first node from OPEN and put it on a list 

called CLOSED; call this node n. 

iv) Develop node n, generating all of its successors. If 

there are no successors, go immediately to (ii). Put 

the successors at the end of OPEN and provide 

pointers from these successors back to n. 

1{n�I 

wmlv 

The tree produced by a breadth first search. 

Figure 2.3.2 

v) If any of the successors are goal nodes, exit with 

the solution obtained by tracing back through the 



17 

pointers; otherwise go to (ii). 

Breadth-first search will find the path containing 

the minimal number of arcs if any solution exists. If no 

path exists it will exit with failure for finite graphs 

and will never terminate for infinite graphs. Figure 

2.3.2 shows a breadth-first search for an 8-puzzle 

problem. 

The tree generated by a search process is a fragment 

of the entire state-space and is known as the search 

tree. A state-space in which a search is being conducted 

may be referred to as a search space. Search spaces are 

often extremely large, and a blind search tends to cover 

a large proportion of a space, producing a large search 

tree. 

Heuristic search methods, such as the Graph 

Traverser of Doran and Michie (1966), attempt to reduce 

the size of the search tree generated by using 

information about the particular space in which the 

search is being conducted. Such problem-dependent 

information is used to decide the order in which nodes of 

the search tree should be developed. 

In the Graph Traverser and related methods the 

heuristic information is used to construct an evaluation 

function which takes as its argument a state description 

and produces as a result the value of the state. This 

value is an estimate of the cost of constructing a path 

from the present state to the goal state. The values can 

be used to order the undeveloped nodes of the search 

tree. Thus instead of developing the first node on OPEN 

as in breadth-first search, each iteration of the 
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heuristic search develops the undeveloped node with lowest 

value. 

Consider again the case where the state-space graph is 

not a tree. In this case the development of a node may 

result in the generation of a node labelled by a state 

which also labels a node that has been generated in some 

previous development. In other words, a development can 

result in duplicated state labels. In a blind search for a 

feasible solution the only addition necessary to the basic 

search algorithm is not to add to OPEN any node whose 

generation brought about a duplication of state labels. If 

the search is for an optimal solution then consideration 

must be taken of the possibility that the cost (the 

quantity which is tested in the determination of 

optimality) of a goal state may be a function of the path 

to it being considered. Now when duplicated state labels 

arise the paths to the relevant nodes are considered. One 

of these paths taken together with a path from the 

duplicated state to a goal state will result in a better 

cost than the other. If the node just generated is on this 

path it is put on OPEN and the other node is put on CLOSED, 

otherwise the node just generated is put on CLOSED. 

Similar considerations arise if an heuristic search is 

being conducted. Here the differing paths to nodes labelled 

with the same state may be associated with differing values 

given to this state by the evaluation function. The node 

for which the value is least is the one that will be 

retained as a candidate for future development. 
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Thus the steps of an heuristic search of a 

state-space graph are: 

i) Put the start node, s, on a list called OPEN and 

compute f(s), where f is the evaluation function. 

ii) If OPEN is empty, exit with failure; otherwise 

continue. 

iii) Remove from OPEN that node, n, for which f(n) is 

smallest and put it on a list called CLOSED. 

(Resolve ties for minimal values arbitrarily, but 

always in favour of any goal node). 

iv) If n is a goal node, exit with the solution path 

obtained by tracing back through the pointers; 

otherwise continue. 

v) Develop node n, generating all of its successors. 

If there are no successors, go to (ii). For each 

successor, nL, compute f(ni). 

vi) Associate with the successors not already on either 

OPEN or CLOSED the values just computed. Put these 

nodes on OPEN and direct pointers from them back to 

n. 

vii) Associate with those successors that were already 

on OPEN or CLOSED the smaller of the values just 

computed and their previous values. Put on OPEN 

those successors on CLOSED whose values were 

lowered, and redirect to n the pointers from all 

nodes whose values were lowered. 

viii) Go to (ii). 

The problem of determining when an optimal solution 

has been found in the case where several feasible 

solutions exist has been considered by Hart, Nilsson and 
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Raphael (1968). They give an algorithm (A*) of the Graph 

Traverser type which, by requiring the heuristic 

evaluation function to satisfy certain conditions, 

ensures that the first feasible solution found is 

optimal. Harris (1973) describes a "bandwidth" search 

which by a different restriction of the evaluation 

function ensures that the first feasible solution found 

differs in cost from the optimal solution by a bounded 

amount. Pohl (1973), in his Heuristic Path Algorithm, 

uses dynamic weighting of the heuristic information and 

guarantees the production of a near optimal solution. 

2.3.3 More sophisticated search methods 

The branching ratio of a graph is the average number 

of successors possessed by a node of the graph. If a 

search is being conducted in a graph with a high 

branching ratio, development of a small number of nodes 

will result in the generation of a large number of nodes. 

This causes difficulty in terms of the use of a computer 

since a large amount of storage would be required to hold 

representations of all the nodes. 

A possible strategy in such a case is the partial 

development of nodes (Michie, 1967). When a node is first 

selected for development a subset of the available 

operators is applied to it and it remains a candidate for 

development at some future time. If it is later again 

selected for development a subset of the available 

operators not already used are applied to it. It will 

remain a candidate for development until all possible 

operators have been applied to it. 

Michie (1967) also considers the possibility of 
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synthesizing compound operators from simple ones. The 

application of a compound operator to a state will 

generate a sequence of successors corresponding to the 

successive application of the simple operators of which 

it is composed, each to the state generated by the 

previous one. Attempts to make use of this technique 

encounter the problem that a large number of compound 

operators could be constructed and it is difficult to 

determine which of them will in practice be useful. In 

the same paper, consideration is given to the use of 

information about a state to select the operator to be 

applied to the state. This idea can be extended to that 

of the ordering of operators (Michie and Ross, 1969) to 

determine which shall be applied during successive 

partial developments. 

Means-end analysis (Ernst and Newell, 1969) 

hypothesizes that certain states will occur on the path 

between the present state and a goal state and then 

attempts to construct the path fragments linking them. It 

is of use when such hypotheses can be made using 

information about the current state, but this is not 

possible in the work described in this thesis. 

2.3.4 Ordered operator search 

Where state-space search has been used in the 

present work satisfactory evaluation functions have not 

been available. Instead a search method, which will be 

referred to as ordered operator search, in which the 

heuristic guidance for the search is provided by an 

ordering of operators, is used. When a node is generated 

the set of operators that may be applied to it is 
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ordered, that operator which it is thought most likely 

will, when applied, produce a node on the desired 

solution path being placed first, and the ordering being 

in decreasing order of likelihood. When a node is 

selected for development the first operator in its list 

of operators is applied and removed from that list. 

The value of a node is thus no longer a simple 

measure of the probability that the node lies on the path 

to the desired solution, but rather of the probability 

that the operator, if any, which will generate the 

successor node on the path from this node to the desired 

solution, remains to be applied. A simple mechanism has 

been found adequate for the generation of such values. 

When a node is first generated it is given value 0. 

Whenever an operator is applied to a node an increment is 

added to the value of that node. The size of the 

increment may be related to the operator applied. A large 

value will reflect the belief that the application of 

operators not yet applied is unlikely to produce a node 

on a solution path. This mechanism is similar to that of 

local smoothing (Michie and Ross, 1969) where the initial 

value assigned to a state by an evaluation function is 

adjusted in the light of information gained during the 

development of that state. 

A limitation of the use of operator ordering instead 

of an evaluation function for the guidance of the search 

is the absence of a means of determining that an optimal 

solution has been found, when such is wanted. It is now 

necessary to terminate the search after some arbitrary 

number of search steps which experience suggests will be 



23 

sufficient to include a solution which, if not optimal, 

is close enough to optimal for the purpose for which it 

is needed. A similar problem arises in deciding on the 

point at which a search which has not yet found any 

feasible solution should be abandoned on the ground that 

if a solution has not yet been found it is unlikely that 

one exists at all. 

2.4 Problem reduction 

2.4.1 AND/OR graphs 

Suppose a solution is required to a complex problem. 

It may be possible to break the problem into component 

parts whose solutions taken together provide a solution 

to the original problem. More formally, a goal, G, can be 

achieved by the achievement of a conjunct of subgoals 

G1 G,,..... The assumption will be made throughout the 

present discussion that the subCoals are independent, 

that is, that the way in which one is achieved does not 

affect the possibility of achieving another. If this is 

not the case then a different approach is needed, see, 

for example, the work of Sacerdoti (1975). 

It may be the case that a subgoal can be split into 

further subgoals. A subgoal that cannot be divided in 

this way is called a primitive subgoal. It may also be 

the case that there is more than one way of achieving a 

subgoal. For example the achievement of G2 may require 

the achievement of either subgoals G 2, and G.., or 

subgoals G 23 and G24 . 
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Figure 2.4.1 

This sort of situation may be represented graphically. 

The goal is represented by the root node of a tree; other 

nodes of the tree are labelled with subgoals, successor 

nodes being labelled with subgoals of the subgoal which 

labels their parent node. The requirement that all of a set 

of subgoals must be achieved for the achievement of the 

subgoal of which they are components is indicated by a 

brace across the arcs connecting the nodes they label to 

their parent. Such a graph is shown in figure 2.4.1. In 

this case Go can be achieved by the achievement of G� or 

of both G, 2 and Gil . The achievement of G� requires the 

solution of both G2% and G22, whilst the achievement of G13 

requires the solution of either G23 or G24. The achievement 

of G23 requires the achievement of G31. 

Such graphs may be converted into a canonical form in 

which the set of arcs originating from a node either 

consists of one braced group or contains no braced groups. 

In the first case we have an AND node; all the subgoals of 

the subgoal labelling the node must be achieved for that 

subgoal to be achieved. In the second case we have an OR 

node; the achievement of any one of the subgoals of the 
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subgoal labelling the node will enable that subgoal to be 

achieved. Graphs of this canonical form are called AND/OR 

graphs (Slagle, 1963). Figure 2.4.2 shows the AND/OR form 

of the graph in figure 2.4.1. 
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2.4.2 Construction of a solution 

The terminal nodes of the AND/OR tree representing the 

relationships of the subgoals for the solution of a problem 

are labelled with primitive subgoals. When a primitive 

subgoal is considered, it will either be the case that it 

can be achieved, in which case the node it labels is 

soluble, or that it cannot be achieved, in which case the 

node is insoluble. Recursively it can be determined whether 

a non-terminal node is soluble: 

i) If the node is an OR node, then it is soluble if and 
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only if at least one of its successors is soluble, 

ii) If the node is an AND node, then it is soluble if and 

only if all its successors are soluble. 
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AND/OR search graph for travel problem 

Figure 2.4.3 

The AND/OR tree will be constructed piecewise by the 

repeated application of problem reduction to subgoals 

labelling nodes. When a sufficient portion of the tree 

has been constructed it can be determined whether the 

root node is soluble. If it is, the information as to how 

the subgoals were determined to be soluble can be 

collected and organized into a statement as to how the 

problem can be solved. Figure 2.4.3 shows how this can be 

done for the problem of planning a journey from Bradford 

to Birmingham. 

As when searching a state-spacq 

it may be required to find not 
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simply a feasible solution, but an optimal solution. A 

solution tree is defined to be a subtree of an AND/OR 

tree containing the information that is both necessary 

and sufficient to prove that the root node is soluble. 

Nilsson (1971) dives two alternative definitions of the 

cost of a solution tree, both of which are based on costs 

associated with arcs of the tree. The sum cost is the sum 

of all the arc costs in the solution tree. The max cost 

is based on the costs of paths from the root node to 

terminal nodes in the solution tree. For any such path 

the cost is the sum of the costs of the arcs making up 

the path. The max cost is defined to be the highest such 

path cost. These definitions are illustrated in figure 

2.4. x+. 

44 
Sol ution A Solution B 

5526 

t6317 

Fz '. Solution A Solution B 
Sum cost - 20 Sum cost - 18 
Max cost - 15 Max cost - 17 

Two solution trees and their coats., +ný 

Figure 2.4.4 

The problem of finding an optimal solution is 

equivalent to that of finding a solution tree having 

minimal cost within the entire AND/OR tree. Such a 

solution tree is called an optimal solution tree. Let 

c(nL, nj) be the cost of the arc between node ni and its 

successor nj. Let h(s) denote the cost of the optimal 
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solution tree rooted at the start node s. h(s) is defined 

recursively in terms of the minimal cost, h(n), for a 

solution tree rooted at any node n. 

i) If n is a terminal node (labelled with a primitive 

problem) h(n)=O if n is soluble and is undefined if 

it is not. 

ii) If n is an OR node having successors n,,...... nk 

then 

h(n)=min [c(n, n j)+h(n1 )] 

iii) If n is an AND node having successors n,,...., nk 

then 
k 

h(n)= ; [c(n, nL)+h(ný)] for sum costs, 

h(n)=max[c(n, n-, )+h(n, )J for max costs. 

During the construction of the AND/OR tree it may be 

possible to use an heuristic function, ý, to estimate the 

costs of nodes which are being made explicit. Nilsson 

(1969,1971) gives an algorithm which ensures that if ti 

satisfies certain conditions the first solution tree 

constructed is optimal. 

2.4.3 Preferred reduction search 

Where problem reduction trees are used in the 

present work satisfactory heuristic functions have not 

been available. The development of a search tree has been 

guided by a combination of the association of values with 

nodes and the ordering of possible methods of reduction 

of a node. 

The basic iteration of the process, which will be 

referred to as preferred reduction search, is: 

i) Look for the node with the lowest associated value. 

ii) Perform the most preferred of the remaining possible 
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problem reductions for this node (some may have 

already been performed). This may provide a solution 

for the problem at this node, or cause the creation 

of one or more new nodes. 

iii) Increment the value of the node to which the problem 

reduction was applied. The size of the increment 

will determine the frequency of return to this node 

during the search. Thus the increment will be small 

when it is desirable that a large number of 

alternative reductions should be made and large when 

it is not. 

This search process differs from the theoretical 

model described above in that a subgoal for which a 

solution could be directly identified, and which might 

therefore be regarded as primitive, may be instead 

reduced, leaving a subgoal remaining to be solved. The 

reason for this derives from the fact that the goal of 

the search will be one of a sequence which must be 

achieved for the solution of the overall problem. The 

details of the solution of the present goal will affect 

the nature of later goals in the sequence, and use of the 

directly identified subgoal solution could lead to the 

resultant solution sequence being sub-optimal. 

The form of the reduction may be to identify a 

category of reductions that might be performed and to 

create a new node at which the subgoal is associated with 

this category of reductions. This is a reduction in the 

complexity of the problem of choosing possible 

reductions. Alternatively the reduction may be a simple 

splitting of the subgoal into component subgoals. A third 
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possibility is that the reduction may be of the form "the 

solution is to consist of primitive element X and such 

other elements as are necessary to complete the 

solution", the determination of these other elements 

constituting a new subgoal. A representation of this type 

of reduction in terms of an AND/OR graph is shown in 

figure 2.4.5. P denotes the subgoal being reduced. Other 

reductions may already have been applied to it; these are 

indicated by the dotted lines. N denotes the new subgoal 

being set up. A is a constructed AND node linking N to 

the primitive element X. A simpler notation can be used 

and is shown in the third part of the figure. Here the 

arc connecting P to N is labelled with X. The way in 

which the components of a solution represented in this 

manner can be collected together is obvious. 
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Figure 2.4.5 

Whenever the search process produces an explicit 

solution for a subgoal some collection will occur. This 

may involve the modification of ancestor nodes to take 
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account of the solution information now available or 

evaluation of a feasible solution of the goal. Again the 

problem of a criterion for terminating the search arises. 

In the absence of other criteria, searches are terminated 

after they have consumed an amount of computing resources 

which experience indicates usually produce a feasible 

solution where one exists and an optimal solution when 

such is being sought. Note also at this point that the 

trees used in the actual computation differ in their 

detailed structure from the abstract trees that have been 

used to describe the method. 

2.4.4 Relationship to state-space search 

The process of solving a problem by problem 

reduction can be represented as a state-space search. 

Each state is a partially constructed problem reduction 

tree. The operators are the problem reduction operations 

that extend that tree. The start state is the unreduced 

problem, and the goal states are trees that include 

solution trees. 

Conversely a state-space graph can be regarded as an 

AND/OR tree containing only OR nodes. If the alternative 

notation introduced in section 2.4.3 is extended by 

replacing terminal nodes labelled with primitive problems 

by the sequence: node, arc labelled with solution to 

primitive problem, terminal node, the correspondence 

becomes obvious. 

The name applied to a problem solving method may 

thus on occasion be regarded as somewhat arbitrary. A 

particular example of this is the case where all the 

nodes of the tree developed during problem solving are OR 
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nodes, but the operations used to determine the 

successors of different nodes are of essentially 

different types. Clearly this may be regarded as a 

state-space search, but it can be convenient to regard it 

as problem reduction, the operations at different nodes 

being the reduction of different types of subgoal. 

2.4.5 Combined search methods 

When an optimal solution for a problem is being 

sought it may be the case that the possible costs of 

solutions can be listed in ascending order as a sequence 

that proceeds by discrete steps. In this case a certain 

amount of computing resources can be devoted to trying to 

find a solution with the least cost. If one is not found, 

a certain amount of resources are allocated to trying to 

determine a solution with the next least cost, and so on. 

This strategy, which will be referred to as cost 

alternative reduction, corresponds to the OR graph shown 

in figure 2.4.6. Finding an optimal cost solution for 

goal G can be reduced to the problem of finding a 

solution with the least cost, C1, or finding a solution 

with the next least cost, C2, and so on. 

Within the cost alternative reduction, a method must 

be selected for attempting to find a solution with a 

given cost. For the abstract 11-dimensional trim-loss 

problem (chapter 3), where the distinct costs correspond 

to distinct alternative amounts of material that may be 

produced, an ordered operator search is used to search 

for a solution with a given cost. The total solution 

technique will be referred to as ordered operator search 

within cost alternative reduction. 
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Alternatively it may be the case that the cost of 

solving subgoals is such that once a subgoal has been set 

up and a solution to it found that is judged to be a 

component part of the most desirable solution to the 

overall goal, resources can only reasonably be allocated 

to finding a solution to the residual problem, and 

similarly with subsequent reductions. This strategy 

corresponds to attempting to find a path from the start 

node to a goal node in a state-space graph allowing only 

one attempt to determine which successor of a given node 

lies on the path to the most desirable goal node that can 

be reached from that node. The success of such a strategy 

is limited by the precision of methods available for 

selecting such successors. 

A method must be selected for finding solutions of 

individual subgoals. Where this method is that of 

preferred reduction search, the total solution technique 

will be referred to as preferred reduction within 

non-backtracking search. 
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2.5 Branch-and-bound 

2.5.1 Structure of the method 

Branch-and-bound (Lawler and Wood, 1966) uses the 

construction of a tree as a vehicle for the determination 

of optimal solutions. The discussion here will be phrased 

in terms of a search for a minimal cost solution. Each 

node of the branch-and-bound tree is labelled with a set 

of features that a feasible solution may pomss, the 

presence or absence of some features being undecided for 

that node. A node is added to the tree by considering 

some extant node and creating as a successor to that node 

one which has all the features determined for its parent 

and some other determined feature, the inclusion or 

exclusion of one that was previously undecided. A 

terminal node of a branch-and-bound tree is one whose 

label specifies sufficient determined features to define 

a unique feasible solution. 

For branch-and-bound to be an applicable method for 

the solution of a problem it must be possible to 

construct a bounding rule. This is a function which, 

given a set of features of a solution, determines a lower 

bound on the cost of any solution possessing these features. 

A common convention, which will be followed here, is 

to construct branch-and-bound trees as binary trees. Each 

time a node is considered two successors are created, one 

having all the determined features of its parent and some 

previously undecided feature included, the other having 

all the determined features of its parent and the same 

previously undecided feature excluded. The parent node is 
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then marked as unavailable for further consideration. The 

method used, when considering a node, to select which 

currently undecided feature shall be a determined feature 

of the successors is called the branching rule. 

There are several strategies for selecting the order 

in which nodes are developed, i. e. have their successors 

constructed. One possible strategy is to develop always 

that undeveloped node having least lower bound. This can 

be expensive in terms of computing resources, since each 

development iteration will involve a complete 

reconstruction of the solution details labelling the 

current node. Often it is more economic to repeatedly 

develop newly created nodes. Suppose a node has been 

selected for development, as being the undeveloped node 

with least lower bound. Its successors are created. The 

successor which includes the previously undecided feature 

becomes the next node to be developed. The process 

repeats until either a terminal node is reached or the 

lower bound of the node due to be developed exceeds the 

cost of a known feasible solution. This is the go-right 

strategy. The go-left strategy is similar, the choice of 

successor for development being that in which the 

previously undecided feature is excluded. The advantage 

obtained with either of these strategies is that the 

iterations involving the development of successors do not 

require a complete reconstruction of solution details, 

but only a modification of those already stored to take 

account of the decision that has just been made. 

Whichever strategy is used, the determination of a 

feasible solution will be followed by an analysis of the 
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tree so far constructed to establish whether nodes as yet 

undeveloped can be eliminated as candidates for 

development. When a feasible solution is determined its 

cost is evaluated. If this is less than the cost of any 

previously determined feasible solution then the lower 

bound of each undeveloped node is compared with it. Any 

node whose lower bound is greater than the cost of a 

feasible solution can be eliminated as a candidate for 

development. This can be done by marking it as "already 

developed". 

The root node of the tree, which will be the first 

node to be developed, has no determined features. 

Development of the tree continues until all nodes are 

marked as "already developed". The lowest cost feasible 

solution found during the development is then the optimal 

solution. 

2.5.2 An example 

To explicate some of the points in the description 

above, the approach of Little, Murty, Sweeney and Karel 

(1963) to the travelling salesman problem will be 

considered, using the asymmetric 10-city problem defined 

by the matrix in figure 2.5.1 as an illustrative case. 

Here and elsewhere where problems derived from graphs are 

being described, vertex and link will be used as synonyms 

for "node" and "arc" when the problem graph is being 

referred to, "node" and "arc" being reserved to describe 

the graph developed by the problem solving method. 
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Figure 2.5.1 

The bounding rule is: 

i) Set the lower bound to zero. 

ii) For each explicitly included link (i, j) add its cost 

to the lower bound and delete row i and column j of 

the matrix. 

iii) For each path consisting of explicitly included 

links determine the starting vertex p and the ending 

vertex m and set element (m, p) of the matrix to oo. 

iv) For each explicitly excluded link (k, l) set element 

(k, 1) of the matrix to oo . 

v) Subtract the smallest element of each row of the 

matrix from every element of that row, and, having 

done that, subtract the smallest element of each 

column from every element of that column. Add all 

these elements to the lower bound. 

The branching rule is: 

i) Let «(k) be the second smallest element in row k of 

the matrix constructed by the bounding rule and, (1) 

the second smallest element in column 1. 
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ii) Find the pair (k, l) for which the (k, l) element of 

the matrix is 0 and (3(k, l)=¬(k)+, &(1) is largest. 

This chooses (k, l) so that the successor node having 

(k, l) excluded has the largest possible lower bound. 

The development strategy is that of always 

developing the node with least lower bound. The resultant 

branch-and-bound tree is shown in figure 2.5.2. The 

circles represent the nodes; inside the circle is shown 

the inclusion or exclusion which created it, to the left 

the sequence number of its creation, and to the right its 

lower bound. Full details of the determined features at a 

node are obtained by collecting the inclusions and 

exclusions from the node and its parents. Such collection 

would occur if the method were implemented on a computer. 

Consideration of this point indicates the possible merits 

of go-right or go-left as development strategies. 

2.5.3 The use of heuristic information 

In the example just described the branching rule 

takes no account of the particular problem being 

considered. Branching to maximize the bound at one of the 

successors could be equally applicable to other problems 

to which branch-and-bound was applied. Its merit is that 

it is likely to restrict the size of the tree 

constructed. This is usually desirable when 

branch-and-bound is being used. Such a branching rule may 

be called domain-independent, as it is independent of any 

particular problem domain. 

However, it may be useful to construct a branching 

rule which takes account of the particular problem 

domain. Such a rule may be called domain-specific. One 
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advantage of a domain-specific branching rule is that it 

may cause the optimal solution to be generated early in 

the construction of the branch-and-bound tree, in which 

case, as nodes will be marked as unavailable for 

development which would not be if their lower bounds were 

compared with the cost of a non-optimal feasible 

solution, the size of the branch-and-bound tree 

constructed is reduced. 

As an example of a domain-specific branching rule, 

let us consider one used in finding p-medians (Boffey and 

Hinxman)1976). A p-median of a graph with n vertices is a 

subset, V, of the vertices such that tVý=p and . hjd(V, j) 
J 

is minimal, where d(V, j)=rain d(r, j) . hj> 0 is the weight 
rev 

of vertex j and d(r, j) is the shortest distance between 

vertices r and J. A feasible solution of this problem is 

then any subset of p vertices, the optimal solution 

satisfying the minimality condition. 

If VF is a feasible solution and j any vertex in the 

graph, then there is some vertex reVF for which d(r, j) is 

minimal. j will be said to be associated with r. On 

average n/p vertices are associated with a vertex in VF. 

The heuristic assumption is that in the optimal solution 

the sets of vertices associated with the different 

vertices of V are of approximately equal size. 

At a node x of the branch-and-bound tree some 

vertices will have been explicitly excluded from 

appearing in any descendant solution, some will have been 

explicitly included, and the remainder will be undecided. 

Denote these sets respectively by Ex, Ix., Ux. The 

branching rule is: 
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i) Let Wx(i) be the `n/pi vertices nearest to 16I. 

(including i itself), where rl denotes the smallest 

integer not less than. Let Wx=UWx(i). 

ii) For each jtW2v E, 
- 

find the sum of the 1n-IWxIEx_l 

p- I, X) 
I 

smallest values of d(j, k), keWxv Ex. 

iii) Branch on the j for which the sum is smallest.. 

2.5.4 Relationship to state-space search 

Branch-and-bound may be regarded as a special case 

of state-space search. The states are lists of determined 

features. The operators applicable to a state are the 

feature exclusion and inclusion defined by the branching 

rule. A goal state is one containing sufficient 

determined features to define a feasible solution. 

Development of the tree continues until it can be proved 

that a generated feasible solution is optimal. 
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Chapter 3 An abstract 11 -dimensional trim-loss problem 

3.1 Statement of the problem 

Material of constant width is produced as a continuous 

sheet. Orders for rectangles of the material are received 

and it is wished to minimize the amount of material 

produced in order to satisfy the orders. There are no 

constraints on the way in which the material may be cut. 

The width of the sheet and the dimensions of the order 

rectangles are integers. The dimension of the sheet 

perpendicular to the width is referred to as the depth. 

3.2 Choice of method 

The basic operation in the solution of the problem is 

to specify the cutting of one of the order rectangles from 

the sheet. Recognition of this fact leads to a natural 

state-space representation of the problem. An operator in 

this representation is either the specification cutting of 

an order rectangle from the sheet, or the designation of a 

unit area of the sheet as scrap, i. e. not included in any 

order. The states are partial cutting patterns, that is, 

instructions as to how part of the order set is to be cut. 

An evaluation function for this representation would 

have to estimate the effect of successively applying best 

operators. It is not clear how such an estimate could be 

expressed as a numeric value, and most of the computation 

involved in creating the states resultant from applying 

these operators would in any case have to be done to 

provide the estimate. These facts, together with experience 

that ordered operator search was a useful method for finding 

solutions to pentomino puzzles (Golomb, 1965), suggested 
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ordered operator search as a suitable method to be applied 

to the problem. 

At first sight it would seem that one search could be 

conducted which would be guided towards solutions which 

required the minimal amount of material to be used. 

However, in order to provide this guidance it would be 

necessary to predict accurately the depth of material 

required by the best cutting pattern which included a given 

partial cutting pattern. To do so would involve solving in 

essence the original problem. In addition, the amount of 

geometric information that can be extracted from the states 

of this search is far less than that which can be extracted 

from a state of a search for a solution to the problem of 

finding a cutting pattern having a specified depth. For 

these reasons the method adopted is ordered operator search 

within cost alternative reduction. 

Define the theoretical minimum sheet depth for an 

order set to be the minimum sheet depth necessary for the 

total area of the order rectangles not to exceed the area 

of the sheet. A search is made for a solution of 

theoretical minimum sheet depth. If no such solution is 

found before the resources available for the search are 

exhausted, 1 is added to the sheet depth for which a 

solution is sought and a new search initiated. The process 

is repeated until a solution is found. The apparent 

inefficiency of discarding the search tree generated for 

each sheet depth is more than compensated for by the 

advantages of seeking solutions to better defined problems. 
The following discussion relates to the solution of 

these subproblems. Hence the sheet can be regarded as 
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having both dimensions fixed. 

3.3 Solution of the subproblems 

3.3.1 Designated positions 

Consider the uncut area in a partial cutting pattern. 

Its boundary may be regarded as including a number of 

segments of the form shown in figure 3.3.1, possibly with 

sides in common. Consider the lines of type BC. The shorter 

such a line is, the stronger the constraint as to which 

order rectangles can have sides lying along it. It would 

therefore seem desirable that when an operator is applied 

to a state it should be one that specifies the cutting of 

an order rectangle with a side along the shortest such 

line. In fact such a strategy leads to an 

over-concentration on lines parallel to the shorter side of 

a significantly non-square sheet. Better results are 

obtained by considering the line for which 

length of BC x sheet dimension perpendicular to BC 

is smallest. 

1/// 

Segment of boundary of uncut area 

Figure 3.3.1 

The operator applied should be chosen so as to make as 

weak as possible the constraints on the development of the 

resultant state. This can be regarded as maximizing the 

number of ways it can be developed. Clearly, for this to be 

case in the example, a corner of the order rectangle to be 

cut must correspond to either ABC or BCD, otherwise new, 
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stronger constraints will be generated (see figure 3.3.2). 

Consider, however, an order rectangle for which the side 

that will be perpendicular to BC is longer than AB but no 

longer than CD. Fewer constraints will be created if this 

side lies along CD (see figure 3.3.3). 

s 
a 

5 

CD 

is preferable to 
1a 

or 

f. ýw 

+fs 
ý5ýý'ý"1 ý 

BA 

Effect of positioning at corner 

Figure 3.3.2 

Al 

4ý 
rý 

is preferable to 

Effect of choice of corner 

Figure 3.3.3 

Hence the corner BCD is defined to be the designated 

position for the state under consideration. One corner of 

any order rectangle specified to be added to this partial 

cutting pattern will fit against this corner. 

3.3.2 Ordering of operators 

A grid of unit squares will be considered to be 

imposed on the sheet. For each non-square order rectangle 

two orientations are possible; its longer side may be 
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parallel to the width or the depth of the sheet. 

Given that any order rectangle cut will be at the 

designated position the operator set for a state can be 

considered to consist of the (rectangle, orientation) pairs 

that specify the cutting of order rectangles not yet cut at 

the designated position, together with scrapping the grid 

square at that position, provided such scrapping is 

consistent with the solution of the problem. 

The operator set can be ordered on the criterion of 

flexibility of the resultant state. The most significant 

factor is whether or not the edge placed along B. C is equal 

in length to BC. Operators for which this is the case are 

preferred to those for which it is not. Within this, those 

operators for which the edge placed along CD is no longer 

than CD are preferred to those for which this is not so. 

Within the classes so defined the operators are arranged in 

descending order of the areas of the order rectangles to 

which they relate. The scrapping operator is least 

preferred. 

Certain possible operators are regarded as redundant. 

These are: 

i) operators which have the same dimension in the BC 

direction as the order rectangle on the other side of 

the C end of BC where the other end of this side of 

that order rectangle is at B and its area is smaller, 

(see figure 3.3. k), 
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ii) operators which involve placing at a corner of the 

sheet other than the top left-hand corner an order 

rectangle which has been placed with that orientation 

in the top left-hand corner of the sheet in another 

state, (see figure 3.3.5). 
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Figure 3.3.5 

These operators are not included in the operator list. 

3.3.3 Feasibility of states 

When an operator is applied to a state, the 

following checks are made on the resultant state: 

i) that there is at least one operator that can be 

applied at the designated position, 

ii) that there are no more isolated unused grid squares 

dwi'. Ri? 'h': 

I 

__ .? 
" '. T 
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System 4-75. The results of these tests are shown in 

table 3.4.2. 

Where solutions of minimum theoretical sheet depth 

were found the computing time required never exceeded 4 

minutes. In the case where the solution found did not 

have minimum theoretical sheet depth there were strong 

indications that no such solution existed. The long time 

taken to find the solution of this problem (^' 10 minutes) 

would have been smaller if a different criterion had been 

used for the termination of the first search. 

Table 3.4.1 

Listing of test data 

In all cases the sheet is 20 units wide. 

±" ýYýý..,.. E: 2x 10,1 x 7,1 x 2,2 x 8, 2 x 3, 1 x 7, 
y ä> ry 5x 6x 9 6,3 x 8,6 x 1, 10 x 2, 1 x 10,3 x5 , 

x 6,1 x 10,5 x 1,5 x 5, 9 x 2, 5 x 2, 

4x 4,2 x 5,7 x 4,14 x 9, 10 x 4, 4 x 9,3 x6 

1. ýM1 

4' 

Rý 
. 1=QÄ±; 

`ý 

G: 10 x 3,10x1,1 x 10,3 x 3,5 x 3,7 x 10, 

1x'1,5x4,4 x 8,6 x 3,9 x4,6x 10,3 x 3,5 x2 

H: 9x 4+, 4+ x 9,5 x 7,3 x 8,9 x 4,7 x 10, 
kx9,3 x 1,3 x 8,6 x 7,2 x 3,4 x 2,2 x2 

I: 2x9,6 X 5,4 x 10,8 x 8,7 X 8,7 x 1, 
3x7.1 x8,4x8,6x4,10 x 6,5 X7,5x 1 

J: 2x2,1 x5,7x8,1x5,6x9,8x4, 
3x2,5 x 2,3 x 2,5x4,1 x 5,1 x 2,3x5 

K: 

t 1'" tiýý4 i` 

: ROC, tal'ilýfý#17ýic 1ºr.: iilf V 

5X 14,10 x 2,10 x 1,3 x 7,3 x 8,3 x 7, 

1x -9' X -2 -X 9,1X21x8 
ý4 

! '-ý"ý"ýý'P "T.. ', 'ý' .. ý, , yam Jý' 

ZC; x; ' ý 3? 'X "10, "' 3X -10,5 x 5,9 x 1 8. x'7, y 
5 xý; 10> 5.:, 

ý 
7,5 x 8, '5 x 

. 1,4 X_9,3X64, i:; 3De 
ý: F +lie'+ýiaW. iwA4isaý": R(ar. 'Ir>-. 7Jir:: ýa,. woJ;:. ý5..: k'1Yr:. i.. ryi. 'ý'º4, i1"iAi. 'i.. i4` 1ý'r: ce. +it'^ie 
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Chapter 4A 2-dimensional trim-loss problem with varying 

stock costs 

4.1 Statement of the problem 

The problem considered in this chapter is based on 

one arising in the oil-rig construction industry. A set 

of steel rectangles (pieces) is required. Large steel 

plates of the appropriate thickness can be ordered from 

the steel works. The cost per unit area of such plates 

depends upon their dimensions. The problem is to 

determine a set of sizes of plates to be bought from the 

steel works, and the way in which these plates are to be 

cut into the required pieces, such that the total cost of 

the steel is minimized. 

4.2 Preliminary analysis 

The length of a piece or plate is defined to be its 

longer dimension and its breadth its shorter dimension. 

The cost of a plate with length 1 metres and breadth b 

metres is calculated as 1*b*(c+e(l, b)), where c is the 

basic cost of steel in i/sq m and e(12b) the excess cost, 

in I/sq m, charged for a plate of those particular 

dimensions. Here the values taken are c=10 and e as given 

by table 4.2.1. c and e have been chosen arbitrarily, but 

the relationships between the values of e are based on a 

practical case. 

For given 1 and b, c+e(l, b)) will be referred to as 

the directed unit area cost, denoted by d(l, b) and 

min(c+e(l, b), c+e(b, l)) as the (undirected) unit area 

cost, denoted by u(l, b). It can be observed that for 

fixed 1 the directed unit area cost is minimal when b is 
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Chapter 4A 2-dimensional trim-loss problem with varying 

stock costs 

4.1 Statement of the problem 

The problem considered in this chapter is based on 

one arising in the oil-rig construction industry. A set 

of steel rectangles (pieces) is required. Large steel 

plates of the appropriate thickness can be ordered from 

the steel works. The cost per unit area of such plates 

depends upon their dimensions. The problem is to 

determine a set of sizes of plates to be bought from the 

steel works, and the way in which these plates are to be 

cut into the required pieces, such that the total cost of 

the steel is minimized. 

4.2 Preliminary analysis 

The length of a piece or plate is defined to be its 

longer dimension and its breadth its shorter dimension. 

The cost of a plate with length 1 metres and breadth b 

metres is calculated as l*b*(c+e(l, b)), where c is the 

basic cost of steel in k/sq m and e(l, b) the excess cost, 

in I/sq m, charged for a plate of those particular 

dimensions. Here the values taken are c=10 and e as given 

by table 4.2.1. c and e have been chosen arbitrarily, but 

the relationships between the values of e are based on a 

practical case. 

For given 1 and b, c+e(l)b)) will be referred to as 

the directed unit area cost, denoted by d(l, b) and 

min(c+e(l)b), c+e(b, l)) as the (undirected) unit area 

cost, denoted by u(l, b). It can be observed that for 

fixed 1 the directed unit area cost is minimal when b is 
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in the range 2.251 to 2.5 and that for fixed b the 

directed unit area cost is minimal when 1 is in the range 

k. o to 7.999. The directed unit area cost considered as a 

function of 1 and b has an unique minimum. 

Table 4.2.1 

Table of excess costs e(l, b) 

: ": }. 
min( mm 
max(mm) 

Length 
1500' 3000 
2999 

1 
4000 

u.,. 
8000 .' 12001 ,; 12000 16000 

Breadth b ", 'd ' 
, min(mm) 
= 450 

max(mm) 599, 9.0 8.0 7.0 
`I 

9: os 
600 799 8.0 7.0 6.0 6.5 7.5 
800 999 7.0 6.0 5.0 5.5 6.5 

1000 1299 6.5 5.5 4.5 5.0 6.0 
1300 1600 5.5 4+. 5 3.5 4.0 5.0 
1601 1800 4.5 3.5 2.5 3.0 4.0 
1801 2100 3.5 2.5 1.5 2.0 3.0 
2101 2250 3.0 2.0 1.0 1.5 2.5 
2251 2500 2.0 1.0 0.0 0.5 1 . 5 
2501 2750 

. 
3.0 ' 2-0 1.0 . ;, 1.5 N" `2.5'ý ' 

2751 3000"' 3'. 5 2.5 2.0 2.5,; y 35 
3001 3250 4.5 3.5 3.0 
3251 3500 5.5 4.5 , k'. 0 ? +: 5..: =': '. Y5: ýu 
3501 3750 6.5 5.5 5.0 .5 3751 3950 8.0 6.5 6.0 6.5w °ý-'; 8,: 5'',. ý 

For given 1 and b there can be determined the 

minimum value of the unit area cost for any plate from 

which a piece with these dimensions can be cut. This 

value will be referred to as the minimal unit area cost 

for that piece and denoted by m(l, b). Let Ptb denote a 

piece of length 1 and breadth b and 'P a set of such 

pieces (PL, 6, ...., PLn61 . Then a lower bound for the 

cost of obtaining'p is given by 1e bt m(l1, b,, ) . If any ýSl 
1i or b1 exceeds the largest corresponding value in table 

1+. 2.1, then there is no way of obtaining P and the cost 

of l' may be regarded as infinite. Such sets will be 

ignored. Let 1L, bL denote the length and breadth of the 

smallest plate that can be ordered from which a piece of 
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length 1, and breadth b? can be cut. It is only in the 

case where lj or b; is less than the corresponding 

minimum value in table 4.2.1 that these lengths and 

breadths will not be equal. An upper bound for the cost 
n 

of obtaining P is given by 1L b/I u(1L , b`) . 
4.3 Choice of method 

The geometry of the problem, a small order set and 

no restrictions on the way in which a sheet can be cut, 

is similar to that of the 1# -dimensional trim-loss 

problem. As the use of ordered operator search has proved 

a satisfactory approach to that problem, it is reasonable 

to investigate it as a method for finding solutions to 

the present problem. 

A stepwise method for the solution of the problem 

will have the structure: 

i) Label all the pieces " unallocated' . 
ii) Select a subset of the unallocated pieces to be cut 

from a single plate, and determine the size of the 

plate and the instructions as to how it should be 

cut. (The plate size and cutting instructions 

together form a cutting pattern). 

iii) Mark the pieces belonging to the subset as 
%Iallocated". 

iv) If any pieces remain unallocated, go to (ii), 

otherwise exit with a feasible solution to the 

problem. 

As a state-space search is being employed these 

steps must be broken down into a sequence of simple 

operations that will be the operators in the state-space 

search. A suitable formulation of the problem Will now be 
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described. 

Each state of the space will be a list of cutting 

patterns, together with a list of pieces not yet 

allocated to cutting patterns. One of the cutting 

patterns in the list may be incomplete, that is, it may 

specify certain pieces to be cut from a plate and their 

positions in it and certain areas of it that are to be 

regarded as scrap (trim-loss), but not specify the 

dimensions of it or the disposition of a possible 

remaining part of it. The start state has no list of 

cutting patterns, only a list showing all the pieces as 

unallocated. States in which the list of unallocated 

pieces is empty label terminal nodes of the state-space 

search tree. The conventional notion of goal state is not 

applicable; any state not including an incomplete cutting 

pattern represents a feasible solution. Let S,, denote a 

plate of length 1 and breadth b. Then a feasible solution 

will consist of cutting patterns for plates 

5(1b 
,,...., 

Stjb and a list of unallocated pieces 

PL 3+1bitt' - "'Pýkbk" The cost of this solution is 

Operators for this representation fall into three 

categories. Suppose a non-terminal state does not contain 

an incomplete cutting pattern. Then in a successor of it 

one of the currently unallocated pieces will be allocated 

as the first piece of a new (incomplete) cutting pattern. 

An operator which does such an allocation will be called 

a new plate operator. If a state contains an incomplete 

cutting pattern, the set of positioned pieces together 

with the areas designated as scrap may form a rectangular 
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area. It is possible to complete the pattern by giving 

the dimensions of this area as the dimensions of the 

plate from which it is to be cut, or alternatively some 

unallocated piece may be added to the incomplete pattern, 

giving another incomplete pattern. Operators applicable 

in this case will be called rectangular plate operators. 

The third possibility is that the state includes an 

incomplete cutting pattern that does not describe a 

rectangular area. Either an unallocated piece can be 

added to the cutting pattern, or an area can be 

designated as scrap. Operators applicable in this case 

will be called irregular plate operators. 

Heuristic guidance for the search is based on 

operator ordering. When a node is added to the 

state-space search tree it is given a value of 0 and the 

operators that may be applied to it are arranged in an 

order of preference. Each iteration of the search has the 

form: 

i) Locate the node with lowest value which has an 

operator that has not yet been applied, 

ii) Apply the most preferred such operator to generate a 

new node. 

iii) Increment the value of the node to which the 

operator was applied. 

4.4 New plate operators 

The broader a piece is, the more constrained are the 

dimensions of possible cutting patterns including it. 

Therefore the pieces may be ordered in decreasing order 

of breadth as a first step towards constructing an 

ordered operator list. However, an operator must specify 
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not only which piece is to be cut, but what its 

orientation is to be. This is done by relating the 

direction of longer dimension of the piece to the 

direction of the dimension of the plate from which it is 

to be cut which is expected to be larger when the design 

of the cutting pattern is complete. When these are the 

same the piece will be said to be oriented along the 

plate; when they are different the piece will be said to 

be oriented across the plate. At this stage of the design 

of the cutting pattern the best available estimate of the 

breadth of the plate is the minimum value it must have 

for the piece specified by the operator to be cut with 

the specified orientation. So, for each piece there is a 

pair of operators, one for each orientation. The pairs 

are sequenced on the breadth of the pieces; the 

sequencing within pairs is done by comparing the directed 

unit area costs for the two orientations, c+e(l, b) for 

orientation along the plate and c+e(b, l) for orientation 

across the plate. The orientation for which the directed 

unit area cost is less is the one that appears first in 

the sequencing. The quality of the heuristic information 

in this ordering is poor compared with the other operator 

orderings used, so the increment added to the cost of a 

node when one of these operators is applied is 5. 

4.5 Rectangular plate operators 

When these operators are to be applied, an 

incomplete cutting pattern exists which specifies how a 

rectangular area of a plate is to be cut. As possible 

operators are determined they are assigned values. The 

lower the value of an operator the more it is preferred. 
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The first operator to be considered is that which 

completes the cutting pattern by defining the dimensions 

of this area to be the dimensions of the plate from which 

it is to be cut. This operator is given value 0. 
a, 

42 
.k : sec .. 

*-. '^ 

Alternative operator positions 

Figure 4.5.1 

The other operators involve the addition of 

instructions for cutting pieces to the incomplete cutting 

pattern. Let P be the rectangular area for which cutting 

instructions already exist (see figure 4.5.1). Let A be a 

piece with fixed orientation the instructions for cutting 

which are to be added to the cutting pattern. Then these 

instructions are such that one of the sides of A is 

juxtaposed with one of the sides of P and another side of 

A is collinear with a side of P. This can be done so that 

it is the longer side of P which is collinear with a side 

of A (position AL) or the shorter side of P which is 

collinear with a side of A (position A. ). Let lP be the 

length of P. bp the breadth of P. 1A the dimension of the 

oriented piece A in the direction of the length of P, bA 

the other dimension of As and mA the minimal unit area 

cost for A. The possibility of placing each unallocated 

piece with each orientation in the AIg position is 

considered and if the application of such an operator 
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would not create a pattern which could not be cut from a 

plate of an allowable breadth the operator is given value 

(d(1p, bp+bA)-d(lp, bp))*1UU-mA. This reflects the 

desirability of producing patterns to be used on plates 

which by virtue of their-breadth have low unit area cost, 

and within this of finding patterns that include pieces 

of high minimal unit area cost. 

Similarly, it is desirable that the length of the 

plate on which a pattern is to be used should be such 

that the plate has low unit area cost. If already 

lp>' 14.000, then no benefit is likely to accrue from 

placing a piece in the AL position. Increasing the plate 

length will not reduce the unit area cost, and it is more 

likely that the piece being considered can be 

economically included in a new cutting pattern in which 

there is still flexibility as to the possible breadth 

than in the present one, where the breadth is constrained 

by the value of bp. So no such operators will be included 

in the operator list for this state. 

If, on the other hand, 1P< 4.000, then it may be 

worth placing a piece in the AL Position. Given an 

oriented piece As all possible oriented pieces C that 

could be placed with one edge juxtaposed with an edge of 

A and another edge juxtaposed with an edge of P are 

considered. Let be be the length of the edge of C to be 

juxtaposed with an edge of P, and let 'e be the set of 

all oriented unallocated pieces that can be placed in the 

required position without the maximum possible pattern 

width being exceeded, together with an imaginary piece 

with edge lengths 0. Then for A, s(A) is defined as 
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minjd(1p, b, ý+bc 
)-d(1r, bp )I . The value of the operator of 

placing the oriented piece A in the Al position is then 

s(A)*100-mA. The application of a rectangular plate 

operator may be regarded as the start of the design of a 

rectangular sub-pattern to be juxtaposed with an existing 

rectangular sub-pattern. The value assigned to the 

operator reflects that the two sub-patterns should have 

approximately equal breadth and that within this 

desideratum it is desirable to find patterns that include 

pieces of high minimal unit area cost. 

Whenever a rectangular plate operator is applied at 

a node, 10 is added to the value of that node. 

4.6 Irregular plate operators 

An irregular plate operator is either an addition of 

instructions for the cutting of another piece to an 

incomplete cutting pattern or an addition of instructions 

for designating an area as scrap. An individual 

designation as scrap is always for a rectangular area, 

and may be considered as instructions for cutting a dummy 

piece of the size of the scrap area. 

In the generation of such operators the first 

decision made is as to the location on the plate at which 

the new cutting is to take place. Whilst this location is 

being decided the incomplete cutting pattern is 

considered to relate to the smallest plate size 

consistent with the pattern dimensions. The areas of the 

plate not covered by the cutting instructions have 

boundaries which include a number of segments of the form 

shown in figure 4.6.1, possibly with sides in common. 
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Figure 4.6.1 
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Inscribed rectangles 

Figure 4.6.2 

The shortest line of type BC is determined. Reasoning 

similar to that in section 3.3.1 leads to the decision that 

the next piece whose cutting is to be specified should have 

an edge along BC and that one of its corners should be as 

near to B as possible if AB is longer than CD or otherwise 

that one of its corners should be as near to C as possible. 

However, since in this case the locations of the pieces on 

the plate are not yet finally fixed, some further analysis 

is necessary. The outline of the uncut area opposite BC is 

consid ed. This may be irregular, as shown in figure 

lt. 6.2(a). The set of distinct maximal rectangles that may 

be inscribed in the uncut area is determined. In the 

example these are BIEK, BMGL, BNJC, as shown in figure 

'1.6.2(b). 

For an orientation of an unallocated piece 
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consideration is given to the possibility of the piece 

being cut with one of its sides along BC, with one of its 

corners corresponding to the corner of a maximal rectangle 

determined by the required proximity to B or C described 

above. Some oriented pieces may exceed in at least one 

dimension the size of a maximal rectangle. When the 

possibility of placing such a piece is being considered in 

terms of such a rectangle, account is taken of the fact 

that the dimensions of the plate have not been specfied and 

so the positions in the plate of pieces already mentioned 

in the cutting pattern may be altered. Given such a piece 

and rectangle, changes to the positions of pieces in the 

pattern are hypothesized as follows: 

i) Let WXYZ be the minim rectangle with XY coincident 

with BC. 

ii) Consider the pieces already mentioned in the pattern 

to be rectangular objects positioned according to 

the pattern and capable of sliding in the plane of 

the plate. 

iii) If the side of the oriented piece corresponding to 

XY is longer than XY, displace YZ in the direction 

of XY by the excess amount. The displacement will 

push other pieces in the direction of XY. The 

process is illustrated in figure 4.6.3. 

iv) If displacement was necessary in (iii), replace WXYZ 

by the rectangle into which it was transformed. 

v) If the side of the oriented piece corresponding to 

YZ is longer than YZ, displace ZW in the direction 

of YZ by the excess amount. This displacement will 

push other pieces in the direction of YZ. 
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Displacement of pieces 

Figure 4.6.3 

Let c be the length of BC and a the length of the 

shorter of AB and CD. Let sa, to be the dimensions in the 

direction of BC and AB respectively of the minimal size 

plate to which the original cutting pattern could be 

applied and sN, tN the corresponding dimensions of the 

minimal size plate to which the cutting pattern 

transformed by (i) to (v) above can be applied, if these 

plate dimensions are allowable. If they are not allowable 

then the following calculation does not take place. The 

value of the operator of positioning an oriented piece of 

dimension p in the direction of BC and q in the direction 

of AB is calculated as: 

J) if there is no displacement in steps (iii) and (v) 

above, 

(c-p)*a*u(so, to) 

ii) if there is a displacement only in step (v), 

u(sNatN)*(a*(c-p)+q*(so-p)+s, *to)-ü(so, ta )*So*to 

iii) if there is a displacement only in step (iii), 

u(SWtN)*(p*(to-q)+so*to)-u(so, Oto 
)*so*t0 

iv) if there are displacements at both steps (iii) and 
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(v), 

u(s , 
tN)*(Q*(s0-p)+p*(to-Q)+s0*tp)-u(sv 

Ito 
)*sO*t0 

These values reflect the costs of areas of the resultant 

pattern that are likely to become scrap, and the benefit, 

or otherwise, of the change in estimated plate size. 

For each oriented piece the calculation of this 

value is considered for each maximal rectangle. If the 

calculation can be done for at least one rectangle, an 

operator corresponding to the smallest value calculated 

is added to the operator list, which is ordered in terms 

of ascending order of these values. This operator 

consists of instructions to make the necessary 

displacements in the existing cutting pattern and to add 

to it the cutting of the oriented piece in the specified 

position. 

One further operator is added to the operator list. 

This is the operator of designating a rectangular area 

having BC as one side and the other of length a as scrap. 

The value of this operator is a*c*u(so, t0). It is fairly 

unlikely that the application of an operator with a 

higher value than the scrap operator will lead to the 

generation of a useful cutting pattern, so when the scrap 

operator is appted at a node, 20 is added to the value of 

that node. When any other operator is applied at that 

node, 10 is added to the value. 

Suppose a displacement is made in a cutting pattern 

which includes areas designated as scrap. The designation 

of these areas as scrap may not be appropriate in the 

resultant cutting pattern. For this reason, the pattern 

produced by the application of an operator involving 
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displacement consists of all the pieces (not scrap) of 

the parent pattern displaced suitably, together with the 

additional piece in the position specified by the 

operator. It may now be necessary to designate areas of 

this new pattern as scrap. 

4.7 Results 

A program embodying these concepts has been written 

in Algol 68-R (Woodward and Bond, 1972) and tested on an 

ICL 1906S against the 16 sets of data based on random 

numbers shown in table 4.7.1. The program performed 1500 

iterations of the search for each set of data. It took 

approximately 1.25 minutes to process each set of data, 

although this time was strongly dependent on the amount 

of store allocated to the program. The results of these 

runs are shown in table 4.7.2. 

It can be seen that the average value of the 

percentage excess of the solution cost over the lower 

bound is of the order of 10% and the maximum excess of 

the order of 15%. Simple consideration of the numeric 

properties of the data shows that solutions with costs 

equal to the corresponding lower bounds cannot be 

achieved, so these figures exceed the true difference 

from optimality. 

Results obtained during the course of program 

development using other heuristics indicate that in 

specific cases the cost of the solution given by the 

present program may exceed the cost of the best possible 

solution by up to 3.6% of the lower bound. Whether such 

solutions could be regarded as adequate would depend on 

details of the practical situation to which they were to 
be applied. 
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Table 4.7.1 

Listing of Test Data 

Data Set I Data Set 2 Data Set 3 

2226 x 603 2688 x 2016 2277 x 693 
2712 x 2232 2574 x 2082 3090 x 1230 
3.147 x 2841 3180 x 1203 2169 x 1158 
1734 x 663 2835 x 1767 2094 x 1296 
2 796 x 2736 1131 x 348 3090 x 1119 
1431 x 1350 3078 x 1920 1497 x 1083 
1347 x 597 1527 x 1239 2982 x 2679 
1173 x 486 2511 x 2007 1941 x 597 
3195 x 3135 2007 x 426 1968 x 1746 
3051 x 981 2436 x 1005 3108 x 493 
3108 X- 1377 2820 x 1572 1743 x 1287 
2700 x 1872 2679 x 2247 20? 9 x 2034 
3285 x 1830 1962 x 1506 2949 x 1842 
2670 x 1170 1983 x 1482 1263 x 861 
3051 x 699 1539 x 588 3180 x 1572 
1947 x 825 2241 x 1923 

. 
1296 x 1029 

1722 x 1470 1191 x 552 1605 x 315 
1491 x 1311 2580 x 1965 2916 x 1899 
1866 x 606 3093 x 2397 2640 x 2457 
2331 x 1464 3216 x 900 2928 x 1299 
3261 x 861 2700 x 2442 2271 x 900 
2877 x 2394 1614 x 786 2193 x 516 
2871 x' 1137 2943 x 2178 3138 x 2112 
3171 x 2874 3267 x 336 2559 x 1125 
1689 x 1674 1116 x 428 3021 x-, -z973 

Data Set 4 Data Set 5 Data Set 6 

2049-x 1872 3258 x 3063 1476 x 1215 
2853 x 975 1344 x 345 2214 x 1335 
3174 x 2634 2634 x 1224 1711-6. x 1611 

3231 x 2724 762 x 453 2622 x 1269 
3099 x 696 2274 x 1515 1182 x 870 
1714 x 1635 2094 x 1509 3078 x 2052 
2352 x 480 3201 x 2292 2652 x1 890 
1323 x 1035 1290 x 834 2274 x7 
2370 x 1821 1650 x 1383 23 ? 771 
3060 x 2157 2364 x 681 88 x 1182 
3219 x 2172 624 x 576 3060 x 1494 
3237 x 2349 2301 x 570 12520 x 1365 
3054 x 2607' 2199 x 1530 2469 x 2094 
2988 x 1011 1812 x 1566 1584 x 5? 9 
2919 x 2349 2676 x 2142 3 84 x X200 
2943 x 2625 x 0 
2268 x 2067 705 x 606 3054 x 2433 
2988 x 1530 3036 x 2577 2004 x 498 
2733-, x 1455 1695 x 1428 1635 x 1293 
1770 x 1548 2562 x 663 3189 x 612 
3742 x 585 0 2700 993 x 

702 x6 654 4 1386 x 696 1 695 x 384 
3228 x 3135 729 x 708 1644 x '6'' 517 
3090 x 2472 1362 x 702 1935 x 1395 
2544 x 2301 2853 x 1239 2919 2199 
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Data Set 7 Data Set 8 Data Set 9 
1776 x 1545 1944 x 1824 1971 x 483 
3282 x 2838 2685 x 2118 2958 x 1167 
2544 x 1113 2325 x 552 3030 x 927 
3039 x 2214 3060 x 1986 2148 x 870 
1836 x 1479 2142 x 1689 2178 x 1854 
2355 x 1554 1509 x 726 2133 x 423'- 
1824 x 1776 2610 x 1377 1830 x 1698 
2178 x 1899 2751 x 813 2826 x 2454 
2664 x 1197 2424 x 2166 1470 x 306 
2424 x 531 1764 x 1.455 2499 x 426 
3117 x 1557 3'159 x 3081 1062 x 351 
1 470 x 981 2691 x 2052 3234 x 2808 
3204 x 1899 3168 x 2979 2745 x 825 
3003 x 1584 2868 x 1185 2877 x 2535 
1656 x 1455 2601 x 2001 1716 x 387 
3279 x 1341 1869 x 1674 1056 x 918 
1989 x 1278 2226 x 1440 2589 x 1185 
2778 x 2709 1611 x 1341 3084 x 888 
2391 x 1680 2502 x 1941 1902 x 1332 
2811 x 1791 2202 x 1968 3281 x 2121 

666 x 312 2520 x 576 2811 x 1845 
660 x 579 3027 x 2268 3054 x 2031 

3216 x 2076 1077 x 699 2724 x 690 
3012 x 2688 2676 x 1677 3078 x 2682 
1578 x 1098 1470 x 351 2547 x 1698 
Data Set A Data Set B Data Set C 
1563 x 1347 2451 x 351 579 x 384 
2685 x 1893 2316 x 1083 2184 x 1134 
1977 x 1215 3075 x 1353 - 3198 x 2502 
2445 x 390 1 476 x 756 3084 x 1044 
3093 x 2499 2772 'x 2127 501 x 480 
1200 x 300 2379 x 2100 3129 x 2550 
-1491 x 717 2304 x 633 1812 x 1026 
1068 x 1026 3012 x 2991 2721 x 1299 
1 809 x 1284 1878 x 663 1359 x 1080 
2076 x 2016 3039 x 774 3297 x 2055 
2757 x 1164 2610 x 1284 2091 x 1071 
1419 x 1113 2961 x 1131 960 x 321 3222 x 1950 2685 x 588 3261 x 1026 
2763 x 2427 1758 x 819 2847 x 2751 
3012 x 2994 2454 x 1308 2304 x 1188 3255 x 2823 3117 x 1575 2829': x . 1005 
2010 x 1557 2427 x 678 1002 x 969 2844 x 747 1845 x 492 2892 x 363 
1974 x 1881 2544 x 978 2127 x 981 
3009 x 1 15 2832 x 1851 2547 x 1842 

x 8 3252 x 1968 1746 x 513 1917 x 1623 2787 x 2013 2955 x 2106 2856 x 654 2400 x 561 2232 x 1635 
3081 x 2793 2577 x 2235 2712 x 1617 3255 x 576 ' 2721 x 1239 3234 x 468 
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Data Set D Data Set E Data Set F- 
2202 x 1926 2991 x 570 2328 x 1086 
2526 x 2409 3054 x 1338 3012 x 2571 
2772 x 1746 1959 x 1200 2967 x 753 

513 x 318 1968 x 1887 2565 x 729 
2508 x 1581 1179 x 711 2352 x 1209 
2778 x 1584 2550 x 987 1203 x 1080 
2718 x 1134 1443 x 1002 1917 x 96C 

807 x 471 2499 x 2028 2553 x 1272 
3057 x 1974 1866 x 321 2340 x 1137 
2169 x 1695 1170 x 510 2331 x 744 
1770 x 1173 1821. x 438 2076 x 1452 
3168 x 333 2709 x 1113 "1647 x 951 
3078 x 357 2544 x 1938 3249 x 3222 
3117 x 1128 2037 x 1278 3156 x 1347 
3093 x 2115 2766 x 2547 2332 x 378 
2892 x 864 3081 x 372 3252 x 2400 
1236 x 318 1686 x 1179 2217 x 405 
2352 x 1656 1 731 x 588 2682 x 2145 
1599 x 1296 3048 x 963 1977 x 786 
2994 x 2784 2943 x 1917 2268 x 504 
2310 x 10111 2658 x 2370 3288 x . 3114 
3255 x 1881 2196 x 1053 3138 x 621 
2355 x 1665 2436 x 1242 1755 x 1428 
2220 x 1947 2652 x 2070 1458 x 957 

732 x 501 2772 x 1515 1167 x 717 

Data Set G 
1572 x 966 
3129 x 2982 
2469 x 2271 
1836 x 846 
3174 x 1875 
2400 x '1263 
1176 x 822 
3024 x 2883 

- 3111 x 330 
1851 x 378 

732 x 318 
2367 x 1911 
3129 x 2484 
3252 x 1911 
1533 x 465 
2166 x 1245 
1620 x 1065 
2841 x 1494 
2454 x 1311 
2535 x 1851 
2961 x 2010 
2250 x 1914 
1326 x 720 
2313 x 1212 
2754 x 1947 
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Table 4.7.2 

Results of t : st: rtiius - %= 

Data Lower bound Upper bound Actual cost %age difference 
Set on solution on solution of solution between actual 

cost cost solution and 
9 £ £ lower bound 

1 1050 1380 1135 8.1 

2 895 1271 993 10.8 

3 897 1269 1000 11.5 

4 1305 1641 1404 7.6 

5 873 1198 934 6.9 
6 767 1133 837 9.0 
7 1034 1416 1193 15.4 

8 1048 1399 1133 8.1 

9 907 1245 1014 11.8 

A 1003 1334 1125 12.2 

B 860 1246 956 11.2 

C 837 1199 946 13.0 

D 871 1257 976 12.0 

E 761 1136 816 7.3 

F 892 1222 955 7.1 
G 974 1311 1053 8.1 

Mean 10.0 
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Chapter 5 The optimal network problem 

5.1 Statement of the problem 

A communication network is to be set up between a set 

of n locations. The distances and traffic flows between the 

locations and the costs of constructing possible links of 

the network are given. It is required to minimize the user 

costs of the network constructed subject to a budget 

constraint on the cost of the network. 

Formally, the problem can be stated in the following 

way. Let G be a graph with vertices 1,2,....., n and links 

Ltd, i<j. Let there be associated with this graph matrices 

(1ýj) giving the length of the link between i and j, (tLj 

giving the traffic flow from i to J, and (p. j ) giving the 

if project cost" of the link between i and J. The budget is 

B and it is required to find a subgraph H of G such that 

LýH 
p; j <B and t;, j dLj is minimal, where d, j is the 

length of the shortest path from i to j in H, the distance 

between vertices not joined by any path being considered to 

be infinite. 

5.2 Choice of method 

A state-space formulation of the problem presents 

itself immediately: 

i) the states (nodes) are lists of links to be included 

in the final network, 

ii) an operator (arc) is the addition of a link to a 

list, 

iii) the start state is an empty list, 

iv) a goal state is a list satisfying the budget 

constraint on H with the property that no link may 
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be added to it without violating the budget 

constraint. 

It is required to find the goal state for which the user 

costs are least. 

There are a large number of applicable operators at 

each node of the state-space graph. An initial 

consideration of the geometry of the problem suggests an 

ordering of the operators, so ordered operator search 

appears to be an appropriate solution method. The manner 

of its application is described in section 5.3. 

It is also possible to formulate the problem as one 

of branch-and-bound and it is of interest to compare the 

efficacy of the two methods. The branch-and-bound method 

is described in section 5.4, the results obtained from 

the application of both methods to a selection of test 

problems are presented in section 5.5, and some 

conclusions drawn in section 5.6. 

5.3 Ordered operator search 

More detailed consideration of the geometry of the 

problem indicates that some selectional restriction on 

the operators that may be applied at a node should be 

imposed. If the network at a node is not connected, the 

list of operators that may be applied at that node is 

restricted to links which will improve the connectivity, 

i. e. if such a link is added to the network a path will 

exist between two vertices between which there is not 

currently a path. Such a list of operators will be called 

a connecting operator list. It is ordered by the 

cheapness of the project costs of the links. The lowest 

cost link that improves connectivity is first on the 
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list, the second lowest cost second, and so on. 

Otherwise the traffic flows that there would be if 

the network so far constructed were the one finally used 

are considered. Let ftj denote the traffic flow there 

would be from i to J. For each Lýj not present in the 

network for which the addition of pLj to the cost of the 

network would not violate the budget constraint the 

quantity 

(dLJ-1tj )*fLj /PLj 

where dL) denotes the distance between i and j in the 

network, is calculated. The pair (i, j) for which this 

expression is positive and has its highest value is 

called the focus at the current node. If no such pair 

exists then a terminal node of the search tree has been 

reached. 

At 
CU4 

a 
(no 

-terminal node a focal operator list is 

constructed. This consists of the set of links with the 

property that the addition to the current network of any 

one of them would shorten the path from i to j without 

violating the budget constraint. To make the search a 

complete search of the state-space an additional 

operator, the focus banning operator, must be added to 

the focal operator list. When the focus banning operator 

is applied, the generated successor state consists of the 

same network, but with the additional specification that 

when the focus of this or any descendant state is being 

determined (i, j) is not a candidate as focus. In 

practice, however, the focus banning operator can be 

dispensed with. 

Let Lgh be a link in a focal operator list. Define 
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v9k by 

v9h =(d9`, -19A )*ffh 

The links in the focal operator list are ordered in 

descending order of vgh . 
The development of the search tree is based not on 

an evaluation function but on the use of heuristic 

information embodied in the ordering of the operators in 

the operator lists. The form of an iteration in the 

development of the search tree is: 

i) Find the non-terminal node with lowest cost (an 

undeveloped node has cost 0). This is the current 

node. 

ii) The first operator in the operator list for the 

current node becomes the current operator and is 

deleted from the operator list. Add 10 to the cost 

of the current node. 

iii) Construct the new node resulting from the 

application of the current operator at the current 

node. 

iv) If the new node is terminal, compare the user costs 

for it with those of the best solution found so far. 

If they are lower, note the new node as being the 

best solution found so far. If the new node is not 

terminal, construct its operator list. 

v) If there are fewer than 500 nodes on the tree, 

return to (i). 

For the range of problem sizes considered, experience 

indicates that after 500 nodes have been constructed a 

solution will have been found that is either optimal or 

very nearly optimal. It is to be expected that if larger 
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problems were considered a larger number of iterations 

would be necessary. 

5.4 Branch-and-bound 

The problem also admits a branch-and-bound 

formulation. Each node of the branch-and-bound tree, 

other than the root node, is labelled with the inclusion 

or exclusion of a link, L jýj, that might occur in the 

solution network. Associated with each node is a network 

class. This is the set of networks which contain the 

links whose inclusions label nodes on the path from the 

root node to the given node, and do not contain the links 

whose exclusions label nodes on the path from the root 

node to the given node, and also satisfy the budget 

constraint. At a terminal node the network class has the 

property that it has a member of which all the members 

are sub-graphs. That member is the feasible solution of 

the problem defined by that terminal node. 

It is found that solutions to the problem can be 

efficiently determined by the use of a go-right strategy 

for the development of the branch-and-bound tree. There 

are three aspects to the strategy: the branching rule, 

considerations of connectivity, and the calculation of 

the bound. 

The branching rule uses heuristic information about 

the problem to select at each iteration the link, whose 

status (included or excluded) is undecided, that is 

thought most likely to occur in the optimal solution. 
Corresponding to each link, Lq , there is a distance, 

M. i, which is the shortest distance between i and j in 

the network consisting of all the links except L. -. Let 
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E, j =max(O, mýj -1ij ). Then for each pair (i, j) 

býj =(t-j +tj )*c /pq is calculated. At each iteration 

the link with undecided status for which 5iß is largest 

is selected by the branching rule. Note that the 

calculation of the 5LJ'S need only be done once, at the 

start of the construction of the tree. 

For a given network class, consider the graph formed 

by the links that are definitely included. This graph may 

or may not be connected. If it is not, then it consists of 

a number of separate connected components. A feasible 

solution is a connected graph, so it is known that any 

feasible solution descendant from such a node must have 

added to the list of included links a set of links that 

connect the presently separate components. Using a result 

of Kruskal (1956) on minimal spanning trees, it is 

possible to calculate the minimum possible cost of such a 

set of links. If this cost added to the cost of the 

definitely included links exceeds the budget, then the 

node with which the network class is associated can be 

marked as undevelopable. This analysis is done for a node 

when it is being considered for development. 

Let x be a network class. Let Ex, Ix, Uz denote 

respectively the set of links that are definitely 

excluded in x, the set that are definitely included, and 

the set that are undecided. If W is a set of links then 

let C(W) be the user costs for the network they form. 

When a node labelled with an exclusion and associated 

with a network class, y, is added to the tree, its lower 

bound is calculated as C(IyuU, ). When a node labelled 

with an inclusion and associated with a network class, z, 
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is added to the tree, the calculation is first done of 

rz=B- 
2 

pik , that is, that part of the budget not yet 
L; j&__ 

committed. If there is some link L9h in U such that 

p', >r= , then the set A =(L9h I L9hE UZp'h4 rzj is determined 

and the lower bound of the node is calculated as 

C(I=vAz). 

Let s, h be the shortest distance from g to h in the 

network formed by (IZUUZ)-'EL9ti) . Let -ý9h=max(O, sj4 -19h )" 

Let V be any subset of Uy, then 

C(IZuV) ' C(I=uUZ) + (t31%+th, )'19h 

L9h, & Ux-V 

since at least the additional costs over C(IZvUZ) are 

incurred that traffic between g and h must follow some 

path other than the direct link between them. This 

inequality can be rewritten as 

(I) C(IzvV) >i C(IZVUZ) + (tjh+th9)-q9ti 

Leh & UZ 

' (t3h+thJ1, 

L9h&V 

Now, any terminal node descendant from the node with 

which z is associated will define a network whose set of 

links is IZvV,, where 
LZy 

p, h<rZ and VI, c:, Uz. So for the 
y 

node with which z is associated 

min C(Ixuvv) 

iv-v 1Z PSrx} L9ýE V, e 

is the best possible lower bound. Using inequality I 

above it can be seen that a weaker lower bound can be 

calculated as 
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min lC 
(IZu Uz) + 

7v P 
L 9hýrZ5 

(tgh+thl )%jh 

Llh& Uz 

(t9h +tti, )rllh 

Lgh6Vil 

This can be rewritten as 

C(IJuUZ) + (tqh+tß3) rl9h 

L9ý, &UZ 

- max (t 
gh +t h3 )r9h 

VýL9h 
VY 

pIhrz 
Lß, 6V 9 9ý 

The finding of an upper bound for this maximum can be 

done by solving a simple knapsack problem (Garfinkel and 

Neinhauser, 1972). Using this upper bound in place of the 

maximum gives a lower bound for the node. As the 1'L9ýs, 

and the related quantities whose values are needed in the 

solution of the knapsack problem, calculated at one node 

will be the same for the successor node labelled with an 

inclusion, this lower bound can be economically 

calculated for nodes labelled with inclusions, and this 

is in fact done for nodes other than those the 

calculations of whose lower bound has already been 

described. 

5.5 Results 

Programs using the two strategies were written in 

Algol 68-R (Woodward and Bond, 1972) and tested against 

the four sets of data shown in table 5.5.1. BFW531 is the 

graph described by Boyce, Farhi and Weischedel (1973); it 

has all the ttj 's equal to 1 and the pij$s equal to the 

1 jj 's. BFWD1 0 has the same 1gi) s, but the týj )s are 

random integers in the range 1 to 10, and 
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pq =(1 U+Ptj) *1tj where the pLj fs are random integers in 

the range 0 to 9. ND1O1 is another 10-vertex graph, based 

on a different set of random points, with the t;, i> s and 

pjj)s derived as before. ND2O1 is a similarly constructed 

20-vertex graph. 

The results of these tests are shown in table 5.5.2. 

The column "budget fraction" contains the budget 

constraint expressed as a fraction (approximate in the 

case of BFW531) of the total cost of the links of the 

graph. "Budget" contains the budget constraint, 

"solution" the best solution found by the program, 

''solution node no. " the number of nodes on the tree at 

the time the best solution was found, and "total no. of 

nodes" the number of nodes on the tree at the time the 

program terminated or was abandoned. 

The column "proved? " for the branch-and bound method 

contains "Y" if the program successfully terminated, 

if the program was abandoned, and "NN" if the best 

solution that had been produced by the program at the 

time it was abandoned is known not to be optimal. 

Abandonment occurred if the job containing the program 

had consumed more than 30 minutes CPU time. Asterisks 

occur against the number of nodes for the cases where 

abandonment occurred when other programs were run in the 

same job. 

The column "diff from B&B" contains the difference 

between the best solution found by the state-space search 

and the best solution found by the branch-and-bound 

method, expressed in absolute terms and as a percentage. 

For comparison the results obtained by Boyce, Farhi, and 
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Table 5.5.1 
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Table 5.5.2 

Results of test runs 
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Weischedel (1973) for graph BFW531 are included in the 

tabulation of results for this graph. 

5.6 Conclusions 

The methods described here represent a substantial 

improvement on those previously available in terms of 

efficiency. The state-space method, although not 

guaranteeing the optimality of the solution produced, for 

the problems considered always yielded solutions that are 

nearly optimal, the maximum error being . 297.. There are 

some indications (see the 0.1 level result for ND2O1) 

that when the complexity of the problem causes the 

branch-and-bound method to break down the state-space 

method will continue to produce acceptable results. 

It is of interest to note that the difference 

between the user costs at the 0.1 level and the 0.9 level 

ranges from 28% (ND101) down to 5% (ND201). This suggests 

that dense networks are not cost effective and that in 

practical problems methods appropriate to the finding of 

optimal sparse networks would be important. 
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Chapter 6 An abstract 2-dimensional trim-loss problem 

6.1 Introduction 

6.1.1 Statement of the problem 

Material is held in rectangular stock sheets from 

which an order list of smaller rectangular pieces must be 

cut. All the stock sheets have the same dimensions. The 

dimension of the longer side is called the length and that 

of the shorter side the breadth. A similar terminology is 

applied to the pieces. All dimensions are small integers. 

For each piece there are three integers, the length, the 

breadth, and the number ordered. The totality of these 

integers defines the order list. 

A cutting pattern is a set of instructions as to how 

a sheet is to be cut. There is no restriction on the type 

of cutting that may be specified. However, it has been 

found that for the type of data under consideration 

satisfactory solutions can be found in which much of the 

cutting is guillotine cutting. 

6.1.2 Choice of method 

There is a resemblance in this problem to the abstract 

1}-dimensional trim-loss problem, and an attempt was made 

to apply a similar ordered operator search as a solution 

technique. This attempt, however, revealed that a more 

significant feature of the geometry of the present problem 

is the large degree of repetition in the order list. The 

implication of this repetition is that a number of regular 

features will recur during the construction of a solution. 

Consideration of these features suggests a classification 

of the types of subgoal that would be created if problem 
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reduction were used for the solution of the problem. 

The regular features are: 

i) Given an order list, a type of piece can be 

identified as being the one of which it is most 

important that instructions to cut at least one 

should be included in the instructions for cutting 

the next sheet. 

ii) A number of such pieces, similarly oriented and 

juxtaposed, can be cut from a stock sheet either 

leaving an L-shaped or rectangular fragment of the 

sheet uncut, or consuming the entire sheet. 

iii) An L-shaped fragment can be divided into two 

rectangular fragments (see figure 6.1.1). 

i 

,ý 
ý` 

{_ý .. 

ý`; ý 
, L`° 

' 
rte 

t'ý, 
ý v 

Lyra "+:. y, ý, x. " ý; i... .. . 
i. l 

The L-shaped fragment;. aeft; 
. 

after the rectangle °ABOD, 
has been out __may. be; , ='. , 

'.; a, = <? r , divided into` two rectangles' x"44 
by a cut along DE. 

. 01 

Division of an L-shaped fragment 

Figure 6.1.1 

iv) A number of similarly oriented and juxtaposed pieces 

can be cut from a rectangular fragment, either 

consuming it completely, or leaving an L-shaped or 

rectangular fragment uncut. 

The related types of subgoal are: 

i) specify the set of juxtaposed and similarly oriented 

most important pieces that is to be cut from the 

next stock sheet, 

ii) specify the way in which an L-shaped fragment is to 

E 
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be divided into rectangular fragments, 

iii) specify the way in which a rectangular fragment is 

to be divided into pieces. 

The decision having been made to make use of a problem 

reduction method, the process of forming a cutting 

pattern under it can be regarded as a search in the 

subgoal tree for a set of subgoal solutions which 

together define a cutting pattern. A simplified version 

of the subgoal tree that will be set up under this 

formulation is shown in figure 6.1.2. 

The geometry of the problem suggests both the 

possible reductions of the subgoals and an ordering on 

these reductions. It is apparent that the overall goal of 

constructing a set of cutting patterns must be reduced 

into a sequence of subgoals of designing cutting patterns 

in which each pattern is appropriate to an order list 

produced from the original order list by the removal of 

orders for pieces whose cutting is specified by preceding 

patterns in the sequence. Preferred reduction within 

non-backtracking search is therefore indicated as a 

suitable method. 

The basic method can, for this problem, be enhanced 

by carrying forward information accumulated during 

attempts at the solution of one subgoal for use in 

attempts at the solution of others. This is done by 

maintaining lists describing the action taken when an 

L-shaped or rectangular fragment was encountered during 

the preparation of earlier cutting patterns, or earlier 

in the preparation of the current cutting pattern. 

The cutting patterns produced by application of the 
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problem reduction method will always be ones in which all 

the cutting is guillotine cutting. There remain, however, 

a small number of instances where it is desirable to 

search for pat erns involving non-guillotine cutting and 

here ordered operator search is appropriate. 
6.1.3 Structure of the description of the solution method 

The method of solution adopted will be described in 

terms of a program that produces instructions as to how a 

required set of pieces should be cut from a set of stock 

sheets. The program has two main routines, REGULAR which 

uses problem reduction based on the formulation above to 

produce cutting patterns in which all the cutting is 

guillotine cutting, and IRREGULAR which uses an ordered 

operator search based on the method applied to the 

abstract 1}-dimensional trim-loss problem to produce 

cutting patterns that may involve non-guillotine cutting. 

The way in which these routines are connected is 

described in section 6.2. They both operate on an order 

list on which a sequencing has been imposed. The way in 

which this sequencing is determined is described in 

sub-section 6.2.1. Control must be passed between the 

routines, and decisions made as to the maximum level of 

trim-loss (scrap) which they should be allowed to include 

in a cutting pattern at a given time. These matters are 
discussed in sub-section 6.2.2. 

Section 6.3 describes the routine REGULAR, 

sub-section 6.3.1 its general structure, 6.3.2 the way in 

which the development of its Subgoal tree is managed, 
6.. 3.3 routines for handling 'most important pieces"., and 
6.3.4 the "learning lists" that accumulate information 
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acquired by the routines for handling rectangular and 

L-shaped fragments described in 6.3.5. 

Section 6.4 describes the routine IRREGULAR, 

sub-section 6.4.1 its general structure, and 6.4.2 the 

way in which it determines sub-patterns with a "spiral" 

structure. The results produced by the program are 

presented in section 6.5. 

6.1.4 Definitions 

A piece is tessellating if its length divides the 

length of the sheet and its breadth divides the breadth 

of the sheet, or if its breadth divides the length of the 

sheet and its length divides the breadth of the sheet. 

A piece is semi-tessellating if it is not 

tessellating and one of its dimensions divides one of the 

dimensions of the sheet. 

A piece is non-tessellating if it is neither 

tessellating nor semi-tessellating. 

A sub-tessellation is the Juxtaposition of a number 

of similarly oriented identical pieces to form a 

rectangular area that can be included in a sheet. A 

sub-tessellation is maximal if no larger sub-tessellation 

could be formed with the given pieces in the given area. 

Figure 6.2.1 shows a maximal sub-tessellation of a 20x20 

sheet consisting of 7x4 pieces. 

A partial cutting pattern is an incomplete set of 

instructions as to how a sheet is to be cut. A lobal 

step is the design of a cutting pattern. 

6.2 General strategy 

6.2.1 Urgency of pieces 

In order to keep the resources required by the 



94 

program to an acceptable level the degree of backtracking 

is restricted. Once a usable cutting pattern has been 

designed the maximum number of times it can be used is 

determined. The total numbers of pieces resulting from 

such cuttings are then subtracted from the order list and 

the resultant order list used in the next global step. 

The pieces can be ranked in terms of the urgency of 

finding a cutting pattern that includes them. The urgency 

of disposing of a piece that is not tessellating is 

greater than that for a tessellating piece, since if only 

one type of piece is left at the last global step waste 

is unavoidable if it is not tessellating. The problem of 

using the area remaining in a sheet after a 

sub-tessellation with a semi-tessellating piece has been 

cut from it can be more easily solved than the 

corresponding problem for a non-tessellating piece. So 

the urgency of disposing of the semi-tessellating piece 

is less. Within each category, the smaller the piece the 

less the urgency of disposing of it. 

When the problem of using the area remaining in a 

sheet after a sub-tessellation with a piece that is not 

tessellating is being considered, it is in general not 

the case that it will be specified that a piece with area 

equal to a quarter of the area of the sheet should be cut 

from it. In figure 6.2.1 it can be seen that the 

specification of sub-tessellations including large 

numbers of 7x4 pieces precludes the subsequent cutting of 

a 1Ox1O piece, and also that the fragment remaining after 

the cutting of a smaller sub-tes&alation of 7X4 pieces 

and a 10xlO piece is potentially difficult to divide. 
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Suppose instructions to cut one or more pieces of quarter 

sheet area were included in a cutting pattern that would 

result in trim-loss. Then it is in general the case that 

the amount of trim-loss per unit area of pieces that are 

not tessellating in that cutting pattern will be higher 

than that for a cutting pattern that does not include 

instructions to cut pieces of quarter sheet area whilst 

still including instructions to cut the pieces that are 

not tessellating. For example, the maximum number of 7x4 

pieces that can be cut from a 20x20 sheet with guillotine 

cutting is 12 (the sub-tessellation of 10 shown in figure 

6.2.1 plus 2 with the other orientation) giving a 

trim-loss per unit area of pieces that are not 

tessellating of . 19, whereas if a 10x1O piece is cut from 

the sheet the maximum number of 7x4 pieces that can be 

cut from the remainder is 8 (the 7 in figure 6.2.1 not 

overlapped by the 10x1O piece plus 1 with the other 

orientation) giving a trim-loss per unit area of pieces 

that are not tessellating of . 53. 

For these reasons the urgency of a piece P is 

calculated as: 

area(P)+if area(P)*L = sheet area then 500 

elseif non-tessellating(P) then 500 

elseif semi -tesselating(P) then 250 

else 0 

close 

The order list is sequenced in descending order of the 

urgencies to which each order relates. 
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Figure 6.2.1 

At each global step the goal is to find a cutting 

pattern which includes pieces of a specified type. Call 

this type T*. At nearly every global step T* will be the 

highest sequenced type still in the order list. The 

exceptional case occurs when the total area of pieces 

that are not tessellating and are still to be cut is less 

than the area of a sheet and there is at least one 

tessellating type such that the total area of pieces of 

that type not yet cut is not at least equal to the area 

of a sheet. In this case T* is the first such 

tessellating type in the order list. 

The reason for introducing the special case in the 

choice of T* relates to the special condition that holds 

when the last sheets are cut. It is known that the last 

cutting pattern will normally involve trim-loss, since 

normally the total area of the remaining orders is not 

equal to the area of a sheet. The cutting of the last 
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pieces that are not tessellating is likely to involve 

trim-loss. The aim is to defer this cutting until use can 

be made of the known necessary trim-loss in the end 

condition. 

6.2.2 Cost control 

Two types of cost are incurred by the program, the 

cost of the computation and the cost of the trim-loss 

resulting from the set of cutting patterns produced. The 

routines do not attempt to determine the minimum amount 

of scrap that is essential for the next cutting pattern 

to be formed. Instead they operate on an order list to 

which a number of pieces of unit area, which will be 

scrap in the determined cutting pattern, have been added. 

The number of such pieces in the order list will be the 

maximum amount of scrap per sheet that is to be 

considered allowable in the current search for a cutting 

pattern. If a cutting pattern has not been formed by a 

routine after it has used 3 minutes of CPU time it will 

report failure. When a routine reports failure the 

alternatives available are: 

i) invoke the other routine, 

ii) increase the amount of scrap per sheet allowable, 

iii) change the urgencies of the pieces, 

iv) some combination of (i) - (iii). 

The choice from these alternatives is made in such a way 

as to provide the balance between the two types of cost. 

An explanation is necessary for (iii) above. The 

urgencies of the pieces affect the decisions taken inside 

REGULAR. Once it is clear that scrap will be necessary 

the justification for assigning a low urgency to 
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tessellating pieces no longer holds, and the change in 

urgencies may allow REGULAR to find patterns, possibly 

not involving scrap, that it would not otherwise 

determine. 

In certain circumstances the need for the 

introduction of scrap can be easily established. Three 

such cases are identified: 

i) If the total area. remaining to be cut is less than 

that of one sheet then sufficient scrap must be 

introduced to make the total area up to that of one 

sheet. 

ii) If the total area of pieces that are not 

tessellating is less than that of one sheet and this 

total is not divisible by the highest common factor 

of the areas of the uncut tessfllating pieces then 

sufficient scrap must be introduced to give the 

total this divisibility property. 

iii) If the sheet area is not divisible by the highest 

common factor of the areas of the uncut pieces then 

an amount of scrap equal to the remainder of this 

division must be introduced. 

The function ESTABLISH-SCRAP-PARAMETERS returns two 

values which are used when additional scrap is introduced 

into the order list. INITIAL-SCRAP is the amount of scrap 

to be introduced initially. It is calculated in the 

following way: 

i) Initialize INITIAL-SCRAP to the area of a sheet. 
Look at the order for T*. 

ii) Subtract from INITIAL-SCRAP the area of the largest 

possible number of pieces of the current type. This 
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is either the largest number which does not give a 

negative result to the subtraction, or, if it is 

smaller, the number remaining to be cut. 

iii) Look at the next order that has not been completed 

(number required not zero) and that is for pieces 

whose area is not greater than the current value of 

INITIAL-SCRAP. If any such order exists, go to (ii). 

iv) Find the smallest number of sheets whose total area 

is not less than the total area of the pieces still 

to be cut and the difference between these two 

totals. Hence calculate the average scrap per sheet 

that is inevitable. INITIAL-SCRAP is the greater of 

this value and the one previously calculated. 

SUBSEQUENT-SCRAP parameterizes the amount of scrap to be 

introduced subsequently. It is the larger of the area of 

a piece of the smallest area for which the number 

required is not zero and the result of dividing the area 

of a sheet by the number of sheets that must necessarily 

be cut. 

It is now possible to consider how the control 

function of the program invokes REGULAR and IRREGULAR, 

and the action it takes when they report failure. The 

sequence of events is: 

i) Establish the ord er list with urgencies calculated 

as in 6.2.1. 

ii) Determine T* and set TOTAL-SCRAP, the amount of 

scrap to be added to the order list, to the amount 
it is known must be introduced. 

iii) If TOTAL-SCRAP is not zero, determine 

SUBSEQUENT-SCRAP and go to (vi). 
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iv) Call REGULAR. If a cutting pattern is found, go to 

(Xi). 
v) Call ESTABLISH-SCRAP-PARAMETERS. If INITIAL-SCRAP 

is not greater than TOTAL-SCRAP, go to (ix), 

otherwise make TOTAL-SCRAP equal to INITIAL-SCRAP. 

vi) Make the urgency of each piece equal to 250 + its 

area. 

vii) Call REGULAR. If a cutting pattern is found, go to 

(xi). 

viii) Call IRREGULAR. If a cutting pattern is found, go 

to (xi). 
ix) If SUBSEQUENT-SCRAP is greater than TOTAL-SCRAP, 

make TOTAL-SCRAP equal to SUBSEQUENT-SCRAP and go 

to (vii). 

x) Double SUBSEQUENT-SCRAP. Go to (ix). 

xi) Determine the maximum number of times the cutting 

pattern can be used without causing an excess 

quantity of some piece to be cut. Print cutting 

instructions and update the order list. 

xii) Determine T* and the amount of scrap 

(MAXIMUM-SCRAP) that must be introduced for the 

revised order list. If all the orders have been 

satisfied, stop. 

xiii) If the new T* differs from the old one then: 

a) if MAXIMUM-SCRAP is zero and TOTAL-SCRAP is not 

zero, restore the urgencies of the pieces to 

their original values, 

b) set TOTAL-SCRAP equal to MAXIMUM-SCRAP and go to 
(iii). 
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xiv) The amount of scrap in the order list will be the 

larger of MAXIMUM-SCRAP and the amount of scrap in 

the previously generated cutting pattern. 

xv) If this amount is zero and TOTAL-SCRAP is not zero.. 

restore the urgencies of the pieces to their 

original values. Set TOTAL-SCRAP to this amount. 

xvi) If the last cutting pattern was found by IRREGULAR, 

go to (viii). Otherwise go to (iii). 

6.3 The routine REGULAR 

6.3.1 Structure of the routine 

The principal data structure maintained by the 

routine is a tree of subgoals. The label at each node 

includes: 

i) The name of a function that will either solve the 

subgoal or set up additional subgoals. 

ii) A marker that indicates the status of the node as 

''active" , "suspended"., or "inactive". 

iii) A cost used to determine which subgoal should be 

considered next. 

The functions whose names occur in node labels can 

be divided into two sets. Those in the first set are 

concerned specifically with the cutting of pieces of type 

T*; they can be further divided according to T*: 

i) T* tessellating: TESSEL 

ii) T* semi-tessellating: SEMITESS, CONDB, 

CONDB-MAX-FIND, 

NOT-CONDB-LEVELI, 

NOT-CONDB-LEVEL2 

iii) T* non-tessellating: NONTESS, CONDA, 

CONDA-MAX-FIND, FILLOUT, 

FILLOUT-COMPLETE 
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The second set consists of two functions which 

attempt to find a way in which a fragment of a sheet 

having a certain shape can be divided into pieces. 

RECTFILL handles rectangular fragments, whilst 

LSHAPE-FILL handles L-shaped fragments. 
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Figure 6.3.1 

The relationships between all of these functions are 

outlined diagrammatically in figure 6.3.1. An arrow 

pointing from one function name to another indicates that 

the first function can set up subgoals which the second 

function will be invoked to solve. In most cases the 

combination of the subgoal solution with information 

"memorized" by the function that set up the subgoal will 
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result in a solution of the subgoal this latter function 

was required to solve. In certain cases (those in which 

"(2)" follows the function name in the diagram), however, 

the solution of a subgoal must be combined not only with 

the memorized information, but also with the solution of 

a second subgoal, which will not be set up until a 

solution of the first subgoal is found. In these cases 

arrows pointing to functions that may be invoked to solve 

the first subgoal of a pair are labelled "111., and those 

pointing to functions invoked to solve the second are 

labelled u2u. 

Three lists, RECT-OCCURS, RECT-PENDING and 

RECT-SUCCESS are used to hold the information "learnt" by 

RECTFILL as to how rectangular fragments may be cut into 

pieces. The list LSHAPE-OCCURS holds similar information 

learnt by LSHAPE-FILL. 

6.3.2 Search strategy 

A search is being conducted in a problem reduction 

tree for a set of subgoal solutions which together define 

a usable cutting pattern. A step in this search may 

result in the solution of a subgoal. First, however, the 

case in which the previous step did not result in such a 

solution will be considered. In this case a search is 

made for the node which is active and has the lowest cost 

in its label. The function in this label is then executed 

with the values of its local variables set from 

information in the label. The function will execute until 

one of three things happens: 

i) it finds a solution of the subgoal, 

ii) it creates a new subgoal, 
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iii) it terminates having failed to do either of these 

things. 

If its action is (i) or (ii) it may add to the costs of 

any of the present node, the parent of the present node, 

and the grand-parent of the present node. The size of the 

increment reflects the number of alternative reductions 

of the subgoal at the node at which it is made that it is 

thought should be attempted. The larger the increment the 

less frequently attempts will be made to reduce the 

subgoal. The cost of an ancestor is incremented when the 

fact that the reduction of the descendant has been made 

makes it less desirable to perform alternative reductions 

of the ancestor. The node associated with a new subgoal 

will have initial cost zero and will be marked active, 

unless information on one of the learning lists relating 

to it indicates that this should not be dase. If the 

action of the function was (i) or (iii) the current node 

is marked inactive. 

If, on the other hand, the previous step did result 

in the solution of a subgoal, the parent node of that 

subgoal is considered. The function in its label is 

reinstated with its local variables set from information 

in the subgoal solution. The function will either report 

the solution of the current subgoal, in which case the 

node is marked inactive, or create a new subgoal. 

6.3.3 Functions associated with T* 

For each of the three categories of T*, 

non-tessellating, semi-tessellating, and tessellating, 

there is a sequence of subgoals that can be set up, each 
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subgoal being the completion of a partial cutting pattern 

that includes pieces of type T*. Sub-sections 6.3.3.1 to 

6.3.3.3 describe these sequences of subgoals and the 

operation of the functions that create them. 

6.3.3.1 T* non-tessellating 

Any sub-tessellation starting from the north-west 

corner of the sheet will result in a partial cutting 

pattern of the form shown in figure 6.3.2. All the 

subgoals are completions of such cutting patterns. Note 

that, depending on whether the sheet or T* are square, up 

to 4 pairs of values of L, and L2 can result from 

sub-tessellations with m pieces in one direction and n 

pieces in the other. 
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Figure 6.3.2 

There may be a number of ways in which a value of L, 

or L2 is divisible by the length of a side of a piece 

with urgency not less than 250. The function 

BEST-REMAINDER-FIND is used to evaluate the alternatives 

for values of L, and L2 resulting from a given 

orientation of the pieces of type T* in the 

sub-tessellation. The evaluation for the L1 case will be 
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described. Cz is held constant at its largest possible 

value. The initial value of L, is the smallest possible 

consistent with the requirement that the sub-tessellation 

should not include more pieces of type T* than remain in 

the order list. The pieces that remain to be cut are 

considered in the sequence in which they occur in the 

order list. For each such piece both possible 

orientations are considered. A check is first made that 

there is not some piece of higher urgency for which the 

divisibility property has been found. Suppose there is 

not, that side length Pi of the piece divides L,, and 

that the other side of the piece has length P2. If PI 

divides C2 or Si and the number of pieces of this type 

remaining in the order list is sufficient to form a 

sub-tessellation with dimensions L, and Ca or S2 (as 

appropriate) then BEST-REMAINDER-FIND exits with a value 

of 1000 + urgency of this piece. Otherwise, if the number 

of pieces of this type remaining is at least Lj/P1 the 

details of the piece and orientation are noted. If these 

are the details finally returned by BEST-REMAINDER-FIND 

the value will be the urgency of this piece. When all 

pieces have been considered for a particular value of Li, 

the next largest value of Li is considered. The 

evaluation for L. is similar, for a description simply 

interchange the 1's and 2's in the subscripts in the 

above. 

If one of the evaluations of BEST-REMAINDER-FIND 

identifies such a divisibility condition then condition A 
is said to hold. If both evaluations identify such 
divisibility conditions, condition A refers to the one 
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with the higher value. The aim of establishing condition 

A is to devise partial cutting patterns which, when 

completed, would produce cutting patterns that, when 

used, would simultaneously reduce the number of pieces 

uncut for two pieces, whilst making the completion of 

such partial cutting patterns a relatively easy problem. 

Let LA denote the value of L, or Lz specified by 

condition A. Let T. denote a sub-tessellation consisting 

of a set of the specified pieces with the specified 

orientation juxtaposed so that the sides whose lengths 

divide LA together form a side of the sub-tessellation of 

length LA and the other side length of the 

sub-tessellation is equal to the other side length of the 

piece. An example of such a sub-tessellation is shown in 

figure 6.3.3. 
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CONDA-MAX-FIND is invoked if it has been established 

that condition A holds. It first determines the largest 

sub-tessellation using sub-tessellations of type TA with 

their sides of length LA juxtaposed that can be formed in 

the remainder of the sheet starting at the edge of length 

L. and with a sub-tessellation side of length LA along 

this edge. A possible form of this sub-tessellation is 

shown in figure 6.3.4. 
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The first subgoal set up by CONDA-MAX-FIND is the 

completion of this cutting pattern. Subsequent subgoals 

are to complete a cutting pattern of this form in which 

the number of T. sub-tessellations in this 

sub-tessellation is reduced by 1 each time until it 

reaches 1. In terms of figure 6.3.4, in the creation of 

subsequent subgoals the sub-tessellation is successively 

ABGH, ABEF, and ABCD. Each time it sets up a subgoal 

CONDA-MAX-FIND adds 1 to the cost of the current node, 1 

to the cost of the parent node, and 1 to the cost of the 

grandparent node. 

CONDA is given an orientation of T* and determines 

whether condition A holds for this orientation. If it 

does, CONDA sets up a subgoal to be solved by 

CONDA-MAX-FIND and adds 1 to the cost of the current 

node. 

The first goal set up by NONTESS is for CONDA to 

establish whether condition A holds with the breadth of 
T* parallel to the breadth of the sheet. If neither the 

sheet nor T* are square the next subgoal set up is for 
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CONDA to establish whether condition A holds for the 

other orientation of T*. 

NONTESS next determines the upper bounds for M and 

N. the number of pieces in each row and column of a 

sub-tessellation using pieces of type T*. For descending 

values of M+N, for descending values of M within M+N, and 

for both orientations of T* within N when neither the 

sheet nor T* are square, subgoals are set up, at 

successive entries to NONTESS, to complete a partial 

cutting pattern that starts with an M by N 

sub-tessellation using pieces of type T*, where MxN is 

not greater than the number of pieces of type T* still in 

the order list. 

The last subgoal set up by NONTESS has FILLOUT as 

the function in the label of the node. The strategy 

controlled by FILLOUT is as follows: 

i) Consider a sub-tessellation using all the remaining 

pieces of type T*, if such a sub-tessellation 

exists. 

ii) Consider a type occurring later in the order list 

than T* for which pieces remain to be cut. 

iii) Determine the minimal sub-tessellation with pieces 

of this type such that the lengths of both sides of 

the sub-tessellation are not less than those of the 

corresponding sides of the sub-tessellation in (i). 

iv) If the sub-tessellation in (iii) would leave an 

L-shp ed fragment uncut, determine a partial cutting 

pattern that includes the sub-tessellation in (i) 

and defines the cutting of a rectangle whose sides 

are equal to the sides of the sub-tessellation in 
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(iii). 

v) Determine a way in which the remaining L-shaped 

fragment may be cut. 

Note that in (i) it is required that all remaining 

pieces of type T* be used and that in (iv) it is required 

that the remaining fragment be L-shaped. This strategy is 

specifically designed to "embed" the remaining pieces of 

type T* in a sub-tessellation with another type to 

produce a solution that would not otherwise be found. 

Figure 6.3.5 shows how this strategy might generate a 

solution. 
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cutting pattern. 

Successive entries to FILLOUT set up subgoals to be 

solved by FILLOUT-COMPLETE in the fiollowing order: 

i) Consider in turn each type following T* on the order 

list for which pieces remain to be cut. 

ii) For each type in (i) consider firstly those 

sub-tessellations in which the breadth of the pieces 

of type T* is parallel to the breadth of the sheet 

and the length of the sub-tessellation is 

successively 1,2,.... pieces, where such 

sub-tessellations exist. Secondly, if neither T* nor 

the sheet are square, consider in turn the 

sub-tessellations in which the length of the pieces 

of type T* is parallel to the breadth of the sheet. 

Each time FILLOUT-COMPLETE sets up a subgoal not 

consequential upon the solving of a previous subgoal it 

adds 1 to the value of the current node. Each time 

FILLOUT sets up a subgoal it adds 1 to the value of the 

current node. Each time NONTESS sets up a subgoal it adds 

6 to the cost of the current node. 

6.3.3.2 T* semi-tessellating 

Suppose that sheet dimension S, is divisible by 

dimension Pi of type T*, so that S1/P1 =R, . Then a 

sub-tessellation of R pieces of type T* with their sides 

of length Pi along the sheet side of length S, can be 

formed. Call such a sub-tessellation a row. Note that 

either of the piece dimensions might divide either of the 

sheet dimensions, so it may be possible to form more than 

one type of row. 

When a sub-tessellation is formed by juxtaposing 



112 

several rows, the uncut fragment of the sheet will be 

rectangular, as in figure 6.3.6. There may be a number of 

ways in which L is divisible by the length of a side of a 

piece with urgency not less than 250. The function 

BEST-REMAINDER-FIND is used to evaluate these 

alternatives; in the account in section 6.3.3.1, Ca is 

equal to S, and L, denotes L. If BEST-REMAINDER-FIND 

identifies a divisibility condition, condition B is said 

to hold. 

Rý--_. 

C'. U T, 

'`iý ice ýt 

.M it . t" 

Sub-tessellation with semi-tessellating pieces 

Figure 6.3.6 

Let Lia denote the value of L specified by condition 

B and let Tg denote a sub-tessellation analogous to TA in 

section 6.3.3.1. 

CONDB-MAX-FIND is invoked if it has been established 

that condition B holds. It first determines the largest 

sub-tessellation using sub-tessellations of type To with 

their sides of length LB juxtaposed that can be formed in 

the remainder of the sheet starting at a side of length 

Lg and with a sub-tessellation of length Lg along this 

side. A possible form of this sub-tessellation is shown 

in figure 6.3.7. 
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Figure 6.3.7 

The first subgoal set up by CONDB-MAX-FIND is the 

completion of this cutting pattern. Subsequent subgoals 

are to complete a cutting pattern of this form in which 

the number of TB's in this sub-tessellation is reduced by 

1 each time until it reaches 1. In terms of figure 6.3.7, 

in the creation of subsequent subgoals the 

sub-tessellation is successively ABGH, ABEF, and ABCD. 

Each time it sets up a subgoal CONDB-MAX-FIND adds 1 to 

the cost of the current node, 1 to the cost of the parent 

node, and 1 to the cost of the grandparent node. 

CONDB is given an orientation of T* and a direction 

in which rows can be formed given this orientation of T*, 

and determines whether condition B holds in this case. If 

it does, CONDB sets up a subgoal to be solved by 

CONDB-MAX-FIND and adds 1 to the cost of the current 

node. 

NOT-CONDB-LEVEL2 is given an orientation of T*, a 

direction in which rows can be formed given this 

orientation of T*, and a number of rows. It checks that 
the number of pieces of type T* still in the order list 
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is not less than that required to form the requested 

number of rows. If this is case, it sets up the subgoal 

of completing the partial cutting pattern that starts 

with the given sub-tessellation with pieces of type T* 

and adds 6 to the cost of the current node. 

NOT-CONDB-LEVEL1 determines the upper bound on MR, 

the number of rows that can be formed given either 

orientation of T* and either direction of the sheet. For 

descending values of MR, and for both orientations and 

both directions within MR, where these would result in 

distinct subgoals, subgoals are set up, at successive 

entries to NOT-CONDB-LEVEL1, for a partial cutting 

pattern that starts with MR rows of T* with the given 

orientation and direction to be considered by 

NOT-CONDB-LEVEL2. Each time a subgoal is set up, 6 is 

added to the cost of the current node and 6 to the cost 

of the parent node. 

The first sequence of subgoals created by SEMITESS 

is for CONDB to establish whether condition B holds for 

each of the possible rows. Rows whose shapes are the same 

as those already considered, because T* or the sheet are 

square, are ignored. Each time such a subgoal is created, 

1 is added to the cost of the present node. The next 

subgoal set up is for NOT-CONDB-LEVELI to create a 

cutting pattern The last subgoal that can be created is 

for NONTESS to create a cutting pattern. The 

sub-tessellations with pieces of type T* that are 

examined by NONTESS are distinct from those that have 

previously been considered; also, in this case, NONTESS 

will not investigate the possibility of condition A 
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holding. 

6.3.3.3 T* tessellating 

If the total area of pieces of type T* still in the 

order list exceeds the area of a sheet, TESSEL can 

immediately create a cutting pattern. Otherwise a subgoal 

for SEMITESS to create a cutting pattern is set up. 

6.3.4 The learning lists 

The assumptions on which the maintenance of the list 

LSHAPE-OCCURS is based are: 

i) if the subgoal of dividing an L-shaped fragment of 

certain dimensions into pieces has been set up a 

number of times but never solved, then the greater 

the number of times it has been set up the less the 

likelihood that a solution will ever be found, 

ii) if in a global step a number of subgoals of dividing 

an L-shaped fragment of certain dimensions have been 

set up and no solution has yet been found to any 

such subgoal, only one such subgoal should be active 

at one time, as this will avoid the parallel pursuit 

of solutions to a possibly insoluble problem, 

iii) if in a global step a number of subgoals of dividing 

an L-shaped fragment of certain dimensions have been 

set up and a solution has been found to one such 

subgoal, then all such subgoals should be active, 

since it is likely that all the subgoals have 

solutions. 

Each element of LSHAPE-OCCURS has three parts, the 

dimensions of an L-shaped fragment, a count, and a flag. 
Whenever a subgoal to be solved by LSHAPE-FILL is set up, 
this list is inspected. If there is not an element 
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corresponding to the L-shape to be handled in this 

subgoal, an element consisting of the dimensions of this 

L-shape, a count of 1, and a set flag is added to 

LSHAPE-OCCURS. If there is an element corresponding to 

the L-shape then the cost of the node is made equal to 

twice the value of the count and 1 is added to the count. 

If the flag was set the node is marked as suspended, 

otherwise the flag is set. When LSHAPE-FILL solves a 

subgoal the corresponding element is removed from 

LSHAPE-OCCURS, and all subgoals for the handling of 

L-shapes of those dimensions currently marked suspended 

are re-marked active. If LSHAPE-FILL is executed and 

terminates without solving the current subgoal or setting 

up a new subgoal, the current node therefore being marked 

inactive, one subgoal for the handling of an L-shape of 

those dimensions currently marked suspended is re-marked 

active. At the end of each global step all flags are 

cleared. If the amount of scrap allowable is increased 

the existing elements of LSHAPE-OCCURS are discarded, 

since it may now be possible to generate instructions to 

divide a fragment that could not be divided into pieces 

when less scrap was allowable. 

The elements of the list RECT-SUCCESS are sets of 

instructions for dividing rectangular fragments into 

pieces. When such a set is found it is added to 

RECT-SUCCESS. When instructions for dividing a 

rectangular fragment are sought, RECT-SUCCESS is 

inspected to determine whether it includes instructions 

for dividing a fragment of the dimensions of the one 

being considered. If it does, and if the use of these 
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instructions would not result in the cutting of pieces in 

excess of the order quantities, the instructions provide 

a solution of the subgoal. Retrieving of subgoal 

solutions in this way not only reduces search time, but 

also makes it possible for solutions found when one set 

of urgency values was in use to be used when the other 

set of urgency values is in use. In this case the search 

might not otherwise reach a solution before the search 

time expired. At each global step all sets of 

instructions that would necessarily result in the cutting 

of pieces in excess of the order quantities are removed 

from RECT-SUCCESS. 

When the subgoal under consideration is the cutting 

of a rectangular fragment into pieces, there will be a 

sequence of alternative actions, both the setting up of 

subgoals and the generation of cutting instructions, that 

can be taken. This sequence may be of considerable 

length. If each of a number of subgoals, all for the 

cutting of rectangular fragments of a certain size, are 

treated independently, it may be expected that the same 

sequence of events will occur for each of them, resulting 

in the same (possibly abortive) search pattern. The list 

RECT-PENDING is used for avoidance of this situation. 

If some, but not all, of the possible actions for a 

fragment of a particular size have been considered, 

details of the last action taken, which will have 

resulted in the setting up of a subgoal, are stored in 

RECT-PENDING. On the next occasion that the subgoal of 

dividing a fragment of that size is encountered, these 

details will be used to determine the action to be taken, 
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this being the next after the one whose details were 

found in RECT-PENDING, if any such action exists. 

RECT-PENDING is retained from one invocation of REGULAR 

to the next, unless the values of the urgencies are 

changed, in which case the order in which the 

alternatives are to be considered will be changed. This 

means that actions for a subgoal of dividing a 

rectangular fragment of a given size that have not been 

considered in a previous global step can be preferred to 

those that have. 

Where all possible actions for the subgoal of 

dividing a rectangular fragment of a given size have been 

considered, an entry is made in the list RECT-OCCURS. 

RECT-OCCURS is used similarly to LSHAPE-OCCURS, to allow 

only one node relating to a fragment of a given shape to 

be active at any one time and to weight such nodes 

according to the frequency with which they occur. In the 

case of rectangular fragments, the cost of a new node 

relating to a rectangle is made equal to the count for 

that rectangle. 

6.3.5 Rectangular and L-shaped fragments 

A check is made at the time that a subgoal is 

created that the smallest dimension of a rectangular or 

L-shaped fragment that is to be divided into pieces is 

not less than the smallest dimension of any order piece. 

Subgoals in which this condition would be violated are 

not set up. 
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The division of L-shaped fragments into pieces is 

handled by the function LSHAPE-FILL. In figure 6.3.8, EF 

is less than BC. The first entry to LSHAPE-FILL for this 

L-shape would set up the subgoal of dividing the 

rectangle DEFG into pieces. An entry to LSHAPE-FILL 

consequent upon the solution of this subgoal will set up 

the subgoal of dividing the rectangle ABCG. When this is 

solved the entire subgoal for this L-shape is soved. The 

second entry to LSHAPE-FILL not consequent upon the 

solution of a subgoal sets up the subgoal of dividing the 

rectangle AFEH. An entry to LSHAPE-FILL consequent upon 

the solution of this subgoal sets up the subgoal of 

dividing the rectangle BCDH. For L-shapes in which AF is 

equal to AB and BC is equal to EF, this second case does 

not occur. When a subgoal is set up as the result of an 

entry not consequent upon the solution of a subgoal, 1 is 

added to the cost of the current node. 

The division of rectangular fragments into pieces is 

handled by the function RECTFILL. On the first entry to 

RECTFILL a check is made that the tota area of pieces 
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with breadth not greater than the breadth of the fragment 

is at least equa to the area of the fragment. If this is 

not the case, the insolubility of the subgoal is 

reported. 

Each entry to RECTFILL causes the specification of a 

sub-tessellation to be cut from the rectangular fragment. 

If the dimensions of the sub-tessellation are equal to 

those of the fragment then a solution to the subgoal has 

been found. Otherwise a subgoal is set up for the 

division of the remaining fragment, which may be either 

rectangular or L-shaped, into pieces. 

For each piece with which a sub-tessellation that 

could be cut from the fragment can be formed, there is a 

preferred orientation. If the maximal sub-tessellation 

formed with the pieces having one orientation contains 

more than that with the pieces having the other, the 

orientaion which allows the larger number of pieces in 

the maximal sub-tessellation is preferred. Otherwise, if 

the orientation with the breadth of the piece parallel to 

the breadth of the fragment results in one of the 

fragment dimensions being divisible-by the corresponding 

piece dimension then this orientation is preferred, as a 

subgoal can be created for the cutting of a rectangular 

fragment. Otherwise the other orientation is preferred. 

Let M and N be the number of pieces in each row and 

column of a maximal sub-tessellation for a given piece 

and orientation. Then a sequence of sub-tessellations 

with that piece and orientation can be defined by taking 

descending values of M+N and descending values of M 

within M+N. Only those sub-tessellations in which M*N is 
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not greater than the total number of pieces remaining to 

be cut are "usable". 

The sequence of sub-tessellations that can be 

generated by RECTFILL is: 

i) in order of urgency of types for which pieces remain 

to be cut and sub-tessellations can be formed that 

can be cut from the fragment, the first usable 

sub-tessellations with the preferred orientation, 

ii) in the same order, the first usable 

sub-tessellations, if any, with the other 

orientation, 

iii) in the same order, the next usable 

sub-tessellations, if any, with the preferred 

orientation, 

iv) and so on, until there are no usable 

sub-tessellations with either orientation. 

Whenever RECTFILL creates a new subgoal, 1 is added 

to the cost of the current node. 

6.4 The routine IRREGULAR 

6.4.1 Structure of the routine 

The routine is based on the program for the solution 

of 1*-dimensional trim-loss problems described in chapter 

3. In this routine, however, the successors of the root 

node of the search tree are specified explicitly. They 

are: 

i) a partial cutting pattern consisting of a piece of 

type T* with its north-west corner coincident with 

the north-west corner of the sheet and its breadth 

parallel to the breadth of the sheet, 

ii) if neither T* nor the sheet is square, a partial 
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cutting pattern consisting of a piece of type T* 

with its north-west corner coincident with the 

north-west corner of the sheet and its length 

parallel to the breadth of the sheet, 

iii) partial cutting patterns found by the routines 

described in section 6.4.2. 

This explicit specification ensures that any cutting 

pattern developed will include at least one piece of type 

T*. 

6.4.2 Spiral configurations 

A category of non-guillotine instructions for the 

cutting of a number of non-square pieces from a sheet can 

be identified in which the pieces are arranged in a 

spiral manner. A simple example is shown in figure 6.4.1. 

Such sets of instructions leave a fragment of the sheet 

to be divided into other pieces. 
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Figure 6.4.1 

Several different ways of constructing spiral 

4 

configurations are possible. The piece in the north-west 

corner of the sheet may have its length or its breadth 

parallel to the breadth of the sheet and the spiral may 

be constructed in a clockwise or anti-clockwise 

., ýý 
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direction. The algorithm is described in terms of the 

case where the breadth of the first piece positioned is 

parallel to the breadth of the sheet and the spiral is 

constructed in a clockwise direction. 

i) Check that the length of the piece does not divide 

the length of the sheet. 

ii) Let PB denote the breadth of a piece, PL its length, 

SB the breadth of a sheet, and SL its length. Find 

the largest value of N, such that SL=N, *PL+M, *PB if 

any such positive values of M, and N, exist. Lay out 

N, pieces with their breadth sides adjacent, 

starting in the north-west corner of the sheet, as 

in figure 6.4.2. 
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iii) Find the largest value of Na such that 

SB=N2*PL+Ma*PB if any such positive values of M2 and 

K,. 
- exist. Lay out N2 sub-tessellations, each 

consisting of M. pieces with their length edges 

adjacent, starting in the north-east corner of the 

sheet. 
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Figure 6.4.3 

iv) This may leave a rectangular fragment uncut, as in 

figure 6.4.3. If so, treat the remaining fragment as 

the original sheet, starting in the corner labelled 

A. Note that for this fragment it may be the case 

that SL=N*PL for some N. Laying out pieces in the 

manner of (ii) will now reduce the fragment to a 

smaller rectangle and subsequent pieces should be 

laid out parallel to the previous set. 
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Figure 6.4.4 

v) Alternatively the fragment left uncut may be 

L-shaped, as in figure 6.4.4. In this case the 

reduction required is that described in (iii) with 

the changes necessitated by a rotation through 90°. 
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Reduction of L-shapes can continue until a 

rectangular fragment remains unless the rectangular 

part of the current L-shape (ABCD in figure 6.1.4) 

could have pieces laid out in it, whilst the 

rectangular part of the reduced L-shape could not. 

If this is so, lay out pieces in the rectangular 

part and exit. 

vi) If at any point no appropriate values of N and M in 

(ii) and (iii) exist, exit. 

This technique can be extended to deal with the case 

in which a number of different types of piece have one 

dimension in common and the other multiples of one 

another, e. g. 7x4,7x2,7x1. The spiral configuration is 

generated using the smallest piece, the partial cutting 

pattern then being transformed by replacing 

sub-tessellations with the smallest piece with individual 

larger pieces. A check is necessary here to ascertain 

that some pieces of type T* are included in the resultant 

partial cutting pattern. 

6.5 Results 

A program using the techniques described above has 

been written in POP-2 (Burstall, Collins and Popplestone, 

1971) and tested using the 16 sets of data described in 

table 6.5.1, on an ICL 4130 using the Multi-Pop system 

(Dunn, 1972). The results of these tests are shown in 

table 6.5.2. On 14 sets of data the results clearly 

cannot be improved upon. In the remaining two cases there 

is no evidence that better solutions are possible. 

In all cases except 5,7 and C the computation time 

is less than 15 minutes. In these three cases, however, 
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the computation time is very large (35 mins, 78 mans and 

29 mins), particularly considering that it does not 

include garbage collection time, which is a system cost 

under Multi-Pop. Considerable improvement could be 

expected if the program were rewritten in a compiled, 

rather than an interpreted, language, and the ICL 4130 is 

not a fast machine by present-day standards. Nonetheless, 

these times do indicate that considerable saving could 

result from the development of heuristics to avoid 

abortive searches. 
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Table 6.5.1 

Listing of test data 

Set 1 Set 2 Set 3 

736 of 9 x 3 752 of 9 x 8 945 of 9 x 7 
529 of 6 x 3 354 of 8 x 7 119 of 8 x 7 
192 of 10 x 8 391 of 10 x 9 574 of 9 x 6 
903 of 9 x 5 1353 of 10 x 6 715 of 7 x 7 
548 of 8 x 5 447 öf 9 x 5 595 of 8 x 6 

1242 of 10 x 3 296 of 6 x 4 803 of 7 x 3 
711 of 8 x 2 327 of 9 x 2 801 of 6 x 3 
248 of 4 x 3 645 of 5 x 3 159 of 10 X 6 
214 of 6 x 1 992 of 9 x 1 10 of 9 x 5 
304 of 3 x 2 853 of 8 x 1 981 of 8 X 5 
235 of 10 x 2 447 of 3 x 2 630 of 9 x 4 
607 of 5 x 4 883 of 3 x 1 139 of 7 X 5 

55 of 10 x 1 953 of 10 x 5 597 of 8 x 4 
1173 of 4 X 2 171 of 10 x 4 514 of 7 x 2 

7 of 2 x 1 559 of 5 x It 1326 of 6 x 1 
424 of 1 x 1 721 of 10 x I 66o of 5 x 4 

699 of 5 x 2 352 of 5 x 1 
592 of 4 x 1 

Set 4 Set 5 Set 6 

836 of 9 x 8 899 of 10 x 10 278 of 8 x 8 
587 of 7 x 6 430 of 9 x 9 306 of 8 x 6 51 of 6 x 3 665 of 9 x 8 657 of 7 x 3 

1871 of 10 x 8 94 of 9 x 6 423 of 10 x 8 
445 of 8 x 5 734 of 7 x 7 996 of 10 x 6 
897 of 8 x 2 963 of 9 x 3 596 of 9 x 5 "801 of 9 x 1 482 of 10 x 6 222 of 9 x 4 
653 of 8 x 1 526 of 9 x 5 850 of 8 x 4 
744 of 3 X 2 807 of 9 x 4 503 of 7 x 4 
881 of 6 x 1 1289 of 7 X 5 956 of 8 x 2 466 of 5 x 4 413 of 10 x 3 92 of 7 x 2 642 of 10 x 1 138 of 8 x 2 279 of 3 X 2 
820 of 5 x 2 873 of 4 X 3 830 of 10 X 5 
333 of 4 

4 
x 2 384 of 9 x 1 1174 of 10 x 4 

630 of X 1 588 of 10 x 1+ 996 of 5 x 2 646 of 2 x 1 543 of 10 x 2 439 of 4 X 2 
289 of 1 x 1 99 of 4 x 2 440 of 5 x 1 
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Set 7 set 8 Set 

230 of 10 x 10 246 of 9 x 7 597 of 8 x 8 
875 of 9 x 9 885 of 7 x 7 452 of 8 x 7 
405 of 8 x 8 479 of 6 x 6 136 of 9 x 3 
200 of 8 x 6 180 of 9 x 3 978 of 3 x 3 
753 of 6 x 6 959 of 8 x 3 265 of 10 x 6 
437 of 10 x 7 471 of 7 x 3 990 of 9 x 5 
591 of 9 x 5 218 of 10 x 8 941 of 7 x 4 
765 of 8 x 5 49 of 10 x 7 499 of 5 x 3 
592 of 9 x 4 596 of 8 X 5 395 of 4 x 3 
940 of 10 x 3 967 of 6 x 5 233 of 6 x 2 
991 of 5 X 3 1588 of 5 x 3 873 of 9 x 1 
212 of 8 x 1 155 of 6 x 2 604 of 3 x 2 
757 of 7 x 1 473 of 7 x 1 375 of 3 x 1 
128 of 3 x 2 632 of 6 x 1 987 of 1C x 5 
233 of 5 x 5 245 of 10 x 2 42 of 5 x 4 
546 of 5 x 2 260 of 4 x 1 1080 of 4 x 1 
539 of 4 x 2 265 of 2 x 1 
322 of 5 x 1 
498 of 2 x 1 

Set A Set B Set C 

275 of 9 x 9 81 of 9 x 8 841 of 9 x 6 
178 of 9 x 6 710 of 8 x 7 547 of 7 x 6 
769 of 7 x 3 278 of 7 x 7 1540 of 6 x 3 
506 of 10 x 3 1034 of 9 x 3 281 of lo x 8 
274 of 7 x 4 98 of 8 x 3 424 of 10 x 7 713 of 9 x 2 93 of 3 x 3 1036 of 7 x 4 
928 of 6 x 2 416 of lo x 9 278 or 9 x 2 948 of 4 x 3 796 of 10 x 7 419 of 8 x 2 1025 of 9 x 1 863 of 6 x 5 968 of 7 x 2 504 of 7 x 1 544 of 5 x 3 61 of 6 x 2 775 of 5 x 5 689 of 4 X 3 435 of 4 x 3 400 of 5 x 4 414 of 9 x 1 669 or 9 x 1 887 of 10 x 2 944 of 7 x 1 1674 of 7 x 1 1522 of 4 x 2 397 of 6 x 1 1303 of 10 x 4 

1505 of 5 x 1 463 of 3 x 2 355 or 5 x 5 710 
84 of 5 x 4 374 of 10 X 2 9 of 5 x 2 
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Set D Set E Set F 

822 of 9 x 6 255 of 9 x 8 480 of 8 x 8 
940 of 8 x 6 11 of 8 x 3 626 of 9 x 7 

1085 of 10 x 9 661 of 3 x 3 687 of 6 x 3 
232 of 10 x 7 12 of 10 x 9 610 of 8 x 5 
67 of 8 x 5 872 of 8 x 5 1018 of 6 x 5 

527 of 10 x 3 620 of 9 x 4 488 of 6 x 4 
938 of 9 x 2 813 of 8 x 4 533 of 9 x 2 
173 of 8 x 2 734 of 6 x 5 13 of 4 x 3 
804 of 4 x 3 804 of 7 x 2 553 of 9 x 1 
721 of 8 x 1 250 of 6 x .2 778 of 8 x 1 
836 of 10 x 5 379 of 4 x 3 871 of 7 x 1 

1535 of 10 x 4 727 of 3 x 2 1 of 3 X 1 
366 of 4 x 4 806 of 10 x 2 1146 of 10 x 4 
305 of 2 x 2 519 of 10 X 1 901 of 5 X 1 
924 of 2 x 1 509 of 5 x 2 346 of 2 x 2 

906 of 4 x 2 692 of 2 x 1 
177 of 4 x 1 722 of 1 x 1 

Set G 

422 of 7 x 6 
866 of 9 x 3 

. 
650 of 10 x 9 
393 of 10 x 8 
515 of 9 x 4 
521 of 6 x 4 
212 of 9 x 2 
728 of 4 x 3 
54 of 6 x 2 

529 of 9 x 1 
173 of 7 x 1 
431 of 6 x I 
720 of 10 x 5 

1417 of 10 x 1 
910 of 4 x 2 
911 of 2 x 1 

In all cases the sheet size is 20 x 20. 
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Table 6.5.2 

Results of test runs 

Data Set 
CPU time 
in secs 

Number of 
sheets cut 

Units of 
scrap 

Number of full 
sheets waste 

Percentage 
sheets waste 

1 224 476 107 0 0 

2 253 836 320 0 0 

3 355 802 370 0 0 

4 201& 802 298 0 0 

5 2059 1077 688 1 . 09 

6 286 846 37 0 0 

7 4567 845 2369 5 . 59 

8 387 566 83 0 0 

9 477 614 141 0 0 

A 276 b6o 197 0 0 

B 710 660 17 0 0 

C 1709 737 98 0 0 

D 533 923 120 0 0 

E 502 1+72 389 0 0 

F" 785 585 96 0 0 

G 183 608 80 0 0 
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Chapter 7A 2-dimensional trim-loss problem with 

sequencing constraints 

7.1 Statement of the problem 

The material under consideration is glass. Each 

order received from a customer consists of a demand for 

specified numbers (demands) of pieces of each of one or 

more shapes, a shape being specified by its length 

(longer dimension) and breadth (shorter dimension) and 

the order to which it belongs. Each order is designated 

by a code. If the order is for glass with high quality 

edges, the first character of the code is "F°. These are 

referred to as type F orders, and the remainder are 

referred to as type M orders. 

The cutting of the stock sheets is a two stage 

process, and corresponding to each stage of the cutting 

there is a stripping process, to produce edges of the 

required quality, that may be manual or automatic. During 

the first stage of the cutting the sheet is moving in the 

direction of its longitudinal axis and may be considered 

to have a "leading" and a "trailing" edge with respect to 

this motion. The first set of cuts are perpendicular to 

the direction of motion and are cross cuts. The 

sub-sheets resulting from the first stage of cutting will 

be cut into pieces according to the corresponding 

sub-patterns. 

Operational constraints on the design of cutting 

patterns due to the design of the cutting machinery are: 
i) A sub-pattern may contain at most two shapes, 
ii) The number of sub-patterns in a pattern may not 
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exceed five, and if there are five two must be the 

same, 

iii) If the leading sub-pattern includes type F pieces 

then the first cross cut must be at least 626mm from 

the leading edge of the sheet, and in any case this 

cut must be at least 432mm from the leading edge of 

the sheet, 

iv) Any sub-pattern other than the leading one must have 

a length before stripping of at least 813mm, 

v) If the trailing sub-pattern includes type F pieces 

then there must be a cross cut at its trailing edge 

at least 203mm from the trailing edge of the sheet. 

The pick-off length of a sub-sheet or piece is its 

dimension in the direction of the sheet from which it was 

cut, its other dimension being its pick-off breadth (see 

figure 7.1.1). If the stripping following the first stage 

cutting is manual the pick-off length of the sub-sheet is 

reduced by 25mm; if it is automatic the reduction is 

76mm. However, if the trailing sub-pattern contains only 

type M pieces it need not undergo such stripping. 

In the stripping following the second-stage cutting 

the pick-off breadth of a type M piece is reduced by 

51mm. The pick-off breadth of a type F piece is reduced 

by 152mm if it is stripped manually or by 302mm if it is 

stripped automatically. A piece whose pick-off length is 

greater than 2540mm must be stripped manually at this 

stage. 
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Figure 7.1.1 

The pieces resulting from the cutting and stripping 

process are picked off for despatch from one of four 

legs, a leg being a conveyor belt with its associated 

washing and handling facilities. All the pieces resulting 

from the cutting of a sub-pattern must be routed to the 

same leg and the routing of pieces to legs must be 

consistent with the dimension constraints shown in table 

7.1.1, and also with the requirement that type F pieces 

must be picked off from legs with washing facilities. 

Hence any type F piece of length exceeding 2540mm must be 

cut with its length oriented parallel to the sheet 

length. There is a further restriction that pieces for 
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not more than three different orders may be picked off 

any one leg during the cutting of any one pattern. 

Table 7.1.1 

Lei 
_ 

Maximum dimensions for pick-off 

1ength(mm) Breýdt i tnm) Iashiýäg ýfäci ities' 

K :D , 2 40 t., ý . x..,. 1219 01 . , i. ". 
ý :' ` "; º ýý ý' e 2540 

.9 Q_ý. ýä, .;: Y 121 s' '}ý 
ýýw,, . : 

3948 3048"`°' No 
ý'ý.; 

' 3048 2540 Yes 

The restrictions on the design of the individual 

cutting patterns having been described, it is now 

necessary to consider how a set of cutting patterns may 

be arranged to provide instructions for cutting all the 

orders in an order list. 

Initially a cutting pattern is selected. It will 

specify the size of stock sheet to be used and the pieces 

to be cut from this sheet. For each shape, s, in the 

pattern, there is a number ns, such that if the pattern 

is repeated ns times the demand for that shape will be 

satisfied, whilst if the pattern is only repeated of-1 

times this will not be the case. The number of stock 

sheets cut to this pattern will be the smallest of the 

ns1 s. 

When this has been done, the original order list 

will be converted to a new one reflecting the demands 

that have not yet been satisfied. A new cutting pattern 
is selected and the process repeated until all the 

demands have been satisfied. 
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Operational costs associated with the picking off 

and packing of orders will affect the choice of the next 

cutting pattern to be used. The next cutting pattern 

should include all the shapes in the previous cutting 

pattern the demands for which were not completed with the 

use of that pattern. In addition, if there were any 

shapes, the demands for which were satisfied at this 

point, belonging to orders which include other shapes, 

the demands for which have not yet been satisfied, then 

such a shape from each such order should be included in 

the new cutting pattern. For each failure to make the 

appropriate inclusion in the new cutting pattern the 

sequence break cost is incurred. 

There is also an absolute constraint on the sequence 

of cutting patterns. If a shape belongs to a loose load 

order, which will have a code starting with the 

characters "FD", then it must not be cut until the 

demands for all larger shapes in that order have been 

satisfied. 

Table 7.1.2 shows the dimensions of the stock 

sheets. A cutting pattern defines implicitly the size of 

stock sheet on which it is to be used. 

Table 7.1.2 

Sizes of stock sheets 

ýý: LengthCmm)ý: -Breäcith(ainn): ýýý 

Fýr46k8. z 



136 

7.2 Choice of method 

Because of the sequencing constraints it is clear 

that the pattern sequence must be generated in a stepwise 

manner. Each pattern is selected as being the best 

continuation of the sequence in the context of the state 

of the order list and the sequencing constraints 

resulting from the use of the previous pattern. Good 

results were obtained for the abstract 2-dimensional 

trim-loss problem by applying preferred reduction within 

non-backtracking search, which generated patterns in a 

stepwise manner. It therefore appears appropriate to 

apply this method to the present problem. 

In section 7.3 some remarks are made about the 

representation in terms of a state-space of the stepwise 

generation of a pattern sequence. Section 7.4 outlines 

the problem reduction process used to generate a pattern 

in the sequence. In section 7.5 a program applying these 

ideas is described. Section 7.6 presents results obtained 

from this program and in section 7.7 some conclusions are 

drawn as to the success of the approach taken to the 

problem. 

7.3 The top-level state-space 

The process of choosing and utilizing cutting 

patterns described above can be represented in terms of a 

state-space. The states are lists of unsatisfied orders, 

and the operators are cutting patterns together with the 

number of times they are used. The start state is the 

original order list and the goal state the empty order 

list. It is required to find the path between the two for 

which the combined cost of trim-loss and sequence breaks 
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is minimal. 

In order that the time taken by a program to compute 

a sequence of cutting patterns may be kept within 

reasonable bounds, backtracking must be restricted. A 

certain amount of time is allocated for the generation of 

possible first patterns. At the end of this time the 

"best" of the generated patterns is selected. The number 

of times it is to be used is calculated, the demands in 

the order list are adjusted to take account of the pieces 

cut by the use of this pattern, and the adjusted order 

list together with the first pattern defines the starting 

point for the generation of possible second patterns. The 

process is repeated until all the demands in the order 

list have been satisfied. 

This method of working corresponds to the 

development of a path across the state-space graph 

without backtracking. The generation of a subset of the 

possible cutting patterns at each step corresponds to 

partial development of the corresponding node, and the 

selection of the "best" pattern represents the 

application of an evaluation function. The quality of 

solutions generated will be limited by the correctness of 

the partial development (whether an operator 

corresponding to an are from this node belonging to a 

solution path is generated) and the accuracy of the 

evaluation function (whether when generated such an 

operator is correctly identified). 

The generation of the set of cutting patterns from 

which the "best" is selected is done in the work 

presented here by a problem reduction technique. This is 
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described below. 

7.4 Structure of the problem reduction 

Each node of the problem reduction tree includes in 

its label a local variable list which is initially a 

subgoal description and the name of a function that is 

capable of generating a sequence of alternatives for the 

reduction of that subgoal. For a primitive subgoal such a 

reduction is a solution. An occurrence of a function at a 

node will be referred to as an instance of that function. 

In an iteration of the problem reduction process, a 

node of the problem reduction tree is selected. The 

function at a node will generate at successive 

invocations a sequence of alternative reductions. When a 

node is selected the function named in its label is 

invoked, and will give the next reduction in the 

sequence.. If the subgoal is not primitive, it may create 

a new node in whose label are included the subgoal 

resulting from the reduction and the name of the function 

to be used for reducing this subgoal, whilst if the 

subgoal is primitive it may generate a solution of it. 

Alternatively, in either case it may report that the 

sequence of reductions has been exhausted. Iterations of 

the process continue until what is regarded as an 

adequate number of alternative solutions of the goal have 

been generated. 

It has been said that when a function creates a node 
it places a function name in its label. Figure 7.4.1 

shows the relationships of the subgoal processing 

functions in this respect. An arrow directed from one 

function name to another indicates that the label of a 
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node created by the first may include the name of the 

second. Where more than one arrow leaves the name of a 

function, this indicates that a choice of functions is 

made according to the features of the subgoal set up. 
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Hierarchy of subgoal processing functions 

Figure 7.4.1 

Consider the situation that can occur at the 

generation of any cutting pattern other than the first. 

The previous cutting pattern may have included one or 

more sub-patterns that each included two shapes (pairs), 

If the demand for a shape belonging to a pair has not yet 

been satisfied, then there is a choice to be made as to 

whether it should belong to a pair with the same or a 

related partner in the proposed new pattern. The choices 

on the retention of pairings are made in 

USED-PAIR-SELECT. 

There may be a number of shapes included in the 

previous pattern the demands for which have not yet been 

satisfied. Some of these may have been included in the 

proposed pattern by choices made in USED-PAIR-SELECT. The 

choices as to which of the remainder should be included, 
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and what their orientations should be, in the proposed 

pattern, are made in MID-SHAPE-SELECT. 

There may be one or more shapes, the demands for 

which were satisfied at the end of the use of the 

previous cutting pattern, that belong to orders 

containing shapes the demands for which have not yet been 

satisfied. In MID-ORDER-SELECT the choices are made as to 

which shapes, if any, from such orders should be included 

in the proposed pattern, and what their orientations 

should be. 

For each shape in the order list there is calculated 

an urgency. When a pattern Is being generated there is a 

shape in the order list, the demand for which has not yet 

been satisfied, which has maximal urgency. If this shape 

has not yet been included in the proposed pattern, the 

choice is made in MOST-URGENT-PIECE-CONSIDER as to 

whether it should be, and, if so, what its orientation 

should be. 

The choices made in MID-SHAPE-SELECT, 

MID-ORDER-SELECT and MOST-URGENT-PIECE-CONSIDER are that 

shapes shall be included in a pattern in separate 

sub-patterns. Each instance of SUB-PATTERN-EXTEND is 

concerned with one such sub-pattern and chooses whether 

it should include one or two shapes. If the choice is for 

two shapes, the choice of the the second shape is made. 

The choice of stock sheet size to be used by the 

proposed pattern is made in SUB-PATTERN-DESIGN-CONTINUE. 

A further sub-pattern may also be included in the pattern 

by this function. 

Each instance of SUB-PATTERN-CONTINUE-KNOWN-SHEET 
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chooses whether a further sub-pattern should be included 

in a partially completed pattern, and, if so, what this 

sub-pattern should be. 

In LEG-ALLOCATE an allocation of sub-patterns to 

legs is made if a feasible one exists. If it does not, 

then the proposed pattern is ruled out of further 

consideration, otherwise an evaluation is made of the 

"merit" of the proposed pattern. The allocation of 

sub-patterns to legs is a primitive subgoal. 

7.5 Details of a program 

7.5.1 Scrap evaluation 

Material stripped from the cut sub-pattern or piece 

to produce the required edges is not part of the 

trim-loss, or scrap. If the difference between the 

dimension of the initial cut and the required final 

dimension is less than that required for automatic 

stripping, thus making manual stripping necessary, no 

trim-loss is deemed to have occurred. Any excess of the 

difference over that required for automatic stripping is 

deemed to constitute trim-loss. Trim-loss is measured in 

square centimetres. 

7.5.2 Orientations 

A piece being cut from a stock sheet may be oriented 

in one of two ways. If the length of the piece is 

parallel to the length of the sheet, the piece is said to 

be placed along the sheet, otherwise it is said to be 

across the sheet. The restrictions on cutting pattern 

design may force a shape always to be placed along the 

sheet, whilst square pieces always effectively have this 

orientation. Such pieces are unswingable. 
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For each shape a preferred orientation can be 

defined. For an unswingable shape this is necessarily 

along the sheet. For any other shape all possible 

sub-patterns that could be cut from any stock sheet and 

which include this shape with either orientation are 

considered. The orientation in that sub-pattern which 

gives least trim-loss within the sub-pattern is the 

preferred orientation. If the same minimal internal 

trim-loss would result from two sub-patterns in which the 

shape has different orientations then the across the 

sheet orientation is preferred, since placing the shape 

with this orientation leads to a smaller reduction in the 

number of choices as to how the remainder of a stock 

sheet is to be cut. 

7.5.3 Urgency and minimum scrap 

During the initial processing of the order list two 

quantities are calculated for each shape. These are 

referred to as urgency and minimum scrap. 

The urgency of a shape reflects the difficulty of 

designing a cutting pattern including that shape when 

sequencing desiderata are applied or the order list has 

been depleted from its initial status. In other words, 

this is a quantification of the desirability that the 

shape should feature in the early cutting patterns or the 

solution sequence. 

In the initial calculation or urgency two 

quantities, LF and BF, are used. These are defined by: 

LF - (4445 - minimal length of non-trailing 

sub-pattern including this shape oriented along 
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the sheet) + 838 

BF = number of pieces of this shape in a sub-pattern 

consisting only of this shape oriented along the 

sheet cut from the broadest stock sheet and 

assuming manual stripping 

LF is an estimate of the number of sub-patterns other 

than that containing the shape under consideration that 

will occur in patterns containing this shape. 

denotes integer division. 

Two special cases are identified. If the shape must 

be cut in a leading sub-pattern then its urgency will be: 

(5000 + demand for this shape) + BF 

If the shape is type F with a length of more than 2540mm 

then its urgency will be: 

(if LF=1 then 5000 else 20000 close + 100 * demand 

for this shape)-.: - BF 

The first case must be distinguished because if such a 

shape were left until late in the cutting pattern 

sequence this might be forced to finish with patterns 

consisting only of leading sub-patterns, with consequent 

extremely high trim-loss. The second case is 

distinguished because of the difficulty of designing 

sub-patterns including such shapes if sequencing 

desiderata require the inclusion of several other shapes. 

The urgency of any other shapes is based on the 

amount of trim-loss that would result from the most 

economic choice of pattern containing only this shape. 

This is divided by the number of pieces in the pattern. 

It is further divided by LF*LF*BF if the shape is square 

and LF*LF*BF*BF otherwise. This division factor reflects 
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the ease of including the shape in an economic cutting 

pattern. The resultant quantity is then multiplied by 

(demand for this shape * 100) to give the urgency. The 

multiplication factor particularly raises the urgency of 

shapes that will be relatively difficult to include in an 

economic cutting pattern and will be continued over 

several cutting patterns. This means that they are made 

likely to occur in cutting patterns designed when more of 

the order list is not yet satisfied and there is 

therefore a greater range of choices for each of the 

cutting patterns in which they will be included. 

After the initial calculations the urgencies are 

adjusted to take account of sequencing problems. If the 

urgency of a shape in a loose load order is less than 

that of a smaller shape in the same order, the urgency of 

the larger is made equal to the urgency of the smaller 

plus 2. This takes account of the fact that the smaller 

cannot be cut before the larger and therefore its own 

higher urgency would still not lead it to be introduced 

into an early cutting pattern. If a shape with urgency 

greater than 10000 occurs in the same order as a smaller 

shape, 5000 is subtracted from its urgency. Suppose two 

shapes each of length L occur in the order list, one in 

an order by itself and the other in an order with a 

smaller shape. If the one which occurs by itself is 

included in a pattern, then the next pattern may include 

the other together with the other sub-patterns of the 

previous pattern. If they are taken in the reverse order 

then sequencing desiderata will lead to the smaller shape 

of the second order being included in the next pattern 
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and it is almost certain that other new sub-patterns will 

be introduced. The need to include these in the following 

pattern will make it impossible to include the shape of 

the first order. 

For some shapes it will be the case that whatever 

sub-pattern they are included in there will be trim-loss 

resulting from the cutting of that sub-pattern. For each 

shape all possible sub-patterns in which it might be 

included are considered. For some sub-pattern the 

quotient of the trim-loss resulting from the cutting of 

that sub-pattern and the number of pieces of the shape 

under consideration in the sub-pattern is minimal. This 

minimal quotient is the minimum scrap for that shape. 

Note that the sum of the terms (minimum scrap * demand) 

over all the shapes in an order list provides a lower 

bound on the trim-lost resulting from the cutting of that 

order list. 

7.5.4 Control structures 
The control of generation of possible cutting 

patterns is based on a representation of the subgoal 

tree. Each node of the tree has attached to it a label 

including a cost, the name of a subgoal processing 

function, an entry point and local variable list for that 

function, and a flag indicating whether the node is still 

active. 

At each iteration of the generation process the tree 

is scanned to find the active node with lowest cost. The 

function attached to this node is then entered at the 

current entry point, using the current variable list. It 

will execute until one of three conditions occurs: 
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i) if the function is LEG-ALLOCATE, then it either 

reports that there is no possible allocation of 

sub-patterns to legs for a proposed pattern, or it 

returns a possible pattern with its merit, otherwise 

ii) it sets up a new subgoal, the node representing 

which will have initial cost 0, or 

iii) it reports that no further subgoals can be set up 

and the current node should be labelled inactive. 

An addition, of 10 unless otherwise specified, is 

then made to the cost of the node and the next iteration 

commenced. The size of the increment reflects the number 

of alternative reductions of the subgoal it is thought 

should be attempted. The larger the increment, the less 

frequently attempts will be made to reduce the subgoal. 

The generation process is terminated after 100 iterations 

if it has not exhausted all alternatives previously. 

The merit of a pattern is reported by LEG-ALLOCATE 

in the form of three integers. SCRAP is the trim-loss per 

sheet resulting from the use of the pattern, MERIT is an 

adjustment factor indicating the merit of the pattern 

sequence that would follow the pattern, and 

SEQ-BREAK-COUNT is an estimator that, when scaled, 

indicates the cost of sequence breaks that may result 

from the use of the pattern. The quantity 

SCRAP - MERIT + SEQ-BREAK-COUNT * SEQ-BREAK-WEIGHT , 

where SEQ-BREAK-WEIGHT is set to 1,000,000 to indicate 

the total undesirability of sequence breaks, is 

calculated for each proposed pattern. At the end of the 

generation process the pattern for which it was lowest is 
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chosen as the next pattern to be included in the 

" sequence. 

When a pattern has been selected, the number of 

times it is to be used is calculated and the order list 

adjusted accordingly. Three lists are constructed to be 

used in the application of the sequencing desiderata to 

the design of the next pattern. 

MIDSHAPE is a list of the shapes which occurred in 

the last cutting pattern the demands for which have not 

yet been satisfied. It is sorted on the lengths of the 

shapes, and within this on their breadths. MIDORDER is a 

list of the codes of shapes, the demand for which was 

satisfied by the cutting of the last pattern, belonging 

to orders in which there are other shapes the demand for 

which has not yet been satisfied. 

If the demands for neither of the shapes in a pair 

in the last pattern have been satisfied, then the pairing 

of these shapes is recorded in the list USED-PAIRINGS. If 

the demand for one shape in a pair has been satisfied, 

the other shapes in the same order are inspected. If 

there is outstanding demand for one that can be formed 

into a pair with the other shape in the pair under 

consideration, then a pairing of these two shapes is 

recorded in USED-PAIRINGS. If the demands for both shapes 

in a pair were simultaneously satisfied, the remaining 

shapes in both orders for which demand has not been 

satisfied are inspected for possible pairings of one 

shape from each order. If such a pairing exists, it is 

recorded in USED-PAIRINGS. 
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7.5.5 USED-PAIR-SELECT 

USED-PAIR-SELECT is the function which is used to 

reduce the goal of "design a pattern". A selection is 

made of the pairings in USED-PAIRINGS; these will lead to 

pairs in the resultant pattern. The first entry to 

USED-PAIR-SELECT selects all the pairings in 

USED-PAIRINGS. Subsequent entries will select subsets 

that get progressivkely smaller. The statement that these 

pairings shall occur in the pattern is the start of a 

proposal for the design of a pattern which will be passed 

to MID-SHAPE-SELECT. After an entry to USED-PAIR-SELECT, 

40 is added to the cost in the label of the corresponding 

node on the subgoal tree. 

7.5.6 MID-SHAPE-SELECT 

MID-SHAPE-SELECT adds to the proposal statements 

that shapes occurring in MIDSHAPE and not involved in the 

included pairings shall occur in separate sub-patterns of 

the pattern and gives the orientation of these shapes. If 

MIDORDER is empty then the sequence of alternatives 

generated in MID-SHAPE-SELECT starts with that including 

all shapes with their preferred orientations. The 

generation then gives fewer and fewer of the shapes their 

preferred orientation, then repeats the sequence for 

subsets which get progressively smaller. Some of the 

alternatives generated may violate the constraints on 

pattern design imposed by the dimensions of the stock 

sheets. These alternatives are ignored for the purposes 

of subgoal creation. 

If MIDORDER is not empty then an attempt is made to 
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find orientations of all the shapes which is consistent 

with some shape from each of the orders in MIDORDER being 

included in the pattern, each such shape occurring in a 

distinct sub-pattern. If such a set of orientations is 

found, it is used as the starting point for the sequence 

of alternatives, which again includes all orientations of 

all the pieces before starting with subsets of them. 

The ordering of MIDSHAPE means that it is the 

alternatives with small shapes not having their preferred 

orientations which are generated first. These. 

alternatives are more likely to produce good pattern 

designs as large pieces not having their preferred 

orientations are extremely likely to require unnecessary 

trim-loss. When a subgoal is created by MID-SHAPE-SELECT, 

20 is added to the cost in the label of the corresponding 

node. 

7.5.7 MID-ORDER-SELECT 

To the proposal for pattern design received from 

MID-SHAPE-SELECT, MID-ORDER-SELECT adds statements that 

shapes belonging to the orders in MIDORDER shall occur in 

separate sub-patterns and gives the orientation of the 

shapes. The generation of alternatives starts with the 

selection of one shape from each order not already 

represented by a shape included by USED-PAIR-SELECT. The 

first choice of orientation is that all shapes should 

have their preferred orientations. Generation proceeds 

through the choices of orientation for this set of 

shapes, then through the choices of orientation for other 

choices of shapes representing the orders, then by a 

similar process through subsets of the orders. 
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7.5.8 MOST-URGENT-PIECE-CONSIDER 

If the shape with unsatisfied demand for which the 

urgency is highest has not yet been included in the 

proposal for pattern design, the decision as to whether 

it should occur in a separate sub-pattern is made in 

MOST-URGENT-PIECE-CONSIDER. The order of generation of 

alternatives is: that it should occur with its preferred 

orientation, that it should occur with the other 

orientation, then, finally, that it should not occur. 

7.5.9 SUB-PATTERN-EXTEND 

Decisions are made in MID-SHAPE-SELECT, 

MID-ORDER-SELECT and MOST-URGENT-PIECE-CONSIDER that 

certain shapes should occur in separate sub-patterns in 

the final pattern. In SUB-PATTERN-EXTEND one such 

sub-pattern is considered, and the decision made as to 

whether the shape should occur by itself, or be one of a 

pair. The first alternative generated is that the shape 

should occur by itself. The subsequent ones are the 

feasible pairings, in order of urgency of the second 

shape to be included in the pair. 

If there are other such sub-patterns which have not 

been considered then the node created on the subgoal tree 

will have SUB-PATTERN-EXTEND as the function attached to 

it and the initial local variable list will include an 
indication of which of the other sub-patterns is to be 

considered by that instance of SUB-PATTERN-EXTEND. When 

all such sub-patterns have been considered, the proposal 
for pattern design is passed to 

SUB-PATTERN-DESIGN-CONTINUE. 



151 

7.5.10 SUB-PATTERN-DESIGN-CONTINUE 

The decisions taken in SUB-PATTERN-DESIGN-CONTINUE 

may be considered to be nested. The most inclusive is 

that as to the size of stock sheet from which the pattern 

being designed should be cut. The proposal for pattern 

design received from SUB-PATTERN-EXTEND states the shapes 

that shall occur in each of a number of sub-patterns. For 

each stock sheet size the manner in which each 

sub-pattern can be constructed so as to include the 

stated shapes with minimum trim-loss is determined. The 

aggregates of these minimum trim-losses for each sheet 

size are calculated and the sheets ranked with the lowest 

aggregate indicating the most preferred size. 

The next level of decision is concerned with the 

addition, if this is possible, of a further sub-pattern 

to the partial cutting pattern designed so far. The 

decision is taken in the form of stating a shape which 

should occur with a given orientation in that 

sub-pattern. The order of preference of shapes and 

orientations is given by estimation of the amount of 

trim-loss likely to result from the inclusion of each 

oriented shape, i. e. a shape with its orientation 

specified, in the next sub-pattern. This estimation is 

converted into a numeric value, V, of which the highest 

value denotes the most preferred oriented shape, in the 

following way: 

i) Let V take the value 200,000. If the shape is 

already included in the partial cutting pattern, add 

10 to V. This discriminates in favour of such a 

shape where another shape of the same dimensions 
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(belonging to a different order) exists. Inclusion 

of the second shape would lead to unnecessary 

complications in the pattern sequencing. 

ii) Within any sub-pattern including the given oriented 

shape, the breadth, T, of the scrap glass can be 

calculated. Let R be the minimum of the value of T 

for the sub-pattern including only that oriented 

shape and T+200 for any sub-pattern in which the 

oriented shape is one of a pair. Again note is being 

taken of the fact that the more shapes there are 

included in this cutting pattern, the more 

desiderata will be imposed on the design of the 

next. Let F be the number of pieces of the given 

shape included in the sub-pattern associated with 

the minimum value of R. Calculate 

(R -= 10) * (length of sub-pattern -;. 1 U) -F 
(minimum scrap for this piece + urgency for this 

piece) 

Subtract the result from V. 

iii) Let R be the usable length of that part of the sheet 

remaining after the sub-patterns already specified 

and a sub-pattern including the given oriented shape 

have been cut. Consider the possible lengths of 

sub-patterns that might be cut from this remaining 

part. Let T be the shortest possible length of the 

part that could remain after one had been cut. If 

T+200 is less than R, replace R by T+200. Calculate 

(R -. 10) * (width of sheet - 10) 

and subtract the result from V. Preference is being 

given here to the cutting of large shapes. Premature 
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inclusion of small shapes in cutting patterns causes 

the sequence to end with patterns that include only 

large pieces and have a high trim-loss. 

The final alternative in this set of decisions is not to 

cut an additional sub-pattern. 

Once it has been decided which oriented shape is to 

be included in the sub-pattern, the sub-pattern must be 

designed. The first leg, using the ordering of table 

7.1.1, that can be used to pick off the given oriented 

shape is determined. The sub-pattern including the given 

oriented shape and not including an oriented shape that 

cannot be picked off this leg which results in minimum 

trim-loss is determined. This is the first alternative at 

this level of decision. The legs later in the ordering 

are then considered in order. If a more economic 

sub-pattern would result from assuming pick off from such 

a leg then that sub-pattern is an alternative. 

In the overall generation of alternatives, when all 

possibilities at a less inclusive level have been 

considered the next alternative at the next more 

inclusive level is used. If there is a possibility of 

adding a further sub-pattern to the existing partial 

cutting pattern, it is passed to 

SUB-PATTERN-CONTINUE-KNOWN-SHEET. Otherwise it is passed 

to LEG-ALLOCATE. 

7.5.11 SUB-PATTERN-CONTINUE-KNOWN-SHEET 

The generation of alternatives in 

SUB-PATTERN-CONTINUE-KNOWN-SHEET is similar to that in 

SUB-PATTERN-DESIGN-CONTINUE, except that the sheet size 
has already been decided one so this level of choice does 
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not exist. 

7.5.12 LEG-ALLOCATE 

LEG-ALLOCATE receives a cutting pattern. It 

calculates SEQ-BREAK-COUNT and MERIT (see section 7.5.4) 

and allocates the sub-patterns to legs. 

At the beginning of the calculation of 

SEQ-BREAK-COUNT it has value 0. For each shape in 

MIDSHAPE and each order in MIDORDER not represented in 

the cutting pattern, 2 is added to it. If one shape of a 

pair in this pattern was cut in the previous pattern then 

sequencing desiderata mean that both shapes should be 

picked off the leg from which the first was previously 

picked off. If any shape belonging to the order that the 

second shape belongs to cannot be picked off, in either 

orientation if it is not unswingable, from this leg then 

there is a possibility of a sequence break at some future 

time and 1 is added to SEQ-BREAK-COUNT. 

Other calculations involving SEQ-BREAK-COUNT and 

MERIT consider the possibility that the next pattern in 

the sequence will differ from the present one only in one 

sub-pattern. For a pair this means that sequencing 

desiderata require that any remaining shape belonging to 

one order involved in the pair should be capable of 

forming a pair with any remaining shape belonging to the 

other order, the sub-pattern length of any such pair 

being no greater than that of the present one. If this is 

not the case, 1 is added to SEQ-BREAK-COUNT. At the same 

time note is made as to the maximum necessary width of 

such sub-patterns, and whether any require to be cut at 
the leading edge of a sheet. 
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The initial value of MERIT is the sum of the urgency 

and minimum scrap for every piece in the pattern. An 

upper bound on the length of the sheet size that would be 

required to satisfy sequencing desiderata in subsequent 

patterns is obtained by adding together the lengths of 

the distinct sub-patterns and any excess that must result 

from the replacement of a shape occurring by itself in a 

sub-pattern by another unsatisfied shape in the same 

order which could only occur in a longer sub-pattern. If 

there is a shape occurring by itself in a sub-pattern 

belonging to an order in which another unsatisfied shape 

can only occur in a sub-pattern that is no longer if it 

is oriented across the sheet then 5000 is subtracted from 

MERIT. This reflects the tendency of such orientations to 

be wasteful and also the loss of flexibility in the 

design of patterns when orientations of pieces are 

forced. Upper bounds on the width of the sheet size and 

on the number of sub-patterns requiring to be cut at the 

leading edge of a sheet that might occur simultaneously 

if sequencing desiderata were to be satisfied are 

calculated at the same time as the upper bound on length 

and using the same assumptions about sub-pattern design 

in subsequent patterns. 

If the upper bounds on width and length together are 

not compatible with any stock sheet size, 1 is added to 

SEQ-BREAK-COUNT, to reflect the possibility of a future 

sequence break. If they are not compatible with the 

current sheet size, 5000 is subtracted from MERIT, to 

reflect the likelihood that subsequent patterns 
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satisfying the sequencing desiderata would result in high 

trim-loss. If the upper bound on the number of 

sub-patterns requiring to be cut from the leading edge of 

a sheet is greater than 1, the excess over 1 is added to 

SEQ-BREAK-COUNT. 

For each sub-pattern there is a preferred leg from 

which it should be picked off. For a sub-pattern 

containing a shape belonging to an order that occurred in 

the previous pattern, it is the one from which pieces 

belonging to this order were picked off when that pattern 

was cut. Otherwise the preferred leg for a sub-pattern is 

the first leg in the order of table 7.1.1 from which any 

shape belonging to any order involved in that sub-pattern 

can be picked off, with either orientation if such a 

shape is not unswingable. The first attempt to assign 

sub-patterns to legs assigns each sub-pattern to its 

preferred leg. If such an assignment is not feasible, the 

preferences are relaxed, starting with the sub-patterns 

not involving shapes belonging to orders that occurred in 

the previous pattern. For each shape belonging to an 

order assigned to a leg in the previous pattern which is 

assigned to a different leg in this pattern, 1 is added 

to SEQ-BREAK-COUNT. 

7.6 Results 

A program using these techniques has been written in 

Algol 68-R (Woodward and Bond, 1972) and tested on an 

ICL 1906S using 16 sets of data (see appendix A). These 

data sets are random subsets of a set of data supplied by 

Pilkington Brothers Ltd. The results obtained from these 

test runs are shown in table 7.6.1. The derivation of 
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Table 7.6.1 

Results of test runs - main problem 
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Table 7.6.2 

Results of test runs - subsidiary problems 
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column 2 is given in section 7.5.3. During the 

development of the program a considerable number of 

heuristics were experimented with. Some of these produced 

very good results with some sets of data whilst 

performing unacceptably badly on others. These results 

were collated to produce column 5. Column 6 thus shows 

the known deficiencies of the program. The execution time 

of the program depends on size of the data set, the 

format of the output, and whether the object code 

incorporates run-time checking. However, 4 minutes may 

reasonably be regarded as an average execution time. No 

sequence breaks occur in any of these pattern sequences. 

Table 7.6.2 shows the results when the program is 

used to attempt the solution of two related problems. If 

sequence breaks are considered to be of minor importance, 

the program can be run with SEQ-BREAK-WEIGHT (see section 

7.5.21) set to 1. In the second case the sequencing 

desiderata of the main problem are imposed, but the 

number of orders that may be picked off one leg at one 

time is restricted to 2. 

7.7 Conclusions 

The program succeeds in producing sequences of 

cutting patterns with no sequence breaks, which was one 

of the design aims. Its trim-loss behaviour is known not 

to be optimal. However, on the test data used the 

percentage of material lost at scrap never rose to 10% 

and the average discrepancy between the solutions 

produced and the known best solutions was 17, of the 

material used. Whether this behaviour is good enough 

would depend on details of the industrial environment. 

S 
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Further development of the technique would have to be 

closely linked to these. 

The heuristic nature of the method used for avoiding 

sequence breaks is illustrated by their occasional 

occurrence in the results of the subsidiary problem with 

the number of orders picked off each leg restricted to 2. 

Even here they average only 0.5 per sequence and this 

suggests a superiority to the work of Dyson and Gregory 

(197+) in this area. 

The extremely problem-dependent nature of the 

heuristics being used is illustrated by a comparison of 

the results in table 7.6.1 with those under 

SEQ-BREAK-WEIGHT=1 in table 7.6.2. As a particular 

example take data set 3, the results from which indicate 

that in the latter case a different treatment is 

necessary for pieces that must occur in leading 

sub-patterns. 
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Chapter 8 Efficacy of the methods 

For convenience of reference in this chapter, the 

problems considered in the present work will be labelled 

A-E as follows: 

A) abstract 1} -dimensional trim-loss problem (chapter 3), 

B) 2-dimensional trim-loss problem with varying stock 

costs (chapter 4), 

C) optimal network problem (chapter 5), 

D) abstract 2-dimensional trim-loss problem (chapter 6), 

E) 2-dimensional trim-loss problem with sequencing 

constraints (chapter 7). 

The results obtained are good and indicate that 

heuristic search methods are appropriate to the solution 

of the problems considered. The quality of solutions 

obtained by methods of this type depends on the degree of 

use that can be made of problem-specific information. In 

the present work this is information about the geometry 

of the problems. 

The geometric information is utilized in three ways. 

Firstly, it can be used to decide on the search method, 

as shown for example in section 6.1.2. All the problems 

required some adaptation of the basic methods of 

state-space search and problem reduction and some 

required methods to be combined. These adapted and 

combined search methods may well have more general 

applicability. 

Secondly, the geometric information may be used to 

order the alternatives within a search. This ordering is 

necessary for the use of ordered operator search or 
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preferred reduction search. Thirdly, the geometric 

information may be used, as shown for example in section 

3.3.3, to eliminate alternatives in a search. 

For three of the problems considered (A, C and D) 

the methods applied produced solutions that were near 

perfect. For the remaining two (B and E) there was an 

apparently small, but perceptible, deviation from 

optimality. At present methods of getting better 

solutions to these problems are not apparent, and this is 

clearly an area for further research. 

The question may be asked as to whether there is any 

difference in type between the two groups of problems. 

The answer would appear to lie in the perceived 

complexity of the problems. Development of an heuristic 

solution method is a process of man-machine interaction. 

Initially a structure is hypothesized for the solution 

method, a set of plausible heuristics incorporated into 

it, and the resultant computer program run. The details 

of the program are reviewed in the light of this run. The 

review may lead to a complete change in the structure of 

the program. This happened with problem D; the first 

solution method tried was an ordered operator search 

based on the method used on problem A. Certainly the 

review of results will lead to changes in the heuristics. 

Each subsequent run will indicate inadequacies in 

the existing heuristics. The response to this situation 

may be to adjust the relative weightings of existing 

heuristics. On the other hand a completely new heuristic 

may be introduced. Some salient feature of the problem 

may be completely overlooked in the creation of the 
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initial set of heuristics, but its importance can become 

apparent from the consideration of poor program results. 

Similarly, a program containing heuristics which in 

general perform unacceptably badly, or even logical 

errors, may produce a good solution for a particular set 

of data. An analysis of what makes this solution "good" 

may lead to the revaluing of existing heuristics or the 

introduction of new ones. 

An important limiting factor, then, on the 

development of heuristic methods is the amount of insight 

that can be gained into the nature of good solutions. In 

the group of problems for which near perfect solutions 

were found are those for which it was possible to 

perceive the form of good solutions. For the other group 

it was not possible to specify this form tightly enough. 

Observe particularly that for problem E two different 

types of constraint (trim-loss and sequencing) are 

involved and the difficulty is in determining the nature 

of their interaction. 

In extremis this limitation is in the human being 

writing the program, but the nature of the computing 

facilities available for program development will have a 

significant effect. Most importantly it should be noted 

that program development will involve a large number of 

runs to evaluate different combinations of heuristics. If 

the time taken by a single run is not small then a 

considerable amount of computer time will be required. 

The development process is one of man-machine interaction 

and the computing facilities must allow this in a 

satisfactory form. 
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The more information that is available about the 

intermediate steps performed by the program, the more it 

is possible to determine how they should be modified. The 

evaluation of an intermediate step may require 

considerable computation, and there may also be 

difficulty in displaying the features of the step. These 

considerations suggest that the availability of 

interactive graphics facilities would be useful in the 

development of the solution methods for complex problems. 

Another aspect of the need for graphics facilities 

arises when the 3-dimensional analogues of the 

2-dimensional problems investigated here are considered. 

The representation of solutions, let alone steps in their 

creation, raises problems in this area. 

It is in the nature of the methods used that the 

details of the solutions they produce cannot be 

predicted. There is therefore no possibility of proving 

such a program correct or exhaustively testing it. In 

view of this it is even more essential than usual that 

the programming system being used not only be appropriate 

to the problem, but also provide adequate diagnostic 

aids. This point is expanded in appendix B. 

In the same way that it is never certain with this 

type of method that the program implementing it is 

bug-free, it is never certain that the heuristics are 

totally stable. By a stable set of heuristics is meant 

here one which, whatever set of data is presented to the 

program in which it is embodied, will not produce 

seriously sub-optimal results. If such a method were 
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implemented in a practical case, it would be necessary to 

monitor its behaviour to ascertain whether such events 

were occurring, and, if so, to make adjustments to it. 
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. APPENDIX A Test data for 2-dimensional trim-loss problem 
with sequencing constraints 

DATA SET 1 

WIDTH 
1219 
1800 
1200 
1000 
1200 
1.300 
1400 
1bOU 

600 
44U 
900 

1000 
1200 
1300 
1400 
1000 
1100 
1200 
1400 
1800 
1829 
2134 
2134 
1219 

762 
762 
914 

1219 
1219 

600 
720 
960 
680 
920 

1219 
1219 

b40 
b60 
920 
680 

1800 
610 

1220 
1800 

b59 

DE MA NL) 
300 

66 
225 
140 
245 

35 
35 

140 
488 
295 

96 
35 

164 
35 
35 
70 
35 

175 
70 

300 
20 
16 
18 
85 

210 
150 
200 
406 
250 
149 
198 
127 
105 

/8 
70 
65 

100 
129 

60 
39 

616 
52 
50 
58 

107 

CODE LENGTH WIDTH DEMAND 
BLANK 1219 6I0 1200 
F43860 3046 2100 54 
FA8983 1923 1140 264 
FA8983 1923 1440 99 
FA8983 1930 840 165 
FA9325 2490 1000 50 
FA9325 2490 1100 25 
FA9325 2490 1200 25 
FC8006 720 720 JJO 
FC9010 1200 600 291 
FC9010 1520 440 190 
FD6459 2540 1500 25 
FD6459 2540 1600 25 
FD6459 2540 1700 25 
FD6459 2540 1800 175 
F08854 2440 1830 250 
F09288 2540 1800 300 
FN3564 2490 1500 25 
FN3b84 3048 1500 2.0 
FN3867 1930 1372 42 
FN3867 2540 1524 56 
FN3867 2743 2134 20 
FN3913 2438 1880 242 
FN4004 1219 610 24 
FN4004 1219 762 öU 
FN4004 1219 1219 180 
FN4004 1524 1219 214 
FN4033 1219 610 1848 
FN4U33 1219 1219 92 
FN4057 2032 914 38 
F03778 2438 1524 50 
ME2443 980 920 100 
MF3473 960 720 45 
MF3473 1520 920 100 
MH0879 1320 700 100 
11H2126 1560 620 240 
MS3776 2280 2000 21 
N3276 1220 915 28 
N3283 2480 1500 20 
P81"225 1219 610 50 
PS1225 1250 457 115 
STf3CK 2490 1800 112 

.ý 

DATA SET 2 

CODE LENGTH 
BLANK 1219 
FA3864 3048 
FA9113 2660 
FA9418 2490 
FA9418 2490 
FA94183 2490 
FA9418 2490 
FA9418 2490 
FC8429 1200 
FC8429 1520 
FC9237 1520 
FD8779 2540 
FD8779 2540 
FD8779 2540 
FD8779 2540 
F09088 2540 
FD9088 2540 
FD9088 2540 
FD9088 2540 
FD9346 2540 
FN3763 3048 
FN3763 3048 
FN3875 2489 
FN3922 1829 
FN400b 1219 
FN4006 1524 
FN4006 1b24 
FN4034 1219 
FN4034 1829 
FP3704 1120 
FP3704 1120 
FP3704 1320 
FP3704 1400 
FP3704 1400 
F03824 2134 
F03ä24 2438 
ME3520 1300 
MF3485 860 
MHO886 1340 
MH4200 1120 
MR3971 2540 
MS3929 1320 
N3279 122C 
PS0107 249C 
PS1226 836 
PS1226 1046 
PS1226 1098 
PS1226 125C 
PS1226 125C 
ES_1.226____ 1250 

111 38 
457 210 
457 95 
b33 60 
55; x---. 

_24 
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DATA SET 3 

CODE 
BLANK 
FA9142 
FA9142 
FA9142 
FA9142 
FA9430 
FA943C 
FC8644 
FC9292 
FC9292 
F0878C 
FD878( 
F0912% 
FD9671 
FN381 E 
FN388( 
FN400ý 
FN400; 
FN400i 
FN4004 
F'N4O3! 
FP37?; 
F0384! 
F0407i 
MF269 
MF416 
MH269 
M0377 
MS332 
N3252 
N3280 
N3280 
N3280 
PS014 
PS? 11 

LENGTH WIDTH 
1524 914 
2490 1000 
2490 1200 
2490 1600 
2490 1800 
2490 1/00 
3048 1600 
1000 620 

980 740 
1040 540 
2540 
2540 
2420 
2540 

3 2438 
1930 

? 1829 
7 1930 
7 2032 
7 2032 
5 1524 
7 1624 
5 1520 
6 1524 
4 1360 
6 840 
2 1220 
5 1920 
5 762 

1220 
1220 
1220 
1220 

3 1651 
1200 

1500 
1aoU 
1700 
1400 
2134 

864 
1219 
1168 

813 
914 
914 
914 
440 

1219 
560 
680 

1U60 
1200 

762 
610 
610 
762 
915 
610 
600 

DEMAND 
150 

2b 
25 
25 
25 
50 
50 

120 
70 

135 
75 
60 
43 

140 
30 
84 

250 
125 
170 
110 
241 
130 
528 

20 
565 
100 

26 
26 

1363 
20 
50 
33 
68 
25 

216 

DATA SET 4 

CODE 
FA3783 
FA8779 
FA9143 
FA9143 
rA9143 
FA9143 
FC7792 
FC7792 
FC89b2 
FD6458 
FD645E 
FD645F 
FD645E 
FD865; 
FD915e 
FN356 
FN3a5% 
FN390: 
FN400: 
FN400: 
FN400f 
FN4001 
FN4001 
FN4001 
FN404! 
F0315. 
F©377i 
MF 269' 
01H0ß7 
MH087 
MH271 
MH271 
MH271 
MQ394 
MS344 
MS344 
N3272 
N3281 
N3261 
N3281 
N3281 
PS122 
PS122 
STOCK 

LENGTH 
2240 
2240 
2240 
2240 
2240 
2240 

760 
1200 
1520 

I 2540 
2540 

1 2540 
I 2I4C 
c 244C 

244C 
f . 504E 
f 249C 
5 304E 
S 152 
3 182 
3 24.3E 
3 2431 
3 2431 
8 2431 
5 . 3041 
3 2491 
8 243 
5 901 
5 74 
5 144 
5 9b 
5 156, 
5 205 
3 252 
9 152 
9 180 

180 
181 
183 
183 
183 

4 83 
4 104 

249 

WIDTH 
1100 
130U 
1000 
1200 
1600 
1800 

600 
900 
440 

lbOU 
1600 

1 1100 
1800 
1E330 

) 1630 
S 1700 

1700 
1829 

610 
610 
610 

3 762 
3 914 
3 1219 
9 2000 
0 1500 
B 1524 
0 60U 
0 406 
0 b80 
0 720 
0 620 
0 120 
0 1500 
4 bob 
3 660 
0 1070 
0 610 
0 762 
0 91b 
0 1220 
8 b35 
6 711 
10 1500 

DE MA NO 
10e 

45 
Jo 
130 so 
30 

140 
86 

522 
25 
25 
25 

175 
250 
500 

äb 
22 
16 

600 
135 
184 
1bO 
116 

95 
90 

6 
50 

228 
344 

1012 
786 
364 
347 
4U0 
126 

66 
54 
33 
27 
23 
37 
40 
38 
to 

-« -r. 
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DATA SET 5 

CODE 
FN3853 
F A8983 
FA898J 
FA8983 
FA7636 
F03153 
FD9123 
PS0107 
N3280 
N3280 
N3280 
FC9292 
FC9292 
FA386C 
MS3325 
MR3971 
FC901C 
FC901C 
FQ377e 
BLANK 
MR393; 
FN400? 
FN400i 
FN4UUi 
FP377; 
FD878( 
FD878( 
FN387. 
FN386; 
FN386; 
FN366; 
FD9,341 
FA9411 
FA9411 
FA9411 
FA9411 
FA9411 
PS211 
PS122' 
PS122! 
MS344' 
MS344! 
FC842' 
FC842' 

LENGTH WIDTH 
2490 1/00 
1923 1140 
1923 1440 
1930 
2240 
2490 
2420 
2490 
1220 
1220 
1220 

98U 
1040 
3048 

762 
2540 
1200 
1520 

I 2438 
1219 
1020 
1930 
2062 
2032 
1524 

) 2540 
7 2540 
i 2469 

1930 
2540 
2743 

5 2540 
9 2490 
B 2490 
9 2490 
3 2490 
E3 2490 

1200 
5 1219 
5 1250 
9 1524 
9 1803 
9 1200 
9 1520 

840 
1200 
1500 
1700 
1ä0U 
610 
762 
915 
740 
540 

2100 
762 

1800 
b00 
440 

1524 
1219 

406 
1168 

813 
914 
914 

1500 
1800 
2134 
1372 
1524 
2134 
1500 
1000 
1200 
1300 
1400 
1500 

600 
610 
457 
508 
660 
600 
440 

DEMAND 
22 

264 
99 

16S 
225 

6 
43 
58 
50 
33 
68 
70 

135 
54 

1363 
618 
291 
190 

b0 
300 
520 
125 
170 
110 
130 

75 
50 
18 
42 
56 
20 

300 
140 
245 

35 
35 

140 
216 

50 
115 
126 

66 
488 
295 

DATA SET 6 

CODE LE 
FN3818 
FN3763 
FN376J 
ME2443 
FD6459 
FD6459 
FD6459 
FD6459 
FA3864 
N3283 
F03824 
F03824 
FC9237 
FN3913 
M03775 
FA3783 
FC89b2 
FC8006 
BLANK 
MH2715 
MH2716 
MH27lb 
FN4006 
FN4006 
FN4006 
FP3704 
FP3704 
FP3704 
FP3704 
FP3704 
FN4057 
FN4004 
FN4004 
FN4004 
FN4004 
FD8779 
FD8779 
FD8779 
FD8779 
FN4034 
FN4034 
MS3776 
FA9325 
FA9325 
FA9325 
FN4033 
FN4033 
FD9152 
FA9142 
FA9142 
FA9142 
FA9142 

; NGTH 
2438 
3048 
3048 

960 
2540 
2540 
2540 
2540 
3048 
2480 
2134 
2438 
1520 
2438 
192C 
224C 
1520 

72C 
121S 

96C 
156( 
206( 
1215 
152, 
152, 
1121 
112 
132' 
1401 
1401 
20J 
121 
121 
121 
152 
254 
254 
254 
254 
121 
182 
228 
249 
249 
245 
121 
121 
20 

WIDTH 0 
2134 
1829 
2134 

92U 
1500 
1600 
1700 
1800 
1800 
1600 
1219 
1219 

900 
1880 
1200 
1500 

440 
720 

º 610 
720 
620 
72U 

9 762 
4 762 
4 914 
U 600 
D 720 
0 96U 
0 680 
0 920 
2 914 
9 610 
9 762 
9 1219 
4 1219 
0 1000 
0 1200 
0 1300 
0 1400 
9 1219 
9 1219 
0 2000 
10 1000 
10 1100 
00 1200 
9 610 

l9 1219 
40 1830 

E MA ND 
3o 
2u 
16 

100 
25 
25 
25 

175 
66 
20 
/0 
65 
90 

242 
26 

108 
522 
330 

1200 
/86 
3b4 
347 
210 
15u 
200 
149 
198 
127 
105 

78 
38 
24 
60 

180 
214 

35 
1b4 

35 
35 

406 
250 

21 
50 
25 
25 

1848 
92 

500 
2490 1000 25 
2490 1200 25 
2490 16OU 25 
2490 1800 25 
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DATA SET 7 
CODE LENGTH WIDTH DEMAND 
FA9113 2660 1200 225 
P51224 838 635 40 
PS1224 1046 711 38 
ME2438 1600 640 70 
F06458 2540 1500 25 
FD6458 2540 1600 25' 
F06458 2540 1700 25 
F06458 2540 1600 175 
FN4008 2438 610 184 
FN4008 2438 /62 150 
FN4006 2438 914 116 
FN4008 2438 1219 95 
N3281 1830 b10 . 33 
N3281 1830 762 27 
N3281 1830 915 23 
N3281 1830 1220 37 
FN3922 1829 1219 85 
FN3584 2490 1500 25 
FN3584 3048 1500 20 
MF3473 960 720 45 
MF3473 1520 920 100 
MH4200 1120 680 39 
FN3905 3048 1829 16 
N3276 1220 915 28 
N32b2 1220 610 20 
MF2694 1360 560 565 
FD9671 2540 1400 140 
FD8854 2440 1830 250 
FC7792 760 600 140 
FC7792 1200 900 86 
FN4045 3048 2000 90 
FN403b 1524 914 241 
STOCK 2490 1800 112 
FD9288 2540 1800 300 
FN4002 1829 1219 250 
FA9143 2240 1000 30 
FA9143 2240 1200 30 
FA9143 2240 1600 30 
FA9143 2240 1800 30 
MHO886 1340 920 60 
Mt1067: h 740 406 344 
MH0875 1440 580 1012 

DATA SET 8 

CODE L 
FA8719 
MF4166 
FQ4076 
MF3485 
PS0143 
FQ384S 
N3279 
FD9088 
FD9088 
P09088 
FD9086 
MF2695 
FN3583 
BLANK 
N3272 
MH2726 
ME3520 
MQ3943 
FD8853 
FA9430 
FA9430 
FN3880 
F N4003 
FN4003 
MS3929 
MM2692 
STOCK 
PS1226 
PS122b 
PS 1225 
PS 1226 
PS1226 
P51226 
MH0879 
FC8644 

, ENGTH 
2240 

840 
1524 

860 
1651 
1520 
1220 
2540 
2540 
2540 
2540 

900 
3048 
1524 
1800 
1560 
1300 
2520 
2440 
2490 
3048 
1930 
1524 
1829 
1320 
1220 
2490 

833 
1046 
1098 
1250 
1250 
1250 
1320 
1000 

+IUTH 
lion 

680 
1219 

660 
610 
440 

1220 
1000 
1100 
1200 
1400 

600 
1700 

914 
107U 

620 
540 

1500 
1ti30 
1700 
1600 

864 
610 
610 
b10 

1060 
1500 

559 
711 
457 
45, 
533 
5b3 
700 
620 

DEMAND 
45 

IOU 
20 

129 
25 

528 
50 
70 
35 

115 
70 

228 
b5 

150 
54 

240 
100 
400 
250 

50 
50 
84 

600 
135 

b2 
2b 
10 

i0) 
38 

210 
95 
60 
24 

100 
120 



174 
DATA SET 9 DATA SET A 
CODE, LENGTH W 
FN4057 2032 

IDTH 
914 

DEMAND 
38 

CODE LENGTH 'W JUTH DEMAND 
FC8429 1200 600 488 

FP3704 
FP3704 

1120 
1120 

600 
720 

149 
198 FC8429 

MF3485 
1520 

860 
440 
660 

295 
129 

FP3704 1320 960 
' 

127 
FD9152 2440 1830 500 

FP3704 1400 680 )0b 
FA9418 2490 1000 14U 

FP3704 
FC8644 

1400 
1000 

920 
620 

78 
120 FA9418 

FA9418 
2490 
2490- 

1200 
1300 

245 
35 

FN404b 3048 2000 90 
FA9418 2490 1400 . 35 

FC9292 
FC9292 

960 
1040 

74U 
540 

10 
135 FA9418 2490 1500 140 MS3929 1320 610 52 FC7792 

FC7792 
760 

1200 
600 
900 

140 
86 FN4003 1524 610 600 

FCy237 1520 900 96 FN40U3 1829 610 135 
FN3905 3048 1829 16 

F03824 2134 1210 7O 
FN4007 1930 1168 129 F03824 2438 1219 65 
FN4007 2032 813 170 MH4200 1120 680 39 
FN4007 2032 914 110 MS3449 1524 508 126 
P31225 1219 610 5U MS3449 1803 660 66 
PS1225 1250 457 115 FD8854 2440 1810 250 
N3272 1800 1070 54 BLANK 1524 914 150 
PS211 1200 600 216 Fp9288 2540 180U 300 
FD9123 2420 1700 43 MP39S3 1020 406 520 
N3281 18 0 610 33 

BLANK 1219 1219 300 
N3281 1830 762 27 F03153 2490 1500 6 
N3281 1830 915 23 

FN4008 2438 610 184 
N3281 1830 1220 220 S7 2438 762 1bU 
FA3783 2240 1500 108 FN4008 2438 914 116 
MH08 75 740 406 344 FN4008 2338 1219 95 
MH087: i 1440 580 1012 FCgplp 1200 600 291 
FD645L 2540 1500 25 FC9010 1520 440 190 
FD6458 2540 1600 25 FA7636 2240 1200 225 
FD6458 2540 1700 700 25 1600 840 70 
F06458 2540 1800 175 PS1226 838 559 107 
FN391. ý 2438 1680 242 PS1226 1046 711 38 
FN3U5,3 2490 1700 22 PS1226 1098 457 210 
STOCK 2490 1800 112 PS122b 1250 457 95 
F08853 2440 1E330 250 PS1226 1250 b33 60 
FN4034 1219 1219 40e 

PS1226 1250 553 24 
FN4034 1829 1219 250 MS3776 2280 2000 21 
FA9143 2240 1000 3G Fp8779 2540 1000 35 
FA9143 2240 1200 30 

F08779 2540 1200 164 
FA9143 2240 1600 30 

F08779 2540 1300 , i5 
FA9143 2240 1800 30 FD8779 2540 1400 35 
M53325 762 762 13b3 

FA9113 2660 1200 225 
FN4002 1829 1219 250 

FA3860 ; 3048 2100 54 
FN4035 1 24 914 241 F08780 2540 1500 75 

FD8780 2540 1800 50 
-- . -. - ý.. _.. _ . 

FN3763 3048 1829 20 
FN3763 3048 2134 16 
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DATA SET B 

CODE LENGTH WIDTH DEMAND 
FN4006 1219 762 210 
FN4006 1524 762 150 
FN4006 1524 914 200 
BLANK 1219 b10 1200 
MH2692 1220 1060 26 
N3280 1220 61U 50 
N3280 1220 762 33 
N3280 1220 915 68 
FD9346 2540 1800 300 
F04076 1524 1219 20 
FC8006 720 720 330 
FA3864 3048 1800 66 
FD6459 ' 2540 1500 25 
FD6459 2540 1600 25 
FD6459 2540 1700 25 
FD6459 2540 1800 175 
FN3867 1930 1372 42 
FN3867 2540 1624 56 
FN3867 2743 2134 20 
FN3583 3048 1700 85 
FN3880 1930 864 84 
FC8952 1520 440 522 
FQ3778 2438 1524 bo 
FA8779 2240 1300 45 
FD9671 2540 1400 140 
M0377b 1920 1200 26 
FA8983 1923 1140 264 
FA8983 1923 1440 99 
FA898J 1960 840 165 
MR3971 2540 1800 616 
N3252 1220 610 20 
FN3875 2489 2134 18 
FN4004 1219 610 24 
FN4004 1219 762 60 
FN4004 1219 1219 180 
FN4004 1524 1219 214 
F03845 1520 440 528 
P50143 1651 610 25' 
PP3777 1524 914 130. 

DATA SET C 

CODE U 
MH2715 
MH2715 
MH2715 
FN3818 
FA9142 
FA9142 
FA9142 
FA9142 
PN4033 
FN4033 
FA9325 
FA9325 
FA9325 
MF4166 
N3283 
MF3473 
MF3473 
FN3584 
FN3584 
MH272b 
MF2695 
PS0107 
FN3922 
F09088 
F09088 
F09088 
FD9088 
N3279 
MF 2694 
FA9430 
FA9430 
MH0879 
PS1224 
PS1224 
N3276 
MQ3943 
MH0686 
STOCK 
ME2443 
ME3520 

: NGTH WIDTH DEMAND 
960 720 786 

1560 62U 364 
2060 720 347 
2438 2134 30 
2490 1000 25 
2490 120U 25 
2490 1600 25 
2490 1800 25 
1219 610 1848 
1219 1219 92 
2490 1000 50 
2490 1100 25 
2490 1200 25 

840 680 100 
2480 1500 20 

960 72U 45 
1520 920 100 
2490 1500 25 
3048 1500 20 
1560 62U 240 

900 600 228 
2490 1600 58 
1829 1219 85 
2540 1000 70 
2540 1100 35 
2540 1200 175 
2540 1400 70 
1220 122U 50 
1360 560 555 
2490 1700 50 
5048 1b00 50 
1320 700 100 

838 635 40 
1046 711 38 
1220 915 28 
2520 1500 400 
1340 920 60 
2490 1500 1U 

960 920 100 
1300 540 100 
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DATA SET 0 DATA SET E 

CODE LENGTH WIDTH DEMAND CODE LENGTH WIDTH DEMAND 
MF2695 900 600 228 FN4003 1524 610 600 
FN3763 3048 1829 20 FN4003 1829 610 135 
FN3763 3048 2134 16 FC8644 1000 620 12U 
FD8780 2540 1500 75 FA3860 3048 2100 54 
FD8780 2540 1800 50 MS3776 2280 2000 21 
PN4035 1524 914 241 MS3325 762 762 1363 
MS3929 1320 610 52 FN4U33 1219 610 1848 
BLANK 1219 1219 300 FN4033 1219 1219 92 
FC9292 980 740 70 FD6459 2540 1500 25 
FC9292 1040 540 135 FD6459 2540 1600 25 
FC9010 1200 600 291 F06459 2540 1700 25 
FC9010 1520 440 190 FD6459 2540 1800 175 
FN3818 2438 2134 30 FN4045 3048 2000 90 FP3777 1524 914 130 MR3933 1020 406 520 
FD9123 2420 1700 43 FA3783 2240 1500 108 
F03153 2490 1500 6 FA9143 2240 1000 30 
FD9152 2440 1830 500 FA9143 2240 1200 30 
ME2443 980 920 100 FA9143 2240 1600 30 FN3853 2490 1700 22 FA9143 2240 1600 . 30 
F09346 2540 1800 300 STOCK 2490 1800 112 
N3252 1220 610 20 FC8006 720 720 330 
MH0879 1320 700 100 STOCK 2490 1500 10 
PS211 1200 600 216 F04076 1524 1219 20 
MH0875 740 406 344 FN3584 2490 1500 25 MH0875 1440 580 1012 FN3584 3048 1500 20 N3272 1800 1070 54 MH2692 1220 1060 26 PS1225 1219 610 50 FN3913 2438 1880 242 
P31225 1250 457 115 N3279 1220 1220 50 M03775 1920 1200 26 ME3520 1300 540 100 FN3905 3048 1829 16 PS0107 2490 1800 58 FN3880 1930 864 84 FQ3845 1520 44U 528 FN3583 3048 1700 85 FD9671 2540 1400 140 

F03778 2438 1524 50 
--- - --- ---- FD8854 2440 1830 250 

FN4057 2032 914 38 



DATA SET F 

CODE LENGTH WIDTH 
MF3473 960 720 
MF3473 1520 920 
MF4166 840 b80 
FA9113 2bb0 1200 
FN4002 1829 1219 
FA9325 2490 1000 
FA9325 2490 1100 
FA932b 2490 1200 
FN3867 1930 1.572 
FN3867 2540 1524 
FN3067 2743 2134 
MFid38 1600 840 
FA9418 2490 
FA9418 2490 
FA9418 2490 
FA9418 2490 
FA9418 2490 
FA3664 3048 
FN4008 2438 
FN4008 2438 
FN4008 2438 
FN4008 2438 
FN4034 1219 
FN4034 1829 
PS0143 16b1 
MF'348b 8b0 
MHO886 1340 
N3276 1220 
FN3875 2489 
BLANK 1219 
BLANK 1524 
FA9430 2490 
FA9430 3048 
FD9088 2540 
F09088 2540 
FD9068 2540 
FD9088 2540 
FN3922 1829 
FA8983 1923 
FA8983 1923 
FA8983 19jo 
MH4200 1120 
F03824 2134 
Pca3824 2438 
FC9237 1520 

1000 
120U 
1300 
1400 
1ä0U 
1800 

610 
762 
914 

1219 
1219 
1219 

610 
660 
920 
915 

2134 
61C 
914 

170C 
160C 
1000 
1100 
120C 
140C 
1215 
1140 
144( 

U4 
68( 

121` 
121! 

901 

DEtiAND 
45 

100 
100 
225 
250 

50 
25 
25 
42 
b6 
20 
70 

140 
245 

35 
35 

140 
66 

184 
150 
116 

95 
406 
250 

25 V 

129 
60 
28 
18 

1200 
150 

50 
50 
70 
35 

175 
70 
85 

264 
99 

165 
39 
70 
65 

D 95 

. DATA SET G 

CODE L 
N3283 
FP3704 
FPJ704 
FP3704 
FP3704 
FP3704 
F08779 
FD8779 
FD8/79 
FD8779 
MH2726 
PS1226 
PS1226 
PS122b 
P51226 
PS1226 
P51226 
FC7792 
FC7792 
FA7636 
FA9142 
FA9142 
FA9142 
FA9142 
MH271b 
MH2715 
MH2715 
N3281 
N3281 
N3281 
N3281 
FD8853 
FD9288 
FC8429 
FC8429 
M03943 
PS1224 
PS1224 
N3280 
N3280 
N3280 
MR3971 
MF2694 
FD6458 
P06458 
FD6458 
FD64ä8 
FN4U06 
FN4006 
FN4000 
MS3449 
MS3449 
FN4007 
FN4007 
FN4007 
FA8779 
FC8952 
FN4004 
FN4004 
FN4004 
FN4004 

ENGTH 
2480 
1120 
1120 
1420 
1400 
1400 
2540 
2540 
2540 
2540 
1560 

838 
1046 
1098 
1250 
1250 
1250 
760 

WIDTH 
1b00 

6U0 
72U 
960 
660 
920 

1000 
1200 
1300 
1400 

62U 
559 
711 
457 
457 
533 
553 
600 

1200 
2240 
2490 
2490 
2490 2490 

960 
1560 
20b0 
1830 
1830 
1830 
1830 
2440 
2540 
1200 
1520 
2520 

838 
1046 
1220 
1220 
1220 
2540 
1360 
2540 
2540 
2540 
2540 
1219 
1524 
1524 
1524 
1803 
1930 
2032 
2032 
2240 
1520 
1219 
1219 
1219 
1524 

900 
1200 
1000 
1200 
1600 
1600 

720 
620 
720 
610 
762 
915 

1220 
1830 
1800 

600 
440 

1500 
635 
711 
610 
762 
915 

1800 
56U 

1500 
1600 
1700 
1800 

! 62 
762 
914 
508 
660 

1168 
813 

'914 
1300 

440 
610 
762 

1219 
1219 

Dt t AND 
20 

149 
198 
127 
10b 

78 
35 

164 
35 
35 

240 
107 

j8 
210 

95 
60 
24 

140 
t36 

225 

2i 
P. 5 
2b 
2b 

786 
364 
347 

33 
27 
23 
3, 

2b0 
300 
488 
29b 
400 

40 
38 
50 
33 
68 

616 
565 

25 
25 
25 

175 
210 
150 
200 
126 

66 
125 
1/0 
110 

45 
522 

24 
' 60 

180 
214 
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Appendix B Some notes on programming 

The choice of programming systems made for different 

parts of the present work was more influenced by 

availability than desirability. The Multi-Pop system 

(Dunn, 1972) proved easiest to work with, both in terms 

of the suitability of the language for the work and of 

the user interface to the system. 

Much of the work on trim-loss problems required the 

expression in programming terms of the spatial 

relationships between rectangles and, in one case, the 

way in which these could be changed. Such ideas proved 

difficult to express in an efficient and easily 

manipulable form, and in each case an ad hoc method was 

adopted. The development of a simple vehicle for these 

ideas would be an extremely useful piece of work. 

Had it not been for contact with Algol 68-R 

(Woodward and Bond, 1972), the present author would not 
have thought it necessary to make the observation that a 

compiler should flag illegal constructs, not simply 
"compile rubbish". The remainder of these remarks will be 

concerned with run-time events. 

As has been remarked in chapter 8 it must be 

expected that the programs being developed will contain 

bugs. It is therefore desirable that as much useful 

information as possible be available to the programmer on 

program failure: 

i) The reporting of run-time errors should be related as 

closely as possible to the source text. It is of 
limited value to know that function A called function 
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B if it could have done this from any one of half a 

dozen places. Likewise it is unhelpful if the precise 

point of failure cannot be diagnosed because at the 

time of program abort the garbage collector was in 

execution and it is constructed in such a way as to 

prevent this information being extracted. 

ii) A post-mortem facility is extremely desirable as much 

useful information will be held in complex data 

structures. The process of extracting the relevant 

parts of it is much easier if the post-mortem is 

interactive. 

A separate issue is that of information available to 

the user about the actions of the garbage collector. It 

should be possible to collect details of execution times 

including and excluding the time spent in the garbage 

collector. It should also be possible to determine the 

store occupancy of a program at various points in its 

execution. Only with this information is it possible to 

determine the real cost of running a program and the 

nature of possible time/space trade-offs. 


