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An Interval Type-2 Fuzzy Logic Based Map
Matching Algorithm for Airport Ground Movements
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Abstract—Airports and their related operations have become
the major bottlenecks to the entire air traffic management system,
raising predictability, safety and environmental concerns. One
of the underpinning techniques for digital and sustainable air
transport is airport ground movement optimisation. Currently,
real ground movement data is made freely available for the
majority of aircraft at many airports. However, the recorded data
is not accurate enough due to measurement errors and general
uncertainties. In this paper, we aim to develop a new interval
type-2 fuzzy logic based map matching algorithm, which can
match each raw data point to the correct airport segment. To
this aim, we first specifically design a set of interval type-2 Sugeno
fuzzy rules and their associated rule weights, as well as the model
output, based on preliminary experiments and sensitivity tests.
Then, the fuzzy membership functions are fine-tuned by a particle
swarm optimisation algorithm. Moreover, an extra checking step
using the available data is further integrated to improve map
matching accuracy. Using the real-world aircraft movement data
at Hong Kong Airport, we compared the developed algorithm
with other well-known map matching algorithms. Experimental
results show that the designed interval type-2 fuzzy rules have the
potential to handle map matching uncertainties, and the extra
checking step can effectively improve map matching accuracy.
The proposed algorithm is demonstrated to be robust and
achieve the best map matching accuracy of over 96% without
compromising the run time.

Index Terms—ADS-B, airport ground movement, interval type-
2 fuzzy logic, map matching

I. INTRODUCTION

A recent Eurocontrol document has reported that the total
volume of air traffic will grow up to over 16 million by 2040,
which increases 53% compared to 2017 [1]. The early signs
are that this trend of growth will return following the present
pandemic [2]. As air traffic demand continues to increase,
airports and their related operations have become the major
bottlenecks to the entire air traffic management (ATM) system,
raising predictability, safety and environmental concerns. As
a response, airports, airlines, air traffic control services and
aircraft manufacturers are investing heavily in automation and
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digitalisation in order to cope with the rising demand and
constraints of the existing infrastructure [3]. One of the under-
pinning techniques for automating and digitalising air transport
is airport ground movement (AGM) optimisation, which has
received much attention in recent years [4], [5], [6], [7], [8],
[9]. AGM optimisation is in essence a scheduling and routing
problem, involving directing aircraft to their destinations in a
safe and timely manner [10]. As a major bottleneck in the
whole ATM system, the AGM optimisation also integrates
with other airport operational problems, such as runway se-
quencing [11], [12], [13] and stand/gate allocation [14], [15].

Although AGM only constitutes a small portion of the flight,
it contributes a disproportionally large amount of emissions
and fuel cost for each aircraft. This is due to that the aircraft
engine is supposed to work at the cruising speed, and thus
operates inefficiently when an aircraft is moving at a low speed
on the ground. According to a technical report from Hon-
eywell [16], the aircraft fuel consumption during inefficient
taxiing at congested airports accounts for 6% of the entire fuel
cost for single-aisle aircraft in a short-haul flight, resulting in
fuel cost 5 million tonnes worldwide.

To address the AGM optimisation problem, it is pivotal
to learn from historical real-world ATM data. Koeners and
Rademaker [17] pointed out the uncertainty of the aircraft
taxiing speed is a major cause of uncertainty in airport
ground operations. To tackle this uncertainty, they evaluated
the airport traffic flow and speed distributions by using aircraft
taxiing data from Schiphol airport. Ravizza et al. [18] tested
several statistical regression and machine learning approaches
to accurately predicting taxiing times. Historical data from
two major European airports, Stockholm-Arlanda Airport and
Zurich Airport, were applied for cross-validation. Results
indicate that a fuzzy rule-based system outperform other
approaches in terms of prediction accuracy. Brownlee et al. [7]
utilised a set of real AGM data for one day of operations
at Manchester Airport, and generated additional virtual AGM
data to simulate taxi time uncertainties in AGM optimization.
Note only when the provided historical AGM data is precise
enough, the performance of the AGM optimisation under taxi
time uncertainties can be improved.

Currently, Automatic Dependent Surveillance Broadcast
(ADS-B), which broadcasts aircraft GPS position information,
is widely used for air traffic monitoring [19]. EUROCON-
TROL and the American Federal Aviation Administration have
mandated the deployment of the ADS-B system for 2020 as
part of next generation air transportation systems. Since AGM
is part of the ATM procedure, its corresponding data is also
collected by ADS-B. However, the average positioning accu-
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racy of ADS-B is 33 metres according to flight test results [20],
indicating same position errors exist in the collected AGM
data. Furthermore, freely available ADS-B data on tracker
websites often relies on low-end volunteer’s receivers, further
compromising data consistency and frequency. However, the
freely available ADS-B data is often the only source for
research and development. As far as we are aware, this issue
has only been considered in [21]. In this work, a new ground
movement mapping tool is developed, including airport layout
generation and a process of correcting the original AGM raw
data, in which each raw data point is matched to correct airport
segment through a linear transformation and a brute force
serching method. This kind of snapping process falls into the
domain of map matching (MM).

MM algorithms use inputs collected from positioning tech-
nologies (such as GPS and ADS-B) and plot this data on a high
resolution road map, aiming to output enhanced positioning
results [22]. An example is illustrated in Figure 1, where the
input in red dots is the GPS data with noise and the output
is the black line aligned to the road segment after the MM
procedure.

Fig. 1. An illustration of map matching [23].

Since the first application of the MM algorithm to car
navigation [24], MM algorithms have been extensively studied,
among which the fuzzy logic (FL) based MM algorithms
demonstrate superior performance over many existing ad-
vanced MM algorithms [25], [26]. Besides, FL has advantages
in providing a linguistic and an intuitive explanation via prede-
fined IF-THEN rules. To better handle the uncertainties in the
fuzzy logic system (FLS), the interval type-2 FLS (IT2FLS)
has been further developed [27], and has been applied suc-
cessfully to many different domains [28], [29]. However, the
prospect of integrating IT2FLS into MM methods has not been
hitherto investigated in the literature. Therefore, the purpose
of this paper is twofold: the first is to address the necessity of
the MM procedure for the AGM data from ADS-B, and the
second is to demonstrate that the IT2FLS can be successfully
applied in the context of the MM procedure for AGM, leading
to improved accuracy.

The contributions of this paper are threefold: (1) To the best
of our knowledge, MM for AGM has not been mathematically
modelled and addressed before (except a preliminary research
in [21]); we aim to formalise and clearly state the MM
problem for AGM. (2) The IT2FLS is introduced for MM
with the aim of better uncertainty handling. Specifically, we
use the interval-valued fuzzy sets, which are a specific case of
IT2FLS [30], [31]. The fuzzy rules with associated weights
are designed and selected by preliminary experiments and
sensitivity tests, and MF parameters are then tuned by using
a particle swarm optimisation (PSO) algorithm. Moreover, an
extra checking step with posterior information is integrated to
further improve MM accuracy. (3) The proposed IT2FLS based
MM framework is fine-tuned, and its superior performance in
terms of MM accuracy is validated using real AGM data from
ADS-B.

The remainder of this paper is structured as follows. In
Section II, we provide an extensive literature review, including
the MM algorithm and FLS. A brief problem description
and the FLS modeling process are introduced in Section III.
The developed IT2FL based MM algorithm for AGM is
then discussed in Section IV. Section V contains a series of
experimental results using the real world AGM data, which
demonstrates the superior performance of the proposed MM
algorithm. We conclude the work in Section VI.

II. LITERATURE REVIEW

A. MM algorithms

MM algorithms have been intensively applied to road trans-
port, and can be characterized into geometrical, topological,
probabilistic and advanced MM algorithms [22]. Readers are
referred to [22], [32] for more comprehensive MM surveys.

The first MM algorithm for car navigation was developed
in [24], which is a geometrical algorithm on the basis of the
road segment shape. Due to its simple structure, the algorithm
is not accurate enough, especially at intersections and parallel
roads. Velaga et al. [33] addressed several limitations in exist-
ing topological MM algorithms, and introduced an enhanced
weight-based topological MM algorithms, in which two new
weights for intersections and link connectivity were intro-
duced. Experimental results demonstrate that the enhanced
MM algorithm is superior to most existing topological MM
algorithms.

Greenfeld [34] proposed a topologically based MM proce-
dure for the low quality GPS data. A weighted score was
computed and the match was determined with the highest
score. White et al. [35] provided two simple geometrical and
two topological MM algorithms for comparisons. Although the
proposed algorithms are conventional, the authors shed light on
future directions of MM algorithms. Chen and Bierlaire [36]
proposed a probabilistic method based on a smartphone mea-
surement model which can calculate the likelihood of the
observed smartphone data in transport networks. The output of
this probabilistic method is a set of candidate road segments
corresponding to the highest probabilities.

Considering the low frequency positioning data, Quddus
and Washington [37] developed a new weight-based shortest
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path and vehicle trajectory aided MM algorithm. The well-
known A⋆ algorithm was employed for shortest path searching,
and two additional weights relating to the shortest path and
vehicle trajectory were defined. Simulation results indicate
that the developed algorithm is suitable for real-time transport
application and services. Sharath et al. [38] developed a
dynamic two-dimensional MM algorithm considering dynamic
weight coefficients and road width. The road segment was
expressed as a grids matrix according to its center line, and
the location identification was based on a weight score with
respect to proximity, kinematic, turn-intent prediction and
connectivity.

Krüger et al. [38] presented a visual interactive MM
algorithm, including preprocessing and matching processes.
The parameters of the preprocessing step were optimized
with the immediate visual feedback. Large-scale taxi trajectory
data was employed to demonstrate the performance of this
approach. A closed-loop MM framework for ground vehicle
navigation using ambient signals of opportunity was developed
in [39]. The proposed framework assumes the vehicle has a
priori knowledge of its initial states, and estimates subsequent
vehicle states using a particle filter.

FL based MM algorithms have been adopted by the majority
of existing advanced MM approaches. To the best of our
knowledge, Kim and Kim [25] were the first to introduce FL
into the domain of MM. They proposed a novel fuzzy based
algorithm, which can identify the exact road segment on which
a car locates.

Fu et al. [40] considered candidate segments which connect
to the current road segment and their projection points are
within the current positioning error radius detected by GPS.
If more than one candidate identified, each candidate segment
is checked by a fuzzy system considering the distance and
heading differences. However, details of detecting intersections
were not described in this work. Based on distance and
heading difference, Jagadeeshet al. [41] designed a simple
fuzzy inference system to calculate the likehood of each road
in the candidate set. Syed and Cannon [42] robustly identified
the first segment depending on the initialisation conditions of
GPS, and then applied a FLS to check whether the current
GPS point is in the previous segment. A confidence level was
further defined for MM locations, while detailed explanations
were not provided.

Quddus et al. [26] further developed a highly accurate MM
algorithm based on FLS. Different from previous FL based
MM algorithms [25], [40], [41], [42], this work considered
an augmented GPS positioning system with data from vehicle
sensors. Therefore, more information including vehicle speed,
direction of the vehicle, heading of the vehicle and its dif-
ference could be used as antecedents of the FLS. Overall, 23
fuzzy rules were applied to ensure a superior performance
compared to other existing MM algorithms. For more studies
of FL for MM, the reader is referred to [43], [44], [45].

Despite abundant research into MM for road transport,
MM for the AGM has not been fully investigated yet. Zim-
merman [46] designed a guidance framework for aircraft
taxiing with position lights, in which a MM method was
applied to continuously compare the segment with the stored

taxiway network. However, the utilised MM algorithm has
not been explained in detail. A geometrical MM approach
with airport sensor measurements was proposed in [47]. The
airport layout constraints were considered to conduct MM with
multi-sensor environments. Note the authors focus more on the
measurement noise filtering, rather than the MM algorithm.

To make use of freely available data relating to real-world
airport ground movements, Brownlee et al. [21] developed
an end-to-end tool, including airport layout generation, flight
track information exploration and the corresponding MM
process. The raw ground movement data was snapped to
the correct segments by applying a linear transformation, so
that the taxiing speed and routes can therefore be further
analyzed. Note that this tool involves a brute force method for
MM, leading to worse performance in terms of accuracy and
efficiency in some scenarios. In a nutshell, a high-precision
MM algorithm for AGM has not been proposed yet and we
aim to fill this gap by using FLS.

B. Fuzzy logic system

FLS was first introduced in 1965 [48], and has been em-
ployed to a broad range of applications from control [49], in-
telligence system [50], energy industry [51] and the MM [26].
FLS can provide an intuitive, transparent and interpretable
representation of complex systems through IF-THEN rules.
However, such FLS has limited capabilities to directly handle
data uncertainties [28]. More efficiently, to overcome this
shortcoming, the type-2 FL, which can better address the
uncertainties, was further developed in [27].

Compared to the conventional FLS (refer to T1FLS there-
after), type-2 FLS (T2FLS) provides more degrees of free-
dom, which can improve the accuracy and generalisation
capabilities of models [29]. However, before conducting the
defuzzification process similar to T1FLS, a type reduction
process is required for T2FLS [52]. Unfortunately, this type
reduction process is typically time consuming, since it involves
enumerating all T1FLS embedded in the T2FLS. To address
this issue, a unique IT2FLS was designed [53], [54]. The well-
known Karnik-Mendel method and its variations were devel-
oped to provide an iterative fast type reduction process [52],
[55]. To avoid algorithm iterations and further speed up the
type reduction process, a new mathematical interpretation
of the Karnik-Mendel procedure was derived, and has been
demonstrated to operate type reduction without iterations [28],
[56].

Given such superior performance, IT2FLS has been widely
applied in autonomous mobile robots [57], control system [58],
pattern recognition [59] and medical applications [60], [61]. In
this work, we make use of a specific interval-valued fuzzy sets,
which are a unique case of IT2FLS, to conduct MM for AGM,
since it strikes a balance between the degree of freedom and
the computational efficiency [61]. Meanwhile, a careful design
and selection of IF-THEN rules has been also conducted to
ensure the performance of the MM algorithm.
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III. PROBLEM DESCRIPTION AND IT2FLS MODELING

A. Problem description
To make use of historical real-world AGM data, the ca-

pability to identify the historical location of an aircraft on
a correct segment is of great importance. This is achieved
by the MM algorithm, where the following two parts are
considered as the inputs: the positioning data of aircraft near
airport, and the corresponding airport map with high spatial
resolution. Since the ADS-B data is publicly available and
widely used in AGM [21], [7], [8], we choose it as the source
of aircraft original positioning information. As for the airport
map, the ground movement tool developed in [21] is adopted
for taxiway network generation (see Figure 2 as an example).
Therefore, the MM algorithm takes inputs from the ADS-
B system (or coordinates obtained from other sources) and
the map data including topology, links and nodes information.
The output of the MM process is the corresponding segment
for each location point from ADS-B (or other data sources).
Then the obtained ground movement segments can be further
applied to the AGM routing and scheduling problems [4], [9].

Fig. 2. Example of a generated airport taxiway network. Yellow, black, and
green notes are gates, taxiways, and runways, taxiways. The ground movement
route in gray is map matching result from the runway to the gate.

Identifying the initial node of ground movement is of great
importance for the MM procedure. Fortunately, an aircraft
typically starts or ends up at an airport gate during AGM.
Therefore, only the first and last location data from ADS-B is
checked for nearby gates using a search function, which will
be explained in Section IV-A.

B. IT2FLS modeling
In this section, we first briefly introduce the T1FLS model-

ing process, and then extend it to IT2FLS for better addressing
the MM procedure. FL is a superset of Boolean logic that
represents the concept of partial truth [26]. As a conventional
FLS, T1FLS consists of four parts: fuzzifier, inference, rule
and defuzzifier.

As shown in Figure 3, FLS establishes a mapping from
an input space to an output space. In particular, the fuzzifier

Inference

Rules

Fuzzifier Defuzzifier

Crisp Inputs Crisp 

Output

Fig. 3. The block diagram of the type-1 fuzzy logic system.

block takes a crisp input and generates a corresponding fuzzy
mapping to capture more about linguistic uncertainties, namely
antecedent membership functions (MFs). The inference part is
specifically designed, where the fuzzified inputs are combined
with rules, resulting in a fuzzified output, namely consequent
MFs. Two types of inference block, Mamdani-type [62] and
Sugeno-type [63], are mainly used for FLS. In this study, the
Sugeno-type rules are selected for FLS construction. Clearly
this fuzzified output cannot be directly used in practice, and
a defuzzifier process is further required to generate a crisp
output. Given an FLS with n inputs x ∈ Rn, c rules and
fuzzified output (y1, y2, . . . , yc) ∈ Rc, the ith rule can be
expressed in the following IF-THEN linguistic form.

Ri : IF x is Ai,THEN yi = MF i(x) (1)

where Ai is the antecedent MF of the ith rule and MF i(x)
the consequent MF.

Although IF-THEN rules are transparent and interpretable,
the subjectivity may be of great concern. This is because the
words used in rules can mean different things to different
people [28], and the definitions of MFs can vary from experts.
To address this issue, T2FLS containing Type-2 Fuzzy MFs is
introduced as an augmentation of the conventional T1FLS.
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Fig. 4. Comparisons between type-1 and type-2 fuzzy membership functions.

As illustrated in Figure 4, comparing to type-1 MFs, type-2
MFs in T2FLS can provide an extra degree of freedom and
typically improve the modeling accuracy. However, as shown
in Figure 5, the disadvantage of using T2FLS comes from
an additional time consuming type-reduction process before
performing any defuzzification operation (see [52] for a de-
tailed analysis). In light of this, a unique IT2FLS using interval
type-2 fuzzy sets is designed to provide an iterative fast type
reduction process [52], [55]. This process has been further
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Fig. 5. The block diagram of the type-2 fuzzy logic system.

simplified through deriving a new mathematical interpretation
of the Karnik-Mendel (KM) procedure without iterations [28],
[56]. Detailed type reduction and defuzzification procedures
are introduced as follows. We first compute centroids of a
set of c fuzzy sets. The left and right end points yil and
yil (i = 1, . . . , c) are computed using the KM algorithm.
Notice that we only compute the end points once without
KM iterations. Then we compute four boundary type-1 FLS
centroids as
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where f

i
and f i are the upper and lower firing levels for the

ith rule, respectively.
Based on the obtained four type-1 FLS centroids, we further

compute four uncertainty bounds as
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The actual lower and upper bounds of the output is now
approximated as

[yl(x), yr(x)] ≈ [(y
l
(x) + yl(x))/2, (yr(x) + yr(x))/2] (4)

The approximation can still maintain a high accuracy, which
has been proven in [56]. The final defuzzified output is
calculated as

y(x) = (yl(x) + yr(x))/2 (5)

More details and clarifications can be found in [56], [28].

IV. IT2FLS BASED MM ALGORITHM

The heart of MM algorithm is identifying the actual segment
among the candidate segments for each location data point. In
line with [26], we divide the identification process into two
parts: the initial MM process and the subsequent MM process.
Moreover, an extra checking step, which is similar to curve to
curve analysis [34], is developed to fine-tune the proposed MM

algorithm. Note this extra checking step is not capable of real-
time MM applications, as it includes posterior information, i.e.,
the collected next movement positions of the aircraft.

A. Initial MM process

At the beginning of the MM process, we need to identify the
initial segment that matches the first location data point. As
mentioned in Section III-A, an aircraft normally departures
or arrives at an airport gate, making the initial segment
identification relatively easier compared to road transport.
Thus we only need to check the first and last location points
data from ADS-B: if the first point is validated to be closer
to an airport gate segment, then the subsequent MM process
is initiated for the remaining ADS-B data; otherwise the last
point should be closer to a gate segment, and the subsequent
MM process is evoked after reversing the order of the entire
ADS-B data.

Algorithm 1 Initial MM process
Input: aircraft data from ADS-B, taxiway network informa-

tion and radius of the search neighborhood;
Output: initial gate segment;

1: Select the first few location points data from ADS-B;
2: Search gate segments within circular neighborhood;
3: if exist candidate gate segments then
4: return the gate segment with the smallest distance to

the three location points;
5: else
6: Reverse the aircraft data from ADS-B and go to line 1;
7: end if

The detailed initial MM process is provided in Algorithm 1.
We first select the first few AGM points (e.g., the first three
points) data from ADS-B, and search for the nearest airport
gates. Here we define a search neighborhood within a circular
radius (e.g., 100 metres) of the first AGM point, and then
list the candidate gate segments within the circle. The gate is
determined with the smallest distance to the first few location
points. Notice if there is no candidate gate segments within
the circle, we reverse the entire ADS-B data and conduct the
gate search process again.

B. Subsequent MM process

Based on the matched initial gate segment, the subsequent
MM process then iterates through location points from ADS-B
in a chronological order to find their corresponding segments.
Similar to the initial MM process, a search function for nearby
segments is designed. Given the taxiway network normally
consists of more than one thousand segments, iterating through
all segments for each point would be time consuming. In-
stead, we set a circle around the current location and only
search potential segments within or intersect with the circle.
The number of candidate segments is further decreased by
selecting the nearest k nodes to the current location point
and the corresponding segments that connect to those nodes.
This process is illustrated in Figure 6, where segments are
highlighted using a circle of the current location point.
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Fig. 6. Illustration of the initial MM process. The raduis of the circle is 100
metres.

Each highlighted segment is checked whether the current
location point belongs to the segment, and a belongingness
possibility is calculated using the developed IT2FLS. As the
previous MM method for AGM [21] struggles with junctions
and dense networks, we establish two separate IT2FLSs:
one for the current segment, and the other for whether the
current aircraft has left the previous segment and matches with
another segment (potentially at a junction). The purpose of
the first IT2FLS is to match the subsequent location along the
current segment, unless the aircraft has passed the segment.
The second IT2FLS is to identify a new segment among
the candidates at a junction for the previous non-matched
segment. After identifying the new segment by the second
IT2FLS process, the first IT2FLS process restarts, matching
the subsequent data points to the new segment.
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Fig. 7. Illustration of input parameters of the subsequent MM process. (a)
along a segment and (b) at a junction.

1) Inputs of the FLS: As illustrated in Figure 7, the related
input parameters for the two IT2FLSs are introduced in this
section. According to Figure 7(a), the inputs for subsequent

MM process along a segment (the first IT2FLS) are (1)
the angle α, which is between the previous trajectory and
the current segment, (2) the angle β, which is between the
current segment and the segment from the current raw GPS
location point to the end node of the current segment, (3)
the difference δ which is between the distance L1′ and the
distance L1. Here L1′ is calculated from the previous matched
point to the end of the segment, and L1 is from the previous
raw GPS point to the current point, and (4) the heading angle
increment H = |θ′−θ|, where |·| is the absolute value function.
The heading is calculated by using the previous, current and
consequent raw GPS location points. The distances between
two latitude-longitude location points can be calculated by the
Haversine method [64]:

d = 2Rsin−1

√
sin2(

φ2 − φ1

2
+ cosφ1cosφ2sin2(

λ1 − λ2

2
)

(6)
where d, R, (φi, λi)(i = 1, 2) are the distance from one point
to the subsequent one, the radius of the Earth, the latitudes
and longitudes of the raw GPS location points, respectively.

As for the subsequent MM process at a junction (the second
IT2FLS), the input variables are defined in Figure 7 (b) as (1)
the connectivity of the segments Connect, i.e., Connect = 1
when segments directly connect to the previous segment node;
otherwise Connect = 0, (2) the distance error ∆, which is the
difference between the shortest path distance from the previous
matched point to the candidate matched point and the distance
between the previous and the current raw GPS points, and (3)
the Haversine distance e, which represents the distance from
the current raw GPS location point to the candidate segment.
These inputs are calculated for every nearby segments given
each raw GPS point. Using the segment FG in Figure 7 (b)
as an example, its connectivity Connect = 0 since it does not
directly connect to the current segment CD. Its distance error
∆ = |L2−L2′|, where L2′ = P1′D+DF + FP2

′′′
, and its

Haversine distance is e′.
2) IT2FLS along a segment: After clearly defining the input

parameters, we design the IT2FLS along a segment (FLS-
1) as follows. The inputs are fuzzified with the use of S-
/bell-shaped and gaussian MFs for the inference block. These
MFs are shown in Figure 8, resulting in a value between
0 and 1. Note the specific parameters of these MFs are
determined by a training process, which will be described in
the next section. Initially the rules using T1FLS in [26] are
employed for the FLS-1, however, undesirable results with a
lower MM accuracy are obtained. This is because the rules
in [26] rely heavily on gyro-rate reading as well as dilution
of precision information, both of which are not provided from
the original ADS-B data. Therefore, preliminary experiments
and sensitivity tests similar to that in [26] were conducted to
first design fuzzy rules, determine the associated rule weights,
and the Sugeno fuzzy model output. The generated nine rules
for the FLS-1 are shown below. Note that the MF parameters
are subject to further optimisation using a PSO algorithm.
The above choice is largely due to the fact that optimising
MF parameters using PSO is already time-consuming (up to
one week for 100 PSO iterations using a high-performance
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Fig. 8. MFs of FLS-1 along a segment.

computing cluster).
• Rule 1: If (α is below 90◦) and (β is below 90◦), Out1 = Z3 and W

= 0.3
• Rule 2: If (δ is positive) and (α is above 90◦), Out1 = Z1 and W =

0.3
• Rule 3: If (δ is positive) and (β is above 90◦), Out1 = Z1 and W =

0.3
• Rule 4: If (H is low) and (α is below 90◦) and (β is below 90◦), Out1

= Z3 and W = 1
• Rule 5: If (H is low) and (δ is positive) and (α is above 90◦), Out1

= Z1 and W = 1
• Rule 6: If (H is low) and (δ is positive) and (β is above 90◦), Out1

= Z1 and W = 1
• Rule 7: If (α is below 90◦) and (β is below 90◦), Out1 = Z3 and W

= 0.3
• Rule 8: If (H is high) and (α is below 90◦), Out1 = Z1 and W = 1
• Rule 9: If (H is close to 180◦) and (α is below 90◦), Out1 = Z3 and

W = 1

where we employ a zero-order Sugeno fuzzy model with three
constant output Out1: Z1=10 (low), Z2 = 50 (average) and Z3
= 100 (high). Here W is the rule weight importance.

The value of Out1 determines whether the current location
point matches with the current segment. If Out1 is greater
than a certain threshold value, then the location point snaps
to current segment (for instance, P2 would snap to the same
segment P1 matches in Figure 7(a)). In contrast, if Out1 is no
more than the threshold, it indicates that the current location
point has passed current segment. The FLS-1 terminates and
the IT2FLS at a junction is then evoked to identify the new
segment.

3) IT2FLS at a junction: IT2FLS at a junction (FLS-2)
applies a simpler system consisting of three inputs and six
fuzzy rules. The MFs of the inputs are plotted in Figure 9,
and the generated fuzzy rules are as follows. Note the specific
parameters of these MFs are determined after a training
process in the next section, and the rules are generated using
the same sensitivity test in the above subsection.

• Rule 1: If (Connect is low), Out2 = Z1 and W = 0.5
• Rule 2: If (Connect is high), Out2 = Z3 and W = 0.5
• Rule 3: If (∆ is small), Out2 = Z3 and W = 0.1
• Rule 4: If (∆ is large), Out2 = Z1 and W = 0.1
• Rule 5: If (e is small), Out2 = Z3 and W = 1
• Rule 6: If (e is large), Out2 = Z1 and W = 1

where Out2 is the possibility belonging to the new segment.
Thus the candidate segment with the largest crisp output value
after type reduction and defuzzification will be selected for
matching. According to preliminary experiments, the distance
error ∆ from the ADS-B data is relatively large, leading to
incorrect matching results. Meanwhile, the input Connect
aggravates the errors in the condition that the AGM data has
large intervals between raw GPS location points, as the corre-
sponding rule prefers to select a closer segment to the current
one. These issues have been addressed through increasing the
weights of the Haversine distance rules (Rules 5 and 6 in the
FLS-2) during the sensitivity test, and the performance of the
FLS-2 is thus ensured.

However, assigning a higher weight to the Haversine dis-
tance e could lead to map matching errors, e.g., a location
point could be matched to a wrong segment when the point is
near a junction. We address this issue by introducing an extra
step for FLS-2, after identifying a new segment for the current
location point. Similarly to the curve-to-curve analysis [34],
we apply the FLS-2 on the two next nodes, and calculate the
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Fig. 9. MFs of FLS-2 at a junction.

Dijkstra shortest path [65] from the previous point to the next
two points, as shown in Figure 10.

Raw GPS point
Current Raw GPS Point
Taxiway Node

Taxiway Segment
Dijkstra Shortest Path
Raw GPS Path

(b)(a) (c)

E F G

A B

C

D

E F G

A B

C

D

E F G

A B

C

D

Fig. 10. FLS-2 chooses the most likely segments for the current, next and
second next points, using a shortest path to connect the segments of the next
two points. (a) the current point does not match to the correct segment, (b) the
next (second) point correctly matches the segment, (c) the third point correctly
matches the segment including the second point, therefore the current point
re-matches the correct segment after the extra check step.

Three shortest paths corresponding to the three subfigures
in Figure 10 are considered as follows: whether the first
path is included in the second path. If yes, keep the current

map matching result; otherwise, check whether the first path
(Figure 10(a)) and the second path (Figure 10(b)) are included
in the third one (Figure 10(c)), respectively. If the first path
matches the third one or both paths are not included in the
third one, keep the current map matching result; if the second
path matches the third one (corresponding to the situation in
Figure 10), update the current point map matching results with
the second path. We could consider more subsequent points in
this check step. However, sparser data may yield much more
errors, since the reliance on the Dijkstra shortest path could
cause undesired shortcuts.

V. EXPERIMENTS

To validate the performance of the proposed MM algorithm,
we first briefly introduce the collected AGM dataset as well as
the experimental setup, and then the proposed MM algorithm
is validated and compared with existing methods.

A. Dataset and experimental setup

In this work, we utilise the data from Hong Kong Airport
(HKG), one of the top ten busiest airports in the world. The
layout of HKG is illustrated in Figure 11, where the red, blue
and green segments represent taxiways, gates and runways,
respectively.

Fig. 11. The layout of Hong Kong Airport.

The real-world ADS-B aircraft ground movement data
at HKG is collected from a freely-available website Fligh-
tRadar24, following the tools described in [66] (available
at https://github.com/gm-tools/gm-tools). The website Fligh-
tRadar24 gathers airborne flight tracks from automatic de-
pendent ADS-B messages transmitted by aircraft, including
the latitude, longitude and altitude information with 10-metre
resolution. The sampling frequency is from 5 to 10 seconds. As
we focus on the aircraft ground movements at HKG, only the
tracks within 5km of HKG are collected. Notice that the airport
towing vehicle tracks are also included in the original ADS-
B messages, and we have removed this irrelevant data when
collecting the aircraft movements. In the end, we collected

https://github.com/gm-tools/gm-tools
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130 aircraft ground movements from 15th January 2017,
and manually identified the corresponding actual movement
trajectories. Overall, the collected aircraft movements contain
11,119 nodes to be matched. The identified actual movement
trajectories (in total 7,956 segments) are to be used for testing
the performance of the proposed MM algorithm (denoted as
IT2FLS+ thereafter). We also compare IT2FLS+ with other
five MM algorithms, including the exhaustive method (denoted
as Exhaustive) which applies a brute method to match a
route [21], the IT2FLS model without the extra checking
step for FLS-2 in Section IV-B3 (IT2FLS), the T1FLS model
with/without extra checking step for FLS-2 (T1FLS+/T1FLS),
and the FLS (denoted as Q-FLS) developed in [26]. The Q-
FLS method is modified to exclude the original rules using
gyro-rate reading and dilution of precision, as the collected
aircraft movements dataset does not contain such information.
Note that only the MM methods without the extra checking
step are capable of real-time applications, since the extra
checking step includes posterior information, i.e., the collected
next movement positions of the aircraft.

By randomly dividing the 130 aircraft ground movements
into 10 groups, all the MM models (except the exhaustive
method) are further trained and tested using particle swarm
optimization [67] based on 10-fold cross validation. During
the training process, we aim to optimise the MF parameters
with maximal average map matching accuracy AccA, which
is defined in the next section. The MM algorithms are imple-
mented in Python, and run on Queen Mary’s Apocrita high-
performance computing facility.

B. Results and discussions
The overall comparison results of the MM algorithms are

illustrated in Figure 12, including MM accuracy for training
and testing dataset results (denoted as Train and Test) respec-
tively. Detailed MM results for each training/testing subset are
shown in the appendix from Tables II to VI. Moreover, the
MM accuracy results with initial parameters setting without
training (denoted as Pre-Train) are included. Here, four metrics
are used to measure accuracy over different MM algorithms.
AccD, AccE and AccT denote MM accuracy over the entire
distance, the number of segments, and the number of turn-
ing segments that are correctly identified respectively; AccA
represents average MM accuracy based on AccD, AccE and
AccT. For instance, assume that one actual aircraft movement
trajectory has in total 100 segments with 20 turning segments,
and its distance is 5km. Taking the corresponding ADS-B
aircraft movement data as inputs, the MM method generates
a snapped trajectory, in which 95 out of 100 segments, 18 of
20 turning segments (which have more than two directly con-
nected segments), and 4.8 of 5km are correctly mapped. Then
AccD, AccE and AccT of the MM process are calculated as
95/100 = 95%, 18/20 = 90%, 4.8/5 = 96%. Consequently,
average accuracy AccA is (95% + 90% + 97%)/3 = 93.7%.
The MM results from Q-FLS are separately shown in Fig-
ure 12(a), as its MM accuracy never exceeds 80%, which is
clearly worse than other MM algorithms. Note that there are
no MM accuracy results for T1FLS+ and IT2FLS+ over Pre-
Train and Train in Figure 12(b) and Figure 12(c), as these two

algorithms directly apply the same rules and parameters from
T1FLS/IT2FLS, and have an additional extra checking step as
described in Section IV-B3..
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Fig. 12. Comparison results of MM algorithms.

As shown in Figure 12(b), IT2FLS achieves a higher MM
accuracy over 95% without training. This could be due to the
generalisation capability of the IT2FLS model, which employs
more parameters to handle the MM process; the proposed
IT2FLS method is then insensitive to the MF parameters
to some extent. T1FLS also performs well with specifically
designed rules. In contrast, Q-FLS initially has the worst MM
accuracy, as the applied rules may not effectively for MM.
Although the MM accuracy of Q-FLS increases over 10% after
training process, Q-FLS still has the lowest MM accuracy.

After the training process, IT2FLS+ clearly achieves the
best MM performance in terms of all four metrics. The overall
MM accuracy AccA goes up to 96.91%. When excluding the
extra checking step, the IT2FLS+ model degrades to IT2FLS,
and its overall accuracy AccA decreases to 96.26% as well.
We also observe that T1FLS and T1FLS+ both perform worse
than corresponding IT2FLS and IT2FLS+, respectively.

The MM accuracy improvement in terms of AccD and AccE
using IT2FLS+ over T1FLS+ appears relatively minor. This is
because of the newly developed set of fuzzy rules, which are
specifically designed for the airport map matching problem.
Based on these fuzzy rules, T1FLS+ already achieves a high
MM accuracy. Therefore, the room for IT2FLS+ to massively
increase the accuracy with respect to these two metrics is lim-
ited. However, IT2FLS+ still renders advantages over T1FLS+
in the following two aspects. Firstly, IT2FLS+ offers more
generalisation capacity due to IT2FLS, indicating it has the
potential to better handle unseen airport ground movements.
Secondly, the seemingly minor accuracy improvement with
respect to AccE and AccD using IT2FLS+ can result in a sig-
nificant increase in the number of correctly matched segments
compared to T1FLS+. For instance, by using IT2FLS+, the
AccE increases by 96.81%−96.62% = 0.19%. After translat-
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ing this improvement into the increased number of correctly
matched segments using the collected ground movement data
in [8], for Hong Kong Airport, which has 33,095 movements
in 36 days, the significance of such improvement becomes
evident. As each movement includes 60 segments on average,
this indicates the number of correctly matched segments could
be significantly increased by 33095×60×0.19% = 3772 when
using IT2FLS+ compared to T1FLS+.
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Fig. 13. Illustration of the training and testing curves for Q-FLS, T1FLS and
IT2FLS.

Q-FLS has the worst performance with less than 80%
MM accuracy. This is reasonable, as its original fuzzy logic
rules are designed for road transport, and only part of them
can be applied in the aircraft movement MM process. The
performance gap can be also found during the training process.
Taking the 7th subgroup in the dataset as the testing set, we
illustrate its training and testing curves of Q-FLS and T1FLS
in Figure 13. At the beginning of the training, the performance
difference of Q-FLS between the training and testing data is
about 10%, and its MM prediction is less than 85%. As for
T1FLS and IT2FLS, the MM accuracy difference between the
training and testing data slightly fluctuates within 1%, and
has a higher MM accuracy at early training stages. These
observations demonstrate that the specifically designed rules in
this work have superior performances even without optimising
the parameters of the MFs.

As the MM Exhaustive method taken from [21] does not be-
long to data-driven models, the results are separately presented
here: for the whole 130 flight trajectories, among 8 of which
fail to match a route. For the remaining trajectories, the MM
accuracy of AccD, AccE and AccT is 91.64%, 90.87% and
89.73% respectively, which is lower than that of our proposed
MM approach.

To further analyse the MM results, we look into the per-
formance differences with respect to metrics AccD, AccE
and AccT. The MM accuracy over the entire distance AccD
consistently has the highest value across all MM algorithms,
followed by AccE and AccT. This can be explained by one
MM example illustrated in Figure 14 using IT2FLS+. Clearly
the snapped segments in cyan successfully match almost
the entire aircraft movement trajectory, except one turning
segment within the black circle. Since certain input variables
of MM model have drastic changes (e.g, the heading angle
could vary up to 90 degrees for turning segments) and there are

Fig. 14. An example of MM results using IT2FLS+. Yellow and cyan lines
represent the collected aircraft movement to be mapped and corresponding
snapped trajectories, respectively. The MM results in cyan correctly match
the majority of the aircraft movement trajectory, except an incorrect turning
segment within the black circle.

more optional segments to match around the turning-segment
areas, the turning segments are indeed difficult to match. Thus
AccT has the lowest MM accuracy, while AccE considering
all the segments is greater than AccT. Meanwhile, the turning
segments typically are shorter than other segments, therefore
the AccD, which accounts MM accuracy over the movement
distance, is larger than AccE. Nevertheless, the MM accuracy
AccT of IT2FLS+ still achieves a high-precision level with
96.45%, correctly matching most of the turning segments.

TABLE I
MM COMPUTATIONAL TIME. THE THREE ROWS INDICATE THE RUN TIMES
(IN SECONDS) FOR THE ENTIRE DATASET, EACH TRAJECTORY AND SINGLE

POINT IN AVERAGE, RESPECTIVELY.

Method Exhaustive Q-FLS T1FLS T1FLS+ IT2FLS IT2FLS+

Total 322,030 311.84 512.40 1037.80 564.07 1095.07
Trajectory 2,477 2.40 3.94 7.98 4.34 8.42
Point 31 0.03 0.05 0.09 0.05 0.10

The computational time for the six MM algorithms are listed
in Table I. Note that runs with the exhaustive approach [21]
were conducted on a separate infrastructure1; nevertheless, it
clearly has the largest computational time. Q-FLS takes the
least run time, as it runs with the least fuzzy logic rules
and does not consider the extra checking step. Recall that an
simplified type reduction process, which can significantly in-
crease the computational efficiency, has been introduced when
implementing the IT2FLS model [28]. Therefore, the run time
of IT2FLS only slightly increases compared to that of IT1FLS.
Integrating with the extra checking step, T1FLS/IT2FLS is
upgraded to T1FLS+/IT2FLS+, while the run time is doubled.
However, the time increase is acceptable, as the average run
time for single point along a movement trajectory is no
more than 0.10 seconds. The MM algorithms with a real-time
manner are promising to underpin online air traffic control

1the Archie-WeSt HPC; where each core is a Intel Xeon Gold 6138
CPU @2.0GHz. While direct comparisons are thus not possible, the FLS
approaches compare very favourably.
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for tactical decisions, e.g., AGM conflict resolution, trajectory
prediction and automated lighting control.
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Fig. 15. MM robustness performance of IT2FLS+.

To test the robustness of the proposed MM algorithm
IT2FLS+, we further add extra positioning errors in the real-
world raw trajectory data collected from ADS-B. Specifically,
five different positioning error conditions are considered. The
baseline condition uses the real-world ADS-B data (denoted as
ADS-B). Four additional conditions include extra positioning
errors randomly distributed from 0 to ∆e (∆e = 5, 10, 20 and
30) metres, which are respectively added to each raw point
data. The MM results are illustrated in Figure 15 in terms of
the four accuracy indicators. Clearly, the MM performance
of IT2FLS+ has a decreasing trend along with increasing
positioning errors. However, the decrease is reasonably slow.
For instance, average MM accuracy AccA maintains a high
value of 93.35% with additional 20-metre errors. Although a
sharp decrease is observed between 20 to 30 metres errors,
the MM results still have a good performance with AccA at
88.31%. The proposed MM algorithm IT2FLS+ is verified
to be robust thanks to its type-2 fuzzy rules and the extra
checking step.

VI. CONCLUSIONS

A new interval type-2 fuzzy logic based map matching
algorithm for airport ground movement has been proposed
in this work. We specifically design IF-THEN rules for the
interval type-2 fuzzy logic system (IT2FLS), which employs
more parameters to better address the map matching problem.
Moreover, an extra checking step with posterior information
is integrated into the IT2FLS to further improve the map
matching accuracy. The proposed algorithm is tested with
real-world aircraft movement data at Hong Kong Airport.
Experimental results indicate that both of the IT2FLS and the
designed additional checking step lead to better map matching
performance, while the computation is relatively cheap and
capable of online applications. The proposed map matching
algorithm can be of great value to underpin trajectory-based
airport ground operations [4].

Future research for map matching algorithms for airport
ground movement can be oriented in three directions. 1) The
fuzzy rules are first designed with associated rule weights
and output values, followed by an efficient global optimisa-
tion method to simultaneously design fuzzy rules and their

associated parameters. 2) Current experiments are conducted
at a single airport, due to the time-consuming process of
dataset labelling, i.e., identifying the actual aircraft movement
trajectories. It would be of great importance to establish a
benchmark for map matching testing across different airports.
3) The proposed algorithm is applied for matching airport
ground trajectories. It could also provide quantitative insights
into other road transport map matching problems.

APPENDIX

Detailed MM results for each training/testing subset are
shown from Tables II to VI.

TABLE II
MM RESULTS WITH Q-FLS.

Train

AccD (%) AccE (%) AccT (%) AccA (%)

1 80.52 78.92 78.19 79.21
2 73.91 74.08 72.03 73.34
3 76.69 76.14 73.78 75.54
4 85.64 83.21 82.02 83.62
5 78.86 77.00 76.46 77.44
6 81.18 78.83 78.86 79.62
7 85.85 83.76 82.36 83.99
8 78.59 76.56 76.72 77.29
9 79.27 77.42 75.88 77.53
10 69.76 70.10 69.70 69.85

mean 79.03 77.60 76.60 77.74
std 4.89 4.01 4.05 4.31

Test

AccD (%) AccE (%) AccT (%) AccA (%)

1 85.11 82.77 82.80 83.56
2 71.79 72.22 70.27 71.43
3 71.30 72.24 69.85 71.13
4 80.67 79.80 79.49 79.99
5 78.98 76.82 75.44 77.08
6 81.66 81.06 80.67 81.13
7 76.12 74.33 76.12 75.52
8 78.90 76.35 76.90 77.38
9 81.66 80.70 78.94 80.43
10 75.12 74.65 75.89 75.22

mean 78.13 77.09 76.64 77.29
std 4.49 3.80 4.17 4.15

TABLE III
MM RESULTS WITH T1FLS+.

Test

AccD (%) AccE (%) AccT (%) AccA (%)

1 97.38 96.04 95.33 96.25
2 95.42 95.34 95.68 95.48
3 98.52 98.26 97.73 98.17
4 95.93 95.07 94.27 95.09
5 98.26 98.08 97.69 98.01
6 97.52 96.62 95.85 96.66
7 97.40 96.24 95.92 96.52
8 96.36 96.01 96.03 96.13
9 98.22 97.32 96.64 97.39
10 97.75 97.22 96.64 97.20

mean 97.28 96.62 96.18 96.69
std 1.04 1.08 1.05 1.06
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TABLE IV
MM RESULTS WITH IT2FLS+.

Test

AccD (%) AccE (%) AccT (%) AccA (%)

1 97.46 96.27 95.63 96.45
2 96.43 96.35 96.68 96.49
3 98.56 98.26 97.73 98.18
4 97.65 96.92 96.50 97.03
5 98.26 98.08 97.69 98.01
6 97.01 95.93 95.53 96.16
7 97.01 95.93 95.53 96.16
8 96.17 95.16 94.95 95.43
9 98.44 97.45 96.81 97.57

10 97.75 97.22 96.64 97.20
mean 97.48 96.81 96.45 96.91
std 0.87 1.05 0.96 0.96

TABLE V
MM RESULTS WITH T1FLS.

Train

AccD (%) AccE (%) AccT (%) AccA (%)

1 96.47 95.55 94.85 95.62
2 97.71 96.85 96.35 96.97
3 96.22 95.42 94.73 95.46
4 96.45 95.71 95.06 95.74
5 96.77 95.94 95.41 96.04
6 96.73 95.86 95.29 95.96
7 96.41 95.50 94.90 95.60
8 97.34 96.44 95.94 96.57
9 97.33 96.52 96.11 96.65

10 97.27 96.42 96.01 96.57
mean 96.87 96.02 95.47 96.12
std 0.51 0.50 0.59 0.53

Test

AccD (%) AccE (%) AccT (%) AccA (%)

1 96.79 95.46 94.31 95.52
2 94.78 94.05 94.51 94.45
3 96.72 97.09 96.21 96.67
4 96.23 95.32 94.59 95.38
5 97.73 97.32 96.74 97.26
6 97.17 96.11 95.20 96.16
7 96.06 94.99 94.36 95.14
8 95.63 94.30 93.86 94.60
9 97.45 96.11 95.39 96.32

10 97.19 96.75 96.05 96.66
mean 96.57 95.75 95.12 95.82
std 0.91 1.12 0.96 1.00

EP/N029496/2, and EP/N029356/1]. Thanks are also extended
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