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SUMMARY ABSTRACT 

Cambodia is a country rich in biodiversity and cultural heritage, yet between 1970 and 1993 the 

country experienced civil war and genocide, with long-lasting implications for the country’s 

environment, politics, and people. Cambodia’s post-conflict economic recovery has been 

remarkably successful; reducing poverty rates, expanding agriculture, and improving the 

socioeconomic status of many in the country, making it an excellent case study for other 

countries that have experienced rapid political, socioeconomic, and environmental change. Yet, 

there has been little research into the effects of Cambodia’s economic recovery on forests, nor 

into the effects of current policies and funding regimes on the country’s protected area network. 

In this thesis, I address these research gaps by focussing on two themes: 1) economic 

development and forest loss; 2) protected area, wildlife, and landscape management. 

First, I reveal that metrics of economic development and agricultural commodities do not 

predict forest loss but do predict the expansion of commercial agriculture. I then demonstrate 

that there are complex relationships between socioeconomic, human, and geographical 

predictors of forest cover at different scales across the country.  

Second, I present evidence that in contrast to arboreal species, anthropogenic threats are having 

serious negative effects on ground-based wildlife within a flagship protected area. I then 

identify the potential consequences of different funding regimes for conservation management 

within a social-ecological landscape. I demonstrate that short-term grant cycles, which are the 

dominant conservation funding mechanisms around the world, are not optimal for maximising 

long-term conservation outcomes. 

My thesis provides novel and policy-relevant research into the effects of Cambodia’s post-

conflict recovery on forest conservation and landscape management. I reveal the implications of 

policies that prioritise economic development and agricultural expansion over natural resource 

management and biodiversity conservation, and I recommend the development of agricultural 

policies and schemes that embrace modern innovation and promote socioeconomic 

development yet embody environmental sustainability. Finally, I recommend the urgent 

reduction in wildlife hunting, action to reduce reliance on wild meat, and the prioritisation of 

sustainable long-term funding for protected areas.
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1.1  A rapidly changing world 

Humans have exerted pressure on the natural world for millennia, yet the last 500 years have 

seen dramatic increases in the use of natural resources for human development (Steffen et al., 

2015; Williams, 2003). Increases in human populations, agricultural expansion and 

intensification, and the liberalisation and expansion of the global free market economy have all 

driven increases in the exploitation of natural resources, with profound implications for nature 

(Alston and Pardey, 2014; Behrens et al., 2007; Conca, 2001; Everett et al., 2010; Wiedmann 

and Lenzen, 2018). Continued economic growth and development via natural resource 

exploitation is particularly prevalent in the developing world where governments strive to 

reduce poverty rates, natural resources are more abundant, and the globalisation of the 

commodity market has allowed resource-rich countries to capitalise on international trade 

(Adams et al., 2019; Hoang and Kanemoto, 2021; Pendrill et al., 2019; Sachs and Warner, 

2001).  

There is little debate that human exploitation of natural systems can have negative effects on 

biodiversity; changes in anthropogenic pressure can directly predict changes in species 

extinction risk (Di Marco et al., 2018) and can lead to species extinctions both directly via the 

destruction of habitats and overexploitation of wildlife populations, and indirectly by triggering 

amplifying feedback loops which typify the collapse of natural systems (Brook et al., 2008). 

The dynamic nature of global economics and human society means that human pressure on the 

environment changes over space and time, operates across multiple scales, and interacts with an 

immeasurable number of social-ecological subsystems (Berkes et al., 2000; Venter et al., 2016). 

This complexity makes predicting the effects of human pressure on biodiversity and natural 

systems difficult, which in turn makes sustainable land management and the design of effective 

economic and environmental policies aimed at reducing environmental degradation challenging.  

1.1.1 Forests 

Throughout human history deforestation has likely affected more of the earth’s surface than any 

other human activity (Williams, 2003). Today, millions of people around the world, often the 

poorest and most marginalised, still rely on forests and the natural resources within them for 

their livelihoods (Wunder et al., 2014). Forests are a source of medicine, protein, fibre, timber, 

and are often places of spiritual and cultural importance (Clark, 2011; Djoudi et al., 2015; 

Humphreys, 2009; Sunderlin et al., 2005). Furthermore, forests are critical for biodiversity 

(Estoque et al., 2019), water and soil regulation (Millennium Ecosystem Assessment, 2005), 

ecosystem functions, processes, and services (Ceccherini et al., 2020; de Groot et al., 2002), and 
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climate regulation (Jiao et al., 2017). The loss of forests due to human activities, particularly in 

the tropics, is a major source of biodiversity loss and carbon emissions (IPCC, 2019), and can 

have negative effects on local people through the loss of land and livelihoods (Caravaggio, 

2020a; Dressler et al., 2017). The primary driver of global deforestation is the expansion of 

commodity production which causes permanent land use change, with other contributing drivers 

including wildfires, forestry, and shifting agriculture (Curtis et al., 2018).  

Modern consumption patterns, in combination with globalised trade and increasing human 

populations, have increased the global demand for agricultural commodities (Hoang and 

Kanemoto, 2021; Pendrill et al., 2019). Between 1960 and 2019 the global area under harvest 

for primary crops increased by over 13 million km2 (FAO, 2021). Agricultural sector growth is 

an important goal for improving food security in many developing nations with increasing 

human populations, and can also contribute towards economic development via lucrative 

exports of commodities (Caravaggio, 2020b; Eliste and Zorya, 2015). Large-scale commercial 

agriculture has emerged in many parts of the world in response to the global demands for 

commodities and the opportunities for commercial gain via global markets, often replacing 

smallholder agriculture or reducing forest cover via permanent land use change (Broegaard et 

al., 2017; van Vliet et al., 2012).  

In contrast to global and regional drivers such as demand for commodities and market 

fluctuations, there are a multitude of local conditions that can influence forest loss, both directly 

as local drivers, and indirectly through interactions with broader drivers (Geist and Lambin, 

2002). Proximate causes of deforestation at the local scale can include agricultural expansion, 

infrastructure development, and urbanisation, all of which are driven by complex interactions 

between socioeconomic conditions, land tenure, migration, increasing human populations, and 

local economies (Ceddia, 2019; Culas, 2012; Gatto et al., 2015; Geist and Lambin, 2002; Khuc 

et al., 2018; Mena et al., 2006). At the smallest scale, decision-making by agents of change, for 

example smallholders and individual households, is influenced by a range of multifaceted 

drivers and conditions as they respond to changes in economic opportunities and attempt to 

meet their economic, social, and cultural objectives (Rowcroft, 2008).  

Disentangling the interactions and feedback loops between drivers of deforestation at different 

scales is complex, which makes the design of effective policy frameworks and conservation 

interventions challenging. Advanced modelling frameworks have developed which are allowing 

greater understanding of the processes underlying land use change (LUC), and subsequently 

more accurate predictions into the future (Basse et al., 2014; Bonilla-Bedoya et al., 2018). 

Methodological approaches fall broadly into two groups governed largely by the aims of the 

study. First, modelling the spatial processes of LUC is a common goal, as this allows 
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researchers to use patterns of past LUC to predict which areas are at higher risk of land 

conversion in the future, with the potential to explore a number of plausible future scenarios 

(Basse et al., 2014). There are several spatially explicit cell-based modelling frameworks that 

can achieve these aims, including maximum entropy (Bonilla-Bedoya et al., 2018; de Souza and 

De Marco, 2014), and cellular automata (Stevens and Dragićević, 2007; Yang et al., 2012), 

which rely on discrete spatial units that have associated variable values and tend to be spatially 

correlated.  

Second, researchers may want to focus their models on the relationships between LUC and 

trends in predictor variables over time, with less emphasis on spatial processes. These 

approaches are generally less deterministic than the spatial process modelling above, and are 

often at much larger scales (e.g., Bhattarai and Hammig, 2004; Ceddia, 2019; Ewers, 2006). 

These analyses are often targeting broader economic, socioeconomic, cultural, political, and 

institutional drivers of LUC, which are less amenable to spatial sampling. Generalised linear 

mixed models (GLMMs, also known as multilevel or hierarchical models) are often employed 

in such analyses, as GLMMs can account for temporal autocorrelation and hierarchical data 

structures (Zuur et al., 2009). Studies have used these, and other regression-type models, to 

investigate the relationships between LUC and national income and forest policies (Bhattarai 

and Hammig, 2004), income, land, and wealth inequalities (Ceddia, 2019), indigenous land 

tenure (Ceddia et al., 2015), macroeconomics and economic development (Culas, 2007; Ewers, 

2006), and urban socioeconomics (Gong et al., 2013). Studies that use GLMMs to investigate 

LUC almost exclusively use data from multiple countries, taking advantage of the ability of 

these models to harness large longitudinal data sets with few “subjects” without succumbing to 

pseudoreplication (Gelman and Hill, 2006). Another advantage of GLMMs is the ability to 

quantify between-group variance, which not only offers crucial insight about the differences 

between groups (e.g., countries) from which inference can be drawn (Zuur et al., 2009), but can 

also highlight potential problems with ‘global’ predictions (i.e., predictions that are made with 

all random effect terms set at their mean). 

1.1.2 Wildlife 

Wildlife populations are declining across the globe as species are overexploited and natural 

habitats are degraded and lost through human activities including agricultural expansion and 

urbanisation (Johnson et al., 2017; Leung et al., 2020; Mokany et al., 2020). Extirpation of 

individual populations are causing the collapse of entire species as human activities, particularly 

over the last century, place unsustainable pressure on the biosphere (Ceballos et al., 2020). 

Species extinctions can have negative effects on key environmental processes, with severe 

implications for Earth’s ecosystems (Hooper et al., 2012, 2005; Wardle et al., 2011). Estimates 
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have suggested that up to one-fifth of all vertebrates are threatened with extinction, and that 

drivers of biodiversity loss are still far greater than conservation efforts to mitigate them 

(Hoffmann et al., 2010; Tittensor et al., 2014).  

As with deforestation, the drivers of wildlife declines are multifaceted and operate across a 

range of scales. At the largest scale, climate change is already negatively affecting wildlife 

populations by rapidly changing habitat conditions which can facilitate the influx of invasive 

species, force rapid range shifts, and render existing habitat unsuitable (Ayebare et al., 2018; 

Hamilton et al., 2018; Malakoutikhah et al., 2018; Walls et al., 2019). Habitat degradation and 

loss is one of the most important direct causes of species declines, and is driven by landscape 

change resulting predominantly from deforestation, agricultural expansion, urbanisation, and 

land use intensification (Fuller et al., 2017; Hearn et al., 2018; Lendrum et al., 2018; Pellissier 

et al., 2017; Wilcove et al., 2013; Wilkinson et al., 2018). At the smallest scale, hunting and live 

capture of wildlife occurs for subsistence (in terms of food and livelihoods, Coad et al., 2013; 

Ferreguetti et al., 2018), medicine (Alves et al., 2010; Chassagne et al., 2016), and the wildlife 

trade (Fukushima et al., 2020; Scheffers et al., 2019).  

One of humanity’s primary tools for species and landscape conservation has been the protected 

area (PA), whereby important natural areas are designated and protected by law. International 

treaties, predominantly the United Nations Convention on Biological Diversity (CBD, 

https://www.cbd.int), require the continuing expansion of the global PA estate both on land and 

at sea. Although the emphasis has moved towards a broader range of area-based conservation 

tools in recent years (e.g., ‘Other area-based conservation measures’, (IUCN, 2019), PAs 

remain an important tool for conservation. Protected areas require adequate resourcing and 

effective management if they are to fulfil their role in halting species declines (Armsworth et 

al., 2018; Coad et al., 2019b; Geldmann et al., 2018). A fundamental component of effective PA 

management is biodiversity monitoring, which allows managers to assess conservation action 

and track progress against targets (Dixon et al., 2019). For monitoring within PAs to be 

effective, efforts must provide reliable measures of appropriate metrics over time (White, 

2019). Monitoring key species is a common approach within PAs, because 1) it can deliver 

information on important trends, for example changes in populations of threatened species 

(Lindenmayer et al., 2012), 2) carefully selected species can act as indicators for broader 

changes in biodiversity (Bal et al., 2018), and 3) species can be specifically selected for factors 

such as size or behaviour to maximise detectability and thus improve monitoring efficiency 

(Einoder et al., 2018).  

The methodological approach selected for monitoring wildlife in PAs depends on a range of 

factors including the species of interest, available resources, and the habitat and other 

https://www.cbd.int/
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environmental conditions. Arguably the most important factor however, is the desired output 

metric, which in turn is dictated by the desired outcome from the area (Lindenmayer et al., 

2012), as this will dictate the monitoring approach. Wildlife monitoring is a well-established 

field with a range of robust methods and tools including occupancy modelling for species 

distributions, colonisation and extinction (MacKenzie et al., 2003, 2002), density and 

abundance estimation using capture-recapture (CMR, Otis, 1978; Pollock et al., 1990), 

including more recent spatially-explicit approaches (Efford and Fewster, 2013), and distance 

sampling (Buckland et al., 2004, 2001). Despite the wealth of robust methods, count-based 

methods that only provide relative indices of the population metric of choice are common, 

particularly in monitoring programmes that cover large spatial scales (Pollock et al., 2002). 

Indices can be useful approaches to monitoring wildlife (e.g., Siddig et al., 2015), but often 

suffer from calibration issues between the index and the true abundance (DeCesare et al., 2016). 

Within PAs, absolute density and abundance estimates for target species that account for 

imperfect detection and quantify uncertainty provide the highest quality data for decision-

making (Buckland et al., 2015; Kellner and Swihart, 2014; Moore and Kendall, 2004; 

Woinarski, 2018). Furthermore, reliable population estimates and trends are critically important 

for broader species threat assessments, such as for the IUCN Red List (Woinarski, 2018).  

1.1.3 Dynamic social-ecological landscapes  

The Earth’s biosphere is inherently complex, being comprised of countless systems which are 

characterised by open, non-linear, and interactive relationships (Dawson et al., 2010). In his 

seminal paper, Holling (1973) proposed a new way of viewing the dynamics of ecosystems and 

identified the impact that a growing human population, and our subsequent increasing demand 

for natural resources, has on equilibrium states within natural systems. The term “social-

ecological system” (SES) was later coined to recognise that humans are fundamentally involved 

in shaping the dynamics and processes of natural systems (Berkes et al., 2000). It had become 

clear that the paradigm that assumed social systems and ecological systems were separate 

entities no longer reflected reality (Folke et al., 2005). As the scale of human influence and 

modification of the natural world grows, the more integrated the social and ecological sub-

systems within and across landscapes become (Backstrom et al., 2018). Human modified 

landscapes are therefore complex, dynamic systems in which natural and human sub-systems 

interact and influence each other at various scales via myriad mechanisms. This complexity 

makes the management of such landscapes challenging, as the dynamics of the natural systems 

interact in non-linear feedback loops with the behaviour and decision-making of the human 

stakeholders within the social systems (Bunnefeld et al., 2011). 

Social-ecological systems research recognises the complexity of the non-linear relationships 

and feedbacks between the multiple social and ecological sub-systems within land- and 
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seascapes. Earlier advances in SES research centred around fisheries (Little et al., 2004; Smith 

et al., 2007) and rangelands (Galvin et al., 2006; Holdo et al., 2009), but since then significant 

progress has been made in methodological and conceptual approaches to modelling SESs, for 

example using agent-based models (Duthie et al., 2018a; Filatova et al., 2013), identifying 

social-ecological variables affecting ecosystem services (Meacham et al., 2016), understanding 

governance through social networks (Bodin et al., 2016), and how social learning impacts 

resource use (Barfuss et al., 2017).  Frameworks such as management strategy evaluation, for 

modelling SESs in the context of resource exploitation and management decisions, were 

developed for fisheries science (Smith et al., 1993), and hold huge potential for terrestrial 

landscape conservation as management decisions and interventions, stakeholder decision-

making, and resource use can be modelled whilst accounting for uncertainty and error 

(Bunnefeld et al., 2011; Milner-Gulland, 2011; Nuno et al., 2014). 

1.2 Introduction to Cambodia 

Cambodia is a country with a rich natural and cultural history, yet its modern character is built 

upon a foundation that has been largely defined by colonialism, genocide, war, and foreign 

occupation (Brickell and Springer, 2016; Chandler, 2008). Cambodia’s recent history has meant 

that the country’s society and environment have been rapidly changing over the last 60 years 

(Hughes and Un, 2011; Loucks et al., 2008), with profound implications for biodiversity 

conservation. Most of the research in this thesis is focussed on Cambodia (except Chapter Five, 

which uses a simulated ‘generic’ conservation landscape), as it provides an excellent case study 

for assessing the effects on biodiversity of rapid changes within a society from an economic, 

socioeconomic, and policy perspective. 

1.2.1 Biophysical characteristics  

Cambodia is in mainland Southeast Asia (SEA) and is bordered by Laos (NE), Thailand (NW), 

Vietnam (E), and the Gulf of Thailand (SW) (Figure 1.1 A). The country has a surface area of 

176,520 km2 (UNCTAD, 2020) and is located at latitudes 10-14° north of the equator and thus 

has a tropical monsoon climate where average temperatures vary little throughout the year, 

ranging from 25°C – 30°C (McSweeney et al., 2010a, 2010b). The latest government statistics 

state that 76,950 km2 of the country is covered in natural forest (excluding plantations and 

forest regrowth) which equates to 42.4% of the total land area of the country (MoE, 2020). The 

dominant natural forest habitats are deciduous (~18%), evergreen (~15%), and semi-evergreen 

(~6%) (MoE, 2020, Figure 1.1 C). Topographically, Cambodia can be divided into two broad 

areas: 1) the low lying central plains and coastal areas, and 2) the mountainous regions and 

plateaus that, reaching elevations of 1,800 masl, surround the central plains (Figure 1.1 B, MoE 

and UNEP, 2009). The Tonle Sap Lake and the Bassac and Mekong rivers are the most 
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Figure 1.1. Maps of Cambodia. A = Cambodia within Southeast Asia. B = Elevation across 

Cambodia in metres above sea level. C = Broad habitat from the European Space Agency 

Climate Change Initiative land cover product. Dark green areas are evergreen and semi-

evergreen forest, light green areas are open/deciduous forest, brown areas are 

agricultural and other non-forest habitat. Blue areas are water. 

important hydrological features in the country (Figure 1.1 C). As of 2019, the total human 

population of Cambodia was 15.6 million, approximately 60% of which were rural (CNIS, 

2019).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2 A recent history: war and post-conflict recovery 

Since the decline of the Khmer Empire, which began around the 15th century, the country that is 

now the Kingdom of Cambodia has experienced tumultuous times. In 1863 Cambodia became a 
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Protectorate of France and remained so until 1953 (Chandler, 2008). Following a coup in 1970, 

the country was closely allied to the USA and drawn into the American-Vietnam war until 

1975, when the Communist Party of Kampuchea (widely known as the Khmer Rouge), led by 

Pol Pot, captured the capital of Phnom Penh and overthrew the government (Chandler, 2008). 

In the four years that followed, the Khmer Rouge, following largely Maoist principles, forcibly 

evicted all of the country’s cities and enacted an extreme form of agricultural reform based on 

collectivisation and which led to widespread famine (Bergin, 2009). A failing agricultural 

sector, in combination with state-sponsored genocide, led to the deaths of approximately a 

quarter of the Cambodian population by 1979 (Kiernan, 2003). While the Khmer Rouge were in 

power, they dismantled virtually all aspects of the former society including government 

institutions, religion, education, health care, private property, and all non-agricultural parts of 

the economy (Chandler, 2008). The Khmer Rouge was overthrown by the Vietnamese Army in 

1979, and the country remained at war and under Vietnamese occupation until the 1991 Paris 

Peace Accords, which ended the war and transferred governance responsibility to the United 

Nations under the Transitional Authority in Cambodia (Widyono, 2015). The first democratic 

elections took place in Cambodia in 1993, and the Cambodian People’s Party, led by Hun Sen, 

have remained in power from 1993 to the present day. 

Once the economic powerhouse of Indochina, Cambodia was the world’s third largest exporter 

of milled rice during the 1960s, behind only Thailand and the United States (Hughes and Un, 

2011). Therefore, the recognition that political leaders are given for bringing the economy from 

complete collapse during the civil war, to a growth rate in 2006 that was larger than any other 

Asian economy apart from China, is in many ways justified (Solcomb, 2010). Much of this 

growth has been driven by large increases in foreign direct investment into agro-industry, 

mining, hydro-electricity, pharmaceuticals, and the garment industry, particularly from China, 

Vietnam, Thailand, and Malaysia (Sullivan, 2011). Furthermore, international development aid 

has been a feature of Cambodia’s socioeconomic recovery and development since the end of the 

civil war (Ear, 2007). By 2004, one-third of the government’s budget was from international aid 

(Sodhy, 2004). Rapid growth in both the garment sector and the tourism sector have also played 

major roles in driving post-conflict economic development (Ear, 2011).  

Agriculture, particularly rice, is a fundamental part of Cambodia in terms of socioeconomic 

development, but also from a cultural perspective (Chhun et al., 2020). Memories of famine and 

starvation during the Khmer Rouge period are still present in those alive today (personal 

observation). The agricultural sector has been a large component of the national economy in the 

post-war recovery period and has played a major role in reducing poverty and increasing food 

security, particularly for the rural poor (Eliste and Zorya, 2015). Between 2004 and 2012 

agricultural production increased by an average of 8.7% per year - one of the highest rates in the 
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world - with much of the growth coming from increases in the production of paddy rice, maize, 

cassava, and sugar cane (Eliste and Zorya, 2015). Much of the agricultural expansion in the 

years immediately following the end of the civil war came from small-holder expansion, as 

families moved back to their homelands after the forced migration under the Khmer Rouge and 

refugees and former soldiers were resettled (Eliste and Zorya, 2015; Hought et al., 2012; Kong 

et al., 2019). A growing agricultural sector, in combination with legal provisions for leasing of 

public land outlined in the 2001 Land Law (RGC, 2001), drove the growth of the commercial 

agricultural sector (Solcomb, 2010). For example, the rubber industry, a feature of the 

Cambodian economy since its colonial days, saw significant growth in the post-conflict years 

thanks to strong commodity price performance on international markets and the privatisation of 

the industry (Solcomb, 2011).  

The economic recovery over the last two decades has driven significant improvements in access 

to services, poverty, and inequality, thanks to pro-poor growth in consumption, which together 

pushed Cambodia’s poverty reduction well beyond the Millennium Development Goal targets 

(World Bank, 2014). However, relative metrics of inequality (e.g., Gini Index) mask the actual 

gap between the rich and the poor in absolute terms, which has been increasing dramatically 

(World Bank, 2014). There exists a very large wealth gap between urban and rural populations, 

and between the urban rich and urban poor, and the gaps are growing (Solcomb, 2010). The 

healthcare available to the general population remains expensive and of poor quality (Gryseels 

et al., 2019; WHO, 2019), and although the provision of education has increased dramatically 

since the 1990’s, rural areas still lack sufficient facilities and the general quality of education 

across the country remains low (Kitamura et al., 2016). The unequal economic development 

between urban and rural areas has resulted in a polarised society; on one hand there are the 

wealthy urban elites who have benefited greatly from rapid economic development, whilst on 

the other hand the rural population, particularly those in remote provinces, remain poor and 

almost entirely reliant on natural resources for their subsistence (Hammer, 2008; Ironside, 2008; 

Nguyen et al., 2015; Phillips and Davy, 2021).  

The post-war years saw dramatic changes in Cambodia’s economy and society, some of which 

have had negative consequences for the environment. The repatriation of people to their former 

homelands, the resettlement of refugees, increasing access to remote provinces, a lack of formal 

land ownership, and increased access to markets all combined with an increasing human 

population to drive the expansion of smallholder agriculture into forested land (Eliste and 

Zorya, 2015; Evans et al., 2013; Hought et al., 2012; Kong et al., 2019; Lonn et al., 2018; Top 

et al., 2009). Furthermore, the lucrative international commodity market and the privatisation of 

state land (Neef et al., 2013) drove increases in selective logging of high value timber and 

commercial agriculture in the form of economic land concessions (ELCs), which have not only 
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had negative effects on forest cover and structure (Coad et al., 2019a; Davis et al., 2015; 

Toyama et al., 2015), but have also degraded protected areas and caused land conflicts with 

local people (Magliocca et al., 2019; Neef et al., 2013; Oldenburg and Neef, 2014; Watson et 

al., 2014). Between 2000 and 2020 Cambodia lost approximately 10.5% of its total forest cover 

(Hansen et al., 2013).  

The social and economic changes that have occurred since the cessation of civil conflict have 

also had implications for Cambodia’s wildlife. As recently as sixty years ago Cambodia was 

described as “a Serengeti of Asia” (Wharton, 1957), with an abundant and diverse assemblage 

of species. The country sits within the Indo-Burma Biodiversity Hotspot (CEPF, 2020), and is 

known to be of global and regional importance for a variety of rare and threatened species 

including banteng (Bos javanicus, Gray et al., 2012), three vulture species (Gyps bengalensis, 

Sarcogyps calvus, Gyps tenuirostris, Loveridge et al., 2018), and at least three primates 

(Moody, 2018; Chapter 4). Although robust, long-term biodiversity monitoring is rare in 

Cambodia (and Southeast Asia more generally), what evidence there is suggests that wildlife 

populations are declining (Groenenberg et al., 2020; Loveridge et al., 2018, Chapter 4). 

Cambodia’s emergence out of civil war and into the global market opened the door to the 

international trade in wildlife (Heinrich et al., 2020) and agricultural expansion eroded critical 

habitats (Davis et al., 2015; Kong et al., 2019). Additionally, as human populations increased, 

slow socioeconomic development in rural areas and a lack of diversity in livelihood options has 

meant that rural people have continued to rely on wildlife and other natural resources for 

subsistence and additional income (Coad et al., 2019a; Ibbett et al., 2020).   

1.2.3 Conservation management, funding, and policy 

After the first election in 1993, the legacy of the Khmer Rouge meant that the newly formed 

Cambodian government had to develop and enact an entirely new constitution, including those 

to govern natural resources, which included laws on land (RGC, 2001), and forestry (RGC, 

2002). The land law in particular had important implications for conservation in the country as 

it paved the way for the privatisation of state land via long-term leases, which allowed for the 

rapid proliferation of land acquisitions for commercial agriculture (Neef et al., 2013). In 1925, 

Cambodia was the first country in SEA to gazette a PA, and this ambition continued after the 

period of conflict with a further designation of 23 PAs in 1993 (Edwards, 1998). By 2012, 

approximately 24% of Cambodia’s land was designated as a PA (O’Kelly et al., 2012), and all 

of the major international conservation non-governmental organisations (NGOs) had 

established programmes of activity within the country, bringing with them donor funding, 

relatively high salaries, and technical expertise. 
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As stability and safety increased in Cambodia, work began to assess the state of the country’s 

wildlife and forests. Researchers began conducting the first biodiversity surveys in Cambodia 

for over 20 years, revealing a country that still held important biodiversity (e.g., Duckworth and 

Hedges, 1998; Mundkur et al., 1995; Phipps, 1994; Walston et al., 2001). These surveys guided 

the NGOs (including the World Wide Fund for Nature, Wildlife Conservation Society, Fauna & 

Flora International, Birdlife International, and Conservation International) to the PAs with high 

biodiversity value, where they each established close working relationships with the 

government in separate portfolios within the national PA estate. The working relationships 

between the government and the NGOs varied between the ‘co-management’ and ‘financial and 

technical support’ models of Baghai et al (2018), with the NGOs providing technical advice, 

training, and equipment, as well as considerable financial support for PA management and 

operations. Government investment into PA management was, and remains, low, with funding 

for all activities including many staff salaries coming from NGOs and their ability to leverage 

external funding via limited-term grants (Milne and Mahanty, 2015).   

Despite large investments into the PA network by a range of donors, development 

organisations, and NGOs, Cambodia’s forests and wildlife remain under extreme pressure from 

human activities (Groenenberg et al., 2020; Heinrich et al., 2020; Loveridge et al., 2018). 

Smallholder and commercial agriculture continues to drive deforestation even within PAs 

(Appendix; Davis et al., 2015; Grogan et al., 2019, 2015; Watson et al., 2014), selective logging 

(both legal and illegal) of high value timber has driven forest degradation (Milne, 2015; 

Toyama et al., 2015), and the hunting of wildlife for meat, medicine, and the wildlife trade are 

having negative effects on wildlife populations (Alves et al., 2010; Coad et al., 2019a; Heinrich 

et al., 2020; Ibbett et al., 2020; Nuttall et al., 2017).  Protected area management policies have, 

in the past, focussed resources heavily on illegal logging because of the high value and high-

profile nature of the trade (e.g., Amnesty International, 2021; Global Witness, 2013; Vrieze and 

Kuch, 2012), particularly in ‘Siamese Rosewood’, which can fetch up to $6,000 per cubic metre 

on the international market (EIA, 2012). This policy has drawn PA resources away from land 

clearance and hunting to the detriment of forest cover and wildlife populations (Chapter 4).  

The governance structure and lines of authority between the Cambodian government and PA 

management teams are complex (Figure 1.2) and can make effective PA management 

challenging. The Ministry of Environment, which since 2016 has been responsible for all PAs 

in the country, has offices, staff, policies, and projects both at the national level and the 

provincial level. Although ultimate authority lies at the national level, politics, poor 

communication, and differing priorities between national and provincial levels often results in 
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fragmented policy implementation. This is true also of the Military Police, who provide staff to 

bolster law enforcement within PAs. The policies and strategy from the national level are often 

poorly executed at the local level. Additional complexity is added by provincial governors, who 

are politically influential and often have policies and priorities that are not aligned with the 

Ministry of Environment, NGOs, or indeed PA management teams. Finally, local administrative 

officials, for example district governors, commune chiefs, and village chiefs, all play a role in 

influencing the implementation of laws and policies and can have both positive and negative 

effects on local politics and the management of PAs.  

 

 

Figure 1.2. The governance structure that influences protected area management teams in 
Cambodia. Authority and governance flow from the top down; from the national level 
through the provincial level, to the local level. However, each administrative level also 
influences protected area management directly, through provincial and local departments 
and administrations. 
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1.2.4 A case study for conservation  

Southeast Asia is an important region for global biodiversity, yet has one of the highest rates of 

deforestation in the world, and the rate of increase in extinction risk is the highest globally 

(Hoffmann et al., 2010; Hughes, 2017). Deforestation and biodiversity loss are affecting all 

SEA countries (Gray et al., 2017; Harrison et al., 2016; Hughes, 2018, 2017), but Cambodia 

presents a unique case study due to the relatively recent status as a post-conflict nation and the 

rapid economic recovery. Economic growth in Cambodia over the last two decades has been 

greater than any other SEA country (Solcomb, 2010), and this has brought with it profound 

social change (Kong et al., 2019; Milne, 2013a; Milne and Mahanty, 2015; World Bank, 2014). 

The environmental laws, policies, and protected area estate are the youngest in the region, 

having been developed in their entirety since the end of the civil war in the 1990s. Furthermore, 

the reliance on NGOs to finance much of the PA estate poses questions about long-term 

management strategies and the sustainability of conservation investments. Therefore, there are 

many important questions to be asked of Cambodia’s performance on environmental 

stewardship, particularly regarding the effects of economic growth and the expansion of the 

agricultural sector, social change, and conservation policy on biodiversity. Existing evidence in 

the literature suggests that environmental policies and governance are not adequately addressing 

deforestation (Davis et al., 2015; Eliste and Zorya, 2015; Hought et al., 2012; Kong et al., 2019; 

Lonn et al., 2018; Riggs et al., 2018) nor biodiversity loss (Coad et al., 2019a; Groenenberg et 

al., 2020; Ibbett et al., 2020; Loveridge et al., 2018; O’Kelly et al., 2012; Packman et al., 2014). 

This evidence suggests that existing environmental policies are insufficient to mitigate the 

primary drivers of forest and biodiversity loss, either because of inadequate formulation or 

ineffective implementation. 

To support environmental protection in Cambodia through improved policy frameworks and 

effective governance it is necessary to 1) understand the economic and social drivers of forest 

loss and how these interact with agricultural expansion, 2) to evaluate the performance of PAs, 

as these are likely to be the last refuges for wildlife, and 3) understand the implications of 

unsustainable financing of PAs and the trade-offs between managers and local people in 

dynamic conservation landscapes. Answering these questions will not only improve our 

understanding of environmental governance and conservation management in Cambodia but 

will also provide insights into these factors across SEA where many of the same pressures are 

driving deforestation and biodiversity loss. Commercial agriculture has driven extensive forest 

loss in other parts of SEA (Shevade and Loboda, 2019), and the interactions between forest 

policies, socioeconomics, and commercial agricultural commodities have been shown to be 

important factors in understanding land use change in Indonesia (Gatto et al., 2015). Thailand 

has some of the most effective PAs in SEA, yet still struggles with wildlife declines and 
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conflicts with local people (Phromma et al., 2019), and economic growth is negatively affecting 

wildlife across Asia (Linkie et al., 2018). Therefore, increasing our understanding of 

Cambodia’s environmental governance and conservation management will help to place the 

country within the broader SEA context, and will fill regional knowledge gaps.  

1.3 Aims and objectives of this thesis 

My overarching goal for this thesis was to contribute to the conservation of Cambodia by 

providing some of the fundamental science that links economic activity and government policy 

to forest loss, wildlife status, and PA management. More specifically, my aims were to examine 

the drivers of deforestation across Cambodia, to evaluate the performance of PAs for wildlife 

protection, and to assess the implications of unsustainable financing in dynamic conservation 

landscapes where there are trade-offs between managers, local people, and nature. My specific 

objectives for each chapter were: 

Chapter 2 - Quantify the relationships between changes in metrics of economic development 

and a) deforestation, and b) commercial agricultural expansion, both at a national scale; 

Chapter 3 - Evaluate the relationships between socioeconomics and forest cover at a national 

scale but at multiple spatial resolutions; 

Chapter 4 - Assess the performance of a flagship PA through the analysis of temporal and 

spatial population trends for a suite of wildlife species; 

Chapter 5 - Identify the potential consequences of different conservation funding patterns on 

forest loss in a dynamic landscape with an increasing human population 

1.4 Thesis outline 

In Chapters 2 and 3, I explore the implications of Cambodia’s economic and socioeconomic 

recovery, changing agricultural sector, and entry into the global commodity market, as 

discussed in section 1.2.2, on forest cover at a national scale. In Chapter 2, I look specifically at 

whether Cambodia’s economic development and changes in the agricultural sector have driven 

forest loss and the expansion of commercial agricultural land acquisitions. I demonstrate that 

economic development has not been a primary driver of forest loss, but it has had a tangible 

effect on the expansion of commercial agriculture. I propose potential reasons for the lack of 

effects between economic development and forest loss and discuss the significance of the 

expansion of commercial agriculture for forest cover and local people.  

In Chapter 3, I further explore how Cambodia’s post-war recovery, specifically socioeconomic 

development, has influenced forest cover. I harness a spatially explicit socioeconomic dataset 
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and demonstrate how socioeconomic development and additional human and environmental 

factors have varying effects on forest cover at different scales across Cambodia.  I reveal 

important methodological challenges with large scale, fine resolution analyses, and discuss the 

implications of these challenges for future researchers.  I further provide a socioeconomic 

typology of Cambodia at the provincial level, which reveals that the large, rural, least-

developed provinces are the most forested, and I discuss these policy-relevant insights.   

In Chapters 4 and 5 I focus on landscape level conservation management, assessing the 

management and performance of a protected area and a social-ecological landscape considering 

the post-war recovery covered in Chapters 1 through 3, and in the context of the conservation 

funding, management, and policy discussed in section 1.2.3. In Chapter 4, I use a long-term 

wildlife monitoring dataset from the Keo Seima Wildlife Sanctuary - one of Cambodia’s 

flagship PAs – and provide evidence that although the populations of arboreal species are 

generally stable, ground-based threats and inappropriately targeted management have resulted 

in serious population declines for all monitored ungulates and ground-dwelling primates. I 

provide management recommendations and highlight the importance of long-term monitoring 

for PA management in southeast Asia.  

In Chapter 5, I use agent-based simulation modelling to assess the implications of different 

conservation funding models on forest cover within dynamic social-ecological landscapes. I 

construct a generic conservation landscape which contains an increasing population of local 

people and a conservation management authority, all of whom have competing interests on the 

landscape. I test the effects on forest cover of five different funding situations for the 

conservation manager, all of which reflect real-world financial situations. I provide evidence 

that short-term grants, which are the dominant form of conservation funding across Cambodia 

and much of the world, are not the optimal way to fund landscape conservation. I discuss the 

implications of this, and other findings, for conservation in Cambodia and beyond.    

I conclude this thesis with Chapter 6, synthesising the results from Chapters 2 to 5 within the 

themes of economic development and forests, and protected area and landscape management 

(Figure 1.2.). I discuss the implications of Cambodia’s rapid economic development on forests, 

wildlife, and local people, and highlight the need for government policy that enables and 

promotes environmentally sustainable agricultural development. I further discuss the urgent 

need for shifts in protected area management strategies to halt the decline of wildlife 

populations, and for funding mechanisms that can provide stable, long-term funding for 

landscape managers.  

There is a single appendix to this thesis, where I present a manuscript that has been prepared as 

a ‘practitioners’ perspective’ for the journal Conservation Science and Practice. This manuscript 
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Figure 1.3. Diagram of the structure of the thesis 

has been prepared in parallel to my thesis, and although I did not feel it was sufficient to form a 

full chapter, I believe it is relevant to many of the subjects discussed throughout this thesis. I 

have therefore included it as an appendix, for the interest of the reader. The appendix is a case 

study that describes events that lead to the downgrading, downsizing, or degazettement of two 

adjacent PAs in Cambodia. I describe the economic, social, and political context within which 

these events occur, and provide some explanation as to why one PA was affected more than the 

other.    
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2.0 ABSTRACT 

Economic development is closely linked to the loss of forests, particularly in developing countries. 

Appropriate policies and legal frameworks, operationalised through effective governance, can guide a 

country towards a forest transition whereby net forest loss is eliminated. Cambodia’s economic 

recovery after the end of civil conflict in 1991 has been remarkably swift, with significant growth in 

the agricultural sector contributing to economic development. Much of this growth has been driven by 

investment into agro-industrial land concessions for commercial agricultural (economic land 

concessions, ‘ELCs’), which have led to widespread forest loss. The development of sustainable 

agriculture and forest policies requires knowledge of the relationships between economic 

development, commodity production, and forest loss. Therefore, this chapter models the relationships 

between Cambodia’s economic development, rates of forest loss, and the expansion of ELCs at a 

national scale between 1993 and 2015. My analysis showed that measures of economic development 

were unable to directly predict rates of forest loss but were effective at predicting the expansion of 

new ELCs, which in turn increase forest loss. Increases in the agricultural sector’s proportion of 

national GDP and increases in foreign investment both had positive effects on the number of new 

ELCs. Increases in the market price of corn and sugar, and increases in the non-food agricultural 

index, all had positive effects on the number of new ELCs, as did increases in the producer price of 

rubber, corn, and sugar. My results demonstrate strong links between Cambodia’s recent economic 

development and external market forces on the expansion of ELCs, which has been responsible for 

widespread forest loss. My results highlight the need for improved governance and strengthened 

agricultural policies that together can eliminate the expansion of commodity production into forested 

areas and stabilise the agricultural sector against external market fluctuations.  

2.1 INTRODUCTION 

Deforestation from human activities is one of the greatest threats to biodiversity around the world 

(Estoque et al., 2019; Hoang and Kanemoto, 2021), and the scale of land use change is such that the 

global climate is being affected through changes to the radiative forcing caused by land cover and 

land use (Jiao et al., 2017). The production and trade in agricultural commodities driven by modern 

consumption patterns is responsible for the majority of forest loss around the world (Curtis et al., 

2018; Hoang and Kanemoto, 2021; Pendrill et al., 2019). This is because agricultural production is a 

fundamental component of many national economies, both for improving food security within 

countries and for national income generation via international export markets (Eliste and Zorya, 

2015). Growth within agricultural sectors, and other natural resource-based industries, is therefore an 

important approach for lower income nations where economic development is a priority (Caravaggio, 

2020b; Eliste and Zorya, 2015). Forests have been used to sustain economic growth throughout much 
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of human history (Williams, 2003), and this trend continues today; between 2005-2013 the expansion 

of commercial agriculture, plantations, and pastures were responsible for 62% of forest loss across the 

tropics and subtropics (Pendrill et al., 2019). As developing nations strive for economic development, 

forests and other natural resources are exploited, often with negative consequences for biodiversity, 

climate change, local livelihoods, and environmental processes and services (Caravaggio, 2020a).  

2.1.1 Economic development and deforestation 

There are several environmental economic theories that link economic development to forest loss, 

with the environmental Kuznets curve for deforestation (EKCd, Cropper & Griffiths 1994) and Forest 

Transitions (FT, Mather 1992) being the most studied and debated (Caravaggio, 2020a). The ECkd 

predicts increasing rates of deforestation with increasing economic development until a tipping point 

is reached, after which further economic development (and associated shifts in the structure of 

economies) results in decreasing rates of deforestation until net forest loss changes to net forest gain 

(Bhattarai and Hammig, 2004). Similarly, the FT theory predicts decreasing forest cover with 

increasing economic development, with the rate of forest cover loss accelerating until the tipping 

point, as described above, is reached, after which loss of forest cover slows. The point at which forest 

cover begins to increase is termed a forest transition (Lambin and Meyfroidt, 2010). Thus, the EKCd 

and the FT curves are correlated but inverse. Despite rampant deforestation in much of the tropics 

(Estoque et al., 2019; Sodhi et al., 2010), global deforestation rates (of natural forests) are decreasing 

(FAO, 2020). Recent studies provide evidence to support the EKCd theory, and suggest a possible 

move towards a global forest transition (Caravaggio, 2020b). Indeed, there are multiple case studies 

demonstrating how individual countries have undergone forest transitions and are increasing national 

forest cover, including India (Bhattacharya et al., 2010), Vietnam (Meyfroidt and Lambin, 2008), 

China (He et al., 2014), and South Korea (Youn et al., 2017), although it is worth noting that these 

increases can include planted forests. Nevertheless, there are still many countries where economic 

development and global demand for commodities are driving high rates of forest loss, often in some 

of the most biodiverse regions (Hoang and Kanemoto, 2021). In addition to meeting the required 

economic conditions that precede forest transitions, for example integration into global markets for 

capital, commodities, and labour, effective governance relating to land use, forest protection, and 

agriculture is critical to ensure that forest transitions occur (Riggs et al., 2018). Therefore, 

understanding the relationships between both economic development and the agricultural sector on 

direct and indirect drivers of forest loss is crucial to develop appropriate policies, identify leverage 

points, and support effective governance. No previous studies have modelled the relationships 

between economic factors, agriculture, and forest loss in Cambodia, and this chapter aims to fill this 

knowledge gap. 
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2.1.2 Deforestation in Southeast Asia  

Southeast Asia (SEA) is characterised by complex biogeography and extensive tropical forest cover 

resulting in exceptional biological diversity, but has one of the highest deforestation rates in the world 

(Hughes, 2017). As with deforestation around the world, the loss of SEA’s forests has potentially 

severe consequences for climate change (Ceddia et al., 2015), ecosystem-based adaptation (Estoque et 

al., 2019), local people (Culas, 2007; Frewer and Chan, 2014; Gaughan et al., 2009; Poffenberger, 

2006), and biodiversity (Chapman et al., 2018; Hearn et al., 2018). The drivers of tropical 

deforestation vary both by location and by scale, ranging from broader drivers such as population 

pressure and weak institutions (Geist and Lambin, 2002), to proximate causes at a local level such as 

the expansion of cash crops, agriculture and other food production (Estoque et al., 2019; Imai et al., 

2018; Stibig et al., 2014; Wilcove et al., 2013; Zeng et al., 2018), the associated development of roads 

and infrastructure that facilitate such expansion (Hughes, 2018), and civil unrest and war (Kaimowitz 

and Fauné, 2003; Price, 2020). Despite the pressure on SEA’s forests, some countries within the 

region have undergone forest transitions and are seeing net increases in forest cover (Youn et al., 

2017). There are legitimate criticisms of the simplicity of traditional metrics of forest transitions; 

primarily that using the broadest interpretation of ‘forest cover’ ignores forest type or quality resulting 

in, for example, non-native plantations counting towards net forest gains (Kull, 2017).  

In all Asian case studies of successful forest transition, state intervention has played a role; 

government policies and legal frameworks that disincentivise forest clearance and promote 

sustainable land use are critical factors in facilitating behaviour change at all levels (Youn et al., 

2017). Understanding the direct and indirect drivers of forest loss can be challenging as the processes 

are complex, operate at a variety of scales, and consist of multiple feedback loops and dependencies 

(Geist and Lambin, 2002; X. Xu et al., 2019). Nevertheless, for effective government policies to be 

developed, researchers must strive to disentangle some of these relationships (Redo et al., 2012). As 

commercial agriculture is one of the most important drivers of forest loss around the world (Curtis et 

al., 2018; Pendrill et al., 2019), and because it is a fundamental part of developing economies (Hoang 

and Kanemoto, 2021), it is critical to understand the links between economic development and 

commodity production, as this will reveal important implications for forest loss in developing 

countries.  

2.1.3 Economic land concessions 

Land acquisitions for commercial agriculture have become widespread in recent years, particularly in 

developing countries that have large areas of undeveloped land and that are striving for private 

investment to boost economic development (Kugelman and Levenstein, 2012). Such enterprises can 

improve agricultural productivity, stimulate local economies, and support rural development 

(Deininger and Byerlee, 2011), yet face substantial criticisms for lacking transparent processes, 
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abusing local land rights, and negatively affecting local livelihoods and biodiversity (Davis et al., 

2015; De Schutter, 2011; Deininger and Byerlee, 2011). Cambodia saw an unprecedented surge in 

private land acquisitions via long-term leases for commercial agriculture, or ‘economic land 

concessions’ (ELCs), between 2000 and 2012, resulting in over 2 million hectares being leased by 

2015 (Davis et al., 2015). Economic land concessions in Cambodia have faced criticism due to 

widespread accusations of land rights abuses, corruption in the awarding of contracts, and extensive 

deforestation, even within protected areas (Beauchamp et al., 2018; Davis et al., 2015; Global 

Witness, 2013; Magliocca et al., 2019; Neef et al., 2013; Oldenburg and Neef, 2014; Tsujino et al., 

2019; Vrieze and Kuch, 2012).         

2.1.4 Cambodia  

Compared to most other countries in the world, Cambodia has seen swift economic growth since the 

end of civil conflict in in the 1990s (Solcomb, 2010), with much of the economic development built 

upon the growth of the agricultural sector (Eliste and Zorya, 2015; Kong et al., 2019). This economic 

development has brought many benefits, including poverty reduction and food security (World Bank, 

2014), yet the expansion of the agricultural sector has caused deforestation (Beauchamp et al., 2018). 

Forest loss, even within protected areas, has increased as a result of the boom in ELCs (Davis et al., 

2015; Watson et al., 2014). To minimise future forest loss and the associated loss of biodiversity, 

ecosystem services, and local livelihoods, Cambodia needs to reduce deforestation rates and move 

towards a forest transition by establishing appropriate policies, legal frameworks, and importantly, the 

governance to effectively implement such mechanisms (Riggs et al., 2018). Identifying which 

development pathway Cambodia is on, and the measures that are required to move towards a forest 

transition, will require a greater understanding of the relationships between economic development, 

forest loss, and agriculture. There has been some research on drivers of forest loss in Cambodia, for 

example the direct effect of ELCs on forest cover (Davis et al., 2015), drivers of deforestation in the 

north western uplands of the country (Kong et al., 2019), social and political factors influencing forest 

transition (Riggs et al., 2018). Yet there have been no studies that investigate the relationships 

between economic development, agriculture, and forest loss at the country scale. These are the 

relationships I aim to investigate in this chapter. 

In this study, I aim to address this research gap and provide quantitative evidence of relationships 

between measures of economic development, agricultural commodities, ELCs, and forest loss. For the 

period 1993 to 2015, I use generalised linear models to 1) model the relationships between the rate of 

forest loss and variables that describe, or are proxies for, economic development and agricultural 

commodity prices and 2) model the relationships between the allocation of new ELCs and variables 

that describe, or are proxies for, economic development and agricultural commodity prices. My 

results will provide important data to identify direct and indirect drivers of forest loss in Cambodia, 
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aiding in the identification of leverage points, supporting the development of agricultural and forest 

policies, and contributing more widely to the forest transition literature.  

2.2 METHODS 

2.2.1 Study area 

This study area for this chapter is the whole of Cambodia. See Chapter 1 section 1.2 for a detailed 

background to the country, and Chapter 1 section 1.2.1 for detailed biophysical characteristics of the 

country.   

2.2.2 Data sources 

National economic variables were acquired from publicly available sources (Table 2.1) for the period 

1993 – 2015. Data on economic land concessions and shapefiles for the country were provided by the 

Royal Government of Cambodia (via the Wildlife Conservation Society). Forest cover layers were 

taken from the publicly available European Space Agency Climate Change Initiative (ESACCI) 

satellite data for the years 1993 – 2015. 

2.2.3 Variable selection 

The response variables were 1) change in forest cover (forest loss) from time t to time t+1 and 2) the 

number of new ELC allocations in year t. Predictor and control variables were selected based on a 

combination of previous studies, data availability, and my knowledge of Cambodia. Variables were 

selected to create three sets of predictors, each targeting a different driver: economic development 

(n=8), agricultural commodity prices (external market forces, n=8), and producer (or farm gate) prices 

(internal market forces, n=5) (Table S2.1, Nelson et al. 2006; Ewers 2006; Gong et al. 2013; Kuang et 

al. 2016; Fan & Ding 2016; Bonilla-Bedoya et al. 2018). Each predictor was hypothesised to be a 

driver of forest loss (Table S2.2). Human population density was included as a control variable for the 

economic set and total forest remaining was included as control variable across all sets, as both were 

expected to influence forest loss. Both per capita Gross Domestic Product (GDP) and amount of forest 

remaining were included to reflect the economic development path and the forest scarcity path 

respectively (Lambin and Meyfroidt, 2010; Rudel et al., 2005). After pre-analysis checks for errors 

the resulting variable set contained 20 variables (Table 2.1). 

2.2.4 Data processing 

The forest cover response variable was extracted from the ESACCI product by totalling the number of 

pixels (1 Pixel = 0.09km2) in each year classified as bands 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, 

and 100 (Table S2.3). Forest cover data processing was done in QGIS (QGIS Geographic Information 

System v3.16). The ELC response variable was created by summing the number of new ELC 

contracts that were dated in each year of the study period, resulting in a count of new ELCs per year. 
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Predictor variables were checked for collinearity, and if two variables in the same set had a correlation 

coefficient of >0.6 then generally one was removed (Table S2.4). Forest cover was converted to 

change in forest cover using forest covert+1 − forest covert, where t represents year t. There were no 

periods of forest gain during the study period, and so the response can be considered as rate of forest 

loss. All predictors were converted from raw values to change in values using Xt+1 – Xt, where t 

represents year t (Barrett et al., 2006). The variable forest remaining was left as raw values (km2). 

Cambodia’s first general election and subsequent adoption of a free market economy occurred in 

1993, resulting in unreliable GDP-related values for 1993 (Chhair and Ung, 2013) and subsequent 

change values in 1994, and so these years were removed. Predictor variables were not centred or 

scaled prior to analysis because in this case the value of the intercept, in other words the value of the 

response y when the value of a given predictor x is 0 (i.e., there is no change in the predictor from 

time t-1 to time t) is more meaningful than the value of y when the value of x is at its mean.  
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Table 2.1. Variables selected for the final analysis. Variables range from 1993 – 2015. GDP = Gross Domestic Product, USD = US Dollars, UNCTAD = United 
Nations Conference on Trade and Development, CNIS = Cambodian National Institute of Statistics, FAO = Food and Agricultural Organisation, RASCE = 
Rubber Association Singapore Commodity Exchange, ESACCI = European Space Agency Climate Change Initiative 

Predictor variable Units Resolution Source Details 

Economy 
    

GDP per capita  Billions USD National World Bank Constant 2010 rates 

GDP growth % National World Bank Annual percentage growth rate of GDP at market prices based on constant 

local currency 

Foreign Direct Investment Millions USD National UNCTAD Inward and outward flows and stock 

Agricultural sector proportion of GDP % National CNIS Proportion of national GDP 

Development flows to agriculture Millions USD National FAO Donor development investment flows, other official flows, and private 

donor flows at constant 2016 prices to all agriculture and forestry sub-

sectors 

Development flows to environment Millions USD National FAO Donor development investment flows, other official flows, and private 

donor flows at constant 2016 prices to general environment protection 

Commodity prices 
    

Crop Production  Index National FAO Relative level of the aggregate volume of agricultural production for each 

year in comparison with the base period 2004-2006 

Non-food agricultural production  Index National FAO Relative level of the aggregate volume of non-food agricultural production 

for each year in comparison with the base period 2004-2006 

Forestry production m3 National FAO Total production values for industrial roundwood, non-coniferous tropical 

wood, other industrial roundwood, sawlogs and veneer logs (coniferous and 

non-coniferous), and sawnwood (coniferous and non-coniferous 

Price of rice USD/ton Global World Bank Median annual global market price of rice 
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Price of corn USD/ton Global World Bank Annual global market price of corn 

Price of rubber USD/ton Regional RASCE Monthly regional market value of rubber on the Singapore Exchange 

Price of sugar USD/ton Global World Bank Annual global market price of sugar 

Producer prices 
    

Producer price of Rice USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of rubber USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of cassava USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of corn USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of sugar USD/ton National FAO Farmgate prices for Cambodian producers 

Control     

Population density pax/km2 National FAO People per km2 

Forest remaining Km2 National ESACCI Raw value of forest remaining 
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2.2.5 Modelling  

This analysis aimed to model the relationships between changes in predictors that described economic 

development or agricultural commodity value and 1) the change in forest cover at a national level and 

2) the allocation of new ELCs. I ran models for both response variables with each of the three variable 

sets: economic development, commodity prices, and producer prices. To account for the effect of 

time, a linear model of the response as a function of time (year) was run and the model residuals were 

extracted and used as a control predictor in all subsequent models (Crawley, 2007). This process 

minimises the effect of time on changes in the response and reduces temporal autocorrelation. The 

amount of forest remaining (km2) was also included as a control variable in all models. Modelling was 

done using Generalised linear models (GLM) and followed an information theoretic approach 

(Burnham and Anderson, 2007). For the models with rate of forest loss as the response I tested both 

gaussian and gamma distributions, and for the models with ELC allocation I used a Poisson 

distribution. Resulting models were compared using Akaike’s Information Criterion (AIC). Final rate 

of forest loss models used gaussian distributions. All predictors in each model set had been selected 

because of a priori hypotheses (Table S2.2), and so within each set all combinations of possible 

models were run and compared using AIC. Models with ∆AIC < 6 were considered to have sufficient 

support and retained in the final model set. Model averaging was implemented for the final model set, 

resulting in model-averaged coefficients for all model terms (Burnham and Anderson, 2007). Models 

were run and averaged using the MuMIn package in R (Version 1.43.17, Bartoń 2020). This 

modelling procedure was repeated for a one-year time lag and two-year time lag as follows (using the 

ELC response models as an example): 

No time lag: 

log(𝐸(𝑦𝑡)) = 𝛽0 +  𝛽1𝑥1𝑡 + ⋯ + 𝛽𝑝𝑥𝑝𝑡 

Where 𝛾 is the response at time 𝑡, and 𝑥𝑗, 𝑗 = 1, … , 𝑝 is predictor variable 𝑗 at time 𝑡.   

One year time lag: 

log(𝐸(𝑦𝑡+1)) = 𝛽0 +  𝛽1𝑥1𝑡 + ⋯ +  𝛽𝑝𝑥𝑝𝑡 

Where 𝛾 is the response at time 𝑡 + 1, and 𝑥𝑗, 𝑗 = 1, … , 𝑝 is predictor variable 𝑗 at time 𝑡.   

Two year time lag: 

log(𝐸(𝑦𝑡+2)) = 𝛽0 +  𝛽1𝑥1𝑡 + ⋯ +  𝛽𝑝𝑥𝑝𝑡 

Where 𝛾 is the response at time 𝑡 + 2, and 𝑥𝑗, 𝑗 = 1, … , 𝑝 is predictor variable 𝑗 at time 𝑡.   
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2.3 RESULTS 

2.3.1 Forest loss 

During the study period (1993-2015) 167,477 km2 of forest was lost which represented nearly 16% of 

the total forest cover. The models for changes in the rate of forest loss as a function of changes in 

economic and agricultural commodity predictors produced no strong effects (Figures S2.1 to S2.4). 

For each predictor set there were between 5 and 28 models in the top model set and final coefficients 

were calculated using full averages (Tables S2.5 – S2.13). The largest effect was from the control 

variable population density with a one-year time lag (full averaged coefficient = -632.9, SE = 64.8, 

Table S2.6). The largest effect excluding control variables was for agricultural proportion of GDP 

with a one-year time lag (full averaged coefficient = -14.9, SE = 7.9) suggesting, counterintuitively, 

that there is a small reduction in the rate of forest loss as the contribution of agriculture to national 

GDP increases, although this effect is weak (Figure S2.3, Table S2.9) and therefore inference is 

limited. 

2.3.2 New economic land concessions 

There were 287 new ELCs allocated within the study period, with the majority (51%) being 

designated for rubber production (Table S2.14). The largest effect overall was for the economic 

control variable population density, where there were very strong negative effects across all time lags 

(rate ratios for one-year lag = 0.012, two-year lag = 0.002, three-year lag = 0.0005, Table 2.2), 

indicating that new ELCs are not allocated in areas of high human population density. The largest 

overall effect excluding control variables was for changes in agricultural proportion of GDP with no 

time lag and a one-year time lag (no time lag rate ratio = 1.310, and one-year time lag rate ratio = 

1.284, Table 2.2, Figure 2.1).  

From an economic perspective there were positive relationships between the allocation of new ELCs 

and increases in the agricultural proportion of GDP and increases in foreign direct investment (one-

year time lag rate ratio = 1.004, Table 2.2, Figure 2.1). There was also a positive relationship between 

new ELC allocation and increases in development flows to the environment sector (no time lag rate 

ratio = 1.031). There was a negative relationship between new ELC allocation and positive changes in 

per capita GDP (one-year time lag rate ratio = 0.985 and two-year time lag rate ratio = 0.974, Table 

2.2, Figure 2.1).  

The largest effect within the commodity set was for the change in the market price of corn in the same 

year as the response (no time lag) with a rate ratio of 1.03 (Table 2.2). There were further positive 

relationships between the changes in the non-food production index (one-year time lag rate ratio = 

1.007, and two-year time lag rate ratio = 1.007), and changes in the market price of sugar (rate ratio 

for all three time steps = 1.01). There were negative relationships between ELC allocation and the 
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change in the market price of rice, rubber, corn, and the crop production index, at various time lags 

(Table 2.2).  

The producer price variable set, which reflects the farmgate prices of the commodities, had both 

positive and negative relationships with ELC allocation (Figure 2.3, Table 2.2). The strongest positive 

relationship was with changes in the producer price of rubber (no time lag rate ratio = 1.035). The 

effect of positive changes (i.e., net increases) in the price a farmer will get for rubber production can 

be seen in the predictions of new ELCs (Figure 2.3). There were also positive relationships between 

ELC allocation and changes in the producer price of corn (one-year time lag rate ratio = 1.011) and 

the producer price of rice (two-year time lag rate ratio = 1.013, Figure 2.3, Table 2.2).  

There were four negative relationships between producer price variables and new ELC allocations 

(Figure 2.3). Increases in the producer prices of rice and cassava resulted in fewer predicted ELCs in 

the same year (no time lag rate ratio = 0.976) and two years later (two-year time lag rate ratio = 

0.982), respectively. The difference in the direction of the effect of rice producer prices in year t and 

year t+2 (Figure 2.3) suggests that there is a complex relationship between rice production and new 

ELC allocation. The negative relationship between the producer price of cassava and new ELC 

allocation was strong (two-year time lag rate ratio = 0.982, Figure 2.3). 
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Table 2.2. Parameter coefficients, standard errors, and rate ratios from the top model(s) in the analysis with rate of economic land concession allocation 
response. Missing values denote predictor variables that were not selected in the top model(s) for that lag period. Coefficients are on the log scale. SE = 
Standard Error 

 
No time lag  1 year time lag  2 year time lag 

Variable Coefficient SE Rate 

ratioa 

 Coefficient SE Rate 

ratioa 

 Coefficient SE Rate ratioa 

Economy  
  

  
  

  
  

 

GDP - - -  -0.01500 0.00340 0.985  -0.02600* 0.00390 0.974 

Agricultural proportion 

of GDP 

0.27000 0.07000 1.310  0.25000 0.06600 1.284  -0.03400* 0.07600 0.967 

Development flows – 

agriculture 

- - -  - - -  -0.00005* 0.00020 1.000 

Development flows – 

environment 

0.03100 0.00400 1.031  - - -  -0.00260* 0.00450 0.997 

Foreign direct 

investment 

- - -  0.00360 0.00050 1.004  0.00040* 0.00060 1.000 

Population density -4.43000 0.85000 0.012  -6.09000 0.81000 0.002  -7.68000* 0.95000 0.000 

Forest remaining -0.00030 0.00004 0.999  -0.00004 0.00004 0.999  0.00004* 0.00005 1.000 

Commodity / 

production 

  
  

  
  

  
 

Change in median 

market price – corn 
0.03 0.005697 1.03  0.00704* 0.00647 1.007  -0.00365* 0.00329 0.996 

Change in median 

market price – rice 

-0.007 0.00198 0.99  -0.00429* 0.00272 0.996  0.00004* 0.00058 1.000 

Change in median 

market price – rubber 

-0.0009 0.00024 0.99  0.00019* 0.00022 1.000  -0.00004* 0.00009 0.999 

Change in median 

market price – sugar 

0.013 0.001931 1.01  0.00708* 0.00127 1.007  0.00877* 0.00124 1.009 

Non-food agricultural 

production index 

0.007 0.00175 1.01  0.00672* 0.00264 1.007  -0.00149* 0.00203 0.999 
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Crop production index - - -  0.00042* 0.00144 1.000  -0.00328* 0.00427 0.997 

Total production from 

forestry 

- - -  0.00000* 0.00000 1.000  0.00000* 0.00000 1.000 

Forest remaining -0.0002 0.00002 0.999  -0.00017* 0.00003 0.999  -0.00013* 0.00003 0.999 

Producer prices 
  

  
  

  
  

 

Producer price of corn 0.00415 0.00355 1.004  0.01093* 0.00240 1.011  0.00014* 0.00081 1.000 

Producer price of rice -0.02465 0.00436 0.976  0.00452* 0.00564 1.005  0.01258* 0.00474 1.013 

Producer price of 

rubber 

0.03424 0.00401 1.035  -0.00075* 0.00228 0.999  -0.00431* 0.00467 0.996 

Producer price of sugar 0.00004 0.00010 1.000  0.00016* 0.00018 1.000  0.00000* 0.00006 1.000 

Producer price of 

cassava 

0.00032 0.00123 1.000  0.00006* 0.00076 1.000  -0.01791* 0.00214 0.982 

Forest remaining -0.00023 0.00002 0.999  -0.00015* 0.00002 0.999  -0.00013* 0.00002 0.999 

* Coefficients derived from full averaging of models within dAIC < 6. In some cases, there was a single top model and therefore model averaging was not necessary. 
A Rate ratio = exp(coefficient)
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Figure 2.1. Modelled relationships between economic predictors and the allocation of new economic land 
concessions in Cambodia between 1993 – 2015. Points are the observed data, black lines are model 
predictions, and coloured ribbons are 95% confidence intervals. Top row: no time lag between predictor 
and response; middle row: 1-year time lag between predictor and response; bottom row: 2-year time lag 
between predictor and response. Models had Poisson error structures with a log link; points and 
predictions were back-transformed to the original scale for plotting above. 
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Figure 2.2. Modelled relationships between commodity price predictors and the allocation of new economic 
land concessions in Cambodia between 1993 – 2015. All x axis values are in US dollars/ton. Points are the 
observed data, black lines are model predictions, and coloured ribbons are 95% confidence intervals. Top two 
rows: no time lag between predictor and response; third row: 1-year time lag between predictor and response; 
bottom row: 2-year time lag between predictor and response. Models had Poisson error structures with a log 
link; points and predictions were back-transformed to the original scale for plotting above. 
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Figure 2.3. Modelled relationships between producer price predictors and the allocation of new 

economic land concessions Cambodia between 1993 – 2015. All x axis values are in US dollars/ton. Points 

are the observed data, black lines are model predictions, and coloured ribbons are 95% confidence 

intervals. Top row: no time lag between predictor and response; middle row: 1-year time lag between 

predictor and response; bottom row: 2-year time lag between predictor and response. Models had 

Poisson error structures with a log link; points and predictions were back-transformed to the original 

scale for plotting above.  
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2.4 DISCUSSION 

In this study, I have modelled the relationships between metrics of economic development and 

the agricultural sector, and forest loss and the development of industrial-scale agriculture. My 

analysis has revealed some important relationships between changes in the national economy 

and the growth of the commercial agriculture sector, from which I can make inferences 

regarding drivers of forest loss. Understanding the relationships between economic 

development and deforestation is critical in countries that are undergoing rapid economic and 

social development such as Cambodia (Hughes and Un, 2011), as it is within these conditions 

of socioeconomic transition that forest loss is often accelerated (Imai et al., 2018). Knowledge 

of these relationships can be used to develop land use policies that can guide a country through 

forest transition periods towards sustainable forestry (Culas, 2012).  

2.4.1 New Economic Land Concessions 

The economic and agricultural commodity variables were effective at predicting the allocation 

of new ELCs. Although ELCs do not guarantee deforestation (indeed not all ELCs are awarded 

on forested land), the deforestation rates within ELCs are up to 105% higher than comparable 

areas with no ELCs (Davis et al., 2015). There has also been widespread allocation of ELCs 

within forested community land and protected areas, resulting in the loss of important forest 

habitat, rural livelihoods, and indigenous land rights (Beauchamp et al., 2018; Davis et al., 

2015; Magliocca et al., 2019; Neef et al., 2013; Oldenburg and Neef, 2014; Watson et al., 

2014). Therefore, ELCs themselves can be considered direct drivers of forest loss in some 

contexts, which may mean that the economic and agricultural commodity predictors are indeed 

indirect drivers. My results have demonstrated that during the study period, the national 

economy and economic development of the country, including increases in foreign investment, 

changes in the structure of national GDP, and fluctuations in agricultural commodity prices, 

were closely linked to the increase in ELCs, which in turn have been shown to drive forest loss. 

These effects suggest ties between both the development of new ELCs and the growth of the 

agricultural sector, and the injection of foreign wealth into the sector via the purchasing of 

concessions by international companies. 

2.4.1.1 Economics  

There were clear relationships between the size of the agricultural sector, the rates of foreign 

investment, and the number of new ELCs. When the agricultural sector’s contribution to 

national GDP increased, so did the predicted number of new ELCs. For example, when the 

agricultural sector’s GDP proportion decreased by 3% in a given year relative to the previous 

year, the number of new ELCs allocated that year is predicted to be approximately two, whereas 

when the sector’s GDP proportion increased in a given year by 1% relative to the previous year, 
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the number of new ELCs is predicted to be six. Likewise, when foreign investment into the 

country increased, so did the predicted number of new ELCs. For example, when the amount of 

foreign investment decreased by approximately $10 million relative to the previous year, the 

number of new ELCs one year later is predicted to be three. Conversely, when foreign 

investment in a given year increased by approximately $300 million relative to the previous 

year, then one year later the number of new ELCs is predicted to be 10. Although my results do 

not describe causation, there are important relationships between foreign investment, 

agriculture, and the development of new ELCs. Interestingly, increases in development flows to 

the environment sector did not reduce the number of new ELCs within the same year as the 

investment, however, after two years this relationship becomes negative. This suggests that in 

the short-term (i.e., over periods less than two years), investments into the environment sector 

via development funding (predominantly from international donors) do not reduce the number 

of new ELC allocations, but that perhaps over the longer term they do.  

Cambodia is likely to continue prioritising growth within the agricultural sector (Eliste and 

Zorya, 2015), and neoliberal economic policies will continue to encourage foreign investment 

(Green, 2020; Hughes and Un, 2011; Phillips and Davy, 2021). Therefore, it is likely that the 

development of industrial-scale commercial agriculture will continue, despite a visible effort to 

decrease them since 2012 (Neef et al., 2013). The process of awarding ELC contracts in 

Cambodia has been criticised for lacking transparency and for corruption (Neef et al., 2013; 

Vrieze and Kuch, 2012), and so it is not always possible to identify who owns a particular 

concession. Nevertheless, of those identified (80% are identifiable), 48% were foreign owned 

(Licadho, 2019). Despite real and perceived benefits of attracting foreign investment and 

promoting the expansion of cash crops (Li et al., 2018; Taylor et al., 2019), there are numerous 

negative effects on local people and the environment (Curtis et al., 2018; Magliocca et al., 

2019; Neef et al., 2013; Oldenburg and Neef, 2014; Zaehringer et al., 2020). Development of 

potential agricultural land by investors comes with opportunity costs for local people, who 

otherwise may have had access to the land, water, and other resources, and could have 

developed agriculture themselves that would have alleviated poverty more effectively than an 

externally owned commercial agricultural enterprise (De Schutter, 2011).  

2.4.1.2 Agricultural commodity and producer prices 

Changes in new ELC allocation can be predicted from my models by several key agricultural 

commodity prices, both on the international market and internally at the scale of the individual 

producer. Rubber, sugar, corn, and rice were all important variables in the models, and over 

certain time scales increases in the market prices and producer prices of these commodities 

predicted increases in the allocation of ELCs. Economic land concessions in Cambodia are 

predominantly agro-industrial concessions, and therefore the positive relationships between the 
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price of agricultural commodities and new ELC allocations is not surprising. Rubber and rice 

are the most valuable market commodities within the variable set (Table S2.14), and this is 

reflected in the model; when the producer price of rubber decreased in value, very few new 

ELCs were predicted in the following year, but when prices increased by, for example, $30/ton, 

in the following year 12 new ELCs were predicted. This suggests that producers are highly 

influenced by sale prices of commodities, particularly of high value products such as rubber, 

and that they will act quickly when there is the potential for financial gain.  

The differences in the effects of commodity and producer prices on ELC allocation at different 

time lags is interesting, as it suggests that either investors will delay investing in a new crop for 

up to two years after the prices increase, or that the process of purchasing land and establishing 

an ELC venture can, in some cases, be a slow process. International market forces are known to 

drive land use change (LUC) in Cambodia (Grogan et al., 2019), and globally, land conversion 

for commodity production is the single largest driver of deforestation (Curtis et al., 2018). 

Grogan et al (2015) provide an empirical example of how the international market price of 

rubber can drive deforestation in frontier areas of Cambodia and Vietnam. My study reinforces 

this link between commodity and producer prices of key agricultural products and development 

activities that reduce forest cover.  

2.4.2 Direct forest loss 

Apart from population density and agricultural proportion of GDP, there were no significant 

effects from the models with forest loss as the response variable. Some of the predictor 

variables that were non-significant have been shown to correlate with LUC in other studies, 

such as GDP (Ewers, 2006; Fan and Ding, 2016; Gong et al., 2013; Kuang et al., 2016), the 

contribution of economic sectors to national GDP (Gong et al., 2013), human population growth 

and density (Bonilla-Bedoya et al., 2018; Fan and Ding, 2016), and agricultural output (Fan and 

Ding, 2016). There are several possible explanations for the lack of effects in this study. First, 

previous studies have been at different scales to this study, such as global (e.g., Ewers, 2006), or 

sub-national (e.g., Gong et al., 2013), and therefore the drivers which are operating at those 

scales may be different to the drivers operating at the national scale in Cambodia. Second, 

Cambodia’s economy is a rare example of civil unrest and war resulting in economic collapse, 

followed by subsequent rapid economic revival (other Asian examples include Japan and 

Vietnam, see Hamada & Kasuya 1992 and Riedel & Turley 1999). This may render comparison 

of economic or agricultural drivers of forest loss and LUC with other Asian countries 

uninformative. For example, Cambodia’s economy is in its infancy relative to many other 

countries in the region, and therefore forest loss during the study period may have been driven 

more by local drivers such as poverty, insecure land tenure, and land speculation by migrants, 

rather than national-level economics. Third, I did not include predictor variables covering 
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institutional factors, land rights or tenure, or environmental policies, which have been shown to 

be important (Culas, 2007). Finally, I only investigated up to two years of time lag between 

changes in predictor variables and changes in forest cover. It is possible that changes in certain 

economic factors take longer than two years to have a significant effect on forest cover. For 

example, the “trickle down” effect of foreign investment, whereby the local economies of the 

host nation see increased productivity and profitability which in turn may drive land use change 

and forest loss at the local scale, is smaller and more fragile than usually assumed (Jensen, 

2006). Therefore, if there is an indirect effect of foreign investment on forest loss, it may take 

several years for this effect to trickle down to forests at local levels.   

2.4.3 Conclusions 

Cambodia’s post-war economic recovery has been remarkably swift, boasting GDP growth 

rates greater than any other Asian country excluding China (Solcomb, 2010). On one hand this 

has benefited the Cambodian people through poverty reduction and improved access to services 

(World Bank, 2014), yet on the other hand much of this economic growth has been built upon 

natural resource exploitation (Davis et al., 2015; Eliste and Zorya, 2015), which has had 

negative effects on protected areas, forests, and local people (Beauchamp et al., 2018; 

Magliocca et al., 2019; Oldenburg and Neef, 2014; Vrieze and Kuch, 2012; Watson et al., 

2014). Economic land concessions have been used by the Cambodian government as a 

mechanism with which to direct foreign investment, expand industrial-scale commercial 

agriculture, and boost economic activity, yet have also been a key driver in deforestation 

(Tsujino et al., 2019). High rates of deforestation, in the context of Cambodia’s economic status 

and the rural population’s reliance on natural resources (Nguyen et al., 2015), suggests that the 

country is on the increasing deforestation trajectory of the EKCd (Bhattarai & Hammig 2004), 

whereby national economic development is improved at the expense of natural forest cover 

(Stern, 2004).  

The most relevant case study to compare with Cambodia is that of its neighbour Vietnam, 

which underwent a forest transition in the 1990s, and over the next two decades national forest 

cover increased (Meyfroidt and Lambin, 2008). Vietnam’s forest transition was driven by a 

combination of factors including land scarcity due to increasing human populations, reductions 

in hillside cultivation owing to land degradation and land use policies, increased productivity in 

existing agricultural lands, government policies that promoted smallholder forestry, increased 

demand for timber, and a scarcity of forest products that provided incentives for reforestation 

(Meyfroidt and Lambin, 2008). Recent studies have highlighted Cambodia’s readiness for a 

forest transition; all of the necessary econometric milestones have been reached including 

robust government policies and legal frameworks, the promotion and expansion of tourism, 

integration into global markets for capital, commodities, and labour, and prevalent international 
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conservation ideologies, yet deforestation rates between 1990 and 2015 remained above 1% 

(Ota et al., 2020). Case studies of other Asian countries that have gone through forest 

transitions, including Vietnam, have highlighted the need for at least one element of effective 

governance (Bhattacharya et al., 2010; Clement et al., 2009; He et al., 2014). Governance 

failures in Cambodia are likely hindering progress towards more sustainable forest management 

and ultimately a forest transition (Milne and Mahanty, 2015; Riggs et al., 2018).  

Understanding which economic factors and agricultural commodities are driving land 

conversion via ELCs, the strength of the effects, the time lags, and the legal and institutional 

mechanisms that facilitate the link between prices and forest loss, is critical for both predicting 

future forest loss and identifying the appropriate institutional levels to target policy 

interventions. The opaque legal mechanisms and weak institutional frameworks that govern 

ELCs, natural resource management, and forest governance in Cambodia are likely to continue 

to hinder the development of sustainable forest and agricultural policies in the short term (Milne 

and Mahanty, 2015). Industrial-scale agriculture in low income countries such as Cambodia are 

often criticised for failing to alleviate poverty or contribute to rural development, and often 

come with huge opportunity costs for local people, who would likely benefit more if they were 

given access to the land (De Schutter, 2011). Furthermore, agro-industrial production of cash 

crops for international markets leaves the country open to price shocks and other suboptimal 

market fluctuations. Nevertheless, the agricultural sector is still a fundamental part of the 

national economy and labour force, and further agricultural development that embodies 

sustainability, increased productivity through improved technology, and value-addition via 

further processing rather than land expansion, can continue to contribute to national 

development and poverty alleviation without the need for further deforestation (Eliste and 

Zorya, 2015).  
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2.6. SUPPORTING INFORMATION 

 

Table S2.1. Full list of predictor variables. Some variables were removed from the analysis prior to modelling due to collinearity. Variables cover the time 
period 1993 – 2015. GDP = Gross Domestic Product, USD = US Dollars, UNCTAD = United Nations Conference on Trade and Development, CNIS = 
Cambodian National Institute of Statistics, FAO = Food and Agricultural Organisation, RASCE = Rubber Association Singapore Commodity Exchange, 
ESACCI = European Space Agency Climate Change Initiative 

Predictor variable Units Resolution Source Details 

Economy 
    

GDP per capita  Billions USD National World Bank Constant 2010 rates 

GPD growth % National World Bank Constant 2010 rates 

GNI per capita USD  National World Bank 

Gross National Income per capita. Calculated as gross national income 

divded by the mid-year population at current USD rates 

Foreign Direct Investment Millions USD National UNCTAD Inward and outward flows and stock 

Agricultural sector value of GDP % National CNIS Proportion of national GDP 

Industrial sector value of GDP % National CNIS Proportion of national GDP 

Development flows to agriculture Millions USD National FAO 

Donor development investment flows, other official flows, and private 

donor flows at constant 2016 prices to all agriculture and forestry sub-

sectors 

Development flows to environment Millions USD National FAO 

Donor development investment flows, other official flows, and private 

donor flows at constant 2016 prices to general environment protection 

Commodity prices 
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Agricultural Raw Materials  Index Global IMF 

Price index for global agricultural raw materials including timber, cotton, 

wool, rubber, and hides 

Crop Production  Index National FAO 

Relative level of the aggregate volume of agricultural production for each 

year in comparison with the base period 2004-2006 

Non-food agricultural production  Index National FAO 

Relative level of the aggregate volume of non-food agricultural 

production for each year in comparison with the base period 2004-2006 

Forestry production m3 National FAO 

Total production values for industrial roundwood, non-coniferous tropical 

wood, other industrial roundwood, sawlogs and veneer logs (coniferous 

and non-coniferous), and sawnwood (coniferous and non-coniferous 

Price of rice USD/ton Global World Bank Median annual global market price of rice 

Price of corn USD/ton Global World Bank Annual global market price of corn 

Price of rubber USD/ton Regional RASCE Monthly regional market value of rubber on the Singapore Exchange 

Price of sugar USD/ton Global World Bank Annual global market price of sugar 

Producer prices 
    

Producer price of Rice USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of rubber USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of cassava USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of corn USD/ton National FAO Farmgate prices for Cambodian producers 

Producer price of sugar USD/ton National FAO Farmgate prices for Cambodian producers 

Control 
    

Forest remaining km2 National ESACCI Total forested area 

Population density pax/km2 National FAO 
 



57 
 

 

Table S2.2. Hypothesised relationships between predictor variables and forest loss 

Variable Hypothesis 

Economic development  

GDP Increases in national economic development and wealth will increase 

forest loss 

GDP growth The rate of GDP growth will affect the rate of forest loss  

FDI Increased foreign investment will increase forest loss (e.g. through 

economic land concessions) 

Agricultural sector 

proportion of GDP 

As the agricultural sector’s contribution to GDP increases, so will forest 

loss (reflecting increases in agro-industrial concessions). 

Alternative hypothesis: as the agricultural sector’s contribution to GDP 

decreases forest loss will increase (reflecting urbanisation and urban 

expansion) 

Development flows to 

agriculture 

Increased investment into the agricultural sector will increase forest loss 

(agricultural expansion) 

Alternative hypothesis: Increased investment into the agricultural sector 

will decrease forest loss (increased productivity and intensification of 

existing agricultural land) 

Development flows to the 

environment 

Increased investment into the environment sector will decrease forest 

loss 

Commodities  

Crop production index Increases in crop production will increase forest loss 

Non-food production index Increases in non-food agricultural production will increase forest loss 

Median rice price Increases in the price of rice will increase forest loss 

Median rubber price Increases in the price of rubber will increase forest loss 

Median corn price Increases in the price of corn will increase forest loss 

Median sugar price Increases in the price of sugar will increase forest loss 

Production value from 

forestry 

Increases in the production of forestry products will increase forest loss 

Producer prices  

Producer price, rubber Increases in the producer price of rubber will increase forest loss 

Producer price, cassava Increases in the producer price of cassava will increase forest loss 

Producer price, corn Increases in the producer price of corn will increase forest loss 

Producer price, sugar Increases in the producer price of sugar will increase forest loss 

Producer price, rice Increases in the producer price of rice will increase forest loss 

Control  
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Population density Human population density will affect forest loss 

Forest remaining Forest loss will be affected by the raw quantity of forest remaining – i.e., 

forest loss will decrease as the total amount of forest remaining 

decreases 
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Table S2.3. European Space Agency Climate Change Initiative satellite bands. Bands 
highlighted in green were grouped to represent “forest cover”. 

Value Label 

0 No data 

10 Cropland, rainfed 

11 Herbaceous cover 

12 Tree or shrub cover 

20 Cropland, irrigated or post-flooding 

30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%) 

40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 

50 Tree cover, broadleaved, evergreen, cosed to open (>15%) 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) 

61 Tree cover, broadleaves, decisuous, closed (>40%) 

62 Tree cover, broadleaves, deciduous, open (15 - 40%) 

70 Tree cover, needleleaved, evergreen, closed to open (>15%) 

71 Tree cover, needleleaved, evergreen, closed (>40%) 

72 Tree cover, needleleaved, evergreen, open (15 - 40%) 

80 Tree cover, needleleaved, deciduous, closed to open (>15%) 

81 Tree cover, needleleaved, deciduous, closed (>40%) 

82 Tree cover, needleleaved, deciduous, open (15 - 40%) 

90 Tree cover, mixed leaf type (broadleaved and needleleaved) 

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 

120 Shrubland 

121 Evergreen shrubland 

122 Deciduous shrubland 

130 Grassland 

140 Lichens and mosses 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 

152 Sparse shrub (<15%) 

153 Sparse herbaceous cover (<15%) 

160 Tree cover, flooded, fresh or brakish water 
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Table S2.4. Correlation matrix for predictor variables. Values over 0.6 are highlighted in red, and values below -0.6 are highlighted in yellow. For_cov = 
forest cover, for_cov_perc = percent forest cover, gdp = Gross Dometic Product, gdp_gr = percent growth in GDP, gni = Gross National Income, fdi = 
Foreign Direct Investment, ind_gdp = industrial sector value of GDP, agr_gdp = agricultural sector value of GDP, dev_agri = development flows to the 
agricultural sector, dev_env = development flows to the environment sector, pop_den = population density, armi = agricultural raw materials index, cpi 
= crop production index, nfi = non-food agricultural production, rice_med = median price of rice, rub_med = median price of rubber, corn_med = median 
price of corn, sug_med = median price of sugar, for_prod = forestry production, prod_rice = producer price of rice, prod_rub = producer price of rubber, 
prod_cass = producer price of cassava, prod_corn = producer price of corn, prod_sug = producer price of sugar, for_rem = forest remaining. 

 

for_c

ov 

for_c
ov_p

erc gdp 

gdp_

gr gni fdi 

ind_

gdp 

agr_

gdp 

dev_

agri 

dev_

env 

pop_

den armi cpi nfi 

rice_

med 

rub_

med 

corn
_me

d 

sug_

med 

for_p

rod 

prod

_rice 

prod

_rub 

prod

_cass 

prod
_cor

n 

prod

_sug 

for_re

m 

for_cov   -0.30 0.30 -0.30 -0.31 0.47 -0.53 0.16 -0.05 0.39 0.00 -0.23 -0.21 -0.06 0.11 0.00 -0.02 -0.58 -0.25 -0.28 0.28 -0.19 -0.33 0.65 

for_cov_perc  -0.30 0.30 -0.30 -0.31 0.47 -0.53 0.16 -0.05 0.39 0.00 -0.23 -0.21 -0.06 0.11 0.00 -0.02 -0.58 -0.25 -0.28 0.28 -0.19 -0.33 0.65 

gdp -0.30 -0.30  0.40 0.99 0.25 0.12 -0.22 -0.01 -0.01 -0.51 0.30 0.35 0.00 0.19 0.22 0.23 -0.15 0.14 0.41 0.63 0.26 0.57 0.19 -0.60 

gdp_gr 0.30 0.30 0.40  0.39 0.20 0.12 -0.30 0.27 0.14 0.00 0.30 0.28 -0.06 -0.20 0.37 0.02 -0.22 0.12 -0.02 0.11 0.52 0.60 -0.09 -0.03 

gni -0.30 -0.30 0.99 0.39  0.24 0.13 -0.21 0.01 0.03 -0.51 0.34 0.35 -0.02 0.16 0.24 0.22 -0.14 0.14 0.41 0.60 0.23 0.62 0.15 -0.55 

fdi -0.31 -0.31 0.25 0.20 0.24  -0.48 0.23 0.01 0.41 -0.31 0.03 0.30 0.09 0.03 0.09 0.24 -0.12 0.26 0.24 0.19 0.06 0.46 0.54 -0.26 

ind_gdp 0.47 0.47 0.12 0.12 0.13 -0.48  -0.61 -0.16 0.02 0.21 0.07 -0.30 -0.50 -0.25 0.08 -0.01 -0.01 -0.48 -0.21 -0.07 0.23 -0.20 -0.33 0.16 

agr_gdp -0.53 -0.53 -0.22 -0.30 -0.21 0.23 -0.61  -0.04 0.15 -0.24 -0.08 0.55 0.51 0.14 -0.11 -0.09 0.37 0.19 0.02 -0.06 -0.38 -0.01 0.20 -0.20 

dev_agri 0.16 0.16 -0.01 0.27 0.01 0.01 -0.16 -0.04  -0.12 0.01 0.26 0.15 -0.08 -0.06 0.02 0.02 0.12 -0.06 -0.08 0.16 0.05 0.13 0.06 0.02 

dev_env -0.05 -0.05 -0.01 0.14 0.03 0.41 0.02 0.15 -0.12  -0.03 0.05 0.30 -0.24 -0.35 0.11 0.03 0.32 -0.01 -0.28 -0.04 0.03 0.08 0.16 0.01 

pop_den 0.39 0.39 -0.51 0.00 -0.51 -0.31 0.21 -0.24 0.01 -0.03  -0.43 -0.45 -0.06 -0.31 -0.31 -0.19 -0.38 -0.26 -0.58 -0.79 -0.06 -0.35 -0.48 0.79 

armi 0.00 0.00 0.30 0.30 0.34 0.03 0.07 -0.08 0.26 0.05 -0.43  0.54 -0.01 0.26 0.89 0.57 0.56 0.03 0.41 0.59 0.23 0.48 -0.27 -0.20 

cpi -0.23 -0.23 0.35 0.28 0.35 0.30 -0.30 0.55 0.15 0.30 -0.45 0.54  0.33 0.33 0.43 0.41 0.48 0.09 0.22 0.50 -0.06 0.42 0.08 -0.32 

nfi -0.21 -0.21 0.00 -0.06 -0.02 0.09 -0.50 0.51 -0.08 -0.24 -0.06 -0.01 0.33  0.39 0.02 -0.15 0.13 -0.01 0.10 -0.02 -0.41 0.02 0.21 0.03 

rice_med -0.06 -0.06 0.19 -0.20 0.16 0.03 -0.25 0.14 -0.06 -0.35 -0.31 0.26 0.33 0.39  0.24 0.60 0.16 0.00 0.67 0.47 0.01 0.20 0.13 -0.09 

rub_med 0.11 0.11 0.22 0.37 0.24 0.09 0.08 -0.11 0.02 0.11 -0.31 0.89 0.43 0.02 0.24  0.56 0.48 0.05 0.48 0.40 0.48 0.49 -0.39 -0.07 

corn_med 0.00 0.00 0.23 0.02 0.22 0.24 -0.01 -0.09 0.02 0.03 -0.19 0.57 0.41 -0.15 0.60 0.56  0.15 -0.10 0.46 0.48 0.23 0.40 -0.15 -0.04 

sug_med -0.02 -0.02 -0.15 -0.22 -0.14 -0.12 -0.01 0.37 0.12 0.32 -0.38 0.56 0.48 0.13 0.16 0.48 0.15  -0.19 0.11 0.28 -0.01 -0.12 -0.07 -0.14 

for_prod -0.58 -0.58 0.14 0.12 0.14 0.26 -0.48 0.19 -0.06 -0.01 -0.26 0.03 0.09 -0.01 0.00 0.05 -0.10 -0.19  0.27 0.15 0.11 0.25 0.11 -0.41 
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prod_rice -0.25 -0.25 0.41 -0.02 0.41 0.24 -0.21 0.02 -0.08 -0.28 -0.58 0.41 0.22 0.10 0.67 0.48 0.46 0.11 0.27  0.63 0.36 0.47 0.15 -0.46 

prod_rub -0.28 -0.28 0.63 0.11 0.60 0.19 -0.07 -0.06 0.16 -0.04 -0.79 0.59 0.50 -0.02 0.47 0.40 0.48 0.28 0.15 0.63  0.05 0.39 0.41 -0.73 

prod_cass 0.28 0.28 0.26 0.52 0.23 0.06 0.23 -0.38 0.05 0.03 -0.06 0.23 -0.06 -0.41 0.01 0.48 0.23 -0.01 0.11 0.36 0.05  0.36 -0.37 -0.07 

prod_corn -0.19 -0.19 0.57 0.60 0.62 0.46 -0.20 -0.01 0.13 0.08 -0.35 0.48 0.42 0.02 0.20 0.49 0.40 -0.12 0.25 0.47 0.39 0.36  0.01 -0.29 

prod_sug -0.33 -0.33 0.19 -0.09 0.15 0.54 -0.33 0.20 0.06 0.16 -0.48 -0.27 0.08 0.21 0.13 -0.39 -0.15 -0.07 0.11 0.15 0.41 -0.37 0.01  -0.51 

for_rem 0.65 0.65 -0.60 -0.03 -0.55 -0.26 0.16 -0.20 0.02 0.01 0.79 -0.20 -0.32 0.03 -0.09 -0.07 -0.04 -0.14 -0.41 -0.46 -0.73 -0.07 -0.29 -0.51  
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The following decisions were made based on high correlation (Table S2.4): 

• GNI variable dropped due to very high correlation with GDP. Competing theories about 

drivers of forest loss – national economy (GDP) or socioeconomic status of population (GNI). 

Because Chapter 3 was focusing on socioeconomics, I decided that GDP was more interesting 

in this case.  

• Neither population density (pop_den) or producer price for rubber (prod_rub) were dropped 

despite correlation. There is no plausible relationship between these two variables, and they 

were included to explain different drivers of forest loss. The two variables were in different 

variable sets, and so both were retained.  

• Population density and amount of forest remaining (for_rem) were positively correlated, 

which was counterintuitive. Previous studies have highlighted remaining forest as an 

important control variable, and so both variables were retained (O’Brien, 2017).   

• Producer price for rubber (prod_rub) and forest remaining were negatively correlated. 

Previous studies have highlighted remaining forest as an important control variable, and so 

both variables were retained (O’Brien, 2017).  

• Agricultural Raw Materials Index (armi) was correlated with median price for rubber 

(rub_med). This was likely to be a genuine correlation. The index was slightly correlated with 

more than one of the commodity price variables, and I was interested in the individual 

commodities, and so armi was dropped.  

• Agricultural sector proportion of GDP (agr_gdp) and industrial sector proportion of GDP 

(ind_gdp) were correlated, and conceptually I was more interested in the impact of the 

agricultural sector (as it is more likely to affect forest cover), and so ind_gdp was dropped. 

• Median price of rice (rice_med) and producer price of rice (prod_rice) were correlated. These 

two variables were in different sets, and so were retained for the initial modelling. 

• The producer price for rubber (prod_rub) and the producer price for rice (prod_rice) were 

correlated. A large number of the economic land concessions allocated in Cambodia were for 

rubber, and so my hypothesis was that rubber prices would be more important for predicting 

forest loss than rice. Therefore prod_rice was dropped
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Figure S2.1 Predicted relationship between rate of forest loss for Cambodia and variables 

that measure economic development. All y-axes are the amount of forest lost in km2. Points 

are the observed data, thick lines are model predictions, and faded ribbons are 95% 

confidence intervals. Row a: Gross Domestic Product (GDP), row b: agricultural sectors 

contribution (%) to GDP, row c: development flows to the agricultural sector (USD millions), 

row d: development flows to the environment sector (USD millions), row e: Foreign Direct 

Investment (USD millions).The left column of plots are the effects on forest cover at time t 

(i.e. the variable values and forest loss values from the same year), the middle column of 

plots are the effects at time t+1 (i.e. the effects on forest loss in the subsequent year), and 

the right column of plots are the effects at time t+2 (i.e. the effects on forest loss two years 

after the variable values).  
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Figure S2.2. Predicted relationship between forest loss and variables that measure 
agricultural commodity production and price. All y-axes are the amount of forest lost in km2. 
Points are the observed data, thick lines are model predictions, and faded ribbons are 95% 
confidence intervals. Row a: Crop Production Index, row b: Non-food Production Index, row 
c: median annual market price for rice (USD/t), row d: median annual market price for 
rubber (USD/t), row e: median annual market price for corn (USD/t), row f: median annual 
market price for sugar (USD/t), row g: total production from forestry (m3). The left column of 
plots are the effects on forest cover at time t (i.e. the variable values and forest loss values 
from the same year), the middle column of plots are the effects at time t+1 (i.e. the effects 
on forest loss in the subsequent year), and the right column of plots are the effects at time 
t+2 (i.e. the effects on forest loss two years after the variable values). 
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Figure S2.3. Predicted relationship between forest loss and variables that measure the 
producer prices of agricultural commodities. All y-axes are the amount of forest lost in km2. 
Points are the observed data, thick lines are model predictions, and faded ribbons are 95% 
confidence intervals. Row a: producer price for rubber (USD/t) row b: producer price for 
cassava (USD/t), row c: producer price for corn (USD/t), row d: producer price for sugar 
(USD/t). Left column of plots are the effects on forest cover at time t (i.e. the variable values 
and forest loss values from the same year), the middle column of plots are the effects at 
time t+1 (i.e. the effects on forest loss in the subsequent year), and the right column of plots 
are the effects at time t+2 (i.e. the effects on forest loss two years after the variable values). 
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Table S2.5. Raw model coefficients and full averaged coefficients from the top economic models (dAIC < 6) where change in forest cover is the response. 

No time lag. Agric GDP = agricultural sector proportion of GDP, Dev agri = development flows to the agriculture, Dev env = development flows to the 

environment, For rem = forest remaining, GDP = gross domestic product, GDP gr = GDP growth, Pop den = population density. 
 

(Intercept) SE Agric 

GDP 

SE Dev 

agri 

SE Dev env SE FDI SE For 

rem 

SE GDP SE GDP 

gr 

SE Pop 

den 

SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

401 -6308.3  NA  NA  NA  NA  0.08  NA  NA  -599.4  1.1  0.3832 

403 -6309.3  NA  0.03  NA  NA  0.08  NA  NA  -599.6  1.1  0.1053 

433 -6415.7  NA  NA  NA  NA  0.09  0.4  NA  -595.9  1.1  0.1007 

402 -6312.0  -3.8  NA  NA  NA  0.08  NA  NA  -605.3  1.1  0.0607 

405 -6302.8  NA  NA  0.2  NA  0.08  NA  NA  -597.5  1.1  0.0569 

465 -6299.4  NA  NA  NA  NA  0.08  NA  -1.04  -597.9  1.1  0.0558 

409 -6313.1  NA  NA  NA  0.01  0.08  NA  NA  -596.8  1.1  0.0502 

497 -6456.3  NA  NA  NA  NA  0.09  0.6  -2.7  -589.7  1.1  0.0231 

435 -6418.9  NA  0.03  NA  NA  0.09  0.4  NA  -595.9  1.1  0.0216 

Model 

averaged 

coefficients 

-6327.0 167.5 

 

-0.3 1.9 

 

0.005 0.02 

 

0.01 0.10 

 

6.5 0.01 

 

0.08 0.002 

 

0.08 0.23 

 

-0.1 0.82 

 

-598.7 46.15 

 

1.1 0.02 
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Table S2.6. Raw model coefficients and full averaged coefficients from the top economic models (dAIC < 6) where change in forest cover is the response. 

One year time lag. Agric GDP = agricultural sector proportion of GDP, Dev_agr = development flows to the environment sector, FDI = foreign direct 

investment, For_rem = forest remaining, GDP = gross domestic product, GDP_gr = GDP growth, Pop den = population density  
 

(Intercept) SE Agric 

GDP 

SE Dev_agr SE Dev_env SE FDI SE For_rem SE GDP SE GDP_gr SE Pop den SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

402 -6743.74  -16.97  NA  NA  NA  0.089  NA  NA  -635.97  1.10  0.56 

401 -6806.15  NA  NA  NA  NA  0.090  NA  NA  -616.65  1.09  0.07 

410 -6714.42  -16.39  NA  NA  -0.028  0.089  NA  NA  -639.33  1.10  0.05 

434 -6804.80  -15.58  NA  NA  NA  0.090  0.243  NA  -631.50  1.10  0.04 

406 -6747.27  -17.25  NA  0.160  NA  0.089  NA  NA  -634.30  1.10  0.04 

404 -6708.95  -17.23  -0.016  NA  NA  0.089  NA  NA  -627.77  1.10  0.04 

466 -6750.66  -16.67  NA  NA  NA  0.089  NA  0.3026  -635.79  1.10  0.04 

433 -6983.52  NA  NA  NA  NA  0.091  0.7718  NA  -607.51  1.10  0.02 

Model 

averaged 

coefficients 

-6757.0 259.2 -14.94 7.94 -0.0008 0.01 0.0082 0.11 -0.0017 0.01 0.09 0.003 0.038 0.22 0.014 0.6 -632.9 64.8 1.103 0.03 
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Table S2.7. Raw model coefficients and full averaged coefficients from the top economic models (dAIC < 6) where change in forest cover is the response. 

Two year time lag. Agr_gdp = agricultural sector proportion of GDP, Dev agr = development flows to the agricultural sector, Dev env = development 

flows to the environment sector, FDI = foreign direct investment, For_rem = forest remaining, GDP = gross domestic product, Pop den = population 

density. 
 

(Intercept) SE Agr_gdp SE Dev 

agr 

SE Dev 

env 

SE FDI SE For_rem SE GDP SE Pop 

den 

SE Time SE Model weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

210 -7292.91  -19.61  NA  NA  NA  0.095  NA  -602.51  1.11  0.40 

209 -7309.82  NA  NA  NA  NA  0.096  NA  -604.68  1.11  0.22 

214 -7313.49  -20.63  NA  0.67  NA  0.096  NA  -606.74  1.11  0.06 

217 -7114.83  NA  NA  NA  -0.11  0.093  NA  -572.66  1.08  0.06 

218 -7155.86  -18.14  NA  NA  -0.08  0.094  NA  -579.96  1.09  0.05 

213 -7325.70  NA  NA  0.5  NA  0.096  NA  -607.90  1.11  0.03 

241 -7390.57  NA  NA  NA  NA  0.096  0.6  -597.90  1.12  0.03 

212 -7263.13  -19.85  -0.025  NA  NA  0.095  NA  -593.45  1.10  0.03 

242 -7270.04  -20.35  NA  NA  NA  0.095  -0.16  -604.29  1.10  0.03 

211 -7304.68  NA  -0.0043  NA  NA  0.096  NA  -603.11  1.11  0.03 

Model averaged 

coefficients 

-7283 508.6 -11.94 11.93 -0.0009 0.03 0.060 0.29 -0.011 0.04 0.095 0.01 0.015 0.27 -600 117.4 1.105 0.05 
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Table S2.8. Raw model coefficients and full averaged coefficients from the top commodity models (dAIC < 6) where change in forest cover is the 

response. No time lag. Med corn = median corn price, CPI = crop production index, For prod = forest production, For rem = forest remaining, NFI = non-

food production index, Med rice = median rice price, Med rub = median rubber price, Med sug = median sugar price. 
 

(Intercept) SE Med 

corn 

SE CPI SE For prod SE For 

rem 

SE NFI SE Med 

rice 

SE Med 

rub 

SE Med sug SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

265 -4816.38  NA  NA  NA  0.06  NA  NA  NA  NA  1.07  0.16 

393 -4828.96  NA  NA  NA  0.06  NA  NA  NA  0.40  1.08  0.11 

329 -4797.76  NA  NA  NA  0.06  NA  NA  0.03  NA  1.07  0.07 

297 -4806.01  NA  NA  NA  0.06  NA  0.26  NA  NA  1.08  0.07 

269 -4738.73  NA  NA  -0.0001  0.06  NA  NA  NA  NA  1.04  0.06 

266 -4817.37  0.414  NA  NA  0.06  NA  NA  NA  NA  1.07  0.05 

267 -4877.51  NA  0.37  NA  0.06  NA  NA  NA  NA  1.07  0.04 

281 -4799.42  NA  NA  NA  0.06  0.13  NA  NA  NA  1.08  0.03 

333 -4701.74  NA  NA  -0.0001  0.06  NA  NA  0.04  NA  1.03  0.03 

425 -4819.19  NA  NA  NA  0.06  NA  0.21  NA  0.36  1.08  0.03 

397 -4768.10  NA  NA  -0.0001  0.06  NA  NA  NA  0.36  1.05  0.02 

394 -4828.66  0.33  NA  NA  0.06  NA  NA  NA  0.37  1.08  0.02 

301 -4727.53  NA  NA  -0.0001  0.06  NA  0.26  NA  NA  1.05  0.02 

457 -4815.93  NA  NA  NA  0.06  NA  NA  0.02  0.31  1.07  0.02 

361 -4793.48  NA  NA  NA  0.06  NA  0.20  0.03  NA  1.07  0.02 

409 -4819.38  NA  NA  NA  0.06  0.07  NA  NA  0.39  1.08  0.02 

395 -4833.18  NA  0.03  NA  0.06  NA  NA  NA  0.40  1.08  0.02 

270 -4746.51  0.37  NA  -0.0001  0.06  NA  NA  NA  NA  1.05  0.01 

271 -4801.88  NA  0.40  -0.0001  0.06  NA  NA  NA  NA  1.04  0.01 

330 -4802.21  0.19  NA  NA  0.06  NA  NA  0.03  NA  1.07  0.01 

345 -4784.40  NA  NA  NA  0.06  0.10  NA  0.03  NA  1.08  0.01 
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331 -4816.57  NA  0.20  NA  0.06  NA  NA  0.03  NA  1.07  0.01 

298 -4809.09  0.20  NA  NA  0.06  NA  0.19  NA  NA  1.07  0.01 

299 -4834.33  NA  0.20  NA  0.06  NA  0.23  NA  NA  1.07  0.01 

282 -4793.78  0.46  NA  NA  0.06  0.18  NA  NA  NA  1.09  0.01 

313 -4805.31  NA  NA  NA  0.06  0.01  0.26  NA  NA  1.08  0.01 

285 -4730.61  NA  NA  -0.0001  0.06  0.10  NA  NA  NA  1.05  0.01 

268 -4846.23  0.36  0.18  NA  0.06  NA  NA  NA  NA  1.07  0.01 

Model 

averaged 

coefficients 

-4803 330.9 0.05 0.21 0.03 0.21 0.00 0.00 0.06 0.003 0.01 0.09 0.04 0.13 0.01 0.02 0.10 0.22 1.07 0.04 
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Table S2.9. Raw model coefficients and full averaged coefficients from the top commodity models (dAIC < 6) where change in forest cover is the 

response. One year time lag. Med corn = median corn price, CPI = crop production index, For prod = forest production, For rem = forest remaining, NFI  

non-food production index, Med rice = median rice price, Med rub = median rubber price, Med sug = median sugar price. 
 

(Intercept) SE Med 

corn 

SE CPI SE For prod SE For rem SE NFI SE Med 

rice 

SE Med 

rub 

SE Med 

sug 

SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

265 -4862.09  NA  NA  NA  0.0601  NA  NA  NA  NA  1.06  0.17 

269 -4836.39  NA  NA  -0.0002  0.0598  NA  NA  NA  NA  1.05  0.15 

333 -4815.99  NA  NA  -0.0002  0.0596  NA  NA  0.04  NA  1.06  0.07 

329 -4845.84  NA  NA  NA  0.0599  NA  NA  0.03  NA  1.07  0.07 

297 -4834.65  NA  NA  NA  0.0598  NA  0.20  NA  NA  1.08  0.05 

266 -4861.48  0.33  NA  NA  0.0601  NA  NA  NA  NA  1.07  0.04 

393 -4873.57  NA  NA  NA  0.0602  NA  NA  NA  0.22  1.07  0.04 

301 -4807.10  NA  NA  -0.0002  0.0595  NA  0.21  NA  NA  1.06  0.04 

267 -4907.83  NA  0.2912  NA  0.0605  NA  NA  NA  NA  1.07  0.03 

281 -4877.63  NA  NA  NA  0.0603  -0.08  NA  NA  NA  1.06  0.03 

270 -4836.75  0.27  NA  -0.0002  0.0598  NA  NA  NA  NA  1.05  0.03 

397 -4846.20  NA  NA  -0.0002  0.0599  NA  NA  NA  0.17  1.06  0.03 

271 -4879.54  NA  0.2738  -0.0002  0.0602  NA  NA  NA  NA  1.06  0.02 

285 -4841.58  NA  NA  -0.0002  0.0599  -0.03  NA  NA  NA  1.05  0.02 

361 -4828.26  NA  NA  NA  0.0597  NA  0.14  0.03  NA  1.08  0.01 

345 -4863.45  NA  NA  NA  0.0601  -0.09  NA  0.03  NA  1.07  0.01 

457 -4851.32  NA  NA  NA  0.0600  NA  NA  0.03  0.07  1.07  0.01 

365 -4798.02  NA  NA  -0.0002  0.0594  NA  0.14  0.03  NA  1.07  0.01 

330 -4847.16  0.08  NA  NA  0.0599  NA  NA  0.03  NA  1.07  0.01 

331 -4849.63  NA  0.0226  NA  0.0600  NA  NA  0.03  NA  1.07  0.01 
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Model 

averaged 

coefficients 

-4849 379.2 0.026 0.16 0.02 0.18 -0.0001 0.0001 0.06 0.004 -0.005 0.07 0.023 0.1 0.007 0.02 0.017 0.11 1.06 0.06 
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Table S2.10. Raw model coefficients and full averaged coefficients from the top commodity models (dAIC < 6) where change in forest cover is the 

response. Two year time lag. Med corn = median corn price, CPI = crop production index, For prod = forest production, For rem = forest remaining, NFI = 

non-food production index, Med rice = median rice price, Med rub = median rubber price, Med sug = median sugar price. 
 

(Intercept) SE Med 

corn 

SE CPI SE For prod SE For rem SE NFI SE Med 

rice 

SE Med 

rub 

SE Med 

sug 

SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

265 -5052.38  NA  NA  NA  0.06  NA  NA  NA  NA  1.08  0.25 

269 -5093.28  NA  NA  -0.0002  0.06  NA  NA  NA  NA  1.04  0.18 

329 -5059.43  NA  NA  NA  0.06  NA  NA  0.02  NA  1.09  0.05 

266 -5029.09  -0.21  NA  NA  0.06  NA  NA  NA  NA  1.08  0.05 

267 -4995.22  NA  -0.24  NA  0.06  NA  NA  NA  NA  1.08  0.05 

393 -5066.24  NA  NA  NA  0.06  NA  NA  NA  0.11  1.08  0.04 

281 -5065.00  NA  NA  NA  0.06  -0.04  NA  NA  NA  1.08  0.04 

297 -5052.17  NA  NA  NA  0.06  NA  -0.01  NA  NA  1.08  0.04 

333 -5104.49  NA  NA  -0.0002  0.06  NA  NA  0.02  NA  1.04  0.03 

270 -5064.63  -0.27  NA  -0.0002  0.06  NA  NA  NA  NA  1.03  0.03 

271 -5039.57  NA  -0.22  -0.0002  0.06  NA  NA  NA  NA  1.04  0.02 

397 -5100.33  NA  NA  -0.0002  0.06  NA  NA  NA  0.06  1.04  0.02 

285 -5099.98  NA  NA  -0.0002  0.06  -0.02  NA  NA  NA  1.04  0.02 

301 -5093.26  NA  NA  -0.0002  0.06  NA  -0.001  NA  NA  1.04  0.02 

Model 

averaged 

coefficients 

-5064 410.5 -0.02 0.16 -0.02 0.18 -0.0001 1.07e-

4 

0.06 0.004 -0.003 0.07 -0.0005 0.07 0.002 0.01 0.007 0.09 1.06 0.06 
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Table S2.11. Raw model coefficients and full averaged coefficients from the top producer price models (dAIC < 6) where change in forest cover is the 

response. No time lag. For rem = forest remaining, Prod cass = producer price for cassava, prod corn = producer price of corn, Prod rub = producer price 

of rubber, Prod sug = producer price of sugar 
 

(Intercept) SE For rem SE Prod cass SE Prod 

corn 

SE Prod 

rub 

SE Prod sug SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

34 -4816.38  0.06  NA  NA  NA  NA  1.07  0.5223 

42 -4836.13  0.06  NA  NA  0.10  NA  1.07  0.0988 

36 -4816.61  0.06  -0.03  NA  NA  NA  1.07  0.0957 

38 -4818.89  0.06  NA  0.02  NA  NA  1.07  0.0956 

50 -4813.07  0.06  NA  NA  NA  -0.002  1.07  0.0956 

Model 

averaged 

coefficients 

-4818 335.5 0.06 0.004 -0.003 0.17 0.002 0.18 0.01 0.15 -0.0002 0.02 1.07 0.04 
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Table S2.12. Raw model coefficients and full averaged coefficients from the top producer price models (dAIC < 6) where change in forest cover is the 

response. One year time lag. For rem = forest remaining, Prod cass = producer price of cassava, Prod corn = producer price of corn, Prod rub = producer 

price of rubber, Prod sug = producer price of sugar 
 

(Intercept) SE For rem SE Prod cass SE Prod 

corn 

SE Prod 

rub 

SE Prod 

sug 

SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

34 -4862.09  0.06  NA  NA  NA  NA  1.06  0.5219 

50 -4817.18  0.06  NA  NA  NA  -0.02  1.06  0.1029 

36 -4875.06  0.06  0.19  NA  NA  NA  1.06  0.0980 

42 -4873.20  0.06  NA  NA  0.10  NA  1.07  0.0930 

38 -4843.97  0.06  NA  -0.12  NA  NA  1.06  0.0928 

Model averaged 

coefficients 

-4858 391.1 0.06 0.004 0.02 0.18 -0.012 0.18 0.012 0.17 -0.003 0.02 1.06 0.06 
 

 

Table S2.13. Raw model coefficients and full averaged coefficients from the top producer price models (dAIC < 6) where change in forest cover is the 

response. Two year time lag. For rem = forest remaining, Prod cass = producer price of cassava, Prod corn = producer price of corn, Prod rub = producer 

price of rubber, Prod sug = producer price of sugar 
 

(Intercept) SE Forest rem SE Prod cass SE Prod 

corn 

SE Prod rub SE Prod sug SE Time SE Model 

weight 

Model 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

34 -5052.38  0.06  NA  NA  NA  NA  1.08  0.47 

50 -4941.11  0.06  NA  NA  NA  -0.05  1.06  0.14 

36 -5051.34  0.06  0.37  NA  NA  NA  1.09  0.11 

42 -5013.60  0.06  NA  NA  -0.27  NA  1.06  0.09 

38 -5018.31  0.06  NA  -0.21  NA  NA  1.08  0.08 

Model averaged 

coefficients 

-5027 416.4 0.06 0.01 0.04 0.21 -0.02 0.18 -0.03 0.18 -0.01 0.03 1.08 0.06 
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Table S2.14. Summary of new ELCs allocated during the study period, the stated primary crop, and the commodity and producer prices for the different 
crops. 

   Commodity prices ($/ton)  Producer prices ($/ton) 

ELC primary 

crop 

Number of 

new ELCs 

% of total Max value Min value Mean 

value 

 Max value Min value Mean value 

Rubber 147 51.2 4830 585 1743  477 208 317 

Sugar 23 8.0 573 138 282  3714 1193 2115 

Rice 5 1.7 647 172 348  270 96 182 

Cassava 14 4.9 - - -  263 96 185 

Corn 2 0.7 295 90 151  316 74 197 

Other 96 33.4        

Total 287 100.0        
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Chapter 3 
Does socioeconomic development 

predict forest cover in Cambodia? 
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3.0 ABSTRACT 

Deforestation is caused by complex interactions between landscape actors, proximate drivers that 

influence decision making, and underlying causes that shape the proximate drivers. Local 

socioeconomic conditions are important factors contributing to these interactions, as they both shape 

the social and economic environment within which actors make decisions and influence the effects of 

broader underlying causes on local people. Previous studies have demonstrated that socioeconomic 

variables are important in describing and predicting deforestation both within Cambodia and the wider 

region, yet no study has attempted to formalise the relationships between forest cover and 

socioeconomic variables at the national scale for Cambodia. This is an important research gap, given 

the rapid social and economic change and the high rates of forest loss in the country. Therefore, this 

chapter models the relationships between socioeconomic predictors and forest cover at two spatial 

resolutions, and further describes these relationships via a cluster analysis. My analysis revealed very 

few socioeconomic variables that were effective predictors of forest cover at the resolution of either 

the commune or province. The biophysical and infrastructure control variables were more effective 

predictors of forest cover, and the analysis revealed important methodological challenges associated 

with modelling fine resolution data at a large scale. The cluster analysis produced five clusters from 

which a socioeconomic typology could be described, revealing that regions with large, rural, remote, 

poor provinces generally have much higher forest cover, and that there are a few examples of 

provinces that have seen economic development without significant forest loss. My results 

demonstrate the importance of scale when modelling social-ecological systems and highlight 

important associated challenges for future researchers. The cluster analysis demonstrates spatial and 

geopolitical patterns in socioeconomic development across Cambodia and relates these patterns to 

forest cover. Importantly for policy makers, the cluster analysis suggests that economic development 

within provinces need not rely on deforestation. 

3.1 INTRODUCTION 

Tropical deforestation is a significant threat to biodiversity, ecosystem processes, and local people 

(Estoque et al., 2019; Frewer and Chan, 2014), and is particularly insidious in its complexity (Kong et 

al., 2019; Mena et al., 2006; Rowcroft, 2008). The drivers of forest loss in the tropics are not only 

numerous and multifaceted, but they operate at multiple scales and are comprised of complex 

feedback loops between ecological, biophysical, social, cultural, political, and economic factors (Geist 

and Lambin, 2003, 2002; Mannan et al., 2019; Shrestha et al., 2018; X. Xu et al., 2019). This 

complexity means that underlying drivers operating at national, regional, or even global scales 

manifest themselves in a variety of proximate causes, which themselves are governed and shaped by 

local conditions (Fox and Vogler, 2005; Geist and Lambin, 2002; Van Den Hoek et al., 2014). The 

dynamics between drivers that operate at different scales makes disentangling the causes of 



79 
 

deforestation highly contextual, making generalisations difficult to draw and increasing the value of 

local studies.  

3.1.1 Socioeconomics and deforestation  

Local socioeconomic conditions are important factors in understanding the link between broader 

drivers of land use change (LUC) and deforestation, and can be effective predictors of forest loss 

(Bonilla-Bedoya et al., 2018; Liu et al., 2016; Redo et al., 2012). Proximate causes of deforestation 

such as agricultural expansion and infrastructure development are often closely linked via feedback 

loops and dependencies to socioeconomic conditions including poverty, migration, local economies, 

and land and wealth inequality (Geist and Lambin, 2002; Khuc et al., 2018). Therefore, understanding 

the link between socioeconomics and forest cover at different scales is a crucial step in the 

development of effective economic and environmental policies that have positive effects on both 

people and forests.  

Socioeconomics can encompass a huge variety of conditions that describe the social, demographic, 

and economic state of local people, and can affect which drivers of LUC are most influential in 

causing forest loss (Mena et al., 2006). The complexity of social-ecological systems means that it is 

challenging for researchers to identify and model the appropriate socioeconomic predictors of forest 

loss, but there is a wealth of research that has helped to disentangle relationships in specific locations 

and at specific scales. At the local scale, socioeconomic drivers and economics that affect decision-

making processes within households, coupled with institutional factors, are often the most relevant for 

influencing LUC (Gatto et al., 2015; Van Den Hoek et al., 2014). Poverty was once believed to be the 

single most important socioeconomic driver of deforestation (e.g., Lomborg 2001), although further 

research has added significant nuance to this argument (Geist and Lambin, 2003), while other studies 

have demonstrated that poverty played very little role at all in deforestation (Onojeghuo and 

Blackburn, 2011).  

Poverty itself is a complex metric encompassing a multitude of factors such as income, wealth, land, 

agriculture, migration, education, and healthcare, all of which interact to influence deforestation 

(Khuc et al., 2018). Inequalities in land, income, and wealth, and insecure land tenure and forest rights 

for local people are all common factors in driving deforestation (Ceddia, 2019). Such inequalities, in 

combination with debt and overpopulation, drive the expansion of agriculture and other natural 

resource-based activities, to the detriment of forests, as local people strive for subsistence and 

economic development (Ceddia et al., 2015; Culas, 2012).     
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3.1.2 Socioeconomics and deforestation in Asia 

Studies from Asia have highlighted the importance of socioeconomics in influencing the effects of 

economic and other underlying drivers on deforestation. The differences in population density 

between urban and rural locations and the choice of agricultural crop had an interaction effect on 

deforestation in Indonesia (Gatto et al., 2015), and changes in urban structure and local economic 

development boosted in-migration in Shenzhen, China, which drove urban forest fragmentation (Gong 

et al., 2013). Population density has been shown to drive forest loss in India (Krishnadas et al., 2018), 

and in Pakistan, Mannan et al (2019) found that a combination of geographic, socioeconomic, and 

environmental factors were effective predictors of deforestation and other LUC, whereas Zeb et al 

(2019) found that household demographics and poverty were underlying factors of forest clearance for 

livestock and agricultural expansion. In Thailand and Vietnam livelihoods and local economics were 

highly influential in farmer’s decision-making related to LUC (Nguyen et al., 2017), and in the 

mountainous regions of Southeast Asia it has been national policies in combination with local 

economics that governed LUC (Fox and Vogler, 2005).  

The extensive literature on the socioeconomic predictors of deforestation emphasises the breadth and 

complexity of relationships between local socioeconomic conditions, broader economic factors, the 

environmental context, and government policy. The scale at which studies are undertaken is revealed 

to be important, as is local context. For example, the two case studies from Pakistan (Mannan et al., 

2019; Zeb et al., 2019) are from very similar areas within the country, yet their analyses were carried 

out at different spatial resolutions, and they identify different socioeconomic predictors of forest loss. 

Therefore, environmental and economic policies that improve socioeconomic conditions for local 

people without forest loss and environmental degradation will require an understanding of the 

relationships between socioeconomics and forest cover at different scales.  

3.1.3 Cambodia  

Since the early 1990s, after more than two decades of war and unrest, Cambodia has experienced 

extraordinary economic development and social change (Milne and Mahanty, 2015; Solcomb, 2010). 

There have been significant improvements in rates of poverty reduction, access to services, and 

education, yet inequality between the rich and the poor has increased (World Bank, 2014). There has 

been dramatic socioeconomic development in Cambodia’s major urban centres, yet rural, 

marginalised groups and ethnic minorities, particularly in the remote provinces, largely remain poor 

with minimal access to services, and where insecure land tenure leaves them exposed to land grabbing 

and conflict (Hammer, 2008; Ironside, 2008; Neef and Touch, 2012; Phillips and Davy, 2021). Such 

rapid social and economic changes make identifying the drivers of deforestation particularly 

challenging, as broad-scale drivers and their effect on local landscape actors, and the subsequent 

proximate causes of deforestation, are likely to fluctuate rapidly over time and space.  
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There are several studies from Cambodia that have focussed on socioeconomic predictors of 

deforestation, which provide some important context. At the national scale, human population 

pressure has been identified as an important driver of deforestation (Dasgupta et al., 2005), and in 

Northwest Cambodia there have been many direct and indirect drivers of deforestation since 1975, 

including repatriation of Khmer Rouge soldiers and in-migration following the end of the civil 

conflict, refugee repatriation, the subsequent clearance for subsistence agriculture, and the expansion 

of cash crops such as cassava (Hought et al., 2012; Kong et al., 2019). In the Angkor Basin, home to 

the Angkor temples, a complex mix of global, regional, and local drivers including tourism, climate 

change, government policies, economic development, and environmental management caused over 

23% of the existing forest cover to be lost to agricultural expansion and charcoal production between 

1989 and 2005 (Gaughan et al., 2009).  

Integrated conservation and development projects (ICDPs) that aim to tackle both forest loss and 

socioeconomic development at the same time have had mixed results (e.g., Geist & Lambin 2003; 

Chambers et al. 2020; Bernhard et al. 2021). These projects can have unintended consequences for a 

number of reasons, including poor management of incentives or weak enforcement of protective laws, 

misinterpretation of stakeholder motivations, or failure to account for underlying economic drivers 

operating at a broader scale (Chambers et al., 2020). National economic and environmental policies, 

and interventions such as ICDPs, will be likely to fail if the relationships between forest cover and 

loss and: 1) broad economic drivers; and 2) local socioeconomic conditions are not understood and 

accounted for. In Chapter 1, I addressed the relationships between macroeconomic drivers and forest 

loss at the national scale. Previous studies have evaluated the relationships between forest cover and 

socioeconomics in small, discrete locations in Cambodia (Dasgupta et al., 2005; Gaughan et al., 2009; 

Hought et al., 2012; Kong et al., 2019), but to my knowledge, no study has attempted this at a national 

scale.   

Therefore, in this chapter I aim to fill this research gap by exploring whether high resolution spatially 

explicit socioeconomic data from across Cambodia can be used to predict forest cover. This will 

reveal whether certain features of socioeconomic development, or indeed lack of development, can be 

considered proximate causes of deforestation, and whether there is spatial heterogeneity in the effects. 

These insights will contribute to the development of future conservation and development 

interventions, and to policy development. I will: 1) model the relationship between socioeconomic 

variables and the proportion of forest cover for the whole country at two spatial resolutions (Province, 

Commune) using generalised liner mixed models; and 2) use a cluster analysis to create a provincial-

level socioeconomic typology which further describes the relationships between socioeconomic 

development and forest cover.  
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3.2 METHODS 

3.2.1 Study area 

This study area for this chapter is the whole of Cambodia. See Chapter 1 section 1.2 for a detailed 

background to the country, and Chapter 1 section 1.2.1 for detailed biophysical characteristics of the 

country. There are 24 provinces in Cambodia, each of which is made up of several further 

administrative layers (Figure 3.1). Districts are the administrative level below province, and each 

district is comprised of multiple communes, with each commune containing multiple villages. The 

number of communes is not static, with changes in the number of communes between years reflecting 

shifting administrative boundaries. Between 2007 and 2012 the number of communes ranged from 

1,317 (2007) to 1,512 (2012).  

3.2.2 Data sources 

Socioeconomic variables were extracted from the Cambodian Commune Database for the years 2007 

– 2012 (Table 3.1) which are available from Open Development Cambodia 

(www.opendevelopmentcambodia.net). Data on economic land concessions, protected areas, and 

elevation (digital elevation model), and shapefiles for the country, provinces, and communes were 

provided by the Royal Government of Cambodia (via the Wildlife Conservation Society). Forest 

cover layers were taken from the publicly available European Space Agency Climate Change 

Initiative (ESACCI) satellite data. 

3.2.3 Variable selection 

The response variable was the proportion of forest cover (in either a Commune or a Province) and was 

calculated using the ESACCI data product (see ‘data processing’ below). Socioeconomic and control 

variables were selected based on a combination of previous studies, data availability, and the authors’ 

knowledge of Cambodia. Socioeconomic variables were selected to create 8 variable sets reflecting 

different aspects of socioeconomic status and development, each of which was hypothesised to be 

either a driver or predictor of forest cover (Table S3.1, Dasgupta et al. 2005; Mena et al. 2006; 

Rowcroft 2008; Luck et al. 2009; Ty et al. 2012; Kristensen et al. 2016; Bonilla-Bedoya et al. 2018). 

The variable sets were population demographics (n=8), education (n=4), employment (n=5), 

economic security (n=2), access to services (n=4), crime and legal disputes (n=2), migration (n=2), 

and control variables (n=6). Control variables were included to account for the effects of 

environmental and other human factors including presence of economic land concessions (Abdullah 

and Nakagoshi, 2007; Davis et al., 2015; X. Xu et al., 2019), presence of protected areas (Bonilla-

Bedoya et al., 2018), elevation (Ty et al., 2012), and distance to human infrastructure (Ty et al., 

2012). A habitat control variable was excluded because the response variable (proportion of forest 

cover) was extracted from a land cover layer and represented a specific type of habitat, resulting in 

non-independence between the response and habitat.  

http://www.opendevelopmentcambodia.net/
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3.2.4 Data processing 

The proportion of forest cover response variable was extracted from the ESACCI product by totalling 

the number of pixels (1 Pixel = 0.09km2) in each year and in each commune and province classified as 

bands 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, and 100 (Table S3.2). The number of pixels were 

converted into km2, and this was divided by the total area (km2) of the unit (commune, province). 

Forest cover data processing was done in QGIS (QGIS Geographic Information System v3.16). 

Predictor variables were checked for collinearity, and if two variables in the same set had a correlation 

coefficient of >0.6 then generally one was removed (Supporting Information).  

Data from the Commune Database were at the resolution of individual village, and so the selected 

variables (Table 3.1) were aggregated (averaged using either mean or median, or summed) to the 

commune and province level after error checking and cleaning (see Supporting Information for details 

on aggregation and error checking). This resulted in between 1,317 and 1,512 communes, and 23 

Provinces (excluding Phnom Penh). The number of communes changed between years due to 

administrative changes. Some variables were converted from raw values to proportional data to 

account for large differences in commune and province size and human population (Table 3.1). Data 

were checked for errors in R (Supporting Information, R Core Team, version 4.0).  

3.2.5 Modelling  

This analysis aimed to model the relationships between forest cover and socioeconomic variables 

within communes between 2007 – 2012. The results of initial commune-level modelling prompted 

further aggregation of the data to the province-level and models were built to investigate the 

relationships between forest cover and socioeconomic variables within provinces for the same time 

period.  
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Figure 3.1. A map of Cambodia with the 24 provinces coloured and numbered, with the smaller 
communes shown with black lines within each province. The provinces are 1 – Ratanak Kiri, 2 – 
Stung Treng, 3 – Otdar Meanchey, 4 – Preah Vihear, 5 – Banteay Meanchey, 6 – Siem Reap, 7 – 
Kampong Thom, 8 – Mondul Kiri, 9 – Kracheh, 10 – Kampong Chhnang, 11 – Pursat, 12 -  Kampong 
Speu, 13 – Prey Veng, 14 – Svay Rieng, 15 – Takeo, 16 – Kampot, 17 – Koh Kong, 18 – Kep, 19 – 
Preah Sihanouk, 20 – Battambang, 21 – Pailin, 22 – Kampong Cham, 23 – Kandal, 24 – Phnom Penh 
(capital city).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5.1 Commune-level models 

Generalised linear mixed models (GLMM) with beta errors were built with commune nested within 

province as random intercept terms to account for repeat measurements and the hierarchical data 

structure, and year as a random slope term to account for temporal autocorrelation (Zuur et al., 2009). 

The natural logarithm of commune area (km2) was used as an offset term in all models to account for 

large variation in commune size. A beta error distribution was used due to the response being a 

proportion (i.e., continuous and bounded by 0 and 1, Ferrari and Cribari-Neto, 2004), and the models 

were parameterised for zero-inflation using the ‘glmmTMB’ package in R (Brooks et al., 2017). Due 

to the large number of available predictor variables, maximal within-set models were run first for each 

of the 8 variable sets (Table S3.5), and variables with no effect were dropped. Simplified models were 

compared with maximal models using likelihood ratio tests and analysis of variance tests. If a variable 
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set had only one variable, this was automatically taken forward. Because assessment of term 

significance in GLMMs is complex, predictions and plots were made for all terms before being 

dropped to ensure noteworthy effects were not being missed. This process resulted in a final set of 13 

variables which were used to create a candidate set of 10 models (Table S3.6). Prior to running the 10 

pre-defined models, a global model containing all 13 predictor variables was run, and diagnostics 

assessed to ensure acceptable model fit (tests were conducted for overdispersion, residuals versus 

fitted, and quantile-quantile of random effects, Supporting Information, Harrison et al (2018)). 

Following an information theoretic approach (Burnham and Anderson, 2007) models were compared 

via AIC to select the top model or models. ).  Marginal (fixed effects only) and conditional (fixed and 

random effects) pseudo-R2 values were calculated based on Nakagawa & Schielzeth (2017) using the 

R package ‘MuMIn’ (Bartoń, 2020). To investigate the variation in effects between provinces, 

predictions were made for each variable within each commune and the 50% quantile from all 

commune-level predictions within each province was extracted as the provincial median prediction. 

Confidence intervals for all prediction plots were calculated as 2 × SE (Zuur et al., 2009). 

3.2.5.2 Province-level models 

The same GLMM model formulation was used for the province-level models except that commune 

was removed from the random effects structure. Based on provincial-level histograms of predictor 

variables, which revealed two distinct ‘peaks’ in 14 of the variables, these predictors were converted 

to categorical variables by splitting the data by the mean, resulting in “high” and “low” values (Table 

3.1). Following an information theoretic approach, a candidate set of models was created (Table S3.7) 

and model comparison was done using AIC. Confidence intervals for all prediction plots were 

calculated as 2 × SE (Zuur et al., 2009). 

3.2.6 Cluster analysis 

Agglomerative clustering was conducted to create a typology for provinces based on the 

socioeconomic variables in Table 3.1 (excluding control variables). Several agglomerative clustering 

approaches were assessed. These were single linkage, complete linkage, unweighted pair-group using 

arithmetic averages (UPGMA), unweighted pair-group using centroids (UPGMC), Ward’s minimum 

variance, and flexible clustering. The methods were compared using cophenetic correlation and 

Gower distance metrics, and the appropriate number of clusters (k) was selected using the matrix 

correlation statistics (Borcard et al., 2018). The capital city of Phnom Penh, which is technically a 

province in itself, was removed prior to clustering because it has extreme values for many of the 

variables and is thus an outlier that affects the clustering.  
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Table 3.1. Variables selected for the socioeconomic models and the transformations done for the modelling. Variables with a * indicate they were 
included in the cluster analysis. Variables range from 2007 – 2012. 

Set Variable Transformation for analysis Province-level class Details 

Demographics Total population*  NA Includes women, men, and children of all ages 

 Population density*    

 Number indigenous*  Proportion of total population Categorical Total number of people who are indigenous/ethnic 

minority (non-Khmer, as defined by the RGC) 

Education Males aged 6 – 24 in school* Proportion of total number of 

males aged 6 - 24 

 Number of males aged 6 - 24 in full time 

education 

Employment Number of adults employed in 

primary sector* 

Proportion of total adult 

population 

Categorical The primary sector includes agriculture (rice and 

other crop farming), fishing, livestock farming, 

forestry, and non-timber forest product collection 

(Kenessey 1987) 

 Number of adults employed in 

secondary sector* 

Proportion of total adult 

population 

Categorical The secondary sector includes wood-based 

production (e.g. furniture), metal- and glass-based 

production, foodstuff production, plastic- and 

rubber-based production, textiles production 

(Kenessey 1987) 

Economic security Number of families with <1ha 

rice land (including no rice 

land)* 

Proportion of total number of 

families 

Categorical  

 Number of families who keep 

pigs* 

Proportion of total number of 

families 

Categorical  

Access to services Distance to nearest school*  Categorical Median distance from any village in the commune 

to the nearest school (primary or secondary) 

 Number of families with 

access to waste collection* 

Proportion of total number of 

families 
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 Distance to the Commune 

Office* 

  Median distance from any village in the commune 

to the Commune Office (government 

administration office) 

Crime and legal 

disputes  

Number of criminal cases* Criminal cases per capita Categorical Includes murder, theft, and other criminal cases 

     

 Number of land conflict 

cases* 

 Categorical In the previous 12 months 

Migration Number of in-migrants*  Categorical Migration into the commune 

 Number of out-migrants*  Categorical Migration out of the commune 

Control Mean elevation (masl)  Categorical Mean elevation for the commune 

 Distance to international 

border (km) 

 Categorical Distance from the centre of the commune to the 

nearest international border 

 Distance to Provincial Capital 

(km) 

 Categorical Distance from the centre of the commune to the 

centre of the provincial capital (town or city) 

 Presence of economic land 

concessions 

  Binary. 1 = part or all of an economic land 

concession falls within the boundary of the 

commune, 0 = no economic land concession falls 

within the commune boundary 

 Presence of protected area   Binary. 1 = part or all of an protected area falls 

within the boundary of the commune, 0 = no 

protected area falls within the commune boundary. 

"Protected area" includes Wildlife Sanctuary, 

National Park, Protected Landscapes, Multiple-use 

areas, RAMSAR sites 

 Protected area category   None = no protected area falls within commune, 

MULTI = more than one category of protected 

area falls within commune, WS = wildlife 
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sanctuary, NP = national park, PL = protected 

landscape, MUA = multiple-use area, RMS = 

RAMSAR 
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3.3 RESULTS  

3.3.1 Socioeconomic predictors of forest cover at the Commune level 

Initial within-set model selection resulted in a final candidate set with 10 models and 14 unique 

variables (Table S3.6). All models except model 8 and model 10 had some support (delta AIC < 4), 

and so models 1 to 7 and model 9, were model averaged to obtain full averaged coefficients. The 

socioeconomic variables that were retained in the final averaged model set were population density, 

the proportion of males (aged 6 to 24 years old) in school, the proportion of families with pigs, the 

median distance to the nearest school, the proportion of families with access to waste collection, the 

number of criminal cases per capita, the proportion of adults employed in the primary sector, and the 

number of out-migrants (Table S3.6). The random effects term with the highest variance was province 

(the range across all averaged models was 2.14 – 2.15 [SD range = 1.46 – 1.47]) followed by 

commune (the range across all averaged models was 1.92 – 1.93 [SD range = 1.388 – 1.389], Table 

3.2). The variance explained by year at both the commune and province level was low (the ranges 

across all averaged models were 0.001 – 0.002 [SD range = 0.038 – 0.039] for province, and 0.009 – 

0.01 [SD range = 0.09 – 0.1] for commune).     

The largest positive effect was from mean elevation (rate ratio = 1.63, Table 3.2) which relates to a 

predicted forest cover proportion of 0.02 within an average commune (i.e., all other fixed and random 

effects set to their mean) when mean elevation is at the minimum within the country. When the mean 

elevation is at the maximum found within the country (and all other terms are set to their mean), the 

proportion of forest cover is predicted to be 0.4. This highlights that higher elevation areas of 

Cambodia are much more likely to be forested than lower elevation areas. The strongest negative 

effect was from population density (rate ratio = 0.97, Table 3.2) which relates to a predicted 

proportion of forest cover of 0.030 at the minimum value of population density found within the 

country, contrasting with a predicted proportion of forest cover of 0.028 at the highest value of 

population density within the country. In addition to population density, the proportion of adults 

employed in the primary sector, the proportion of families with access to waste collection, and the 

presence of ELCs in a commune all had negative effects on the proportion of forest cover in a 

commune. All the remaining socioeconomic and control variables had a positive effect on the 

proportion of forest cover (Table 3.2). All other model terms, excluding the presence of ELCs, had 

positive effects on forest cover (Table 3.2). These effects suggest that remote communes (large 

distances to provincial capitals) that are centrally located within the country (far away from 

international borders), and those that have PAs and higher levels of out-migration are predicted to 

have high forest cover.  

The results from the final commune-level model must, however, be viewed with caution because 

model validation revealed some serious underlying issues. As is suggested by the variance associated 
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with the commune-level random effect term, there was large variation between communes for all 

variables (predictors and response, Figure 3.2). This between-group variance results in the model 

being unsuitable for generalised (i.e., ‘global’) predictions (Figure 3.2). Intercept and slope estimates 

between communes, even within the same province, varied hugely (Figure 3.3), and this issue was 

highlighted in diagnostic plots where we see that the assumption of normality of deviations of the 

conditional means of the random effects (for commune) from the global intercept is violated (Figure 

S3.3). Furthermore, the model residuals displayed heteroskedasticity, with the model predicting 

particularly poorly for lower values of the response (Figure S3.4). Therefore, drawing general 

inferences about the relationships between forest cover and socioeconomics at the country level using 

this model is inappropriate.  

3.3.2 Socioeconomic predictors of forest cover at the Province level 

The province-level models were run to eliminate the commune-level variation and to identify any 

broader relationships between forest cover and socioeconomics. A candidate set of 19 models was 

built and an evaluation of AIC showed that two models had sufficient support (delta AIC <4, model 3 

and model 8 Table S3.7). The random effects term with the highest variance was Province (the range 

across models was 3.03 – 3.05 [SD range = 1.741 – 1.747]), followed by year (0.0075 [SD = 0.09]). 

Presence of ELCs and presence of PAs had the largest two positive effects relative to their refences 

levels (no ELCs, no PAs), suggesting that provinces that have those two features are predicted to also 

have a higher proportion of forest cover (Table 3.2, rate ratios = 7.35 and 19.49 respectively). 

Provinces with lower proportions of males aged 6 to 24 in school and lower proportions of adults 

employed in the primary sector are predicted to have a higher proportion of forest cover than those 

with lower proportions of the same variables (Table 3.2). Provinces with higher median distances to 

the nearest school, higher mean elevation, and higher median distances to the provincial capital are 

predicted to have a higher proportion of forest cover than provinces where the opposite is true (Table 

3.2). Three socioeconomic variables were retained in the final models, but the effects were weak. For 

example, the difference in the prediction proportion of forest cover between a province with a low 

proportion of males in school and a province with a high proportion (with all other variables set to 

“low”), is 0.014. The difference in the predicted proportion of forest cover between a province with 

low median distances to schools and a province with high median distances is 0.01. 

Presence of PAs had the largest effect on predicted proportion of forest cover. The proportion  of 

forest cover predicted for a province with PA presence is 0.5 higher than for a province with no PA 

presence. This emphasises the relationship between forested land and protected areas in Cambodia. 

The size of the effects for the three socioeconomic predictors (proportion of males in school, the 

proportion of adults in the primary sector, and distance to school) in the top models suggest that these 

variables have little power to predict forest cover at the provincial level in Cambodia, but that the 

presence of protected areas and economic land concessions do.  
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Table 3.2. Model outputs and odds ratios from the averaged models from the commune-level 
analysis and the province-level analysis. Reported coefficients are on the link (log) scale. Reported 
variance is the mean across the individual models that were included in model averaging.  

Variable Variance Std.Dev Coefficient SE 

Odds 

ratioa 

Commune-level final model 
    

 

Random effects 
    

 

Commune (intercept) 1.93 1.39 - -  

Year/Commune (slope) 0.01 1.39 - -  

Province (intercept) 2.14 1.46 - -  

Year/Province (slope) 0.002 0.04 - -  

Fixed effects 
    

 

Intercept - - -6.49 0.37  

Population density - - -0.03 0.21 0.971 

Proportion primary sector - - -0.003 0.01 0.99 

Number of out-migrants - - 0.0008 0.002 1.001 

Proportion with access to waste 

collection 

- - -0.002 0.005 0.99 

Proportion males in school - - 4.9 × 10-5 0.001 1 

Proportion families with pigs - - 1.0 ×10-5 0.001 1 

Criminal cases per capita - - 5.3 × 10-5 0.0004 1 

Median distance to nearest school (km) - - 1.4 × 10-4 0.001 1 

Mean elevation - - 0.49 0.05 1.63 

Distance to In'tl border - - 0.43 0.1 1.54 

Distance to Provincial capital - - 0.22 0.05 1.25 

ELC presence - - -0.01 0.007 0.99 

PA presence  -  - 0.02 0.02 1.02 

Province-level final model 
    

 

Random effects 
    

 

Province (intercept) 3.04 1.74 - -  

Year/Province (slope) 0.008 009 - -  

Fixed effects 
  

- -  

Intercept - - -13.4 0.74  

Males in school (low) - - 0.06 0.03 1.06 

Distance to school (low) - - -0.04 0.03 0.97 

Proportion primary sector - - 0.005 0.02 1.01 

Mean elevation (low) - - -0.07 0.02 0.93 

Distance to border (low) - - 0.01 0.02 1.01 

Distance to Prov capital (low) - - -0.07 0.02 0.94 

Presence of economic concessions (1) - - 1.99 0.64 7.35 

Presence of PAs (1) - - 2.97 0.76 19.5 

a Odds ratio = exp(coefficient)  

 

 

 

 



92 
 

P
re

d
ic

te
d
 p

ro
p
o

rt
io

n
 o

f 
fo

re
s
t 
c
o

v
e
r 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Predicted relationships (red lines, blue bars) between socioeconomic variables and the 
proportion of forest cover in Cambodia between 2007 – 2012 from the top averaged, zero-inflated, 
commune-level model. Predictions are ‘global’ i.e., all random effects were set to their mean 
values, and thus predictions are not for any specific commune. Black points are the raw data 
points. a = population density, b = proportion of males in school, c = proportion of adults 
employed in the primary sector, d = proportion of families with pigs, e = median distance to the 
nearest school, f = proportion of families with access to waste collection, g = number of criminal 
cases per capita, h = number of out-migrants, i = mean elevation (masl), j = distance to 
international border (KM), k = distance to provincial capital (KM), l = presence of economic land 
concessions, m = presence of protected areas.  All predictor variables, excluding presence of ELCs 
and PAs were centred and scaled.  
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Figure 3.3. Predicted 

relationships between 

population density and 

the proportion of forest 

cover within Cambodian 

provinces between 2007 – 

2012 using the top 

averaged commune-level 

model. Faded grey lines 

are the predictions for 

each individual commune 

within each province. 

Black lines are the mean 

provincial predictions, 

which were computed 

using the 50% quantile 

from all commune 

predictions. Plot panels 

have non-standard y axis 

ranges. 
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Figure 3.4. Predicted proportion of forest cover within each Cambodian province given high and 

low levels of school attendance (males aged 6 – 24 in school) from the top averaged province-level 

model. All other variables in the model were set to their reference level (distance to school = low, 

proportion of adults in the primary sector = low, elevation = low, distance to international border 

= low, distance to provincial capital = low, economic land concession = yes, protected area = yes). 

Error bars are equal to 2 × standard error. 
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Figure 3.5. Predicted proportion of forest cover within each Cambodian province given high and 

low distances to the nearest school from the top averaged province-level model. All other 

variables in the model were set to their reference level (school attendance = low, proportion of 

adults in the primary sector = low, elevation = low, distance to international border = low, distance 

to provincial capital = low, economic land concession = yes, protected area = yes). Error bars are 

present, but very small (error bars are equal to 2 × standard error). 
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Figure 3.6. Predicted proportion of forest cover within each Cambodian province given high and 

low proportions of adults employed in the primary sector from the top averaged province-level 

model. All other variables in the model were set to their reference level (school attendance = low, 

distance to the nearest school = low, elevation = low, distance to international border = low, 

distance to provincial capital = low, economic land concession = yes, protected area = yes). Error 

bars are present, but very small (error bars are equal to 2 × standard error). 

 

3.3.3 Cluster analysis 

The UPGMA clustering had the highest cophenetic correlation (0.79) and the lowest Gower distance 

(254.14) and was therefore selected. The matrix correlation statistic suggested that 4 clusters were 

optimal, but that between 3 and 7 clusters had very similar support. When divided by 4 clusters, there 

was a large group (n = 16) of provinces that fell into a single cluster, and so I chose 5 clusters to add 

further nuance (Figure S3.5). The provinces within clusters were geographically contiguous (Figure 
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3.7), although clusters that had smaller cophenetic distances (i.e., were closer on the dendrogram, 

Figure S3.5) were not necessarily geographically contiguous. The largest cluster (cluster 5) dominated 

a central strip of the country, separating the smaller, and more similar clusters (Figure 3.7). These 

results suggest that provinces often have similar socioeconomic conditions to that of their neighbours, 

but that there are also distinct regions within the country that can be characterised by their 

socioeconomics rather than their geography. A heatmap of the socioeconomic variable values for each 

cluster revealed some distinguishing patterns (Figure 3.8). The largest cluster (cluster 5) was 

categorised by high or very high values of all variables, which translates to provinces with high 

population density, high education levels, high proportions of primary and secondary sector workers, 

and high migration (Table 3.3). This contrasts with cluster 2, which has predominantly low values for 

the socioeconomic variables which translates to provinces with low population density, low levels of 

education, low levels of primary sector employment (higher secondary sector employment), and low 

levels of migration (Table 3.3). Clusters 3 and 4 had the highest levels of migration (and interestingly 

the highest levels of land conflict), education, and population density, reflecting the presence of two 

of the three largest cities and significant urban development. Cluster 1 had the lowest population 

density, education, proportion of secondary sector workers, and migration, reflecting the clusters 

remote geography and rural character. Provinces within cluster 1 were also the most forested but had 

also lost the most forest during the study period (Figure 3.9). Provinces within cluster 5 were 

generally the next most forested after cluster 1 and had also lost large areas of forest during the study 

period (Figure 3.9). Cluster 3 had the least amount of forest, which was expected due to high levels of 

urbanisation and agriculture. Clusters 1 and 2 had the highest elevation, and clusters 1 and 5 had the 

highest mean distance to a provincial capital (Figure 3.9).  
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Figure 3.7. Map of Cambodia showing the clusters resulting from the unweighted pair-group using arithmetic 
averages (UPGMA) method. Province s are labelled. The upper white polygon is the Tonle Sap lake, and the lower 
white polygon is the city of Phnom Penh, both of which were excluded from the analysis. 
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Figure 3.8. Heatmap showing variable value categories for each cluster resulting from the 

unweighted pair-group using arithmetic averages (UPGMA) method. Variables were categorised as 

“v.low” if the mean (across provinces within that cluster) was below the 25% quantile for that 

variable across the whole country, “low” if the mean was above 25 and below 50%, “high” if the 

mean was above 50% but below 75%, and “v.high” if the mean was above the 75% quantile. 

Pax_migt_out = numbers of out-migrants, Pax_migt_in = numbers of in-migrants, land_confl = 

number of land conflicts, crim_case = criminal cases per capita, KM_Comm = distance to commune 

office, garbage = proportion of families with access to waste collection, dist_school = distance to 

nearest school, pig_fam = proportion of families who keep pigs, Les1_R_Land = proportion of 

families with no rice land, propSecSec = proportion of adults employed in the secondary sector, 

propPrimSec = proportion of adults employed in the primary sector, M6_24_sch = proportion of 

males aged 6-24 in education, prop_ind = proportion of the population that is indigenous, 

pop_den = population density.  
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Figure 3.9. Boxplots showing the distribution of environmental variables for each cluster: a = mean forest area 
(km2), b = mean province area (km2), c = change in forest cover between 2007-2012 (km2), d = mean elevation 
(masl), e = mean distance to international border (Km), f = mean distance to a provincial capital (Km). Boxplots 
show the median (centre line within boxes), 25 and 75% percentiles (box edges), and minimum and maximum 
values (upper and lower whiskers, not exceeding 1.5 × interquartile range). 5 UPGMA clusters. 
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Table 3.3. Descriptive typology of the provinces and clusters within Cambodia, clustered using socioeconomic variables and the unweighted pair group 
using arithmetic mean (UPGMA) 

UPGMA 

cluster 

Provinces Description 

1 Mondulkiri, Ratanikiri Very large provinces with very high elevations. Very low population density, and very high proportion of 

indigenous people. Very low education levels, very high proportion of primary sector workers and very low 

proportion of secondary sector workers. Economic security provided by rural livelihoods - few people have no 

farmland and livestock ownership is common. Very low access to services, high crime per capita, low land 

conflict, and very low migration levels. 

2 Pailin Very small province with very high elevations. Low population density and low proportion of indigenous 

people. Low levels of education, low proportion of people in the primary sector but higher proportion of people 

in the secondary sector. Very few people with no farmland, but very little livestock ownership. High access to 

services and high crime per capita. Low land conflict and low migration. 

3 Kampong Cham, Kandal, Prey Veng, 

Takeo 

Small provinces with very low elevations. Very high population density and high proportion of indigenous 

people. Very high levels of education, high proportion of people in the primary sector, but very high proportion 

of people in the secondary sector. High proportion of people with no farmland, but high levels of livestock 

ownership. High access to services and low crime per capita. But very high migration levels and very high rates 

of land conflict. 

4 Banteay Meanchey, Battambang Large provinces with low elevations. Very high population density and very low proportion of indigenous 

people. Very high levels of education, and relatively low proportion of workers in the primary and secondary 

sectors (suggesting higher proportions in the other sectors e.g., tertiary). High proportion of people with no 

farmland, and low levels of livestock ownership (suggesting very urban).  Low access to services, but this may 

be explained by the mean size of the provinces in this cluster (there is high access to garbage collection). Low 

crime per capita, but very high migration and very high rates of land conflict 

5 Kampong Chhnang, Kampong Speu, 

Kampong Thom, Kampot, Kep, Koh 

Kong, Kracheh, Otdar Meanchey, 

Preah Sihanouk, Preah Vihear, Pursat, 

Siem Reap, Stung Treng, Svay Rieng 

Large provinces with high elevations. High population density and very high proportion of indigenous people. 

High levels of education, and a high proportion of workers in both primary and secondary sectors. Very high 

proportion of people with no farmland, but also very high proportion of people with livestock. Low access to 

services (although very high access to garbage collection) - this may be an artefact of the very large mean area 

of the provinces in this cluster. Very high crime rates, very high migration, and very high rates of land conflict. 
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3.4 DISCUSSION 

Understanding the drivers and proximate causes of deforestation is critical for the development 

of sustainable environmental policies and forest conservation initiatives. In this study, I have 

modelled the relationships between variables describing socioeconomic development and forest 

cover at multiple scales and have investigated these relationships using two different 

approaches. This study has revealed some important relationships from which we can make 

inferences regarding the socioeconomic, geographical, and biophysical predictors of forest 

cover across Cambodia. Furthermore, I have revealed key methodological issues, particularly 

around scale and model variance, that are likely to be common in analyses such as this, which 

focus on large spatial scales and fine resolutions, but which often remain unexplored or 

unreported in the literature. Studies investigating the socioeconomic drivers of deforestation 

need to target multiple scales to build a cohesive picture of the social-ecological systems within 

which deforestation occurs, so that policy development targets the appropriate drivers at each 

scale (e.g., at different administrative levels).  

3.4.1 The effect of scale on predicting forest cover 

This analysis highlights the importance of scale when modelling complex social-ecological 

systems; researchers must not only select the scale of the analysis carefully but must also be 

aware of underlying variation which may be affecting estimates, requiring cautious 

interpretation of results. The results from the GLMMs have highlighted the effect of scale on 

predictors of forest cover. The direction of the effect of distance to an international border 

changes depending on whether you are looking at the commune-level or the province-level; it 

was positive within communes and negative within provinces. This reversal of effect direction 

between scales also occurs for the proportion of males in school (positive within communes and 

negative within provinces), and the presence of ELCs (negative within communes and positive 

within provinces). Taken together, the two models can add important nuance to the 

interpretation of results. Provinces that are close to international borders have higher forest 

cover, but within those provinces, the communes that are furthest away from the border are 

predicted to have the highest forest cover. Provinces furthest away from the major the urban 

centres of Phnom Penh, Siem Reap, and Battambang tend to be the large, rural provinces that 

have an international border (e.g., Mondul Kiri, Ratanak Kiri, Stung Treng, Koh Kong) and 

have high forest cover. Increases in human population density over time, including from in-

migration, often result in agricultural expansion, exploitation of forest resources (e.g., timber), 

and increased urbanisation, all of which could be reducing forest cover. International borders 

promote the movement of people, commodities, economic activity, and all the associated 

infrastructure that is required to maintain such activity. When combined with illegal cross-



103 
 

border activities such as logging, land clearance, and the wildlife trade (see Evans et al. 2013), 

it is plausible that communes closer to the international borders are more likely to have reduced 

forest cover (Grogan et al., 2015). The reversal of effect direction for the presence of ELCs at 

different scales is also plausible. The placement of ELCs in remote, highly forested provinces 

has been common, and there has been much speculation surrounding the drivers of this strategy, 

with some arguing that the clearance of forest and subsequent timber sales from new ELCs is 

the primary source of income for concession companies (Davis et al., 2015; Vrieze and Kuch, 

2012). This will, however, drive a loss of forest cover at a finer scale (i.e., the commune), 

resulting in a negative effect of ELC presence on forest cover.  

3.4.2 Socioeconomic typography of provinces in Cambodia 

The cluster analysis revealed an interesting pattern of distinct socioeconomic regions across 

Cambodia, suggesting that in many cases provinces that are adjacent to each other tend to have 

similar socioeconomic characteristics, resulting in clusters that are comprised of spatially 

contiguous provinces. The two cluster that generally display the largest differences are clusters 

1 and 3. Cluster 1 contains the provinces of Mondul Kiri and Rattanak Kiri which are large, 

remote, and some of the least developed provinces in the country. They are home to the Eastern 

Plains Landscape which is one of the most important areas in SEA for biodiversity (Chapter 4; 

Gray et al., 2012; Nuttall et al., 2017, 2021). Mondul Kiri and Rattanak Kiri (cluster 1) have the 

highest forest cover, low population density, low access to services, and low migration. 

Economic development in the first two decades after the civil war was focused almost entirely 

on the major cities: Phnom Penh (cluster 3), Sihanoukville (cluster 5), and Battambang (cluster 

4), with rural provinces remaining underdeveloped, inaccessible, and poor (Hughes and Un, 

2011). The lack of infrastructure and access, coupled with low population density and few 

employment opportunities that limited in-migration, have all likely contributed to forest cover 

remaining high (Evans et al., 2013).  

Conversely, Kampong Cham, Kandal, Prey Veng, Takeo (cluster 3) have the lowest levels of 

forest cover and the cluster contains the capital city of Phnom Penh and the surrounding 

provinces which are the hubs for industry and economic activity (such as the garment sector). 

Cluster 5, which contains the provinces of Kampong Chhnang, Kampong Speu, Kampong 

Thom, Kampot, Kep, Koh Kong, Kracheh, Otdar Meanchey, Preah Sihanouk, Preah Vihear, 

Pursat, Siem Reap, Stung Treng, Svay Rieng, is interesting because it contains the largest 

number of provinces. The expectation was that the provinces that most closely resembled 

cluster 1 (i.e., large, rural provinces with high forest cover) such as Stung Treng, Preah Vihear, 

and Koh Kong, would have been clustered either with cluster 1, or within a separate cluster. 

However, they were clustered with the central belt of provinces (e.g., Kampong Speu, Kampong 

Chhnang, Kampong Thom) which are almost exclusively low elevation agricultural provinces 
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that are geared towards rice production. The inclusion of Stung Treng, Preah Vihear, and Koh 

Kong within this cluster and the resulting cluster typologies, suggest that there has been some 

success in increasing the socioeconomic status of rural, highly forested provinces without 

excessive loss of forest cover. 

3.4.3 Methodological approach 

3.4.3.1 Mixed models 

The commune-level model revealed despite 8 non-control variables being selected in the final 

model set, the effects were very weak. I was limited in the socioeconomic variables that were 

available, and it is possible that the variables selected were simply poor predictors of forest 

cover. However, the modelling process revealed very large between-commune variation in both 

predictor and response variables, in addition to many random effect levels (between 1,317 and 

1,512). Model predictions from the final averaged model, and from preliminary models, showed 

that the parameter estimates (intercepts and slopes) for a given socioeconomic variable (see 

Figure 3.3 for an example from population density) varied widely from commune to commune, 

even within the same province. Therefore, it is possible that the difficulty in estimating a single 

parameter from the surrounding “noise” resulted in the detection of weak, or no effects, rather 

than a genuine lack of effects. The province-level model was built to counter the issue of 

excessive between-commune variance by approaching the analysis from a different scale. Three 

socioeconomic variables remained in the final province-level model set but again, the effects 

were relatively weak. It is still possible that the weak effects represented a genuine lack of 

correlation between socioeconomics and forest cover, however, modelling the effects at a larger 

scale will simply mask the large variation that exists at the finer scale, rather than eliminating it. 

An advantage of GLMMs is the ability to quantify between-group variance, which not only 

offers crucial insight about the differences between groups (e.g., countries) from which 

inference can be drawn (Zuur et al., 2009), but can also highlight potential problems with 

‘global’ predictions (i.e., predictions that are made with all random effect terms set at their 

mean). Yet very few studies that use these models for LUC report any values for variance 

associated with the random (group-level) effects. For example, Bhattari and Hammig (2004) use 

data from 63 countries to produce a single effect for GDP per capita on deforestation, yet do not 

report any value for country-level variance. The effect size is relatively small, and therefore if 

there was large between-country variance then the country-level effects could be vastly 

different, rendering the single global effect misleading. 

The inherent complexity within social-ecological systems results in significant challenges when 

researchers attempt to model them (Basse et al., 2014). Taking this study as an example, a 

researcher has a choice between modelling at a large scale (e.g., national, regional) where 
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effects may be weak or unrepresentative of much of the country or region, or modelling at a fine 

scale where effects may be swamped by variation resulting in the loss of the true signal. By 

reframing analytical goals and aiming for description of the data, for example using cluster 

analyses, over statistical hypothesis testing and attempts at explanation, researchers can reduce 

the need for increasingly complex data and models.  

3.4.3.2 Cluster analysis  

The purpose of the cluster analysis was to explore an approach that was different to the 

traditional statistical modelling I had done using GLMMs, and to remove the above issues of 

variance. I was interested to see what patterns would emerge when the underlying goal of 

statistical hypothesis testing (i.e., the effect of the predictor x on response y is significantly 

different from 0) was removed. The cluster analysis revealed patterns beyond those produced 

using the GLMMs and was therefore a worthwhile addition to the study. The advantage of 

clustering techniques such as UPGMA is that although there are metrics that can suggest 

optimal numbers of clusters, the researcher can select the number of clusters that is most useful 

for their particular investigation (Borcard et al., 2018). Unlike statistical models, cluster 

analysis does not produce estimates of effect sizes, nor can predictions be made. Nevertheless, 

by altering the number of clusters, investigating different clustering approaches, followed by 

considered exploratory analysis and plotting, a comprehensive picture of the study system can 

be produced. This may be a sensible first step in a larger analysis which can increase 

understanding of the system before modelling approaches are decided upon. Furthermore, 

methods such as cluster analysis are in some cases, conceptually simpler than advanced 

statistical and mechanistic modelling, making interpretation and explanation simpler.          

3.4.4 Policy implications 

The results of this study have highlighted that the regions of Cambodia that have the highest 

forest cover also tend to be the rural, remote, poor provinces with high proportions of 

indigenous people. It is people living within these areas that will be reliant on natural resources 

and forest products for their subsistence and livelihoods. In these circumstances, the efforts of 

an individual actor to increase their socioeconomic status is likely to include agricultural 

expansion, resulting in forest loss. Therefore, to avoid forests being the price of socioeconomic 

development, national and sub-national government need to develop economic policy 

frameworks that deliver economic benefits whilst encouraging forest protection, such as 

payments for ecosystem services schemes, and support for agricultural improvement 

technologies and diversification (Eliste and Zorya, 2015). The Cambodian government, 

however, has shown enthusiasm in the past for economic development via private land leases 

for industrial-scale commercial agriculture (Chapter 2), many of which have been awarded in 

rural, remote, forested land. These economic land concessions (ELCs) have frequently been 
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placed on traditional lands of indigenous people, on the lands of the rural poor who had yet to 

be awarded legal land titles, and in areas of high forest cover, including protected areas 

(Beauchamp et al., 2018; Davis et al., 2015; Magliocca et al., 2019; Neef et al., 2013; 

Oldenburg and Neef, 2014; Vrieze and Kuch, 2012). Remote provinces with a low density of 

relatively poor inhabitants, low levels of land tenure security, and plentiful forests, are 

particularly vulnerable to the allocation of new ELCs, particularly if the economic policies of 

the last decade are pursued. Despite legal requirements to the contrary, ELCs often contribute 

very little to local economies, and are sources of land conflict, illegal settlement, and extensive, 

unregulated, and often illegal deforestation (Beauchamp et al., 2018; Davis et al., 2015; Global 

Witness, 2013; Milne and Mahanty, 2015; Neef et al., 2013; Oldenburg and Neef, 2014; Vrieze 

and Kuch, 2012; Watson et al., 2014). There has been a reduction in new ELC allocations in 

recent years (www.opendevelopmentcambodia.net), which may suggest that new avenues for 

economic development and growth in the agriculture sector are being developed. 

Since the end of civil conflict in the early 1990s, there has been significant migration and 

resettlement into rural provinces as people move back into traditional homelands or move in 

search of new land to settle (Milne and Mahanty, 2015). This post-war migration has come at a 

cost to forest cover, as families look to establish and expand their agricultural land (Hought et 

al., 2012; Kong et al., 2019). The rural provinces with high forest cover are still vulnerable to 

in-migration and land speculation, as access to the provinces has improved significantly over 

the last decade and poor, landless families seek to establish themselves in frontier areas (Evans 

et al., 2013). This, and other studies, have demonstrated that increases in human population 

density can predict forest loss (Dasgupta et al., 2005; Krishnadas et al., 2018). In the context of 

poor environmental governance and weak institutions, as in Cambodia (Milne and Mahanty, 

2015; Riggs et al., 2018), rural in-migration could continue to drive forest loss. Government 

policies for rural settlement and land titling need to pre-empt increased migration into rural 

areas, particularly those with protected areas, and ensure forest loss is minimised. The two most 

prominent settlement initiatives – social land concessions and Directive 01 – have been widely 

criticised for poor management and implementation, and both have resulted in the loss of 

forests inside protected areas (Milne 2013; Oldenburg & Neef 2014; Grimsditch & 

Schoenberger 2015, also see Appendix). 

The cluster analysis placed the provinces Preah Vihear, Stung Treng, and Koh Kong into cluster 

5, suggesting that these provinces have socioeconomic conditions similar to the wealthier, more 

developed provinces such as Siem Reap, and to provinces with extensive agriculture such as 

Kampong Chhnang. This placement was despite many similarities with the provinces in cluster 

1 (Mondul Kiri, Rattanak Kiri), including being large, rural, and with high forest cover. This 

clustering suggests that Preah Vihear, Stung Treng, and Koh Kong have made progress in 
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increasing the socioeconomic conditions of the population, without extensive forest loss 

(median forest loss within cluster 5 is less than for cluster 1). These improvements may have 

been driven by the expansion of economic sectors that do not rely on natural resource extraction 

or agricultural expansion, or indeed by the growth of nature-friendly sectors, such as 

ecotourism. These results warrant further investigation to identify whether there are specific 

policies, initiatives, economic conditions, or social movements that have improved 

socioeconomic conditions with minimal deforestation, and which could be replicated in other 

poor, forested provinces.  
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3.6. SUPPORTING INFORMATION 

Each of the eight model sets were selected because they were hypothesised to be potential drivers or 

effective predictors of forest cover (Table S3.1). The predictors within each of the sets were selected 

as proxies for the set because of their relevance, or because they were the best quality data that related 

to the set.  

 

Table S3.1. Hypothesised relationships between socioeconomic variables and the proportion of 
forest cover. 

Set Hypotheses Variable(s) 

Demographics  Communes/provinces with higher human 

populations and higher human population 

density will have lower forest cover due to 

urbanisation and agricultural expansion. 

Communes/provinces with higher indigenous 

populations will have higher forest cover 

because areas with high indigenous 

populations are more remote, and indigenous 

communities rely more on forests for 

traditional livelihoods. 

Total population 

Population density 

Proportion indigenous 

Education Communes/provinces with lower levels of 

education will have lower forest cover because 

logging and forest clearance is conducted 

predominantly by young males of school age. 

Alternative hypothesis: communes/provinces 

with higher levels of education will have lower 

forest cover because education levels are likely 

to be higher in urban areas.  

Proportion of males aged 6 – 24 

in full time education 

Employment Communes/provinces with higher proportions 

of adults in the primary sector will have higher 

forest cover because these areas are likely to be 

more remote and have more natural resources 

such as forests. Communes/provinces with 

higher proportions of adults in the secondary 

sector will have lower forest cover as the 

secondary sector will be more prominent in 

urban/developed areas.  

Proportion of adults employed 

in the primary sector 

Proportion of adults employed 

in the secondary sector 

Economic 

security 

Communes/provinces with higher proportions 

of families with poor economic security 

(farmland, livestock) will have lower forest 

cover because rural populations in areas with 

high forest cover have access to land and 

livestock, whereas poor families in 

urban/developed areas do not.  

Proportion of families with 

<1ha of rice land 

Proportion of families who 

keep pigs 

Distance to nearest school 
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Access to 

services 

Communes/provinces with large distances to 

schools are likely to be large, remote 

communes/provinces with high forest cover. 

Alternative hypothesis: areas with large 

distances to schools will lead to higher 

proportions of males out of education and 

engaging in forest clearing activities. 

Communes/provinces with higher proportions 

of families with access to waste collection will 

be in developed, urban areas and will have 

lower forest cover. Communes/provinces with 

larger distances to commune offices will be 

larger, more remote areas with higher forest 

cover. Alternative hypothesis: 

communes/provinces with larger distances to 

commune offices will have weaker governance 

and less law enforcement, resulting in lower 

forest cover. 

Proportion of families with 

access to waste collection 

Distance to the Commune 

office 

Crime and legal 

disputes 

Communes/provinces with a higher number of 

criminal cases will be more urbanised area and 

therefore will have lower forest cover. 

Communes/provinces with a higher number of 

land conflicts will be in areas of high forest 

cover where land speculation and land disputes 

are high. Alternative hypothesis: 

communes/provinces with a higher number of 

land conflicts will be in areas with a high 

number of economic land concessions where 

forest clearance has occurred, and so will have 

lower forest cover. 

Number of criminal cases 

Number of land conflicts 

Migration Communes/provinces with a high number of 

in-migrants will be urban areas with large 

industry (i.e., high job availability) and 

therefore low forest cover. Alternative 

hypothesis: communes/provinces with a high 

number of in-migrants will be areas with new 

economic land concessions which are often in 

areas of high forest cover. 

Communes/provinces with a high number of 

out-migrants will have higher forest cover 

because they are rural, remote areas with fewer 

job opportunities.  

Number of in-migrants 

Number of out-migrants 

Control All of these variables have potential to 

influence forest cover within 

communes/provinces, yet were not specific 

targets for investigation. Therefore they were 

included as control variables. 

Mean elevation  

Distance to international border 

Distance to provincial capital 

Presence of economic land 

concessions 

Presence of protected areas 

Protected area category 
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Table S3.2. European Space Agency Climate Change Initiative satellite bands. Bands highlighted in 
green were grouped to represent “forest cover” in both the macroeconomic and socioeconomic 
analyses. 

Value Label 

0 No data 

10 Cropland, rainfed 

11 Herbaceous cover 

12 Tree or shrub cover 

20 Cropland, irrigated or post-flooding 

30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%) 

40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 

50 Tree cover, broadleaved, evergreen, cosed to open (>15%) 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) 

61 Tree cover, broadleaves, decisuous, closed (>40%) 

62 Tree cover, broadleaves, deciduous, open (15 - 40%) 

70 Tree cover, needleleaved, evergreen, closed to open (>15%) 

71 Tree cover, needleleaved, evergreen, closed (>40%) 

72 Tree cover, needleleaved, evergreen, open (15 - 40%) 

80 Tree cover, needleleaved, deciduous, closed to open (>15%) 

81 Tree cover, needleleaved, deciduous, closed (>40%) 

82 Tree cover, needleleaved, deciduous, open (15 - 40%) 

90 Tree cover, mixed leaf type (broadleaved and needleleaved) 

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 

120 Shrubland 

121 Evergreen shrubland 

122 Deciduous shrubland 

130 Grassland 

140 Lichens and mosses 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 

152 Sparse shrub (<15%) 

153 Sparse herbaceous cover (<15%) 

160 Tree cover, flooded, fresh or brakish water 
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3.6.1 Socioeconomic data cleaning  

Prior to aggregation to the commune level, village data were checked for missing values. In some 

cases, villages had data for a subset of years but were missing data for other years. If the missing data 

were at the start of the study period or the end of the study period, it was assumed that the village was 

either an old or a new village. Villages can be merged with larger villages, or two sub-villages, or 

“Kroms”, can be split into two distinct villages over time for administrative purposes. In these cases, 

the rows (years) with missing data were deleted, but the years with data were retained as these 

represent villages that existed in that year. If the missing data were in the middle of the study period 

(for more than one year), or if data for that village only exists for one or several years in the middle of 

the study period, then the data were assumed to be incomplete, and the village was deleted. If the 

village had data for all years except one, then the missing values were estimated using linear 

interpolation. If the village existed in all years, but was missing data from multiple years, the village 

was deleted. If an entire commune was missing in some years, the commune was deleted. The above 

cleaning process removed 312 villages (total number of villages = 84,195), or 0.37% of the data. Data 

were then split into individual years, and the final village-level data were aggregated to the commune- 

and province level using the operations defined below in Table S5. 

After aggregation, each variable was checked for obvious errors or unlikely outliers via plotting of 

histograms and trends. Plots were done at the province level first, to identify any communes within a 

province that had particularly unusual values or trends. If unusual values or trends were identified the 

commune was investigated in more detail. Outlier values that appeared inconsistent or implausible 

were removed and replaced with a value estimated via linear interpolation (Figure S1). In some cases, 

where data had been converted from raw values to a proportion of the total population, errors in the 

raw data were discovered. This became clear when the resulting proportion was >1. In these cases, the 

proportion was changed to 1.  
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Table S3.3. Mathematical operations used to aggregate socioeconomic variables from the village 
to the commune and province level. 

Variable Operation 

Total population Sum 

Number of families Sum 

Number of males aged 18-64 Sum 

Number of females aged 18-64 Sum 

Number of people aged over 61 Sum 

Total number of indigenous people Sum 

Number of families whose main occupation is farming Sum 

Number of land conflict cases Sum 

Number of in-migrants Sum 

Number of out-migrants Sum 

Number of criminal cases Sum 

Proportion of population that is indigenous Mean 

Proportion of females aged 6-24 in full time education Mean 

Proportion of males aged 6-24 in full time education Mean 

Proportion of females aged 15-45 who are illiterate Mean 

Proportion of males aged 15-45 who are illiterate Mean 

Proportion of families whose main occupation is farming Mean 

Proportion of people who are primarily employed in the primary 

sector  

Mean 

Proportion of people who are primarily employed in the secondary 

sector 

Mean 

Proportion of people who are primarily employed in the tertiary 

sector 

Mean 

Proportion of people who are primarily employed in the quaternary 

sector 

Mean 

Proportion of families who have less than 1ha of farmland Mean 

Proportion of families who have buffalo Mean 

Proportion of families who have pigs Mean 

Proportion of families who have access to waste collection Mean 

Number of infant (<6mo) mortality cases Mean 

Number of child (<5 years old) mortality cases Mean 

Distance to the nearest school Median 

Distance to the Commune Office Median 

Distance to the nearest health centre Median 
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Figure S3.1. An example of linear interpolation for a commune with an implausible outlier. The 
example shows a value for the population of a commune in 2010 which is likely to be an error 
(solid line), and the resulting correction (dashed line). 

 

3.6.2. Correlation  

For both analyses, correlation of predictors was assessed. 

For the socioeconomic variables, correlation was assessed within each variable set. If there were 

incidents of high correlation, a principal component analysis (PCA) was conducted to see which 

variables explained the most variance. Based on these analyses, the following decisions were made: 

• Total population, number of families, number of males, number of females, and population 

over 61 were all correlated. Following a PCA, total population was selected.  

• As expected, all education variables were highly correlated. In this case, the proportion of 

males aged 6-24 was selected (without a PCA) because in this cultural context, males are far 

more likely to be engaged in activities that contribute to forest loss. 

• As expected, there was a negative correlation between the proportion of people employed in 

the primary sector and the proportion of people employed in the tertiary and quaternary 

sectors, and a correlation between the proportion of people employed in the primary sector 

and the proportion of people whose main occupation was farming. The PCA results suggested 

that the proportion of people employed in the primary sector (propPrimSec) and secondary 

sector (propSecSec) were the most valuable predictors.  
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• Proportion of people with less than 1 hectare of farmland, and proportion of families who 

keep buffalos, were dropped due to inconsistencies in the data which suggested changes in the 

data collection or questions over time.  

• Distance to the nearest school (dist_sch) and distance to the nearest health centre 

(KM_Heal_cen) were correlated, and the PCA analysis was inconclusive about which 

variable to retain. Distance to school was retained based on the theory that forest clearance 

activities are more likely to be conducted by young males. An absence of accessible education 

is likely to be more of a driving factor in these activities than an absence of accessible health 

care.  

• Both healthcare variables (infant mortality and child mortality) were dropped due to poor data 

quality. 

A final assessment of correlation between predictor variables (after removal of the above) revealed no 

major correlations (Table S3.4). 
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Table S3.4. Correlation matrix for the socioeconomic variables. There were no coefficients greater than 0.6 or less than -0.6. tot_pop = total population, 
prop_ind = proportion indigenous, pop_den = population density, M6_24_sch = proportion males (aged 6-24) in education, propPrimSec = proportion in 
primary sector, propSecSec = proportion in secondary sector, Les1_R_Land = proportion with <1ha rice land, pig_fam = proportion families with pigs, 
dist_sch = median distance to nearest school, garbage = proportion households with waste collection, KM_Comm = median distance to commune office, 
land_confl = number of land conflicts, crim_case = criminal cases per capita, Pax_migt_in = number of in-migrants, Pax_migt out = number of out-
migrants, mean_elev = mean elevation, dist_border = distance to international border, dist_provCap = distance to provincial captial 

 

 tot_pop 
prop_in
d 

pop_de
n 

M6_24
_sch 

propPri
mSec 

propSe
cSec 

Les1_R
_Land 

pig_fa
m 

dist_sc
h 

garbag
e 

KM_C
omm 

land_c
onfl 

crim_c
ase 

Pax_mi
gt_in 

Pax_mi
gt_out 

mean_e
lev 

dist_bo
rder 

dist_pr
ovCap 

tot_pop  -0.33 0.42 0.19 -0.31 0.04 0.15 -0.28 -0.36 0.10 0.00 0.32 -0.10 0.39 0.35 -0.34 0.14 -0.10 

prop_ind -0.33  -0.22 -0.36 0.15 -0.04 -0.16 0.20 0.43 -0.04 0.21 -0.08 0.13 -0.12 -0.14 0.47 -0.18 0.06 

pop_den 0.42 -0.22  0.30 -0.46 0.16 0.20 -0.26 -0.35 0.35 -0.21 -0.03 -0.12 0.11 0.05 -0.31 0.01 -0.39 

M6_24_sch 0.19 -0.36 0.30  -0.09 0.01 0.11 0.07 -0.37 0.03 -0.21 0.04 -0.09 -0.04 -0.06 -0.20 0.07 -0.21 

propPrimSec -0.31 0.15 -0.46 -0.09  -0.26 0.09 0.50 0.24 -0.32 0.14 0.05 0.01 -0.18 -0.21 0.02 0.08 0.27 

propSecSec 0.04 -0.04 0.16 0.01 -0.26  0.02 -0.14 -0.08 0.05 -0.05 -0.02 -0.02 0.04 0.03 -0.02 0.04 -0.09 

Les1_R_Land 0.15 -0.16 0.20 0.11 0.09 0.02  0.01 -0.23 -0.08 -0.11 -0.01 -0.09 0.07 0.01 -0.21 0.20 -0.14 

pig_fam -0.28 0.20 -0.26 0.07 0.50 -0.14 0.01  0.19 -0.14 0.06 -0.02 -0.03 -0.21 -0.21 0.02 -0.10 0.15 

dist_sch -0.36 0.43 -0.35 -0.37 0.24 -0.08 -0.23 0.19  -0.07 0.36 -0.06 0.07 -0.12 -0.15 0.36 -0.14 0.38 

garbage 0.10 -0.04 0.35 0.03 -0.32 0.05 -0.08 -0.14 -0.07  -0.06 -0.03 0.04 0.05 0.02 0.00 -0.05 -0.13 

KM_Comm 0.00 0.21 -0.21 -0.21 0.14 -0.05 -0.11 0.06 0.36 -0.06  0.09 0.03 0.04 0.00 0.11 -0.05 0.24 

land_confl 0.32 -0.08 -0.03 0.04 0.05 -0.02 -0.01 -0.02 -0.06 -0.03 0.09  0.27 0.13 0.05 -0.06 0.04 0.07 

crim_case -0.10 0.13 -0.12 -0.09 0.01 -0.02 -0.09 -0.03 0.07 0.04 0.03 0.27  -0.03 -0.05 0.16 -0.13 0.02 

Pax_migt_in 0.39 -0.12 0.11 -0.04 -0.18 0.04 0.07 -0.21 -0.12 0.05 0.04 0.13 -0.03  0.42 -0.10 0.01 0.01 

Pax_migt_out 0.35 -0.14 0.05 -0.06 -0.21 0.03 0.01 -0.21 -0.15 0.02 0.00 0.05 -0.05 0.42  -0.12 0.02 -0.03 

mean_elev -0.34 0.47 -0.31 -0.20 0.02 -0.02 -0.21 0.02 0.36 0.00 0.11 -0.06 0.16 -0.10 -0.12  -0.26 0.15 

dist_border 0.14 -0.18 0.01 0.07 0.08 0.04 0.20 -0.10 -0.14 -0.05 -0.05 0.04 -0.13 0.01 0.02 -0.26  -0.05 

dist_provCap -0.10 0.06 -0.39 -0.21 0.27 -0.09 -0.14 0.15 0.38 -0.13 0.24 0.07 0.02 0.01 -0.03 0.15 -0.05  
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3.6.3. Modelling 

Table S3.5. Within-set models for the commune-level socioeconomic analysis. Maximal within-set models were run followed by subsequent, less 
complex models, to identify the most important variables within each set. The variables with the largest effects were taken forward to the final 
candidate set. Only variables with negligible effects were dropped. If a variable set only had one variable it was automatically taken forward. All models 
included an offset term which was the logged commune area (km2), and a random effects structure of the form ~(year|Province/Commune). 

Model set / model Variables 

Population demographics      

popdem.m1 Population density Proportion indigenous    

popdem.m2 Population density     

Education      

edu.m1 Proportion males in 

school 

    

Employment      

emp.m1 Proportion primary 

sector 

Proportion secondary sector    

emp.m2 Proportion primary 

sector 

    

Economic security       

econ.m1 Proportion no farmland Proportion with pigs    

econ.m2 Proportion with pigs     

Access to services      

acc.m1 Distance to school Access to waste collection Distance to commune 

office 

  

acc.m2 Distance to school Access to waste collection    

acc.m3 Access to waste 

collection 

    

Crime and legal disputes      

jus.m1 Criminal cases Land conflicts    

jus.m2 Criminal cases     

Migration      

mig.m1 In-migration * Out-migration    

mig.m2 In-migration Out-migration    

mig.m3 Out-migration     

mig.m4 In-migration     

Control      

env.m1 Elevation      
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hum.m1 Distance to 

International border 

Distance to provincial 

capital 

Presence of ELC Presence of PA PA category 

hum.m2 Distance to 

International border 

Distance to provincial 

capital 

Presence of ELC Presence of PA  

* Indicates interaction  
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Table S3.6. Final candidate model set for the commune-level socioeconomic analysis. Variables were selected based on the results of the within-set 

models (see table S3.5). All models included an offset term of the logged commune area (km2), and a random effects structure of the form 

~(year|Province/Commune). Model selection was done using an Information Theoretic approach. Shaded models all had dAIC <4 and were included in 

model averaging and   used for predictions and inference. 

Model Delta 

AIC 

Population 

density 

Prop 

males 

in 

school 

Prop 

adults in 

primary 

sector 

Prop 

families 

with 

pigs 

Distance 

to school 

Prop 

families 

with 

waste 

collection 

Criminal 

cases per 

capita 

Number 

out-

migrants 

Mean 

elevation 

Dist 

I’ntl 

border 

Dist 

prov 

capital 

Presence 

ELC 

Presence 

PA 

m1 2.4 X        X X X X X 

m2 2.5  X       X X X X X 

m3 0.0   X      X X X X X 

m4 2.6    X     X X X X X 

m5 3.1     X X   X X X X X 

m6 3.1      X X  X X X X X 

m7 2.4      X  X X X X X X 

m8 4.07  X   X    X X X X X 

m9 1.2   X     X X X X X X 

m10 10.2 X X X X X X X X X X X X X 
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Figure S3.2. Quantile-quantile plots for the random effect “Province” of the final averaged 

socioeconomic model. 
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Figure S3.3. Quantile-quantile plots for the random effect “Commune” of the final averaged 

socioeconomic model. Plots suggest the assumption of normality of deviations of the conditional 

means of the random effects from the global intercept is violated.  
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Figure S3.4. Plot of residuals versus fitted values for the final averaged socioeconomic model. 
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Table S3.7. Final candidate model set for the province-level socioeconomic analysis. Variables were selected based on the results of the within-set 

models (see table S3.5). All models included a random effects structure of the form ~(year|Province). Model selection was done using an Information 

Theoretic approach. Shaded models were the top model and was used for predictions and inference. 

Model Delta 

AIC 

A B C D E F G H I J K L M N O P Q 

m1 2.4 X            X X X X X 

m2 2.5  X           X X X X X 

m3 0.0   X          X X X X X 

m4 2.6     X        X X X X X 

m5 3.1      X X      X X X X X 

m6 3.1        X     X X X X X 

m7 2.4          X   X X X X X 

m8 4.07  X    X       X X X X X 

m9 1.2   X       X   X X X X X 

m10 10.2 X                 

m11 60.7        X   X       

m12 70.6         X X        

m13 53.7  X                

m14 59.9   X X              

m15 60.8     X       X      

m16 65.9      X            

m17 39.3             X     

m18 35.8              X X   

m19 54.7                X X 

A – population density, B – proportion of males in school, C – proportion of adults employed in the primary sector, D – proportion of adults employed in the secondary sector, E – proportion 

of families with pigs, F – median distance to nearest school (km), G – proportion of families with access to waste collection, H – criminal cases per capita, I – number of in-migrants, J – number 

of out-migrants, K – number of land conflicts, L – proportion of families with no farmland, M – mean elevation (masl), N – distance to nearest international border, O – distance to the 

provincial capital, P – presence of economic land concessions, Q – presence of PAs 
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Figure S3.5. Cambodian provinces clustered using unweighted pair-group using arithmetic 
averages (UPGMA). Clustering was based on a selection of the socioeconomic variables used 
during the modelling. Data were averaged across the study period 2007 – 2012. Variables included 
were total population, population density, number of land conflict cases, number of criminal cases 
per capita, number of in- and out-migrants, the proportion of the population classified as 
indigenous, proportion of males aged 6 – 24 in school, proportion of the population employed in 
the primary and secondary sectors, proportion of families with no access to agricultural land, 
proportion of families who kept pigs, distance to the nearest school, proportion of families with 
access to waste collection, and distance to the commune (administrative) centre. 
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4.0. ABSTRACT 

Long-term monitoring of biodiversity in protected areas (PAs) is critical to assess threats, link 

conservation action to species outcomes, allow informed decision-making, and facilitate improved 

management. Yet rigorous longitudinal monitoring within PAs is rare. In Southeast Asia there is a paucity 

of long-term wildlife monitoring within PAs, and many threatened species lack population estimates from 

anywhere in their range, making global assessments difficult. Here, we present abundance estimates and 

population trends for 11 species between 2010 and 2020, and spatial distributions for 7 species, derived 

from line transect-based distance sampling data collected in Keo Seima Wildlife Sanctuary (KSWS) in 

Cambodia. These represent the first robust population estimates for 4 threatened species from anywhere 

in their range and are among the first long-term wildlife population trend analyses from the entire 

Southeast Asia region. Our study revealed that arboreal primates and Green Peafowl (Pavo muticus) 

generally had either stable or increasing population trends, whereas ungulates and semi-arboreal primates 

generally had declining trends. This suggests that ground-based threats, such as snares and domestic dogs, 

are having serious negative effects on terrestrial species. Our estimates confirm that KSWS holds the 

largest population of the endangered yellow-cheeked crested gibbon (Nomascus gabriellae) (abundance 

in 2020: 1,432 [95% CI = 750 - 2,735]) from anywhere in its range, and a large and globally significant 

population of the critically endangered black-shanked douc (Pygathrix nigripes) (abundance in 2020: 

24,929 [95% CI = 16,241 - 38,266]). Our results provide PA managers with rigorous information to 

assess past management action and support decision-making and strategic allocation of resources. These 

findings have important conservation implications for PAs across Southeast Asia that face similar threats 

yet lack reliable monitoring data. They also highlight the critical need for effective long-term monitoring 

in PAs to ensure effective protection of biodiversity. 

4.1. INTRODUCTION 

Biodiversity is declining worldwide as unsustainable human activities drive the degradation and loss of 

natural habitats and overexploitation of species (Johnson et al. 2017; Leung et al. 2020; Mokany et al. 

2020). Global efforts to protect habitats and slow biodiversity decline are structured within the 

Convention on Biological Diversity (CBD, https://www.cbd.int). The Aichi Biodiversity Targets within 

the Strategic Plan for Biodiversity 2011-2020 identify protected areas (PAs) as key tools for improving 

the status of biodiversity; Target 11 outlines explicit targets for PA coverage (CBD 2010). Historically 

seen as critical tools for conservation (Margules & Pressey 2000), PAs provide the most likely refuges for 

biodiversity in increasingly human-dominated landscapes (Bruner et al. 2001). However, increasing PA 

size and coverage does not guarantee improved conservation outcomes (Bruner et al. 2004; Armsworth et 

https://www.cbd.int/
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al. 2018), and in some cases can have perverse consequences such as reduced management capacity 

across a PA network (Barnes et al. 2018). Protected areas must be adequately resourced and managed in 

order to fulfil their potential to maintain viable biological populations in the context of increasing human 

pressure (Geldmann et al. 2018; Coad et al. 2019b).  

 

Effective monitoring using appropriate biodiversity indicators is critical for PA managers to make 

informed decisions and assess conservation actions, thus allowing improved management over time 

(Dixon et al. 2019). Yet rigorous longitudinal monitoring within PAs is often lacking (Hughes et al. 

2017), hampering informed decision-making and effective deployment of resources. A lack of monitoring 

systems and frameworks to assess management effectiveness are common challenges facing PAs; only 

9.4% of CBD signatories have assessed half or more of their PAs for effectiveness (Secretariat of the 

CBD 2020). Assessing PA performance requires well designed monitoring regimes that provide reliable, 

informative, and appropriate metrics of biodiversity over time (White 2019). The critical role PAs play in 

halting biodiversity decline is emphasized in the Post-2020 Global Biodiversity Framework, which is 

currently being negotiated to replace the 2011-2020 Strategic Plan and includes quantitative biodiversity 

targets (CBD 2020a). Therefore, the ability to assess PA efficacy and link conservation action to species 

outcomes, for which effective long-term monitoring is essential, will become increasingly important.  

 

Southeast Asia (SEA) is characterized by exceptional faunal diversity and endemism (Hughes 2017) yet 

has the highest rate of increase in extinction risk globally (Hoffmann et al. 2010). This region has the 

highest percentage of the world’s threatened plants, reptiles, birds, and mammals (Sodhi et al. 2010), and 

one of the highest rates of deforestation globally (Hughes 2017). Hunting in particular is an urgent threat 

(Gray et al. 2017). Increasing demand for wild meat and wildlife products, both domestically and for 

international trade, is driving unsustainable levels of hunting within SEA’s forests (Harrison et al. 2016; 

Gray et al. 2018; Heinrich et al. 2020). Despite the urgency, there is a paucity of long-term quantitative 

data on wildlife populations in SEA. In many cases, species of conservation interest lack even a single 

estimate of population size (Table 4.1), making it hard to assess the performance of individual PAs and 

national and regional conservation programs. Empirical data are needed to make evidence-based 

decisions on PA management, evaluate the impact of past action (Geldmann et al. 2018), and increase the 

accuracy and utility of global assessments of status and trends. Understanding how wildlife populations 

respond to anthropogenic pressure is of particular importance in PAs, given their role in safeguarding 

species’ persistence (Watson et al. 2014). 
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Table 4.1. Existing population estimates that account for imperfect detection and quantify uncertainty from peer-reviewed literaturea, and 
the global status of the 11 species monitored in Keo Seima Wildlife Sanctuary (KSWS) 
 

Common name Scientific name 

In-text 

abbreviation 

IUCN 

Red List 

status 

and 

global 

trendb 

Known threats (entire 

range)c 

Locations of 

population 

estimatesd 

Density 

(unit/km-2) e 
Source 

Southern 

yellow-cheeked 

crested gibbon 

Nomascus 

gabriellae 

Gibbon EN ↓ Hunting (trade) 

Habitat loss and degradation  

KSWS, Cambodia 

Chu Yang Sin NP, 

Vietnam 

Cat Tien NP, 

Vietnam 

 

0.6 – 0.9 ind 

0.3 – 0.4 grp 

 

0.5 – 1.0 grp 

Rawson et al., 2009 

Thinh et al., 2016 

 

Thinh et al., 2018 

Black-shanked 

douc 

Pygathrix 

nigripes 

Douc CR ↓ Hunting (traditional 

medicine, consumption) 

Habitat loss and degradation  

-  -  -  

Germain’s silver 

langur 

Trachypithecus 

germaini 

Langur EN ↓ Hunting (trade, traditional 

medicine) 

Habitat loss and degradation 

Dam construction 

-  -  -  

Long-tailed 

macaque 

Macaca 

fascicularis 

LT macaque VU ↓ Hunting (trade, biomedical, 

consumption, sport) 

Habitat loss and degradation 

Baluran NP, Java, 

Indonesia 

 

23.0 – 74.4 ind Hansen et al., 2019 

Northern pig-

tailed macaque 

Macaca leonina PT macaque VU ↓ Habitat loss and degradation 

Hunting (trade, 

consumption, traditional 

medicine) 

-  -  -  

Stump-tailed 

macaque 

Macaca 

arctoides 

ST macaque VU ↓ Habitat loss and degradation 

Hunting (trade, 

consumption, traditional 

medicine, sport) 

-  -  -  

Banteng Bos javanicus Banteng EN ↓ Hunting (consumption, 

trade, trophy) 

Habitat loss and degradation 

Genetic diversity 

Phnom Prich WS & 

Srepok WS, 

Cambodia 

0.7 – 1.2 ind 

 

 

0.1 – 0.8 ind 

Gray et al., 2012 

 

 

O’Kelly et al., 2012 
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KSWS, Cambodia 

(wild cattle 

combined) 

Malua Forest, Borneo 

Tabin Forest, Borneo 

 

 

0.002 – 0.02 ind 

0.005 – 0.02 ind 

 

 

Gardner et al., 2019 

Gardner et al., 2019 

Gaur Bos gaurus Gaur VU ↓ Hunting (consumption, 

trade, traditional medicine, 

trophy) 

Habitat loss and degradation 

Competition with livestock 

Disease 

Nagarahole NP 

(Nalkeri), India 

Nagarahole NP 

(Arkeri), India 

Bahdra TR, India 

 

Trishna WS, India 

 

KSWS, Cambodia 

(wild cattle 

combined) 

3.5 – 8.2 ind 

 

0.7 – 2.7 ind 

 

0.5 – 4.3 ind 

 

3.2 – 8.6 ind 

 

0.1 – 0.8 ind 

 

Madhusudan and 

Karanth, 2000 

Madhusudan and 

Karanth, 2000 

Jathanna et al., 

2003 

Dasgupta et al., 

2008 

O’Kelly et al., 2012 

Northern red 

muntjac 

Muntiacus 

vaginalis 

Muntjac LC ↓ Hunting (consumption, 

trade) 

Bahdra TR, India 

 

KSWS, Cambodia 

Srepok WS & Phnom 

Prich WS, Cambodia 

Murree-Kotli Sattian- 

Kahuta NP, Pakistan 

2.3 – 5.9 ind 

 

1.2 – 2.5 ind 

1.8 – 2.6 ind 

 

0.2 – 0.9 ind 

Jathanna et al., 

2003 

O’Kelly et al., 2012 

Gray et al., 2012 

 

Habiba et al., 2020 

Wild pigf Sus scrofa Pig LC ? Hunting (consumption, 

sport, trade, reprisals for 

crop damage) 

Habitat loss and degradation 

Pasoh FR, Malaysia 

KSWS, Cambodia 

Srepok WS & Phnom 

Prich WS, Cambodia 

16.2 – 44.7 ind 

1.2 – 3.5 ind 

0.6 – 2.2 ind 

Ickes, 2001 

O’Kelly et al., 2012 

Gray et al., 2012 

 

Green Peafowl Pavo muticus Peafowl  EN ↓ Hunting (consumption, 

trade) 

Collection of chicks and 

eggs 

Habitat loss and degradation 

Yok Don NP, 

Vietnam 

 

Cat Tien NP, 

Vietnam 

 

KSWS, Cambodia 

Siem Pang WS, 

Cambodia 

 

 

Huai Kha Khaeng 

WS, Thailand 

0.1 – 0.6 calling 

birds 

1.4 – 10.3 calling 

birds 

0.1 – 0.6 ind 

Riverine: 1.1 – 

2.7,  

Non-riverine: 0.2 

– 0.6 

0.3 – 30.0 calling 

birds 

Sukumal et al., 

2015 

Sukumal et al., 

2015 

Nuttall et al., 2017 

Loveridge et al., 

2017 

 

Sukumal et al., 

2017 
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a See Supporting Information for additional references that do not meet the criteria of this table. 
b LC = least concern, VU = vulnerable, EN = endangered, CR = critically endangered, ? = unknown (www.iucnredlist.org). ↓ = decreasing global trend 

c Threats taken from the species assessment page on the IUCN Red List of Threatened species (www.iucnredlist.org) 
d Only estimates derived from methods that account for imperfect detection and estimate some form of error or variance are included. Minimum counts and relative 

abundance/density are not included. Publications with limited details on methods that prevented an assessment of the type of estimate were not included. Abbreviations: WS = 

Wildlife Sanctuary, NP = National Park, TR = Tiger Reserve, FR = Forest Reserve 
e Where available, the 95% confidence range is reported. Where 95% confidence intervals were not available, the range shown is the reported estimate ± (1.96 × SE). Where 

available, the density of individuals is reported, otherwise density of groups is reported. ind = individual density, grp = group density 
f List of reported population estimates is not exhaustive

http://www.iucnredlist.org/
http://www.iucnredlist.org/
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In this paper, we present 10 years of wildlife population monitoring from Keo Seima Wildlife Sanctuary 

(KSWS) in Cambodia, a globally important site for several species (Nuttall et al. 2017), to help address 

the knowledge gap created by the lack of empirical data on wildlife populations in SEA. Many of the 

species in our study lack a single reliable population estimate from anywhere else in their range (Table 

4.1). We provide abundance estimates for 11 species within KSWS between 2010 and 2020 and model 

their population trends over time. We also provide spatial distributions for 7 of the species, for which 

adequate data were obtained. Our study is among the first in the literature to report long-term wildlife 

population trends with absolute estimates from SEA. We highlight the importance of these results for 

SEA and International Union for the Conservation of Nature (IUCN) Red List status assessments, and for 

evaluating conservation action and future conservation decision-making in KSWS. Finally, we discuss the 

need for long-term monitoring in PAs and the implications of our results for conservation programs 

across SEA. 

 

4.2. METHODS 

4.2.1 Study site 

Keo Seima Wildlife Sanctuary (12.3346, 106.8418, formerly Seima Biodiversity Conservation Area and 

Seima Protection Forest) falls within Mondulkiri and Kratie provinces in eastern Cambodia. It has an area 

of 2,927 km2, sharing its southeastern edge with Vietnam (Figure 4.1). Our 1,880 km2 study area is the 

former core zone (Figure 4.1). KSWS is characterized by a diverse mosaic of habitats; the southeastern 

area extends into the Southern Annamite Mountain Range with higher altitudinal mountainous 

topography and dense evergreen and semi-evergreen forest (Evans et al. 2013). The central and western 

areas form the edge of the Eastern Plains Landscape, dominated by low altitudes and dry deciduous 

dipterocarp forests (O’Kelly et al. 2012; Evans et al. 2013). Complementing the altitudinal and habitat 

gradients are semi-natural grasslands and seasonal and permanent water bodies that together support rich 

biodiversity (Nuttall et al. 2017, Griffin & Nuttall 2019). 
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Figure 4.1. Keo Seima Wildlife Sanctuary in eastern Cambodia 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Data collection 

Data were collected jointly by the Wildlife Conservation Society (WCS) and the Forestry Administration 

of the Royal Government of Cambodia (RGC) between 2010 and 2016, and by WCS and the Ministry of 

Environment of the RGC in 2018 and 2020. Forty square line transects of 4 km length were arranged 

throughout KSWS in a systematic grid with a random start point. Field teams conducted distance 

sampling surveys along these line transects in 2010, 2011, 2013, 2014, 2016, 2018, and 2020. Teams 

recorded visual observations of a pre-defined set of 11 species: those listed as Threatened on the IUCN 

Red List, easily detected on line transects, or both. The target species were southern yellow-cheeked 

crested gibbon (Nomascus gabriellae, hereafter “gibbon”), black-shanked douc (Pygathrix nigripes, 

hereafter “douc”), Germain’s silver langur (Trachypithecus germaini, hereafter “langur”), long-tailed 

macaque (Macaca fascicularis, hereafter “LT macaque”), northern pig-tailed macaque (Macaca leonina, 

hereafter “PT macaque”), stump-tailed macaque (Macaca arctoides, hereafter “ST macaque”), banteng 

(Bos javanicus), gaur (Bos gaurus), northern red muntjac (Muntiacus vaginalis, hereafter “muntjac”), 

wild pig (Sus scrofa, hereafter “pig”), and green peafowl (Pavo muticus, hereafter “peafowl”). See Table 

4.1 for the target species’ global status, threats, and existing population estimates. 
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Surveys were conducted during the dryer months of December – June. Temporal replication was achieved 

through multiple visits to each transect within each year. Field teams visited transects for between one 

and eight days at a time and conducted surveys twice a day, at dawn and dusk. Teams would record only 

direct visual observations of target species. Laser rangefinders and compasses were used to measure 

distances and angles from the line transect to detected objects, which constituted either isolated 

individuals or spatially aggregated individuals (clusters), and cluster sizes were recorded. Distances were 

measured to the geometric center of clusters. Perpendicular distances from detected objects to the line 

transect were calculated prior to analysis. Additional data collected for quality assurance and covariate 

modelling included date, time, observer name, location of observer, and habitat type (2013 onwards). 

Field protocols followed standard line transect methodology outlined in Buckland et al. (2001) and were 

consistent between years. For further details of field protocols, including testing for bias associated with 

transect corners, see Supporting Information, O’Kelly et al. (2012), and Nuttall et al. (2017).  

4.2.3. Annual abundance estimates 

We used the conventional distance sampling framework (Buckland et al. 2001) to obtain point estimates 

of individual density and abundance for each species in each survey year. Only douc had sufficient 

within-year observations to allow for annual detection functions to be estimated. For the remaining 

species distance data from all years were pooled in order to improve the model fit for detection function 

estimation (Buckland et al., 2001). To account for potential heterogeneity in detection between years, a 

scaled continuous Year variable was tested for all species except douc. We fitted detection function 

models using the R package distance (R Core Team 2017; Miller et al. 2019a, version 0.9.8). Distance 

data for all species were truncated to improve model fitting and reduce bias (Buckland et al. 2001). We 

explored models with uniform, half-normal, and hazard rate key functions and cosine, simple polynomial, 

and hermite polynomial adjustments, both with and without observation-level covariates. Only the 

following key functions and adjustment combinations were tested: Uniform-cosine, Uniform-simple 

polynomial; Half normal-cosine, Half normal-hermite polynomial; Hazard rate-cosine, Hazard rate-

simple polynomial. Models were compared, assessed, and selected using a combination of diagnostic 

plots, goodness-of-fit tests, Akaike’s Information Criterion (AIC), and the authors’ knowledge about the 

ecology and observation process of each species. Generally, models within a set were discarded if a) the 

Cramer-von Mises test statistic was significant (p < 0.05), or b) the delta AIC value was greater than 3. 

Remaining models were considered to have some support and were assessed and selected via visual 

inspection of the model fit, taking both AIC and the species ecology and detection process into account.   
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For further details on density, abundance, and variance estimation in distance sampling see Buckland et 

al. (2001, 2004, 2015); Fewster et al. (2009); and Miller et al. (2019a).  

4.2.4. Temporal population trends 

We used generalized additive models (GAMs) combined with bootstrapping (Hamilton et al. 2018) to 

estimate long-term population trends. The original systematic sampling design ensured representative 

coverage of habitat types, so we employed a bootstrap scheme that would preserve this property 

(Supporting Information). Each transect was categorized by habitat as either dense or open forest. 

Transects were sampled with replacement within each category until total within-category effort across all 

years equalled that of the original data. We fitted detection functions to each set of replicate data and 

fitted a GAM to the resulting annual abundance estimates to generate a temporal trend curve for each 

replicate. This process was repeated 2,000 times per species. The 50%, 2.5%, and 97.5% quantiles from 

the replicate GAM curves were extracted pointwise to generate overall population trends and 95% 

confidence intervals (Fewster et al. 2000). The trend from a single bootstrap replicate was considered 

positive if the predicted estimate from 2020 was higher than that from 2010, and negative if the opposite 

was true. The overall trend for a given species was reported as significant if at least 95% of replicates 

agreed on trend direction, otherwise the species was classified as stable. Banteng had insufficient 

observations to support the bootstrap procedure, precluding computation of confidence intervals and trend 

significance, so a single GAM was fitted to the annual abundance estimates produced from distance 

sampling analysis. 

4.2.5. Spatial analysis 

We conducted spatial analyses to examine the distribution of each species across KSWS and link relative 

abundance to spatial covariates. The number of within-year observations for each species was generally 

low (Table S4.2), and so to support the spatial modelling we combined data from all years into a single 

analysis, creating a map of relative abundance spanning the whole study period for each species. If a 

species had fewer than 50 observations from the whole study period they were excluded from the spatial 

analysis.  

 

Line transects were partitioned into equally sized, discrete spatial segments and wildlife observations 

were allocated to the segment within which they fell. We inspected distance data for all species to identify 

an appropriate single truncation distance which was used to establish an effective strip width W and 

subsequent segment size (Buckland et al., 2004). We chose a truncation distance of 50 m which resulted 

in segments of size 100m × 100m, and between 0 and 27% of observations furthest from the line being 

discarded. The per-segment abundance was estimated using a Horvitz-Thomson-like estimator (Buckland 
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et al., 2004) and adjusted for imperfect detection using the species-specific detection function selected in 

the abundance estimation process above. GAMs were then used to quantify the relationship between the 

estimated abundance in each segment and the supplied covariates (Buckland et al., 2004; Wood, 2006). 

For covariate data, we acquired spatial datasets for several environmental and anthropogenic variables 

which were hypothesized to relate to animal abundance in KSWS. These were within-segment habitat, 

elevation, distance to water bodies, distance to human settlements, distance to ranger stations, distance to 

the Vietnamese border, and latitude and longitude (Supporting Information). The distance to the Vietnam 

border covariate was included to capture factors such as cross-border wildlife trade and hunting (Harrison 

et al. 2016). 

 

We ran three groups of models for each species, with each model group assuming a different response 

distribution (response = number of groups or individuals in a segment): quasi-Poisson, Tweedie, or 

negative binomial. We conducted model selection using a combination of diagnostic plot assessment and 

AIC for Tweedie and negative binomial distributions, and analysis of variance for the quasi-Poisson 

distribution. We retained the habitat variable in all models, based on our knowledge of the importance of 

habitat for the species in this study. Each final model was tested for autocorrelation (see Supporting 

Information for further details on modelling approach). The selected GAM for each species and a 

prediction grid with 200m × 200m cells were used to predict relative abundance for each species over the 

study area. Spatial analyses were conducted in the R package dsm (Miller et al. 2019b). 

4.3 RESULTS 

4.3.1. Annual abundance estimates 

Effort across all transects and years was 9,460 km, resulting in 5,056 observations across the study 

period. The minimum and maximum annual effort was 1,260 km (2013) and 1,600 km (2010), resulting 

in 588 and 729 observations, respectively (Table S4.2). In 2020, the most abundant species among those 

with increasing populations was PT macaque (estimated abundance 3,929 individuals [95% CI = 2,457 - 

6,284; Table 4.2], encounter rate 0.18 km-1 [Table S4.3]), while the least abundant species among those 

with declining populations was banteng, which was not observed in 2020 (Table 4.2). The most abundant 

species overall was douc (estimated abundance 24,929 individuals [95% CI = 16,241 - 38,266; Table 4.2], 

encounter rate 1.08 km-1 in 2020 [Table S4.3]). Cluster size and year were the most frequently retained 

covariates in the detection function models (6 species). Observer and habitat were retained for douc only 

(Table S4.3). 
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4.3.2 Temporal population trends 

Significant trends were detected for 6 species: 2 positive (PT macaque, peafowl) and 4 negative (ST 

macaque, gaur, muntjac, wild pig, Table 4.2, Figure 4.2). Trends for 4 species that did not reach 95% 

directional agreement among replicates were recorded as stable (Table 4.2). Trend agreement among 

replicates for ST macaque and muntjac (both negative) was 100% (Table 4.2). 

4.3.3. Spatial analysis  

Results for banteng, gaur, and ST macaque were excluded because of too few observations. Pig results 

were excluded because of poor model fit (<5% deviance explained). Final models for the remaining 7 

species ranged in deviance explained from 16.3% (muntjac) to 66.1% (langur, Table S4.5). The median 

coefficient of variation (CV) for the spatial predictions for each species ranged from 19% (muntjac) to 

125% (langur). Coefficients of variation were high in areas with few or no observations but were 

generally low (<40%) in areas with high predicted relative abundance (Figure S4.8).  

 

Distribution and relative abundance were heterogeneous among species (Figure 4.3). Species with known 

preference for evergreen and semi-evergreen forest (gibbon, douc, PT macaque) had higher predicted 

relative abundance in the central and southeastern sections of KSWS where this habitat is dominant 

(Figure 4.3). Peafowl, muntjac, and langur had highest predicted relative abundance in mosaic habitat and 

open deciduous forest (peafowl and muntjac: central, north, and northwest; langur: northwest, southwest). 

Long-tailed macaque had highest predicted relative abundance in areas of KSWS that range from mosaic 

to open deciduous forest (central, northeast). Distance to the Vietnamese border was the most commonly 

retained spatial covariate (6 species), followed by distance to water and distance to ranger station (5), 

elevation (4) and distance to settlement (2, Table S4.5). 



136 
 

 
Table 4.2. Temporal trends and density and abundance estimates derived from line transect surveys between 2010 and 2020 for 11 species in 
Keo Seima Wildlife Sanctuary. 

Species 

Replicate 

agreement (% 

and direction)a 

Trendb 
Densityc [ind/km2] (LCI,UCI)d Abundancec (LCI, UCI)d 

2010 2020 2010 2020 

Yellow-cheeked 

crested gibbon 

89 positive Stable 0.507 (0.235,1.093) 0.762 (0.399,1.455) 952 (441,2055) 1432 (750,2735) 

Black-shanked douc 88 positive Stable 12.920 (8.476,19.692) 13.260 (8.639,20.354) 24289 (15936,37021) 24929 (16241,38266) 

Germain’s silver 

langur 

54 positive Stable 1.549 (0.518,4.634) 0.791 (0.313,1.999) 2912 (974,8712) 1487 (588,3758) 

Long-tailed macaque 71 negative Stable 1.662 (0.733,3.766) 0.833 (0.421,1.647) 3125 (1379,7080) 1566 (792,3097) 

Pig-tailed macaque 97 positive Increasing 1.068 (0.486,2.349) 2.090 (1.307,3.342) 2008 (913,4417) 3929 (2457,6284) 

Stump-tailed 

macaque 

100 negative Decreasing 0.281 (0.085,0.935) 0.122 (0.023,0.663) 529 (159,1758) 230 (42,1246) 

Bantenge - - 0.203 (0.040,1.040) - 382 (75,1956) - 

Gaur 96 negative Decreasing 0.264 (0.074,0.946) 0.017 (0.003,0.095) 497 (139,1778) 33 (6,179) 

Northern red muntjac 100 negative Decreasing 1.800 (1.295,2.502) 0.439 (0.279,0.692) 3383 (2434,4703) 825 (524,1300) 

Wild pig 97 negative Decreasing 1.796 (0.982,3.286) 0.585 (0.312,1.097) 3377 (1846,6176) 1100 (587,2063) 

Green Peafowl 99 positive Increasing 0.164 (0.082,0.328) 0.396 (0.199,0.788) 309 (154,617) 745 (375,1481) 

a The trend from a single bootstrap replicate was reported as positive if the predicted estimate for 2020 was higher than that for 2010, and negative if the predicted estimate for 

2020 was lower than that for 2010. 
b Overall trend was reported as positive if >95% of the bootstrap replicates were positive, and negative if >95% of bootstrap replicates were negative. All trends that did not reach 

the 95% level were reported as stable. 
c Density and abundance were estimated using conventional distance sampling and the analysis was conducted separately from the bootstrapped trend analyses. 

Abundance refers to the estimated number of individuals in the study area. 
d LCI = lower 95% confidence interval, UCI = upper 95% confidence interval 
e  There were insufficient observations of banteng in 2020 to produce density and abundance estimates.
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Figure 4.2. Annual abundance estimates (gray points) and population trend (black line) for 11 
species in Keo Seima Wildlife Sanctuary between 2010 and 2020. A – Species with increasing or 
stable population trends, B – species with declining population trends. Hollow points denote zero 
observations in that year. Error bars around the annual abundance estimates, and gray error 
ribbons around the trend lines, denote 95% confidence intervals. Bootstrapping was not possible 
for banteng and so confidence intervals were not produced. PT macaque = northern pig-tailed 
macaque, peafowl = green peafowl, Gibbon = southern yellow-cheeked crested gibbon, Douc = 
black shanked douc, LT macaque = long-tailed macaque, Langur = Germain’s silver langur, ST 
macaque = stump-tailed macaque, muntjac = northern red muntjac, pig = wild pig. 
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Figure 4.3. Predicted spatial distribution and relative abundance for 7 species in Keo Seima Wildlife 
Sanctuary from the study period in 2010 – 2020. Relative abundance categories denote predicted 
species-specific abundance above the 75% quantile (“High”), between the 50 and 75% quantile 
(“Medium”), between the 25 and 50% quantile (“Low”), and below the 25% quantile (“Very low”). See 
Supporting Information for corresponding maps of coefficient of variation for the above species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. DISCUSSION 

Long term monitoring of biological populations is critical for conservation science and policy 

(Hughes et al. 2017). Multi-year datasets provide baselines against which conservation efforts can be 

judged (Magurran et al. 2010) and are important for monitoring PA effectiveness (Geldmann et al. 

2018). We have presented population estimates and temporal trends for 11 species over one decade in 

a large and globally significant PA. These include the first robust estimates for one critically 
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endangered (douc), one endangered (langur), and two vulnerable (PT and ST macaques) primates 

from anywhere in their ranges. We are aware of only one other study in the literature that presents 

long-term wildlife population trends in SEA based on absolute abundance estimates rather than 

uncalibrated indices (Duangchantrasiri et al., 2016; also see Groenenberg et al. 2020). Therefore, our 

results provide critical information for global status assessments, underpin evaluations of management 

effectiveness in KSWS, and inform management options in PAs with similar threats regionally.  

 

Spatial modeling indicated that species distributions vary widely, with no clear commonality among 

species with declining population trends or among those with stable populations. This lack of 

commonality suggests that population trends are not associated with a particular habitat or area within 

KSWS, but rather are driven by factors associated with species ecology and behavior. The exception 

is the border with Vietnam, which is a spatial attribute associated with declining abundance. The 

declining species in our study are ungulates and the single primate that is predominantly ground 

dwelling, whereas arboreal and semi-arboreal primates and peafowl have stable or increasing 

populations. These results indicate that ground-based threats are likely to be the primary drivers of 

species decline, in particular implicating snares and free-ranging domestic dogs.  

4.4.1. Declining populations 

Models for all species except langur showed decreased relative abundance closer to the Vietnamese 

border. Douc, gibbon, and PT macaque prefer evergreen and semi-evergreen forest (Nadler et al. 

2007; Rawson et al. 2009), which dominate the border area. Long-tailed macaque is a generalist 

occupying a range of habitats (Hansen et al. 2019). Therefore, higher densities would be expected 

near the border based on habitat characteristics alone. The likely explanation for the contradictory 

pattern observed is that parts of KSWS in close proximity to the border have been hotspots for illegal 

cross-border activities throughout the study period, including illegal logging and hunting with 

firearms and snares (Evans et al. 2013; O’Kelly et al. 2018a; Ibbett et al. 2020). Snare density 

increases with proximity to the Vietnamese border (O’Kelly et al. 2018b), with high volumes of 

illegal incursions into KSWS driven by demand for wild meat and wildlife products from Vietnam 

(Shairp et al. 2016). Snaring is prevalent in Cambodian PAs more generally (Coad et al. 2019a; 

Belecky & Gray 2020). The scale of the snaring problem in a given area is difficult to quantify due to 

inherent biases in snare removal data resulting from issues with detectability and sampling, although 

reliable methods have recently been developed (O’Kelly et al., 2018a, 2018b). In 2015 nearly 28,000 

snares were removed from Southern Cardamom National Park in southern Cambodia (Gray et al. 

2018). In KSWS, 36% of survey respondents reported engaging in hunting and 20% reported laying 

snares to protect crops (Ibbett et al. 2020). These data suggest that snares may be a primary 

contributor to regional wildlife population declines.   
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There is substantial evidence that free-ranging and feral dogs can have negative effects on wildlife 

populations (Young et al. 2011; Hughes & Macdonald 2013), and these effects are particularly severe 

in SEA (Doherty et al. 2017). Domestic dogs are commonly used by local communities in Cambodia 

for hunting inside PAs (Coad et al. 2019a; Ibbett et al. 2020). In KSWS, 79% of households own dogs 

and nearly 50% of households take dogs with them into the forest (Ibbett et al. 2020). The number of 

domestic dogs in KSWS may be as high as 4,000, corresponding to 1.36 km-2 (Ibbett et al. 2020), 

which would make the density of domestic dogs several times greater than that of any monitored 

ungulate. Therefore, it is likely that free-ranging and feral dogs, in addition to widespread snaring, are 

contributing to declines in ground-based species in KSWS.  

 

The population trend for pig, although exhibiting an overall decline, follows a fluctuating pattern that 

possibly reflects factors additional to the threats mentioned above. Pigs are highly fecund, and their 

density-dependent populations can fluctuate dramatically based on food availability and disease 

(Gentle et al., 2019; Sánchez-Cordón et al., 2019). African Swine Fever is a plausible contributing 

factor to pig declines, as the disease has been recorded in Cambodia and can have severe negative 

effects on wild pig populations (Ikeda et al. 2020; Marinov et al. 2020). Pigs are resilient to relatively 

high levels of hunting, so the population may be able to rebound quickly if the decline is due to 

disease or food shortages (Steinmetz et al., 2010).  

 

Although the most prevalent direct causes of wildlife mortality in KSWS are likely to be snares and 

free-ranging dogs, the broader drivers are more complex. Food insecurity, shifting livelihood 

strategies, a preference for wild over domestic meat, traditional medicines, targeted hunting by 

outsiders, increasing debt burdens caused by agricultural and socioeconomic fluctuations, changing 

perceptions of law enforcement effectiveness, and increased access to local markets are all interacting 

factors that contribute to hunting of wildlife in KSWS (Ibbett et al., 2020). 

4.4.2. Stable and increasing populations 

We found that gibbon, douc, PT macaque, LT macaque, langur, and peafowl showed stable or 

increasing population trends. Arboreal primates and birds are less vulnerable than ground-based 

mammals to hunting with snares and dogs but can be targeted with firearms. The number of firearms 

in Cambodia has reduced in recent years, and access to firearms has become more difficult (Dyke 

2006). Although some species, including langur and LT macaque, are used in traditional medicine, 

human consumption of primates is less common in Cambodia than in neighboring Vietnam (Alves et 

al. 2010). The reduction in firearms and the absence of a strong cultural propensity for primate 

consumption together may have allowed arboreal primate populations to remain stable. Nevertheless, 

hunting of primates with firearms, as well as traditional projectile weapons such as crossbows, 

persists in KSWS (Ibbett et al., 2020), and it is likely to increase if there is continued unregulated 



141 
 

movement of people from Vietnam into KSWS with associated illegal hunting and logging activities. 

The relative scarcity of primates in adjacent Vietnamese PAs means that KSWS has the potential to 

become a source for the primate trade in Vietnam.  

 

During the study period there has been large-scale deforestation outside the study area, driven 

primarily by industrial-scale agriculture in the form of land concessions, and subsequent leakage of 

illegal land clearance around concessions. In 2010, a Reduced Emissions from Deforestation and 

Forest Degradation (REDD+) project was initiated in KSWS. This project has provided financial 

incentives to the RGC and local communities to reduce forest loss in the study area; consequently, 

forest cover has remained largely intact. An estimated 25,000 ha of forest loss has been avoided 

because of the REDD+ project (McMahon et al. 2020). Maintenance of forest cover is likely to be 

another factor supporting stable and increasing population trends for arboreal primates, particularly of 

gibbon, douc, and langur, which are forest-dependent. Our abundance estimates for douc and gibbon 

suggest that populations in KSWS are likely to be the largest cohesive populations of these species 

globally (Rawson et al. 2020; Duc et al. 2020a), although for douc these are the first peer-reviewed 

abundance estimates published. Abundance estimates for langur suggest KSWS is also a globally 

important site for this species, although comparison between sites is challenging due to a lack of 

published population estimates (Duc et al. 2020b; Moody 2018). 

 

It is not clear what is causing the apparent difference in trends between LT and PT macaque, but there 

are several possibilities. Widespread live capture of LT macaques to supplement so-called “monkey 

farms” (Lee, 2011) in Vietnam and China, which in turn supply the international biomedical and 

laboratory trade, is known to have been occurring in Cambodia since 2003 (Eudey, 2008). This 

practice was reported from the northeast of the country, and specifically in KSWS, from 2006 

onwards (Lee, 2011; Pollard et al., 2007; Rawson, 2007), but there has been little evidence of this 

practice in KSWS in recent years.  A second plausible explanation is the tolerance of LT macaque to a 

range of habitats, including urban and agricultural areas (Eudey, 2008), which in KSWS will expose 

the species to a higher density of snares and dogs and opportunistic hunting in parts of its range. PT 

macaques, although adaptable, prefer dense evergreen and semi-evergreen forest where available, and 

are therefore less exposed to anthropogenic threats. A decline in LT macaque over time may be 

reducing resource competition with PT macaque, thus facilitating population increase in PT macaque.  

 

Peafowl are predominantly ground-based, yet they have experienced a population increase over the 

study period. Population recovery of peafowl is rarely recorded in the literature as this species is 

suffering from habitat loss and hunting across its range, generally leading to population declines (e.g., 

Sukumal et al. 2015). Nevertheless, when threats are reduced, population recovery can occur (e.g., 

Sukumal et al. 2017). It is unclear what has caused the increase in peafowl abundance in KSWS. The 
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population density in KSWS is much lower than other areas, even within Cambodia (see Loveridge et 

al. 2017), suggesting  scope for substantial population increases under favorable conditions. Peafowl 

mortality resulting from ground-based human threats could be lower than that of ungulates for several 

reasons. They are less vulnerable to dogs, as they can retreat into trees when approached; and they 

prefer open deciduous habitat which is found in the central, northern, and western regions of KSWS, 

out of reach of the Vietnam border and the larger human population centers in the south of KSWS.  

4.4.3. Implications for Keo Seima Wildlife Sanctuary 

Keo Seima Wildlife Sanctuary has been officially protected for nearly two decades, and over the last 

decade has benefited from a greater level of conservation investment than most other PAs in 

Cambodia. KSWS has one of the largest law enforcement teams within any Cambodian PA, as well as 

a range of other programs including indigenous land tenure, community protected areas, ecotourism 

development, and REDD+. Despite operational budgets that are relatively high in the context of 

Cambodia, the resources available to KSWS managers are well below international benchmarks. For 

example, KSWS has less than 10% of the recommended law enforcement ratio of one ranger per 5km2 

(IUCN, 2016). Our results demonstrate that charismatic and ecologically important species are 

heading rapidly towards local extirpation – trends that are replicated in other Cambodian PAs 

(Groenenberg et al. 2020). Substantially more investment, particularly into ranger staffing levels, will 

be required to reverse current species trends. Recent developments in the voluntary carbon markets, 

and Cambodia’s decision to support both project and national REDD+ programs suggest this may be 

achieved in a sustainable manner through REDD+. 

 

Historically, law enforcement efforts in KSWS have been disproportionately focused on illegal 

logging of luxury timber; this trend has been seen in PAs across the country and was a result of 

national policies and widespread media attention targeting the economically valuable timber trade. 

These efforts take place at the expense of combatting wildlife crime, with less attention focussed on 

addressing species declines. Although there have been successes in reducing deforestation compared 

to the without-project scenario, and an extensive indigenous community land titling program that has 

increased indigenous tenure within KSWS, there have been no initiatives dedicated to reducing illegal 

hunting that have focused on community engagement. Community-led law enforcement patrols have 

been operational in KSWS throughout most of the study period, but these have largely prioritised 

illegal logging and forest clearance. 

 

The monitoring program in KSWS represents a long-term commitment by RGC and WCS to provide 

PA managers with rigorous data to inform management action. Our results suggest that for effective 

conservation management to provide benefits to forests, biodiversity, and communities, increases in 

scale across all interventions are needed and, within law enforcement, the need for a greater focus on 
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poaching, targeting illegal hunting with snares, weapons, and dogs. Most people in KSWS hunt 

wildlife for subsistence, as a source of additional income, for medicinal purposes, or to protect crops 

(Ibbett et al 2020). Therefore, the community-focused conservation programs within KSWS, which 

include community engagement and livelihood development, should explore and develop approaches 

to reduce the community reliance on wild meat, promote domestic sources of protein, improve food 

security and livelihoods more generally, and offer non-lethal crop protection strategies. Such 

approaches may be more effective and enduring than law enforcement alone. For detailed 

management recommendations for KSWS and the Eastern Plains Landscape more broadly, see Griffin 

& Nuttall (2020) and Groenenberg et al. (2020). 

4.4.4. Broader implications for SEA 

Ten of the 11 species monitored in KSWS are estimated to have declining global populations (Table 

4.1, www.iucnredlist.org), yet our results show that 6 of these species have stable or increasing 

populations in KSWS. The remaining 5 ground-based species have decreasing population trends in 

KSWS that mirror global population trends. The striking divide we have uncovered between ground-

based and arboreal species has important conservation implications for these species throughout their 

range. Significant declines in KSWS of species such as muntjac, which are generally widespread and 

common, are concerning as they suggest that sustained anthropogenic pressure can lead to population 

collapses, even for resilient species. Equally, results for arboreal primates and peafowl from KSWS 

suggest that when hunting pressure remains low and forest cover is maintained, species populations 

within a site can remain stable.  

 

Our findings will be valuable for future IUCN Red List assessments and regional conservation 

planning. We have demonstrated how robust monitoring within KSWS has provided critical 

information for assessing the impact of past management action, for example reduced forest loss 

through the REDD+ program, by linking it to species outcomes such as stable primate populations. 

Our results can guide future management decisions including increased anti-snare efforts and 

strategic, targeted deployment of resources based on species distributions.  

 

These results also have wider implications for both species conservation and PA management. First, 

the species trends and potential drivers of population declines seen in KSWS are likely to be 

replicated in PAs across SEA. Hunting of wildlife for consumption, trophies, and trade is widespread 

in SEA and has resulted in species extinctions (Brook et al. 2014). Hunting with snares and free-

ranging dogs (hunting and feral dogs) in particular represent two of the most serious threats to wildlife 

populations across SEA. Population declines in terrestrial mammals driven by snaring and free-

ranging dogs are likely to be occurring in PAs across SEA where pressure from such threats is high, 

conservation investment and resources are low, and awareness is limited by inadequate monitoring. In 
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PAs across the region where these threats are known to exist, this study suggests that managers should 

target resources at anti-snare efforts and management of free-ranging dogs to protect populations of 

terrestrial species.  

 

Second, monitoring of biodiversity via appropriate indicators is essential to allow the attribution of 

species outcomes to conservation action. The establishment of a robust monitoring framework is 

prioritised in the Post-2020 Global Biodiversity report (CBD 2020a). Monitoring is particularly 

important within PAs as their primary function is the conservation of biodiversity. Continued efforts 

to increase global PA coverage, driven by Aichi Target 11 (CBD 2010), have seen some success with 

over 15% of the Earth’s terrestrial surface and 7% of oceans legally protected (UNEP-WCMC et al. 

2020). Yet evidence linking management action to biodiversity outcomes within PAs is sparse 

(Geldmann et al. 2018). For PAs where protection of wildlife is a primary objective, long-term 

datasets on wildlife populations are critical for understanding population dynamics, evaluating 

extinction risk, informing management action, and assessing interventions (Magurran et al. 2010; 

White 2019). Despite the significant contribution that long-term datasets make to conservation 

research and policy, investment in the collection of such data is falling (Hughes et al. 2017). There is 

an urgent need for robust long-term wildlife monitoring data in SEA to understand the effects that 

hunting, wildlife trade, and other threats are having on already-fragmented populations, to support 

conservation decision-making and assessment, and ultimately to avoid species extinctions. 
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4.6. SUPPORTING INFORMATION 

 4.6.1 Data collection on line transects 

Effort varied among transects within years, and among years, depending on transect location and 

available resources each year (Table S4.1). A total of 40 transects were surveyed. For clustered 

animals, perpendicular distances were recorded from the line transect to the geometric centre of the 

group. The primary data recorded for each observation on a line transect were: Transect ID, species, 

distance from transect to individual/cluster, angle of the transect, angle of the individual/cluster, and 

cluster size (if applicable). Transect 20 was discarded for all analyses as it was located outside the 

survey area, resulting in the loss of 5 observations across the study period. 

 

Table S4.1. Team composition for line transect surveys. Team members have been anonymised. 

 Team 

member 

A 

 

B C 

 

D 

 

E 

 

F 

 

G 

 

H 

 

I 

 

J 

 

K 

 

Survey             

2010  X X X X     X   

2011  X X X X     X  X 

2013  X X X X X       

2014  X X X X X X X     

2016  X X X X X X X X    

2018   X X X X X    X  

2020   X X X X   X  X  

 

Square line transects can potentially cause detection bias around the corners, as animals on the inner 

side of the corner could be detected twice. Although double-counting does not in itself violate 

distance-sampling assumptions, bias may arise if the two sightings are non-independent, for example 

if the second sighting occurs because animals are still present at the location of the first sighting. To 

assess whether there was evidence of corner-bias in our data, we tested for differences in density of 

observations between corner areas and non-corner areas. The corner samples were obtained from all 

transect sections within 50 m of a corner, and the non-corner samples were obtained by two methods: 

firstly, as all transect sections not within 50 m of a corner; and secondly by using 50 m transect 

sections around each of 1000 randomly-selected points, discarding any that overlapped with corner 
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areas. For either method, observation density was calculated for the corner and non-corner samples 

and compared using a t-test. Neither method resulted in a significant difference in observation density 

between corner areas and non-corner areas, so no further action was taken to address corner effects.  

4.6.2. Detection function model selection 

Observation-level covariate data were collected during line transect surveys for inclusion in the 

detection function modelling process: observer and cluster size (all years), and habitat and time of day 

(2013 onwards). Evidence of lumping at a distance of 0 m was detected for some species: douc, 

muntjac, langur, LT macaque, PT macaque, and pig, which can result in biased estimates (Buckland et 

al., 2001). For these species, models were run using the raw distance data followed by models where 

distance data were grouped into distance bins. If the abundance estimates from the two sets of models 

were very similar (< ± 1 SE) then the unbinned results were used. If the results were different (> ± 1 

SE) then the binned results were used (Buckland et al., 2015, 2001). 

4.6.3. Temporal trend analysis and bootstrapping approach 

Uncertainty in distance sampling is comprised predominantly of encounter rate variance (ERV), 

variance in the estimation of the detection function, and the mean cluster size (Buckland et al., 2001; 

Fewster et al., 2009). For sites such as KSWS which exhibit high heterogeneity in habitat types, ERV 

is likely to be high, yet dependent on the particular spatial attributes of the survey design (i.e., transect 

layout). Bootstrapping is an effective method for quantifying the range of uncertainty arising from the 

above processes (O. N. P. Hamilton et al., 2018). Many of the study species were known to exhibit 

spatial heterogeneity in abundance, and this variation could be broadly associated with habitat. We 

therefore employed a bootstrap scheme based on habitat strata, such that every bootstrap resample had 

a similar habitat composition to that of the original sample. This ensured that the bootstrap resamples 

would reflect the key property of the systematic sampling design, namely that all realisations of the 

design have representative habitat coverage. A detailed description of principles of variance 

estimation for systematic survey designs is given in Fewster (2011). 

To implement the bootstrap scheme, transects were first categorised by broad habitat type (“dense” or 

“open” forest). Transects within each habitat category were sampled with replacement until the effort 

across all years in the sample first equalled or exceeded the effort across all years for that habitat 

category in the original data, producing a single bootstrap replicate. A detection function model was 

fitted to the replicate data using the same key function and truncation distance used in the abundance 

estimation above. A GAM was fitted to the resulting abundance estimates and used to predict a 

smooth temporal abundance trend across the study period for that replicate. Prior to the bootstrapping, 

GAMs with either one, two, or three degrees of freedom were fitted to the original abundance 

estimates for each species and AIC was used to determine the best fit. This same model formulation 

was used for each replicate of that species. From 2000 bootstrap replicates, we obtained 2000 
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replicate GAM trend curves. The overall estimated trend curve and 95% confidence intervals were 

taken on a pointwise basis from the 50%, 2.5%, and 97.5% quantiles of these 2000 curves. 

4.6.4. Covariates used in the spatial models 

The distances from a segment to the nearest variable location (e.g., water body, Vietnam border) were 

measured from the centre of the segment. The variables tested in the spatial models were within-

segment habitat (dense forest, open forest, non-forest, deforested, water), elevation, distance to water 

bodies, distance to human settlements, distance to ranger stations, and distance to the Vietnamese 

border. A habitat class was assigned to a transect segment or a prediction grid cell when it covered 

more than 50% of the spatial unit. If a cell or segment had equal amounts of two habitat classes, then 

the dominant class in the surrounding area was chosen. A digital elevation model was used to assign 

elevation values to line transect segments and prediction grid cells, and the locations of ranger 

stations, human settlements and the Vietnam border were provided by the Ministry of Environment of 

the Royal Government of Cambodia. Spatial data on rivers were provided by WCS. Distances from 

prediction grid cells and transect segments to the nearest variable point location were calculated using 

QGIS (“QGIS Geographic Information System,” 2020).   

4.6.5. Creation of transect segments and the prediction grid 

Each line transect was divided into 40 equally sized contiguous spatial segments measuring 100m x 

100m (n = 1560) and wildlife observations were allocated to the segment within which they fell. 

Segment size was based on 2 x effective strip width W which was truncated to 50m (Buckland et al., 

2004). In addition to their primary numerical IDs (i.e. 1 - 39), transects were given unique IDs for 

each multi-day visit across all years (n = 349) in order to reduce confounding temporal effects when 

testing model results for autocorrelation (Buckland et al., 2004). To improve autocorrelation 

assessment further each segment was also given a unique ID for each multi-day visit (n = 14,240), 

resulting in multiple IDs for each spatial segment representing temporal replication of surveys within 

that segment. Spatial trends for the entire study area were predicted over a grid with a cell size of 200 

x 200m (n = 70,024). The size of the study area and available computing power precluded a prediction 

grid with cell size matching the transect segment size, and so the smallest practical size that was 

appropriate for the scale of the covariates was selected. The prediction grid was produced using QGIS 

(QGIS Geographic Information System, 2018, version 3.4.0). Each prediction grid cell and transect 

segment was assigned a value for each variable.  

4.6.6 Details on spatial modelling process, model selection, and autocorrelation 

Model building started with fully saturated models, with model complexity being reduced in a step-

wise fashion. Terms were removed if their estimated degrees of freedom (EDF) had been shrunk to 

<1, or if they were insignificant (p>0.05). If a covariate’s EDF was close to 1 the model was re-run 

with that covariate as a parametric term to check if model fit was improved. Model selection was done 
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using a combination of diagnostic plot assessment and AIC for Tweedie and negative binomial 

distributions, and analysis of variance for the quasi-Poisson distribution. The habitat variable was 

retained in all models based on the authors’ understanding of the importance of habitat for the species 

in this study. Each final model was tested for autocorrelation. If significant autocorrelation existed 

models would be re-fit with the following terms in succession until autocorrelation was reduced: 

univariate or bivariate smooths of the location (x,y), first-order autoregressive covariance structure, 

autoregressive moving average error structure. The best model from each of the three distribution 

groups was tested against the other two using AIC (Tweedie and negative binomial) and analysis of 

variance (quasi-Poisson), resulting in a single final model. Variance for the final model was estimated 

by summing the GAM uncertainty estimation with the detection function uncertainty estimation via 

the delta method (Buckland et al., 2004).
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Table S4.2. Total effort (distance walked) in each survey year and the number of observed clusters for all recorded species* 

Year Effort (km2) BAN BSD ELD GAU GPF GSL LTM PIG PTM RMJ SAM STM YCG Total 

2010 1600 5 333 0 13 26 36 36 53 26 169 6 7 19 729 

2011 1476 3 461 0 9 16 36 35 28 57 175 3 11 47 881 

2013 1260 0 265 1 2 16 34 7 26 43 167 5 1 21 588 

2014 1292 8 535 0 7 25 36 28 41 80 181 7 6 34 988 

2016 1272 3 437 2 1 12 17 17 32 49 93 0 7 24 694 

2018 1280 1 338 1 2 41 21 23 23 73 58 3 0 32 616 

2020 1280 0 333 0 1 31 13 24 19 73 35 0 2 29 560 

Total 9460 20 2702 4 35 167 193 170 222 401 878 24 34 206 5056 

* BAN = Banteng, BSD = Black-shanked douc, ELD = Eld’s deer, GAU = Gaur, GSL = Germain’s silver langur, LTM = Long-tailed macaque, PIG = Wild 

pig, PTM = Pig-tailed macaque, RMJ = Northern red muntjac, SAM = Sambar, STM = Stump-tailed macaque, YCG = Yellow-cheeked crested gibbon 
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Table S4.3. Encounter rate for each recorded species* in each survey year. Encounter rate is calculated as n/L where n is the total number of observed 
individuals and L is the total length of transect walked (effort). 

Year BSD BAN ELD GAU GPF GSL LTM PIG PTM RMJ SAM STM YCG Mean 

2010 0.7200 0.0244 0.0000 0.0119 0.0238 0.0769 0.1113 0.0938 0.0619 0.1125 0.0044 0.0200 0.0231 0.0988 

2011 1.1098 0.0068 0.0000 0.0183 0.0237 0.0996 0.1321 0.0203 0.1877 0.1287 0.0020 0.0298 0.0793 0.1414 

2013 0.8222 0.0000 0.0016 0.0016 0.0325 0.1278 0.0389 0.0341 0.1635 0.1444 0.0056 0.0032 0.0405 0.1089 

2014 1.6664 0.0093 0.0000 0.0108 0.0286 0.1432 0.0759 0.0627 0.2539 0.1401 0.0070 0.0163 0.0712 0.1912 

2016 0.9717 0.0063 0.0024 0.0008 0.0228 0.0558 0.0527 0.0590 0.1226 0.0731 0.0000 0.0102 0.0417 0.1092 

2018 1.0570 0.0008 0.0016 0.0031 0.0805 0.1414 0.1602 0.0406 0.2047 0.0500 0.0023 0.0000 0.0641 0.1389 

2020 1.0758 0.0000 0.0000 0.0008 0.0430 0.0734 0.0680 0.0367 0.1797 0.0273 0.0000 0.0063 0.0641 0.1212 

Mean 1.0604 0.0068 0.0008 0.0068 0.0364 0.1026 0.0913 0.0496 0.1677 0.0966 0.0030 0.0122 0.0548 0.1299 

* BAN = Banteng, BSD = Black-shanked douc, ELD = Eld’s deer, GAU = Gaur, GSL = Germain’s silver langur, LTM = Long-tailed macaque, PIG = Wild 

pig, PTM = Pig-tailed macaque, RMJ = Northern red muntjac, SAM = Sambar, STM = Stump-tailed macaque, YCG = Yellow-cheeked crested gibbon 
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Table S4.4. Model formulation, abundance and density estimates from conventional distance sampling for the 11 key species. N is the estimate for 
individual abundance, and D is the estimate for individual density. For each of N and D the associated parameters are: se = standard error, cv = 
coefficient of variation, and lcl and ucl = lower and upper 95% confidence intervals respectively.  

Year Species* 
Data 

pooling 

Key 

term** 

Adjustment 

term *** 
Covariates$ N n_se n_cv n_lcl n_ucl D d_se d_cv d_lcl d_ucl 

2010 BSD annual Hn - - 24289 5127 0.21 15936 37021 12.92 2.73 0.21 8.48 19.69 

2011 BSD annual Hn - - 25795 5299 0.21 17098 38917 13.72 2.82 0.21 9.10 20.70 

2013 BSD annual Hn - - 24444 4699 0.19 16653 35881 13.00 2.50 0.19 8.86 19.09 

2014 BSD annual Hn - Observer + Habitat 35351 6283 0.18 24754 50486 18.80 3.34 0.18 13.17 26.85 

2016 BSD annual Hr - AM/PM 21744 4117 0.19 14877 31782 11.57 2.19 0.19 7.91 16.91 

2018 BSD annual Hn - observer + habitat 27720 5697 0.21 18406 41747 14.75 3.03 0.21 9.79 22.21 

2020 BSD annual Hr - observer 24929 5352 0.22 16241 38266 13.26 2.85 0.22 8.64 20.35 

2010 YCG pooled Hn - year 952 378 0.40 441 2055 0.51 0.20 0.40 0.24 1.09 

2011 YCG pooled Hn - Cluster size 1707 492 0.29 960 3033 0.91 0.26 0.29 0.51 1.61 

2013 YCG pooled Hn - year 1317 356 0.27 772 2245 0.70 0.19 0.27 0.41 1.19 

2014 YCG pooled Hn - Cluster size 1431 462 0.32 756 2709 0.76 0.25 0.32 0.40 1.44 

2016 YCG pooled Hn - Cluster size 912 239 0.26 541 1536 0.49 0.13 0.26 0.29 0.82 

2018 YCG pooled Hn - year 1505 429 0.29 858 2637 0.80 0.23 0.29 0.46 1.40 

2020 YCG pooled Hn - year 1432 474 0.33 750 2735 0.76 0.25 0.33 0.40 1.46 

2010 GSL pooled Hn - size + year 2912 1703 0.59 974 8712 1.55 0.91 0.59 0.52 4.63 

2011 GSL pooled Hn - size + year 3468 1735 0.50 1335 9009 1.85 0.92 0.50 0.71 4.79 

2013 GSL pooled Hn - size + year 3524 1499 0.43 1547 8029 1.87 0.80 0.43 0.82 4.27 

2014 GSL pooled Hn - size + year 3205 2040 0.64 985 10425 1.71 1.09 0.64 0.52 5.55 
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2016 GSL pooled Hn - size + year 1515 1213 0.80 365 6292 0.81 0.65 0.80 0.19 3.35 

2018 GSL pooled Hn - size + year 2935 1435 0.49 1153 7475 1.56 0.76 0.49 0.61 3.98 

2020 GSL pooled Hn - size + year 1487 720 0.48 588 3758 0.79 0.38 0.48 0.31 2.00 

2010 LTM pooled Hn - size + year 3125 1324 0.42 1379 7080 1.66 0.70 0.42 0.73 3.77 

2011 LTM pooled Hn - size + year 3557 1348 0.38 1704 7425 1.89 0.72 0.38 0.91 3.95 

2013 LTM pooled Hn - size + year 830 553 0.67 245 2812 0.44 0.29 0.67 0.13 1.50 

2014 LTM pooled Hn - size + year 2160 1038 0.48 860 5424 1.15 0.55 0.48 0.46 2.89 

2016 LTM pooled Hn - size + year 1460 598 0.41 660 3231 0.78 0.32 0.41 0.35 1.72 

2018 LTM pooled Hn - size + year 3504 1598 0.46 1461 8403 1.86 0.85 0.46 0.78 4.47 

2020 LTM pooled Hn - size + year 1566 549 0.35 792 3097 0.83 0.29 0.35 0.42 1.65 

2010 PTM pooled Hn - Cluster size + Year 2008 818 0.41 913 4417 1.07 0.44 0.41 0.49 2.35 

2011 PTM pooled Hr - Cluster size 4320 1437 0.33 2237 8343 2.30 0.77 0.33 1.19 4.44 

2013 PTM pooled Hn - Cluster size + Year 4224 1345 0.32 2262 7889 2.25 0.72 0.32 1.20 4.20 

2014 PTM pooled Hr - Cluster size 5615 1226 0.22 3622 8705 2.99 0.65 0.22 1.93 4.63 

2016 PTM pooled Hr - Cluster size 2539 612 0.24 1568 4112 1.35 0.33 0.24 0.83 2.19 

2018 PTM pooled Hn - Cluster size + Year 5138 1322 0.26 3085 8557 2.73 0.70 0.26 1.64 4.55 

2020 PTM pooled Hn - Cluster size + Year 3929 930 0.24 2457 6284 2.09 0.49 0.24 1.31 3.34 

2010 STM pooled Hr - - 529 344 0.65 159 1758 0.28 0.18 0.65 0.09 0.94 

2011 STM pooled Hr - - 1093 742 0.68 315 3796 0.58 0.40 0.68 0.17 2.02 

2013 STM pooled Hr - - 116 117 1.00 22 631 0.06 0.06 1.00 0.01 0.34 

2014 STM pooled Hr - - 598 404 0.68 173 2064 0.32 0.22 0.68 0.09 1.10 

2016 STM pooled Hr - - 375 222 0.59 124 1134 0.20 0.12 0.59 0.07 0.60 
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2018 STM pooled Hr - - 0 0 0.00 0 0 0.00 0.00 0.00 0.00 0.00 

2020 STM pooled Hr - - 230 231 1.01 42 1246 0.12 0.12 1.01 0.02 0.66 

2010 BTG pooled Uni SimPoly - 382 367 0.96 75 1956 0.20 0.20 0.96 0.04 1.04 

2011 BTG pooled Uni SimPoly - 121 99 0.81 29 511 0.07 0.05 0.81 0.02 0.27 

2013 BTG pooled Uni SimPoly - 0 0 0.00 0 0 0.00 0.00 0.00 0.00 0.00 

2014 BTG pooled Uni SimPoly - 167 74 0.45 71 392 0.09 0.04 0.45 0.04 0.21 

2016 BTG pooled Uni SimPoly - 113 89 0.79 28 461 0.06 0.05 0.79 0.02 0.25 

2018 BTG pooled Uni SimPoly - 14 14 1.02 3 77 0.01 0.01 1.02 0.00 0.04 

2020 BTG pooled Uni SimPoly - 0 0 0.00 0 0 0.00 0.00 0.00 0.00 0.00 

2010 GAU pooled Hn - - 497 348 0.70 139 1778 0.26 0.19 0.70 0.07 0.95 

2011 GAU pooled Hn - - 763 624 0.82 180 3236 0.41 0.33 0.82 0.10 1.72 

2013 GAU pooled Hn - - 66 47 0.72 18 242 0.04 0.03 0.72 0.01 0.13 

2014 GAU pooled Hn - - 453 257 0.57 156 1313 0.24 0.14 0.57 0.08 0.70 

2016 GAU pooled Hn - - 0 0 0.00 0 0 0.00 0.00 0.00 0.00 0.00 

2018 GAU pooled Hn - - 131 105 0.80 32 541 0.07 0.06 0.80 0.02 0.29 

2020 GAU pooled Hn - - 33 33 1.01 6 179 0.02 0.02 1.01 0.00 0.10 

2010 PIG pooled Hr - year 3377 1039 0.31 1846 6177 1.80 0.55 0.31 0.98 3.29 

2011 PIG pooled Hr - year 729 145 0.20 492 1080 0.39 0.08 0.20 0.26 0.57 

2013 PIG pooled Hr - year 1175 392 0.33 610 2262 0.63 0.21 0.33 0.33 1.20 

2014 PIG pooled Hr - year 2067 493 0.24 1288 3316 1.10 0.26 0.24 0.69 1.76 

2016 PIG pooled Hr - year 1832 783 0.43 801 4188 0.97 0.42 0.43 0.43 2.23 

2018 PIG pooled Hr - year 1267 399 0.32 683 2348 0.67 0.21 0.32 0.36 1.25 
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2020 PIG pooled Hr - year 1100 355 0.32 587 2063 0.59 0.19 0.32 0.31 1.10 

2010 RMJ pooled Hn - - 3383 557 0.17 2434 4703 1.80 0.30 0.17 1.30 2.50 

2011 RMJ pooled Hn - - 3967 666 0.17 2836 5550 2.11 0.35 0.17 1.51 2.95 

2013 RMJ pooled Hn - - 4258 650 0.15 3137 5780 2.27 0.35 0.15 1.67 3.07 

2014 RMJ pooled Hn - - 4317 760 0.18 3036 6138 2.30 0.40 0.18 1.62 3.27 

2016 RMJ pooled Hn - - 2173 466 0.21 1417 3334 1.16 0.25 0.21 0.75 1.77 

2018 RMJ pooled Hn - - 1573 295 0.19 1082 2288 0.84 0.16 0.19 0.58 1.22 

2020 RMJ pooled Hn - - 825 188 0.23 524 1300 0.44 0.10 0.23 0.28 0.69 

2010 GPF pooled Hn - year + size 308 110 0.36 154 617 0.16 0.06 0.36 0.08 0.33 

2011 GPF pooled Hn - year + size 380 187 0.49 148 972 0.20 0.10 0.49 0.08 0.52 

2013 GPF pooled Hn - year + size 377 165 0.44 162 877 0.20 0.09 0.44 0.09 0.47 

2014 GPF pooled Hn - year + size 500 156 0.31 271 926 0.27 0.08 0.31 0.14 0.49 

2016 GPF pooled Hn - year + size 370 213 0.58 125 1093 0.20 0.11 0.58 0.07 0.58 

2018 GPF pooled Hn - year + size 1288 508 0.40 599 2770 0.69 0.27 0.40 0.32 1.47 

2020 GPF pooled Hn - year + size 745 262 0.35 375 1481 0.40 0.14 0.35 0.20 0.79 

* YCG – Yellow-cheeked crested gibbon, BSD – Black-shanked douc langur, GSL – Germain’s silver langur, LTM – Long-tailed macaque, PTM – Pig-tailed macaque, STM 

– Stump-tailed macaque, BTG – Banteng, GAU – Gaur, PIG – Wild pig, RMJ – Northern red muntjac, GPF – Green peafowl. 

** Hn – Half normal, Uni – Unifom, Hr – Hazard rate. 

*** Cos – Cosine, SimPoly – Simple polynomial 

$ To create the ‘year’ covariate the years were treated as numeric and scaled and centred. ‘AM/PM’ represented the time of day the survey was conducted (morning or 

afternoon). 

+ Grp – group abundance estimated, Ind – Individual abundance estimated 
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Table S4.5. Model formulation and deviance explained for the final spatial model for each species 

Species* Distribution** Model*** 

Deviance Explained 

(%) 

GPF NB s(DB) + Hab + DW 24.4 

BSD QP s(DS) + s(DB) + s(Dst) + s(E) + s(x) + s(y) + Hab 28.5 

RMJ NB s(DS) + s(DB) + s(Dst) + Hab 16.3 

YCG NB s(DB) + s(DW) + s(x) + s(y) + Hab + Dst 18.5 

GSL NB s(DW) + s(Dst) + s(x,y) + Hab + E 66.1 

LTM NB s(DW) + s(DB) + s(E) + Hab + Dst 32.5 

PTM NB s(DW) + s(E) + s(x) + s(y) + Hab + DB 19.7 

* YCG – Yellow-cheeked crested gibbon, BSD – Black-shanked douc langur, GSL – Germain’s silver langur, LTM – Long-tailed macaque, PTM – Pig-tailed macaque, RMJ 

– Northern red muntjac, GPF – Green peafowl. 

** NB – negative binomial, QP – quasi-Poisson 

*** DB – distance to Vietnam border, Hab – Habitat, DW – distance to water, DS – distance to human settlement, Dst – distance to ranger station, E – elevation, XY – xy 

coordinates 
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Table S4.6. Model outputs for the final spatial model for green peafowl. Values are on the log scale 

 Parametric coefficients  Smooth terms 

Parameter* Estimate SE Z value p  edf χ2 p 

Intercept (Habitat D) -1.52 0.32 -47.3 <2 × 10-16     

Habitat DEF 2.61 1.65 1.59 0.11     

Habitat NF 1.59 0.56 2.83 4.7 × 10-3     

Habitat O 2.0 0.34 5.90 4 × 10-9     

Habitat W -37.1 8.2 × 106 0.00 1.0     

Distance to water -5.3 × 10-4 2.8 ×10-4 -1.9 0.05     

Distance to border      3.34 35.7 1.1 ×10-8 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Table S4.7. Model outputs for the final spatial model for black-shanked douc. Values are on the log scale 

 Parametric coefficients  Smooth terms 

Parameter* Estimate SE T value p  edf F p 

Intercept (Habitat D) -11.46 0.31 -37.31 <2 × 10-16     

Habitat DEF -0.70 0.79 -0.85 0.40     

Habitat NF -1.84 0.42 -4.34 1.4 × 10-5     

Habitat O -1.53 0.11 -13.75 <2 × 10-16     

Habitat W -2.0 0.95 -2.10 0.04     

Distance to settlement      2.81 3.19 9.6 × 10-4 

Distance to border      3.51 4.74 9.6 × 10-5 

Distance to ranger station      2.95 12.47 1.6 × 10-13 

Elevation      3.61 3.58 2.5 × 10-3 

X      7.33 5.10 5.0 × 10-9 

Y      7.90 8.88 <2 × 10-16 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Table S4.8. Model outputs for the final spatial model for northern red muntjac. Values are on the log scale 

 Parametric coefficients  Smooth terms 

Parameter Estimate SE Z value p  edf χ2 p 

Intercept (Habitat D) -12.14 0.09 -142.56 2 × 10-16     

Habitat DEF -36.95 1.2 × 107 0.00 1.0     

Habitat NF 0.35 0.28 1.24 0.214     

Habitat O 0.38 0.13 3.0 2.7 × 10-3      

Habitat W -37.7 8.2 × 106 0.00 1.0     

Distance to settlement      6.32 46.02 5.03 × 10-10 

Distance to border      4.50 118.81 <2 × 10-16 

Distance to ranger station      3.10 12.65 0.002 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Table S4.9. Model outputs for the final spatial model for yellow-cheeked crested gibbon. Values are on the log scale 

 

 

Parametric coefficients  Smooth terms 

Parameter* Estimate SE Z value p  edf χ2 p 

Intercept (Habitat D) -13.90 0.36 -38.10 <2 × 10-16     

Habitat DEF -42.91 0.00 -Inf <2 × 10-16     

Habitat NF -2.65 0.97 -2.72 0.007     

Habitat O -1.44 0.27 -5.32 1.0 × 10-7      

Habitat W 0.56 1.03 0.55 0.59     

Distance to ranger station 8.4 × 10-5  3.7 × 10-5 2.23 0.02     

Distance to border      2.14 6.51 0.001 

Distance to water      0.89 6.22 0.006 

X      2.46 12.41 2.4 × 10-5 

Y      2.96 14.81 1.7 × 10-5 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Table S4.10. Model outputs for the final spatial model for Germain’s silver langur. Values are on the log scale 

 

 

Parametric coefficients  Smooth terms 

Parameter* Estimate SE Z value p  edf χ2 p 

Intercept (Habitat D) -8.62 2.04 -4.22 2.4 × 10-5     

Habitat DEF -53.63 1.2 × 107 0.00 0.99     

Habitat NF -0.66 0.86 -0.76 0.45     

Habitat O -2.11 0.35 -6.02 1.7 × 10-9     

Habitat W 1.04 9.5 × 10-3 1.20 0.23     

Elevation -0.03 9.5 × 10-3 -3.57 3.6 × 10-4     

Distance to water      3.04 28.74 1.6 × 10-7 

Distance to ranger station      0.87 2.66 0.008 

XY      18.00 110.50 <2 × 10-16 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Table S4.11. Model outputs for the final spatial model for long-tailed macaque. Values are on the log scale 

 

 

Parametric coefficients  Smooth terms 

Parameter* Estimate SE Z value p  edf χ2 p 

Intercept (Habitat D) -14.76 0.33 -45.05 <2 × 10-16     

Habitat DEF -33.46 0.00 -Inf <2 × 10-16     

Habitat NF -1.91 1.04 -1.84 0.065     

Habitat O -1.19 0.29 -4.10 4.5 × 10-5     

Habitat W 1.81 1.12 1.63 0.10     

Distance to ranger station 1.5 × 10-4 3.2 × 10-5 4.75 2.04 × 10-6     

Distance to water      2.35 23.17 2.1 × 10-6 

Distance to border      3.86 34.45 2.1 × 10-4 

Elevation      1.16 3.53 0.059 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Table S4.12. Model outputs for the final spatial model for pig-tailed macaque. Values are on the log scale 

 

 

Parametric coefficients  Smooth terms 

Parameter* Estimate SE Z value p  edf χ2 p 

Intercept (Habitat D) -21.03 3.85 -5.47 4.5 × 10-8     

Habitat DEF -1.02 1.37 -0.75 0.46     

Habitat NF -2.35 0.55 -4.30 1.8 × 10-5     

Habitat O -1.31 0.21 -6.28 3.3 × 10-10     

Habitat W -0.55 0.97 -0.56 0.57     

Distance to border 3.3 × 10-4 1.5 × 10-4 2.18 0.03     

Distance to water      3.36 18.80 8.3 × 10-5 

Elevation      3.27 25.89 1.1 × 10-6 

X      4.23 17.60 1.9 × 10-4 

Y      2.20 10.82 9.7 × 10-4 

* Habitat abbreviations: D – dense forest, O – open forest, DEF – deforested, NF – non-forest, W - water 
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Figure S4.1. Smooth plots for black-shanked douc. X axes are the covariates and the Y 
axes are abundance on the link (log) scale 

Figure S4.2. Smooth plots for yellow-cheeked crested gibbon. X axes are the 
covariates and the Y axes are abundance on the link (log) scale 
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Figure S4.3. Smooth plots for Germain’s silver langur. X axes are the covariates 
and the Y axes are abundance on the link (log) scale 

Figure S4.4. Smooth plots for green peafowl. X axes 
are the covariates and the Y axes are abundance on 
the link (log) scale 
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Figure S4.5. Smooth plots for northern red muntjac. X axes are the covariates and 
the Y axes are abundance on the link (log) scale 
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Figure S4.6. Smooth plots for long-tailed macaque. X axes are the covariates and the Y 
axes are abundance on the link (log) scale 

Figure S4.7. Smooth plots for pig-tailed macaque. X axes are the covariates and the Y 
axes are abundance on the link (log) scale 
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Figure S4.8. Coefficient of variation for the spatial model predictions presented in Figure 4.3 of the 
main chapter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 in the main chapter provides details of published population estimates for the 11 focal 

species. Table 4.1 is limited to peer-reviewed publications, estimates that account for imperfect 

detection, have some form of error estimation (standard errors, confidence intervals), and are 

absolute estimates (as opposed to relative indices). There are, however, many reports and other 

publications that provide valuable information on the species, but for one or several of the 

reasons above were excluded from Table 4.1. The table below (Table S4.13) provides some of 

these additional references, although it is not an exhaustive list. 
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Table S4.13. Additional references for the 11 species monitored in Keo Seima Wildlife 
Sanctuary 

Common name Scientific name Additional references 

Southern yellow-cheeked crested 

gibbon 

Nomascus gabriellae Gray et al., 2010; Rawson et al., 

2011; Thinh et al., 2010; Traeholt et 

al., 2005 

Black-shanked douc Pygathrix nigripes Duc et al., 2008; Hoang, 2007; 

Nadler et al., 2007; Pollard et al., 

2007 

Germain’s silver langur Trachypithecus germaini Fiore, 2013; Moody, 2018; Timmins 

et al., 2013 

Long-tailed macaque Macaca fascicularis Karuppannan et al., 2014; Riley et 

al., 2015; Saren et al., 2019 

Northern pig-tailed macaque Macaca leonina Chetry et al., 2003; Coudrat and 

Nekaris, 2013; Nguyen et al., 2012; 

Sharma et al., 2014 

Stump-tailed macaque Macaca arctoides Nguyen et al., 2012; Syamil et al., 

2019; Toyoda et al., 2020 

Banteng Bos javanicus Hedges and Meijaard, 1999; 

Journeaux et al., 2018; Nguyen, 

2009; Pedrono et al., 2009 

Gaur Bos gaurus Ahrestani and Karanth, 2014; 

Choudhury, 2002; Gray et al., 2012; 

Karanth and Kumar, 2015; Nguyen, 

2009 

Northern red muntjac Muntiacus vaginalis Karanth and Nichols, 2000; Pei et al., 

2010; Steinmetz et al., 2010; Teng et 

al., 2005 

Wild pig Sus scrofa Ariefiandy et al., 2016; Gentle et al., 

2019; Ickes, 2001 (and refs within); 

Ikeda et al., 2020; O’Brien et al., 

2003; Sánchez-Cordón et al., 2019 

Green peafowl Pavo muticus Brickle, 2002; Goes, 2009; Hernowo, 

2011; McGowan et al., 1998; Shwe et 

al., 2020; van Balen et al., 1995 
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Chapter 5 
Conservation funding in dynamic 

social-ecological landscapes 
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5.0 ABSTRACT 

Short-term grants are the dominant funding mechanism for conservation projects around the world. 

Researchers, practitioners, and managers rely on unpredictable, time-limited, and highly competitive 

grants to fund and maintain conservation initiatives, leading to unstable project budgets over the long 

term. These ad-hoc funding sources makes investment and strategic planning challenging, with 

negative consequences for nature and stakeholders. Advanced modelling techniques have been 

applied extensively to spatial conservation investment problems (i.e., where to invest), but to my 

knowledge there are no quantitative studies that explore the consequences of short-term grant cycles 

on biodiversity or compare them to plausible alternatives. Therefore, in this chapter I use a 

generalised management strategy evaluation approach to explore the effects of different long-term 

funding strategies on forest cover in a simulated conservation landscape with a growing human 

population. I found that the funding scenario that mimicked the short-term grant cycle performed the 

worst out of all five scenarios, with 93% of all simulations resulting in complete forest loss. In 

contrast, two scenarios that reflected different levels of unpredictability in funding resulted in 

complete forest loss 1% and 25% of the time, and the scenario that reflected stable, predictable 

funding never experienced complete forest loss. My results demonstrate the negative effect of initial 

underfunding on long-term project success, and that the effects of uncertainty and unpredictability in 

funding from year to year is dependent on the ability to maintain core budgets at a certain level. The 

results further demonstrate that stable, predictable budgets perform best in terms of minimising forest 

loss over time. This study provides a rare theoretical insight into the implications of short-term grant 

cycles and unpredictable funding on biodiversity. I demonstrate that in the context of increasing 

human pressure on conservation landscapes, stable funding is likely to deliver greater conservation 

outcomes in the long-term than funding based on grant cycles. My results highlight the importance of 

developing alternative, sustainable funding mechanisms that can provide predictable budgets to 

landscape managers over multi-decadal timeframes, allowing for strategic and well-planned 

deployment of resources.  

5.1. INTRODUCTION 

Global conservation funding is inadequate to eliminate biodiversity loss (Echols et al., 2019; Waldron 

et al., 2013). Currently, the majority of conservation funding around the world comes from either 

governmental, intergovernmental, or philanthropic entities, where funds are distributed via grants 

(Huwyler et al., 2016; Larson et al., 2021; Sayer and Wells, 2004). In response to the global climate 

and ecological crises, novel approaches to funding environmental projects (including projects related 

to climate change, biodiversity, and sustainable development) have emerged. These new mechanisms 

are largely focussed on leveraging private sector investment via conservation finance (Huwyler et al., 

2016), green bonds, public-private partnerships, impact investing, and government-led incentives for 
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private sector investment such as new policy, subsidies, loans, and risk mitigation mechanisms (Clark 

et al., 2018). It is expected that these new approaches will affect both the quantity of funding available 

and the distribution mechanisms, moving away from short-term grants towards longer-term, 

sustainable financing (Echols et al., 2019). Although the development of alternative financing models 

for the environment is both necessary and promising, they are being developed within a global 

economy in which government policies, business models, and free-market capitalism still incentivise 

the environmental degradation the models are attempting to reduce (Clark et al., 2018). It is therefore 

likely that in the short- to medium-term, conservation practitioners will remain largely reliant on 

traditional grant-based funding to implement conservation activities.  

5.1.1. Grant-based conservation funding 

To see positive environmental gains, conservation action is often required over decades (Isaac et al., 

2018; Santana et al., 2014). This is significantly longer than the duration of conservation grants which 

often cover periods of a few years (Blom et al., 2010). Yet, grant-based funding is the dominant 

mechanism for conservation investment largely because funders are hesitant to provide long-term 

institutional support to government agencies that they consider lack the necessary infrastructure, 

processes, and technical and human resources. Project- or grant-based funding however, allows 

donors to maintain control over finances and programme implementation, standardise approaches, and 

measure progress (Sayer and Wells, 2004). This means that conservation projects often lack funding 

that is continuous or stable over periods greater than a given grant cycle. Very little research has been 

done to assess the effects of unstable, non-linear budgets on biodiversity outcomes, nor the effects of 

alternative funding strategies. Given the inadequate funding for conservation, to have the greatest 

positive effect on biodiversity as possible, managers and conservationists need to ensure the 

investment of scarce resources is strategic and efficient, and they must strive to maximise the 

biodiversity outcomes of each dollar spent (Bruner et al., 2004; McBride et al., 2007; Waldron et al., 

2013).  

Grants for conservation activities vary in size and duration, with larger, long-term grants (between 

three and five years) often requiring significant investments in staff time for the development of 

applications, and substantial administrative capacity to manage the grant if it is awarded. Such grants 

are often awarded by international financial institutions or international development agencies and 

often come with complex rules governing procurement, accounting, and reporting. These 

requirements often preclude smaller organisations that do not have in-house fundraising teams or 

large financial management and administrative capacity (Sanders et al., 2021). Alternatively, 

conservation organisations can apply for smaller, short-term grants (usually between one and three 

years) which are often targeted towards specific species, habitats, or activities. The smaller grants 

require less staff time for the application process and subsequent grant management yet can be limited 

in the amount of the award that can be spent on overheads, fixed costs, and other core project 
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expenditure such as salaries, fuel, office space, and utilities (Sanders et al., 2021). This results in the 

core operational budgets of smaller projects or organisations comprising small percentages of multiple 

short-term grants, leading to insecure and unstable core budgets that can fluctuate from year to year. 

Budgets such as this prohibit long-term strategic planning for investment of funds and conservation 

action (Emerton et al., 2006). There is a paucity of research into the long-term implications of grant-

based funding on the effectiveness of conservation projects, or how financial unpredictability may 

affect biodiversity outcomes over time. 

5.1.2. The effects of grant-based funding on conservation projects 

Investing conservation funds strategically over time is made difficult when funding is based on short-

term grants that generally last between one and five years, with little or no guarantee of future renewal 

of funding (Hodge and Adams, 2016; Sayer et al., 2017). Most conservation projects or initiatives, 

even in wealthy countries with relatively well-funded protected area networks, rely on such short-term 

grants to launch programmes, conduct research, and implement key activities such as training, 

engagement, enforcement, and outreach (Emerton et al., 2006). This funding model results in long-

term budgets that are non-linear, unpredictable, do not necessarily track changes in threat levels, and 

rarely reflect the time required to see positive conservation outcomes (Blom et al., 2010; Sayer et al., 

2017). The financial stability of a conservation project or organisation is therefore reliant on the 

ability to leverage external funding through grant applications, which are inherently competitive and 

have low success rates (Sayer and Wells, 2004; Sohn, 2019). This funding mechanism means that 

conservation projects go through periods of relative affluence when conservation activities (such as 

enforcement, policy interventions, and community engagement) can increase in scope and scale, 

ultimately leading to net benefits for nature (Coad et al., 2019b; Kearney et al., 2020; Lindsey et al., 

2017). The same projects will inevitably go through periods of financial hardship, which often occur 

between grants (Lambin et al., 2019).  

When conservation projects experience periods of inadequate funding, expenditure is restricted to 

core activities, additional activities wind down, staff redundancies occur, research and monitoring 

activities decrease, and new initiatives end (Bruner et al., 2004; Waithaka et al., 2021). These periods 

can have serious negative effects on conservation projects (Fernandes et al., 2017; Wittemyer, 2011). 

Organisations lose talented staff and thus institutional knowledge, trust between stakeholders and the 

project or organisation can be lost as commitments may not be met, local participation in project 

activities can end (Sayer and Wells, 2004), and stakeholders may view the project and the 

implementing organisation(s) as unreliable due to inconsistent support (Waithaka et al., 2021). In 

many parts of the world where unregulated or illegal activities such as forest clearance and hunting of 

wildlife threaten conservation landscapes, periods of financial hardship can cause increases in these 

activities as project support for enforcement, engagement, outreach, and overall project visibility 

decreases (Bang and Khadakkar, 2020; Henschel et al., 2014).  
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The cycle of organisations applying for grants to maintain budgets leads to ‘projectification’, whereby 

control over conservation activities, interventions, and strategic direction is ceded to funders (Sanders 

et al., 2021), as conservation organisations adapt to funding trends and specific funder interests in an 

effort to remain competitive in grant applications, and maintain project funding (Hodge and Adams, 

2016; Rodríguez et al., 2007). If financial and operational control is external in grant-funded projects 

that involve partnerships with government agencies, local organisations or communities, then host 

country authorities and other local partners will be unlikely to embrace responsibility, nor have any 

sense of ownership or genuine partnership (Hodge and Adams, 2016). There is also often a lack of 

transparency and coordination between funders and grant distributors which reduces cohesion and 

makes strategic allocation of funds at a broader scale difficult (Brockington and Scholfield, 2010; 

Laufer and Jones, 2021; Sayer et al., 2017). Nevertheless, many conservation projects are unable to 

fund activities through other means. 

5.1.3. The research gap 

Site-level assessments of investment priorities are relatively common, and form an important part of a 

manager’s toolkit for developing strategy (see Ervin, 2003; Utami et al., 2020). Yet studies that 

provide broader theoretical insights into long-term investment strategies in the context of finite 

resources are lacking. There is a large body of literature that explores prioritising conservation 

investment over space, or the ‘conservation resource allocation problem’ (Wilson et al., 2006), with 

approaches including return on investment (Armsworth et al., 2018; Murdoch et al., 2010), heuristic 

algorithms (Meir et al., 2004; Wilson et al., 2006), regression models (Fishburn et al., 2013), and 

impact mapping (Tulloch et al., 2020). The next question, which is equally important yet largely 

unanswered, is that once land has been selected or acquired for conservation, how should the authority 

responsible for its management invest finite conservation resources over the next five, ten, thirty, or 

fifty years to minimise biodiversity loss?   

One of the main challenges associated with assessing future conservation implementation and 

predicting outcomes is the inherent uncertainty surrounding future conditions (McBride et al., 2007). 

Previous studies have investigated the effects of investment uncertainty (transaction uncertainty and 

performance uncertainty) on the optimal allocation of conservation funds to land acquisition 

(McBride et al., 2007), and uncertainty surrounding future site conditions (availability and ecological 

condition) and how this influences the optimal combination of short- and long-term conservation 

contracts with private landowners (Lennox and Armsworth, 2011). Yet the uncertainty surrounding 

changing social-ecological conditions within a single site or landscape over time, and how this may 

affect biological resources given different investment strategies by the management authority, has yet 

to be investigated.  
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The global human population is increasing, particularly around protected areas and other ecologically 

rich landscapes (Wittemyer et al., 2008), and increasing human populations within these areas 

increase pressure on natural resources (Lindsey et al., 2014). Therefore, understanding how the funds 

available to landscape managers to invest over multi-decadal timeframes affect system dynamics in 

the context of increasing human pressure and uncertainty will be critical for developing strategies that 

maximise conservation gains. I am not aware of any previous studies that have investigated the effects 

of funding cycles and consequent investment strategies by managers within social-ecological systems. 

Lessons can be learnt from empirical studies that examine past strategies and the subsequent observed 

outcomes (Santana et al., 2014), but using such data to project future social-ecological conditions and 

system dynamics is at best challenging, and at worst misleading (Mouquet et al., 2015). In contrast to 

empirical studies, simulation modelling offers an analytical environment within which system 

dynamics can be stress tested without any real-world consequences.  

5.1.4. Simulation modelling for testing social-ecological system dynamics 

Conservationists have for many years relied on both theory and empirical generalisations to make 

urgent decisions when appropriate data have been lacking (Doak and Mills, 1994). Perhaps borne out 

of necessity in the past, theoretical models are now seen as important tools for ecologists and 

conservation biologists to improve understanding of their study systems (Green et al., 2005). 

Mathematical models offer the opportunity to take the well-studied component parts of a complex 

system and reassemble them in ways that capture their fundamental properties whilst allowing for the 

interrogation of system dynamics (Wilson, 1999). Such models require complex systems to be 

carefully simplified so that hypotheses can be tested within a manageable environment whilst 

ensuring fundamental processes are honoured. Social-ecological systems (SES) are fundamentally 

complex, dynamic systems that are characterised by non-linear relationships and feedbacks between 

multiple social and ecological sub-systems (Berkes et al., 2000). It is implausible to build a model that 

captures all components of a SES, and therefore simplified models that simulate the fundamental 

dynamics are required to test social-ecological theory. Generalised Management Strategy Evaluation 

(GMSE) is a modelling framework that allows the construction of simplified social-ecological 

systems that are comprised of four fundamental sub-systems, allowing for a huge variety of 

theoretical investigations (Bunnefeld et al., 2011; Duthie et al., 2018a).   

In this study, I build a widely applicable mechanistic model of a generic conservation landscape and 

use it to investigate the dynamics between different conservation funding situations, the resulting 

investment strategies by landscape managers, and forest loss, in the context of increasing human 

populations over a period of 50 years.  I use the GMSE modelling framework (Duthie et al., 2018a) to 

test the effects of five realistic investment strategies available to the landscape management authority 

that are designed to reflect real-world conservation funding scenarios: 1) a uniform management 

budget that does not increase or decrease over the study period, 2) a management budget that 
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increases linearly over time, 3) a management budget that fluctuates in a predictable and regular way, 

reflecting short-term grant cycles, 4) a management budget that fluctuates randomly and 

unpredictably, but with only minor variation from the starting value, reflecting a core budget that 

increases or decreases via short-term grants, and 5) a management budget that fluctuates randomly 

and unpredictably with high variation from the starting value, reflecting a highly variable budget that 

has no core quantity, and is therefore entirely governed by short-term grants of varying sizes and 

durations. To disentangle and emphasise potential effects of the different investment strategies on 

forest loss, I simplify the system so that the actions of the human stakeholders are the only factors 

influencing forest loss, and I push the investment scenarios to their extremes. This modelling 

framework is generalised in such a way as to be applicable to landscape managers and 

conservationists around the world who are reliant on non-linear and unpredictable funding cycles and 

offers theoretical insights into the consequences of the business-as-usual conservation funding 

mechanisms.   

5.2. METHODS 

5.2.1. GMSE 

GMSE is designed to simulate dynamic decision-making by stakeholders in a social-ecological 

system (Duthie et al., 2018a). The stakeholders are a) the “manager” who represents an appropriate 

authority, for example a protected area manager or a natural resource manager, and b) the “users” who 

represent independent actors such as farmers or hunters. Additionally, there is a natural “resource” 

population, for example animals or trees, that requires management. In each simulation, the manager 

is attempting to get the resource population as close to a pre-determined value as possible, and the 

users are trying to maximise their utility on the landscape. Simulations in GMSE are comprised of 

four submodels that govern the social-ecological system, each of which can be individually 

parameterised (Figure 5.1). The individual actors (manager, users, resources) are discrete, and events 

in the landscape are probabilistic, thus introducing stochasticity.  

The submodels are (1) the natural resource model, which is used to simulate the biological population 

within the system. The natural resource model can simulate complex spatially explicit biological 

populations that have individual traits such as age, and population-level traits such as carrying 

capacity and related density-dependent mortality. (2) The observation model represents the 

observation process, and the associated error, whereby the manager estimates the size of the natural 

resource population. The manager sets policy based on the estimates rather than the actual population 

size, thus introducing uncertainty that exists in the real world. (3) The manager model uses the genetic 

algorithm (GA, see below) to develop management policies that attempt to reduce deviation of the 

natural resource population from the target population size. The manager achieves this by 

dynamically altering the cost of actions for the users thereby increasing or decreasing the ability of the 
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users to act on the resources. (4) The user model, in which after the manager has set the policy, each 

user calls the GA to develop a strategy for that time step that maximises their utility (e.g., maximises 

their yield) given the constraints imposed by the manager. Users can choose to act on the natural 

resources (e.g., cull or scare), which can affect the resource population (e.g., if they choose to cull) or 

resources on the landscape cell (e.g., if they choose to scare, forcing some resources onto another 

cell). These changes then feed into the natural resource submodel in the next time step. For detailed 

explanations of the submodels, see Duthie et al (2018) and the documentation for the GMSE R 

package. 

The primary approach to altering system dynamics is via the manager and user budgets. The relative 

power between the manager and the users is largely driven by the relative budgets that each actor has 

access to. Generally, when the manager has a high relative budget, they have a greater ability to set 

policies that will influence the resource population in the desired way. For example, if the resource 

population is below the target, a manager with a relatively high budget can increase the costs of 

culling for the users, thus reducing the users’ ability to cull, and in turn allowing the resource 

population to recover. Conversely, if users have a relatively high budget, then they are more likely to 

be able to afford to take actions such as culling, even if the manager is setting the costs of such actions 

as high as possible. The budgets, and the associated dynamics, can be used to replicate various real-

world systems and scenarios such as conservation conflicts, power dynamics, and lobbying (Cusack et 

al., 2020; Duthie et al., 2018a; Nilsson et al., 2021).  

5.2.2. Genetic algorithm (GA) 

The GA is the process that mimics human decision-making, and through which the manager develops 

policy and users decide upon actions. The GA is called once for each decision-making actor on the 

landscape (the manager and n users) in each time step. Each call to the GA results in a policy decision 

(for the manager) or an action decision (for each user). Final manager and user strategies are selected 

within each call of the GA through a process that mimics evolution by natural selection (Duthie et al., 

2018b; Hamblin, 2013). Each GA call comprises multiple iterations (Figure 5.1). The first iteration 

initialises many possible strategies, followed by a process of cross-over and mutation (mixing of 

strategies, and generation of alternate strategies) between the initialised strategies, ensuring that 

budgets are not exceeded. High fitness strategies are selected via a fitness function and a tournament, 

and the resulting strategies form the starting layers of the next iteration, where the process is repeated. 

The fitness functions for manager and users rank different strategies based on their predicted effect on 

the resource population (for the manager), and an individual’s landscape yield (for the users).  

The process continues until a minimum number of iterations has been run and a convergence criterion 

is met (Duthie et al., 2018b). This process results in adaptive, but not necessarily optimal, strategies 

for the manager and the users. The GA takes the manager’s budget constraints, user action histories, 
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and the predicted consequences of each action on the resource population and uses the process 

described above to develop a strategy for the manager to reduce deviation from the target resource 

population size. Once the manager’s policy is established, users will individually call the GA to 

decide upon actions that maximise their utility (e.g., agricultural yield). Users can choose from several 

options depending on the parameters set by the researcher. These include tending their crops or acting 

on the natural resources (e.g., cull, scare), all of which will have some effect on their yield. Their 

ability to act on the natural resource is governed by both the user budget, and the manager’s policy, in 

each time step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Conceptual flow diagram showing the four submodels and the genetic algorithm, and 
how they interact in a single time step in GMSE. Adapted from Duthie et al., (2018). 

 

5.2.3. Model parameterisation 

5.2.3.1. Landscape 

In this study, I have used the GMSE modelling framework to explore the effects of different 

investment strategies and funding models available to a conservation manager on forest resources, in 

the context of finite funds and increasing anthropogenic pressure caused by an increasing human 

population. I simulated a forested landscape of 100 × 100 cells, where we assumed one cell was 

equivalent to 1 hectare, resulting in a landscape of 10,000 ha (or 100 km2). I allocated 30 “users” to 

the landscape, which in this case represented 30 villages or communities, each of which had an 
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approximately equal area of spatially explicit land upon which they could act. This resulted in each 

village having approximately 333 ha (3.33 km2) of land. I assumed the users represented agricultural 

communities whose primary livelihood is farming. I simulated scenarios over 50 time steps, which I 

assumed represented 50 years.  

5.2.3.2. Resource population  

The flexibility of GMSE allows for the biological resource to represent a population of a wide range 

of taxa. In this study, I assumed the resources were trees, that the manager’s goal was to protect as 

many trees as possible from being felled (i.e., maintain the resource population at the starting value), 

and that the users were able to increase their agricultural yield by felling trees on their land. I tested 

the landscape with a tree density that was realistic for a tropical forested landscape (50 trees ha-1, n = 

1,125,000), but because the number of users on the landscape was relatively low, due to each user 

representing a community rather than an individual farmer, the absolute number of trees felled was 

too low to see clear differences between scenarios. I therefore reduced the total number of trees to 

100,000 to ensure trends in felling were clear to see.  

Trees were randomly distributed across the landscape (with multiple trees allowed on any given cell), 

reflecting natural variation. The population dynamics of trees is difficult to capture over a 50-year 

time period due to slow growth and recruitment relative to animals. Furthermore, I wanted to 

eliminate any “noise” around the deforestation signal so that the only driver of forest loss was the 

effect of user actions on the trees. Therefore, I removed the effects of natural recruitment or natural 

deaths (density-dependent and density-independent), resulting in a static population (excluding the 

effects of the users). If trees were present on a landscape cell, they reduced the agricultural yield that 

could be harvested by the user. Each tree reduced the cell’s yield by 𝑌𝑟 = 8%, with the cumulative 

reduction in yield governed by the exponential function: 

𝑦 = (1 − 𝑌𝑟)𝑅𝑇  

Where 𝑦 is the yield of the cell when trees are present and 𝑅𝑇 is the number of trees remaining on the 

cell. Therefore, if there are 50 trees on a given cell, the cell’s yield is 1.5% of the total possible yield. 

If there are 25 trees remaining on a given cell then the cell’s yield increases to 12.4%, and so on.  

5.2.3.3. Users 

GMSE allows for each user to represent an individual actor or agent, who makes decisions about their 

actions based on individual circumstances. However, the number of users on a landscape cannot be 

changed during a simulation, and so to simulate increasing human populations I assumed that each 

user represented a village or community rather than an individual. I assumed that a population 

increase in a real-world community would result in increased human and financial resources, and 

increased demand for land (e.g., for housing and agriculture). These combined effects would increase 

the community’s desire and ability to clear forest land. This allowed me to employ the user budget to 
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simulate population increases. The user budget is the primary parameter that governs a user’s ability 

to take actions, such as felling trees. Therefore, a user budget that increases during the simulation 

represents an increase in the user’s power to act, thus simulating population increases.  

The only actions the users were permitted to take were 1) tend crops, and 2) fell trees. The decision 

about which action to take in each time step was governed by trade-offs in cost versus benefit 

(computed within the GA, see above). The parameter that defined how much a user could increase 

their yield by tending their crops was set to 0.01 (1%). This contrasts with the parameter governing 

the yield reduction for a single tree (8%, see section above). Different ranges of these parameters were 

tested for sensitivity (Supporting Information Figures S5.1 to S5.4), with the final values chosen to 

deliberately ensure that felling trees would have a much higher positive effect on yield than simply 

tending crops. This was both to reflect the fact that in the real world expanding agricultural area will 

generally increase yield more than tending existing agricultural land, and to simulate strong 

exogenous drivers of deforestation that are found around the world, particularly in the tropics (Ceddia 

2019, Davis et al 2015).  

5.2.3.4. Manager 

In our study, the manager represents a person or organisation that has a remit to conserve forest land 

and the authority to set and implement policy that affects the ability of users to take actions. I set the 

resource population target (which the manager tries to maintain) at the same value as the starting 

number of trees, and because there was no natural tree regeneration (natural population increase), the 

manager’s goal is to reduce forest loss as much as possible in every time step. These parameters were 

set to simulate a conservation landscape in which there is pressure on forest resources, and authorities 

are trying to eliminate, or reduce as much as possible, forest loss. This could, for example, represent a 

protected area, which contains both forest and local communities.  

In each time step, the manager called the GA and identified a policy, which was reflected in the cost 

for users to fell trees, that attempted to reduce forest loss as much as possible. I assumed the 

manager’s budget reflected the actual budget of the authority, and could represent a monetary budget, 

available non-monetary resources (e.g., law enforcement resources), or a combination of these. In 

each of the different scenarios, the manager’s budget varied according to the funding scenario I was 

simulating. I assumed that the manager achieved perfect detection of resources, so there was no error 

associated with the observation submodel. This was to keep the simulations as simple as possible. In 

the age of free, high resolution satellite imagery that is available every few weeks, it is plausible that a 

manager has near-perfect deforestation detection over a landscape.  

5.2.4. Scenarios  

I designed 5 scenarios with dynamic manager budgets that simulated different funding regimes that a 

manager or authority with responsibility over a conservation landscape may encounter in the real 
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world (Table 5.1, Figure 5.2). Scenarios 1 to 3 aimed to test three primary funding models and 

scenarios 4 and 5 aimed to test the effects of uncertainty and variability in funding. Before running the 

final 5 scenarios I tested several null scenarios to ensure the landscape was operating as expected 

(Supporting Information, figures S5.5 to S5.7). Due to the nature of the GA (i.e., identifying one out 

of multiple possible near-optimal solutions), and that each actor on the landscape calls the GA in each 

time step, stochasticity in decision-making is explicitly built into the simulations. Therefore, each 

simulation was run 100 times to quantify variation in results. The manager budget, user budget, 

number of felling actions, the cost of felling actions, and the number of trees remaining at each time 

step were extracted for each replicate simulation. For each parameter, the 50, 2.5, and 97.5% 

percentiles across all replicates were calculated and used to represent the median and lower and upper 

confidence intervals, respectively.  

For all scenarios, I ensured that the total cumulative budget for the manager was equal across all 

scenarios (Table 5.1). This was to eliminate the possibility of one scenario outperforming another 

simply because the manager had access to a greater total budget over the simulation period. In all 

scenarios, I assumed the same level of human population increase over time, and so for each scenario 

the user budget increases linearly with the same starting point and slope (Table 5.1, Figure 5.2). The 

absolute values for the user budget are arbitrary and can be set in such a way as to meet the objectives 

of the study. I tested various starting values and slopes for the user budget, increasing the parameter 

values until the absolute number of trees felled was sufficient to see clear differences between 

scenarios.  

The manager and user budgets are not equal nor necessarily proportional, as they are used in very 

different ways (Duthie et al., 2018a). Therefore, equal budgets do not necessarily equate to equal 

power to affect the system. The differences in manager and user budgets relative to each other is what 

governs the differences and changes in power to affect the system. It is important to recognise the 

incomparability between the absolute values of the manager and user budgets, and therefore to 

differentiate the two parameters in this study I will refer to the user budget as “community resources”.  

All simulations were conducted using the R package GMSE (Duthie et al 2018, v0.6.2.0), and all 

associated analyses described below were conducted in R (v4.0.4, R Core Team, 2021). Relevant 

parameter values used in the simulations can be seen in the Supporting Information (section 3).  

5.2.4.1. Scenario 1 

This scenario assumed that the manager budget does not change over the simulation period (Figure 

5.2). This scenario was designed to represent a conservation landscape in which the authority has a 

regular and predictable budget over time with which to invest in policy, but one which does not 

increase or decrease in response to changing threats or grant cycles. This scenario could represent a 
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government-funded landscape which has a finite but regular budget that is not reliant on short-term 

grants.  

5.2.4.2. Scenario 2 

This scenario assumed that the budget available to the manager starts low but increases with 

increasing pressure on the landscape (Figure 5.2). This scenario could represent a statutory authority 

in a conservation landscape in which the authority is provided regular and predictable budget 

increases with which to invest in policy. In this scenario the management authority is not reliant on 

short-term grants. The shape of the manager budget (starting point, slope) was calculated to ensure 

that the total cumulative budget was equal to the other scenarios (Table 5.1). 

5.2.4.3. Scenario 3 

This scenario assumed that the budget available to the manager increases and decreases in a regular 

and predictable way, regardless of the changing pressure on the landscape (Figure 5.2). This scenario 

was designed to replicate a conservation landscape in which the management authority is reliant on 

regular grant cycles. The scenario assumes that the authority conducts successful fundraising at 

regular intervals, and thus has a varying yet predictable budget with which to invest in policy 

implementation. The cycle length (i.e., the wavelength) is approximately 5 years, reflecting larger 

grants that are often provided by statutory funding agencies or international bodies. These large, 

longer-term grants require a high investment in staff time to apply for, and high administrative 

capacity to manage once implemented, and so are generally won by large, international organisations, 

government agencies, or collaborations between such partners, where the required resources already 

exist. To simulate this funding cycle, I produced a sine wave of the form: 

𝑀𝑏 = 350 × 𝑠𝑖𝑛(0.5𝑡) + 400 

Where 𝑀𝑏 is a vector of resulting manager budget values, and t is a vector of time steps (1, 2, …, 49, 

50). 

5.2.4.4. Scenario 4 

This scenario assumed that the budget available to the manager increased and decreased in 

unpredictable and irregular ways (Figure 5.2). This was to simulate a conservation landscape in which 

the management authority relies partly on grant funding for policy implementation, and so applies for 

a range of different grants which vary in size and duration but is not necessarily successful at any 

given time. This scenario assumes the management authority has some level of core funding, and so 

the budget never decreases to zero. This scenario could reflect any number of conservation landscapes 

around the world, where project budgets are subject to the success of funding applications, resulting in 

variable and unpredictable resources for project activities and policy implementation. To simulate this 

scenario, I used a Fourier series approach to create irregular curves by summing multiple sine waves 

of different frequency (𝑓), delay (𝜑), and strength (𝐴). I produced three sine waves for each replicate 
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simulation by randomly sampling values for the above parameters (Supporting Information). The 

three sine waves were summed to produce a random complex wave, using, 

𝐵(𝑡) = 𝐶 + ∑ 𝑏𝑖

3

𝑖=1

(𝑡) 

Where 𝐵(𝑡) is the manager budget at time t, 𝑏𝑖 is a function defined by a sine wave 𝑖 at time t, and C 

is a constant. Each of the 100 replicates produced a different complex wave (Figure 5.2 shows 10 

examples, see Supporting Information section 4 for all 100 waves used in the simulations).  

5.2.4.5. Scenario 5 

This scenario is a more extreme example of scenario 4 and aimed to test the effect of increased 

variation and uncertainty in manager budgets on deforestation and system dynamics. I increased the 

range of the available values from which the frequencies and component strengths for the three sine 

waves could be sampled, thus increasing the potential amplitude of each wave, and making the 

changes in wave frequency more extreme (Figure 5.2 shows 10 examples, see Supporting Information 

section 4 for all 100 waves used in the simulations). To simulate this scenario, I produced a set of 

three random sine waves which were used to produce a new complex wave for each replicate, using 

the same approach and formula as in Scenario 4 (Supporting Information).  

5.2.4.6. Standardisation  

Manager budgets in Scenario 1 had a constant value which summed to 25,000 over the 50 time steps, 

and for scenarios 2 to 5 I standardised the manager budgets to 25,000, using, 

𝑆_𝑀𝑏𝑖
 = 25000 ×

𝑀𝑏𝑖

∑ 𝑀𝑏𝑖
50
𝑖=1

 

Where 𝑆_𝑀𝑏𝑖
 is the standardised manager budget at time 𝑖, 𝑀𝑏𝑖

is the manager budget 𝑀𝑏 at time 

step 𝑖 produced in the above sections.  

 

5.2.5. Maximum harvest under maximum conflict 

The maximum harvest under maximum conflict (MHMC) was calculated for each time step in each 

scenario to improve our understanding of the power dynamics between the manager and the 

communities. The MHMC is a single value for each time step that is based on the manager and user 

budgets at that time step. It is the maximum number of trees a user can harvest if the manager uses all 

their budget to reduce felling, and the user uses all their budget to fell trees. The manager uses 10 

budget points to increase the cost of felling by 1. There is always a minimum cost of an action of 10. 

Therefore, the cost of an action for the user, assuming the manager is using all their budget to increase 

the cost of the action, will be, 
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𝑛𝑈𝐴 =
𝐶𝑟

(
𝑀𝑏
10

) + 10
 

where 𝑛𝑈𝐴 is the number of user actions (i.e., the number of trees felled), 𝐶𝑟 is the community 

resources (user budget), and 𝑀𝑏 is the manager budget. 
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Table 5.1. Details of the five funding scenarios. In all scenarios, the community resources started at a value of 2000 and increased with a slope of 75, 

resulting in a cumulative total of 191,875 

Scenario Description 

Manager budget 

Starting value Total cumulative budget 

1 Manager budget remains constant (i.e., does not increase) over time. 

Community resources increases linearly  

500 25,000 

2 Manager budget increases linearly, reflecting a regular and predictable 

increase in resources over time. Community resources increase linearly 

126.9 25,000 

3 Manager budget increases and decreases in a predictable way, reflecting 

reliable funding cycles. Community resources increases linearly 

499.3 25,000 

4 Manager budget increases and decreases unpredictably, reflecting 

unreliable and unpredictable funding streams over time. Community 

resources increase linearly 

Variable 25,000 

5 Manager budget increases and decreases unpredictably, reflecting 

unreliable and unpredictable funding streams over time. Community 

resources increase linearly 

Variable 25,000 
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Figure 5.2. Manager budgets and community resources (user budget) for the five scenarios. Scenarios 4 
and 5 have a different manager budget for each replicate simulation, and so this figure shows 10 examples 
for each. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. RESULTS  

The parameter settings used in the simulations ensured that communities would try and fell 

trees, thus increasing their yield, if it was possible to do so given the policy set by the manager. 

The values and positive slope of the community resources ensured that communities had 

sufficient power to clear the majority of the forest by the end of the 50 time steps in all 

scenarios (Table 5.2). These extreme parameter settings resulted in clear differences in the 

deforestation trajectories between the scenarios (Figures 5.3 and 5.4).  

5.3.1. Scenarios 1 to 3 

Of the three primary funding models, scenario 1 was the most effective at minimising 

deforestation over the 50 time steps (Figure 5.3). In all time steps, excluding time steps 4 to 9, 

scenario 1 retained the highest number of trees. This is despite having a felling count that 

increased linearly throughout the simulation (Figure 5.5). The increasing felling count in 

scenario 1 resulted in the loss of trees accelerating over time (Figure 5.3). Conversely, scenario 
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2 had a decelerating felling count over time (Figure 5.5) as the manager budget increased, 

resulting in a deforestation rate that slowed over time (Figure 5.3). Nevertheless, the low 

starting manager budget values for scenario 2, which were lower than scenario 1 for the first 

half of the simulation period, resulted in higher deforestation overall (Figure 5.3). Scenario 2 

performed worse than all other scenarios (including scenarios 4 and 5) for the first half of the 

simulation period (Figure S5.11), highlighting the effects of chronic underfunding. The 

fluctuations in the manager budget in scenario 3 is reflected in both the rate of deforestation 

(Figure 5.3) and the felling count (Figure 5.5). During periods of high manager budget, the 

felling count and deforestation rate decreases, and during periods of low manager budget, the 

felling count and deforestation rate increase. Despite the peaks in manager budget in scenario 3 

regularly reaching values much higher than the manager budget in scenario 1, this funding 

model had worse outcome in terms of forest loss than scenarios 1 and 2 (Figure 5.3) and 

resulted in complete loss of forest cover in 93% of simulations (Table 5.2). This can be 

explained by the felling count which shows that during periods of very low manager budget, the 

number of trees lost is between two and three times greater than any point in scenarios 1 and 2 

(Figure 5.5).  

5.3.2. Scenarios 4 and 5 

Scenarios 4 and 5 showed the potential effects of unpredictable and uncertain funding models 

on forest loss. Scenario 4 had less variation in manager budgets than scenario 5, and the 

simulations were more likely to have retained greater forest cover at any given time step than 

scenario 5 (Figure 5.4) across the 100 simulations. Interestingly, deforestation rates for scenario 

4 were very similar to those of scenario 1, and scenario 4 outperformed scenarios 2 and 3 in 

most cases (Figure S5.11). This suggests that unpredictable variation in manager budgets is not 

necessarily catastrophic, provided fluctuations are small and that some level of core funding 

means that manager budgets do not drop too low (Figure 5.2). Scenario 5 showed that large 

uncertainty and variability in manager budget could have very serious negative effects on forest 

cover over time (Figure 5.4). Despite many of the scenario 5 replicates having very high peaks 

in manager budgets (Figure 5.2), most simulations resulted in a worse outcome than scenario 4 

in terms of forest cover. Of the 100 simulations, complete forest loss occurred 25 times (25%) 

in scenario 5 (Table 5.2). As with scenario 3, the driver of forest loss can be seen in the felling 

counts for scenario 5, which reach extremely high levels during periods of low manager budget 

(Figure 5.5).   

5.3.3. Maximum harvest under maximum conflict (MHMC) 

The MHMC calculations revealed some of the power dynamics within each of the scenarios 

(Figure 5.6). The maximum number of trees that the communities could fell at a given time step 
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decreased over time in scenario 2, reflecting the increasing manager budget that provided 

increasing power to the manager to set policy and affect the number of felling actions. The rate 

at which the MHMC value decreased in scenario 2 was itself decreasing, stabilising to a near-

constant rate by the end of the simulation period. This reflects the increases in community 

resources over time, which were increasing at a faster rate than the increase in the manager 

budget (Figure 5.2), resulting in decreasing power for the manager. Scenarios 1 and 4 had the 

most stable MHMC values, reflecting the relatively stable manager budgets. The MHMC values 

for scenarios 3 and 5 reflected the fluctuating and highly variable manager budgets and 

demonstrated how the rate of forest loss could increase during periods of low manager funding. 

When the manager had little funding there was an increase in the potential number of trees the 

communities could fell, assuming the manager was using all their budget to reduce felling and 

the communities were using all their budget to fell trees (Figure 5.6).  

 

 

Figure 5.3. The number of trees remaining at each time step for scenarios 1, 2, and 3. Solid 
lines and faded ribbons are the 50, 2.5, and 97.5 percentiles from the 100 runs, respectively. 
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Figure 5.4. The number of trees remaining at each time step for scenarios 4 and 5. Solid lines 
and faded ribbons are the 50, 2.5, and 97.5 percentiles from the 100 runs, respectively. 
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Figure 5.5. The count of felling actions taken by all communities at each time step for the 
five scenarios. Solid lines and faded ribbons are the 50, 2.5, and 97.5 percentiles from the 
100 runs, respectively. 
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Figure 5.6. Calculated maximum harvest under maximum conflict (MHUMC) for all five 
scenarios. MHUMC is calculated using: community resources / ((manager budget/10) + 10). 
The value is the maximum number of trees that could be felled if the manager was using all 
their available budget to prevent felling, and the community were using all their available 
resources to fell trees. The lines for scenarios 4 and 5 (which had different manager budgets 
for each replicate simulation) represent the mean MHMC value at each time step across all 
replicate simulations. 

 

 

Table 5.2. Summary of the number of trees remaining at time step 50 (2.5, 50, 97.5 

percentiles), and the number of simulations that resulted in complete forest loss, from the 

100 replicates for each of the five scenarios. 

Scenario 
Trees remaining after 50 time steps Complete forest loss 

(no. of simulations) Mean 2.5 percentile 97.5 percentile 

1 5857 4660 6412 0 
2 715 281 1202 0 
3 0 0 0 93 
4 2823 545 5152 1 
5 8 0 4159 25 
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5.4. DISCUSSION  

Global funding for nature conservation is far below what is required to halt biodiversity loss 

(Freeling and Connell, 2020; Laufer and Jones, 2021), and the funding that is available is rarely 

stable or sustainable over periods of more than a few years. To maximise conservation gains, it 

is necessary to provide conservation managers, and conservation funders, with insights into the 

trade-offs between different approaches to long-term investment of limited resources in the 

context of increasing anthropogenic pressure on natural resources. To our knowledge, no 

studies have investigated the potential long-term consequences of existing funding mechanisms 

for conservation projects and organisations. Our results therefore provide crucial theoretical 

insight that researchers can use to develop future hypothesis testing and data collection, and 

funders, conservation bodies, and landscape managers can use to develop more effective long-

term investment strategies.  

I have demonstrated that the dominant funding mechanism for conservation in the world today 

– the short-term grant cycle – is not optimal for conservation investment within social-

ecological landscapes where there are competing objectives and increasing anthropogenic 

pressure on natural resources. In circumstances where project budgets experience negative 

peaks caused by gaps in grant funding, and where there is no core budget, biodiversity loss is 

accelerated. In these circumstances, managers are unable to maintain power to affect the system 

or set policies that benefit nature over the long-term. Increased uncertainty and variability 

around the shape of fluctuating budget curves inevitably increases uncertainty around the state 

of biodiversity over the long-term. Brief periods of high budgets in the grant cycle scenarios 

result in only brief periods of success where rates of forest loss decrease, and in the context of 

increasing human pressure on the landscape, these are insufficient to mitigate for the periods of 

low funding. Chronic underfunding, particularly in the early stages of a landscape conservation 

programme, can lead to serious negative effects on natural resources. Severe forest loss at the 

start of a project period, with all the associated losses of biodiversity, ecosystem process and 

services, leads to very poor project success over a 50-year period. Even when project budgets 

increase over time, the damage caused during initial periods of underfunding is difficult to 

remedy. 

5.4.1 Primary scenarios (scenarios 1 to 3) 

Our results have demonstrated that in a situation where human pressure on a landscape is 

increasing over time, and assuming managers across all scenarios have access to the same total 

budget, the most effective funding strategy for a conservation manager is a stable, predictable 

budget. A constant budget is preferable to an increasing budget that starts too low, even when 

the increasing budget exceeds the value of the stable budget halfway through the study period. 
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If a manager’s budget is too low at the start of the study period, initial forest loss is very high. 

The manager is able to reduce the rate of forest loss as their budget increases over time, but they 

are not able to make sufficient gains over 50 years to render the strategy better than a stable 

budget.  

Likewise, a fluctuating manager budget that reflects predictable grant cycles performs worse 

over 50 years than a stable budget. During periods of high budget, managers can develop 

effective policies that reduce forest loss. However, these periods are not sufficiently long, and 

budgets not sufficiently high, to offset the damage that is done during periods of low funding. 

Furthermore, the rate of forest loss during periods of low funding increases over time, as 

community resources increase. If the manager was focussed on the conservation of a wildlife 

population that exhibited reproduction and thus population growth, the periods of high budget, 

and therefore more effective protective policies, may be sufficient to maintain a healthy 

population as there would be periods of recovery. However, I assumed that the loss of primary 

forest could not be effectively reversed within a period of 50 years. These simulations could be 

further parameterised to include realistic forest regrowth or regeneration based on a specific 

landscape or ecosystem, but this would decrease the generality of the results and therefore was 

not attempted here.  

Providing a manager with a stable budget that allows the development and maintenance of 

policies that minimise deforestation over the long-term is the best approach in this study. Stable, 

predictable budgets in the real world allow conservationists and landscape managers to maintain 

staffing levels, invest in long-term relationships and partnerships with stakeholders (Armitage et 

al., 2020), maintain enforcement levels, and design policies and interventions that are strategic 

and adaptive over periods greater than short-term grant cycles (Blom et al., 2010; Sanders et al., 

2021). Conservation projects that are initially underfunded yet receive increasing resources will 

still spend many years working to reach the same levels of protection as they would have had, 

had they been provided an adequate, stable budget at the start. Our results predict that it could 

be several decades before the deforestation trajectories of the two alternative projects meet, and 

the increasing budget starts to pay dividends.  

I do however acknowledge that I have made assumptions in our models about the timescales 

within which actions and decisions are made, and the time it takes for the effects of those 

actions to occur. Therefore, inferences regarding the timescales associated with forest loss 

within and between scenarios should be seen as examples and treated with caution. Projects that 

repeatedly experience severe funding shortages due to grant cycles will not have the same 

capacity for long-term investment and strategic planning as projects with stable funding, 

resulting in greater losses for biodiversity.  
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5.4.2. Uncertainty and unpredictability in funding 

Scenarios 4 and 5 highlight two common funding situations for conservation organisations and 

projects (Hodge and Adams, 2016). Scenario 4 represents a situation where the management 

authority has some level of core funding that ensures the operational budget does not drop 

below a certain level, despite budget uncertainty over time. This is a common scenario for large, 

international conservation organisations or statutory authorities, which have long-term support 

for core operational budgets. They can increase their budgets at any given time through grant 

applications which can be used to support existing activities, initiate new programmes, bolster 

enforcement, or extend engagement and collaboration with stakeholders, all of which will have 

a positive effect on biodiversity conservation on the landscape (Andrade and Rhodes, 2012; 

Moore et al., 2018; Steinmetz et al., 2014). Likewise, grant funding will inevitably end within a 

few years, and there is no guarantee that future bids will be successful, resulting in decreases in 

overall budgets. However, the maintenance of budgets above a certain level means that core 

conservation activities do not cease, and the manager is able to minimise forest loss to a level 

similar to the manager in scenario 1.  

Conversely, scenario 5 represents a situation where the management authority has no core 

budget and is therefore entirely reliant on uncertain and unpredictable grant funding over time. 

This is the reality for many small organisations, grass roots projects, or poorly supported 

statutory authorities which rely on the ability of other partner organisations to leverage external 

funding. In this study, the manager in all scenario 5 replicates has the same cumulative total 

budget over the 50 years as the other scenarios, yet the shape of the budget curve is random. 

This leads to large and highly unpredictable positive and negative peaks in some cases. My 

results show that there is large variability in the overall success of the manager in scenario 5 to 

minimise forest loss. In some cases, they can maintain a forest loss trajectory similar to 

scenarios 1 and 4, yet more often the rate of forest loss is worse, regularly leading to complete 

forest loss.  

The results from scenarios 4 and 5 translate logically to the real world; if a conservation project 

or organisation has no core budget support, it is entirely reliant on the success of fundraising 

efforts. Winning sufficient funding via short-term grants to support adequate long-term 

conservation management is neither reliable nor straightforward (Sohn, 2019). When long-term 

budgets are unpredictable, uncertain, and highly variable, landscape managers are often unable 

to maintain core activities, guarantee continued support for communities and other stakeholders, 

plan investments strategically, assess impacts, or target investments at the most relevant drivers 

of biodiversity loss (Barnes et al., 2018; Gill et al., 2017; Gollin and Probst, 2015; McCarthy et 

al., 2012). In contrast, when core budgets are guaranteed, managers can maintain core activities 

and investments over the long-term which provides stability and minimises biodiversity loss. 
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5.4.3. Advantages of simulation studies 

Simulation studies allow us to investigate possible biodiversity outcomes from a variety of 

scenarios over time periods much longer than for which we generally have empirical data for. 

Monitoring data for conservation projects rarely exist over timeframes as long as 50 years, and 

managers are therefore required to assess conservation actions using monitoring data from 

significantly shorter periods. This study has demonstrated that this can be misleading. For 

example, if a manager was provided forest monitoring data for scenario 3 between years two 

and six, or between years 14 and 18, it would be reasonable to conclude that the existing 

investment strategy and associated conservation interventions were working, as the rate of 

forest loss was decreasing. If a manager was given forest monitoring data from any four-year 

period from scenario 1, they could reasonably conclude that the investment strategy and 

associated conservation interventions were not working, as the rate of forest loss was 

increasing. Neither manager could be justifiably criticised for their inference; they are drawing 

conclusions from the best available data, which is what conservationists around the world must 

do every day. Nevertheless, our results have demonstrated that these inferences are likely 

flawed, and that the manager from scenario 1 will have greater success in minimising forest loss 

over the long-term if they maintain their strategy. 

5.4.4. The way forward 

The global conservation community requires a huge increase in funding, and a fundamental 

shift in the constancy of funding, if it is to halt the decline in biodiversity and minimise the 

worst impacts of climate change (Echols et al., 2019; Larson et al., 2021). I have demonstrated 

that a funding model that relies on short term grant funding, which is a common mechanism in 

the conservation sector, is unlikely to be the most effective way of financing landscape 

conservation. In addition to the landscape-level challenges of short-term grants that I have 

demonstrated here, the lack of communication, cohesion, and national, regional, and global 

coordination between funders that administer conservation grants results in poor strategic 

allocation of funding across larger spatial scales (Laufer and Jones, 2021). Greater coordination 

between funders, or indeed less reliance on numerous, disparate funders, will allow more 

thoughtful and strategic assessments regarding allocation of conservation funds, thus 

maximising environmental return-on-investment (Echols et al., 2019).  

If global funding for conservation increases, the mechanisms by which this funding is 

distributed need to be carefully considered to ensure biodiversity gains per dollar are 

maximised. Our results suggest that simply increasing the number of short-term grants available 

within a competitive application framework is unlikely to provide the maximum gains. 

Alternative funding mechanisms are needed which provide stable and predictable budgets over 



195 
 

multi-decadal timeframes thus allowing organisations and authorities to devise and implement 

strategic, long-term interventions and policies that benefit nature and people (Sayer and Wells, 

2004).  

There is a wide range of funding sources available to conservationists, yet government and 

philanthropic sources are the most common (Clark et al., 2018). The fragility of government 

funding has been exposed during the Covid-19 global pandemic; around the world there have 

been shrinking national economies, dramatic increases in emergency government spending, and 

governments forced to prioritise sectors of the economy for support and recovery (Evans et al., 

2020). Ironically, a global pandemic that was most likely caused by overexploitation of the 

natural environment (Lytras et al., 2021) is likely to cause a decrease in government spending 

on conservation, at least in the short term (Corlett et al., 2020; Evans et al., 2020). There is 

increasing recognition that broadening the sources of conservation funding is necessary to both 

increase global spending on the environment and to diversify the sources, thus stabilising 

funding against inevitable future economic shocks (Echols et al., 2019). 

There are numerous sources of funding that are available for conservationists to explore. 

Funding for the environment from philanthropic entities is increasing (Gruby et al., 2021), and 

the influence of private foundations is growing (Betsill et al., 2021). As independent 

organisations, foundations have the potential to adapt their funding strategies and mechanisms 

to maximise effectiveness. If conservationists can provide evidence to support certain 

investment strategies, private foundations and other philanthropic entities are theoretically able 

to adapt accordingly. The idea of charitable giving that is evidence-based and results-orientated 

is already growing with the social movement known as ‘effective altruism’ (Freeling and 

Connell, 2020), giving the conservation sector an opportunity to shape the charitable funding 

landscape using empirical evidence. Global environmental agendas have driven the creation of 

global funds such as the BioCarbon Fund managed by the world bank (www.biocarbonfund-

isfl.org), the Global Environment Facility (www.thegef.org), and the Green Climate Fund 

(www.greenclimate.fund), all of which still operate within the grant-based model, yet are large 

enough to operate at a variety of spatial and temporal scales (Clark et al., 2018).  

Payment for environmental services (PES) schemes are market-based mechanisms that can 

provide additional, and potentially long-term, funding for conservation by providing financial 

incentives for certain land management practices that preserve benefits generated by natural 

systems (Redford and Adams, 2009). Over the last two decades, the number of PES 

programmes have expanded rapidly around the world, with over 550 active programmes 

covering watersheds, biodiversity and habitats, and forest and carbon (Salzman et al., 2018). In 

contrast to traditional grant-based funding, PES has the potential to provide steady, long-term 

http://www.biocarbonfund-isfl.org/
http://www.biocarbonfund-isfl.org/
http://www.thegef.org/
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funds for conservation (Hein et al., 2013). This potential is, however, contingent on the 

motivations of participants of a given scheme and their willingness to participate over the long-

term (Fisher, 2012).  

There are many case studies that demonstrate successful PES projects (e.g., Clements and 

Milner-Gulland, 2015; Ingram et al., 2014; Jayachandran et al., 2016; Zheng et al., 2013), yet a 

lack of effective monitoring of PES programmes globally means there is still insufficient 

evidence that these market-based mechanisms provide a net benefit to nature (Ingram et al., 

2014; Salzman et al., 2018). Although likely an important component of the conservation 

toolbox, and a potential source of stable, long-term funding for conservation, the development 

of PES projects should be careful, context-specific, and designed with robust monitoring to 

ensure long-term effectiveness (Hein et al., 2013; Redford and Adams, 2009).   

Another promising avenue for market-based environmental funding is private finance, the 

power of which is yet to be fully realised (Clark et al., 2018). This is largely because the 

environmental sector has thus far failed to provide projects that are investable, scalable, and low 

risk (McFarland, 2018). Leveraging of private sector finance is increasing, and is being 

achieved through a variety of mechanisms including 1) national development banks which 

provide credit and finance to underfunded areas of society (Torres and Zeidan, 2016); 2) 

blended finance, which combines public and private finance through traditional mechanisms 

such as public-private partnerships, and through more novel mechanisms including 

development finance institutions (Clark et al., 2018); 3) custom-built partnerships between the 

private sector and governments, civil society, and non-governmental organisations, for example 

the Tropical Landscapes Finance Facility (www.tlffindonesia.org), which provide long-term 

financing to support sustainable land use; 4) green bonds, which raise funds for projects that 

contribute to a more sustainable economy and deliver benefits to the environment (Sachs et al., 

2019), 5) conservation finance, which is a broad term that describes financial solutions that 

deliver conservation gains and financial return for investors. An undeveloped field, 

conservation finance has huge potential as a private sector investment opportunity that delivers 

conservation goals, using mechanisms such as substitute funds, marine protected area bonds, 

and conservation impact bonds (Huwyler et al., 2016); 6) carbon market instruments such as 

REDD+ and the Green Climate Fund (Sachs et al., 2019); 7) other ‘green finance’ mechanisms 

such as impact investing, fiscal policy, green central banking, and community-based green 

funds (Sachs et al., 2019).  

Although in relative infancy, private sector investment for conservation and the environment is 

underway, with global players in both conservation and finance recognising the potential. An 

example is the NatureVest collaboration between The Nature Conservancy and JP Morgan 

http://www.tlffindonesia.org/
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Chase which focusses on identifying and financing investable projects that deliver for investors 

and the environment (Kaiser, 2015). To successfully leverage private sector finance, the 

conservation sector (and the environmental sector more broadly) needs to dramatically increase 

the number and scale of projects that have low-risk rates of return and conservation impacts that 

are clear and measurable, thus making them attractive investments.  

There is currently a large gap between the global ambitions for environmental recovery and the 

money available to fulfil those ambitions. In this study I have demonstrated that stable, long-

term funding is more effective for the management of social-ecological landscapes than short-

term, unreliable grant funding. Yet funding streams that provide such long-term financial 

stability are rare. Increasing the quantity of funding available for conservation and moving 

towards more sustainable investment strategies is going to require paradigm shifts across 

national and global policies and economies.  
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5.6. SUPPORTING INFORMATION 

  

5.6.1 Sensitivity testing for parameters res_consume and tend_crop_yield  

The two parameters res_consume and tend_crop_yield are important because they influence the 

decision making of the users. Res_consume governs the quantity of crops each resource 

consumes on a given landscape cell at a given time step, thus reducing the users yield on that 

cell by a certain amount. Tend_crop_yield governs the amount a user can increase their yield on 

a given cell by tending their crops, as opposed to taking another action such as felling.  

 

Figure S5.1. Parameter values for res_consume and tend_crop_yield that were tested prior 
to the final simulations. 
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Figure S5.2. The number of trees remaining at each time step for each of the simulations 
from plot S5.1. above. 

N1a results in the fewest trees being lost, which was expected as N1a has no incentive to fell 

trees (equal parameter values). N1 and N1b:f are all similar in their loss of trees. Interestingly, 

the simulation with the highest res_consume (N1c) does not end up with the fewest trees, and 

that is because tend_crop_yield is higher than some of the others and so users will be more 

likely to choose to tend crops when costs of felling are very high. The simulation with the most 

trees lost is N1d, where tend_crop_yield is very low (0.01) and res_consume is quite high 

(0.08). This is closely followed by N1f which although has a lower res_consume value than 

N1b and N1c, it also has a lower tend_crop_yield value. This quite nicely shows the interaction 

between the two parameters. This further demonstrates that small incremental changes in 

tend_crop_yield are more influential than similar increases in res_consume. 
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Figure S5.3. The total yield for each user at each time step, as a percentage of the total 
available yield, for each of the simulations from plot S5.1.  

Yield is lowest in N1c, as this simulation has the highest value for res_consume (0.1), followed 

by N1b and N1d (0.08). N1f is on its own in the middle (0.06). The highest yields are for N1, 

N1a, and N1e, where res_consume is 0.05 for all. For this last group, we see that N1e is 

increasing slightly faster, as tend_crop_yld is set lower than N1 and N1a, and so users are more 

likely to fell trees as tending crops has less value. 
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Figure S5.4. The total number of culling (felling) actions taken by users at each time step for 
each of the simulations from plot S5.1. 

The simulations appear to be broadly split between N1 and N1a, and the rest. N1 and N1a show 

much more variation in the number of felling actions, with the number of felling actions 

regularly dropping to 0. For simulation N1a, which has the two parameters set equally at 0.05, 

we see regular spells of 0 felling actions, where the users are choosing to tend crops (as that 

produces the same benefits in terms of yield). This happens less frequently with simulation N1, 

and in simulation N1 there are no occasions when number of cull actions remain at 0 for more 

than a single time step. This is because tend_crop_yield is lower than res_consume, and so it is 

more beneficial to fell trees. For all of the other simulations though, there appears to be a 

minimum number of culls below which they never drop (just over 100).  Even simulation N1e, 

which is very similar to N1 in terms of parameters, never drops below a certain value of cull 

actions. 

5.6.2. Null scenarios  

N1 

The null scenario N1 had the manager and user budgets (community resources) as stable and 

equal. Both budgets were set to 500. 
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Figure S5.5. Summary results from null scenario N1. The cost of a felling action at each time 
step (top left), number of felling actions at each time step (top right), the number of trees 
remaining on the landscape at each time step (bottom left), and the total yield from all users 
at each time step (bottom right). 

The results of scenario N1 were as expected – the manager uses all of their budget to reduce 

felling by time step 2, which coincides with the number of felling actions dropping between 

time step 1 and time step 2. The stable budgets for both the manager and user results in a 

stabilisation of felling costs and number of felling actions, as neither user nor manager loses or 

gains power over the other. The manager is unable to entirely stop felling taking place, and 

therefore there is a steady decrease in the number of trees remaining. This results in a steady 

increase in the yield that the users get from the landscape over time.  

N2 

The null scenario N2 tested the situations when either the manager or user had a decreasing 

budget, whilst the other was stable. The scenario was therefore split into two sub-scenarios. N2a 

had the manager budget stable, and the user budget (community resources) decreasing linearly. 

N2b had the user budget (community resources) stable, and the manager budget decreasing 

linearly.  
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Figure S5.6. summary results from null scenario N2a and N2b. a – budgets at each time step 
for N2a, b – budgets at each time step for N2b, c – the number of felling actions at each time 
step for both scenarios, d – the cost of felling actions at each time step for both scenarios, e 
– the number of trees remaining at each time step for both scenarios. 

The results from null scenarios N2a and N2b were as expected. When the manager budget was 

stable and the user budget (community resources) were decreasing, the cost of felling remained 

stable over time, but due to the decreasing community resources the number of felling actions 

decreased over time. The rate of forest loss in N2a was decreasing over time as the community 

lost power to take actions (i.e., fell trees). When the community resources were stable, but the 

manager budget decreased over time, the cost of felling trees decreased over time as the 

manager had less budget at each time step with which to set the cost of felling actions. This 

resulted in an increasing number of felling actions over time, and a rate of forest loss that was 

increasing.  

N3 

The final null scenario, N3, had the manager budget increasing linearly and the user budget 

(community resources) stable.  
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Figure S5.7. Summary results from null scenario N3. The budget at each time step for both 
the manager and the users (top left), the cost of a felling action at each time step (top right), 
the total number of felling actions at each time step (bottom left), and the number of trees 
remaining on the landscape at each time step (bottom right).   

The results from N3 were as expected; the power of the manager to affect the system increased 

as the manager budget increased and the community resources remained stable. This led to a 

steady increase in the cost of felling actions for the community, and therefore a steady decrease 

in the number of felling actions. The relative differences between the manager budget and 

community resources were never large enough to completely eliminate felling actions, and 

therefore forest loss was still occurring.  

5.6.3. Parameter values 

The below parameter values were used in all null and final scenarios. See the GMSE package 

documentation for further details on gmse() and gmse_apply() parameter values. All genetic 

algorithm parameters were kept at their default value. 
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Table S5.1. GMSE parameter values used in all final simulations. 

Parameter Valuea 

time_max 50 

land_dim_1 100 

land_dim_2 100 

res_movement 0 

agent_view 150 

agent_move 50 

res_move_type 0 

res_death_type 0 

lambda 0 

observe_type 2 

times_observe 1 

obs_move_type 1 

res_min_age 0 

res_move_obs FALSE 

res_consume 0.08 

move_agents TRUE 

minimum_cost 10 

usr_budget_range User budget / 10 

manage_target 100000 

RESOURCE_ini 100000 

culling TRUE 

tend_crops TRUE 

tend_crop_yield 0.01 

stakeholders 30 

land_ownership TRUE 

public_land 0 

manage_freq 1 

group_think FALSE 
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5.6.4. Manager budgets 

Scenarios 4 and 5 used a Fourier series approach to produce random complex waves that 

mimicked unpredictable manager budgets over time. Three sine waves were produced for each 

simulation replicate, and were summed to produce a single complex wave. Sine waves for both 

scenarios were created using, 

𝑏𝑖(𝑡) = 𝐴𝑖sin (
2𝜋

𝑇
𝑡𝑓𝑖 + 𝜑𝑖). 

Where 𝑏𝑖(𝑡) is the trajectory at time 𝑡 for wave 𝑖, T is the total number of time steps (𝑡), 𝐴𝑖 is 

the strength of wave 𝑖, 𝑓𝑖 is the frequency of wave 𝑖, and 𝜑𝑖 is the delay of wave 𝑖.  

The frequency values (𝑓𝑖) for each sine wave were sampled from a uniform distribution, for 

scenario 4 using, 

𝑓𝑖 ∼ 𝑈(0.01,0.08). 

And scenario 5 using, 

𝑓𝑖 ∼ 𝑈(0.01,0.2). 

Delay values (𝜑𝑖) for each sine wave were sampled from a uniform distribution, for scenario 4 

and 5 using, 

𝜑𝑖 ∼ 𝑈(0,180). 

Wave strength (𝐴𝑖) for each sine wave were sampled from a uniform distribution, for scenario 4 

using, 

𝐴𝑖 ∼ 𝑈(1,150). 

And scenario 5 using, 

𝐴𝑖 ∼ 𝑈(1,300). 

 

Figure S5.8 below shows an example, where the budget B (black line) is determined by the sum 

of the three 𝑏𝑖(𝑡) coloured lines. 
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Figure S5.8. An unpredictable manager budget B (black line), produced by the sum of 
three sine waves (𝒃𝒊(𝒕), coloured lines). 
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Figure S5.9. Manager budgets for each of the 100 replicate simulations for scenario 4. Each budget was produced using three randomly 
produced sine waves and an Inverse Fourier Transform. 
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Figure S5.10. Manager budgets for each of the 100 replicate simulations for scenario 5. Each budget was produced using three 
randomly produced sine waves and an Inverse Fourier Transform. 
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5.6.5. Results 

 

 

Figure S5.11. Remaining trees at each time step for all five scenarios. Thick lines and 
confidence ribbons are the 50, 2.5, and 97.5 percentiles taken from the 100 replicates for 
each scenario. 
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Chapter 6 
General discussion 
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6.1 Background 

Southeast Asia is one of the most biologically diverse regions of the world, and its extensive tropical 

forest cover is critically important for biodiversity conservation, ecosystem services, human 

livelihoods, and carbon sequestration (Hughes, 2018, 2017; Mukul et al., 2016). Yet the region is 

facing enormous pressure from human activities which are driving wildlife population declines and 

deforestation at some of the fastest rates in the world (Hoffmann et al., 2010; Hughes, 2017). In many 

ways, Cambodia epitomises the challenges facing the wider region; it has high biodiversity value and 

forest cover that are threatened by rapid economic development, a boom in commercial agriculture, 

large rural populations, high levels of poverty and inequality, and weak governance. Yet by virtue of 

Cambodia’s traumatic recent history, it can offer a unique perspective on the drivers of biodiversity 

loss and opportunities for action. The rebuilding of the country, including government, laws and 

policies, the economy, and society after the Peace Accords in 1991 means that it is possible to 

examine the effects of such rapid change from a known baseline, and over a much shorter temporal 

scale than would be possible in other countries.   

Cambodia’s post-war economic recovery has had dramatic effects on poverty reduction, agricultural 

production, and food security, which have benefited the Cambodian people (Eliste and Zorya, 2015). 

The country, however, still faces numerous challenges. Many of these challenges stem from the initial 

period of reconstruction in the 1990s when establishing the rule of law, ensuring there was sufficient 

food for the surviving population, and rebuilding basic infrastructure were prioritised at the expense 

of transparent governance, accountability, inclusion, and participation (World Bank, 2014). 

Furthermore, economic recovery and the expansion of the agricultural sector were prioritised over 

environmental protection (Eliste and Zorya, 2015). The state of Cambodia today reflects the 

consequences of these decisions; there is a booming economy and an affluent urban population, yet 

inequality is increasing (World Bank, 2014), many rural areas remain poor and have yet to benefit 

from economic growth (Solcomb, 2010), the political system is one of the most corrupt in the world 

(Transparency International, 2021), governance and policy implementation is weak (Milne and 

Mahanty, 2015), and environmental governance is poor (Milne and Mahanty, 2015; Riggs et al., 

2018).  

Cambodia still holds globally significant biodiversity (Chapter 4; Gray et al., 2012; Moody, 2018), 

and still retains large areas of forest cover that is critical for wildlife and local people (MoE, 2020), 

particularly many of the country’s indigenous population (Coad et al., 2019a; Ibbett et al., 2020). As 

the country continues to develop, the business-as-usual scenario will lead to continued loss of forests 

and wildlife declines. Yet, with the right knowledge about relationships between development and 

forest loss, and with evidence to support better landscape and protected area (PA) management, there 

are opportunities to develop new policy frameworks, and better implement existing policies, to ensure 



213 
 

environmental protection into the future. The research described in this thesis has contributed original, 

policy-relevant knowledge to support decision-making, policy development, and landscape 

management in Cambodia. I have revealed important relationships between economic development 

and commercial agriculture at the national scale (Chapter 2), which is one of the most important 

drivers of forest loss across the world (Curtis et al., 2018; Hoang and Kanemoto, 2021), and I have 

highlighted the complexity of the relationships between socioeconomic development and forest cover, 

with important methodological lessons for future research (Chapter 3). Leading an international team 

of researchers and practitioners, I harnessed one of the longest and most robust wildlife monitoring 

datasets in SEA, and revealed a significant pattern of decline in ground-based mammals within one of 

Cambodia’s flagship PAs (Chapter 4; Nuttall et al., 2021). Finally, I have provided novel theoretical 

insights into the effects of unstable and unpredictable funding for landscape managers in the context 

of increasing anthropogenic pressure within a dynamic conservation landscape (Chapter 5). In the 

following sections, I summarise the key findings and evaluate their implications for conservation in 

Cambodia.     

6.2 Economic development and forests 

6.2.1 Results summary and implications 

Chapters 2 and 3 investigated the relationships between economic and socioeconomic development 

and forests cover and loss across Cambodia. Chapter 2 identified important relationships between 

changes in various parts of the economy and agricultural commodity prices, and the expansion of 

commercial agriculture in the form of economic land concessions (ELCs). There was a positive 

relationship between new ELC allocations and 1) growth in the agricultural sectors proportion of 

national GDP, 2) increases in foreign direct investment, 3) increases in development flows to the 

environment sector, and 4) increases in market and producer prices for rubber, sugar, corn, and rice. 

In Chapter 3, I did not identify any socioeconomic factors that could effectively predict forest cover at 

either the provincial level or the commune level. Nevertheless, the socioeconomic models in 

combination with the cluster analysis showed that there were certain characteristics of both provinces 

and communes that could predict high forest cover. Generally, areas of high elevation and low human 

population density are more likely to have high forest cover, and provinces that are close to 

international borders, contain large, remote communes, and contain PAs and ELCs, are more likely to 

be highly forested. When viewed together, the results from Chapters 1 and 2 provide insights that 

have important policy implications. 

First, provinces with ELCs are more likely to be highly forested, which is counterintuitive in the 

context of the law governing ELCs. Legally, leases for ELCs are only allowed on “degraded” or 

“marginal” land which has low biodiversity value (Neef and Touch, 2012; RGC, 2001). My results do 

not explicitly demonstrate which ELCs were placed on forested land, nor do I quantify forest loss as a 
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direct result of ELCs, but this has been demonstrated elsewhere (Appendix; Beauchamp et al., 2018; 

Davis et al., 2015). Based on my results from Chapter 3, the rapid expansion of ELCs, which was 

driven by economic growth, the international commodity market, and foreign investment, will 

probably have disproportionately affected remote, rural, forested provinces with largely poor, 

indigenous populations. Rural communities in Cambodia, particularly indigenous minorities, rely 

heavily on forest resources for their livelihoods (Coad et al., 2019a; Ibbett et al., 2020; Nguyen et al., 

2015), and many forests are culturally and spiritually significant for local people (Evans et al., 2013; 

Milne, 2012). The allocation of ELCs on forested land has therefore had negative effects on local 

people. The case for poverty reduction and economic development through commercial agriculture, 

which is one of the prerequisites for the granting of ELC leases (RGC, 2001), is demonstrably weak in 

Cambodia, and there is evidence that ELCs have not only infringed on local land rights but have also 

been used as a tool for the commercial capture of smallholder farmland (Scheidel, 2016). Increasing 

inequality and an expanding wealth gap between the wealthy political class and the rural poor, in 

combination with the many criticisms of ELCs in Cambodia, suggest that the expansion of ELCs has 

probably had negligible effects on poverty reduction for rural communities. 

Second, Chapter 3 demonstrated that the presence of both ELCs and PAs predicted high forest cover 

within a province, suggesting that ELCs were more likely to be granted in provinces where there was 

existing forest cover and high biodiversity value. Despite a legal framework that prohibits ELC 

allocation within PAs (RGC, 2001), almost every PA in the country has had ELCs granted within 

their borders (RGC unpublished data, www.opendevelopmentcambodia.net). Obscure legal 

mechanisms, opaque processes, and weak governance have all contributed to the downgrading of 

important PAs via ELCs, to the detriment of biodiversity (Appendix; Beauchamp et al., 2018; Davis 

et al., 2015; Riggs et al., 2018). International conservation organisations and donors have invested 

heavily into the PA estate for two decades, and yet have been largely unsuccessful in resisting ELC 

allocation within PAs (although see Appendix). This is supported by Chapter 2, which showed that, 

counterintuitively, ELC allocation increased with greater development flows to the environment 

sector. Donor aid and investment into the environment failed to reduce the rapid expansion of ELCs, 

many of which resulted in the loss of PA land (Appendix; Beauchamp et al., 2018; Conservation 

International and World Wildlife Fund, 2021; Global Witness, 2013; Riggs et al., 2018). Once ELCs 

are allocated on forested land, even within PAs, the areas are often rapidly deforested to make way for 

commercial crops (Beauchamp et al., 2018; Davis et al., 2015), with negative effects on biodiversity, 

carbon storage, and ecosystem services.  

Agricultural sector growth, foreign investment, and entry into the global market post-1993 have been 

critical parts of Cambodia’s economic recovery and efforts in reducing poverty and increasing food 

security (Eliste and Zorya, 2015), and my results have suggested that the commercial agricultural 

sector has been a major beneficiary of this development. Commercial agriculture can bring economic 
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benefits (Li et al., 2018; Taylor et al., 2019), but it is also the primary driver of global deforestation 

(Curtis et al., 2018). In Cambodia, ELCs have been criticised for driving deforestation (Beauchamp et 

al., 2018; Davis et al., 2015; Magliocca et al., 2019), downgrading PAs (Appendix; Beauchamp et al., 

2018; Watson et al., 2014), and their negative effects on local land rights (De Schutter, 2011; Neef et 

al., 2013; Neef and Touch, 2012; Oldenburg and Neef, 2014; Scheidel, 2016). Economic land 

concessions in Cambodia have also received significant negative media attention which has suggested 

the industry suffers from corruption and nepotism (e.g., Global Witness, 2013; Vrieze and Kuch, 

2012). Cambodia’s legal framework that governs ELCs and PAs is theoretically sound, although 

translating law into environmentally sustainable commercial agriculture and effective PA 

management requires equally robust policy implementation and governance, both of which are 

lacking to a certain degree.  

Examples of sustainable agriculture already exist, both in Cambodia and globally. The Ibis Rice 

programme in Cambodia (www.ibisrice.com) harnesses the demand for high quality jasmine rice and 

adds value through ‘organic’ and ‘wildlife-friendly’ certifications which increase the price above 

market value. In return, approximately 1,500 individual farmers from the Northern Plains adhere to 

conservation agreements which prohibit forest clearance, hunting, and any other activities or practices 

that have negative effects on the environment. Studies have demonstrated the success of the 

programme (Clements and Milner-Gulland, 2015), and it has continued to expand to other parts of 

Cambodia in recent years. In Vietnam, sustainable agricultural practices are becoming more popular 

(Van Thanh and Yapwattanaphun, 2015), agroforestry approaches have increased the sustainability of 

rubber production in Indonesia and Thailand (Penot et al., 2017), and in South America, market forces 

and consumer demand have driven novel forms of multistakeholder governance that have had positive 

effects on the sustainability of beef production (Buckley et al., 2019). Lessons from across the tropics 

suggest that movement towards sustainable agriculture is often swiftest under conditions of hybrid 

governance, where governments, the private sector, and civil society collaborate to design effective 

interventions (Erbaugh et al., 2019). 

Continued economic development is important for Cambodia to reduce poverty and ensure adequate 

provision of education, employment, and healthcare. The agricultural sector will continue to play a 

major role in both economic development and food security, yet environmental sustainability must be 

a priority if deforestation rates are to decrease (Erbaugh et al., 2019). Investment into modern 

agricultural practices such as irrigation, mechanisation, and high-quality seed has already resulted in 

increased yields in some parts of Cambodia, and in combination with better market access, has begun 

stimulating the diversification of crop production to include more profitable crops (Eliste and Zorya, 

2015). Reducing deforestation from agriculture is a complex challenge, requiring a combination of 

market forces, legal reforms, and effective policy and implementation at multiple scales from 
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multinational corporations and supply chain responsibility, to national governments, and local action 

with the support of civil society (Erbaugh et al., 2019).  

6.2.2 Methodological notes 

In Chapter 2, I did not find any significant relationships between the predictor variables representing 

economic development and direct forest loss. In the chapter I discussed various explanations for this 

lack of effects, but the most plausible is that there has been a genuine disconnect between economic 

development and direct forest loss, particularly in the early years of economic recovery. Despite 

impressive economic growth rates, Cambodia’s economy between 1993 and the early 2000s was still 

in relative infancy compared with its neighbours (Solcomb, 2010), and therefore it is likely that 

factors such as GDP growth, foreign investment, and development support were not yet at a scale 

large enough to have a direct influencing effect on land use change (LUC). Particularly in the first 

half of the study period covered by Chapter 2 (1993 to ~2004), economic growth, investment, and 

development aid was focussed on rebuilding the institutions and government infrastructure required to 

govern the country (World Bank, 2014), and so these factors will have had less influence on forest 

loss, and indeed other land management decisions and LUC, in the rural provinces than might be seen 

in studies from other countries with more established economies (e.g., Bonilla-Bedoya et al., 2018; 

Ewers, 2006; Fan and Ding, 2016; Gong et al., 2013; Kuang et al., 2016). Previous studies from 

Cambodia have highlighted some national-scale factors, including human population increases and 

tourism policies, that have influenced LUC in certain parts of the country (Dasgupta et al., 2005; 

Gaughan et al., 2009), whilst others have supported my hypothesis and pointed to more local-scale 

factors influencing deforestation such as the repatriation of Khmer Rouge soldiers, families moving 

back to their homelands, and resettling of refugees, all of which drove deforestation via small-holder 

agricultural expansion (Hought et al., 2012; Kong et al., 2019). 

In Chapter 3, I did not detect any strong relationships between socioeconomic variables and forest 

cover at the scale of the commune. As discussed in the chapter, it is plausible that the socioeconomic 

variables I selected were appropriate but that there was a genuine lack of effects. Alternatively, an 

explanation could be that socioeconomic variables can predict forest cover, but the variables available 

to me were not appropriate and therefore were not effective predictors of forest cover. However, this 

is unlikely as many of the variables used have been shown to be effective predictors in other parts of 

Asia (e.g., Bonilla-Bedoya et al., 2018; Dasgupta et al., 2005; Kristensen et al., 2016; Mena et al., 

2006; Rowcroft, 2008). The more likely explanation is that the extreme between-commune (and 

within-province) variation, coupled with a very large number of random effect levels at the commune 

level, meant that estimating a single coefficient with a representative effect size and direction was 

unlikely. Modelling the relationships at a coarser scale (province) resulted in three socioeconomic 

predictor variables being retained in the final model, albeit with weak effects, but also revealed 

complex interactions between the direction of effects and scale. The challenges that I discovered with 
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modelling highly complex spatiotemporal landscapes at fine resolutions highlight important lessons 

for future researchers.  

First, when utilising generalised linear mixed models (GLMMs) in such a scenario, it is critical to 

interrogate and report details of between-group variance, as these can offer insights into the predictive 

efficacy of a model. Between-group variance often goes unreported in the LUC literature (e.g., 

Bhattarai and Hammig, 2004), reducing the transparency of the results. Second, given large variation 

in predictor and response values over space, researchers should explore the option of spatial 

stratification, whereby regions with similar variable ranges are modelled independently. Not only will 

this reduce the challenges mentioned above but may offer useful insights into regional differences in 

effects. Third, researchers must select the scale of their analysis carefully, as there are likely complex 

interactions between drivers and effects at different scales, as demonstrated in Chapter 3. Importantly, 

Chapter 3 demonstrates that inferences drawn from a particular model should not be considered true at 

scales different from that which the model was applied.    

6.3 Protected area and landscape management  

6.3.1 Results summary and implications  

In Chapters 4 and 5 I investigated the dynamics of different aspects of conservation landscapes, and 

my results have important implications both for protected area management in Cambodia, and the 

management of conservation landscapes around the world. In Chapter 4, I used one of the most robust 

wildlife monitoring data sets from SEA to model the temporal population trends and spatial 

distributions of a suite of species from the Keo Seima Wildlife Sanctuary (KSWS) between 2010 and 

2020. My results confirmed that the site is a global stronghold for several threatened species, 

particularly the black-shanked douc (Pygathrix nigripes) and southern yellow-cheeked crested gibbon 

(Nomascus gabriellae). Keo Seima Wildlife Sanctuary probably holds the largest single populations 

of these two highly threatened primates, making conservation at the site of particular importance. 

Critically, my results from Chapter 4 revealed that ground-based species were largely in decline, some 

severely.  

There are examples of robust wildlife research and monitoring from Cambodia, including for large 

herbivores and ungulates (Gray and Phan, 2011; Gray, 2012; Gray et al., 2016; Gray et al., 2012; 

O’Kelly et al., 2012), carnivores (Gray, 2013; Gray et al., 2014; Kamler et al., 2021; Rostro-García et 

al., 2021, 2018), primates (Gray et al., 2010; Moody, 2018; Moody et al., 2011), and birds (Gray et 

al., 2014; Handschuh and Rainey, 2010; Loveridge et al., 2018, 2017; Nuttall et al., 2017). Yet my 

results from Chapter 4 represent the first modelled wildlife population trends over time from 

Cambodia, and one of the few examples of population trends using absolute population estimates (as 

opposed to relative indices) from SEA. My results also present the first population estimates for four 
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species from anywhere in their range: black-shanked douc (Pygathrix nigripes, Critically 

Endangered), Germain’s silver langur (Trachypithecus germaini, Endangered), northern pig-tailed 

macaque (Macaca leonine, Vulnerable), and stump-tailed macaque (Macaca arctoides, Vulnerable). 

Therefore, my results are of critical importance for conservation status assessments and protected area 

management in the region. The results from Chapter 4 are timely, providing further empirical 

evidence to support the growing literature that wildlife populations across Cambodia are in decline 

(Groenenberg et al., 2020; Loveridge et al., 2018; Rostro-García et al., 2016). Furthermore, Chapter 4 

provides rare insights into the causes of declines for certain groups of species. My results demonstrate 

that ground-based species are in decline, whereas arboreal species are not. This pattern implicates 

ground-based threats as those of most conservation concern.   

I did not test empirically the drivers of declines in Chapter 4, but there is sufficient evidence in the 

literature to suggest that hunting using snares and dogs, as well as predation by free-ranging dogs, are 

likely to be major causes (Belecky and Gray, 2020; Coad et al., 2019a; Gray et al., 2018, 2017; Ibbett 

et al., 2020). These inferences are important for PAs across Cambodia, where landscapes are managed 

under similar conditions of growing human populations, under-resourced law enforcement, and weak 

PA governance. Keo Seima Wildlife Sanctuary is arguably one of the most well-resourced PAs in 

Cambodia, suggesting that ground-based wildlife populations in PAs with fewer resources and sparser 

conservation interventions are likely to be in similar, if not worse, conditions. There needs to be rapid 

management action in KSWS to avoid wildlife extirpations. In the short-term, law enforcement 

resources need to be targeted in the areas of KSWS that are important for the declining species, and 

efforts need to focus on hunting with snares and dogs. In the longer term, conservation interventions 

need to reduce the reliance of local people on wild meat as a protein source, diversify and improve 

livelihoods, and support non-lethal forms of crop protection. The challenges facing KSWS are shared 

with PAs across the region (Gray et al., 2017; Groenenberg et al., 2020; Harrison et al., 2016), and 

therefore the implications from Chapter 4, as well as any possible solutions, will be relevant for many 

Southeast Asian PAs.  

In Chapter 5, I presented what I believe to be the first example of an assessment of the conservation 

implications of grant-based funding in a formal quantitative model. My results support what many 

conservation practitioners already believe to be true (based on my experience in the conservation 

sector) – that reliable, predictable, and generally stable management funds over time will provide 

better long-term conservation outcomes than fluctuating and unpredictable funding. My results 

demonstrated this in the context of a dynamic social-ecological landscape with increasing human 

pressure. This context is common for conservation landscapes around the world, making my results 

relevant for conservationists and landscape managers in Cambodia and further afield, and will 

contribute valuable evidence to support the development of more sustainable conservation financing.   
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Protected areas in Cambodia can generally be divided into two categories: those with the support of 

large conservation non-governmental organisations (NGOs), and those without external support. The 

PAs with no support from NGOs receive nominal support from the Cambodian government, and 

therefore have minimal law enforcement or conservation activity. In contrast, the PAs with NGO 

support receive relatively extensive financial input, leveraged by the NGO from international donors, 

which supports government salaries, equipment, technical capacity, and conservation activities. The 

ability to raise funds for PA management has led to positive conservation outcomes relative to 

unsupported PAs (see Appendix for an example). However, my results from Chapter 4 highlight that 

PA management, even in a relatively well-funded PA, is far from optimal. The conservation funds 

raised by NGOs in Cambodia are short-term, grant-based sources of income, which results in 

fluctuations in available funds over time. In Chapter 5, I demonstrate that the grant-based funding 

model employed within PAs in Cambodia, and across the world, is not likely to produce the best 

possible long-term conservation outcomes.  

As with conservation landscapes around the world, PAs in Cambodia will need to secure long-term, 

reliable funding if they are to halt wildlife declines and reduce rates of deforestation (Sayer and Wells, 

2004). Efforts to secure sustainable conservation financing are already underway in Cambodia. Keo 

Seima Wildlife Sanctuary is one of several Reduced Emissions from Deforestation and Forest 

Degradation in Developing Countries (REDD+) sites in the country and in 2016 was the first to sell 

carbon credits (Washington, 2019). Continued validation of avoided deforestation resulting from the 

project has resulted in more sales since 2016. The income from these sales is distributed between the 

Cambodian government’s forest conservation fund, the core management budget of KSWS, the local 

communities within the REDD+ project area, an operating reserve, and a permanence reserve 

(Washington, 2019). These funds incentivise government and local communities to reduce 

deforestation, support the ongoing management of the PA, and critically, ensure that steady funding is 

available over the long term. An assessment of the project states that conservation activities within 

KSWS are now able to be adaptive, flexible, and innovative, as the programme is no longer subject to 

the priorities of external funders (WCS, 2021). Despite some valid criticisms of REDD+ in the region, 

particularly related to the displacement of deforestation (Ingalls et al., 2018), the KSWS project 

demonstrates that REDD+ can be a mechanism for reduced deforestation and sustainable financing 

within PAs.  

6.3.2. Methodological notes 

Distance sampling is one of the most popular approaches to estimating the abundance of biological 

populations (Knights et al., 2021), and therefore has an extensive literature. Relatively few studies, 

however, take analytical steps beyond the production of point estimates of density or abundance, for 

example by explicitly modelling temporal trends (e.g., Campbell et al., 2015; Drummond and 

Armstrong, 2019). Distance sampling studies can be expensive to conduct, and so in many cases 



220 
 

surveys are not continued beyond one or two years (e.g., Gray et al., 2012; Jathanna et al., 2003; 

Tomas et al., 2021), precluding the investigation of temporal trends. In Chapter 4, and in the 

subsequent publication, I demonstrated, with my co-authors, a practical yet robust approach to 

modelling population trends over time when distance sampling surveys have been conducted over 

multiple time steps. Furthermore, we have demonstrated how the same survey data can be used for 

both temporal and spatial modelling, thus extracting maximum utility for conservation management 

out of expensive monitoring data. By publishing in an open access journal, and making our R code 

and data publicly available, we hope that this study will benefit as many wildlife researchers as 

possible.  

Long-term wildlife monitoring is expensive, and line transect surveys are especially resource heavy. 

Changing methodologies during a long-term study will always carry a risk of incomparability, 

however it is worth noting that there have been advances in distance sampling-based approaches. 

Distance sampling surveys can be conducted using remote sensing camera traps, which has the 

potential to greatly reduce the effort of field teams (Bessone et al., 2020; Cappelle et al., 2021; Harris 

et al., 2020; Howe et al., 2017; Palencia et al., 2021). There are other methods for estimating 

population density using camera traps (e.g., Rowcliffe et al., 2008, 2011), however retaining the 

distance sampling approach would be advisable to maintain comparability. The wildlife monitoring 

team from KSWS already have significant experience using camera traps, and therefore it may be 

worth the Wildlife Conservation Society (WCS) and their government partners conducting a cost-

benefit analysis to assess the plausibility of altering the method of data collection in the future.  

Huge leaps in computing power and the development of powerful and flexible statistical computing 

software over the last few decades has made the investigation of complex systems more tenable. The 

simulation of large datasets and the development and implementation of complex models are now 

accessible to any researcher with a personal computer, increasing researchers’ abilities to simulate and 

model complex systems to gain theoretical insights that can benefit conservation (Green et al., 2005). 

The GMSE package from Duthie et al (2018), implemented in R, is an example of a modelling 

framework that has been developed to increase access to complex individual-based models that can 

explore and test a large range of theoretical questions relating to social-ecological systems.  

The GMSE package allowed me, in Chapter 5, to investigate a component of conservation – the grant 

or funding cycle – that dominates project planning and the management and maintenance of which 

requires huge proportions of staff time and resources that could otherwise be focussed on designing 

and implementing conservation interventions. Conducting an empirical study with real data that 

provided the same insights as Chapter 5 would require long-term datasets that very rarely exist, and 

certainly do not exist across a broad sample of projects around the world. Simulation modelling 

allowed me to generalise the conservation landscape and simulate sufficient data such that theoretical 
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insights were obtained that could be relevant to landscapes across the world. I hope that this chapter, 

and any publication that follow, will provide both a valuable contribution to the conservation 

financing field, and a good example of the utility of simulating social-ecological systems.  

6.4 Impact of this thesis 

This PhD project was a CASE studentship in collaboration with WCS Cambodia Programme. 

Analyses of the wildlife monitoring data from Chapter 4 have been limited to annual point estimates 

of abundance for the 11 species that have been reported to government and donors. Spatial modelling 

has been carried out for one species and published (Nuttall et al., 2017). However, the modelling of 

temporal trends for all species was requested to allow for unambiguous statements of population 

trends (“decreasing”, “stable”, “increasing”), and the spatial models were requested to support the 

strategic deployment of ranger patrols. The results, interpretation, and implications I presented in 

Chapter 4 were critical outputs for WCS as they have directly informed the management of KSWS, 

and they, and the peer-reviewed publication, have been well received. The results have been widely 

shared within Cambodia via news and media, and importantly they have been shared with senior 

government officials. Importantly, both the positive aspect of the results (primate and green peafowl 

populations are largely stable or increasing), and the negative aspect (ground-based species are in 

decline) have been highlighted, and I hope that the results will have a genuine impact on policy and 

the management of KSWS.  

The publication of the results in a scientific journal has allowed the scale and quality of the KSWS 

monitoring programme to be internationally recognised, and the publication of population estimates 

and trends for species with no prior estimates will be invaluable for regional IUCN status 

assessments. All my R code is publicly available, and I conduced the analysis in close collaboration 

with Olly Griffin from WCS. This was done so that WCS technical advisers can repeat the analyses in 

the future, ensuring that what I accomplished during my PhD continues to benefit WCS and KSWS 

for many years.     

Chapter 2 demonstrated how rapid economic development in a post-conflict nation can have 

significant effects on the expansion of commercial agriculture and, therefore, deforestation. 

Interestingly, the approval of new ELCs in Cambodia has decreased dramatically in recent years in 

response to a moratorium issued by the Prime Minister. Therefore, my results from Chapter 2 have 

less value in explicitly informing immediate current policy around commercial agriculture in 

Cambodia. However, they provide a formal analysis which suggests that these reductions in new 

ELCs should be maintained. Commercial agriculture is one of the most important drivers of 

deforestation around the world (Curtis et al., 2018; Hoang and Kanemoto, 2021), and my results will 

provide an important case study demonstrating the relationships between economic development and 

commercial agriculture, particularly in developing countries of SEA, and post-conflict nations.  
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WCS operates in many parts of Cambodia, and the results from Chapter 3 will provide important 

insights into the relationships between socioeconomics and forest cover. Importantly, Chapter 3 

showed that in the Northern Plains (NP) of Cambodia, there has been socioeconomic development 

with little resulting forest loss. The WCS have some important conservation programmes in the NPs, 

including ecotourism initiatives and the Ibis Rice Payment for Environmental Services (PES) 

programme (www.ibisrice.com). The results from Chapter 3 may provide confirmation that these 

programmes are having the desired effect of increasing socioeconomic status in an environmentally 

sustainable way. This will allow WCS to investigate the development of similar programmes 

elsewhere in the country, for example in the Eastern Plains (where KSWS is located) where Chapter 3 

demonstrated socioeconomic development was low, forest cover was high, and forest loss was high. 

Chapter 5 has the potential to make a significant contribution to the conservation and green financing 

fields. I believe that this is the first study that explicitly models the effects of short-term funding 

cycles on conservation outcomes, and therefore will provide valuable theoretical insights for 

landscape managers and those working to develop sustainable financing for conservation. This 

chapter will be prioritised for publication in a peer-reviewed journal, and I hope it will be widely read. 

As a former conservation practitioner, I know that there is virtually universal agreement that short-

term funding cycles are not optimal for long-term conservation management. It is always beneficial to 

have peer-reviewed publications that provide evidence to support calls for change, and to provide 

objective assessments of the pros and cons under certain circumstances.  

6.5 Future research  

This thesis has highlighted research that would be beneficial for conservation in Cambodia and more 

broadly. Chapters 2 and 3 modelled forest cover and loss across Cambodia, but they did not attempt to 

predict where forests would be lost in the future. There are some powerful tools for spatial predictive 

modelling of deforestation, such as cellular automata, maximum entropy, and machine learning 

(Basse et al., 2014; Bonilla-Bedoya et al., 2018; de Souza and De Marco, 2014), which could provide 

valuable information on spatial deforestation patterns, high risk areas, and the fine-scale predictors of 

deforestation for conservation managers across Cambodia.  

The data and modelling framework from Chapter 3 could be used to investigate the socioeconomic 

predictors of forest cover from smaller, discrete regions of Cambodia. Smaller regions are likely to 

have less variance in predictor and response variables, and therefore the models may be able to 

identify specific regional predictors more effectively. If true, these predictions could be valuable for 

developing conservation or development interventions that are targeted and appropriate to the region. 

Chapter 4 demonstrated that ground-based wildlife was in decline, and I suggest that hunting with 

snares and dogs, and predation by free-ranging dogs, are likely the main drivers of these declines. A 

http://www.ibisrice.com/
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study that was designed to specifically identify the main causes of mortality, and therefore 

demonstrate causation of population declines, would provide evidence for PA managers to design 

effective countermeasures. 

In Chapter 5 I used the GMSE modelling framework to test theories on a generalised landscape. The 

GMSE package has sufficient flexibility to allow for customisation of the landscape to reflect a real-

world conservation landscape or PA. For KSWS, using GMSE to investigate the implications of the 

REDD+ benefit sharing mechanism (i.e., how funds are distributed) on deforestation and local 

livelihoods in different contexts would be valuable for supporting future decisions relating to the 

REDD+ project. Alternatively, GMSE could be used more generally to investigate the dynamics of a 

social-ecological system when a PES scheme is applied. There is still debate surrounding the efficacy 

of PES schemes (Ingram et al., 2014; Salzman et al., 2018), and so simulation modelling could 

provide an opportunity to explore and test underlying theories.   

6.6 Concluding remarks 

Cambodia has a traumatic recent past; one that still exists in living memory. I had the privilege to live 

and work in Cambodia for four years, and I have seen the scars that have been left on the landscape, 

the people, and the nation as a whole. The civil war has had a significant and lasting effect on the 

politics and society of the country, with many of the issues surrounding governance and policy deeply 

interwoven with the conflict and its aftermath (de Zeeuw, 2010). Cambodia still has extensive forest 

cover and diverse wildlife, but these are under ever increasing pressure from humans. The results 

from my thesis support what I have experienced as a conservation practitioner and wildlife biologist 

working in the country; the broadest drivers of environmental degradation are poor governance, 

ineffective policies and policy implementation, and chronic underfunding for the environment sector.  

Chapter 2 confirmed that economic recovery and agricultural expansion have been prioritised over 

sustainable natural resource management, and Chapter 3 confirmed that rural areas have seen 

relatively few socioeconomic benefits from that recovery. I have demonstrated that commercial 

agriculture has been a major beneficiary of government economic policy, and other studies have 

demonstrated that local people have often seen land conflict and forest loss from ELCs, rather than the 

economic development the Land Law states they should bring.  

Chapter 4 confirmed that wildlife, even in one of the best funded PAs in the country, is under extreme 

pressure from human activities. Chapter 5 provided evidence, albeit theoretical, that the conventional 

grant-based funding mechanism for conservation – which is the dominant mechanism in Cambodia – 

is not likely to support the most effective conservation management of landscapes and PAs over the 

long-term. Although not unique to Cambodia, this approach to funding conservation activities is 

largely due to insufficient government resourcing of the PA network.   
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The main insights from this thesis, described above, can be attributed to policy that is poorly designed 

or poorly implemented, weak and ineffective governance, or indeed both. The insights from Chapter 5 

could offer at least one solution to reverse the general decline of Cambodia’s forests and wildlife: 

long-term sustainable funding for conservation landscapes. To reduce deforestation rates and ensure 

wildlife populations do not face local extinction, Cambodia’s leaders will need to prioritise the 

development of both economic and environmental policies that safeguard what remains of the 

country’s natural environment. Critically, they will need to provide the resources and governance 

structures to ensure they are implemented effectively.  
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Appendix A - Protected area downgrading, downsizing, and degazettement in 

Cambodia: Enabling conditions and opportunities for intervention 

 

This appendix is a manuscript that has been in development for several years and has not been written 

as a formal part of my PhD. It is based in Cambodia and covers themes and topics that are relevant to 

this thesis, and therefore may be of interest to readers. It will soon be submitted to the journal 

Conservation Science and Practice as a ‘perspectives and notes’ article. The author list is: Matthew 

Nuttall, Harri Washington, Rachel Golden Kroner, Erick Olsson, Keziah Hobson, Joel Merrimen, 

Alex Diment, Ung Vises, Nils Bunnefeld. 

A.1. ABSTRACT 

The sustainability of protected areas (PAs) is challenged by their downgrading, downsizing, and 

degazettement (PADDD), which has been documented worldwide. Case studies of national and local 

enabling conditions that allow ecologically destructive PADDD events are of great value to the 

conservation community and may help to prevent future events. Using information collected from 

legal documents, we identified 39 PADDD events affecting two adjacent PAs in northeastern 

Cambodia which affected each PA differently, despite similar economic, environmental, social and 

biological conditions. Important differences in local context led to eventual degazettement (100% 

loss) of one PA and downsizing (loss of 6%) of the other, the remainder of which remains protected. 

This case study confirms the contribution of securing Indigenous land tenure to effective PA 

management and demonstrates the importance of investing in site-level capacity to ensure that social 

and biological conditions are monitored and proposed PADDD events can be successfully challenged. 

A.2. INTRODUCTION 

Protected areas (PAs) are cornerstones of biodiversity conservation efforts (Watson et al., 2014). 

Globally, protected land- and seascape coverage continues to increase (UNEP-WCMC and IUCN, 

2020). PAs can only effectively contribute to conservation and improved human well-being in the 

long term if they are durable entities, invulnerable to fluctuating economic demands and political 

agendas. However, a framework for tracking and evaluating the tempering, reduction, and loss of PAs 

via legal mechanisms has highlighted a widespread and pervasive phenomenon (Golden Kroner et al., 

2019; Mascia et al., 2014; Mascia & Pailler, 2011). The PA downgrading, downsizing, and 

degazettement (PADDD) framework defines downgrading as the decrease in legal restrictions on 

human use within a PA; downsizing as the reduction in size of a PA via a legal boundary change; and 

degazettement as complete loss of protection (Mascia & Pailler, 2011). Since 1892, more than 4,200 

PADDD events have occurred in at least 74 countries, affecting over 3.4 million km2 of protected land 
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and ocean, more than 500,000 km2 of which represent a complete loss of legal protection 

(Conservation International and World Wildlife Fund, 2021; Golden Kroner et al., 2019). Some 

PADDD events, including consolidation and optimisation of PA networks (Fuller et al., 2010) and 

securing indigenous land rights (Borges et al., 2019), have not adversely affected biodiversity. 

Nevertheless, the majority (61%) of global PADDD events were enacted to enable or expand 

industrial-scale economic activities, especially agriculture, resource extraction, and infrastructure 

(Golden Kroner et al., 2019). 

 

Southeast Asia (SEA) has exceptional faunal diversity and harbours a greater number of threatened 

species than any other continental area (Gray et al., 2018). Deforestation rates in SEA are among the 

highest globally and are accelerating (Hughes, 2017; Kim et al., 2015), driven predominantly by 

industrial-scale agriculture, mining, and infrastructure development (Estoque et al., 2019). Between 

1910 and 2013, at least 255 PADDD events were enacted in SEA (www.padddtracker.org). Their 

proximate causes include industrial agriculture, infrastructure, and rural settlements, yet their impacts 

on conservation outcomes are poorly understood (Golden Kroner et al., 2019). 

 

PADDD may accelerate forest loss (as observed in Malaysia and Peru, Forrest et al. 2015), or forest 

loss may put PAs at higher risk of PADDD (as observed in Brazil, Tesfaw et al. 2018). These 

dynamics make it difficult to predict the causal impacts of PADDD on biodiversity loss, to assess risk, 

and to design proactive responses to prevent or mitigate effects of potentially damaging PADDD 

events. Case studies evaluating national and local enabling conditions that are precursors to 

destructive PADDD events are of great value (Golden Kroner et al., 2019; Qin et al., 2019). Insights 

into political, social, economic, and environmental conditions surrounding PADDD events, 

particularly from case studies, can provide data to generate hypotheses describing the contexts within 

which PADDD events lead to positive and negative biodiversity outcomes. Such hypotheses can then 

be tested and used to develop frameworks for NGOs, businesses, and the public to create conditions 

and influence decisions that reduce negative PADDD events. Transparent reporting of successful or 

unsuccessful opposition to events will help conservation managers to foresee and prevent PADDD 

within their PAs. 

 

This paper aims to elucidate conditions and mechanisms surrounding two PADDD events in 

Cambodia through a comparative case study and generate conservation lessons that may apply to 

other regions. We collected and reviewed legal documents (see Supporting Information for further 

details on methods) detailing 39 PADDD events that were enacted over less than a decade 

(2009−2018) in two adjacent PAs in northeastern Cambodia. Based on our experience (MN, KH, HW, 

AD, UV) at the site, we describe the political and economic contexts of these events at national and 

local levels, and the different conditions affecting each PA that allowed partially successful responses 
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to PADDD events at one site, and significant biodiversity loss at the other. We highlight examples of 

PADDD events from these PAs that had both positive and negative impacts on biodiversity, and a 

legal process that lacks transparency and due process. Finally, we discuss the relevance of these 

lessons to the wider conservation community. 

A.3. Case study 

A.3.1 Study sites 

The Eastern Plains Landscape is one of the largest contiguous PA networks in SEA, with six PAs 

covering close to 1 million hectares (Figure 1, O’Kelly et al., 2012). Keo Seima Wildlife Sanctuary 

(hereafter ‘Keo Seima’), located in Mondulkiri and Kratie provinces, became a PA in 2002 and 

remains protected (Figure 1). Snuol Wildlife Sanctuary (hereafter ‘Snuol’), in Kratie Province, 

became a PA in 1993, but after 28 downgrading and downsizing events was degazetted in 2018. Both 

sites were originally designated as PAs because surveys highlighted the presence of important 

biodiversity (Baltzer et al., 2001; Walston et al., 2001). Subsequent monitoring in Keo Seima between 

2010 and 2020 emphasised its global importance for several threatened species, including the largest 

single population of the endangered Yellow-cheeked crested gibbon (Nuttall et al., 2021). Keo Seima 

has had relatively well-funded management and an extensive conservation programme since 2002, 

largely due to the presence of an international conservation organisation (the Wildlife Conservation 

Society, WCS) that was able to leverage external funding. Close collaboration between WCS and the 

Royal Government of Cambodia (RGC) in Keo Seima from 2002 secured long-term funding and 

technical capabilities to support conservation activities. Snuol received little funding or investment in 

personnel from the RGC and no external organisations worked at the site. Thus, it never had an active 

conservation programme, and its law enforcement activities were less substantial than in other NGO-

supported PAs in the Eastern Plains Landscape. 
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Figure A1. Keo Seima Wildlife Sanctuary and Snuol Wildlife Sanctuary in eastern Cambodia 

 

A.3.2. Enabling conditions of PADDD events - National 

The first democratic elections following decades of war and civil unrest were held in Cambodia in 

1993, after which the country moved beyond post-conflict status and experienced rapid economic 

growth (Hughes & Un, 2011). The civil war and subsequent tumultuous years left Cambodia with no 

official public records of land ownership, resulting in many years of insecure land tenure and conflict 

(Chandler, 2008). National policies emerged that would pave the way for PADDD events to occur in 

both PAs. From the mid-2000s, the government pursued the development of agro-industrial land 

concessions to encourage economic growth (Neef et al., 2013). Such concessions contributed to the 

economy initially through export of timber cleared from forests, which fed regional and global timber 

demand (Li et al., 2008; Sun, 2014), and then through agricultural production and export (Borras & 

Franco, 2011; Fox & Castella, 2013). There has been widespread criticism of these industrial-scale 

economic land concessions (hereafter ‘economic concessions’), including their impacts on 

deforestation (Davis et al., 2015), the opaque legal mechanisms behind the awarding of concessions, 

and apparent disregard for local land rights and protected areas (Global Witness, 2013; Neef et al., 

2013; Oldenburg and Neef, 2014; Vrieze and Kuch, 2012). By 2013, 1.2 million hectares of land in 
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Cambodia had been leased for economic concessions, 346,000 hectares of which were located within 

PAs (Beauchamp et al., 2018; Conservation International and World Wildlife Fund, 2021; Watson et 

al., 2014). At the request of development partners, the RGC responded by introducing social land 

concessions (hereafter ‘social concessions’), aiming to provide secure land tenure and increase land 

distribution to families and individuals (Oldenburg & Neef, 2014). 

 

The Land Law, enacted in 2001, contains provisions for securing the land rights of indigenous people. 

By 2012, three communities had been awarded an Indigenous Communal Land Title (hereafter 

‘Indigenous title’), and many others were partway through the process (Milne, 2013b). Indigenous 

titles provide legal tenure over traditional lands for Indigenous communities, emphasising communal 

ownership and management and allowing traditional rotational agriculture (Milne, 2013b). In addition 

to economic concessions, social concessions, and Indigenous titles, a further land acquisition scheme, 

Directive 01, was launched in 2012 to rapidly distribute individual land titles, predominantly to rural 

families. The mechanism aimed to provide land tenure to families living around economic 

concessions, seeking to prevent or resolve conflict between economic concession companies and 

residents. More than 600,000 individual land titles were issued in two years, providing secure land 

tenure for many families (Grimsditch & Schoenberger, 2015). However, the scheme faced criticisms 

of inaccurate land measurements, procedural inconsistencies, a lack of transparency, failure to address 

conflicts, and issuing titles within protected areas (Grimsditch & Schoenberger, 2015; Milne, 2013). 

 

These four land tenure mechanisms (economic concession, social concession, Indigenous title, 

Directive 01) led to rapid and widespread changes in land ownership and use nationwide (Grimsditch 

& Schoenberger, 2015; Neef et al., 2013). The mechanisms were operationalised quickly and in 

parallel, which, in conjunction with poor administration and a lack of transparency in legal 

procedures, has had many negative consequences for PAs, primarily forest loss resulting from private 

or commercial land titling within PA boundaries. A traditionally top-down approach to policy 

implementation (despite decentralisation efforts, see Faguet (2014)), and thus limited autonomy for 

sub-national government, reduced the effectiveness of local application of these mechanisms. Finally, 

implementation of land tenure mechanisms requires input from multiple government ministries. 

Coupled with a historical division of responsibility for environmental management between two 

different ministries, this requirement has led to complex jurisdictional stalemates when conflicts arise 

in PAs. 

A3.3. Enabling conditions - Local 

The rapid increase in economic and social concessions and nationwide implementation of Directive 

01 drove dramatic changes to infrastructure and land use at the local scale, particularly in rural areas 

such as the Eastern Plains Landscape. Despite legal restrictions on awarding economic and social 
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concessions inside PAs, exceptions apply in certain circumstances, including when areas are 

considered ecologically ‘degraded’. These exceptions were used frequently in the Eastern Plains 

Landscape and elsewhere in the country to facilitate the awarding of concessions inside PAs, despite 

little evidence to support claims of such degradation. Economic concessions require large workforces 

and infrastructure, and both social concessions and Directive 01 offered opportunities for landless 

families to acquire farmland. Improved transport infrastructure, often developed by economic 

concession companies, increased the accessibility of previously remote areas such as the Eastern 

Plains Landscape. In combination, these factors led to large-scale migration into the landscape, 

increasing population density, urbanisation, and land speculation, all of which have negative 

consequences for ecological values of PAs (Evans et al., 2013; Symes et al., 2016).  

 

Economic concessions were established within both Keo Seima and Snuol. Forests inside economic 

concession boundaries in both PAs were cleared rapidly, followed by escalating loss of surrounding 

forest. In Keo Seima, the law enforcement capacity of PA authorities was overwhelmed by the 

volume of people—both those employed by economic concession companies and opportunistic 

migrants—and the speed of illegal forest clearance, resulting in significant forest loss. The situation 

was exacerbated by regular conflict between PA authorities and economic concessionaires regarding 

concession boundaries. In Snuol, once all the forest within economic concession boundaries had been 

cleared, social concessions were awarded on the same land, which allowed in-migrants to settle. 

Meanwhile, the rapid loss of forests adjacent to economic concessions led to much of the PA being 

designated as ‘degraded’, thus facilitating the allocation of further social concessions. Insufficient law 

enforcement capacity in both Keo Seima and Snuol allowed land speculation and illegal forest 

clearance to also occur in parts of the PAs not adjacent to economic concessions. Directive 01 was 

then used to apply for individual titles to cleared land, even though the plots were inside PA 

boundaries. Implementation of Directive 01 in both PAs lacked transparency, regulation, and 

communication between titling officials and PA authorities, allowing many applications for land titles 

within the PAs to succeed, thus inappropriately legalising these land claims. 

A3.4. PADDD events in Keo Seima and Snuol 

In Keo Seima, 178.56 km2 of the PA has been either downgraded or downsized (Table 1), resulting in 

complete loss of primary lowland evergreen and semi-evergreen forest across most of the areas 

affected. In Snuol, most of the forest was clear-felled by 2014, representing a significant loss of 

evergreen and semi-evergreen forest. Despite their adjacent locations and similar political and local 

contexts, the number and extent of PADDD events enacted in Keo Seima and Snuol differ 

significantly (Table 1). Keo Seima lost approximately 6% of its total area and remains an important 

area for biodiversity (Nuttall et al., 2021), while Snuol lost approximately 80% of its area to 

downgrading and downsizing events between 2009 and 2013, before being entirely degazetted in 
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2018. Eight of the PADDD events in Keo Seima resulted from the awarding of Indigenous titles, 

which are considered beneficial for both Indigenous land rights and conservation (Schreckenberg et 

al., 2016). Secure land tenure for Indigenous communities allowed clear demarcation between 

community land and PA land, provided legal agricultural land for the communities involved, and 

strengthened the ability of these communities to prevent in-migration, illegal clearing by outsiders, 

and allocation of concessions. Many of the PADDD events in Snuol were enacted as a result of forest 

clearance; social concessions were awarded on previously cleared economic concessions, and other 

cleared land became classified as ‘degraded’ and was thereby also eligible to be awarded as social 

concessions. No Indigenous titles were granted in Snuol. 

 

Table A1. Protected area downgrading, downsizing, and degazettement (PADDD) events occurring 
in two adjacent protected areas in northeastern Cambodia. 

Protected area Year 

gazetted 

Original 

PA 

extent 

(km2) 

Number of PADDD events Years of 

PADDD 

event 

occurrence 

Area 

affected 

(%) Downgradea Downsizeb Degazette Total 

Keo Seima 

Wildlife 

Sanctuary 

2002 2926.9 3 8 - 11 2012-2013 6.1 

Snuol Wildlife 

Sanctuary 

1993 750.89 17 10 1 28 2009-2018 100 

a Economic concessions and social concessions 
b Directive 01 and indigenous titles 

 

A.3.5. Responses to PADDD events 

WCS has worked with the RGC since 1999, providing financial, technical, and management support 

both nationally and across multiple conservation landscapes, including in Keo Seima but not in Snuol. 

The governance and management of Keo Seima is a hybrid of the ‘project co-management’ and 

‘financial-technical support’ models of PA management (see Baghai et al., 2018), with close working 

relationships between government and NGO staff. This long-term collaboration, where NGO and 

government staff work in close-knit teams and share office space, fostered a working relationship that 

facilitated rapid formal and informal sharing of information about PADDD events that were being 

considered by the government.  

 

The NGO–government collaboration provided Keo Seima with well-resourced technical teams that 

were able to react quickly to information about newly proposed PADDD events. Geographic 

Information Systems (GIS) staff had access to government-approved spatial data (e.g., delineated PA 

boundaries) and up-to-date habitat and land-cover data, allowing accurate spatial interrogation of 

proposed events (concessions and Directive 01 land parcels). Biodiversity monitoring staff had 

previously collected, and analysed biodiversity data spanning multiple years, produced a species list, 
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and had reliable population estimates and areas of occurrence for several key species, highlighting the 

regional and global importance of the site. Community engagement staff had collected detailed 

demographic and socioeconomic data for communities within Keo Seima, strongly demonstrating the 

importance of the forest for livelihoods and Indigenous culture, and had supported indigenous 

communities in Keo Seima through the Indigenous titling process, which strengthened local land 

rights. Finally, law enforcement staff had evidence (e.g., reports, patrol records) of attempts to prevent 

the illegal clearance of many of the proposed Directive 01 land parcels within Keo Seima. The 

technical teams compiled this evidence, supporting data, and other appropriate documentation into 

persuasive reports highlighting the importance of Keo Seima for environmental protection and land 

rights, and the weaknesses in the proposals for concessions or titles based on the defined legal process 

for awarding each (e.g., consideration of environmental impact assessments, Indigenous land rights, 

intactness of forest areas). This coherent strategy allowed some proposed events to be prevented. 

 

In contrast, Snuol did not benefit from a collaboration between an NGO (or any other partners) and 

the RGC, and had none of the above data, resources, or technical teams, which precluded effective 

interventions to stop proposed PADDD events. Snuol was degazetted in 2018 and has since lost what 

little forest cover remained. 

A.4. DISCUSSION 

Understanding the conditions within which PADDD events occur is critical for conservationists to 

anticipate and challenge events that are likely to have negative effects on biodiversity (Golden Kroner 

et al., 2019). This case study demonstrates how PADDD events shaped by the same political and 

economic conditions affected two adjacent PAs in very different ways. Overall, the events resulted in 

deforestation and have had negative consequences for biodiversity in both PAs. However, one PA was 

subsequently degazetted, while the other continues to be protected.  

 

Ineffective governance of PAs is common wherever top-down decision-making, lack of procedural 

obligations, local power dynamics, and poor transparency make successful opposition to proposed 

PADDD events challenging (Dawson et al., 2018; de Koning et al., 2017; Morea, 2019; Paudel et al., 

2012). The PADDD events in this case study were challenging for PA staff to manage and prevent 

because legal processes, including information about proposed boundary and regulatory changes, 

were often not transparent, with little or no opportunity for participation by local people, PA 

management, or NGOs. Although it is difficult to make generalisations about drivers of PADDD (Qin 

et al., 2019), many of the legal and institutional challenges that precluded effective and transparent 

opposition to these PADDD events are not unique to Cambodia. Legal frameworks that are weak, 
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opaque, and poorly understood also exist in other countries, and often result in loopholes or gaps in 

environmental law that allow misinterpretation or abuse (Boillat et al., 2018; W. Xu et al., 2019). 

 

The case study presented here provides important insights into policies and conditions that acted as 

precursors to multiple PADDD events, and the tools that were available for opposition to these events. 

It provides further evidence of the important role that Indigenous land tenure can play in increasing 

equity and securing land in and around PAs against economic land speculation (Schreckenberg et al., 

2016). Future research to compile additional PADDD case studies, either focused on one site (e.g., 

Golden Kroner et al., 2016), in a comparative framework (as in this analysis), or other analytical 

approaches would reveal further insights on the contextual factors shaping PADDD events. 

 

The example described in this paper demonstrates that national policies that aim for rapid and 

widespread land titling can have unintended negative consequences for PAs, especially in the context 

of top-down governance and weak legal institutions. These types of policies require robust tracking by 

independent actors (e.g., NGOs) so that conservationists can react quickly to threats to PA integrity, 

and to improve transparency and accountability. Collaboration with central governments to, where 

necessary, reform policies that control PADDD within PAs would be valuable (Qin et al., 2019). 

 

In this case study, the long-term relationship between WCS and the RGC in Keo Seima meant that the 

management team had political capital to expend on leveraging central government support and 

pushing for opposition to proposed PADDD events. Long-term working relationships (within 

government and between government and external partners) that foster collaboration, trust, and 

investment are vital to conservation management. Long-term investment in technical teams (e.g., 

monitoring and research, law enforcement, community engagement) is critically important for 

functioning PAs (Geldmann et al., 2015). Our case study demonstrates that PA management teams 

need appropriate capacity and access to current datasets describing social and biological features of 

the PA. Managers that lack sufficient human and information resources will be unable to mount 

effective opposition to proposed and environmentally damaging PADDD events and will therefore 

struggle to ensure long-term integrity of PAs in the face of increasing economic and social pressures. 
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