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ABSTRACT 

This research is concerned with texture: a source of visual information, that has motivated 

a huge amount of psychophysical and computational research. This thesis questions how 

useful the accepted view of texture perception is. From a theoretical point of view, work 

to date has largely avoided two critical aspects of a computational theory of texture 

perception. Firstly, what is texture? Secondly, what is an appropriate representation for 

texture? This thesis argues that a task dependent definition of texture is necessary, and 

proposes a multi-local, statistical scheme for representing texture orientation. 

Human performance on a series of psychophysical orientation discrimination tasks are 

compared to specific predictions from the scheme. 
The first set of experiments investigate observers' ability to directly derive statistical 

estimates from texture. An analogy is reported between the way texture statistics are 
derived, and the visual processing of spatio-luminance features. 

The second set of experiments are concerned with the way texture elements are ex- 
tracted from images (an example of the generic grouping problem in vision). The use of 

highly constrained experimental tasks, typically texture orientation discriminations, al- 
lows for the formulation of simple statistical criteria for setting critical parameters of the 

model (such as the spatial scale of analysis). It is shown that schemes based on isotropic 

filtering and symbolic matching do not suffice for performing this grouping, but that the 

scheme proposed, base on oriented mechanisms, does. 

Taken together these results suggest a view of visual texture processing, not as a 
disparate collection of processes, but as a general strategy for deriving statistical repre- 
sentations of images common to a range of visual tasks. 
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1 INTRODUCTION 

1.1 OVERVIEW 

This chapter introduces the problems considered in this thesis, in the context of a working 

definition of visual texture. Various definitions of texture are described, and it is proposed 

that the evident lack of consensus between these definitions is due to the fact that texture 

can only be defined operationally, i. e. in the context of a particular visual task. Section 1.3 

expands this idea into a working definition based on statistical image description, describes 

necessary assumptions, and indicates where these assumptions are tested within the thesis. 

The literature concerning texture segmentation, shape from texture and texture flow, is 

then briefly reviewed. Finally, an overview of the structure of the thesis is given in 

Section 1.5. 
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1.2 WHAT IS TEXTURE? 

A logical starting point for examining texture perception is to try and clearly define the 

class of stimulus being examined. It is interesting to note that, in the many papers written 

about the perception of visual texture, clear definitions of texture are few and far between. 

One is often told that "shape from texture" or "texture segmentation" is the subject of 

enquiry, but there does not seem to be a consensus of opinion as to what visual texture is. 

Three broad categories of definition have been offered, based on: surface quality, spatial 

scale, and statistics. 

Surface quality: 

"Arrangement of threads, etc. in textile fabric, characteristic feel due to this; 

arrangement of small constituent parts, perceived structure, (of skin, rock, 

soil, organic tissue, literary work, etc.; " (Concise Oxford Dictionary) 

"... a term for the quality of a surface. The feature that dominates a texture 

scene is the repetitive or quasi-repetitive pattern. " (Fu, 1974) 

"... the visual character of the surface of things. " (Watt, 1988) 

"... the character of an object resulting from the arrangement or qualities of 
its particles or constituent parts. " (Bergen, 1991) 

Spatial scale: 

"... detailed structure in an image that is too fine to be resolved, yet coarse 

enough to produce noticeable fluctuation in the grey levels of neighbouring 

cells. " (Horn, 1986) 

".. any visible features of a surface that are homogeneous in size and spacing 

across the extent of the surface... A strand of thread, a pebble, or a tree each 

has textured surfaces of its own, however, so that the visible environment 

may be thought of as containing nested hierarchies of textured surfaces. " 

Sedgwick, 1983; summarising Gibson, 1950a) 

"... the structure of a surface, as distinguished from the structure of the sub- 

stance underlying the surface. We are talking about the relatively fine struc- 
ture of the environment at the size-level around centimeters or millimeters. " 
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(Gibson, 1979, p25) 

"... an attribute of a field having no components that appear enumerable, " ( 

Richards and PoMt, 1988) 

Statistics: 

"(If you can) "see" the spaces between the individual droplets (of a cloud). 

Then you describe the microstructure as a texture. Thus you prepare only a 

statistical description. " (Koenderink, 1990) 

"Since texture refers to the molding of a surface, which may be irregular or 

regular, one might believe that a detailed description of the configuration of 

the surface would be equivalent to a description of its texture but this would 

not be correct. Although texture can be derived from the detailed microscopic 

knowledge properties of a surface... texture is not itself a microscopic property. 

Rather, it is... a statistical property of certain characteristic features of the 

surface. " (Resnikoff, 1989) 

There exists a fourth type of definition which amounts to a description of the experi- 

mental stimuli employed: 

"Visual textures are defined as aggregates of many small elements. The ele- 

ments can either be dots of certain colors... or simple patterns. " (Julesz, 1991) 

These classes of definition seem to address different aspects of visual texture process- 
ing. Given that that the visual processing of texture is a complex information processing 

task, a useful approach to examining such a system is that of Marr (1982). He proposed 

that there are three levels at which information processing systems can be understood. 

The first of those is the level of computational theory. At this level the goal of a com- 

putation and the reasons for its importance are stated. The second level is that of the 

algorithm. This states how the computational theory can be implemented, along with 

appropriate representations for the input and output. The final stage is that of the hard- 

ware implementation, which describes the physical realisation of the proposed algorithm. 

Levels mutually constrain each other: the goals outlined in the computational theory 

constrain the algorithm, which is in turn constrained by what hardware is available to 

perform the task. 
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Consider the first set of definitions, based on surface "character". By "character" 

the authors do not refer to traits and qualities that would uniquely identify a particular 

instance of a texture. Instead they refer to traits that place the texture into some broader 

category, e. g. wood, stone, etc. What are these traits? Typically they are attributes of 

the object that reflect how it was formed, and which consequently constrain how we can 

behave towards it. For example, the oriented structure of woodgrain reflects the multiple 

forces occurring in the growth of a tree, which in turn constrains how we might cut the 

wood to avoid it splintering. This is an important point: we perceive texture for a purpose, 

to better define the shape of an object, to determine if an object will afford sufficient grip 

to allow us to pick it up, to determine if the face of a mountain can be climbed in a day, 

etc. Surface traits capture some aspect of the active nature of texture. Indeed, this level 

of definition is probably closest to Marr's computational theory, being a statement of the 

intended goal of a process. 
The second set of definitions refer to the spatial scale of objects and the texture that 

covers them. These definitions presuppose that there is a correct scale to consider objects, 

and a correct (finer) scale to consider texture. They also constrain the type of surface 

qualities that texture is concerned with. Because the elements of texture are at a finer scale 

than the surface they cover, emergent qualities must result from some form of aggregation 

of those elements over space. This follows on to the final set of definitions, which describe 

texture not as a surface property, but as a statistical property. A description such as this is 

closer to a description of the representation of texture (i. e. Marr's algorithmic level). The 

definitions relating to spatial scale and statistics are both algorithmic levels of explanation. 

They describe aspects of the strategies (i. e. operation at different spatial scales) and 

representations (statistics) that texture vision uses to achieve the goals described in the 

computational theory. 

To summarise, definitions of texture vary because texture can only be defined opera- 

tionally, and because authors have attempted to describe this operation at different levels 

of information processing. For that reason the following argument will primarily refer to 

texture processing, i. e. tasks that operate on texture. 

1.3 AN ALTERNATIVE VIEW OF TEXTURE 

In this section texture processing is considered as an operation common to a number of 

visual tasks, whose essence is the calculation of statistical image descriptions. The section 
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is organised into a set of descriptions of the key assumptions underlying this view, each 

followed by a, short summary of any pertinent evidence. 

Assumption 1 Texture processing is a component of a number of visual tasks. 

Texture information is used for a variety of visual tasks: discontinuities signal surface 

discontinuities (e. g. Figure 1.1a; Julesz, 1981), variations in texture geometry signal local 

shape (e. g. Figure 1.11); Gibson, 1950b), texture information reflects the formative pro- 

cesses a surface has undergone (Figure 1.1c; Witkin and Tennenbauºn, 1983), texture ºnay 

be coded as component of object recognition, etc. Such visual operations which makes 

use of texture information will he referred to as "texture tasks". Each task has its own 

goals and constraints, but shares a common sets of operations. These operations will be 

referred to as "texture processing". As such, texture processing is best considered at, the 

algorithmic level of Marr's scheme. That is not to say that it does not have goals which 

constrain its operation, but rather that the goals of texture processing are concerned with 

delivering higher level visual operations with an appropriate description of the input. This 

goal may be stated specifically. 

Assumption 2 Texture processing produces a statistical description of an image fron a 

set of spatially distributed texture elements (texels). 

This assumption has two components: existence of a distinct representation for texture 

information, and the calculation of texture statistics over space. These will be considered 

in turn. 

It is hard to justify the existence of a particular representation within an information 

processing system. For example, Watt (1988) points out that one can always ask "why 

Figure 1.1. Examples of (a) texture segmentation, (b) shape from 

texture, (c) texture flow. 
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have a primal sketch, why not go straight to the 2.5 D sketch? ". He presents two reasons 

for having an intermediate representation: it can remove information that is redundant to 

higher levels of processing, and a it can simplify, in a computational sense, algorithms at 

higher levels. Similarly, it is clear that the alternative to the use of local texel statistics, 

i. e. the direct usage of individual texel attributes, contains vast redundancy for texture 

tasks (e.. g shape from texture). The level of reliability of individual measures is too 

low to make their use worthwhile. It is also clear that a system operating on relatively 

coarse spatial estimates of statistics will be a great deal simpler than one using detailed 

information from a potentially large number of texture elements. 

This assumption that statistical measurement of texel attributes is the basis of texture 

processing, suggests two stages of processing: measurement of texels and their integration. 

Is it reasonable to assume that these two operations are occurring in all processing of visual 

texture? It is in the nature of visual information that it is noisy. Because of irregularities 

in visual reception and neural noise, reliable visual information requires averaging of some 

sort. This is evident in the spatial summation properties of cells in V1, etc. To get the 

most from higher order visual information, such as orientation, it would make sense to 

perform some similar form of integration. 

The specific evidence for spatial summation of texture attributes comes mainly from 

the work of Sagi (Sagi and Julesz, 1987; Sagi, 1990), and of Nothdurft (Nothdurft, 1985b; 

Nothdurft, 1991b). Sagi and co-workers (Sagi and Julesz, 1987; Sagi, 1990) have examined 
the identification of a target element, differing in orientation from a background field 

of distractors, as a function of the number of background distractors, and have found 

a non-monotonic dependence of performance on distractor density. Performance first 

decreases as the number of distractors increases, but then begins to improve with very 

dense numbers of distractors. At short stimulus presentation times, the initial decrease in 

performance as distractor density increases is attributable to an decrease in the probability 

of attending to the target. However the increase shown at high distractor densities is 

evidence for a mechanism detecting feature-differences through local interactions (Sagi, 

1990). Similarly, Nothdurft (1985b) has shown that line length interacts with the spacing 

of texture elements, and that texture boundary detection depends on the rate of change of 

element orientation in space, at the boundary. This is taken as evidence for the calculation 

of gradients across space (Nothdurft, 1985b). Nothdurft (1991a) has also demonstrated 

that texture boundaries defined by orientation are resistant to local luminance fluctuation, 
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which is evidence for a stage of integration beyond V1, where cells are sensitive to image 

contrast and orientation (Watt, 1991a). 

Consider the stimuli that have been devised for psychophysical texture experiments 

in the past (e. g. Figure 1.2). It is a defining characteristic of every artificial texture task 

that it cannot be performed by monitoring a single element of the display. This is a weak 

constraint; many experiments would seem to fulfill this criteria and are not presently 

considered "texture tasks". Also because of the lack of variation of feature attributes in 

many stimuli, often only two elements need to be monitored to perform the task. The 

point is that a difference or multi-variate function of some sort must be used to do the 

task. 

There is little or no work examining directly the limits on human estimation of textu- 

ral statistics. This requires a different type of psychophysical procedure to typical texture 

experiments: subjects are asked to perform tasks which require the direct use of features 

of this statistical description. Watt (1991b) briefly presents results from a task requir- 

ing subjects to estimate the mean orientation of a patch of texture elements, where the 

orientation of texels varies around some mean value. Data indicate that the mean orien- 

tation of a number of orientation measures is available to subjects. Chapter 3 compares 
human estimation of texture statistics, to a set of alternative models for coding average 

orientation. 

Assumption 3 Orientation is a dimension used to form these descriptions. 

The importance of orientation information to visual processing is demonstrated by 

the fact that it, along with size, are the first visual dimensions to be represented in the 
human visual system (e. g. Hubel and Wiesel, 1967). The primacy of orientation as a 

cue for texture processing has been demonstrated in a number of ways. Beck and his 

colleagues (Beck, 1966; Beck, 1967; Beck and Ambler, 1972; Beck and Ambler, 1973) 

have consistently demonstrated that line orientation influences texture segregation more 

strongly that the "figural similarity" of elements. For example, the patch composed of 

slanted "T"s in Figure 1.2 is more easily segregated from the patch of upright "T"s than 

a patch of (figurally different) "L"s. 

Nothdurft has established the importance of orientation as a cue for texture seg- 

mentation using a number of paradigms. For textures composed of short line segments, 

discrimination of the shape of patch of elements differing in orientation from the back- 

ground, improves as a function of the orientation difference between patch and background 
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Figure 1.2. Beck's demonstration of the "primacy of orientation". 

(Nothdurft, 1985b). This result has been confirmed by Landy and Bergen (1991), using 

spatially bandpass textures. Nothdurft (1991b) has shown that segmentation using a 

number of proposed texture attributes is not possible in the presence of local luminance 

fluctuation. Only orientation is resistant to this form of noise. Nothdurft (1991a) tested 

the hypothesis that the detection of texture elements within patterns, and the discrimina- 

tion of two regions composed of different texture elements, should be affected similarly by 

masking with band-limited visual noise. Results showed that the only supposed texture 

attribute for which this is true, is orientation. 
From the distortions in the geometry of various proposed texture attributes that arise 

from the shape of a textured surface, psychophysical evidence indicates that it is ori- 

entation information that dominates subjects' perception of surface shape (Cutting and 

Millard, 1984; Todd and Akerstrom, 1987; Blake et al., 1993; Cumming et al., 1993). 

Assumption 4 Texture processing operates over a range of spatial scales, and a single 

scale is selected to perform a task. 

That texture processing occurs at a range of scales must be true to provide the degree 

of scale-invariance which we show in texture perception. For example, Nothdurft (1985b) 

has shown that increased spacing of texture elements impairs texture discrimination, 

only if elements are not scaled in proportion to their spacing. In addition, if texture 
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information does occur at a range of scales in natural images, as some definitions in 

the previous section suggested, then this assumption also seems justified. If we did not 

separate spatial scales and choose between them, then information from independent 

sources of texture information would always be amalgamated. 
This assumption could be restated as: some scales are better than others for perform- 

ing texture tasks. Spatially band-limited masking studies have certainly demonstrated 

that this is the case for texture segmentation (Nothdurft, 1991a). Further evidence for 

the operation of texture processing at single spatial scales, is presented in Chapter 5. 

How is scale selected? Ideally to select the correct scale one would perform the task at 

all scales and check which scale achieved the goal. Given that this can't be done without 

prior knowledge of the goal (in which case there is no point doing the task! ), and that 

scale must be selected, other (more general) strategies must be employed to select scale. 

Assumption 5 Texture processing makes assumptions about statistical properties and 

selects scales whose statistics deviate from some expected value. 

Statistical properties are available directly from the texture processing stage, and it 

is sensible to use those statistics to make the decision as to which description should be 

selected. In order to make that decision, assumptions have to made about the statistics 

of images that are inappropriate to texture processing. 

For example, the use of texture gradients, the increase in density of texture elements 
due to perspective projection, in deriving surface shape, assumes homogeneity of texel 

positions. In the case of orientation, isotropy is the assumed state of the world. This 

assumption is again commonly made in the literature on shape from texture: deviations 

from isotropy code local surface shape. Witkin (1981) claims that the assumption of 

texture element isotropy is not a strong, and therefore restrictive, assumption about 
texture regularity but merely the expectation that texture does not "conspire to mimic 

projective effects, or to cancel those effects" (Witkin, 1981). Here we are stating that if 

one assumes isotropy, then the best scale to operate at is maximally anisotropic. 

The hypothesis that anisotropy is a useful criterion for selecting scale, is tested in 
Chapter 5. 

Notice that by defining texture processing, but not texture, no constraint has been 

put on what an appropriate input for the system is. Any image can be treated as texture 

and it is the contention of this thesis that indeed all images are treated as texture in the 
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early stages of visual processing. For example, it has recently been suggested (Emmott, 

1994) that statistical regularities in symbolic descriptions of the output of LoG filtered 

pages of text may be used to select the correct spatial scale for reading sub-tasks. This 

suggests that the visual system may have a whole package of criteria for selecting spatial 

scale according to the task at hand. 

But what of the commonly held notion of texture? When one looks at a set of images 

one can be fairly confident in identifying what is and what isn't texture. What are these 

images? 

Assumption 6 "Texture" is a class of visual image which is wholely characterised by its 

statistical description, in the context of a particular texture task. 

A "good" texture is a stimulus which is deemed, in some sense, appropriate to a partic- 

ular texture operation. Based on the original definition of the goal of texture processing, 

(Assumption 1), appropriateness will depend upon the presence of multiple, spatially 

distributed elements with measurable attributes. This assumption is in accord with def- 

initions of texture which make reference to the scale of the texture compared to the 

surface e. g. "fine structure", "detailed structure too fine to be resolved", etc. Fine scale 

implies a great number of individual measures, for which a statistical characterisation is 

appropriate. 

Figure 1.3. (a) Enlarged section of face image, (b). (c) Reduced 
version of the face image, repeated and embedded within copies of 
another face. 

For example consider Figure 1.3. Of this set of images, parts (a) and (c) would 

subjectively be considered texture, and part (b), an object. Figure 1.3a shows a magnified 

region of (b), and (c) shows a number of reduced versions of (b) embedded in a background 



Chapter 1. Introduction 19 

of other faces. Because both (a) and (c) do not contain readily recognisable faces, but 

instead, are well described by their statistical representations, they are termed texture. 

Of course these judgements are made without the viewer being given a particular visual 

task to perform on the image. Since Figure 1.3b, in addition to the possibility of being 

described statistically, is also appropriate to higher recognition processes, this collection 

of visual features is treated as a face. This further illustrates the way in which scale 

selection is intimately related to the task at hand. By forcing the viewer to use particular 

scales, different tasks become appropriate. 

1.4 PRESENT RESEARCH INTO TEXTURE 

In this section a brief overview is given of research into three visual operations that use 
texture information: shape from texture, texture segmentation, and texture flow. 

1.4.1 SHAPE FROM TEXTURE 

Shape from texture is a set of techniques for recovering the three-dimensional structure of 

a surface from the distortions in texture which occur when a receding surface is projected 
onto the image plane. Three types of cue are generally acknowledged to arise these 

distortions: perspective, density and compression (Cutting and Millard, 1984). 

Perspective cues refer to the inverse scaling of texture elements that occurs as the 

surface they cover recedes from us. However, statistical modelling of this process is 

not possible without prior knowledge of the texel size statistics of a surface at a known 

orientation. For that reason, perspective cues are the least investigated of the cues to 

surface shape, and are generally eliminated from experimental stimuli either by restricting 
the field of view of a stimulus (which approximates orthographic projection), or through 

the use of thin texture elements (e. g. lines) on which perspective scaling will have a 

negligible effect (Blake et al., 1993). 

Gibson (1950b) first proposed that, assuming surfaces are uniformly covered with 

markings, the change in density of texture markings, under perspective projection, indi- 

cates the orientation of the surface. This "texture gradient" can thus be used to make 
multiple, local estimates of surface orientation and so overall shape. Several models have 

subsequently been proposed using and extending this idea (Bajczy and Lieberman, 1976; 
Ikeuchi, 1984; Aloimonos and Swain, 1984; Kanatani, 1984). However for the density cue 
to be useful, it is necessary to assume homogeneity of texel positions on a flat surface. As 
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Witkin (1981) points out, the homogeneity assumption has never been tested. Further- 

more, only density gradients, and not the absolute degree of density, can give information 

about shape (Blake et al., 1993). 

As a surface recedes away from us, the markings that cover it appear compressed in the 

direction that the surface recedes (foreshortening). Under projection, the distribution of 

texture element orientations will be biased towards one that is orthogonal to the direction 

of surface recession. In order to make use of this compression cue, Witkin (1981) makes 

the assumption that texture orientation is initially isotropic. Note that in contrast to 

the density cue, the absolute degree of compression does give information about shape. 

Although, implicitly, comparison to the statistics of a true fronto-parallel surface is made, 

a gradient within the image is not necessary. 

There is also increasing psychophysical evidence that it is the compression cue that 

is critical to subjects' perception of surface shape (Cutting and Millard, 1984; Todd and 

Akerstrom, 1987; Blake et al., 1993; Cumming et at., 1993). For example, Cumming et 

al. (1993) covaried the three cues discussed above, using stereoscopically viewed, artifi- 

cially textured surfaces. Using a two-alternative judgement of depth, 97% of variation in 

subjects' results is accounted for by the compression gradient. Blake et at. (1993) have 

developed an ideal observer model for shape from texture, using density and compression 

cues, in order to predict the lower bounds on performance at shape judgements. They 

have shown, without recourse to the cue conflict paradigms of earlier work (e. g. Cutting 

and Millard, 1984; Todd and Akerstrom, 1987), that human shape judgements exceed the 

performance of a model using density cues alone and that other cues, such as compression, 

must be being used. 
A number of computational models have been proposed which make use of the com- 

pression gradient, in the form of the deviation of texel orientation from isotropy, to derive 

shape from texture (Witkin, 1981; Davis et al., 1983; Kanatani, 1984; Blake and Marinos, 

1990). An early and highly influential model, of Witkin (1981), is described in more depth 

in the following chapter. 

1.4.2 TEXTURE SEGMENTATION 

Texture segmentation refers to the inference of physical surface discontinuities from sud- 
den changes in the measurement of particular image attributes, such as orientation, in- 

tensity, size, etc. (Marr, 1982) However, it is unusual for objects in natural scenes to be 
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distinguished from their backgrounds purely by differences in the texture covering them. 

Colour and brightness, for example, will often serve to segregate surfaces unambiguously, 

and our reliance on these cues is reflected in our excellent acuity for locating edges defined 

along those dimensions. Texture information, however, will be resistant to exactly the 

type of noise that disrupts segregation based on other more generally reliable perceptual 

dimensions. For example, variations in local luminance due to shadow will not affect tex- 

ture boundaries. For that reason segmentation based on texture is an important aspect 

of visual processing. 

Initial interest in the study of texture perception was motivated by the phenomenon 

of texture segmentation. Julesz (1962) used random-dot texture pairs to show that seg- 

mentation of such textures occurs if the intensity of component dots, or if the average 
distance between dots is significantly different. However, manipulations of the statis- 
tics of dot triples does not produce segmentation. This led Julesz to propose that only 
the first and second order statistics of textures are used for segmentation (Julesz, 1962; 

Julesz et al., 1973). Experimental results have shown this view to be over-simplistic 
(e. g. Enns, 1986; Beck et al., 1987; Nothdurft, 1990; Gurnsey, 1987). Nothdurft (1985b) 

critically showed that it was local differences between texture elements that determined 
discriminabilty. 

Although Julesz's theory expanded to accommodate locally conspicuous image fea- 

tures, it was never specified in sufficient depth to be physically realised. Instead it was 
found that many segmentation phenomena could be explained in terms of spatial filtering 

(Harvey and Gervais, 1978; Harvey and Gervais, 1981), and consequently a large number 

of models were proposed to perform texture segmentation using these methods (e. g. Caelli, 

1985; Coggins and Jain, 1985; Beck et al., 1987; Sutter et al., 1988; Fogel and Sagi, 1989; 

Bergen and Adelson, 1988; Bovik et al., 1990; Malik and Perona, 1990). Without going 
into great detail there seem to be three necessary components of all these models (Chubb 

and Landy, 1991): 

" Convolve the input image with linear filters at various spatial scales. Typically 

directional derivatives are extracted using various methods, such as: DoGs (e. g. 

Bergen and Landy, 1991), Gabors (e. g. Malik and Perona, 1990), derivatives of 
Gaussians (e. g. Bergen and Adelson, 1988), etc. 

" Apply a non-linear function of some sort. Examples include, half-wave rectification 
(e. g. Malik and Perona, 1990), full-wave rectification (e. g. Bergen and Adelson, 
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1988), or energy computation (the output of filters in quadrature phase are squared 

and added, e. g. Fogel and Sagi, 1989; Sutter et al., 1988; Bovik et al., 1990). 

" Partition fields according to how consistent the derived output functions are. This 

is usually a straightforward edge detection operation on the output of the previous 

stage. 

All of these models perform segmentation adequately, and even claim a degree of 
biological plausibility. They also all tend to suffer similar problems: 

" Setting of critical variables, such as the spatial scale of filters, by hand. 

" Over-specificity. Most models work only for segmentation and, given the apparent 

scarcity of pure texture boundaries in natural scenes, it seems unlikely that human 

vision dedicates such complex systems to detect them. 

" Poor evaluation of performance: subjective evaluation of segmentation performance 
tends to be used. Any comparison to psychophysical data often uses rank order 

agreement of strength of segmentation, of various textures, for human and model. 

1.4.3 TEXTURE FLOW 

Consider the image shown in Figures 1.1c. Why should the visual system be able to 

perceive "static flow" in images such as water or fur? As an image statistic, local flow 

information is a form of regularity which allows for an economical representation of texture 

and may also give information about occlusion and shape. In addition, flowing textures 

are the result of many different natural processes (Kass and Witkin, 1985) and so also 

offer insight into the formative processes a surface may have undergone (e. g. the stretching 

which forms woodgrain). This is useful if one wishes to derive rigidity information about 

a surface and highlights the way in which texture operations seek to explain rather than 

describe images (Witkin and Tennenbaum, 1983). 

Kass and Witkin (1985) have proposed that the detection and description of image 

flow is a basic perceptual primitive. The recovery of the physical processes which produce 

such image flow is viewed as an essential stage in decomposing an image into its intrinsic 

parts. They consider three of these physical processes which lead to oriented image 

structure: propagation (e. g. paint streaks), accretion (e. g. rock strata), and deformation 
(e. g. stretched fabric). The system they describe operates by deriving the flow field, and 
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deriving the residual pattern that remains when the image is described using a co-ordinate 

system built from the flow-field. Local flow direction is taken to be perpendicular to the 

direction in which most zero-crossings lie. Such a system is applied to a number of tasks 

involving flow, such as the detection of orientation singularities, and anomalies. 
Zucker (1982) has termed the task of inferring a set of tangents to the visual contours in 

the image, "orientation selection". The most popular representation for this information 

is a vector field, which describes the local tangent direction at every point in the image. 

Zucker (1982) has proposed that such a level of description, which falls between raw image 

and a fully grouped representation, operates in human vision. He also proposes that there 

are two fundamental structural classes of orientation fields: Type I and Type II. Type I 

fields are composed of dense, well defined contours, whereas Type II fields are a result 

of highlight and reflectance change, and are much more sparsely defined. In his scheme, 

local flow direction is computed by convolving the image with a DoG filter and using the 

orientation of the most active filter at a point. These local measurements are integrated 

into coherent contours by a process of iterative relaxation, which attempts to maximise 

local co- circularity, the consistency of orientation measures with the hypothesis that they 

result from a continuous contour. 

1.5 STRUCTURE OF THE THESIS 

In summary, this thesis considers two questions: 

" What is an appropriate representation for oriented visual textures, and what com- 

putational mechanisms could be used to derive it? 

Do humans construct such a representation and if so, how? 

Chapter 3 looks at the representation of statistical information derived from texture. 
Chapters 4 and 5 examine the selection of spatial scale and the extraction of texture 

elements from texture. Chapter 6 consider the way in which global orientation 

structure is preserved in the model. 

The structure of this thesis is then as follows: 

" Chapter lconsiders the problem of defining visual texture, and proposes a statistical 

representation for information derived from texture processing. Research on three 

tasks that use texture information is introduced. 
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" Chapter 2 describes an algorithm for deriving this representation from images (the 

adaptive filtering model), and considers its application to four visual tasks. 

" Chapter 3 presents psychophysical and simulation data, relating to the way texture 

statistics are computed and represented. Specifically it tests one component of the 

algorithm proposed: that representative local orientation is computed using the 

centroid of a number of orientation measures. 

" Chapter 4 examines the way in which scale is selected for texture processing, using 

psychophysical tasks which require precise scale selection to extract texture elements 
(Glass patterns). 

" Chapter 5 compares the predictions made by three models for deriving texture 

elements, of performance on the task presented in Chapter 4. 

" Chapter 6 describes three experiments looking at the preservation of global orien- 
tation structure, i. e. systematic orientation change in the image, by the adaptive 
filtering model. 

" Chapter 7 looks at the effect of local contrast variation on deriving texture orienta- 
tion information. 

" Chapter 8 relates findings to the view of texture described in Chapters 1 and 2. 



2 REPRESENTING TEXTURE FLOW 

2.1 OVERVIEW 

This chapter presents a model for computing and representing local orientation statistics 
from visual texture. The model has 4 stages: 

" Convolution with Difference-of-Gaussian filters at different spatial scales and orien- 
tations. 

" Selection of filter responses across orientation: at each spatial scale a point by point 

selection is made of the output of the filter with the greatest "power" (i. e. squared 

output). This result is termed the "adaptively filtered" image. 

" Extraction of texture elements using half-wave rectification and symbolic description 

of "blobs". 

" Calculation of texel orientation statistics including a measure of mean local orien- 
tation variance over the entire pattern. 

The model yields a set of texel statistics at each spatial scale: to select a single scale the 

mean local orientation variance is minimised across the texel sets. The final representation 
is a set of local estimates of mean orientation and orientation variance. It is proposed that 

this information is useful for a number of tasks that may require integration of orientation 

estimates. Four examples of such tasks are considered in the context of the model: 

" Texture segmentation. 

" Image flow. 

" Shape from texture. 

" Contour integration. 
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2.2 INTRODUCTION 

This chapter proposes a model for the computation and representation of orientation 

statistics from visual texture. The rationale behind the approach has been described in 

Chapter 1. The key differences between this and other models of the representation of 

orientation are the use of texture elements rather than filter energy and the automatic 

selection of spatial scale. These two issues will be discussed briefly in this section. 

2.2.1 TEXTURE ELEMENTS VERSUS FILTER ENERGY 

Early theories of texture perception (Julesz, 1981; Julesz, 1986; Beck, 1972; Beck, 1982) 

proposed that texture discrimination occurs by means of differences in first-order statistics 

of the attributes of a set of image features. Because texton theory typically employed 
black and white textures the problem of how to derive texture elements automatically 
from natural images has largely been neglected. The candidates proposed are typically 

features in the output of isotropic filters, such as zero-crossings in the output of Laplacian- 

of-Gaussian (V2G) filters (Witkin, 1981; Wen and Fryer, 1991), descriptions of blobs from 

half-wave rectified output of V2 Gs (e. g. Voorhees and Poggio, 1987), "disks" matched to 

V2G responses (Tomita et al., 1987), etc. 

However a number of recent models, particularly of texture segmentation, do not 

attempt to derive explicit image features from filter outputs but instead use directly the 

local filter energy as an indication of texture statistics (Malik and Perona, 1990; Bovik 

et al., 1990; Fogel and Sagi, 1989). This is adequate if assuming that the information 

derived from texture processing will not be used by any further visual processes. All that 

a filter energy model for segmentation provides is an indication that a certain part of the 
image differs significantly from another with respect to its local texture statistics. 

Texture elements are clearly necessary for a representation which is to be used for 

further processing because such processing involves associating attributes with local image 

features. Take the extraction of surface contours as an example. This involves the isolation 

of components of contours and some form of integration process (e. g. theta aggregation, 
Marr, 1976). Texture elements are a natural input to this process but there is no obvious 

way that filter energy information, in isolation from detailed spatial information, can be 

used. 
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2.2.2 FILTER SELECTION 

27 

The performance of any model employing spatial filters will be affected by the scale of 
filter used. However the issue of how one sets filter size automatically has rarely, if ever, 
been considered. Filter size is usually set by hand to give the best results (e. g. Bovik et 

al., 1990; Malik and Perona, 1990; Voorhees and Poggio, 1987). This is entirely due to the 

poor specification of the task. Given the output of the model at number of spatial scales, 
how would one determine the degree of successful segmentation? A clear task definition 

would allow for the formulation of performance measures which could be simply maximised 

across scale to give optimal performance of the model. 
In this chapter it is proposed that the statistics of texel attributes provide a simple 

criterion for selecting the right spatial scale to use. Specifically a measure of local orien- 
tation variation is calculated and minimised to select the correct spatial scale. It will be 

shown that this is a useful criterion for a number of tasks operating on the output of the 

model. 
The structure of this chapter is as follows: in the next section the preprocessing stage of 

the model is presented - the details of how texture elements are extracted from the image. 

The next section describes how local orientation statistics of those texels are computed 

and the application of those statistics to the automatic selection of filter scale. Four 

applications of the model, to tasks requiring the use of texture orientation, are described 

in the final section. 

2.3 PREPROCESSING STAGE OF THE MODEL 

The goal of the initial stage of processing is to produce a symbolic description of the 

texture elements contained in an image, at each spatial scale. A schematic view of this 

stage of the model is shown in Figure 2.1. 

The model uses a bank of Difference-of- Gaussian filters, operating at S spatial scales 

and T orientations. Filters are denoted FF, B(x, y), where a and 0 index the filter scale 

and orientation respectively. Filters are convolved with an input image, I(x, y): 

Ro, o(x9 y) = Fo, e(x, y) * I(x, y) 

This representation is squared to give, Rö, g(x, y), an estimate of the power at each 
spatial scale and orientation. This is smoothed by convolving it with a Gaussian filter, 
Ga: 
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GRQ, e(x, y) = G20 * Ro, B(x, y) 

where G20 is a Gaussian filter with a standard deviation equal to twice the standard 
deviation of the DoG filter at that scale: 

1 X2+ Z 

Gf(x, y) = 7- e 2/ 
f 

The next stage selects the pixel from the output of the most active filter at each point: 

A, (x, y) = R,, o(x, y) :0 max [GR,, e(x, y)] 

Texels are then extracted from this "adaptively filtered" representation. This is done 

by half-wave rectification of the output at grey levels above and below a value equal to 

the standard deviation of the image grey-levels. If A+(x, y) and A- (x, y) indicate the 

positive and negative portions of the adaptively filtered image, respectively then: 

Aä (x, y) = max[A, (X, y), T] 

AQ (x, y) = min[A, (x, y), -r] 

where, for an image with dimensions X by Y: 

T_ 
ýx Ey (A(x, y) - IL)2 (2.1) 

XY 

and 

E., 
ýr 
Zy Aix, 

l XY 

Ex Ey denotes summation over all image pixels. 
Each of those blobs is then characterised using an image description scheme (Watt, 

1991b). This yields a set of "sentences" describing each blob in terms of its position, 

orientation of principal axis, length, etc. For the ith blob in a set of N total blobs 

its orientation, 9i, and mass, M; are used for calculating orientation statistics. Such a 
description is generated at each spatial scale and all of the texel sets are passed on to the 

next stage of processing. 
The following subsections describe the components of the model in more detail and 

also consider the rationale behind their choice. 



Chapter 2. Representing texture flow 

Figure 2.1. Overview of the adaptive filtering model operating at 
one spatial scale, o. The image (top) is convolved with DoG filters 
to give RQ, e(z, y). These images are squared, and smoothed with a 
Gaussian filter to give GRo 9(x, y). This representation is used to 
select, point-by-point, the grey-level associated with the maximally 
responding filter. This grey-level is copied into the adaptively filtered 
image and this image is used to extract texels. 

29 
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Figure 2.2. Operation of the adaptive filtering model, at one spatial 
scale, on an image containing rotational flow field. (a) Original image. 
(b-e) Output of oriented DoG filters. (f-i) Squared output of DoGs. 
(j) Output of maximally responding filter at each point and (k) texels 
derived using half-wave rectification. 
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2.3.1 SPATIAL FILTERING 

A variety of models have been proposed as descriptions of the oriented, point-spread 
function of cells in primary visual cortex (V1) including Gabors (Daugman, 1980; Daug- 

man, 1985), Difference-of-Gaussians (Wilson and Gelb, 1984), and Difference-of-offset- 

difference-of-Gaussians (Parker and Hawken, 1988; Malik and Perona, 1990). There is 

no evidence to suggest that the differences between these models are critical; the two- 

dimensional Difference-of-Gaussians (DoG) was chosen because it is computationally sim- 

ple and its characteristics have been determined using a number of psychophysical tech- 

niques (e. g. adaptation, Wilson and Regan, 1984; sub-threshold summation, Mostafavi 

and Sakrison, 1976; masking, Wilson et al., 1983). These filters are composed of a DoG 

in the x-direction multiplied by a Gaussian in the y-direction: 

FF, e(xt, yt) = 
(e-xt/2 2- (1/2.23)e-x? /2(2.2so)2) e-Yt/2(3°)' (2.2) 

where v refers to the standard deviation of the positive Gaussian function. xt and yt 

are coordinates rotated by angle q: 

xt=xcos¢+ysino 

yt=ycoso- xsino 

The ratio of the amplitudes of the positive and negative parts of the DoG and the 

aspect ratio of the filter are based on estimates derived by Wilson and co-workers (Wilson 

and Gelb, 1984; Phillips and Wilson, 1983; ). 

Note that this is an even-symmetrical filter although it is known that receptive field 

profiles of cells in V1 vary continuously between odd and even symmetry (Parker and 
Hawken, 1988). However, human texture processing does not seem to be able to make 
effective use of odd-phase information. Textures composed of odd-phase Gabor patches, 

where one half of the pattern is the mirror-reverse of the other, do not produce preattentive 

segmentation (Rentschler et al., 1988; Malik and Perona, 1990). To segment these textures 

successfully requires the use of odd-phase filters, which suggests that such mechanisms are 
not relied upon by the visual texture processing system. For this reason phase information 
is not preserved by the model. 

The image, I, is convolved with a bank of 84 DoG filters, (F,, 9). The filter bank 

contains 12 orientations and 7 spatial scales of filter (T = 12, S= 7). The standard devi- 
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ations of the DoGs are 1-16 pixels in half octave steps, corresponding to peak sensitivities 

of 40.7-2.5 cycles per image. Their orientations varied between 0° - 135° in 15° steps. 
Figure 2.2 shows the result of filtering a typical oriented texture, the haystack image 

(a), with filters at one spatial scale and four orientations: (b) 0°, (c) 45°, (d) 90° and (e) 

135°. Note that the filter outputs are particularly high around the outer contour of the 

haystack and that the vertical filter responds strongly to the feature in the top left hand 

corner of the image. 

Given these outputs at different orientations, the question is, how does one combine 
their outputs to reflect local orientation accurately? 

2.3.2 COMBINING FILTER RESPONSES 

A simple combination rule for the filter outputs is to add the outputs together, so that 

filters which are locally responding more strongly will dominate that region of the output 
image. The problem with this method is that by collapsing across orientation, by summing 

oriented filter output, one has effectively simulated the output of an isotropic filter (see 

Figure 2.4 for a comparison of the output of a V2G and summed DoGs). What is required 
is a mechanism which locally suppresses weak filter responses and only uses the output of 
the most strongly responding filter mechanisms. 

Inhibition between cells in Vl with similar spatial frequency sensitivity and between 

cells with similar orientation sensitivity has been observed (Bishop et al., 1973; Burr et 

al., 1981; Morrone et al., 1982; Morrone and Burr, 1986; Tsumoto et al., 1979), but the 

role of inhibition remains unclear. It has been proposed that the function of (intracortical) 

inhibition is the suppression of spurious responses from nonoptimally tuned channels ( 

Paradiso, 1988; Malik and Perona, 1990). The reduction of a cell's orientation bandwidth, 

which results from intra-orientation inhibition, could not only serve to increase orientation 
discrimination (Paradiso, 1988), but could specifically enhance a cells response to contours 
(Morrone et al., 1982). 

Malik and Perona (1990) have realised this inhibition computationally, as a part of 

their model of texture segregation. The outputs of filters at different orientations and 

spatial scales are suppressed if they fall below a threshold, a so-called "leaders-take-all" 

system. A simpler "winner-takes-all" system is proposed here, where the most active filter 

at each point is used. The principal difference between this and Malik and Perona (1990)'s 

system is that the peak filter output is not chosen across both scale and orientation but 
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only across orientation. Filter scale is selected separately, using a combination of the 

image description and the constraints of the task. A degree of Gaussian smoothing is 

added to the representation of the local filter energy. This is to avoid the effects of noise 

and also to enhance filter activity along extended contours. 

Inspired by the evidence of intra-orientation inhibition between cells an alternative to 

the pointwise addition of filter responses is proposed: the selection of the output of the 

most active filter. To perform this selection, an intermediate representation is computed, 
Rö, e(x, y), which is simply the square of the original filter response image. This image 

contains the unsigned magnitude of a filter response, for each point in the image. The R2 

image is smoothed by convolving with a Gaussian filter, the standard deviation of which 

is twice the standard deviation of the DoG filter in use, to give GRö B(x, y). Finally this 

representation is used to make a pointwise selection of the output of the most active filter 

(from R,, o(x, y)), over the T filter orientations: 

A, (x, y) = R,. B(x, y) : e_ö iax 
[GR;, 0(z, y)] 

The operation of pointwise selection of the maximally active filter is termed adaptive 
filtering. Figure 2.3 shows an example of the preprocessing stage of the model operating 

on the haystack image. Notice that in this example the blobs in the adaptively filtered 

images are highly elongated and their orientation reflects the subjective direction of local 

flow in the texture. 

Given the complexity of this process, what are the advantages of adaptive filtering 

over simpler filtering mechanisms? Laplacian-of-Gaussian filtering is a computationally 

efficient method for deriving features (e. g. Voorhees and Poggio, 1987; Marr, 1982; Wen 

and Fryer, 1991); because the filter kernel is isotropic, only one convolution is required 

at each spatial scale. By half-wave rectifying the image, blobs are produced which may 
be described symbolically in terms of key attributes such as length, brightness, etc. ( 

Voorhees and Poggio, 1987; Watt, 1991b), in the spirit of a "primal sketch" description 

(Marr, 1976). However, there are two basic problems with V2G filtering. Firstly, it is 

not biologically plausible, given that V1 simple cells are orientationally selective (Hubel 

and Wiesel, 1967). Secondly, for operations requiring accurate orientation estimates, such 

as contour analysis or shape-from-texture, V2G filter estimates appear to be too noisy. 
Figure 2.4e shows the haystack image which contains compelling rotational orientation 

structure. V2G filtering and thresholding this image (Figures 2.4f-h) reveals that very few 
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Figure 2.3. Texels derived from the haystack image, (a), using the 
adaptive filtering model at three spatial scales: (b) 57.6 cycles per 
image (c. p. i. ), (c) 40.7 c. p. i., and (d) 28.8 c. p. i. Grey levels above 
and below threshold luminance have been replaced by white or black, 
respectively, in order to enhance reproduction. Note the elongated 
blobs in (b-d). 

Figure 2.4. (a, e) Haystack image. Texels derived using (b-d) summed 
DoG outputs and (e-h) V2G filtering. Filter output is half-wave rec- 
tified: grey levels above and below threshold luminance have been re- 
placed by white or black, respectively, to enhance reproduction. Com- 
pare to Figure 2.3 and note that many of the blobs appear to be due 
to noise and are not oriented in the direction of local image flow. 
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of the resultant blobs are aligned with the direction of flow. Particularly at fine spatial 

scales, many blobs are actually unoriented and are probably attributable to noise. These 

features will produce a very noisy representation of local orientations. 

2.3.3 DESCRIBING THE SET OF TEXELS 

The final part of preprocessing is the extraction of texture elements from the adaptively 

filtered image. By thresholding (half-wave rectifying) the image at ±1 grey level stan- 

dard deviation (defined in Equation 2.1) "islands" of response are produced in the image 

(e. g. Figures 2.3b-d). Malik and Perona (1990) point out that the use of half-wave rec- 

tification is a desirable form of non-linearity for two reasons. Firstly it is biologically 

plausible; V1 cortical cells maintain a low discharge rate and cannot signal a negative 

response through a decrease in firing. Instead two cells are employed to code positive 

and negative parts of the response - the on and off pathways, respectively. Secondly, 

half-wave rectification retains the sign of the signal, whereas full-wave rectification and 

energy computation both discard it. The signal sign is essential for discrimination between 

opposite contrast textures. 

The model is not highly sensitive to the value of the threshold (r) at which the image 

is half-wave rectified. The standard deviation of the image grey levels is used but other 

measures, such as statistics based on the gradient image (Voorhees and Poggio, 1987), 

would suffice. 
The blobs that result from the rectification stage can be described using procedures 

to extract their centroids, lengths, etc., and indeed such schemes have previously been 

proposed as practical methods for deriving texel statistics (e. g. Voorhees and Poggio, 

1987, Wen and Fryer, 1991). This model uses an image description scheme developed by 

Watt (1991b) to generate a sentence-based description of blobs. 

Specifically feature descriptions were calculated as follows (summarised from Watt, 

1991b): given the nth zero-bounded blob in an image, and the ith pixel within it, the 

centroid is calculated as: 

(cxn, cy )_ 
ß(x1, yi) 

E vi 

where v; is the brightness of the ith pixel within a blob, (xi, y; ) is its location, and E 

denotes summation over all pixels in a zero-bounded region. 
'A comparison of human psychophysical data (from a texture orientation discrimination task) and 

predictions from the V2G and DoG models appears in Chapter 5. 
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The blob mass is simply the sum of all pixel brightnesses within it: 

mass, =E vi 

The following calculations are simplified if pixel locations are defined relative to the 

blob centroid: 

(x/i, yi/) = (x{ - CXneyi - cYn) 

The variance of the pixel distribution in a direction, B, is: 

2_v; (x; cos 9+y sin 0)2 
aB E vi 

and the slope of the principal axis of blob n is (by differentiating co with respect to 

8, and equating to zero): 

on 
1tan 1 2Ey{Xiy 

n=2 ýz z 

Given this angle, the length and width of the blob are given by a in directions orin 

and orin, + 900, respectively: 

length,, =Ey; 
(x; cos ori� + y, sin ori, i)2 

E Vi 

width� =Ev; 
(x; cos(ori, a + 90°) + y, sin(ori, ti + 90°))2 

_E vi 

In order to calculate a measure of the usefulness of the orientation estimate, ori,,, 

we use information about the shape of the blob and its size. Specifically, it is assumed 
that the contribution of a blob orientation to the calculation of local orientation statistics 

should be weighted in proportion both to its mass and its aspect ratio. A circular blob 

should be treated as totally unreliable estimate of local orientation as should a blob with 

a mass approaching zero. This is incorporated into the model as a measure of orientation 

reliability: 

mass,, 1ength� 
rel� _ width,, 

Finally we re-subscript the orientation and orientation reliability measures by the 

centroid of the zero-bounded blob they describe: 

e(x, y) = orik : (x, y) _ (Cxk, Cyk) 
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Rel(x, y) = relk : (x, y) = (cxk, cyk) 

Thus the final output of the preprocessing stage is a set of S texel sets, one at each 

spatial scale. Texel sets contain sentences describing the orientation of the principal axis 

of each blob and a measure of the reliability of this estimate. 

2.4 ESTIMATING TEXEL ORIENTATION STATISTICS 

This section considers methods for deriving useful orientation statistics from texel de- 

scriptions. The first section considers the spatial sampling of the texel sets, while the 

second and third describe how the mean and standard deviation of orientation statistics 

are computed. 

X 

(X, Y) 

N(x, y) 

Figure 2.5. Illustration of sampling lattice used in Section 2.4.1 

2.4.1 PARTITIONING THE IMAGE 

Given a number of texel sets derived from filters at scale o, the following section de- 

fines how elements of the sets are spatially sampled to derive local orientation statistics. 
Figure 2.5 illustrates the sampling lattice used below. 

Denote the image lattice (the set of all pixel positions) {(i, j) :1<i, j< N} by 

I. The goal of this part of the model is to calculate the orientation statistics within a 
subregion of the image. The resolution of analysis, pQ, at spatial scale a, determines the 

sampling rate of a sublattice of points Ia CI using the output of filters : 

0.5)Po, (j-0.5)P): 1<i<X111<j<Y-1) 
Pa _ Po, 
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Now let N(x, y) define a circular neighbourhood, radius P, around each point in the 

sublattice, IQ: 

y-j)2<Pv} NN(x, y)={(i, j): (x-i)2+( 

where (x, y) E Io. This now defines a set of circular neighbourhoods distributed 

throughout the image on a grid. The two parameters used in this section are p, the 

sampling rate of the sublattice, and P, the radius of the local region of integration. 

The values of these parameters are constrained firstly by the size of the filters measuring 

local orientation estimates (a) and secondly by the requirement of the model to be scale- 

invariant. 

The first constraint is that it is meaningless to use a sampling rate or a neighbourhood 

size which is too small in comparison to the filter size a. The maximum sampling rate 

was set to be p'. o =8 pixels (i. e. a 32 x 32 sublattice) at the finest spatial scale (Q = 1.0 

pixel) and set P, =p as a reasonable neighbourhood size. 
The second constraint, scale invariance, has been demonstrated psychophysically by 

Nothdurft (1985b). Subject discrimination of texture pairs is impaired if the spacing 

of elements is increased but micro-pattern size remains constant. If both are increased 

proportionally segregation is not affected. In effect this requires that the sampling rate 

be reduced in proportion to the spatial scale of analysis: 

1 
PQ OC 

Define p at spatial scale v as p,. Since pl. 0 = 32: 

32 

Moving on to consider the partitioning of blobs: from the last section the set of the 

centroids of all zero-bounded regions in image2, C, is: 

C={{(cxk, cyk)}, 1<k<B} 

where (cxk, cyk) is the centroid of the kth blob and B is the total number of blobs in 

the image. The set of all blobs centroids falling in a neighbourhood around (x, y) is: 

CN(x, y) = N(x, y) fl c 

'The following is for an image at an individual spatial scale but o subscript is omitted for clarity. 
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This defines the sets of blobs that that are used to calculate local texture statistics. 
The following two sections describe how the mean and variance of blob orientations is 

calculated. 

2.4.2 MEAN ORIENTATION 

Given a set of n estimates of orientation 0= {{Bk} :1<k<n, 0<0< 180°}, taken from 

a region of an image, what is the best way to estimate their overall orientation? One could 

calculate the arithmetic mean using the angle values themselves. The problem is that this 

method assumes that the values being averaged are measured on a linear dimension so 

that arithmetic subtraction reflects the difference between values. When the range of 

orientations exceeds 90° this is not true because orientation is a cyclic dimension. Angles 

can differ by a maximum of 90°. The mean of a data set (0) minimises the sum of the 

differences between all members of the data set and itself. For a cyclical dimension such 

as orientation one requires a function which reflects the difference between two angles. 

The set of measures 0 has a true mean orientation B3 Each measurement has an 

error, e, equal to the difference between it and the true global angle. This error is: 

je� - ej if l9n, -Bj <90° e" (90° - Ion - eI) otherwise 

By the principle of least squares, the mean of the data set, B, should minimise the 

quantity: 

n 
El = 

Ee1 } e2-F... ý-en 

k=1 

Because e is discontinuous, an analytic minimisation of E is not possible but it is 

straightforward to minimise this quantity iteratively, to an arbitrary level of precision, for 

a particular set of orientation measures. However, a differentiable alternative for e is also 

considered: the square of the vector product. Assuming all vectors are unit length: 

En = sin2(On - 8) 

Since the error term is differentiable, as sin' 0 is, an analytic solution to the minimi- 

sation problem is possible: 

3A non-uniform distribution of data is assumed, i. e. one where the true value is defined on a cyclical 
dimension. 



Chapter 2. Representing texture flow 40 

n 
E_E sin2(Bk - 8) 

k=l 

At the minimum value of E, dE/dB = 0, so: 

It follows that: 

and hence: 

dE 
_E sin2(Ok - B) =0 7 

k_1 

nn 
E sin 29k cos 2B =E cos 20k sin 29 
k=1 k=1 

n 
E sin 2Bk 

B=2 tan-1 k=1 (2.3) 

In E 
cos 28k 

k=1 

This expression gives a value of 0 which is guaranteed to yield an extremum of the 

value of E. This angle may, however, maximise or minimise E; in the latter case j will 

be 90° greater than the correct mean orientation. Strangely equation 2.3 alone has been 

used to estimate global orientation (Kass and Witkin, 1985). Particular problems will 

occur at angles around 45° where E; V 
1 cos 20 -º 0 and 0° where E; v 

1 sin 20 --º 0. When 

summing the individual sines or cosines of a distribution with a mean of around 45°, the 

sign of these summations is likely to flip randomly, which will cause an estimate of the 

mean angle to flip between 0 and 0-90°. To resolve this ambiguity one must also evaluate 

the second derivative, d2E/d02: 

d2E N 
W= -2 

L cos 2(9; - 02 
t=i 

then for a maximum: 
N 

-2 
L cos 2(6= - B) <0 
i=l 

This expression gives an unambiguous criterion for determining whether an angle is 

the mean orientation. 
Finally, returning to the notation from the previous section, and incorporating the 

measure of the reliability of each orientation estimate (Rel(x, y)), the orientation ex- 

tremum, 9e(x, y), of the blob set in N(x, y), is defined as: 
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Mx, y) =1 tan-1 
(i, j)EN(x, y) 

(i, j)EN(x, y) 

Rel(i, j) sin 20(i, j)1 

Rel(i, j) cos 20(i, j) 

and the corresponding mean orientation, B(x, y), as: 

Rel(i, j)cos2(9(i, j)-0, (x, y)) 

0, (X, if -2 
('j)EN(z, y) <0 e(x, y) _ý 

(ý y) Rel(i, j) 
(i, j)EN(x, y) 

9e(x, y) + 90° otherwise 
(2.4) 

Let the measure made of B(x, y) at scale a be denoted B, (x, y). 

2.4.3 ORIENTATION VARIANCE 

Given the local mean orientation the variance of texel orientation in a region may be 

calculated using: 

1 
'&(x, y) = 

v(x, y) -1> 
sin2(O(i, j) - B(x, y)) 

(i, j)EN(x, y) 

Where v(x, y) is the number of blobs in each subregion: v(x, y) = Card(ON(x, y)). 

Finally a measure of the mean orientation variance in an image is: 

IP = 

O (i, j)P2 
(i, i)Ere 

XY 

Where X and Y are the image dimensions, p the sampling rate and I,, the set of all 

lattice points (defined in Equation 2.4.1). This measure is calculated at each spatial scale 

to give @Q. 

2.5 SELECTION OF SPATIAL SCALE 

Given a multi-local statistical description of the orientation statistics in an image at a 

particular spatial scale, which spatial scale should be used? As discussed previously one 

problem with many models of texture processing is that the task they are to perform is 

not defined in enough detail to evaluate their performance as a function of spatial scale. 
However, because the goal of this model is to produce locally smooth orientation fields 
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Parameter Symbol Value 
Number of filter scales S 7 
Filter standard deviations or 1-8 pixels 
(Filter scales) (40.7-5.0 c. pi. ) 
Number of filter orientations T 12 
Filter orientations 0 0° - 135° in 15° steps 
R smoothing parameter 2a 
Neighbourhood sampling rate po 32/o 
(Sampling grid sizes) (32 x 32 to 4x 4) 
Neighbourhood size Po pQ pixels 

Table 2.1. Summary of model parameters 

and because a measure of field orientation variance IQ, is available, a criterion for the 

selection of scale can be formulated: 

vopt =v: min [IQ, ] 

0-0,1,... 5 

where S is the total number of spatial scales. The addition of this criterion means 

that the operation of the model is entirely automatic. 

2.6 SUMMARY 

To reiterate, the model operates as follows. A set of texture element descriptions are 

generated at each spatial scale using the adaptive filtering scheme. At each scale, the set 

of texels is divided according to the neighbourhood they fall in; local mean orientation and 

orientation variance statistics are computed for each neighbourhood. Mean orientation 

variance is minimised to select a single scale of analysis. The final representation consists 

of a multi-local set of estimates of mean orientation and orientation variance. 
Key parameters of the model are defined in Table 2.1. 

The model shares components with other models of early visual processing, and texture 

processing. An assessment of the importance of individual components of the model, 
follows: 

" Filtering. The important aspect, of the filtering operation is that it is oriented. 

Details of the Difference-of-Gaussian are unimportant (Gabors would do). 

" Filter energy calculation. The squaring component is not essential: any operation 

which discards the sign of the output would do (e. g. the absolute value). The 
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importance of the Gaussian smoothing component depends on the task. For contour 

integration it is essential, but for most other operations it is not. 

" Pointwise selection of filter output. Essential. The combination rule must have an 

inhibitive component across orientation. 

" Texel isolation. The use of thresholding (rather than zero-crossings, for example) 

is important because the texels produced are larger and have measurable mass, 

location, etc. The actual value of the threshold could be varied from around 0.5 to 

2.0 grey level standard deviations, without significantly affecting performance. 

9 Texel description. The image description scheme must produce estimates of mass, 

length, width and orientation. 

" Sampling of texels. The number of samples taken per image must vary in inverse 

proportion to the filter s. d. The minimum number is not essential. 

" Orientation statistics. Calculation of the mean orientation and orientation variance 

could be achieved a number of other ways (e. g. minimisation) but must combine a 

number of measures to calculate it. The peak orientation will not do for the local 

average orientation. 

2.7 APPLICATIONS TO SPECIFIC VISUAL TASKS 

In this section the performance of the model is considered on four visual tasks which re- 

quire the integration of orientation estimates. The unaltered model, using the parameters 
described, was run on all four tasks to generate a set of multi-local estimates of mean 

orientation and orientation variance. Note that the same scale selection criterion was 

applied in all cases: minimal mean local orientation variance. 

2.7.1 IMAGE FLOW 

The application of the adaptive filtering model to this task is illustrated using vector fields 

of the local orientation estimates, examples are of which are shown in Figure 2.6. These 

are derived directly from the local mean orientation estimates output by the model. Note 

that the flow fields not only reflect local mean orientation but also preserve structure such 

as discontinuities in the field, e. g. the region around the human figure in Figure 2.6c. 
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Figure 2.6. Flow fields derived using the model. (a-c) Original im- 

ages, (d-f) output of filters at optimal scale, and (g-i) flow fields cal- 
culated from these images. Subjectively, flow fields correspond well to 
local mean orientation. 

Figure 2.7. Segmentation of artificial textures using local mean ori- 
entation. (a) Input image, (b) adaptively filtered image, (c) map of 
local mean orientation, PP(x, y), and (d) zero-crossings in the output 
of (c) superimposed on original image. 
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2.7.2 TEXTURE SEGMENTATION 

It is straightforward to extend the basic model described in this chapter to segment scenes 

according to variation in local orientation statistics. Given the set of mean orientation 

measures, 0, (x, y), and orientation variance measures,, O, (x, y), we can resize these arrays 
to the size of the original image (using bicubic spline interpolation). If we wish to highlight 

spatially distinct regions in these representations image we simply convolve each with a 

relatively coarse scale Gaussian filter and indicate the zero-crossings. In addition a higher 

sampling rate was used (4p) to ensure high resolution of boundaries. Note that this model 

overcomes two of the three criticisms outlined above: there are no parameters set by hand 

(scale is selected automatically), and this operation operates on a representation which 
is used in a variety of visual tasks. It is beyond the scope of this chapter to present a 
thorough psychophysical evaluation of this model so simple subjective demonstrations are 

shown in Figures 2.7,2.8 and 2.9. The model, given the three segmentation images as 
input, derives regions that approximately reflect perceived boundaries. 

Figure 2.8. Segmentation of artificial textures using local orientation 
variance. (a) Input image, (b) adaptively filtered image, (c) map of lo- 

cal orientation variance, 0., (x, y), and (d) zero-crossings in the output 
of (c) superimposed on original image. 

Figure 2.9. As Figure 2.8 but using local variance to segment em- 
bedded natural textures. 
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Surface 

a surface normal 

Image 

Figure 2.10. Slant and tilt 

2.7.3 SHAPE FROM TEXTURE 

Shape is generally defined in terms of surface slant and tilt (Figure 2.10). Slant (o) is the 

angle between a normal to the surface and the line of sight. Tilt (r) is the angle between 

the projection of the surface normal into the image plane and some arbitrary dimensions 

in the image plane (usually the x-axis). Tilt defines the direction of slant. 
Witkin (1981) uses zero-crossings in the output of Laplacian-of-Gaussian filtered, tex- 

ture images to derive oriented texels. Given that a set of local orientation estimates are 

available from these texels, he derives a probability density function (p. d. f. ) for image 

tangent direction under projection, a*, on a surface with slant, o, and tilt, r, as: 

(2.5) p. d. f. (a*I a, r) _ 
7r cos2(a* - r) + sin2(a* - r) cos2 or 

Hence, given a set of tangents grouped into n orientation bands - A* _ {a*, 
... an}, 

the relative likelihood function for a and r is calculated as: 

* 
"` 7r-2 sin a cos a L(o, TI A) = exp 

cos2(a* - r) + sin2(a* - r) cost or 

This expression may be applied to multiple estimates of A* taken from regions of the 

image, to derive local shape information. 

Probability density functions, derived using Equation 2.5, are plotted in Figure 2.11 

for different values of a and T. The formula expresses two dependencies of texel orientation 

on surface orientation: texels align perpendicular to the orientation of the surface, and 

the degree of this alignment is proportional to the degree of surface slant away from the 

observer. Thus, notice that (a) slant affects the sharpness of the peak in the p. d. f., and 
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Figure 2.11. Predicted distributions of texel orientations, from Equa- 
tion 2.5. (a) Shows distributions for a 90° tilted surfaces at various 
slants, and (b) for a 60° slanted surface at various tilts. Notice that 
as slant increases, in (a), the width of the distribution increases, and 
that as tilt increases, in (b), the position of the distribution shifts. 
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(b) tilt only changes the position of that peak. This is the basis of the use by Blake and 

Marinos (1990) and Kanatani (1984) of the second statistical moments of texel orientation 
distributions as an indicator of local surface orientation. Kanatani (1984) used the Buffon 

transform, a measure of the average number of intersections of a straight line dropped on 
to the texture, which operates on the coordinate vectors of individual texels. The Blake 

and Marinos (1990) system operates on line elements and is not only more reliable at 

extreme surface slants but also produces a measure of reliability in the surface orientation 

estimate. 

Witkin (1981) uses a maximum likelihood operator to estimate the parameters of 
Equation 2.5. This involves the solution of a number of nonlinear equations, and it 

has been suggested that the procedures offered by Witkin (1981) are computationally 
inefficient (Girding, 1993). 

An alternative method is to extract only the orientation mean and variance which best 

approximate the given functions, since there is a unique mapping from any combination 

of mean and variance to the correct p. d. f. The mean and variance statistics are directly 

available from the adaptive filtering model. The local mean orientation translates directly 
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to the local tilt: 

-r (x, y) = B(x, y) 

To estimate slant from local orientation variance, a polynomial approximation can be 

made to the mapping from local orientation variance to surface slant4. This is illustrated 

in Figure 2.12. 
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Figure 2.12. The inverse mapping from local variance to slant. Data 
were obtained by calculating the variance of orientation distributions 

at different slants, according to Equation 2.5. The solid line is a poly- 
nomial fit to the data and account for 99.7% of variance. 

To select the scale of analysis the minimum local variance criterion is used. Note 

that this will automatically select the texel set which maximises local orientation field 

smoothness. If texture sets tend towards isotropy, as Witkin (1981) assumes, then this 

procedure will select the most "interesting" scale in terms of deviation from isotropy. 

Figure 2.13 shows the operation of the model on two images of Scottish mountains. 
The derived surface orientation maps are noisy but do approximately reflect local shape. 

2.7.4 CONTOUR INTEGRATION 

The perception of image flow in Glass patterns (Glass, 1969) and 'other vector field tex- 

tures demonstrates that the human visual system is capable of forming extended curved 

contours on the basis of a set of local orientation estimates. This principle, termed the 
law of "good continuation" by the Gestaltists (e. g. Koffka, 1935), has been the subject 

4A more formal treatment of the relation of Witkin's maximum likelihood estimator to a method of 
moments scheme, has recently appeared (Girding, 1993). 
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Figure 2.13. Images of (a) Glen Coe and (d) Ben Venue. Local 
orientation statistics, derived from adaptively filtered versions (b, e), 
are used to construct a map of local surface orientation, (c, f). 
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of several psychophysical and computational studies. Straight lines composed of dots 

are visible when embedded in unstructured fields of dots, depending on the dot spacing 

and collinearity (e. g Uttal, 1975). Many psychophysical studies of contour detection in 

noise have been poorly controlled and/or have not examined more than one stimulus di- 

mension. Recently however Field et al. (1993) presented psychophysical data from an 

unusually systematic and controlled study of how the parameters of continuous contours 

effect their detection within texture fields. Field et al. (1993) examined the detection of 

continuous contours in patterns composed of grids of Gabor patches. Embedded within a 
field of 244 randomly oriented elements was a set of 12 patches lying on a "jagged" path 
(e. g. Figure 2.14b). Using a forced-choice procedure the experiment showed that subjects 

could detect fields containing a path even when the spacing of path elements exceeded 

element size or when the relative orientation of path elements was as much as ±60°. The 

alignment of the elements along the path is critical: orienting elements orthogonal to 

path direction and allowing variation in patch orientation around the path direction both 

reduce detection performance. Finally it was found that the relative phase of the Gabors 

had no affect on path detection. 

A number of models have been proposed for the integration of local measures of 

orientation into coherent contours. They are virtually all based on an operation on the 

output of a set of oriented feature detectors which favours orientation measures which 

are "consistent" with each other in a local neighbourhood, i. e. if both orientations are 

consistent with the hypothesis that a single contour caused them. Models have used 
"association fields" (Field et al., 1993), "co-circularity support" (e. g. Parent and Zucker, 

1989) or "hyper-filters" (Sagi, 1990). Parent and Zucker (1989) measure local orientation 

with Difference-of-Gaussian filters and then use neighbouring orientations to estimate how 

consistent the orientation measure is with being a tangent to a curve. This co-circularity 

support is implemented in a relaxation network. As Field et at. (1993) point out, the 

problem with such iterative "linking" processes, as models of human vision, is that they 

are extremely time consuming. They also note that many computational systems are 

not well suited to dealing with contours composed of discrete elements such as Gabor 

patches or dots. The system that they propose, using "association fields", is illustrated 

in Figure 2.15. Excitatory links extend between orientation paths that are consistent 

with each orientation estimate being a tangent to a contour at that point. Inconsistent 

orientations are inhibited. The major problem with this approach is that the resultant 
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Figure 2.14. Explanation of the path detection task described in 
Field et al. (1993) using the adaptive filtering model. (a) A typical 
path, with successive elements differing in orientation by ±450, that 
subjects detected when embedded in a field of randomly oriented ele- 
ments (shown in (b)). (c) Optimal filtered version of (b) derived using 
the model - note merging of elements in the path. Selection of the 
largest feature in this image, shown in (d), yields the correct path. 

Figure 2.15. The "association field". Solid and dashed lines indicate 
excitatory and inhibitory connections respectively. 
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wiring scheme is tremendously complex, given that all that is known from neurophysiology 

with any confidence is that there are long range excitatory connections between cells with 

similar orientation specificity (Gilbert and Wiesel, 1989; Grinvald et al., 1989). 

In the adaptive filtering model described earlier, it was proposed that filter selection 

occurs on a point-by-point basis according to the power of a particular oriented filter 

at that point. Additionally a degree of spatial smoothing is applied to the power using 

Gaussian blurring. This Gaussian smoothing is consistent with the presence of excitatory 
interactions between cells with similar orientation selectivity (Gilbert and Wiesel, 1989; 

Grinvald et al., 1989). 

Figure 2.14b shows a typical stimulus from Field et al. (1993). Successive elements in 

the path, shown in isolation in Figure 2.14a, differ by ±45°. Field et al. (1993) found that 

subjects' performance breaks down at around element differences of ±60°. The output of 
the adaptive filtering model is shown in Figure 2.14c and a large blob corresponding to 

the path is visible. If one simply selects from this image the feature with greatest mass 
(using the Watt (1991b) image analysis scheme) the path is isolated, as illustrated in the 

final section of the figure. This suggests that for stimuli such as these there may be no 

need to resort to an explanation of performance based on the interpretation of the output 

of spatial filters. Instead the local selection of filter outputs based on the magnitude of 
their output produces effective aggregation along contours. 

2.8 CONCLUSIONS 

A model has been described for the multi-local representation of orientation information 
derived from visual texture. 

The use of local orientation mean and variance statistics was shown to be useful 
not only as a way of representing "image flow", but also as a simple method of texture 

segmentation and deriving local shape-from-texture. The use of adaptive filtering has also 
been shown to have unexpected advantages for the detection of visual contours. The use 

of smoothed local energy to select filter response at a point means that some degree of 

aggregation of filter responses occurs in the direction of the filter orientation. 
The following chapters investigate, psychophysically, how similar the model's repre- 

sentation is to the human visual representation of orientation. The model throws up a 
number of unresolved questions, which will be considered in the course of this thesis: 

" Can we integrate a set of discrete measurements of orientation at all? If so, what 
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evidence is there that the human visual system uses a measure of mean orientation 

rather than, for example, the most frequently occurring orientation? (Chapter 3). 

. How do we know that the filter scale-selection problem is a real one? Does filter 

selection really affect the accuracy of orientation estimates? Is oriented filtering 

necessary for making local estimates of orientation? What evidence is there that 

humans outperform the accuracy of isotropic mechanisms? (Chapters 4-5). 

" Does the neighbourhood scheme proposed in this chapter allow for the representation 

of interesting global orientation structure? Will it retain potentially interesting 

anomalies in the field? (Chapter 6). 

9 Mechanisms based on spatial filtering are sensitive to certain contrast effects: how 

does the contrast polarity of the oriented elements making up a texture affect human 

processing compared to how it affects the model (Chapter 7). 



3 THE REPRESENTATION OF AVERAGE 

ORIENTATION 

3.1 OVERVIEW 

This chapter examines how observers estimate the statistics of oriented textures. Specifi- 

cally it tests the hypothesis that, given a set of separate measures of orientation, the visual 

system uses the arithmetic mean of those measures to represent the central tendency of 

the set. 

Experiment 3.1 attempted to show that observers can combine multiple orienta- 
tion estimates when asked to judge the average orientation of a texture composed of 
discrete elements. Subjects were presented with patterns composed of Difference-of- 

Gaussian patches, whose orientations varied around some mean value, and asked to make 

a clockwise-anticlockwise judgement as a function of the orientation variability of the 

pattern. The level of performance achieved indicated that subjects must be integrating a 

number of separate measures together to perform this task. 

Given that some form of averaging is taking place, Experiments 3.2-3.5 used asymmet- 

rical distributions of orientations to try to separate the predictions from different models 
for estimating average orientation. Stimuli were composed of two spatially intermingled 

sets of DoG patches, each set having Gaussian distributed texture element orientations. 
The threshold separation of the mean of the two sets was then determined for a variety 

of tasks. 

Discrimination of these textures from others composed of sets with equal mean ori- 

entations was well predicted by global variance discrimination. The judgement of which 
set contained more texture elements elevated thresholds and suggested (a) that the skew 

of orientation distributions is unavailable and (b) that the resolution limit of the two dis- 

tributions is a minimum separation of texel sets for independent representation of their 

properties. 

Threshold offsets for judgement of average orientation were expressed as shifts of 
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four candidate features for coding the central tendency of texel orientations. They were 

then compared to similar thresholds for single texel sets. Results indicated that average 

orientation is assigned to the centroid of a set of orientation measures. 
However a system which simply averages over the whole orientation range to estimate 

average orientation cannot represent multiple sets. Experiment 3.6 investigated whether 

observers are capable of averaging over a limited range of orientations which would pos- 

sibly indicate that some form of filtering of orientation distributions occurs to allow for 

background "noise". 



Chapter 3. The representation of average orientation 56 

3.2 INTRODUCTION 

Most psychophysical studies of texture perception, largely influenced by the work of Julesz 

(e. g. Julesz, 1981), have concentrated on the extraction of texture boundaries. This work 

presupposes that texture is primarily useful as a supplement to contrast information for 

the detection of surface discontinuities. Experimentally, boundaries are usually defined lo- 

cally as differences between attributes of adjacent texel pairs. This approach assumes that, 

in general, textural cues will be available from local differences between texture elements 
(texels). However, attribute information derived from natural images is invariably noisy 

and must require spatial combination to be useful. In other words, approaches to texture 

processing that assume that simple local differences between texels suffice are probably 

misguided, since averaging of texture attribute information is required for dealing with 

natural images. 

If such integration does occur, what useful information might be derived from it? 

This, of course, depends on what is to be done with it. However, the extraction of 

global texture attributes (particularly orientation) is known to be useful in establishing 

a number of different surface properties. Kass and Witkin (1985) used such statistics 
to estimate the formative processes a texture had undergone. Similarly estimates of 
local surface shape require integration and calculation of (usually second) moments of 
local orientation statistics (e. g. Witkin, 1981; Blake and Marinos, 1990). Additionally, 

segmentation might be achieved not only through local differences in attributes but also 
in differences between integrated attribute statistics (e. g. difference in mean orientation: 
Voorhees and Poggio, 1987). Little is known, however, of human perceptual performance 

where textural moments are explicitly varied or of what coding strategies are used to 

describe texture statistics. 

Since orientation appears to be so useful for deriving surface properties and is one of the 

proposed textons for which segmentation performance is independent of local luminance 
fluctuation (Nothdurft, 1990), it is concentrated upon as the texel attribute of interest. 

Marr (1982) observed that, in order to understand a complex process such as tex- 

ture perception, the formation of intermediate representations is required. What are the 

primitives for representing integrated orientation statistics? Recent observations suggest 

an analogy between the visual processing of luminance features and textural boundaries. 

It has been shown that texture segregation is sensitive to the rate of change of texel 

orientation across space (the structure gradient) at field boundaries (Nothdurft, 1985a; 
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Nothdurft, 1985b; Nothdurft, 1991b). Landy and Bergen (1991) used spatially band-pass 

textures to show that this effect is independent of the local density of texels. In addition, 
Sagi (1990) found a non-monotonic relationship between performance on a visual search 
for a vertical target and the number of (horizontal) distractors. Data were well explained 

using "hyper-filters", which integrate local orientation measures over a restricted area. 

Input is independent of spatial frequency, and filters indicate significant changes of these 

measures in space (Sagi, 1990; Fogel and Sagi, 1989). 
These studies suggest that performance on visual search and texture segregation tasks, 

using orientation cues, may be well explained by mechanisms which extract differences 

between spatially integrated local orientation measures. Together they strongly impli- 

cate a further stage of combination and processing of orientation information beyond the 

accepted representation at V1 (Hubel and Wiesel, 1967). 

No. of blobs x 10-3 
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Bark. i 

Orientation (deg. ) 

Figure 3.1. (a) Image of tree bark, a strongly oriented texture, (b) 
texels isolated from the V2G filtered version of (a), (c) orientation 
histogram of blobs from (b). Which statistics of this distribution are 
used in texture processing? 

Consider Figure 3.1 which shows (a) a highly oriented texture, (b) a set of candidate 
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texture elements (derived using the thresholded output of V2G filters) and (c) the orien- 

tation histogram of these blobs. One is capable of correctly estimating that the average 

orientation of the original texture is approximately vertical. However, in the case of this 

highly oriented texture, there is a great deal of noise present in the orientation histogram. 

If one were interested in an orientation representative of the overall direction of surface 

creases (for example, to position the cutting edge of a tool on the surface) one would 

have to use some form of combination of measures to calculate it. Individual texels/blobs 

are too unreliable. Similarly, to use texel orientation for surface slant estimation requires 

that one evaluates the deviation of the orientation distribution from isotropy, usually us- 

ing the second moment of the orientation distribution (Blake and Marinos, 1990). Again 

this requires integration of a set of orientation measures. The question that this chapter 

addresses is this: how does the human visual system calculate such statistics, particularly 

the central tendency of texel orientation distributions? 

Observation of how a system's performance deteriorates with the addition of noise is a 

powerful approach for understanding that system (see, e. g. Barlow, 1980). By employing 

textures composed of separable texels one may examine the effect of noise explicitly added 

to the orientation of components. This approach to understanding the perception of 

average orientation of textures has already been applied elsewhere (Watt, 1991b). When 

the orientation of texels varies around some mean value, judgement of average orientation 

is limited only by the variance of texel orientations and by some constant internal error 

of representation. By further supposing that orientations are averaged, an estimate of the 

number of texels employed can be made. Such a model accounts for the data presented 

and suggests that the mean orientation of a number of orientation measures was available 
to subjects. 

To reiterate, Watt (1991b) offers preliminary evidence that integration of texel ori- 

entation occurs in the judgement of average orientation of a texture field. Furthermore 

this work suggests that the arithmetic mean of texel orientations predicts thresholds well. 
Experiment 3.1 uses a similar experimental design but uses band-pass textures to confirm 

that subjects average across multiple orientation measures to estimate average orientation. 

The remainder of the chapter explicitly compares alternative strategies for coding 
average orientation. Is averaging of orientations required at all, or could an alternative 
feature (such as the most numerous orientation) suffice? In addition, the representation of 
multiple oriented sets is investigated. The understanding of these issues will give insight 
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into the representation and primitives used, and how they are calculated. 

In the experiments reported in this chapter all stimuli were spatially unstructured 

single patches of oriented texture. The experimental procedures and models employed 

explore an analogy between the processing of luminance features and texture. Assume 

that some estimate of the generative orientation probability function is formed through 

averaging of local texel attributes, i. e. an orientation histogram is constructed. It is 

hypothesised that the extraction of statistical moments (e. g. central tendency) of this 

representation will occur in a similar way to the extraction of moments from retinal 

luminance distributions. In the case of the central tendency of a retinal distribution 

two stages are involved in most models: the integration of luminance values through 

a blurring function and the accentuation of some moment of the resulting distribution 

(e. g. the second derivative). It is proposed that in forming an estimate of the central 

tendency of an orientation distribution, similar processes may be used. 

The analogy between the processing of orientation and luminance distributions has 

been explored elsewhere. Keeble and Morgan (1993) had subjects discriminate between 

sinusoidally modulated, and uniform orientation p. d. f. s, as a function of the amplitude 

and frequency of the sinusoid. Subjects perform optimally with distributions modulated 

at one cycle per 180°, which suggests the task is performed by convolving the p. d. f with 

an "orientational filter". This filter had an excitatory zone 55° wide, flanked by inhibitory 

zones. Just as this procedure is strongly analogous to measurement of contrast sensitivity 

using luminance gratings, the experiments in this chapter, examining the coding of average 

orientation, are strongly analogous to experiments performed to examine visual location 

in the spatio-luminance domain. 

abcde 

Retinal distribution 
_ 

Second derivative 

Figure 3.2. The upper row shows the retinal light distributions of 
typical stimuli from Watt and Morgan (1983a). The lower row shows 
the second derivatives of the distributions from the upper row. (a) 
Shows the distributions from two superimposed bright bars with lu- 

minance rations of 2: 1. (b-e) The effect of increasing the separation of 
the bars. 



Chapter 3. The representation of average orientation 60 

Watt and Morgan (1983a) employed tasks using spatially combined bright bars to 

compare the predictive power of four visual location models. By varying the relative 

brightness of component bars, the asymmetry of the compound feature presented could 

be varied. Using these stimuli the threshold offset of the mean positions of the bars was 

determined for vernier acuity and resolution tasks. Figure 3.2 shows the retinal light 

distributions, and their second derivatives, of a typical stimulus from the experiment. 

The distributions from two superimposed bars, with luminance ratios of 2: 1, are shown 

in Figure 3.2a. Figure 3.2b-e shows the effect of increasing the separation of the two 

bars. At the resolution point (Figure 3.2c) the number of zero-crossings in the second 

derivative increases from two to four. A model based on the extraction of zero-crossings in 

the second derivative best accounted for the subjects' accuracy at estimating the position 

of these asymmetrical luminance distributions. A centroid model also performed well 

and has been implicated elsewhere in deriving the location of dot clouds (Whitaker and 

Walker, 1988) and flanked bars (Badcock and Westheimer, 1985). Peak and threshold 

edge models produced poor fits to the data. 

The Watt and Morgan (1983a) paper was used as a framework for experimental 

method and the models they examined were adapted to process texel distributions. In 

particular the extraction of the central tendency of orientation distributions and the res- 

olution of compound distributions were examined. Rather than using bars defined by a 

distribution of luminance in space, the orientation of texels was determined by two prob- 

abilistic distributions. Textures will have orientation distributions similar to the upper 

row of Figure 3.2. By shifting the relative mean orientations of the two distributions an 

asymmetry can be constructed, analogously to the spatio-luminance case. 

The textures that were used consisted of two intermingled sets of band-pass oriented 
texels (see Figure 3.6 for examples). The orientations of elements were randomly drawn 

from Gaussian distributions (v = 6°) and the relative number of texels in each set was 

systematically varied. Using an adaptive psychophysical procedure the threshold offset of 

the mean orientations of the two sets was determined for three tasks. They were: 

"A "resolution" judgement: subjects identified the patch that was composed of sets 

with different mean orientations. 

"A judgement of which set within one texture patch was more numerous. 

"A comparison of the average orientation of the patch with vertical. 
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Several models were compared to determine the cues used to make the judgements. 

Performance for judging the average orientation of asymmetrical distributions (Experi- 

ments 3.4-3.5) was used to separate predictions from the models, as was the case in Watt 

and Morgan (1983a). 

3.3 METHODS 

3.3.1 SUBJECTS 

The author and five observers naive to the purposes of the experiments served as subjects. 

Three (SCD, PMC and DFS) were experienced psychophysical observers, while the others 
had limited experience. DFS and SCD were corrected-to-normal myopics and DFS also 
had a slight (less than 0.5 D) corrected astigmatism. 

3.3.2 APPARATUS 

All stimuli were presented on a Formac ProNitron 80.21 colour monitor with a frame 

refresh rate of 80 Hz. The screen was viewed binocularly with natural pupils at a distance 

of 49 cm, and had a mean luminance of 92 cd/m2. Subjects fixated the centre of the 

display, indicated using a pre-stimulus fixation marker. 

3.3.3 STIMULI 

In order to restrict orientation information to an individual spatial scale, textures with 

relatively narrow-band spatial frequency characteristics were used. Textures were com- 

posed of small patches with luminance modulated by a Difference-of-Gaussian function. 

Many of these DoG elements were randomly distributed throughout the image and added 

together. They appeared on a mid-grey background. The DoGs making up the textures 

had a luminance profile given by: 

J)1 X3.1) L(x, y) = Lo[1 +W (x, 

where: 
W (xt, yt) =A 

{e_/22 
_( 

)e-/2(223)ß I e/2(3.272) (3.2) 
12.231 1 

Q=3.48 min. arc and A is a scaling constant. xt and yt are the translated and rotated 
coordinates: 

xt=(x-µx)cos 0+(y-µy)sin 0 (3.3) 
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yt = (y - µy) cos 0- (x - µx) sin 0 (3.4) 

µx, py represent the translation and 0 the rotation of the function (this is an adapted 

sensitivity profile given by Wilson and co-workers (Wilson and Gelb, 1984; Phillips and 

Wilson, 1983) for the 4 cycles per degree channel. ) The DoGs were clipped to ±3.0 

standard deviations from their centres. Overlapping patches were numerically added. 

The whole image was stored with floating point precision before being normalised to a 

range appropriate to the display hardware for presentation. Differing degrees of overlap 

between texels effectively randomised the contrast range from trial to trial. 

The texture patch contained a Gaussian random spatial distribution of texels (o = 50 

pixels), centred on the middle of the display. The texture fitted into a central window of 

256 pixels square (10.0 degrees square). 

3.3.4 PROCEDURE 

A Macintosh Ilfx microcomputer generated and presented the stimuli, and recorded sub- 

jects' responses. The subjects' task was always a binary decision involving one (Experi- 

ment 3.1 and 3.3-3.6) or two (Experiment 3.2) intervals. Unless stated otherwise, textures 

were presented for 100 ms. For the two interval experiments, the first texture was pre- 

sented in the centre of the display, followed by a 750 ms. delay followed by the second 

texture. In the single interval experiments the texture was presented, followed by a 750 

ms. delay. The instructions given to subjects in the single interval experiments, which 

all involved the judgement of average orientation, were to try and judge the "overall", 

or most representative, orientation of the patch. Subjects indicated their decisions by 

depressing one of two keys on the computer keyboard. APE, an adaptive method of con- 

stant stimuli (Watt and Andrews, 1981), was used to sample a representative range of 

relative numerosities of the two setsi. Probit analysis was applied to the response data to 

estimate the standard deviation of the psychometric function. Three runs of 64 trials each 

were undertaken for all conditions, unless stated otherwise. The data points presented 

are the arithmetic mean of thresholds from the three runs and error bars are an estimate 

of the standard error of these data. 
'The version of APE used differed slightly from the procedure described in this reference. The fitting 

of the response distribution with the cumulative normal error model was performed every trial, and not 
after each block of trials, as described in the Watt and Andrews (1981) paper. This addition only serves 
to increase the efficiency of the algorithm. 
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Figure 3.3. Examples of the stimuli used in Experiment 3.1. (con- 
trast has been enhanced for reproduction). All patterns contain 64 
elements and have a mean orientation of 90°. The standard deviations 
of the Gaussian distribution of orientations are (a) 4°, (b) 8°, (c) 16° 
and (d) 32°. 
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3.4 EXPERIMENT 3.1: COMBINING ORIENTATION MEASURES 

The first experiment was performed to establish whether the observers could combine 

multiple orientation measures to estimate the average orientation of a texture patch. To 

test this hypothesis a judgement was used which required subjects to make an estimate of 

average orientation. Subjects were presented with a set of oriented Difference-of-Gaussian 

patches whose orientation varied around some mean value. The task was to decide whether 

the mean orientation of the set was clockwise or anti-clockwise from vertical. The thresh- 

old offset of the mean orientation of the set required to perform the discrimination was 

measured as a function of the orientation variability of elements. Orientations of DoG 

patches were drawn from Gaussian random distributions. The standard deviation of this 

distribution was varied from 1.41° to 45° in half-octave steps and the experiment was run 

using patches containing 4,16,64 and 256 DoG patches. All textures were presented for 

100 ms. 

Figure 3.4 shows the results from this experiment for two observers. Assuming that 

there is no noise on one's estimation of the individual orientation of elements or in one's 

combination of those measures to form an estimate of the mean, then the only limit on 

one's performance in this task is the orientation variability of elements and the number of 

orientation estimates one uses. Given a set of n measures with standard deviation vstim 

then the error on an estimate of the mean will be: 

Qstim 
° estimate = 

Since the thresholds measured in this experiment directly estimate the standard devi- 

ation of the observers' estimate of the mean we can use this expression directly as an ideal 

estimator of mean orientation. Predictions from it, using different numbers of estimates, 

are superimposed on Figure 3.4. It is clear that subjects' performance systematically 
differs from this set of predictions, particularly at low levels of orientation variance. It 

seems that there is some degree of intrinsic noise on the subjects' estimates of the mean 

orientation which prevents them from achieving threshold less than around 1.5°. As the 

number of blobs in the patterns increases they can achieve this maximum level of per- 
formance with progressively higher levels of orientation variability. Because the model 

presented is an ideal observer, the number of estimates that it predicts subjects are using 

should only be taken as an absolute minimum. Any intrinsic noise may mean that more 

estimates are actually used. 
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Figure 3.4. Results for two subjects from Experiment 3.1 with 4,16, 
64 and 256 texels. The abscissa represents the standard deviation of 
the Gaussian distribution from which orientations were drawn. The 

ordinate is the threshold offset of the mean orientation from vertical 
(in degrees) required to discriminate the texture from vertical. Predic- 
tions from a noise-free model averaging different numbers of estimates 
are also shown. (Abbreviations for figure: "els" (elements), "s. d. " 
(standard deviation), "deg. " (degrees)). 
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Figure 3.5. Results from subjects re-expressed as percentage effi- 
ciencies. Note decreasing levels of efficiency as the number of elements 
increases. 

Figure 3.5 shows data re-expressed as percentage efficiencies. Given the original 

threshold (O b, ), efficiency is calculated as: 

=x100 
(COb3, 

i) 
Qatim 

F 

Subjects' efficiency drops steadily as the number of elements increases. Mean plateau 

efficiency, defined as the mean of the five rightmost data points from each condition, are 

as follows (for IRP and RAO respectively). (4 elements) 48.5% and 53.7%, (16 elements) 

23.0% and 18.9%, (64 elements) 15.0% and 7.4%, (256 elements) 10.5% and 2.2%. Thus 

with small numbers of elements observers are highly efficient at this task. 

The main point to note from these data is that subjects' performance always exceeds 
the predictions of the model when only using one measure of orientation. Given that this 

model is completely noise-free this strongly indicates that observers are combining indi- 

vidual orientations estimates to perform the task. The fact that subjects are performing 

at maximum levels of accuracy at higher levels of orientation variability in the 256 blobs 

condition than in the 64 blob condition suggests that the number of estimates used is still 

increasing above 64 elements. 

In conclusion, this experiment has shown that in making estimates of average orienta- 
tion subjects can integrate multiple orientation cues. The problem with this experiment 
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is that it will not separate the predictions from any number of models for estimating the 

central tendency of a set of measures: median, mode, etc. Because a Gaussian distribution 

of element orientations was used the mean, median, etc. all fall in the same location. The 

next set of experiments explicitly compared specific strategies for representing average 

orientation. 

3.5 EXPERIMENT 3.2: SEPARATING MIXED TEXELS SETS 

Subjects were sequentially presented with two stimuli (see Figure 3.6) each composed of 

two intermingled sets of texels. Sets contained nl and n2 elements and had the same 

orientation variance (o = 6°). The orientation of texels was determined using the sum of 

two Gaussian probability distributions with means of 0 and B+M. The total orientation 

probability distribution for each stimulus is then defined as: 

(3.5) p(e) - 21r 5Q 
[plex 

p- 
(0 - ö)Z+ 

(1 - pi) exp - 
(B - 2a2 bo)2 11 

Where pl = ni/(nl + n2). Figure 3.6 shows examples of the stimuli used. In the 

reference stimulus the means of the two distributions were identical (60 = 0°). In the 

comparison stimulus a non-zero increment was added to one of the means. The threshold 

50 was determined for the task of reporting which of the fields had orientations drawn 

from distinct distributions. Specifically, subjects were asked to decide which texture 

was composed of two sets of elements, with different overall orientations, from the texture 

which only contained one set. In all stimuli the standard deviation (o) of the distributions 

was 6°. Two effects determined the choice of a. Firstly, aliasing of the probability 
distribution due to pregeneration of DoGs in one degree steps, which becomes problematic 

at small values of a. Secondly, the fact that a small number of elements poorly characterise 

a Gaussian distribution at very large values of a. 

The orientation of one set (0) was randomised from trial to trial to eradicate remove 

mean orientation cues from the textures. The total number of texels, N, remained the same 

within a condition. Thresholds as defined above were determined at relative numerosities 

ranging from 1: 1 to 1: 64 evenly spaced on log axes. All subjects were run with 64 and 
256 total texels. 

Results are shown in Figure 3.7. Thresholds are lowest with equal number of texels 
drawn from both sets and increase with the relative difference in number. There is no 

apparent difference between the results from the conditions with 64 and 256 total elements. 



Chapter 3. The representation of average orientation 68 

60.70.80.90.100.110. 

W. 70.00.90.100.110. 

A 
60.70.60.90.100.110. 

-,, --L 
80.70.80.90.100.110. 

Figure 3.6. Example stimuli from Experiments 3.2-3.5 (contrast- 
enhanced for reproduction). All textures contain 64 elements and the 
orientation of the more numerous set is 90°. (a) shows the reference 
stimulus, containing two superimposed texel sets (i. e., the cue 60 = 
0°). (b, d, f) Two intermingled textures where one set has 16 times as 
many elements as the other (nl = 16n2). The relative offset of the two 
sets, 60, is (b) 0°, (d) 8°, (f) 16°. (c, e, g) As above but for a texture 
where one set has twice as many elements as the other (nl = 2n2). 
Relative offsets are (c) 0°, (e) 8°, (g) 16°. Graphs show the p. d. f. s for 
the adjacent texture. 

60.70.80.90. I W. 110. 

W. 70.60.90,100.110. 

W. 70.50.90.100.110. 
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Figure 3.7. Results for three subjects from Experiment 3.2 with a 
total of (a) 64 and (b) 256 texels. The abscissa represents the relative 
number of texels in the two sets (ni/n2); the ordinate represents the 
threshold offset of means in degrees. Predictions from a global variance 
judgement and the theoretical resolution limit of the distributions (as 
defined in the text) are also shown. 

Figure 3.7 also shows the theoretical "resolution limit" for the stimuli employed in 

Experiment 3.2. In the spatio-luminance case, Watt and Morgan (1983a) define this as the 

point beyond which the number of stationary points in the first derivative of the luminance 

profile changes from one to three. If it is assumed that the observed distribution of element 

orientations is the same as the probability density functions used to generate them, then 

the orientation distribution of the patterns may be treated analogously to the spatial 

case and resolution limits calculated. For low ratios of texel number (<1: 8) all subjects 

perform below this resolution limit for the two distributions. This is in agreement with the 

findings from Watt and Morgan (1983a). They suggested that because performance was 

not limited by resolution, the task amounted to one of width discrimination. Similarly 

the conclusion here is that subjects used some measure of the range of orientations in the 

texture patch (e. g. global variance) to perform the task at sub-resolution limit offsets. 
To investigate this more thoroughly, the data were fitted with predictions derived 

from a variance discrimination task. In this task subjects reported which of two patches, 

each with a single set of texel orientations, had the greater variance. The reference set 
had orientations drawn from a distribution with o= 6°. The cued set had a larger 

standard deviation. The threshold increase in standard deviation was determined for 

discrimination. Patches had randomised mean orientation: other experimental details 

were identical to those described in the Methods section (Section 3.3). 
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The threshold difference in standard deviation of orientation (&Q) was determined for 

each subject. The average threshold was 2.01. The offset of distribution means producing 

this rise in combined distribution variance were calculated for each of the numerosity ratios 
from Experiment 3.2. The mean (9d) and variance (o. ), of two combined distribution is 

given by: 

nies + n202 B` _N (3.6) 

oc = n1a + n2a2 2+ ni(Bl - 9c)2 + n2(e2 - ec)2 (3.7) 

where nj and n2 are the number of elements in two sets, and N is the total number 

of elements (n1 + n2). Sets have means of Bl and 02 and standard deviations of Ql and 

v2. Given that the standard deviations of sets are equal, a=o= v2 is substituted in 

Equation 3.7, and combined with Equation 3.5 to give: 

X91 - 021 =N 
3/2 V071=0-11 

(3.8) 
N2n2 - 2Nn2 + nln2 + n2 

Substituting a, with the discrimination threshold standard deviation of a single set 

gives a prediction of the mean offset of two sets which produces this cue in standard devi- 

ation. These predictions are plotted for a variety of relative set numerosities in Figure 3.7. 

Note that no further fitting has been used. The variance predictions provide a good fit to 

the data. This is evidence that subjects use global variance information to perform this 

task. 

The analysis above assumes that it is the relative number of elements in each set which 
determines subjects' performance on the task. To determine whether this is correct, a 

control condition was run. In the stimuli used, each set contained equal numbers but 

the total number varied from 16-512 texels. Data in Figure 3.8 show that within the 

range tested, total number has no apparent effect on performance. For all subsequent 

experiments a total of 64 texture elements was employed and pilot studies indicated that 

there was little difference in performance on any of the tasks when using 256 elements. 
To summarise the data from Experiment 3.2: the discrimination of a texture with 

orientations drawn from a single set from a texture with orientations drawn from two sets 

with separate mean orientations, does not necessarily require resolution of component 
distributions. Fits to the data suggest that the task being performed is a judgement of 
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Figure 3.8. (a)-(c) The effect of the total number of texels on the 
task used in Experiment 3.2. The abscissa represents the total number 
of texels; the ordinate represents the threshold separation'of the set 
means (in degrees) for discrimination of textures composed of two texel 
sets from those composed of one. 

the global variance of the orientation. This result holds over a range of total numbers of 
texels. 

3.6 EXPERIMENT 3.3: JUDGING THE RELATIVE ORIENTATIONS OF MIXED TEXEL 
SETS 

A texture patch composed of two sets containing unequal numbers of texels was presented. 
Subjects reported whether the less numerous set of DoGs was clockwise or anti-clockwise 
to the other set. This is a numerosity asymmetry task. This task used a single interval 

and to prevent the subjects exploiting the mean of the distributions as a cue, the mean 

orientation of one set was randomised over a 180° range. The experimental details were 
identical to those given in the Methods section (Section 3.3) with the exception that a 
longer exposure duration of 500 ms. was used, since pilot trials indicated that subjects 

were unable to obtain reliable thresholds at shorter exposure times. Subjects were given 

considerable practice on this task before data collection. 

The results (shown in Figure 3.9a) showed that subjects appear to require resolution 

of distributions to perform the asymmetry task. This suggests that relative numerosity 
information about distributions is only derived if those distributions are distinct perceptual 
entities separated by at least the resolution limit. It also shows that the direction of skew 
of the orientation information is not available to subjects. 

Comparison with the last experiment is difficult. In Experiment 3.3 subjects deter- 



Chapter S. The representation of average orientation 72 

offset of means (deg. ) 
60 r 

resolution 
limit 

" S. C. D. 
10 

O D. F. S. 

5 

1 10 60 

numerosity ratio 

(a) 

NO 
1 

/TI. 
D. 

0.2 

0 """ 

16: 1 8: 1 1: 1 1: 8 1: 16 

asymmetry (n1: n2) 

(b) 
Figure 3.9. (a) Threshold offsets for comparison of the orientations of 
two sets containing different numbers of texels, as a function of relative 
number. Note that all thresholds exceed the theoretical resolution 
limit. (b) Psychometric function for relative numerosity judgement 
with a fixed offset of set means (60 = 45°). 

mined which set was which (according to the number of texels in each) and judged the 

mean orientation of one in relation to the other. The fact that performance in this task 

approaches the resolution limit suggests that elevation of thresholds, compared to Experi- 

ment 3.2, is due to the offset of the means of the two orientation distributions. However, it 

is possible that the increased complexity of the numerosity judgement was responsible for 

poorer performance. To confirm that it is the offset of mean orientations which determine 

performance, a control experiment was performed. The task was a numerosity judgement 

at a fixed offset of mean orientations (50 = 45°), for different ratios of numerosity. This 

experiment will show the subjects' performance as a function of the difference in number 
between the two sets but in the absence of any interference due to orientation. 

Results as a function of relative numerosity of sets are shown in Figure 3.9b, where 

a psychometric function for the author is given. The abscissa is the ratio of the number 

of elements in the two sets. Asymmetries from 16: 1 to 1.4: 1 indicate that the mean 

orientation of the set with more elements was clockwise of the other set. Asymmetries 

from 1: 1.4 to 1: 16 indicate that the mean orientation of the set with more elements was 

anti-clockwise of the other set. Data from this control were collected using a method 

of constant stimuli (1024 presentations) and fitted with a cumulative Gaussian. It is 

clear that any effects of absolute difficulty of the numerosity judgement (in isolation from 
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orientation interference) should be insignificant for ratios greater than 1: 4 (the standard 
deviation of the psychometric function shown in Figure 3.9b is 1: 2.1). 

3.7 EXPERIMENTS 3.4 AND 3.5: JUDGING THE OVERALL ORIENTATIONS OF 
MIXED TEXEL SETS 

The next two experiments looked at the extraction of average orientation and tested 

the predictions of a number of localisation models, adapted from the spatio-luminance 
domain. 

Subjects were presented with one texture field and asked to indicate whether the aver- 

age orientation was clockwise or anti-clockwise relative to the vertical. In Experiment 3.4 

the field was composed of two sets with mean orientations of 91 = 90° and Bz = 90° + b9 

respectively. - The offset of the means of the two sets (60) was systematically varied. Ad- 

ditionally thresholds were determined for comparing the mean orientation of a single set 

with vertical. All textures were presented for 100 ms. 

offset of means (deg. ) 

20 
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O 
1 

offset of means (deg. ) 

10 

0"S. C. D. 

p R. A. O. 

100ºD. F. S. 

0.5 1 10 2 10 20 

numerosity ratio numerosity ratio 

(a) (b) 

Figure 3.10. Threshold offset of means for three subjects from (a) 
Experiment 3.4 and (b) Experiment 3.5. The unfilled data points are 
the threshold mean offset for judgement of average orientation of a 
single-set texture. 

Figures 3.10a shows the data from this experiment. Thresholds increased with the 

ratio of the number of elements in the two sets. They were all lower than thresholds from 

the resolution and asymmetry tasks. The thresholds for the single set stimuli are shown 
as unfilled data points. 

In Experiment 3.5 a larger asymmetry was set up using three distributions. The 
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probability of a particular orientation was: 

1 (e-B)2 (e-e-5g)2 (0 -e-36e)2 P(B) = T2rý2 
car 

pi exp - 20 2+ P2 exp - 2o2 
+ P2 CXP - 2a2 

where P2 = (1 - pl)/2 and all other variables are those given for Equation 3.5. Again 

the threshold ö9 is for the discrimination of average orientation of a texture from vertical. 
Threshold mean orientation offsets are shown in Figure 3.10b. Note that the numeros- 

ity ratios shown are based on the ratio of the number of elements in one of the flanking 

distributions to the number in the more numerous set (pl/p2). Unfilled symbols show 

the thresholds for the orientation judgement of a single set, as described above. Thresh- 

olds show the same monotonic dependence on numerosity ratio and are again lower than 

thresholds from the asymmetry and resolution tasks. 

3.8 COMPARISON OF FEATURES FOR CODING MEAN ORIENTATION 

In this section four schemes for coding the central tendency of an orientation distribution 

are examined. Consider a compound distribution of texel orientations with a particular 

ratio of the number of elements in each set, and an offset of component sets equal to the 

threshold value for that stimulus (as determined from Experiments 3.4 and 3.5). Features 

of this distribution will typically be located at different orientations (e. g. the mean of 

the function may not coincide with the peak orientation). The difference between the 

orientation of the candidate feature and vertical is assumed to be the cue that the subject 

uses. The threshold shift to judge the average orientation of a single set provides a 

comparison. If subjects use a particular cue to judge average orientation of the compound 

textures, then the threshold shift of this cue should equal the average orientation threshold 

for the single set judgement. 

The four candidate features tested were: peaks, threshold edges, and two based on 
the combination of a number of measurements (zero-crossings and centroids). All features 

were extracted from idealised orientation distributions. 

" Zero-crossing: the zero crossing model assumes convolution of the idealised ori- 

entation distribution with a smoothed second differential operator (convolution is 

wrapped around the 180° range). This is similar to the "orientational filters", pro- 

posed by Keeble and Morgan (1993), as a mechanism for discriminating oriented 
textures. It is also similar to a component of Paradiso's (1988) model of orientation 

perception, where the output of cells within an orientation column are filtered with 



Chapter S. The representation of average orientation 75 

a Difference-of-Gaussian filter. In this case a Laplacian-of-Gaussian operator was 

used, of the form: 

-/ 
(X2 

V2G(x, v) - 
12 

2-1e 
ý' 20' 

Location was then defined as the mid-point between the outermost two zero-crossings 

of the convolution about vertical. The width of filter employed was the value min- 
imising the Chi-square of the fit of the model to the data from Experiment 3.4. This 

value was a filter standard deviation of around 6° (mean=6.10°, s. d. =0.81°) 

" Threshold edge: two points in the distribution were located which were equal to 

some threshold value. Location was defined as the mid-point between these points. 

The threshold employed again minimised the Chi-square of the fit of the model to 

the data. 

" Peak: the location of a distribution is assigned to the maximum of the idealised 

orientation distribution. 

" Centroid: the centroid was calculated using: 

9, if -2 
[Pocos2o_o] 

ý) <0 
i=1 

Be + 90° otherwise 

where: 

180 

E p(Bi) sin 20; 
B tan-1 '-1 2 180 

p(O) cos 2B; 
s-1 

Note that integration occurs over the full range of orientations. In practice integra- 

tion over a restricted range of orientations can be more appropriate (e. g. when a 
distribution contains two resolved entities). 

Given a threshold difference in the mean orientations of the component sets, the size 

of the cue given by each of the candidate features may be calculated. These values should 
be equal to the size of the cue for the single-set texture at threshold offset. Cue sizes 
based on thresholds from Experiment 3.4 are shown in Figure 3.11a-c, and those based 

on thresholds from Experiment 3.5 are shown in Figure 3.11d-f. 
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Threshold Peak Centroid ZC 
(Exp 3.4) RAO 0.041 0.116 0.27 0.029 

SCD 0.047 0.168 0.057 0.019 
GP 0.168 0.324 0.181 0.018 

(Exp 3.5) RAO 0.423 0.897 0.051 0.24 
SCD 0.151 0.269 0.034 0.053 
MC 0.168 0.324 0.018 0.077 

Table 3.1. Chi-squares for the fits of the four models tested using 
data from Experiments 3.4 and 3.5 
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Typically the models produce cues which are smaller than the threshold shift in central 

tendency, even given the idealised input, and can therefore be eliminated. The peak 

model in particular fails to explain the data (weighted Chi-squares appear tabulated in 

Table 3.1). The best fit is given by the centroid model although the threshold edge and 

zero-crossing model are also adequate. Note that the latter two models are fitted, whereas 

the centroid model has no free parameters. The Chi-squares given are all very low. The 

discrepancy between these values and the fact that, from examining the graphs, some 

models appear to fail badly, is due to the weighting used. Most models perform poorly at 
high numerosity ratios. The data from subjects at these points tend to be noisy so that 

the weighting of Chi-squares based on standard error will largely discount these data. 

For the simulation of Experiment 3.5, the same threshold values and filters were used 
(except in the case of subject DFS where no data from Experiment 3.4 were available, and 

these values were derived using the data from this experiment). Figure 3.11d-f demon- 

strate that the increase in asymmetry of the stimuli in Experiment 3.5 further separates 

performance of the four models. Again the centroid model best explains the data and this 

is reflected in the very low Chi-squares, given in the lower half of Table 3.1. 

These results suggest that the centroid of a set of orientation measures can be used to 

estimate dominant orientation. This model makes two primary assumptions: firstly, that 

orientation measures are always extracted from the whole image; secondly, that integration 

over the whole range of orientations should be used to make the estimate. These two 

assumptions are almost certainly false. The first would not allow for the perception of 

multiple orientations within a texture; the second would not allow for the perception 

of globally organised flows such as rotational fields. Experiment 3.6 examines how local 

estimates of orientation are made, both in the sense of spatial position and orientation 



Chapter 3. The representation of average orientation 78 

distributions. It examines a method for effectively extracting interesting features from 

orientation-frequency information. 

3.9 EXPERIMENT 3.6: LIMITING THE ORIENTATION RANGE 

The simulations presented in this chapter suggest that average orientation is coded using 

some centroid measure. This centroid, for the purpose of modelling, integrated orientation 

measures over a 180° range. However, Experiment 3.3 demonstrated that subjects are 

quite capable of representing multiple orientations derived from a texel set. This suggests 

that a model capable of explaining both results must have some way of limiting the range 

of orientations over which the centroid is calculated. 

The zero-crossing model presented in Section 3.8 practically limits the orientation 

range used. Orientation histograms are filtered using a one-dimensional Laplacian-of- 

Gaussian, a threshold is applied and zero-bounded regions of response are characterised 
by the mid-point between these ZCs. This model was not as good an explanation of 

subjects behaviour in Experiments 3.4-5 as the centroid model. However a practical way 

of increasing the accuracy of this model is to use the centroid of regions between zero- 

crossings. This model limits the orientation range effectively but retains the accuracy of 
the centroid estimate. 

Figure 3.12. Orientation p. d. f. s (a) A Gaussian distribution. (b) The 
sum of a Gaussian and a uniform distribution. 

How would one test such a model? An estimate of mean orientation from a system 

which could not restrict the range of orientations analysed, is affected by all local ori- 

entation estimates. Consider the orientation p. d. f. s shown in Figure 3.12: (a) shows a 
Gaussian distribution and (b) the sum of a Gaussian and a uniform distribution. Sup- 

pose one were interested in estimating the mean of the Gaussian orientation distribution, 

defined by a sub-population of the orientation estimates. A system averaging across all 

orientations would be much more affected by the background, uniform distribution than 
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a system which could restrict analysis to the region of the Gaussian. The ZC model, for 

example, will effectively suppress the d. c. component of Figure 3.12b. 

The following experiment used textures with orientations similar to Figure 3.12 to 

examine how the estimation of the mean orientation of a set of similarly oriented elements 

was affected by the number of uniformly oriented elements that the set was mixed in with. 
Unlike, previous experiments, the textures used here were generated by locating ori- 

ented patches on a perturbed grid, rather than allowing them to fall anywhere within the 

pattern. This was not only to ensure the visibility of all elements, but was also to allow 

the investigation of the importance of subjects' knowledge of the extent of the target 

texture. As well as presenting the cued texture on a uniform grey background, a second 

condition embedded the cued texture in a large field of uniformly oriented elements. This 

condition will be disruptive only if the subject cannot voluntarily restrict the region over 

which orientation estimates are averaged. 

3.10 METHODS 

All apparatus and viewing conditions were identical to those described in Section 3.3. 

3.10.1 SUBJECTS 

The author and two other observers, who were both naive to the purposes of the experi- 

ments, served as subjects. All were experienced psychophysical observers. SJE and SCD 

are corrected-to-normal myopics. 

3.10.2 STIMULI 

Textures were composed of small patches with luminance modulated by a Difference of 
Gaussian function, in order to restrict information to a narrow range of spatial scales 
(expressions for the DoGs are given in Equations 3.2-3.4). Elements were located on a 

perturbed grid. The mean separation of points on the grid was 1.25 degrees min. To 

avoid a number of elements co-aligning, the x and y positions of patches were allowed to 

vary ±25% of the mean separation. The overall size of the image was 512 pixels square 

which subtended 20.0 degrees square. 

Unlike the experiments in Chapter 3, normalisation of the textures was not performed: 
because of the spatial distribution of the elements on a grid, overlap of elements could 
not produce values outside of the range of permissible grey-levels. 
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Figure 3.13. Example stimuli from Experiment 3.6. Sixteen ele- 
ments, with a mean orientation of 900 are presented on a4X4 grid 
(a, d), a6X6 grid (b, e) and an 8X8 grid (c, f). The vacant posi- 
tions are filled with randomly oriented elements. (a-c) Cued elements 
have no orientation variance. (d-f) Element orientations are Gaussian 
distributed with s. d. =8°. 

Figure 3.14. As Figure 3.13, except patches are all embedded in a 
16 X 16 grid of randomly oriented features. 
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Each texture contained a population of sixteen elements drawn from a single Gaussian 

orientation distribution (the target set). These elements were arranged on a grid, the width 

of which was the independent variable. As the grid width increased from its minimum size 
(4 x 4), vacant positions were filled with randomly oriented elements (for examples see 
Figure 3.13). In the first (unembedded) condition, these grids were presented to subjects 

in the centre of an image with uniform grey-level. In the second (embedded) condition, 

these grids were placed surrounded by randomly oriented elements (Figure 3.14). The 

dimensions of of the background grid were 16 x 16. 

3.10.3 PROCEDURE 

A single-interval judgement of mean orientation was used. Subjects were presented with 

a stimulus and asked to judge if the mean orientation of the target set was clock-wise 

or anti-clockwise from vertical. Textures were presented for 100 ms. in the centre of the 

display. An adaptive method was used to sample a range of offsets of the mean orientation, 

and all other details of data collection are similar to those presented in Section 3.3. 
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Figure 3.15. Results from two subjects for Experiment 3.6. Note 
that there is little difference between the embedded and unembedded 
patch condition. 
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Figure 3.16. (a) Predictions from the peak orientation model, for 
the task from Experiment 3.6, as a function of the number of of bins 
used to from the orientation histogram. None produce good fits to the 
human data (large symbols), (b) Predictions from the ZC + centroid 
model, as a function of the number of estimates of orientation used. 
Note the gradual deterioration in performance as grid size increases. 
(c) The best fitting predictions of the three models to the human data. 
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3.10.4 RESULTS 
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Figure 3.15 shows data from two subjects on this task. As patch size increases the task 

becomes progressively harder: performance degrades uniformly up to a cell size of around 

10 by 10, beyond which point it is difficult to determine a threshold. The embedding of 

the patch in background of noise makes little difference to performance. This suggests 

that subjects have accurate control over the region of integration they use for estimating 

mean orientation. 

3.10.5 MODELS 

The data from this experiment were modelled using three systems for extracting average 

orientation. All of these systems operated on an idealised set of orientation measures, 

i. e. models did not use measurements made directly from images but instead operated on 

sets of orientation values which were calculated in the same way as for the texture stimuli. 

For all models a histogram was first derived from the orientation data. In the case of the 

peak model, the dominant orientation was taken to be the bin containing most elements. 

In the case of the centroid model a centroid was calculated using the procedure described 

in Section 3.8. For the ZC+centroid model the orientation histogram was convolved 

with a Laplacian-of-Gaussian filter, the scale of which (s. d. =6°) was derived from the 

simulations of Experiments 3.4 and 3.5. The response was thresholded at a value of one 

standard deviation from mean response and the zero-bounded region with the largest 

mass extracted. The centroid of this region of response was then calculated in the same 

way as described in Section 3.8. 

For the peak model the number of bins, and the number of estimates used from the 

data were free parameters. For the centroid and ZC+centroid model, the number of 

estimates was a free parameter. The parameter determining the number of estimates set 
the maximum number of elements that could be averaged (a range from 4-64 was tested, 

for both models). Parameters were selected to minimise the chi-square deviation of the 

model from the data. 

For each of the grid sizes tested on human subjects, 3 sets of 64 orientations were 
generated with the same signal to noise ratio (SNR) used in the experiment. The standard 
deviation of the estimated mean was calculated for each model operating on each each set. 
The three standard deviations from each model were averaged to give the mean predicted 

response of the different models at each grid size. 
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Peak Centroid ZC + Centroid 
SJE 6.88 247.3 2.56 
FJM 8.20 272.4 2.30* 
SCD 10.95 291.3 2.10 

Table 3.2. X2 of the fits of the four models to data from Experi- 
ment 3.6. 
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Figure 3.16a shows predictions from the peak model as a function of the number of 
bins used to histogram orientation data. Changing the number of estimates used by the 

model and the number of histogram bins have very similar effects on the predictions on 

the peak model, and for that reason predictions are only shown for the model using 32 

elements. With large numbers of bins, the peak model performs perfectly' up to a critical 

grid size. Beyond this point, performance collapses and is worse than human subjects 

at larger grid sizes. Decreasing the number of bins (or estimates) does not steadily shift 

performance up on this graph. At a critical number of bins, the model's performance 

suddenly becomes very poor (e. g. the performance with 5 bins shown in Figure 3.16a). 

Even given two free parameters this model does not produce a good fit to the data. 

Predictions of the ZC + centroid model are shown in Figure 3.16b, as a function of the 

number of orientation estimates used. Note that the performance of this model smoothly 
deteriorates as a function of the grid size, showing the same trend as the human subjects. 

Figure 3.16c shows the predictions of the three models for selecting average orientation 

which most closely match subjects' data. The predictions from the centroid models are 

uniformly worse than human observers and for that reason only the performance of the 

model using the maximum number of orientation estimates is plotted. By integrating over 
the entire set of orientations present in the texture, the model's performance drops rapidly 

as grid size and the amount of noise elements increases. The zero-crossing/centroid model, 

using 11 orientation estimates, seems to produce a good fit to the data. Performance drops 

off steadily as patch size increases. Subjects cannot completely ignore background noise, 

as the peak model can, but instead average over a limited range of orientations. This is 

confirmed by the Chi-square values for the goodness-of-fit of the models to each subject's 
data, which are tabulated in Table 3.2. For all three subjects, the goodness-of-fit measure 

of the ZC+centroid is much lower than for other fits. 

2Perfect performance is plotted as a threshold of 0.1° to allow presentation on log axes 
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This experiment suggests that subjects can extract interesting orientation structure 
from noisy distributions of orientation information. Subjects' performance suggests that 

the mechanism for doing this cannot rely on the peak of orientations present or the sim- 

ple centroid. Instead a system using a filtering operation to extract relative orientation 
frequencies (i. e. a method for removing the d. c. component of the signal) explains perfor- 

mance well. 

3.11 CONCLUSIONS 

There are six key findings from the experiments described in this chapter: 

" Subjects can combine separate measures of orientation to form estimates of overall 

orientation (Experiment 3.1). 

" Subjects can discriminate stimuli composed of two oriented texel sets from a field 

composed of only one set at mean orientation offsets which depend on the relative 

number of elements in each set. (Experiment 3.2). 

" The global variance of a stimulus is the cue for the discrimination of textures com- 

posed of sets with equal mean orientation from those with sets with different mean 

orientation. Threshold orientation offsets can be below the theoretical resolution 

limit (Experiment 3.2). 

" When the variance cue is eliminated by using a relative numerosity judgement, 

thresholds are higher and reliably above the resolution limit. Information about the 

skew of orientation distribution is not available. The resolution limit gives a lower 

limit on when texel sets become separate, in the sense that properties of those sets 

can be measured independently (Experiments 3.3). 

" Assuming an idealised orientation distribution, a comparison of different features for 

representing central tendency indicates that a centroid model is the most appropriate 

of the models tested. (Experiment 3.4 and 3.5). 

" Subjects do not necessarily use the centroid of measures taken over the whole ori- 

entation range but can calculate the centroid over a limited range of orientations, 
thereby limiting the effects of noise. (Experiment 3.6) 
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In Experiment 3.3 subjects clearly have access to relative numerosity information 

about two texel sets and an orientation primitive based on some portion of the orienta- 

tion distribution is suggested. Although the zero-crossing model produces a reasonable 

fit to the data from Experiments 3.4 and 3.5 it was also run (with identical filter charac- 

teristics) on the data from Experiment 3.2 to yield predictions of variance discrimination 

thresholds. The model produced adequate predictions at small ratios but did not explain 

the data when the number of elements in one set became small. Small distributions are 

smoothed out entirely. This effectively challenges the assumption that an idealised ori- 

entation distribution is available. Simulations of Experiment 3.6 demonstrate that a ZC 

model + centroid model can deal with real orientation distributions. 

Examining a typical stimulus for higher ratios as shown in Figure 3.6d-e, it is appar- 

ent that, as the numerosity ratio of the two distributions increases, the judgement from 

Experiment 3.2 becomes closer to a "search" task as described in the literature on visual 

attention (e. g. Treisman and Gormican, 1988). In Experiment 3.2 it appears that, in the 

case of multiple targets, threshold orientation difference between target and distractor 

may be well modelled by predictions based on change in the orientation variance of the 

texture. It is interesting to note that, for example, a variance model would predict a 

non-monotonic dependence of performance upon distractor number (shown by, for ex- 

ample, Sagi and Julesz, 1987, Sagi, 1990). From statistical considerations a small total 

number of texels leads to a poor estimate of variance, producing poor performance which 

improves with increasing texel number. However, as number increases, the influence of 

a single distractor on the global variance estimate will decrease. Subjects performance 

may be determined by the total of these two sources of error. The suggestion is that the 

underlying statistics of texel orientation may explain some visual search effects without 

recourse to specific, spatial interactions. 

This chapter has assumed an orientation representation which ideally reflected the 

orientation probability distribution which generated it. How this might be achieved has 

not been considered. In particular in using texture fields of constant size the question of 

the spatial dimensions of any "region of integration" has not been addressed. Integration 

may occur upon local orientation measures, e. g. by spatial summation of similarly oriented 

receptive field outputs. Alternatively, integration may occur implicitly through the use of 

visual features grouped through the application of successively finer Laplacian-of-Gaussian 

filters (e. g. Watt, 1988). In both of these cases it seems likely that some measure of 
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reliability is employed to weight the contribution of extracted features. In the former case 
the ratio of outputs of differently oriented receptive fields at a point may be used. In 

the latter a mean-square deviation measure of a best fitting principal axes through the 

feature may be appropriate (Watt, 1991b). 

The assumption of the availability of an idealised representation of attribute proba- 
bility did not affect how well the candidate features accounted for the data. Given that 

estimates of the orientation bandwidths of linear filters in human vision are in the order 

of 10 - 20°, this suggests that smoothing of orientation measures may occur to increase 

accuracy. This has also been suggested for a neural network implementation of the shape 
from texture model proposed by Blake and Marinos (1990). 

In conclusion, this chapter strongly constrains a representation of texture orientation 
information. The' variance and centroid of an orientation distribution are available to 

subjects. Multiple sets can be perceived and independent information about them is 

represented. 



4 MEAN ORIENTATION JUDGEMENTS 

USING LINE AND DOT TEXTURES 

4.1 OVERVIEW 

Chapter 3 considered how local orientation estimates are combined to form a representa- 

tion suitable for subsequent texture processing. It was assumed that accurate measures 

of the local orientation of the elements comprising a texture are freely available. This 

chapter and the following three, consider exactly how texture elements, reflecting local 

orientation structure, are extracted from natural and artificial textures. It is proposed 

that oriented filtering in combination with the image description scheme of Watt (1991b) 

is an effective computational scheme for deriving texels. Such a model is also shown to 

provide a reasonable account of human performance on tasks requiring texel extraction. 
Section 4.2 briefly considers some proposed schemes for deriving texels. A critical, 

and largely unaddressed, problem for most of these models is how to select the scale 

of analysis. Here the scale selection problem is treated as an instance of the generic 

grouping problem in vision and psychophysical tasks are employed which manipulate the 

difficulty of texel extraction by varying the "strength" of local grouping. A class of 

oriented random dot textures, known as Glass patterns (Glass, 1969), are used. These 

textures are useful because texels reflecting the orientation of these patterns emerge at 

a particularly narrow range of spatial scales. Unlike spatially band-pass textures, other 

scales contain information which, if relied upon, would actively disrupt an estimate of 

orientation. Because of this, Glass patterns are used to study the degree to which observers 

(and models) integrate across scale to form orientation estimates. 

Psychophysical experiments are reported which examine the effects of element length, 

element density, and orientation variance on the judgement of the orientation of trans- 

lational Glass patterns and line textures. In Chapter 5 data from these experiments are 

compared to the performance of a number of schemes for deriving orientation estimates. 
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4.2 FINDING TEXTURE ELEMENTS 

Many theories of texture segmentation (e. g. Julesz, 1981; Marr, 1982; Beck et al., 1983) 

use statistical differences between the attributes of local texture elements. Texture bound- 

aries exist where significant differences arise in texel density, size, etc. Theories of the 

derivation of shape from texture use the variation in the orientation (Witkin, 1981; Blake 

and Marinos, 1990), or density (Gibson, 1979) of texels to signal local surface orientation. 
Thus texels must also be oriented (Blake et at., 1993). Both of these approaches assume 

that texels can be isolated automatically from a scene by human vision. 
Reflecting the view that the extraction of texels is not an interesting component of 

texture processing, the artificial textures used in psychophysics have attempted to make 

the isolation of texels trivial for subjects. Figures 4. la-b show that this is achieved 
by constructing textures from spatially distinct (located on a perturbed grid) micro- 

Figure 4.1. (a-b) Typical stimuli used in the psychophysical study of 
boundary detection. Texture elements are easily isolated. This is not 
always the case for natural textures, e. g. (c-d). 
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patterns which are much brighter than the background. Such patterns could be isolated 

by a scheme as simple as grey-level thresholding followed by extraction of connected 

regions. It is implicit in all work on texture segmentation that experimental stimuli, 

such as Figures 4.1a-b are, to some degree, an approximation to texture boundaries in 

natural images. Otherwise, why is the segmentation of these images interesting? However, 

when one considers images of natural textures, like Figures 4.1c-d, it is apparent that 

there are no obvious texture elements. Even though it is acknowledged that "there is no 

known algorithm that can successfully detect texels from a natural image" (Aloimonos, 

1988), the development of algorithms for deriving information from texture continues, with 

each theory making different assumptions about what information texels can give. Given 

that the form of the texels which can be derived automatically from natural images will 

considerably constrain further processing by, for example, shape from texture algorithms, 

it is strange that the problem of texel isolation has remained largely unconsidered. 

Recently, however, Laplacian-of-Gaussian (V2G) filtering has been proposed as a com- 

putationally efficient method for extracting texture elements from images (Voorhees and 

Poggio, 1987; Wen and Fryer, 1991; Vilnrotter et at., 1986): being an isotropic filter, only 

one convolution is required at each spatial scale. The elements are typically derived from 

zero-crossings (e. g. Witkin, 1981), half-wave rectification (Voorhees and Poggio, 1987) or 

by fitting templates to the output (Blostein and Ahuja, 1993). The relative merits of 

edge and blob based representations have been discussed elsewhere (Blostein and Ahuja, 

1993). Given the output of these filters followed by, e. g. thresholding (Figures 4.2b-d), it 

is possible to construct a symbolic description of each blob in terms of parameters such 

as length, mass, etc. (e. g. Voorhees and Poggio, 1987; Watt, 1991b) giving a "primal 

sketch" type of representation (Marr, 1976). However, the adequacy of such a descrip- 

tion for performing tasks which require texture information has only been shown using 

demonstrations. What is not known is whether these systems are similar to the way that 

human vision isolates texels. 

A second unaddressed question relates to a parameter which is usually ignored in 

theories of texture perception based on spatial filtering: the filter scale itself. Consider 

Figure 4.2 which shows an image of tree bark and three V2G filtered and thresholded 

versions of (extending over 3 octaves of scale). Each of these images highlights orientation 

structure in the texture at a different spatial scale. The output of the fine-scale filter, 

Figure 4.2b, captures detail of the shallow ridges in the top-left hand corner of the image, 
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Figure 4.2. (a) Bark texture (b-d) Output of V2G filters with stan- 
dard deviation (s. d. ) of (b) 1.41, (c) 4.00 and (d) 11.31 pixels. Filtered 
images have been thresholded at one grey level standard deviation and 
all grey levels above and below the mean grey level replaced with white 
and black pixels respectively. 
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for example. The middle spatial scale, Figure 4.2c, is less sensitive to fine surface creases 

but begins to highlight the overall direction of flow in the image, from left to right. The 

coarsest scale obliterates all fine detail but captures the flow due to the very deep creases 

in the bark. When presented with this image, what determines which scale is used to 

derive texels? As discussed in the introductory chapter, it is in the nature of texture that 

the answer to this question depends on what the visual system is to do with the texels. 

In this chapter the problem of deriving texture elements from a class of patterns 

known as texture flows (Zucker, 1982) is considered. A texture flow, such as a patch of 

fur or wood-grain, is rich in orientation structure, but is not necessarily defined by clear, 

extended contours. The perception of structure in a fur pattern, for example, involves 

perceptual "filling-in" of some sort. Individual hairs pass in and out of occlusion yet the 

percept of orientation structure is dense and complete (Zucker, 1982). These patterns are 

interesting, not only because orientation is an essential cue for many visual tasks, but 

also because they are so completely defined by their orientation structure that they allow 

inferences to be made about the operation of visual mechanisms upon them. 

Assume that whatever process is responsible for estimating local orientation attempts 

to maximise the accuracy of its estimate. Statistical wisdom indicates that the source of 

information being used should have minimal variance. This suggests a simple strategy 

for determining any free parameters (such as filter size) of a texture processing model 

automatically: set the parameters so that the derived texture elements have minimal ori- 

entation variance. By examining a symbolic image description, from a system such as 

that of Watt (1991b), the local orientation variance of a given set of blobs may be cal- 

culated, and so an estimate of the reliability of a particular spatial scale, for estimating 

local orientation, may be assessed. By using texture flow patterns, rather than, for ex- 

ample, embedded patches of texture, the required output of a texture processing task is 

constrained sufficiently that the task constraints may be incorporated directly into the 

model. The idea that a model based on this assumption reflects human visual processing 

is tested in this chapter. In order to describe psychophysical data on the perception of 

texture flows, an artificial texture flow must now be introduced: the Glass pattern. 

4.3 VISUAL GROUPING AND GLASS PATTERNS 

Much of the psychophysical work on texture flow has employed random dot patterns. 
These are used because they are simple to generate, and because dots have generally been 
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Figure 4.3. Glass patterns composed of two superimposed sets of 
dots, the second set being the first set transformed by (a) a translation, 
(b) a dilation, (c) a rotation and (d) a spiral. 
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treated as though they are approximations to the mathematical notion of a point, i. e. ob- 

jects without dimensions, defined purely by location. Figure 4.3 shows some examples 

of Glass patterns (Glass, 1969). These patterns have properties which prove to be very 

useful for studying texel extraction in the context of spatial scale. 

Glass patterns are composed of the superimposition of one or more copies of a field of 

randomly distributed features (e. g. dots) onto the original, where the copy is a geometric 

transformation of the original (Glass, 1969; Glass and Perez, 1973). The visual impression 

is of compelling oriented structure with dot pairs (dipoles) aligned along the direction of 

the local transformation. Glass patterns are interesting stimuli for a number of reasons. 

Firstly, they approximately isolate the selection of orientation from other visual processes 

due to, e. g. contrast and size differences (Zucker, 1982). Secondly, these patterns only 

contain the perceived structure at a narrow band of spatial scales, which makes them 

ideal for investigating scale selection processes. Thirdly, there have been a large number 

of computational and psychophysical investigations of the perception of structure in these 

patterns. Finally, although apparently simple textures, they remain a largely unexplained 

phenomenon; a number of models have been proposed, none of which have been shown 

to be completely satisfactory. 

4.3.1 PSYCHOPHYSICAL WORK 

The work done with Glass patterns by Kent Stevens (1978) is important not only as an 

investigation of visual grouping, but also as one of the first papers to combine psychophys- 
ical experiments with computational modelling of visual processes. It is also one of the 

few explicit investigations of Marr's (1976; 1982) theory of the primal sketch, and was 

used as practically the sole evidence for grouping processes in Marr's full exposition of his 

theory (Marr, 1982). 

Stevens (1978) used patterns composed of dots whose locations formed a perturbed 

grid. Dipoles were not permitted to fall in such a way that alignment with dipoles from 

neighbouring cells could cause "chains" of more than two elements to occur. A rating 
judgement of "pairedness" was used to determine the maximum dipole separation for 

which structure was rated to be present. Dot density varied from 0.5 to 44 points/degree2 
(from 65 to 580 total dots) and the results indicated that, regardless of pattern type, if 

more than 2 or 3 points lay closer to a dot than its corresponding dot, then structure was 
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not rated as present. 

Jenkins (1983), examining subjects' discrimination of Glass patterns from unorganised 

noise, produced results directly contradictory to Stevens' experiment, showing that there 

is no effect of altering dot density over a range of densities from 6.5 to 26.0 points/degree2 
(corresponding to approximately 64,129 and 258 total dots). Jenkins (1983) accounts for 

Steven's low estimate of the amount of tolerable noise by assuming that Stevens' subjects 

were conservative in their subjective rating of "pairedness". Another explanation for this 

inconsistency of findings is that the stimuli used in Stevens (1978) could not contain 

accidentally aligned dipoles, or "chains', ' of two or more dot pairs. The presence of these 

(essentially low spatial frequency) features could be an indication of structure when dipole 

separation becomes large. Jenkins (1983) goes on to claim that stimulus field diameter is 

the critical factor in perceiving these patterns, independent of viewing distance. 

Maloney et al. (1987) also measured the discriminability of Glass patterns from pat- 

terns of randomly oriented dipoles, but they varied the number of unpaired noise dots 

added to the original pattern. Using two dot separations and a number of dot densities, 

they showed a Weber law relationship between the number of dipoles in the pattern and 

the maximum number of unstructured dots which could be tolerated at a particular level 

of performance. Their data show that detection at a level of d' = 1.0 is possible with 

more than six noise dots closer to a dot than its partner. They suggest that this result 

argues against the neighbourhood approach of Stevens (1978) but, again, it may simply 

indicate that the stimuli and task used in Stevens (1978) preclude comparison of data 

with any other work. Maloney et al. (1987) also state that variation of up to ±12° in 

dipole orientation has no effect on performance. 

4.3.2 STEVENS' MODEL 

Stevens (1978) proposed a representation of structure in Glass patterns. Since correctly 

paired dots will form dipoles which are locally parallel, Stevens proposed a model which 

calculates all possible pairings of a dot in a small surrounding region, and all possible 

pairings of those dots in a similar sized region, and uses the most frequently occurring 

orientation to select the correct correspondent. The operation of the model is illustrated 

in Figure 4.4. 

There are a number of problems with this model. Firstly it will be shown (in Chapter 5) 

that Stevens' estimate of tolerable noise, which is a critical part of the rationale behind his 
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Figure 4.4. Stevens' algorithm for virtual line construction in Glass 

patterns. A dot A is connected to all other dots in a neighbourhood 
around it, and these dots (e. g. C) are connected to all dots lying in 

a neighbourhood centred on their locations. The orientation of all 
matches are histogramed and the peak orientation used to select the 

actual match to A (in this case B). 

AC 

model, is very low if one allows chains in the Glass patterns. Patterns containing accidental 

alignments of dipoles signal structure not only through the orientation of dipoles, but 

through larger clusters of dipoles in the image. How can a model based on local parallelism 

account for this performance? It will further be shown that the good performance of the 

model on Glass patterns is largely due to the fact that the dot locations of elements of 

the test patterns fall on a perturbed grid. When dots are allowed to fall anywhere in 

the pattern, the model tends to perform poorly. Finally, the model is only applicable to 

dot patterns where the location of each element is clearly defined. How does one derive 

features from natural images? 

4.3.3 SPATIAL FILTERING MODELS 

As mentioned in Section 4.2, grouping in textures can be achieved through the application 

of spatial filters (e. g. Zucker, 1982; Kass and Witkin, 1985). These approaches work 
because oriented receptive fields are not edge detectors, but are merely sensitive to contrast 
differences along their axes. Zucker's (1982) model, for example, estimates the vector field 

of tangents in an image via oriented filtering and a cooperative interpretation algorithm. 
Integral curves are then found throughout the field. The initial filtering is motivated by 

simple cell receptive fields in V1, and occurs at a variety of scales. Dominant orientation 

/---, \\ 
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at a point is calculated by selecting the orientation of the filter giving maximal response. 
Kass and Witkin (1985) isotropically smooth the input image and calculate derivatives 

in the x and y directions, to give Cx and Cy, respectively. Given a further (Gaussian) 

weighting function, W, the local orientation (0) is calculated as: 

1 
_1 

W* 2CxCy 
=2tan W*(Cý-Cy) 

This approach makes two key assumptions. Firstly, that the output of the filtering 

stage will always be zero-mean, which is only true as long as the initial filtering stage 
does not operate at too coarse a resolution. Secondly that calculating the mean of the 

variance of the filter output, as a function of orientation, codes local mean orientation. 
The argument for this is informal. 

It is apparent that models for deriving orientation structure differ principally in the 

way in which the orientations of elements are obtained. Kass and Witkin (1985) use the 

image gradient of the rotated and Gaussian smoothed image. Stevens (1978) and Caelli 

et al. (1978) use virtual lines and Zucker (1982) uses oriented Difference-of-Gaussian 

operators. 

Prazdny (1986a) pointed out two principal problems with filtering models. The first is 

a specific problem they have with opposite contrast dot patterns which will be considered 
in some depth in Chapter 7. The second is one of the questions being addressed in this 

chapter: how is filter size selected? 
The selection of scale is not a trivial part of the grouping process in the case of Glass 

patterns because these patterns only contain useful information at a narrow range of 

spatial scales. Figure 4.5 shows scale-orientation histograms of a Glass pattern and a line 

texture. These histograms use blob descriptions (Watt, 1991b), derived with a range of 
filter sizes, to show how orientation and length statistics change with the spatial scale of 

analysis. The vertical band running from the middle to the bottom of the line texture 

orientation histogram (middle row, left) indicates that a wide range of fine spatial scales 

would give an accurate estimate of the mean orientation. The orientation histogram of 

the Glass pattern (middle row, right) has no such line. The "hour-glass" shape of this 

histogram shows that there is only a narrow range of filter sizes which will produce the 

correct interpretation of the pattern. Notice that the length-scale histogram of the Glass 

pattern shows that mean blob length increases with scale. This information does not 

appear to be of much use for the selection of scale. Indeed the primacy of orientation 
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Figure 4.5. Top row: A line texture and a Glass pattern with similar 
mean orientation, element length and number. Scale-length histograms 
(middle row) and scale-orientation histograms (bottom row) of the two 
textures. Scale proceeds from coarse, at the top of the images, to fine at 
the bottom. Brightness indicates the number of blobs in the output of 
a Laplacian-of-Gaussian filter, with a particular orientation or length. 
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information in the processing of these patterns has been demonstrated psychophysically by 

Caelli and Julesz (1979), who showed that orientation, but not length, variance determined 

discrimination strength of patches of dipoles. 

Prazdny (1986a) points out that to overcome this problem there must be "an evalu- 

ating agent" looking at the output of the filters at various scales which, he suggests, is 

like the Gestalt notion of "Prägnanz". All of the models described so far either make 

assumptions about setting of neighbourhood size (Stevens, 1978) or filter size (Kass and 
Witkin, 1985; Zucker, 1982), or cannot explain global organisation effects at all (e. g. au- 
tocorrelation models such as Maloney et al., 1987). 

Models have not considered the scale selection problem because processing has not 
been considered in the context of particular visual tasks. No one criterion for the selection 

of scale will suffice for all tasks. However, tasks may be considered which demonstrate a 

number of generally applicable criteria used by the visual system. In the next section a 

mean orientation judgement is used to define clearly such a criterion on statistical grounds: 
in this case the minimisation of local orientation variance. 

The remainder of this chapter presents three experiments examining the extraction 

of the mean orientation of Glass patterns as a function of a number of stimulus param- 

eters. In order to isolate the effect of grouping on the task, performance with textures 

composed of lines is also measured. Differences between line and dipole textures should 

be attributable to grouping uncertainty. Finally three models are used to simulate perfor- 

mance on these tasks: a model using Laplacian-of-Gaussian filtering, one using Difference- 

of-Gaussian, filtering and the Stevens' algorithm (Stevens, 1978). 

4.4 GENERAL METHODS 

The following three experiments used the same basic method but manipulated different 

aspects of oriented textures. The independent variables examined were the length of 

elements (Experiment 4.1), the orientation variance of elements (Experiment 4.2) and the 

density of elements (Experiment 4.3). Experiment 4.1 and 4.2 also compare data from 

equivalent tasks using line textures. 

In all the experiments a judgement of the mean orientation of oriented textures was 

used (the usefulness of this task has been discussed in Chapter 3). In this context, a 

mean orientation judgement was used with the goal of explaining performance, using a 

computational model, clearly in sight. Such a task places clear statistical constraints on 



Chapter d. Mean orientation judgements using line and dot textures 100 

the output of any visual process for extracting local orientation structure. It is further 

hypothesised that signal detection or "structure-versus-noise" tasks (e. g. Jenkins, 1983; 

Wagemans et al., 1993) may fail to discriminate between the performance of different 

models because of ceiling effects, i. e. there may be too many sources of information for 

performing such a task to separate predictions from different models. By considering the 

accuracy with which a subject can make an estimate of a single stimulus attribute, such 

as overall orientation, it is hoped that predictions from various models can be separated. 

4.4.1 SUBJECTS 

Four subjects, aged 24-32 years, served as subjects in the experiments. All were experi- 

enced in psychophysical procedure. The author (SCD) and subject BJC were aware of 

the purpose of the experiments while the other two subjects (FJM and RAO) were naive. 
All subjects had normal or corrected-to-normal vision. 

4.4.2 PROCEDURE 

The generation and presentation of stimuli, and the recording of subject responses were 

carried out on a Macintosh IIfx microcomputer. The display was a Formac ProNitron 

80.21 colour monitor with a frame refresh rate of 75 Hz. The screen was viewed binocularly 

with natural pupils at a distance of two metres. All stimuli were presented in the centre of 

the screen, which was indicated by a pre-stimulus marker, for 100 ms, to prevent saccading 
during presentation. An ISI of 750 ms followed each response. 

The subjects' task was a single interval, two alternative forced choice, and was to 

report whether the texture presented had a global orientation clockwise or anti-clockwise 

of a reference orientation. The reference orientation was vertical and was not presented 

to the subject, i. e. an internal reference was used. 

Subjects responded by depressing one of two keys on the computer keyboard and could 
depress another key to get a second look at a stimuli. They were encouraged to use this 

facility only if they actually did not see the stimuli, e. g. by blinking. 

An adaptive method of constant stimuli, APE (Watt and Andrews, 1981), was used 

to sample a range of mean orientations around vertical. Three runs of 64 trials were 

undertaken for each data point presented. Conditions were not interleaved. At the end of 

a block, probit analysis was used to estimate the standard deviation of the psychometric 
function for each run. The data points plotted are the arithmetic mean of these values, 
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and the error bars show ±1 standard error. 

4.4.3 STIMULI 

All stimuli used in the experiments were approximately circular texture fields, with radii 

subtending 1.23 deg. (128 pixels), of either lines or dot pairs (dipoles). These fields 

appeared within a 2.46 deg. (256 pixel) square image. Texels appeared white on a black 

background, and were distributed randomly throughout the field. 

Line elements were anti-aliased, using 16 grey levels. Component dots of the dipoles 

were individual pixels which subtended approximately 35 arc seconds. No anti-aliasing of 

dipoles was used. If the orientation of a dipole required that one of the component dots 

be placed in a position between the discrete pixel locations available, the nearest pixel 

location was used. As a consequence, in the experiments employing a constant. dipole 

length (Experiments 4.2-4.3), an apparently large value of 8 arc min. (approximately 14 

pixels) was used (see Figure 4.8 for examples). At this length, cues as small as 4° can 

reliably be presented. Other stimulus parameters were selected to avoid any ceiling effects 

that might be associated with such a minimum cue size. 

The orientation of elements of both line and dipole textures were drawn from Gaussian 

random distributions. Apart from Experiment 4.2, where the effect of orientation variance 

was investigated, distributions had a standard deviation of 8.0°. This value was used 
because pilot studies indicated that such a level of variability, with textures composed of 
8 arc min. long dipoles, elevated performance by around 50% for two subjects, bringing 

their thresholds closer to the minimum presentable cue. 
Vertical patterns were chosen to avoid problems due to the well known oblique effect 

(Appelle, 1972). Vertical patterns were chosen over horizontal because of the established 

advantage for vertical Glass patterns over horizontal (Jenkins, 1985). 

Textures in Experiments 4.1 and 4.3 were composed of 512 lines or dipoles, correspond- 

ing to an average density of 89.4 elements/degree2 (Experiment 4.3 explicitly investigated 

the effect of element density). A pilot study indicated only a small effect of element den- 

sity on thresholds for the line and dipole textures. The number of elements selected, 512, 

was chosen because theories based on symbolic matching of tokens (e. g. Stevens, 1978) 

predict that performance should be low at densities where each dot will have an average 

of 6 dots closer to it than its correspondent (Stevens (1978) states that if more than 2 

or 3 dots lie closer to a given dot than its correspondent, then local structure cannot be 
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perceived). 

4.5 EXPERIMENT 4.1: EFFECT OF ELEMENT LENGTH ON THE JUDGEMENT OF 

MEAN ORIENTATION 

The first experiment investigated the effect of element length on the judgement of the 

mean orientation of translational line textures and Glass patterns. The experiment was 

performed primarily as a source of data to compare a number of models of local orienta- 

tion calculation. By varying element length one can look at the performance of various 

matching mechanisms in the presence of noise due to the proximity of other, uncorrelated 

dots. Furthermore subjects thresholds for line textures will give an estimate of the abso- 

lute limits on the estimation of the mean of a set of oriented elements in the absence of 

matching uncertainty. 

Previous work examining the effect of dipole length on the perception of Glass patterns 
has used rating judgements (Caelli, 1981) or discrimination of structure from noise tasks ( 

Jenkins, 1983; Wagemans et al., 1993). Caelli (1981) asked subjects to rate the "perceived 

extent" of Glass patterns, i. e. how far from the centre of a rotational field structure was still 

visible, as a function of the range of rotation of the patterns. He found that performance 
falls steadily as a function of increasing angle of rotation. However, the unreliability of 

subjective ratings preclude comparison with quantitative measures of performance. 
Jenkins (1983) argued that perception of structure in Glass patterns fell into three 

categories according to dipole length. At small separations individual dipoles are visi- 
ble, leading to a compelling perception of flow. At larger separations patterns become 

"striated": individual dipoles are not visible but the pattern still has overall orientation. 
Finally, when dipole length exceeds some critical value, no structure is perceived. Jenkins 

(1983) used patterns composed of approximately 258 dipoles and determined that dis- 

crimination from noise falls as dipole length is increased. Jenkins (1983) quotes a limit of 
1.4° for 50% correct discrimination of signal from noise. 

Wagemans et al. (1993) also measured the discriminability, d', of Glass patterns from 

noise patterns as a function of dot separation. Patterns were of extremely low density (16 

dipoles) and were viewed for 100 ms. In order to test the hypothesis that "higher-order 

structure", in the form of quadrilateral groups of dots, is important to the perception of 

structure, the effect of adding variation to dipole length was also examined. It was found 

that increasing dipole separation produces worse discrimination. Length variation was 
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also found to have a detrimental effect on signal detection. 

Wagemans et al. (1993) and Jenkins (1983) have both interpreted their data as evi- 
dence for the different models proposed in each. The finding of Jenkins (1983), that there 

is a critical dipole length for perception of structure, seems to support a matching mech- 

anism using spatial correlation; although a variety of other models (e. g. Stevens, 1978) 

would also predict such a limit. In Wagemans et al. (1993), the efficiency of subjects at 

performing the discrimination task (d' as high as 4.6, i. e. 100% correct discrimination) is 

in no way matched by the simulated annealing model proposed (maximum of around 85% 

correct discrimination). Although the model produces "the same rank ordering of perfor- 

mance levels" (Wagemans et al., 1993) this is an extremely weak criterion for assessing 

the validity of a model. This is especially so, given that the model has free variables, 

such as the grouping neighbourhood size, which can be manipulated to match human 

data. It may be concluded that quantitative explanations of the effect of dipole length on 

perception of structure in Glass patterns have been wholely inadequate. 

Figure 4.6. Examples of the stimuli used in Experiment 4.1. The 
patterns shown have dipole lengths of (a) 2.8, (b) 5.6 and (c) 11.3 arc 
min. 

4.5.1 STIMULI 

Dipole and line textures were used, all composed of 512 elements each 8 arc min. long. 

Element orientations were drawn from a Gaussian random distribution with standard 
deviation 8.00. A range of dipole lengths was tested from 1.41 arc min. to 32.0 arc min. 
in multiplicative steps of N/'2-. Examples of the stimuli are shown in Figure 4.6. Stimuli 

were presented for 100 ms. 
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4.5.2 RESULTS 

Threshold offsets for the mean orientation judgement as a function of element length are 

shown for two subjects in Figure 4.7. The accuracy of judging the mean orientation of 

line and dipole textures improves rapidly with element length up to 4-5 arc min. This 

improvement is probably due to two factors. Firstly the dependence of the accuracy of 

orientation estimates on the aspect ratio of the figure (Westheimer, 1981; Vassilev et al., 

1981). Secondly, at small dipole separations the cue probably has to be relatively large to 

overcome the problem, at small cue orientations, with the discrete location of the pixels 

comprising each dipole. The second factor does not appear to be a major contributor to 

poor performance at small element lengths because performance using the line textures, 

which are anti-aliased and so do not suffer from this problem, closely follow that with the 

dot textures. 

As element length increases above 4-5 arc min., accuracy for judgement of line texture 

orientation improves until it asymptotes at around 2.00. Judgement of the orientation of 
Glass patterns, however, quickly breaks down as dipole length increases beyond 8 arc min. 
This breakdown in performance is due to uncertainty in matching the dipole components. 
The task becomes impossible with dipole textures at around 23-32 arc min. 

This deterioration in performance as dipole length increases, confirms the general 

finding of Jenkins (1983) and Wagemans et al. (1993)1. Experiment 4.1's estimate of 

the distance at which orientation estimates break down is 23-32 arc min., at a viewing 
distance of 2.0 metres. Jenkins (1983) estimate of the maximum dipole length facilitating 

a structure-versus-noise task is 1.4° measured at 57.3 cm. Scaling Jenkins' (1983) esti- 

mate (i. e. making the strong assumption that viewing distance will have little affect on 

performance) produces an estimate of 24.0 arc min.: closely in agreement with the result 

of this experiment. 

4.6 EXPERIMENT 4.2: EFFECT OF ORIENTATION VARIANCE ON THE JUDGE- 
MENT OF MEAN ORIENTATION 

The aim of this experiment was to determine the effect of adding local orientation variance 

on the judgement of the mean orientation of a Glass pattern. This form of noise is 

important because one would expect that a model relying on local orientation statistics 
'Further comparison with the Wagemans et at. (1993) is not possible as the distances quoted in this 

paper are in display pixels and the size of the display is not given 
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(e. g. oriented filtering) will be critically affected by changes in these statistics. 

The effect of adding small random rotations to dipole orientations was first observed 
by Glass and Switkes (1976) who informally demonstrated that such noise degraded per- 

ception of structure. This, they claimed, was consistent with the physiological model 
described by Glass (1969): the range of dipole directions now exceeds the specificity of a 

single orientation column and the excitation required to perceive structure is not achieved. 
Maloney et al. (1987) indicated that this range must be less than ±12° because such a 

range of orientations does not significantly affect perception of structure. There is no 

other psychophysical evidence, to my knowledge, concerning perception of structure in 

Figure 4.8. Examples of the stimuli used in Experiment 4.2. The 

patterns shown have orientation variability with s. d of (a) 1.0°, (b) 
4.0° and (c) 16.0°. 

4.6.1 STIMULI 

Line and dipole textures, similar to those used in the previous experiment, were used, 

except that the length of elements was fixed at 8.0 arc min., and the local orientation 

variance of elements was systematically varied. Dipoles had Gaussian distributed orien- 
tations with a standard deviation of from 1.41° to 32.0°, sampled in multiplicative steps 

of 25. Examples are shown in Figure 4.8. 

4.6.2 RESULTS 

Threshold offsets for mean orientation judgement as a function of dipole orientation vari- 

ance are shown for three subjects in Figure 4.9. Subjects typically achieve thresholds as 
low as 3.0° for the dipole textures and 2.0° for the line textures: an impressive level of 
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performance given the large separation of dots and high density of dots. The pattern of 

results for the line and dipole textures are similar except that there is a uniform shift of 

the functions from the lines to the dipoles. Such a uniform shift on log axes indicates a 

multiplicative effect of matching uncertainty in the Glass patterns. 
It is clear that there is little effect of adding orientation jitter on either the line or dipole 

textures until the standard deviation exceeds about 8°. This figure is in accord with the 

value of ±11° quoted in Maloney et al. (1987), which is equivalent to Gaussian distributed 

orientations with a standard deviation of 7.8°. Such a figure seems to indicate that there 

is inherent noise on the system which limits the accuracy of estimating mean orientation 

at very low levels of jitter. It is quite possible that this noise is due to characteristics 

of the filters employed to extract structure. Beyond this level of orientation variance, 

performance deteriorates in an approximately power law relationship with orientation 

variance. 

4.7 EXPERIMENT 4.3: EFFECT OF ELEMENT DENSITY ON THE JUDGEMENT OF 
MEAN ORIENTATION 

For models based on "neighbourhood" matching, the number of dots lying closer to a dot 

than its correspondent is critical. However, Jenkins (1983) reported that signal density 

has no effect on the maximum dipole length for detecting structure in vertically translated 

Glass patterns. Element density has also been shown to have little effects on the detection 

of symmetry in dot patterns (Jenkins, 1985), and on the displacement limits for detection 

of motion in random binary luminance patterns (Morgan and Fahle, 1992). 

The aim of this experiment was to determine the effect of the number of elements 

making up a Glass pattern on the accuracy of judging the mean orientation. Pilot trials 

indicated that density had little effect with either the line or dipole textures, so this 

experiment was only carried out using Glass patterns, where the effect of this variable 

will make clear predictions for models of texel extraction. 

4.7.1 PROCEDURE 

A mean orientation judgement was again used in this experiment; identical methods were 

used to the two previous experiments. The only difference was that the number of dipoles 

in the texture was systematically varied. Note that since the size of the display was fixed, 

the density of the pattern covaried with the number of elements. 



Chapter 4. Mean orientation judgements using line and dot textures 109 

4.7.2 STIMULI 

All stimuli were Glass patterns with a dipole separation of 8 arc min., a value sufficiently 
large that any effects of neighbours should become apparent as density is increased. No 

dipole orientation variance was added. The number of dipoles in each pattern was varied 
from 8 to 1024 in one octave steps. Examples are shown in Figure 4.10. Since con- 

stant field size and viewing distance were employed, dot density varied from 1.68 to 215 

elements/degree2. 

4.7.3 RESULTS 

Threshold offsets for the mean orientation judgement as a function of the number of 

dipoles are shown for three subjects in Figure 4.11. The accuracy of judging orientation 

is slightly poorer for very sparse patterns, but rapidly improves with increasing number 

of elements and performance asymptotes for patterns containing 32-64 elements. There 

also appears to be a slight dip in the function for all three subjects around 32-64 dipoles. 

The basic pattern of the data shows that there is little effect of stimulus density over 

about 64 dipoles. These data are in accord with performance on a structure detection 

task, reported in Jenkins (1983). 

That subjects are relatively insensitive to pattern density seems to be inconsistent with 

models based on neighbourhood matching. All three subjects' performance is as good 

with patterns containing 1024 elements as with those containing 64. These patterns have, 

respectively, an average of 0.5 and 8.0 dots lying closer to each dot than its correspondent. 
This is in agreement with data from Maloney et al. (1987) which showed that structure 

versus no-structure judgements were possible when dots had more than six other dots 

Figure 4.10. Examples of the stimuli used in Experiment 4.3. The 

patterns shown contain (a) 64, (b) 256, and (c) 1024 dipoles. 
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closer to them than their correspondent. 

4.8 CONCLUSIONS 

To summarise the preceding three experiments, the stimulus parameters were as follows: 

mean orientation number length orientation s. d. 
Exp. 4.1 90° 512 1.41-32.0 arc min. 8° 
Exp. 4.2 90° 512 8.0 arc min. 1.41°-32.0° 
Exp. 4.3 90° 8-1024 8.0 arc min. 8° 

The main results are as follows: 

" Estimating the mean orientation of a Glass pattern becomes easier as dipole sepa- 

ration is increased up to a critical separation, of around 5 arc min., beyond which 

performance rapidly deteriorates. For line textures there is a consistent improve- 

ment with increasing line length. 

" Local orientation variance has little effect on judging the mean orientation of line 

textures or Glass patterns until a standard deviation of around 8° is reached. A 

similar pattern of deterioration is observed with line and dipole textures, except 

that performance with Glass patterns is uniformly poorer. 

" Subjects are highly accurate at performing mean orientation judgements with thresh- 

olds which asymptote at around 1.5° for line textures, and 2.5° for Glass patterns. 

" The accuracy of judging the mean orientation of a Glass pattern, within the limits 

tested, appears to be largely independent of the number of dipoles used. 

The following chapter examines the implications of these findings for models of local 

orientation extraction, and compares the predictions of four such models for the tasks 

described. 



5 MODELLING OF MEAN ORIENTATION 

JUDGEMENTS 

5.1 OVERVIEW 

In this chapter four models for extracting local orientation are described: symbolic 

matching of tokens (Stevens, 1978), isotropic (Laplacian-of-Gaussian) filtering, oriented 
(Difference-of-Gaussian) filtering and "adaptive" oriented filtering. The performance of 

these models was compared to human performance on the three tasks described in the 

previous chapter. Since mean orientation judgements place clear statistical constraints on 

the observer, it was possible to devise a simple method for determining the free parameter 

of the spatial filtering models, the correct spatial scale of analysis, based on minimisation 

of local texel orientation variation. Versions of both the isotropic and oriented filtering 

models incorporating this criterion were tested. 

The simulations demonstrate that no one filter can explain data from the three tasks 

considered. Results suggest that only a model based on oriented filtering gives sufficiently 
accurate estimates of local orientation to account for subjects' performance with partic- 

ularly noisy patterns. It is concluded that an adaptive filtering model, operating at a 

scale which minimises texel orientation variance, is an effective system for extracting lo- 

cal estimates of image flow. Neither the Laplacian-of-Gaussian model nor the symbolic 

matching scheme perform sufficiently accurately to account for human performance on 
the tasks considered. 

Sections 5.2-5.4 of this chapter describe the texel isolation models and Section 5.5 the 

details of the simulations performed. Section 5.6 final section examines the simulation 

results. 
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BLOBF Area Mass Centroid Sd. Error Axis 
DATA 
BLOBD( 2498.00 -291.07 -12.84 125.58 29.95 5.26 0.08 3.438 ) 
BLOBD( 2034.00 207.32 -16.53 101.52 23.32 5.63 0.13 2.934 ) 

BLOBD( 2280.00 177.74 0.36 63.28 42.81 4.56 0.06 0.842 ) 

Figure 5.1. (a) Glass pattern with mean orientation of 45° and dipole 

separation of 8 pixels. (b-d) Laplacian-of-Gaussian filtered versions of 
(a), thresholded at ±1 standard deviation from the mean grey level. 
Filters have s. d. s of (b) 1 pixel, (c) 4 pixels (d) 16 pixels. The zero- 
bounded blobs are characterised using a sentence-based description, 

an example of which is shown in the bottom part of the figure. 

5.2 ISOTROPIC FILTERING MODEL 

A model for texel extraction using Laplacian-of-Gaussian (V2G) filtering was imple- 

mented. It had five stages: 

" Filtering with V2G at a single spatial scale. 

" Thresholding to remove low responses. 

9 Description of resultant blobs using an image description scheme (Watt, 1991b). 
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" Selection of arithmetic mean of all blob orientations (weighted by blob mass and 

aspect ratio). 

" Psychophysical decision. 

The V2G is defined as: 

Vx Q- 
1 

1- x2 + y2 
e-(x2+V2)/202 G 2, y, )- 

Q2 a2 

The model was run using a range of filter scales: Q=1.00,1.41,2.00,2.82,4.00,5.66, 
8.00,11.31,16.00 and 22.3 pixels. For a viewing distance of 2.0 metres, a ranges from 

0.60 arc min. to 6.68 arc min. in half octave steps. The filtering process is illustrated in 

Figure 5.1. 

Following convolution the filtered outputs were half-wave rectified. The resultant 
blobs (e. g. Figure 5.1) have been proposed as the basic perceptual primitives of the raw 

primal sketch, rather than a zero-crossing based representation (Watt, 1988). This view is 

supported from psychophysical tasks such as edge blur discrimination (Watt and Morgan, 

1983b), edge location (Watt and Morgan, 1985), and vernier acuity (Watt and Morgan, 

1984). 

The use of blobs from the thresholded output of the V2G as texture primitives has 

been proposed elsewhere (Voorhees and Poggio, 1987). The major difference between the 

model proposed in Voorhees and Poggio (1987) and the one implemented here is firstly, 

that here no gain control of the image preceded filtering, and, secondly, that thresholding 

took place at ±1.0 standard deviation from the mean grey level (rather than Voorhees 

and Poggio's (1987) selection of threshold using histogramed local gradients). Generally 

the setting of the threshold (within reasonable limits) is not critical and pilot simulations, 

using thresholds from 0.5 to 4.0 standard deviations, revealed that a threshold of anywhere 

between 0.75 and 2.0 standard deviations is optimal for estimating local orientation. For 

this reason one would expect the results of the Voorhees and Poggio (1987) model to be 

similar to those of the model implemented here. 

The zero-bounded regions in the image were then characterised using the image de- 

scription algorithm of Watt (1991b). This produces a compact "sentence" describing each 
blob in terms of principal axis, centroid position, area, etc. Two features were actually 

used in calculating the mean orientation of the set: blob orientation and orientation relia- 
bility (details of the calculation of these attributes are given in Chapter 2, Section 2.3.3). 
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The mean orientation at each scale, BQ, was calculated using Equation 2.4 from Chapter 2. 

However, because translational patterns were being used, the average was estimated us- 

ing all blobs in an image. Because unimodal orientation distributions were used in all 

of the experiments the basic models did not incorporate any form of orientation filter- 

ing. Finally, the anti-clockwise versus clockwise decision was made by classifying mean 

orientations between 0° and 90° as clockwise of vertical, and between 90° and 180° as 

anti-clockwise of vertical. 

The model described so far only uses a single spatial scale of filter for performing 

the task. Given that the human visual system has a range of filter sizes available, it 

would be desirable to have a model which automatically selects the correct filter size 
from trial to trial. To this end an automatic version of the V2G model was implemented 

which incorporated a scale selection criterion. This operates by calculating the orientation 

reliability of the sentence-based description at each scale. Assuming that a model of 

mean orientation estimation will attempt to maximise confidence in its estimate then it 

should select the spatial scale at which orientation variability is minimal. Field orientation 

variability (We) was calculated using Equation 2.4.3. 

In the automatic model the mean orientation, 8Q, which had the lowest associated 

T, was used to make the psychophysical decision. In the case of the pattern shown in 

Figure 5.1, the image shown in part (c) has minimal texel orientation variation and would 

be selected as the correct scale to make an estimate of local orientation. 

5.3 ORIENTED FILTERING MODELS 

Motivated by the presence of cells in V1 which are not only sensitive to the spatial scale 

of a pattern, but to also to its orientation, a number of models have been proposed for 

deriving local orientation estimates using oriented filtering. Zucker (1982) has proposed 

a model which estimates image flow using the identity of the most locally active oriented 

Difference-of-Gaussian filters, in conjunction with a relaxation algorithm which maximises 

orientation consistency (i. e. collinearity) within a neighbourhood. 

The two models described in this section also use DoG filtering but differ fundamen- 

tally from the Zucker (1982) model. Firstly, they do not use the identity of the most 

locally active filter to estimate orientation; instead the filter output is used to derive a 

symbolic description, from which orientation estimates are made. Secondly, both models 

do not incorporate an iterative post-filtering stage. Instead the intention was to test the 
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Figure 5.2. (a-c) Glass pattern filtered with 45° DoGs with o=2,4 
and 8 pixels, and thresholded at ±1 standard deviation from the mean 
grey level (d-f) As above but using local selection of the most active 
filter, across orientation, at each scale. The zero-bounded blobs in both 

these models are characterised using a sentence-based description, to 
derive an estimate of mean orientation. 
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accuracy of orientation estimates measured using either single DoG filters or a scheme 

that ensures local orientation consistency by the addition of an adaptive component to 

the convolution stage. 

The first oriented filtering models operates on the output of a single Difference-of- 

Gaussian filter, centred on the orientation which patterns varied around (i. e. the vertical). 
This model therefore assumes prior knowledge of the pattern orientation. These filters 

are composed of a DoG in the x-direction multiplied by a Gaussian in the y-direction: 

W(x )= (e-ßt/20' 
- (1/2.23)e -xt/2(2.230)2 ) e-y /z(s°)2 (5.1) t, yt J 

where o refers to the standard deviation of the positive Gaussian function. xt and yt 

are coordinates rotated by angle 0: 

xt=xcos¢+ysin0 

yt =y cos o- x sin 0 

The ratio of the amplitudes of the positive and negative parts of the DoG and the 

aspect ratio of the filter are based on those derived by Wilson and co-workers using a 

variety of psychophysical paradigms (Wilson and Gelb, 1984; Phillips and Wilson, 1983). 

A range of filter sizes were employed with a varying from 1.0 to 8v (1.23 - 19.6 arc min. ) 

in half-octave steps (all centred on 90°). 

Output from filters was thresholded, characterised using the image description algo- 

rithm of Watt (1991b) and a mass-weighted estimate of mean orientation made (in the 

same way as in the V2G model). The operation of oriented filters, at different spatial 

scales, on a Glass pattern is illustrated in Figure 5.2a-c. Note that the blobs derived are 

all highly elongated in the direction of the filter orientation. 

The problem with using the output of DoG filters at a single scale is how to deal with 

more complex images that contain orientation changes across the image. What is required 

is a scheme for integrating filter outputs across orientation. The second oriented filtering 

model uses adaptive filtering to perform the integration of orientated filter outputs at a 

single scale (the model is explained in more depth in Chapter 2). The model incorporates a 

pixel-by-pixel selection of the output of the most active DoG filter (across all orientations 

at one spatial scale). Twelve orientations of DoG were used at each spatial scale ranging 

from 0° to 165° in 15° steps. The same range of DoG scales was used as for the single DoG 
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model. Applying this model to a typical Glass pattern again produces highly elongated 
blobs (Figure 5.2d-f). 

Exactly the same scale selection criterion was used as in the V2G model to select a 

sentence-based description of the adaptively filtered output at one spatial scale, i. e. mean 

minimum orientation variance of the blob descriptions. In the example images shown in 

Figure 5.2e shows the scale of adaptive filtering selected using this method. This criterion 

could not be applied to the single DoG model, because there was insufficient variation of 
blob orientation variance across scale. 

5.4 STEVENS' ALGORITHM 

A model described in Stevens (1978), based on token matching, was implemented. The 

model calculates all possible pairings of a single token to other tokens within a surround- 

ing neighbourhood, and all possible pairings of those tokens in a similar sized regions 

surrounding them. All matches have a corresponding orientation which is histogramed 

(weighted by the proximity of the matched to the original feature). The most frequently 

occurring match orientation is used to select the correct correspondent for the original 

feature. 

Proximity weighting in Stevens' model is relative to the neighbourhood size. The 

weighting of a virtual line's contribution to a local orientation histogram is either 1,2/3 

or 1/3 depending on whether neighbourings dots are less than 1/4, less than 1/2 or greater 

than 1/2 a neighbourhood radius apart, respectively. 
Given a set of weighted orientations, a local histogram is constructed in order to com- 

pute the direction of local parallelism and thereby determine each dot's correspondent. 
Smoothing of the local histogram is performed using relatively small numbers of "buck- 

ets", and the peak orientation selected. Finally, the corresponding dot is determined by 

selecting the virtual line whose orientation most closely matches the peak orientation. If 

no line can be found within 15° of the peak, no solution is returned for the dot. 

The model as described has three parameters which will determine its performance: 
the neighbourhood size, the proximity weighting function, and the degree of smoothing 

of local orientation histograms. Stevens claims that human performance is matched by 

using the proximity weighting scheme described and local orientation histograms with 18 

buckets. He claims that the limiting factor on the models performance is the neighbour- 
hood size. Figure 5.3 shows the effect of varying neighbourhood size on the performance 
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Figure 5.3. The effect of neighbourhood size on Stevens' (1978) al- 
gorithm. (a, b) Rotational Glass patterns (274 dots, dipole length 
=5 pixels) with original dot set distributed on a perturbed grid (a) 
and uniformly randomly positioned (b). The three flow fields beneath 
each Glass pattern have been derived using Stevens' algorithm with 
different sized neighbourhoods. Neighbourhoods have radii of (c, d) 7 
pixels, (e, f) 15 pixels and (g, h) 30 pixels. 
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of the algorithm on two rotational patterns. The first corresponds to the types of patterns 

considered in Stevens (1978): dipoles are spatially distributed over a perturbed grid. The 

second pattern is made up of randomly spatially distributed dipoles. Note that fields 

extracted from the second pattern are uniformly worse. 
In the simulations described, two methods of setting the neighbourhood size were 

examined. The first set the radius equal to the dot separation, i. e. the optimal size 

for discounting unmatched dots. Stevens (1978) claims that, since subjects cannot see 

structure when more than two or three dots lie closer to a dot than its correspondent, 

such a small region will not tend to give enough samples to allow the reliable extraction 

of a peak orientation. This conjecture was tested in the simulation which follows. The 

second method of setting neighbourhood size used the overall density of the pattern. 

Stevens claims that a neighbourhood which contains six or seven dots closely emulates 

human performance on the psychophysical tasks he describes. 

5.5 DETAILS OF SIMULATION 

To compare the models' and subjects' performance, simulations of Experiments 4.1-3 

were performed. The models described were used to estimate the mean orientation of 

each pattern and measures of performance, based on the accuracy of those estimates, 

were calculated. 
Simulation of the tasks was undertaken using a procedure as close to the experimental 

conditions as possible. In order to generate a threshold mean orientation from the models, 

a method of constant stimuli was used. Sixty-four stimuli were generated at each of the 

same 17 stimulus levels as were adaptively sampled in the psychophysical experiments. 
Each stimulus image was processed using either of the three models described, and an 

estimate of the mean orientation extracted. The value of this mean was used to make 

a decision if the stimulus pattern had a mean orientation which was clockwise or anti- 

clockwise of vertical, and the outcome of this decision was recorded for each model. Given 

a set of probabilities of the model making a correct judgement, as a function of the size 

of the cue, the standard deviation of this psychometric function was calculated using the 

same system as was used for data from the human subjects. This procedure was performed 

as a function of the independent variable of each experiment. 

For models incorporating a scale selection criterion, the scale of analysis was chosen 

using the first 6 stimuli at the beginning of a run, and that filter size employed throughout 
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that run. Thus, each time that the independent variable (stimulus length, for example) 

was changed, this choice was made by running the full models over 6 example stimuli 

and using the mean spatial scale that the application of the criterion produced. The 

neighbourhood size parameter of the Stevens model was set by hand at the beginning of 

each run. 

5.6 SIMULATION RESULTS 

5.6.1 ORIENTED FILTER MODELS 

The result of the simulation of the mean orientation judgement as a function of dipole 

length, using the two oriented filter models, is shown in Figure 5.4. Filled symbols rep- 

resent the mean performance of the three subjects from Experiment 4.1, fine lines the 

predictions of individual DoG filters, and the coarse line the prediction of the adaptive 

filtering model. It is clear that no one DoG filter can explain subjects' performance on 

this task. If filter size is too small, or large, compared to the separation of the dipoles, 

only uniformly poor estimates can be made of mean orientation. The performance of 

these filters declines suddenly as the length of dipoles exceeds the size of the excitatory 

zone of the oriented filter; there is a small range of lengths for which a particular filter 

is optimally tuned. Predictions from the adaptive filtering model, operating at a scale 

determined by minimising texel orientation variation, closely match the performance of 

subjects. Note that no fitting has been applied to the model predictions. 

The mean performance of the three subjects from Experiment 4.2 is shown in Fig- 

ure 5.5 along with predictions from the single DoG and adaptive filtering models. Results 

suggests that the output of single DoG filters show the same pattern of deterioration in 

estimates of mean orientation, as a function of local orientation variance, as the human 

subjects. Furthermore, the output of a single DoG with a between 4.90 and 9.8 arc min. 
fits subjects' performance well. Predictions from the adaptive model, shown as the heavy 

line, again match subjects' performance closely. The adaptive filtering model behaves 

very much like a single DoG model in this condition. 

Figure 5.6 shows the simulation results for the task from Experiment 4.3. Results are 

similar to those from the last simulation: a single DoG filter with a s. d. between 4.90 and 

9.8 arc min. shows the same trend as human data, as does the adaptive filtering model. 
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Figure 5.4. Threshold offset for DoG estimates of mean orientation 
of dipole textures, as a function of dipole length. Note that individual 
DoG filters are highly accurate at the task, over a small range of dipole 
lengths, but that the overall poorer performance of the adaptively 
filtered model closely matches human performance. 
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Figure 5.5. Threshold offset for DoG estimates of mean orientation 
of dipole textures, as a function of dipole orientation variance. 
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Figure 5.6. Threshold offset for DoG estimates of mean orientation 
of dipole textures, as a function of number of dipoles. 

5.6.2 ISOTROPIC FILTER MODEL 

Figure 5.7 shows the standard deviation of the mean orientation estimate as a function 

of dipole length for individual V2G filters. It is clear that for progressively larger dipole 

lengths, coarser scale filters give the best estimates of mean orientation. It is also apparent 

that no response from any one filter can explain the variation in subjects performance on 

this task. The solid line shows predictions of a model incorporating the scale selection 

criterion. Note that the overall pattern of responses is broadly similar to subjects. The 

primary difference is that the best performance of the model occurs around a narrow range 

of dipole separations about 2.5 arc min., whereas human performance is best around a 

broader range (2.5-5 arc min. ) of separations. 

Accuracy of the V2G model compared to human subjects, as a function of additional 

orientation jitter, is shown in Figure 5.8. Again the model produces the same pattern of 

responses as human observers, but this time does not approach their best performance 

on this task at low levels of orientation variance. Human subjects consistently achieve 
thresholds of around 3.0°, compared to the model whose best performance is around 
5.0°. Although this is a small difference it is important because it suggests that a model 
based on the Laplacian-of-Gaussian cannot explain the basic level of performance in this 
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task. Deviations of a model from data which are due to the model exceeding human 

performance can be explained in terms of noise on the system. This type of deviation 

cannot. Figure 5.8 also shows that the critical level of orientation variance, beyond which 

performance deteriorates, for the model (around 20.0°) is greater than for human observers 
(around 8.0°). 

It is possible that the failure of the model on this condition is due to the setting of 

certain parameters of the model, such as the degree of thresholding, the use of a single 

spatial scale, etc. To try and at least partially take this into account of this simulations 

of Experiment 4.2 were re-run, with three different levels of thresholding (0.5,1.0 and 

2.0 grey-level standard deviations), and incorporating four different levels of integration 

across scale (average across texels from ±1 or ±2 octaves of spatial scale). These variations 

did not produce any improvement in performance beyond that presented in Figure 5.8. 

Similarly, to ensure that background levels of orientation "noise" were not producing this 

poor performance, the simulation was re-run using Laplacian-of-Gaussian filtering of the 

orientation histograms, before extracting the centroid. Again, this produced no appreciable 

improvement on performance. 

While this does not preclude the possibility some other way of treating the output 

of Laplacian-of-Gaussian might produce better results, it does at least suggest that the 

result is not an artifact of the setting of some individual variable within the model, as 

described. 

Finally Figure 5.7 compares predictions from the V2G model and data from the density 

condition, Experiment 4.3. There is a reasonable match between human data and the 

predictions from the model incorporating automatic scale selection, although the basic 

level of performance of the model is again slightly higher than data. 

In summary, this section has suggested that a model which uses V2G filtering, to 

extract and describe texture primitives, shows a similar pattern of results to the data from 

Experiments 4.1-4.3. Howeyer this model fails to explain the performance of subjects in 

Experiment 4.2. 

5.6.3 STEVENS' MODEL 

Predictions from the Stevens' (1978) model on the three tasks are compared to human 

performance in Figures 5.10,5.11 and 5.12. Even though the predictions shown are for 

the model operating using the optimal neighbourhood size for the pattern, it performs 
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Figure 5.7. Threshold offset for V2G estimates of mean orientation 
of dipole textures, as a function of dipole length. 
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Figure 5.8. Threshold offset for V2G estimates of mean orientation 
of dipole textures, as a function of dipole orientation variance. 
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Figure 5.9. Threshold offset for V2G estimates of mean orientation 
of dipole textures, as a function of number of dipoles. 

uniformly worse than human subjects and the other models. Predictions from the model 

using the pattern density to set neighbourhood size, are uniformly poor and are not 

presented. Given the way this model operates, this strongly suggests that in detecting 

structure in the Glass patterns used as stimuli in the last chapter, subjects make use of the 

low spatial frequency information which arises from accidental co-alignments of dipoles. 

Stevens' model can only use individual dipole orientations and when dipole separation is 

large in relation to dot density, as was the case in our experiments, matching of individual 

dipoles breaks down. It is concluded that this model cannot provide an explanation for 

the perception of structure in Glass patterns in any but the most limited of cases. 

5.7 CONCLUSIONS 

Weighted chi-squares of the fit of the three models to the subject data, from the three 

tasks using dipole textures, are given below. Asterisks indicate that the goodness-of-fit 

was significant to at least the 0.05 level. 
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Figure 5.10. Threshold offset for estimates of mean orientation of 
dipole textures, from Stevens' algorithm, as a function of dipole length. 
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Figure 5.12. Threshold offset for estimates of mean orientation of 
dipole textures, from Stevens' algorithm, as a function of the number 
of dipoles. 
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Stevens' model fails to achieve a significant fit to the data in any of the conditions. 
The V2G model produces significant fits to the data from the orientation variability and 
dipole density conditions but the goodness-of-fit is not significant in the length condition. 

This failure, along with failures of the Stevens' model, are important because the model 

performance in all of these cases was worse than that of human subjects. The adaptive 

filtering model produces significant fits in all conditions and, on the grounds of parsimony, 
is accepted as the best model of subjects performance in the experiments. 

Grouping stimuli, such as Glass patterns, allow the study of feature extraction in tex- 

ture flows because they isolate orientation as a useful source of information at a narrow 

range of spatial scales. Subjects' judgement of the mean orientation of these patterns as 

a function of orientation jitter, dipole length and dipole density suggests that the visual 

system accurately selects the correct filter size which gives the best estimate of mean ori- 

entation. It was suggested that, by means of the nature of a mean orientation judgement, 
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an appropriate spatial scale of analysis would minimise the variance of resultant features. 

When combined with an estimate of local orientation, measured using oriented filters, this 

criterion proved to account adequately for the data from the three conditions. 



6 GLOBALLY ORGANISED TEXTURES 

6.1 OVERVIEW 

The orientation structure of natural images is often much more complex than the simple 

translational orientation fields considered so far. This chapter examines how structure 
is derived from textures that contain systematic orientation change in space (globally 

organised textures). 

In order to understand the representation of orientation in globally organised textures 
fields, most previous work has employed "structure versus no-structure" judgements, us- 

ing stimuli such as Glass patterns. In this chapter the effects of two types of noise on 

such a judgement were investigated: the addition of uncorrelated dots, and the presence 

of local orientation variance. A measure of mean local orientation variance, W, operating 

on the output of the adaptive filtering model, was found to signal structure effectively 

and was used (a) to select the spatial scale of analysis and (b) to discriminate struc- 

tured texture from noise. A simulation of the task described in Maloney et al. (1987), 

using T, was compared both to human performance and to an alternative model which 

measured the consistency of local orientation measures with prior knowledge of the un- 
derlying transformation (a template matching model). Both models produce reasonable 

fits to human data although (a) the local variance model does not perform well with low 

density textures and (b) the template model consistently exceeds human performance. 

Psychophysical data are also presented for tasks using textures with added orientation 

variance. Here the maximum orientation variance which allows discrimination of structure 

from noise was measured. Simulations, using the local variance and template matching 

models, again demonstrates the sufficiency of the models as explanations for human per- 

formance. 

As well as preserving orientation structure due to an underlying transformation, the 

presence of local discontinuities in the orientation field (which can signal occlusion, surface 
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boundaries, etc. ) should be signalled. A second task investigated this and was a partial 

replication of one presented by Hel Or and Zucker (1989): the detection of a patch of 

unstructured dots within a translational flow field. The unstructured field produces a 

change in mean local orientation variance which is again sufficient to explain human 

performance on this task. This calls into question the rather complex explanation, based 

on curvature, given for the task by Hel Or and Zucker (1989). It also suggests that other 

texture segmentation tasks might be achieved by subjects making estimates of the local 

smoothness of the field rather than detection of the borders of the disparate region. 
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6.2 INTRODUCTION 

Figure 6.1. Image of lava flow illustrating complex orientation struc- 
ture. 

The model described in Chapter 2 was proposed as a system for extracting and represent- 

ing orientation information from natural images. This model has been used to generate 

predictions of human performance primarily on the psychophysical judgement of mean 

orientation, because of the constraints this task places on what information subjects use 

from texture. However the orientation structure of natural images is often a great deal 

more complex than the translational orientation fields used in these experiments. This is 

because the physical processes underlying the formation of natural texture are subject to 

complex interactions. 

Consider the image of a lava flow shown in Figure 6.1. The patterns of ripples in 

the rock are due to differences in the rate of flow of the waves of magma at the time 

of formation. These differences may be due to a large number of factors: irregularities 

in the underlying surface, variation in the forces propelling the magma, etc. As the 

magma cools, these factors and their interactions cause the complex flow shown in the 

texture. Because of the liquid nature of the medium these interactions do not result in 

discrete and independent texture elements but instead in extended contours (following 

the ridges in the surface). The viscosity of the magma and the rate of cooling determines 

the maximum rate of change of contour orientation over the texture and in this case both 
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are sufficiently high to result in an orientation field that does not appear to randomly 

change across the field. Instead orientation information within local regions of the field 

appears to be relatively uni-directional. This suggests a constraint on what is meant by 

a globally organised orientation field: that the texels within local regions of the texture 

will all have similar orientations. More formally we would expect that the orientation 

variance of elements in local regions will be low for a smooth orientation field. It is this 

constraint of local field smoothness that was the motivation behind the minimisation of IQ, 

the mean local orientation variance (calculated from a subset of texels within local patches 

of the texture), as a general scale selection criterion in Chapter 2. The minimum texel 

orientation variance, used previously as a criterion for filter scale selection (Chapter 5), 

is a special case of this. When dealing with a translational field the orientation variance 

estimate may be calculated using texels from the entire pattern. 

The model uses the local mean orientation within a region to calculate flow direction; 

the local orientation variance constraint may simply be viewed as a maximisation of the 

system's confidence in these estimates. Averaging of texel orientation estimates in space 

to derive their mean is necessary for a number of reasons. Firstly in dense textures local 

orientation information may be corrupted by noise - local averaging will counteract this. 

Secondly in sparser texture fields we still perceive uniform flow which suggests that some 
form of averaging of measures is occurring (Hel Or and Zucker, 1989). The amount of 

smoothing to be applied, i. e. the number of regions used, will depend on what is to be 

done with the orientation field derived. It is proposed that two forms of structure in 

orientation fields should be preserved and that this adequately constrains the region size 

used for averaging local orientation measures. 

Figure 6.1 illustrates these two forms of structure. The first is the change of local 

orientation in space. Calculation of orientation must occur over a number of local re- 

gions, or the visual system would smooth over the local structure of this pattern; local 

orientations derived by the model should reflect the change in contour orientation over 

the pattern. The second form of structure is abrupt changes in orientation in the texture, 

e. g. at the intersection of the smooth, wedge-shaped region in the centre of Figure 6.1, 

with the strongly oriented regions in the left and lower portions. This sudden change 
in texture attributes, and orientation in particular, that occurs at the boundary of two 

textures has been very intensively studied, both in the field of psychophysics (for review 

see Bergen, 1991) and computational theory (for review see Ajuha and Schachter, 1982). 
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There are two principal reasons for this. The first is due to the influence of the early 

psychophysical work of Julesz. The second is due to Marr, who proposed that a map 

of local surface discontinuities, estimated from a variety of visual cues such as colour, 

texture, luminance, etc., was the basis of the 2.5D sketch. This is a heavily investigated 

aspect of texture perception. In general abrupt changes in texture statistics, in analogy 

with abrupt changes in luminance, are thought to signal surface discontinuities. How true 

this is has not yet been demonstrated for natural images. 

The preservation of discontinuities versus the calculation of representative local flow 

direction constrains the scale of averaging of orientation measures within the texture field. 

Too fine scale and the resultant field will not reflect correct local orientation because of 

noise. Too coarse and local orientation discontinuities will be smoothed out. To summarise 

it is proposed that the spatial averaging of local orientation estimates is constrained 

to maximise confidence in its estimates of the local mean orientation whilst retaining 

discontinuities in the orientation field. 

Section 6.3 investigates the preservation of global structure in texture. The estimation 

of degree of structure using the mean local orientation variance measure (IQ) is described. 

Sections 6.4-6.5 consider the use of this measure, both as a scale selection criterion and a 

discriminator of structure-from-noise, in the presence of two forms of visual noise added 

to globally organised flow textures. Sections 6.4 considers an experiment performed by 

Maloney et al. (1987), examining the effect of adding uncorrelated dots to globally organ- 

ised Glass patterns. A simulation of their structure detection task is reported, using the 

adaptive filtering model with scale selection using minimisation of mean local orientation 

variation. Two variations on this model are compared. The first discriminates between 

structure and noise patterns by selecting the pattern with the lowest mean local orienta- 

tion variation and the second by maximising the goodness-of-fit of the orientation fields 

from both textures to an idealised or template flow field. 

Experiment 6.1 presents psychophysical data from a "structure" versus "no-structure" 

task, examining the effects of local orientation variance. The amount of orientation vari- 

ance at which this task is performed at threshold was determined for Glass patterns 

containing various dipole lengths. This task is also simulated using the variance and 

template matched models. 

In Section 6.6 of this chapter, the preservation of orientation discontinuities is inves- 

tigated, through consideration of the problem of detecting anomalous patches embedded 
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in image flows. An extension of a paradigm presented by Hel Or and Zucker (1989) is 

used, to confirm the dependence of minimum detectable patch size on the number of 
dots making up a Glass pattern element (path length; Hel Or and Zucker, 1989). The 

data from this condition are simulated using the local variance and the template models, 

and an adapted version of the model operating on features calculated from local variance 

statistics. 

6.3 MEASURING THE DEGREE OF STRUCTURE 

Because exclusively translational flow fields were studied in the last chapter, a simplified 

version of the adaptive filtering model was used. In order to determine the most appro- 

priate spatial scale of analysis, an estimate of the smoothness of the orientation field was 

minimised; simply the standard deviation of all texel orientations in the pattern. However 

if we wish to estimate field smoothness for globally organised patterns (e. g. a rotational 
field) then a multi-local version of this estimate must be introduced. This estimate is 

defined in Equation 2.4.3 (Chapter 2) as: 

T= 

b(i, j)P2 
(t,, j)EI 

XY 

Where X and Y are the image dimensions, p, is the sampling rate, at scale o, and 

ik(x, y) is a measure of the orientation variance in subregion (x, y): 

1 O(x, Y) = 
v(x, y) - 1. jE 

sin2 (O(i, j) - e(x, y)) 
(t, )EN(x, y) 

v(x, y) is the number of blobs in each subregion. In the simulations that follow all 
parameters were set according to table 2.1. 

However, given that what we are trying to measure using field smoothness is some 

measure of structure, an alternative might be to use any underlying knowledge we have of 

the orientation structure of the image. The simplest method is to calculate the deviation 

of local mean orientations B(x, y) from the known transformation at that position (Tx, y): 

d(o, x, y) -ZE 
sin2(B(x, y) -T (x, y» 

p2 

and to sum over all regions in the image: 

Do = d(a, x, y) 
(x, y) E Io 
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T(x, y) is the expected orientation within a subregion. For a rotation (centre, (xe, yc); 

radius, re), for example, the expected value T,. ((x, y) is defined as: 

T,. (x, y)=tan- 1Ixrý-- 
x'+900 \ 

for a dilation: 

Td(x, y) = tan-' 
(_- yJ 

-x 

and for a translation, angle A, 

TT(x, y) =A 

The obvious disadvantage to this method is that the underlying transformation must 

be known in order to calculate T(i, j). However, given that for the Maloney et al. (1987) 

study, considered in the next section, different types of patterns were not interleaved in a 

single run, it may be assumed that subjects had that information. 

The remainder of this chapter presents psychophysical evidence relating to the effects 

of two forms of noise on our estimates of structure in flow patterns. 

6.4 EXPERIMENT 6.1: EFFECT OF UNCORRELATED DOTS ON STRUCTURE DE- 

TECTION 

This experiment was designed to apply the model described in Chapter 2 to globally 

organised stimuli and to compare its discrimination of structure in flow textures, to that 

of human observers. 

Maloney et al. (1987) presented the first attempt to quantify the strength of the Glass 

pattern percept using signal detection theory. Unpaired randomly positioned dots were 

added to organised Glass patterns, and their discriminability from a pattern composed of 

randomly oriented dipoles was determined using a detection task. Data from Maloney et 

al. (1987) using a dilation of 18 arc min. and a rotation of 9 arc min. are the unfilled 

circles plotted in Figures 6.3 and 6.4, respectively. As might be expected, discriminability 

(d') decreases with increasing noise for all dot densities tested. Furthermore, there is a 

Weber law dependence of d' on the ratio of paired to unpaired dots. In this section we 

consider whether the model proposed for deriving orientation estimates from flow fields 

predicts such a dependence. 
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Figure 6.2. Distributions of the local variance cue for random and 
organised Glass patterns. The pattern used to generate this example 
was a9 arc min. rotation containing 100 paired and 100 random dots. 
The distributions do not overlap and so, by placing the criterion at 
the mean of the two distribution means (as indicated), perfect signal 
detection performance is achieved. 

6.4.1 DETAILS OF SIMULATION 
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The adaptive filtering model, described in Chapter 2, was used to isolate texture elements 
from input patterns. The model operated at a single spatial scale, which was set at the 

beginning of the simulation according to the minimum local variance criterion. All other 

details of the model are identical to those described previously. 

Given the local orientation based description of the flow field, two strategies were 
tested for deciding whether an input pattern was an organised or a random texture. The 

first, the field smoothness cue, is to use the same estimate of local mean variance (IQ) 

that is used in selecting spatial scale. The local rate of change of orientation is expected 

to be slower for the organised than for the random patterns. The second cue tested 

was the template matched cue. This is the total difference between local estimates of 

orientation and the expected orientation, at that position, given a particular underlying 

transformation. Thus the second cue assumes that subjects have an accurate underlying 

representation of the idealised flow pattern. 

Simulations were run using similar stimuli to those in two conditions from Maloney 

et al. (1987): rotations of 9 arc min. and translations of 18 arc min. For a pattern 

containing D dipoles and N noise dots, simulations were run at D= 10,25,50,100 and 

200 and N=D, f D, 2D, 2vF2D... 16 f ý, 42-D. At each stimulus level, 32 organised and 
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random patterns were generated, and an estimate of the magnitude of the variance and 
template-matched cues calculated for the two patterns. These 32 values for each pattern 

were stored and used to calculate the discriminability, d', of the patterns, at each stimulus 
level (typical distributions of the variance cue are plotted in Figure 6.2). 

The criterion (c) was set at the point that divides the means of the two sets (Iii and 

112) in the ratio of the standard deviations of the sets (al and a2): 

Q1 

= It, + ýIZ2 1) 

One thousand random selections were made from the organised and random cue sets 

and each compared to this criterion. If the cue from an organised pattern exceeded the cri- 

terion the trial was classified as a hit. If the cue from a random pattern exceeded criterion, 

the trial was classified as a false alarm. Then d' was calculated from hr, the fraction of 

structured patterns labelled as structured and fa, the fraction of random patterns labelled 

as structured with: 

d. _ P-1 (hr) + P-1(fa) 

where P-I(y) is the inverse function of the Gaussian probability function: 

P(y) =1f e(-x2/2)dx 2r o 

Values of this function can be calculated to an arbitrary level of precision using an 

approximation to the incomplete Gamma function (given in Press et al., 1992). However, 

if no false alarms occur, or if the hit rate is 100%, then the value of d' is meaningless and 

only related to the number of trials. To allow the assignment of some value to d' in these 

cases, the maximum hit rate permitted was 99% (i. e. hit rates greater than 99% were set 

to 99%) and the minimum false alarm rate permitted was 1%. In this way the maximum 

possible d' was approximately 4.653, which is the same as the maximum tabulated value 

in Swets (1964), the source used by Maloney et al. (1987) for calculating d'. 

6.4.2 SIMULATION RESULTS AND DISCUSSION 

Results from the simulations are shown in Figure 6.3 (for rotational fields) and Figure 6.4 

(for translational fields). The template model performs at least as well as human subjects 

in the ten conditions shown. As the total number of dipoles increases, however, this model 
displays a pronounced plateau around low signal-to-noise ratios (SNRs) indicating perfect 
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Figure 6.3. Discriminability of 9 arc min. rotational Glass patterns 
from random pattern by human observers (unfilled circles) and two 
models. The lines, marked "Temp" and "Var", show predictions from 
a field smoothness measure and a template match, respectively, both 
operating on the output of the adaptive filtering model. 
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discrimination performance. The addition of some form of intrinsic noise on such a system 

would bring it into closer agreement with human data. Note that neither model shows 

a pure linear dependence on the ratio of added to paired dots - as predicted by Maloney 

et al. (1987). Both models plateau for high ratios of signal to noise. Although no such 

plateau is evident in data from Maloney et al. (1987), performance at the lowest ratio 

tested (1: 1) was often around d' = 4.0 and is it assumed that at higher SNRs performance 

would have plateaued. The discrepancy between the template model and human data 

is greatest for the task using rotational fields, shown in Figure 6.3. This transformation 

used a dipole length of 9 arc min. compared to 18 arc min. for the translational field. 

This suggests that the template model is able to make the most of low uncertainty on 

local orientations to produce near perfect discrimination. The variance model on the 

other hand is, proportionally, less disrupted by uncertainty on local orientation. This 

makes sense given that the variance operator combines multiple orientation measures, 

giving some resistance to local orientation uncertainty but losing some information in the 

process. 

Both the variance and template models show similar slopes to the data for virtually 

all densities tested. The variance model produces closer fits to human performance than 

the template model in most conditions (see Table 6.1), usually due to the extremely 

good performance of the template model. The agreement of both models and data is 

impressive given that there are no free variables used to fit predictions. However the 

variance model fails to achieve human levels of performance on very sparse rotations 

(Figure 6.3a) and translations (Figure 6.4a). There are a number of possible explanations 

for this failure. Firstly, the degree of smoothing used to calculate the flow field might 

not be sufficiently great, leading to "holes" in the orientation field and a deflation of the 

estimates of field smoothness. Secondly, the field might be too sparse for a local orientation 

variance measure to be of any use. In the limit, the template model can operate on one 

texel as, given knowledge of what transformation to expect, can the subject. The variance 

measure requires multiple orientation estimates, and if those measures are too sparsely 

distributed the measure will be useless. 

In conclusion, whilst the superior accuracy of the template matching measure is clear, 

the local variance model generally provides a good account of the results reported by 

Maloney et al. (1987) and correctly predicts an approximately Weber law relationship 
between additive noise and number of dipoles. The template model performs impressively 
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10 els 25 els 50 els 100 els 200 els 
Variance Translation 0.701* 0.784 0.213* 0.0242* 0.220 

Rotation 1.77 0.319* 0.325* 0.979 0.371* 
Template Translation 0.532* 0.306* 0.451 0.824 0.298* 

1-1 Rotation 5.42 12.4 9.37 9.96 4.3 

Table 6.1. Chi-squares for the fits of the variance and template mod- 
els to the data from Maloney et al. (1987). ("els" - elements) 

in all conditions producing perfect detection at SNRs up to 1: 8. 

It is possible that a system using knowledge of the underlying orientation is limited in 

the number of estimates that can be used, so that this strategy is computed less reliably 

for dense patterns than the variance cue. A clear prediction from this account is that 

a subject's uncertainty about the transformation underlying a texture should be most 
damaged at low texel densities. 

6.5 EXPERIMENT 6.2: EFFECT OF ORIENTATION VARIANCE ON STRUCTURE 
DETECTION 

The model described uses local orientation variance to determine the spatial scale and 

local region of integration. It would therefore seem sensible to compare its performance 

on texture flows, with noise added to local orientation, to that of human subjects. In the 

following experiment the effect of element length, and the addition of local orientation 

variance on the perception of structure in Glass patterns, were again examined. However, 

since the nature of the stimuli precluded the use of a mean orientation judgement, a 

structure versus no structure paradigm was used. Specifically the maximum amount of 

tolerable orientation variance was determined, using an adaptive method, as a function 

of element length. This method has been applied elsewhere using mesh-derived textures 

(Hallett, 1992), and vector patterns (Dodwell and Caelli, 1985). 

6.5.1 METHOD 

Subjects 

Five subjects took part in the experiment. SCD, DW and SW had corrected-to-normal 

vision. SCD (the author) was experienced in psychophysical procedure, and was aware of 

the purpose of the experiment while all other subjects were naive to the purpose of the 
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experiment and relatively inexperienced with psychophysical procedures. A short training 

period (64 presentations) was undertaken before data collection began. 

Procedure 

Similar equipment to previous experiments was used for stimulus presentation and re- 

sponse collection. Viewing distance was again two metres and presentation time was 
100 ms, to prevent saccading during stimulus presentation. All Glass patterns and noise 

patterns were composed of dipoles of length 8 arc min. 

The subjects' task was a two interval, two alternative forced choice. In one, randomly 

selected interval the texture was a Glass pattern, in the other a texture composed of 

randomly oriented dipoles. The subject indicated which of the two textures was a Glass 

pattern by depressing one of two keys on the computer keyboard. The independent 

variable was the amount of orientation jitter placed on the orientations of the dipoles in 

the Glass pattern. APE adaptively sampled a range of jitters going from ±90° (where 

discrimination from the noise texture will be at chance) to ±0° in steps of 22.5°. Thus the 

threshold value indicates the jitter tolerable for 83% correct performance. Other details 

of the experimental procedure are identical to Experiments 4.1 and 4.2. 

Stimuli 

Details are similar to previous experiments, except that the orientation of dipoles was 

determined by one of three transformations: rotation, dilation or vertical translation 

(examples are shown in Figure 6.5). Note that only dipole orientation was determined 

by the transformation and not length, as would be expected if the dot pair were the 

result of the application of a pure rotation or dilation upon a random set of dots. If real 

transformations had been used, the presence of shorter elements near the focus of the 

pattern would have provided a cue to the presence of the Glass pattern. Whilst a similar 

length transformation to the random dipole pattern could have compensated for this, it 

is orientation which is the primary attribute of interest in this experiment and for this 

reason only the orientation components of the rotation and dilation transformations were 

used. 
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Figure 6.5. Examples of the stimuli used in Experiment 6.2 Each 

row shows three Glass patterns composed of 256 dipoles of the same 
length: (a-c) 4 pixels, (d-f) 8 pixels, (g-i) 16 pixels. Images in each 
row differ in the amount of orientation variation added to dipoles: (a, 
d, g) ±0°, (b, e, h) ±22.5°, (c, f, i) ±45°. 
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Figure 6.6. Experiment 6.2 results from three subjects. Graphs 
show the largest tolerable jitter of dipole orientation for a noise ver- 
sus structure discrimination as a function of dipole length. Tolerable 
jitter is the width of the uniform orientation distribution, in degrees, 
that subjects could discriminate from a texture with purely random 
orientations. 
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6.5.2 RESULTS 

146 

Results with two subjects for three transformation types are shown in Figure 6.6. The 

points plotted represent the largest tolerable jitter for the structure versus noise discrim- 

ination task. Negative and zero values, on the ordinate, indicate that the subject could 

not reliably perform the discrimination in the absence of orientation jitter. However, even 

though subjects cannot achieve 100% performance with no jitter present, the slope of 

the psychometric function, in the range tested, is still informative and so these values are 

presented. There do not appear to be any systematic differences between the data derived 

using different transformations: for all transformation types tested there are a small range 

of dipole separations at which the subject can withstand the most orientation jitter, typi- 

cally at dipole lengths of 4-8 arc min. At this separation, subjects can reliably discriminate 

between noise and Glass patterns which are composed of dipoles which have the correct 

local orientation ±56°. The poor performance exhibited with textures composed of very 

short elements could be due to a number of factors. Even though there is no uncertainty 

as to the matching of the components of dot pairs, subjects are poorer at estimating the 

orientation of features with small aspect ratios (Westheimer, 1981). This is confirmed 
by data from Experiment 4.1 which showed that subjects are optimal at estimating the 

mean orientation of translational Glass patters at dipole separations of around 4-5 arc 

min. One complication, however, is in the use of the threshold orientation variance as a 

measure of performance. Because dots are sampled from a pixel array, variance might be 

expected to have an unpredictable effect on performance at very low separations. A final 

possible reason for reduced performance at small dipole separations, is that the spatial 
frequency of mechanisms sensitive to such dipoles is very high. Poor performance may be 

attributable to dipoles failing to exceed the contrast threshold of such filters. 

The decrease in tolerable orientation variance as length increases is to be expected. As 

matching uncertainty increases the effect of orientation variability will be more disruptive. 

6.5.3 DETAILS OF SIMULATION 

The two measures of pattern structure, field smoothness and template match (both de- 

scribed in the Experiment 6.1) were compared on the task described above. Simulations 

were run using identical stimuli to the psychophysical experiment; the same range of 
dipole length and the same transformations were simulated. However, the full version of 
the adaptive filtering model uses 7 spatial scales and 12 filter orientations. Even using 
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Figure 6.7. Typical psychometric functions from the simulation. 
These figures show the performance of the variance discriminator for 
dipole separations of 4.0,8.0 and 16.0 arc min. 

fast Fourier techniques it is not feasible to simulate 50 psychometric functions using 96 

separate convolutions for every image. To avoid this problem a simplified version of the 

model was used. At the beginning of each new run, at each dipole length, the average 

optimal spatial scale was calculated over 16 Glass patterns and subsequent convolutions 

were only performed at this scale. 

6.5.4 SIMULATION RESULTS AND DISCUSSION 

Psychometric functions were calculated at each dipole length condition by generating a 

set of 32 organised textures at each of the nine stimulus levels (-90° to +90° in steps 

of 22.5°) as used in the psychophysical experiment (a negative stimulus value indicated 

that the random pattern was presented in the first rather than the second interval). The 

variance and template-matched estimates were calculated for the pattern and these 32 

values for the patterns were stored. A similar procedure was used to generate structure 

estimates for a reference/disorganised Glass pattern. The psychometric function could 

then be generated by sampling a pair of values from a file derived from cued stimuli and 

from one derived from the reference stimuli. The proportion of times one was greater than 

the other represents the probability that the model would discriminate a stimulus with 

a particular cue from the reference. Examples of psychometric functions derived in this 

way are given in Figure 6.7. Note that they are well fitted by the standard cumulative 
Gaussian model. 
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The standard deviation of the psychometric functions from the simulation are super- 

imposed on human data in Figure 6.8. Firstly notice that the template model produces 

very high performance on this task. Discrimination at separations of around 2.5 to 10 arc 

min. was achieved when up to ±75° of variation was permitted. The best performance 

of the variance model was discrimination with approximately ±65° of variation, at sepa- 

rations of 2.5 to 6 arc min. The second point of interest is that the models show similar 

deterioration in performance to human subjects as dipole separations exceed around 8.0 

arc min. No fitting is applied to the predictions, but the agreement between the variance 

model, in particular, and human data is good. The final observation from the simulation 

results is that neither of the models show any deterioration in performance at very short 

dipole lengths. In other words, human observers are unable to make use of the orientation 

information that is present in patterns containing very short dipoles. This suggests that 

subjects' performance is not due to pixelation effects, since both human subjects and 

models were given the same stimuli. Approximating a dipole with 1.5 cycles of a square 

wave, the mechanisms sensitive to a pattern with a dot separation of 4.0 arc min. are 

operating at about 23 cycles per degree. Such mechanisms are known to have much lower 

contrast sensitivity than mechanisms operating within the middle spatial frequency bands 

(e. g. using 6 Hz temporally modulated gratings, contrast sensitivity at 1 c. p. d. is ten times 

higher than for 20 c. p. d. stimuli; Robson, 1966). Given the long viewing distance (2.0 

metres), and the limited spatial extent of the stimuli, it is possible that poor performance 

on this task is due to a failure of elements to consistently exceed contrast threshold of the 

mechanisms necessary to process them. 

To summarise, this experiment suggests that the representation scheme proposed re- 

tains the global orientation structure of flow patterns, in the presence of noise, in a manner 

broadly consistent with human performance. However, the reduced performance of sub- 

jects when dealing with orientation structure confined to very high spatial frequency bands 

(> 23 cycles per degree) is not predicted by the model. This could be corrected by the 

addition of noise at high spatial frequencies. 
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6.6 EXPERIMENT 6.3: DETECTION OF DISRUPTIONS TO FLOW IN GLASS PAT- 
TERNS 

In forming a smooth flow field, some averaging of orientation estimates over space must 

occur. At first sight it would seem easy to ensure that a flow field were always smooth by 

picking very large local regions of integration. This, however, would have two unfortunate 

side-effects. The first, which was considered in Section 6.5, concerns the smoothing out 

of structure in globally organised flow fields. The second is that any local discontinuities 

in the flow field would also be smoothed out. Such discontinuities are almost certainly 
interesting to the visual system as they can signal the occlusion of two surfaces or a surface 

edge (Hel Or and Zucker, 1989). The questions that this section addresses are: can the 

model proposed retain interesting discontinuities, and how does the model's performance 

compare to human performance at detecting disruptions to local flow? In order to establish 
how accurately discontinuities are retained in human vision, a psychophysical experiment 

is reported that examines disruptions to flow in Glass patterns. 

Moraglia (1989) showed that detecting a horizontal line element within a circular flow 

field is easiest when the orientation of that element maximally disrupts local flow direction. 

Nothdurft (1992) (Experiment 3) used textures composed of short lines, containing single 

target lines which differed in orientation to the local orientation of the background field. 

The required orientation shift, for discrimination of the target from the background, 

increased as a function of the orientation variation of background elements. In accord 

with previous work (e. g. Nothdurft, 1985b), Nothdurft (1992) proposes that the detection 

of anomalous elements is not attributable to the use of texel alignment cues, but instead 

to the presence of local orientation contrast at the border. 

The psychophysical procedure used in this section to investigate the detection of flow 

discontinuities is an adaptation of a paradigm described in Hel Or and Zucker (1989). 

They used Glass patterns, as examples of typical densely organised texture flows, which 
had small holes inserted in them. These holes were filled with unstructured dots. The 

threshold size of such embedded patches was determined for discrimination of these tex- 

tures from ones which did not contain patches. The density of Glass patterns and the 

"path-length" of each texture element (the number of "overlays" used to generate the 

pattern) were systematically varied. Hel Or and Zucker (1989) found that the ability to 

detect anomalous patches was largely independent of the overall density of the pattern. 
Their claim was that it was primarily path length that determined performance. The 
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explanation offered, in terms of curvature constraints on matching, is considered below. 

The psychophysical data presented in Hel Or and Zucker (1989) are only from one 

subject, and for this reason a replication of the original study was performed. The only 

major change was the use of an adaptive procedure to sample the cue. 0 

Figure 6.9. Examples of the stimuli used in Experiment 6.3. The 
three columns (from left to right) show textures with a path length of 
2,3 and 6 dots, respectively. Textures in the top row contain patches of 
unoriented noise with radii of 32 pixels, the maximum cue size tested in 
the experiment. The embedded patch in the bottom row has a radius 
of 16 pixels. Note that the embedded patch becomes progressively 
easier to detect as the path length increases. 

6.6.1 PSYCHOPHYSICAL PROCEDURE 

The procedure used was similar to the one used in Hel Or and Zucker (1989), except that 

an adaptive method was used for data collection, making more efficient use of subjects. 

Unless stated otherwise, stimulus parameters were set to agree with Hel Or and Zucker 
(1989). 

Subjects 

Two subjects were used in this experiment. One (FJM) was naive to the purpose of the 

experiment and had normal vision. The other was the author (SCD) who had corrected- 

to-normal vision. 
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Apparatus 

All stimuli were presented using the same equipment as described in the General Methods 

section of Chapter 4. Subjects were seated in a dimly lit room, 55 cm. away from the 

monitor. 

Stimuli 

The stimuli used were translational Glass patterns, created by randomly distributing 

texture elements, composed of collinear equally spaced dots, within a square field. As the 

number of dots making up the element (the path length) increases, the overall orientation 

of the pattern becomes progressively clearer (see Figure 6.9). Dots were composed of 

single pixels, subtending 2.0 arc min., and appeared white on a black background. The 

overall orientation of the patches was randomised from trial to trial. The separation of 
dots within each texture element was also randomised within the range 2-4 dot widths 
(4-8 arc min. ). Patterns were presented within 256 by 256 pixel images which were 87 

mm square. At the viewing distance of 58 cm, images subtended 8.53 degrees square. 

Cued textures contained an anomalous embedded field of unoriented dots. This was 

created by allowing oriented texture elements to fall anywhere within the image except 

a circular region, with radius r°, creating Glass patterns with small holes. These holes 

were filled with non-oriented random dot fields, the density of which was identical to the 

background density of the Glass pattern (precluding the use of a local luminance cue to 

perform the task). Examples of the stimuli are shown in Figure 6.9. 

In order to control for the effects of retinal eccentricity the centre of the anomalous 

patch was randomly located on an annulus around the centre of the pattern, with radius 
r+2.0°. 

Procedure 

A two interval, two alternative forced choice task was used. This was to decide which 

of two sequentially presented Glass patterns contained an anomalous field. Stimuli were 

presented for 100 ms. The two stimuli were both preceded by a fixation marker which was 

presented in the centre of the screen for 500 ms. An additional 250 ms of delay followed 

the offset of the first pattern, making a total ISI of 750 ms. Subjects indicated their choice 

on the computer keyboard. 
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APE (Watt and Andrews, 1981), an adaptive method of constant stimuli, was used 

to determine the threshold patch size for discrimination. A range of patch radii from 0.0 

to 32.0 pixels (64 arc min. ), were adaptively sampled in steps of 4.0 pixels (8 arc min. ). 

Runs of 64 trials were used with no interleaving. Dot densities of 2,4,6,8 and 10% were 

used and the path lengths tested were 2,3,4,6 and 8 dots. 

6.6.2 PSYCHOPHYSICAL RESULTS 

The major difference between this and the Hel Or and Zucker (1989) study is the use of 

an adaptive procedure, rather than a method of constant stimuli, and subsequent mea- 

surement of thresholds at the 83% and not the 75% level. A sample of the psychometric 

functions from one subject is shown in Figure 6.10 along with fits from the standard 

cumulative Gaussian psychometric function. 

Thresholds are presented for both subjects in Figure 6.11 as a function of path length. 

The patch size required for discrimination falls steadily as a function of path length. 

Density does not seem to affect the shape of this function and for this reason data are 

also presented averaged across density in Figure 6.11c. 

In order to compare data from this experiment with those from the original study, 
thresholds for the 75% level were also calculated. Results from two subjects are shown 

in Figure 6. lld, along with data from Hel Or and Zucker (1989). The first set of plots 

shows the patch size required to perform at 75% correct as a function of path length and 

texture density. The agreement between the original study and this experiment seems 

reasonable, although the thresholds from the original study are considerably lower for 

short path lengths than the new data. Most importantly, however, both sets of data show 

that the minimum patch size for performing the task depends primarily on path length 

and not density. 

There are two differences between these data and data from the original study that 

are of interest. Firstly, this experiment shows increasingly lower thresholds as path length 

increases, whereas the data from Hel Or and Zucker (1989) seem to asymptote around a 

path length of four. This is almost certainly due to the fact that an adaptive procedure 

was used in this experiment which allowed sampling of smaller patch radii than eight 

pixels, the smallest patch size tested in Hei Or and Zucker (1989). The second difference 

is that the data from Hel Or and Zucker demonstrate that the required size of patch 
to perform the task decreases most rapidly as path length changes from two to three. 
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Figure 6.10. Typical psychometric functions for the anomalous patch 
detection task. Axes legends are shown in the top left-hand graph. In 
the legend boxes p refers to the patch length and d the flow density. 
The sign of the abscissa, the patch size, indicates whether the cued 
texture was presented in the first interval (negative) or the second 
(positive) interval. The ordinate shows the probability that the re- 
sponse was that the cued texture was in the first interval. Note that 
fits to the data shown, using the standard cumulative Gaussian psy- 
chometric function, provides a reasonable fit to most of the data. 
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However, this experiment shows a more steady increase in performance as a patch length 

increases. These data suggest that there is nothing special about the change in path 
length from two to three, a major component of the explanation of the data offered by 

Hel Or and Zucker and summarised below. 
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Figure 6.12. Hel Or and Zucker (1989) curvature hypothesis, adapted 
from Hel Or and Zucker (1989), Figure 4. (a) Shows a flow with path 
length two. There are many potential matches between elements near 
the patch and elements in the patch because paths are not constrained 
by curvature. (b) A flow with path length three. Curvature limits 

potential matches and increases the probability of detecting the patch. 

6.6.3 HEL OR AND ZUCKER (1989) INTERPRETATION 

In order to propagate and smooth the flow field given by the output of a set of oriented 

receptive fields, Hel Or and Zucker propose that an interactive, cooperative procedure 

is used. This refinement occurs through inter-columnar interaction in V1 (Parent and 

Zucker, 1989) and operates by modifying the firing rate of cells within a neighbourhood 

according to their mutual consistency with respect to orientation. This amounts to prop- 

agating curves within the image. However, at the border of a texture patch orientation 

information is ambiguous and, Hel Or and Zucker claim, curvature information is neces- 

sary to stop the smoothing out of the discontinuity. 

Figure 6.12 illustrates this explanation. The left hand part of the figure shows a flow 

field with a path length of two. At the patch border a wide range of possible matches 

are possible, because matches are unconstrained with respect to curvature. There will be 

enough random matches that match the background orientation to ensure that smooth 

patches will be smoothed out. For the case of a flow with path length three, illustrated in 

Figure 6.12b, matches at the border are constrained to have zero curvature and so many 
fewer matches are possible. Consequently, patches are less likely to be smoothed out. 

There are a number of problems with this explanation. Firstly the result that it is hard 

to detect anomalous patches in textures with a path length of two does not necessarily 

mean that recourse need be made to an explanation in terms of curvature. It is quite 

possible that a extra dots in the path merely increase the differential output of a filter at a 
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particular scale or orientation and it is this increase in energy, relative to the output over 
the anomalous patch that improves performance. Since the curvature model has not been 

implemented its adequacy has not been tested quantitatively. An alternative explanation 

using orientation reliability is given in the next section. 

Figure 6.13. The boundary detection model. (a) A typical texture 
from Experiment 6.2 (b) The outputs from the scale-orientation combi- 
nation rule (c-d) The energy at 0° and 90° respectively, at that spatial 
scale. (e) The ratio of (c): (d). Note the region of high energy around 
the embedded patch. By thresholding this image and examining the 
zero-crossings the boundaries of the patch may be located (as shown 
superimposed on the original image in (f)) 

6.6.4 AN ALTERNATIVE INTERPRETATION 

In this experiment, anomalous patches were marked out from the background flow by the 
fact that they were un-oriented. In terms of the adaptive filtering model, we would expect 

such a patch to be signalled by a region of high local orientation variance. The operation 

of the model on a stimulus pattern is illustrated in Figure 6.13. Figure 6.13c shows that 

the anomalous patch is indicated clearly by a region of low anisotropy. This suggests 

an alternative strategy for performing the discrimination in this experiment: estimate 
anisotropy for both images and select the image which contains the largest region of 

anisotropy. A number of simple additions have to be made to the adaptive filtering model 

to decide if the image contains a patch. Specifically we need to find a region of low 

anisotropy and measure its size. 
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" Adaptively filter at multiple scales 

" Select the spatial scale which minimises orientation variance 

" Threshold the anisotropy image above and below one grey-level standard deviation 

" Characterise the resulting set of blobs using the image description scheme and locate 

the blob with the largest (negative) mass. 

From here the boundary of the patch can be determined by simply using the boundary 

of the blob (Figure 6.13d). A 2AFC can be performed by selecting the image with the 

largest mass blob in the anisotropy map. This was the boundary detection model used to 

simulate the experimental task. 

6.6.5 DETAILS OF SIMULATION 

A simplified version of the model was again used, due to processing time restrictions. The 

average optimal spatial scale was calculated over 32 Glass patterns at the beginning of a 

run, and subsequent convolutions were only performed at this scales. 

The same five dot densities (2%, 4%, 6%, 8% and 10%) and path lengths (2,3,4,6 and 

8 dots) were used as in the psychophysical experiments, giving a total of 25 psychometric 

functions to generate. For each run, 32 stimuli were generated at each of nine different 

patch radii from 0.0 to 32.0 pixels. The mass of the largest blob in the anisotropy map 

was derived for each stimulus and was recorded in a file. Having collected predictions from 

the model at each of the cue levels, a psychometric function was calculated by sampling 
from each stimulus level and calculating the probability of discriminating blob masses 
from blob masses derived from the reference images. 

One variation on the boundary detection model was also simulated. The subjects' 

poor performance with Glass patterns containing short paths could be because of two 

reasons. Firstly because they failed to locate any perceptually anomalous regions of the 

cued image (Hel-Or and Zucker's assumed reason). Or secondly because, even if they 

knew exactly where the patch might be, small patches of Glass patterns are hard to tell 

from noise (Glass, 1969). It would be interesting to know how uncertainty in the patch's 

position effected performance. To investigate this the same model was used in another 

simulation, except that it received only a 128 pixel square patch of the 256 pixel square 

'Even using this simplification, the simulation described involved approximately 92000 convolutions 
which took 15 days on a Hewlett Packard series 700 Apollo work station. 
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image which, if the pattern was cued, would contain the anomalous patch. This is the 

low spatial uncertainty condition. 
Finally the template and local variance model were also run on the patterns. Disrup- 

tions to local flow may be signalled as changes in the global measure. 
(a) (b) (C) 
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Figure 6.14. Typical psychometric functions from the simulation. 
This figure shows the performance of the discriminator using mean 
local orientation variance for textures with densities of 6% and path 
lengths of (a) 2, (b) 4 and (c) 8 dots. 

(a) (b) 
100 100 

CO) 
ä ä 

Co 46 0 
7ý 

N l0 

U 10 10 

CL 0. 

vv 
.2" FJM s" FJM 
9) 0 SCD 0 SCD 

Low S. U. Template 

1. II. I. I1 

1 10 1 

Path length Path length 

Figure 6.15. Results from the simulations of the task from Exper- 
iment 6.3. (a) Predictions from the boundary detection model. (b) 
Predictions form the variance and template matching models. Only 
the variance and template models produce performance consistent with 
human subjects. 

10 



Chapter 6. Globally organised textures 161 

6.6.6 SIMULATION RESULTS 

The standard deviations of simulated psychometric functions, from the two variations on 

the boundary detection model, are shown superimposed on subjects' data in Figure 6.15a. 

Considering firstly the data from the low spatial uncertainty condition it is apparent that 

path length has little effect on determining which pattern contains a Glass pattern if the 

approximate location of the path is known. The threshold patch radius achieved by the 

boundary detection model (s. d. 12.0 pixels) compares well with the best performance 

of the subjects at long path lengths. 

However the local boundary model fails completely when the entire pattern is pre- 

sented to the model. The possibility that this was due to insufficiently dense sampling 

of local variance was investigated by re-running the simulation with different sampling 

densities. This made no appreciable difference to the predictions of the model. Given 

the complexity of the boundary detection model there are a large number of parameters 

which could be responsible for its failure. 

Figure 6.15b shows predictions from the variance and template model for this task. 

The fit to human data is remarkably good given that each point represents the standard 
deviation of an entire psychometric function and that no fitting has been applied. 

The success of the variance model strongly suggests that this task may not require any 
kind of boundary detection at all. On inspection, boundaries can be detected within the 

image, but the boundary model simulation suggests that this may not be as reliable a cue 

to discrimination, as simply estimating the overall smoothness of the texture. In order to 

preclude the use of simple global statistics in performing segmentation tasks, some authors 
(e. g. Nothdurft, 1985b; Landy and Bergen, 1991) use patch shape discrimination tasks, 

and a thorough comparison of these models for texture segmentation would certainly have 

to use data from studies such as these. 

These simulation results are in broad agreement with those of Nothdurft (1992), since 
the variance model would also predict that background orientation variation will critically 

affect detection of anomalous elements. Nothdurft suggests that disruption to flow is not 
detected by breaks in the co-aligned texture elements but in local orientation contrast at 
the anomalous region. Using the pre-processing stage proposed in this thesis, breaks in 

local texel alignment would be coded by a failure to coalesce into single elements at coarser 

spatial scales (see Chapter 2, Section 2.7.4). Pilot trials demonstrated that this was not 

a reliable cue to the presence of an anomalous patch. Instead the proposed (variance) 
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model codes the sum of local orientation variance. This measure co-varies with the degree 

of local orientation contrast. 

6.7 CONCLUSIONS 

This chapter has used the adaptive filter model combined with a measure of mean local 

orientation variance, and a measure of the degree of local orientation matching to a 
template to simulate three psychophysical tasks. This was specifically intended to test 

the spatial aspects of the model by considering how globally organised patterns are coded. 
It has been shown that when these measures are treated as discriminators they approach 

and exceed human levels performance on three different psychophysical tasks, involving 

the perception of structure in Glass patterns. 

Data from Maloney et al. (1987) (Experiment 6.1) demonstrated that whilst a measure 

of local orientation variance could predict the discriminability of Glass patterns in the 

presence of extra, noise dots there had to be sufficient texels present for the measure to 

be of any use. At low texel densities it was suggested that subjects make use of more 
detailed knowledge about the underlying transform. 

The Hel Or and Zucker (1989) task is closely related to a variety of texture segmenta- 
tion tasks. The success of the orientation variance model suggests that this task does not 

require the explicit coding of the position of texture boundaries, and that instead local 

orientation statistics suffice. This is illustrative of the problem of presenting subjects with 

segmentation tasks - the information they can use is often insufficiently constrained. 



7 THE EFFECT OF LOCAL CONTRAST ON 

GROUPING 

7.1 INTRODUCTION 

The spatial filters used in most models of early visual processing are linear; they transform 

the image intensity at a point into a weighted linear combination of neighbouring values. 

The view that the visual system decomposes the complex two-dimensional signal from an 

image into the linear sum of a number of terms in the frequency domain is convenient 

for two reasons. Firstly, the assumption of linearity allows the study of the visual system 

psychophysically through the presentation of patterns which only contain a small number 

of those frequency terms (sine wave grating studies e. g. Campbell and Robson, 1968). 

Secondly, it allows for computationally efficient simulations of visual processing using 

Fourier techniques - efficient methods for moving between spatial and frequency based 

representations. 

It has been proposed that such filters also provide a natural mechanism for visual 

grouping (e. g. Watt, 1988). If two visual features both fall in the excitatory region which 

are below mean luminance, they will not produce an elevated response. Since it is the 

response of these filters that is proposed as a mechanism for grouping spatially distinct 

features, this suggests a problem. It should be possible to construct stimuli for which 

grouping will be eradicated when the contrast of the components is altered in such a way 

as to destroy the structured output of filters. If the breakdown of grouping predicted by 

a purely linear system does not correspond to human performance then a reassessment of 

the model would be required. 
Two types of such contrast phenomena have been widely used to criticise models of 

visual grouping based on spatial filtering. 

The first phenomenon is the perceived grouping of "balanced" features which (sup- 

posedly) do not contain the low spatial frequency information that filtering models are 

sensitive to. Stevens and Brookes (1987) showed that structure is correctly perceived in 



Chapter 7. The effect of local contrast on grouping 164 

Glass patterns composed of balanced energy features (each feature is made up of a bright 

centre surrounded by dark ring). They claim that whilst we can perceive structure in bal- 

anced energy patterns, models based on spatial summation will "smooth out" individual 

features and therefore cannot explain the perceived grouping. It will be demonstrated, in 

this chapter, that the adaptive filtering model can correctly predict perceived structure. 

The second phenomenon is, that contrary to the prediction of filtering models, fea- 

tures of opposite contrast polarity will group under certain circumstances. If the cor- 

related elements comprising a Glass pattern are of opposite contrast polarity then, it is 

claimed, orientation structure cannot be perceived (Glass and Switkes, 1976; Prazdny, 

1986b; Zucker and Davis, 1988; Zucker et al., 1983). However, Kovacs and Julesz (1992) 

have shown that, under certain conditions, rather than being destroyed, perceived flow is 

rotated through 90°. They present psychophysical data from an experiment which sys- 

tematically varied the background luminance of Glass patterns as a function of the mean 

luminance of the dipoles. The adaptive filtering model will be used to generate predictions 

of human performance on this task. 

More complex stimuli have been designed to "fool" filtering models. Prazdny (1986a) 

points out that the correct flow direction is perceived in a texture composed of two 

"interleaved" Glass patterns, each with opposite contrast polarity. Elements of these 

patterns are composed of a sequence of dots with positive, negative, positive, and negative 

contrast polarities (e. g. Figure 7.8). Linear filtering of these patterns does not produce the 

correct structure at any spatial scale, and Prazdny (1986a) takes this as strong evidence 

against models employing such mechanisms. In this chapter it is argued that an early non- 

linearity in the transduction of image intensities can adequately explain the perception of 

structure in these patterns. 

7.2 SPATIALLY HIGH-PASS TEXTURES 

Many proposed filtering models for extracting tokens from images use mechanisms which 

are only sensitive to low spatial frequencies. Figure 7.1 shows (a) a typical Glass pattern, 

and (b) its power spectrum, with boundaries of the sensitivity of a typical horizontal 

DoG filter superimposed. The latter image is on polar axis: the distance from the centre 

indicates scale (0-128 cycles per image), and the orientation of a point from the centre, 

offset by 90°, indicates orientation. Brightness indicates power at that scale/orientation. 
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Figure 7.1. (a) Horizontal Glass pattern with dipole length of 8 pix- 
els. (b) Fourier power spectrum of (a). Superimposed boundaries show 
the approximate limit of the sensivity of a DoG with peak sensitivity 
of 41 cycles per image. Note that the boundaries capture high energy 
regions of the spectrum, and that horizontal energy (the vertical col- 
umn centred on the middle of the pattern) is spread over a large range 
of scales. 

The vertical stripes of high energy in Figure 7.1b are due to the dot spacing of the dipoles. ' 

Notice that the power spectrum contains horizontal energy over a wide range of scales, 

and that that energy extends over the origin. This indicates that low spatial frequency 

information in this pattern will signal the presence of horizontal structure in the pattern. 

This could be detected using a coarse scale, low-pass filter (e. g. a Gaussian). 

An apparently simple way of testing such a class of model is to remove all low spatial 
frequency information from the image by high-pass filtering it. A simple approximation to 

the high-pass filtered version of a dot is the balanced feature (Carlson et al., 1980). This 

consists of an inner area with luminance greater than the background, surrounded by a 

region with luminance less than the background. The values of the inner and outer region 

luminances are selected so that overall average luminance of the feature is the same as the 

background. Structure may be perceived in patterns composed of these high-pass features 

as has been demonstrated notably with "Gestalt" grouping (Janez, 1984; Palmer, 1992) 

and visual illusions (Carlson et al., 1980, but see Garcia-Perez, 1991) and such work has 

been widely cited as evidence against low-pass filtering as a mechanism for visual grouping 

(e. g. Beck et a!., 1987; Reed and Wechsler, 1990; Palmer, 1992). 

Prazdny (1986b), however, generated Glass pattern composed of small Laplacian rings 

'If we approximate the bright-dark-bright luminance profile of a dipole with 1.5 cycles of a square-wave 
grating, then we would expect that as the scale of analysis of this pattern changed, the energy of this 
feature would vary periodically. 
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and claimed that, even at 1 second exposure duration, subjects attempting to distinguish 

between transformation types approached chance levels of performance when background 

luminance approached the same value as the mean of the Laplacian features. This is en- 

tirely contrary to predictions from other grouping studies using balanced features and may 
be interpreted as evidence for a grouping process which involves a degree of spatial sum- 

mation. It is hard for models based on matching of symbolic tokens (e. g. Stevens, 1978) 

to accommodate such results because all features, balanced or otherwise, are identical (as 

long as they are visible) and should be strongly matched. 

Stevens and Brookes (1987) found a result contradictory to Prazdny (1986b) using 

patterns composed of small balanced dots. Subjects were reported as being able to per- 

ceive correctly structure in these patterns at exposure durations of as little as 200 ms. 

Stevens and Brookes claim that the discrepancy between this and Prazdny's result is due 

to the fact that the features in their patterns were scaled by eccentricity. In order to 

perceive structure in globally organised Glass patterns it is known that one must be able 

to see a sufficiently large region of the pattern (Glass, 1969) and it is possible that, due to 

the effects of retinal eccentricity, the outer portions of Prazdny's fairly large (8.25° wide) 

patterns were not visible to subjects. Hence they could not discriminate between globally 

organised patterns. This interpretation ignores the fact that subjects in Prazdny's study 

had long enough to use eye movements. Also Stevens and Brookes rely entirely on demon- 

strations and present no quantitative study of the strength of perceived structure in these 

patterns. These objections aside, the proposition that structure can be perceived in these 

patterns which are "devoid of low spatial frequencies" (Stevens and Brookes, 1987), will 
be considered. 

Stevens and Brookes (1987) claim that since balanced dots provide negligible input 

to a simple cell, whose excitatory receptive field they lie within, the addition of an early 

non-linearity in intensity transduction followed by stimulation of a very long receptive 
field (aspect ratio greater than 1: 20), is necessary. Figure 7.2a shows a typical balanced 

pattern, and Figure 7.2b its convolution with a V2G filter. The V2G produces poorly 

oriented blobs but does seem to reflect the circular structure. Figures 7.2c-d show the 

output of the adaptive filtering model which, in contradiction to the Stevens and Brookes's 

prediction, correctly derives the flow field. Figure 7.3 explains why the models can produce 
this structure. Whilst low spatial frequencies are not present in the image, indicated by 

the hole round the origin of the image, there are abundant higher spatial scales at which 
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Figure 7.2. (a) A balanced Glass pattern (contrast enhanced for the 
purpose of reproduction). (b) V2G filtering poorly enhances orien- 
tation structure but output of the adaptive filtering model, (c), does 

much better. Note highly oriented features and derived flow field (d). 

Figure 7.3. (a) High-pass filtered horizontal Glass pattern (Fig- 

ure 7. la). (b) Fourier power spectrum of (a). Superimposed bound- 

aries show the approximate limit of the sensivity of a DoG with peak 
sensitivity of 41 cycles per image. Note that the boundaries capture 
high energy regions of the spectrum. 
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structure exists. The intersection of the DoG sensitivity boundary with regions of high 

energy indicates that such structure is readily detectable with an appropriately oriented 
feature. 

While balanced features specifically disrupt the output of low-pass filtering mecha- 

nisms, models using band-pass filtering have no problem deriving local structure from 

Glass patterns composed of such features. We conclude that human perception of struc- 

ture in these patterns offers no evidence against models of visual grouping based on 
band-pass (oriented or isotropic) filters. Prazdny's (1986b) finding that subjects could 

not see structure in these patterns seems likely to be due to the artifacts pointed out by 

Stevens and Brookes. 

7.3 CONTRAST POLARITY REVERSAL 

In this section two phenomena associated with opposite contrast Glass patterns will be 

considered. The first is the reversal of flow direction in patterns composed of dipoles 

containing opposite contrast dots: psychophysical data taken from Kovacs and Julesz 

(1992) are compared to predictions from the adaptive filtering model. The second is the 

perception of correct flow direction in patterns composed of two superimposed opposite 

contrast Glass patterns (Prazdny, 1986a). Here a demonstration is given incorporating a 

simple non-linear transformation of the input image. 

Figure 7.4. Horizontal Glass pattern, with dipole length of 8 pixels, 
composed of opposite contrast dots. (b) Fourier power spectrum of (a). 
Superimposed boundaries show the approximate limit of the sensivity 
of a DoG with peak sensitivity of 41 cycles per image. Note that the 
boundaries do not capture high energy regions of the spectrum. 
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Figure 7.5. The effect of reversing contrast polarity on the model. 
(a-b) Same and opposite contrast polarity Glass patterns. (c-d) Above 
patterns filtered at the optimal spatial scale selected by the model. (e- 
f) The derived flow fields. Note that the model predicts a reversal of 
local flow pattern in (b). 
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7.3.1 PATTERN REVERSAL: KOVACS AND . JULESZ (1992) 

An opposite contrast Glass pattern is produced in the same way as an ordinary pattern 
except that the first set of randomly distributed features is of opposite contrast polarity 

to the second, transformed sett. An example is shown in Figure 7.4a. The failure to see 
horizontal structure in this pattern is explicable in terms of the Fourier power spectrum 

presented in Figure 7.4b. There is very little horizontal energy at any spatial scale, 
indicated by the dark vertical strip centred on the origin. 

Prazdny (1986b) has claimed that correct structure cannot be seen in opposite con- 

trast Glass patterns, but the impression gained, from a circular pattern for example (Fig- 

ure 7.5a), is usually of a "petal" or "spiral" pattern' (Glass and Switkes, 1976). Glass and 
Switkes (1976) have stated that this percept is inconsistent with a physiological model 
based on summation of inputs from Kuffler-type receptive fields. This is because simple 

cells sum the input from either on-centre or off-centre fields but not from both (Hubel 

and Wiesel, 1967; Tolhurst and Thompson, 1975). Thus opposite contrast dots should 

not activate simple cells sensitive to the orientation of the dipole and so, according to 
Glass and Switkes (1976), "the hypothesised physiological mechanism does not appear to 

explain the observation of spiral-like patterns". 
These spirals may, however, simply be considered as a partial rotations of perceived 

local flow direction. It follows that, under given certain dot densities/separations, flow 

direction might be orthogonal to the original orientation. Exactly such a percept has 

recently been described and examined by Kovacs and Julesz (1992). They systematically 

varied the background luminance of horizontal and vertical translational Glass patterns, 

as a function of the mean luminance of the dots making up each dipole. Given a pair of 
dots with contrasts G, 03 and Cneg (where C, ie9 < Cr03), there are three critical ranges of 
the background luminance, Cback: 

1. Cneg > Cback or Cpo, < Cback (A similar contrast polarity pattern). 

2. Cneg = Cback or Cpoa = Cback (A random pattern, since only one feature set is 

visible). 

3. Cneg < Cback < Cpos (A reversed contrast polarity pattern). 

21n the examples shown in the text the order of the opposite contrast elements is also randomised 
within each dipole. 

3Anstis (1970) has shown an analogous phenomenon with random dot cinematograms. 
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Kovacs and Julesz (1992) measured subjects accuracy of reporting when a Glass pat- 
tern was a horizontal or a vertical translation. Data from two subjects and two dot 

luminances from the study (unfilled symbols in Figure 7.6) show that performance ap- 

proached 100% correct for background contrasts producing features of the same polarity 
(range 1). As background luminance approached the luminance of one dot set (i. e. range 
2), performance fell to the 50% level, as expected. However, as background luminance 

approached the mean of the feature luminances (i. e. opposite contrast patterns - range 
3), performance fell below the 50% level, indicating a reversal of perceived orientation 
(henceforth termed polarity reversal). Kovacs and Julesz (1992) go on to show that 

this phenomenon (unlike analogously constructed random dot cinematograms) cannot be 

overridden by making matched features the same colour, and suggested that it is form 

perception which is damaged by the lack of luminance cues offered by these patterns. 

What is the explanation for polarity reversal in terms of the flow model described? 

Figure 7.5 shows two Glass patterns, composed of dot pairs made up of elements of (a) the 

same and (b) opposite contrast. The scale selection criterion, described earlier, produces 
the output shown beneath each pattern. Note that the spatial scale of Figure 7.5d is 

coarser than for Figure 7.5c and the region of integration is correspondingly larger. This 

scale seems to depend on the density of the reverse polarity pattern: the denser the 

pattern, the finer the scale selected and the stronger the impression of reversal (Kovacs 

and Julesz (1992) used very high density (50%) Glass patterns). 

Figures 7.5e-f show the flow fields derived from Figures 7.5c-d respectively. The local 

orientation of 7.5f is clearly locally orthogonal to 7.5e in all regions of the texture. This is 

not surprising when considering how the presence of a dipole affects the local statistics of 

a texture. A same-polarity dipole increases the probability that in moving in the direction 

of the dipole orientation one will encounter an element of the same brightness, and it is this 

correlation that a Laplacian-of-Gaussian filter highlights. In the case of opposite contrast 

pairs, the probability of encountering elements of similar brightness in the direction of 
dipole orientation has been greatly reduced. Another way of stating this is, to say that 

the relative probability that one will encounter elements of similar brightness in all other 
directions is increased. It is this correlation that produces more energy in coarser scales 

orthogonal to dipole orientation. 
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Figure 7.6. Unfilled symbols show the percentage of Glass patterns 
classified as horizontal as a function of background luminance, for two 

subjects, at two levels of mean luminance of correlated features (data 

are taken from Kovacs and Julesz (1992)). The solid lines are predic- 
tions from the adaptive filtering model. 
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Simulation 

In order to compare the model's performance on patterns with different background lu- 

minances to human data, a Monte Carlo simulation of the Kovacs and Julesz (1992) task 

was performed. Glass patterns were generated which were similar to the stimuli used in 

Kovacs and Julesz (1992); each pattern was a 90 X 90 pixel, 256 grey level image. All 

patterns were composed of a two pixel horizontal translation (i. e. the distance from the 

centre of an original pixel to the centre of a translated pixel was three pixels). One hun- 

dred patterns were generated at 40 levels of background luminance, which ranged from 

-2Cne9 to 2C 05 in steps of (Cpo, - C,, ey)/20. The model, exactly as described in the 

previous chapter4, was used to make an estimate of the mean orientation of each pattern, 

in the range 0- 1800. If the reported orientation was between 45° and 135°, the pattern 

was classified as vertical, otherwise it was classified as horizontal. 

Results 

The solid lines in Figure 7.6 show the percentage of patterns classified as horizontal 

as a function of the background luminance, compared to human performance (unfilled 

symbols). Predictions from a single simulation have been matched to data from the two 

dot luminance conditions by scaling the physical luminances used in the simulations to 

the appropriate units used in Kovacs and Julesz (1992) but no fitting has been applied 

to the data. Note that the model shows good agreement with the human subjects at the 

three contrast ranges of primary interest (X2 measures of the fit are not reported because 

the standard error of human data were not available). The model reports 100% correct for 

same polarity patterns, around 50% when only one feature set is visible, and 0% correct 
(i. e. full polarity reversal) when pure opposite contrast patterns are presented. This is 

taken as good evidence that reversal of pattern direction is quantitatively explicable in 

terms of the filtering model described. 

7.3.2 INTERLEAVED PATTERNS: PRAZDNY (1986A) 

As noted previously, Prazdny (1986a) has made two criticisms of explanations of grouping 
in Glass patterns based on spatial filtering. The first relates to how filter size is automat- 
ically selected, which has been considered extensively in the two previous chapters. The 

second is how to deal with a specific type of Glass pattern, composed of two "interleaved" 

4The model again averaged blob orientations over the whole pattern. 
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Figure 7.7. (a) Horizontal Glass pattern, composed of alternating 
opposite contrast dots, with a dot separation of four dots. (b) Fourier 
power spectrum of (a). Superimposed boundaries show the approxi- 
mate limit of the sensivity of a DoG with peak sensitivity of 41 cycles. 
Note that the boundaries capture low energy portions of the spectrum. 

Figure 7.8. (a) An interleaved Glass pattern and (b-c) the result of 
running it through the oriented filter model. (b) Shows the optimal 
spatial scale and (c) the resulting flow field. 
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Figure 7.9. The H transform. The x axis shows the image intensity 

and the y axis the output of the H transform. The transform responses 
have been normalised to the (original) 0- 128 range. 

patterns of opposite contrast. Figure 7.7a shows such a pattern where each texture ele- 

ment is composed of four dots with alternating contrast polarity. Subjectively, at least, 

textures like these do not produce the pattern reversal shown for the ordinary opposite 

contrast patterns. Prazdny (1986a), however, states that the only structure visible in 

band-pass filtered versions of such patterns lies orthogonal to the perceived direction of 

flow, which makes the explanation of correctly perceived structure, in terms of linear fil- 

tering, problematic. The power spectrum of an interleaved pattern, shown in Figure 7.7b, 

confirms that there is the amount of energy in the horizontal direction across scale, indi- 

cated by the faint vertical stripes around the image origin, is very small. Figures 7.8b-c 

confirm that the adaptive filtering model does indeed produce a reversal of flow direction 

when presented with such a pattern. This is because these patterns can be thought of 

as balanced patterns that have been specifically formulated to disrupt oriented filtering 

mechanisms. 

Non-linear transduction of image intensity 

One possible explanation for perception of correctly oriented structure in these patterns 
is that our analysis so far has made a rather sweeping assumption, namely that, at most, 

a linear transformation of image luminance occurs before filtering. There is considerable 

evidence from psychophysics (e. g. Legge and Kersten, 1983; Morgan, Mather, Moulden 

and Watt, 1984) and neurophysiology (e. g. Naka and Rushton, 1966; Shapley and Victor, 

1979) that this is not the case. Instead it has been proposed that a compressive non- 
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linearity modifies intensity before filtering. Indeed the utility of an early non-linearity has 

already been recognised in a number of models of texture segregation motivated by human 

psychophysical performance (Graham et at., 1992). Different types of non-linearity have 

been proposed, including the sigmoid (Gelb and Wilson, 1983), and half-wave rectification 
(Heeger, 1991), but a particularly computationally simple formulation is the H-transform 

(Naka and Rushton, 1966; Morgan et at., 1984; Watt, 1991b), which has the form: 

L'(x, y) = L(x, y) 
Lmar 

H+L(x, y) 

where L(x, y) is the image intensity at position (x, y), L'(x, y) is the output of the H 

transform at that point, Lmaz is the maximum image intensity, and H is a constant. 

The operation of the H transform is shown in Figure 7.9 which illustrates its effect 

of compressing high image intensities into a smaller band of responses leaving a larger 

range for the lower intensities. The value of H=0.78L�, ax is a typical value derived from 

a series of psychophysical (edge alignment) tasks (Morgan et al., 1984). Though such 

a non-linearity is more compressive than that suggested by the light adaptation process 

in the retina (e. g. Sperling and Sondhi, 1968), there is evidence that such a severe non- 

linearity is consistent with the function of M-cells in the lateral geniculate nucleus (e. g. 

Derrington and Lennie, 1984; Sclar et al., 1990). 

The result of applying such a non-linearity to the interleaved patterns described above 
is to shift the luminance of the background towards that of the bright feature set. Thus 

the bright features will interfere less with the filters' grouping of the dark set. Figure 7.10 

shows the result of running the flow algorithm on an interleaved pattern which has been 

H transformed with values of H=0.78Lmax and H=0.50Lmaz (the maximum value 

of H not giving polarity reversal). It is clear that, for this pattern at least, values of H 

around 0.5L,,,, a, produce correctly oriented structure from the model. This implies that 

a rather severe non-linearity is preceding filtering. However referring back to Figure 7.9, 

the actual pattern of responses from such a non-linearity is not greatly different to that 

of a transform with H=0.78L,,,, ax, a value which has been estimated from other work 

Morgan et al., 1984). 

Note also that Figure 7.10 demonstrates that perceived flow switches abruptly as 
the severity of the non-linearity is changed; there is no intermediate flow. According to 

Prazdny (1986b), bistability is a necessary feature of a model of these phenomena and is 

one that purely linear filtering models do not have. This demonstration suggests that the 
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Figure 7.10. The effect of the H transform on the processing of 
interleaved patterns by the adaptive filtering model. (a) and (b) show 
the same image H transformed with values of H=0.5Lmas and H= 
0.78Lmax. The operation of the model on the output of the more 
severe transformation, shown in the right half of the figure, produces 
the correct flow field (f). 
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bistability of these patterns, reported by some observers, is the result of change in this 

early non-linearity which in turn could be due to something as basic as retinal adaptation, 

depending on where one locates this non-linearity in the visual system. Figure 7.10 also 

shows that it is very coarse scale filters which are used to calculate the orientation structure 

of these patterns. This allows the clear prediction that perception of structure should be 

significantly impaired, compared to perception of structure in single contrast patterns, 

in the presence of a spatially low-pass mask, since intermediate scales are of no use for 

deriving orientation structure. 

7.4 CONCLUSIONS 

The purpose of this chapter was to show that criticisms of spatial filtering models of 

grouping using contrast phenomena tend to be based on either of two tenuous supposi- 

tions: that all visual processing preceding filtering is entirely linear, or that the grouping 

is achieved using isotropic filtering. It has been shown that the use of local power to select 

filter output adaptively, correctly predicts structure in balanced Glass patterns. Through 

the addition of an early (albeit fairly severe) non-linearity to the adaptive filtering model 
it has also been shown that the perception of structure in interleaved patterns, which have 

specifically been constructed as counter-examples of the power of these models at predict- 

ing perceived grouping, may be explained in a straightforward manner. The adaptive 

filtering model correctly predicts that for dense patterns composed of opposite contrast 

pairs, local flow direction will be rotated by 90°. Psychophysical data from a study by 

Kovacs and Julesz (1992), quantifying this effect, have also been shown to be consistent 

with the adaptive filtering model. 

A comprehensive explanation of where a non-linearity might be incorporated into the 

model has not been provided, since it has been suggested that the severity of this function 

may be affected by retinal adaptation (Hood et al., 1979; Morgan et al., 1984) and by local 

mean luminance (Watt, 1991b). The problems of dealing with these factors go beyond the 

scope of this thesis. Suffice to say that the addition of a non-linearity seems to provide 

a natural explanation for Prazdny's (1986a) demonstration and suggests further work on 
the role of early non-linearities and adaptation in texture perception (Chubb et al., 1989). 



Ö CONCLUSIONS 

In this chapter I will review the findings of this thesis and relate them to the view of 
texture expounded in Chapter 1, and to some of the specific features of the adaptive 
filtering model (Chapter 2). 

8.1 A STATISTICAL REPRESENTATION OF TEXTURE 

The psychophysical experiments using single and mixed orientation distributions (Chap- 

ter 3) present the most direct evidence that texture processing involves the estimation 

of the statistics of local texel attributes. Experiment 3.1 suggested that subjects could 

only be performing the orientation discrimination task described, by combining local ori- 

entation estimates over space. This confirms Watt's (1991b) report, and is consistent 

with the literature examining texture integration over space (e. g. Nothdurft, 1991b; Sagi, 

1990). The discrimination of texture containing two orientation distributions, from a field 

composed of only one set, is determined by the size of the mean orientation offsets of 
the two sets. This value depends on the relative number of elements in each set (Ex- 

periment 3.2). This discrimination occurs at threshold mean orientation offsets below 

the resolution limit of those sets. This indicates that variance information of the unre- 

solved set is probably available to perform this task. When the variance cue is eliminated 
(by using a relative numerosity judgement in Experiment 3.3) thresholds are higher, and 

exceed the resolution limit. This suggests that the direction of skew of an orientation dis- 

tribution is not available. Performance on judging the mean of asymmetrical orientation 
distributions suggested that the process of combination must incorporate some form of 

centroid measure to perform this task. However, Experiment 3.6 showed that subjects do 

not necessarily use the centroid of measures taken over the whole orientation range, but 

can calculate the centroid over a limited range of orientations, thereby limiting the effects 

of noise. It was suggested that a possible mechanism for this was an "orientation filter" 



Chapter 8. Conclusions 180 

operating on the estimated orientation p. d. f. for the texture. 

In summary these experiments constrain the statistical representation as follows: 

" Combination of orientation measures occurs across space. 

" Distinct oriented sets are derived using some form of process to extract relative 
frequency from background noise, such as orientation filtering. 

" Resolved orientation distributions are represented independently. 

" These sets are represented in terms of their zero-bounded centroid, width (possibly 

using variance), but not their direction of skew. 

The first and last of these constraints are in accord with the adaptive filtering model, 
but the middle two are not. The adaptive filtering model coded a set of local centroids 

without making use of orientation filtering because the parameters of such filters were not 
known. This is evidence that the model should be extended to deal with the representation 

of multiple local orientations at a point. 

Note that these constraints operate at the algorithmic level of a computational theory. 

Whilst the implementation described in Chapter 2 operates on individually derived texture 

elements, the evidence presented in Chapter 3 does not constrain the physical realisation 
of an algorithm sufficiently for other alternatives to be rejected. A model need not actually 

extract texture elements to perform these tasks. For example a valid alternative might be 

the use of a model consisting of a set of channels tuned to a range of orientations. However, 

note that these constraints apply equally in the case of such a model. Average orientation 
from a channel coded model cannot be derived using the most active orientation channel 

-a degree of integration across channels must occur. Orientation variance might then 

be coded as the spread of activity over channels. Similarly, subjects' insensitivity to the 

d. c. term of orientation distributions, demonstrated in Experiment 3.6, suggests that some 

form of inter-channel inhibition would also have to be incorporated. Given that the tasks 

being investigated do not operate at the very lowest levels of visual processing, devising 

tasks which completely separated the predictions of models, at an implementational level, 

is probably not feasible. What Chapter 3 describes is a set of texture statistics that any 

adequate model of texture perception must be able to produce. 
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8.2 MEASUREMENT OF TEXTURAL PROPERTIES 

Chapters 4-5 presented psychophysical evidence relating to the way texture elements are 

extracted from images. The main finding, with reference to the computational modelling 

of this process, is that human subjects out-perform models based on isotropic filtering 

on certain texture tasks (Experiment 4.2). This suggests that in general the accuracy 

of orientation measures derived from schemes using e. g. Laplacian-of-Gaussian filtering ( 

Voorhees and Poggio, 1987; Witkin, 1981) may not achieve human levels of performance 

at tasks using orientation information derived from those measures (e. g. segmentation). 

Instead it was suggested that subjects must have access to some form of oriented filtering. 

Models using the output of individual DoGs outperform human subjects on the tasks 

described, but beg the question of how one selects the correct orientation. The adaptive 

filtering model, by using point-wise selection of the most locally active filter output, 

gets around this problem but results in a loss of orientation sensitivity, when compared to 

DoGs. This loss of sensitivity is consistent with human subjects' discrimination of texture 

orientation. 

The linearity of the mechanisms for deriving texture elements was considered in Chap- 

ter 7. It was shown that the use of local power to select filter output adaptively correctly 

predicts structure in Glass patterns composed of high-pass elements. The adaptive fil- 

tering model also correctly predicts that for dense patterns, composed of short opposite 

contrast pairs, local flow direction is rotated by 90°. The model produces quantitative 

predictions of performance consistent with psychophysical data from a study examining 

this phenomenon (Kovacs and Julesz, 1992). By adding an early non-linearity to the 

model, it was also shown that structure can be derived from patterns composed of inter- 

leaved opposite contrast patterns (textures specifically constructed to disrupt the output 

of spatial filtering mechanisms). The purpose of these demonstrations was not to defini- 

tively establish the presence of, or to locate, any early non-linearities the visual processing 

of texture. Rather it was intended to show that studies which attempt to disprove the 

presence of spatial filtering in early visual grouping must make some highly restrictive 

assumptions, such as pure linearity. 

8.3 SELECTION OF SPATIAL SCALE 

One of the assumptions outlined in Chapter 1 was that certain scales are better than 

others for processing texture, and that some form of selection must occur between scales. 
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The results from the modelling of mean orientation discrimination tasks, described in 

Chapter 5, certainly suggests that this is the case. The scale of DoG and V2G filters used 

to derive orientation estimates from Glass patterns critically effects how accurate those 

orientation estimates are. The task of deriving a mean orientation estimate naturally con- 

strains scale selection: texture elements should have minimum local orientation variance. 
All the modelling used for this thesis has employed only that criterion for selecting spatial 

scale. 

The implications from this work is that minimum local orientation variance is a useful 

general strategy for selecting spatial scale. From Chapter 2 it is suggested that this has 

a place in systems for deriving shape-from-texture, discontinuities from texture, texture 

flow, and texture contour analysis. 

8.4 INTEGRATION ACROSS SPACE 

This thesis has concentrated largely on the extraction of information from spatially un- 

structured texture patches. Chapter 6 did consider spatial aspects of the model by con- 

sidering how globally organised patterns are coded. The filter model combined with a 

measure of mean local orientation variance, or a measure of the degree of local orientation 

matching to a template, was used to simulate three psychophysical tasks. 

Simulation of data from Maloney et al. (1987) (Experiment 6.1) demonstrated that 

while a measure of local orientation variance could predict the discriminability of Glass 

patterns in the presence of extra noise dots there had to be sufficient texels present for 

the measure to be of any use. At low texel densities it was suggested that subjects make 

use of more detailed knowledge about the underlying transform. 

The Hel Or and Zucker (1989) task is closely related to a variety of texture segmenta- 
tion tasks. The success of the orientation variance model suggests that this task does not 

require the explicit coding of the position of texture boundaries, and that instead local 

orientation statistics suffice. This is illustrative of the problem of presenting subjects with 

segmentation tasks - the information they can use is often insufficiently constrained. 

In summary the assumptions made about the spatial integration used by the model 
have been upheld, in the limited tests presented in Chapter 6. More psychophysical 

work would be required to fully evaluate this aspect of the model. However mean local 

orientation variance seems to be a good indicator of the presence of structure in texture. 
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8.5 GLASS PATTERNS 

The experiments reported in this thesis have made extensive use of Glass patterns as 

examples of texture which only contain structure at a narrow band of scales. It is proposed 
that they are an important class of stimuli for examining scale selection because they 

contain information that actively disrupts estimates of orientation at non-optimal scales. 
Spatially narrow-band textures, such as filtered noise, are not appropriate because these 

patterns merely contain less energy at other spatial scales. 
The effects of element length (Caelli, 1981; Jenkins, 1983; Wagemans et al., 1993), and 

the lack of effect of element density (Jenkins (1983)) were confirmed. Local orientation 

variance was found to have no effect on the judgement of mean orientation until around 

a s. d. of around 8°, suggesting that there is intrinsic noise on the estimation of mean 

orientation in this task. DoG and V2G filtering models produced good accounts of human 

data in the density and variance conditions, but only the DoG was adequate to explain 

the effect of dipole length. The Stevens model (Stevens, 1978) failed to achieve human 

levels of performance in any of the conditions, even when neighbourhood size was set to 

exclude the maximum possible number of false matches. It is concluded that this model 
is unable to make use of the coarse scale interactions that occur when co-linear dipoles 

are permitted (unlike Stevens, 1978). 

Chapter 6 presented three tasks involving the detection of structure in Glass patterns, 
in order to investigate the representation of structure from patterns which contain system- 
atic orientation changes. A model which measures local orientation standard deviation 

suffices to explain performance in all but the lowest density conditions of Maloney, Mitchi- 

son and Barlow's (1987) experiment. A model calculating local deviations from expected 
orientation structure, consistently exceeds subjects' performance. Similarly both models 
account for the threshold amount of orientation jitter that subjects can tolerate in dis- 

criminating cued patterns from noise. The final experiment replicated Hel Or and Zucker 
(1989) and investigated the detection of anomalous patches embedded within oriented 
Glass patterns. Surprisingly, a model which located regions of the image that were low 

orientation variance regions failed to produce sufficiently accurate performance to explain 
human subjects' behaviour. However the use of a simple measure of the mean local orien- 
tation variance did produce behaviour which was reasonably close to subjects. This task 
most closely resembles a texture segmentation task and suggests that the model could 
be appropriate to such tasks. It also suggests that psychophysical tasks investigating the 
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detection of texture boundaries must avoid using tasks that can be achieved using simple 

global statistics. 
To conclude this section, the psychophysical data collected using Glass patterns have 

been shown to be largely explicable by models based on spatial filtering. The balance 

of evidence from Chapter 5 suggests that for tasks which place statistical constraints 

on subjects' performance, a model based on oriented filters, operating at a scale which 

minimises local orientation variance, suffices to explain performance in all conditions. 
The use of local orientation variance as a measure of structure for other tasks, was further 

demonstrated in Chapter 6. 

8.6 FURTHER WORK 

This thesis has demonstrated the utility of maximising anisotropy for scale selection in 

the context of the texture tasks described. Would this criterion be useful for other tasks, 

such as object recognition? Additionally, what other criteria might be used? From the 

work of Emmott (1994) there seem to be regularities in the output of filters responding 

to pages of text, that suggest that scale selection for reading could rely on equally simple, 

statistical strategies. 
The application of the adaptive filtering model to contour integration is also worthy of 

further investigation. As well as the work of Field et al. (1993), recent research by Polat 

and Sagi (1994) is of interest. The contrast threshold for detection of Gabor patches is 

improved if patches are flanked by co-linear Gabor patches, but not by patches that could 

not have derived from a common contour. It is possible that the adaptive filtering model 

could be used to explain this phenomenon. 
Adaptive filtering might be used to detect other forms of regularity in dot patterns. 

It's resistance to noise suggest that it may be appropriate for detecting very long range 

groupings in patterns, such as might be caused by symmetry, for example. 
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