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ABSTRACT

The Faddeev equations enable one to express the 
scattering amplitude for a three-body process 
interacting via binary potentials in terms of the 
two-body off-shell Coulomb T  matrices. In the 
first order iterate the equations reduce to a sum 
of two terms. A form of the two-body off-shell 
Coulomb T  matrix is presented which can be 
expressed partially as a sum over the classical 
trajectories of the scattering particles. It is 
shown that in the limit of high energies and 
non-zero scattering angles an on-shell correspondence 
identity exists for this T matrix, so that only 
the classical path term contributes to the 

scattering amplitude.

The classical path approximation is applied to 
elastic and inelastic collisions of electrons on 
hydrogen atoms. For elastic collisions the first 
order Faddeev approximation predicts differential 
cross sections considerably larger than those 
predicted by the first Born approximation at 
energies where the Born approximation is expected 
to be good. At angles of scattering above 30° 
our results are identical to those calculated using 
a different exact form of the Coulomb T  matrix 
(Chen and SinfaUam, 1972). In the Faddeev



approximation the differential cross section diverges 
at small angles of scattering. The angular and 
energy distributions of the differential cross 
section for inelastic collisions are close to the 
predictions of the Coulomb projected Born approximation 
(Geltman and Hidalgo, 1971), though the latter 
approximation predicts much smaller cross sections. 
Singularities in the on-shell Coulomb T  matrix 
associated with the long range nature of the 
Coulomb potential are responsible for both the 
zero angle divergence and the overestimation of 
the differential cross section in the Faddeev 

approximation.

In conclusion we comment on the importance of recent 
calculations of the second-order iterate of the 
Faddeev equations for electron-hydrogen scattering 

(Chen et.al., 1973) where it is shown that the 
differential cross section for elastic scattering 
approaches the Born result. This demonstrates that 
cancellation occurs between the singularities in 
the first-order and second-order terms of the 

Faddeev equations.
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CHAPTER 1

PRELIMINARIES

1.1 Introduction
The theoretical study of electron atom collisions 
has attracted physicists for over half a century 
(for a detailed review see Mott and Massey). In 
many instances the studies have been limited to one 
of the simplest atomic collision processes, namely 
the scattering of electrons by atomic hydrogen. This 
process is a three-jbody collision involving a system 
which initially consists of an incident electron and 
a bound electron and proton pair. An exact solution 
of the three-body problem has long eluded physicists, 
however recent work by Faddeev (1961, 1963, 1965, 1970) 
led to a more rigorous analysis of the problem than 
hitherto. Chen and Joachain (1971) have shown that 
Faddeev’s analysis for three bodies is equivalent to 
a symmetric version of the Watson multiple-scattering 

theory (Goldberger and Watson, p.749).

Earlier calculations on the collision process, both 
quantal and classical, had met with limited success.
An extreme paucity of absolute experimental 
measurements of the differential and total cross 
sectio-fis for electron hydrogen collisions had made 
interpretation of theoretical results difficult. It



is not the purpose of this thesis to formulate a 
classical description of the scattering process, 
though correspondence identities between quantum 
mechanical results obtained and classical concepts 
will be emphasised, so vie refer the reader to a 
review by Burgess and Percival (1963) for developments 
in classical scattering theory.

In quantum mechanical calculations the approximation 
used depends mainly on the energy at which the 
collision takes place. For low energy collisions 
much scattering data has been obtained from applications 
of the close coupling and related methods (see for 
instance, Burke ar.d Seaton, 1971). We shall be more 
interested in the scattering of electrons by hydrogen 
atoms at high energies, where the most common 
approximation used is that of Born (1926). This 
method is briefly described in operator notation 
below.

1.2 Scattering cross sections and the Born approximation 
The quantities of most interest to us in collision 
theory are cross sections. The differential cross 
section, «VdvJl. , is defined as the intensity of 
scattered particles per unif solid angle per unit 
flux, measured at large distances from the scattering 
interaction itself. The differential cross section 
for the scattering of a particle by a bound pair 
interacting via a potential V  is (Messiah, ps.306, 

335).



( 1 . 1 )

where /*• is the mass of the incident particle 
reduced relative to the centre of ma3s of the bound 
pair. Here, and throughout this thesis, 
represents a final state of the system in the absence 
of interaction, whereas is the initial full
solution of the Schrddinger equation determined by 
the boundary conditions related to the scattering of 
the incident particle. The factbr (aâ / h II2^ )  
is dependent on the normalisation chosen for the 
initial and final states. Expression (1.1) is exact; 
the Born approximation expresses , and thus

, in increasing powers of the potential V .

The first Born approximation is obtained by replacing
with the unperturbed state . Essentially

one says that the potential V  is so weak that the 
system is unperturbed by the passage of the incident 
particle, an approximation which is known to be good 
for high energy incident particles (Messiah, p.313). 
Successive approximations in the Born expansion are
obtained by using the following expansion For I

•

|vycw> = (i + 5.[GifU)y]H) i<|>i> (1 .2)

is the Tree-wave Green function with outgoing 
wave asymptotic behaviour for three non-interacting



particles and total energy E . We will'find it 
useful to express the second term in Equation (1.2) 
in terms of the outgoing scattered wave Green 
function ¿+1(e) (Messiah, p.323)

l [ C ( e ) v ] “ *  c f ( e ) V  ( i .
Wsl

The ability of the Born expansion method to give a 
value of d°/dJL close to the exact value, depends on 
the convergence of the expansion (1.2). Whilst the 
Born series has been shown to converge quickly at 
high energies for jth'e potential scattering of a 
particle (Zemach and Klein, 1953), the convergence 
properties for complex collisions are not well 
understood. For three-body collisions^Newton (p.557) 
has shown that S-functions occur in the analysis 
which make the integral Kernels for the Born 
expansion badly behaved. In particular for the case 
of rearrangement collisions Aaron et.al. (1961) have 
suggested that the Born series is divergent, though 
we note that this claim has been refuted by Dettmann 
and Leibfried (1963). This scepticism about the 
convergence properties of the Born expansion led to 
a new formulation of Equation (1.1) in terms of the 
T  operator^and to the more detailed analysis of
Faddeev.



1.3 The T  Operator and t.- Kaidccy Ecmti-ns
The T  operator is defined in matrix representation
by its elements

Tip = < < M T l ( h >  = (1.4)
The first Born approximation to the T matrix is thus

T /  =  \ V | t > (1.5)
We can define the differential cross section directly 
in terms of the ”T” matrix from Equation (1.1)

dg
dvfi ( 1 . 6 )

In this formalism the matrix elements are taken 
between free state wave functions which can be written 
down exactly for the problems we are to consider.

Using Equations (1.2) - (1.4) we can obtain, using 
simple operator Algebra, the following formal 
expressions for the three-body T  operator

-r(0  r. v + v (x+)(e) v

Ond T(e) =  V + V C£\e)t (e)
For three particles interacting only via two-body 
potentials, the interaction potential is given by

V .  i  Vi.
id

(1.7a)

(1.7b)

(1 .8 )
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where Vi represents the two-body interaction between 
particles \ and k , We can then introduce the 
two-body "T operators , "Ti. (v •= i il, 1») , which are
defined in terms of the two-body free wave Green 
function Go

tiCE) = V l -v V i G ott1(e)TiCe) d.9)
-THe ) represents the two-body T  matrix for the
interaction between particles \ and k with particle
t as a spectator. We evaluate the matrix elements of
T ( e ) between momentum states; that is, iTt(e) lf ’>.

In this case the energies associated with t'-.e states *
lf> and \p‘> are not equal to E" , and the matrix 

element is known as the gff-shell T  matrix. The 
differential cross section is related to the three- 
body T  matrix which is on-shell, i.e. the energies 
associated with (J)g and both equal E .

fk *  is related in turn to the two-body off-shell 

T  matrices.

Consider the three-body direct scattering process,

H - ( 2 , 3 )  — -> I -*-(2.3) (1.10)
The three-body T  operator for this process, elastic 
or inelastic,is T e and this, can be expressed in terms 
of the two-body T  operators (Chen and Joachain, 1971),

•To =  T*. + r 5l

T*. =  i  T k & o T u
(1 .11)



These are the Faddeev equations for process (1.10) 
which are written more explicitly to third order 
below

To =. Ti ■+ T5 +Ti GcTj +Ta GtoTi +Ti GoT; GoTj
+ Ti GtoT. &0T3 -V Tj Go T3 G0T2 +T3 GoT, GoTz
■V"T3 GoTi GfeTj ■+ ”Ti G0T2 G oT3

(1.12)

The first order Faddeev approximation is given by 
retaining only the first two terms of Equation (1.12). 
These terms are purely two-body and no three-body 
couplings are included in this approximation. Using 
Equations (1.4), (1.6) and (1.12) we can write the 
differential cross secti'on in terms of the first 
order iterate of the Faddeev equations,

ail =  5F P ) <<*F lTi',Ti 1 <5v>'1 11.»)

The convergence of the Faddeev expansion ha3 been
studied rigorously (Faddeev, 1965). It has been shown
diagramatically (Chen and Joachain, 1971) that the
Faddeev expansion should have better convergence
properties than the Born series. Once the two-body
T  matrices for each pair interaction are known, then

(
using successive iterations of the Faddeev equations 
one can in principle obtain a solution of the 

scattering problem.
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1. Th C'-.nlom'r problem
An extensive review of the Coulomb problem has recently- 
been given by Chen and Chen, (1972), and they have 
shown that knowledge of the two-body off-shell Coulomb 
T matrix leads in principle to a complete solution. 
The properties and a particular representation of the 
two-body off-shell Coulomb T matrix will be discussed 
in Chapter 2. Norcliffe et.al. (19691) have obtained 
correspondence identities between quantum mechanics 
and classical mechanics for the two-body interaction 
in momemtum space. The Faddeev equations can be used 
to extend the investigation of these identities to 
three body processes, where classical calculations 
using Monte Carlo methods(#ur3«»»o<» Pircival, 1% 8) have 
recently been made with considerable success. Using 
the identities of Norcliffe et.al., we can obtain 
an expression for the Coulomb T  matrix which can be 
expressed partially in terms of the classical 
trajectories of the colliding particles. We shall 
compare this expression with representations derived 
by Chen and Chen (1972) and other workers.

The application of the Faddeev equations to atomic 
collision processes using Chen's form of the two-body 
off-shell Coulomb T  matrix has been extensive int
the past five years (Chen, 1971). For low energy 
problems, using a separable expansion form of the 
Coulomb T  matrix due to Ball et.al. (1963), 
calculations of the three-body bound states for 
atomic systems have been carried out successfully.



At energies above the ionization threshold the analytic 
form of the Coulomb "T matrix is less well understood. 
However calculations have been carri<=d out for many 
atomic scattering processes and interesting 
comparisons with the Born and other approximations 

have been obtained.

In Chapters 3 and U, we shall use the classical path 
form of the Coulomb T  matrix^referred to earlierj 
in the Faddeev equations and investigate the elastic 
and inelastic direct scattering of electrons on 
hydrogen atoms. We shall compare our results with 
experimental and o-ther theoretical predictions, and 
conclude by assessing the use of the classical path 
form of the Coulomb T  matrix and the Faddeev 
equations in predicting cross sections for atomic 

collision processes.

This thesis is based on a series published on the 
off-shell Coulomb T  matrix by Roberts (1970),
Hutton and Roberts (1972) and Hutton (1972).



CHAPTER 2

THE TWO-BODY COULOMB INTERACTION

2.1 Irh rodurt: on
In this chapter we consider the two-body Coulomb
interaction between particles of mass m ■ and ftt*
and asymptotic momenta and K» . It is well
known that a complete solution of this problem
can in principle be obtained through knowledge of
the Coulomb Green function. After separating out
the total two-body momentum we can express this 

*
function as a matrix element in relative momentum 
representation, , where E
is the total centre of mass energy. The relative 
momenta ^ and , and the reduced mass in the 
two-body system are given by (Chen and Chen, 1972)

ALi — m , -v *r\2 (2.1)

and the two-particle kinetic energy operator is

U = • (2.2)0 2>Mu
The two-body off-shell Coulomb T  matrix is related 
to the Green function by (Lippman and Schwinger, 1950) ,

T T (2.3)



Here is the full outpoint wave Green
function, ani 4.^I G0t+'(£) is the Green function
in absence of any interaction, both been given in 
momentum representation. Thus, having obtained an 
explicit form for the Coulomb Green function one 
should be able to deduce the scattering matrix

<{?lT(e)lf’>  .and on substituting the latter 
in the Faddeev equations solve the scattering problem.

2.2 The Coulomb Green function
In momentum representation the Coulomb Green function 
for the relative motion of two interacting particles 
of charge Ei and Ei satisfies the integral equation 
(Perelemov and Popov, 1966),

w  r 4 -
xn**. J if-p'i1 r

- S (p-jO
(2.4)

Perelemov and Popov, and also Schwinger (1964) have 
used the symmetric transformation (Fock, 1935) to 
bring this equation into a form invariant with respect 
to the symmetry group of the hydrogen atom for negative 
energies, the 0(+) group, and for positive energies, 
the 0(3, l) group. They introduce the four vectors 

defined as, (i. « 0,1,2,*),

£4 = ^ f 7 ( f + J e a) ’

e. =

= (?«*+r*)/( f-f?)

E <0

E >° (2.5a) 

ECO

E > 0  (2.5b)



where A point with theseft «• Z M u lE|',X .
coordinates lies on a four-dimensional hypersphere 
which is topographically a hypersphere for E ̂  0  
but for positive energies is a hyperboloid of two 
sheets. The Coulomb Green function in terms of 
these coordinates is,

-I___
'fc/Auft3( f * 1 'f ' ±ptl)X( 2-6)

The upper signs here (and in Equation (2.7)) refer to 
the E < 0  case, the lower signs to the E >0 case. 
Equation (2.4) becomes in £ -space

& K . O  *  f i C  = SCt-f) (2.7)in J to (E £ ;
vJV\tr« rj is k\C Couloovk inbtrotbioo para<*tfce<"> fe

For the E<0 case Schwinger (1964) has obtained an
expression for G (£,£') in terms of the basi3 
functions Ync.**» (.0 of the irreducible representations
of the 0(0 group,

a «5 v  *
&(*,£■)-t i  1  —A«l C*o J (2.9)

The Y*«*(0 are the four-dimensional spherical 
harmonics which have been studied in detail by Fock 
and Bander and Itzykson (1966). They are defined on 
the surface of a foui>dimensional unit hypersphere 
and we can define the angle^between the vectors £ 
and £-' on the hypersphere by the relation 
lt*t'| * . .Making use of a summation rule
for the functions Y*tm(t) , PertLemov and Popov were
able to formulate an expression for G-(tit1) in terms 

of known analytic functions,



= S(fc-t') (2.10)

where is defined by
pO

<$(*,3) =■ i o7Ti5 5 !il < 1 (2. 11)

$(i,3)

complex
can be analytically continued into the whole 
2--p]ane apart from the real axis cut

Perd.emov and Popov extended their analysis by 
presenting a prescription for analytic continuation 
of the Green function G-Ct.t') into' the whole complex 
plane apart from the positive real axis branch cut.
For positive energies two different Green functions

are defined on the upper and lower edge 
of the cut (Newton, p.178). In position
representation these correspond to the outgoing and 
incoming wave Green functions, and it is the outgoing 
or scattered wave Green function which appears
in Equation (2.3) for the scattering matrix. 
Introducing the sign function

+1 on the upper edge of the cut (£*Eo-»iS)
c (2.12)

-1 on the lower edge of the cut (E'Eo-'O 
Perdemov and Popov obtain the following representation 

for CrU-t’) ,

«  SOL- 0  TîGôfeTV- (2*13)



where the s ign " agrees with the sign of ET , and

representations in the different regions of energy 
and momentum space,

of the hyperboloid), and is defined in the different 
regions of momentum space by,

Roberts (1970) ha3 calculated the positive energy 
Coulomb Green function directly in the 0(3,1) 
representation (Bander and Itjykson, 1956) and 
transformed to momentum representation. Earlier work 
by Norcliffe et.al. (1969) had shown that the spectral 
operator I* =• (XfTif ( & W  “ Grl+>) for the Coulomb
interaction could be expressed as a sum over classical

the function F(e.t') has the following integral

F Cfc.it') = ^ sieK(n~y-)fc
s.^Unk. ' }

ECO (2.14a)

£ > °  (2.14b)
?• f  ‘ > Pe

S-Vudlte., e>0 (2.14c)
f.f'CpE

F(fcifc') = -A_ r*6
SinkioJ^ __ lr -y tu ri

or j>cpe|p’7ft
For E > 0  u> is a hyperbolic angle between the 
vectors 6- and t } (which may be on different sheets

for p,j>’7pe or p,p’<pE
(2.15)

k losk^/a) for p>p6 )p’cf£ or f<pEif'>p£

paths, and this motivated Roberts to examine the 
dependence of the Green function on classical paths.



Roberts fives the following expression for the Green 
function in momentum representation,

<elG(Olc.'> » Go tCr, + lb/Ul‘f»3 ̂  '
( f - ^ K f - 0  {2.16)

where Go and G, are the well known zeroth and
n (+)first order perturbation terms, vr pas the 

following different forms in (p-p1) -space

% ' = 4ir4*nKo ¿  + o* ¿n“(r-«f(-jn̂ )s^Kw' (2 -,17a}

GC$ = --^-ra 4ir2sioW i\.
<o5 C-'̂ -gxpC-1̂ 1̂  ^ oz^ p (-n<i)c.xp(t;juj) 
p--̂ > 0  4v> In (i -  *xp(-ino)j S lokw.

<fE

|> (-ln\>))

"p>peif'^p6 or p<f*if'>Pfi
(2.17b)

q  ^  c? _ '71<xp(-Ho)-txpCtitf J
a *4ulsioVti 2.n(i-exj>(-jnv>)) ma^v o 2,17c 5

where the hyperbolic angle is defined by

f f W )
+ u>s)>to , j>,p'>pe and p.f'̂ pe

(2.18)
-losKuJ, p>fE , and jXfc ij>’>J>e

and 9 is defined slightly differently from the ^ 

of Perelemov and Popov by

0 « (2.19)

Before examining the significance of the different 

term3 in this expzession, we shall demonstrate the 
equivalence of the forms of the Coulomb Green function



given by Perelemov and Popov and by Roberts.

The discussion is limited to the attractive Coulomb 
scattering of two particles of unit charge. We shall 
evaluate the sca-tered wave Green function in the 
region of momentum space f'f > which for 
attractive scattering is the classically, accessible 
region (Norcliffe et.al., 19690. Calculations of 
for the other regions of momentum space are similar, 
and can be inferred from the results of this calculation.

One-can use the summation rule for the four-dimensional 
spherical harmonics’" to express the second term in 
Equation (2.13) in integral form. One obtains the 
expression(PereLemov and Popov, 1966).

w f e ) *  * S K E K .  j„ ■*/•- » K T J  S,V'P“‘a) (2.20)
Substituting this equality back into equation (2.13) 
and using equation (2.6) we obtain the Coulomb Green
function in momentum representation,

fE -3 __ U f  dp u> K h/V2) slnfov»/i)
(o\ l *̂*°

o f  dfc sioku) 1 .-fx— ^\j,31* J (f -fe )

_ Ib/U 

4rrIs«nh»uijj
(2.21)



The first term ir. this expression is equivalent to 
the G„ of Equation (2.16). The remaining 
integrals can be evaluated quite simply using 
contour integral methods ar.d the residue theorem.

Consider the first term in the square brackets of 
Equation (2.21). The integrand has an infinite set 
of poles at s\r\V\(pi>/2} =. o  . Vie shall use the residue 
theorem to integrate the function F(i) - 
around the contour C which is shown in Figure (2.1) 
along with a schematic representation of the poles 
of F(i) lying within C  . The poles of F ( 0  
are at wher6 0 is an integer 0 £ f\ <1 «o
and each pole contributes a residue (Vrr) -¿xp (~n u)) 
to the integral. In the limit °° the integral
along the arc P approaches zero (Spiegel, p.172), 
and the infinite set of poles contribute to the 
result

« oO »J d p Sin̂ Ju)/̂  =. 4. ̂  (-ftuij (2.22)

The integrand ks»V\ tevo j ( -31 -v i S) has two simple

poles at k - * (3 “ '^63) . The' function
j(a') =  i ivo)/(*1-3V 1S) has only one pole inside
the contour Ci of Figure (2.2) at is +  ̂ 3  , 
and using the residue theorem and taking the limit 
$ 0 (a specification of the analytic

continuation for the Coulomb Green function) we obtain 
the result,
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r dk. = n M p C-'3^) (2.23)

Finally the integrand coVkipOs'^kud/Ck1-^1*^) has
an infinite set of poles at k= nl , and two simple 

poles at k = — '̂ 1*3) • Integrating the
function HO around the contour Cz defined in 
Figure (2.3) we obtain the result

J-* £ 0 ^ (2.24?

Using Equations (2.22) - (2.24) in Equation (2.21) we 
*

obtain the following expression for the Coulomb Green 
function in momentum representation

' F ' ' L ,r I t e r +

*3»r(-y > (-»■¿] ' (2;25,

Using the equality

<  «XfC-^LiL - £  «xpC-nw) (2.26)

and the transformations between £-space and p-space 
given by Perelemov and Popov, we can write for the 
first term in the square brackets,

JL
¿uVm Kuj

Z e.<pf-r\w) _ A. Cfi-fe0(p,J-f£0
|01 lO

4irt5t«U,wi 5 ^  n1-
(2.27)

Or-,6



Hence the Coulomb 
^ &0

Creen function is given by

(f-r-'Xf'V)

3=> OO . \_____ ^  -CX.D (-in\w)
qn5smV,w ^  ̂  *'x + n)1 + J L

¿n s»aV»jo
23)“1

I - ex.f(on3)

This is similar in form to the expressions (2.16) and 
(2.17a) of Roberts,the differences being due to the 
different definitions of and 0 for attractive 
scattering. Perelemov and Popov define o to be 

negative for attractive scqH-e-rioj (E^voHon ( l-ij,
v<V»e.ras o 's j>#sibive. for boIK hoe. re|>o\s\ve and tbg.

attractive case (Equation (2.1^)), and noting that 
the first term in the square brackets of (2.23) is 
just Gr, of (2.16), we see that Perelemov and 
Popov's form of the Coulomb Green function for E>0 
and y is exactly the same as the form
(2.16) derived by Roberts, if w i  redftPine. ^ **

We note that the transformation could be
carried out at the beginning of the analysis in 
(2.13) and (2.14b). In this case care must be 
exercised in the analytic continuation, and the 
sign of $ in the denominator of the integrand of 
Equation (2.14b) is changed. . Then the results (2.16) 
and (2.17a) of Roberts are directly obtained after 
an analysis similar to the one we have performed.



Using Equations (2.14c) and (2.14d) and the same 
method of analysis one can obtain the equivalent 
results (2.17b) and (2.17c) of Roberts for the 
other regions of momentum space.

Therefore the method of Perelemov and Popov in which
the Coulomb Green function is evaluated for E <0

r (¿1and analytically continued to give (x f o r E ">0 

is shown to be equivalent to the method of Roberts 
in which G P  is calculated directly for t > 0.
Chen and Chen (1972) have demonstrated the equivalence 
of the form of derived by Pe'releinov and Popov
with the forms derived by Schwinger (1964), Hostler 
(1964) and Okubo and Feldman (I960) which implies 
that the Roberts expression is equivalent to ail of

r t+)
these forms. The Roberts form of u is such that 
it can be partially expressed as a sum over classical 
paths, and it is this form which we will concern 
ourselves with in this thesis.

The Coulomb Green function is analytic everywhere in 
the complex energy plane apart from the physical 
energy spectrum. It is singular at the bound state 
energy levels for , and along the continuum
cut representing the energy continuum for E ^ O  
These properties have important consequences for the 
two-body off-shell Coulomb T matrix and will be 
considered in more detail in the following sections.



2.3 The Spectral Operato»-

A correspondence identity for the spectral operator, 
Sic — h ) , for positive energy Coulomb scattering 

has been demonstrated by Norcliffe et.al. (19691).
The diagonal elements of the kernel of the spectral 
operator in momentum representation are proportional 
to the quantal microcanonical momentum distribution 
Pt . Evaluating this quantity from our
results for U in the classical limit and 
comparing it with the classical microcanonical 
momentmdistribution provides a useful
check on our results.

*

From (2.16) and (2.17a) - (2.17c) we have for the 
spectral operator

IS(E-H )lf'> =  STi l(& W -& C+> ) y >

=  Pe k-2 ______2 29)
TT2 ( j.’1- Siokv)

where k is given by 1?.= ¿ 1̂ 2 ? 
and

1 ¡or p,f’>p6
3 ^  = or r^rV̂ 30*)

expC-m-o) J*r

Banks (Norcliffe et.al., 19691) has calculated 
normalised to unit inward flux, and for attractive 

scattering the result is



„c m , N _ i>U-rr k3/*>ia 1 fa p^f£

*  ^  ‘ w r  - o ^ r<r E (2-31’

¡.aking the limit p of Equation (2.29) and using
the same normalisation as in the classical evaluation, 
Norcliffe et.al. obtained the following expression

for ^"(f) -

From Equation (2.19) we see that 0 is proportional 
to ' and in the classical limit when "k O then 
0 becomes infinite. Equivalently we could say that 
0 is infinite for large principle quantum number, ft 

In this limit Equation (2.32) reduces to Equation (2.31). 
Thus the classical limit of derived from our
results agrees exactly with the classical result.

Dividing the momentum space as shown in Figure (2.4), 
then the region III, where , j»1 <, , is classically
inaccessible for attractive Coulomb scattering, and 
this is confirmed by the fact that = O  in
this region. Quantum mechanically, barrier penetration 
into region III is a possibility, this fact being 
indicated by the- r.cn-zero momentum distribution for 
the p4.Pe region in (2.32). However on taking the
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classical limit of (2.32), the effects of barrier 
penetration are seen to disappear and the classical 
result (2.31) is obtained.

2. . The- Coul m' T  matrix
Substituting the expression for the scattered wave 
Coulomb Green function (2.25) into Equation (2.3), we 
obtain the form for the T matrix

This is exactly equivalent to the expression derived 
by Shastry and Rajagopal (1972) for the region j>,p'>j?e. 
For the other regions of momentum space a similar 
analysis reproduces the results of Shastry and 
Rajagopal. The analysis of Chen and Chen (1972) implies 
the equivalence of Equation (2.33), and its extension 
to the rest of momentum space, with the various other 
forms of the Coulomb T  matrix cited by Chen.

An alternative form is obtained by substituting the 
Roberts form of the scattered wave Coulomb Green 
function (2.14) and (2.17a-c) in Equation (2.3).
Then the Coulomb T  matrix can be expressed as a 

sum of three terms (Roberts, 1971)

<£lT(E.)l£'> = i ;  + Tf> + Tfc (2.34)



where
T* = In2/» U (2.35a)

T. = -______ tè-_________  <  °̂̂ xp(-lr»lvo) ,2 35b)
f vvnV^iE-Tlie-T'IsinWto ^  rÎ+ë1UT1> ^ - *où

_ _____ -Pt> ̂ Cti t ') exp(iouj) (2.35c)
2tt O p ,i Ie -t I le-T'l (»- e*j>(-wv>)} Stnhw

where ^ = lï«ir| C-^h /k  } T s  ’r = f

and l For T,T'7E
^CT i T ' )  = «X^-nv) For T7E,T'<.£ or T < E ,T '7 l

€xj>(-Jn̂ ) For TiT'<(
(2.36)

t,"= S»<jn (e -T )(e -T ')

"Tj is just the first Born approximation to the *f" 
matrix given by Equation (1.5). Tf ; which we call 
the pole term, is related to the bound state poles of 
the Coulomb Green function. At negative energies 
singularities appear in "Tp for h = ±0 which 
correspond to the bound state energy levels of the 
hydrogen atom. The third term, Tc , contains a 
factor A)CTiT')[| axp(iOuj) which Norcliffe et.al. 
(19691) have shown can be expressed as a sum over 
classical paths. Tc is thus called the classical 
path term.

The classical paths are defined in the normal sense 
only in the classically accessible region I of



Figure (2.U). In this region the path connecting 
the momenta  ̂ and contributes to "Tc- an 
amount proportional to the cosine (sine) of the 
classical action in units of “K along the path. 
Norcliffe et.al. (1969« show that

In analogy with barrier penetration in the quantum 
mechanical case, classical paths may exist in the 
classically inaccessible region III, but not in the 
normal sense. The paths are the analytic continuations 
of the classically allowed paths and an infinite number 
of these paths may connect any two points and 
within or without the classically accessible region.

The real significance of Equation (2.3^) lies in its 
on-shell limit when TjT'-^E , The scattering 

amplitude fCE.é) for scattering at an energy E through 
an angle ©  for short range'potentials is proportional 
to the on-shell limit of the T  • matrix. Hence taking 
the on-shell limit of each term in Equation (2.32) will

where Sc. is the classical action for c complete 
orbits from ^ to . For the case where the path is 
directly along the arc from » to si the action is



five us an expression which can be compared with the 
scattering amplitude. It is found (Roberts, 1971) 
that the on-shell limits of "To and "Ip are equal and 
opposite. Thus the scattering amplitude is to be 
compared with the on-shell limit of a term which may 
be expressed as a sum over classical paths.

Ford (I960 and Schwinger (1960 have demonstrated 
that the on-shell limit of the Coulomb T matrix does 
not exist in a strictly mathematical sense due to the 
long range nature of the Coulomb potential. However, 
Schwinger (1964) has shown that if the free wave Green 
function in Equation (2.3) is replaced near the energy 
shell by the distorted wave Green function, Go , 
which accounts for the Coulomb distortion, then the 
Rutherford scattering amplitude is obtained from the 
on-shell limit of Tc . This on-shell correspondence 
identity leads to the possibility that cross sections 
in atomic scattering processes can be expressed 
in terms of a sum over classical paths.

2.5 The £<0 Coulomb T matrix
The T  matrix we have dealt with so far is the positive 
energy T matrix. Contributions from the E<0 Coulomb 
T matrix are not of much concern to us in 

scattering calculations, however in certain cases they 
are relevant. We therefore quote the results obtained 
by Roberts (private communication) for the E. ̂  0 T 
mobrix vAicb c«r\ be. e.\)oluab«̂  d»r«cHy Pi-o*n Ho«-
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Coulomb Green function representation of 
Perelem.-v and Popov. For attractive scattering we have

= ______
1 n 2/n,/ (e.-t)(e -t ) si«*

x r r  _ m<wOX> </>. 3ncr|2.39)
L JD (tê +v1) s>nh nfe >j ^  ̂  J

where ̂  is defined in Section(2.2). The second term, 
which is omitted in the Perelemov and Popov
representation, i3 due to the fact that for attractive 
scattering when 0;-^ is positive the ^)(2nv0 of 
Equation (2.11) can be singular. Perelemov and Popov 
have just considered the principle part of this function 
and have omitted thp $ -function which is associated 
with the singularity.

For repulsive scattering (̂ (ii$) has no singularities 
and we obtain straight forwardly for the repulsive 
scattering E ^0 Coulomb T matrix

_____^ _______  r *  sir0a(n-y-)k d* ¡ ■) .
2n̂ Aix3Ce-T)fe-T')ŝ Y J 0 (le1**1) S'eWnk

2.6 Properties of the two-body off-shell Coulomb 
*T~ matrix
A comprehensive account of the properties of the Coulomb 
T  matrix has been given in the review of Chen and Chen 
(1972), so here we will just briefly mention the 
properties which concern us m c3t.



ihe Coulono *T" matrix, like the Gre n function, is 
anal/tic everywhere in the complex energy plane apart 
from the bound state polo3 and the continuum cut. It 
is defined on eit.ier side of the continuum cut and 
several authors (Chen and Chen, 1972, Muttoll and 
3tagat, 1 »71) have demonstrated that ib satisfies 
a modified unitarity relation. Indeed Roberts (1971) 
has demonstrated that the unitarity relation is 
related to the spectral operator and thus to 
classical paths by (note error in Roberts’ result)

*

We have already mentioned that the Coulomb T  matrix 
has singularities on the energy shell. It also has 
singularities on the half-energy shell, that is when 
T  E or T 1-̂  E . These singularities lead to the 
factors 3(TlT') in the expression for "1c. . In
practical applications great care must be taken with 
these factors on integrating the T  matrix over the 
momentum variables.

2.7 Summary
To conclude this chapter we summarise the results for 
the form of the two-body off-shell Coulomb T  matrix

t

which we shall utilise in the Faddeev equations to 
solve several atomic collision problems in the next 

two chapters.



i) At. tr act-iv reat terinr

^  ^ IT(e ) l^1'̂ = Ts + Tp +  Tc

TP ^

T* =

^ Pc3

2n
£

^ > .1  le-Tlle - t 'I sìaKu) n-.̂ ,
^  ^  cxd(-Î 1u )

Tc = -Pc4 ' ^(TiT*) exp(Wuj)
Zn^/4,13 | £ - t I|£-T'| 5inV»w I -€ *p (-2 n tf)

^ = s ^ ^ ( e - t )Ce -t ’)

I. For T ,T '>£
3(T,t O  - ¿Xp(-1T>3) Por T > E (T'<e O-v ITCE.t S E

<*p(-2rw) for T,t '^E

<?= fVp* 

i + V ' f - f '11

j j>t =

+ (josVwaJ for T"r’>£ artd r,T'<E

-tosViu) f°r T>£ 'T'<£ «"¿Tt£,T,>E.

ii) Repulsive scattering
For the case of repulsive scattering we must change 
the sign of the Coulomb interaction factor jl 
The results then become

<^IT(e) 1£ ”> ^ T a  + TV+Tc

-r ___ fc
6 ^ an^p-p'l*-

(2.42a)



T P - __________Z Cl5£Ll^)
4t51/<ix3IE-t |IE-T,|sioUu) ^ ^  J+O7- [2.4.2b)

-j- _ ft* f>)(.T|-T')fcXp(-iouX)______
C 2 n ycta5 lE-Tl lE-T’ I (l-e* pC-in^si^u ( 2... 2c )

E, = s.iy> (e -V )  (e - t ’)
ex^-irro) Por T ,T ’>e 

^(-nTO = ^KpC-nO) P o rT > E |T ,<£ o"d
| F0r T.T’̂ e

v> - Ì V fE , pc =

and \0 is defined the same as in the attractive case. 
For repulsive scattering the classically accessible 

region is region III where f'fv fe •



CHAPTER 3

THE ELASTIC e-H SCATTERING PROBLEM 

3.1 Introduction

Or.e of the most fundamental three—body processes in 
atomic collision physics is the elastic scattering of 
electrons by atomic hydrogen in its ground state.
This direct collision process is represented by

where 1 is the incident electron, and we designate 2 

to be the bound electron and 3 to be the proton.

The transition amplitude for the process (3.1) is the 
matrix element <f|TPll> where l and |f> 
represent respectively the initial and final'free7states 
of the system. In the first order iterate of the Faddeev 
equations the three-body T  operator, "To , is the sum 
of two terms, Tj and is thetwo-bcdy off-shell
Coulomb T  operator in the three-particle Hilbert space 
for the interaction between the incident electron and the 
proton, with the bound electron as a spectator particle, 
and similarly Tj represents the incident electron 
interaction with the bound electron. The expressions for 
the two-body off-shell CoulombTmatrix (Equations (2.34) - 
(2.36), (2.42)) will be utilised to calculate the 
transition amplitude.



The scattering amplitude, F(& ,0), for the t-H  scattering 
process is given in terms of the transition amplitude by 
(Newton, p.219)

P(E,©) = -VvTTV. <E\T»\l>  (3.2)

where M i is the mass of particle 1, the incident 
electron, reduced relative to the centre of mass of the 
(2,3) particle system. The scattering amplitude is 
complex and the differential cross section, i is
given by

i* =  \P(E,©')12' ‘ (3.3)
d vJl -*

The asymptotic momentum of the incident electron is 
initially and finally. The energy conservation

relation for the system is

Ei + 4 (3.4)
where Et and Eg are respectively the initial and final 
bound state energies of the hydrogen atom. For the case 
of elastic scattering from the ground state I =• l.%e| , 
and Et = Eg =■ Eis =■ , where p, is the
Bohr momentum for the ground state of hydrogen and Mu 
is the reduced mass of the (2j3) two-particle system.

The Faddeev equations and the derived forms of the two-body 

off-shell Coulomb T matrix are in the momentum 
representation. It is therefore convenient to work in the 

barycentric coordinate system which is described in the

next section.



3.2 The Barycontric Coordinate ."vstem
The collision process is shown schematically in Fipure
(3.1). i he transition amplitude is K. F I "To | è ̂

and the initial and final 'free' states are given in the 
barycentric coordinates appropriate to the initial 
conditions by

“ S(P-Pv') (3.5a)

< Ê q t, ^ \ P >  -  s(e-eF)s (v -vv)<WVi) (3*5b)

The barycentric coordinate relations to the laboratory 
coordinates are shown in Figure (3.2). The total 
momentum vector of the system is .£ , the subscript
L and £ indicating respectively its initial and 

final values. The coordinate is the momentum of 
relative to the centre mass of the (2^3) system, and

is the relative momentum of . and p3+ in their 
own centre of mass frame. The coordinates and 
are conjugate momenta and a cyclic permutation of the 
subscripts is allowed depending on the initial conditions 

(Chen et.al., 1969), so that the states |t> and IF > 
could equally be defined on the If, basis or the
I £ ̂  basis. The (̂ĉ , factor in Equation (3.5a)





represents an initial plane wave state for the incident

is the ground state wave frnction of the hydrogen 
atom in momentum space. The total energy, E. , of the 
system is

electron-proton contribution to the scattering 
amplitude and <.P)Tilc> representing the electron-

momentum representation of using the appropriate

barycentric coordinates is

momentum* we will work from now in the full barycentric

factor indicates the conservation of momentum of the 
bound electron as this is considered to be a spectator 
particle in the electron-proton interaction. The 
matrix element < ^ , 11* (01 <$>/> is the two-body 
off-shell Coulomb T  matrix of particles 1 and 3 in 
their own two-body centre of mass frame, and we note

electron in the momentum representation, while

(3.6)

where M  and M\ are defined in Figure (3.2).

The matrix elements representing the

electron contribution are evaluated separately. The

= S(f-f) 'T *(£ - £ ' 0 V ^ ( 3.7)

Physically S(.£-P') implies the conservation of total

frame where £  is taken to be zero. The



that the centre of mass energy £, is dependent on the 
kinetic energy of particle 2 (Ahmadzadeh ar.d Tjon, 1965).

Using Equations (3.7) and (3.5a,b) we obtain for

-  J ....... j'd ^ . d d ^ J  p)  4  is* (% i) *

(3.8)

The integrations over and %/ are trivial leading to 
the result that g_, = and throughout the
remainder of the integrand. To further reduce the number 
of variables we can express in terms of ?
and ^  by using relations from Figure (3.2) and the 
fact that for the P=C Ur^enVr^system (i = l|2,3)

We obtain the coordinate relation



The mass of the proton is of the order- of 10^ 
times greater than the mass of the electron, (ni = rr>C; 
so we may take the limit  ̂oo without losing
substantial accuracy. This limiting process is 
equivalent to considering the proton to be stationary 
during the collision, ar.d is a standard approximation 
for the electron-hydrogen problem. In this limit with 
the use of Equations (3.8) and (3.10) and the expression 
for ŝ3i from Figure (3.2), the matrix element 
(P-1 reduces to an integration over one

momentum vector,

= $ii (̂ *)

The calculation for the electron-electron contribution 
is similar to the above and the analogue of Equation 
(3.8) is

< p ITjUilO = £  ■ • J j  v  d V S^ , .
(3.12)

* Slv-v'Xt1*- >T»£e
where we now have the coordinate relations

%* = “ (3.13)ihpKhj
Again the integrationsover and can be
performed trivially and in the limit we obtain

for <P I T j( E )

<p It 3Ce ) K >
r . . * . . i (3.14)

= j d * ,sC^+v )  ( y +i^» I‘13(e - ^ ) \  v  + ^ 7



In Equations (3.11) and (3.1/*) we must substitute the 
expressions for the attractive and the repulsive twe- 
body off-shcll Coulomb T  matrices respectively. We 
have been mainly concerned with the T" matrix for 
positive energy £ y O , i.e. for the regions <C2rrvcE”
in Equation (3.11) and <Vv«y£ in (3.14). For 
the remaining regions of Ivl and Ivl space we must use 
the O  form of the Coulomb "T matrix given by 
Equations (2.39) and (2.40). For example, Equation (3.11) 
must be divided into two integrals

expected that the s econd integral is negligible and we 
shall ignore this contribution in most of our calculations. 
In fact, the insignificance of this integral can be 
demonstrated numerically for the physical processes we 
consider (Roberts, private communication). The same 

arguments hold for ^

We are mostly interested in contributions to <.FlTa(e)ll> 
and <.?'T>(e')W'> from the classical path part of 
the T  matrix, Tc , so in.the next section we shall 
evaluate <f|Tac (e)\t> and lTjC(e)U^ where the 

c superscript indicates that the classical path term 
of the two-body T  matrix has been used. In later 
sections we shall evaluate contributions from the Born 

and pole terms of the "T matrix.

For tne scattering proDiemyvnereem.wnere , it is to be

(3.15)



Àj-2__ E v a l u a _ .f the nnsical path term’

a) the electron-proton t erm >Tac(0 1 \-~y 
The electron-proton contribution to the scattering matrix, 

, is relatively simple to calculate 
and reduces to a one-dimensional integral. The inter­
action is attractive so we make use of Equation (2.35) 
for Tc. . The choice of the factor ^(TiT*) depends 
on the sign of (j"-E") and (T -£ ) . From Equations (3.4), 
(3.6) and (3.7) we have for the electron-proton 
interaction,

which because of the equivalence of the pairs of
(3.16)

conjugate momentum variables can be written

T - 1  =  ¿ " „ ( V +  5 , U » , +I»*')<3.16.)
Therefore (J'O is positive and we can similarly show 
that (t '-e) is also positive, so that S C m O - i must

be chosen in the expression for TL . We also note that 
this implies that the electron-proton paths all lie in 
the classically accessible region of momentum space.

Taking the limit f * \ j w e  therefore have for Tc.

_______
C * 2nOfneJle.-Tllt-T' | 6

where from (3.9a) and (3.16a)

(3.17)



From the definition for and oj for attractive 
scattering we have

and
(3.19a)

1
(3.19b)

It is apparent that ~Tc is independent of the angular
part of the vector ^  . The ground state hydrogen atom
wave functions in (3.11). are also independent
of angle, so the integration over angle car. be performed 

*
trivially. The momentum representation of the functions 

is given by (Bethe and Salpeter, p.125)

a*’3 ̂ 0  ** TT ( 3 . 20)

Expressing all quantities in atomic units, that is, 
momenta in units of the Bohr momentum j>o , and energies 
in Rydbergs, then we obtain for I "TiCCE)\i."̂

<FITx£Ce) U >
31 da ^1 exB(»U«»ai

J <^f (\ +-j * V*111 ‘ (3.21)

where
_2E - f W :  

? - (\+£t (3.22a)

and

•

CoS^ viis \ + 1 (3.22b)

.* = Ip t f * (3.22c)



b) the electron-electron term <F1T3c(&)\Q

We car see from Equations (3.1+), (3.6) and (3.12) that
T - t  = i ’5-! -  f2>M.Tl ' 2a4. W U  1x41,/

¿¿A > 0

We can similarly shew that (T'_£.) O and hence from 
Equation (2.12) for the repulsive interaction, we must 
choose ^(TiT') •= ex̂ (-itr\>) < The sign of £f-t) and 

(Tl_t) implies that the electron-electron paths are 
solely in the classically inacces-sible region of 
momentum space.

Again expressing all quantities in atomic units we obtain 
from Equations (2.1.2) and (3.21+) the expression for 1c.

TL
Per* expf'Vuj) exyC-mo) I
t* W ^ (3,25)

where 2r =
2Çz e -v »)&<£
0 (3.26a)

CosW uj = \ + (3.26b)

and the coordinate relations are

= v  *v (3.27a)

Vi' ~ 4> * ̂
(3.27b)

We see from these relations that the electron-electron 
T matrix is dependent on ^  , and this makes this 

contribution more difficult to evaluate than the one 

from the electron-proton interaction. On substitution



of equations (3.20) and (3.25) into (3.1̂ -) we obtain

From Equations (3.27) and (3.23) we see 'that we need to
know the angles between 3̂ and , and between <̂s
and <̂, . We are at liberty to choose the orientations
of and in momentum space. For convenience we
have chosen the polar axis to bisect the scattering
angle O so that . and are coplanar and are 

*
aligned as shown in Figure (3.3). Then the angles 
between the two fixed vectors and 3̂ , which has
polar angles ©" and $ , are given by

loS((̂ 3,̂ i') = <j> Su’v e/l -+ coraQ'z. (3.29a)

Writing Equation (3.23) more explicitly we now obtain

M  )(,+i«)0+ xtV'1 0 -as l.-l/t-rèss ^
where o < V 4»"* 2 (3.29)

C© q̂f) = Sù\& sJa sCr.^2. + taaS-cos o/^

n3<vy ft.
„ o (!+ l u T  6+ ^ ) v^ H t - «*p

C3.3I-)
where

and (3. Sib)
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Finally we express the results for the electron-proton 

and electron-electron interactions in terms of their

From Equations (3.2), (3.23) and (3.23), and writing

amplitude from the electror.-proton classical path term, 

we obtain

From Equations (2.35a), (2.42a), (3.11) and (3.14) it is 
apparent that the two-body T  matrix , Tb ; for both 
electron-proton and electron-electron interactions is 

independent of the variables of integration. The 
contribution to the scattering matrix then reduces in 
both cases to integrating a product of bound state 

hydrogen atom wave functions.

For the electron-proton case we have

fact for all but the lowest energies, contributions from

contributions to the scattering amplitude

(3.32)

and

3.4 Evaluation of the Dorn Term <-F I ~ T ° C 1

We have argued,(Equation 3.15) ,that the limits on the 
integration over should be o<l^l<.(0* . Th 

integrand in (3.34) is proportional to \ , so in
integration over

the region will be insignificant.





form of the two-body off-shell Couloab "T matrix in 
the first order iterate of the Faddeev equations 
demonstrates explicitly that the latter contain the

scattering problem.

Sum-.njEquations (3.3?) and (3.37) we obtain the total 
contribution to the scattering matrix from the Born

3.? Evaluation of the pole terms
From the expressions for the two-body off-shell Coulomb 

T  matrix we see that the pole term is in fact an 
infinite sum of contributions. On the energy shell 
only the r\ = o term contributes, so we shall initially 

calculate this term.

We already know, from our calculations of the classical

(t-T’), so we can infer that for both attractive and

(2.35b) and (2.L2b) that the pole terms for the attractive 
and repulsive interactions differ only by sign and mass

first Borr. approximation fer the elastic €.- H

term of the two-body T  matrix.

(3.33)

path contributions, the sign of the factors

repulsive interactions the factor
is p o v t W C  . In fact it is apparent frem Equations

fa ctors.
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a) the ol. : -rr tcc term <.f \ iV’fE.') \ c /*

The analysis is much the same as for the classical 
path term and we shall just quote the result for

]"["1PIo1(e')\L^ i the zero order pole term for the 
electron-proton interaction

< f n S * k ) \ 0  =-iFr^jo (3-39>
where 2: is defined by (3.22a).. The analysis is simply
extended to include all orders of the pole term. Vie note
from Equation (2.35b) that for £, = I , the contribution
from f\«-l is equal to the contribution from n = I-
Thus, the ntts order pole term (where n can be positive 

*
or negative) is given by

<f lTi*rt(e)\'0

ib .(¿P (3.40)

^ \f0 + ii)”1- ( e 0

b) the electron-electron term < f  n3ffrOU>
Again this calculation is more difficult than the one for 
the electron-proton contribution, however utilising the 

results of the classical path electron-electron 
calculation we may write down the analogues of equations 

(3.39) and (3.40)
<?\T3n e)u> o,L

i f a -  (3.4i)

«here 'tnd4 *  are defined by ( 3.31«),( 3.31b)

and (3.26a) respectively.

_ u .  r . ______ __ (3.42)



Vie therefore obtain for the contributior.3 to the
scattering amplitude from the r>\U order pole terms

a.'iu

— it 
nlAn O+V^+V»1̂ 10+'W'1L D̂Cl

Before quoting the results for the calculations of 
F»(e.e) , ^ E >e) and PciE,e) , we note that the 

pole terms and Born terms arc purely real, whilst the 
classical path term has a complex part. Thus the complex 
part of the scattering amplitude is attained solely from 
contributions from the classical path terms. Ae obtain 
the total contribution for each of the three terms by 
summing the contributions from the electron-proton and 
electron-electron interactions, the real and imaginary 

parts being summed separately for the classical path 

term.

3.6 Calculations and Results
The Born contribution to the scattering amplitude has been 

evaluated analytically. Unless we make further approxim­
ations the pole terms and the classical fcath term must be 
evaluated numerically. For both of these terms the electron 
proton contribution is a one-dimensional integral whilst 
the electron-electron contribution involves a more 
difficult three-dimensional integration. Aie shall firstly 

evaluate the various orders of the pole term and compare



the contributions to the scattering amplitude with those 
obtained from the Born term, 'tie may therefore examine

(3.41) at high energies it is apparent that the majority 
of the contributions to the integrals come from small 
or \%?l . This would indicate that the on-shell limit
is being approached since for example ̂ this limit is 
given for the electron-proton interaction by

At high energies , and hence the on-shell
limit is approached when is small. A similar 
argument holds for the electron-electron interaction.

The integrations in Equations (3.39) and (3.40) are 
performed using a subroutine RKMER4 of Banks.
One half a second of processing time is taken on the 
Elliott 4130 at Stirling to provide a result for the 
scattering amplitude at one energy and one angle. The 
electron-electron interaction integrals are performed 

by using the RKMER4 routine twice and a Gaussian method 
for the $ integration, the integrands being a slowly 

varying function of the azimuthal angle. The time to 
achieve one result is much longer, being of the order of

whether the on-shell correspondence identity is being 
approached.

a) The F:l' and P:rn tc
On examination of the integrands of Equations (3.39) -

(3.45)

one and a half minutes.



In Figures (3.4) and (3.5) wc compare the contributions 
to the scatterinp amplitude from the IVO pole term 
with that from the r\=±| pole terms at energies of 200ev 
and lkev, and at scattering angles between 5° and 90°.
At 200ev and 5° scatterin? angle the contribution from 
the first order terms is approximately 1% of the 
contribution from the zeroth order pole term, this 
percentage decreasing rapidly with increasing angle.
For scattering at lkev the value of the contributions 
from the r>=il terms relative to those from the n* O  
term is even less than the 200ev case at all angles of 
scattering. Thus for energies greater than 200ev, 
contributions from„the First'order pole term are 
negligible in comparison with the teroth order 
contribution, an effect which increases with increasing 
energy. This effect is evidence that the on—shell limit 
is being approached at high energies. By examination 
of Equations (3.40) and (3.42) it is evident that 
contributions from the h=±2 pole terms will be less 
than those from the h—id terms. We shall therefore 

neglect all but the zeroth order pole term in our 

calculations.

In Figures (3.6) and (3.7) we compare the contributions 
to the scattering amplitude from the zero order pole 
term with those from the Born term. At an energy of 
200ev for scattering angles below 30° there is no evidence 

of cancellation'of the Born and pole contributions. 
However at scattering angles above 30° the percentage 
difference between the magnitudes of f #(E|©) and f (£i©)
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is never greater than 20$ reducing rapidly as the angle 
increases so that the contributions almost cancel at 

90° scatteri* - ai 1< . At lkev this parcenta 
different® is smaller than that at 200ev fo” all 

scattering angles. Henceforth we shall ignore 
contributions from the pole and Born terms for E>r20Oev 
and 0 ">/ -3cP , an approximation which is very rood 
for a large part of this range and still good for lower 
energies and angles. The cancellation of the pole an- 
Born contributions is a further indication that the 

on-shell limit is approached at high energies.

Thus, for the angle" and energy range defined, we can to 
a good approximation express the scattering amplitude, 
and therefore the differential cress section, in terms 

of the classical path part of the T  matrix. The 
on-shell correspondence identity is being satisfied and 
a physical explanation of this phenomena can be obtained 
from consideration of a classical picture of the collision 

process as follows.

At high energies the electron velocity is large and the 
time of interaction between the electron and the atom is 
short compared with the period of rotation of the bound 
electron around the nucleus,.We can assume that for 
large angles of scattering the electron has passed close 
to the nucleus, U.e. the impact parameter is small), and 
the effect of the bound electron is small. In fact the



effect of the bound electron is a small perturbation 
of the two-body Rutherford scatterinr process and a 
correspondence identity is known to exist for the 
latter (Norcliffe et.al., 1969b). For low angles of 
scattering the impact parameter is large, contributions 
from the electron-electron interaction become important, 
and the Rutherford scattering identity r.p longer holds.
The electron-electron interaction is also important at 
low energies when the period of the bound electron is 
much shorter than the interaction time. Therefore, in 
the region of scattering we have defined, which is close 
to the on-shell region for elastic £-H collisions, the 
Rutherford correspondence identity is approached and the 
scattering amplitude can be expressed in terms of classical 

paths. For lower energies and angles of scattering, 
quantal and three-body effects are important (viz. the 
pole and Born terms) and the scattering amplitude cannot 

be expressed so simply.

b) The Classical Path Term
The computational procedure for calculating the classical 

path terms is similar to that used to obtain the pole 
terms. Again the electron-proton single integral given 

by equation (3.32) can be evaluated relatively simply 
and quickly, whilst the electron-electron contribution 
proves more difficult to compute. Both terms contribute 
real and complex parts to the scattering amplitude. The 
angular distributions of the contributions are shown for 

two-energies in Figures (3.8) and (3.9).
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For scattering angles above 30° the contributions from 
the electron-electron interaction are negligible. This 
is in accordance with the arruments in the last paragraph 
of Section 3.6a. In later calculations it shall be 
convenient to neglect the electron-electron contributions, 
though we retain them for completeness in this section.

The differential cross section is found by taking the 
modulus square of the scattering amplitude. Our results 
for for elastic e-H scattering are shown by

curve 1 of Figures (3.10) and (3.11), where a comparison 
is made with the results obtained using a standard first 

Born approximation -calculation.

At E = 200ev the discrepancy between the Born result and 
the classical path result is large. For scattering angles 
less than 30° the Born differential cross section approaches 
a constant at zero angle, whereas the classical path result 
peaks sharply. In fact, as we shall see, the classical 
path differential cross section is divergent at zero angle 
scattering. Above 30° scattering angle although the 
angular distributions predicted by the two theories are 
similar, the classical path differential cross section 
is considerably larger than the Born. At lkev scattering 
the angular distributions are similar to those at 2C0ev, 
however for large angle scattering the magnitude oP the 
Born and the classical path results are closer though 

by no means equal.
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At energies higher than lkev we can show both numerically 
and analytically that the classical path differential 
cross section approaches the Born for all but small 
angles. However, at 1500ev the classical path 
approximation differs from the Born by 40$ (Hutton and 
Roberts, 1972) and one must go to very high energies 

before the results agree.

Chen et.al. (1972) have evaluated the angular distribution
for the elastic ft-H scattering process using the first-
order iterate of the Faddeev equations and a form of the
two-body off-shell Coulomb T  matrix derived from the 

*
Schwinger contour integral representation (Chen and Chen, 
1972). The latter is equivalent to the Roberts form but 
Chen essentially calculates the differential cross section 

retaining all three parts of the T  matrix. At 200ev 
above angles of 30° Chen’s results are indistinguishable 
from ours. This confirms the supposition that in this 
scattering range one can predict differential cross sections 
correctly in the Faddeev approximation by retaining only fa«, 

classical path term in the expression for the T matrix. 
Below 30° scattering angle$Chen's results differ only 
slightly from ours and appear to diverge at zero angles 

of scattering.
•

Chen compares his results with the relative experimental 
measurements of Teubner et.al. (unpublished) and a 
Glauber approximation result (Tai et.al., 1969). The 
angular distribution agrees with the experimental 
findings over much of the range, but of course the same



agreement is found between the Born calculation and the 
renormalized experimental results. A lack of absolute 
experimental measurements at 200ev make it impossible 
to verify conclusively the magnitude of the differential 
cross section.though recent absolute measurements for 
50ev e-H elastic scattering (Ttvbr.er et.al., 1973) seem 
to suggest that the Born approximation gives the more 
accurate prediction. Above 30° scattering the Born and 
Glauber results are identical. Recent work by Chen 
(Chen et.al., 1973) shows that in the second order 
iterate of the Faddeev equations for elastic e— H 
scattering, the differential cross section reduces 

to the Glauber result.

In Figure (3.12) we present a distribution of the 
differential cross section as a function of energy at 
a fixed scattering angle. Choosing ©  = 60° we can
ignore contributions from the electron-electron 
interaction so that the differential cross section is 
calculated from the classical path electron-proton part 
of the T matrix only. The energy dependence of the 
differential cross section calculated from the classical 

path approximation is seen to be similar to the Born 
distribution, «*<! in the high energy limit there is 
a slow convergence of the former result on the latter. 
From our results and Chen's we conclude that only for 
very high energies do differential cross sections 
calculated from the first order Faddeev equations tend to 

the first Born approximation result.
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c) Z' a; .-1. -il -ul ■; 1 -r.s

As the scattering angle approaches zero we can approximate 
several of the factors in the classical path terms, which 
makes the latter easier to compute and gives insight into 
the source of the zero angle divergence of the differential 
cross section. From Equations (3.21) and (3.22a,b) for 
the electron-proton classical path term we see that as 
0 O then 3; 0 and using the logarithmic representation

of

we obtain the following expressions for the real part

For the electron-electron term we can perform two of the 
three integrations analytically in the 0 - ^ 0  limit and 

we obtain the result from Equation (3.30)

<0
we see that W

[_ l + t i)l J (3.46)
x in this limit. Utilising this result

9ac*(e ,©) and the imaginary part F2ci(E(©) of the

scattering amplitude

and

(3.47a)



From these results we see that in both cases the real

for clastic collisions), whereas the imarinary part is 
finite at zero ar.plss. Numerical calculations on the 
above results give the same values for the zero angle 
differential cross section as calculations performed at

the classical path term. This is a valuable check on the 
correctness of our computational procedure. It is also of

at small angles which leaves the possibility that the 
zero angle divergences in the' scattering amplitude may 

cancel.

We have mentioned that we do not expect the classical 
path term to provide good results at small angles of 
scattering. It is more interesting to examine the 
behaviour of the contributions from the full "T matrix, 
including the t<0 T  matrix, at zero angles. Taking 
the zero angle limit W  O of the factor representing 

the sum of the pole and classical path terms we obtain

part of the scatterinr amplitude diverges as

small scattering angles ("O i”') using the general form of

note that r“ (Eie) opposite sign

06 uj
L'l 1  -» e+o *8 (3.50)

In thTsam e way ^  O  in  the zero angle l im it  and we 

obtain fo r < H T x C E >) U >  a sum of three terms

<f I-WIEW <f »V ° \ L >

(3.51)



where < F C} is the Born term at zero scattering
angle, and the second and third terms come from the 
i <o, £ > o  T  matrix respectively. For the electron- 

electron interaction we have in the zero angle limit
*  < F \T i e° U >- p r c +

Since <9lTito|t> + <f\T1?eK >  
angle limit then the three-body

J (3.52)
pOakt'i.T' _J
is finite- in the zero
T  matrix is given by

<F|T(E)K>= ^  (3.53)
TT»»v 6q J 1 + ^

oClij.KF^-

Therefore thescattering amplitude diverges as (At) 
at zero scattering angles. In physical reality this of 
course is not true] and it appears that the zero angle 
divergence of the differential cross section for elastic 
scattering is inherent in the Faddeev approximation because 
of the long range nature of the Coulomb potential. Chen 
and Sinfailam (1972) also obtain a zero angle divergence 
for elastic e-H scattering, although they have not 
included the effect of the €■< O Tmatrix, and attribute 
this to the same cause (Chen, private communication).

We note from Equations (3.51) and (3.52) that a change 
of sign in one term would cau.se the cancellation of the 

(Ml" divergence. In a previous note (Hutton and 
Roberts, 1972, heareafter referred to as Paper II),



factor init was stated that by altering the

Equation (2.35c) for the electron-proton interaction,

obtained. This is inconsistent and incorrect. The

changed for the repulsive interaction so that the
divergence would not be cancelled.

*

In Paper II we presented results for the differential cross

Equation (3.32). We demonstrated that the magnitude of 
the differential cross section is strongly dependent on

energy limit when all three factors give results which 
converge on the Born. Re-examination of the derivation

used in Equation (3.32) is correct and that the results 
presented in Figure (3.9) are the true value of the 
differential cross section obtained from,the first order 
iterate of the Faddeev equations for the process considered. 
The discrepancy between the magnitudes of the differential 
cross sections given in the first order Born and Faddeev 
methods at large scattering angles is real and due to the

cancellation of the (A;) singularity could be

factors are uniquely defined in the formalism 
and even if the reasons given for changing
(viz. that the value of the factor depends on
the normalisation of the Coulomb distorted spherical

Xu)wave associated with br0 , see Chapter 2 page30 ) were 
valid, then to be consistent would have to be

wave associated with

section obtained by taking different factors in

which value of ûCt .t 1) is used, apart from in the high

of the factors has confirmed that the value



fact that important contributions are contained in the 
seconi order Faddeev term (Chen et.al., 1973). The 
zero angle divergence of the differential cross section 
is a non-physical property associated with the long 
range nature of the Coulomb potential.

c) Hirh energy limit
At high energies ( E ^  ) and scattering angles above
10° the electron-electron classical path contribution is 
small and we can express the scattering amplitude solely 
in terms of the electron-proton contributions. In the 
high energy limit we know that the major contribution 
to the integral in Equation (3.32) comes from small 

and we may write

In the high energy limit is independent oi

may be written

non-zero scattering angles, and in this limit the 
scattering amplitude reduces to a real function which is 

equal to the first Born result.

(3.55)

Thus \)u) approaches zero slowly in the limit for

(3.56)



According to Horcliffe ct.al. (19691) tfvd is the classical 
action function in units of along, in this case, a
path joining the vectors and . We can assume
then that the classical action must approach zero in the 
high energy limit. From Eouation (2.38) we sea that the 

action along the path between the fixed vectors 
and , Spi, & fp where ro is. the distance

of closest approach. It is a well known result of 
classical mechanics that for hyperbolic orbits the 
distance of closest approach f0 ot. ^  1 . Therefore the 
action 5fi is proportional to and at high
energies and fixed scattering angles Sfi tends to 
zero. We infer that the slow convergence of the first 
order Faddeev result on the Born, is in part associated 

with the action along the classical paths slowly 
approaching zero in the high energy limit. We assume 
that the second order Faddeev calculations of Chen et.al. 
(1973) will bear some relationship to this phenomena.

3.7 The Total Cross Section
The total cross section for elastic scattering is given by

(3.57)

We shall investigate the use of the classical path 
expression for the scattering amplitude in Equation (3.57). 
An obvious difficulty arises at small scattering angles as 

is singular at © - O  . In Figure (3.13)

we have plotted the integrand l P(E,e) 1* s*''® as a
function of the scattering angle ©  for both the Born 
and the classical path approximations at E =  lkev. Clearly



FIGURE 3 '3



there is a massive discrepancy at small anrles. The 
Born result for & is generally believed to be 
good because of the small angle behaviour
of the differential cross section in the Born 
approximation. Therefore using the classical path 
approximation P cCe i©) in Equation (3.5?) will lead 
to total cross sections which are orders of magnitude 
too large.

We have attempted to over come this difficulty by
introducing a cut-off in P CCE|&) at a certain

©  , and extrapolating to small © using an *
expansion of PC(E ; ©) about PC(E,o) . However, 
the choice of the cut-cff. angle and the type of 
expansion used are so arbitrary that the results for cr 
are meaningless. In no circumstances were we able to 
reproduce the correct high energy behaviour of cr , 
which is E. as predicted by the Born approximation.

b) The Optical Theorem
The optical theorem relates the total cross section,
Crv̂  , for all processes, elastic, excitation and 

ionisation from the ground state, to the imaginary part
of the forward scattering amplitude (Messiah,p.866)

•

6 ^  -  5? U  PCe.o) (3.53)

In the approximation we have used only the classical path 
term contains an imaginary part so we can express G»-»»-



in terms of the imaginary part of the zero angle classical 
path contribution to the scattering amplitude. From 

Equations (3.43b) ar.d (3.49b) we have

^  = Sf E___ 5*4-^---- v

-v
(3.59)

where
< ) „  3)-l) 1[} <V # ] S ” D -1

O, - - r = ^ T  (3.Ó0JV| -

= Nil E-<£
(3.60b)

We are interested in the high energy limit of fffpi- 
In this limit >7, and the contribution to 
from the electron-proton interaction is given by

oi
- V

__ vyr 256 _£_*■
4- 1 *T J 0 T j + S 1

(3.61a)
*  W

The integral is obtained trivially and we obtain the 

high energy limit

Ci-**'cx) _  ITT (3.61b)

E-5oO

Similarly the high energy limit of the contribution to 
the forward angle scattering amplitude from the

electron-cltclfon paths is
<5) *fc£ '18 -1- -L1 “  rrr trr 1= q7 q j  in- 2 *•

r  ̂ (3.62a)
J e L lu ctniv)iSJ

The integral, although more complicated than that for the 
p1prtron-Droton interaction, can be evaluated by contour



integration and in the high enerpy limit gives the 
result

5 1 TT 
Ë*oO 21'1

(3.62b)

We therefore see that theory predicts that cv0t- 
approaches a constant for C-^^o . We have checked 
Equations (3.6lb) and (3.62b) numerically, and although 
at the very high energies necessary for the asymptotic 
value to be approached our programme loses accuracy, it 
appears that the theoretical limits are approached and 
that decreases to these values at high energies.

The correct behaviour of Oi0v- at asymptotic energies . 
is given by the Bethe form (Mott and Massey, p.496)

first order Faddeev improves on the first order Born, 
which gives Ofoi' — O  from the optical theorem, it does 
not give the correct high energy behaviour. In the first 
order Faddeev approximation three-body effects are 
neglected and these will alter the behaviour of C+0v- 
calculated from the optical theorem, when higher orders 
of the Faddeev expansion are taken into account. Roberts 
(1967) has shown that the imaginary part of the forward 
scattering amplitude calculated in the second Born 
approximation yields the optical theorem for the first 
Born approximation. We therefore expect that calculations

(3.63)
where ^ and 6 are constants. Therefore although the



of the second order Faddeev amplitude will vastly improve 
predictions for rot from the optical theorem.

We note that the forward scattering amplitude can be 
calculated directly from the spectral operator by 
allowing in Equation (2.29). have a
correspondence identity for the spectral operator 
(Norcliffe et.al., 1969b) and therefore in principle 

can be expressed via the optical theorem 
in terms of classical paths. The subjects of unitarity 
of the Coulomb T  matrix, the spectral operator and the 
optical theorem are seen to be interelated to each other 

and all dependent on classical trajectories.



CHAPTER 4

THE INELASTIC C-H SCATTERING PROBLEM

In this section we shall deal only with direct collisions, 
a brief mention of rearrangement collisions will be made 
in the final chapter. Equations (3.1), (3.2) and (3.0 
describing the scattering process, the scattering 
amplitude and the conservation of energy respectively, 
hold for the case of inelastic scattering with minor 
modifications to some of the terms in the equations.
The initial and final energies Ei. and £p , and the 
magnitudes of the asymptotic momenta and ^  are 
r.o longer equal for inelastic collisions, but must be 

calculated from Equation (3*0 for- -ach individual 
process considered. The differential cross section is 
given in terms of the scattering amplitude by (Mctt and 

Massey, p.475)

= 4M f U , e ) f  u.i)
dvfL V

We shall deal only with the n= transition in
hydrogen. The A si. state of hydrogen has two substates 
of the orbital quantum number l ; < * 0 known as the 
li state and A*l , the state. The state
is further subdivided into three levels characterised 
by the magnetic quantum number m  , which can take the 
values 0,-1 . Neglecting the spin-crbit and hyperfine
interactions the four A.Z states are degenerate in



energy, the energy of this level being E* =
Thus the relationship between the initial and final 
momenta is

The transition amplitude is calculated in the first 
order iterate of the Faddeev equations for each of the 
transitions between the ground state and or.e of the four 
excited substates. The total amplitude is just the sum 

of the individual contributions.

We shall aga'r concentrate our attention on the 
contributions arising’ from the classical path tern; of 
the two-body T  matrix, and examine the cancellation 
of the pole and Born terms only qualitatively. Much 
of the analysis follows on from Chapter 3.

U.l The Classical Path Terms
The coordinate relations in the barycer.tric frame for 
the inelastic scattering process are the same as for 
elastic scattering, We can write down the analogues of 
Equations (3.11) and (3.14) by simply changing the final 

state wave functions

< f  ($ tatyiXy 'Tï(E'kOl0z,.3a)

<f IT3(e))L> *

where is the final state wavefunctior. of the

Z/*, (4.2)

bound system.



The definition of the two-body T  matrices is 
dependent or the sign of (i-T^ and (t ~T ) . For both 
the elcctrcn-p^obcr. and the electron-electron interactions 
we can show that T jT'^E. as for elastic scattering.
We must therefore make the same choices for rtj(TiT') , 
that is, r^T,T') = l for the attractive interaction, 
and for repulsive scattering. Proceeding
with the analysis as in Chapter 3 we obtain the following 

results for the matrix elements

where _ '

(4.4)

(4.5)

and u3 and 5 are as defined in (3.22b,c).

<S'T3(t)Vc> = — —  r <H*) ‘'1

where ¿(2E-«|i) A<jz (4.7)

10 and ^ are defined in (3.26b) and (3.29), and 
and we defined in Equations (3.31a,b). The
momentum transfer is given in atomic units by

1 + u>s © (4.8)

where from (4.2)

+ J
** (4.9)



Equations (4.4) and (4.6) hold generally for all 
transitions. It only remains to consider specific 
transitions and to insert into these equations the 
relevant wave functions

a) Is— transition

The 2s state wavefur.ctior. of hydrogen in momentum 
representation is

~ If (4*10)
The wavefur.ction is independent of angle so we obtain 
once again a sinrle integral in the expression fcr the 
electron-proton term and a triple integral fcr the
electrcn-electror. term. The resulting contributions to 
the scattering amplitude are

•ix

h  j0 ( ^ ‘4 u (f+')s/i 1 -«

-iWS _____ cb̂ -'iq iL. i ? )
^  J  + 1 "

0 4 ^ '  4(2 eY1«-

b) U-2y transitions
The wavefunctions of the three sublevels of the Zp 

states of hydrogen are

m = o
*  =±l

; <M0  * T  ç f r t f  ^ &

) ^ r v i } 3 e

(4.13a)
(4.13b)

The final state wave function is the only factor in 
Equation (4.4) with angular dependence. Or. performing



the angular integration we find that for each value of on

<P1Ti(e)1v. > = 0 (4.14)
and her.ce the contribution to the scattering amplitude 
for the transition from the electron-proton

interaction is zero.

Therefore the only contribution to the cross
section is from the electrcn-electrcn paths, tie have 
seen for elastic scattering that at large angles of 
scattering these paths contribute a negligible amount 

to the cross section and there is notning different 
about the inelastic' process which could alter this fact. 
We therefore expect that in this approximation the 
contributions to the l\n\-*2 cross section from 
transitions will be underestimated, and for this reason 

we place less importance on our calculations

than on the 1$- 2 s  calculations.

We must take care in formulating the angular part of the 
electron-electron contribution to the ls-2j> transition 
amplitude. The angular integration in Equation (4.6) 
is over the vector 3̂ whereas the final state wave-

function is defined by ^  -V y  • We must relate 
the polar coordinates of *0 to those,(M),
of Sp in order to simplify the integration. Figure 

(4.1) shows the orientations of . V» and ^  , and
on taking components of these vectors along the *.£ 
and * axes we obtain the following coordinate relations
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-<?b-

Id s  ©  —
<̂ p t o  6 / x  +  o s ? &

(4.15a)

= 3 2 ^ (4.15b)
V »

t m  ( f ) 1 -

-  a ,  Sv-v© t o ^ (4.15c)

-  S w 6 / i  - V ^ S vn©  sC^4>

V F

(4.15d)

where

q̂ ç = i'̂ /is^s^<f) (4.16)

rhe contribution to the scattering amplitude from the 
Is-2p(m  = o) transition is frcm Equations (4.6), (4.13a) 

and (4.15a)

Fi,oCE,e^
_! .¿WI f. ( q c t o - V ^ W t h ) 4.17)

and from Equations (4.15b,c,d) we obtain from 

transitions to the fV\ = Ì \ levels

f,,t,(s,e)

„ 4 r .. -b.
,AÜ v

4,2 The Pole and Born Terms 
Insertion of the Bern term of the two-body Coulomb T  

matrix into Equation (4.3a) for the electron-p-oton



matrix element leads to a zero contribution for all 
final state wavefur.ctions • The two-body

T  matrix is independent of the variable of 
integration, and the initial and final state wave- 
functions are orthogonal in each case. The only 
contribution to the scattering amplitude ccmes from 
the electron-electron interaction, and we can assume 
that these contributions will be small. We have 
calculated analytically the Bern term for the \s-2s 

interaction, and found that it is equal to the result 
achieved using the first Born approximation.

✓
The pole terms are simply calculated and are similar in 
form to the pole terms fox elastic scattering, apart from 
the slight modifications needed for inelastic scattering 
which appeared in the analysis for the classical path 
terms. In the Ij-ÎS transition there are contributions 
from both the electron-proton and the electron-electron 
interactions, but for transitions only the latter

term contributes.

The cancellation between the pole term and the Borr. term 

is not so complete for the \s-is transition as for 
elastic scattering. This is largely due to the zero 
contribution from the electrbn-proton Bern term. Thus 
at an energy of 200ev and a scattering angle of 20 , 
the differential cress section would be halved by 
inclusion of the Born and pole terms rather than using



solely the classical path terms. However, at a 
scattering angle of 60° the effect of these two terms 
is negligible, and at high energies, for instance,
1500ev, their effect is small for scattering angles above
20° .

Can we say that the or.-shell correspondence identity
holds for the transition? For small scattering
angles we would not expect the identity to be true. For
low energies (,v20Cev) in the energy range considered we
have seen that the identity is not satisfied as closely
as for elastic scattering, though-within an order of
magnitude the arproximation .is good. For higher *
energies the correspondence identity is satisfied over 
the whole angular range considered. With these 
reservations we shall apply the classical path terms in 
the Faddeev equations to calculate differential cross 
sections for energies above 200ev and scattering angles 

greater than 20°.

For ls-2y transitions we have already stated that the 
contributions from the Born, pole and classical path 
terms are likely to be insignificant in comparison with 
the Is -Zj contributions to the scattering amplitude.
Other than attempting to explain this phenomena physically, 
we shall neglect all contributions frem the ls-2.j> 
transition, so that the rest of .this chapter will in the 
main be concerned with the ls-2s transition.



4.3 Resul ton r d n i pc.: os io n
Equations (4.11), (¿*.12), (¿*.17) and (4.18) have been 
solved numerically using the computational techniques 
described in the section or. elastic scattering. The 
electron-electron terms, for both the ls-2s and the 
\s-2p transitions, are found to be numerically 

insignificant in comparison with the electrcn-proton 
term for the ls-2.s transition. The following results 
are calculated frcm the latter term which is the sole 
contribution of significance in the classical path 
approximation. In figures (4.2) and (4.3) we present 
the angular distributions of the differential cross 
section at two incident particle energies; comparisons 
are made with the Borr and the Coulomb projected Born 
(Geltman and Hidalgo, 1971 , hereafter referred to as 
CPB) results.

It is immediately apparent that the angular behaviour 
of the Born differential cross section is very different 
from the similar behaviour predicted by the other two 
theories. This is a result of the artificial cancellation 
of the electron-proton interaction in the first Born 
approximation. As stated in Chapter 3, large angle 
scatterings are caused by the incident particle passing 
close to the nucleus, in which case the electron-electron

i
contribution to the cross section is small. This explains 
why the Born approximation gives reasonable results for 
small angles of scattering, but underestimates the cress 

section greatly at angles above 60?



F I G U R E  W-l

iV\ó<Uol- «.ACf̂y 2oO tv.



FIGURE U--3

i*'cid€.''F 1500Í-'/.



Although at large ar.gles of scattering the angular 
distribution of the classical path term cross section 
is very similar to that of the CPB approximation, their 
magnitudes differ widely. At both 200ev and 1500ev 
the classical path term predicts a cross section higher 
than that of the CPB approximation, and there is no 
apparent convergence of the two results at high energies. 
Recent calculations using a polarised orbital distorted 
wave method (KcDcwell et.al., 1973) predict cross sections 
close to the CPB result at 200ev.

For small angle scattering the classical path cress section 
peaks in the forward direction whilst the Born and CPB 
results converge to a constant. The classical path cross 
section is however finite at zero scattering angle since 
the momentum transfer is non-zero in this limit, and as 
has been mentioned, the inclusion of the pole and Born 
terms reduces the cross section at small scattering 
angles. The zero angle behaviour is still different 
frem the Bern and CPB behaviour even if these terms are 
included, a pronounced peaking in the forward direction 

resulting.

It was stated in Paper III of the series (Hutton, 1972) 

that by using a different form for 3 c‘nT') in (4.3a), one 
obtains a differential cross section closer in magnitude 
to the CPB result. This choice of is arbitory
and as for elastic scattering we reiterate that a unique 
definition of ^(TiT1) leads to the correct result given 

by Equation (4.11). '



We have already stated that the ls-2o differential 

cross section contributes a negligible amount to the 
cross section. Taking the results 

presented in Figure (4. 2) to be N't ft-'-*4cross section 
at 2C0ev, our value is still ar. order of magnitude higher 
than the CPB result, though the angular distributions 
are almost identical at large scattering angles. The 
experimental results quoted by Geltmar. and Hidalgo 
(Williams, 1969) are normalised to the CFB approximation, 
so that the magnitude of the differential cross section 
is not definite.

For a fixed scattering angle the energy dependence of 
the differential cross section using the CPB approximation 
is E * , whereas the Born result goes asymptotically as
E*b for Is-2s excitation and E 1 for )s-2j> . We have 
supposed that the classical path approximation has the 

asymptotic energy dependence

E
ddl E-X)

- A

(4.19)

and have plotted against for several fixed
values of the scattering angle. A typical result is 
shown in Figure (4.4) for ©  = 90°. Deviation from the 
correct straight line behaviour is only apparent at 
g <500*/ . The value of ft. is given by the gradient 

of the line, and in Figure (4.5) we tabulate the values 
of n- obtained at different scattering angles. Within 
the error involved in measuring the gradient, we see that 
it lies between 3.1 and 3.2, and no regular dependence 
on the scattering angle is apparent. The behaviour of



We have already stated that the ls-2^ differential 

cross section contributes a negligible amount to the 
*)2 cross section. Taking the results 

presented in Figure (A.2) to be hst ft-'"*4cross section 
at 2C0ev, our value is still ar. order of magnitude higher 
than the CPB result, though the angular distributions 
are almost identical at large scattering angles. The 
experimental results quoted by Geltmar. ar.d Hidalgo 
(Williams, 1969) are normalised to the CPB approximation, 
so that the magnitude of the differential cross section 

is not definite.

For a fixed scattering angle the energy dependence of 
the differential cross section using the CPB approximation 
is E*5 , whereas the Born result goes asymptotically as
£'b for Is-2s excitation and E for )s-2p . We have

supposed that the classical path approximation has the 

asymptotic energy dependence

=  (4.19)C(0I
and have plotted («¡g,) against for several fixed
values of the scattering angle. A typical result is 
shown in Figure (4.4) for 0 = 90°. Deviation from the
correct straight line behaviour is only apparent at 
E <500*/ . The value of ft. is given by the gradient 
of the line, and in Figure (4.5) we tabulate the values 
of ft- obtained at different scattering angles. Within 
the error involved in measuring the gradient, we see that 
«. lies between 3.1 and 3.2, and no regular dependence 
on the scattering angle is apparent. The behaviour of
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the differential cross section at high energies is 
therefore very close to the CFB approximation behaviour, 
and confirms the discrepancy between the latter and the 

Bern result.

This result is particularly important. The different 
limiting energy dependence of the CFB approximation and 
the Born approximation is shown to be a result of the

r-b
classical path part of the T  matrix. The behaviour
of the Born term is cancelled by an equal but opposite 
contribution from the pole term, leaving the classical 
path term to dictate the asymptotic energy behaviour. 
Experimental investigations are needed to establish the 
correct limiting energy dependence of the differential 

cross section at non—zero scattering angles.
a#

U.U The Coulomb projected Born approximation 
This approximation was originally formulated for 
rearrangement collisions (Geltman, 1971) and was modified 

by Geltman and Hidalgo to describ- the excitation of 
hydrogen atoms by electrons. The transition amplitude 
between initial and final states is given in coordinate 

representation by

-Tip *  < $ p fo.cO Ifo^Ti I O V * )  k k 0 >  (4-20)
Here the incident and bound electron coordinates are 
given respectively by £, and &  with respect to the 

proton which is considered fixed at the origin. 
is the solution of the scattering problem obtained if one 
ignores the electron-electron contribution iD -rl| ;



is the initial wave functionand cx ( £*•)
for the electron and atom at infinite separation.
Essentially the CFB approximation evaluates the matrix 
element of the repulsive interaction, and allows for the 
distortion effect of the electror.-proton interaction by 
including it in the final state wave function. By doing 
this the CFB approximation avoids the incorrect sharp 
decrease of the differential cross section at intermediate 
scattering angles predicted by the first Born approximation.

We have transformed the CPB approximation for excitation 
into the barycer.tric momentum representation and obtained 
the following expression for the scattering amplitude.

The scattering amplitude in the first order Faddeev 
approximation involves a sum of two terms, both of 
which are single integrals over a momentum vector.

term. This difference in the expressions for the 
scattering amplitude makes a>formal comparison of the 
two theories difficult, however there are certain

In the CPB approximation f (t-i©) is an
integral over two momentum vectors, but is a single

is an

similarities which we note below.



the Coulomb factor <*. ■= -'O . OnAt high energies 
making the identification

|+ =. 1 + *' = tosKu)' (4.22)
V-\‘

we obtain in the integrand a factor

cn>v*jl 4- i«0 ¿1U) -V ^ L* + “/‘l  (4.23)

We cannot identify 5L and u)1 with i and So , but 
can see that factors similar to the classical path 
term and the pole terms do appear in Equation (4.23). 
The fact that these terms cannot be separated out in 
the CPB approximation, is probably due to the mixing 
of momentum coordinates inherent in the double integral 
of Equation (4.21). The similar angular distributions 
of the CFB and Faddeev cross sections for inelastic 
scattering suggest that a formal comparison of the two 
theories may be possible, and further research along 

these lines would be profitable.

4.5 Concluding Remarks
We mention briefly here three phenomena which merit 
further investigation. Firstly that at high energies 
the electron-proton classical path contribution to the 

Is-Zs differential cross section tends ,to zero. It 
thus paradoxically appears to approach the Born result 
in the high energy limit. We have been unable to show 
analytically that the electron-electron classical path 
contribution approaches the corresponding Born term at 
high energies, but it appears numerically that this may



At high er,orgies the Coulomb factor <A. - 
making the identification

- C . Or.

\J r  I +  i  1 = ( 4 . 2 2 )
vx-\^

we obtain in the integrand a factor

e " ,v*, , j j  + ^ ¿ 1U) -fr C - ^  - 1  ( 4 . 2 3 )

We cannot identify i! and w' with i and vo , but 
can see that factors similar to the classical path 
term and the pole terms do appear in Equation (4.23). 
The fact that these terms cannot be separated out in 
the CPB approximation, is probably due to the mixing 
of momentum coordinates inherent in the double integral 
of Equation (4.21). The similar angular distributions 
of the CFB and Faddeev cross sections for inelastic 
scattering suggest that a formal comparison of the two 
theories may be possible, and further research along 

these lines would be profitable.

4.5 Concluding Remarks
We mention briefly here three phenomena which merit 
further investigation. Firstly that at high energies 
the electron-proton classical path contribution to the 
ls-Zs differential cross section tends ,to zero. It 

thus paradoxically appears to approach the Born result 
in the high energy limit. We have been unable to show 
analytically that the electron-electron classical path 
contribution approaches the corresponding Born term at 
high energies, but it appears numerically that this may



be the case. It would be strange if in the Faddeev 
formalism the same error appeared which makes the born 
approximation unreliable for the calculation of 
differential cross sections, at large scattering angles, 

for inelastic scattering.

Secondly, and related to the latter phenomena, we 
consider the effect on the calculations of allowing 
the proton mass to be finite. The scattering process 
then needs a different description though many of the 
results are unchanged. Chen (1971) and ourselves have 
shown independently that the effect of a finite mass 
proton on elastic scattering calculations is to alter the 
asymptotic energy dependence of the differential cross

• (osection from E to E. . The proton, which is now free 
to move, absorbs recoil energy, thereby accelerating the 
decrease of the differential cross section with respect 

to energy.

More importantly for inelastic scattering, the inclusion 
of a finite mass proton in the theory would mean that 
the electron-proton contribution to the Born term for the 

is-Zs transition, to the high energy limit of the dasstcol 
â r«;«aHo* for the lS-2.3 transition, and to the 

transition were all no longer zero. The 
infinite mass approximation is good for elastic 
scattering and excitation, but for the
transition when the electron-electron interactions are 
small, the inclusion of the finite mass of the protonWoo^ 
significantly alter the results.



Finally, having shown that the differential cross section 
is finite at small angles for inelastic scattering, 
ask whether we can predict correct total cross sections. 
The classical path calculation of the differential cross 
section is strongly peaked for forward scattcrir.r, an., 
therefore the integrated cross section is overestimated, 
if calculated from this term alone. By including all 
three parts of the Coulomb X  matrix one may in 
principle be able to predict the correct zero angle 
behaviour, in which case the integrated cross section 
would also be correct. However, there still remains 
the apparent over estimation of the differential cross 
section by the first order iterate of the Faddeev 
equations, an effect which it appears can be overcome 
by including second order terms (Chen et.al., 1973). 
therefore assume that the first order iterate of the 
Faddeev equations is insufficiently accurate to predict 
correct total cross sections.



CHAPTER 5

CONCLUDING REMARKS 

5.1 Rearrangement Collisions
Controversy over the correct limiting energy dependence 

of the total cross section for electron exchange 
processes such as proton impact on hydrogen atoms has 

existed for many years. In a review article,
(Bransden, 1965),it is demonstrated that even within 
the first Born approximation ambiguities exist as 
to what is the correct energy behaviour. Brinkman, 
and Kramers (1930) -argued that the internuclear . 
potential should not contribute to the cross section 
to order where ^  is the mass of U *  ?r*oA.Bates
and Dalgar»\o(1952) included the internuclear potential 
in their calculations and found that the limiting 
energy dependence of this term was equal to that of 
the Brinkman-Kramers term and its effect was to reduce 

the cross section by one third. The second Born 
calculation of Drisko (1955) indicated a different 
asymptotic limit altogether from the first Born 

approximation.

It was thus hoped that the Faddeev approach would resolve 
these ambiguities inherent in the Born approximation.
In the Faddeev equations occurred the two-body off-shell 

T matrix for the proton-proton interaction, and it 
was reasonably hoped that this term would be considerably 
smaller than the bare potential term. Bransden has



shown that at high energies the scattering is confined 
almost entirely to the forward direction. We have 
shown for direct collisions that the classical path 
term of the T matrix is of no use for predicting 
differential cross sections at small angles of 
scattering. The use of this term in the Faddeev 
equations for rearrangement collisions is therefore 

ruled out.

Chen (1972) has reviewed the work of his group on 
rearrangement collisions. It appears that in the 
first order iterate of the Faddeev equations the limiting 
energy behaviour of-' the cross section lies between the 
Brinkrcan-Kramer ar.d Bates-Dalgai-ao results. Furthermore 
it is shown that the second order terms of the Faddeev 
equations make significant contributions to the cress 
section, though all of these contributions are not 
evaluated. The Faddeev equations have up till now 
failed to resolve the ambiguities in the limiting 
energy dependence of the total cross section for 
rearrangement collisions.

5.2 The Faddeev Equations
We have applied the first order iterate of the Faddeev 
equations to both elastic and inelastic collisions at 
high energies. Comparison between our results and those 
of Chen and Sinfailan (1972) for the elastic differential 

cross section at energies above 2C0ev and scattering 
angles above 30^ show that the classical path



approximation to the T  matrix is good. It therefore 
appears that for elastic scattering the first order 
Faddeev and Borr. approximations make considerably 
different predictions for the magnitude of the- 
differential cross section. Convergence of the 
two results is only apparent at energies an order of 
magnitude greater than that energy at which the Born 
approximation is expected to be accurate, experimental 
investigations tentatively suggest that the differential 
cross section is overestimated in the first order 
Faddeev approximation. For inelastic scattering the 
predictions of the Faddeev method improve on the Borr, 
in that the incorrext rapid decrease of the differential 
cross section with angle is avoided. The Faddeev 
differential cross section is greater in magnitude than 
that predicted by the Coulomb projected Bern result 
(Geltman and Hidalgo, 1971), though the angular and 
energy distributions of the two theories are very close.

As has been mentioned recent investigations of the 
second order term of the Faddeev expansion by Chen 
et.al. (1973) have suggested that there are important 
contributions to the differential cross section IKi* Krm. 
The second order iterate of the Faddeev equations has 
been evaluated in the eikonal approximation using the 
angle approximation for the classical trajectories 
(Chen and Watson, 1969). Singularities appearing in 
the calculations for the first and second order terms



of the series cancel when the terms are summed. These 
singularities are associated with the difficulties 
involved in taking the on-shell limit of the Coulomb 
"T matrix. In the second order iterate of the Faddeev 
equations for elastic scattering at 200 ev, the 
differential cross section calculated in this way 
is very close to the prediction of the first order 
Born approximation. We conclude therefore that the 
differential cross section for direct collision 
processes is overestimated by the first order iterate 

of the Faddeev equations.

The Coulomb T'Matrix and the Significance_of

the Correspor.denee Identities 
Due to the long range nature of the Coulomb potential 
singularities appear in the on-shell limit of the 
two-body off-shell Coulomb T  matrix. These singularities 
lead to factors in the differential cross section which 
are responsible for the difficulties mentioned in 
Section (5.2). The ambiguities in the definition of 
the differential cross section due to these factors 
referred to in the literature (Hutton and Roberts,1972, 
Hutton 1972) have been removed. Singularities in the 
Coulomb T  matrix also appear at zero scattering angles 
for elastic scattering, and these lead to a small angle

i
divergence of the differential cross section.

The on-shell correspondence identity for the Coulomb 
T  matrix (Roberts, 1971b) is shown to provide a good



approximation when used to describe scattering phenomena 
at energies above 2C0ev and scattering angles above 30°. 
Outside of this region quantal effects are important in 
the form of the Born and pole terms of the Coulomb 
T  matrix. The correspondence identity is related to 
the correspondence identity for the spectral operator 
(h/orcliffe et.al. 1969b) so the latter is also shown 
to stand up to a physical test. Classical considerations 
associated with these correspondence identities have 
been shown to contribute to the explanation of
i) the slow high energy convergence of the Born and 

Faddeev differential cross sections for elastic 

scattering.
ii) the differing energy dependences of the differential 

cross section for inelastic scattering predicted by 
the Bern and Coulomb projected Born theories.

Thus, despite the reservations about the application 
of the first order iterate of the Faddeev equations, the 
classical path approximation is shown to be a useful 
method, reducing the complication of calculations at 
high energies and giving insight into the physics of 
direct atomic collision processes.



APF’EKLIX

Calculation of the electron-electron part of the Born 
T-matrix contribution to the elastic scattering 

ampl: tude ,

We need to evaluate

< f I Tj6(eMO = 5 ^ ^  j  ^  <&• *V v )  (A*1)
It is convenient to transform to the dummy vector 

X given by

x = * V
then (A.l) can be written

(A.2)

<f I T56(e ) \ l>  = -  P° -  U  * h * ( * )  < W * + (A. 3)
Inserting the expression for the momentum r pace wave 
functions given by Equation (3.20) and performing 
the trivial angular part of the integration, we 

obtain in atomic units

<?\Tit,( i ) \ o = r  *
(A.4>

*«0
The integrand is even so we can write

J . <A% x olx x ....... (A.5)



Consider integrating the function F(0 around the 
contour C shown in Figure (A.l) where

W  =
The function has poles inside Cat of
order 2, and at ir'i+Aq of order 1 . The residuesr
are simply calculated by reference to Spiegel (p.172)

(A.6a)

and

wnere

^  i e + e - 6 ^ ] 1
(A ,6b)

Rt) is the residue of the pole at 2 = t

Similarly we integrate the function 2 ®  around C- 

where

v 2"
= (A*7) 

and has poles at St = i- of order 2, and at
h= v.-£><̂  of order 1, both lying inside C . The 
residues of these poles are given by

^ (A.8a) 

(A.8b)

Now letting and noting that the contribution
from the curved part of the contour 0  tends to zero
in this limit (Spiegel, p.174) we have using the

residue theorem
. 8_______

< 9 (A.9)
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