Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.
by

ALI AKBAR MEHRVARZ

Presented for the Degree of

Doctor of Philosophy in Mathematics

University of Stirling, Stirling

May, 1979

ACKNOWLEDGEMENTS

INTRODUCTION(i)CHAPTER 1 1
CHAPTER 222
CHAPTER 3 47CHAPTER 459
CHAPTER 574

ACKNOWLEDGEMENTS

I am indebted to Professor D A R Wallace, who was my Supervisor during my years as a research student, for his assistance, patience and encouragement. I shall always be grateful.

I wish to thank the entire members of the Department of Mathematics for useful discussions and friendly dispositions. I should like to thank the University of Tabriz for granting me study leave for a period of three years.

My thanks are also due to the members of my family for their patience.

I wish to thank Mrs May Abrahamson for the skill and patience with which she typed this thesis.

INTRODUCTION

Let R be a ring and let G be a group. The group ring $R(G)$ of G over R is the free left R-module over the set of elements of G as a basis in which the multiplication induced by G is extended linearly to $R(G)$, [12].

A twisted group ring $R^{\gamma}(G)$ of G over R is an R-algebra with basis $\{\bar{g} \mid g \in G\}$ and with an associative multiplication $\bar{g} \bar{h}=\gamma(g, h) \overline{g h}$ for all $g, h \in G$, where $\gamma(g, h)$ is a unit in the centre of $R,[13]$.

In [5] Higman proved that the only units of finite order in the group ring $R(G)$, where R is the ring of rational integexs and G is a finite abelian group, are $\pm g, g \in G$. In [16] Sehgal proved that the only units of finite order in the group ring $R(G)$, where R is the ring of rational integers and G is an arbitrary abelian group, are $\pm t$ where t is a torsion element of G. Moreover in [16] he proved that the units of $R(G)$, where R is an integral domain and G is a torsion-free abelian group, are of the form $r g$ where r is a unit in R and $g \in G$. Also in [15] he proved that the units of $R(\langle x\rangle)$, where R is a commutative ring with no non-zero nilpotents and no non-trivial idempotents and <x> is an infinite cyclic group, are of the form $r g$ where r is a unit in R and $g \in\langle x\rangle$.

In [17] Zariski and Samuel studied R-automorphisms of the polynomial rings $R[x]$, (that is, automorphisms of $R[x]$ which restrict to the identity mapping on R) where R is an integral domain. In [3] Gilmer determined R-automorphisms of the polynomial
rings $R[x]$ where R is a commutative ring. In [2] Coleman and Enochs studied the corresponding results in general. In [9] Parmenter studied R-automorphisms of the group ring $R(\langle x\rangle)$ where <x> is an infinite cyclic group and he determined necessary and sufficient conditions that $x \rightarrow \sum a_{i} x^{i}$ induces an R-automorphism of $R(\langle x\rangle)$. He also studied the units of $R(G)$ where R is a commutative ring and G is a right-ordered group.

This thesis consists of five chapters. Chapter 1 contains some well known results and definitions that are needed in this thesis. In Chapter 2 we extend some ideas of [9] to a twisted group ring $R^{\gamma}(\langle x\rangle)$ where $\langle x\rangle$ is an infinite cyclic group and we determine a necessary and sufficient condition that $\bar{x} \rightarrow \sum a_{i} \overline{x^{i}}$ induces an R-automorphism of $R^{Y}(\langle x\rangle)$. Chapter 3 studies R-automorphism of $R(G)$ where R is either a field or a ring with a unique proper ideal and G is a finitely generated torsion-free abelian group. In Chapter 4 we determine the units and study the K-automorphisms of $K(\langle x\rangle x<y\rangle)$ where K is a field and $\langle x\rangle$ is an infinite cyclic group, $y^{2}=1$. In [10] Passman proved that the group algebras of all non-isomorphic p-groups of order at most p^{4} over the prime field of p elements are non-isomorphic. In Chapter 5 we attempt to find the corresponding results for the p-groups of order p^{5}, but the problem is still open.

CHAPTER 1

In this chapter we present certain well-known definitions and general results which are needed in this thesis. Throughout this thesis we understand by the word 'ring', an associative ring with a multiplicative identity 1 . We use multiplicative notation for groups and we write 1 for the identity element of a group.

Definitions 1.1

Let R be a ring and $r \in R$. Then,
(i) r is said to be an idempotent if $r^{2}=r,[7,8]$.
(ii) r is said to be nilpotent if there exists a positive
integer n such that $r^{n}=0,[7,8]$.
(iii) r is said to be a proper divisor of zero if $r \neq 0$ and
either there exists $s \in R, s \neq 0$, such that $r s=0$ or there exists $t \in R, t \neq 0$, such that $t r=0$, [8]. (iv) r is said to be a unit if there exists $s \in R$ such that $r s=s r=1$. Then s is determined uniquely by r and we write $s=r^{-1}$, [8]

Lemma 1.2

Let R be a ring. If $r \in R$ is nilpotent, then $1-r, l+r$ are units.

Proof

Since the proof for the case $1-x$ is similar to the proof for the case $1+r$ we consider the case $1+r$. Let $r^{n}=0$ for some positive integer n. Then we have

$$
(1+r) \sum_{k=0}^{n-1}(-1)^{k} r^{k}=1+(-1)^{n-1} r^{n}=1
$$

Definitions 1.3

Here we make the standard definitions with regard to ideals of a ring R. We should remark that throughout this thesis ' $x \in y$ ' means that x is a subset of y and ' $x \subset y$ ' means that x is a proper subset of y.
(i) I is a prime ideal of R if whenev A, B ideals of R such that $A B \subseteq I$, then $A \subseteq I$ or $B \subseteq I$, [8].
(ii) I is a maximal (right, left) ideal of R if $I \neq R$ and there exists no (right, left) ideal A in R such that $I \subset A \subset R,[8]$.
(iii) I is a nil ideal of R if every element of I is nilpotent, [7, 8].

```
(iv) If I is an ideal of R such that }\mp@subsup{I}{}{n}=(0)\mathrm{ for some
positive integer n , I is said to be a nilpotent ideal [1].
```


Definition 1.4

Let R be a ring. Then the smallest positive integer n such that $\mathrm{nl}=0$, is called the characteristic of R. If no such positive integer exists R is said to have characteristic zero.

As is well known, the characteristic of an integral domain is either zero or prime [8].

Definition 1.5

The intersection of all prime ideals of a ring R is called the prime radical of $R,[1,7]$.

Lemma 1.6
Let R be a commutative ring. Then the proper ideal P of R is prime if and only if R / P is an integral domain [1, 7].

Lemma 1.7

The prime radical of a commutative ring R consists of all nilpotent elements of R, [7].

Lemma 1.8

Let R be a commative ring. Then the proper idealM of R is maximal if and only if R / M is a field [1, 7].

Definition 1.9

The intersection of all maximal right ideals of a ring R is called the Jacobson radical $\delta(\mathrm{R}),[7]$.

Definition 1.10

The group ring $R(G)$ of a group G over a ring R is the free left R-module over the set of elements of G as a basis in which the multiplication induced by G is extended linearly to $R(G) \quad$.

Thus if $\sum_{i=1}^{m} \alpha_{i} g_{i}, \sum_{j=1}^{n} \beta_{j} h_{j}\left(\alpha_{i}, \beta_{j} \in R ; g_{i}, h_{j} \in G\right)$ are
typical elements of $R(G)$ then their product is defined by:

The notion of group ring extends to that of a twisted group ring as follows.

Definition 1.11

Let R be a ring and let G be a group. Then a twisted group ring $R^{\gamma}(G)$ of G over R is an R-algebra with basis $\{\bar{g} \mid g \in G\}$ and with an associative multiplication defined as follows:

$$
\bar{g} \bar{h}=\gamma(g, h) \overline{g h} \text { for all } g, h \in G,
$$

for some unit $Y(g, h)$ in the centre of R, $[11,12]$.

The associativity condition $x(y z)=(x y) z \quad(x, y, z \in G)$
implies that

$$
Y(x, y z) \gamma(y, z)=\gamma(x, y) \gamma(x y, z) \quad(x, y, z \in G)
$$

Taking $y=1$ in the last identity we have
$Y(x, z) \quad Y(1, z)=\gamma(x, 1) Y(x, z)$ whence

$$
\gamma(1, z)=\gamma(x, 1) \quad(z, x \in G)
$$

Taking $x=1$ we have $\gamma(1, z)=\gamma(1,1)$ for all $z \in G$ and so we have

$$
\gamma(1,1)=\gamma(1, z)=\gamma(x, 1) \quad(z, x \in G)
$$

Also by taking $x=1$ in $\bar{x} \bar{y}=\gamma(x, y) \overline{x y}$ we have $\bar{I} \bar{Y}=\gamma(1, y) \overline{l_{Y}}=\gamma(1, y) \bar{y}$ and this implies that

$$
(\gamma(1,1))^{-1} \overline{1} \bar{Y}=\bar{Y}, \quad(y \in G)
$$

Again by taking $y=1$ in $\bar{x} \bar{y}=\gamma(x, y) \overline{x y}$ we have $\bar{x} \overline{1}=\gamma(x, 1) \bar{x}=\gamma(1,1) \bar{x}$. This implies that $\bar{x}\left[(\gamma(1,1))^{-1} \overline{1}\right]=\bar{x}$. Hence we conclude that $(\gamma(1,1))^{-1} \overline{1}$ is the identity element of the twisted group ring $R^{\gamma}(G)$ of G over R. We write $(\gamma(1,1))^{-1}$ briefly $\quad \mathrm{Y}(1,1)^{-1}$.

Now let $g \in G$. Then from $\bar{g} g^{-1}=\gamma\left(g, g^{-1}\right) \bar{l}$ and $\overline{g^{-1}} \bar{g}=\gamma\left(g^{-1}, g\right) \overline{1}$ we conclude that $\bar{g}\left[\gamma(1,1)^{-1} \gamma\left(g, g^{-1}\right)^{-1} \overline{g^{-1}}\right]=\gamma(1,1)^{-1} \overline{1}, \quad$ and $\left[\gamma(1,1)^{-1} \gamma\left(g^{-1}, g\right)^{-1} \overline{g^{-1}}\right] \bar{g}=\gamma(1,1)^{-1} \overline{1}$. But $\gamma(1,1)^{-1} \overline{1}$ is
the identity element of $R^{\gamma}(G)$ and so

$$
\gamma(1,1)^{-1} \gamma\left(g, g^{-1}\right)^{-1} \overline{g^{-1}}=\gamma(1,1)^{-1} \gamma\left(g^{-1}, g\right)^{-1} \overline{g^{-1}},
$$ the inverse of \bar{g}. Also this implies that $\gamma\left(g, g^{-1}\right)=\gamma\left(g^{-1}, g\right)$ for all $g \in G$.

Furthermore, let I be an ideal of R and let $\bar{R}=R / I$. Let a bar - denote a residue class (mod I) i.e.
$\bar{a}=a+I$
$(a \in R)$.

Then from $\gamma(x, y z) \gamma(y, z)=\gamma(x, y) \gamma(x y, z),(x, y, z \in G)$ we have $\overline{\gamma(x, y z)} \overline{\gamma(y, z)}=\overline{\gamma(x, y)} \overline{\gamma(x y, z)}$.

Consequently we may construct the twisted group ring
$\bar{R} \bar{Y}_{(G)}=(R / I) \bar{\gamma}_{(G)} \quad$ by defining

$$
\bar{x} \bar{y}=\overline{y(x, y)} \overline{x y} .
$$

Now we define $\phi: R^{\gamma}(G) \rightarrow \bar{R}^{\gamma}(G)$ by

$$
\phi\left(\sum_{g} \alpha_{g} \bar{g}\right)=\sum_{g} \bar{a}_{g} \bar{g}
$$

It is straightforward to check that ϕ is a ring-epimorphism. From this we conclude that if $\bar{L}_{g} \alpha_{g} \bar{g} \in R^{\gamma}(G)$ is a unit in $R^{\gamma}(G)$, then $\sum_{g} \bar{\alpha}_{g} \bar{g}$ is a unit in $\bar{R} \bar{\gamma}_{(G)}$.

Lemma 1.12
Let R be a ring and let $\langle x\rangle$ be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. then $\overline{x^{m}} \overline{x^{n}}=\overline{x^{n}} \overline{x^{m}}, \quad(m, n$ integers $)$.

Proof
To prove the lemma it is enough to prove $\gamma\left(x^{m}, x^{n}\right)=\gamma\left(x^{n}, x^{m}\right)$.
By (1.11) we have

$$
\begin{array}{ll}
\gamma(w, y<z) \gamma(y, z)=\gamma(w, y) \gamma(w y, z), & (w, y, z \in\langle x\rangle) . \\
\gamma(1, z)=\gamma(y, 1)=\gamma(1,1), & (z, y \in\langle x\rangle) . \\
\gamma\left(y, y^{-1}\right)=\gamma\left(y^{-1}, y\right), & (y \in\langle x\rangle) .
\end{array}
$$

First we prove by mathematical induction that $\gamma\left(x, x^{m}\right)=\gamma\left(x^{m}, x\right)$, m positive integer. For $m=1$ there is nothing to prove.

Assume $m=2$, by taking $w=y=z=x$ in (1) we have
$\gamma\left(x, x^{2}\right) \gamma(x, x)=\gamma(x, x) \gamma\left(x^{2}, x\right)$. This implies
$\gamma\left(x, x^{2}\right)=\gamma\left(x^{2}, x\right)$ because $\gamma(x, x)$ is a central unit
in R. Now we assume that $\gamma\left(x, x^{m}\right)=\gamma\left(x^{m}, x\right)$, m positive integer, by taking $w=x, y=x^{m}, z=x$ in (1) we conclude that $\gamma\left(x, x^{m+1}\right) \gamma\left(x^{m}, x\right)=\gamma\left(x, x^{m}\right) \gamma\left(x^{m+1}, x\right)$. From this we conclude that $\gamma\left(x, x^{m+1}\right)=\gamma\left(x^{m+1}, x\right)$. Hence our claim has been established.

Now we prove that $\gamma\left(x^{2}, x^{m}\right)=\gamma\left(x^{m}, x^{2}\right)$, m positive integer. For $m=1$ we have proved this in the last paragraph. For $m=2$ there is nothing to prove. Assume $m=3$ by taking $w=x^{2}$, $y=x, z=x^{2}$ in (1) we have $\gamma\left(x^{2}, x^{3}\right) \gamma\left(x, x^{2}\right)=\gamma\left(x^{2}, x\right) \gamma\left(x^{3}, x^{2}\right)$. Since $\gamma\left(x, x^{2}\right)=\gamma\left(x^{2}, x\right)$ we conclude that $\gamma\left(x^{2}, x^{3}\right)=\gamma\left(x^{3}, x^{2}\right)$. Now we assume $\gamma\left(x^{2}, x^{k}\right)=\gamma\left(x^{k}, x^{2}\right)$ for $k=1,2, \ldots, m$, then we prove that $\gamma\left(x^{2}, x^{m+1}\right)=\gamma\left(x^{m+1}, x^{2}\right)$. By taking $w=x^{2}$, $y=x^{m-1}, z=x^{2}$ in (1) we have

$$
y\left(x^{2}, x^{m+1}\right) \quad \gamma\left(x^{m-1}, x^{2}\right)=\gamma\left(x^{2}, x^{m-1}\right) \gamma\left(x^{m+1}, x^{2}\right)
$$

This implies that $\gamma\left(x^{2}, x^{m+1}\right)=\gamma\left(x^{m+1}, x^{2}\right)$. Hence our claim has been established.

Finally we assume $\gamma\left(x^{r}, x^{m}\right)=\gamma\left(x^{m}, x^{r}\right)$ for $1 \leq r \leq n$, and $n \geq m$. Then by taking $w=x^{m}, y=x^{n+1-m}, z=x^{m}$ in (1) we have $\gamma\left(x^{m}, x^{n+1}\right) \gamma\left(x^{n+1-m}, x^{m}\right)=\gamma\left(x^{m}, x^{n+1-m}\right) \gamma\left(x^{n+1}, x^{m}\right) \cdot$ This implies that $\gamma\left(x^{n+1}, x^{m}\right)=\gamma\left(x^{m}, x^{n+1}\right)$. Hence $\gamma\left(x^{m}, x^{n}\right)=\gamma\left(x^{n}, x^{m}\right)$

Now we prove that $\gamma\left(x^{-m}, x^{-n}\right)=\gamma\left(x^{-n}, x^{-m}\right)$ for all positive integer, m, n. By (1.11) we know that $\left(\bar{x}^{m}\right)^{-1}$ exists. Then from $\overline{x^{m}} \overline{x^{-m}}=\gamma\left(x^{m}, x^{-m}\right) \overline{1}$ we obtain $\overline{x^{-m}}=\gamma\left(x^{m}, x^{-m}\right)\left(x^{m}\right)^{-1} \overline{1}$. Since $\overline{1}$ is central and $\overline{x^{m}} \overline{x^{n}}=\overline{x^{n}} \overline{x^{m}}(m, n \geq 0)$ we have

$$
\begin{aligned}
& \overline{x^{-m}} \overline{x^{-n}}=\left[\gamma\left(x^{m}, x^{-m}\right)\left(\bar{x}^{m}\right)\right. \\
&-1 \\
&\left.\left.\left.=\gamma\left(x^{m}, x^{-m}\right) \gamma\left(x^{n}, x^{n}\right) x^{-n}\right) \overline{(x}\right)^{-1} \overline{1}\right] \\
&\left(x^{m}\right)-1 \overline{\left(x^{n}\right)} \overline{1} \overline{1} \\
&\left.=\gamma\left(x^{m}, x^{-m}\right) \quad \gamma\left(x^{n}, x^{-n}\right) \overline{\left(x^{n}\right.} \overline{x^{m}}\right)^{-1} \overline{1} \overline{1} \\
&\left.=\gamma\left(x^{m}, x^{-m}\right) \quad \gamma\left(x^{n}, x^{-n}\right) \quad \overline{\left(x^{m}\right.} \overline{x^{n}}\right)^{-1} \overline{1} \overline{1}=\overline{x^{-n}} \overline{x^{-m}}, \quad \Delta
\end{aligned}
$$

Definition 1.13

(I) A non-empty set x is said to be linearly ordered if there exists a relation $<$ on x such that the following two conditions hold:
(i) For all $a, b \in x$ exactly one of the following holds: $\mathrm{a}<\mathrm{b}$ or $\mathrm{a}=\mathrm{b}$ or $\mathrm{b}<\mathrm{a}$.
(ii) For all $a, b, c \in x, a<b$ and $b<c$ imply that $a<c$.
(II) A group G on which there is defined a linear ordering < is said to be a right-ordered group if for $a, b, c \in G \quad a<b$ implies that $a c<b c,[11]$.

Throughout this thesis by $b>a$ we understand that $a<b$.

Example 1.13 (I)
Let <x> be an infinite cyclic group and let $x^{m}, x^{n} \in\langle x\rangle$, we define $x^{m}<x^{n}$ if and only if $m<n$. Then $<x>$ is a right-ordered group.

Example 1.13 (II)
Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \ldots \times\left\langle x_{n}\right\rangle$ where $\left\langle x_{i}\right\rangle, 1 \leq i \leq n$, is an infinite cyclic group. Let

$$
x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}, x_{1}{ }^{\beta_{1}} x^{\beta_{2}}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}} \in G
$$

We define

$$
x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}<x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }_{n}^{\beta_{n}}
$$

if and only if either
(1)

$$
\alpha_{1}<\beta_{1}, \quad \text { or }
$$

(2)

$$
\alpha_{1}=\beta_{1}, \ldots, \alpha_{i}=\beta_{i}, \alpha_{i+1}<\beta_{i+1}, \quad 1 \leq i \leq n-1
$$

Thus G is a right-ordered group.

Lemma 1.14 (Lifting idempotents)
Let R be a ring and let N be a nil ideal of R. Let $\tau: R \rightarrow R / N$ be the natural homomorphism. Let $a \in R$ be such that $\tau(a)$ an idempotent. Then there exists $b \in R$ such that $e=a b a$ is an idempotent with $\tau(e)=\tau(a) . \quad$ [11, page 49].

Proof

Let $a \in R$ and $\tau(a)=\bar{a}$. By assumption we have
$\tau\left(a-a^{2}\right)=\tau(a)-(\tau(a))^{2}=\bar{a}-(\bar{a})^{2}=\bar{a}-\bar{a}=0$. This implies
that $a-a^{2} \in N$. Since N is nil for some positive inte ger K we have $\left(a-a^{2}\right)^{k}=0$. If $k=1$, then $a-a^{2}=0$ and we let $b=a$ to obtain the result. Now let $k \geq 2$. Since we have $(1-a)^{k}=1-a d$ where

$$
d=\sum_{t=1}^{k}(-1)^{t-1} \stackrel{l}{(t)}^{k} a^{t-1} \in R .
$$

Hence $a^{k}(1-a d)=\left(a-a^{2}\right)^{k}=0$ and $a d=d a$. But \bar{a} is an idempotent, and so $1-\bar{a}$ is also an idempotent. Since τ is onto, then $\tau(1)=1$. Thus we have
$1-\tau(a d)=\tau\left[(1-a)^{k}\right]=[1-\tau(a)]^{k}=(1-\bar{a})^{k}=1-\bar{a}$. This implies that $\tau(\mathrm{ad})=\overline{\mathrm{a}}$.

Now from $0=\left(a-a^{2}\right)^{k}=a^{k}(1-a)^{k}=a^{k}(1-a d)$ we have that $a^{k}=a^{k}(a d)$. This implies that $a^{k}=a^{k}(a d)=\left[a^{k}(a d)\right](a d)=a^{k}(a d)^{2}$. By induction on i, we have $a^{k}=a^{k}(a d)^{i}$ for any positive integer i. Since $a d=d a$ we have in particular $a^{k}=a^{k}(a d)^{k}=a^{2 k} d^{k}$.

From this we conclude that $(a d)^{k}=a^{k} d^{k}=\left(a^{2 k} d^{k}\right) d^{k}=a^{2 k} d^{2 k}=\left[(a d)^{k}\right]^{2}$ i.e., $(\mathrm{ad})^{\mathrm{k}}$ is an idempotent. Since $(\mathrm{ad})^{k}$ is an idempotent and $\tau(\mathrm{ad})=\overline{\mathrm{a}}$ is also an idempotent we have,

$$
\tau(e)=\tau\left[(a d)^{k}\right]=(\bar{a})^{k}=\bar{a}=\tau(a) .
$$

But we know that $k \geq 2$, and so $(a d)^{k}=a b a$ for some $b \in R . \Delta$

Lemma 1.15

Let R be a ring and let $\langle x\rangle$ be an infinite cyclie group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. Then for any integer $m>1$ we have
(i)

$$
\begin{aligned}
(\bar{x})^{m} & =\gamma(x, x) \gamma\left(x^{2}, x\right) \ldots \gamma\left(x^{m-1}, x\right) \overline{x^{m}} \\
& =\gamma(x, x) \quad \gamma\left(x, x^{2}\right) \ldots \gamma\left(x, x^{m-1}\right) \overline{x^{m}} .
\end{aligned}
$$

(ii) ${\left.\overline{\left(x^{-1}\right.}\right)}^{m}=\gamma\left(x^{-1}, x^{-1}\right) \gamma\left(x^{-2}, x^{-1}\right) \ldots \gamma\left(x^{-m+1}, x^{-1}\right) \overline{x^{-m}}$

$$
=\gamma\left(x^{-1}, x^{-1}\right) \gamma\left(x^{-1}, x^{-2}\right) \ldots \gamma\left(x^{-1}, x^{-m+1}\right) \overline{x^{-m}} .
$$

Proof

To prove (i) we proceed by induction. For $m=2$ we have $(\bar{x})^{2}=\bar{x} \bar{x}=\gamma(x, x) \bar{x}^{2}$. Suppose (i) holds for m. We prove
the corresponding result for $m+1$. We have

$$
\begin{aligned}
(\bar{x})^{m+1} & =(\bar{x})^{m}, \bar{x}=\left[\gamma(x, x) \quad \gamma\left(x^{2}, x\right) \ldots \gamma\left(x^{m-1}, x\right) x^{m}\right] \bar{x} \\
& =\gamma(x, x) \quad \gamma\left(x^{2}, x\right) \ldots \gamma\left(x^{m-1}, x\right)\left[x^{m} \bar{x}\right] \\
& =\gamma(x, x) \gamma\left(x^{2}, x\right) \ldots \gamma\left(x^{m-1}, x\right) \gamma\left(x^{m}, x\right) x^{m+1}
\end{aligned}
$$

From this result and using (1.12) the proof of (i) is complete. Since the proof of (ii) is similar to the proof of (i) we omit it. Δ

Lemma 1.16

Let R be a ring and let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \ldots \times\left\langle x_{n}\right\rangle$ be an abelian group. Let $\langle x\rangle$ be an infinite cyclic group and let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. Then
(i) Every endomorphism of G is determined by its effect on a set of generators of G.
(ii) Every homomorphism of G into $R(G)$ is determined by its effect on a set of generators of G.
(iii) Every homomorphism of G into $R(G)$ can be extended to an R-endomorphism of $R(G)$ -
(iv) A mapping $\bar{\theta}: R^{\gamma}(\langle x\rangle) \rightarrow R^{\gamma}(\langle x\rangle)$ is defined by $\bar{\theta}\left[(\bar{x})^{j}\right]=\left[\sum_{i} a_{i} \bar{x}^{i}\right]^{j}$ and extended by linearity to $R^{\gamma}(\langle x\rangle)$. Then $\bar{\theta}$ is an R-endomorphism of $R^{\gamma}(\langle x\rangle)$.

Proof
Let θ be an endomorphism of G and $\theta\left(x_{i}\right)$ for $1 \leq i \leq n$ be determined. Since every element of G is of the form $x_{1}{ }^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}$ we have

$$
\theta\left(x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right)=\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha_{n}} .
$$

Hence (i) and (ii) have been proved.

Let θ be a homomorphism of G into $R(G)$ we define $\phi: R(G) \rightarrow R(G)$ by ,

$$
\begin{array}{r}
\phi\left(\left[a_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right)=\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}\right. \\
\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha_{n}} .
\end{array}
$$

By this definition we have,

$$
\begin{aligned}
& \phi\left[\left(\left[a_{\alpha_{1} \alpha_{2}} \ldots a_{n} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right)\left(\left[b_{B_{1} \beta_{2}} \ldots \beta_{n} x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{n}^{\beta_{n}}\right)\right]\right.\right. \\
& =\phi!\left[a_{\alpha_{1} \alpha_{2}} \ldots a_{n} b_{\beta_{1} \beta_{2}} \ldots \beta_{n} x_{1}^{\alpha_{1}+\beta_{1}} x_{2}^{\alpha_{2}+\beta_{2}} \ldots x_{n}^{\alpha_{n}+\beta_{n}}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n} b_{\beta_{1} \beta_{2}} \ldots \beta_{n}\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}+\beta_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}+\beta_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha_{n}+\beta_{n}} \\
& =\left[\sum a_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n}\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha_{n}}\right] \\
& {\left[\left\{b_{\beta_{1} \beta_{2}} \ldots \beta_{n}\left(\theta\left(x_{1}\right)\right)^{\beta_{1}}\left(\theta\left(x_{2}\right)\right)^{\beta_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\beta_{\bar{n}}}\right]\right.} \\
& =\phi\left(\left[a_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}\right) \phi\left(\sum_{b_{\beta_{1} \beta_{2}}} \ldots \beta_{n} x_{1}^{\beta_{1}} x^{\beta_{2}} \ldots x_{n}^{\beta_{n}}\right) .\right.
\end{aligned}
$$

Proof
Let θ be an endomorphism of G and $\theta\left(x_{i}\right)$ for $1 \leq i \leq n$
be determined. Since every element of G is of the form $x_{1}{ }^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}$ we have

$$
\theta\left(x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha}{ }_{n}\right)=\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha}
$$

Hence (i) and (ii) have been proved.

Let θ be a homomorphism of G into $R(G)$ we define $\phi: R(G) \rightarrow R(G)$ by ,

$$
\begin{array}{r}
\phi\left(\left[a_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}\right)=\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}\right. \\
\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha_{n}} .
\end{array}
$$

By this definition we have,

$$
\begin{aligned}
& \phi\left[\left(\sum_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n} x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}\right)\left(\sum b_{\beta_{1} \beta_{2}} \ldots \beta_{n} x_{1}{ }^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}\right)\right] \\
& =\phi\left(\sum a_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n} b_{\beta_{1} \beta_{2}} \ldots \beta_{n} x_{1}^{\alpha_{1}+\beta_{1}} x_{2}^{\alpha_{2}+\beta_{2}} \ldots x_{n}^{\alpha_{n}+\beta_{n}}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n} b_{\beta_{1} \beta_{2}} \ldots \beta_{n}\left(\theta\left(x_{1}\right)\right)^{\alpha_{1}+\beta_{1}}\left(\theta\left(x_{2}\right)\right)^{\alpha_{2}+\beta_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\alpha_{n}+\beta_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\sum_{\beta_{1} \beta_{2}} \ldots \beta_{n}\left(\theta\left(x_{1}\right)\right)^{\beta_{1}}\left(\theta\left(x_{2}\right)\right)^{\beta_{2}} \ldots\left(\theta\left(x_{n}\right)\right)^{\beta_{n}}\right]} \\
& =\phi\left(\left[\sum_{\alpha_{1} \alpha_{2}} \ldots \alpha_{n} x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}\right) \phi\left(\sum b_{\beta_{1} \beta_{2}} \ldots \beta_{n} x_{1}{ }^{\beta_{1}} x_{x_{2}}^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}\right) .\right.
\end{aligned}
$$

Hence ϕ is a R-endomorphism of $R(G)$ and (iii) has been proved.

By (1.15) we know that $\left\{(\bar{x})^{]} \mid j \in \mathbb{Z}\right\}$ is a basis for $R^{\gamma}(\langle x\rangle)$ and so to prove (iv) we define $\tilde{\theta}: R^{\gamma}(\langle x\rangle) \rightarrow R^{\gamma}(\langle x\rangle)$ by

$$
\tilde{\theta}\left(\sum_{j} b_{j}(\bar{x})^{j}\right)=\sum_{j} b_{j}(\bar{\theta}(\bar{x}))^{j} .
$$

Since by (1.12) $\overline{x^{i}} \overline{x^{j}}=\overline{x^{j}} \overline{x^{i}}$ then as in (iii) we conclude that θ is an R-endomorphism of $R^{\gamma}(\langle x\rangle)$. Δ

Lemma 1.17

Let R be a commutative ring and let G be a group. Let $R^{\gamma}(G)$ be a twisted group ring of G over R. Let $u+\sum_{m}^{n} a_{i} \bar{g}_{i} \quad\left(g_{i} \in G\right)$ be an element of $R^{\gamma}(G)$ such that u is a unit in $R^{\gamma}(G)$ and all a_{i} are nilpotents in R. Then for every integer k, $\left[u+\sum_{m}^{n} a_{i} \bar{g}_{i}\right]^{k}=u^{k}+N$ where N is nilpotent in $R^{\gamma}(G)$.

Proof

Let T be the ideal of R generated by $\left\{a_{i} \mid m \leq i \leq n\right\}$. Then T is nilpotent. Since u is a unit in $R^{Y}(G)$ and $\gamma(1,1)^{-1} \bar{I}$ is the identity element of $R^{\gamma}(G)$, (1.11) we can write

$$
u+\sum_{m}^{n} a_{i} \overline{g_{i}}=\left[\gamma(1,1)^{-i} \bar{I}+\left(\sum_{m}^{n} a_{i} \overline{g_{i}}\right) u^{-1}\right] u .
$$

Furthermore $\left(\sum_{m}^{n} a_{i} \bar{g}_{i}\right) u^{-1}$ is nilpotent in $R^{\gamma}(G)$, because R is commutative. Let $w=\left(\sum_{m}^{n} a_{i} \overline{g_{i}}\right) u^{-1}$ with $w^{s}=0$ for some positive integer s. Then

$$
\begin{gathered}
\left(\left[\gamma(1,1)^{-1} \overline{1}+w\right] u\right)\left(u^{-1}\left[\gamma(1,1)^{-1} \overline{1}-w+w^{2}+\ldots+(-1)^{s-1}(w)^{s-1}\right]\right) \\
=\gamma(1,1)^{-1} \overline{1} .
\end{gathered}
$$

Hence
$\left[u+\sum_{m}^{n} a_{i} \overline{g_{i}}\right]^{-1}=u^{-1}\left[\gamma(1,1)^{-1} \overline{1}-w+w^{2}+\ldots+(-1)^{s-1}(w)^{s-1}\right]=u^{-1}+N_{i}$ where N_{1} is nilpotent in $R^{\gamma}(G)$.

Finally, for $k \geq 0$ it is evident that $\left[u+\sum_{m}^{n} a_{i} \bar{g}_{i}\right]^{k}=u^{k}+N_{2}$ where N_{2} is nilpotent in $R^{\gamma}(G)$. But for $k<0$ we have $\left[u+\sum_{m}^{n} a_{i} \bar{g}_{i}\right]^{k}=\left(\left[u+\sum_{m}^{n} a_{i} \bar{g}_{i}\right]^{-1}\right)^{k}=\left[u^{-1}+N_{1}\right]^{-k}=\left(u^{-1}\right)^{-k}+N_{3}=u^{k}+N_{3}$ where N_{3} is nilpotent in $R^{\gamma}(G) \cdot \Delta$

Definition 1.18

A ring R is said to be a (Von Neumann)regular ring if for every element $r \in R$ there exists an element $s \in R$ such that rsr $=\mathbf{r},[7,9]$.

Lemma 1.19

In a commutative regular ring every prime ideal is maximal [7].

Proof

Let P be a prime ideal of R. Then $\bar{R}=R / P$ is a commutative regular. ring which is integral domain (1.6). Now suppose $\overline{0} \neq \bar{a} \in \bar{R}$. Since \bar{R} is regular there exists $\bar{b} \in \bar{R}$ such that $\bar{a} \bar{b} \bar{a}=\bar{a}$. This implies that $\bar{b} \neq \overline{0}$ and $\bar{a} \bar{b} \bar{a} \bar{b}=\bar{a} \bar{b}$. From $\bar{a} \bar{b} \bar{a} \bar{b}=\bar{a} \bar{b}$ we conclude that $\bar{a} \bar{b}=\overline{1}$ and $\bar{b} \bar{a}=\overline{1}$ because \bar{I} is the identity element of \bar{R}. Thus \bar{R} is a field. Δ

The following lemma is well known [11]but we include a Proof of a special case for the sake of completeness.

Lemma 1.20

Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{i}\right\rangle \times \ldots x\left\langle x_{n}\right\rangle$ where $\left\langle x_{i}\right\rangle$ is an infinite cyclic group $(i=1,2, \ldots, n)$ Let R be an integral domain. Then $R(G)$ is an integral domain.

Proof

We prove the lemma for $n=1$ and the proof of the lemma for $n>1$ is similar to the proof of the lemma for $n=1$. Let $G=<x>$ where <x> is infinite cyclic group and let $\sum_{\alpha}^{\beta} a_{i} x^{i}, \sum_{m}^{n} b_{j} x^{j}$ be non-zero elements of $R(\langle x\rangle)$ where $a_{\hat{D}} \neq 0, b_{n} \neq 0$. In the product

$$
\left(\sum_{i=\alpha}^{i=\beta} a_{i} x^{i}\right)\left(\sum_{j=m}^{j=n} b_{j} x^{j}\right)
$$

the coefficient of $x^{\hat{p}+n}$ is $a_{\beta} b_{n}$ which is non-zero. Δ

Definition 1.21
Let G be a group and let K be a field. Then

$$
\operatorname{aug} K(G)=\left\{\sum_{i} \alpha_{i} g_{i} \in K(G) \mid \sum \alpha_{i}=0\right\}
$$

which is an ideal of $K(G)$, is called the augmentation ideal of K (G) , [LI].

Lemma 1.22
Let $G=\left\langle g_{i}: 1 \in I\right\rangle$ and let K be a field. Then

$$
\operatorname{aug} K(G)=\sum_{i}(K(G))\left(1-g_{i}\right)
$$

Proof
As aug $K(G)$ is an ideal of $K(G)$ and $1-g_{i} \in$ aug $K(G)$ for every i it follows that $\sum_{i}(K(G))\left(1-g_{i}\right) \subseteq \operatorname{aug} K(G)$.

Now we prove that $\operatorname{aug} K(G) \subseteq \sum_{i}(K(G))\left(1-g_{i}\right)$. For this we suppose that $\sum_{j=1}^{m} \beta_{j} x_{j} \in$ aug $\kappa(G)$, then $\sum \beta_{j}=0$. This implies that $\sum_{j=1}^{m} \beta_{j} x_{j}=\sum_{j=1}^{m} \beta_{j}-\sum_{j=1}^{m} \beta_{j}\left(1-x_{j}\right)=-\sum_{j=1}^{m} \beta_{j}\left(1-x_{j}\right)$. We prove that $1-x_{j} \in \sum_{i}(K(G))\left(1-g_{i}\right)$. Since $x_{j} \in G$ we have $x_{j}=g_{j_{1}} g_{j_{2}} \ldots g_{j_{r}}$ where $j_{u} \in I \quad(u=1,2, \ldots, r)$.

We proceed by mathematical induction on the number of factors in $x_{j}=\stackrel{ \pm 1}{g_{j_{1}}} \stackrel{ \pm 1}{g_{j_{2}}} \ldots g_{j_{r}}^{ \pm 1}$, to prove $1-x_{j} \in \sum_{i}(K(G))\left(1-g_{i}\right)$.

We know that $1-g_{j_{i}} \in(K(G))\left(1-g_{j_{i}}\right)$ so we have

$$
\begin{aligned}
& 1-g_{j_{i}} \in \sum_{i}(K(G))\left(1-g_{i}\right) \text {. Moreaver } 1-g_{j_{i}}^{-1}=-g_{j_{i}}^{-1}\left(1-g_{j_{i}}\right) \in K(G)\left(1-g_{j_{i}}\right) \text { Let } \\
& 1-g_{j_{i}}^{ \pm 1} \stackrel{ \pm 1}{g_{j_{2}}} \cdots g_{j_{\sigma}}^{ \pm 1} \in \sum_{i}(K(G))\left(1-g_{i}\right) \quad \text { for } 1 \leq \sigma<r \text {. Since we have }
\end{aligned}
$$

$1-g_{j}^{ \pm 1}$ ($\left.\sigma+1\right)$ belong to $\sum_{i}(K(G))\left(1-g_{i}\right)$ we conclude that

$$
1-g_{j_{1}}^{ \pm 1} g_{j_{2}}^{ \pm 1} \cdots g_{j_{\sigma}}^{ \pm 1} g_{j(\sigma+1)}^{ \pm 1} \text { belongs to } \sum_{i}(K(G))\left(1-\delta_{i}\right) \text { Thus }
$$

$$
\operatorname{aug} K(G) \subseteq \sum_{i}(K(G))\left(1-g_{i}\right) \cdot \Delta
$$

Lemma 1.23
Let G be a group and let K be a field. Let I be an ideal of $K(G)$. Let θ be a K-automorphism of $K(G)$ such that $\theta(I)=I$. Then $\tilde{\theta}: K(G) \rightarrow K(G) / I$ defined by $\tilde{\theta}\left(\sum_{i} a_{i} g_{i}\right)=\sum_{i} a_{i} \theta\left(g_{i}\right)+I$ is an epimorphism and its kernel is I.

Lemma 1.24

Let $G=\langle x\rangle x\langle y\rangle$ be an abelian group where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic 2 . Then

$$
(K(G)) \text { aug } K(\langle y\rangle)=(K(G))(1+y)=k(\langle x\rangle)(1+y)
$$

Proof

By (1.22) we have aug $K(\langle y\rangle)=K(\langle y\rangle)(1+y)$ because by the hypothesis of the lemma $-y=y$. This implies that $K(G) \operatorname{aug} K(\langle y\rangle)=(K(G))[K(\langle y\rangle)(1+y)]=(K(G))(1+y)$. Now we prove that $(K(G))(1+y)=(K(\langle x\rangle))(1+y)$. It is evident that $(K(\langle x\rangle))(1+y) \subseteq(K(G))(1+y)$ and so we show that $(K(G))(1+y) \subseteq(K(\langle x\rangle))(1+y)$. Let

$$
\left[\sum_{1} \alpha_{1} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y\right](1+y) \in(K(G))(1+y)
$$

Then we have

$$
\begin{aligned}
& \left.\qquad\left[\sum_{i} \alpha_{i} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y\right](1+y)=\left[\sum_{i} \alpha_{i} x^{i}+\sum_{j} \beta_{j} x^{j}\right](1+y) \in(K(\langle x\rangle))(1+y)\right) \\
& \text { because } y+y^{2}=1+y \text {. Hence }(K(G))(1+y)=(K(\langle x\rangle))(1+y) \cdot \Delta
\end{aligned}
$$

Notation 1.25
Let G be a group and let K be a field.
(1) In $G,(x, y)=x^{-1} y^{-1} x y$, the commutator of elements of x, Y of G.
(2) <...> $=$ the subgroup of G generated by the elements and subgroups indicated within the brackets.
(3) If $X \subseteq G, Y \subseteq G$ then $(X, Y)=\langle(X, Y): X \in X, Y \in Y\rangle$ in particular, (G, G) is the commutator subgroup G of G.
(4) $I^{n}=$ the $n t h$ power of the ideal I of $K(G)$.
(5) $s^{(p)}=$ the set of pth powers of the elements of the subspace S of $K(G)$.
(6) The M-series of G is defined inductively [6] as follows, $M_{1}=G$.

$$
M_{i}=\left\langle\left(M_{i-1}, G, \frac{(p)}{(i / p)} \quad\right\rangle \text { for } i>1, \text { where }(i / p)\right. \text { is }
$$

the least integer not less than i / p and $M_{\lambda}^{(p)}$ is the set of pth powers of ${ }^{M}{ }_{\lambda}$.
(7) We say an abelian p-group A is of type $\left(p^{\alpha_{1}}, p^{\alpha_{2}}, \ldots, p^{\alpha_{k}}\right)$. If A is the direct product of cyclic subgroups of A of orders $p^{\alpha_{1}}, p^{\alpha_{2}}, \ldots, p^{\alpha_{k}}$.
(8) In $K(G),[\alpha, \beta]=\alpha \beta-B \alpha$, the Lie product of elements α and $B,[K(G), K(G)]=$ the commutator subspace of $K(G)$.

Let P be a prime and let G be a finite p-group. Let K be a field of characteristic p. Then $J K(G)=$ aug $K(G)$.

Proof

We prove that aug $\mathrm{X}(\mathrm{G})$ is nilpotent and so is nil. Then aug $K(G) \subseteq J K(G)$ by lemma 1.2.2 of [4]. Let $|G|=p^{\alpha}$ for some positive integer α. Then we proceed by induction on α. Suppose $\alpha=1$ then G is a cyclic group say $G=\langle g\rangle$. Hence by (1.22) we have aug $K(G)=(K(G))(1-g)$. Since $g^{p}=1$ and characteristic of K is p and G is abelian we have $(\operatorname{aug} K(G))^{p}=[K(G)(1-g)]^{p}=K(G)\left(1-g^{p}\right)=0$.

Now suppose for every p-group of order $|G| \leq p^{\alpha}$ we have (aug $K(G))^{p^{\alpha}}=0$ then we prove the corresponding result for the group G of order $p^{\alpha+1}$. Since $Z(G) \neq 1$ we may suppose $Z(G)$ is of order p^{t} for some $t \geq 1$. Hence there exists an element $1 \neq z \in Z(G)$ such that $z^{p}=1$ and so $\langle z\rangle$ is a subgroup of G. Let $\phi: G \rightarrow G /<z>$ be a natural homomorphism defined by $\phi(g)=g\langle z\rangle$. Then ϕ induces a homomorphism $\theta: K(G) \rightarrow K(G /\langle z\rangle)$ defined by $\theta\left(\sum_{i} \alpha_{i} g_{i}\right)=\sum \alpha_{i}\left(g_{i}\langle z\rangle\right)$. The kernel of θ is $K(G)$ aug $K(\langle z\rangle)$. Suppose $\sum_{i} \alpha_{i} g_{i} \in$ aug $K(G)$ then we have $\theta\left(\sum_{i} \alpha_{i} g_{i}\right)=\sum_{i} \alpha_{i}\left(g_{i}\langle z>)\right.$ where $\sum_{i} \alpha_{i}=0$. This implies that aug $K(G)$ is mapped into aug $K(G /\langle z\rangle)$. But $|G /\langle z\rangle|=p^{\alpha}$ and so by assumption we have $(\operatorname{aug} \mathrm{K}(\mathrm{G} /\langle\mathrm{z}\rangle))^{\mathrm{p}^{\alpha}}=0$. Since $(\operatorname{aug} \mathrm{K}(\mathrm{G}))^{\mathrm{p}^{\alpha}}$ is mapped into aug $k(G /\langle z\rangle)^{p^{\alpha}}$ then $(\text { aug } K(G))^{\alpha \alpha^{\alpha}} \subseteq \operatorname{ker} \theta=K(G)$ aug $K(\langle z\rangle)$. From this we conclude that
$\left[(\operatorname{aug} K(G))^{p^{\alpha}}\right]^{p} \subseteq[K(G) \operatorname{aug} K(\langle z\rangle)]^{p}=K(G) \quad[\operatorname{aug} K(\langle z\rangle)]^{p}=0$. Thus our claim has been established and so $\operatorname{aug} K(G) \subseteq J K(G) \cdot$ But aug $X(G)$ has a basis of elements $g_{i}-1\left(1 \neq g_{i} \in G\right)$ and so is a maximal ideal. Hence aug $X(G)=J K(G)$. Δ

Lemma 1.27
Let p be a prime and let K be a field of characteristic p. Let G be a finite p-group in which every conjugacy class has 1 or p elements, and let $A=\left\{\int_{i} \alpha_{i} u_{i} \mid \Omega_{i} \in K\right.$ and u_{i} is a p element class sum in $K(G)$ \} . Then

$$
J K(G) \quad \cap \quad Z(K(G))=\operatorname{aug} K(Z)+A .
$$

Proof

By (1.26) $J K(G)=\operatorname{aug} K(G)$ and so it is enough to prove aug $K(G) \cap Z K(G)=\operatorname{aug} K(Z)+A$.

Let $\left\{g_{1}, g_{2}, \ldots, g_{p}\right\}$ be a conjugacy class of G of p elements. Then $g_{1}+g_{2}+\ldots+g_{p} \in Z(K(G))$. On the other hand we have

$$
\begin{aligned}
g_{1}+g_{2}+\ldots+g_{p} & =g_{1}+g_{2}+\ldots+g_{p}-p \\
& =\left(g_{1}-1\right)+\left(g_{2}-1\right)+\ldots+\left(g_{p}-1\right) \in \text { aug } K(G) .
\end{aligned}
$$

Hence $A \subseteq \operatorname{aug} K(G) \cap Z(K(G))$.
Now let $\sum_{i} \alpha_{i}\left(z_{i}-1\right) \epsilon$ aug $K(z)$. We have $\sum_{i} \alpha_{i}\left(z_{i}-1\right) \epsilon$ aug $K(G)$ and $\quad \sum_{i} \alpha_{i}\left(z_{i}-1\right) \in Z(K(G))$ i.e. aug $K(Z) \subseteq \operatorname{aug} K(G) \cap Z(K(G))$.

Hence we have

$$
\begin{equation*}
\operatorname{aug} K(Z)+A \subseteq \operatorname{aug} K(G) \cap Z(K(G)) . \tag{1}
\end{equation*}
$$

Conversely let $x \in \operatorname{aug} K(G) \cap Z(K(G))$. Then we can write $x=\sum_{i} \beta_{i}\left(g_{i}-1\right)=\sum_{i} \beta_{i} g_{i}-\left(\sum_{i} \beta_{i}\right) 1$. Since $x \in Z(K(G))$ and $\left(\sum_{i} \beta_{i}\right) l \in Z(K(G))$ we have $\sum_{i} \beta_{i} g_{i} \in Z(K(G))$. But the centre of $K(G)$ is spanned by all the class sums of G and so we can divide
$\sum_{i} \beta_{i} g_{i}$ into two parts say $\sum_{i} \beta_{i} g_{i} i_{\lambda}+\sum_{\mu} \beta_{i} g_{i}{ }_{\mu}$. Where all
$g_{i_{\lambda}} \in Z$ and every $g_{i_{\mu}}$ belongs to one of the class sums of G that have p elements. Since $\sum_{\mu} \beta_{i_{\mu}}{ }^{g} i_{\mu} \in Z(K(G))$, the number of terms in $\sum_{\mu} \beta_{i_{\mu}} g_{i}$ is a multiple of p and for every β_{i} there are p-1 other coefficients that are equal to $\beta_{i_{\mu}}$. Thus
$\sum_{\mu} \beta_{i_{\mu}} g_{i_{\mu}} \in \mathbb{A} . \quad$ Moreover $x=\sum_{i} \beta_{i}\left(g_{i}-1\right)=\sum_{\lambda} \beta_{i}\left(g_{i}-1\right)+\sum_{\mu} \beta_{i} g_{i}{ }_{\mu}$ because $\sum_{\mu} \beta_{i_{\mu}}=0$. Hence $x \in \operatorname{aug} K(Z)+A$ and so $\operatorname{aug} \mathrm{K}(\mathrm{G}) \cap \mathrm{Z}(\mathrm{K}(\mathrm{G})) \leq \operatorname{aug} \mathrm{K}(\mathrm{Z})+\mathrm{A} . \quad \Delta$

Lemma 1.28

Let N be any ideal of group ring $X(G)$ where K is a field. Let $a, b \in G$ such that $a-1 \in \mathbb{N}^{i}, b-1 \in \mathbb{N}^{j}(1 \leq i \leq j)$.

Then
(1) $\quad(a b-1) \equiv(a-1)+(b-1) \bmod N^{i+1}$.
(2) $\quad\left(a^{n}-1\right) \equiv n(a-1) \bmod N^{i+1} \quad(n$ positive integer).
(3) $(b-1)(a-1) \equiv(a-1)(b-1)+(c-1) \bmod N^{i+j+1}$, where $c=(b, a)=b^{-1} a^{-1} b a,[10]$.

Proof

The proof of (1) follows from
$(a b-1)=(a-1)(b-1)+(a-1)+(b-1)$
and (2) is a special case of (1). Since
$(b-1)(a-1)-(a-1)(b-1)=a b\left(b^{-1} a^{-1} b a-1\right)=a b(c-1)$
we conclude that $(c-1) \in \mathbb{N}^{i+j}$. Hence (3) follows from
$(b-1)(a-1)-(a-1)(b-1)=(a b-1)(c-1)+(c-1) . \Delta$

Definition 1.29

```
    An element a of a ring R is said to be right-quasi-regular
if there exists a' }\inR\mathrm{ such that a + a' + a'a' = 0. We call
a' right-quasi-inverse of a , [4].
```


Definition 1.30

We say that a right ideal I of a ring R is right-quasiregular if for every element a of I there exists $a^{\prime} \in R$ such that $a+a^{\prime}+a a^{\prime}=0$, [4].

Lemma 1.31

The Jacobson radical of a ring R is the unique maximal right-quasi-regular right ideal of R, [4].

Lemma 1.32
Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field. Let $u \in K(\langle x\rangle)$ and let u be a unit in $K(G)$. Then u is a unit in $K(\langle x\rangle)$.

Proof

Since $u l$ is a unit in $K(G)$ there exist $A, B \in K(\langle x\rangle)$
such that $u l(A+B y)=1$. This implies that $u A=1$ and $u B=0 . \Delta$

CHAPTER 2

In this chapter we extend some ideas of [9] for twisted group rings that M.M. Parmenter has obtained for group rings. We follow his method of proof.

Lemma 2.1

Let R be a commutative ring and let G be a right-ordered group. Let $R^{Y}(G)$ be a twisted group ring of G over R and let $U\left(R^{\gamma}(G)\right)$ denote the units of $R^{\gamma}(G)$. Then the following two statements are equivalent:
(i) $\quad U\left(R^{\gamma}(G)\right)=\underset{g}{\left\{\sum_{g}\right.} \bar{g} \mid$ there exist $\beta_{g} \in R$ with
$\sum_{g} \alpha_{g} \beta_{g}^{-1} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}$, and $\alpha_{g} \beta_{h}=0$
whenever gh $\neq 1\}$.
(ii) $\quad R$ has no non-zero nilpotent elements.

Proof

We assume first that (i) holds. Let $a \in R$ be nilpotent with $a^{K}=0$ for some positive integer K. Let $1 \neq G \in G$. Then by (1.2) $\gamma(1,1)^{-1} \overline{1}+a \bar{g}$ is a unit in $R^{\gamma}(G)$.

Let $\alpha_{1} \overline{1}+\alpha_{g} \bar{g}=\gamma(1,1)^{-1} \overline{1}+\bar{g}$, where $\alpha_{1}=\gamma(1,1)^{-1}$ $\alpha_{g}=a$. By (1) there exist $\beta_{1}, \beta_{g}{ }_{-1} \in R$ such that
$\gamma(1,1)^{-1} B_{1} \gamma(1,1)+\alpha_{g_{g}}^{\beta}{ }_{-1} Y\left(g, g^{-1}\right)=\gamma(1,1)^{-1}$.
$\alpha_{1} \beta_{g}=0$.
$\alpha_{g} \beta_{1}=0$.

But $\alpha_{1}=\gamma(1,1)^{-1}$ is a central unit in R and so (2) implies that $P_{g^{-1}}=0$. From this and (1) we conclude that

$$
\begin{equation*}
\beta_{1}=\gamma(1,1)^{-1} \tag{4}
\end{equation*}
$$

From (4) and (3) we obtain ,

$$
\alpha_{g} \gamma(1,1)^{-1}=\alpha_{g} B_{1}=0
$$

This implies that $a=\alpha_{g}=0$, which we wished to prove.
Now we assume that (ii) holds. To prove (i) let $\sum_{i=1}^{m} \alpha_{i} \overline{g_{i}}$ be a unit in $R^{\gamma}(G)$. Then for some $\sum_{j=1}^{n} \beta_{j} \overline{h_{j}} \in R^{\gamma}(G)$ we have

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \alpha_{i} \overline{g_{i}}\right)\left(\sum_{j=1}^{n} \beta_{j} \overline{h_{j}}\right)=\sum_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \alpha_{i} \beta_{j} \gamma\left(g_{i}, h_{j}\right) \overline{g_{i} h_{j}}=\gamma(1,1)^{-1} \overline{1} \tag{5}
\end{equation*}
$$

We shall show in (5) that, $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j} \neq 1$ and from this we shall conclude that $\left[\alpha_{g_{g}}{ }_{g^{-1}} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}\right.$.

Since G is a right-ordered group (1.13) under the relation < we may impose in a natural manner an ordering, also denoted by < , on the set $S=\{\bar{x} \mid x \in G\}$ by defining

$$
\bar{x}<\bar{y} \text { if and only if } x<y
$$

We now suppose the numbering is chosen so that

$$
g_{1}<g_{2}<\ldots<g_{m} \text { and } h_{1}<h_{2}<\ldots<h_{n}
$$

Then we have

$$
\begin{gathered}
g_{1} h_{1}<g_{2} h_{1}<\ldots<g_{m} h_{1}, \\
g_{1} h_{2}<g_{2} h_{2}<\ldots<g_{m} h_{2}, \\
\ldots \\
g_{1} h_{n}<g_{2} h_{n}<\ldots<g_{m} h_{n} .
\end{gathered}
$$

From these relations it follows immediately that

$$
\begin{aligned}
& \overline{g_{1} h_{1}}<\overline{g_{2} h_{1}}<\ldots<\overline{g_{m} h_{1}}, \\
& \overline{g_{1} h_{2}}<\overline{g_{2} h_{2}}<\ldots<\overline{g_{m} h_{2}}, \\
& \cdots \cdots, \quad \cdots \quad \\
& \overline{g_{1} h_{n}}<\overline{g_{2} h_{n} h_{n}}, \ldots
\end{aligned}
$$

The maximal element of $\left\{\overline{g_{i} h_{j}} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$ must occur in the set $\left\{\bar{g}_{m_{j}}, j=1,2, \ldots, n\right\}$, and for the sake of argument, we suppose $\overline{g_{m} h_{j}}$ is the maximal element of this set. By $1.13(I)$ the maximal element $\overline{g_{m} j_{1}}$ occurs precisely once in

$$
\left\{\overline{g_{i} h_{j}} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}
$$

Hence $\overline{g_{m} h_{1}}$ is unique.

To prove that $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j} \neq 1$ we need to prove $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j}<1$ or $g_{i} h_{j}>1$. We know that it is false that $g_{m} h_{j_{1}}<1$, because if $g_{m} h_{j_{1}}<1$, then $\left(\sum_{i=1}^{m} \alpha_{i} \overline{g_{i}}\right)\left(\sum_{j=1}^{n} \beta_{j} \overline{h_{j}}\right)=r(1,1)^{-1} \bar{l}$ does not hold. If $g_{m} h_{j}=1$, then we prove $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j}<1$, because there is no element $g_{i} h_{j}$ such that $g_{i} h_{j}>1$.

Let us assume that $g_{m} h_{j_{1}}>1$. Since $g_{m} h_{j}$ is maximal and unique in $\left\{g_{1} h_{j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$ it follows from $\left(\sum_{i=1}^{m} \alpha_{i} \bar{g}_{i}\right)\left(\sum_{j=1}^{n} \beta_{j} \overline{h_{j}}\right)=\sum_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \alpha_{i} \beta_{j} \gamma\left(g_{i}, h_{j}\right) \overline{g_{i} h_{j}}=\gamma(1,1)^{-1} \overline{1}$, that $a_{m} h_{j_{1}} \gamma\left(g_{m}, h_{j_{1}}\right)=0$. But $\gamma\left(g_{m}, h_{j_{1}}\right)$ is a unit in R and so we have $\alpha_{m} \beta_{j_{1}}=0$.

Now we proceed to prove that $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j}>1$. Assume that $\alpha_{r} \beta_{s}=0$ whenever there exists $p>1$ such that

$$
\begin{equation*}
g_{\lambda} f_{s}>g_{\varepsilon_{1}} h_{k_{1}}=g_{\varepsilon_{2}} h_{k_{2}}=\ldots=g_{\varepsilon_{p}} h_{k_{p}}>1 \tag{6}
\end{equation*}
$$

Where $g_{\varepsilon_{v}} h_{k_{v}}(v=1,2, \ldots, p)$ are all of the elements equal to $g_{\varepsilon_{1}} h_{k_{1}}$. Hence from

$$
\sum_{i=1}^{m} a_{i} \overline{g_{i}} \quad \sum_{j=1}^{n} B_{j} \overline{h_{j}}=\gamma(1,1)^{-1} \overline{1}
$$

we have

$$
\begin{equation*}
\alpha_{\varepsilon_{1}} \beta_{k_{1}} \gamma\left(g_{\varepsilon_{1}}, h_{k_{1}}\right)+\alpha_{\varepsilon_{2}} \beta_{k_{2}} \gamma\left(g_{\varepsilon_{2}}, h_{k_{2}}\right)+\ldots+\alpha_{\varepsilon_{p}} \beta_{k} \gamma\left(g_{\varepsilon_{p}}, h_{k_{p}}\right)=0 \tag{7}
\end{equation*}
$$

Suppose we have arranged the notation such that $\varepsilon_{1}<\varepsilon_{2}<\ldots<\varepsilon_{p}$.

Then by multiplying (7) by $\quad \alpha_{\varepsilon_{p}}$ we have
$\alpha_{\varepsilon_{1}} \beta_{k_{1}} \alpha_{\varepsilon_{p}} \gamma\left(g_{\varepsilon_{1}}, h_{k_{1}}\right)+\alpha_{\varepsilon_{2}} \beta_{k_{2}} \alpha_{\varepsilon_{p}} \gamma\left(g_{\varepsilon_{2}}, h_{k_{2}}\right)+\ldots$

$$
\begin{equation*}
+\alpha_{\varepsilon_{p}} \beta_{k_{p}}{ }^{\alpha} \varepsilon_{p} r\left(g_{\varepsilon_{p}}, h_{k_{p}}\right)=0 \tag{8}
\end{equation*}
$$

But $1 \leqslant t<p$ implies that $\varepsilon_{t}<\varepsilon_{p}$ and this in turn implies that $g_{\varepsilon_{t}} h_{k_{t}}<g_{\varepsilon_{p}} h_{k_{t}}$. Since $g_{\varepsilon_{t}} h_{k_{t}}>1$ for $1 \leq t \leq p$, we have $g_{\varepsilon_{p}} h_{k_{t}}>g_{\varepsilon_{t}} h_{k_{t}}>1$. From this and the hypothesis for (6) we have $\alpha_{\varepsilon_{p}} \beta_{k_{t}}=0$ for $1 \leq t<p$. Hence from (8) we conclude that $\alpha_{\varepsilon_{p}} \beta_{k_{p}} \alpha_{\varepsilon_{p}}=0$. This implies that

$$
\alpha_{\varepsilon_{p}} \beta_{k_{p}} \alpha_{\varepsilon_{p}} \beta_{k_{p}}=\left(\alpha_{\varepsilon_{p}} \beta_{k_{p}}\right)^{2}=0
$$

But R has no non-zero nilpotent elements and so $\left(\alpha_{\varepsilon_{p}} \beta_{k_{p}}\right)^{2}=0$
implies that $\alpha_{\varepsilon_{p}} \beta_{k_{p}}=0$. In this way we deduce that $\alpha_{\varepsilon_{t}} \beta_{k_{t}}=0$ for $1 \leq t \leq p$. Hence $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j}>1$.

Similarly we prove $\alpha_{i} \beta_{j}=0$ whenever $g_{i} h_{j}<1$. Δ

We now utilise the previous lemma to extend the results to rings with nilpotent elements.

Lemma 2.2

Let R be a commutative ring and let G be a right-ordered group. Let $R^{\gamma}(G)$ be a twisted group ring of G over R. Then $\sum_{g} \alpha_{g} \bar{g}$ is a unit in $R^{\gamma}(G)$ if and only if there exist $B_{g} \in R$ such that $\sum_{g} \alpha_{g} \beta_{g}{ }^{-1} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}$ and $\alpha_{g} \beta_{h}$ is nilpotent whenever \quad gh $\neq 1$.

Proof

We assume first that $\int_{g} \alpha_{g} \bar{g}$ is a unit in $R^{\gamma}(G)$. Let P be the prime radical (1.5) of R. Then by (1.11) $\sum_{g} \overline{\alpha_{g}} \bar{g}\left(\overline{\alpha_{g}} \in R / P\right)$ is a unit in $(R / P) \bar{\gamma}^{(G)}$. Since R / P has no non-zero nilpotent elements by lemma (2.1) there exist $\bar{\delta}_{g} \in R / P$ such that

$$
\left.\sum_{g} \overline{\alpha_{g}} \overline{\delta_{g}-1} \overline{\gamma\left(g, g^{-1}\right.}\right)=\overline{\gamma(1,1)^{-1}} \text { and } \overline{\alpha_{g}} \overline{\delta_{h}} \overline{\gamma(g, h)}=0
$$

whenever $\mathrm{gh} \neq 1$. From this we conclude that

$$
\sum_{g} \alpha_{g} \delta_{g^{-1}} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}+n
$$

where n is nilpotent in R and $\alpha_{g} \delta_{h} \gamma(g, h)$ is nilpotent in R whenever $g h \neq 1$. By (1.2) we conclude that $\sum_{g} \alpha_{g} \delta_{g}{ }_{g} \gamma\left(g, g^{-1}\right)$ is a unit. Let $\left(\sum_{g} \alpha_{g} \delta_{g}{ }_{-1} \gamma\left(g, g^{-1}\right)\right)^{-1}=w . \quad$ Since $\alpha_{g} \delta_{h} \gamma(g, h)$ is nilpotent whenever $g h \neq 1$ and R is commutative $\alpha_{g} \delta_{h} \gamma(g, h) w$ is also nilpotent in R whenever $g h \neq 1$. Thus by letting $\beta_{g}=\delta_{g} w$ the 'only if' part of the lemma has been established.

Now, we suppose there exist β_{g} in R such that
$\sum \alpha_{g}{ }^{\beta} g^{-i} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}$ and $\alpha_{g} \beta_{h}$ is nilpotent in R whenever $g h \neq 1$. This means that there exists $\sum \beta_{h} \bar{h} \in R^{\gamma}(G)$ such that $\left(\sum_{g} \alpha_{g} \bar{g}\right)\left(\sum_{h} \beta_{h} \bar{h}\right)=\gamma(1,1)^{-1} \overline{1}+\sum_{\substack{g, h \\ g h \neq 1}} \alpha_{g} \beta_{h} \gamma(g, h) \overline{g h}$ where $\alpha_{g} \beta_{h}$ is nilpotent when $g h \neq 1$. Hence $\sum_{\substack{g, h \\ g h \neq 1}} \alpha_{g} \beta_{h} \gamma(g, h) \overline{g h}$ is nilpotent and so by (1.2), $\left.\quad \sum_{g} \alpha_{g} \bar{g}\right)\left(\sum_{h} \beta_{h} \bar{h}\right)$ is a unit. This implies that $\int_{g} a_{g} \bar{g}$ is a unit. Δ

Corollary 2. 3

Let R be a commutative ring with no non-trivial idempotents.
Let G be a right-ordered group and let $R^{\gamma}(G)$ be a twisted group ring of G over R. Then $\int_{g} \alpha_{g} \bar{g}$ is a unit in $R^{Y}(G)$ if and only if α_{λ} is a unit in R for some λ, and allother α_{g} 's are nilpotent in R.

Proof

By lemma (2.2) $\int_{g} \alpha_{g} \bar{g}$ is a unit in $R^{\gamma}(G)$ if and only if
there exist $\beta_{g} \in R$ such that

$$
\begin{equation*}
\sum_{g} \alpha_{g} \beta_{g} g^{-1} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1} . \tag{1}
\end{equation*}
$$

and $\alpha_{g} \beta_{h}$ is nilpotent in R whenever $g h \neq 1$.

In (1) for fixed v we have,

$$
\begin{equation*}
\alpha_{v} \beta_{v}{ }_{v} \alpha_{v} \gamma\left(v, v^{-1}\right)=\gamma(1,1)^{-1} \alpha_{v}+n \tag{2}
\end{equation*}
$$

where n is nilpotent in R. We multiply (2) by $B_{\nu^{-1}} \gamma\left(\nu, \nu^{-1}\right) \gamma(1,1)^{2}$; then we have
 where n_{1} is nilpotent in R. For convenience, let $w=\gamma\left(v, v^{-1}\right) \gamma(1,1)$ and so we have $\left(w \alpha_{v} \beta_{v}{ }^{-1}\right)^{2}=w \alpha_{v} \beta_{v}{ }^{-1}+n_{1}$.

Now, let P be the prime radical of $R(1.5)$. Thenmodulo P, $w \alpha_{v} \beta^{-1}$ is an idempotent. Since by (1.7) P is a nil ideal of R and by ($1 \nmid 4$) idempotents can be lifted modulo P, there exists an idempotent $f \in R$ such that

$$
w \alpha_{v} \beta_{v^{-1}} \equiv f(\bmod P)
$$

But R has no non-trivial idempotents so either $f=0$, or $f=1$, Then we have

$$
\begin{equation*}
w \alpha_{v}^{\beta_{v^{-1}}} \equiv 0 \quad(\bmod P) \tag{3}
\end{equation*}
$$

or

$$
w \alpha_{v}^{\beta_{v}^{-1}} \equiv 1 \quad(\bmod P)
$$

Suppose (3) holds. Then

$$
r\left(v, v^{-1}\right) r(1,1) \alpha_{v}^{\beta}{ }_{v^{-1}}=w \alpha_{v} \beta_{v^{-1}} \in P \text {. }
$$

whence

$$
\begin{equation*}
r\left(v, v^{-1}\right) \quad r(1,1) \quad \alpha_{v} \beta_{v}{ }^{-1} \alpha_{v} \in P . \tag{5}
\end{equation*}
$$

Furthermore, by multiplying (2) by $\gamma(1,1)$ we have,

$$
\begin{equation*}
\gamma\left(v, v^{-1}\right) \gamma(1,1) \alpha_{v} \beta_{v}-1 \alpha_{v}=\alpha_{v}+\gamma(1,1) n \text {. } \tag{6}
\end{equation*}
$$

By using (5), (6) and the fact that $\gamma(1,1) n \in P$ we conclude that $\alpha_{v} \in P$, i.e. α_{v} is nilpotent.

If (3) holds for every v, then $\sum_{g} \alpha_{g} \bar{g}$ is nilpotent.
But this is false because $\int_{g} \alpha_{g} \bar{g}$ is a unit. Hence (4) holds for some v, say $w \alpha_{\lambda}^{\beta}{ }_{\lambda}-1 \equiv 1(\bmod p)$. Let $n_{2}=w \alpha_{\lambda}^{\beta} \beta_{\lambda}^{-1}-1$. Then $n_{2} \in P$. Let $\alpha_{\varepsilon} \bar{\varepsilon}$ be any term in $\sum \alpha_{g} \bar{g}$ other $\alpha_{\lambda} \bar{\lambda}$. Then by multiplying n_{2} by α_{ε} we have

$$
w \alpha_{\lambda}^{\beta}{ }_{\lambda}^{-1} \alpha_{\varepsilon}-\alpha_{\varepsilon}=\alpha_{\varepsilon} n_{2} .
$$

By (2.2) $\alpha_{\varepsilon} \beta_{\lambda^{-1}} \in P$ because $\varepsilon \lambda^{-1} \neq 1$, and so $w \alpha_{\lambda} \beta_{\lambda^{-1}} \alpha_{\varepsilon} \in P$.

Also $n_{2} \in P$ implies that $\alpha_{\varepsilon} n_{2} \in P$, hence from $w \alpha_{\lambda}{ }_{\lambda}{ }_{\lambda}{ }^{1} \alpha_{\varepsilon}-\alpha_{\varepsilon}=\alpha_{\varepsilon} n_{2}$ we conclude that $\alpha_{\varepsilon} \in P$. Thus all α_{g} 's other than α_{λ} are nilpotent.

Again by (2.2) we have $\sum_{g} a_{g}{ }_{g} g^{-1} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}$.
Since all $\alpha_{g}^{\prime} s$ other than α_{λ} are nilpotent we have

$$
\alpha_{\lambda}^{\beta} \lambda_{\lambda^{-1}} \gamma\left(\lambda, \lambda^{-1}\right)+\sum_{g^{\beta} \lambda} \alpha_{g}^{\beta} g_{g^{-1}} \gamma\left(g, g^{-1}\right)=\gamma(1,1)^{-1}
$$

where

$$
\sum_{g \neq \lambda} \alpha_{g}{ }_{g}^{\beta} g^{-1} \gamma\left(g, g^{-1}\right)
$$

is nilpotent in $R^{\gamma}(G)$. Thus we have $\alpha_{\lambda}^{\beta_{\lambda}}{ }^{-1}\left(\lambda, \lambda^{-1}\right)=\gamma(1,1)^{-1}+n_{3}$ where $n_{3}=-\sum_{g \neq \lambda} \alpha_{g}{ }_{B_{g}}{ }^{-1} \gamma\left(g, g^{-1}\right)$. But, since $\gamma(1,1)^{-1}$ is a unit in R, then $\gamma(1,1)^{-1}$ is a unit in $R^{\gamma}(G)$. Hence by using lemma (1.2) $\quad \gamma(1,1)^{-1}+n_{3}$ is a unit in $R^{\gamma}(G)$. This implies that $\alpha_{\lambda}{ }_{\lambda}^{\beta}{ }^{-1} \gamma\left(\lambda, \lambda^{-1}\right)$ is a unit in $R^{\gamma}(G)$ and so α_{λ} is a unit in $R^{\gamma}(G)$. Thus α_{λ} is a unit in R. Δ

Corollary 2.4

Let R be a commutative ring with no non-zero nilpotents and no non-trivial idempotents. Let G be a right-ordered group and let $R^{\gamma}(G)$ be a twisted group ring of G over R. Then the only units of $R^{\gamma}(G)$ are of the form $r \bar{g}$ where r is a unit in R and $g \in G$.

Proof

Since R has no non-trivial idempotents by Corollary (2.3) $\sum \alpha_{g} \bar{g}$ is a unit in $R^{\gamma}(G)$ if and only if α_{λ} is a unit in R for some λ and all other $\alpha_{g}^{\prime \prime s}$ are nilpotent in R. Since R has no non-zero nilpotents then $\int_{g} \alpha_{g} \bar{g}$ is a unit in $R^{\gamma}(G)$ if and only if α_{λ} is a unit in R for some λ and all other α_{y}^{\prime} 's are zero. Δ

Before starting to extend theorem (2.1) of [9] we prove some lemmas on group rings of infinite cyclic groups.

Lemma 2.5

Let R be a ring and let $\langle x\rangle$ be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. Let $Z(R)$ be the centre of R and let $Z\left(R^{\gamma}(\langle x\rangle)\right)$ be the centre of $\mathbf{R}^{\gamma}(\langle x\rangle)$. Then,

$$
z\left(R^{\gamma}(<x>)\right)=(Z(R))^{\gamma}(<x>) .
$$

Proof

By (1.12) we know that for any integer $m, \overline{x^{m}} \in Z\left(R^{\gamma}(\langle x\rangle)\right)$. It follows from this that $(Z(R))^{\gamma}(\langle x\rangle) \subseteq Z\left(R^{\gamma}(\langle x\rangle)\right)$.

To prove $Z\left(R^{\gamma}(\langle x\rangle)\right) \subseteq(Z(R))^{\gamma}(\langle x\rangle)$ we assume that $\sum a_{i} \overline{x^{i}}$ is an arbitrary element of $Z\left(R^{\gamma}(\langle x\rangle)\right)$ and b is also an arbitrary element of R. Then we have

$$
\left(\sum a_{i} \overline{x^{i}}\right)(b \bar{l})=(b \bar{l})\left(\sum a_{i} \overline{x^{i}}\right)
$$

This implies that

$$
a_{i} b \quad \gamma\left(x^{i}, 1\right)=b a_{i} \gamma\left(1, x^{i}\right)
$$

for all i .

By (1.11), $\gamma\left(x^{i}, 1\right)=\gamma\left(1, x^{i}\right)=\gamma(1,1)$ is a central unit in R and so we have $a_{i} b=b a_{i}$ for all i. This implies that $a_{i} \in Z(R)$ for all i, and hence $Z\left(R^{\gamma}(\langle x\rangle)\right) \subseteq(Z(R))^{\gamma}(\langle x\rangle)$. Δ

Lemma 2.6
Let R be a commutative ring and let $\langle x\rangle$ te an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. Let $\left[a_{i} \overline{x^{i}}\right.$ be a unit in $R^{\gamma}(\langle x\rangle)$ and let $\sum b_{j} \overline{x^{j}}$ be its inverse in $R^{\gamma}(\langle x\rangle)$. Then, $a_{\varepsilon} a_{V}$ and $b_{\varepsilon} b_{V}$ are nilpotent in R whenever $\varepsilon \neq v$.

Proof

By example 1.13(I), <x> is a right-ordered group and by using (2.2) we have $\left[a_{i} b_{-i} \gamma\left(x^{i}, x^{-i}\right)=\gamma(1,1)^{-1}\right.$. Also $a_{i} b_{j}$ is nilpotent in R whenever $i+j \neq 0$.

Let P_{0} be a given prime ideal of R. Then by (1.11)
$\sum \overline{a_{i}} \overline{x^{1}}\left(\bar{a}_{i} \in R / P_{0}\right)$ is a unit in $\left(R / P_{0}\right)^{\bar{\gamma}}(\langle x\rangle)$. But by (1.6)
R / P_{0} is an integral domain and therefore has no non-trivial
idempotents. Hence by (2.3) for some i_{0} depending on P_{0}, $\bar{a}_{i_{0}}$ is a unit in R / P_{0} and $\overline{a_{i}}=\overline{0}$ for all $i \neq i_{0}$. Also for some j_{0} depend on $P_{0}, \bar{b}_{j_{0}}$ is a unit in R / P_{0} and $\overline{b_{j}}=\overline{0}$ for all $j \neq j_{0}$. This implies that exactly one a_{i} and exactly one b_{j} do not lie in P_{0}. In fact, $i_{0}=-j_{0}$ because $\left[\bar{a}_{i} \bar{b}_{-i} \overline{\gamma\left(x^{i}, x^{-i}\right)}=\overline{\gamma(1,1)^{-1}}\right.$.

Finally we wish to prove that $a_{\varepsilon} a_{v}(\varepsilon \neq v)$ is nilpotent. For this let p be an arbitrary prime ideal of R. Since exactly one a_{i} does not lie in p we conclude that either a_{ε} or a_{v} belongs to p and then $a_{\varepsilon} a_{v}$ belong to p. This implies that $a_{\varepsilon} a_{v}$ belong to all prime ideals of R and then by (1.7) $a_{\varepsilon} a_{\nu}$ is nilpotent. Δ

Lemma 2.7
Let R be a commutative ring and let $\langle x\rangle$ be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. Let $\left[a_{i} \overline{x^{i}}\right.$ be a unit in $R^{\gamma}(\langle x\rangle)$ and let a_{i} be nilpotent for $i \neq 1,-1$. Let there exist $c_{t} \in R$ such that $\sum_{t=-u}^{v} c_{t}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{t}=0$. Then c_{t} is nilpotent for all t.

Proof
Let $\left(\left[a_{i} \overline{x^{i}}\right)^{-1}=\sum b_{j} \overline{x^{j}}\right.$, and \mathcal{P} be a prime ideal of R. Then by (1.11) $\sum_{t=-u}^{v} \bar{c}_{t}\left(\sum_{i} \overline{a_{i}} \bar{x}^{I}\right)^{t}=0,\left(\overline{c_{t}} \bar{a}_{i} \in R / P\right)$. Since a_{i} is nilpotent for $1 \neq 1,-1$, we conclude from (1.6) that all
R / P_{0} is an integral domain and therefore has no non-trivial
idempotents. Hence by (2.3) for some i_{0} depending on P_{0}, $\bar{a}_{i_{0}}$ is a unit in R / P_{0} and $\bar{a}_{i}=\overline{0}$ for all $i \neq i_{0}$. Also for some j_{0} depend on $P_{0}, \bar{b}_{j_{0}}$ is a unit in R / P_{0} and $\overline{b_{j}}=\overline{0}$ for all $j \neq j_{0}$. This implies that exactly one a_{i} and exactly one b_{j} do not lie in P_{0}. In fact, $i_{0}=-j_{0}$ because $\sum \bar{a}_{i} \bar{b}_{-i} \overline{\gamma\left(x^{i}, x^{-i}\right)}=\overline{\gamma(1,1)^{-1}}$.

Finally we wish to prove that $a_{\varepsilon} a_{\nu}(\varepsilon \neq v)$ is nilpotent. For this let p be an arbitrary prime ideal of R. Since exactly one a_{i} does not lie in p we conclude that either a_{ε} or a_{v} belongs to p and then $a_{\varepsilon} a_{v}$ belong to p. This implies that $a_{\varepsilon} a_{\nu}$ belong to all prime ideals of R and then by (1.7) $a_{\varepsilon} a_{v}$ is nilpotent. $\quad \Delta$

Lemma 2.7

Let R be a commutative ring and let $\langle x\rangle$ be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of < x > over R. Let $\left[a_{i} \overline{x^{i}}\right.$ be a unit in $R^{\gamma}(\langle x\rangle)$ and let a_{i} be nilpotent for $i \neq 1,-1$. Let there exist $c_{t} \in R$ such that $\sum_{t=-u}^{v} c_{t}\left(\sum_{i} a_{i} \bar{x}^{i}\right)^{t}=0$. Then c_{t} is nilpotent for all t. Proof Let $\left(\sum a_{i} \overline{x^{i}}\right)^{-1}=\sum b_{j} \overline{x^{j}}$, and P be a prime ideal of R. Then by (1.11) $\sum_{t=-u}^{v} \bar{c}_{t}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t}=0,\left(\overline{c_{t}}, \overline{a_{i}} \in R / P\right)$. Since a_{i} is nilpotent for $i \neq 1,-1$, we conclude from (1.6) that all
$\overline{a_{i}}$ except $\overline{a_{1}}, \overline{a_{-1}}$ are zero. Furthermore, $\sum a_{i} \overline{x^{i}}$ is a unit in $R^{\gamma}(\langle x\rangle)$ so by (1.11) $\quad \overline{a_{i}} \overline{x^{i}}$ is a unit in $(R / P) \bar{r}_{(\langle x\rangle)}$. Hence by (1.6) and (2.4) we conclude that one of $\overline{a_{1}}, \overline{a_{-1}}$ must be zero and the other one must be a unit in R / P. Thus there are two cases as follows:
(i) $\overline{a_{1}}$ is a unit in R / P and $\overline{a_{-1}}$ is zero.
(ii) $\overline{a_{-1}}$ is a unit in R / P and $\overline{a_{1}}$ is zero.

Since the proofs for (i), (ii) are similar we assume, for convenience, that (i) holds.

By example l.13(I) <x> is a right-ordered group. Then by using (2.2) we have $\left[a_{i} b_{-i} \gamma\left(x^{i}, x^{-i}\right)=\gamma(1,1)^{-1}\right.$. From this and the fact that $\overline{a_{i}}=0$ for all $i \neq 1$ we obtain
$\overline{a_{1}} \overline{b_{-1}} \overline{\gamma\left(x, x^{-1}\right)}=\overline{\gamma(1,1)^{-1}}$. This implies that $\overline{b_{-1}}$ is also a unit in R / P because $\overline{\gamma(1,1)^{-1}}, \overline{\gamma\left(x, x^{-1}\right)}, \overline{a_{1}}$ are units in R / P. But $\left[b_{j} \overline{x^{j}}\right.$ is a unit in $R^{\gamma}(\langle x\rangle)$, hence by (1.11) $\left[\overline{b_{j}} \overline{x^{j}}\right.$ is a unit in $(R / P)^{\bar{r}}(\langle x\rangle)$. Thus by (1.6) and (2.4) exactly one $\overline{b_{j}}$ must be a unit in R / P and all the other $\overline{b_{j}}$'s must be zero. Since $\overline{b_{-1}}$ is a unit in R / P we conclude that $\overline{b_{j}}=0$ for all $j \neq-1$.

Since $\overline{a_{1}}$ is a unit and $\overline{a_{i}}=0$ for $i \neq 1$ we deduce from

$$
\sum_{t=-u}^{t=v} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t}=0
$$

that

$$
\begin{array}{ll}
& \sum \overline{c_{t}}\left(\overline{a_{1}} \bar{x}\right)^{t}=0 \\
\text { i.e. } & \sum \bar{c}_{t} \bar{a}_{1}^{t} \bar{x}^{t}=0 .
\end{array}
$$

This implies that $\overline{c_{t}}=0$ for all t, i.e. $c_{t} \in P$ for all t.

But P is an arbitrary prime ideal and so each c_{t} belongs to all prime ideals of R. This implies by (1.5) and (1.7) that all c_{t} are nilpotent in $R \cdot \Delta$

We shall in lemma (2.8) obtain a stronger result.

Lemma 2.8
Let R be a commutative ring and let <x> be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R. Let $\sum a_{i} \overline{x^{1}}$ be a unit in $R^{\gamma}(\langle x\rangle)$ and let a_{i} for $i \neq 1,-1$ be nilpotent. Let there exist $c_{t} \in R$ such that

$$
\sum_{t=-u}^{v} c_{t}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{t}=0, u, v \quad \text { positive integers. }
$$

Then all $c_{t}=0$.

Proof
Let $\left(\sum a_{i} \overline{x^{i}}\right)^{-1}=\sum b_{j} \overline{x^{j}}$. By (2.6) $a_{\varepsilon} a_{v}$ and $b_{\varepsilon} b_{v}$ are nilpotents whenever $\varepsilon \neq v . \quad$ By (2.7) all c_{t} are nilpotent.

Let T be the ideal of R generated by,

$$
\begin{gathered}
\left\{c_{t}\right\} \cup\left\{a_{i} \mid a_{i} \text { is nilpotent }\right\} \cup\left\{b_{j} \mid b_{j} \text { is nilpotent }\right\} \\
\cup\left\{a_{\varepsilon} a_{v} \mid \varepsilon \neq v\right\} \cup\left\{b_{\varepsilon} b_{v} \mid \varepsilon \neq v\right\}
\end{gathered}
$$

Then T is nilpotent. Let all $c_{t} \in T^{k}$ for some $k>0$, but some c_{t} does not belong to T^{k+1}. Let $\bar{R}=R / T^{k+1}$. In $\bar{R}(\langle x\rangle)$ we have

$$
\sum_{t=-u}^{v} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t}=0
$$

We can write

$$
\begin{aligned}
\sum_{t=-u}^{v} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t} & =\sum_{t=-u}^{-1} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t}+\overline{c_{0}}+\sum_{t=1}^{v} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t} \\
& =\sum_{t=1}^{u} \overline{c_{-t}}\left(\sum \overline{a_{i}} \overline{x^{i}}\right)^{-t}+\overline{c_{0}}+\sum_{t=1}^{v} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t}=0
\end{aligned}
$$

that is

$$
\begin{equation*}
\sum_{t=1}^{n} \overline{c_{-i}}\left(\sum_{j} \overline{b_{j}} \overline{x^{j}}\right)^{t}+\overline{c_{0}}+\sum_{t=1}^{v} \bar{c}_{t}\left(\sum \bar{a}_{i} \bar{x}^{i}\right)^{t}=0 \tag{1}
\end{equation*}
$$

Since all $c_{t} \in T^{k}$ and $a_{i} \in T, b_{i} \in T$ when $i \neq 1,-1$
we have

$$
\begin{equation*}
\sum_{t=1}^{u} \bar{c}_{-t}\left(\bar{b}-1 \bar{x}^{-i}+\bar{b}_{1} \bar{x}\right)^{t}+\overline{c_{0}}+\sum_{t=1}^{v} \overline{c_{t}}\left(\overline{a_{1}} \bar{x}+\overline{a_{-1}} \bar{x}^{-1}\right)^{t}=0 \tag{2}
\end{equation*}
$$

By equating the coefficients of $(\bar{x})^{t}$ for $t>0$ in (2)
we conclude that

$$
\begin{equation*}
\overline{c_{-t}}\left(\overline{b_{1}}\right)^{t}+\overline{c_{t}}\left(\overline{a_{1}}\right)^{t}=0, \quad t>0 \tag{3}
\end{equation*}
$$

By using the fact that all $c_{t} \in T^{k}$ and $b_{1} b_{-1} \in T$ we multiply (3) by $\overline{b_{-1}}$ and we have

$$
\begin{equation*}
\bar{c}_{t}\left(\bar{a}_{1}\right)^{t} \bar{b}_{-1}=0, \quad t>0 \tag{4}
\end{equation*}
$$

Two cases arise:
(1) $t=1$.
(2) $t>1$.

In case (1) we have $\overline{c_{1}} \overline{a_{1}} \overline{b_{-1}}=0$.
In case (2) we prove that $\overline{c_{t}} \overline{a_{1}}=0$.

By (2.2) we know that $\left[a_{i} b_{-i} \gamma\left(x^{i}, x^{-i}\right)=\gamma(1,1)^{-1}\right.$. From this we obtain

$$
\begin{equation*}
\sum \overline{a_{i}} \overline{b_{-i}} \overline{\gamma\left(x^{i}, x^{-1}\right)}=\overline{\gamma(1,1)^{-1}} . \tag{5}
\end{equation*}
$$

From (5) we conclude that

$$
\begin{align*}
& \bar{a}_{1} \bar{b}-1 \overline{\gamma\left(x, x^{-1}\right)}=\overline{\gamma(1,1)^{-1}}-\overline{a_{-1}} \overline{b_{1}} \overline{\gamma\left(x^{-1}, x\right)} \\
&-\sum_{i \neq 1,-1} \overline{a_{i}} \overline{b_{-i}} \overline{\gamma\left(x^{1}, x^{-i}\right)} . \tag{6}
\end{align*}
$$

By multiplying (4) by $\overline{\gamma\left(x, x^{-1}\right)}$ we have

$$
\begin{equation*}
\left.\overline{c_{t}}\left(\bar{a}_{1}\right) t-\overline{\left(a_{1}\right.} \bar{b}_{-1}\right) \overline{\gamma\left(x, x^{-1}\right)}=0, \quad t>1 \tag{7}
\end{equation*}
$$

Now by multiplying (6) by $\overline{c_{t}}\left(\overline{a_{1}}\right)^{t-1}(t>1)$, and using (7) we conclude that

$$
\begin{align*}
0 & \left.\left.=\overline{c_{t}}\left(\overline{a_{1}}\right) t \overline{\left(a_{1}\right.} \overline{b_{-1}}\right) \overline{\gamma\left(x, x^{-1}\right.}\right) \\
& =\overline{c_{t}}\left(\overline{a_{1}}\right) \tag{8}
\end{align*}
$$

But $\overline{c_{t}}\left(\overline{a_{i}}\right), t-1 \sum_{i \neq 1,-1} \overline{a_{i}} \overline{b_{-i}} \overline{\gamma\left(x^{i}, x^{-i}\right)}=0$, because all
$c_{t} \in T^{k}$ and a_{i} belong to T for $i \neq 1,-1$. Also $\overline{c_{t}}\left(\overline{a_{1}}\right) t-1 \overline{a_{-1}} \overline{b_{1}} \overline{\gamma\left(x^{-1}, x\right)}=0$ because $t>1$ and by (2.6) $a_{1} a_{-1} \in T$. Thus from (8) we have $\overline{c_{t}} \overline{\left(a_{1}\right)}{ }^{t-1} \overline{\gamma(1,1)^{-1}}=0$. This implies that $\overline{c_{t}}\left(\overline{a_{1}}\right)^{t-1}=0$ because $\overline{\gamma(1,1)^{-1}}$ is a unit in R / N^{k+1}.

By repeating in this manner we obtain $\overline{c_{t}} \overline{a_{1}}=0(t>1)$. Similarly we prove that $\overline{c_{1}} \overline{a_{-1}} \overline{b_{1}}=0$ and $\overline{c_{t}} \overline{a_{-1}}=0(t>1)$.

Thus we have $\overline{c_{1}} \overline{a_{1}} \overline{b_{-1}}=0, \overline{c_{1}} \overline{a_{-1}} \overline{b_{1}}=0$, and also $\overline{c_{t}} \overline{a_{1}}=0, \overline{c_{t}} \overline{a_{-1}}=0$ for $t>1$. By using these results and

$$
\begin{aligned}
0=\bar{c}_{t}\left[\overline{a_{1}} \overline{b_{-1}} \overline{\gamma\left(x, x^{-1}\right)}\right. & +\bar{a}_{-1} \overline{b_{1}} \overline{\gamma\left(x^{-1}, x\right)}+\sum_{i \neq 1,-1} \bar{a}_{i} \overline{b_{-i}} \overline{\left.\gamma\left(x^{i}, x^{-i}\right)\right]} \\
& =\overline{c_{t}} \overline{\gamma(1,1)^{-1}}
\end{aligned}
$$

This implies that $\overline{c_{t}} \overline{\gamma(1,1)^{-1}}=0$ i.e.. $\overline{c_{t}}=0$ because $\overline{\gamma(1,1)^{-1}}$ is a unit. Hence $c_{t} \in T^{k+1}$ for $t \geq 1$.

Now we show that all c_{t}, ($t \leq-1$) beong to T^{k+1}. For this we multiply $\overline{c_{-t}}\left(\overline{b_{1}}\right)^{t}+\overline{c_{t}}\left(\overline{a_{1}}\right)^{t}=0, \quad(t>0) \quad$ by $\overline{a_{-1}}$. and since $c_{t}\left(a_{1}\right)^{t} a_{-1} \in T^{k+1}$ we have

$$
\begin{equation*}
\bar{c}_{-t}\left(\bar{b}_{1}\right) t \overline{a_{-1}}=0, \quad t>0 . \tag{9}
\end{equation*}
$$

Two cases arise:
(5) $t=1$.
(6) $t>1$.

In case (5) we have $\overline{c_{-1}} \overline{b_{1}} \overline{a_{-1}}=0$.

In case (6) we show that $\overline{c_{t}} \overline{b_{1}}=0, t<-1$. For this from $\sum \overline{a_{i}} \overline{b_{-i}} \overline{\gamma\left(x^{i}, x^{-i}\right)}=\overline{\gamma(1,1)^{-1}}$ we conclude that
$\overline{a_{-1}} \overline{b_{1}} \overline{\gamma\left(x^{-1}, x\right)}=\overline{\gamma(1,1)^{-1}}-\overline{a_{1}} \overline{b_{-1}} \overline{\gamma\left(x, x^{-1}\right)}-\sum_{i=1,-1} \overline{a_{i}} \overline{b_{-i}} \overline{\gamma\left(x^{i}, x^{-i}\right)}$

Also from (9) we obtain

$$
\begin{equation*}
\overline{c_{-t}}\left(\overline{b_{1}}\right)^{t-1}\left(\bar{b}_{1} \overline{a_{-1}}\right) \gamma \overline{\left(x^{-1}, x\right)}=0, \quad t>1 . \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& \text { By }(10) \text { and (11) we conclude that } \\
& 0=\overline{c_{-t}}\left(\bar{b}_{1}\right) \\
&\left.={\overline{c_{-t}}}^{\left(b_{1}\right)} \overline{(b}_{1} \overline{a_{-1}}\right) \overline{\gamma\left(x^{-1}, x\right)} \tag{12}\\
& {\left[\gamma(1,1)^{-1}-\overline{a_{1}} \overline{b_{-1}} \overline{\gamma\left(x, x^{-1}\right)}-\sum_{i=1,-1} \bar{a}_{i} \overline{b_{-i}} \overline{\gamma\left(x^{i}, x^{-i}\right)}\right] . }
\end{align*}
$$

But we know that all $c_{t} \in T^{k}$ and $a_{i} \in T$ for $i ; 1,-1$. Also $t>1$ and $b_{1} b_{-1} \in T$. Hence from (12) we obtain
$\overline{c_{-t}}\left(\bar{b}_{1}\right)^{t-1} \overline{\gamma(1,1)^{-1}}=0$ and this implies that $\overline{c_{-t}}\left(\bar{b}_{1}\right)^{t-1}=0$ because $\overline{\gamma(1,1)^{-1}}$ is a unit in R / T^{k+1}. By repeating in this manner we have $\overline{c_{-t}} \overline{b_{1}}=0, t>1$. Hence $\overline{c_{t}} \overline{b_{1}}=0, t<-1$. Similarly we prove that $\overline{c_{-1}} \overline{b_{-1}} \overline{a_{1}}=0$ and $\overline{c_{t}} \overline{b_{-1}}=0(t<-1)$.

Thus we proved that, $\overline{c_{-1}} \overline{b_{1}} \overline{a_{-1}}=0, \overline{c_{-1}} \overline{b_{-1}} \overline{a_{1}}=0$. Also $\overline{c_{t}} \overline{b_{1}}=0, \overline{c_{t}} \overline{b_{-1}}=0$ for $t<-1$. By using these results and multiplying

$$
\sum \overline{a_{i}} \bar{b}_{-i} \overline{\gamma\left(x^{i}, x^{-i}\right)}=\overline{\gamma(1,1)^{-1}}
$$

by $\overline{c_{t}}(t \leq-1)$ we conclude that

$$
0=\overline{c_{t}}\left[\overline{a_{1}} \overline{b_{-1}} \overline{\gamma\left(x, x^{-1}\right)}+\overline{a_{-1}} \overline{b_{1}} \overline{\gamma\left(x^{-1}, x\right)}+\sum_{i \neq 1,-1} \overline{a_{i}} \overline{b_{-i}} \overline{\left.\gamma\left(x^{i}, x^{-i}\right)\right]}\right.
$$

$$
=\bar{c}_{t} \overline{\gamma(1,1)^{-1}}
$$

This implies that $\overline{c_{t}}=0$ for $t \leq-1$.
Now we proved that $\overline{c_{t}}=0$ for $t \geq 1$ and $\overline{c_{t}}=0$ for $t \leq-1$. By these results and

$$
\sum_{t=-u}^{i v} \overline{c_{t}}\left(\sum_{i} \overline{a_{i}} \overline{x^{i}}\right)^{t}=0
$$

we conclude that $\bar{c}_{0}=0$. Hence all c_{t} belong to T^{k+1}, contrary to assumption. Consequently all c_{t} lie in arbitrary large powers of T. Since T is nilpotent all $c_{t}=0 . \Delta$

Now we are in a position to extend Theorem (2.1) of [9]. Since the proof is long we split it into two lemmas.

Lemma 2.9

Let R be a ring and let <x> be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R and let $Z\left(R^{\gamma}(\langle x\rangle)\right)$ be the centre of $R^{\gamma}(\langle x\rangle)$. Let $Z(R)$ be the centre of R and let $\bar{\theta}: \bar{x} \rightarrow \sum_{i} a_{i} \overline{x^{i}}$ induce an R-automorphism of $R^{\gamma}(\langle x\rangle)$.

Then the following two conditions hold:
(i) $\sum a_{i} \overline{x^{i}}$ is a unit in $(Z(R))^{\gamma}(\langle x\rangle)$.
(ii) If $i \neq 1,-1$, then a_{i} is nilpotent.

Proof

By (2.5) $Z\left(R^{\gamma}(\langle x\rangle)\right)=(Z(R))^{\gamma}(\langle x\rangle)$ and by (1.12) \bar{x} is a central unit in $R^{\gamma}(\langle x\rangle)$. Since $\bar{\theta}$ is an R-automorphism of $R^{\gamma}(\langle x\rangle)$ we conclude that $\sum_{i} a_{i} \overline{x^{i}}$ is a unit in $(Z(R))^{\gamma}(\langle x\rangle)=Z\left(R^{\gamma}(\langle x\rangle)\right)$ and (i) holds.

Now we prove (ii). $\quad \int_{i} a_{i} \overline{x^{i}}$ is a unit in $(z(R))^{\gamma}(\langle x\rangle)$. Then $\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{-1}$ exists and belongs to $(Z(R))^{\gamma}(\langle x\rangle)$. Let

$$
\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{-1}=\sum_{j} b_{j} \overline{x^{j}}
$$

Hence we conclude that $a_{i}, b_{j} \in Z(R)$ for all $1, j$. Since
$\bar{\theta}: \bar{x} \rightarrow \sum_{i} a_{i} \overline{x^{i}}$ is an R-automorphism of $R^{\gamma}(\langle x\rangle),\left\{\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{t}: t \in \mathbb{Z}\right\}$ is an R-basis of $R^{\gamma}(\langle x\rangle)$ and so there exist $c_{t} \in Z(R)$ such that

$$
\bar{x}=\sum_{t=-\varepsilon}^{\delta} c_{t}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{t}, \varepsilon, \delta \text { positive integers. }
$$

By applying

$$
\left(\sum_{i} a_{i} \bar{x}^{i}\right)^{-t}=\left(\sum_{j} b_{j} \bar{x}^{j}\right)^{t}, \quad(t>0)
$$

we have

$$
\begin{align*}
\bar{x}=c_{-\varepsilon}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{-\varepsilon} & +\ldots+c_{-1}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{-1}+c_{0}+c_{1}\left(\sum_{i} a_{i} \overline{x^{i}}\right) \\
& +\ldots+c_{\delta}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{\delta}=c_{-\varepsilon}\left(\sum_{j} b_{j} \overline{x^{j}}\right)^{\varepsilon} \\
& +\ldots+c_{-1}\left(\sum_{j} b_{j} \overline{x^{j}}\right)+c_{0}+c_{1}\left(\sum_{i} a_{i} \overline{x^{i}}\right) \\
& +\ldots+c_{\delta}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{\delta} . \tag{1}
\end{align*}
$$

The coefficient of \bar{x} on the left hand side of (1) is 1 . The coefficient of \bar{x} in $c_{-1}\left(\sum_{j} b_{j} \overline{x^{j}}\right)$ is $c_{-1} b_{1}$ and the coefficient of \bar{x} in $c_{1}\left(\sum_{i} a_{i} \overline{x^{i}}\right)$ is $c_{1} a_{1}$.

But by (2.6) all $a_{\mu} a_{v}$ and $b_{\mu} b_{v}$ for $\mu \neq v$ are nilpotent in $Z(R)$, and so the coefficient of \bar{x} in $c_{k}\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{k}$ for either $k>1$ or $k<-1$ is nilpotent.

Hence by equating the coefficients of \bar{x} in (1) we have

$$
\begin{equation*}
1=c_{-1} b_{1}+c_{1} a_{1}+n \tag{2}
\end{equation*}
$$

where n is nilpotent in $Z(R)$.

Let P be an arbitrary prime ideal of $Z(R)$. If $a_{1} \in P$ and $b_{1} \in P$ then by using (2) we have $1 \in P$, because n is nilpotent, and then $P=Z(\mathbb{P})$. Hence for any prime ideal P of $Z(R), a_{1} \in P$ implies that $b_{1} \notin P$.

By example 1.13 (I), <x> is a right-ordered group and then by (2.2) we have

$$
\begin{equation*}
\sum a_{i} b_{-i} \gamma\left(x^{i}, x^{-i}\right)=\gamma(1,1)^{-1} \tag{3}
\end{equation*}
$$

and $a_{i} b_{j}$ is nilpotent in $Z(R)$ whenever $i+j \neq 0$. From this and multiplying (3) by b_{1} we obtain

$$
\begin{equation*}
b_{1} a_{1} b_{1} \gamma\left(x^{-1}, x\right)=b_{1} \gamma(1,1)^{-1}+n_{1} \tag{4}
\end{equation*}
$$

where n_{1} is nilpotent in $Z(R)$.

It follows from (4) that if a_{-1} belongs to any prime ideal P of $Z(R)$, then b_{i} also belongs to P, because n_{1} is nilpotent. Suppose there exists a prime ideal P of $Z(R)$ such that $a_{1} \in P$ and $a_{-1} \in P$. We wish to show that P cannot exist. By above paragraphs $a_{1} \in P$ implies that $b_{1} \& P$ and $a_{-1} \in P$ implies that $b_{1} \in P$ which is impossible. Thus for any prime ideal P of $Z(R), a_{1} \in P$ implies that $a_{-1} \& P$.

Finally, consider $a_{t}, t \neq \pm 1$. We wish to show that a_{t} belongs to all prime ideals of $Z(R)$. For the sake of argument suppose Q is a prime ideal of $Z(R)$ such that $a_{t} \& Q$. Since $\sum_{1} a_{i} \overline{x^{i}}$ is a unit in $(Z(R))^{\gamma}(\langle x\rangle)$ by (1.11)

$$
\sum \overline{a_{i}} \overline{x^{1}}\left(\overline{a_{1}}=a_{i}+Q\right)
$$

is a unit. By using (2.4) and the fact that $\overline{a_{t}} \neq \overline{0}$ we conclude that \bar{a}_{t} is a unit in R / Q and $\bar{a}_{\lambda}=\overline{0}$ for all $\lambda \neq t$. In particular $\overline{a_{1}}=\overline{0}, \overline{a_{-1}}=\overline{0}$ and then $a_{1} \in Q, a_{-1} \in Q$ which is false. Hence for any prime ideal P of $Z(R), a_{t} \in P$ whenever $t \neq \pm 1$; i.e. a_{t} is nilpotent whenever $t \neq \pm 1 \cdot \Delta$

Lemma 2.10
Let R be a ring and let $\langle x\rangle$ be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R and let $Z\left(R^{\gamma}(\langle x\rangle)\right)$ be the centre of $R^{\gamma}(\langle x\rangle)$. Let $Z(R)$ be the centre of R.

Suppose that
(i) $\sum a_{i} \overline{x^{i}}$ is a unit in $(Z(R))^{\gamma}(\langle x\rangle)$.
(ii) If $i \neq 1,-1$, then a_{i} is nilpotent.

Then the map $\bar{\theta}: \bar{x}^{j} \rightarrow\left(\sum_{i} a_{i} \bar{x}^{i}\right)^{j}$ induces an R-automorphism of $R^{\gamma}(\langle x\rangle)$.

Proof

Let $\quad\left(\sum_{i} a_{i} \overline{x^{i}}\right)^{-1}=\sum_{j} b_{j} \overline{x^{j}}$.
First by (2.5) we know that $Z\left(R^{\gamma}(\langle x\rangle)\right)=(Z(R))^{\gamma}(\langle x\rangle)$. Now we define $\tilde{\theta}:(Z(R))^{\gamma}(\langle x\rangle) \rightarrow(Z(R))^{\gamma}(\langle x\rangle)$ by
$\tilde{\theta}\left(\sum_{\lambda} d_{\lambda}(\bar{x})^{\lambda}\right)=\sum_{\lambda} d_{\lambda}(\bar{\theta}(\bar{x}))^{\lambda}=\sum_{\lambda} d_{\lambda}\left(\sum a_{i} \bar{x}^{x^{i}}\right)^{\lambda}$.
By (1.16) $\tilde{\theta}$ is an $Z(R)$-endomorphism of $(Z(R))^{\gamma}(\langle x\rangle)$ and we prove that $\tilde{\theta}$ is $1-1$ and onto, i.e. $\tilde{\theta}$ is an $Z(R)$-automorphism of $(Z(R))^{\gamma}(\langle x\rangle)$.

Assume $\sum_{t} c_{t}(\bar{x})^{t} \in(Z(R))^{\gamma}(\langle x\rangle)$ such that $\tilde{\theta}\left[\sum_{t} c_{t}(\bar{x})^{t}\right]=0$.

Then we have $\sum_{t} c_{t}\left(\sum_{i} a_{i} \bar{x}^{i}\right)^{t}=0$. By (2.8) we conclude that all $c_{t}=0$ and hence $\tilde{\theta}$ is 1-1.

Now we prove that $\tilde{\theta}$ is onto. Since by condition (ii) all a_{i} for $i \neq 1,-1$ are nilpotent, from

$$
\sum_{i} a_{i} b_{-i} \gamma\left(x^{i}, x^{-i}\right)=\gamma(1,1)^{-1}
$$

we conclude that

$$
\begin{equation*}
a_{1} b_{-1} r\left(x, x^{-1}\right)+a_{-1} b_{1} \gamma\left(x^{-1}, x\right)=\gamma(1,1)^{-1}+n_{1} \tag{2}
\end{equation*}
$$

where n_{1} is nilpotent in $(Z(R))^{\gamma}(\langle x\rangle)$.

$$
\text { Since } \gamma(1,1)^{-1} \overline{1} \text { is the identity element of }(Z(R))^{\gamma}(\langle x\rangle)
$$ we have

$$
\begin{aligned}
& {\left[\gamma\left(x, x^{-1}\right) b_{-1}\left(\sum a_{i} \overline{x^{i}}\right)+\gamma\left(x^{-1}, x\right) a_{-1}\left(\sum b_{j} \overline{x^{j}}\right)\right] \overline{1}} \\
& =\left[\gamma\left(x, x^{-1}\right) b_{-1} a_{1} \bar{x}+\gamma\left(x, x^{-1}\right) b_{-1}\left(\sum_{i \neq 1} a_{i} \overline{x^{i}}\right)+\gamma\left(x^{-1}, x\right) a_{-1} b_{1} \bar{x}+\gamma\left(x^{-1}, x\right) a_{-1}\right. \\
& \left.\left(\sum_{j \neq 1} b_{j} \overline{x^{j}}\right)\right] \overline{1}
\end{aligned}
$$

$=\left[\gamma\left(x, x^{-1}\right) b_{-1} a_{1}+\gamma\left(x^{-1}, x\right) a_{-1} b_{1}\right] \overline{1} \bar{x}+n_{2}$
where n_{2} isnil potent in $(Z(R))^{\gamma}(\langle x\rangle)$. From this and (2) we have $\left[\gamma\left(x, x^{-1}\right) b_{-1}\left(\sum_{i} a_{i} \overline{x^{i}}\right)+\gamma\left(x^{-1}, x\right) a_{-1}\left(\sum_{j} b_{j} \overline{x^{j}}\right)\right] \overline{1}$
$=\left[\gamma(1,1)^{-1}+n_{1}\right] \overline{\bar{x}}+n_{2}=\gamma(1,1)^{-1} \overline{1} \bar{x}+n_{1} \overline{1} \bar{x}+n_{2}$
$=\gamma(1,1)^{-1} \overline{1} \bar{x}+n_{3}=\bar{x}+n_{3}$
where $n_{3}=n_{1} \bar{I} \bar{x}+n_{2}$ is nilpotent in $(Z(R))^{Y}(\langle x\rangle)$.

Let $n_{3}=\sum_{\mu} d_{\mu} \overline{x^{\mu}}$. Then each d_{μ} is nilpotent. Let
N be the ideal of $Z(R)$ generated by all d_{μ}. Then N is a nilpotent ideal of $Z(R)$.

By (1.17) we have $\left(\bar{x}+n_{3}\right)^{\mu}=(\bar{x})^{\mu}+n_{4}$ where $n_{4} \in N(\langle x\rangle)$.
Also by (1.15) we have $(\bar{x})^{\mu}=\xi_{\mu} \overline{x^{\mu}}$ where ξ_{μ} is a unit in $Z(R)$. Hence we conclude that $\bar{x}+n_{3}-\sum_{\mu} d_{\mu} \xi_{\mu}^{-1}\left(\bar{x}+n_{3}\right)^{\mu}=\bar{x}+n_{5}$ where $n_{5}=-\sum_{\mu} d_{\mu} \xi_{\mu}^{-1} m_{\mu} \in N^{2}(\langle x\rangle)$, say $n_{5}=\sum_{\sigma} \psi_{\sigma} \overline{x^{\sigma}}$ with $\psi_{\sigma} \in \mathbb{N}^{2}$.

Again by (1.17) and (1.15) we have

$$
\bar{x}+n_{5}-\sum_{\sigma} \psi_{\sigma} f_{\sigma}^{-1}\left(\bar{x}+n_{5}\right)^{\sigma}=\bar{x}+n_{\overline{0}}
$$

where $(\bar{x})^{\sigma}=f_{\sigma} \overline{x^{\sigma}}$ and $n_{\sigma} \in N^{3}(\langle x\rangle)$.
Since N is nilpotent by repeating in this manner a finite number of times we have $\left[\gamma\left(x, x^{-1}\right) b_{-1} \overline{1}\left(\sum_{i} a_{i} \overline{x^{i}}\right)+\gamma\left(x^{-1}, x\right) a_{-1} \overline{1}\left(\sum_{j} b_{j} \bar{x}^{\bar{j}}\right)\right]$
$-\sum d_{\mu} \xi_{\mu}^{-1}\left[\gamma\left(x, x^{-1}\right) b_{-1} \overline{1}\left(\sum_{i} a_{i} \overline{x^{i}}\right)+\gamma\left(x^{-1}, x\right) a_{-1} \overline{1}\left(\sum_{j} b_{j} \bar{x}^{j}\right)\right]^{\mu}$
$-\sum \psi_{\sigma} f_{\sigma}^{-1}\left\{\left[\gamma\left(x, x^{-1}\right) b_{-1} \overline{1}\left(\sum_{i} a_{i} \bar{x}^{i}\right)+\gamma\left(x^{-1}, x\right) a_{-1} \overline{1}\left(\sum_{j} b_{j} \bar{x}^{j}\right)\right]\right.$
$-\sum d_{\mu} \xi_{\mu}^{-1}\left[\gamma\left(x, x^{-1}\right) b_{-1} \overline{1}\left(\sum_{i} a_{i} \overline{x^{i}}\right)+\gamma\left(x^{-1}, x\right) a_{-1} \overline{1}\left(\sum_{j} b_{j}{\left.\left.\left.\overline{x^{j}}\right)\right]^{\mu}\right\}^{\sigma}+\ldots=\bar{x} .}\right.\right.$.
This means we obtain \bar{x} as a linear combination of powers of $\sum a_{i} \overline{x^{I}}$. Hence $\bar{\theta}$ is onto and $\bar{\theta}: \bar{x}+\sum a_{i} \overline{x^{1}}$ induces a $z(R)$-automorphism of $(Z(R))^{\gamma}(\langle x\rangle)$.

Now we define $\tilde{\tilde{\theta}}: R^{\gamma}(\langle x\rangle) \rightarrow R^{\gamma}(\langle x\rangle)$ by $\tilde{\tilde{\theta}}_{(Z(R))^{r}(\langle x\rangle)}=\tilde{\theta} \quad$ and $\quad \tilde{\tilde{\theta}}^{(r)=r} \quad r \in R$.
$\tilde{\tilde{\theta}}$ is an endomorphism of $R^{\gamma}(x)$ because $\tilde{\theta}$ is an $z(R)$-automorphism of $(Z(R))^{\gamma}(\langle x\rangle)$ and by (1.12) $\overline{x^{i}} \in(Z(R))^{\gamma}(\langle x\rangle)$. We show that $\tilde{\tilde{\theta}}$ is onto and $1-1$. To prove $\tilde{\tilde{\theta}}$ is 1-1 we define $\phi: R^{\gamma}(\langle x\rangle) \rightarrow R^{\gamma}(\langle x\rangle)$ by, $\phi \mid(Z(R))(\langle x\rangle)=\tilde{\theta}^{-1}$, and $\phi(x)=r, \quad r \in R$.

As before ϕ is an endomorphism of $R^{\gamma}(\langle x\rangle)$ and we have $\left.\tilde{\tilde{\theta}} \phi\left[\sum a_{i} \overline{x^{i}}\right]=\tilde{\tilde{\theta}}\left[\sum a_{i} \tilde{\theta}^{-1}\left(\overline{x^{i}}\right)\right)\right]=\sum a_{i} \tilde{\theta}\left(\tilde{\theta}^{-1}\left(\overline{x^{i}}\right)\right)=\sum a_{i} \overline{x^{i}}$. Hence $\tilde{\theta} \phi$ is the identity mapping of $R^{\gamma}(\langle x\rangle)$.

Also we have
$\left.\phi \tilde{\tilde{\theta}}\left[\sum a_{i} \overline{x^{i}}\right]=\phi\left[\sum a_{i}\left(\tilde{\theta}\left(\overline{x^{i}}\right)\right)\right]=\sum a_{i} \tilde{\theta}^{-1} \tilde{\theta}\left(\overline{x^{i}}\right)\right)=\sum a_{i} \overline{x^{i}}$. This implies that $\phi \tilde{\tilde{\theta}}$ is the identity mapping of $R^{\gamma}(\langle x\rangle)$. Thus $\tilde{\tilde{\theta}}$ is invertible, i.e. $\tilde{\tilde{\theta}}$ is 1-1. Since $\phi \tilde{\tilde{\theta}}$ is the identity mapping of $R^{\gamma}(\langle x\rangle), \tilde{\tilde{\theta}}$ is onto. Δ

$$
\text { Combining lemmas }(2.9) \text { and }(2.10) \text { we have: }
$$

Theorem I

Let R be a ring and let $\langle x\rangle$ be an infinite cyclic group. Let $R^{\gamma}(\langle x\rangle)$ be a twisted group ring of $\langle x\rangle$ over R and let $Z\left(R^{\gamma}(\langle x\rangle)\right)$ be the centre of $R^{\gamma}(\langle x\rangle)$. Let $Z(R)$ be the centre of R. Then $\bar{\theta}: \bar{x} \rightarrow \sum a_{i} \overline{x^{I}}$ induces an R-automorphism of $R^{\gamma}(\langle x\rangle)$ if and only if the following two conditions hold:
(i) $\sum a_{i} \overline{x^{i}}$ is a unit in $(Z(R))^{\gamma}(\langle x\rangle)$.
(ii) if $i \neq 1,-1$, then a_{i} is nilpotent.

CHAPTER

In this chapter we study the automorphisms of the group rings of finitely generated abelian groups. These automorphisms were studied by M. M. Parmenter for infinite cyclic groups but the presence of more than one independent generator makes for a complex problem with unpleasant notation. In order to avoid notational difficulties we consider mainly abelian groups with two free generators. The general case follows this particular case quite closely.

Lemma 3.1

Let $G=\langle x\rangle x$ <y> where <x> and <y> are infinite cyclic groups. Let θ be the endomorphism of G determined by:

$$
\begin{array}{lll}
\theta(x)=x^{\alpha} y^{\beta} & \alpha, \beta & \text { integers, } \\
\theta(y)=x^{\gamma} y^{\delta} & \gamma, \delta & \text { integers. }
\end{array}
$$

Then θ is an automorphism of G if and only if $\alpha \delta-\beta \gamma= \pm 1$.

Proof

By (1.16) we know that every endomorphism of G is determined by its effect on a set of generators.

Let θ be an endomorphism of G with $a \delta-\beta \gamma= \pm 1$. Then $\theta\left(x^{\delta} y^{-\beta}\right)=(\theta(x))^{\delta}(\theta(y))^{-\beta}=\left(x^{\alpha} y^{\beta}\right)^{\delta}\left(x^{\gamma} y^{\delta}\right)^{-\beta}$
$=x^{\alpha \delta-\beta \gamma} y^{\beta \delta-\delta \beta}=x^{\alpha \delta-\beta \gamma}=x^{+1}$.

Also we have,

$$
\begin{aligned}
\theta\left(x^{\gamma} y^{-\alpha}\right) & =(\theta(x))^{\gamma}(\theta(y))^{-\alpha}=\left(x^{\alpha} y^{\beta}\right)^{\gamma}\left(x^{\gamma} y^{\delta}\right)^{-\alpha} \\
& =x^{\alpha \gamma-\gamma \alpha} y^{\beta \gamma-\delta \alpha}=y^{\beta \gamma-\delta \alpha}=y^{\overline{+1}} .
\end{aligned}
$$

Hence θ is onto. Now we prove that θ is l-1. For this we suppose $\theta\left(x^{m} y^{n}\right)=\theta\left(x^{u} y^{v}\right)$ for some integer, $\mathrm{m}, \mathrm{n}, \mathrm{u}, \mathrm{v}$. This implies that

$$
\begin{equation*}
x^{\alpha m+\gamma n} y^{\beta m+\delta n}=x^{\alpha u+\gamma v} y^{\beta u+\delta v} \tag{1}
\end{equation*}
$$

It follows from (1) that

$$
\begin{aligned}
& \alpha m+\gamma n=\alpha u+\gamma v \\
& \beta m+\delta n=\beta u+\delta v, \quad \text { equivalently } \\
& \alpha(m-u)+\gamma(n-v)=0 \\
& \beta(m-u)+\delta(n-v)=0 .
\end{aligned}
$$

Since $\alpha \delta-\beta \gamma= \pm 1$ the only solution is $m-u=0$ and $n-v=0$. Hence $m=u$ and $n=v$ and therefore θ is 1-1.

Conversely we suppose that θ is an automorphism of G and then we prove that $\alpha \delta-\beta \gamma= \pm 1$.

Since θ is an automorphism of G there exist integers m and n such that $\theta\left(x^{m} y^{n}\right)=x$, also there exist integers u and v such that $\theta\left(x^{u} y^{v}\right)=y$. From $\theta\left(x^{m} y^{n}\right)=x$ we conclude that $x^{\alpha m+\gamma n} y^{\beta m+\delta n}=x$, and this implies that

$$
\begin{align*}
& \alpha m+\gamma n=1 \\
& \beta m+\delta n=0 . \tag{2}
\end{align*}
$$

Also from $\theta\left(x^{u} y^{v}\right)=y$ we conclude that $x^{\alpha u+\gamma v} y^{\beta u+\delta v}=y$ and this implies that

$$
\begin{align*}
& \beta u+\delta v=1 \\
& \alpha u+\gamma v=0 . \tag{3}
\end{align*}
$$

Now $\alpha \delta$ - $\beta \gamma$ must be non-zero, as otherwise there is no solution for (2) and (3).

From (2) we have $m=\delta(\alpha \delta-\beta \gamma)^{-1}$ and $n=-\beta(\alpha \delta-\beta \gamma)^{-1}$. Since m, n are integers $\alpha \delta-\beta \gamma$ divides δ and β, and therefore $\alpha \delta-\beta \gamma$ divides the greatest common divisor of δ and β. But in (3) we have $\beta u+\delta v=1$ and then the greatest common divisor of δ and β is ± 1.

This implies that $\alpha \delta-\beta \gamma= \pm 1 \cdot \Delta$

Lemma 3.2
Let R be a commutative ring and let $G=\langle x\rangle x<y>$ where <x>, <y> are infinite cyclic groups. Let θ be an endomorphism of G such that

$$
\theta(x)=x^{\alpha} y^{\beta} \quad \text { and } \quad \theta(y)=x^{\gamma} y^{\delta},
$$

with $\alpha \delta-\beta \gamma= \pm 1$. Let $\hat{\theta}: R(G) \rightarrow R(G)$ be defined by $\theta\left(\sum a_{i j} x^{i} y^{j}\right)=\sum a_{i j} \theta\left(x^{i} y^{j}\right)$. Then $\tilde{\theta}$ is an R-automorphism of $R(G)$.

Proof

By (1.16) $\tilde{\theta}$ is an endomorphism of $R(G)$. Since θ is onto it is evident that $\tilde{\theta}$ is also onto. Thus we need to prove $\tilde{\theta}$ is 1-1. For this we define $\phi: R(G) \rightarrow R(G)$ by, $\phi\left(\sum a_{i j} x^{i} y^{j}\right)=\sum a_{i j} \theta^{-1}\left(x^{i} y^{j}\right)$.

As before ϕ is an endomorphism of $R(G)$. Moreover we have $\tilde{\theta} \phi\left(\sum a_{i j} x^{i} y^{j}\right)=\tilde{\theta}\left(\sum a_{i j} \theta^{-1}\left(x^{i} y^{j}\right)\right)=\sum a_{i j} \theta\left(\theta^{-1}\left(x^{i} y^{j}\right)\right)=\sum a_{i j} x^{i} y^{j}$.

Also we have
$\phi \tilde{\theta}\left(\sum a_{i j} x^{i} y^{j}\right)=\phi\left(\sum a_{i j} \theta\left(x^{i} y^{j}\right)\right)=\sum a_{i j} \theta^{-1}\left(\theta\left(x^{i} y^{j}\right)=\sum a_{i j} x^{i} y^{j}\right.$.

Thus $\tilde{\theta} \phi$ and $\tilde{\phi}$ are the identity mapping of $R(G)$ i.e. $\tilde{\theta}$ is onto and l-1. Δ

Lemma 3.3

Let R be a commutative ring and $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$, <y> are infinite cyclic groups. Let $\theta: R(G) \rightarrow R(G)$ be defined by $\theta\left(\sum a_{i j} x^{i} y^{j}\right)=\sum a_{i j}(b x)^{i}(c y)^{j}$ where b, c are units in R. Then θ is an R-automorphism of $R(G)$.

Proof

Assume $\sum \alpha_{i j} x^{i} y^{j}, \sum \beta_{m n} x^{m} y^{n} \in R(G)$, then, $\theta\left[\left(\sum \alpha_{i j} x^{i} y^{j}\right)\left(\sum \beta_{m n} x^{m} y^{n}\right)\right]=\theta\left[\sum \alpha_{i j} \beta_{m n} x^{i+m} y^{j+n}\right]=$

$$
=\sum \alpha_{i j} \beta_{m n 1}(b x)^{i+m}(c y)^{j+n}
$$

$$
=\left[\alpha_{i j} \beta_{m n}\left[(b x)^{i}(c y)^{j}\right]\left[(b x)^{m}(c y)^{n}\right]\right.
$$

$$
=\theta\left(\sum \alpha_{i j} x^{i} y^{j}\right) \theta\left(\sum \beta_{m n} x^{m} y^{n}\right)
$$

Hence θ is an endomorphism of $R(G)$.

Now we define $\phi: R(G) \rightarrow R(G)$ by,

$$
\phi\left(\sum \alpha_{i j} x^{i} y^{j}\right)=\sum \alpha_{i f}\left(b^{-1} x\right)^{i}\left(c^{-1} y\right)^{j}
$$

As before ϕ is an endomorphism of $R(G)$ and we have
$\left.\phi \theta\left(\sum a_{i j} x^{i} y^{j}\right)=\phi\left[\sum \alpha_{i j}(b x)^{i}(c y)^{j}\right\}=\phi \mid \sum a_{i j} b^{i} c^{j} x^{i} y^{j}\right]$

$$
=\sum \alpha_{i j} b^{i} c^{j}\left(b^{-1} x\right)^{i}\left(c^{-1} y\right)^{j}=\sum \alpha_{i j} x^{i} y^{j} .
$$

Also we have
$\theta \phi\left(\sum \alpha_{i j} x^{i} y^{j}\right)=\theta\left[\sum \alpha_{i j}\left(b^{-1} x\right)^{i}\left(c^{-1} y\right)^{j}\right]=\theta\left[\sum \alpha_{i j} b^{-i} c^{-j} x^{i} y^{j}\right]$ $=\sum \alpha_{i j} b^{-i} c^{-j}(b x)^{i}(c y)^{j}=\sum \alpha_{i j} x^{i} y^{j}$.

Hence $\phi \theta$ and $\theta \phi$ are the identity mappings of $R(G)$ i.e. θ is onto and 1-1. Δ

Lemma 3.4

Let R be a commutative ring and let $G=\langle x\rangle x\langle y\rangle$ where <x>, <y> are infinite cyclic groups. Let $\theta: R(G) \rightarrow R(G)$ be defined as follows,

$$
\theta(x)=a_{\alpha \beta} x^{\alpha} y^{\beta} \quad \text { and } \quad \theta(y)=b_{\gamma \delta} x^{\gamma} y^{\delta} \text {, }
$$

where $a_{\alpha \beta}$ and $b_{\gamma \delta}$ are units in R. Then θ induces an R-automorphism of $R(G)$ if and only if $\alpha \delta-B Y= \pm 1$.

Proof

Assume θ is an R-automorphism of $R(G)$. We define $\phi: R(G) \rightarrow R(G)$ as follows, $\phi\left(\sum \alpha_{i j} x^{i} y^{j}\right)=\sum \alpha_{1 j}\left(a_{\alpha \beta}^{-1} x\right)^{i}\left(b_{\gamma \delta}^{-1} y\right)^{j}$.

By (3.3) Φ is an R-automorphism of $R(G)$, and we have

$$
\phi(x)=a_{\alpha \beta}^{-1} x, \quad \phi(y)=b_{\gamma \delta}^{-1} y .
$$

Since θ and ϕ are R-automorphisms of $R(G), \theta \phi$ is also an R-automorphism of $R(G)$ and we have

$$
\theta \phi(x)=\theta\left(a_{\alpha \beta}^{-1} x\right)=a_{\alpha \beta}^{-1} \theta(x)=a_{\alpha \beta}^{-1}\left(a_{\alpha \beta} x^{\alpha} y^{\beta}\right)=x^{\alpha} y^{\beta},
$$

and

$$
\theta \phi(y)=\theta\left(b_{\gamma \delta}^{-1} y\right)=b_{\gamma \delta}^{-1} \theta(y)=b_{Y \delta}^{-1}\left(b_{Y \delta} x^{Y} y^{\delta}\right)=x_{y}^{\gamma}
$$

Hence $\theta \phi$ is an automorphism of G, by (3.1) we have $\alpha \delta-B_{\gamma}= \pm 1$.

Conversely we suppose that $\alpha \delta-B \gamma= \pm 1$. By (3.3) we know $\sum c_{i j} x^{i} y^{j} \rightarrow \sum c_{i j}\left(a_{\alpha \beta} x\right)^{i}\left(b_{\gamma \delta} y\right)^{j}$ is an R-automorphism of $R(G)$. Also by (3.2) we know that
$\sum c_{i j} a_{\alpha \beta}^{i} b_{\gamma \delta}^{j} x^{i} y^{j} \rightarrow \sum c_{i j} a_{\alpha \beta}^{i} b_{\gamma \delta}^{j}\left(x^{\alpha} y^{\beta}\right)^{i}\left(x^{\gamma} y^{\delta}\right)^{j}$
$=\sum c_{i j}\left(a_{\alpha \beta} x^{\alpha} y^{\beta}\right)^{i}\left(b_{y \delta} x^{\gamma} y^{\delta}\right)^{j}$
is an R-automorphism of $R(G)$. Hence

$$
\sum c_{i j} x^{i} y^{j} \rightarrow \sum c_{i j}\left(a_{\alpha \beta} x^{\alpha} y^{\beta}\right)^{i}\left(b_{\gamma \delta} x^{\gamma} y^{\delta}\right)^{j}
$$

is an R-automorphism of $R(G) \cdot \Delta$

Lemma 3.5
Let R be a commutative ring with a unique maximal ideal M which is nilpotent. Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle,\langle y\rangle$ are infinite cyclic groups. Let θ be the mapping $\theta: R(G) \rightarrow R(G)$ where

$$
\theta(x)=\sum a_{i j} x^{i} y^{j}, \quad \theta(y)=\sum b_{h k} x^{h} y^{k}
$$

and let θ induce an R-automorphism of $R(G)$. Then we have that
(i) $\sum a_{i j} x^{i} y^{j}$ and $\sum b_{h k} x^{h} y^{k}$ are units in $R(G)$.
(ii) For some integers $a, \beta, Y, \delta, a_{\alpha \beta}$ and $b_{\gamma \delta}$ are units in R but all $a_{i j}$ for $(i, j) \neq(\alpha, \beta)$ and all $b_{h k}$ for $(h, k) \neq(\gamma, \delta)$ are nilpotent.
(iii) $a \delta-B_{\gamma}= \pm 1$.

Proof

Since θ induces an R-automorphism of $R(G)$ and x, y are units in $R(G)$ then $\sum a_{i j} x^{i} y^{j}$ and $\sum b_{h k} x^{h} y^{k}$ must be units in $R(G)$. Hence (i) has been established.

By (1.8) R / M is a field and by (1.6) M is the prime radical of R. Also by (1.11) and (i)

$$
\sum \overline{a_{i j}} x^{i} y^{j}, \sum \overline{b_{h k}} x^{h} y^{k}\left(\overline{a_{i j}}=a_{i j}+M, \overline{b_{h k}}=b_{h k}+M\right)
$$

are units in (R / M) (G) . Moreover by (1.13) (I) G $=\langle x\rangle \times\langle y\rangle$ is a right-ordered group. Hence by Corollary (1.4) of [9] $\bar{a}_{\alpha B}$ for some integer, α, β is a unit in R / M and all $\overline{a_{i j}}$ for (i, j) $\neq(\alpha, \beta)$ are zero. Similarly $\bar{b}_{\gamma \delta}$ for some integer γ, δ is a unit in R / M and all $\overline{b_{h k}}$ for $(h, k) \neq(\gamma, \delta)$ are zero. Thus (ii) has been established.

To prove (iii) we define $\theta_{1}: R(G) \rightarrow(R / M)(G)$ by ,

$$
\theta_{1}\left(\sum a_{r s} x^{r} y^{s}\right)=\sum \overline{a_{r s}} x^{r} y^{s} \quad\left(\bar{a}_{r s}=a_{r s}+M\right)
$$

By (1.11) θ_{1} is an epimorphism. Since by hypothesis θ is an R-automorphism of $R(G)$ we conclude that $\theta_{1} \theta$ is an epimorphism of $R(G)$ onto $(R / M)(G)$.

By using (ii) we have
$\theta_{1} \theta\left(\sum c_{m n} x^{m} y^{n}\right)=\sum \overline{c_{m n}}\left(\sum \overline{a_{i j}} x^{i} y^{i}\right)^{m}\left(\sum \overline{b_{h k}} x^{h} y^{k}\right)^{n}$
$=\sum \overline{c_{m n}}\left(\overline{a_{\alpha \beta}} x^{\alpha} y^{\beta}\right)^{m}\left(\overline{b_{\gamma \delta}} x^{\gamma} y^{\delta}\right)^{n}$.
The kernel of $\theta_{1} \theta$ is $M(G)=\left\{\sum d_{i j} x^{i} y^{j} \mid d_{i j} \in M\right\}$.
Hence $R(G) / M(G) \cong(R / M)(G)$. This implies that
$\theta_{2}: R(G) / M(G)+(R / M)(G)$ defined by
$\theta_{2}\left(\sum c_{m n} x^{m} y^{n}+m(G)\right)=\sum \overline{c_{m n}}\left(\bar{a}_{\alpha \beta} x^{\alpha} y^{\beta}\right)^{m}\left(b_{\gamma \delta} x^{\gamma} y^{\delta}\right)^{n}$ is an isomorphism. On the other hand $\theta_{3}:(R / M)(G) \rightarrow R(G) / M(G)$ defined by $\theta_{3}\left(\sum \overline{c_{m n}} x^{m} y^{n}\right)=\sum c_{m n} x^{m} y^{n}+M(G)$ is an isomorphism. Hence $\theta_{2} \theta_{3}:(R / M)(G) \rightarrow(R / M)(G)$ by,

$$
\theta_{2} \theta_{3}\left(\sum \overline{c_{m n}} x^{m} y^{n}\right)=\sum \overline{c_{m n}}\left(\overline{a_{\alpha \beta}} x^{\alpha} y^{\beta}\right)^{m}\left(\overline{b_{\gamma \delta}} x^{\gamma} y^{\delta}\right)^{n}
$$

is an R / M-automorphism of $(R / M)(G)$. Since R / M is a field, we conclude from (3.4) that $\alpha \delta-\beta \gamma= \pm 1 \cdot \Delta$

Lemma 3.6

Let R be a commutative ring with a unique maximal ileal M which is nilpotent. Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle,\langle y\rangle$ are infinite cyclic groups. Let $\theta: R(G) \rightarrow R(G)$ where $\theta(x)=\sum a_{i j} x^{1} y^{j}$ and $\theta(y)=\sum b_{k h} x^{h} y^{k}$ satisfy the following three conditions:
(i) $\sum a_{i j} j^{i j j}$ and $\sum b_{h k} x^{h^{h} k}$ are units in $R(G)$.
(ii) For some integers $\alpha, \beta, \gamma, \delta, a_{\alpha \beta}$ and $b_{\gamma \delta}$ axe units in
R but all $a_{i j}$ for $(i, j) \neq(\alpha, \beta)$ and all $b_{h k}$ for
$(h, k) \not \equiv(\gamma, \delta)$ are nilpotent .
(iii) $\alpha \delta-B \gamma= \pm 1$.

Then θ induces an R-automorphism of $R(G)$.

Proof

By (1.16) the map $\tilde{\theta}: R(G) \rightarrow R(G)$ defined by $\tilde{\theta}\left(\sum d_{u v} x^{u} y^{v}\right)=\sum d_{u v}(\theta(x))^{u}(\theta(y))^{v}$ is an endomorphism of $R(G)$. We prove that $\tilde{\theta}$ is onto and 1-1.

First we prove $\tilde{\theta}_{\theta}$ is onto. Since $\theta(x)$ and $\theta(y)$ are units in $R(G),(\theta(x))^{-1}$ and $(\theta(y))^{-1}$ exist. For the sake of argument we suppose $\alpha \delta-\beta \gamma=1$, the proof for $\alpha \delta-\beta \gamma=-1$ is similar to the proof for $\alpha \delta-\beta \gamma=1$. By assumption $a_{\alpha \beta}$ and
$b_{\gamma \delta}$ are units in R and, by this and (1.17) we have

$$
\begin{aligned}
{\left.\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{\delta} \sum_{\gamma \delta}^{-1} \theta(y)\right]^{-\beta}=} & {\left[a_{\alpha \beta}^{-1}\left(a_{\alpha \beta} x^{\alpha} y^{\beta}+\sum_{(i, j) \neq(\alpha, \beta)} a_{i j} x^{i} y^{j}\right)\right]^{\delta} } \\
& x\left[b_{\gamma \delta}^{-1}\left(b_{\gamma \delta} x^{\gamma} y^{\delta}+\sum_{(h, k) \neq(\gamma, \delta)}^{\sum_{h k}} b_{h k} x^{h} y^{k}\right)\right]^{-\beta} \\
= & {\left[x^{\alpha} y^{\beta}+\sum_{(i, j) \neq(\alpha, \beta)} a_{\alpha \beta}^{-1} a_{i j} x^{i} y^{j}\right]^{\delta} } \\
& {\left[x^{\gamma} y^{\delta}+\sum_{(h, k) \neq(\gamma, \delta)} b_{\gamma \delta}^{-1} b_{h k} x^{h} y^{k}\right]^{-\beta} } \\
= & \left(x^{\alpha \delta} y^{\beta \delta}+n_{1}\right)\left(x^{-\gamma \beta} y^{-\delta \beta}+n_{2}\right) \\
= & x^{\alpha \delta-\beta \gamma} y^{\beta \delta-\beta \delta}+n_{3} \\
= & x+n_{3}
\end{aligned}
$$

where n_{1}, n_{2}, n_{3} are nilpotent in $R(G)$.
Similarly we have $\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{-\gamma}\left[b_{Y \delta}^{-1} \theta(y)\right]^{\alpha}=y+n_{4}$ where n_{4} is nilpotent in $R(G)$.

Let $n_{3}=\sum_{i} n_{r s} x_{y} y^{s}$ and $n_{4}=\sum \mu_{p q} x^{p} y^{q}$ where all $n_{r s}$ and all $\mu_{p q}$ are nilpotent in R. Let T be the ideal of R generated by $\left\{n_{r s}\right\} \cup\left\{\mu_{\mathrm{pq}}\right\}$. Then T is nilpotent. By using (1.17) we have

$$
\begin{aligned}
& x+\sum n_{r s} x^{r} y^{s}-\sum \eta_{r s}\left[x+\sum n_{r s} x^{r} y^{s}\right]^{r}\left[y+\sum \mu_{p q} x^{p} y^{q}\right]^{s}=x+n_{5} \\
& \text { where } \sum \lambda_{v \varepsilon} x^{\nu} y^{\varepsilon}=n_{5} \text { is nilpotent in } R(G) \text { with all } \lambda_{v \varepsilon} \in T^{2} .
\end{aligned}
$$

Again by using (1.17) we have

$$
\begin{aligned}
& y+\sum \mu_{p q} x^{p} y^{q}-\sum \mu_{p q}\left[x+\sum n_{r s} x^{r} y^{s}\right]^{p}\left[y+\sum \mu_{p q} x^{p} y^{q}\right]^{q}=y+n_{6} \\
& \text { where } \sum f_{\tau \sigma} x^{\tau} y^{\sigma}=n_{6} \text { is nilpotent in } R(G) \text { with all } f_{\tau \sigma} \in T^{2} .
\end{aligned}
$$

Hence we have
$\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{\delta}\left[b_{\gamma \delta}^{-1} \theta(y)\right]^{-\beta}-\left[\eta_{r s}\left\{\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{\delta}\left[b_{\gamma \delta}^{-1} \theta(y)\right]^{-\beta}\right\}^{r}\right.$

$$
x\left\{\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{-\gamma}\left[b_{\gamma \delta}^{-1} \theta(y)\right]^{\alpha_{j} s}=x+n_{5}\right.
$$

$$
\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{-\gamma}\left[b_{\alpha \delta}^{-1} \theta(y)\right]^{\alpha}-\sum \mu_{p q}\left\{\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{\delta}\left[b_{\gamma \delta}^{-1} \theta(y)\right]^{-\beta}\right\}^{p}
$$

$$
x\left\{\left[a_{\alpha \beta}^{-1} \theta(x)\right]^{-\gamma}\left[b_{\gamma \delta}^{-1} \theta(y)\right]^{\alpha}\right\}^{q}=y+n_{6}
$$

Since T is nilpotent by continuing in this manner a finite number of times we get x, y as a linear combination of powers of $\theta(x)=\sum a_{i j} x^{i} y^{j}$ and $\theta(y)=\sum b_{h k} x^{h} y^{k}$. Hence $\tilde{\theta}_{\theta}$ is onto.

Now we prove that θ is 1-1. For this we suppose there exist $c_{m n} \in R$ such that $\left[c_{m n}(\theta(x))^{m}(\theta(y))^{n}=0\right.$. Then we show that all $c_{m n}=0$. From $\left[c_{m n}(\theta(x))^{m}(\theta(y))^{n}=0\right.$ we have modulo $M, \sum \overline{c_{m n}}\left(\overline{a_{i j}} x^{i} y^{j}\right)^{m}\left(\overline{b_{h k}} h^{h} y^{k}\right)^{n}=0$. Since $a_{i j}$ for $(i, j) \neq(\alpha, \beta)$ and $b_{h k}$ for $(h, k) \neq(\gamma, \delta)$ are nilpotent we have
$\left.\left.\sum \bar{c}_{m n} \overline{\left(a, x_{\alpha \beta}\right.} x^{\alpha} y^{\beta}+\sum_{(i, j) \neq(\alpha, \beta)} \overline{a_{i j}} x^{i} y^{j}\right)^{m} \overline{\left(b_{\gamma \delta}\right.} x^{\gamma} y^{\delta}+\sum_{(h, k) \neq(\gamma, \delta)} \overline{b_{h k}} x^{h} y^{k}\right)^{n}$
$=\sum \overline{c_{m n}}\left(\overline{a_{\alpha \beta}} x^{\alpha} y^{\beta}\right)^{m}\left(\overline{b_{\gamma \delta}} x^{\gamma} y^{\delta}\right)^{n}=\sum \overline{c_{m n}}\left(\overline{a_{\alpha \beta}}\right)^{m}\left(\overline{b_{\gamma \delta}}\right)^{n} x^{\alpha m+\gamma n} y^{\beta m+\delta n}=0$.
In this identity each term in x, y occurs at most once because
$x^{\alpha m+\gamma n} y^{\beta m+\delta n}=x^{\alpha m^{\prime}+\gamma n^{\prime}} y^{\beta m^{\prime}+\delta n^{\prime}}$ and $\alpha \delta-\beta \gamma=1$ implies that
$m=m^{\prime}$ and $n=n^{\prime}$. From this result and
$\sum \bar{c}_{m n}\left(\bar{a}_{\alpha \beta}\right)^{m}\left(\bar{b}_{\gamma \delta}\right)^{n} x^{\alpha m+\gamma n} y^{\beta m+\delta n}=0$ we conclude that
$\bar{c}_{m n}\left(\bar{a}_{\alpha \beta}\right)^{m}\left(\bar{b}_{\gamma \delta}\right)^{n}=0$ for all m,n. But $\bar{a}_{\alpha \bar{\delta}}$ and $\bar{b}_{Y \delta}$ are units
in R / M and so we have $\overline{C_{\operatorname{mn}}}=0$ for all m, n. This implies that $c_{m n} \in M$ for all m, n i.e. all $c_{m n}$ are nilpotent.

Now let N be the ideal of R generated by $\left\{c_{i n n}\right\} \cup\left\{a_{i j} \mid(i, j) \neq(\alpha, B)\right\} \cup\left\{b_{h k} \mid(h, k) \neq(\gamma, \delta)\right\}$. Then N is milpotent. Assume all $C_{m n}$ belong to N^{W} for some positive integer w but some of them do not belong to N^{w+1}.

From $\sum c_{m n}\left(\sum a_{i j} x^{i} y^{j}\right)^{m}\left(\sum b_{h k} x^{h} y^{k}\right)^{n}=0$ we have $\sum \overline{c_{m n}}\left(\sum \overline{a_{i j}} x^{i} y^{j}\right)^{m}\left(\overline{\sum b_{h k}} x^{h} y^{k}\right)^{n}=0 \quad$ in $\left(R / N^{w+1}\right)(G)$. Since all $c_{m n} \in N^{w}$ and all $a_{i j}$ for $(i, j) \neq(\alpha, \beta)$ and all $b_{h k}$ for $(h, k) \neq(\gamma, \delta)$ belong to N we conclude that $\sum \bar{c}_{m n}\left(\bar{a}_{\alpha \hat{B}} x^{\alpha} y^{\beta}\right)^{m}\left(\bar{b}_{\gamma_{0}} x^{\gamma} y^{\delta}\right)^{n}=0$. By using $\alpha \delta-B \gamma=1$ and the fact that $\bar{a}_{\alpha \beta}, \bar{b}_{\gamma \delta}$ are units in R / N^{W+1} we have $\overline{c_{m n}}=0$ for all m, n. This implies that $c_{m n} \in N^{W+1}$ contrary to assumption. Hence each $c_{m n}$ lies in N^{w} for all integers $w>0$. Since N is nilpotent we conclude that $c_{m n}=0$ for all m, n. Hence $\tilde{\theta}$ is 1-1. Δ

Combining lemmas (3.5) and (3.6) we have:

Theorem II

Let R be a commutative ring with a unique maximal ideal M which is nilpotent. Let $G=\langle x\rangle x\langle y\rangle$ where x, y are Infinite cyclic groups. Let θ be the mapping $\theta: R(G) \rightarrow R(G)$ where $\theta(x)=\sum a_{i j} x^{i} y^{j}, \theta(y)=\sum b_{h k} x^{h} y^{k}$. Then θ induces an R-automorphism of $R(G)$ if and only if the following three conditions hold:
(i) $\sum a_{i j} x^{i} y^{j}, \sum b_{h k} x^{h} y^{k}$ are units in $R(G)$.
(ii) For some integers α, β, γ, and $\delta, a_{\alpha \beta}$ and $b_{\gamma \delta}$ are units in R but all $a_{i j}$ for $(i, j) \neq(\alpha, \beta)$ and all $b_{h k}$ for $(h, k) \neq(\gamma, \delta)$ are nilpotent.

```
(iii) \alpha\delta - B\gamma = + 1.
```

CHAPTER 4

In this chapter we shall be concerned to find the automorphisms of $K(G)$, where K is a field and G is a finitely generated abelian group of the form $G=\langle x\rangle x\langle y\rangle$ where x is an infinite cyclic group and $y^{2}=1$.

Lemma 4.1

Let $G=\langle x\rangle x<y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field and let $u, v \in K(\langle x\rangle)$. Then $u+v y$ is a unit in $K(G)$ if and only if $u-v y$ is a unit in K (G) •

Proof

Suppose $u+v y$ is a unit in $K(G)$. Then there exist r, $s \in \mathbb{K}(\langle x\rangle)$ such that $(u+v y)(x+s y)=1$. This implies that $u r+v s=1$
$u s+v r=0$.

From (1) we have $(u-v y)(x-s y)=(u r+v s)-(u s+v r) y=1$. Thus u - vy is a unit in $K(G)$.

Now by replacing v by $-v$, we see that conversely if u - vy is a unit then $u+v y$ is a unit. Δ

Lemma 4.2

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field and $u, v \in K(\langle x\rangle)$. Then we have
(i) $u+v y$ is a unit in $K(G)$ if and only if $u^{2}-v^{2}$ is a unit in $K(<x>)$.
(ii) If characteristic $K \neq 2$, then the units of $K(G)$ are the elements of the form $\left(\alpha x^{m}+\beta x^{n}\right)+\left(\alpha x^{m}-\beta x^{n}\right) y$ where $\alpha, \beta \in K-\{0\}$ and m, n are integers.

Proof

Suppose $u+v y$ is a unit in $K(G)$. Then by (4.1) u - vy is also a unit in $K(G)$. This implies that $(u+v y)(u-v y)=\left(u^{2}-v^{2}\right) 1$ is a unit in $K(G)$ and consequently $\begin{gathered}u^{2}-v^{2} \\ \text { in } \\ \text { unit in } \\ K(\langle x\rangle), ~(1.32) . ~\end{gathered}$

Now we suppose that $u^{2}-v^{2}$ is a unit in $K(<x>)$. Then we have $\left.\left.(u+v y) \alpha^{2}-v^{2}\right)^{-1} u-\left(u^{2}-v^{2}\right)^{-1} v y\right]=\left(u^{2}-v^{2}\right)\left(u^{2}-v^{2}\right)^{-1}=1$. Hence $u+v y$ is a unit in $K(G)$ and then (i) has been established.

To prove (ii) we suppose that $u+v y$ is a unit in $K(G)$. Then by (i) $u^{2}-v^{2}=(u+v)(u-v y)$ is a unit in $k(\langle x\rangle)$. This implies that $u+v$ and $u-v$ are units in $K(\langle x\rangle)$. By 1.13 (I) <x> is a right-ordered group, hence by using Corollary (1.4) of [9] we have

$$
\begin{array}{ll}
u+v=\gamma x^{m} & 0 \neq \gamma \in K, \quad m \text { integer } \\
u-v=\delta x^{n} & 0 \neq \delta \in K, \quad n \text { integer } \tag{2}
\end{array}
$$

It follows from (1) and (2) that $u=2^{-1} \gamma x^{m}+2^{-1} \delta x^{n}$ and $v=2^{-1} \gamma x^{m}-2^{-1} \delta x^{n}$.

On the other hand if $\alpha, \beta \in K-\{0\}$ then we have $\left[\left(\alpha x^{m}+\beta x^{n}\right)+\left(\alpha x^{m}-\beta x^{n}\right) y\right]\left[\left(4 \alpha \beta x^{m+n}\right)^{-1}\left(\alpha x^{m}+\beta x^{n}\right)-\left(4 \alpha \beta x^{m+n}\right)^{-1}\left(\alpha x^{m}-\beta x^{n}\right) y\right]$
$=\left(4 \alpha \beta x^{m+n}\right)\left(4 \alpha \beta x^{m+n}\right)^{-1}=1$. Hence $\left(\alpha x^{m}+\beta x^{n}\right)+\left(\alpha x^{m}-\beta x^{n}\right) y$ is a unit in $K(G) \cdot \Delta$

Lemma 4.3

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic $\neq 2$. Let $u+v y=\left(\alpha x^{m}+\beta x^{n}\right)+\left(\alpha x^{m}-\beta x^{n}\right) y(\alpha, \beta \in K ; m, n$ integers $)$ be a unit in $K(G)$. Then for all $w \in \mathbb{Z}$ we have, $(u+v y)^{w}=2^{w-1}\left[\left(\alpha x^{m}\right)^{w}+\left(\beta x^{n}\right)^{w}+\left(\left(\alpha x^{m}\right)^{w}-\left(\beta x^{n}\right)^{w}\right) y\right]$.

Proof

We consider the case $w \geq 0$ and we proceed by mathematical induction. For convenience let $A=\alpha x^{m}$ and $B=\beta x^{n}$. If $w=0,1$, then there is nothing to prove so we suppose $w>1$. Assume $(u+v y)^{w}=[(A+B)+(A-B) y]^{W}=2^{W-1}\left[\left(A^{W}+B^{w}\right)+\left(A^{w}-B^{w}\right) y\right]$. This implies that
$(u+v y)^{w+1}=[(A+B)+(A-B) y]^{w}[(A+B)+(A-B) y]$
$=2^{W-1}\left[\left(A^{W}+B^{W}\right)+\left(A^{W}-B^{W}\right) Y\right][(A+B)+(A-B) Y]$
$=2^{w-1}\left[2\left(A^{w+1}+B^{w+1}\right)+2\left(A^{w+1}-B^{w+1}\right) y\right]$
$=2^{w}\left[\left(A^{w+1}+B^{w+1}\right)+\left(A^{w+1}-B^{w+1}\right) y\right]$.
This completes the induction steps and so our assertion has been established for $w \geq 0$.

Now assume $w=-1$. Since
$2^{-2}[(A+B)+(A-B) Y] \quad\left[\left(A^{-1}+B^{-1}\right)+\left(A^{-1}-B^{-1}\right) y\right]=1$.
we conclude that
$(u+v y)^{-1}=[(A+B)+(A-B) y]^{-1}=2^{-2}\left[\left(A^{-1}+B^{-1}\right)+\left(A^{-1}-B^{-1}\right) y\right]$.
Finally we suppose that $w<-1$ and let $t=-w$. Since t is
positive we have
$(u+v y)^{w}=\left[(u+v y)^{-1}\right]^{t}=\left(2^{-2}\right)^{t}\left[\left(A^{-1}+B^{-1}\right)+\left(A^{-1}-B^{-1} y y\right]^{t}=\right.$ $2^{-t-1}\left[\left(A^{-t}+B^{-t}\right)+\left(A^{-t}-B^{-t}\right) y\right]=2^{-t-1}\left[\left(A^{-t}+B^{-t}\right)+\left(A^{-t}-B^{-t}\right) y\right]$ $=2^{w-1}\left[\left(A^{w}+B^{w}\right)+\left(A^{w}-B^{w}\right) y \cdot \Delta\right.$

Lemma 4.4

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic $\neq 2$. Let $\theta: K(G)+K(G)$ be defined by

$$
\begin{aligned}
& \theta(x)=\left(\alpha x^{m}+\beta x^{n}\right)+\left(\alpha x^{m}-\beta x^{n}\right) y, \\
& \theta(y)=\left(\gamma x^{p}+\delta x^{q}\right)+\left(\gamma x^{p}-\delta x^{q}\right) y,
\end{aligned}
$$

where $\alpha, B, \gamma, \delta \in K-\{0\}$ and m, n, p, q integers. If θ is a K-automorphism of $K(G), ~ t h e n ~ m= \pm 1, n= \pm 1, \gamma x^{p}= \pm \frac{1}{2}$, $\delta x^{q}=\mp \frac{1}{2}$.

Proof

In order to simplify the proof let $\alpha x^{m}=A, B x^{n}=B, \gamma x^{p}=C$, $\delta x^{q}=D$. Since $y^{2}=1$ we have $\theta\left(y^{2}\right)=[(C+D)+(C-D) y]^{2}=\left[(C+D)^{2}+(C-D)^{2}\right]+2(C+D)(C-D) y=1$. It follows from this that

$$
\begin{align*}
& (C+D)^{2}+(C-D)^{2}=1 \\
& (C+D)(C-D)=0 . \tag{1}
\end{align*}
$$

By using (1.20) we conclude from (1) that either $C+D=0$ or $C-D=0$.
If $C+D=0$, then $(C+D)^{2}+(C-D)^{2}=1$ implies that
$C-D= \pm 1$ and then $\theta(Y)=(C+D)+(C-D) y= \pm Y$. From $C-D=0$ and $(C+D)^{2}+(C-D)^{2}=1$ we have $C+D= \pm 1$ and then we have $\theta(y)=(C+D)+(C-D) y= \pm 1$ which is not true, because θ is automorphism and $y \neq 1,-1$. Hence $C+D=0$, $C-D= \pm 1$ and $\theta(y)= \pm Y$. From $C+D=0$ and $C-D= \pm 1$ we conclude that $C= \pm \frac{1}{\frac{1}{2}}$ and $D=\mp \frac{1}{2}$. For the sake of argument we suppose that $\theta(y)=y$; we remark that the proof of $\theta(y)=-y$ is the same as the proof for $\theta(y)=y$, and therefore we omit it.

Now, since θ is an K-automorphism of $K(G)$ there exist $a_{i}, b_{j} \in K$ such that $\theta\left[\sum a_{i} x^{i}+\left(\sum b_{j} x^{j}\right) y\right]=x . \quad$ By using (4.3) we have
$\theta\left(\sum a_{i} x^{i}\right)+\theta\left(\sum b_{j} x^{j}\right) \theta(y)=\left[a_{i}(\theta(x))^{i}+\left[\sum b_{j}(\theta(x)]^{j}\right] y\right.$
$=\sum a_{i} 2^{i-1}\left[\left\{A^{i}+B^{i}\right)+\left(A^{i}-B^{i}\right) y\right]+\sum b_{j} 2^{j-i}\left[\left(A^{j}+B^{j}\right)+\left(A^{j}-B^{j}\right) y\right] y=x$.
From this equality it follows that

$$
\begin{align*}
& \sum 2^{i-1} a_{i}\left(A^{i}+B^{i}\right)+\sum 2^{j-1} b_{j}\left(A^{j}-B^{j}\right)=x . \tag{2}\\
& \sum 2^{i-1} a_{i}\left(A^{i}-B^{i}\right)+\sum 2^{j-1} b_{j}\left(A^{j}+B^{j}\right)=0 . \tag{3}
\end{align*}
$$

From (2) and (3) we conclude that
$\sum 2^{i-1} a_{i}\left(A^{i}-A^{i}+2 B^{i}\right)+\sum 2^{j-1} b_{j}\left(A^{j}-A^{j}-2 B^{j}\right)$
$=\sum 2^{i} a_{i} B^{i}-\sum 2^{j} b_{j} B^{j}=\sum 2^{i}\left(a_{i}-b_{i}\right) B^{i}=x$.

Also from (2) and (3) we have
$\sum 2^{i} a_{i} A^{i}+\sum 2^{j} b_{j} A^{j}=\sum 2^{i}\left(a_{i}+b_{i}\right) A^{i}=x$.
By using the fact that $B=B x^{n}(B \in K, n$ integer $)$ we conclude that (4) cannot be valid for $|n|>1$ or for $n=0$. Also (5) cannot be valid for $|m|>1$ or for $m=0$. Hence $m= \pm 1$, $n= \pm 1 \quad \Delta$

Lemma 4.5

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let x be a field of characteristic $\neq 2$. Let $\theta: K(G) \rightarrow X(G)$ be the K-linear mapping defined by $\theta(x)=\left(\alpha x^{ \pm 1}+\beta x^{ \pm 1}\right)+\left(\alpha x^{ \pm 1}-\varepsilon x^{ \pm 1}\right) y \quad \alpha, \beta \in K-\{0\}$, and $\theta(y)= \pm y$.

Then θ induces an K -automorphism of $\mathrm{K}(\mathrm{G})$.

Proof

In order to simplify the proof we assune that $\theta(x)=(\alpha x+\beta x)+(\alpha x-\beta x) y$ and $\theta(y)=y$. The proof for other cases is similar to the proof of this particular case.

We prove that θ is onto and 1-1. By hypothesis we have $\theta\left[2^{-2}\left(\alpha^{-1}+\beta^{-1}\right) x+2^{-2}\left(\alpha^{-1}-\beta^{-1}\right) x y\right]=x \quad$ and $\quad \theta(y)=y$. Hence θ is onto.

Now we prove that θ is $1-1$. Let $\left[a_{i} x^{i}+\left(\sum b_{j} x^{j}\right) y\right.$ be an element of $K(G)$ such that $\theta\left[\sum a_{i} x^{i}+\left(\sum b_{j} x^{j}\right) y\right]=0$. Then we show that all a_{i} and all b_{j} are zero. For convenience let $A=\alpha x$ and $B=B x$. Arguing exactly as in the proof of (4.4) we have

$$
\begin{align*}
& \sum 2^{i} a_{i} A^{i}+\sum 2^{j} b_{j} A^{j}=\sum 2^{i}\left(a_{i}+b_{i}\right) A^{i}=0 \tag{1}\\
& \sum 2^{i} a_{i} B^{i}-\sum 2^{j} b_{j} B^{j}=\sum 2^{i}\left(a_{i}-b_{i}\right) B^{i}=0 \tag{2}\\
& \text { Since } A=\alpha x \text { and } B=B x \text { it follows from (1) and (2) } \tag{2}
\end{align*}
$$

that

$$
\begin{aligned}
& a_{i}+b_{i}=0, \text { for } a l l \quad i \\
& a_{i}-b_{i}=0, \text { for } a l l
\end{aligned}
$$

Hence all a_{i} and $a l l b_{j}$ are zero i.e. θ is 1-1. Δ

Theorem III

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic $\neq 2$. Let $\theta: K(G) \rightarrow K(G)$ be defined by

$$
\begin{aligned}
& \theta(x)=\left(\alpha x^{m}+\beta x^{n}\right)+\left(\alpha x^{m}-\beta x^{n}\right) y, \\
& \theta(y)=\left(\gamma x^{p}+\delta x^{q}\right)+\left(\gamma x^{p}-\delta x^{q}\right) y,
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta \in K-\{0\}$ and m, n, p, q integers.

Then θ is an K-automorphism of $K(G)$ if and only if $m= \pm 1, n= \pm 1, \gamma x^{p}= \pm \frac{1}{2}, \delta x^{q}=\mp \frac{1}{2}$.

In the rest of this chapter we are dealing with the fields of characteristic 2 .

Lemma 4.6

Let $G=\langle x\rangle \times\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic 2 . Let $u \in K(\langle x\rangle)$ and let $\lambda \in X$. Then for all integers ε we have
(i) $\left[\lambda x^{ \pm 1}+u(1+y)\right]^{2 \varepsilon}=\left(\lambda x^{ \pm 1) 2 \varepsilon}\right.$.
(ii) $\left[\lambda x^{ \pm 1}+u(1+y)^{2 \varepsilon+1}=\left(\lambda x^{ \pm 1}\right)^{2 \varepsilon+1}+\left(\lambda x^{ \pm 1}\right)^{2 \varepsilon} u(1+y)\right.$.

Proof
Since $(1+y)^{2}=0$ we have
$\left[\lambda n^{+1}+u(1+y)\right]^{2}=\left(\lambda x^{+1}\right)^{2}+2\left(\lambda x^{+1}\right) u(1+y)+(1+y)^{2}=\left(\lambda x^{+1}\right)^{2}$.
From this we conclude that
$\left[\lambda x^{+1}+u(1+y)\right]^{2 \varepsilon}=\left\{\left[\lambda x^{+1}+u(1+y)\right]^{2}\right\}^{\varepsilon}=\left[\left(\lambda x^{+1}\right)^{2}\right]^{\varepsilon}=\left(\lambda x^{+1}\right)^{2 \varepsilon}$.
Hence (i) has been established. To prove (ii) we have
$\left[\lambda x^{+1}+u(1+y)\right]^{2 \varepsilon+1}=\left[\lambda x^{+1}+u(1+y)\right]^{2 \varepsilon}\left[\lambda x^{+1}+u(1+y)\right]$
$=\left(\lambda x^{ \pm 1}\right)^{2 \varepsilon}\left[\lambda x^{ \pm 1}+u(1+y)\right]$
$=\left(\lambda x^{+1}\right)^{2 \varepsilon+1}+\left(\lambda x^{+1}\right)^{2 \varepsilon} u(1+y) \cdot \Delta$

Lemma 4.7

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic 2 . Let $\phi: K(G) \rightarrow K(G /<Y>)$ be the natural homomorphism. Let $J K(G)$ be the Jacobson radical of $K(G)$. Then ker $\phi=J K(G)$.

Proof

Let $X=\langle X\rangle$ and $Y=\langle Y\rangle$. Since ϕ is an epimorphism and its kernel is $K(G)$ aug $K(Y)$ we have $K(G) / K(G)$ aug $K(Y) \cong K(G / Y)$. By (1.24) and using the fact that the characteristic of K is 2 we have $K(G)$ aug $K(Y)=(K(G))(1+Y)=(K(X))(1+y)$. But $(1+y)^{2}=0$ so $(K(G))(l+y)$ is nilpotent. This implies that $(K(G))(1+y) \subseteq J K(G)$. Hence there is an ideal I of $J K(G / Y)$ such that $J K(G) / K(G) \operatorname{aug} K(Y)=J K(G) /(K(G))(1+y) \cong I \subseteq J K(G / Y) \cong J K(X)$ because $G / Y \cong X$. Since X is an infinite cyclic group we have $J K(X)=0(\sec [11])$. This implies that $J K(G)=(K(G)) \operatorname{aug} K(Y)-(K(G))(1+y)=(K(\langle x\rangle))(1+y) \cdot \Delta$

Lemma 4.8

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic 2 . Then the units of $K(G)$ are the elements $\lambda x^{m}+u(1+y)$ where $0 \neq \lambda \in K$, m is an integer and $u \in K(<x>)$.

Proof

Let $a, b \in K(\langle x\rangle)$ and suppose that $a+b y$ is a unit in $K(\langle x\rangle)$. Since the characteristic of K is 2 we have $a+b y=a+b+b+b y=(a+b)+b(1+y)$. Thus $(a+b)+b(1+y)$ is a unit in $K(G)$ and then $[(a+b)+b(1+y)]^{2}=(a+b)^{2}$ is a unit in $K(G)$. This implies that $a+b$ is a unit in $K(G)$. Thus by (1.32) $a+b$ is a unit in $K(\langle x\rangle)$. Thus by Corollary (1.4) of [9] $a+b$ is of the form λx^{m} where $0 \neq \lambda \in K$ and m integer. Hence $a+b y$ is of the form $\lambda x^{m}+b(1+y)$ where $b \in K(\langle x\rangle)$. Now suppose $\lambda x^{m}+b(l+y) \in K(G)$ where $0 \neq \lambda \in K, m$ is an integer and $b \in K(\langle x\rangle)$. Since $(1+y)^{2}=0$ we have, $\left[\lambda x^{m}+b(1+y)\right]\left[\left(\lambda x^{m}\right)^{-1}-\left(\lambda x^{m}\right)^{-2} b(1+y)\right]=1$. This implies that $\lambda x^{m}+b(1+y)$ is a unit of $K(G)$. $\quad \Delta$

Lemma 4.9

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group
and $y^{2}=1$. Let k be a field of characteristic 2 . If θ is a K-automorphism of $K(G)$ then there exist $\lambda \in K-\{0\}$ and $u, v \in K(\langle x\rangle)$ such that v is a unit and

$$
\begin{aligned}
& \theta(x)=\lambda x^{ \pm 1}+u(1+y), \\
& \theta(y)=1+v(1+y) .
\end{aligned}
$$

Proof

Let $\langle y\rangle=Y$, and let $J K(G)$ be the Jacobson radical of $K(G)$. Since θ is an K-automorphism of $K(G)$ then θ permutes all maximal right ideals of $K(G)$. This implies that θ fixes the intersection of the maximal right ideals $J K(G)$. But by (4.7), $J K(G)=(K(G))(1+y)=(K(\langle x\rangle))(1+y)$. It follows from this that $\theta(1+y) \in(X(\langle x\rangle))(1+y)$. Hence $1+\theta(y)=\theta(1+y)=v(1+y)$ where $0 \neq v \in K(\langle x\rangle)$, because $v=0$ implies that $y=1$. From this result we conclude that $\theta(y)=1+v(1+y)$.

Now, by (1.23) θ induces K -automorphism $\tilde{\theta}$ of $K(G) / J K(G)$. Also by (4.7) we have $K(G) / J K(G) \cong K(G / Y) \cong K(\langle x\rangle)$. Thus θ induces an K-automorphism $\approx \tilde{\theta}$ of $K(\langle x\rangle)$. By using this result and theorem (2.1) of [9] we conclude that $\tilde{\theta}(x)=\lambda x^{ \pm 1}$ where $0 \neq \lambda \in K$. This implies that $\theta(x)=\lambda x^{ \pm 1}+u(1+y)$ where $u \in K(\langle x\rangle)$.

Since θ is a K-automorphism of $K(G)$ there exists $\sum n_{i} x^{i}+\left(\sum \delta_{j} x^{j}\right) y \in K(G)$ such that $\theta\left[\sum n_{i} x^{i}+\left(\sum \delta_{j} x^{j}\right) y\right]=y$.

Finally, for convenience we distinguish even and odd powers of x in $\sum_{i} n_{i} x^{i}$ and $\sum_{j} \delta_{j} x^{j}$. Thus we write
$\sum_{i} \eta_{i} x^{i}=\sum_{r} \eta_{2 r} x^{2 r}+\sum_{s} \eta_{2 s+1} x^{2 s+1}$.
$\sum_{j} \delta_{j} x^{j}=\sum \delta_{2 \psi} x^{2 \psi}+\sum \delta_{2 \pi+1} x^{2 \pi+1}$.
By (4.6) and (1) we have
$\theta\left[\sum_{i} n_{i} x^{i}+\left(\sum_{j} \delta_{j} x^{j}\right) y\right]=\sum_{r} n_{2 x}\left(\lambda x^{ \pm 1}\right)^{2 r}+\sum_{s} n_{2 s+1}\left[\left(\lambda x^{ \pm 1}\right)^{2 s+1}+\left(\lambda x^{ \pm 1}\right)^{2 s} u(1+y)\right]$
$+\left(\sum \delta_{2 \psi}\left(\lambda x^{ \pm 1}\right)^{2 \psi}+\sum \delta_{2 \pi+1}\left[\left(\lambda x^{ \pm 1}\right)^{2 \pi+1}+\left(\lambda x^{ \pm 1}\right)^{2 \pi} u(1+y)\right]\right)[1+v(1+y)]=y$.

By using $(1+y)^{2}=0$ we have

$$
\begin{align*}
& {\left[\sum_{r} n_{2 x}\left(\lambda x^{ \pm 1}\right)^{2 r}+\sum_{s} \eta_{2 s+1}\left(\lambda x^{ \pm 1}\right)^{2 s+1}+\sum_{s} \eta_{2 s+1}\left(\lambda x^{ \pm 1}\right)^{2 s} \mathbf{u}+\sum_{\psi} \delta_{2 \psi}\left(\lambda x^{ \pm 1}\right)^{2 \psi}\right.} \\
& +\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{ \pm 1}\right)^{2 \pi+1}+\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{ \pm 1}\right)^{2 \pi} u \\
& \left.+\sum_{\psi} \delta_{2 \psi}\left(\lambda x^{ \pm 1}\right)^{2 \psi} v+\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{ \pm 1}\right)^{2 \pi+1} v\right] \\
& +\left[\sum_{s} \eta_{2 s+1}\left(\lambda x^{+1}\right)^{2 s} u+\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{+1}\right)^{2 \pi} u+\sum_{\psi} \delta_{2 \psi}\left(\lambda x^{+1}\right)^{2 \psi} v+\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{+1}\right)^{2 \pi+1} v\right] y . \\
& \text { By using (1) and the fact that } u, v \in K(\langle x\rangle) \text { we have } \\
& \sum_{i} n_{i}\left(\lambda x^{+1}\right)^{i}+\left(\sum_{j} \delta_{j}\left(\lambda 2 r^{+1}\right)^{j}\right)(1+v)+\sum_{s} n_{2 s+1}\left(\lambda x^{+1}\right)^{2 s} u \\
& +\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{+1}\right)^{2 \pi} u=0 . \\
& \sum_{j} \delta_{j}\left(\lambda x^{+1}\right)^{j}+\left(\sum_{j} \delta_{j}\left(\lambda x^{+1}\right)\right)^{j}(1+v)+\sum_{s} \eta_{2 s+1}\left(\lambda x^{+1}\right)^{2 s_{u}} \\
& +\sum_{\pi} \delta_{2 \pi+1}\left(\lambda x^{+1}\right)^{2 \pi} u=1 . \tag{3}
\end{align*}
$$

By adding these equalities we obtain

$$
\begin{equation*}
\sum_{i} \eta_{i}\left(\lambda x^{+1}\right)^{i}+\sum_{j} \delta_{j}\left(\lambda x^{+1}\right)^{j}=1 \tag{4}
\end{equation*}
$$

This implies that $n_{0}+\delta_{0}=1$ and $n_{i}=\delta_{i}$ for all i $\neq 0$. By using this result and using the equality (3) we have $\left(\sum_{j} \delta_{j}\left(\lambda x^{+1}\right) w=1\right.$. Hence v is a unit in $K(\langle x\rangle)$. Δ

Lemma 4.10

Let $G=\langle x\rangle x\langle y\rangle$ where $\langle x\rangle$ is an infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic 2 .

Let $\lambda \in K-\{0\}$ and let $\delta \in\{-1,1\}$. Let $u \in K(\langle x\rangle)$
and let v be unit in $K(\langle x\rangle)$. Let θ be the K-endomorphism of $K(G)$ such that

$$
\begin{aligned}
& \theta(x)=\lambda x^{\delta}+u(1+y) \\
& \theta(y)=1+v(1+y)
\end{aligned}
$$

Then θ is a K-automorphism of $K(G)$.

Proof

By (1.16) $\quad \theta: K(G) \rightarrow K(G)$ by

$$
\theta\left[\sum_{i} \alpha_{i} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y\right]=\sum_{i} \alpha_{i}\left(\theta(x)^{i}+\sum_{j} \beta_{j}\left(\theta(x)^{j} \theta(y)\right.\right.
$$

is an endomorphism of $K(G)$. We prove that θ is onto and 1-1.
First we show that θ is onto. By Corollary (1.4) of [9] $v=p x$
for some $p \in K-\{0\}$ and m integer. Let $u=v\left(\sum_{\varepsilon} b_{\varepsilon} x^{\varepsilon}\right)$
where $\sum_{\varepsilon} b_{\varepsilon} x^{\varepsilon} \in K(\langle x\rangle)$. Then by using (4.6) we have
$\theta\left[\left(\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon} x^{\varepsilon}\right)(1+y)+\lambda^{-1} x\right]=\left[\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon}\left(\lambda x+u(1+y)^{\varepsilon}\right][1+1+v(1+y]\right.$
$+\lambda^{-1}[\lambda x+u(1+y)]=\left[\sum_{\varepsilon} \lambda^{-\varepsilon-1_{b}}(\lambda x)^{\varepsilon}+\Omega_{1}(1+y)\right][v(1+y)]$
$\left.+\lambda^{-1} \lambda x+u(1+y)\right]$
where $\Omega_{1} \in K(\langle x\rangle)$. Since $(1+y)^{2}=0$ we have
$\theta\left[\left(\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon} x^{\varepsilon}\right)(1+y)+\lambda^{-1} x\right]=\left[\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon}(\lambda x)^{\varepsilon}\right] v(1+y)+x+\lambda^{-1} u(1+y)$.
But we know that $u=v \sum_{\varepsilon} b_{\varepsilon}^{\varepsilon}$ and so we have

$$
\begin{aligned}
& \theta\left[\left(\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon} x^{\varepsilon}\right)(1+y)+\lambda^{-1} x\right]= {\left[\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon}(\lambda x)^{\varepsilon}\right] v(1+y)+x } \\
&+\lambda^{-1} v\left(\sum_{\varepsilon} b_{\varepsilon} x^{\varepsilon}\right)(1+y) \\
&=\left(\sum_{\varepsilon} \lambda^{-1} b_{\varepsilon} x^{\varepsilon}\right) v(1+y)+x+\left(\sum_{\varepsilon} \lambda^{-1} b_{\varepsilon} x^{\varepsilon}\right) v(1+y)=x .
\end{aligned}
$$

Also by using (4.6) we have

$\theta\left[1+\left(\lambda^{m} p^{-1} x^{-m}\right)(1+y)\right]=1+\lambda^{m} p^{-1}[\lambda x+u(1+y)]^{-m}\left[1+1+p x^{m}(1+y)\right]$
$\left.=1+\lambda^{m} p^{-1}\left[(\lambda x)^{-m}+\Omega_{2}(1+y)\right]\left[p x^{m}(1+y)\right] w h e_{e} \Omega_{z} \in k(x x)\right)$

$$
\therefore \theta\left[1+\left(\lambda^{m} p^{-1} x^{-m}\right)(1+y)\right]=1+\lambda^{m} p^{-1}(\lambda x)^{-m} p x^{m}(1+y)=2+y=y .
$$

Hence θ is onto when $\delta=1$. Now suppose that $\delta=-1$. In
order to simplify the proof, let $v=p x^{m}$ where $0 \neq p \in K$ and m integer. Let $u=x^{-2} v\left(\sum_{\varepsilon} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon}\right)$ where $\sum_{\varepsilon} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon} \in K(\langle x\rangle)$. Then by (4.6) we have $\theta\left[\left(\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon} x^{\varepsilon}\right)(1+y)+\lambda x^{-1}\right]=\sum_{\varepsilon}^{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon}\left[\lambda x^{-1}+u(1+y)\right]^{\varepsilon}[(1+1+v(1+y)]$
$+\lambda\left[\lambda x^{-1}+u(1+y)\right]^{-1}=\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon}\left[\left(\lambda x^{-1}\right)^{\varepsilon}+\Omega_{3}(1+y)\right][(v(1+y)]$
$+\lambda\left[\left(\lambda x^{-1}\right)^{-1}-\left(\lambda x^{-1}\right)^{-2} u(1+y)\right]$ where $\Omega_{3} \in K(\langle x\rangle)$.
Since $(1+y)^{2}=0$ and $u=x^{-2} v\left(\sum_{\varepsilon} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon}\right)$ we have $\theta\left[\left(\sum_{\varepsilon} \lambda^{-\varepsilon-1} b_{\varepsilon} x^{\varepsilon}\right)(1+y)+\lambda x^{-1}\right]=\sum_{\varepsilon} \lambda^{-\varepsilon-1_{b}}{ }_{\varepsilon}^{\varepsilon}\left(\lambda x^{-1}\right)^{\varepsilon} v(1+y)+x-\lambda^{-1} x^{2} u(1+y)$
$=\sum_{\varepsilon} \lambda^{-1} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon} v(1+y)+x-\lambda^{-1} x^{2}\left[x^{-2} v \sum_{\varepsilon} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon}\right](1+y)$
$=\sum_{\varepsilon} \lambda^{-1} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon} v(1+y)+x-\sum_{\varepsilon} \lambda^{-1} b_{\varepsilon}\left(x^{-1}\right)^{\varepsilon} v(1+y)=x$.
Also by using (4.6) we have
$\theta\left[1+\lambda^{-m} p^{-1} x^{m}(1+y)\right]=1+\lambda^{-m} p^{-1}\left[\lambda x^{-1}+u(1+y)\right]^{m}[1+1+y(1+y)]$
$=1+\lambda^{-m} p^{-1}\left[\left(\lambda x^{-1}\right)^{m}+\Omega_{4}(1+y)\right][(v(1+y)]$
where $\Omega_{4} \in K(\langle x\rangle)$.

$$
\begin{gathered}
\text { Since }(1+y)^{2}=0 \text { and } v=p x^{m} \text { we have } \\
\theta\left[1+\lambda^{-m} p^{-1} x^{m}(1+y)\right]=1+\lambda^{-m} p^{-1}\left[\lambda^{m}\left(x^{-1}\right)^{m}\right]\left(p x^{m}\right)(1+y)=2+y=y
\end{gathered}
$$

Hence θ is also onto when $\delta=-1$.

Finally we prove that θ is $1-1$. Suppose $\sum_{i} \alpha_{i} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y$
is a member of $K(G)$ such that $\theta\left[\sum_{i} \alpha_{i} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y\right]=0$.
Then we show that all α_{i} and all β_{j} are zero.

It is convenient to distinguish even and odd powers of x in

$$
\begin{align*}
& \sum_{i} \alpha_{i} x^{i} \text { and } \sum_{j} \beta_{j} x^{j} \cdot \text { Thus let } \\
& \sum_{i} \alpha_{i} x^{i}=\sum_{v} \alpha_{2 \nu} x^{2 \nu}+\sum_{\sigma} \alpha_{2 \sigma+1} x^{2 \sigma+1} \\
& \sum_{j} \beta_{j} x^{j}=\sum_{\mu} \beta_{2 \mu} x^{2 \mu}+\sum_{\xi} \beta_{2 \xi+1} x^{2 \xi+1} \tag{1}
\end{align*}
$$

By (1) and using (4.6) we have

$$
\begin{align*}
& \theta\left[\sum_{i} \alpha_{i} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y\right]=\sum_{v} \alpha_{2 v}\left(\lambda x^{+1}\right)^{2 v}+\sum_{\sigma} \alpha_{2 \sigma+1}\left[\left(\lambda x^{+1} ;^{2 \sigma+1}+\left(\lambda x^{+1}\right)^{2 \sigma} u(1+y)\right]\right. \\
& +\left(\sum_{\mu} \beta_{2 \mu}\left(\lambda x^{+1}\right)^{2 \mu}+\sum_{\xi} \beta_{2 \xi+1}\left[\left(\lambda x^{+1}\right)^{2 \xi+1}+\left(\lambda x^{+1}\right)^{2 \xi} u(1+y)\right]\right) \\
& {[1+v(1+y)]=0 .} \\
& \text { In order to simplify let } A=\sum_{\sigma} \alpha_{2 \sigma+1}\left(\lambda x^{+1}\right)^{2 \sigma} u_{\text {, }} \\
& B=\sum_{\xi} \beta_{2 \xi+1}\left(\lambda x^{+1}\right)^{2 \xi} u \text {, we have } \\
& \theta\left[\sum_{i} \alpha_{i} x^{i}+\left(\sum_{j} \beta_{j} x^{j}\right) y\right]=\sum_{i} \alpha_{i}\left(\lambda x^{+1}\right)^{i}+A(1+y)+\sum_{j} \beta_{j}\left(\lambda x^{+1}\right)^{j}+B(1+y) \\
& +\left[\sum_{j} \beta_{j}\left(\lambda x^{+1}\right)^{j}\right] v(1+y)=0 . \tag{2}
\end{align*}
$$

By multiplying (2) by $1+y$ and using $(1+y)^{2}=0$ we obtain

$$
\begin{equation*}
\left[\sum_{i} \alpha_{i}\left(\lambda x^{+1}\right)^{i}+\sum_{j} \beta_{j}\left(\lambda x^{+1}\right)_{j}(1+y)=0 .\right. \tag{3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\sum_{i} \alpha_{i}\left(\lambda x^{+1}\right)^{i}+\sum_{j} \beta_{j}\left(\lambda x^{+}\right)^{j}=0 . \tag{4}
\end{equation*}
$$

Since $\lambda \neq 0$, it follows from (4) that $\alpha_{i}=\beta_{i}$ for all i and this implies that $A=B$. From this result and (2) we conclude that $\sum_{j} \beta_{j}\left(\lambda x^{+1}\right)^{j} v(1+y)=0$. But v is a unit and so $\sum_{j} \beta_{j}\left(\lambda x^{+1}\right)^{j}(1+y)=0$. This implies that $\beta_{j}=0$ for all j because $\lambda \neq 0$. Thus $\alpha_{i}=\beta_{i}=0$ for all i i.e. θ is $1-1$. Δ Combining lemmas (4.9) and (4.10) we have:

Theorem IV

Let $G=\langle x\rangle x\langle y\rangle$ where <x> is infinite cyclic group and $y^{2}=1$. Let K be a field of characteristic 2 . Then θ is a K-automorphism of $K(G)$ if and only if there exist $\lambda \in K-\{0\}$ and $u, v \in K(\langle x\rangle)$ such that v is a unit and

$$
\begin{aligned}
& \theta(x)=\lambda x^{+1}+u(1+y) . \\
& \theta(y)=1+v(1+y) .
\end{aligned}
$$

Let $K=G F(p)$, the Galois field with p elements. In [10] D.S. Passman proved that the group rings of all non-isomorphic p-groups of order at most p^{4} over k are non-isomorphic. Our aim in this chapter is to investigate the corresponding property for non-isomorphic p-groups of order $p^{5}(p>3)$; unfortunately this problem is still open.

We use Schreier's classification of groups of order $p^{5}(p>3)$ in [14]. As far as possible we retain his notations but, for convenience in accordance with present-day usage, we replace his Gothic letters by capital Roman letters, his capital letters for groups elements by small letters, and E by 1 .

The groups of order $p^{5}(p>3)$ as characteristed by Schreier, are divided into ten types, each type being again sub-divided into various sub-types of non-isomorphic groups.

Our techniques are based on the results of Jennings in [6] and Passman in [10]. We also use the notations found in (1.25). We say two groups G_{1} and G_{2} are distinguished if $K\left(G_{1}\right) \notin K\left(G_{2}\right)$.

Since there are few details given in [10] for finding the properties of groups of order p^{2}, p^{3} and p^{4} we insert details for some of them before pursuing the main aim. For example we find the properties of groups of type (X), (XI), (XII) and (XIII) given in [10] of order $p^{4}(p \geq 3)$.

For convenience we replace letters P, Q, and R by letters a, b and c respectively.

Group X
This group is given by the relations,
$G=\left\langle a, b, c \mid a^{p^{2}}=1, b^{p}=1, c^{p}=1, c^{-1} a c=a b, b^{-1} a b=a, c^{-1} b c=b\right\rangle$.

Observe that $b \in Z(G)$. Also $c^{-1} a c=a b$ implies that $a c=c a b$ so every element of G is of the form $c^{\gamma} a^{\alpha_{b}} b^{\beta}$. From $c^{-1} a c=a b$ and $b \in Z(G)$ we conclude that,
$c^{-1} a^{n} c=\left(c^{-1} a c\right)^{n}=(a b)^{n}=a^{n} b^{n}$. This implies that $c b^{-n}=a^{-n} c a^{n}$ and from this and $b \in Z(G)$ we have $c^{t} b^{-t n}=\left(c b^{-n}\right)^{t}=\left(a^{-n} c a^{n}\right)^{t}=a^{-n} c^{t} a^{n}$. Hence we have

$$
\begin{equation*}
a^{n} c^{t}=c^{t} a^{n} b^{n t} \tag{1}
\end{equation*}
$$

Now we prove by induction that for $K \geq 1$,

$$
\begin{equation*}
\left(c^{\left.\gamma_{a} \alpha_{b}^{\beta}\right)^{K}}=c^{K \gamma_{a} K \alpha_{b} K \beta+\frac{K(K-1)}{2} \alpha \gamma}\right. \tag{2}
\end{equation*}
$$

For $K=1$ there is nothing to prove. Suppose that (2) is valid
for K : then by using (1) we have

$=c^{K \gamma} a^{K} \alpha_{c} \gamma_{a} \alpha_{b}(K+1) \beta+\frac{K(K-1)}{2} \alpha \gamma \quad=c^{K \gamma}\left(c^{\gamma} a^{K} \alpha_{b} K \alpha \gamma_{j} a_{b} \alpha^{(K+1) \beta+\frac{K(K-1)}{2} \alpha \gamma}\right.$.
$=c^{(K+1) \gamma_{a}(K+1) \alpha_{b}(K+1) \beta+K \alpha \gamma+\frac{K(K-1)}{2} \alpha \gamma}$
$=c^{(K+1) \gamma_{a}(K+1) \alpha_{a}(K+1) B+\frac{(K+1) K}{2} \alpha \gamma}$.

Hence our claim has been provedand in particular we have

$$
\begin{equation*}
\left(c^{\gamma} a^{\alpha_{b}}\right)^{p}=c^{p \gamma_{a} p \alpha_{b} p \beta+\frac{p(p-1)}{2} \alpha \gamma}=a^{p \alpha} \tag{3}
\end{equation*}
$$

Now we calculate $Z(G)$. Since $b \in Z(G), c^{\gamma} a^{\alpha} b^{\beta} \in Z(G)$ if and only if $\left(c^{\gamma} a^{\alpha}\right) a=a\left(c^{\gamma} a^{\alpha}\right) \quad$ and $\left(c^{\gamma} a^{\alpha}\right) c=c\left(c^{\gamma} a^{\alpha}\right)$. Hence if $c^{\gamma} a^{\alpha} b^{\beta} \in Z(G)$ then it from (1) that $b^{\gamma}=1$ and $b^{\alpha}=1$.

Therefore $\gamma=w p, \alpha=\varepsilon p$. Hence every element of $Z(G)$ is of form $c^{w p} a^{\varepsilon p_{b} \beta}=a^{\varepsilon p_{b}{ }^{\beta}}$. This implies that $Z(G)=\left\{a^{E p_{b} B}\right\}=\left\langle a^{p}\right\rangle \times\langle b\rangle$, so $Z(G)$ is of order p^{2} and of type (p, p).

Now $G /\langle b\rangle$ is abelian group of type $\left(p^{2}, p\right)$. In particular, $G^{\prime} c\langle b\rangle$. Since G is non-abelian, $G^{\prime}=\langle b\rangle$.

Finally we calculate the M-series.
$M_{1}=G$. By using (3) we have
$M_{2}=\left\langle(G, G), M_{(2 / p)}^{(p)}\right\rangle=\left\langle G^{\prime}, G^{(p)}\right\rangle=\left\langle\langle b\rangle,\left\langle a^{p}\right\rangle\right\rangle=\langle b\rangle \times\left\langle a^{p}\right\rangle$.

Since $b, a^{p} \in Z(G)$ we have
$M_{3}=\left\langle\left(M_{2}, G\right), M\left(1, P_{(0)}^{(p)}\right\rangle=\left\langle\langle 1\rangle,\left\langle a^{P}\right\rangle\right\rangle=\left\langle a^{P}\right\rangle\right.$.

Also we have
$M_{3}=M_{4}=\ldots=M_{p}=\left\langle a^{p}\right\rangle$.
$M_{p+1}=\left\langle\left(M_{p}, G\right), M_{(p+1 / p)}^{(p)}\right\rangle=\left\langle\langle 1\rangle, M_{2}^{(p)}\right\rangle=\left\langle a^{p^{2}}\right\rangle=\langle 1\rangle$.

Thus $M_{1} / M_{2}=\left\langle c M_{2}\right\rangle \times\left\langle M_{2}\right\rangle$, abelian group $(p, p),\left|M_{2} / M_{3}\right|=p$, $M_{i} / M_{i+1}=1(i=3, \ldots, p-1), \quad M_{p} / M_{p+1}=p$.

Groups (XI), (XII), (XIII)

These groups are given by the relations
$G=\left\langle a, b, c \mid a^{p^{2}}=1, b^{p}=1, c^{p}=a^{\psi p}, b^{-1} a b=a^{1+p}, c^{-1} a c=a b, c^{-1} b c=b\right\rangle$ where $\psi=0,1$, and any non-residue modulo p respectively.

We begin with results common to these groups.

From $b^{-1} a b=a^{l+p}$ we conclude that $a b=b a^{l+p}$, fram this and $c^{-1} a c=a b$ we have $a c=c a b=c b a^{l+p}$. Since $b c=c b$ so every element of G is of form $c^{\gamma_{b}{ }^{\beta} a^{\alpha}}$.

Also we have $b^{-1} a^{t} b=\left(b^{-1} a b\right)^{t}=\left(a^{1+p}\right)^{t}=a^{t(1+p)}$. In particular we have $b^{-1} a^{p} b=a^{p(1+p)}=a^{p} a^{p^{2}}=a^{p}$, then $a^{p} b=b a^{p}$.

Again from $b^{-1} a^{t_{b}}=a^{t(l+p)}$ we conclude that $b=a^{-t_{b a}} a^{t p}$ and this with $a^{p_{b}}=b a^{p}$ implies that $b^{n}=a^{-t} b^{n} a^{t} a^{n t p}$. Hence we have

$$
\begin{equation*}
a^{t_{b}}{ }^{n}=b^{n} a^{t} a^{n t p} \tag{4}
\end{equation*}
$$

Now we prove by induction that $c^{-K} a c^{K}=a b^{K}$. For $K=1$ there is nothing to prove. Let $c^{-K} a c^{K}=a b^{K}$ then we have $c^{-(K+1)} a c^{K+1}=c^{-1}\left[c^{-K} a c^{K}\right] c=c^{-1}\left(a b^{K}\right) c=\left(c^{-1} a c\right) b^{K}=(a b) b^{K}=a b^{K+1}$ because $b c=c b$.

By using (4) and $c^{-K} a c^{K}=a b^{K}$ we have $c^{-K} a c^{K}=b^{K} a^{1+K p}$. Also by induction we prove that

$$
\begin{equation*}
c^{-K} a^{n} c^{K}=b^{n K} a^{n+\frac{n(n+1)}{2}} K p \tag{5}
\end{equation*}
$$

For $n=1$ our assertion is true. Let

$$
c^{-K_{a} n_{c} K}=b^{n K_{a}^{n}+\frac{n(n+1)}{2}} K p
$$

By (4) and $a^{p} b=b a^{p}$ we have
$c^{-K} a^{n+1} c^{K}=\left(c^{-K} a c^{K}\right)^{n+1}=\left(c^{-K} a c^{K}\right)^{n}\left(c^{-K} a c^{K}\right)=\left(b^{n K} a^{n+\frac{n(n+1)}{2}} K p h\left(c^{-K} a c^{K}\right)\right.$

$=b^{n K}\left(b^{K} a^{n+1} a^{K(n+1) p}\right) a^{\frac{n(n+1)}{2} K p}=b^{(n+1) K} a^{n+1} a^{\frac{(n+1)(n+2)}{2} K p}$
$=b^{(n+1) K} a^{(n+1)+\frac{(n+1)(n+2)}{2} K p}$.
In particular we have $c^{-K_{a} p_{c}^{K}}=b^{p K_{a}^{p+\frac{p(p+1)}{2}} K p}=a^{p}$ because $b^{p}=1$ and $a^{p^{2}}=1$. From this we have $a^{p} c=c a^{p}$. By this result and $a^{p} b=b a^{p}$ we conclude that $a^{p} \in Z(G)$ the centre of G.

Now we prove by induction that
$\left(c^{\gamma} b^{\beta} a^{\alpha}\right)^{n}=c^{n \gamma} b^{n \beta+\frac{n(n-1)}{2} \alpha \gamma}$

$$
\begin{equation*}
a^{n \alpha+\frac{n(n-1)}{2} \alpha \beta p+\left[\frac{\alpha(\alpha+1)}{2}+\frac{2 \alpha(2 \alpha+1)}{2}+\ldots \frac{(n-1) \alpha[(n-1) \alpha+1]}{2}\right] \gamma p} \tag{6}
\end{equation*}
$$

For $n=1$ there is nothing to prove. Let
$A=\frac{\alpha(\alpha+1)}{2}+\frac{2 \alpha(2 \alpha+1)}{2}+\ldots+\frac{(n-1) \alpha[(n-1) \alpha+1]}{2}$.

By using $a^{p} \in Z(G), b c=c b$, (4) and (5) we have,
$\left(c^{\gamma_{b} \beta_{a}^{\alpha}}\right)^{n+1}=\left[c^{n \gamma} b_{b}^{n \beta+\frac{n(n-1)}{2} \alpha \gamma} a_{a}^{n \alpha+\frac{n(n-1)}{2} \alpha \beta p+A \gamma p}\right]\left(c^{\gamma_{b}^{\beta}} a^{\alpha}\right)$
$=\left[c^{n \gamma} b^{n \beta+\frac{n(n-1)}{2} \alpha \gamma} a^{n \alpha}\right]\left(c_{\left.\gamma_{b} a^{\alpha}\right)} a^{\frac{n(n-1)}{2} \alpha \beta p+A \gamma p}\right.$
$=c^{n \gamma} b^{n \beta+\frac{n(n-1)}{2} \alpha \gamma}\left(c^{\gamma} b^{n \alpha \gamma} a^{n \alpha+\frac{n \alpha(n \alpha+1)}{2}} \gamma p p_{i b}^{\beta} a^{\alpha} a^{\frac{n(n-1)}{2} \alpha \beta p+A \gamma p}\right.$
$=c^{(n+1) \gamma} b_{b}^{n \hat{p}+\frac{n(n-1)}{2} \alpha \gamma+n \alpha \gamma} a^{n \alpha} b^{\beta} a^{\alpha} a^{\frac{n \alpha(n \alpha+1)}{2}} \gamma p+\frac{n(n-1)}{2} \alpha \beta p+A \gamma p$
$=c^{(n+1) \gamma} b^{n \beta+\frac{(n+1) n}{2} \alpha \gamma}\left(b^{\beta} a^{n \alpha} a^{n \alpha \beta p}\right) a_{a}^{\alpha} a^{\frac{n \alpha(n \alpha+1)}{2}} \gamma p+\frac{n(n-1)}{2} \alpha \beta p+A \gamma p$
$=c^{(n+1) \gamma_{b}(n+1) \beta+\frac{(n+1) n}{2}} \alpha \gamma$

$$
a^{(n+1) \alpha+\frac{(n+1) n}{2} \alpha \beta p+\left[\frac{\alpha(\alpha+1)}{2}+\frac{2 \alpha(2 \alpha+1)}{2}+\ldots+\frac{n \alpha(n \alpha+1)}{2}\right] \gamma p}
$$

In particular we have,
$\left(c_{b}^{\gamma_{a}^{\beta}}{ }^{\alpha}\right)^{p}=c^{p} \gamma_{a}^{p \alpha+\left[\frac{\alpha(\alpha+1)}{2}+\frac{2 \alpha(2 \alpha+1)}{2}+\ldots+\frac{(p-1) \alpha[(p-1) \alpha+1]}{2}\right] \gamma p .}$
$=\underset{a}{\psi p \gamma+p \alpha+\left[\frac{\alpha(\alpha+1)}{2}+\frac{2 \alpha(2 \alpha+1)}{2}+\ldots+\frac{(p-1) \alpha[(p-1) \alpha+1]}{2}\right] \gamma p .}$
This implies that $\left\langle G^{(p)}\right\rangle=\left\langle a^{p}\right\rangle$.

By $a^{P} \in Z(G), b c=c b$ and repeating (4), (5) we have $\left(c^{\gamma_{b}^{\beta}} a^{\alpha}\right)^{-1}\left(c^{r_{b}} b^{s} a^{t}\right)^{-1}\left(c^{\gamma_{b} b^{\alpha}}\right)\left(c^{r^{\prime}} b^{s} a^{t}\right)=b^{\alpha r-t \gamma} a^{u p} \quad$ (us integer). Hence we have $G^{\prime}=\left\langle\left\{b^{\alpha r-t y} a^{u p}\right\}\right\rangle=\langle b\rangle x\left\langle a^{p}\right\rangle$. This implies that
$G_{G^{\prime}}=\left\langle\left\{c^{\left.\left.\gamma_{b}{ }^{\beta} a^{\alpha}\left(\langle b\rangle \times\left\langle a^{p}\right\rangle\right)\right\}\right\rangle=\left\langle c\left(\langle b\rangle \times\left\langle a^{p}\right\rangle\right)\right\rangle \times\left\langle a\left(\langle b\rangle \times\left\langle a^{p}\right\rangle\right)\right\rangle ~}\right.\right.$ Thus G / G, is of order p^{2} and of type (p, p).
 $\left(c^{\gamma} b^{\beta} a^{\alpha}\right) a=a\left(c^{\gamma} b^{\beta} a^{\alpha}\right),\left({ }_{c}^{\gamma} b^{\beta} a^{\alpha}\right) b=b\left({ }_{c}^{\gamma} b^{\beta} a^{\alpha}\right)$ and $\left(c^{\gamma} b^{\beta} a^{\alpha}\right) c=c\left(c^{\gamma} b^{\beta} a^{\alpha}\right)$.

By using (4), (5) and $\left(c^{\gamma} b^{\beta} a^{\alpha}\right) a=a\left(c^{\gamma} b^{\beta} a^{\alpha}\right)$ we have, $c^{\gamma_{b}^{\beta}} a=a c^{\gamma} b^{\beta}=\left(c^{\gamma_{b} \gamma_{d}}{ }^{1+p \gamma}\right) b^{\beta}=c^{\gamma} b^{\gamma}\left(b^{\beta} a^{1+p \gamma} a^{\beta(1+p \gamma) p}\right)=c^{\gamma} b^{\gamma+\beta} a^{1+p \gamma+p \beta}$. This implies that $1=b^{\gamma} a^{p \gamma+p \beta}$ so we obtain $\gamma=\varepsilon p$ and $\beta=\sigma p$.

```
Also by \(c b=b c\), (4) and \(\left(c^{\gamma} b^{\beta} a^{\alpha}\right) b=b\left(c^{\gamma_{b}{ }^{\beta}} a^{\alpha}\right)\) we have \(a^{\alpha} b=b a^{\alpha}\) or we have \(b a^{\alpha} a^{\alpha p}=b a^{\alpha}\) and this implies that \(a^{\alpha p}=1\) so \(\quad \alpha=\lambda p\).
```

From $\left(c^{\gamma} b^{\beta} a^{\alpha}\right) c=c\left(c^{\gamma} b^{\beta} a^{\alpha}\right)$ as above we conclude that $\alpha=\lambda p$. Hence every element of $Z(G)$ is of form $c^{\varepsilon p} b^{\sigma p} a^{\lambda p}=a^{\lambda p}$ and this implies that $Z(G)=\left\langle a^{P}\right\rangle$. Hence $Z(G)$ is of order p and of type (p).

Finally we calculate the M-series.
$M_{1}=G$.
$M_{2}=\left\langle G^{\prime}, G^{(p)}\right\rangle=\left\langle\langle a\rangle \times\left\langle a^{p}\right\rangle,\left\langle a^{p}\right\rangle\right\rangle=\langle b\rangle \times\left\langle a^{p}\right\rangle$

Now we calculate $\left(M_{2}, G\right)$. Since $a^{P} \in Z(G)$ we have
$\left(c^{\gamma_{b}} a^{\alpha}\right)^{-1} b^{-t}\left(c^{\gamma} b^{\beta} a^{\alpha}\right) b^{t}=a^{-\alpha_{b}}{ }^{-\beta} c^{-\gamma_{b}} b^{-t} \gamma_{b} \beta_{a} \alpha_{b}{ }^{t}=a^{-\alpha_{b}-t} a^{\alpha_{b}}$
because $b c=c b$. But by (4) we have
$a^{-\alpha} b^{-t} a_{b}{ }^{t}=a^{-\alpha_{b}}{ }^{-t}\left(b^{t} a^{\alpha} a^{\alpha t p}\right)=a^{\alpha t p}$. Hence we have
$M_{3}=\left\langle\left(M_{2}, G\right), M_{(3 / p)}^{(p)}\right\rangle=\left\langle\left\langle a^{P}\right\rangle, G^{(p)}\right\rangle=\left\langle a^{p}\right\rangle$.
$M_{3}=M_{4}=\ldots=M_{p}=\left\langle a^{p}\right\rangle$.
$M_{p+1}=\left\langle\left(M_{p}, G\right), M_{(p+1 / p)}^{(p)}=\left\langle\langle 1\rangle,\left\langle a^{p^{2}}\right\rangle\right\rangle=\langle 1\rangle\right.$.

Thus we have,
$M_{1} / M_{2}=\left\langle c M_{2}\right\rangle \times\left\langle a M_{2}\right\rangle$, abelian group $(p, p),\left|M_{2} / M_{3}\right|=p$,
$M_{i} / M_{i+1}=1(i=3, \ldots, p-1),\left|M_{p} / M_{p+1}\right|=p$.

Let N be the Jacobson radical of $K(G)$. Then we calculate the kernel of $\phi: N / N^{2} N^{3} / N^{4}$ for $p=3$. Since
$M_{1} / M_{2}=\left\langle M_{2}\right\rangle \times\left\langle M_{2}\right\rangle$ it follows from [6] that, $c-1$ and a -1 have weight 1 . Also since $M_{2} / M_{3}=\left\langle b M_{3}\right\rangle, b-1$ has weight 2 .

Finally since $M_{3} / M_{4}=\left\langle a^{3} M_{4}\right\rangle, a^{3}-1$ has weight 3 . Hence every element of N / N^{2} is of the form $[m(a-1)+n(c-1)]+N^{2}$
where $m, n \in K$, and then we have
$[m(a-1)+n(c-1)]^{3}=m^{3}(a-1)^{3}+m^{2} n(a-1)(c-1)(a-1)+m^{2} n(c-1)(a-1)^{2}$
$+m n^{2}(c-1)^{2}(a-1)+m^{2} n(a-1)^{2}(c-1)+m n^{2}(a-1)(c-1)^{2}$
$+m n^{2}(c-1)(a-1)(c-1)+n^{3}(c-1)^{3}$.

By using lemma (1.28) we have
$(a-1)(c-1)(a-1) \equiv(a-1)\left[(a-1)(c-1)+\left(c^{-1} a^{-1} c a-1\right)\right] \bmod N^{4}$. Since
$b^{3}=1$ and $c^{-1} a c=a b$ we have
$c^{-1} a^{-1} c a-1=b^{-1}-1=b^{2}-1=(b-1)^{2}+2(b-1)$.
Hence we have
$(a-1)(c-1)(a-1) \equiv(a-1)^{2}(c-1)+(a-1)(b-1)^{2}+2(a-1)(b-1) \bmod N^{4}$. But $(b-1)^{2} \in N^{4}$ because $b-1$ has weight 2 and then we have $(a-1)(c-1)(a-1) \equiv(a-1)^{2}(c-1)+2(a-1)(b-1) \bmod N^{4}$.

By the above we also have

$(c-1)(a-1)^{2} \equiv\left[(a-1)(c-1)+(b-1)^{2}+2(b-1)\right](a-1) \bmod N^{4}$. We have $(c-1)(a-1)^{2} \equiv(a-1)(c-1)(a-1)+(b-1)^{2}(a-1)+2(b-1)(a-1) \bmod N^{4}$.

Since $(a-1)(c-1)(a-1) \equiv(a-1)^{2}(c-1)+2(a-1)(b-1) \bmod N^{4}$ and $(b-1)^{2} \in N^{4}$ we have
$(c-1)(a-1)^{2} \equiv(a-1)^{2}(c-1)+2(a-1)(b-1)+2(b-1)(a-1) \bmod N^{4}$.

As before we have
$(c-1)^{2}(a-1) \equiv(c-1)(a-1)(c-1)+(c-1)(b-1)^{2}+2(c-1)(b-1) \bmod N^{4}$.

Since $(b-1)^{2} \in N^{4}$ we have
$(c-1)^{2}(a-1) \equiv(c-1)(a-1)(c-1)+2(c-1)(b-1) \bmod N^{4}$.

But we have
$(c-1)(a-1)(c-1) \equiv(a-1)(c-1)^{2}+(b-1)^{2}(c-1)+2(b-1)(c-1) \bmod N^{4}$.

Since $(b-1)^{2} \in N^{4}$ we have
$(c-1)(a-1)(c-1) \equiv(a-1)(c-1)^{2}+2(b-1)(c-1) \bmod N^{4}$.

By using (7), (8), (9) and (10) we have
$[m(a-1)+n(c-1)]^{3} \equiv m^{3}(a-1)^{3}+m^{2} n\left[(a-1)^{2}(c-1)+2(a-1)(b-1)\right]$
$+m^{2} n\left[(a-1)^{2}(c-1)+2(a-1)(b-1)+2(b-1)(a-1)\right]$
$+\operatorname{mn}^{2}\left[(a-1)(c-1)^{2}+2(b-1)(c-1)+2(c-1)(b-1)\right]+m^{2} n(a-1)^{2}(c-1)$ $+m n^{2}(a-1)(c-1)^{2}+m n^{2}\left[(a-1)(c-1)^{2}+2(b-1)(c-1)\right]+n^{3}(c-1)^{3} \bmod N^{4}$.

Since the characteristic of K is 3 , and $b c=c b$ we have $[m(a-1)+n(c-1)]^{3} \equiv m^{3}\left(a^{3}-1\right)+m^{2} n(a-1)(b-1)+2 m^{2} n(b-1)(a-1)$

$$
\begin{equation*}
+n^{3}\left(c^{3}-1\right) \bmod N^{4} \tag{11}
\end{equation*}
$$

Since $p=3$ we have $b^{-1} a b=a^{1+p}=a^{4}$. This implies that $(b-1)(a-1)=(a-1)(b-1)+b a\left(1-a^{-1} b^{-1} a b\right)$. We have $(b-1)(a-1)=(a-1)(b-1)+b a\left(1-a^{3}\right)$. We have $(b-1)(a-1)=(a-1)(b-1)+(b a-1+1)\left(1-a^{3}\right)=(a-1)(b-1)+(b a-1)\left(1-a^{3}\right)+\left(1-a^{3}\right)$.

Since $a^{3}-1$ has weight 3 we have $(b-1)(a-1) \equiv(a-1)(b-1)+\left(1-a^{3}\right) \bmod N^{4}$.

By using (11), (12) and $c^{3}=a^{3 \psi}$ we have $[m(a-1)+n(c-1)]^{3} \equiv m^{3}\left(a^{3}-1\right)+2 m^{2} n\left(1-a^{3}\right)+n^{3}\left(a^{3 \psi}-1\right) \bmod N^{4}$.

By using lemma (1.28) and the fact that $a^{3}-1$ has weight 3 we have $a^{3 \psi}-1 \equiv \psi\left(a^{3}-1\right) \bmod N^{4}$. Hence we have $[m(a-1)+n(c-1)]^{3} \equiv m^{3}\left(a^{3}-1\right)+m^{2} n\left(a^{3}-1\right)+\psi n^{3}\left(a^{3}-1\right) \bmod N^{4}$. Or we have $[m(a-1)+n(c-1)]^{3} \equiv\left(m^{3}+m^{2} n+\psi n\right)^{3}\left(a^{3}-1\right) \bmod N^{4}$.
It follows from (14) that $[m(a-1)+n(c-1)]+N^{2} \in \operatorname{ker} \phi$ if and only if $m^{3}+m^{2} n+\psi n^{3}=0$.

We now have to consider the three groups separately.

Group (XI)

In this case $\psi=0$ and then we have $m^{3}+m^{2} n=0$. This implies that $m^{2}(m+n)=0$. Since K is the prime field of three elements we have one of the following:
$m=0$
$n=0$
$\mathrm{m}=0$
$m=0$
$n=2$,
$m=1$
$n=2$, and
$\mathrm{m}=2$
$n=1$,
$n=1$.

Hence in this case the kernel of ϕ consists of five elements.

Group (XII)
In this case $\psi=1$ and then we have $m^{3}+m^{2} n+n^{3}=0$. This implies that

$$
\begin{array}{lll}
m=0 & m=1 \\
n=0 & n=1
\end{array} \quad \text { and } \quad m=2,
$$

Hence in this case the kernel of ϕ consists of three elements.

Group (XIII)

In this case $\psi=2$ because 2 is a non-residue modulo 3 . Thus we have $m^{3}+m^{2} n+2 n^{3}=0$ and the only solution is $\quad \begin{aligned} & m=0 \\ & n=0\end{aligned}$. Hence in this case the kernel of ϕ consists of one element. Thus we have the following table.

Group number	Z-type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} p>3 type	M_{p} / M_{p+1} type	Kernel size $(p=3)$
X	(p, p)	(p, p)	(p, p)	(p)	(1)	(p)	
XI	(p)	(p, p)	(p, p)	(p)	(1)	(p)	5
XII	(p)	(p, p)	(p, p)	(p)	(1)	(p)	3
XIII	(p)	(p, p)	(p, p)	(p)	(1)	(p)	1

This table shows that the groups (XI), (XII), and (XIII) for $p=3$ are distinguished. For $p>3$ we have the following lemmas found in [10].

Before starting to write the lemmas we note that by (1.28) we have (a-1) and (c-1) have weight $1, b-1$ has weight 2 , and $a^{p}-1$ has weight p. Since $p>3$ we have $a^{p}-1 \in N^{4}$. Hence by (1.28) we have

$$
\begin{aligned}
& (a-1)(c-1) \equiv(c-1)(a-1)+(b-1) \bmod N^{3} \\
& (a-1)(b-1) \equiv(b-1)(a-1)+\left(a^{p}-1\right) \bmod N^{p+1} \\
& (a-1)(b-1) \equiv(b-1)(a-1) \bmod N^{4} \\
& (c-1)(b-1)=(b-1)(c-1) \text { because } b c=c b \\
& \left(a^{\psi P}-1\right) \equiv \psi\left(a^{p}-1\right) \bmod N^{p+1} .
\end{aligned}
$$

Lemma 5.1

> The natural map $\phi: N / N^{2} \rightarrow N^{p} / N^{p+1}$ is given by $\{m(a-1)+n(c-1)\}^{p} \equiv(m+\varphi n)\left(a^{p}-1\right) \bmod N^{p+1}$.

Proof

By (I) we have $[m(a-1), n(c-1)] \equiv m n(b-1) \bmod N^{3}$. By (III) and (IV), $m(a-1)$ and $n(c-1)$ commute with $m n(b-1)$ modulo N^{4}. Hence $m(a-1), n(c-1)$ commute with $^{m}(m(a-1), n(b-1)]$ modulo N^{4}. Since $p>3$ by lemma 2 of [10] we have $\{m(a-1)+n(c-1)\}^{p} \equiv m^{p}(a-1)^{p}+n^{p}(c-1)^{p} \bmod N^{p+1}$. By (IV), $c^{p}=a^{\psi p}$, and the fact that K is a prime field of p elements we have

$$
\{m(a-1)+n(c-1)\}^{p} \equiv(m+\psi n)\left(a^{p}-1\right) \bmod N^{p+1} .
$$

Lemma 5.2

Let $s=\left\langle(b-1),(b-1)^{2}, \ldots,(b-1)^{(p-1) / 2}, N^{p}\right\rangle$.
Let $\phi: N / N^{2} \rightarrow N^{p} / N^{p+1}$ be the natural homomorphism. Let
$\mathbb{N}^{p+1} \subseteq T \subseteq N^{p}$ with $T / N^{p+1}=\phi\left(N / N^{2}\right)$. Let
$U=\{u \in N \mid \forall x \in N, x u-u x \in T\}$. Then $S=U$.

Proof

By (5.1) it is evident that $T=\left\langle a^{p}-1, N^{p+1}\right\rangle$.
Let $x \in S$. Then $x=a_{1}(b-1)+a_{2}(b-1)^{2}+\ldots+a_{p-1 / 2}(b-1)^{p-1 / 2}+w$
where $\alpha_{i} \in K(i=1,2, \ldots, p-1 / 2)$ and $w \in N^{p}$. Let $u \in N$.
Then we write u in terms of the Jennings basis modulo N^{p} i.e.
$u=\sum \beta_{i, j, K}(a-1)^{1}(b-1)^{j}(c-1)^{K}+\sigma$ where $1 \leq i+2 j+K \leq p-1$.
By using (II) and $a^{p}-1 \in \stackrel{!}{N}$ we have

$$
\begin{array}{ll}
(a-1)(b-1)^{\mu} \equiv(b-1)^{\mu}(a-1) \bmod N^{p+1} & (\mu>1) . \\
(a-1)^{\mu}(b-1) \equiv(b-1)(a-1)^{\mu} \bmod N^{p+1} & (\mu>1) \tag{5}
\end{array}
$$

Hence by using (4) and (5) we have

$$
\begin{aligned}
u x-x u & =\left[\sum \beta_{i, j, K}(a-1)^{i}(b-1)^{j}(c-1)^{K}+\sigma\right] \\
& x\left[\alpha_{1}(b-1)+\alpha_{2}(b-1)^{2}+\ldots+\alpha_{p-1 / 2}(b-1)^{\frac{p-1}{2}}+w\right] \\
& =\left[\alpha_{1}(b-1)+\alpha_{2}(b-1)^{2}+\ldots+\alpha_{p-1 / 2}(b-1)^{\frac{p-1}{2}}+w\right] \\
& x\left[\sum_{i, j, K}(a-1)^{i}(b-1)^{j}(c-1)^{K}+\sigma\right] \\
& \equiv\left[\beta_{1,0,0} \alpha_{1}(a-1)(b-1)^{p-\alpha_{1} \beta_{1,0,0}^{(b-1)(a-1)]+n}} .\right.
\end{aligned}
$$

where $n \in N^{p+1}$.
(II)

By using we deduce that
$u x-x u \equiv \alpha_{1} \beta_{1,0,0}\left(a^{p}-1\right)+\Omega$, where $\Omega \in N^{p+1}$. This implies that $u x-x u \in T$ and then $x \in U$, i.e. $S \subseteq U$.

Now we prove that $U \subseteq S$. If not we choose $u \in U \backslash S$ and we write u in terms of Jennings basis. Since $(b-1)^{j}$ for $2 j<p$ belongs to S we assume that no terms of the form $(b-1)^{j}$ with $2 j<p$ occur in the representation of u. Now we prove by induction on t that $u \in \mathbb{N}^{t}$ for $t \leq p$. For $t=1$ there is nothing to prove because $u \in N$. Let $u \in N^{t}$ with $t<p$. Then we prove as follows that $u \in N^{t+1}$. Now we can write
$u \equiv \sum a_{i, j, K}(a-1)^{i}(b-1)^{j}(c-1)^{K} \bmod N^{t+1}$
where $1+2 j+K=t$ and $\alpha_{0, j, 0}=0$. Since $u \in U, a-1 \in N$ and $c-1 \in N$ we have
$[(a-1), u] \in T, \quad[(c-1), u] \in T, \quad$ and
$[(a-1), u] \in T+N^{t+2}, \quad[(c-1), u] \in T+N^{t+2}$.

Now we prove by induction on $K(K \geq 1)$ that
$[(a-1), u] \equiv \sum_{K \geq 1} k \alpha_{i, j, k}(a-1)^{i}(b-1)^{j+1}(c-1)^{k-1} \bmod N^{t+2}$.
$[(c-1), u] \equiv-\sum_{i \geq 1} i \alpha_{i, j, k^{(a-1)^{i-1}}(b-1)^{j+1}(c-1)^{k} \bmod N^{t+2}}$.

By (II) and $t<p$ we know that $(a-1)$ commutes with ($b-1$) modulo $\mathrm{N}^{\mathrm{t+1}}$. Hence to prove (6) it is enough to prove

$$
\begin{equation*}
\left[(a-1),(c-1)^{K}\right] \equiv K(b-1)(c-1)^{K-1} \bmod N^{K+2} \tag{8}
\end{equation*}
$$

By using (I) there is nothing to prove when $K=1$. Suppose (8) holds for K. Then we wish to prove the corresponding result for $K+1$. We have
$\left[(a-1),(c-1)^{K+1}\right]=(a-1)(c-1)^{K+1}-(c-1)^{K+1}(a-1)$
$=\left[(a-1)(c-1)^{K}\right](c-1)-(c-1)^{K+1}(a-1)$
$=\left\{(c-1)^{K}(a-1)+K(b-1)(c-1)^{K-1}+\theta_{1}\right\}(c-1)-(c-1)^{K+1}(a-1)$
where $\theta_{1} \in N^{\mathrm{K}+2}$.

From this and (1), (3) we conclude that
$\left[(a-1),(c-1)^{K+1}\right]=(c-1)^{K}\left[(c-1)(a-1)+(b-1)+\theta_{2}\right]+K(b-1)(c-1)^{K}+\theta_{1}(c-1)$

- $(c-1)^{K+1}(a-1)$

Whare $\theta_{2} \in N^{3}$ by (I) Page 84. Thues
$\left[(a-1),(c-1)^{K+1}\right]=(c-1)^{K}(b-1)+(c-1)^{K} \theta_{2}+K(b-1)(c-1)^{K}+\theta_{1}(c-1)$
$=(K+1)(b-1)(c-1)^{K}+\theta_{3}$
where $\theta_{3}=(c-1)^{K_{\theta_{2}}}+\theta_{1}(c-1) \in N^{K+3}$. Hence (8) has been
established and so (6) has been established.

The proof of (7) is similar to the proof of (6) and so we omit it.

By using (6), (7), $[(a-1), u] \in T+N^{t+2}=\left\langle N^{t+2}, a^{p}-1\right\rangle$ $[(c-1), u] \in T+N^{t+2}=\left\langle N^{t+2}, a^{p}-1\right\rangle$ we conclude that

$$
\begin{equation*}
\sum_{K \geq 1} K \alpha_{i, j, K}(a-1)^{i}(b-1)^{j+1}(c-1)^{K-1}=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \geq 1} i \alpha_{i, j, K}(a-1)^{i-1}(b-1)^{j+1}(c-1)^{K}=0 \tag{10}
\end{equation*}
$$

because $i+2(j+1)+(k-1)=(i+2 j+k)+1=t+1$, $(i-1)+2(j+1)+K=t+1$, and $l \leq i, j \leq t<p$. This implies that $\alpha_{i, j, K}=0$ and then $u \equiv 0 \bmod N^{t+1}$. Hence $u \in N^{p} \subseteq s$ which is false, i.e. $S=U . \quad \Delta$

We remark that, on the one hand, sub-space S is determined by a particular basis in terms of the group elements and that, on the other hand, U is determined solely by the ring-theoretic structure. Thus this lemma shows that S is itself determined solely by the ring-theoretic structure.

Now we choose an element $x \in N \backslash N^{2}$ with $\phi\left(x+N^{2}\right)=0$, and we choose $y \in N$ with $\phi\left(y+N^{2}\right) \neq 0$. By (5.1) and the fact that $a^{p}-1 \in N^{P}$ we can write
$x=\lambda[\uparrow(a-1)-(c-1)]+n$,
$y=\rho[\psi(a-1)-(c-1)]+\mu(a-1)+m$.
where $n, m \in N^{2}$ and $\lambda, \mu \neq 0$. But by using (I) we have $[x, y] \equiv \mu \lambda(b-1) \bmod N^{3}$. Thus, if $s \equiv \mu \lambda(b-1)+\sum_{i \geq 2} b_{i}(b-1)^{i} \bmod N^{P}$. then $s \in S$ and $[x, y] \equiv s \bmod N^{3}$.

By using (II), (III) we have $\left[x,(b-1)^{1}\right] \in N^{p+1}$ for $i \geq 2$
and $[n, s] \in \mathbb{N}^{p+1}$. Hence we have
$[x, s] \equiv \mu \lambda^{2}[\{\psi(a-1)-(c-1)\}, b-1] \equiv \mu \lambda^{2} \psi\left(a^{p}-1\right) \bmod N^{p+1}$.

By using (6), (7), [(a-1), u] $\in T+N^{t+2}=\left\langle N^{t+2}, a^{p}-1\right\rangle$ $[(c-1), u] \in T+N^{t+2}=\left\langle N^{t+2}, a^{p}-1\right\rangle$ we conclude that

$$
\begin{equation*}
\sum_{K \geq 1} K \alpha_{i, j, K}(a-1)^{i}(b-1)^{j+1}(c-1)^{K-1}=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \geq 1} i a_{i, j, K}(a-1)^{i-1}(b-1)^{j+1}(c-1)^{K}=0 \tag{10}
\end{equation*}
$$

because $i+2(j+1)+(k-1)=(i+2 j+K)+1=t+1$, $(i-1)+2(j+1)+K=t+1$, and $l \leq i, j \leq t<p$. This implies that $\alpha_{i, j, k}=0$ and then $u \equiv 0 \bmod N^{t+1}$. Hence $u \in N^{p} \subseteq s$ which is false, i.e. $S=U . \quad \Delta$

We remark that, on the one hand, sub-space S is determined by a particular basis in terms of the group elements and that, on the other hand, U is determined solely by the ring-theoretic structure. Thus this lemma shows that S is itself determined solely by the ring-theoretic structure.

Now we choose an element $x \in N \backslash N^{2}$ with $\phi\left(x+N^{2}\right)=0$, and we choose $y \in N$ with $\phi\left(y+N^{2}\right) \neq 0$. By (5.1) and the fact that $a^{p}-1 \in N^{P}$ we can write

$$
\begin{aligned}
& x=\lambda[\psi(a-1)-(c-1)]+n \\
& y=\rho[\psi(a-1)-(c-1)]+\mu(a-1)+m
\end{aligned}
$$

where $n, m \in N^{2}$ and $\lambda, \mu \neq 0$. But by using (I) we have $[x, y] \equiv \mu \lambda(b-1) \bmod N^{3}$. Thus, if $s \equiv \mu \lambda(b-1)+\sum_{i \geq 2} b_{i}(b-1)^{i} \bmod N^{P}$, then $s \in S$ and $[x, y] \equiv s \bmod N^{3}$.

By using (II), (III) we have $\left[x,(b-1)^{i}\right] \in N^{p+1}$ for $i \geq 2$ and $[n, s] \in \mathbb{N}^{p+1}$. Hence we have $[x, s] \equiv \mu \lambda^{2}[\{\Psi(a-1)-(c-1)\}, b-1] \equiv \mu \lambda^{2} \psi\left(a^{p}-1\right) \bmod N^{p+1}$.

If $\psi=0$, then $[x, s] \equiv 0 \bmod N^{p+1}$. Therefore the group for $\Psi=0$ is distinguished from the other two.

Suppose $\Psi \neq 0$. By lemma (5.1) we have
$y^{p}-[x, s] \equiv\left(\mu-\mu \lambda^{2} \psi\right)\left(a^{p}-1\right) \bmod N^{p+1}$, because $\mu^{p}=\mu$.

If $\psi=1$ we may choose x so that $y^{p}-\{x, s] \equiv 0 \bmod N^{p+1}$. If \boldsymbol{Y} is not a quadratic residue, then for all choices of \mathbf{x} $y^{p}-[x, s] \neq 0 \bmod N^{p+1}$. Thus the three groups are distinguished.

Now we start with type I of groups of order $p^{5}(p>3)$.

Type I

The groups of this type are given by the following relations, $G=\left\langle a, b_{1}, b_{2}\right| a^{p}=1, b_{1}^{p^{3}}=a^{\alpha_{1}}, b_{2}^{p}=a^{\alpha_{2}}, a b_{i}=b_{i} a(i=1,2)$, $b_{2}^{-1} b_{1} b_{2}=b_{1} a>$,
of which there are three sub-types given by

α_{1}	1	0	0
α_{2}	0	1	0

We denote these sub-types by $(I, 1),(I, 2),(I, 3)$ respectively. Observe a $\in \mathrm{Z}(\mathrm{G})$ and we have

$$
\begin{equation*}
b_{1}^{n} b_{2}^{t}=b_{2}^{t} b_{1}^{n} a^{n t} . \tag{1}
\end{equation*}
$$

The elements of this type are of the form $a^{\alpha} b_{2}^{\beta} b_{1}{ }^{\gamma}$ and we have

$$
\left(a^{\alpha} b_{2}^{\beta} b_{1}^{\gamma}\right)^{m}=a^{m \alpha+\frac{m(m-1)}{2}} B \gamma \quad b_{2}^{m \beta} b_{1}^{m \gamma}
$$

Now we calculate $Z(G) \cdot \quad a^{\alpha} b_{2}^{\beta} b_{1}{ }^{\gamma} \in Z(G)$ if and only if $\left(b_{2}^{\beta} b_{1}^{\gamma}\right) b_{1}=b_{1}\left(b_{2}^{\beta} b_{1}^{\gamma}\right)$ and $\left(b_{2}^{\beta} b_{1}^{\gamma}\right) b_{2}=b_{2}\left(b_{2}^{\beta} b_{1}^{\gamma}\right)$. Hence if $a^{\alpha} b_{2}^{\beta} b_{1}^{\gamma} \in Z(G)$ then it forlows from (1) that $a^{\beta}=1$ and
$a^{\gamma}=1$. Therefore $\beta=\varepsilon p$ and $\gamma=\sigma p$. Hence
$z(G)=\left\{a^{\alpha} b_{2}^{\varepsilon P} b_{1}^{\sigma P}\right\}$. Also we know that $G^{\prime}=\langle a\rangle$.

Sub-type (I, 1)
For this sub-type we have $\alpha_{1}=1, \alpha_{2}=0$. Hence $z(G)=\left\langle b_{1}^{p}\right\rangle$.

$$
M_{1}=G .
$$

$$
\begin{aligned}
& M_{i}=\left\langle b_{1} p^{p}(i=2,3, \ldots, p) .\right. \\
& M_{j}=\left\langle b_{1} p^{2}\right\rangle\left(j=p+1, \ldots, p^{2}\right) . \\
& M_{K}=\langle a\rangle\left(K=p^{2}+1, \ldots, p^{3}\right) . \\
& M_{p^{3}+1}=\langle 1\rangle .
\end{aligned}
$$

Sub-type (I, 2)

$$
\begin{aligned}
& \text { Since } \alpha_{1}=0, \alpha_{2}=1 \text { we have } \\
& z(G)=\langle a\rangle \times\left\langle b_{1} p_{>} .\right. \\
& M_{1}=G . \\
& M_{i}=\langle a\rangle \times\left\langle b_{1} p^{p} \quad(i=2, \ldots, p) .\right. \\
& M_{j}=\left\langle b_{1} p^{2}\right\rangle \quad\left(j=p+1, \ldots, p^{2}\right) . \\
& M_{p^{2}+1}=\langle l\rangle .
\end{aligned}
$$

Sub-type (1,3)
For this sub-type we have $\alpha_{1}=0, \alpha_{2}=0$. Hence $z(G)=\langle a\rangle \times\left\langle b_{1} p^{p}\right.$.
$M_{1}=G$.
$M_{2}=\langle a\rangle \times\left\langle b_{1}{ }^{p}\right\rangle$.
$M_{i}=\left\langle b_{1}^{p}\right\rangle \quad(i=3, \ldots, p)$.
$M_{j}=\left\langle b_{1} p^{2}\right\rangle \quad\left(j=p+1, \ldots, p^{2}\right)$.
$\mathrm{M}_{\mathrm{p}+1}=\langle 1\rangle$.

Thus for type I we have the following table.

Group number	z-type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{p} / M_{p+1} type	$M_{p^{2}} / M_{p^{2}+1}$ type	$M_{p^{3} / M_{p^{3}+1}}^{\text {type }}$
$(I, 1)$	$\left(p^{3}\right)$	$\left(p^{3}, p\right)$	(p, p)	(1)	(p)	(p)	(p)
$(I, 2)$	$\left(p^{2}, p\right)$	$\left(p^{3}, p\right)$	(p, p)	(1)	(p, p)	(p)	(1)
$(I, 3)$	$\left(p^{2}, p\right)$	$\left(p^{3}, p\right)$	(p, p)	(p)	(p)	(p)	(1)

table I

According to the Table I and Proposition (4), Corollary (6) of [10] the groups of type I are distinguished.

Type II

The groups of this type are given by the following relations,
$G=\left\langle a, b_{1}, b_{2}\right| a^{p}=1, b_{1}^{p^{2}}=a^{a}, b_{2}^{p^{2}}=1, a b_{1}=b_{1} a, a b_{2}=b b_{2}$,
$b_{2}^{-1} b_{1} b_{2}=b_{1} a>$,
Of which there are two sub-types given by $\alpha=0, \alpha=1$. We denote these sub-types by (II, 1), (II, 2) respectively.

The elements are of the form $a^{\alpha} b_{2}^{\beta} b_{1}^{\gamma}$ and we have

$$
\begin{aligned}
& b_{1}^{t} b_{2}^{n}=b_{2}^{n} b_{1}^{t} a^{n t} \\
& \left(a^{\alpha} b_{2}^{\beta} b_{1}^{\gamma}\right)^{m}=a^{m \alpha+\frac{m(m-1)}{2}} \hat{a}^{n \gamma} b_{2}^{m \beta} b_{1}^{m \gamma}
\end{aligned}
$$

The elements of $Z(G)$ are of the form $a^{\alpha} b_{2}{ }^{\varepsilon P} b_{1}{ }^{\sigma p}$.

Sub-type (II, 1)
For this sub-type $\alpha=0$ and we have
$M_{1}=G$.
$M_{2}=\langle a\rangle \times\left\langle b_{2}^{p}\right\rangle \times\left\langle b_{1}^{p}\right\rangle$.
$M_{3}=M_{4}=\ldots=M_{p}=\left\langle b_{2}^{p_{\rangle}} \times\left\langle b_{1}^{p_{\rangle}}\right.\right.$.

$$
M_{p+1}=\langle 1\rangle
$$

Sub-type (II, 2)

For this sub-type $\alpha=1$ and we have
$M_{1}=G$.
$M_{2}=M_{3}=\ldots=M_{p}=\left\langle b_{2}^{p^{p}} \times\left\langle b_{1}^{p} p^{p}\right.\right.$.
$M_{p+1}=M_{p+2}=\ldots=M_{p^{2}}=\langle a\rangle$.
$M_{p^{2}+1}=\langle 1\rangle$.

Hence we have the following table.

Group Number	Z-type	G / G^{\prime} type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{p} / M_{p+1} type	$M_{p^{2} / M_{p}+1}$ type
$(I I, 1)$	(p, p, p)	$\left(p^{2}, p^{2}\right)$ $(I I, 2)$ $\left(p^{2}, p\right)$	(p, p)	(p)	(p, p)	(1)
$\left(p^{2}, p^{2}\right)$	(p, p)	(1)	(p, p)	(p)		

TABLE II

According to the Table II and Proposition (4), Corollary (6) of [10] the groups of type II are distinguished.

Type III

For convenience we replace ${ }^{\text {schreier's }}$ notation of $a^{*}, b_{1}{ }^{*}, b_{2}$ and $b_{3}{ }^{*}$ by a, b_{1}, b_{2}, and b_{3} respectively. The groups of this type are given by the following relations,
$G=\left\langle a, b_{1}, b_{2}, b_{3}\right| a^{p}=1, b_{1}^{p^{2}}=a^{\alpha_{1}}, b_{2}^{p}=a^{\alpha_{2}}, b_{3}^{p}=a^{\alpha_{3}}$
$a b_{i}=b_{i} a \quad(1=1,2,3), b_{3} b_{j}=b_{j} b_{3}(j=1,2)$,
$b_{2}^{-1} b_{1} b_{2}=b_{1} a^{>}$
and

$$
\begin{aligned}
G= & <a, b_{1}, b_{2}, b_{3} \mid a^{p}=1, b_{1}^{p}=a^{\beta_{1}}, b_{2}^{p}=a^{\beta_{2}}, b_{3}^{p}=1, \\
& a b_{1}=b_{1} a(i=1,2,3), b_{1} b_{j}=b_{j} b_{1}(j=2,3), \\
& b_{3}^{-1} b_{2} b_{3}=b_{2} a>.
\end{aligned}
$$

Of which there are seven sub-types given by

α_{1}	1	0	0	0
α_{2}	0	1	0	0
α_{3}	0	0	1	0

and

β_{1}	1	0	0
β_{2}	0	1	0

We denote these sub-types by (III, 1), (III, 2), (III, 3), (III, 4), (III, 5), (III, 6), and (III, 7) respectively. For sub-types (III, 1), (III, 2), (III, 3), (III, 4), the elements are of the form $a^{\alpha} b_{3}^{\beta} b_{2}^{\gamma} b_{1}^{\delta}$ and we have

$$
\begin{aligned}
& b_{1}^{t} b_{2}^{n}=b_{2}^{n} b_{1}^{t} a^{n t} . \\
& \left(a^{\alpha} b_{3}^{\beta} b_{2}^{\gamma} b_{1}^{\delta}\right)^{m}=a^{m \alpha+\frac{m(m-1)}{2}} \gamma \delta b_{3}^{m \beta} b_{2}^{m \gamma} b_{1}^{m \delta} .
\end{aligned}
$$

The elements of $z(G)$ are of the form $a^{\alpha} b_{3}{ }^{\beta} b_{2}{ }^{\varepsilon p} b_{1}{ }^{\sigma p}$.

For sub-types (III, 5), (III, 6) and (III, 7) the elements are of the form $a^{\alpha} b_{1}^{\beta} b_{3}{ }^{\gamma} b_{2}^{\delta}$ and also we have

$$
\begin{aligned}
& b_{2}^{t} b_{3}^{n}=b_{3}^{n} b_{2}^{t} a^{n t} . \\
& \left(a^{\alpha} b_{1}^{\beta} b_{3}^{\gamma} b_{2}^{\delta}\right)^{m}=a^{m \alpha+\frac{m(m-1)}{2}} \gamma \delta b_{1}^{m \beta} b_{3}^{m \gamma} b_{2}^{m \delta}
\end{aligned}
$$

The elements of $Z(G)$ are of the form $a^{\alpha} b_{1}{ }^{\beta} b_{2}{ }^{\sigma p}$. Hence we have the following table.

Group Number	G/G' type	$Z(G)$ type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{p} / M_{p+1} type	$M_{p_{2}} / M_{p^{2}}+1$ type
$(I I I, 1)$	$\left(p^{2}, p, p\right)$	$\left(p^{2}, p\right)$	(p, p, p)	(1)	(p)	(p)
$(I I I, 2)$	$\left(p^{2}, p, p\right)$	(p, p, p)	(p, p, p)	(1)	(p, p)	(1)
$(I I I, 3)$	$\left(p^{2}, p, p\right)$	$\left(p^{2}, p\right)$	(p, p, p)	(1)	(p, p)	(1)
$(I I I, 4)$	$\left(p^{2}, p, p\right)$	(p, p, p)	(p, p, p)	(p)	(p)	(1)
$(I I I, 5)$	$\left(p^{2}, p, p\right)$	$\left(p^{3}\right)$	(p, p, p)	(1)	(p)	(p)
$(I I I, 6)$	$\left(p^{2}, p, p\right)$	$\left(p^{2}, p\right)$	(p, p, p)	(1)	(p, p)	(1)
$(I I I, 7)$	$\left(p^{2}, p, p\right)$	$\left(p^{2}, p\right)$	(p, p, p)	(p)	(p)	(1)

table III

Type IV

The groups of this type are given by the following relations
$G=\left\langle a, b_{1}, b_{2}, b_{3}, b_{4}\right| a^{p}=1, b_{1}^{p}=a^{\alpha}, b_{2}^{p}=1, b_{3}^{p}=a^{a_{3}}, b_{4}^{p}=1$
$a b_{i}=b_{i} a(1=1,2,3,4), \quad b_{3} b_{j}=b_{j} b_{3}(j=1,2,4)$,
$b_{4} b_{k}=b_{k} b_{4}(k=1,2), b_{2}^{-1} b_{1} b_{2}=b_{1} a>$,
and
$G=\left\langle a, b_{1}, b_{2}, b_{3}, b_{4}\right| a^{p}=1, b_{1}^{p}=a^{a_{1}}, b_{2}^{p}=1, b_{3}^{p}=1, b_{4}^{p}=1$,
$a b_{i}=b_{i} a(i=1,2,3,4), b_{i} b_{j}=b_{j} b_{i}(i=1,2, j=3,4)$,
$b_{2}^{-1} b_{1} b_{2}=b_{1} a_{1} b_{4}^{-1} b_{3} b_{4}=b_{3} a>$,
of which there are five sub-types given by

α_{1}	0	0	1
α_{3}	0	1	0

and

We denote these sub-types by (IV, 1), (IV, 2), (IV, 3), (IV, 4), (IV, 5) respectively. The elements of a group of type IV are of the form $a^{\alpha} b_{4}{ }^{\beta} b_{3}{ }^{\gamma} b_{2}^{\delta} b_{1}{ }^{\theta}$.

For sub-types (IV, 1), (IV, 2), (IV, 3) we have

$$
\begin{aligned}
& b_{1}^{t} b_{2}^{n}=b_{2}^{n} b_{1}^{t} a^{t n} \\
& \left(a^{\alpha} b_{4}^{\beta} b_{3}{ }^{\gamma} b_{2}^{\delta} b_{1}\right)^{\theta}=a^{m \alpha+\frac{m(m-1)}{2} \delta \theta} b_{4}^{m \beta} b_{3}^{m \gamma} b_{2}^{m \delta} b_{1}^{m \theta}
\end{aligned}
$$

The elements of $z(G)$ are of the form $a^{\alpha} b_{4}{ }^{\beta} b_{3}{ }^{\gamma} b_{1}{ }^{\sigma p}$.

But for sub-type (IV, 4), (IV, 5) we have

$$
\begin{aligned}
& b_{3}{ }^{t} b_{4}{ }^{n}=b_{4}^{n} b_{3}{ }^{t} a^{n t}, b_{1}^{+} b_{2}^{n}=b_{2}^{n} b_{1}^{t} a^{n t}, \\
& \left(a^{\alpha} b_{4}{ }^{\beta} b_{3}{ }^{\gamma} b_{2}{ }^{\delta} b_{1}{ }^{\theta}\right)^{m}=a^{m \alpha+} \frac{m(m-1)}{2}(\theta \delta+B \gamma) \\
& b_{4}^{m \beta} b_{3}^{m \gamma} b_{2}^{m \delta} b_{1}^{m \theta} . \\
& \text { The elements of } z(G) \text { are of the form } a^{\alpha} b_{1}{ }^{\text {mp }} .
\end{aligned}
$$

Hence we have the following table.

Group Number	G/G' type	$Z(G)$ type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{p} / M_{p+1} type
$(I V, 1)$	(p, p, p, p)	(p, p, p)	(p, p, p, p)	(p)	(1)
$(I V, 2)$	(p, p, p, p)	$\left(p^{2}, p\right)$	(p, p, p, p)	(1)	(p)
$(I V, 3)$	(p, p, p, p)	(p, p, p)	(p, p, p, p)	(1)	(p)
$(I V, 4)$	(p, p, p, p)	(p)	(p, p, p, p)	(p)	(1)
$(I V, 5)$	(p, p, p, p)	(p)	(p, p, p, p)	(1)	(p)

TABLE IV

According to the TABLE IV the groups of type IV are distinguished.

Type v

In this case there is only one group, given by
$G=\left\langle a, b_{1}, b_{2}\right| a^{p^{2}}=1, b_{1} p^{2}=1, b_{2}^{\bar{p}}=a, b_{1}^{-1} a b_{1}=a^{1-p}, a b_{2}=b_{2} a$,
$b_{2}^{-1} b_{1} b_{2}=b_{1} a>\quad$.

For this group and for the groups of type $V I, G / G^{\prime}$ is of type $\left(p^{2}, p\right)$. Hence we need to compare this group with the groups of type VI. But z-type for this group is (p), which is different from the z-types of groups of type VI. Thus this group is distinguished from the groups of type VI.

Type VI

In order to simplify we replace α_{1}^{*} and α_{2}^{*} by α_{1} and α_{2} respectively.

The groups of this type are given by the following relations:

$$
\begin{aligned}
G= & \left\langle a_{1}, a_{2}, b_{1}, b_{2}\right| a_{1}^{p}=1, a_{2}^{p}=1, b_{1}^{p^{2}}=a_{2}^{a_{1}}, b_{2}^{p}=a_{2}^{a_{2}}, \\
& a_{1} a_{2}=a_{2} a_{1}, a_{2} b_{1}=b_{1} a_{2}(i=1,2), a_{1} b_{2}=b_{2} a_{1}, \\
& \left.b_{1}^{-1} a_{1} b_{1}=a_{1} a_{2}, b_{2}^{-1} b_{1} b_{2}=b_{1} a_{1}\right\rangle,
\end{aligned}
$$

with

α_{1}	1	0	0	0
α_{2}	0	1	v	0

and

$$
\begin{aligned}
G= & \left\langle a_{1}, a_{2}, b_{1}, b_{2}\right| a_{1}^{\bar{P}}=1, a_{2}^{\bar{F}}=1, b_{1}^{p^{2}}=a_{2}^{a_{1}}, b_{2}^{p}=a_{2}^{a_{2}}, \\
& a_{1} a_{2}=a_{2} a_{1}, a_{2} b_{1}=b_{1} a_{2}(1=1,2), a_{1} b_{1}=b_{1} a_{1}, \\
& \left.b_{2}^{-1} a_{1} b_{2}=a_{1} a_{2}, b_{2}^{-1} b_{1} b_{2}=b_{1} a_{1}\right\rangle .
\end{aligned}
$$

with

α_{1}	1	v	0	0
α_{2}	0	0	1	0

where v is a fixed quadratic non-residue modulo p. Hence there are eight sub-types determined by the above tables and we denote these sub-types by (VI, 1), (VI, 2), (VI, 3), (VI, 4), (VI, 5) (VI, 6), (VI, 7) and (VI, 8) respectively.

The elements of a group of type VI are of the form
$b_{2} \delta_{b_{1}} \gamma_{a_{2}}{ }^{\beta} a_{1}{ }^{\alpha}$ and the elements of $Z(G)$ are of the form $b_{1}{ }^{m p} a_{2}^{B}$. Moreover for sub-types (VI, 1), (VI, 2), (VI, 3) and (VI, 4) we have

$$
\begin{aligned}
& a_{1}{ }^{t_{b_{1}}}{ }^{K}=b_{1}{ }^{K} a_{1}{ }^{t} a_{2}{ }^{t K} \quad(t, K \text { integers }) . \\
& b_{1}{ }^{t_{b}}{ }^{K}=b_{2} K_{1}{ }^{t} a_{1}{ }^{t K} a_{2} \frac{t(t-1)}{2} K \\
& \text { (} t, K \text { integers) . } \\
& \left(b_{2}{ }^{\delta} b_{1}{ }^{\gamma} a_{2}{ }^{B} a_{1}{ }^{\alpha}\right)^{m}=b_{2}{ }^{m \delta_{b}}{ }_{1}{ }^{m \gamma}{ }^{m}{ }_{2}^{m \beta}+\frac{m(m-1)}{2} \frac{\gamma(\gamma-1)}{2} \delta+\frac{m(m-1)}{2} a \gamma+\frac{m(m-1)(2 m-1)}{6} \gamma^{2} \delta \\
& a_{1}^{m \alpha}+\frac{m(m-1)}{2} \gamma \delta \quad(m \text { integer }) . \\
& \text { But for subtypes (VI, 5), (VI, 6), (VI, 7) and (VI, 8) we have } \\
& a_{1}{ }^{t} b_{2}{ }^{K}=b_{2}{ }^{K} a_{1}{ }^{t} a_{2}{ }^{t K} \quad(t, K \text { integers }) \\
& b_{1}{ }^{t^{\prime}}{ }_{2}{ }^{K}=b_{2}{ }^{K} b_{1}{ }^{t} a_{1}{ }^{t K} a_{2} \frac{K(K-1)}{2} t \quad(t, K \text { integers) } \\
& \left(b_{2}{ }^{\delta} b_{1}{ }^{\gamma} a_{2}{ }^{B} a_{1}{ }^{\alpha}\right)^{m}=b_{2}{ }^{m \delta_{b}}{ }_{1}{ }^{m \gamma_{\gamma_{2}}}{ }^{m \beta}+\frac{m(m-1)}{2} \alpha \delta+\frac{m(m-1)}{2} \frac{\delta(\delta-1)}{2} \gamma+\frac{m(m-1)(2 m-1)}{6} \gamma \delta_{+\varepsilon}^{2} \\
& a_{1} m a+\frac{m(m-1)}{2} \gamma \delta \text { where } \varepsilon_{m} \in Z \text { and prdivids } \varepsilon_{t} \text {. }
\end{aligned}
$$

Hence we have the following table.

Group Number	Z-type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{F} / M_{p+1} type	$M_{p^{2}} / M_{p^{2}+1}$ type
(VI, 1)	$\left(p^{2}\right)$	$\left(p^{2}, p\right)$	(p, p)	(p)	(1)	(p)	(p)
$(V I, 2)$	(p, p)	$\left(p^{2}, p\right)$	(p, p)	(p)	(1)	(p, p)	(1)
$(V I, 3)$	(p, p)	$\left(p^{2}, p\right)$	(p, p)	(p)	(1)	(p, p)	(1)
$(V I, 4)$	(p, p)	$\left(p^{2}, p\right)$	(p, p)	(p)	(p)	(p)	(1)
$(V I, 5)$	$\left(p^{2}\right)$	$\left(p^{2}, p\right)$	(p, p)	(p)	(1)	(p)	(p)
$(V I, 6)$	$\left(p^{2}\right)$	$\left(p^{2}, p\right)$	(p, p)	(p)	(1)	(p)	(p)
$(V I, 7)$	(p, p)	$\left(p^{2}, p\right)$	(p, p)	(p)	(1)	(p, p)	(1)
$(V I, 8)$	(p, p)	$\left(p^{2}, p\right)$	(p, p)	(p)	(p)	(p)	(1)

table VI

Type VII
In order to simplify we replace $\alpha_{i}^{(1)}, \alpha_{2}^{(1)}, \alpha_{3}^{(1)}, \alpha_{1}^{(2)}$,
$\alpha_{2}^{(2)}, \alpha_{3}^{(2)}, \alpha_{1}^{*}, \alpha_{2}^{*}$, and α_{3}^{*} by $\alpha_{1}, \alpha_{2}, \alpha_{3}, \omega_{1}, \omega_{2}, \omega_{3}$,
σ_{1}, σ_{2}, and σ_{3} respectively.

The groups of type VII are given by the following relations:

$$
\begin{aligned}
G= & <a_{1}, a_{2}, b_{1}, b_{2}, b_{3} \mid a_{1} p=1, a_{2}^{p}=1, b_{1}^{p}=a_{1}{ }_{1} a_{2}{ }^{w_{1}}, b_{2}^{p}=a_{1}{ }^{\alpha_{2}} a_{2}^{\omega_{2}}, \\
& b_{3}^{p}=a_{1}{ }^{a_{3}} a_{2}{ }^{\omega_{3}}, a_{1} a_{2}=a_{2} a_{1}, a_{i} b_{j}=b_{j} a_{i}(i=1,2, j=1,2,3), \\
& b_{2} b_{3}=b_{3} b_{2}, b_{1} b_{2}=b_{2} b_{1} a_{1}, b_{1} b_{3}=b_{3} b_{1} a_{2}>,
\end{aligned}
$$

with

$$
\begin{aligned}
& \left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\omega_{1} & \omega_{2} & \omega_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
& & \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 9^{K} & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{lll}
0 & x_{1} & x_{2} \\
0 & y_{1} & y_{2}
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
& & \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),
\end{aligned}
$$

and $G=\left\langle a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right| a_{1}^{p}=1, a_{2}^{p}=1, b_{1}^{p}=a_{2}^{\sigma_{1}}, b_{2}^{p}=a_{2}^{\sigma_{2}}, b_{3}^{p}=a_{2}^{\sigma_{3}}$,

$$
\begin{aligned}
& a_{1} a_{2}=a_{2} a_{1}, a_{1} b_{1}=b_{1} a_{1}(1=2,3), a_{2} b_{1}=b_{1} a_{2}(1=1,2,3), \\
& b_{1} b_{3}=b_{3} b_{1}, a_{1} b_{1}=b_{1} a_{1} a_{2}, b_{1} b_{2}=b_{2} b_{1} a_{1}, b_{2} b_{3}=b_{3} b_{2} a_{2}^{\varepsilon},
\end{aligned}
$$

with

ε	0	0	0	0	0	1	1	1	1	1
σ_{1}	0	0	0	1	0	0	0	0	1	0
σ_{2}	0	1	ν	0	0	0	1	ν	0	0
σ_{3}	1	0	0	0	0	1	0	0	0	0

where g is a primitive root modulo p, v is a fixed quadratic non-residue modulo p, and
$\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)=\left(\begin{array}{ll}\rho & \rho^{p} \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}\rho^{\ell} & 0 \\ 0 & \rho^{\ell p}\end{array}\right)\left(\begin{array}{ll}\rho & \rho^{p} \\ 1 & 1\end{array}\right)^{-1}$,
$K=1,2, \ldots, \frac{p-1}{2}, \ell=1,2, \ldots, \frac{p+1}{2}$, and ρ is a primitive root of $x^{p^{2}-1} \equiv 1(\bmod p)$ in the Galois field of p^{2} elements.

Altogether from this the type VII yields $p+18$ sub-types of group of order p^{5}.

We denote these sub-types by (VII, 1), (VII, 2), (VII, 20) of which (VII, 3) has $\frac{p-1}{2}$ sub-types and (VII, 4) has $\frac{\mathrm{p}+1}{2}$ sub-types.

The elements of a group of type VII are of the form $b_{3}{ }^{\theta} b_{2} \delta_{b_{1}} \gamma_{a_{2}}{ }^{\beta_{a}}{ }_{1}^{\alpha}$. The elements of $Z(G)$ for sub-types (VII, 1), (VII, 2) \ldots, and (VII, 10) are of the form $a_{1}{ }^{\lambda} a_{2}{ }^{\mu}$, and also we have

$$
\begin{aligned}
& b_{1}{ }^{t} b_{2}^{K}=b_{2} K_{1}{ }^{t} a_{1}{ }^{t K} \quad(t, K \text { integers }) . \\
& b_{1}{ }^{t} b_{3}{ }^{K}=b_{3} K_{b_{1}}{ }^{t} a_{2}{ }^{t K} \quad(t, K \text { integers }) \text {. } \\
& \left(b_{3}{ }^{\theta} b_{2} \delta_{b_{1}}{ }^{\gamma} a_{2}{ }^{\beta} a_{1}{ }^{\alpha}\right)^{m}=b_{3}{ }^{m \theta_{b}}{ }_{2}^{m \delta_{b}}{ }_{1}^{m \gamma} a_{2}^{m \beta+\frac{m(m-1)}{2} \theta \gamma} a_{1}^{m \alpha+\frac{m(m-1)}{2} \delta \gamma}
\end{aligned}
$$

But for sub-types (VII, 11),... (VII, 20) we have

$$
\begin{aligned}
& a_{1}{ }^{t_{b}}{ }^{K}=b_{1}{ }^{K} a_{1}{ }^{t} a_{2}{ }^{t K} \quad(t, K \text { integers). } \\
& b_{1}{ }^{t_{b_{2}}}{ }^{K}=b_{2}{ }^{K} b_{1}{ }^{t} a_{1}{ }^{t K} a_{2} \frac{t(t-1)}{2} K \\
& b_{2}{ }^{t} b_{3}{ }^{K}=b_{3}{ }_{K}^{K}{ }_{2}{ }^{t} a_{2}{ }^{t K \varepsilon}
\end{aligned}
$$

The elements of $Z(G)$ for sub-types (VII, 11), ..., (VII, 15) are of the form $b_{3}{ }^{\theta} a_{2}{ }^{B}$ and we have

$$
\begin{aligned}
& \left(b_{3}{ }^{\theta_{b}}{ }_{2} \delta_{b_{1}}{ }^{\gamma} a_{2}{ }^{\beta} a_{1}{ }^{\alpha}\right)^{m}=b_{3}{ }^{m \theta_{b}}{ }_{2}^{m \delta_{b_{1}}{ }^{m \gamma} a_{2}{ }^{m \beta}+\frac{m(m-1)}{2} a \gamma+\frac{m(m-1)}{2} \frac{\gamma(\gamma-1)}{2} \delta} \\
& \quad \times a_{2} \frac{m(m-1)(2 m-1)}{6}{ }^{2} \delta a_{1} m \alpha+\frac{m(m-1)}{2} \gamma \delta
\end{aligned}
$$

Moreover the elements of $Z(G)$ for sub-types (VII, 16) ... (VII, 20) are of the form a_{2}^{α} and we have

$$
\begin{aligned}
& \left(b_{3}{ }^{\theta_{2}}{ }_{2} \delta_{b_{1}}{ }^{\gamma} a_{2}{ }^{\beta} a_{1}{ }^{\alpha}\right)^{m}=b_{3}{ }^{m \theta_{b}} b_{2}{ }^{m \delta_{b}} b_{1}{ }^{m \gamma}{ }^{m}{ }_{2}{ }^{m \beta+\frac{m(m-1)}{2}} \delta+\frac{m(m-1)}{2} \alpha \gamma \\
& \times \quad a^{\frac{m(m-1)}{2}} \frac{\gamma(\gamma-1)}{2} \delta+\frac{m(m-1)(2 m-1)}{6} \gamma^{2} \delta \quad a_{1} \quad m \alpha+\frac{m(m-1)}{2} \gamma \delta \text {. }
\end{aligned}
$$

Hence for the groups of type VII we have the following tables.

Group Number	z-type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{p} / M_{p+1} type
(VII, 1)	(p, p)	(p, p, p)	(p, p, p)	(1)	(p, p)
(VII, 2)	(p, p)	(p, p, p)	(p, p, p)	(1)	(p, p)
$(V I I, 3)$	(p, p)	(p, p, p)	(p, p, p)	(1)	(p, p)
(VII, 4)	(p, p)	(p, p, p)	(p, p, p)	(1)	(p, p)
(VII, 5)	(p, p)	(p, p, p)	(p, p, p)	(p, p)	(1)
(VII, 6)	(p, p)	(p, p, p)	(p, p, p)	(p)	(p)
(VII, 7)	(p, p)	(p, p, p)	(p, p, p)	(p)	(p)
(VII, 8)	(p, p)	(p, p, p)	(p, p, p)	(1)	(p, p)
(VII, 9)	(p, p)	(p, p, p)	(p, p, p)	(p)	(p)
(VII, 10)	(p, p)	(p, p, p)	(p, p, p)	(1)	(p, p)

table vil

Group Number	z-type	G/G' type	M_{1} / M_{2} type	$\begin{aligned} & \mathrm{M}_{2} / \mathrm{M}_{3} \\ & \text { type } \end{aligned}$	$\begin{aligned} & \mathrm{M}_{3} / \mathrm{M}_{4} \\ & \text { type } \end{aligned}$	$\underset{\mathrm{p}}{\mathrm{M}_{\mathrm{p}} / \mathrm{M}_{\mathrm{p}+1}}$
(VII,11)	(${ }^{2}$)	(p, p, p)	(p, p, p)	(p)	(1)	(p)
(VII,12)	(p, p)	(p, p, p)	(p, p, p)	(p)	(1)	(p)
(VII, 13)	(p, p)	(p, p, p)	($\mathrm{p}, \mathrm{p}, \mathrm{p}$)	(p)	(1)	(p)
(VII, 14)	(p, p)	(p, p, p)	(p, p, p)	(p)	(1)	(p)
(VII,15)	(p, p)	(p, p, p)	($\mathrm{p}, \mathrm{p}, \mathrm{p}$)	(p)	(1)	(p)
(VII,16)	(p)	(p, p, p)	($\mathrm{p}, \mathrm{p}, \mathrm{p}$)	(p)	(1)	(p)
(VII,17)	(p)	(p, p, p)	($\mathrm{p}, \mathrm{p}, \mathrm{p}$)	(p)	(1)	(p)
(VII, 18)	(p)	(p, p, p)	(p, p, p)	(p)	(1)	(p)
(VII, 19)	(p)	(p, p, p)	($p, \mathrm{p}, \mathrm{p}$)	(p)	(1)	(p)
(VII, 20)	(p)	(p, p, p)	($\mathrm{p}, \mathrm{p}, \mathrm{p}$)	(p)	(1)	(p)

table vili

Type VIII - Case 4

In order to simplify we replace $\alpha_{1}^{(2)}, \alpha_{1}^{(3)}, \alpha_{2}^{(2)}$, and $\alpha_{2}{ }^{(3)}$ by $\alpha_{1}, \beta_{1}, \alpha_{2}$, and β_{2} respectively. The groups in this case are given by the following relations
$G=\left\langle a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right| a_{i}^{p}=1(i=1,2,3), a_{1} a_{i}=a_{i} a_{1}(i=2,3)$

$$
a_{2} a_{3}=a_{3} a_{2}, \quad a_{2} b_{j}=b_{j} a_{2} \quad(j=1,2), \quad a_{3} b_{j}=b_{j} a_{3}(j=1,2),
$$

$$
b_{2}^{-1} b_{1} b_{2}=b_{1} a_{1}, \quad b_{1}^{-1} a_{1} b_{1}=a_{1} a_{2}, \quad b_{2}^{-1} a_{1} b_{2}=a_{1} a_{3}
$$

$$
b_{1}^{p}=a_{2}^{\alpha_{1}} a_{3}^{\beta_{1}}, \quad b_{2}^{p}=a_{2}^{\alpha_{2}} a_{3}^{\beta_{2}}
$$

with
$\left(\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}g^{h} & 0 \\ 0 & g^{-h}\end{array}\right)$,
$\left(\begin{array}{ll}g^{x} & 0 \\ 0 & g^{1-x}\end{array}\right),\left(\begin{array}{ll}\omega_{1} & \omega_{2} \\ \omega_{3} & \omega_{4}\end{array}\right),\left(\begin{array}{cc}\sigma_{1} & \sigma_{2} \\ \sigma_{3} & \sigma_{4}\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$,
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad$ and $\left(\begin{array}{ll}0 & v \\ 0 & 0\end{array}\right)$
where
$\left(\begin{array}{ll}\omega_{1} & \omega_{2} \\ \omega_{3} & \omega_{4}\end{array}\right)=\left(\begin{array}{ll}\rho & \rho^{p} \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}\rho^{\ell(p-1)} & 0 \\ 0 & \rho^{-l(p-1)}\end{array}\right)\left(\begin{array}{ll}\rho & \rho^{p} \\ 1 & 1\end{array}\right)^{-1} \quad$ and
$\left(\begin{array}{ll}\sigma_{1} & \sigma_{2} \\ \sigma_{3} & \sigma_{4}\end{array}\right)=\left(\begin{array}{ll}\rho & \rho^{p} \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}\rho^{1+\lambda(p-1)} & 0 \\ 0 & \rho^{p-\lambda(p-1)}\end{array}\right)\left(\begin{array}{ll}\rho & \rho^{p} \\ 1 & 1\end{array}\right)^{-1}$
$h=1,2, \ldots,\left[\frac{p-1}{4}\right], x=1,2, \ldots,\left[\frac{p+1}{4}\right] \ell=1,2, \ldots,\left[\frac{p+1}{4}\right]$,
$\lambda=1,2, \ldots,\left[\frac{p+3}{4}\right]$. Here v, g, and ρ have the same meaning as in VII. Hence there are $p+7$ sub-types of groups of order p^{5} in case 4. We denote these subtypes by (VIII, 4,1), \ldots (VIII, 4,11) of which (VIII, 4,4) has $\left[\frac{p-1}{4}\right]$ sub-types, (VIII, 4,5) has $\left[\frac{p+1}{4}\right]$ sub-types, (VIII, 4,6) has $\left[\frac{p+1}{4}\right]$ sub-types, and (VIII, 4,7) has $\left[\frac{p+3}{4}\right]$ sub-types.

The elements of groups of this type are of the form $b_{2}{ }^{\theta} b_{1}{ }^{\delta} a_{1}{ }^{\alpha} a_{2}{ }^{\beta} a_{3}{ }^{\gamma}$. The elements of $Z(G)$ are of the form $a_{2}{ }^{\beta} a_{3}{ }^{\gamma}$.

Also we have

$$
\begin{aligned}
& a_{1}{ }^{t}{ }_{L_{1}}^{K}=b_{1}{ }^{K} a_{1}{ }^{t} a_{2}{ }^{t K} \\
& a_{1}{ }^{t} b_{2}{ }^{K}=b_{2}{ }^{K} a_{1}{ }^{t} a_{3}{ }^{t K} \\
& b_{1}{ }^{t} b_{2}^{K}=b_{2}{ }^{K} b_{1}{ }^{t} a_{1}{ }^{t K} a_{2} \frac{t(t-1)}{2} a_{3} \frac{K(K-1)}{2} t . \\
& \alpha \alpha+\frac{m(m-1)}{2} 0 \delta \\
& \left(b_{2}{ }^{\theta} b_{1}{ }^{\delta} a_{1}{ }^{a_{a}}{ }_{2}{ }^{\beta} a_{3}{ }^{Y}\right)^{m}=b_{2}{ }^{m \theta_{b}}{ }_{1}{ }^{m \delta} a_{1} \\
& m \beta+\frac{m(m-1)}{2} \delta \alpha+\frac{m(m-1)(2 m-1)}{6} \delta^{2} \theta+\frac{m(m-1)}{2} \frac{\delta(\delta-1)}{2} \theta \\
& \times a_{2} \\
& m \gamma+\frac{m(m-1)}{2} \theta \alpha+\frac{\theta \delta}{2}\left[\frac{m(m-1)(2 m-1)}{6}-\frac{m(m-1)}{2}\right]+\frac{\varepsilon}{-} \\
& \times a_{3} \\
& \text { where } \varepsilon_{-m} \in Z \text { and } t \text { diviiles } \varepsilon_{t} \text {. }
\end{aligned}
$$

Thus we have the following table.

Group Number	$Z(G)$ type	G / G^{\prime} type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{p} / M_{p+1} type
(VIII, 4,1)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,2)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,3)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,4)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,5)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,6)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,7)	(p, p)	(p, p)	(p, p)	(p)	(1)	(p, p)
(VIII, 4,8)	(p, p)	(p, p)	(p, p)	(p)	(p, p)	(1)
(VIII, 4,9)	(p, p)	(p, p)	(p, p)	(p)	(p)	(p)
(VIII, 4,10)	(p, p)	(p, p)	(p, p)	(p)	(p)	(p)
(VIII, 4,11)	(p, p)	(p, p)	(p, p)	(p)	(p)	(p)

TABLE IX

Type VIII - Case 3

We replace α_{1}^{*} and α_{2}^{*} by α_{1} and α_{2} respectively.
The groups in this case are given by the following relations
$G=\left\langle a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right| a_{i}^{p}=1(i=1,2,3), b_{1}^{p}=a_{3}{ }^{\alpha_{1}}, b_{2}^{p}=a_{3}{ }^{\alpha_{2}}$,
$a_{1} a_{i}=a_{i} a_{1}(i=2,3), a_{2} a_{3}=a_{3} a_{2}, \quad a_{j} b_{2}=b_{2} a_{j}(j=1,2,3)$,
$a_{3} b_{1}=b_{1} a_{3}, \quad a_{2} b_{1}=b_{1} a_{2} a_{3}, \quad a_{1} b_{1}=b_{1} a_{1} a_{2}, \quad b_{1} b_{2}=b_{2} b_{1} a_{1}>$.

For $p \equiv 1(\bmod 3)$ there are five sub-types given by

α_{1}	0	0	0	1	0
α_{2}	1	g	g^{2}	0	0

where g is a primitive root $(\bmod p)$.

For $p \equiv 2(\bmod 3)$ there are three sub-types given by

a_{1}	0	1	0
a_{2}	1	0	0

according to these tables we denote these sub-types by (VIII, 3, 1),, (VIII; 3, 8) respectively.

The elements of groups of these sub-types are of the form $b_{2}{ }^{\theta_{0}}{ }_{1}{ }^{\delta} a_{1}{ }^{\alpha} a_{2}{ }^{\beta} a_{3}{ }^{\gamma}$. The elements of $Z(G)$ are of the form $a_{3}{ }^{\gamma}$. Also we have

$$
\begin{aligned}
& a_{2}{ }^{t} b_{1}{ }^{K}=b_{1}{ }^{K} a_{2}{ }^{t} a_{3}{ }^{t K} . \\
& { }_{a}{ }_{1}{ }^{b_{b}}{ }^{K}=b_{1}{ }^{K} a_{1}{ }^{t} a_{2}{ }^{t K} a_{3}^{\frac{K(K-1)}{2}} \text {. } \\
& b_{1}{ }^{t} b_{2}^{K}=b_{2} K_{b_{1}}{ }^{t} a_{1}{ }^{t K} a_{2} \frac{t(t-1)}{2}{ }_{2} \frac{t(t-1)(t-2)}{6} K \\
& \left(b_{2}{ }^{\theta} b_{1}{ }^{\delta} a_{1}{ }^{\alpha} a_{2}{ }^{\beta} a_{3}{ }^{\gamma}\right)^{m}=b_{2}{ }^{m \theta_{b}}{ }_{1}{ }^{m \delta} a_{1}{ }^{m \alpha}+\frac{m(m-1)}{2} \theta \delta \\
& m B+\frac{m(m-1)}{2} \delta \alpha+\frac{m(m-1)(2 m-1)}{6} \delta^{2} \theta+\frac{m(m-1)}{2} \frac{\delta(\delta-1)}{2} \theta \\
& \times a_{2} \\
& \times a_{3} m_{\gamma}+\frac{m(m-1)}{2} \delta \hat{p}+\frac{m(m-1)}{2} \frac{\delta(\delta-1)(\delta-2)}{6} \theta+\frac{m(m-1)(2 m-1)}{6} \frac{\delta(\delta-1)}{2} \theta \delta \\
& \frac{\delta}{2}\left[\frac{m(m-1)(2 m-1)}{6} \delta-\frac{m(m-1)}{2}\right)+\frac{\theta \delta^{2}}{2}\left[\frac{m^{2}(m-1)^{2}}{4} \delta-\frac{m(m-1)(2 m-1)}{6}\right]+\varepsilon . \\
& \times a_{3} \\
& \text { where } \varepsilon_{m} \in Z \text { and } y \text { divides } \varepsilon_{y} \text {. } \\
& \text { Thus we have the following tables. }
\end{aligned}
$$

$$
p \equiv 1 \quad(\bmod 3)
$$

Group Number	Z- type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{4} / M_{5} type	M_{p} / M_{p+1} type
(VIII, 3,1)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 3,2)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$($ VIII 3,3$)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 3,4)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$($ VIII 3,5$)$	(p)	(p, p)	(p, p)	(p)	(p)	(p)	(1)

TABLE X
$p \equiv 2(\bmod 3)$

Group Number	Z- type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{4} / M_{5} type	M_{p} / M_{p+1} type
$(V I I I, 3,6)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 3,7)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 3,8)$	(p)	(p, p)	(p, p)	(p)	(p)	(p)	(1)

TABLE XI

Type VIII - Case 6

We replace $\alpha_{1}{ }^{\star}, \alpha_{2}{ }^{\star}$ by α_{1}, α_{2} respectively. The groups in this case are given by the following relations.
$G=\left\langle a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right| a_{i}^{p}=1(i=1,2,3), b_{1}^{p}=a_{3}^{a_{1}}, b_{2}^{p}=a_{3}^{a_{2}}$,
$a_{1} a_{1}=a_{i} a_{1}(i=2,3), \quad a_{2} a_{3}=a_{3} a_{2}, \quad a_{2} b_{2}=b_{2} a_{2}^{\prime}$
$a_{3} b_{j}=b_{j} a_{3}(j=1,2), \quad a_{1} b_{1}=b_{1} a_{1} a_{2}, \quad a_{2} b_{1}=b_{1} a_{2} a_{3}$,
$a_{1} b_{2}=b_{2} a_{1} a_{3}, \quad b_{1} b_{2}=b_{2} b_{1} a_{1}>$.

For $p \equiv 1(\bmod 12)$ there are eight sub-types given by

α_{1}	0	0	0	1	g	g^{2}	g^{3}	0
α_{2}	1	g	g^{2}	0	0	0	0	0

For $p \equiv 5$ (mod 12) there are six sub-types given by

α_{1}	0	1	g	g^{2}	g^{3}	0
α_{2}	1	0	0	0	0	0

For $p \equiv 7$ (mod 12) there are six sub-types given by

α_{1}	0	0	0	1	-1	0
α_{2}	1	9	g^{2}	0	0	0

For $p \equiv 11$ (mod 12) there are four sub-types given by

α_{1}	0	1	-1	0
α_{2}	1	0	0	0

Here g is a primitive root (mod $p)$.

Thus there are twenty four sub-types of type VIII - Case 6 and we denote these sub-types by (VIII, 6,1), (VIII, 6,24) respectively.

The elements in this case are of the form $b_{2}{ }_{\theta_{0}}{ }_{1}{ }^{\delta} a_{1}{ }^{\alpha} a_{2}{ }^{\beta} a_{3}{ }^{\gamma}$. The elements of $Z(G)$ are of the form $a_{3}{ }^{\gamma}$. Also we have

$$
\left(b_{2}{ }^{\theta_{b}}{ }_{1}{ }^{\delta} a_{1}{ }^{\alpha_{2}} a_{2}{ }^{B} a_{3}{ }^{Y}\right)^{m}=b_{2}{ }^{m \theta_{b}}{ }_{1}{ }^{m \delta} a_{1}{ }^{m \alpha+\frac{m(m-1)}{2}} \theta \delta
$$

$$
\times a_{2}
$$

$$
a_{2} \beta_{B}+\frac{m(m-1)}{2} \delta \alpha+\frac{m(m-1)(2 m-1)}{6} \delta^{2} \theta+\frac{m(m-1)}{2} \frac{\delta(\delta-1)}{2} \theta
$$

$$
\times a_{3} \quad m \gamma+\frac{m(m-1)}{2} \theta \alpha+\frac{m(m-1)}{2} \delta \beta+\frac{m(m-1)}{2} \frac{\delta(\delta-1)(\delta-2)}{6} \theta
$$

$$
\times a_{3} \frac{m(m-1)(2 m-1)}{6} \frac{\delta(\delta-1)}{2} \delta \theta+\left[\frac{m(m-1)(2 m-1)}{6}-\frac{m(m-1)}{2}\right] \frac{\delta \alpha}{2}
$$

$$
\left[\frac{(m(m-1)(2 m-1)}{6} \theta-\frac{m(m-1)}{2}\right] \frac{\theta \delta}{2}+\left[\frac{m^{2}(m-1)^{2}}{4} \delta-\frac{m(m-1)(2 m-1)}{6}\right] \frac{\delta^{2} \theta}{2}+\varepsilon
$$

$$
\times a_{3}
$$

where $\varepsilon_{m} \in \mathbb{Z}$ and t divides $\varepsilon_{\ddot{r}}$.

$$
\begin{aligned}
& a_{2}{ }^{t} b_{1}{ }^{K}=b_{1}{ }^{K} a_{2}{ }^{t} a_{3}{ }^{t K} . \\
& a_{1}{ }^{t} b_{2}{ }^{K}=b_{2}{ }^{K} a_{1}{ }^{t} a_{3}^{t K} . \\
& a_{1}{ }^{t_{b_{1}}}{ }^{K}=b_{1}{ }^{K} a_{1}{ }^{t} a_{2}{ }^{t K} a_{3} \frac{K(K-1)}{2} t \\
& b_{1}{ }^{t_{b}}{ }_{2}^{K}=b_{2} K_{D_{1}}{ }^{t} a_{1}{ }^{t K} a_{2}^{\frac{t(t-1)}{2}} K_{a_{3}} \frac{K(K-1)}{2} t+\frac{t(t-1)(t-2)}{6} K
\end{aligned}
$$

Thus we have the following tables.
$p \equiv 1(\bmod 12)$

Group Number	Z-type	G / G^{\prime} type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{4} / M_{5} type	M_{p} / M_{p+1} type
$(V I I I, 6,1)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6,2)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6,3)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6,4)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6,5)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I, 6,6)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I, 6,7)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(p, 6,8)$	(p)	(p, p)	(p, p)	(p)	(p)	(p)	(1)

TABLE XII
$p \equiv 5(\bmod 12)$

Group Number	Z-type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{4} / M_{5} type	M_{p} / M_{p+1} type
(VIII, 6,9)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,10)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,11)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,12)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,13)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,14)	(p)	(p, p)	(p, p)	(p)	(p)	(p)	(1)

TABLE XIII
$p \equiv 7(\bmod 12)$

Group Number	Z-Type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{4} / M_{5} type	M_{p} / M_{p+1} type
(VIII, 6,15)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6 ; 16)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6,17)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
$(V I I I, 6,18)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,19$)$	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)

TABLE XIV
$p \equiv 11(\bmod 12)$

Group Number	z-type	G/G' type	M_{1} / M_{2} type	M_{2} / M_{3} type	M_{3} / M_{4} type	M_{4} / M_{5} type	M_{p} / M_{p+1} type
(VIII, 6,21)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,22)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,23)	(p)	(p, p)	(p, p)	(p)	(p)	(1)	(p)
(VIII, 6,24)	(p)	(p, p)	(p, p)	(p)	(p)	(p)	(1)

TABLE XV

REFERENCES

1. BURTON, David M.: 'A First Course in Rings and Ideals' Addison-Wesley Publishing Company Inc. 1970
2. COLEMAN, D.B. and ENOCHS, E.E.: 'Isomorphic Polynomial Rings', Proc. Amer. Math. Soc. 27 (1971) 247-52
3. GILMER, Robert W., Jr.: 'R-automorphisms of $R(x]$ ', Proc. London Math. Soc. (3) 18 (1968) 328-36
4. HERSTEIN, I.N.: 'Non-commutative Rings', The Mathematical Association of America, Third Printing, 1973
5. HIGMAN, Graham: 'The units of group rings', Proc. London Math. Soc. 46(2) (1940) 231-248
6. JENNINGS, S.A.: 'The structure of the group ring of a p-group over a modular field', Trans. Amer. Math. Soc. (1941), 175-185
7. LAMBEK, Joachim: 'Lectures on rings and modules', Blaisdell Publishing Company 1966
8. McCOY, Neal H.: 'The theory of rings', The Macmillan Company, New York, Sixth Printing, 1969
9. PARMENTER, M.M.: 'Isomorphic group rings', Canad. Math. Bull. Vol. $18(4) 1975$
10. PASSMAN, DOnald S.: 'The group algebras of groups of order p^{4} ovex a modular field', Michigan Maths. Journal, Vol. 12 (1965) pp.405-415
11. PASSMAN, Donald S.: 'The algebraic structure of group rings', John Wiley \& Sons, Inc. 1977
12. PASSMAN, Donald S.: 'Infinite group rings', Marcel Dekker Inc. New York, 1971
13. PASSMAN, DOnald S.: 'Radicals of twisted group rings', Proc. London Math. Soc. (3) 20 (1970) 409-437
14. SCHREIER, Otto: 'Uber die Erweiterung von Gruppen II', Abhundlung Aus. Der Math. Sem. Hamburg 4 (1926) 321-346
15. SEHGAL, Sudarshan K.: Units in commutative integral group rings', Math. J. Okayama Univ. 14 (1970), 135-138
16. SEHGAL, Sudarshan K.: 'On the isomorphism of integral group rings, I', Can. J. Math. 21 (1969), 410-413
17. ZARISKI, Oscar and PIERRE, Samuel: 'Commutative algebra', Volume 1, D. Van Nostrand Company, Inc. 1965

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.
e. STORE

