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INTRODUCT ION

Let R be aring and let G be a group. The group ring
R(G) of G over R is the free left R-module over the set of
elements of G as a basis in which the multiplication induced by

G is extended linearly to R(G) , [12]-

A twisted group ring RY G) of G over R is an R-algebra
with basis (g]g e G} and with an associative multiplication
gh=Y(@, h) gh for all g, h e G , where y(g, h) is aunit in

the centre of R , [13].

In [5] Higman proved that the only units of finite order in
the group ring R(G) , where R 1is the ring of rational integers
and G is a finite abelian group, are +g ,geG . In [16]

Sehgal proved that the only units of finite order in the group ring

R(G) , where R 1is the ring of rational integers and G 1is an
arbitrary abelian group, are t where t 1is a torsion element
of G . Moreover in [16] he proved that the units of R(G) , where

R is an integral domain and G is a torsion-free abelian group, are
of the form r g where r is aunit in R and geG . Also in
[15] he proved that the units of R(<x>) , where R 1is a commutative
ring with no non-zero nilpotents and no non-trivial idempotents and
<x> is an infinite cyclic group, are of the form r g where r Iis

aunit in R and g e <

In [17] Zariski and Samuel studied R-automorphisms of the
polynomial rings R[Xx] , (that is, automorphisms of R[X] which
restrict to the identity mapping on R ) where R is an integral

domain. In [3] Gilmer determined R-automorphisms of the polynomial



rings R[x] where R is a commutative ring. In [Z] Coleman and
Enochs studied the corresponding results in general. In [9]
Parmenter studied R-automorphisms of the group ring R(<x>) where
<x> 1is an infinite cyclic group and he determined necessary and
sufficient conditions that x -l a™xl induces an R-automorphism
of R(<xx>) . He also studied the units of R(G) where R 1is a

commutative ring and G is a right-ordered group.

This thesis consists of five chapters. Chapter 1 contains some
well known results and definitions that are needed in this thesis.
In Chapter 2 we extend some ideas of [J] to a twisted group ring
R (=¢) where <> 1is an infinite cyclic group and we determine
a necessary and sufficient condition that x @l a™x® induces an
R-automorphism of RY (<¢) . Chapter 3 studies R-automorphism of
R(G) where R 1is either a field or a ring with a unique proper
ideal and G is a Ffinitely generated torsion-free abelian group.
In Chapter 4 we determine the units and study the K-automorphisms
of K(s<x> X <y>) where K is a field and <x> 1is an infinite
cyclic group, y2 =1 . In [10] Passman proved that the group4
algebras of all non-isomorphic p-groups of order at most p4 over
the prime field of p elements are non-isomorphic. In Chapter 5
we attempt to find the corresponding results for the p-groups of

order p”~ , but the problem is still open.



CHAPTER 1

In this chapter we present certain well-known definitions and

general results which are needed in this thesis.

thesis we understand by the word

a multiplicative identity 1

groups and we write 1

Definitions 1.1

Throughout this

"ring", an associative ring with

We use multiplicative notation for

for the identity element of a group.

r

1+r

Let R be aring and r e R Then,

(i) r is said to be an idempotent if r2 =r [7, 8]

(ii) r is said to be nilpotent if there exists a positive
integer n such that rut = 0, [7, 8]

(iii) r is said to be a proper divisor of zero if r ~ 0
either there exists s e R, s MO, that rs = 0 or
there exists t eR, t/ 0, such that tr = O» [8]

(iv) r is said to be a unit if there exists s € R such
that rs =sr = 1 . Then s is determined uniquely by
and we write s =r 1, [8]
Lemma 1.2
Let R be a ring. If reR 1is nilpotent, then 1 -r,
are units.
Proof
Since the proof for the case 1 - r is similar to the proof for
the case 1 + r we consider the case 1 + Let

some positive integer n

r+n

Then we have

t ¢ )" =g

rn = 0 for



Definitions 1.3

Here we make the standard definitions with regard to ideals
of aring R . We should remark that throughout this thesis

X = y" means that x 1is a subset of y and “x cy" means

that x is a proper subset of y e

@ 1 is aprime ideal of R if whenever A, B ideals of R
such that AB£ 1 , then A£ 1 or B~ 1 , [8]-
@) 1 is a maximal (right, left) ideal of R if I ? R and there
exists no (right, left) ideal A in R such that Il ca Ccr , [8]-
(i) I is a nil ideal of R if every element of I is
nilpotent, [7, 8]
(Gv) If 1 is an ideal of R such that In = () for some
positive integer n , 1 is said to be a nilpotent ideal [I).
Definition 1.4

Let R be a ring. Then the smallest positive integer n
such that nl = 0 , 1is called the characteristic of R . If no
such positive integer exists R is said to have characteristic
zero.

As 1is well known, the characteristic of an integral domain is

either zero or prime [8].-

Definition 1.5

The intersection of all prime ideals of a ring R 1is called

the prime radical of R , [1, 7]-



Lemma 1.6

Let R be a commutative ring. Then the proper ideal P of

R is prime if and only if R/P 1is an integral domain [1, 7],

Lemma 1.7

The prime radical of a commutative ring R consists of all

nilpotent elements of R , [7] -

Lemma 1.8
Let R be a commutative ring. Then the proper idealM of

R is maximal if and only if R/M is a field [1, 7].

Definition 1.9
The intersection of all maximal right ideals of a ring R is

called the Jacobson radicaldJ(RJ , [7]-

Definition 1.10
The group ring R(G) of agroup G over aring R is the
free left R-module over the set of elements of G as a basis in

which the multiplication induced by G is extended linearly to

R(G)

Thus if lag , Bh (@ .,B. eR ;g., h eG are

typical elements of R(G) then their product is defined by:

|| — 3

. - - CcoO
Vi 1 Bh, Vi @V

i=I 1=1 i))j

The notion of group ring extends to that of a twisted group

ring as follows.



Definition 1.11
Let R be a ring

group ring RY (G of

{glg e G} and with an associative multiplication defined as follows:
gh = y(@» h) gh for all g, heG ,
for some unit y(.g, h) in the centre of R, [11, 12].
The associativity condition x(y 2 = (X y)z * Yy, ze 0
implies that
vy, ¥ y¢, D =y &, YY) Yy, D) &, y, ze©
Taking y = 1 in the last identity we have
Y&, 1) Y(x, 2) whence
Yd, 2 ™ V¥ 1)
Taking x =1 we have y(@» 2) =Yd, 1) Tfor all zeG
and so we have
YU, D =Yd, 2 =yk, D @z, xe 0
Also by taking x =1 in xy =y, y) xy we have
X7 =vyd, y) 17 =yd, y)Y and this implies that
d, D11y =7 » e 0
Again by taking y =1 in xy =y, y) xy we have
XT= y&k, D XT-Yd, Dx . This implies that x[(y @, D)1 = x
Hence we conclude that ¢ @, 1)) 1T is the identity element of the

and let G

be a group. Then a twisted

G over R is an R-algebra with basis

twisted group ring RY(G) of G over R We write (Yd, D) 1
briefly*,y (»)-"
Now let g« G Then from g g”1 = y(g, g 1)1 and
g-1 g =Y(@.1l, 9T we conclude that
glyd, D)-1Y(, g-1)-1 g _1J “ AN > K3
lyd, i)-1Y(g-1>9g)-1 g ligmyYd, i) 11 = But yd, D 11i 1is



the identity element of RY (@) and so
Yd» 1)71 Y(g, g"1)"1 g"1=Yd, D*ly(g_1l, g)'1g"l,
the inverse of g . Also this implies that y(g, g 1) =y(@ 1t 9

for all g eG

Furthermore, let 1 be an ideal of R and let R =R/I1
Let a bar denote a residue class (mod 1) i.e.
a=a+ | @eR

Then from y(x, y2) Yy, 2 =y ) y&xy, 2), X, y, ze G we

have y(X, y2) y(vy, 2 = y(x, ) y&y, 2)

Consequently we may construct the twisted group ring
RYG = (R/ID) Y (G) by defining
Xy =y y) xy

Now we define 4 : RY(G) @R Y@ by

s 5t

It is straightforward to check that is a ring-epimorphism.

« - ¥
From this we conclude that if | ag g e Ry G isaunitin R © ,

then 1 ag 5 is a unit in R ~NG)

Lemma 1.12

Let R be a ring and let <x> be an infinite cyclic groip.

Let RY (<) be a twisted group ring of <x> over R . then

x' x = x x', ( n integers)



Proof

To prove the lemma it is enough to prove y(xm, xn) = y(xn, xm) .

By (1.11) we have

YW Yy 2 vy, D =yWw, y) ylwy, z), W, y, ze <x>)
YA, D =y, D =yd, 1), @ y e <)

-1. -1
Yy*y Dmy e <)

First we prove by mathematical induction that y(x, xm) = y(xm, X),

m positive integer. For m = 1 there is nothing to prove.
Assume m =2 , by taking w=y =z =x in (@ we have
y(Xx, x2) y(x, X)) = y(X, X) y(x2, X) . This implies

y(Xx, x2) = y(xz, X) because y(x, X) is a central unit

in R . Now we assume that y(x, xm) = y(xm, X) , m positive

integer, by taking w = X, y = xm, z= X in (@) we conclude that

yx X*01) y(xm, X) =y, xm) yixl¥1l, X) . From this we conclude

that y(x, x"*1) = y(xm+1, X) . Hence our claim has been established.
Now we prove that y(x2, xm) = y(xm, x2) , m positive integer.

For m =1 we have proved this in the last paragraph. For m =2

_ 2
there is nothing to prove. Assume m = 3 by taking w = x ,

y = x Lz=x2 in @) we have yex2, x) Y& x ) = y(X , X Y(’X3

Since y(x, Xz) = y(x2, X) we conclude that y(xz, x3) = y(x3, Xx2)
Now we assume Y(X , X ) = Y(Xk, Xz) “for k-1,2, ..., m , then
we prove that y(’Xz, X"H-l) = Y(’Xm+1 . Xz) . By taking w = x
y - xn-\ z =x2 in (@) we have

y(X2, Xm+l) Y(Xm—l . X2.) _ y('X2 . Xm—l_) y(_Xri-f*l . X2.)
This implies that y(x2, x"*1) = ytx"~1, x2) . Hence our claim has

been established



Finally we assume y(xr, xm) = yGm, xr) for 1 S r £n

, and
n£€m. Then bytaking w = xro, y = xn+*m, z = xn in (@) we
have vy X y T M =y ol M v R

N
This implies that y&'t , %y =y® , ¥l Hence

vy, M=y, ™

Now we prove that y(x m, x n) = y(x n, x m) Tfor all positive
integer, m, n . By (1.11) we know that (m) exists. Then
from X" x " =y, XY 1 we obtain x M=y x HEY M.

Since 1 is central and xmxn = x° xm (m, n £ 0) we have
x x = [y&x.x )& 1 DIx.x) &) 1
V(xm, x=-) yon, X-, "1 (7,-1rT

YCm, x"m) yOoGn, x'n) (77)1 1T

Pox™ y2, x ™M™y M ih=x M

y (X
Definition 1.13
() A non-empty set x is said to be linearly ordered if there

exists a relation < on x such that the following two conditions

hold:

(@) For all a, b £ x exactly one of the following holds:

a<b or a=b or b<a.

@) For all a, b,c£x, a<b and b <c inply that a < c .

an A group G onwhich there is defined a linear ordering <
is said to be a right-ordered group if for a, b, c£G a<b

implies that ac <be ,[11]-



Throughout this thesis by b >a we understand that a < b

Exangle 1.13 ()

Let <x> be an infinite cyclic group and let xm, xn e <x> ,

we define xm < x° if and only if m<n . Then <x> 1is a

right-ordered group.

Exangle 1.13 (D

<*c>

Let G = <x™ X <X?> X .X<xn> where 1 £1 £n ,

is an infinite cyclic group. Let
€6 -

We define
if and only if either
@) “1 < 61 " or
@) o = < " 1l si/ANnN e
Thus G 1is a right-ordered group.
Lemma 1.14 (Lifting idempotents)

Let R be a ring and let N be a nil ideal of R . Let

X 1R “m R/N be the natural homomorphism. Let a e R be such
that x(@) an idempotent. Then there exists b e R such that

e = aba is an idempotent with x(e) - x(@) . [11, page 49].

Proof
Llet aeR and x@ = a . By assumption we have

t@ - a2) - x@ - x@)2 -1 - @2 -7 -a=0 . This implies



that a - a e N . Since N 1is nil for some positive inte ger
k 2

K we have (a—a% =0 . If k=1, then a-a =0 and

we let b = a to obtain the result. Now let k £ 2 . Since

we have (1 - a)];= 1 - ad where

d= 1 (-t 1 (t) at-e R

Hence ak a-a = @ - az)k =0 and ad = da . But a is an
idenpotent, and so 1 - a 1is also an idempotent. Since Xx is onto,
then t(@ =1 . Thus we have

1 -t@) = t[(1 - a)k]

This inplies that t(d) = a .

[l -x@]lk=(1-7Dk=1-7

Now from 0 = (@ - a2)k = ak(@ - a)k = ak@ - ad) we have that
ak = ak(@d) . This inplies that ak = ak (@) = [a&k (ad)](ad) = ak (ad)2 .
By induction on i , we have ak = alc"‘(ad)I for any positive

integer i . Since ad = da we have in particular ak= ak(ad) k= aZI(dk

From this we conclude that (@) = akd'k =(a2kdl3dk = a2k62k = [(ad)'k
i.e., (ad)k is an idenpotent. Since (ed)k is an idenpotent and

t @) = a is also an idenpotent we have,

te) = T[@d)k] = @k = a=x@

aba for some b eR . A

But we know that k £ 2 , and so (ad)

Lemma 1.15

Let R be a ring and let <x> be an infinite cyclie group.
Let RY (<«>) be a twisted group ring of <x> over R . Then for
any integer m >1 we have

@A M=y Dy 2, X ... Yxm-1, x> x"

» Yy X)) y& X2) ... y &, xm 1)xm
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———m
I “1

an = =y LX)y R )

Proof
To prove (i) we proceed by induction. For m = 2 we have
A —-—= ~2
N =xx=YX, X)X . Suppose (i) holds for m We prove
the corresponding result for m+ 1 . We have
m+1 m - 2 . m-1 , Mm.—
() =), x =k, xJyx»x) ...yl T, xJxIx

m-1 m+1

SV 6D YE D ey & Dy X

From this result and using (1.12) the proof of (i) is complete.

Since the proof of (ii) is similar to the proof of (i) we omit it.L

Lemma 1.16

Let R be a ring and let G = N> % XK > X .. XX > be an
abelian group. Let <x> be an infinite cyclic group and let
RY (x>) be a twisted group ring of <x> over R . Then

() Every endomorphism of G is determined by its effect on a
set of generators of G
(ii) Every homomorphism of G into R(G) is determined by its
effect on a set of generators of G
(iii) Every homomorphism of G 1into R(G) can be extended to an
R-endomorphism of R(G)

(iv) A mapping ? : RY(=¢) + RY (=) is defined by

?2[CO™N] = [£E a. X1 and extended by linearity to RY (<)
il

Then 0 is an R-endomorphism of Rv =)
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Proof

Let 9 be an endomorphismof G and 6 for 1~ i1 ~n

be determined. Since every element of G is of the form
a a. a
X ! x2 x "' we have
1 2= T 'n
a a a a a. a
eGP X, .- X, M) E EC) BOWD)  - B

Hence (@) and (i) have been proved.

Let 8 be a homomorphism of G into R(G) we define

€:ROG *RO by,

* Ya W x°2 _x™M)=]a
L ala2 --—-“n 1 n °1°2 " °n

a a a

@) i@OR) ... @G

By this definition we have,

a, a, a 8 8
$L(7ay A an X1 X5 2 oo xpn) Gopgyg, & X) x2 TTtxg 7
ai+BI a2+B2 an+B
— Ail/ b X. Xn eee X /
* I\ Qa2 eee ‘“nV 2 6n 1
a +B a +B » +B
8 (X, 1 @B, .. (60N
_ an bBLB2 Bn (8 ,("1)) @G ,) 6 o))
o1 op .
[Va GXx) BKx) @ o) “1
L “i°2 On 1 2
(«@GnD "1
itV 2 - »,, delv ,SI<92,,‘2
a, a, 6L 62 \
= -Mila X, 1% eee XN 5 *~ApB,B- ... B "1 *2 0 n
“ja2 eee “n 1 2 1% n
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Hence 4 is a R-endomorphism of R(G) and (iii) has been

proved.

By (1.15) we know that {0CO™ | j e H.} is a basis for

RY («x>) and so to prove (iv) we define *6 : RY(<¢) meRY (¢) by

‘e b COJ) I'b G0
j3 i3

Since by (1.12) x¥v x* = x'l x» then as in (iii) we conclude that 6

is an R-endomorphism of RY =) A

Lemma 1.17
Let R be a commutative ring and let G be a group. Let RY

n
be a twisted group ring of G over R . lLet u+ 1] <g+ e g)
m

be an element of RY() such that u is a unit in RY(@G) and all

a® are nilpotents in R . Then for every integer Kk ,
n —

[u+ 1ag] =u +N where N is nilpotent in k¥ ©
m

Proof

Let T be the ideal of R generated by {ai |m i1 i S n)
Then T is nilpotent. Since u 1is aunit in R1©G and yd{, D

is the identity element of RY(G), (1.11) we can write

- n
u+r adgi =[yd, 1)” 1 +<1 Vilu Ju~=*
m m
N Yy
Furthermore (£ a”g”u is nilpotent in R (G) , because R 1is
m
n n g
commutative. Let w- Ea”™u with w = 0 for some positive

m

integer s . Then
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AYA# D11 +wJu)U iy, 1) 11 - w +w2 + ... + (-1)S_1 W)S_1]
-Y@, 1T,
Hence
[u+ 1 SUTIVA, Dl cwewz 4 DS LS = UL s N

where N~ isnilpotent in Ry O .

2 _
Finally, for k £ 0 it is evident that [u + £ a.g.]k :uk + N
m 1
where N2 isnilpotent in RY G But for k <0 wehave
[u+1 atg7]lk= <u + | =tu_ 1+ ni] K =<"V k +«3 =uk +n3
m m

where N3 isnilpotent in RY G &

Definition 1.18
A ring R is said to be a (Von Neumann)regular ring if for
every element r e R there exists an element s e R such that

rsr = r , [7,9].

Lemma 1.19

In a commutative regular ring every prime ideal is maximal [7].

Proof

Let P be a prime ideal of R . Then R = R/P is a commutative
regular, ring which is*l.ntegral domain (1.6). Now suppose
g~ aeR . Since R 1is regular there exists b £ R such that
abT=a . This implies that b/ 0 and abab=ab

From abab=ab we conclude that ab =1 and b a =1 because

T is the identity element of R . Thus R is a field. 4
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The following leram is well known [11] but we include a Proof

of a special case for the sake of completeness.

Lemma 1.20
Let G = XG> X SXZ X .. X <X > where x> is an infinite
cyclic group G =1, 2, ..., n . Let R be an integral domain.

Then R(G) is an integral domain.

Proof

We prove the lenma for n = 1 and the proof of the lemma for

n > 1 1is similar to the proof of the lemma for n =1 - Let G = <¢
where <x> is infinite cyclic group and let g a’\l, 2 b.xj be

a 1 m W
non-zero elements of R(<x>) where aﬁ ~O0 ., bn fo. In the
product
the coefficient of xP is aQ which is non-zero. A

Definition 1.21

Let G be a group and let K be a field. Then

aug KG>) = £K<G) 1 = *
i
which is an ideal of K(G) , 1is called the augmentation ideal of
K@) , [LI-
Lemma 1.22

Let g = <gi : 1 £ 1> and let K be a field. Then

aug K@) « IK@G)) @ -g
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Proof
As aug K(G) is an ideal of K(G) and 1 - g™ e aug K(G)

for every 1 it follows that £(K(G))(@ - g~ c aug K(G)

Now we prove that aug K(@G) £ £(K(G))@ - g.) . For this we
i 1
m
suppose that £6.Xx. eaug K(G) , then £6.=0 . This implies '\t
j=1 3 3 3
m m m
lex. = 16-~-16.(1 -x)=-16.(1 - x.).We prove
j=1 3 3 j=1 3 j=1 3 3 j=1 3 3
1-x. e £KOG))A -9g.) - Since x. e G we have
3 i 1 3
X. =¢g. 0©- ---0, where j el u-1,2, ..., N
3 32 3r

We proceed by mathematical induction on the number of factors in

21 it
X. =g. 9. ... <t , toprove 1 -x, e £KG)A - gb)
3 31 32 3r 3 i

We know that 1 - g. e (K(G))(X - g-) so we have
3i 3i

1-9. e€fK®G)@R -9.) . tooulovei. I-J «=-J; *3/Je KCtJO-Jj ) U*
i 3

\31i c
it 11
211 oi;
n it it + 11 21
) _ eee v eee 91
1 63'2 30 "3 (o+D) 11 %
+H 21 tl
... Q.
N2 J( ©+D
2» It it it it 21
and (1 - g. g --- 9. ) d " o= ) »1 ~ 9. 9. eee O
32 30 3 (o+h) 31 32 3c
1n belong to  E(K(®)(L - g~ we conclude that
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t> H +1 11
belongs to £(K(G) )¢ 3.) Thus
i

aug KG) c £ (KG)YA@ - g~ . 4
1

Lemma 1.23
Let G be agroup and let K be a field. Let 1 be an
ideal of K@) . Let 6 be a K-automorphism of K(G) such that
6(1) =1 . Then %9 : K(G) *K(G)/1 defined by
’6(1_ aigi) = I ai 6(@i) + 1 1is an epimorphism and its kernel is |
i i
Lemma 1,24

Let G = <x> * <y> be an abelian group where <x> is an
Ce _ 2 _
infinite cyclic group and y =1 . Let K be a field of
characteristic 2 . Then

K@) aug K(<y>) = KGHA +y) = k(=) A +Y)

Proof

By (@1.2.) we have aug K(<y>) = K(<y>) (@ + y) because by the
hypothesis of the lemma -y =y e This implies that
K@) aug K(<y>) = KGO K> @ + NI = (KGH@ +y) - Now we
prove that (K@G)A +y) = (KE>))A +y) . It is evident that

KEE))A+y) £ KOG)A +y) and so we show that
KGYA +y) £ KA +Yy) = Let
il “X + a+y) £ KGHQA+Y
i 12 js3

Then we have

because y +y2 - 1+y . Hence KOG)A +y) = (Kx>))A +vVy)
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Notation 1.25

Let G be a group and let K be a field.

@ In G, X Vy) =x 7" ™~y , the commutator of elements of

X, Y of G

@ <...> = the subgroup of G generated by the elements and

subgroups indicated within the brackets.

® If XcG ,YcG then (X, Y) « <X, ¥) :xeX, yeY>

in particular, G, G is the commutator subgroup G* of G

@ in = the nth power of the ideal 1 of K()

G SE@E) = the set of pth powers of the elements of the subspace

S of K@)

6) The M-series of G 1is defined inductively [6] as follows,

M1 =G
Mi = G *M(»/p) > f°r 1>1 " where ti/P) is
the least integer not less than i/p and is the set of

pth powers of

1 a2 “K
() We say an abelian p-group A is of type (p« , P, --»p D). If

A is the direct product of cyclic subgroups of A of orders

“1 a2 ak
p P , rp

@) In KG) , [ 6]

aB - 6a , the Lie product of elements a

and 6 » [K(G), K(G)]

the commutator subspace of K(G)



Lemma 1.26 18

Let p be a prime and let G be a finite p-group. Let K
be a field of characteristic p . Then JK(G) = aug K(G)
Proof

We prove that aug K(G) is nilpotent and so is nil. Then

aug K(G) ¢ jk@G by lemma 1.2.1 of ft]. Let k| =pa for some

positive integer a . Then we proceed by induction on a
Suppose a =1 then G is a cyclicgroup say G= <g> . Hence
by (1.22) we have aug K(G) = (K@G)A - 9 - Since gP =1 and

characteristic of K is p and G 1is abelian we have
(aug K(G)P = [K@ A - dIP = KOG @ - g9) = 0 .

Now suppose for every p-group of order iG|i < pa we have
(aug K(G))Pa = 0 then we prove the corresponding result for the
group G of order pa+" . Since Z(G) / 1 we may suppose Z(G)
is of order pt for some t £ 1 . Hence there exists an element
1 z e Z(G) such that zD =1 andso <z> 1is a subgroup of G
Let & : G—» G/<z> be a natural homomorphism defined by

<Hg) = g<z> . Then 4 induces a homomorphism 0 : K(G) K(./<z>)U.fc*]

by =1 ai™i <z>) > The <ernel °f 9 is K(G) aug K(<z>)

Suppose £fa.g. e aug K(G) then we have 6 (Ma.g.) = £fa.(g- <2»)
; _

111 1
where Ja. =0 . This implies that aug K(G) 1is mapped into
il
aug K(G/<z>) . But p/<z>] =pQ and so by assumption we have

a 0
(aug K(G/<z>))p = 0 . Since (augK(G))P is mapped into

< K
au G/<z>)P then aug K(GOr £ ker0 = K(G) aug K(<z> .
g k(G/<z>) h (aug K(G) k (G) aug K(<z>)

From this we conclude that

[(aug K(G))Pa]P £ [K®G aug K(<Z>)]g = K©®) [aFEJg K(<z>)r -0 .

Thus our claim has been established and so aug K(G) £ JK(G)
But aug K(G) has a basis of elements g -1 @ g e G and

so is a maximal ideal. Hence aug K(G) = JK(G) . A
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Lemma 1.27
Let p be a prime and let K be a field of characteristic p
Let G be a finite p-group in which every conjugacy class has 1

or p elements, and let A = {?aiu.I f«i e K and u] is a

p element class sum in K(G)} . Then
JKG) n ZKG)) = aug K@ + A

Proof
By (1.26) JK(G) = aug K(G) and so it is enough to prove

aug K(G) nZK(G) = aug K@ + A

Let {g", $2°7 ee=* e a coniu9acy class of G of p

elements. Then g™+ g™ + ... + € Z(K(G)) . On the other

hand we have

gx + g2+ ... +0p +92+ ... +0gp-p

@x-D+ @-D + ... + (@ -1 ) eaug K©G

Hence A £ aug K(G) n Z(K(G))
Now let JV (z. - 1) € aug K(Z) . We have @z “ De aug K@)
i i

and fa @. - D e ZKK@)) 1i.e. aug K@ c aug KG) n zKK(G))
111

Hence we have

aug K@ + A £ aug K(G) n Z(K@G)) - (@)

Conversely let x e aug K(G) n Z(K(G)) - Then we can write

x=1le.(g, - D - EM, - (leJl . Since x e Z(K(G)) and
il1 i i

<Ib>l'e Z(K@G)) we have £6~7 e Z(K(G)) . But the centre of K(G)
1

is spanned by all the class sums of G and so we can divide
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7 3. g- into two parts say £,3, ¢ +73.. ¢ . Where all
I A ZLA 1A i 1y 1y

g- eZ and every g. belongs to one of the class sums of G
X y

that have p elements. Since 7 8" gN e Z(K(G)) , the number of
M V V

terms in 7 9N is a multiple of p and for every 3 there
u u Uu Vv

are p - 1 other coefficients that are equal to 3» e Thus

Yy
76.91 eA . Moreover x - 7"~ —D—7 ~D + 1 &
y vy Yy 1 X X X y vy
because 7 Be =0 . Hence x e aug K(2) + A and so
y |y
aug K(G) n Z(K(G)) £ aug K@ + A . A
Lemma 1.28

Let N be any ideal of group ring K(G) where K 1is a field.
Let a, b eG such that a-1eN*, b -1T€ @sitj)p
Then

(€)) (@-1) =@-1D + (-1 modNi+l .

() (@ - D5n(a - 1) mod Ni+1 (n positive integer).

(©) b-D@-D = @-DOG-DD+ (c- DDmod Ni+j+1 ,

where c= (,a =b ™ a ba , [1od"

Proof
The proof of (@) follows from
@-1)=@-1D0G-1)+ @-1)+ (b-1)
and (@) is a special case of (1). Since
b-1)a@-1)- @-1)-1)=ab@®%*a lba - 1) = ab(c - 1)
we conclude that (c ~ 1) e N ~ e Hence @) follows from

b-1)@-1)- @-1)G-1)- @-1)Cc-1)+ C-1) . A
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Definition 1.29
An element a of a ring R 1is said to be right-quasi-regular
if there exists a" e R such that a+ a" + aa~ =0 . We call

a" right-quasi-inverse of a , [4],

Definition 1.30
We say that a right ideal | of a ring R 1is right-quasi-
regular if for every element a of 1 there exists a" e R such

that a + a" + aa" = 0, [4]-

Lemma 1.31
The Jacobson radical of a ring R is the unique maximal right-

quasi-regular right ideal of R , [4].

Lemma 1.32

Let G = <x> x <y> where <x> is an infinite cyclic group

and y2 =1 . Let K be a field. Let u e K(=x>) and let u
be a unit in KG) . Then u is a unit in K(x>)
Proof

Since ul is a unit in K(G) there exist A, B e K(<x>)
such that ul(A + By) =1 . This implies that uA = 1 and

uB = 0 . A
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CHAPTER 2

In this chapter we extend some ideas of 13] for twisted group
rings that M.M. Parmenter has obtained for group rings. We

follow his method of proof.

Lemma 2.1

Let R be a commutative ring and let G be a right-ordered
group. Let RY(@G) be a twisted group ring of G over R and
let UQRY (G)) denote the units of RY(@G . Then the following two
statements are equivalent:

(O] URY(@®) = {Jag g | there exist e R with
9

9

whenever gh ~ 1} .

(D) R has no non-zero nilpotent elements.

Proof

We assume Ffirst that () holds. Let a e R be nilpotent with
aK = 0 for some positive integer K . Let 1tgeG . Then by

@¢.2) y, |Y*T+ ag is aunit in RY(©®)

where = yd, 1)_:L
1 9
a =a . By (O there exist B,» 6 . € R such that
9 g
yd, D"IRL Yd» 1) + a « Y(g» g X) m Yd» D @

(©)
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But =Y{1, D ~ 1is a central unit in R and so @

implies that 1 =0 . From this and (@) we conclude that
g

6X =y(@ D't . @)

From (4 and (3 we obtain

agydr 1)1 =ag8',=0

This implies that a = = 0 , which we wished to prove.
m —
Now we assume that (ii) holds. To prove (i) let £ a. g.
i=l1 1
n —
be a unit in RY(@G . Then for some [ 6,h. £RMG) we have
j=1 3 3
m _ n __ - _
(laigi) (I B.h ) = I aB. Y*i* h.)g.h. =yd* U 1« ®
i=l j=l Nivm J J J
I£j<n

We shall show in () that, ouBj = O whenever g™ 71 and

from this we shall conclude that £ a B yQ@i 9N s YIl-N 1 e
99

Since G 1is a right-ordered group (1.13) under the relation <

we may impose in a natural manner an ordering, also denoted by <

on the set S = {x | x e G} by defining

x <y 1if and only if x <y

We now suppose the numbering is chosen so that

g1l <g2 < ... <9m and <h2 < ... <hR

Then we have
*Ihl < g2hl < *ee < gmhl *
9lh2 4 g2h2 4 «” < gmh2 *

glhn < g2hn * °°° < gmhn



From these relations it follows immediately that

glhl " g2hl ™ " gmhl *
glh2 < g2h2 " " gmh2 *
glhn < g2hn < e s gmhn
The maximal element of {g™ i “ 1» 2, ..., m , j =1, 2,

must occur in the set {gmhg. |

24

.., N}

jJ =1, 2, ..., n}y , and for the sake

of argument, we suppose gmh3 is the maximal element of this set.

By 1.13(1) the maximal element gmh occurs precisely on

3

{fohj 11 -1, 2 _..,m 3~ 2, ..., n}.

Hence g({]?;l is unique.

ce in

To prove that = 0 whenever gJk ™ 1 we need to prove
a.8. = 0 whenever g.h. <1 or g.h. >1 . We know that it is
13 13 13
false that gmh3, <1 , because if gmhg <1 , then
1 1 1T does not hold If =
. gh, =1,
- m'3,
AV DCIW; -MUD)_ s F
then we prove a”8j = 0 whenever gh. <1 , because there is no
element g such that g™ > 1
Let us assume that 9 h,_. >1 . Since gh is maximal and
m 3j m 3
unique in {g™"h I~ 2* ..., m, jJ—1,2, ee=f# n} it follows
from <1 «iij(Cl = iei Y(v hi)giN =y(@ 1)11 "
TG 5 5 7 sFspdtel YC Daj a1
ISJiSh
that ah, y@.,h.)=0. But y(g,h ) is aunit in R and
m 31 m 31 m

so we have a =0

m{3 .



25

Now we proceed to prove that a™Bj = 0 whenever gJk > 1 e

Assume that arGS =0 whenever there exists B> 1 such that

£ >g h =g h = ...=g9g h >1 (6)
E1l kIl E2 k2 fp kp
Where g h v=1, 2, ..., p) are all of the elements equal
Ev \
to g h, Hence from
£1 kil
** 9i l e h =Yd. H"11
i=l j=1 J 3
we have
\\ \> +W +7 +HVIEK Yg'V, =°

O]

Suppose we have arranged the notation such that ei <e2< "*r<e

Then by multiplying (@) by a we have
EP

“ \ o« Y(ge "\ >+ ae Sk “c Y(ge " hk } + "e*
£1 kI p (91 1 272 Ep (g£2 *2}

(8)

+ ae 6k _°e_  Y(ge_ " hk =0 *
PPP(gP P}

But 1 < t <p implies that et < e and this in tun*

implies that g£ h-<g £h . Since ¢ h >1 for 1Stip,
t N p ot t t
we have ¢ h >g. h > 1 From this and the hypothesis for
£ K £, K
p "t t "t
®) we have a 6 =0 for 1St<p . Hence from @) we
fP Kt
conclude that a 8I’< a, = 0 . This implies that
P P P
0

“e 6k “E 6k " (ae >
pppp(P6kP



26

- 2
But R has no non-zero nilpotent elements and so (@ 6 ) =0

EP P
implies that 8N =0 . In this way we deduce that
P P
= = >
At th 0O for 1E£t£p . Hence a5 GJ 0 whenever 9; hj 1
Similarly we prove B. = 0 whenever g™ "™ <1 . A

We now utilise the previous lemma to extend the results to

rings with nilpotent elements.

Lemma 2m2
Let R be a commutative ring and let G be a right-ordered
\%
group. Let R (G be a twisted group ring of G over R . Then

l a g isaunit in RY(@G if and only if there exist 6 e R
g 9

such that 1 a 8 1 y(g, g_l) = vyd, 1)_i and a 8h is nilpotent
g 9 g9

whenever gh / 1

Proof
We assume first that £a g 1is aunit in RMG) . Let P be
g 9
the prime radical (1.5 of R . Then by (1.11) £ a g (ag e R/P)
g
is a unit in RMP) YG) . Since R/P has no non-zero nilpotent

elements by lemma (2.1) there exist 6g e R/P such that

la 6 y(g, g”’1) » yd» D 1 and o©g 6h y(g, h) =0
g 9 g

whenever gh £ 1 . From this we conclude that

la 6 vg, g D =y(» 1)1 +n ,
g 9 49
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where n is nilpotent in R and 6™ y(g, h) is nilpotent
in R whenever gh 21 . By (@.2) we conclude that £a 6 ~y(g, ¢
g 9 g1
, -1
is a unit. Let (£a 5 vy@, g =w . Since
g 9 g9

ag 6™ y(g, h) is nilpotent whenever gh 2~ 1 and R is commutative

6™ y(g, h)w is also nilpotent in R whenever gh A~ 1 . Thus
by letting 6" = 6~ w the "only if" part of the lemma has been

established.

Now, we suppose there exist 8" in R such that
5 2y 6 . y(, g'l)::y(l , D 1 and 3 6. is nilpotent in R
g

whenever gh £ 1 . This means that there exists \ 6" h e RY (G
such that (J a g)(E 6. h) =y(Q@,1)11+ £ a 6.y(g, h)gh
g 9 h g,h 9
gh™l
where a 6. is nilpotent when gh~ 1 . Hence \ a 6. y(g, h)gh

g h g,h g h
gh™l

is nilpotent and so by (1.2), Ea g)C¢E h) is a unit. This

implies that Ja g is a unit. A
g 9
Corollary 2.3
Let R be a commutative ring with no non-trivial idempotents.

Let G be a right-ordered group and let R’ (G) be a twisted group

ringof G over R . Then £ a g is aunit in RY@G if and
g 9
only if ais awunit in R for some X , and all other ag"s are

nilpotent in R
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Proof

By lemma (2.2) £a g 1is aunit in RY(@ if and only if
9 9

there exist B9 e R such that

l« B_iy@ g1)=Y1, D1, O)
g 9 g

and a B”™ 1is nilpotent in R whenever gh 1

In @) for fixed v we have,

VB-lVY(VWTv  =Yd, D'lav+n, @

where n is nilpotent in R . We multiply @ by

3 y(v, v_l) vd, 1)2 ? then we have
v

“ve-1*“ve-1yd, VAVd» 1)2 =Y(/,v xX)Yd» 1) av 6 -1 + ni

v v v
where is nilpotent in R . For convenience, let
w =Yd» v Yd» 1) and so we have
WwWo B X) - »0 B _X+n
\ \

Now, let P be the prime radical of R (1.5 . The,,modulo P ,
wa B 1 1is an idempotent. Since by (@.7) P is a nil ideal of
\VARRY]
R and by (14) idempotents can be lifted modulo P , there exists

an idempotent f e R such that

anB_1 = f (mod P)
v
But R has no non-trivial idempotents so either f=0 , or f=1
Then we have
w B i =0 (modP) (€))
Y

or

w a B_l~,=! (mod P) . (&)
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Suppose (3) holds. Then

Y(v, v_l)yd* ) avB j =wa 6 e P ,
v v

whence

Y(v, vV ) Yd» 1) avé6 ,a eP . o
\%

Furthermore, by multiplying (& by Yd» 1) we have,

Y(v, v 1) Yd» 1) ?v 8 —L =z av +Yd» D n . ®6)
\%

By using (5), () and the fact that Yd»l) n e P we conclude

that eP , i.e. a" is nilpotent.

If 3 holds for every v , then Ja g is nilpotent.

9 9
But this is false because J a g is a unit. Hence (@) holds
9 9
for some v , say w 6 =1 (mod P) . Let =w 8 x -1
X X
Then n2 e P . Let a® e be any term in ﬂagg other an X
Then by multiplying n2 by we have
wax 8 , ae - aE = a£ n2
N wy
By 2-2) a 8 ,eP because e X ~1, and so w ax 81 ae € P

e X
Also n2 e P implies that dE n2 e P , hence from

wax 8 .a -a =a n_ we conclude that ae€P . Thus all
x-1 E e e 2

a "s other than are nilpotent.
¢]

-1 -1
6 Y@g )=Yd. D
9 g

Again by (2.2) we have

Q N=

Since all a "s other than uA are nilpotent we have

0 6 .Yd» *1)+ I “J.i YO 9.1)*VYd» 1)
A X1 gX 9 g X

where

Il a e y@» g >
g™x
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is nilpotent in RY(G) . Thus we have 6 -y X'X) =yd, 1)
X1
-1 _ -1 _
where n3 = -« | g 6.1 Y@ g9 ) . But, since y(l, 1) is a
14 6.
gix
unit in R , then vy(, 1)1 is aunit in RY(@G . Hence by
using lemma (1.2) Yd, D 1+ n3 is a unit in RY(G) . This
implies that a 6 . y{\, X 1) is a unit in RYVGD and so
A X"1
isaunit in RNG) . Thus & is awunitin R . A

Corollary 2.4

Let R be a commutative ring with no non-zero nilpotents and
no non-trivial idempotents. Let G be a right-ordered group
and let Ry'«D be a twisted group ring of G over R . Then
the only units of RY © are of the form rg where r is a

unit in R and g e G

Proof

Since R has no non-trivial idempotents by Corollary (Q.3)
Jggg 1is aunit in RY(@G if and only if o 1is a unit in R
for some X and all other a"™"s are nilpotent in R . Since R

has no non-zero nilpotents then £ a g is a unit in RYG) if
g 9
and only if an is a unit in R for some X and all other oy's

are zero. A

Before starting to extenj. theorem (2.1) of [9] we prove some

lemmas on group rings of infinite cyclic groups.

Lemma 2.5
Let R be aring and let <x> be an infinite cyclic group.
Let RY (<) be a twisted group ring of <x> over R . Let

Z(R) be the centre of R and let Z(RY (<)) be the centre of

RY (<x>) . Then,
Z(RY (=x>))« (Z(RIIY (x>)



Proof

By (1.12) we know that for any integer m , xm c Z(Ry(<x>))

It follows from this that

To prove Z(RY (<))

is an arbitrary element of Z(RY (=¢))

arbitrary element of R

aix1)@®D

This implies that

ai b y(x1,

for all i

By (1.11), yfxi, D

in R and so we have a,

that a1 t Z(R) for all

Lemma 2.6

CER)Y (=) c ZRY (=)

CZR)Y (=) we assume that J

Then we have

and b

Gb1)@ a x1) .

1) = b ai y(I» x1) ,

yd,

b =1b a.

for all

x1) = Y(I» 1)

is also an
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x*

is a central unit

This implies

and hence ZQRY (=) c (ZQR)Y (=)

Let R be a comnutative ring and let

<x> be an infinite

cyclic group. Let R (=¢>) be a twisted group ring of <

R . Let £ ai x* be a unit in RY

inverse in RY(<¢) . Then,

in R whenever e N v

Proof

By example 1.13(1) ,

<X>

an an

=)

and

let £ b~ x3 be

and bf£ b~ are nilpotent

is a right-ordered group and by

using (2.2) we have £ ai b_i Y(x?, x 1) =

aA b.. is nilpotent in R whenever

Let Pqg be a given prime

1 ai x+ (@7 £ R/Pg) is a unit

ideal

in  (R/P)Y (<x>)

i+ j

of R

yd» D 1 < Also

/0

Then by (1.11)

But by (1.6)

over

its
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R/Pqg is an integral domain and therefore has no non-trivial

idempotents. Hence by (2.3) for some iQ depending on PQ ,

is a unit in R/P* and a* = 0 for all i io - Also
\

for some jg depend on P- ,b. is a unit in vpO and b.=0
0 30 3

for all j ? jo = This implies that exactly one a" and exactly

one b.3 do not lie in PQ . In fact, 1iQ = - jp because

I ai b_i Y(&xi, x 1) =y, 1)

Finally we wish to prove that ae av (¢ ~ V) is nilpotent.
For this let p be an arbitrary prime ideal of R . Since
exactly one & does not lie in p we conclude that either a,
or a® belongs to p and then af£ a“belongto p . This implies
that af a” belong to all prime ideals of R and then by(1.7)

an an is nilpotent. A

Lemma 2.7
Let R be a commutative ring and let <x> be an infinite
cyclic group. Let RY (=) be a twisted group ring of <x> over

Zai x! be a unit in RY (=) and let a» be

nilpotent for i ji 1, -1 . Let there exist cke R such that
\% -rt
£ ¢c Ea. x) =0. Then c is nilpotentfor all t.

t=—u t i1 1
Proof
Let (E ar x1)-1 = £bj xr, and p be a prime ideal of R
\% —tt

Then by (1.11) 1| cE @atx) =0, (ct, aE e R/P) . Since
t—u i

ai is nilpotent for i ft1, -1, we conclude from ( .6) that all
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R/PO is an integral domain and therefore has no non-trivial

idempotents. Hence by (2.3) for some i~ depending on ,
is a unit in R/P* and a; = 0 for all i jtiQ . Also
\
for some jq depend on po . is a unit in R/P* and b3' =0

for all j / jo « This implies that exactly one a* and exactly

one bj do not lie in PQ . Infact, i1Q= - jQ because

laib iytxl,x1)=yd, 1)1 =

Finally we wish to prove thatae av (ef Vv) is nilpotent.
For this let p be an arbitrary prime ideal of R . Since
exactly one a® does not lie in p we conclude that either an
or a~ belongs to p and then af a~ belong to p . This implies
that af£ a belong to all prime ideals of R and then by (1.7)

af a" is nilpotent. A

Lemma 2.7

Let R be a commutative ring and let <x> be an infinite

cyclic group. Let Ry (=) be a twisted group ring of <x> over
| S Y
R . Let Zal X be a unit in R (=¢) and let a® be
nilpotent for t/ 1, -1 . Let there exist cfte R such that
\% -rt
£ (Eaix) =0 . Then ct is nilpotent for all t
t—u i
Proof

Let (E a™ x1)"1 = £bj xr , and P be a prime ideal of R

v o >t —
Then by (1.11) 1 ct <laix) =0 " <t” ai e R/FP> * since
t«-u i

a is nilpotent for i ft1, -1, we conclude from ( .6) that all
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an except a“, a” are zero. Furthermore, £ a™ x1 1is a unit
in RY(<x>) so by (1.11) ar x' is a unit in (R/P) Ve =)

Hence by (1.6) and (2.4) we conclude that one of a™ , a ™ must
be zero and the other one must be a unit in R/P . Thus there are
two cases as follows:

@ al 1is aunit in R/P and a is zero.

@) al is aunit in R/P and is zero.
Since the proofs for (i), (ii) are similar we assume, for

convenience, that () holds.

By example 1.13(1) <x> is a right-ordered group. Then by

using (2.2) we have i an b~ y(xl , x_') =y, 1)'1 . From this

and the fact that ai = 0 for all i1/ 1 we obtain

a~ b y(x, x 1) =yd/ 1) 1 « This implies that b_1 is also

a unit in R/P because y({, D ™ ,y(x, x 1) ,al are units in

R/P . But Jbj x* 1is aunit in RY(<¢) , hence by (1.11)

Jbj x is aunit in RAP)Y () . Thus by (1.6) and (.4
exactly one b.. must be a unit in R/P and all the other b/s
must be zero. Since b 1 1is a unit in R/P we conclude that

bj =0 for all j /-1

Since aj” is aunitand ai =0 for 1/ 1 we deduce from

that
Il ct (al X )t “ 0

r——t _t
I ctai x "0

-
@



This implies that ctE =0 for all t , i.e. ct € P for all

But P is an arbitrary prime ideal and so each ct belongs to

all prime ideals of R . This implies by (1.5 and (1.7) that

all ct are nilpotent in R _A

We shall in lemma (2.8) obtain a stronger result.

t
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Lemma 2.8

Let R be a commutative ring and let <x> be an infinite
cyclic group. Let RMN(<x>) be a twisted group ring of <x> over
R . Let £ a™ X be a unit In r"~r<x>) and let a~ for i 1, -1

be nilpotent. Let there exist cEe R such that

\Y
i c (IlaxV =0,u, v positive integers.
t=-u
Then all ¢ =0
Proof
AN
Let (E aA x1) b.x] = By (2.6) a, a, and be bv
are nilpotents whenever e ™ v . By (@.7) all c¢ are nilpotent.

Let T be the ideal of R generated by,

{cfct u &~ | & is nilpotent} u { | b~ is nilpotent}

u {af a, le + v} u {bg£ bv Jet v}
Then T 1is nilpotent. Let all ct e Tk for sane k > 0
some does not belong to Tk+1 . Let R = R/Tk+1

In R (=¢) we have

— _ —] - i.t
 © @a ¥Vt 1#¢ (' a xV +co+ | ck @a. x1)
t=-u i t=-u i t=1 i

l ct <tad4xi>t+co+ | ctE ai xi)t =0 "
t-1 i 1 M1

that is

lc $b xipdk+c + 1 ¢ d« xlljjtl—o @)
j o3 t-1
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Since all ck£T and eT , b £T when 1 +1, -1
we have
u - _ v o t
c @1x +b.xX) +c + \ c @ x+alx* Hw=0
=1 « 1 0 t=I1 1

By equating the coefficients of (OO for t >0 in @
we conclude that

c  (bl)t + cf(al)t = 0 , t>0 . ®

By using the fact that all cke T and b b N ET we

multiply @) by b~ and we have

ot (@)t b x=0 , t>0 . (&)

Two cases arise:

In case () we have cl ax b =0 =

In case (@ we prove that ¢ av“ =0

By (2.2) we know that I ai b_i Y(XS x-1) -Y(@, ) 1 . From
this we obtain

I 1"b~ yix1, x i) =y, D“1 . (©)

From () we conclude that

Ap A Yot x"1) = Y. 1) 1 - a ! bi Y(x_1>X)

| a. b YF*1# x 1) = ®
i, -1

@



37

By multiplying (@ by y(x, x_1) we have

<t@l)t1 @ b 1)y, x-1)=0, t>1. )

Now by multiplying ¢) by cfc@l)t 1 (£t > 1) , and using (@)

we conclude that

O=ct@)t 1 @ b x) y(x, x 1)
=Cfoal)t 1 [y, 1)1 -a™~bly(x1l,x) - £ & b_iyix*, x i)l
i/1,-1
But ¢ @Ot~ | a. b . ytx1, xS =0 , because all
i*l,-1 1
ct eT anda® belong to T for L/ 1,-1 . Also

ct @vHte N an b y(xX) =0 because t>1 and by @.6)

ala eT . Thus from @) we have ckt (@)t 1 y(l, 1) 1 =0

This implies that cft (@a.~* 1 = 0 because y(l, 1) 1 is a unit

in R/7k+1

By repeating in this manner we obtain ckta* =0 (t>1) .

Similarly we prove thatc® a”~ b =0 andc*a”~=0 (t>1
Thus we have c» a*b =0 ,cMa”™bd=0, andalso
n =0 ,crtal=0 for t>1. By using these results and

multiplying Ja* b y(x *x ) my(l« 1) by ct (t 2:1) we have

O0=c~[a~bT y(x, x-1) + aT b7 y(x_1, ¥ +
t \ -i 1

£ «7 ™7 Y(x\ x"1
i*l,-11 ¢ 2

-~ yd, nHr1

®)
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This implies that cty(d, 1) 1 =0 1i.e., ct =0 because y(@, D 1
- k+1

is a unit. Hence ckte T for t£1
k+1

Now we show that all ct » (t £ -1) beong to T . For
this we multiply c £ (0" + ctil)t =0 , (t > 0) by a ,
and since c (@Y)*a ™ e T™+1 we have

ct )t a~=20, t>0 . ©

Two cases arise:

® t =1.

6) t >1.

In case (G)we have c br a~=0 .

In case (G)we show that chb =0, t < -1 . For this from

— i i —
Y an F_’.\ y(x}, X l) =y(l, 1) we conclude that

a, bry(x1,x) =y, 1)1 - axb xykx, x1) - J aA b i yixl, x

Also from (9 we obtain

ct (b»* 1M arjyjx 1, x) =0 , t>1 . ab

By (10) and (11) we conclude that

O=ct@)t 1® al)yy(x1i, x

S_t.(ti.)t_l [yd, D"1 - fi\ b y(x, x X) _i—% la b y(x\ x 1))

az

But we know that all ckte T and aAeT for i1 X1, -1 . Also

t>1 and bl b~ eT . Hence from (12) we obtain
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ct@t 1 y(l, 1)1 =0 and this implies that c 1 =0
-1 S k+1 - -
because y(I» 1) is a unit in R /T . By repeating in
this manner we have c t % "o g >1 . Hence cEtb™ =0 , t < -1
Similarly we prove that c-1 bl al =9 and cktbhjpr=0 (t<-1)
Thus we proved that, c”~b”~a~=0, cb”r~ar =0
Also ¢ b»=0,c b1=0 for t<-1. By using these results

and multiplying

I N b iY(XI» X 1) =Yd» 1) 1

by c (t 5 -1) we conclude that

O=c [ b Y& x1)+a b 1, + J a. b ytxi, x i)]
i*L,-1

ctyd, 1)'1
This implies that ck&k=0 for t £ -1

Now we proved that c&k=0 for €t 21 and ckE=0 for t S -1

By these results and

t~, fv s o

fcH
we conclude that ¢c0 = 0 . Hence all cftt belong to T ,
contrary to assumption. Consequently all ct lie in arbitrary
large powers of T . Since T s nilpotent all ¢ - 0 . A

Now we are in a position to extend Theorem (2.1) of [9].

Since the proof is long we split it into two lemmas.
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Lemma 2.9

Let R be a ring and let <x> be an infinite cyclic group.
\%
Let R (<¢) be a twisted group ring of <x> over R and let

Z(RY (=¢>)) be the centre of RY (<)

Let Z(R) be the centre
of R and let 0 :x &l a. x

Y
induce an R-automorphism of R (<¢)
i

Then the following two conditions hold:

(@ £ ai x1 is aunit in

GCR)Y =)

Ggi) If i/ 1, -1 , then a is nilpotent.

Proof

By .5 ZERY(>)) = ZR)Y(=>) and by (1.12) x 1is a
central unit in RY (<¢) Since 0 1is an R-automorphism of
ry (>) we conclude that £ a™ x1 1is a unit in
i

QCR))Y (<x>) = Z(RY (>)) and (i) holds.

Now we prove (ii). £ a. xi 1is aunit in ZR))Y (=)
i1
Then (E a. x¥) 1 exists and belongs to (ZR))Y (<) Let
il
ila x1)-1 =1b Xxj
i j 3

Hence we conclude that a™» b. e Z(R) for all

i, J - Since
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8 1 X £ a® x* is an R-automorphism of RY(<¢) , {([ a- xM)E - t
i il

is an R-basis of RY(<¢) and so there exist cte Z(R) such that

x= £ ¢ (Ea xi)t , e , 6 positive integers.
t=-e i1

By applying

(I =i x1yt Ab xj)E, (&> 0)
i 3

we have

+
0
*

+

C-1 (@ ai xl)_1 +c0O0+C1 ("7 a5 X1

—g; (% af x)-£

oot Cy (J a xS?i=c_e (£bh xj)e
1 1

.+ c 1@ b x3)+co+cl (I at x1)

+ ... +c. (A ai Xl$6 @)

The coefficient of x on the left hand side of @) is 1

The coefficient of Xx in b. x3) is c_1 bl and the
j 3

coefficient of x iIn c™NE a* xXV) is cN a .

But by (.6) all a* a~ and b” bv for u”™ v are nilpotent

_ o - . I -1
in Z(R) , and so the coefficient of Xx 1in c).(q a; xi(

for either k >1 or k <-1 is nilpotent.
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Hence by equating the coefficients of x in (@) we have

1=cl1lbx+cl ax+n, @)

where n 1is nilpotent in ZR)

Let P be an arbitrary prime ideal of ZR) . If an€ P
and b~ e Pthen by using (2 we have 1 e P , because n is
nilpotent, and then P =2Q) . Hence for any prime ideal P of

ZR) , al eP implies that b~ 1 P

Byexample 1.13 (1), <x> isa right-ordered group andthen

by @ .2) we have

| b ivyixl,xX)=yd, D1, (€]

and a™ b is nilpotent in Z(R) whenever i+ j fO0 . From

this and multiplying (3 by b~ we obtain

bl-1biY&1»X =~ Yd, D 1+nx, @

where n”~ is nilpotent in Z(R)

It follows from (@) that if a_1 belongs to any prime ideal
P of Z(R) , then b. also belongs to P , because n™ is
nilpotent. Suppose there exists a prime ideal P of Z(R) such
that al e P and a~eP . We wish to show that P cannot
exist., By above paragraphs al e P implies that b™ /7 P and
al 6 P implies that b2 e P which is impossible. Thus for any

prime ideal P of Z(R) , a* c P implies that a _, ., .

Finally, consider a ,t +1 . We wish to show that at
belongs to all prime ideals of ZR) . For the sake of argument
suppose Q is a prime ideal of Z(R) such that a€i Q . Since

Ta x* is aunit in CER)Y (=) by (@Q.1D
il

1 ai x1 (ai - + Q)



is a unit. By using (2.4) and the fact that atf 0 we conclude
that aft is aunit in R/Q and a* =0 for all X~ t . In

particular a» =0 ,a 1 =0 and then a» £Q , a”™ e Q which is

false. Hence for any prime ideal P of Z({R) , ate P whenever
t?+17? i.e. at is nilpotent whenever t jl+ 1 . A
Lemma 2.10%

Let R be a ring and let <x> be an infinite cyclic group.
\%
Let R (<¢) be a twisted group ring of <x> over R and let
Z(RY (=<x>)) be the centre of RY (<) . Let Z(R) be the centre

of R

Suppose that

@ £ ai x1 is aunit in CZR)Y (<)
Gi) If i/ 1, -1, then & is nilpotent.

Then the map 6 : x* = (£ a. x*)” induces an R-automorphism of
il

RY (=)

Proof

Let (a x1)"1=1b xJ

i j 3
First by (2.5) we know that Z(RY (=) = ZR)Y (=) . Now

we define T s ZR))Y (=) m (Z(R))Y (<) by

D@ dd OX) = 1dx G))X=1dx (E aE x V
X X X

By (1.16) ~ 1is an Z(R)-endomorphism of (ZR))Y (<) and we
prove that 6 1is 1-1 and onto, i.e. 0 is an Z(R)-automorphism

of @E)Y (<x>)

Assume I c (XEE ER)Y() such that O[E c (X)t] =0
t t t



By (2.8) we conclude that all

Then we have £ c¢c (E a xi)t=0
t i
cE=0 and hence 6 1is 1-1
is onto. Since by condition (i) all

Now we prove that O
are nilpotent, from

for 1 ft1, -1
1 ai y(xi, x?1) =y, "1
i
we conclude that
ai b-1 Y*&" x ™ + a-i bi Y(x X, x) =y, 1)1 + nx @)

Y
where nl is nilpotent in ER) (<)
- - _ _ Y
1 is the identity element of (Z(R))"(<x>)

Since y(, 1)_

we have
EaAxD)+yx1l,x)al Eb.xVH] 1

IY&, x 1)b 1

[y, x XDb ax +y(x, x Db n(£ axl) +yX1,x)a .bx+yjx1l, xa
il

(Il bx )]
3

[y(x, x 1)b 1al + y(x 1, x)a_1blll x + n2

From this and () we have

where n2 is«itpotent in (Z(R))Y (=)

Ea x1)+ykx1, xa , (_£ b. x3)]1

Iy(x, x 3)b .
~L i 1 j 3

1)1 1 x+nx1Xx+n2

tyd» 1) 1 + ~ 11*+ n2 = y(l,

y(d, 1)1 1 x+n. =X+ n.
where n3 = nx 1 x + n2 1is nilpotent in (Z(R))"(<x>)
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Let n- =Yd x? . Then each d is nilpotent. Let

N be the ideal of Z(R) generated by all d» . Then N is

a nilpotent ideal of ZR)
By (1.17) we have & + n3)y = (X)y + n4 where n™ e N (<)
R_g P - o
EPX wHere EP is aunit in ZQ®

r -1 - B -
Hence we X+"‘Fldp?p (X+n3)—x+n5

2
P P P'N =) , say n5

with Pa e N

Again by (1.17) and (1.15) we have

_ G _ -
x+ll5—£"t;;lfg_l (x+n§ =X+ ny
X)) = fo xG and Ny, £ N3 =)

Since N 1is nilpotent by repeating in this manner a finite

number of times we have

G x-1Db , 1 Ea x1)+y(x',xa.1 Eb x3)
i i 3

-1 dy Ci'ly &, x-~"b™ 1 (1 ai xX) +y& 1, x)all Eb. xj)y

-y <|(>; fG_:L &, x Db , T Ea, XD +yx1l, x)a_Jc 1 (j{-‘. b:l xM]

-1 dy C _1 tY(x, x"1» I da xXD+y& 1, xXax1 Eb. xplyla +

This means we obtain x as a linear combination of powers of

£ a. x* . Hence T 1ids onto and 6 : x %= £ g xi induces a

Z(R)-automorphism of (Z(R))Y (=)
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Now we define 6 : RY(<e) @RY (<x>) by

6] (Z(R))Y (>) = 8 and 6@ =r , re£R

8 is an endomorphism of RY(Xx ) because 8 1is an

Z(R)-automorphism of (ZM®)Y (=) and by (1.12) x1 e (ZQR))Y (=)
We show that 8 1is onto and 1-1

To prove 8 is 1-1 we define & : RY (<) RY (=) by,
-1

*1@ZR)) «x» " ° " and *(@) " r " reR *

As before 4 is an endomorphism of RY(<¢) and we have

8 XX ar x1] =e[fai (81 (1)) =J a, e(81 (X)) = £ X1
Hence 8 ¢ is the identity mapping of RY =)

Also we have
4 O[FaA x*] = axt@(*))) =Ja 6 (Sixl)) = £ ai x1
This implies that $ 8 is the identity mapping of RY (<)
Thus 8 1is invertible, i.e. 8 is 1-1 . Since 4 8 is the

identity mapping of RY(<¢) , 8 is onto. A

Combining lemmas (2.9) and (2.10) we have:

Theorem 1

Let R be aring and let <x> be an infinite cyclic group.
Let RY (<x>) be a twisted group ring of <x> over R and let
Z(RY (<x>)) be the centre of RY(<¢) . Let Z(R) be the centre

of R . Then 8 : x m£ ai x* induces an R-automorphism of

ry (>) if and only if the following two conditions hold:

@ £a™x* is aunit in CZR)Y (=)

G if i N1, -1 then ai is nilpotent.
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CHAPTER 3

In this chapter we study the automorphisms of the group rings
of finitely generated abelian groups. These automorphisms were
studied by M. M. Parmenter for infinite cyclic groups but the
presence of more than one independent generator makes for a
complex problem with unpleasant notation. In order to avoid
notational difficulties we consider mainly abelian groups with
two free generators. The general case follows this particular

case quite closely.

Lemma 3.1

Let G = <x> x <y> where <x> and <y> are infinite cyclic

groups. Let O be the endomorphism of G determined by:
0(X) = xa y® a , 6 integers,
0¢y) = xY y6 y , 6 integers

Then 0 is an automorphism of G 1if and only if a6 - By = + 1

Proof
By (1.16) we know that every endomorphism of G 1is determined

by its effect on a set of generators.

Let O be an endomorphism of G with aS - By =+ 1 . Then

_ Xab-6Y y3—<S6 = x06-By _
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Also we have,
&Y Yy'™) = OY OO))"a = X° y5) &Y y6)™

ay-ya By-6a —5a +1
:nyyy :yBy =y

Hence 6 1is onto. Now we prove that 6 is 1-1. For
this we suppose 60m yn) = 0QU yV) for some integer,
m, n, u, v . This implies that

am+yn 8m+6n au+ Bu+6v
X y y =X yVy

It follows from (@) that
am + yn = au + yv

Bmn + fin= 8u + 6v , equivalently

am-u +y(n-v) =0

B(m-u +6(M-vVv) =0

Since dfi - By = +1 the only solution is m - u =0 and n -v =0

Hence m =u and n =v and therefore 0 is 1-1

Conversely we suppose that O 1is an automorphism of G and

then we prove that a6 - By = £ 1

Since 0 1is an automorphism of G there exist integers m and

n such that 0QGm yn) = x , also there exist integers u and Vv

such that OQU yV) =y . From OQGm yn) = x we conclude that
Xam+yn ~Bm+6n _ X ~ and implies that

am + yn =1

Bm + 6n = 0 @



49

Also from 6QCU yv) =y we conclude that Xau+Yv ~Bu+Sv _ "
and this implies that

Bu + 6v

]
-

]
o

au + yv (©)

Now a6 - By must be non-zero, as otherwise there is no solution

for @ and @) .

From 2) we have m =6(@6 - By) 1 and n=-B(@ - By) 1 =
Since m, n are integers a - By divides 6 and 6 , and
therefore a& - By divides the greatest common divisor of
6 and 8 < But in (3 we have Bu + 6v = 1 and then the

greatest common divisor of 6 and B is + 1 e

This implies that a5 - By = + 1 = A

Lemma 3.28
Let R be a commutative ring and let G = <> x <y> where
<x>, <y> are infinite cyclic groups. Let 6 be an endomorphism
of G such that
6 ) = xay™» and 0%) = xY y5 ,

with aS - By =+ 1 « Let '3's R(G) aR(G) be defined by

OEajx*yy) =£a, 64 yY) . Then 6 is an R-automorphism
of R(G)
Proof

By (1.16) 6 is an endomorphism of R(G) . Since 0 1is
onto it is evident that €' is also onto. Thus we need to prove
0 is 1-1 . For this we define 4 tR(G) =aR(G) by,

P(aij x1 y = laij e 1Ci y) -
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As before < 1is an endomorphism of R(G) . Moreover we have

da.. xv)

~(l a.. 6"1xiyj)) = la.. 0001 (xlyj» =1 a

Also we have

aij xV) = (1 aijj etxt yj)) = £a~ 01 Q& yj) = £ aig x"y

Thus @ and <<$6 aue the identity mapping of R(G) i.e.

is onto and 1-1 . A

Lemma 3.3

Let R be a commutative ring and G = <x> X <y> where
<x> , <y> are infinite cyclic groups. Let O : R(G) *=R(G)
be defined by 0@ a_ xXy3) =1 an~ (bxX)1 (cy)l where b, c

are units in R e Then 0 is an R-automorphism of R(G) -

Proof

Assume £ xy» ,\ & xvy eRG) , then,

A .VmZ Vil & yF >

I “ij »<

= 1 %1 8, [OOF ()] [GAM (e)n]

6(E aij xV) 6(1 68 *“y<) o

Hence 0O 1is an endomorphism of R(G)

Now we define < ! R(G) <+R(G) by,

e<ZaAj Xl yj) = I a&j (b 1x)1 <<"xy)

As before <44 is an endomorphism of R(G) and we have
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€ XSr™> = $E a™ ()1 (©)-]1 = BE a” b~rxS~I

=1 “ijjbicc @V (€ 1y)7=1 a;\j M|

Also we have

o*<I i xV) =611 aA] (©"1x)1 (cly)j] = O[Ea b " ic"jxiyjl

=A%) b s A (bx)ley® w1 “j Ve

Hence <6 and 6 are the identity mappings of R(G) 1i.e. 6

is onto and 1-1 . A

Lemtia 3.4
Let R be a commutative ring and let G = <x> Xx <y> where
X, < are infinite cyclic groups. Let O s

be defined as follows,

_ afd . vy J
6(x)—aaB,xy and e(®) —bysxy

. i i . Then 8
where aal and bY« are units in R

R-automorphism of R(G) if and only if Q6 - By = + 1 =

Proof

Assume O 1is an R-automorphism of R(G) . We define

n 11 vV o1 1 1 ]
€ : RG) R(G) as follows, <BZc\. xY >=1 “ij(aab X> (yb6 y)

By (3.3) 4 is an R-automorphism of R(G) , and we have

MX) - «2 X >y) " byly *

Since 6 and < are R-automorphisms of R(G) , O% 1is also

an R-automorphism of R(G) and we have

e 0@’g x) “ 6() = .jiJ (@R x* yR) = xayB .

and

& = 6®Iy) »bI6@) - bA @y ¥ Foy = WP
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Hence Gt 1is an automorphism of G , by (3.1) we have a6 - By = + 1

Conversely we suppose that a6 - By = + 1 . By (3.3) we
n i j re i i
know 1 xy &l cjj@agx) (b» is an R autolnorPbism
of R(G) . Also by (3.2) we know that

1oL i i .j ,aB.i ,y6.]j
Z jj aa@R)%GXYI Zcij aaB by xy } vy >

= 1 Cij (@B X'yR>1 (by6 XV >3

is an R-automorphism of R(G) . Hence

y cij xi)jJ - ) ci;j (aalk XayBji'tby6 x¥y6)J:I

is an R-automorphism of R(G) . A

Lemma 3.5
Let R be a commutative ring with a unique ™nLXAS*S (Atd M

w&d. s Let G = <x> *<y> where <x> " <v> are
infinite cyclic groups. Let 6 be the mapping 6 : R(G) *=R(G)
where

6 = I atj x¥§3 , eqyy) =z~ XV "

and let 6 induce an R-automorphism of R(G) . Then we have that

@ laijxy3 and 1 b~ xhyk are units in R(G)

(i1) For some integers a, B> Y* aag and by6 are units in R

but all ai5 for @, J) /7 (@ 6) and all bhk for (, kKK + ¢, 6)
are nilpotent.

Gii) afi - By -+ 1



Proof
Since 9 induces an R-automorphism of R(G) and x, y
A

fi n h k
are units in R(G) then E a. - X w and Ebhk Xy must be

units in R(G) . Hence (i) has been established.

By (1.8) R/M is a field and by (1.6) M is the prime

radical of R . Also by (1.11) and (@)

V=55 <" L X By, Xhéik @y 2yt M Py T b * W
are units in (R/M(G) . Moreover by (@.i JKm G = <x> » <y>
is a right-ordered group. Hence by Corollary (1.4) of [9] a’g
for some integer, a, 6 is a unit in R/M and all a”~ for
G, ) / (@, 6) are zero. Similarly b~{ for some integer Yy, 6
is a unit in R/M and all bhk for ¢, K / (y, 6) are zero.

Thus (ii) has been established.
To prove (iii) we define O : RG) =M © by ,

61 (A *rs Xv> =1 *lyS GT =ars + M) =

By (1.11) OX is an epimorphism. Since by hypothesis 0 1is an

R-automorphism of R(G) we conclude that 0™ is an epimorphism

of R@G onto EM G

By using (ii) we have

Gie(ECmn N =] [ (2 aij X yl)m (i bh.k.xhyk

— aeé6m — y 6.n
(11 o
1 A(IaGXy>(bYOXy)*

The kernel of 0~ is M@G) = {3 d» xV |dij e M}
Hence R(@G/M(G) ~ (R/M(G) . This implies that

02 ; R(G)/MG) @RM © defined by



+ M(G)) = I cmn(@ag xay6)m @Yi XYy5)n is an
isomorphism. On the other hand 63 : RM G R(GY/M(G) defined
b}j 63(E Cun xmyn) = £ xmyn + M(G) is an isomorphism. Hence

02e3 : RM) G = RM) G by,

——= _m n — ~-— _aBm — y 6.n
62e3( Con XY ) Can@is XA T by xy >
is an R/M-automorphism of @®M) () . Since R/M 1is a field, we
conclude from (3.4) that a6 - By = + 1 = A
Lemma 3.6
Let R be a commutative ring with a unique wl w
Y, Let G = <x> X <y> where <x>, <y> are infinite

cyclic groups. Let 6 :R(G) =R(G) where 6X) = y an x'y\'J

and 0@) = \ b~h xbyk satisfy the following three conditions:

(@) £ aijijand |1 bhk xhyk are units in -

(ii) For some integers a, &, Y, 6,ag and b~ are units in
R but all atj for (@, j) / (a, B) and all b~ for

t, K /7 (, 6) are nilpotent

(ifii) a6 - By =+ 1 =

Then 6 induces an R-automorphism of R(G)

Proof
By (1.16) the map O : R(G) = R(G) defined by
D(E duv xUyV) = I duv (OCQIU O )V is an endomorphism of R(G)

We prove that O 1is onto and 1-1

First we prove 0 is onto. Since 0 and O0(y) are units
in RG , (0X))-1 and (O))_1 exist. For the sake of
argument we suppose a6 - By “1 » the proof for aS - By

similar to the proof for a5 - By = 1 « BY assumption a” and



are units in R and, by this and (1.17) we have

Y«
(a"e 6(x)]6 Ib~] 6(y)]"6 = [a'l (a x“yB+ £ a xV)]6
aB °B  “B <i,j)*(,B> 13
“q1 v {, r ) h k..-0

XN BT T ok, XY

[anB + Y «-]B a xiy!I]{
(. J»k,/» B 3
,y 6. \Y “1 h k

xVv L _B6t’)hkxy-l_
<h,k)*(r,i )y

B

0&%yB ¢ n Y oev® y 5B 4 n2)

xa«-BY yBS-66 +

X + n,

where n.” n2, n3 are nilpotent in R(G)

Similarly we have [a™ 01 y[b™» O] =y + where m

is nilpotent in R(G)

r rsS
and n4 = £u x*y" where all n and
Let ng v 1\s Xy pq Y rs
P are nilpotent in R . Let T be the ideal of R
pPa
rs Pqg
(1.17) we have
X + I nrs xrys " 1 nrs[x + ~ nrs xryS]r ly + ~ ypg xPy<ll = X + n5
2
where 1 xVWe » ng is nilpotent in R(G) with all eT

Again by using (1.17) we have
y* 1V, W - v * Ir. *vVip k*1Vv, A °] -r

2

where IfTO XTya = n is nilpotent in R(G) withall £ eT

b
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Hence we have
Il 6(x)]6 [13vi 66)]"6 — 1| nrs{tae 6(x)]6 Ib~i

*{l[a® 6] [byi 601} =X+ n5 .

-fiP
[ b ex>i"Y ewi ™ - 1%qgk aB 9x>i6 by e(y)]"Cr

X{[aa6 9()r [y5 9] P =y + ng

Since T is nilpotent by continuing in this manner a

s$ times we get X, y as a linear combination of powers of

M M 3
o) = ia" x'y"] and 0(¥) = rI>bhk xhyk . Hence 0 is onto.

Now we prove that O 1is 1-1 . For this we suppose there
exist Con © R such that T Con O®m ©OEE)N =0 . Then we show
that all c =0 . From T Cnn QeOIM O )

mn
e~ i§W f— .hkan
moduto u , I ¢ x 9ij'xyj) (N2 B “ij

0 we have

for (@, J) / (@ 6) and bhk for (¢, K /7 (v, S are nilpotent

we have
| aiT xvV)m xV + — hkn
@A) 13 Ty T Yy k)"!(Y Pk Xy >
a e.m Y 6.n -—.n amtvn B™in
~ cmn~aae <Y ) (b\ﬁ Xy ICmn (@as) « Vv X y
In this identity each term in X, y occurs at most once because
xom+Yn yBm+6n ,, xam"+Yn" yBm"+6n" and a6 _ 6y = x implies that
m=m> and n =n" . From this result and
yc @ _m (b x)n x* ™ yémén = o we conclude that
nn = »i Y®
c A $m @In=0 forall m n . But a and b . are units
mn aB Y® aB "
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in R/M and so we have Cmn =0 for all m, n . This implies

that c €M for all m, n 1i.e. all c are nilgotent.
mn mn

Now let N be the ideal of R generated by
ic’y uf{ai | G, Dt 8 u {bhk | (h, O™y, 9} - Then N
is milpotent. Assume all belong to NY  for some positive

integer w but some of them do not belong to NWJrl

From 1 cnn(E aij xi1y™)m (€ bhR xhyk)n = 0 we have

lcfih @aYj xV)” (A bhk xhyk)n =0 in @®NW S (G . Since

all cimeNW and all a13.

for (G, K ~ (v, 6) belong to N we conclude that

for @, )~ (@ 8) andall b,

& Cnn (aap' x°y@m (byo' xYy5)n = 0 . By using a6 - By =1 and

w+1 [ |
the fact that —a™ , b,~ are units Iin R/N we have c” =0

- _ WH1
for all m, n . This implies that c” e N contrary to
_ _ _ W _
assumption. Hence each cmn lies in N for all integers
w >0 . Since N is nilpotent we conclude that Cnn =0 for

all m, n . Hence 0 is 1-1 . A

Combining lemmas (3.5) and (3.6) we have:

Theorem 11
Let R be a commutative ring with a unique M
A . Let G = <¢ x <y> where X , Y are

infinite cyclic groups. Let O be the mapping O : R(G) @mR(G)
where 0O(X) = £ ax_ xiyj , 0¢) - I bhk xhyk . Then 0 induces

an R-automorphism of R(G) if and only if the following three

conditions hold:
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® Ya.xW . Fone VS are units in RE
(ii) For some integers a, 8»y, and G'aaB and b r are

units in R but all g&ij for (, P t @ B and 311 bhk

for (, K ? ¢, 6) are nilpotent.

(iii) a6 - By = + 1



CHAPTER 4

In this chapter we shall be concerned to find the automorphisms
of K(G) , where K 1is a field and G 1is a finitely generated abelian
group of the form G = <x> x <y> where X is an infinite

cyclic group and y2 =1

Lemma 4.1
Let G = <x> x <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field and let u, ve K(<x>) . Then

u+ vy is aunit in K@) ifand only if u - vy 1is aunit in

K(G)
Proof
Suppose u + vy is a unit in K(G) . Then there exist r ,
s e K(<x*) such that U +w) (r+sy) =1 This implies that
ur +vs =1
us + vr = 0 . (D)

From ) we have W -w) @ -sy) = (wur +vs) - (us+vr)y =1

Thus u - vy is a unit in K@)

Now by replacing v by -v , we see that conversely if

uUu-vy 1is aunitthen u+ vy 1is aunit. A

Lemma 4.2
Let G = <x> x <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field and u, v e K(<x>) . Then we
have
_ i, o _ _ 2 2
@ u+vy isaunit in KG) 1ifandonly if u -v is a

unit In K(<x>)
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(ii) If characteristic K ™ 2 , then the units of K(G) aretU
of the form (@m + Bxn) + (@x’l - Bxn)y where a, B € K - {0} and

m, n are integers.

Proof

Suppose u + vy is aunit in K@G) . Then by (4.1) u - vy

2 2
is also a unit in K(G) . This implies that U +w) U -w) = W -v )1
aa-v**»

is a unit in K(G) and consequently”™ unit in K(x>) , (1.32).

Now we suppose that u2 - v2 is a unit in K(x>) . Then we

5 2 -1 2 2.1 2 2 -1

have U+ w)fa - v) Yu- W -v) vy]:(u—v%(u —v% =1

Hence u + vy 1is a unitinK(G) and then (@) has been established.

To prove (ii) we suppose that u + vy is a unit in K(G)
Then by (@) u2 - v2= U+ VDU - v)) is aunit in K(E>) . This
implies that u + v and u- v are units in K(<x>) . By 1.13 (D
<x> is a right-ordered group, hence by using Corollary (1.4) of
[91 we have
u+v=yxm OMYeK , minteger. (®)
u-Vv=ox 0~ 6 cK , n integer. @)
It follows from (D) and @) that u « 2'1 YX" % 91 &N and

v=o! yx" - 27l 6"

on the other hand if a, B € K - {0} then we have

[(ax”1+ Bxn) + (axm - Bxn)y] t(4aBxm+n)“1(axm + Bxn) - (4«Bxin+n)_1 (axm -B jm)yl

= (4aBxm+n) (4aBxnl+n)-1 - 1 . Hence (axm + Bx") + (ax"1l- Bxn)y is

a unit in K@G) . A
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Lemma 4m3

Let G = <x> x <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field of characteristic f 2 . Let
u+vy = (@m + Bx1) + (@m- Bx°)y (@ 6 « ; m, nintegers)
be a unit InK(G) . Then for all w £ Zwe have,

w+w" =" ™"+ &M+ ™" - &Y

Proof
We consider the case w £ 0 and we proceed by mathematical
induction. For convenience let A = axm and B = Bx° . If
w =0, 1 , then there is nothing to prove so we suppose w > 1
Assume W+ vwW = [A+B + A-BYW =2 ""[(W +B )+ (A - B)y].-

This implies that

U+ vy)w+l =[(A+ B+ (A -BYIW[A + B) + (A- Bl

201 [(AW + BW) (AW - BVVIIAA + B) +(A-B)yl

W 1 [2(AW+1 + BNV+1) + 2(AW+1 - BW+1)y]

W[ANW+L + BW+1) + AW+l - BW+1)y]

This completes the induction steps and so our assertion has been

established for w £ 0

Now assume w = -1 . Since

2-2[(A + B) + (A - Byl [A1 +B1)+ (AL -B1l)y] =1,

we conclude that

U+vy)-l - [A+B + A-Byl 1=22[A1L+B1)+ (A -B )y
Finally we suppose that w < -1 and let t “ -w . Since t is
positive we have

U+ wvwW - [(u+vy) 1]t = @C2)t[A1 + b"1) + (A1 - B_}y]t -
2t-\(At +B t)+ (At -B_t)y] - 2~t_1[(At + B_t) + (At - B_t)yl

- 2V 1 [(AW + BW) + (AW - BM)Y . A
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Lemma 4.4
Let G = <x> x <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field of characteristic ? 2 . Let
6 : K(G) » K(G) be defined by
0 =(@m + BxI) + (@m -0xn)y ,
0 =@l + $q) + (P -6xq)y ,
where «, B, T, 5 £ K-{O0} and m, n, p,q integers. If 6 1is a
K-automorphism of K(G), then m=+1,n*+1, yx»= + 1 ,

6xq = + 5

Proof
In order to simplify the proof let axm = A, Bxl = B, yx5 =C ,
6xq =D . Since y2 =1 we have
0 ) =t(C+D) +C - D)yl2 = [(C+D)2 +(€- D)2] +2(C+ D€ -D)y =1
It follows from this that
C+D)2+ (C-D)2=1

C+D(C-D) =0 . [6))

By using (1.J0) we conclude from (1) that either C + D =0
or C-D=0
2 - -
If C+D =0, then (C+ D) + (C - Ig)zl implies that
C-D-+ 1 and then 6(y) = (C +D) + (C-D)y - +y . From
C-D- 0 and (C + D)2 + (C- D)2 =lwe haveC +D- + land

then we have O(y)= (C + D) + (C - D)y = +1 which is not true,

because 0 1is™automorphism and y + 1, -1 . Hence C + D =0 ,
C-D=+1 and 0¢) «+y . From C+D=0 and C -D - + 1
we conclude that C =+ 1 and D =+ i . For the sake of argument

we suppose that 0@¢) - yjJ we remark that the proof of 0() - -y

is the same as the proof for 0(%) my * and therefore we omit it.
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Now, since O is an K-automorphism of K(G) there exist
&, bj e K such that O[£ a» + (E bj x3)y] = x . By using
“4.3) we have
6(1l at x1) + OE b xj) 6(¢) = £ a.t0ix))1l + [Eb. (O 1Y
* 1 a. 2i_18"i + B1) + (AL - Bi)y] + I b. 2j-i[(A] + Bj) + (A3 - Bj)yly = X

From this equality it follows that

121 1 ai (At +B1) +1 23"1 B~ (A3 - B3) = x . (&)

121"1 ai (A -Bl) +£23 1 bj (A3 +B3) =0 . ()

From (@ and (3) we conclude that

12 1ai(Ai - al +2B1) + I 23-1 bj(A3 - A3 - 2B3)

=1 21ai BL - 1 2j bj Bj=12ici - b.jBl = x . )

Also from (@ and () we have

1 21 ai A1 + 1 23bj A3=121CG@i + bMAl1l = x . ®

By using the fact that B = Bxn (6 e K, n integer) we conclude

that (@) cannot be valid for |n] >1 or for n =0 . Also ®
cannot be valid for |m] >1 or for m =0 . Hence m= 1,
n = 1 . A

Lemma 4.5

Let G = <x> x <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field of characteristic / 2 . Let
0 : K(G) =K(G) be the K-linear mapping defined by
000 = (axt1 + O0x_1) + («x 1 - £x-1)y a, 8 e K” io), and

oy -+y =

Then 0 induces an K-automorphism of K(G)



64

Proof
In order to simplify the proof we assune that
8() = (ax + BX) + (ax - 8)y and 0¢®) =y - The proof for

other cases is similar to the proof of this particular case.

We prove that 8 1is onto and 1-1 . By hypothesis we have
8[22(@1 +B1)x+22@1-Bl)xyl] =x and 8% =y

Hence 8 1is onto.

Now we prove that 8 1is 1-1 . Let 1 ai + @ x3)y
be an element of K(G) such that O[J a* x* + (£ b* x3)y] =0
Then we show that all a; and all b.D are zero. For convenience
let A =ax and B = Bx . Arguing exactly as in the proof of

(4.4 we have

12*a Al + p2jbj A3=12ic + bi)Al = 0
121 B1 - T 2 b. B3 - 1 21 (@ - bi)Bi =0
Since A =zax and B = Bx , it follows from () and
that
_+bx=0 , for all i
ai
_-bi=o0, for all i
ai

Hence all a~ and all b. are zero i.e. 8 1is 1-1 . A



Theorem 111
Let G = <x> X <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field of characteristic 2 . Let
9 : K(G) - K(G) be defined by
0 = (@m + fiX) + (axm - Bxn)y ,
0y = (B + Y) + (I*- WOy ,

where a, B, y, ie K- {0} and m, n, p, q integers.

Then O is an K-automorphism of K(G) if and only if

m=+1,n=+1,yx*=+73, 9 =+ s .

In the rest of this chapter we are dealing with the fields

of characteristic 2

Lemma 4.6

Let G = <x> x <y> Wwhere <x> is an infinite cyclic group

and yz =1 . Let K be a field of characteristic 2
let u s K(<x>) and let X e K - Then for all integers £
we have

@ Dol o+ u(l o+ y)1°° Qol)2E

(D) Dxtt o+ uCl o+ y),28+| Xx11)2e+1 + Xxx1)A ul + y) -

65
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Proof

- 2

Since @ +y) =0 we have

+u(l +y)]2 = XS 2 +KIfr-1)) u(l +y) + A +y)2 = (Xx1)2
From this we conclude that
D + u(l + y)12E = {Xx-1 + u(l + y)]2}e = [(Xxi1)2]e = Ux-1)2"~ .
Hence (1) has been established. To prove (ii) we have

Do + u(l + y)J28+1 = DM+ u(l + y) J2e XM + u(l +y) ]

oo Y e poct & uar + w1

2P oex)2e ul +y) . A

Lemma 4.7

2
Let G = <x> * <y> where <x> infinite cyclic group and y =1

Let K be a Ffield of characteristic 2 . Let ¥ : K®©G) K(G/<y>)
be the natural homomorphism. Let JK(G) be the Jacobson radical
of K(@G) . Then k<G = JK(G)
Proof

Let X =<x> and Y = <y> . Since is an epimorphism and

its kernel is K(G) aug K(Y) we have K(G)/K(G) aug K(Y) ~ K(G/Y)
By (1.24) and using the fact that the characteristic of K 1is 2
we have K(G) aug K(Y) =m K@) A +y) = KX QA +y) . But

(1 +y)2 =0 so KG)YA + vy is nilpotent. This implies that

@G)(A@+y) c IKG) . Hence there is an ideal 1 of JK(G/Y) such that
JK(G)/K(G) aug K(Y) * K@Y/ KG)A +y) ~ I £ IKG/Y) ~ KX
because G/Y ~ X . Since X 1is an infinite cyclic group we have

JK(X) - 0O (iecCllj) , This implies that

K@) «(K(G)) aug K(Y) - KOGIA +y) = KA +y) . A
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Lemma 4.8

Let G = <x> x <y> where <x> 1is an infinite cyclic group
and y2 =1 . Let K be a field of characteristic 2 . Then the
units of K(G) are the elements Axm + u(l +y) where 0? AeK ,

m is an integer and u e K(<x>)

Proof

Let a, b e K(<x>) and suppose that a + by 1is a unit in
K(<x>) . Since the characteristic of K 1is 2 we have
a+by=a+b+b+by= G@+b) +b(l +y) . Thus @+ b)) + b +vy)
is a unit in K@) and then [@+b) +b@ +y)]° = @+ b)°>
is a unit in K@) . This implies that a + b 1is a unit in
K(G) . Thus by (1.32) a +b is aunit in K(<x>). Thus by
Corollary (1.4 of [91 a + b is of the form Ax™ where
0 jtAe K and m integer. Hence a + by is of the form

Am + b(l +y) where b e K(<x>)

Now suppose Ax + b(l +y) £K{G) where 0/ AeK , m is
2
an integer and b e K(<x>) . Since (@+y) =0 we have,
[Am + bl + YI[AM) _1 - (A®)"2b@ +y)] =1 . This implies

that Ax® + b(l +y) is aunit of K@G) . A

Lemma 4.9

Let 6 = <x> X <y> where <x> 1is an infinite cyclic group

and y2 =1 . Let K be a field of characteristic 2 . If 6

is a K-automorphism of K(G) then there exist A e K - {0} and
u, v e K(x>) such that v 1is a unit and
0(x) - A1 + u(l +y) »

6 =1 +v(d +Yy)
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Proof
Let <y> =y , and let JK(G) be the Jacobson radical of
K(G) . Since 6 is an K-automorphism of K(G) then 0 permutes
all maximal right ideals of K(G) . This implies that 0 Tfixes
the intersection of the maximal right ideals JK(G) . But by (4.7),
IKG) = KGYYA +y) = KE=>))A +y) . 1t follows from this
that 01 +y) e (K=>))A +y) . Hence 1+ 0(¢) =01 +y) =v( +Yy)
where 0 ™ v e K(<x>) , because v =0 implies that y =1

From this result we conclude that 0(%) =1 + v(l +vy)

N

Now, by (1.23) O inducegANK—automorphism 0 of K(G)/IK(G)
Also by (@4.7) we have K(G)/IK(G) ~ K(G/Y) ~ K(<x>) . Thus O
induces an K-automorphism 0 of K(<x>) . By using this result
and theorem (2.1) of [9] we conclude that O(x) = Axll where
0 FAeK . This implies that 0 = Ax*1 + u(l + y) where

ue K&)

Since 0 1is a K-automorphism of K(G) there exists

1 + E 6JXNM)Y e K(G) such that 0 n™xl + (E 6jXV)y] =y

Finally, for convenience we distinguish even and odd powers

of x 1iIn Tril-xl and Jg.x’\ . Thus we write
I rax! —tl n x2r + 1 n23+1x25+I
r 2r
2w+l
ly j -1 * 1 52irl @)

By (4.6) and (@) we have

O[£ HjX1L + @ 5. xM)y] = 1 n2r &&xxD2r + 1 n2s+1 thne-1) 2s+1 + OXx+1)2su(l + y) ]

+ (I 62IDOXE1)2T + | «20+1[Q01)21T+L + S2Tu (1l + Y)PDH + v(l + y)]
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By using (@ +y) =0 we have

+1 .2r
[QVIXx-V*® * I NjJAOX "V "*1 & I JNACX**112%» o I «z,ih)(xll,Z*

+ w ~ hu

-V, ,,il2T _r, , 110 +1 .
+ L osai X > v+ 1 Bwri K > V]

+ [£ m2s+ [(Xxtl)2Su+1 52rr+I(Xxt)™ u + ? 827 (Xxtl)2Tv + 1S2,+1 KxtI> v |y
By using (O and the fact that u, v e K(<x>) we have

I n.Uxil)l + (A 6.0 V hi + Vv) + 1 n2s+l (Xi-1)2su

+1 n=o *

I fijixx~1)j + (I 6j )3 @ + v) + | n2g+1 (Xji-X)2su

+ 1 e, +1 (Xxtl,2,ru= 1 * (€))

By adding these equalities we obtain

[ CXxil)l + 1 6 (i) =1 . (O]
i Jj 3
This implies that Hq + 6g = 1 and “ 6N for all i~ 0
By using this result and using the equality (3 we have

E d.Ux"1DHON =1 . Hence v 1is a unit in K(x>)
i
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Lemma 4.10

Let G = <x> X <y> where <x> 1is an infinite cyclic group

2
and 'y =1 . Let K be a field of characteristic 2 .

Let X e K- {0} and let 6 e {-1» 1} . Let u e K(=x>)
and let v be aunit in K(&x>) . Let O be the K-endomorphism

of K(G) such that
0 & =XN+ull +y) ,
0 O =1+ v(l +y).

Then O 1is a K-automorphism of K(G)

Proof

By (1.16) 0 : K(G) ==mK(G) by

OP o™l + @ g-xMNy] = 1 2OMX)L +16.000" 0

i Jj 3 i j D
is an endomorphism of K(G) . We prove that O is onto and 1-1
First we show that O is onto. By Corollary (1.4) of [O9] v = px*
for some p e K - {0} and m integer. Let u = v(J bExe)
e

where J b xe e K(=x>) . Then by using (4.6) we have
e

I[(1 X-e-1b xe) @ +y) + X-1X] = [J X-e-1b O + u(l + el + 1 +v A + V]
e e

+ X1 DX+ ul +y)] = [£ X"e_lbe(X)e + irU + N]IMVA + V)]
e

+ X1 Kx + u(l + Y]
2
where e K(=x>) . Since @ +y) =0 we have
O[(J X-e-lbexe)(@ + y) + X-1X] = [J X-e-lbe(Xx)e]v(l + y) + x + X;lu{ +y) .

e e
But we know that u = v I b£EX and so we have
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6[(Z *~e_1b xe) (1 +y) + X1x] = [E XE-1b (XX)E]v (1 +vy) + x
e e e

+ X"1 V(£ bfxe) (1 +vy)
e

= < X1b xe)v(l +y) + x + (T X1b xe)v(l +y) =x .
e e e

Also by using (4.6) we have

0 [T+ Xp*x )A+y)] =1+Xp1lXx+u(l +y)] ™1 +1+px™*(1+y)]

m -i -m m
=1+ Xp [(Xx) +n2(1 +y)][px (1 +y)]wU,

+ P =1+ Xp (X) mxm(l +y) =2 +y =y

Hence 0 is onto when 6 = 1. Now suppose that 6 =-1 . In
order to simplify the proof, let v =px™* where 0 ~p £K and m integer.

Let u =x2v(EbE(x 1)e) where £b (x 1)e eK(<x>) . Thenby (4.6) we have
e e

O[(E Xe_1b xe) (1 +vy) + Xx 1] =1 Xe-1b [Xx-1 +u(l +y)]ef(l +1 +v(l +y)]
£ £
* »in*'l * uCl * yII'1l - | * 43'1 % Slit<""'L * y”
£
+ X[(Xx-1)-1 - (Xx-1)“2"u(l +y)] where n e k(<x>)

Since (1 +y)2 =0 and u=x 2vVv([ bE(x V) we have
£
0 [ Xe-1b xe) (1 +y) + Xx1]=1 Xe-lb(Xx-1fv(l +vy) +Xx- X1x2u(l + )
e E e 6

I X1be (x-1)ev(l +vy) +x - X1 x2[x-2 v I be(x-1)e](l +vy)
e e

I X1b (x-1)ev(l +y) +x - | X1b (x-1)ev(l +y) = x .
£ E
Also by using (4.6) we have

01 + X-V1** (1 +y)l =1+ Xmp-1[Xx-1 +u(l +y)Im[l +1 +»(1 +y)]

1+ Xnp-1 [(Xx-1)*1+ fid (I +y) [[(v(I +y)]

where £ K(<x>)
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Since (@ + y)2 =0 and v = px we have

o+ XM ix @ +pI=1+x p N&H1IE@MA+yY) =2+y=y
Hence O 1is also onto when 6 = -1

Finally we prove that 0 is 1-1 . Suppose J a.xl + (£ B.x3)y
il j 3

is a member of K(G) such that O[J a.x1 + (¢ B.x])y] =0
il j 3

Then we show that all ai and all Bj are zero.

It is convenient to distinguish even and odd powers of x in

£ a.xl and £ 3.x3 . Thus let
[ a 7
2a+l
N =
o alxl % a~2V XV + g a2a+|

(L

By (O and using (4.6) we have

O£ aixt + (1 Bo@YE = £ asUix T1)%V+ 1 02a+ 17X 01 + @=1) u(l + )]

i j 3
+ (I Bruxin2r | BREFL[(Xx"1) 25+1 + (Xxx-VC u(l + Y1)
[+ v(l+y)]=0.

In order to simplify let A = £ a,  06"3)2°,

B = 1 6271 Q% )2 uc, we have

O a.xt + @ BjXj)yl = £ a. (Ix-1)1 + A(Q +y) + £ BAQx-1)j + B +y)
il j 3 i j 3

+ [E B, (Xxil)1] v(i +y) - o. (@)
Jj 3



By multiplying 2 by 1+vy andusing @+ vy)2 =0 we

obtain

[£ai Xx-1)i +1 B (XxM)F (1 +y) =0 . (3)
1 j 3

This implies that

I orUx™)1 + 1 B.UXx-)3 =0 . (4)

1 j 3
Since X~ 0 , it follows from (4 that = 8i for all i1 and
this implies that A =B . From this result and (@ we conclude
that £ B. ¢"3)3 V@ +y) =0 . But v 1is a unit and so

j 3

£ B.OXxM)5 Q+y) =0 . This implies that 6.= 0 for all j
i s 3
because X ~ 0 . Thus =B*=0 forall i i1.e. 6 1is 1-1

Combining lemmas (4.9) and (4.10) we have:

Theorem IV

Let G = <x> x <y> where <x> 1is infinite cyclic group and
y =1 . Let K be a field of characteristic 2 . Then 0 1is
a K-automorphism of K(G) 1if and only if there exist X e K - {0}

and u, v e K(x>) such that v is a unit and
0 - Xxil +u(l +vy)

0 =1+v(l +y)
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CHAPTER 5

Let K = GF(p) , the Galois field with p elements. In
[ID] D.S. Passman proved that the group rings of all non-isomorphic
p-groups of order at most p4 over K are non-isomorphic. Our
aim in this chapter is to investigate the corresponding property
for non-isomorphic p-groups of order p5 (p > 3) unfortunately

this problem is still open.

We use Schreier®s classification of groups of order p~ (P > 3
in [14], As far as possible we retain his notations but, for
convenience in accordance with present-day usage, we replace his
Gothic letters by capital Roman letters, his capital letters for

groups elements by small letters, and E by 1

The groups of order p~ (p > 3) as characteristed by Schreier,
are divided into ten types, each type being again sub-divided into

various sub-types of non-isomorphic groups.

Our techniques are based on the results of Jennings in[6]

and Passman in [10] . We also use the notations found in
We say two groups G1 and are distinguished if K@) & K(G2> .
Since there are few given in [ID] for finding the proper-

ties of groups of order 2 p 3 p and p4 we insert details for some
of them before pursuing the mainaim. For example we find the
properties of groups of type (X)), XD, &II) and (XIIl) given in

[10] of order p4 (p 2 3)

For convenience we replace letters P, Q, and R by letters

a, b, and c respectively.
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Group X
This group is given by the relations

G = <a,b,clap =1, bP =

Observe that b e Z(G) . Also c “ac = ab 1implies that
ac = cab so every element of G 1is of the form cYaabB .
From .c-lac = ab "and"'b é°2(G) we conclude that,
c ac- (¢ ac)n = (@)n = arru . This implies that cb n = a ni
n_t_n

and from this and b e Z(G) we have c¢c™ tn = (cbn)t = @ ncan)t = a c a

Hence we have

Now we prove by induction that for K £ 1
K(K-1)
(2)

For K = 1 there is nothing to prove. Suppose that (@) is valid

for K : then by using (@) we have
K(K-D)
(cVbVi4l = (cVbe)k(cVb6) = [cKYaKabK6 + 2 aY] (cVbB)

K(K-1D)
KK-D
K+DYa KD ar (K+1) 6 + Kay + 2 Y
K+DK
_ c(K+|)yd(K+l)aa K+h6 + 2 Y .
Hence our claim has been provedand in particular we have
L$£211
(cYaab6)p = cPYapabpe + 2 pa (©)
Now we calculate Z(G) . Since b e Z(@G) , cYaabBc Z(6)
if and only if (cvaa)a = a(cYaa) and (cYaa)c = c(cYaa) - Hence
faHowi

if cYaab6 e Z(G) then it from @) that by -1 and ba =1
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Therefore y =wp , a=ep . Hence every element of Z(@G) is
of form This implies that

2
Z(G) = {aEpb®> = <aP> x <b> so Z@ is of order p~ and of

type (@, P
_ar _ 2 _
Now G/<b> 1is abelian group of type @ , p) - In particular,
G" <b> . Since G 1is non-abelian, G" = <b>

Finally we calculate the M-series.

=G . By using (@) we have

p

Since b, a e Z(G) we have

«<l>, @S> = <AS

Also we have

p2
«i>, mz(P)>aS<a > = <I>

Thus M~A/M2 = <cM2> x <aM2> , abelian group @, p) , h2/M3|=p ,

eee p—D > Mp/Mp+1 -p -

9



e

Groups XI>,(XID, &IID

These groups are given by the relations

G = <a,b,claP =1, bP =1, cp = JP, b_lab = al+p, c Vac = f, ¢ be = b>

where ~ =0, 1 , and any non-residue modulo p respectively.

We begin with results common to these groups.

From b "ab = a™p we conclude that ab = ba™+P , from this
and c lac = ab we have ac = cab = cbal+P . Since be = cb so

every element of G 1is of form cYb®aa

Also we have b ~a” = ( lab)t = (@L+P)E = at”™ +p”N . in

particular we have b ”aPb = aP = aPap =aP , then aPb = baP

Again from b latb = at”™M+p”~ we conclude that b = a tbatatp

and this with apb = baP implies that bn = a tbnatantp . Hence
we have
atbn _ bnatantp @
- - —-K_ K K
Now we prove by induction that ¢ ac =ab . For K=1
k K
there 1is nothing to prove. Let c ‘ac = ab then we have
o” (D o K c_l'[c_KacK]c = c_l’(abK’)c = (c_lac)bK = (ab)bK = ]
because be = cb
By using (@ and cXack = a we rave cKacK = pRal*KP
Also by induction we prove that
n . n(n+l)
B ) "oy
c KancK an a KP ®
For n =1 our assertion is true. Let
- n(n»l)
KK kMo K
c ac -b"a
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By (4 and an = baP we have
Kn+ti T K 1 K K K”*n(nH) Kp
- + - + - -
c an Ic = (c acK)n = ( acK)n(c acK) = ﬁﬂn a 1 KacK)
n(n+l) n(n+1).
_ [ana 2 pJ(atI)('):ananﬂbK a 2 Kp
n(n+Davn 1) (n+2) ..
2 P

an("bK an+éL K(n+l)p_) a 2 3p _ b (n+DK an+1 a

1) (n+2) Kp
D (n+DHK a (n+1) + 2
P(P+1)Kp

In particular we have c KaPcK = bpKa = aP because

P =1 and aP =1 . From this we have aPc = caP . By this
P

result and an = b*.P we conclude that a e Z(G) the centre of G

b

Now we prove by induction that

n(n-1)
) ng + —*—-""~ ay
(cyb6 aa)n -V 2
no + EiE~aBp + + 2a(la+tD+ _ (n-1)a [fodl )a+11
> 1YP
®)>
For n = 1 there is nothing to prove. Let
a(a+l) . 2aea+h) . (n-Da[(n-Da+l]
A ————— + =+ @7 o+ 2————————
By using a*e Z(G) , be =cb, @ and G we have,
nB + no + oBp + AYp \Y,
(c™®aa)n+1l = [eny b 2 2 J<cv.®)
nB + n(""~1) ay P-G— aBp + Ayp
IcnY b 2 alr*]J(cVaa) a 2
né + niszil ay no £ naarl) n(n-1 0Bp+Ayp

<Y B 2 (cy p Y 3 a€ a
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. n(n-1)
Dy ™ T = 2==2&% L ny na «a Yp + 2 aép + Ayp
c b a ba a
»a J- (n+tDHn . na(na+l) -.n(n-) ,, . _
+1 B £ ~2  a¥ .6 nanaBp. 4 ———2————YP 4 ——— ———
c (L)y B + ay (beanaanaBp)él a2 YP + aBp + Ayp
(nw)
c b
(m+Da + iHilliLaep + € 2tiL + 22120+11 + _  + na(na+1)]Yp
In particular we have,
YBap p* Pa + [¢1ftH + + o+
(cYb a )p = cP* a n n

vPy +pa s PRED 2aRar) o eDal(p-an].

This implies that <G(p)> = <aP>

By a~ £ Z(G) , be =cb and repeating (4), & we have
b8yt b3Sy I pBaxcB%aY) = b YA @ integer).
Hence we have G = <{bar'tY auD5> = <b> x <@”> . This implies

that

(;/G = <{cYb™aa (<b> x <aP>)}> = <c(<b> x <aP>)> x <a(<b> x <aP>)>

Thus G/G- is of order p2 and of type (, p)

Now we calculate Z(G) . cYbBa*“ £ Z(G) if and only if

(cYb6aa)a « a(c bBa*“), (c bBaa)b = b(c bBaa) and & bBa“)c = c(c bBaa)

By using (@), () and (cYbBa*“)a = a(cYbBaa) we have,
cYbBa = acYbB » (cYbYd1+PY)bB = c V (b6 a 1+PY aB(1+PY)p) = cY bY+B al+PY+pB

This implies that 1 = bY aPY+pB so we obtain y = ep and 6 = ap
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Alsoby cb - be , @ and (cYbMaa)b = b(cYb™aa) we have
ab =ba or we have baa aap =baa and this implies that aap =1

so a= Xp

From (c"b®aa)c = c(cYb®aa) as above we conclude that a = Xp
Hence every element of Z(G) is of form cep bap <P = d"p and
this implies that 2z(G) = <aP> . Hence Z(G) is of order p and

of type ()

Finally we calculate the M-series.

M2 = <G*, G®> = <& x <aP>, <aP>> = <b> x <aP>

Now we calculate M2, G) . Since a e Z(G) we have
(cvavVv* (cYbea“)bt=a " V U " V b W = a"ab"taabt
because be = cb . But by (@ we have

a”N ta°bt = a N t(btaaaatp) = aatp . Hence we have

M3 = <(M2, G), Mp/p)> = <<aP>, G(P)> = <aP>

M3 * MZl = .. = Mp = <aP>
M =<M , G),M > = «l1>, <aP » = <>
P+1 (P ) (pa'ﬁ/p)

Thus we have,

MIM2 = <cM2> * <aM2> > abelian group @>P) * M2yABL =P *

Mi/Mi+1 = 1 (@@ = 3% **" p-1) * Mp/Mp+J =P *
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Let N be the Jacobson radical of K(G) . Then we calculate

2 3 4
the kernel of $ : N/N-*-N /N for p =3 . Since

MI/M2 = <cM2> X <aM2> Lt follows from that, c -1 and a -1

have weight 1 . Also since = " b ~1 has weight 2

3 3
Finally since MZK4 = <a M4> "a “ 1 has weight 3 . Hence

2 2
every element of N/N is of the form [m(@a - ) + n(c - 1)] + N

where m, n e K , and then we have

[m(@-1) + n(c-D]13 =m3(a-13 + m2n(a-1)(c-1) (@-1) + m2n(c-1)(a-1)2
+ mn2(c-1)2@-1) + m2n(@-1)2(c-1) + mn2 (a-1) (c-1)2
+ mn2 (c-D(a-1)(c-1) + n3(c-H3

By using lemma (1.28) we have
@D CEDED = @D [EDLD D + (c 3a *a-1) ] mod N4 . Since
b3 =1 and c 3ac = ab we have
c-lalca-1=b-1 -1=b2-1=0-D2+20G-1) .
Hence we have
(a-D(c-D(-1) = @121 + (@-1DMm-1)2 + 2(@-D(-1) mod N4
But (b—l)2 € N4 because b -1 has weight 2 and then we have

(@) (1) @l = (@121 + 2@1D) (b-1) mod N4 . a

By the above we also have

(c-D (@-1)2 [@-1) (c-1) + ((b-1)2 + 2(-1)] (@1) mod N4 . We have

(c-1)(@-1)2 = (@1)(-1)@-1) + (b-D2@D + 2m-DC-1) mod N4
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Since (@-D(c-1)(a-1) = (@-D2CD + 2@-D@-1) mod N4 and
(b—l)2 e N4 we have

cD @12 = @D21D +2@LD OGD + 20D @D mod N4 . @)

As before we have

(c-1)2(@1) = (D@D D + (c-D) (b-H2 + 21 (- mod N4 .

Since (b—l)2 e N4 we have

cCcD2@GLL = (D) @ED (D + 21 (b-D mod N4 . ©

But we have

D @D (D = @D D2 + (b-D2(-1) + 20D (c-1) mod N4 .
Since (b—l)2 e N4 we have

CEDE ECED i @D GCD2+ 201 (D mod N4 . @

By using (7, @), ® and (10) we have

[m@@-1) + n(-1)]3 =m3@-N3 + m2n( (@-1)2(c-1) + 2 (a-1) (b-D]

+ m2n[(a-1)2 (c-1) + 2 @a-1)(b-1) + 2 (b-(a-1)]

+ mn2[@-D (c-1)2 + 20D (c-1) + 2(c-1)®G-D] + m2n(@-1)2(c-1)

+ mn2(@-1)(-1)2 + mn2[(@-1)(c-1)2 + 2@®-D (c-1)] + n3(c-1)3 mod N4 .

Since the characteristic of K is 3 , and be = cb we have

[m(@-1) + n(c-1]13 2m3@ - 1) + m2n(a-1) (b-1) + 2m2n(b-1) (a-1)

+ n3(c3-1) mod N4 . )
Since p =3 we have b lab = al+P = a4 . This implies that
Gb-D (@1 = @ (G + ba(l-a 1b 3ab) . We have

Gb-D (@1 « @) (- + ba(l-a3) . We have

®-D (a-1)

@1)(®-1) + (ba-1+1)(@-a3) = (a-1) (-1 + (ba-1)(-a3) + (@-a3) .
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Since a - 1 has weight 3 we have

b1 (@) E (@) (b-1) + (1-a3) mod N4 . (12)

By using (11), (12) and c3 = a3 we have

[m(@-1) + n(c-1)13 Em3(@3-1) + 2m2n(1-a3) + n3 @3"™-1) mod N4 . (@3)

By using lemma (1.28) and the fact that a -1 has weight 3
we have a3i -1E i|i(a3—l) mod N4 . Hence we have
@D +nc-D] Em (@ -1) +mnCa-1) + in @ -1) mod N
Or we have [m@@-1) + n(c-1)]13 E (M + m2n + $B8 (@3-1) mod N4 . (4
It follows from (14) that [m(a-1) + n(c-D] + N2 e ker @ i1f and

only if m3 +m% + i|m3 =0

We now have to consider the three groups separately.

Group XD
In this case T= 0 and then we have m3 + m2n =0 . This
2
implies that m (m+ n) =0 . Since K is the prime field of

three elements we have one of the following:

3
I
o

m
n

o

3
I
o

3

1

3

1n

Hence in this case the kernel of < consists of five elements.

Group XID

In this case = 1 and then we have m3 +m% + n3 =0.
This implies that

m
n

o
-
=]
I
—

Hence in this case the kernel of 4 consists of three elements.
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Group XI1D)

In this case V = 2 because 2 is a non-residue modulo 3 .

Thus we have m3 + m3n + 2n3 = 0 and the only solution is m_ 6\

Hence in this case the kernel of $ consists of one element. Thus

we have the following table.

M/ZM M /M Kernel
Group MI/M2 5 S8 V"4 p>3 P p+1 -
number 2 tYPe G/G1 type type type type typ:—; S("Dzi 3
X ¢r P (P2»P) ¢/ P) ® @ ®
X1 ® ¢- P ¢’ P ® @) ® S
X ® ¢r P (Gl o)} ® @ ® 3
X1 ® ¢ P ™ P ® (D) ® 1

This table shows that the groups (XJ),(XI1), and (XII11) for

p = 3 are distinguished. For p > 3 we have the following lemmas

found in [I0].

Before starting to write the lemmas we note that by (1.28) we
have (@a-1) and (c-1) have weight 1 , b -1 has weight 2 ,
and aP - 1 has weight p . Since p >3 we have aP-1 e N4

Hence by (1.28) we have

(a-1) (c-1) =(c-1) (a-1) + (b-1) mod N3 0)
@1 (-1 =01 (1) + @-I) mod NP+1 an
(a-1) (b-1) =(b-1) (a-1) mod N4 (HI)
CDO-1) = (b-1)(c-1) becausebe =cb )

@P-1) = "Ni@P-1) mod NP+3 . )



Lemma 5.1
The natural map <€ ; N/N2  N~A/N~+/  is given by

{m@-1) + n(c-D}P = (m +tn) @-1) mod NP+1

Proof

By (1) we have [m(a-1), n(c-1)] = mn(b-1) mod NS . By
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am and (V) , m(a-1) and n(c-1) conmute with mn(b-1) modulo N4

wU- 4
Hence m(a-1), n(c-1) commute [m(a-1), n(-1)] modulo N . Since

p >3 by lemma 2 of [ID] we have

m@-1D + n(c-D}IP = mP (@-DP + nP (c-IDP mod NP+1 . By (1V),

cP = avP , and the fact that K 1is a prime field of p elements

we have

{m@-1) + n(c-D}P = (m+ i) @-1) mod nP+1 . A
Lemma 5.2

Let S = <(b-1), (b-1)2, G- (p-1>/2, 1>
Let :N/N #npW *1 be the natural homomorphism. Let
nP+1 CTCIIP with T/nP+1 = 4(N/N2) . Let
D=fuin]Y XEN ,xu-ux£T}y . Then S=U
Proof

By (56.1) it is evident that T = <aP-lI, NP+1>

2
Let XeS . Then x = atib-1) +az<b-1) + ... + ap_]y2

where ai eK (=1, 2, ...,p-I/2) and w £ li . Let u €N

Then we write u in terms of the Jennings basis modulo nP i.

u=~F 8,f8_\K/(a—l)i(b—l)j (c-DK +a where 1 Si +2J +KSp-1.
ifi

By using {1.) and a’-1 e R we have
G@-DO-DHw
(@-DHP (b-D

(b-DU (1) mod Ni* 1 @>D . ®

(b-1)(a-DW mod N~ 1 u>1) ©)]

P-1/72 *
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Hence by using (@ and (&) we have

ux xu = [E & K@-DX(b-Dj (c-DK + o]

Ell
X [oMb-1) + a2(b-)2 + ... + ap_i/2’b-1~ + W1
Ell
- [ @®GD +a2@®m-nH2 + ... + ap-1/2 15 + w]
X [T Bi - 3 (@-1)1 (b-1)j (c-X)K + o]
- [61,0,0 - aiei,o,o(b-1)(@-1)] + n *
+1
where n € nP-
By using we deduce that
ux - Xu= alB'\LO]D(aP_I) + ft ,where fte nP+1 . This implies that
ux - xueT and then xe U , i.e. S E£U
Now we prove that U £ S . IT not we choose u e U\S and we
write u in terms of Jennings basis. Since (b-D)~ for 2j <p

belongs to S we assume that no terms of the form (b-D)N with
2] < p occur in the representation of u . Now we prove by

induction on t that u €N for t"p e For t=1 there is

nothing to prove because u e N . Let ueN with t<p
Then we prove as follows that u € N e Now we can write
= — N — N _
u | ay #ij.(a 1) N(b-1)N (c-DK mod Nt+1

where 1+ 2J +K=t and «0(/0 =0 = since u€u " a-1leN
and c-1 e N we have
[(@-1), u] eT , [(c-D), u] eT , and

[(@-1), u] e T + Nt+2 , [(c-1), u] eT + Nt+2



Now we prove by induction on K(K 2 1) that

1 Ka v (@-Di (b-Dj+1 (c-1)K_1 mod Nt+2 . ®6)
K21 1,3%K

[(a-1), ul

[(c-D), u] - Nioa v(@a-1)i_1 (b-1) 3+1 (c-1)K mod Nt+2 . (@)

By (1) and t <p we know that (a-1) commutes with (b-1)

modulo Nt+/ e Hence to prove () it is enough to prove

t(a-1), 1 1 = K- -1 mod AK+2 (8)

By using (T) there is nothing to prove when K = 1 .  Suppose

@) holds for K . Then we wish to prove the corresponding result
for K+ 1 . We have

[(@-1), (c-DK+1l = (@-1)(-DHK+l - (c-DHK+1 (a-1)

(1) 1) 161y - @ @)

{(c-DK @D + K- (c-DK_1 + 61}c-D) - (c-DK+1 @D

K+2
where 67 e N

From this and (@), () we conclude that

[(a-1), (c-DK+1] = (c-1)K[(c-1) (@-1) + (b-1) + 621 + K(b-1) (c-DK + e”~c-1)

i - (1)  (@1)
WMn*. 1 jty ) Thu,,

(DK @®-1) + (c-1)Kk62 + K(b-1) (c-DK + 6" (c-1)

K+1) (-1) (c-i)K + e3

Vv K+3
where 63 - (c-1)KO2 + e.~c-1) e N . Hence @) has been

established and so () has been established.

The proof of (7) is similar to the proof of () and so we omit
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By using 6), (), [(@-D), u] eT + Nt+2 = <Nt+2, aP - 1>

[(c-1), u] e T + Nt+2 = <Nt+2, aP-I> we conclude that

I Ka @D M-1j+1 (c-DK_* =0 ©
K1 1,3,K
1 ia »(@-D1-1 (b-1)j+1 (c-DK =0 @0)
m 137K
because 1 +2(@H) + (k1)= G +2J+K)Y+1 =t + 1,
(-1) +2¢g+) +K=t+1, and 1£1i, JjSt<p . This implies
that a. _ and then u = 0 mod Nt+1 . Hence u e t|E <S
i,3,k=0 -
which is false, i.e. S =U . A

We remark that, on the one hand, sub-space S is determined
by a particular basis in terms of the group elements and that,
on the other hand, U is determined solely by the ring-theoretic
structure. Thus this lemma shows that S is itself determined

solely by the ring-theoretic structure.

Now we choose an element x e N\N2 with <t + %\l =0, and
we choose y e N with 9 + N2) fo. By (5.1) and the fact
that a-1 e Np we can write

x = XY@ - (1)] +n,

y “ ppffa-1) * (c-1)] + y(a-1) +m ,

where n, me N2 and X, uf 0 . But by using () we have

B vl = yX(b-1) mod N> . Thus, if s = yx(b-1) + b -1 mod N,
122
3
then s eS and [x, y] = s mod N
By using (%] , (H.) we have X, (b-1)*1 e N» for i1 "2

and [n, s] e nP+1 . Hence we have

Ix, sl = yX2(Giy(@@-1) - (c-1)} , b-1] e yXY(aP-1) mod NP+1
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By using 6), (), [(@-1), ul] e T + Nt+2 = <Nt+2, aP - 1>

[(c-X), u] e T + Nt+2 = <Nt+2, aP-I> we conclude that

-Di -Di+ — =

;T K al th*\!*(a Di (b-Dj+1l (c-hHK_1 0 (©)]

1 1a v (@-Di1~1 (b-D3+1 (c-DK =0 o)

ikl 1,3'K
because 1 + 2g+D) + (k-1) = (G +2) +K) +1=t+ 1,
(Gg-) +2¢g+) +K=t+ 1, and 1S i, J<t<p . This implies
that a. ., 0 and then u = 0 mod NH'1 . Hence u € NP cs
which is false, i.e. S =U . A

We remark that, on the one hand, sub-space S is determined
by a particular basis in terms of the group elements and that,
on the other hand, U is determined solely by the ring-theoretic
structure. Thus this lemma shows that S is itself determined

solely by the ring-theoretic structure.

Now we choose an element Xx e N\N2 with Px + NZ) =0, and

2
we choose y e N with <+ N)~O0. By (6.1) and the fact

P

that ap—l e N we can write

X = X@@1) - (c1)] +n ,

y = p(t(a-1) - (c-1)] + U(a-1) + m ,

where n, m eN2 and X, y? 0 . But by using (I) we have
3 i P
[x, y1 = yX(b-1) mod N° . Thus, if s E yX(b-1) + 1b.o-D "' mod N,
iS2
then s eS and [Xx, y] E s mod N
By using (&, we have x, (G-1)~] e N® for 1 k2

and [n, s] e nP+1 . Hence we have

X, sl = pX2[y (@-1) - (c-1)} , b-1] = yXY(@P-I) n»d NP+1 .
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If y =0, then |[x, s] HO mod nP+1 Therefore the

group for Y = 0 is distinguished from the other two.

Suppose Y w O By lemma (6.1) we have

y™ “ X, sl = (y - yX™Xa™-1) mod , because Yy =y .

+
IfY =1 we may choose x so that y™ - (X, s) =0 mod N

If Y 1is not a quadratic residue, then for all choices of x

yP - [x, B] % O mod NP+1 Thus the three groups are distinguished.

C>3

Now we start with type | of groups of order p»

Type 1

The groups of this type are given by the following relations,
3 a, - a-

<a, bl» t21aP =1, b
-1

b, by b = ba

of which there are three sub-types given by

az2

We denote these sub-types by dA, 1), (A, 2), A, 3) respectively.

Observe a e Z(G) and we have

-n .t , € n nt @)
bl b2 =b2 bl 3

The elements of this type are of the form a b b~ and we have

m(m-1)
2 By _m3 _my

ma +
b2

. By,

& b2 biH" = 4
Now we calculate Z @G . a b2B b™ e z(G) if and only if
and <b2B B YN — b2 2R ¥ . Hence
-1 and

G2 bjjb”™ b~rb B bY)
if a“b2B b~ e Z(G) then it ffatlwvs from @ that a

1. Therefore B =ep and y » ap Hence

Z@G) - {aa b2ep b~5} . Also we know that G" * <a>



Sub-type (A, 1

For this sub-type we have a = 1, a2 = 0 . Hence
ZG) = -
=G .
Mi = «b”™» (G = 2, 3, p)
2 2
= <bj*>>G=p+l, ...,p) -

M= <a> (K- p2 + I» eme» P3) -

Sub-type A, 2)

Since al =0 , a2 =1 we have

Z2(G) = <a> X <blpP> -

Mx = G

=
1

_ <a> * <biA> G=2, ..-ip

Mj = <D™ > (G = P+ly eee» p )

<1>

p2+i
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Sub-type d, 3)
For this sub-type we have =0, = 0 . Hence

Z(G) = <a> x <Db1P> .

W <a> *
e v > °

Vi o <5IE§> G-% .../p) -

2
p+7f, ..., p7)

=
W
1
<
)(.
Q
1

Thus for type | we have the following table.

Grogp Z-type /6" type V M v M3 oM w o+ iy Jnp 3+i
numoer type  type  type type type
a, 1) <P3) P3>P) ™P) (D) ® ® ®
a, 2) (2t (P3»P) ™P) (D) ™P) ® @
a3 @ez2.p P3P ™P) ® ® ® ()

TABLE 1

According to the Table I and Proposition (4), Corollary (6)

of [10] the groups of type | are distinguished.
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Type 11
The groups of this type are given by the following relations,
2 2
G =<a,bl,b2]aP = 1, b~ = aa, b2?P = 1, ab3 = bMa, ab2 = b2a,

bla>

Of which there are two sub-types given by a =0, a = 1 . We denote

these sub-types by (1, 1), (I, 2) respectively.

The elements are of the form aa b2® b~ and we have

, A n ,h, t nt
bl b2 =b2 b a z

,m(@m-1) ,,
@B bxy - 2 Yy g,y

The elements of Z(G) are of the form aa  eP b op

Sub-type (I, 1)

For this sub-type a = 0 and we have

<a> X <b P> x <b.P>

M = <bP> x <bP>
2 1

Sub-type (I, 2

For this sub-type o =1 and we have

MX - G e

m2 -M 3 «MP:<lij>X<ljiP> .
M =M e M, - <>

p+i P+2 P

M = <1>
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Hence we have the following table.

Group Z-type G/G" type MI/M2 M2/M3 MP/MP-Fi VvV V+1

Number type type  type type

-1, 1) (P,P,P) P2. P2> P»P) (Y] >PP) @)

ar, 2 ;2P P2. P2) P»P) (D) P»P) ()
TABLE 11

According to the Table Il and Proposition (4), Corollary 6)

of [10] the groups of type Il are distinguished.

Type 111
S B
For convenience we replace notation of a*, b™*, b2*
and b3* by a, bx, b2, and b3 respectively. The groups of

this type are given by the following relations,

2 a o,

—<a, br,b2"b3|sP=F,brp -al,bP=a ,bP=a ,

abr =bra A = 2 3/ bk = A A

b2_1 bl b2 “ bia> *
and
jo a\ b2Pp =a2,b3r =1,

G — <3 brtn21

abi =b+ta (i =1F2,3), b~ =bb ¢G=*L, D,

ha"l b2 b3 - b2a>
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Of which there are seven sub-types given by

al
“n 0 1 0 0
a3 0 0 1 0
and
B1 1 0 0
* 0 1 0

We denote these sub-types by (I1I, 1), i, 2), ddi, 3),
am, 4, @i, 5, @i, 6), and A, 7) respectively.
For sub-types (1, 1), (HI, 2), 11, 3, (11, 4), the elements

are of the form a“ b3B b2Y bj6 and we have

b3« »/1- . xAn * b«

The elements of Z(G) are of the form a b™ b2

For sub-types (I1l1, 5, (Il, 6) and (I, 7) the elements

are of the form a“ b~ b3y b26 and also we have

.t.n .n .t nt
b2 b3 "™ b3 b2 a -~

>> ph3- b2°," - A V5 Ig*e B3 »p-* .

a, 8. OP
The elements of Z(G) are of the form a b~ b2 - Hence

we have the following table.



95

Group G/G" Z(G) M1/M2 M2/M3 MP/MP¥i vV /Mp +1
Number type type type type type type
am, . @E2,p,p) E2.p  (P.P.P) @ ® ®
am, 2 ¢2,p,P)  (P.P.P)  (P.P.P) W  EP @
am, 3  @E2«P,P) 92 (P.P,P) a  ¢e.p ©
arm, H  @E2,pp)  @.p.p) (CP.P.P) ® ® @
i, 5 (2,p,P) <p3> <P,P,P) @ ® ®
(i, 6) 2»P.P)  @.p)  (PP.P) W  EP @
amn, . @E2.pp @.p  @.p.p) ® ® )
TABLE 111
Type IV

The groups of this type are given by the following relations

G - b F bji bj,

abi =b.a (i =1, 2, 3, 49, bjb. =b~ G=1, 2, 4,

babk = bkb4 (k “  2)* b2 blb2 = bia>

and

G- <a b~ b2,b3,bd JaP =1, b~ =a ,b2P =1, b3 1, b4P =1,

ab™ = bha A~ N =3, 4,

b2~\b2 =V * b4 _Ib3v4 = b3a> -



of which there are five sub-types given by

and

We denote these sub-types by v, X, @v, 2), @v, 3, Qv, 4,
(lV, 5 respectively. The elements of a group of type IV are

of the form aa b4® b~ b~ b~n9

For sub-types (v, 1), @v, 2), v, 3 we have

. n n t tn
bl b2 =b2 bl 3 -

m(m-1)
2

me _no

(-‘3‘l b4§ b3§// b26 bxeﬂn = ama * b4m3 b3fW b2 " b

The elements of Z(G) are of the form a b4 b

But for sub-type (v, 4), AV, 5 we have
B3t b = pangs ta-nt  AhZ - 2
»e -19>" - " * * * <es*eYl v * "By
a, ap
The elements of Z(G) are of the form a bx

Hence we have the following table.
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ﬁgﬁggr G/G" type Z(G) type M1/M2 type M2/M3 type y \p+i bype
AV, (P»P»PrP) (PFPTP) (P»P/P»P) (@) @
(V.2)  (P»P»P»P) (P2 *P) (P/P>P>P) ) ©
av.d  (pfP P-P) (P.P.P) (P»P»P>P) @ ®
V.4 (P»P»P»P) ® (PHPTP»P) ® O]
(V.5  (P/P»P*P) ® (PFPFP/P) @ ©)

TABLE 1V

According to the TABLE 1V the groups of type 1V are distinguished.

Type V

In this case there is only one group, given by

G = <a, bx, b2 |JaP = 1, =1, b2P = a, bx Jabl = aX " ab2 - b2a,

b2~\b2 " bia> -~

For this group and for the groups of type VI, G/G" is of
type (@2, p) = Hence we need to compare this group with the
groups of type VI. But Z-type for this group is (p) , which is
different from the Z-types of groups of type VI. Thus this group

is distinguished from the groups of type VI.
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Type VI
In order to simplify we replace and a2* by and a2

respectively.

The groups of this type are given by the following relations:

2 al a2
G = <ax, a2, bl# b2jJa~ =1, a2P =1, b~ =a2 ,b2r = a2

aia2 ~ a2al®™ a2bi = bia2 » If 2** alb2 = b2al”

bI”laibl "™ aia2*® b2”Iblb2 “ bl V *

“I
u2

2 a.

G=<a,a ,b.,b, a* *=1,pbR =a 1, ¥P

I
=
)

ala2z = a2al® azbi “ bia2z @G “ If 2)" albl " blal”

b2 lalb2 = aia2" h2~\h2 =bl Vv *

with
1 V 0 0
al
1 0
“o 0 0
where v 1is a fixed quadratic non-residue modulo p . Hence there

are eight sub-types determined by the above tables and we denote
these sub-types by (I, 1), VI, 2), (i, 3, I, 4, (I, 5

i, 6), VI, 7 and (Vl, 8) respectively.
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The elements of a group of type VI are of the form

brb~ra~a” and the elements of Z(G) are of the form
b"m~ha2”~ e Moreover for sub-types (I, 1), V1, 2), M, 3

and VI, 49 we have

altblK = bilKalta2tK (t, K integers)

(-1
~ K _ t, tK 2 A
thtgi = }5—2'&]1 a, a, (t, K integers)

+m(m-1) y@-1), +m@m1) + m(m-1) @n-1). 2g
6. v 8 a.m mé6. my
(b2 bl a2 al > =b2 bl 1

- m(m-1) P
ma + —*r—yo
a (m integer)

But for sub-types (I, 5, (I, 6), VI, 7 and (VI, 8) we have

altbh2K = b2Kalta2tKk (t" K inte%ers)

K(KK-1),
t K K t tK 7 N (t, K integers)
V>2 =Db2% I al a2
m8 + EiEINl>06 + EiElil + m(m-IH2m: I)yig\
S y 8 am . m6. my
(b2 bl a2 al > “ b2 bl 3
ma + m(g—l). f | o

Hence we have the following table.



Group
Number

1

1

i,
4
-5
.6)
.7
.8)

1

1

D
2

3

Z-type

®2)
PP
™P)
™P)
®2)
®2)
PP)

¢/P>

G/GL type MI/M2 M2/M3 V M4 Y V i

)
Q
©2>p)
©2>p)

~

®2 -p)
®2>p)
©2 )

type

*-P)
/P
/P
®-P)
*-P)
PP)
G4Y)

P>P)

TABLE VI

type

®
®
®
®
®
®
®
®

type

@
@
@
®
@
@
@
®

type

®
G
®P)

®

®
Gay)

®

Mp2/Mp 2+1
type

®
©
D)
@
®
®
@
©
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Type VII

a2 (2>, a3<2)»

o, 02,

and

<al

b3pP = ax“

a2

ala2 "

and a3

bl1"

3

b2b3 = b3p2"

a3

x2

y2

a2" bl*

bib3 - b3bx,

a2U3

vi-

a2*> and a3* by V a2

respectively.

b2 - “ If bl

, axa2 = a”, a.b. =b ~

0

a3" “I" v

a,
1

L1

a)

1

al a2

In order to simplify we replace ai" , ok , a "‘1*t

74N
a/\

"b2

101

/

w3"

The groups of type VIl are given by the following relations:

z

al a2

GE«1, 2 j-1,2 3,

bIb2 = b2bl V blIb3 = b3la2> =~

0 10 o 1 1\ /0
0O o0 1 0 o0 1/ \O
0 0 O\ /1 o 0

0 0 o/ \O 0 0-

0O 10 0O O 1\ /0
10 0 0O 0O O0°"\1
b2" b3MaiP = If a2P = X" blP a2 -V
albi “ bial (i = 2" 3)" “y o2

_ b"a",

blb2 “ b2blal”

U

(0}

o

a2 2" b3p

# 27 3)"

b2b3 “ b3b2a2 > *

z

a2 3
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with

where g 1is a primitive root modulo p , Vv is a fixed quadratic

non-residue modulo p , and

K=1, 2, .... " , =1, 2, ..., " , and p is a primitive

root of X*2'1 21 (mod p) in the Galois field of p2 elements.

Altogether from this the type VIl yields p + 18 sub-types

of group of order p»

We denote these sub-types by (Vil, 1), (Il, 2),
i1, 200 of which (VII, 3 has sub-types and (VIl, 4

has sub-types.

The elements of a group of type VII are of the form

b30b26blya2Bal°l ~ The elements of 2Z(G) for sub-tyPes (VI1- -
i, 2 ..., and (VIl, 10) are of the form a”a”~ > and also

we have
B, Vi oK = b, ¥ la, tK (t, K integers)
h V & 3V7€ w (t, K integers)
e +qildhY m+ _ hy
6 6 y 6 oi.m . mO. m6, my 2 2

(b3 b2 bl *2 al > “ b3 b2 bl az al
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But for sub-types (VII, 11),... (II, 20) we have

t, K K t tK

ai bl = bl al a2 (t, K integers).

GO

t K Kt K
bl b2 = b2% 1 al az

.t K K t tKe
b2 b3 " b3 °2 a2

The elements of Z(G) for sub-types (VII, 11), ..., (I, 15

are of the form b"O 8 and we have

mo + m((n_—l)ay + m@-b v (,r‘l)é
9. 6.y 0O a.m_ me m6 my
(b3 b2 bl a2 31 > " b3 b2 bl

mm-1) @n-1),2§ o A mfn) A

m.

Moreover the elements of 2Z(G) for sub-types (VII, 16)
VIl > 20) are of the form ax™ we Nave
mB + + 5Li]zi)aY
* *

9 6. v 0 a.m mé m6 my
(b3 b2 bl a2 al 1 “ b3 b2 bl a2

n@m-1) Y- + n@m-D@n-1) 2 4 "D P
2 2 6

Hence Tor the groups of type VIl we have the following tables.



Group
Numbe

oI,
i,

Group
Numbe
wit,
il
i,
il
il
il
il
il
il

i,

r

9

10)

r

1D

»12)

13)

14
»15)
»16)
17
,18)

»19)

20)

Z-type G/Gl type

®/P)
™P)
PP)
®/P)
®-P)
*-P)
*-P)
™P)
P>

PP

Z-type

2>
™>P)
(P.P)
P
(GAY)
®
®
®
®
®

®.P.P)
®.P,P)
(P/PP)
®.P.P)
®.P.P)
®.P.P)
(P»P»P)
(P<P,P)
®.P.P)

(P7P’P)

(P,P»P)
(P,P»P)
*.P.P
®.p-p)
®.p*p)
(P.P/P)
(P>PP)
(PP<P)
P.PP)

P.P.P)

M 1I//Ne type

(P.P/P)
®.p.p)
P.P<P)
P.PP)
.P>P)
P.P.P)
(P.P/P)
(P.P.P)
®.PP)

P.P/P

TABLE VII

G/G" type M1/M2 type

(PTPrP)
®.P.p
P/P<P)
(Prp.P)
(-p-p)
©@P.p)
C-PP)
©>p.p)

(PrP/P)

(G

TABLE V111

m2/n8 type
)
)
(D)
(D)
C-P)
®
®
(D)
®
(D)
M2/M3  M3/M4
type type
P @
® (D)
P) (D)
P @
® (D)
® (D)
® (D)
® (D)
® ()]
® ()]

104

VVitye
Gy
*-P
™P)
PP)
@
®
®
*-P
®

**P)

M_/M
P P+l

type

®
®
®
®
®
®
®
®
®
®

«



Type VIIl - Case 4
In order to simplify we replace a " 27, N a2nt
a by a , 8,, a, and 8, respectively. The groups
case are given by the following relations
G = «xa™ a2z a3®» b", b2 Jan~ -1 (G =1, 2, 3), atar - a "
aza3  asazr B "RJR8 G=1.2. an =b.a3 g
b2"1bib2 =VI * bf albl = aia2, b2” aib2 = aia3
&, 18: » a2 62>
bl “a2 a3 * b2 a2 a3

with

105

and

in this
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=1,2, ..., , X =1, 2, .., 1=1»2, ..., -
X=1, 2, ..., '] - Here v, g, and p have the same
meaning as in VII. Hence there are p + 7 sub-types of groups

of order p5 1in case 4. We denote these sub-types by (VIII, 4,1),

--, VHI1, 4,11) of which (QIll, 4,4 has [~-] sub-types,

viIil, 4,5 has [Eii-] sub-types, (VIll, 4,6) has

sub-types, and (VIll, 4,7) has tp] sub-types.

The elements of groups of this type are of the form

b2ebl6al“a2RalY . The elements of Z(G) are of the form

Also we have

t K . K t tK
al “1 =bl al a2

t K . K t tK
al b2 =Db2 al a3

t(t-1),, KK-D),

t K K t tK
bl b2 =b2 bl al a2
- ma + — r---66
. 0.6 a R ym_  mG mé 2
(b2 bl al a2 a3 ” b2 bl *1

X a

ny + "Dy % n@-D) @n-D _ (-1 ¢
X
il taTh<—J t ife

Thus we have the following table.

a2Ba3Y



Group Number

VI,
VI,
VI,

itt,
i,
i,
i,
i,
i,
i,
i,

4,1)
4,2)
4,3)
4,49
4,5)
4,6)
4,7)
4,8)
4,9)
4,10)

4,11)

Z@© type G/G* type MI/M2 V M3 M3/M4

(GHY)
(GHY)
®-P)
*-P
®-P)
®-P
®-P)
®-P)
®-P)
<PP)

®-P)

<P>P)
P>
<$.P>
®/P)
®-P
P>
(GRS
P>
<P.P)
<P.P)

®-P)

TABLE

IX

type

®-P)
®-P)
®-P)
<P.P>
®-P)
-P)
-P)
-P)
-P)
-P)
-P)

type

®
®
®
®
®
®
®
®
)
®
®

type

)
®©
)
)
)
&)
)

®-P)
®
®
®

M_/M
P P+l

type

(GHY)
®-P)
®-P)
(GHY)
(GHY)
(GHY)
(GHY)
@
®
®
®

107
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Type VII1 - Case 3
We replace a™ and a2* by and respectively.

The groups in this case are given by the following relations

G=<a", w2- NPT N AN 9 N -~

afai =a”N (=2, 3), aza3 = a”, a..2 =b2 g =1, 2, 3),

adbl bla3" a2bl = bla2a3" albl = blala2® blb2 "™ b2blal> *

For p =1 (mod 3) there are five sub-types given by

“2
where g 1is a primitive root (mod p)

For p =2 (mod 3) there are three sub-types given by

al

°2

according to these tables we denote these sub-types by (VIII, 3, 1),

vIlL, 3, 8) respectively.
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The elements of groups of these sub-types are of the form

b2ebl6aiaa2ealdY . The elements of Z(G) are of the form an

Also we have

t K K t tK
a2 bl = bl a2 a3 -

K(K—I)J
t K_"~K t,
*11 T bl al ¥ s

t(e-1), tt-DE-2)
.t K LKt tK 2
bl ® " b2®& 1 2

. m(m—l)

ma + —

Omy

0 6 a B y.m . 6 mb
M2 bl ai a2 a3 } =b2 bl

mB + EiEzi)6xt + n"(m-IH2m-1)626 + “IEilL O N e

X a,
m(m-1) -m(m-1) 6@®6-1)6-2), + »(>-1) @ 1)
my + — —— Op + o) 6 6
X a,
2 2 mfm-1) @n-D/t

6 -m(m-1) @m-1) , mhn™l), x @~ 6 6 M

21— 6 0 2 2 4
X a3
wiuAc t bf “

Thus we have the following tables.



Group Number

VI,
VI,
VI,
VI,
VI,

Group Number

VI,
VI,
I,

-
type
3D @
3 @
33 @
RORNG)
35 @
77—
type
3.0 ®
3D ®
3.8 ®

G/G* type type type
*.P ™P) ®
(G o S )
PP) P @
™>P) P ®
(GRO NN G5 B )

TABLE X
p=2 (od 3

G/G" type V M

®P>P)

®.P)

®>P)

p H1 (mod 3)

type

P

P>P)

®-P)

TABLE XI

®
®
®
®
®

MI/M2 V M3 M3/M4  M4/M5
type

type

€))
€))
@
o
®

2 3V M4V S

type

®

®
®

type

®
®
®

type
@
)
®
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M_/M
P P+
type

1

®
®
®
®
)

P P+l
type

®

®
)



Type VIIl - Case 6

We replace a™*, a2* bY “i" “2 respectively. The groups in

this case are given by the following relations.

al a
G = <ax, a2, a3, b”™ b2 Jar =1 (-1, 2, 3), b~ =a3 , b2P = a3

aial = aflax (1 = 2" 3)" a2a3 = a3a2" a2 = b2a2"
a3bj = bja3 @G “ If 2)° aibl = blala2® a2bl = bla2a3"
aib2 = b2aia3" blb2 = b2bial> -

For p =1 (mod 12) there are eight sub-types given by

1 0
gq O 0 0O g 9 g

“2

For p g5 (mod 12) there are six sub-types

0
aa 0 1 9 9 9

°2

For p =7 (mod 12) there are six sub-types



112

For p =11 (mod 12) there are four sub-types given by

al

°2

Here g is a primitive root (mod p)

Thus there are twenty four sub-types of type VIIl - Case 6 and
we denote these sub-types by (VIII, 6,1), ..., (I, 6,24)
respectively.

The elements in this case are of the form b29b.’\6a3aa28a3y

The elements of 2Z(G) are of the form a3y . Also we have

t K . K t tK
a2 bl " bl a2 a3

K _ . K_t_ tK
a:Ltb,z = b, a, a

2 "1 73
K(K-1)
t K K t tK 2

al bl =bl al a2 a3
t(e-1),, KEK-D™ , (-1 (t-2),,

Kt K Kt tk ~T~ \ 2 6

blI'\ " b2l 31 a2 a3

. 0 6 a 6 y.m - m0O m6 2

G2\ ai a2 a3 ” =b2 bl al

o + m(m-1) + m(m-D2m-1) + m(m-1) 6(6-1)9

ny + m(m-1)0" | m(m-1)  + m(m-1) 6(6-1) (¢2)0

D @ED 66Dy ;10D @D (gD 6

@Mm-1) @n-DQ _ m(m-1)j 06_+ ~2@D2, mm-1) @] ifi+1
2 -2 "*x 4

t1 A fc.



Thus we have the following tables.
p E1 (mod 12)

Group Number

VI,
V111,
Vi1,
Vi1,
VItt,
V111,
VI,
V111,

6,1)
6,2)
6,3)
6,4)
6,5)
6,6)
6,7)

6,8)

Group Number

VI,
VI,
VI,
VI,
VI,
VI,

6,9)

6,10)
6,11)
6,12)
6,13)

6,14)

Z-type

®
®
®
®
®
®
®
®

Z-type

®
®
®
®
®
®

G/G*
type

®>P)
*-P)
®>P)
®P>P)
®>P)
®-P
®-P)
®-P)

G/G*
type

P>
P
PP)
(P>P>
P

P»P)

Mizm2  M2/m3
type  type
(GRY) ®
¢t-P P
(GRY) P
<P*P) ®)
/P) ®
(GRY) ®
(GRY) ®
¢/P) ®
TABLE XI1
p E5 (nod 12)

vV M2 M2/M3 M3/M4 V M5

type

P
G
¢-P
P
¢-P
¢-P)

type

®
®
®
®
®
®

TABLE X111

M3/M4 VM5

type type
® [€))
® (@)
® O]
® (@)
® (@)
® (@)
® (€))
® ®

type

®
®
®
®
®
®

type

€))
€))
€Y
€))
€))
®

M_/M
P TP+

type

®
®
®
®
®
®
®
€))

M_/M
PP+l

type

®
®
®
®
®
€))
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Group Number

I,
I,
I,
VI,
VI,
I,

6,15)
6;16)
6,17)
6,18)
6,19)

6,20)

Group Number

VI,
I,

I,

VI,

6,21)
6,22)
6,23)

6,24)

Z-Type

®
®
®
®
®
®

Z-type

®
®
®
®

G/G"

type
®-P)
®-P)
®-P)
®-P)
®-P)
®-P)

G/G"
type

®-P)
®-P)
®-P)
®-P)

p =7 (nod 12)
V. M2 M2/M3
type  type
GINNG)
(ARG
(ARG
ARG
(ARG
ARG

TABLE X1V

p 211 (mod 12)

VvV S MZHG M3/M4 VM5

type

®-P)
®-P)
®-P)
®-P)

TABLE XV

type

®
®
®
®

M3/M4
type

®
®
®
®
®
®

vV M5
type

)
©
)
@
©
®

type type
® D)
® @
® D)
® ®

M_M.
P P+1

type

®
®
®
®
®
©

M_/M
P’ P+1

type

®
®
®
@
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