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(i)

INTRODUCTION

Let R be a ring and let G be a group. The group ring 

R(G) of G over R is the free left R-module over the set of 

elements of G as a basis in which the multiplication induced by 

G is extended linearly to R(G) , [12].

YA twisted group ring R (G) of G over R is an R-algebra 

with basis (g|g e G} and with an associative multiplication 

g h = Y(g, h) gh for all g, h e G , where y(g, h) is a unit in 

the centre of R , [13].

In [5] Higman proved that the only units of finite order in 

the group ring R(G) , where R is the ring of rational integers 

and G is a finite abelian group, are +_ g , g e G . In [16]

Sehgal proved that the only units of finite order in the group ring 

R(G) , where R is the ring of rational integers and G is an 

arbitrary abelian group, are t where t is a torsion element 

of G . Moreover in [16] he proved that the units of R(G) , where 

R is an integral domain and G is a torsion-free abelian group, are 

of the form r g where r is a unit in R and g e G . Also in 

[15] he proved that the units of R(<x>) , where R is a commutative 

ring with no non-zero nilpotents and no non-trivial idempotents and 

<x> is an infinite cyclic group, are of the form r g where r is 

a unit in R and g e <x> .

In [17] Zariski and Samuel studied R-automorphisms of the 

polynomial rings R[x] , (that is, automorphisms of R[x] which 

restrict to the identity mapping on R ) where R is an integral 

domain. In [3] Gilmer determined R-automorphisms of the polynomial
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rings R[x] where R is a commutative ring. In [2] Coleman and 

Enochs studied the corresponding results in general. In [9] 

Parmenter studied R-automorphisms of the group ring R(<x>) where 

<x> is an infinite cyclic group and he determined necessary and 

sufficient conditions that x -*■ I a^x1 induces an R-automorphism 

of R(<x>) . He also studied the units of R(G) where R is a 

commutative ring and G is a right-ordered group.

This thesis consists of five chapters. Chapter 1 contains some 

well known results and definitions that are needed in this thesis.

In Chapter 2 we extend some ideas of [9] to a twisted group ring 

R (<x>) where <x> is an infinite cyclic group and we determine 

a necessary and sufficient condition that x -*■ l a^x^ induces an 

R-automorphism of RY (<x>) . Chapter 3 studies R-automorphism of 

R(G) where R is either a field or a ring with a unique proper 

ideal and G is a finitely generated torsion-free abelian group.

In Chapter 4 we determine the units and study the K-automorphisms

of K(<x> x <y>) where K is a field and <x> is an infinite 
2cyclic group, y = 1 . In [10] Passman proved that the group 4

4algebras of all non-isomorphic p-groups of order at most p over 

the prime field of p elements are non-isomorphic. In Chapter 5 

we attempt to find the corresponding results for the p-groups of 

order p^ , but the problem is still open.
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CHAPTER 1

In this chapter we present certain well-known definitions and 

general results which are needed in this thesis. Throughout this 

thesis we understand by the word 'ring', an associative ring with 

a multiplicative identity 1 . We use multiplicative notation for 

groups and we write 1 for the identity element of a group.

Definitions 1.1

Let R be a ring and r e R . Then,

(i) r is said to be 2an idempotent if r = r, [7, 8 ] .

(ii) r is said to be nilpotent if there exists a positive

integer n such that r11 = 0, [7, 8] .

(iii) r is said to be a proper divisor of zero if r ^ 0

either there exists s e R, s y1 0, such that rs = 0 or 

there exists t e R, t / 0, such that tr = 0» [8] .

(iv) r is said to be a unit if there exists s € R such 

that rs = sr = 1 . Then s is determined uniquely by r 

and we write s = r 1, [8]

Lemma 1.2

Let R be a ring. If r e R is nilpotent, then 1 - r, 1 + r 

are units.

Proof

Since the proof for the case 1 - r is similar to the proof for 

the case 1 + r we consider the case 1 + r . Let rn = 0 for 

some positive integer n . Then we have

(1 + r) , . . ,,n-l n ,1 + (-1 ) r = 1 . A
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Here we make the standard definitions with regard to ideals 

of a ring R . We should remark that throughout this thesis 

'x = y' means that x is a subset of y and 'x c y' means 

that x is a proper subset of y •

(i) I is a prime ideal of R if whenever A, B ideals of R 

such that AB £ I , then A £ I or B ^  I , [8] .

(ii) I is a maximal (right, left) ideal of R if I ? R and there 

exists no (right, left) ideal A in R such that I c a c r , [8].

(iii) I is a nil ideal of R if every element of I is 

nilpotent, [7, 8].

(iv) If I is an ideal of R such that ln = (0) for some 

positive integer n , I is said to be a nilpotent ideal [I).

Definition 1.4

Let R be a ring. Then the smallest positive integer n 

such that nl = 0 , is called the characteristic of R . If no 

such positive integer exists R is said to have characteristic 

zero.

As is well known, the characteristic of an integral domain is 

either zero or prime [8] .

Definition 1.5

The intersection of all prime ideals of a ring R is called 

the prime radical of R , [1, 7].

Definitions 1.3



3

Let R be a commutative ring. Then the proper ideal P of 

R is prime if and only if R/P is an integral domain [1, 7],

Lemma 1.7

The prime radical of a commutative ring R consists of all 

nilpotent elements of R , [7] .

Lemma 1.6

Lemma 1 .8

Let R be a commutative ring. Then the proper idealM of 

R is maximal if and only if R/M is a field [1, 7].

Definition 1.9

The intersection of all maximal right ideals of a ring R is 

called the Jacobson radicalJ(RJ , [7].

Definition 1.10

The group ring R(G) of a group G over a ring R is the 

free left R-module over the set of elements of G as a basis in 

which the multiplication induced by G is extended linearly to 

R(G) .

m n
Thus if l a g. , l B.h (a , B. e R ; g., h e G) are 

i=l 1 1 j=l 3 J J

typical elements of R(G) then their product is defined by:

m
i V ii=l

I B.h
1=1

1 1 i»j
V j (gi V C O

The notion of group ring extends to that of a twisted group

ring as follows.
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Let R be a ring and let G be a group. Then a twisted 

group ring RY (G) of G over R is an R-algebra with basis 

{g|g e G} and with an associative multiplication defined as follows:

g h = y(g» h) gh for all g, h e G , 

for some unit y(.g, h) in the centre of R, [11, 12].

The associativity condition x(y z) = (x y)z (x, y, z e G) 

implies that

y(x, yz) y (y, z) = y (x , y) Y(xy, z) (x, y, z e G) .

Taking y = 1 in the last identity we have

Definition 1.11

Y (x, 1 ) Y(x, z) whence

Yd, z) II -< 1 )

Taking x = 1 we have y (1» z) = Yd, 1) for all z e G 

and so we have

Y(l, 1) = Yd, z) = y (x , 1) (z, x e G) .

Also by taking x = 1 in x y = y (x, y) xy we have

X  7  = yd, y) 17 = y d, y)Y and this implies that

(Yd, l))"1 I  y = 7  » (y e G) .

Again by taking y = 1 in x y = y(x, y) xy we have 

x T =  y (x , 1) xT - Yd, 1) x . This implies that x [(y (1, 1)) 1 ll = x 

Hence we conclude that (y (1, 1))_1T  is the identity element of the 

twisted group ring RY (G) of G over R . We write (Yd, D) 1
briefly*,y (1 »1 )-  ̂ • ___

Now let g« G . Then from g g”1 = y ( g , g 1)1 and 

g-1 g = Y (g_1, g)T we conclude that

glYd, l)-1 Y(g, g-1)-1 g_1J “  ̂ > 3X1,3

Iy d, i)-1 Y(g-1> g)-1 g_1ig ■ Yd, i) 1 i • But yd, D  1 i is
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the identity element of RY (G) and so

Yd» i)'1 Y(g, g"1)"1 g"1 = Yd, l)“1 y(g_1, g)"1 g"1 , 
the inverse of g . Also this implies that y(g, g 1) = y (g 1t 9) 

for all g e G .

Furthermore, let I be an ideal of R and let R = R/I .

Let a bar denote a residue class (mod I) i.e.

a = a + I (a e R) .

Then from y(x, yz) y(y, z) = y (x, y) y(xy, z), (x, y, z e G) we

have y(x, yz) y(y, z) = y(x, y) y(xy, z)

Consequently we may construct the twisted group ring

R Y(G) = (R/I) Y (G) by defining

x y = y (x, y) xy

Now we define 4> : RY (G) -*■ R Y (G) by

4 1» 5) '
It is straightforward to check that is a ring-epimorphism.

« —  y ¥From this we conclude that if l ag g e R (G) is a unit in R (G) ,

then I ag 5 is a unit in R ^(G) .

Lemma 1.12

Let R be a ring and let <x> be an infinite cyclic groip. 

Let RY (<x>) be a twisted group ring of <x> over R . then

m n n m
X  X =  X  X , (m, n integers)
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Proof

To prove the lemma it is enough to prove y(xm, xn) = y(xn, xm) . 

By (1.11) we have

Y (w, y z) y(y, z) = y(w, y) y(wy, z), (w, y, z e <x> )

Y(l, z) = y(y, l) = yd, l), (z, y e <x>) .

Y(y*
-l. -l (y e <x>) .y ) >-II

First we prove by mathematical induction that y(x, xm) = y(xm, x), 

m positive integer. For m = 1 there is nothing to prove.

Assume m = 2 , by taking w = y = z = x in (1) we have
2 2y(x, x ) y(x, x) = y(x, x) y(x , x) . This implies 
2 2y(x, x ) = y(x , x) because y(x, x) is a central unit 

in R . Now we assume that y(x, xm) = y(xm, x) , m positive 

integer, by taking w = x, y = xm, z = x in (1 ) we conclude that 

y (x, x"**1) y(xm , x) = y (x, xm) yix11* 1, x) . From this we conclude 

that y(x, x"*1) = y(xm+1, x) . Hence our claim has been established.

Now we prove that y(x2, xm) = y(xm, x2) , m positive integer. 

For m = 1 we have proved this in the last paragraph. For m = 2

there is nothing to prove. Assume m = 3 2by taking w = x ,
2y = x , z = x in (1 ) we ^ , 2 3. have y(x , x ) Y (x, x ) = y(x , x) , 3 y(x
2.Since y(x, x ) = y(x2, x) 2 3 3we conclude that y(x , x ) = y(x , x2)

Now we assume y(x , x ) = , k 2. .  y (x , x ) for k — 1 , 2 , ..., m , then

we prove that , 2 rtH-l y(x , x ) , m+1 2 = y(x , x ) . 2By taking w = x 9

y - xn- \  z = x2 in (1 ) we have

2 m+1 m-1 2. .2 m-1. . nH*l 2.y(x , x ) Y(x , x ) - y(x , x ) y(x , x ) .

This implies that y(x2, x"*1) = ytx"^1, x2) . Hence our claim has

been established
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Finally we assume y(xr, xm) = y (xm, xr) for 1 S r £ n , and

n £ m . Then by taking w = xro, y = xn+  ̂m, z = xm in (1) we
. n+1 . / n+l-m m, . m n+l-m. , n+1 m.have y (x , x ) y (x , x ) = y (x , x ) y(x , x ) .

. . , . ..  ̂ . n+1 m, , m n+1 .This implies that y(x , x ) = y(x , x ) Hence
, m n. . n m. y (x , x ) = y (x , x )

Now we prove that y(x m , x n) = y(x n, x m) for all positive

integer, m, n . By (1.11) we know that (xm) exists. Then
_ m -m , m -m. —  , . . -in . m -m . m. rrfrom x x = y(x , x ) 1 we obtain x = y (x , x )(x ) 1 .

Since 1 is central and xm xn = x° xm (m, n £ 0) we have

x x = [y(x , x )(x ) 1] [y(x , x ) (x ) 1]

V(xm, x-) y (xn, X-, (x»*,'1 (7,-1 r T  

Y(*m, x'm) y (xn, x"n) ( 7 7 ) " 1 I T

, m -m. , n -n, . m n.— I T T  -n “my ( x , x  ) y ( x , x  )(x x) l l = x  x

Definition 1.13

(I) A non-empty set x is said to be linearly ordered if there

exists a relation < on x such that the following two conditions

hold:

(i) For all a, b £ x exactly one of the following holds: 

a < b  or a = b or b < a .

(ii) For all a, b, c £ x , a < b and b < c inply that a < c .

(II) A group G on which there is defined a linear ordering <

is said to be a right-ordered group if for a, b, c £ G a < b 

implies that ac < be , [1 1 ].
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Throughout this thesis by b > a we understand that a < b . 

Exangle 1.13 (I)

Let <x> be an infinite cyclic group and let xm , xn e <x> , 

we define xm < x° if and only if m < n . Then <x> is a 

right-ordered group.

Exangle 1.13 (II)

Let G = <x^ x <x?> x 

is an infinite cyclic group.

. X <x > n
Let

< *c >
where 1 £ i £ n ,

€ G •

We define

if and only if either

(1 ) “i < 6i ' or

(2) oî  = < ' 1 s i ^ n-  ̂ •

Thus G is a right-ordered group.

Lemma 1.14 (Lifting idempotents)

Let R be a ring and let N be a nil ideal of R . Let 

X i R -*■ R/N be the natural homomorphism. Let a e R be such 

that x(a) an idempotent. Then there exists b e R such that

e = aba is an idempotent with x(e) - x(a) . [11, page 49].

Proof
Let a e R and x (a) = a . By assumption we have 

t!(a - a2) - x(a) - (x(a) ) 2 - I  - (a) 2 - 7  - a = 0 . This implies
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that a - a e N . Since N is nil for some positive inte ger
2 k 2K we have (a - a )  = 0 .  If k = 1 , then a - a = 0  and

we let b = a to obtain the result. Now let k £ 2 . Since
]çwe have (1 - a) = 1 - ad where

d = I (-l) t _1 (t ) at-è R . 
t=l

k 2 k —Hence a (1 - ad) = (a - a ) = 0  and ad = da . But a is an

idenpotent, and so 1 - a is also an idempotent. Since x is onto,

then t (1) = 1 . Thus we have

1 - t (ad) = t [ (1 - a)k] = [1 - x(a)]k = (1 - 7)k = 1 - 7  .

This inplies that t (ad) = a .

Now from 0 = (a - a2)k = ak (1 - a)k = ak (1 - ad) we have that

ak = ak (ad) . This inplies that ak = ak (ad) = [ak (ad)](ad) = ak (ad) 2 .
k le ìBy induction on i , we have a = a (ad) for any positive

k k k 2k kinteger i . Since ad = da we have in particular a = a (ad) = a d

.. , , k.k , 2k k k 2k.2k r, j.kFrom this we conclude that (ad) = a d  =( a  d ) d  = a d = [(ad)
k ki.e., (ad) is an idenpotent. Since (ad) is an idenpotent and

t (ad) = a is also an idenpotent we have,

t(e) = T [ (ad)k] = (a)k = a = x (a) .

But we know that k £ 2 , and so (ad) = aba for some b e R . A

Lemma 1.15

Let R be a ring and let <x> be an infinite cyclie group.

Let RY (<x >) be a twisted group ring of <x> over R . Then for 

any integer m > 1 we have

(i) (x)m = y (x, x) y (x2, x) ... Y(xm-1, x> x"

» y (x, x) y (x, x2) ... y (x , xm 1 )xm .
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---m.. .. . "1 . . -I “1 . . - 2 -I(ii) (x ) = Y (x , x ) y (x , x )

Proof

To prove (i) we proceed by induction. For m ■ 
—  2 --- ~2(x) = x x = Y(x, x)x . Suppose (i) holds for m

For m = 2 we have

We prove

the corresponding result for m + 1 . We have

. m+1 m —  , . , . 2 . . m-1 , m_ —
(x) = (x) , x = [y (x , x) y (x » x) . . .  y (x , x )x  ]x

= y (x , x ) y (x2 x) ... y (xm- 1 x) y (xm x)xm+1

From this result and using (1.12) the proof of (i) is complete. 

Since the proof of (ii) is similar to the proof of (i) we omit it.L

Lemma 1.16

Let R be a ring and let G = <x,> x <x_> x ... x <x > be an1 2  n
abelian group. Let <x> be an infinite cyclic group and let 

RY (<x >) be a twisted group ring of <x> over R . Then

(i) Every endomorphism of G is determined by its effect on a 

set of generators of G .

(ii) Every homomorphism of G into R(G) is determined by its

effect on a set of generators of G .

(iii) Every homomorphism of G into R(G) can be extended to an

R-endomorphism of R(G) .

(iv) A mapping ? : RY (<x>) + RY (<x>) is defined by

?[(x)^] = [£ a. x1]̂  and extended by linearity to RY(<x>) . 
i 1

__ V
Then 0 is an R-endomorphism of R (<x>) .
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Proof

Let 9 be an endomorphism of G and 6 (x̂ ) for 1  ̂i ^ n

be determined. Since every element of G is of the form
a, a. a1 2  n ,x, x_ ... x we have 1 2  n

a a a a a. a
e(xn x ... x n) = (8 (x )) (8 (x,)) ... (8 (x ))

1 z n l  ̂ “

Hence (i) and (ii) have been proved.

Let 8 be a homomorphism of G into R(G) we define 

<(> : R (G) -*• R (G) by ,

V 011 ° 2 ~n. T*()a x, x„ ... x ) = /a
L ala2 ---“n 1 n °1°2 •" °n

a. a, a
(8(x1)) i(8(x2)) ... (8(xn))

By this definition we have,
a, a„ a. 8 8

$[(7a x. 1x 2 ... x n) ($» ft xl x 2 ’'‘ xn ^a ^  ... an 1 2 n “ BXB2 ... BR 1 * n

ai+Bl a2+B2 an+B
— A i / b  X .  X  n • • • X /

* l\ a2 ••• “n V 2 6n 1 2

... an bB1B2 Bn ' “ ' " 1

a +B a +B » +B
(8 (x, ) ) 1 (8(x,)) ... (6 (xn))

° 1 °2[Va (8 (x )) (8 (x ) )
L “i°2 0n 1 2

(8(xn)) “]

i£V 2 -  »„ ie|v ,Sl<9 (*2, , ‘ 2
(« (xnD "1

a, a„
A. A «

“ia 2 ••• “n 1 2
x, 1x^ ••• xn 5 * ^ bB,B- ... B " 1 “ 2

1 2  n
61 62 \ 

X ,  X -  . . .  X )n= -Mila
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Hence 4> is a R-endomorphism of R(G) and (iii) has been 

proved.

By (1.15) we know that {(x)^ | j e H.} is a basis for 

RY (<x>) and so to prove (iv) we define *6 : RY (<x>) ■+• RY (<x>) by

'e(Z b (x)j) = l b (6 (x))j .
j 3 j 3

Since by (1.12) x̂" x̂  = x"1 x^ then as in (iii) we conclude that 6

Yis an R-endomorphism of R (<x>) . A

Lemma 1.17

Let R be a commutative ring and let G be a group. 
n

Let RY

be a twisted group ring of G over R . Let u + 1 <g± e g)
m

be an element of RY(G) such that u is a unit in RY (G) and all

a^ are nilpotents in R . Then for every integer k ,
n __

[u + l a^g^] = u + N where 
m

N is nilpotent in 1sY (G) .

Proof

Let T be the ideal of R generated by {ai | m i i S n) .

Then T is nilpotent. Since u is a unit in R 1 (G) and y(l, 1) 1

is the identity element of RY (G), (1.11) we can write

n __ . n __
u + l a±gi  = [y(l, 1 )” 1 + <1 V i 1 u ]u *

m m
^ ___ y

Furthermore (£ a^g^u is nilpotent in R (G) , because R is
m

n   n g

commutative. Let w - (£ a ^ u  with w = 0 for some positive
m

integer s . Then
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([Y(l# l) " 1 1 + w]u)(u_1 [y(1 , 1 ) _1 1 - w + w2 + ... + (-l)S_1 (w)S_1])

- Y(l, 1)_1 T .

Hence

[u+ I = u'lYd, I) - 1 1 - w + w2 + ... + (-l)S_1 (w)S"1] = u“ 1 + N
m i

ywhere N^ is nilpotent in R (G) .

? —  k kFinally, for k £ 0 it is evident that [u + £ a.g.] = u  + N
m 1

where N2 is nilpotent in RY (G) . But for k < 0 we have

[u + l  a±g 7 ]k = <[u + l  = tu_1 + ni ]_K = <u" V k + « 3 = uk + n3
m m

Ywhere N3 is nilpotent in R (G) . &

Definition 1.18

A ring R is said to be a (Von Neuman n) regular ring if for 

every element r e R there exists an element s e R such that 

rsr = r , [7,9].

Lemma 1.19

In a commutative regular ring every prime ideal is maximal [7].

Proof

Let P be a prime ideal of R . Then R = R/P is a commutative 

regular, ring which is*l.ntegral domain (1.6). Now suppose 

(j ̂  a e R . Since R is regular there exists b £ R such that

a b T  = a . This implies that b / 0 and a b a b = a b .

From a b a b = a b  we conclude that a b = 1 and b a = 1 because 

T is the identity element of R . Thus R is a field. 4



14

The following lerrana is well known [11] but we include a Proof 

of a special case for the sake of completeness.

Lemma 1.20

Let G = <x , > x <x> x ... x <x > where <x.> is an infinite i z n l
cyclic group (i = 1, 2, ..., n) . Let R be an integral domain.

Then R(G) is an integral domain.

Proof

We prove the lenma for n = 1 and the proof of the lemma for

n > 1 is similar to the proof of the lemma for n = 1 . Let G = <x>
6 i n .

where <x> is infinite cyclic group and let £ a ^  , £ b.xJ be
a 1 m ■*

non-zero elements of R(<x>) where a. ^ 0 , b f 0 . In thep n
product

the coefficient of xP is aQb which is non-zero. A

Definition 1.21

Let G be a group and let K be a field. Then

aug K(G>) = £ K <G) I = *
i

which is an ideal of K(G) , is called the augmentation ideal of 

K(G) , [LI].

Lemma 1.22

Let g = <gi : i £ I> and let K be a field. Then 

aug K(G) « I(K(G)) (1 - g .
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Proof
As aug K(G) is an ideal of K(G) and 1 - g^ e aug K(G) 

for every i it follows that £(K(G))(1 - g^ c aug K(G) .

Now we prove that aug K(G) £ £(K(G))(1 - g.) . For this we
i 1

m
suppose that £ 6 .x. e aug K(G) , then £ 6 . = 0 . This implies "Unit 

j=l 3 3 3
m m m m
l 6 .x. = l 6 . - l 6.(1 - x.) = - l 6.(1 - x.). We prove

j=l 3 3 j=l 3 j=l 3 3 j=l 3 3

1 - x. e £(K(G))(1 - g.) . Since x. e 
3 i 1 3

G we have

x. = g. g. ...g, where j e l  (u - 1 , 2, ..., r) . 
3 32 3r

We proceed by mathematical induction on the number of factors in 

21 itx. = g. g. ... <f. , to prove 1 - x, e £(K(G))(1 - g±) .
3 31 32 3r 3 i

We know that 1 - g. e (K(G))(1 - g . ) so we have 
3i 3i

1 -  g . e £ (K(G)) (1 - g .)  . t*o>uLovei. l -J  • = - J ;  (**“3 /J e  KCtJO-Jj ) U * 
3i i c ‘\ C J

it 11
’ll 9i;
n it
’ll gi;. y . ••• y-;

31 32 3o 3 (o+l)

it +1 11

’ l l %
• • • 9.1

+ 1 21 tl

’ l l ^ 2
... g.

J(

21

(o+l)

2» It it it it 21
and (1 - g. g. ... g. ) d  " 9.= ) » 1 ~ 9. 9. ••• 9^

Jl 3 2 3o 3 (o+l) 31 32 3c

belong to £(K(G))(1 - g^ we conclude that1 " <?-.
±t
(o+l)
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t> H  ±1 11
belongs to £(K(G) )(/_3.) Thus 

i

aug K(G) c £ (K(G)) (1 - g^ . 4
1

Lemma 1.23

Let G be a group and let K be a field. Let I be an 

ideal of K(G) . Let 6 be a K-automorphism of K(G) such that 

6(1) = I . Then *9 : K(G) -*• K(G)/I defined by

”6 ( 1 ai9i) = I ai 6 (gi) + I is an epimorphism and its kernel is I . 
i i

Lemma 1,24

Let G = <x> * <y> be an abelian group where <x> is an
2infinite cyclic group and y = 1 . Let K be a field of 

characteristic 2 . Then

By (1.22.) we have aug K(<y>) = K(<y>) (1 + y) because by the 

hypothesis of the lemma -y = y • This implies that 

K(G) aug K(<y>) = (K(G)) [K(<y>) (1 + y)l = (K(G))(1 + y) . Now we 

prove that (K(G))(1 + y) = (K(<x>))(1 + y) . It is evident that 

(K(<x>)) (1 + y) £ (K(G)) (1 + y) and so we show that 

(K(G)) (1 + y) £  (K(<x>)) (1 + y) • Let

il “X  + (1 + y) £ (K(G)) (1 + y) .
i 1  2 j 3

Then we have

because y + y2 - 1 + y . Hence (K(G))(1 + y) = (K(<x>))(1 + y) . A

(K(G)) aug K(<y>) = (K(G))(1 + y) = k(<x>) (1 + y) .

Proof
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Let G be a group and let K be a field.

(1) In G , (x, y) = x ^y ^xy , the commutator of elements of 

x, y of G .

(2) <...> = the subgroup of G generated by the elements and 

subgroups indicated within the brackets.

(3) If X c G , Y c G then (X, Y) « <(x, y) : x e X, y e Y> 

in particular, (G, G) is the commutator subgroup G' of G .

(4) in = the nth power of the ideal I of K(G) .

(5) S (P) = the set of pth powers of the elements of the subspace 

S of K(G) .

(6) The M-series of G is defined inductively [6] as follows,

M1 = G .

Mi = G? * M (i/p) > f°r i > 1 ' where ti/P) is

the least integer not less than i/p and is the set of

pth powers of .

«1 a 2 “k(7) We say an abelian p-group A is of type (p , p , ...» p ). If

A is the direct product of cyclic subgroups of A of orders 
“l a 2 akp , p , r p .

(8) In K(G) , [a, 6] = aB - 6a , the Lie product of elements a 

and 6 » [K(G), K(G)] = the commutator subspace of K(G) .

Notation 1.25
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Let p be a prime and let G be a finite p-group. Let K 

be a field of characteristic p . Then JK(G) = aug K(G) .

Proof

We prove that aug K(G) is nilpotent and so is nil. Then 

aug K(G) c j k (G) by lemma 1.2.1 of ft]. Let |g | = pa for some 

positive integer a . Then we proceed by induction on a .

Suppose a = 1 then G is a cyclic group say G = <g> . Hence

by (1.22) we have aug K(G) = (K(G))(1 - g) . Since gP = 1 and 

characteristic of K is p and G is abelian we have 

(aug K(G))P = [K(G) (1 - g)]P = K(G) (1 - g9) = 0 .

i i aNow suppose for every p-group of order |G| < p we have
a

(aug K(G))P = 0 then we prove the corresponding result for the 

group G of order pa+  ̂ . Since Z(G) / 1 we may suppose Z(G) 

is of order pfc for some t £ 1 . Hence there exists an element
D1 z e Z(G) such that z = 1 and so <z> is a subgroup of G .

Let i(i : G—» G/<z> be a natural homomorphism defined by

<Hg) = g<z> . Then 4> induces a homomorphism 0 : K(G) K(.G/<z>)<U.fc***J

by = I ai ̂ i <z>) ’ The •cernel °f 9 is K(G) aug K(<z>) .

Suppose £a.g. e aug K(G) then we have 6 (^a.g.) = £a.(g. <z>) 
i 1 1 i i

where Ja. = 0  . This implies that aug K(G) is mapped into 
i 1

aug K(G/<z>) . But |g/<z>| = pQ and so by assumption we have 
a o“(aug K(G/<z>))p = 0 . Since (aug K(G))P is mapped into

< K
aug k(G/<z>)P then (aug K(G)r £ ker0 = K(G) aug K(<z>) .

From this we conclude that

a d p
[(aug K(G))P ]P £  [K(G) aug K(<z>)]p = K(G) [aug K(<z>)r - 0 .

Thus our claim has been established and so aug K(G) £ JK(G) .

But aug K(G) has a basis of elements gĵ - 1 (1 ĝ_ e G) and

so is a maximal ideal. Hence aug K(G) = JK(G) . A
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Let p be a prime and let K be a field of characteristic p . 

Let G be a finite p-group in which every conjugacy class has 1 

or p elements, and let A = {5a.u. I « e K and u. is a| i l 1 i l

p element class sum in K(G)} . Then

Lemma 1.27

JK(G) n Z (K(G) ) = aug K(Z) + A .

Proof

By (1.26) JK(G) = aug K(G) and so it is enough to prove 

aug K(G) nZK(G) = aug K(Z) + A .

Let {g^, $2 ' •••* *3e a coniu9acy class of G of p

elements. Then g^ + g^ + ... + € Z(K(G)) . On the other

hand we have

gx + g2 + ... + gp = + g2 + ... + gp - p

= (gx - 1) + (g2 - 1) + ... + (gp -I ) e aug K(G) . 

Hence A £ aug K(G) n Z(K(G)) .

Now let JV (z. - 1) € aug K(Z) . We have (z “ D e  aug K(G)
i i

and 5a (z. - 1) e Z(K(G)) i.e. aug K(Z) c aug K(G) n Z(K(G)) . 
i 1 i

Hence we have

aug K(Z) + A £ aug K(G) n Z(K(G)) . (1)

x =

<Ie >i 1

Conversely let x e aug K(G) n Z(K(G))
le .(g,  -  D -  EM, -  ( le . J l  . Since 
i 1 1  i i

le Z(K(G)) we have £ 6 ^  e Z(K(G)) .

. Then we can write 

x e Z(K(G)) and

But the centre of K(G)

is spanned by all the class sums of G and so we can divide
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7 3. g. into two parts say £.3, g. + 7 3 .  g. . Where allA 1. 1. li 1 1l A A K y y

g. e Z and every g. belongs to one of the class sums of G
X y

that have p elements. Since 7 8  ̂g^ e Z(K(G)) , the number of
Vi V V

terms in 7 9  ̂ is a multiple of p and for every 3  ̂ there
U U U V

are p - 1 other coefficients that are equal to 3̂  • Thus
y

7 6 . 9± e A . Moreover x - 7 ^ ^  - D  - 7 ~ D  + l <3t
y y y i X X X  y y y

because 7 B• = 0 . Hence x e aug K(Z) + A and so
y y

aug K(G) n Z(K(G)) £ aug K(Z) + A . A

Lemma 1.28

Let N be any ideal of group ring K(G) where K is a field.

Let a, b e G such that a - 1 e N*, b - 1 fc (1 S i £ j) .

Then

(1) (ab - 1) = (a - 1) + (b - 1) mod N1+1 .

(2) (an - 1) 5n(a - 1) mod Ni +1 (n positive integer).

(3) (b - 1) (a - 1) = (a - 1) (b - 1) + (c - 1) mod N1 +j +1 ,

where c = (b, a) = b  ̂ a ba , [,1 0 J ̂

Proof

The proof of (1) follows from 

(ab - 1 ) = (a - 1 ) (b - 1 ) + (a - 1 ) + (b - 1 ) 

and (2) is a special case of (1). Since

(b - 1 ) (a - 1 ) - (a - 1 ) (b - 1 ) = ab (b * 1a 1ba - 1 ) = ab(c - 1 ) 

we conclude that (c ~ 1) e N  ̂ • Hence (3) follows from

(b - 1 ) (a - 1 ) - (a - 1 ) (b - 1 ) - (ab - 1 ) (c - 1 ) + (c - 1 ) . A
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An element a of a ring R is said to be right-quasi-regular 

if there exists a' e R such that a + a' + aa' = 0 . We call 

a' right-quasi-inverse of a , [4],

Definition 1.30

We say that a right ideal I of a ring R is right-quasi­

regular if for every element a of I there exists a' e R such 

that a + a' + aa' = 0, [4].

Definition 1.29

Lemma 1.31

The Jacobson radical of a ring R is the unique maximal right- 

quasi-regular right ideal of R , [4].

Lemma 1.32

Let G = <x> x <y> where <x> is an infinite cyclic group 

and y2 = 1 . Let K be a field. Let u e K(<x>) and let u 

be a unit in K(G) . Then u is a unit in K(<x>) .

Proof

Since ul is a unit in 

such that ul(A + By) = 1  . 

uB = 0 . A

K(G) there exist A, B e K(<x>) 

This implies that uA = 1 and
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CHAPTER 2

In this chapter we extend some ideas of 13] for twisted group 

rings that M.M. Parmenter has obtained for group rings. We 

follow his method of proof.

Lemma 2.1

Let R be a commutative ring and let G be a right-ordered 

group. Let RY (G) be a twisted group ring of G over R and 

let U(RY (G)) denote the units of RY (G) . Then the following two 

statements are equivalent:

We assume first that (i) holds. Let a e R be nilpotent with

(i) U(RY (G)) = {Jag g | there exist e R with
9

g

whenever gh ^ 1 } .

(ii) R has no non-zero nilpotent elements.

Proof

aK = 0 for some positive integer K . Let 1 t g e G . Then by 

(1 .2) y(l, l )”* 1 T + ag is a unit in RY (G) .

where = y(l, 1 )-1
1 9

ag = a . By (1) there exist B,» 6 .
g

e R such that

yd, l)"1 ß1 Yd» 1 ) + a « Y(g» g X) ■ Yd» !) (i)

( 2)

g
(3)
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But = Y{1, 1)  ̂ is a central unit in R and so (2) 

implies that _1 = 0 . From this and (1) we conclude that
g

6X = y (1, l) ' 1 . (4)

From (4) and (3) we obtain ,

a y dr 1 ) 1 = a 8, = 0 .
9 g l

This implies that a = = 0 , which we wished to prove.

m __
Now we assume that (ii) holds. To prove (i) let £ a. g.

i=l 1 1
n __

be a unit in RY (G) . Then for some [ 6 , h. £ R^IG) we have
j=l 3 3

m __ n __ ____ _
( l ai9i) ( I B.h ) = I a.B. Y^i* h. )g.h. = yd* U  1 • (5)
i=l j=l l^i^m J J J

l£j<n

We shall show in (5) that, ouBj = 0 whenever g^h^ 7* 1 and

from this we shall conclude that £ a B y (9 i 9 ^  s Yl1- ^  1 •
9 9

Since G is a right-ordered group (1.13) under the relation < 

we may impose in a natural manner an ordering, also denoted by < , 

on the set S = {x | x e G} by defining

x < y if and only if x < y .

We now suppose the numbering is chosen so that

<31 < g2 < ... < 9m and < h2 < ... < hR

Then we have

*lhl < g2hl < *•• < gmhl '

9lh2 4 g2h 2 4 •”  < gmh2 '

... < g h m nglhn < g2hn "
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From these relations it follows immediately that

glhl " g2hl " " gmhl '

glh2 < g2h2 " " gmh2 '

g.h < g.h < ... < g h ”1 n ”2 n ^m n

The maximal element of {g^h^ |i “ 1» 2, ..., m , j = 1, 2, ..., n}

must occur in the set {g h . | j = 1, 2, ..., n} , and for the sakem 3

of argument, we suppose g h. is the maximal element of this set.m 3.
By 1.13(1) the maximal element g h. occurs precisely once inm 3

{g^hj I l — 1, 2, ..., m, 3 ~ 2, ..., n } .

Hence g h . is unique. « 31

To prove that = 0 whenever g Jk  ^ 1 we need to prove

a. 8. = 0 whenever g.h. < 1 or g.h. > 1 . We know that it is 
1 3  1 3  1 3
false that g h , < 1 , because if g h, < 1 , thenm 3 m 3

-1 T does not hold. If g h. = 1 ,m 3,(l V i)( l W  - Y(1' 1)_ 1i=i 1 3=1 3 j ji

then we prove a^8j = 0 whenever ĝ h_. < 1 , because there is no 

element g such that g^h^ > 1 .

Let us assume that 9 h, > 1 . Since g h is maximal and m 3j m 3̂

unique in {g^h^ I ^ 2* ..., m, j — 1 , 2, •••# n} it follows

< l « i i j ( l = E aiei Y(V  hi)gi N  = Y(1' 1 ) 1 1 'i=l 1 1  j=l 3 3 lSiSm 3 3 3
from

lSjïSn

that a h , y (g , h . ) = 0 . But y( g , h ) is a unit in R and 
m 31 m 31 m 3j_

so we have a {. = 0m 3.
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Now we proceed to prove that a^Bj = 0 whenever g Jk  > 1 •

Assume that a 6 = 0  whenever there exists p > 1 such thatr s r

£ > g h = g h = ... = g h. > 1
E1 kl E2 k2 £p kp

( 6 )

Where g h (v = 1, 2, ..., p) are all of the elements equal
Ev \

to g h, . Hence from 
£1 kl

l *>i 9i I e h = Yd. I)" 1 1 
i=l j=l J 3

we have

\ \  \> + W  + •” + V Bk Y<ge_' V  = °P P P P
(7)

Suppose we have arranged the notation such that ei < e2 < ' * * < e

Then by multiplying (7) by a we have
EP

“ \  “ Y(ge ' \  > + ae Sk “c Y(ge ' hk } + '•*
£1 kl p 1 1 2 *2 Ep £2 *2

+ ae 6k °e Y(ge ' hk } = 0 * P P P P P
(8 )

But 1 < t < p implies that et < ep and this in tun* 

implies that g h < g h . Since g h > 1  for 1 S t i p ,£ Kj_ £_'t t p t

we have g h > g h > 1£ K £ K.p t t t

t t

From this and the hypothesis for

(6) we have a 6 = 0 for 1 S t < p . Hence from (8) we
£P Kt

conclude that a 8, a = 0 . This implies that k e P P P

“e 6k “E 6k " (ae 6k > p p p p P P
0
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But R has no non-zero nilpotent elements and so (a 6^ ) = 0
EP P

implies that 8^ = 0 . In this way we deduce that

2

P P

a 6, = 0 for 1 £ t £ p . Hence a. 6 . = 0 whenever g. h. et kt * i J i j

Similarly we prove B_. = 0 whenever g^ h^ < 1 . A

We now utilise the previous lemma to extend the results to 

rings with nilpotent elements.

> 1

Lemma 2■2

Let R be a commutative ring and let G be a right-ordered
vgroup. Let R (G) be a twisted group ring of G over R . Then 

l a g is a unit in RY (G) if and only if there exist 6 e R
g 9

r -l  -isuch that l a 8 _1 y(g, g ) = y(l, 1 ) and a 8h is nilpotent
g 9 g

whenever gh / 1 .

Proof

We assume first that £ a g is a unit in R^(G) . Let P be
g 9

the prime radical (1.5) of R . Then by (1.11) £ a g (ag e R/P)
g

is a unit in (R/P) Y (G) . Since R/P has no non-zero nilpotent 

elements by lemma (2.1) there exist 6g e R/P such that

l a  6 y(g, g”1) » yd» D  1 and cxg 6h y(g, h) = 0
g 9 g"

whenever gh f 1 . From this we conclude that

l a 6 y(g, g 1) = y(l» 1 ) 1 + n ,
g 9 g
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where n is nilpotent in R and 6^ y(g, h) is nilpotent

in R whenever gh ^ 1 . By (1.2) we conclude that £ a 6  ̂y(g, g
g 9 g” 1

, - 1
is a unit. Let ( £ a 5 y (g, g = w . Since

g 9 g

ag 6^ y(g, h) is nilpotent whenever gh ^ 1 and R is commutative

6^ y(g, h)w is also nilpotent in R whenever gh ^ 1 . Thus 

by letting 6^ = 6^ w the 'only if' part of the lemma has been 

established.

Now, we suppose there exist 8^ in R such that 

r - 1 - 1) a 6 . y(g, g )=y(l,l) and a 6. is nilpotent in RQ g ng

whenever gh f 1 . This means that there exists \ 6^ h e RY (G)

such that (J a g) (£ 6. h) = y (1 , 1 ) 1 1 + £ a 6. y (g ,  h)gh
g 9 h g,h 9

gh^l

where a 6. is nilpotent when gh ^ 1 . Hence \ a 6. y(g, h)gh 
g h g,h g h

gh^l

is nilpotent and so by (1.2), (£ a g)(£ h) is a unit. This

implies that J a g is a unit. A
g 9

Corollary 2.3

Let R be a commutative ring with no non-trivial idempotents.
VLet G be a right-ordered group and let R (G) be a twisted group 

ring of G over R . Then £ a g is a unit in RY (G) if and
g 9

only if a i s  a unit in R for some X , and all other ag's are

nilpotent in R .
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Proof

By lemma (2.2) £ a g is a unit in RY (G) if and only if
9 9

there exist B e R such that 9

l « B _i y(g, g 1) = Y(1, l) 1 ,
g 9 g

(i)

and a B^ is nilpotent in R whenever gh ^ 1 .

In (1) for fixed v we have,

°v B -1 °v Y(V' v = Yd, l)”1 av + n ,
V

(2 )

where n is nilpotent in R . We multiply (2) by 
-1 2

3 y(v, v ) y(l, 1 ) ? then we have
v

“v e -1 “v e -1 y d, V ^ V d »  l) 2 = Y(v, v x) Yd» 1) av 6 - 1 + ni
v v v

where is nilpotent in R . For convenience, let

w = Yd» v Yd» 1) and so we have

(w o B _x) - » o B _x + n
V V

Now, let P be the prime radical of R (1.5) . The„modulo P ,

w a B 1 is an idempotent. Since by (1.7) P is a nil ideal of
v v

R and by (114) idempotents can be lifted modulo P , there exists

an idempotent f e R such that

w a B , = f (mod P) . v - 1v
But R has no non-trivial idempotents so either f = 0 , or f = 1 , 

Then we have

w B i = 0 (mod P)
v

(3)

or

w a B •,=! (mod P) . v - 1
(4)
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Suppose (3) holds. Then 
-1 .Y(v, v ) yd* 1) av B _j_ = w a 6 e P ,

v v

whence

Y(v, v ) Yd» 1) av 6 , a e P .
v

(5)

Furthermore, by multiplying (2) by Yd» 1) we have,

Y(v, v 1) Yd» 1) <*v 8 -;L = av + Yd» D  n . (6)
v

By using (5), (6) and the fact that Yd»l) n e P we conclude 

that e P , i.e. a^ is nilpotent.

If (3) holds for every v , then J a g is nilpotent.
9 9

But this is false because J a g is a unit. Hence (4) holds
9 9

for some v , say w 6 = 1 (mod P) . Let = w 8 _x - 1
X X

Then n2 e P . Let a^ e be any term in J a g  
L g other a. X .A

Then by multiplying n2 by we have

w ax 8 , ae - aE = a£ n2 . 
 ̂ “ 1

By (2.2) a 8 , e P because e X ^ 1 ,
e X

and so w ax 8^_1 ae e

Also n2 e P implies that ct£ n2 e P , hence from

w ax 8 . a  - a = a n_ we conclude that
x- 1 E e e 2

a € Pe . Thus all

a 'sg other than are nilpotent.

€ P

r - 1 - 1
Again by (2.2) we have Z. <* 6 Y (g» g ) = Yd. 1)

g 9 g

Since all a 's other than u, are nilpotent we haveg A
o 6 . Yd» *_1) + I “J . i  Y<9» 9_1) “ Yd» 1)
A X"1 g^X 9 g X

l a e y (g» g >
g^X

where
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is nilpotent in RY (G) . Thus we have 6 . y(\. X" 
X" 1

X) = y(l, 1 )

where n3 = - - 1 - 1
‘ I 01 
gix ^ 6 - 1  g

Y(g, g ) . But, since y(l, 1 ) is a

unit in R , then Y(l, 1 ) 1 is a unit in RY (G) . Hence by
”1 Yusing lemma (1.2) Yd, 1) + n 3 is a unit in R (G) . This
“1 Yimplies that a 6 . y{\, X ) is a unit in R (G) and so

A X" 1
is a unit in R^JG) . Thus â  is a unit in R . A 

Corollary 2.4

Let R be a commutative ring with no non-zero nilpotents and 

no non-trivial idempotents. Let G be a right-ordered group
yand let R (G) be a twisted group ring of G over R . Then

Y —the only units of R (G) are of the form r g where r is a 

unit in R and g e G .

Proof

Since R has no non-trivial idempotents by Corollary (2.3)

J <jg g is a unit in RY (G) if and only if oĉ is a unit in R 

for some X and all other a^'s are nilpotent in R . Since R 

has no non-zero nilpotents then £ a g is a unit in RY (G) if
g 9

and only if a. is a unit in R for some X and all other o 'sA y
are zero. A

Before starting to extenj. theorem (2.1) of [9] we prove some 

lemmas on group rings of infinite cyclic groups.

Lemma 2.5

Let R be a ring and let <x> be an infinite cyclic group. 

Let RY (<x>) be a twisted group ring of <x> over R . Let 

Z(R) be the centre of R and let Z(RY (<x>)) be the centre of 

RY (<x>) . Then,
Z(RY (<x>))« (Z(R))Y (<x>) .
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Proof
in vBy (1.12) we know that for any integer m , x c Z(R'(<x>)) .

It follows from this that (Z(R))Y (<x>) c^Z(RY (<x>)) .

To prove Z(RY (<x>)) (Z(R))Y (<x>) we assume that J x*

is an arbitrary element of Z(RY (<x>)) and b is also an 

arbitrary element of R . Then we have

(I ai x1) (b I) = (b 1 ) (J a. x1) .

This implies that

ai b y(x1, 1 ) = b ai y(l» x1) ,

for all i .

By (1.11), yfx1, 1) = yd, x1) = Y(l» 1) is a central unit

in R and so we have a. b = b a. for all i . This implies1 1

that a. t Z(R) for all i , and hence Z(RY (<x>)) c (Z(R))Y (<x>) .4 
1 —

Lemma 2.6

Let R be a comnutative ring and let <x> be an infinite
Vcyclic group. Let R (<x>) be a twisted group ring of <x> over 

R . Let £ ai x* be a unit in RY (<x>) and let £ b^ x3 be its 

inverse in RY (<x>) . Then, a^ a^ and b£ b^ are nilpotent 

in R whenever e ^ v

Proof

By example 1.13(1) , <x> is a right-ordered group and by

using (2.2) we have £ ai b_i Y(x^, x 1) = yd» D  1 • Also 

aA b.. is nilpotent in R whenever i + j / 0 .

Let Pq be a given prime ideal of R . Then by (1.11) 

l ai x1- (a7 £ R/Pq) is a unit in (R/Pq )Y (<x>) . But by (1.6)
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R/Pq is an integral domain and therefore has no non-trivial 

idempotents. Hence by (2.3) for some iQ depending on PQ ,

\
is a unit in R/P^ and a^ = 0 for all i * i 0

. Also

for some j g depend on P- , b . is a unit in 
0 30

v p 0 and b . = 0 3

for all j ? jQ • This implies that exactly one a^ and exactly

one b.3 do not lie in PQ . In fact, iQ = - jp because

I ai b_i Y(xi, x 1) = y(l, 1 )

Finally we wish to prove that ae av (e ^ v) is nilpotent.

For this let p be an arbitrary prime ideal of R . Since

exactly one â does not lie in p we conclude that either ae
or a^ belongs to p and then a£ a^ belong to p . This implies

that a£ a^ belong to all prime ideals of R and then by (1.7)

a^ a^ is nilpotent. A

Lemma 2.7

Let R be a commutative ring and let <x> be an infinite
Ycyclic group. Let R (<x>) be a twisted group ring of <x> over

Z i Yai x be a unit in R (<x>) and let â  ̂ be

nilpotent for i ji 1, -1 . Let there exist cfc e R such that 
v -r t
£ c (£ a. x ) = 0 . Then c is nilpotent for all t .

t=-u t i 1

Proof

Let (£ a^ x1 ) - 1 = £ bj x^ , and p  be a prime ideal of R . 

v _ _ —t- t -- -
Then by (1.11) l cfc (J at x ) = 0 , (ct, a£ e R/P) . Since

t— u i

ai is nilpotent for i ft 1 , -1 , we conclude from (1 .6) that all
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R/P is an integral domain and therefore has no non-trivial
0

idempotents. Hence by (2.3) for some i^ depending on ,

\
is a unit in R/P^ and a. = 0 i for all i jt iQ . Also

for some j q depend on p0 . is a unit in R/P^ and b . = 0 3

for all j / jQ • This implies that exactly one a^ and exactly

one bj do not lie in PQ . In fact, iQ = - jQ because

l ai b_i ytx1, x 1) = yd, 1 ) 1 •

Finally we wish to prove that ae av (e f v) is nilpotent.

For this let p be an arbitrary prime ideal of R . Since 

exactly one a^ does not lie in p we conclude that either a^ 

or a^ belongs to p and then a£ a^ belong to p . This implies 

that a£ a^ belong to all prime ideals of R and then by (1.7) 

a£ a^ is nilpotent. A

Lemma 2.7

Let R be a commutative ring and let <x> be an infinite
ycyclic group. Let R (<x>) be a twisted group ring of <x> over 

v i YR . Let 2, ai x be a unit in R (<x>) and let a^ be

nilpotent for t / 1, -1 . Let there exist cfc e R such that 
v -r t
£ (£ ai x ) = 0 . Then ct is nilpotent for all t .

t——u i

Proof

Let (£ a^ x1 ) " 1 = £ bj x^ , and P  be a prime ideal of R . 

v _  __ —x- t  —   
Then by (1.11) l ct <1 ai x ) = 0 ' <ct' ai e R/P> * since

t«-u i

a is nilpotent for i ft 1 , -1 , we conclude from (1 .6) that all
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a^ except a^, a ^  are

in RY (<x>) so by (1.11)

are zero.o. Furthermore, £ a^ x1 is a unit
i Va^ x is a unit in (R/P) '(<x>) .

Hence by (1.6) and (2.4) we conclude that one of a^ , a_^ must 

be zero and the other one must be a unit in R/P . Thus there are 

two cases as follows:

(i) a1 is a unit in R/P and a is zero.

(ii) a 1 is a unit in R/P and is zero.

Since the proofs for (i), (ii) are similar we assume, for 

convenience, that (i) holds.

By example 1.13(1) <x> is a right-ordered group. Then by
r i -i - 1using (2.2) we have l a.̂ b_^ y(x , x ) = y(l, 1) . From this

and the fact that ai = 0 for all i / 1 we obtain

â  ̂b y(x, x 1) = yd/ 1) 1 • This implies that b_1 is also

a unit in R/P because y(l, 1)  ̂ , y(x, x 1) , a1 are units in 

R/P . But J bj x̂  is a unit in RY (<x>) , hence by (1.11)

J bj x^ is a unit in (R/P)Y (<x>) . Thus by (1.6) and (2.4)

exactly one b.. must be a unit in R/P and all the other b/s 

must be zero. Since b 1 is a unit in R/P we conclude that

bj = 0 for all j /-I .

Since aj’ is a unit and ai = 0 for i / 1 we deduce from

that

l ct (al x)t “ 0

r ----t _t
l ct ai x " 0

i.e.



This implies that cfc = 0 for all t , i.e. ct €

But P is an arbitrary prime ideal and so each cfc 

all prime ideals of R . This implies by (1.5) and 

all cfc are nilpotent in R . A

P for all t

belongs to 

(1.7) that

We shall in lemma (2.8) obtain a stronger result.
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Lemma 2.8

Let R be a commutative ring and let <x> be an infinite 

cyclic group. Let R^(<x>) be a twisted group ring of <x> over 

R . Let £ a^ x^ be a unit in r "^ (< x > )  and let a^ for i 1, -1 

be nilpotent. Let there exist cfc e R such that
v
I

t=-u
l c (I a x V  = 0 , u , v positive integers.

Then all c = 0 .

Proof

Let a a and b be v e v(£ aA x1) = ^ b . x] ■ By (2.6)

are nilpotents whenever e ^ v . By (2.7) all c are nilpotent.

Let T be the ideal of R generated by,

{cfc} u {a^ | a^ is nilpotent} u {b̂  | b^ is nilpotent}

u {a£ aV |e + v} u {b£ bv | e t  v}

Then T is nilpotent. Let all ct e Tk for sane k > 0 ,

some ct does not belong to Tk+1 . Let R = R/Tk+1 .

In R (<x>) we have

l c ([ a x V  = 0 .
t— u 1 i

We can write

« —  - ----T.t r-l -i  c (I a x V  = l  * c (l a x V  + c0 + l  cfc (J a . x1)
t=-u i t=-u i t=l i

i.t

l c_t <1 a4 xi>_t + co + l ct (£ ai xi)t = 0 ' t- 1  i t- 1  ^ i
that is

I  c $  b xj)fc + c + l c (l « x1 ) 11 - 0 
t- 1 * j J t- 1

—  ,r -  i.t (1 )
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Since all cfc £ T and e T , b^ £ T when i + 1, -1

we have

-l.tu   ___— r ___________  v ___________  ^
\ c (b 1 x + b. x) + c + \ c (a. x + a 1 x *)w = 0 . (2)

t=l “ 1 0 t=l 1

By equating the coefficients of (x)fc for t > 0 in (2) 

we conclude that

c (b1)t + cfc(a1)t = 0 , t > 0 . (3)

By using the fact that all cfc e T and b^ b_^ £ T we

multiply (3) by b_^ and we have

•ct (a1)t b_x = 0 , t > 0 . (4)

Two cases arise:

(1) t = 1 .

(2) t > 1 .

In case (1) we have c1 ax b ^  = 0 • 

In case (2) we prove that c â  ̂= 0

By (2.2) we know that l ai b_i Y(xS x-1) - Y (1, 1) 1 . From 

this we obtain

l I " b ~  yix1, x_i) = y(l, l) “ 1 . (5)

From (5) we conclude that

^ b ^  Y(x* x"1) = Y(l. 1)_1 - a_! bi Y(x_1> x)

l a. b Yf*1# x Ì) •
i^l,-l

(6)
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By multiplying (4) by y(x, x_1) we have

<=t (a1)t 1 (a1 b_1) y(x, x-1) = 0 , t > 1 . (7)

Now by multiplying (6) by cfc(a1)t 1 (t > 1) , and using (7) 

we conclude that

0 = ct (a1)t 1 (a1 b_x) y(x, x 1)

= Cfc(a1)t 1 [y (1 , 1 ) 1 - a ^  b 1 y(x 1, x) - £ â  ̂b_i yix*, x i)] (8)
i/1 , - 1

But c (a.)t ^ I a. b_. ytx1, x S  = 0 , because all 
i*l,-l 1

ct e T and a^ belong to T for L / 1, -1 . Also

ct (a^)fc  ̂a ̂  b^ y(x x) = 0  because t > 1 and by (2.6)

a1 a e T . Thus from (8) we have cfc (a1)t 1 y(l, 1) 1 = 0 .

This implies that cfc (a.^* 1 = 0 because y(l, 1) 1 is a unit 

in R/^k+l .

By repeating in this manner we obtain cfc a^ = 0 (t > 1) .

Similarly we prove that c^ a_^ b^ = 0 and c^ a_^ = 0 (t > 1) .

Thus we have c^ a^ b_^ = 0 , c^ a_^ b^ = 0 , and also

^  = 0 , c^ a 1 = 0 for t > 1 . By using these results and

multiplying J a^ b_^ y(x * x ) ■ y(l« 1 ) by cfc (t 2: 1 ) we have

0 = c~[a~ b T  y(x, x-1) + a T  b7 y(x_1, x) + £ « 7  ̂ 17 Y(x\ x"1)]
t \ -i 1 i*l,-l 1

- ^  y(l, l) " 1
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This implies that cfc y(l, 1) 1 = 0 i.e., ct = 0 because y (1, 1) 1

k+1is a unit. Hence cfc e T for t £ 1 .

k+1Now we show that all ct » (t £ -1) beong to T . For 

this we multiply c_fc (b^*" + ct ia1)t = 0 , (t > 0) by a ,

and since c (a^)*a_^ e T^+1 we have

c_t (b1)t a_^ = 0 , t > 0 . (9)

Two cases arise:

(5) t = 1 .

(6) t > 1 .

In case (5) we have c b^ a ̂  = 0 .

In case (6) we show that c b^ = 0 , t < -1 . For this from
V -- ■ ■ ■ j. —i —1
l a^ b_^ y(x , x ) = y(l, 1 ) we conclude that

a, b^ y(x_1, x) = y(l, 1 ) 1 - ax b_x y(x, x 1) - J aA b_i yix1, x
i-lf- 1

(10)

Also from (9) we obtain

c_t (b^* 1 (b1 a^jyjx 1, x) = 0 , t > 1 . (11)

By (10) and (11) we conclude that

0 = c_t (b1 )t_1 (b1 a_1 )y(x 1, x)

5 . (b. ) t _ 1 [yd, l) " 1 - a b  y(x, x X) - £ a b y(x\ x 1))-t 1 i  i-1,-1
(12)

But we know that all cfc e T and aA e T for i )< 1, -1 . Also 

t > 1 and b1 b ^  e T . Hence from (12) we obtain
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c_t(b1)t 1 y(l, 1 ) 1 = 0 and this implies that c 1 = 0

- 1 k+1because y(l» 1) is a unit in R /T . By repeating in

this manner we have c t

-*
1 II o ft V 1 . Hence cfc b^ = 0 , t < - 1 .

Similarly we prove that C- 1 b-l al = 0 and cfc b_ĵ  = 0 (t < -1 ) .

Thus we proved that, c ^ b ^ a ^ = 0 ,  c  ̂b  ̂a^ = 0 .

Also c b^ = 0 , c b_1 = 0 for t < -1 . By using these results 

and multiplying

I ^  b_iY(x1» x 1) = Yd» 1 ) 1 

by c (t 5 -1 ) we conclude that

0 = c [a b Y (x, x 1) + a b (x 1, x) + J a. b ytx1, x i)]
i*L,-l

cfc y(l, 1 )- 1

This implies that cfc = 0 for t £ - 1 .

Now we proved that cfc = 0 for t 2 1 and cfc = 0 for t S -1 

By these results and

tL~, f v 1)4 ' 0

__ fc+i
we conclude that c0 = 0 . Hence all cfc belong to T , 

contrary to assumption. Consequently all cfc lie in arbitrary 

large powers of T . Since T is nilpotent all c - 0 . A

Now we are in a position to extend Theorem (2.1) of [9]. 

Since the proof is long we split it into two lemmas.
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Lemma 2.9

Let R be a ring and let <x> be an infinite cyclic group.
vLet R (<x>) be a twisted group ring of <x> over R and let 

Z(RY(<x>)) be the centre of RY (<x>) . Let Z(R) be the centre
—  —  n Yof R and let 0 : x -*■ l a. x induce an R-automorphism of R (<x>) .

i

Then the following two conditions hold:

(i) £ ai x1 is a unit in (Z(R))Y (<x>) .

(ii) If i / 1, -1 , then a^ is nilpotent.

Proof

By (2.5) Z (RY (<x>) ) = (Z(R))Y (<x>) and by (1.12) x is a

central unit in RY (<x>) . Since 0 is an R-automorphism of

ry (<x>) we conclude that £ a^ x1 is a unit in
i

(Z(R))Y (<x>) = Z(RY (<x>)) and (i) holds.

Now we prove (ii). £ a. xi is a unit in (Z(R))Y (<x>) .
i 1

Then (£ a. x*) 1 exists and belongs to (Z(R))Y (<x>) . Let 
i 1

il a x1 ) - 1  = l b xj .
i j 3

Hence we conclude that a^» b_. e Z(R) for all i, j . Since
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8 i x £ a^ x* is an R-automorphism of RY(<x>) , {([ a. x^)fc : t 
i i 1

is an R-basis of RY(<x>) and so there exist cfc e Z(R) such that

By applying

x =  £ c (£ a. xi)t , e , 6 positive integers. 
t=-e i 1

(I i.-t ai x ) (l b xj)fc , (t > 0)
j 3

we have

-e (£ ai xl)-£ + •' 
6 i 1

* + C- 1  (? ai x l ) _ 1 + c 0 + C1 (? a. x1i i

+ ... + c, (J a x S *5 = c (£ b. xj)e o ;  l  -e “ ni 1

... + c_1 (I b^ x3) + c0 + c1 (l a£ x1)

+ ... + c . iv6(I ai X ) (1 )

The coefficient of x on the left hand side of (1) is 1 . 

The coefficient of x in b. x3) is c_1 b1 and the
j 3

coefficient of x in c^(£ a^ x^) is c^ a^ .

But by (2.6) all â  a^ and b^ bv for u ^ v are nilpotent
— r —I” kin Z(R) , and so the coefficient of x in c. 0  a x )x i  1

for either k > 1 or k < - 1 is nilpotent.
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Hence by equating the coefficients of x in (1) we have 

1 = c_1 bx + c1 ax + n , (2)

where n is nilpotent in Z(R) .

Let P be an arbitrary prime ideal of Z(R) . If a.̂ € P

and b.̂  e P then by using (2) we have 1 e P , because n is

nilpotent, and then P =2(R) . Hence for any prime ideal P of 

Z(R) , a1 e P implies that b^ i P .

By example 1.13 (I), <x> is a right-ordered group and then

by (2.2) we have

l b_i yix1, x X) = y(l, 1) 1 , (3)

and a^ b^ is nilpotent in Z(R) whenever i + j f 0 . From 

this and multiplying (3) by b^ we obtain

bl -l b i Y (x 1» x) = ^  Yd, 1) 1 + nx , (4)

where n^ is nilpotent in Z(R) .

It follows from (4) that if a_1 belongs to any prime ideal 

P of Z(R) , then b. also belongs to P , because n^ is 

nilpotent. Suppose there exists a prime ideal P of Z(R) such

that a1 e P and a  ̂e P . We wish to show that P cannot

exist., By above paragraphs a1 e P implies that b^ / P and

a-l 6
P implies that b.̂  e P which is impossible. Thus for any

prime ideal P of Z(R) , a^ c P implies that a • l ' P *

Finally, consider a , t +1 . We wish to show that afc

belongs to all prime ideals of Z(R) . For the sake of argument

suppose Q is a prime ideal of Z(R) such that afc i Q . Since

T a, x* is a unit in (Z(R))Y (<x>) by (1.11) 
i 1 ________

l ai x1 (ai - + Q)



is a unit. By using (2.4) and the fact that afc f 0 we conclude 

that afc is a unit in R/Q and a^ = 0 for all X ^ t . In 

particular a^ = 0 , a_1 = 0 and then a^ £ Q , a_^ e Q which is 

false. Hence for any prime ideal P of Z(R) , afc e P whenever 

t ? + 1 ? i.e. at is nilpotent whenever t j1 + 1 . A

Lemma 2.10 * (i) (ii)

Let R be a ring and let <x> be an infinite cyclic group.
vLet R (<x>) be a twisted group ring of <x> over R and let 

Z(RY(<x>)) be the centre of RY (<x>) . Let Z(R) be the centre

of R .

Suppose that

(i) £ ai x1 is a unit in (Z(R))Y (<x>) .

(ii) If i / 1, -1, then â  ̂ is nilpotent.

Then the map 6 : x^ -*■ (£ a. x^)^ induces an R-automorphism of
i 1

RY (<x>) .

Proof

Let ([ a x1 ) " 1 = l b xJ .
i j 3

First by (2.5) we know that Z(RY (<x>)) = (Z(R))Y (<x>) . Now 

we define T s (Z(R))Y (<x>) ■+■ (Z(R))Y (<x>) by

”0([ d^ (x)X) = l dx (6 (x))X = l dx (£ a£ x V  .
X X  x

By (1.16) ~  is an Z(R)-endomorphism of (Z(R))Y (<x>) and we

prove that 6 is 1-1 and onto, i.e. 0 is an Z(R)-automorphism 

of (Z (R))Y ( < x > ) .

Assume l c (x)fc £ (Z(R))Y (<x>) such that 0[£ c (x)t] = 0 . 
t t t
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cfc = 0 and hence 6 is 1 - 1 .

Now we prove that 0 is onto. Since by condition (ii) all 

for i ft 1 , - 1 are nilpotent, from

1 ai y(xi, x’1) = y(l, l) " 1 
i

we conclude that

ai b-l Y *x' x ^  + a-i bi Y(x X, x ) = y(l, 1 ) 1 + nx (2)
Ywhere n1 is nilpotent in (Z(R)) (<x>) .

— 1 — YSince y(l, 1) 1 is the identity element of (Z(R))'(<x>)

we have

[Y (x, x 1 )b_1 (£ aA x1) + y (x 1, x)a_1 (£ b.. x^)] 1

= [y (x, x X)b a x  + y(x, x 1)b n( £ a x 1) + y (x 1 ,x)a .b x + yj(x 1, x)a
i*l

( l b x :)]I 
3

= [y(x, x 1 )b_1a1 + y(x 1, x)a_1b1ll x + n2

Then we have £ c (£ a xi)t = 0 . By (2.8) we conclude that all
t i

where n2 is«it potent in (Z(R))Y(<x>) . From this and (2) we have

[y(x, x 3)b . (£ a. x1) + y(x 1, x)a , (£ b. x3)]l 
~L i 1 j 3

= tyd» 1 ) 1 + ^ 11*+ n2 = y(l, 1 ) 1 1 x + nx 1 x + n2

y(l, 1 ) 1 1 x + n. = x + n.

where n3 = nx 1 x + n2 is nilpotent in (Z(R))'(<x>) .
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V pLet n- = l d x . Then each d is nilpotent. Let

N be the ideal of Z(R) generated by all d^ . Then N is 

a nilpotent ideal of Z(R) .

By (1.17) we have (x + n3)y = (x)y + n4 where n^ e N (<x>) .
P

Hence we

P P P

1 r P u r= t, x where £ is a unit in Z (R)P P
—  r - 1 — li —
X + ^  ‘ l dp ?p (X + n3) = x + n5P

2 ,: N (<x>) , say n5
G

with ip e NYa

Again by (1.17) and (1.15) we have

x + 1I5 - l Ip f  _1 L r a g
—  . G —(x + n_) = x + n-D DG

— a G 3 ,(X) = f o x and n, £ N (<x>) .b

Since N is nilpotent by repeating in this manner a finite 

number of times we have

- 1
ly(x, x-1)b , 1 (£ a. x1) + y(x , x)a . 1  (£ b x3)'] 

i j 3

- I  dy Cij"1[y (x, x-^b^ 1 (I ai x1) + y (x_1, x)a_1 1 (£ b. xj))y

- y <|> f _:L {[y (x , x_1)b , T (£ a X1) + y (x 1, x)a_ 1 (£ b. x̂ )]G G —  ̂ * J* j J

- l  dy C _1 tY(x, x"1^  I (I a. x1) + y (x_1, x)a_x I (£ b. xj)]y}a +.

This means we obtain x as a linear combination of powers of 

£ a. x* . Hence T  is onto and 6 : x -*• £ â  ̂xi induces a

Z(R)-automorphism of (Z(R))Y (<x>) .
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Now we define 6 : RY(<x>) -*■ RY (<x>) by

6|(Z(R))Y (<x>) = 8 and 6 (r) = r ,

8 is an endomorphism of RY ( x ) because 

Z(R)-automorphism of (Z(R))Y (<x>) and by (1.12)

We show that 8 is onto and 1-1 .

To prove 8 is 1-1 we define c)> : RY(<x>) 

- 1

r £ R .

8 is an

x1 e (Z(R))Y (<x>)

RY ( <x>) by,

*|(Z(R)) « x »  " ° ' and * (r) " r ' r e R *

As before <f> is an endomorphism of RY (<x>) and we have 

8 <*.[X a^ x1] = e[£ ai (8 1 (x1))] = J a, e(8_1 (x1)) = £ x1 .

~ . YHence 8 <p is the identity mapping of R (<x>) .

Also we have

4 0[£ aA x*] = <)>[£ a± (8(x*))) = J a. 6 (Six1)) = £ ai x1 .

This implies that $ 8 is the identity mapping of RY (<x>) . 

Thus 8 is invertible, i.e. 8 is 1-1 . Since 4> 8 is the 

identity mapping of RY(<x>) , 8 is onto. A

Combining lemmas (2.9) and (2.10) we have:

Theorem I

Let R be a ring and let <x> be an infinite cyclic group.

Let RY (<x>) be a twisted group ring of <x> over R and let

Z(RY(<x>)) be the centre of RY (<x>) . Let Z(R) be the centre

of R . Then 8 : x -*■ £ ai x* induces an R-automorphism of 

ry (<x >) if and only if the following two conditions hold:

(i) £ a^ x* is a unit in (Z(R))Y (<x>) .

(ii) if i  ̂1, -1 , then ai is nilpotent.
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CHAPTER 3

In this chapter we study the automorphisms of the group rings 

of finitely generated abelian groups. These automorphisms were 

studied by M. M. Parmenter for infinite cyclic groups but the 

presence of more than one independent generator makes for a 

complex problem with unpleasant notation. In order to avoid 

notational difficulties we consider mainly abelian groups with 

two free generators. The general case follows this particular 

case quite closely.

Lemma 3.1

Let G = <x> x <y> where <x> and <y> are infinite cyclic 

groups. Let 0 be the endomorphism of G determined by:

Then 0 is an automorphism of G if and only if a6 - By = ± 1 . 

Proof

By (1.16) we know that every endomorphism of G is determined 

by its effect on a set of generators.

Let 0 be an endomorphism of G with aS - By = + 1 . Then

0 (x) = xa y® 

0 (y) = xY y6

a , 6 integers,

y , 6 integers

_ Xa6-6Y y3«-<S6 = xo 6-By _
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Also we have,

6 (xY y"“) = (0 (x))Y (0(y))"a = (x° y5)* (xY y6)"“

ay-ya By-6a By-<5a +1 = x y = y  = y

Hence 6 is onto. Now we prove that 6 is 1-1. For

this we suppose 6 (xm yn) = 0 (xU yV) for some integer,

m, n, u, v . This implies that

am+yn 8m+6n au+yv Bu+6v x y = x y . (1 )

It follows from (1) that

am + yn = au + yv

Bm + fin = 8u + 6v , equivalently

a (m - u) + y(n - v) = 0  

B (m - u) + 6 (n - v) = 0  .

Since afi - By = +1 the only solution is m - u = 0 and n - v = 0 . 

Hence m = u and n = v and therefore 0 is 1-1 .

Conversely we suppose that 0 is an automorphism of G and 

then we prove that a6 - By = £ 1 •

Since 0 is an automorphism of G there exist integers m and 

n such that 0 (xm yn) = x , also there exist integers u and v 

such that 0(xU yV) = y . From 0(xm yn) = x we conclude that 
x am+yn ^Bm+6n _ x  ̂ and implies that

am + yn = 1

Bm + 6n = 0 (2)
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Also from 6 (xU yv) = y we conclude that Xau+Yv ^Bu+Sv _ ^ 

and this implies that

Bu + 6v = 1

au + yv = 0 . (3)

Now a6 - By must be non-zero, as otherwise there is no solution 

for (2) and (3) .

From (2) we have m = 6 (a6 - By ) 1 and n = -B (a6 -  By ) 1 • 

Since m, n are integers a6 - By  divides 6 and 6 , and 

therefore a& - By divides the greatest common divisor of 

6 and 8 • But in (3) we have Bu + 6v = 1 and then the 

greatest common divisor of 6 and B is +. 1 •

This implies that a<5 -  By  = + 1 • A

Lemma 3.2 * 6

Let R be a commutative ring and let G = <x> x <y> where 

<x>, <y> are infinite cyclic groups. Let 6 be an endomorphism 

of G such that

6 (x) = xa y^ and 0(y) = xY y5 , 

with aS -  By  = + 1 • Let ”3" s R(G) -*■ R(G) be defined by

0 (£ a. j x* y^) = £ a.,j 6 (x1 ŷ ) . Then 6 is an R-automorphism 

of R(G) .

Proof

By (1.16) 6 is an endomorphism of R(G) . Since 0 is 

onto it is evident that e" is also onto. Thus we need to prove 

*0 is 1-1 . For this we define 41 t R(G) -*■ R(G) by,

<P (Iaij x1 y^) = Iaij e 1 (*i y^) •
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(I a.. x V )  = ~(I a.. 6"1 (xiyj)) = I a.. 0(0_1 (xlyj)> = l a

Also we have

ai;j x V )  = ♦(! ai;j etx1 yj)) = £ a^ 0 1 (0(x1 yj) = £ ai;j

Thus 9i(> and <J>6 cure the identity mapping of R(G) i.e. 

is onto and 1 - 1 . A

As before <t> is an endomorphism of R(G) . Moreover we have

i j x y

Lemma 3.3

Let R be a commutative ring and G = <x> x <y> where 

<x> , <y> are infinite cyclic groups. Let 0 : R(G) -*• R(G) 

be defined by 0 (J a_ xXy3) = l a ^  (bx)1 (cy):l where b, c 

are units in R • Then 0 is an R—automorphism of R(G) •

Proof

Assume £ x^y^ , \ 8̂  x y e R(G) , then,

. 1(1 ^  .V mZ .V .1 ■ . 11 «*" yJ“ >

l “ij »«>

= l <x. . 8 [ (bx)i(cy)̂ ] [ (bx)m (cy)n]‘ i] nn

= 6 (£ aij x V )  6 (1 6^  *“y“) •

Hence 0 is an endomorphism of R(G)

Now we define <t> ! R(G) •+ R(G) by,

♦ <Z aAj X1 yj) = I ot±j (b_1x) 1 <c"xy)

As before <(i is an endomorphism of R(G) and we have
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'(£ xSr^> = <{>[£ a ^  (bx)i(cy)-’] = <f>[£ a^ b ^ x S ^ l

= I “i;j bic-’ (b V  (c 1y):’ = I a ^  xi„jij

Also we have

"ij0*<I x V )  = 6ll aAj (b"1x)1 (c"1y)j] = 0[£ a b ' ic"jxiyj]

=  ̂ “i j  b 1<:  ̂ (bx)1<cy ^  ■ I “¿ j  * V  •

Hence <(16 and 61(1 are the identity mappings of R(G) i.e. 6 

is onto and 1-1 . A

Lemtia 3.4

Let R be a commutative ring and let G = <x> x <y> where

<X> , <y> are infinite cyclic groups. Let 0 s

be defined as follows,

6 (x) a ß= a „ x y andaß e (y) . y J = b . x'y y6

where aaß and b . are units inY« R . Then 8

R-automorphism of R(G) if and only if 016 - ßy = + 1 •

Proof

Assume 0 is an R-automorphism of R(G) . We define
n 1 "1 V “ 1 1 “ 1 j

<P : R(G) R(G) as follows, <f>(Z ĉ .. x Y > = I “ij (aa 6 X> (by6 y)

By (3.3) 4> is an R-automorphism of R(G) , and we have

<Mx) - « 2  x >(y) " by] y *

Since 6 and <p are R-automorphisms of R(G) , 0<i> is also

an R-automorphism of R(G) and we have

e<f|(x) = 0 (a”g x) “ 6 (x) = .¡J (aaß x“ yß) = xayB .

and
(y) = 6 (b"J y) » b“J 6 (y) - b ^  (by6 x' yu) - x'y- 1 - 1 Y 5. y 6\r ' xr 1 = V ' V7
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Hence 0<t> is an automorphism of G , by (3.1) we have a6 - By = +. 1

Conversely we suppose that a6 - By = +_ 1 . By (3.3) we
n i j r* i j

know l x y -*■ l cj_j (aag x) (b^ is an R_autolnorPbism

of R(G) . Also by (3.2) we know that

zi bi „i„j
ij “aß y6Z a‘fl K *  x y i . j , a B.i , y 6. j 

cij aaB by6 (x y } (x y >

= l Cij (aaß X“ yß>1 (by6 XV >3

is an R-automorphism of R(G) . Hence

r i j  r . a B.i., y 6. jZ cij x yJ - Z ci;j (aaß X y ) (by6 xTy )J

is an R-automorphism of R(G) . A

Lemma 3.5

Let R be a commutative ring with a unique '*mL,XA*»*uS ¿Atd M

w & 4 .  s  Let G = <x> * <y> where <x> ' <v> are
infinite cyclic groups. Let 6 be the mapping 6 : R(G) -*• R(G) 

where

6 (x) = l a±j x* i (ii) (iii)y3 , e<y) = Z ^  XV  '

and let 6 induce an R-automorphism of R(G) . Then we have that

(i) l aij x^y3 and l b ^  xhyk are units in R(G) .

(ii) For some integers a, B» Y* aag and b y 6 are units in R 

but all ai 5 for (i, j) / (a, 6) and all bhk for (h, k) + (y , 6) 

are nilpotent.

(iii) afi - By - ±  1 •
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Proof

ri  ̂"j n h kare units in R(G) then > a. . x w and > b. . x y must beL 1 3  L hk 1

units in R(G) . Hence (i) has been established.

Since 9 induces an R-automorphism of R(G) and x, y

By (1.8) R/M is a field and by (1.6) M is the prime 

radical of R . Also by (1.11) and (i)

V --- i j v r—  n * ,--l , x yJ , l b. . x y (a.,h k a, . + M, b. = b. . + M) i] hk hkiD - ' “ hk J ' ij

are units in (R/M)(G) . Moreover by (1. i j K m  G = <x> » <y> 

is a right-ordered group. Hence by Corollary (1.4) of [9] a^g 

for some integer, a, 6 is a unit in R/M and all a ^  for 

(i, j) / (a, 6) are zero. Similarly b^{ for some integer y, 6 

is a unit in R/M and all bhk for (h, k) / (y, 6) are zero.

Thus (ii) has been established.

To prove (iii) we define 0^ : R(G) -*■ (R/M) (G) by ,

61 (I *rs XV >  = l *IyS (S T  = ars + M) •

By (1.11) 0X is an epimorphism. Since by hypothesis 0 is an 

R-automorphism of R(G) we conclude that 0^0 is an epimorphism 

of R (G) onto (R/M) (G) .

By using (ii) we have

6ie(E Cmn ^  = l ^  (2 

“ 1 °̂  (I

aij X y
1. m .r ■■-■ h kx) (I bh k x y >

—  a 6. m -—  y 6. n 
a6 X y > (bY0 X y ) *

The kernel of 0 ^  is M(G) = {J d ^  x V  | di;j e M} . 

Hence R(G)/M(G) ~ (R/M)(G) . This implies that 

02 ; R(G)/M(G) (R/M) (G) defined by



54

isomorphism.

by 6 (J c J 3 L mn

+ M(G)) = l cmn(aag x0ly6)m (bYi xYy5)n is an 

On the other hand 63 : (R/M) (G) R(G)/M(G)

xmy n ) = £ xmyn + M(G) is an isomorphism.

defined

Hence

02e3 : (R/M) (G) •+ (R/M) (G) by,

62e3(I --- m n.c x y ) mn
-- ,---  a B.mc (a . x y ) an iS 1

-—  y 6. n 
(bY6 x y >

is an R/M-automorphism of (R/M) (G) . Since R/M is a field, we 

conclude from (3.4) that a6 - By = + 1 • A

Lemma 3 .6

Let R be a commutative ring with a unique ■vl w

y, Let G = <x> x <y> where <x>, <y> are infinite
v i icyclic groups. Let 6 : R(G) -*• R(G) where 6 (x) = / a ^  x yJ 

and 0 (y) = \ b^h xbyk satisfy the following three conditions:

(i) £ aijijand I bhk xhyk are units in •
(ii) For some integers a, £5, Y, 6, a^g and b ^  are units in 

R but all atj  for (i, j )  /  (a , B) and all b ^  for 

(h, k) / (y, 6) are nilpotent .

(iii) a6 - By  = + 1 •

Then 6 induces an R-automorphism of R(G) .

Proof

By (1.16) the map 0 : R(G) -*• R(G) defined by 

!)(£ duv xUyV) = l duv (0(x))U (0 (y))V is an endomorphism of R(G) . 

We prove that 0 is onto and 1-1 .

First we prove 0 is onto. Since 0 (x) and 0(y) are units 

in R(G) , (0(x) ) - 1 and (0(y)) _1 exist. For the sake of

argument we suppose a6 - By “ 1 » the proof for aS - By 

similar to the proof for a5 - By  = 1 • BY assumption a ^  and



are units in R and, by this and (1.17) we haveY«

( a ‘ e 6 ( x ) ] 6 lb~] 6 ( y ) ] " 6 = [ a '1 (a  x “y B + £ a  x V ) ] 6
aB °B “B <i,j)*(a,B> 13

“1 V { , r . n k . .
X bvfi (bv6x Y + i bhk X y )]y6 yt> (h,k)*(y,6)

h k . . - 0

. a B . v - 1 i j,{= [x Y + l « B a x yJ]
(i.j)»1«,/» B 3

, y 6. v . “1 , h k.-B[x V  + L b 6 bhk x y 1 <h,k)*(r,i ) y

, a6 B« . w  _ y B -SB . „  . = (x y + n,) (x y + n2)

xa«-BY y BS-66 +

= x + n,

where n.^ n2, n3 are nilpotent in R(G) .

Similarly we have [a^ 0 (x) ] y [b^ 0 (y) ] = y + where n̂

is nilpotent in R(G) .

Let r  r S 
n3 " l \s X y and n4 = £ u x^y^ wherepq

all n and rs

P are nilpotent in R . Let T be the ideal of R
pq

rs pq
(1.17) we have

x + l nrs xrys " l nrs[x +  ̂nrs xryS]r Iy +  ̂ypq xPy<l1 = x + n5
_ 2 

where l xVye » ng is nilpotent in R(G) with all e T .

Again by using (1.17) we have

y * I V ,  W  - lV  * l"r. * V l p It * l V ,  A ’]’ - r *

2
where T f xTya = n, is nilpotent in R(G) with all f e T .

L TO b
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Hence we have

laàì 6(x) ]6 [Ì3~yì 6(y) ] " 6 - l  nrs{ta<*e 6 (x ) ] 6 l b ~yi

* {[ a ^  6 (x) ] [byi 6 (y) ] } = X + n5 .

- f i.P
[< b e<x>i"Y ew i “ - 1 ^ K b 9 <x >i6 'bvi e(y)]"0}p q 1 aB y6

X{[aa6 9 (x) r  [by5 9 (y) ] P  = y + ng .

Since T is nilpotent by continuing in this manner a

<3 $ times we get x, y as a linear combination of powers of
r i i r> h k ***0(x) = l a^ x yJ and 0 (y) = l bhk x y . Hence 0 is onto.

Now we prove that 0 is 1-1 . For this we suppose there

exist c e R such that T c (0 (x))m (0(s))n = 0 . Then we show mn mn “
that all c = 0 . From T c (0 (x))m (0 (y) )n = 0 we have mn mnmn

r ---, --- i j.m ,r -—  h k.nmodulo M , l c ( a . x y ) ([ b * y  )-mn' -ij - ~ h k " '  ' ° • SinCe "ij

for (i, j) / (a, 6) and bhk for (h, k) / (y, S) are nilpotent 

we have

l aiT xV ) m x V  +(Ì» j)^(drB) 13 y ’ ‘ Y« y I
(h,k)*(Y,<S)

-—  h k. n 
bhk X y >

 ̂cmn^aa6
a e.m x y ) (bYfi

Y 6,n x y ) l Cmn(aa6)I
---. n am+vn B^+in
« V  x y

In this identity each term in x, y occurs at most once because

xom+Yn yBm+6n „ xam'+Yn' yBm'+6n' and a6 _ 6y = x implies that

m = m ’ and n = n' . From this result and

y c (a )m (b x)n x“ ^  y6m+6n = o we conclude that ‘ nn »i Y®
c (I )m (b J n = 0 for all m, n . But a and b . are unitsmn aB Y® aB '
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in R/M and so we have c = 0  for all m, n . This impliesmn
that c € M for all m, n i.e. all c are nilpotent. mn mn e

Now let N be the ideal of R generated by

ic^} u {a^j | (i, j)̂ (ot, 8)} u {bhk | (h, k)^(y, <5) } . Then N
wis milpotent. Assume all belong to N for some positive

. w+1integer w but some of them do not belong to N

From l cmn(£ aij x1y^)m (£ bhR xhyk)n = 0 we have 

l cffln (J a^j x V ) ” (l bhk xhyk)n = 0 in (R/NW S  (G) . Since

all c e NW and all a. . for (i, j) ^ (a, 8) and all b, . inn 1 3 nK
for (h, k) ^ (y, 6) belong to N we conclude that

I c (a . x°y®)m (b . xYy5)n = 0 . By using a6 - By = 1 and u mn ap yo
___ — w+1 ■ ' ■the fact that a^^ , b,^ are units in R/N we have c ^  = 0

W+1for all m, n . This implies that c ^  e N contrary to
wassumption. Hence each cmn lies in N for all integers

w > 0 . Since N is nilpotent we conclude that c = 0  formn
all m, n . Hence 0 is 1-1 . A

Combining lemmas (3.5) and (3.6) we have:

Theorem II

Let R be a commutative ring with a unique M

A, . Let G = <x> x <y> where x , y are

infinite cyclic groups. Let 0 be the mapping 0 : R(G) -*■ R(G) 

where 0(x) = £ a±.. xiyj , 0 (y) - l bhk xhyk . Then 0 induces

an R-automorphism of R(G) if and only if the following three

conditions hold:
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(i) V i j I a., x yJ , t . h k Z b hk x y are units in R(G) .

(ii) For some integers a, 8» y, and 6 , a .' aB and b r are

units in R but all &ij for (i, j) t (a, B) and
3 1 1 bhk

for (h, k) ? (y , 6) are nilpotent.

(iii) aó - By = + 1 .



CHAPTER 4

In this chapter we shall be concerned to find the automorphisms 

of K(G) , where K is a field and G is a finitely generated abelian 

group of the form G = <x> x <y> where x is an infinite 

cyclic group and y2 = 1 .

Lemma 4.1

Let G = <x> x <y> where <x> is an infinite cyclic group
2and y = 1 . Let K be a field and let u, v e K(<x>) . Then

u + vy is a unit in K(G) if and only if u - vy is a unit in

K(G) .

Proof

Suppose u + vy is a unit in K(G) . Then there exist r ,

s e K (<x>) such that (u + vy) (r + sy) = 1 . This implies that 

ur + vs = 1

us + vr = 0 . (1 )

From (1) we have (u - vy) (r - sy) = (ur + vs) - (us + vr)y = 1 . 

Thus u - vy is a unit in K(G) .

Now by replacing v by -v , we see that conversely if 

u - vy is a unit then u + vy is a unit. A

Lemma 4.2
Let G = <x> x <y> where <x> is an infinite cyclic group 

and y2 = 1 . Let K be a field and u, v e K(<x>) . Then we 

have
2 2(i) u + vy is a unit in K(G) if and only if u - v is a

unit in K(<x>)
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(ii) If characteristic K ^ 2 , then the units of K(G) aretU

of the form (axm + Bxn) + (ax”1 - Bxn)y where a, B € K - {0} and 

m, n are integers.

Proof

Suppose u + vy is a unit in K(G) . Then by (4.1) u - vy
2 2is also a unit in K(G) . This implies that (u + vy) (u - vy) = (u - v )1

aa-v* *»
is a unit in K(G) and consequently^ unit in K(<x>) , (1.32).

2 2Now we suppose that u - v is a unit in K(<x>) . Then we
5 2 -1  2 2 -1  2 2 2 2 -1have (u + vy) fci - v ) u - (u - v ) vy] = (u - v)(u - v )  = 1 .

Hence u + vy is a unit in K(G) and then (i) has been established.

To prove (ii) we suppose that u + vy is a unit in K(G) .
2 2Then by (i) u - v = (u + Vj)(u - vj) is a unit in K(<x>) . This

implies that u + v and u - v are units in K(<x>) . By 1.13 (I)

<x> is a right-ordered group, hence by using Corollary (1.4) of

[9] we have
mu + v = yx 0 ¥■ Y e K , m integer. (1 )

, nu - V = ox 0 ^ 6 c K , n integer. (2)

It follows from (1) and (2) that u « 2 ' 1 m ^ o" 1 x n YX + 2 6x and
„ - 1 m - 1 . n v = 2 yx - 2 6x .

On the other hand if a, B € K - {0} then we have

[ ( a x ”1 + Bxn ) + (axm -  Bxn)y ] t (4aBxm+n) “ 1 (axm + Bxn) -  (4«Bxin+n) _1 (axm -B jrn)yl

= (4aBxm+n) (4aBxnl+n) -1 -  1 . Hence (axm + Bx” ) + (ax”1 - Bxn )y  is 

a unit in K(G) . A
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and y = 1 . Let K be a field of characteristic f 2 . Let 

u + vy = (axm + Bx11) + (axm - Bx°)y (a, 6 e K ; m, n integers)

be a unit in K(G) . Then for all w £ Z  we have,
, .w „w-1 ., m.w n.w ,, m.w n.w, ,(u + vy) = 2  [(ax ) + (Bx ) + ((ax ) - {Bx ) )y] .

Proof

We consider the case w £ 0 and we proceed by mathematical 

induction. For convenience let A = axm and B = Bx° . If

w = 0, 1 , then there is nothing to prove so we suppose w > 1 .

Assume (u + vy)W = [ (A + B) + (A - B)y]W = 2W  ̂[ (AW + B ) + (A - B )y] . 

This implies that

(u + vy)W+1 = [(A + B) + (A - B)y]W [ (A + B) + (A - B)y]

= 2W_1 [(AW + BW) + (AW - BW)y] [(A + B) + (A - B)y]

= 2W_1 [2(AW+1 + BW+1) + 2(AW+1 - BW+1 )y]

= 2W[(AW+1 + BW+1) + (AW+1 - BW+1 )y] .

This completes the induction steps and so our assertion has been 

established for w £ 0 .

Now assume w = -1 . Since

2-2[(A + B) + (A - B)y] [(A 1 + B 1) + (A 1 - B 1 )y] = 1 , 

we conclude that

(u + vy) - 1 - [ (A + B) + (A - B)y] 1 = 2 2 [ (A 1 + B 1) + (A - B )y) . 

Finally we suppose that w < -1 and let t “ -w . Since t is

positive we have

(u + vy)W - [(u + vy)_1]t = (2_2)t [(A' 1 + b"1) + (A- 1 - B_}y]t - 

2_t-\ (A_t + B_t) + (A_t - B_t)y] - 2~t _ 1 [ (A_t + B_t) + (A_t - B_t)y]
- 2W_1 [(AW + BW) + (AW - BW)y . A

Lemma 4■3

Let G = <x> x <y> where <x> is an infinite cyclic group
2
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and y = 1 . Let K be a field of characteristic ? 2 . Let 

6 : K(G) -► K(G) be defined by

0(x) = (axm + Bx11) + (axm - 0xn)y ,

0(y) = (yx*1 + <$xq) + (yxP - 6xq)y ,

where «, B, T, 5 £ K - {0} and m, n, p, q integers. If 6 is a

K-automorphism of K(G) , then m = + 1 , n * + 1, yx^ = +_ l ,

6xq = + 5 .

Proof

In order to simplify the proof let axm = A, Bx11 = B, yx15 = C ,

6xq = D . Since y2 = 1 we have

0 (y2) = t (C + D) + (C - D)y] 2 = [(C + D) 2 + (C - D)2] + 2(C + D) (C - D)y = 1 .

It follows from this that

(C + D ) 2 + (C - D) 2 = 1

(C + D) (C - D) = 0 . (1)

By using (1.J0) we conclude from (1) that either C + D = 0

or C - D = 0 .
2 2If C + D = 0 , then (C + D) + (C - D) = 1  implies that

C -  D -  + 1 and then 6 (y) = (C + D) + (C -  D)y - + y  . From

C -  D - 0 and (C + D)2 + (C - D)2 = 1 we have C + D - + 1 and

then we have 0 (y) = (C + D) + (C - D)y = + 1 which is not true,

because 0 is^automorphism and y + 1, -1 . Hence C + D = 0 ,
C - D = + 1 and 0 (y) « + y . From C + D = 0 and C - D - + 1 
we conclude that C = + i and D *= + i . For the sake of argument 

we suppose that 0 (y) - yj we remark that the proof of 0(y) - -y 

is the same as the proof for 0 (y) m y  * and therefore we omit it.

Lemma 4.4

Let G = <x> x <y> where <x> is an infinite cyclic group
2
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Now, since 0 is an K-automorphism of K(G) there exist 

â , bj e K such that 0[£ a^ + (£ bj x3)y] = x . By using 

(4.3) we have

6 (1 a± x1) + 0(£ bj xj) 6 (y) = £ a.tOix) ) 1 + [£ b.(0(x))j]y

* I a. 2i_18^i + B1) + (A1 - Bi)y] + l b. 2j-i[(Aj + Bj) + (A3 - Bj)y]y = x .

From this equality it follows that

l 21_1 ai(A1 + B1) + l 23" 1 b̂. (A3 - B3) = x . (2)

l 21 " 1 ai(A1 - B1) + £23_1 bj (A3 + B3) = 0 . (3)

From (2) and (3) we conclude that

l 2i_ 1 ai (Ai - a 1 + 2B1) + l 23 -1 bj(A3 - A3 - 2B3)

= l 21 ai B1 - l 2j bj Bj = l 2i (ai - b.jB1 = x . (4)

Also from (2) and (3) we have

l 21 ai A1 + l 23 bj A3 = l 21 (ai + b ^ A 1 = x . (5)

By using the fact that B = Bxn (6 e K, n integer) we conclude 

that (4) cannot be valid for |n| > 1 or for n = 0 . Also (5) 

cannot be valid for |m| > 1  or for m = 0 . Hence m = 1 ,

n = 1 . A

Lemma 4.5

Let G = <x> x <y> where <x> is an infinite cyclic group 

and y2 = 1 . Let K be a field of characteristic / 2 . Let 

0 : K(G) -*• K(G) be the K-linear mapping defined by

0 (x) = (ax1 1 + 0x_1) + («x_1 - £x-1)y a, 8 e K ” io), and

0(y) - + y •
Then 0 induces an K-automorphism of K(G) .
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In order to simplify the proof we assune that 

8 (x) = (ax + Bx) + (ax - 8x)y and 0 (y) = y . The proof for 

other cases is similar to the proof of this particular case.

We prove that 8 is onto and 1-1 . By hypothesis we have 

8 [2 2 (a 1 + B 1)x + 2 2 (a 1 - B 1 )xy] = x and 8 (y) = y . 
Hence 8 is onto.

Proof

Now we prove that 

be an element of K(G) 

Then we show that all a 

let A = ax and B = 

(4.4) we have

8 is 1-1 . Let l ai + (J x3)y

such that 0[J a^ x* + (£ b^ x3)y] = 0  .

. and all b. are zero. For convenience i D
Bx . Arguing exactly as in the proof of

1 2* a. A 1 + ]» 2j bj A3 = l 2i (ai + bi)A1 = 0 .

l 21 B1 - ][ 2j b. B3 - l 21 (ai - bi)Bi = 0 .

Since A = ax and B = Bx , it follows from (1 ) and

that

ai + b± = 0 , for all i .

ai - bi = 0 , for all i .

Hence all a^ and all b.. are zero i.e. 8 is 1-1 . A
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and y = 1 . Let K be a field of characteristic j* 2 . Let 

9 : K(G) -► K(G) be defined by

0 (x) = (axm + fix") + (axm - Bxn)y ,

0 (y) = (yx15 + fix9) + (yx1* - fix9)y , 

where a, B, y, fi e K - {0} and m, n, p, q integers.

Then 0 is an K-automorphism of K(G) if and only if 

m = +_ 1 , n = + 1 , yx^ = +_ j, fix9 = + s .

In the rest of this chapter we are dealing with the fields 

of characteristic 2 .

Theorem III

Let G = <x> x <y> where <x> is an infinite cyclic group
2

Lemma 4 .6

Let G =  <x> x <y> where <x> is an infinite cyclic group

and 2y == 1  . Let K be a field of characteristic 2 .

Let U 6 K ( < X > ) and let X e K . Then for all integers £

we have

(i) [Xx* 1 +  u(l +
. .  2 ey) 1 (Xx±1)2£ .

(ii) [Xx1 1 +  u(l +
, 2e+ly) (Xx11) 2e+1 + (Xx* 1 ) 261 u(l +  y) •
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Proof

Since (1 + y) = 0 we have

+ u(l + y) ] 2 = (Xx—'S 2 + KXlfr-1) u(l + y) + (1 + y) 2 = (Xx—1 ) 2 . 

From this we conclude that

[Xx—1 + u(l + y)]2E = {[Xx- 1 + u(l + y)]2}e = [(Xxi-1)2]e = Ux-1)2  ̂ . 

Hence (i) has been established. To prove (ii) we have 

[Xx—1 + u(l + y ) ] 2£+1 = [Xx̂ -1 + u(l + y) ]2e [Xx -̂1 + u(l + y) ]

2

, ,  + l ,2 e r, +1= (Xx— ) [Xx—

,, +1 .2E+1 .(Xx- ) +

+ u(l + y)]

(Xx—X) 2e u(l + y) . A

Lemma 4.7
2Let G = <x> * <y> where <x> infinite cyclic group and y = 1 . 

Let K be a field of characteristic 2 . Let tp : K(G) K(G/<y>) 

be the natural homomorphism. Let JK(G) be the Jacobson radical 

of K(G) . Then ker<(> = JK(G) .

Proof

Let X = <x> and Y = <y> . Since is an epimorphism and 

its kernel is K(G) aug K(Y) we have K(G)/K(G) aug K(Y) ~ K(G/Y) .

By (1.24) and using the fact that the characteristic of K is 2 

we have K(G) aug K(Y) ■= (K(G)) (1 + y) = (K(X)) (1 + y) . But 

(1 + y ) 2 = 0 so (K(G))(1 + y) is nilpotent. This implies that 

(k (G)) (1 + y) c JK(G) . Hence there is an ideal I of JK(G/Y) such that 

JK(G)/K(G) aug K(Y) * JK(G)/ (K(G)) (1 + y) ~ I £  JK(G/Y) ~ JK(X) 

because G/Y ~ X . Since X is an infinite cyclic group we have 

JK(X) - 0 ( iecC lIj)  , This implies that

JK(G) « (K(G)) aug K(Y) - (K(G))(1 + y) = (K(<x>))(l + y) . A
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and y = 1 . Let K be a field of characteristic 2 . Then the

units of K(G) are the elements Axm + u(l + y) where 0 ? A e K , 

m is an integer and u e K(<x>) .

Proof

Let a, b e K(<x>) and suppose that a + by is a unit in 

K(<x>) . Since the characteristic of K is 2 we have

a + by = a + b + b + by = (a + b) + b(l + y) . Thus (a + b) + b(l + y)
2 2is a unit in K(G) and then [(a + b) + b (1 + y)] = (a + b) 

is a unit in K(G) . This implies that a + b is a unit in 

K(G) . Thus by (1.32) a + b is a unit in K(<x>). Thus by 

Corollary (1.4) of [9] a + b is of the form Ax™ where

0 jt A e K and m integer. Hence a + by is of the form

Axm + b(l + y) where b e K(<x>) .

Now suppose Ax + b(l + y) £ K(G) where 0 / A e K , m is
2

an integer and b e K(<x>) . Since (1 + y) = 0 we have,

[Axm + b(l + y)][(Axm) _1 - (Ax®)"2 b (1 + y)] = 1  . This implies

that Ax® + b(l + y) is a unit of K(G) . A

Lemma 4.9
Let G = < x >  x <y> where <x> is an infinite cyclic group 

and y2 = 1 . Let K be a field of characteristic 2 . If 6 
is a K-automorphism of K(G) then there exist A e K - {0} and 

u, v e K(<x>) such that v is a unit and 
0(x) - Ax11 + u(l + y) »

6 (y) = 1 + v(l + y) .

Lemma 4.8

Let G = <x> x <y> where <x> is an infinite cyclic group
2
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Let <y> = y , and let JK(G) be the Jacobson radical of 

K(G) . Since 6 is an K-automorphism of K(G) then 0 permutes

all maximal right ideals of K(G) . This implies that 0 fixes

the intersection of the maximal right ideals JK(G) . But by (4.7),

JK(G) = (K(G))(1 + y) = (K(<x>))(l + y) . It follows from this

that 0(1 + y) e (K(<x>))(l + y) . Hence 1 + 0(y) = 0(1 + y) = v(l + y)

where 0 ^ v e K(<x>) , because v = 0 implies that y = 1 .

From this result we conclude that 0(y) = 1 + v(l + y) .

d/w ^
Now, by (1.23) 0 induces K-automorphism 0 of K(G)/JK(G) .

Also by (4.7) we have K(G)/JK(G) ~ K(G/Y) ~ K(<x>) . Thus 0 

induces an K-automorphism 0 of K(<x>) . By using this result 

and theorem (2.1) of [9] we conclude that 0(x) = Ax1 1 where 

0 f A e K . This implies that 0(x) = Ax* 1 + u(l + y) where 

u e K (<x>) .

Proof

Since 0 is a K-automorphism of K(G) there exists 

l + (£ 6jX^)y e K(G) such that 0 n^x1 + (£ 6jX^)y] = y .

Finally, for convenience we distinguish even and odd powers

of x in T ri.x1 and J 6 .x̂  . Thus we write. i . 3

r i t  2r rl r^x - I n x + l n2s+1x2s+l
r 2r

l  y j  -  l  * 1 5
2tt+1

2ir+l (1)

By (4.6) and (1) we have

0[£ HjX1 + (}• 5.x^)y] = l n2r (Xx±:L)2r + l n2s+1 tfrx+ 1 ) 2s+1 + (Xx+1 )2su(l + y) ]

+ ( l  6 2ij)(Xx±1)2'1' + l  «2^ + 1[(Xx±1)21T+1 + >2Tu ( l  + y)])H + v ( l  + y ) ]2 tt+ 1
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By using (1 + y) = 0 we have 

+1 . 2r
[J V I X x - V '  * l n j ^ O x ' V ' * 1 ♦ I J ^ C X * * 1!2*» ♦ l « „ ( X x 11,2*

2i|T

l W ax >±i,2ir+i + l w ^ h uIT

. V , ,, il.2'!' . r , „  i 1. +1 .
+ L S2\li (Xx > v +  1 62tt+i (Xx > v]

+ [£ n2 s + l (Xxtl)2Su+I  52rr+l( X x t l ) ^ u + ?  62^ (X x t l )2 ’i' v  + l S 2„+1 <X x t l> ^ v l y

By using (1) and the fact that u, v e K(<x>) we have

l n.Uxi1 ) 1 + (I 6 . (Xĵ V h i  + v) + l n2s+1 (Xxi-1)2su

+ l n = 0 *

l  fijiXx^1) j + (l 6j (Xx^1) jJ (1 + v) + l  n2g+1 (Xji-X)2su

+ l 62,+l(Xxtl,2,rU= 1 * (3)

By adding these equalities we obtain

l  (Xxi1)1 + l  6 (Xx—i) ̂ = 1 . (4)
i j 3

This implies that Hq + 6q = 1 and “ 6^ for all i ^ 0 

By using this result and using the equality (3) we have

(£ d.Ux^1)^ = 1 . Hence v is a unit in K(<x>)
j j
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and y = 1 . Let K be a field of characteristic 2 .

Let X e K - {0} and let 6 e {-1» 1} . Let u e K(<x>) 

and let v be a unit in K(<x>) . Let 0 be the K-endomorphism 

of K(G) such that

0 (x) = Xx^ + u(l + y) ,

0 (y) = 1 + v(l + y).

Then 0 is a K-automorphism of K(G) .

Proof

By (1.16) 0 : K(G) -*■ K(G) by

0 [J o^x1 + (J g.x^)y] = l ^(©(x ) 1 + l 6 . (0(x)̂  0 (y) 
i j 3 i j D

is an endomorphism of K(G) . We prove that 0 is onto and 1-1 .

First we show that 0 is onto. By Corollary (1.4) of [9] v = px*

for some p e K - {0} and m integer. Let u = v(J b£xe)
e

where J b xe e K(<x>) . Then by using (4.6) we have 
e

9[(I X-e-1b xe) (1 + y) + X-1 x] = [J X-e-1b (Xx + u(l + y)e] [1 + 1 + v (1 + y]
e e

+ X- 1  [Xx + u(l + y)] = [£ X'e_1be(Xx)e + i^U + y) ] [v (1 + y) ]
e

+ X- 1  |X x + u(l + y) ]
2where e K(<x>) . Since (1 + y) = 0  we have

0[(J X-e-1bexe) (1 + y) + X-1 x] = [J X-e-1be(Xx)e]v(l + y) + x + X_;Lu(l + y) .
e e

But we know that u = v l b£X and so we have

Lemma 4.10

Let G = <x> x <y> where <x> is an infinite cyclic group
2
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6 [ (Z *~e_1b X e ) (1 + y )  + X- 1 x] = [£ X-E-1b (Xx)E] v  (1 + y )  + X

e e e

+ X"1 v(£ b £x e ) (1 + y )  
e <

= <1 X- 1 b x e ) v ( l  + y )  + x + (T X-1 b x e ) v ( l  + y )  = x .
e e e

A lso  b y  u s in g  ( 4 .6 )  we have

0 [1 + (X p * x  ) (1 + y )  ] = 1 + X p 1 [Xx + u (1 + y )  ] ™ [1 + 1 + px"*(1 + y )  ]

m - i  -m m .
= 1 + X p [(Xx) + n2 ( l  + y ) ] [px (1 + y )  ] w/U*,

+ P 30 = 1 + X p (Xx) mpxm( l  + y )  = 2 + y  = y  .

Hence 0 i s  on to  when 6 = 1 .  Now suppose t h a t  6 = -1  . In

o r d e r  to  s i m p l i f y  th e  p ro o f ,  l e t  v = px"* where 0 ^  p £ K and m i n t e g e r .

L e t  u = x 2v (£ b £(x 1 ) e ) where £b (x 1 ) e e K(<x>) . Then by  (4 .6 )  we have
e e

0 [ (£  X_e_1b x e ) (1 + y )  + Xx_ 1 ] = l  X- e - 1 b [Xx-1  + u ( l  + y ) ] ef ( l  + 1 + v ( l  + y ) ]
£  £

* •

*  » i » * ' 1 *  uCl *  y l l ' 1 -  I  * “ 3 ' 1 *  S' llt<’' ' 1 *  y ”
£

+ X[(Xx- 1 ) - 1  -  (Xx- 1 ) “ 2' u (1 + y ) ]  where n e k (<x>) .
0

S in c e  (1 + y )  2 = 0 and u = x  2 v ( [  b£ (x V )  we have
£ • 

0 [ X- e - 1 b x e ) (1 + y )  + Xx- 1 ] = l  X- e - 1 b (Xx- 1 f  v ( l  + y )  + x  -  X- 1 x2u ( l  + y )
e E e 6

= l  X- 1 be (x- 1 ) e v ( l  + y )  + x -  X- 1  x 2 [x-2  v l  b e (x- 1 ) e ] ( l  + y )  
e e

= l  X- 1 b (x- 1 ) e v ( l  + y )  + x  -  l  X- 1 b (x- 1 ) e v ( l  + y )  = x .
£ E

A lso  by  u s in g  (4 .6 )  we have

0 [1  + X - V 1* *  (1 + y ) l  = 1 + X-mp -1  [Xx-1  + u ( l  + y ) ] m[ l  + 1 + » ( 1  + y ) ]

= 1 + X-n p-1  [ (Xx- 1 )*1' + fi4 ( l  + y )  ] [ ( v ( l  + y ) ]

where £ K(<x>) .
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_. ,, . 2 mSince (1 + y) = 0  and v = px we have
„ . ,-m - 1  -i m -i m m „9 [1 + X p x (1 + y) ] = 1 + x p [X (x ) ] (px ) (1 + y) = 2 + y = y

Hence 0 is also onto when 6 = -1 .

Finally we prove that 0 is 1-1 . Suppose J a.x1 + (£ B.x3)y
i 1 j 3

is a member of K(G) such that 0 [J a.x1 + (£ B.x])y] = 0 .
i 1 j 3

Then we show that all ai and all Bj are zero.

It is convenient to distinguish even and odd powers of x in

£ a.x1 and £ 3.x3 . Thus let 
i  ̂ a 7

 ̂a.x1 = J a x V + J a " l + 2v L
2a+l

~2v ~ £ 2a+lv a

(1 )

By (1) and using (4.6) we have
+1 . 2v ._ {■ ) v i = / a. i0[£ aix1 + (l B.x3)y] = £ a ^ U x - 1) V+ l 02a+l^Xx"" ' 0 1 + (Xx*-1) °u(l + y) ] 

i j 3

+ (l B ^ U x i1) 2̂  l  B2F+1[(Xx^1) 25+1 + (Xx±-VC u (1 + y) ] )25+ 1 1

In

[1 + v(l + y) ] = 0 .

order to simplify let A = £ a„ (Xx̂ -3’)2°u,2t>+l'

2 CB = l 62 +̂1 (Xx+- ) u , we have

0 [J a.x1 + (J BjXj)y] = £ a. (lx*-1 ) 1 + A(1 + y) + £ Ba (Xx̂ -1)j + B(1 + y) 
i 1 j 3 i j 3

+ [£ B, (Xxi1) 11] v(i + y) - o .
j 3

(2)
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By multiplying (2) by 1 + y and using (1 + y ) * 2 = 0 we 

obtain

[£ a i (Xx-1 ) i  + l  B (Xx^1 )3 *] (1 + y)  = 0 . (3)
1 j 3

This implies that

I  o ^ U x ^ 1 ) 1 + l  B . U x - ) 3 = 0 . (4)
1 j 3

Since X ^ 0 , it follows from (4) that = 8i for all i and 

this implies that A = B . From this result and (2) we conclude 

that £ B. (Xx̂ 3-) 3 V(1 + y) = 0 . But v is a unit and so
j 3

£ B. (Xx̂ 1 )-5 (1 + y) = 0 . This implies that 6 . = 0 for all j
j 3 3

because X ^ 0 . Thus = B^ = 0 for all i i.e. 6 is 1-1 . ^

Combining lemmas (4.9) and (4.10) we have:

Theorem IV

Let G = <x> x <y> where <x> is infinite cyclic group and
2y = 1 . Let K be a field of characteristic 2 . Then 0 is

a K-automorphism of K(G) if and only if there exist X e K - {0} 

and u, v e K(<x>) such that v is a unit and

0 (x) - Xxi1 + u (1 + y) .

0 (y) = 1 + v (1 + y)
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Let K = GF(p) , the Galois field with p elements. In

[ID] D.S. Passman proved that the group rings of all non-isomorphic
4p-groups of order at most p over K are non-isomorphic. Our 

aim in this chapter is to investigate the corresponding property 

for non-isomorphic p-groups of order p5 (p > 3) unfortunately 

this problem is still open.

We use Schreier's classification of groups of order p^ (p > 3) 

in [14], As far as possible we retain his notations but, for 

convenience in accordance with present-day usage, we replace his 

Gothic letters by capital Roman letters, his capital letters for 

groups elements by small letters, and E by 1 .

The groups of order p^ ( p > 3) as characteristed by Schreier, 

are divided into ten types, each type being again sub-divided into 

various sub-types of non-isomorphic groups.

Our techniques are based on the results of Jennings in [6]

and Passman in [10] . We also use the notations found in

We say two groups G1 and are distinguished if K(Ĝ ) a? K(G2> .

Since there are few given in [ID] for finding the proper-
2 3 4ties of groups of order p , p and p we insert details for some

of them before pursuing the main aim. For example we find the

properties of groups of type (X), (XI), (XII) and (XIII) given in

[10] of order p4 (p 2 3) .

For convenience we replace letters P, Q, and R by letters 

a, b, and c respectively.

CHAPTER 5
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Group X

This group is given by the relations

G = <a,b,c|ap = 1, bP =

Observe that b e Z(G) . Also c ^ac = ab implies that

ac = cab so every element of G is of the form cYaabB .
- 1 ...............From .c ac = ab and b e Z(G) we conclude that,

For K = 1 there is nothing to prove. Suppose that (2) is valid 

for K : then by using (1 ) we have

( c V b V 41 = ( c V b e)K ( c V b 6) = [cKYaKabK6 + 2 aY] ( c V b B)

K(K-l)
_ (K+l) Ya (K+l) a^ (K+l) 6 + Kay + 2 “Y

(K+l)K
(K+l)y (K+l)a (K+l) 6 + 2 “Y— c ci a •

Hence our claim has been provedand in particular we have

if and only if (cYaa)a = a(cYaa) and (cYaa)c = c(cYaa) . Hence

c a c - (c ac)n = (ab)n = a1̂ 11 . This implies that cb n = a ni 

and from this and b e Z(G) we have c^b tn = (cb n)t = (a ncan)t -n t n = a c a

Hence we have

( 1 )

Now we prove by induction that for K £ 1
K(K-l)

( 2 )

K(K-l)

K(K-l)

L$£2ll
(cYaab6)p = cPYapabpe + 2

pa (3)

Now we calculate Z(G) . Since b e Z (G) , cYaabBc Z(G)

if cYaab6 e Z(G) then it
faHowi

from (1 ) that bY - 1 and ba = 1
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Therefore y = wp , a = ep . Hence every element of Z (G) is

type (p, p) .

cu- 2Now G/<b> is abelian group of type (p , p) . In particular, 

G' <b> . Since G is non-abelian, G' = <b>

Finally we calculate the M-series.

= G . By using (3) we have

Thus M^/M2 = <cM2> x <aM2> , abelian group (p, p) , |m 2/M3| = p ,

of form This implies that
2so Z (G) is of order p and ofZ(G) = {aEpb®> = <aP> x <b>

pSince b, a e Z(G) we have

<<1 >, <â >>> = <â 3>

Also we have

M3 M4 MP

«i>, m 2 (P)
2P

> as <a > = <1>

• • • 9 p - D ,  Mp/Mp+1 - p .
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Groups (XI>,(XII), (XIII)

These groups are given by the relations

G = <a,b,c|aP = 1, bP = 1, cp = JP, b_1ab = a1+p, -l wc ac = ab, c be = b>

where ^ = 0, 1 , and any non-residue modulo p respectively.

We begin with results common to these groups.

From b ''’ab = a^+p we conclude that ab = ba^+P , from this 

and c 1ac = ab we have ac = cab = cba1+P . Since be = cb so 

every element of G is of form cYb®aa .

Also we have b ^a^ = (b 1ab)t = (a1+P)fc = at ^ +p  ̂ . in 

particular we have b ^aPb = aP = aPap = aP , then aPb = baP

Again from b 1atb = at 1̂+p  ̂ we conclude that b = a tbatatp 

and this with apb = baP implies that bn = a tbnatantp . Hence 

we have
t, n n t ntp a b = b a a (4)

—K K KNow we prove by induction that c ac = ab . For K = 1
_ K  k Kthere is nothing to prove. Let c ac = ab then we have

- (K+l) K+l -1. -K K. -1, ,K, , -1 . K  , . K .K+lc ac = c [c ac ]c = c (ab )c = (c ac)b = (ab)b = ab

because be = cb .

, . -K K . K . -K K K 1+KpBy using (4) and c ac = ab we have c ac = b a .

Also by induction we prove that

-K n K c a c
n . n(n+l)

. nK " + “  KP b a (5)

For n *= 1 our assertion is true. Let

. n(n»l).
-K n K . nK c a c - b a

Kpn + 2
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P PBy (4) and a b = ba we have

-K n+i 1C _ -K K n+1 -K K n -K K, r,nK c a c = (c ac ) = (c ac ) (c ac ) = [b a

n(n+1 ) n(n+1 )..
_ . nK 2 p K. nK n+1 K 2 Kp= [b a J (ab ) = b a b a

n + n(n+l) Kp. . K K. ] (c ac )

n(n+l)
2 J a

(n+1 )(n+2)

■ Vn (n+1 ) (n+2) ..
.nK,. K n+1 K(n+l)p. 2 *p . (n+l)K n+1 2 pb ( b a a  ) a = b a a

. (n+l)K (n+1 ) + 2D a
Kp

P(P+1)Kp
In particular we have c KaPcK = bpKa = aP because

P P P Pb = 1  and a = 1 . From this we have a c  = ca . By this
P P Presult and a b  = b*. we conclude that a e Z(G) the centre of G .

Now we prove by induction that

„ n(n-l)„ nB + — :— - ay, y. 6  a.n ny 2(c b a ) = c b

no + E i E ^ aBp + + 2a(|a+l)+ _ (n-1 ) a [fo-1 ) a+11 
2 1YP

(6)

For n = 1 there is nothing to prove. Let

a (a+1 ) . 2a(2a+l) . . (n-l)a[(n-l)a+l]
A -----—  + ---j---- + •”  + -------2--------

By using a*e Z(G) , be = cb, (4) and (5) we have,

nB + no + oBp + AYp v .
(c^b®aa ) n+1 = [cny b 2 . 2 ]<cV.°)

nB + n("~1) ay P-(§r—  aBp + Ayp
lcnY b 2 a11“] ( c V a a) a 2

nv w c 1 b
n6 + niszil ay

2 . y .nay(c' b
. na(na+l) no + ---=----YP n(n-l)

„ 8  « 2)b a a
oBp+Ayp
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. n(n-l)np + — ----ay +(n+l)y T 2---“Y + n“Y na « a Yp + 2 a6p + Aypc b a b a a

(n+1 )y "" ' 2c b
„a j. (n+l)n .... na(na+l) . n(n-l) „ . _
nB + ~  aY 6 na naBp 4 ---2----YP + --- ---aBp + Ayp(ba a *) a a

(nW) 
c b

(n+l)a + iHiiiiLaep + t“i2±iL + 22120+11 + _  + na(na+l)]Yp

In particular we have,

Y B a p  p*  Pa + [¿1ftH  + + ... +
(cYb a )p = cP* a  ̂ ^

ra(a+1) 2a(2a+l)YPY + pa + [-^— ^ + (p-1) a [ (p-1) a+1 ] .
’ ’ 2 J Yp

This implies that <G ( p ) > = <a P >

By a^ £ Z(G) , be = cb and repeating (4), (5) we have
, Y. B a - 1 r, s.t.-l, y.B a„ r.s t. . ar-ty up , . . .(c b a ) (c b Si ) (c b a \c b a ) = b a (u integer).

r a r - t Y  u p i  pHence we have G' = <{b a }> = <b> x <a > . This implies

that

G/ = <{cYb^aa (<b> x <aP>)}> = <c(<b> x <aP>)> x <a(<b> x <aP>)>G

G 2Thus /.. is of order p and of type (p, p) .
G

Now we calculate Z(G) . cYbBa“ £ Z(G) if and only if 

(cYb6aa)a « a(c bBa“), (c bBaa)b = b(c bBaa) and (<? bBa“)c = c(c bBaa) .

By using (4), (5) and (cYbBa“)a = a(cYbBaa) we have, 

cYbBa = acYbB » (cYbYd1+PY)bB = c V  (b6 a 1+PY aB(1+PY)p) = cY bY+B a1+PY+pB 

This implies that 1 = bY aPY+pB so we obtain y = ep and 6 = ap .
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Also by cb - be , (4) and (cYb^aa)b = b(cYb^aa) we have

a b = ba or we have baa aap = baa and this implies that aap

so a = Xp .

From (c^b®aa)c = c(cYb®aa) as above we conclude that a =

Hence every element of Z(G) is of form cep bap <*.̂P = a"̂ p and

this implies that Z(G) = <aP> . Hence Z(G) is of order p 

of type (p) .

Finally we calculate the M-series.

M1 = G

(P) « P P PM2 = <G', G > = <<a> x <a >, <a >> = <b> x <a >

Now we calculate (M2, G) . Since a e Z(G) we have 

( c V a V V *  (cYbea“)bt = a ' V U ' V b W  = a"ab'taabt 

because be = cb . But by (4) we have 

a ^  ta°lbt = a ^  t (btaaaatp) = aatp . Hence we have

M3 = <(M2, G), Mp / p)> = <<aP>, G (P)> = <aP> .

M, * M. = ... = M = <aP> . 3 4 p

M = < (M , G),M (p> > = «1>, <aP »  = <1>P+1 P (p+l/p)

Thus we have,

M1^M2 = <cM2> * <aM2> ’ abelian group (P> P) * I M2y/M31 = P ' 

Mi/Mi+1 = 1 (i = 3' **•' p-1) ' lMp/Mp+J = P '

= 1

Xp .

and
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Let N be the Jacobson radical of K(G) . Then we calculate 
2 3 4the kernel of $ : N/N-*-N /N for p = 3 . Since

Ml/M2 = <cM2> X <aM2> Lt follows from that, c - 1 and a - 1

have weight 1 . Also since = ' b ~ 1 has weight 2

3 3Finally since M2/K4 = <a M4> ' a “ 1 has weight 3 . Hence

2 2 every element of N/N is of the form [m(a - 1) + n(c - 1)] + N

where m, n e K , and then we have

[m(a-l) + n(c-l) ] 3 = m3 (a-l) 3 + m2n(a-l)(c—1 )(a-1 ) + m2n(c-l)(a-1 ) 2

+ mn2 (c-1 ) 2 (a-1 ) + m 2n (a-1 ) 2 (c-1 ) + mn2 (a-1 ) (c-1 ) 2

+ mn2 (c-l)(a-1 )(c-1 ) + n3 (c-l) 3

By using lemma (1.28) we have

(a-1) (c-1) (a-1) = (a-1) [ (a-1) (c-1) + (c 3a ^a-l) ] mod N4 . Since 

b3 = 1 and c 3ac = ab we have

c-1a_1ca - 1 = b- 1 - 1 = b2 - 1 = (b - l) 2 + 2 (b - 1 ) .

Hence we have

(a-1)(c-1)(a-1) = (a-1)2 (c-1) + (a-1)(b-1) 2 + 2(a-l)(b-l) mod N4 .
2 4But (b-1) € N because b - 1  has weight 2 and then we have

(a-1) (c-1) (a-1) = (a-1) 2 (c-1) + 2 (a-1) (b-1) mod N4 . (7)

By the above we also have

(c-1) (a-1) 2 = [(a-1) (c-1) + (b-1) 2 + 2 (b-1)] (a-1) mod N4 . We have 

(c-1 )(a-1 ) 2 = (a-1 )(c-1 )(a-1 ) + (b-l)2 (a-l) + 2 (b-l)(a-l) mod N4 .
9



82
I

Since (a-1)(c-1)(a-1) = (a-l)2 (c-l) + 2(a-l)(b-l) mod N4 and 
2 4(b-l) e N we have

(c-1) (a-1) 2 = (a-1) 2 (c-1) + 2 (a-1) (b-l) + 2 (b-l) (a-1) mod N4 . (8)

As before we have

(c-1) 2 (a-1) = (c-1) (a-1) (c-1) + (c-1) (b-l) 2 + 2 (c-1) (b-l) mod N4 .

2 4Since (b-l) e N we have

(c-1) 2 (a-1) = (c-1) (a-1) (c-1) + 2 (c-1) (b-l) mod N4 . (9)

But we have

(c-1) (a-1) (c-1) = (a-1) (c-1) 2 + (b-l) 2 (c-1) + 2 (b-l) (c-1) mod N4 .

2 4Since (b-l) e N we have

(c-1) (a-1) (c-1) i (a-1) (C-1)2 + 2 (b-l) (c-1) mod N4 . (10)

By using (7), (8) , (9) and (10) we have 

[m(a-l) + n (c-1 ) ] 3 = m3 (a-l) 3 + m2n( (a-1 ) 2 (c-1 ) + 2 (a-1 ) (b-l)]

+ m2n[(a-1 )2 (c-1 ) + 2 (a-1 )(b-l) + 2 (b-l)(a-1 )]

+ mn2 [(a-l) (c-1 ) 2 + 2 (b-l) (c-1 ) + 2 (c-1 ) (b-l)] + m2n (a-1 ) 2 (c-1 )

+ mn2 (a-1 ) (c-1 ) 2 + mn2 [ (a-1 ) (c-1 ) 2 + 2 (b-l) (c-1 )] + n3 (c-l) 3 mod N4 .

Since the characteristic of K is 3 , and be = cb we have 

[m(a-l) + n(c-l) ] 3 2 m3 (a3 - 1 ) + m2n(a-1 ) (b-l) + 2m2n(b-l) (a-1 )

+ n3 (c3-l) mod N4 . (1 1 )

Since p = 3 we have b 1ab = a1+P = a4 . This implies that 

(b-l) (a-1) = (a-1) (b-l) + ba(l-a 1b 3ab) . We have 

(b-l) (a-1) « (a-1) (b-l) + ba(l-a3) . We have

(b-l) (a-1 ) = (a-1 ) (b-l) + (ba-1+1 ) (1-a3) = (a-1 ) (b-l) + (ba-1 ) (1-a3) + (1 -a3) .
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Since a - 1 has weight 3 we have 

(b-1) (a-1) E (a-1) (b-1) + (1-a3) mod N4 . (12)

By using (11), (12) and c3 = a3  ̂ we have 

[m(a-l) + n(c-l) ] 3 E m3 (a3-l) + 2m2n(l-a3) + n3 (a3^-l) mod N4 . (13)

By using lemma (1.28) and the fact that a -1 has weight 3 
3ii 3 4we have a - 1 E i|i(a -1) mod N . Hence we have

^ O O O O  O O  A

(m(a-l) + n(c-l)] E m (a -1) + m n(a -1) + ipn (a -1) mod N

Or we have [m(a-l) + n(c-l) ] 3 E (m3 + m2n + <|»n3 (a3-l) mod N4 . (14)
2It follows from (14) that [m(a-l) + n(c-l)] + N e ker (J> if and

3 2 3only if m + m n  + i|m = 0 .

We now have to consider the three groups separately.

Group (XI)
3 2In this case 'I' = 0 and then we have m + m n = 0 . This 

2implies that m (m + n) = 0 . Since K is the prime field of 

three elements we have one of the following:

m = 0 m = 0  m = 0 m = l  . m = 2
n = 0 ' n = 1 ' n = 2 ' n = 2 ' 3 n = l '

Hence in this case the kernel of <f> consists of five elements.

Group (XII)
3 2 3In this case = 1 and then we have m + m n  + n = 0.

This implies that

m = 0 
n = 0 '

m = 1 
n = 1 ' and m = 2 

n = 2

Hence in this case the kernel of 4> consists of three elements.
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Group (XIII)

In this case V = 2 because 2 is a non-residue modulo 3 .

Thus we have m3 + m3n + 2n3 = 0 and the only solution is m ^ .n = 0

Hence in this case the kernel of $ consists of one element. Thus 

we have the following table.

Group
number Z-type G/ G 1 type Ml/M2

type
M/M_ 2 3
type

V " 4  p>3 
type

M /M P P+1
type

Kernel 
size 
(P = 3)

X (Pr P) (P2» P) (P/ P) (P) (1 ) (P)

XI (P) (P. P) (P/ P) (P) (1 ) (P) 5

XII (P) (Pf P) (P* P) (P) (1 ) (P) 3

XIII (P) (P» P) (P» P) (P) (1 ) (P) 1

This table shows that the groups (XJ),(XII), and (XIII) for 

p = 3 are distinguished. For p > 3 we have the following lemmas 

found in [1 0].

Before starting to write the lemmas we note that by (1.28) we 

have (a-1 ) and (c-1 ) have weight 1 , b - 1 has weight 2 , 

and aP - 1 has weight p . Since p > 3 we have aP-l e N4 .

Hence by (1.28) we have

(a-1) (c-1) = (c-1) (a-1) + (b-1) mod N3 (I)

(a-1) (b-1) = (b-1) (a-1) + (ap-l) mod NP+1 (II)

(a-1) (b-1) = (b-1) (a-1) mod N4 (HI)

(c-1)(b-1) = (b-1)(c-1) because be = cb (IV)

(â P-l) = î(aP-l) mod NP+3 . (V)
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Lemma 5.1

The natural map <(> ; N/N2 N^/N^+  ̂ is given by 

{m(a-l) + n(c-l)}P = (m +tn) (aP-l) mod NP+1 .

Proof
3By (I) we have [m(a-l), n(c-l)] = mn(b-l) mod N . By

4(III) and (IV) , m(a-l) and n(c-l) conmute with mn(b-l) modulo N
w/U- 4

Hence m(a-l), n(c-l) commute [m(a-l), n(b-l)] modulo N . Since 

p > 3 by lemma 2 of [ID] we have

(m(a-l) + n(c-l)}P = mP (a-l)P + nP (c-l)P mod NP+1 . By (IV), 

cP = aVP , and the fact that K is a prime field of p elements 

we have

{m(a-l) + n(c-l)}P = (m + ij/n) (aP-l) mod nP+1 . A

Lemma 5.2

Let S = <(b-1), (b-1)2, (b-1) (p~1>/2, lf> .

Let : N/N -*• nW * 1 be the natural homomorphism. Let 

nP+1 Ç T Ç l l P  with T/nP+1 = 41 (N/N2) . Let 

D = fu í n | Y  X £ N , xu - ux £ T} . Then S = U .

Proof

By (5.1) it is evident that T = <aP-l, NP+1> .

2 P-l/2 *
Let X e S . Then x = a^ib-l) + a2 <b-l) + ... + ap_]y2 w

where ai e K (i = 1, 2, ..., p-1/2) and w £ li . Let u e N .

Then we write u in terms of the Jennings basis modulo nP i.5-

u = F 8, a v (a-l)i (b-l)j (c-l)K + a where 1 S i + 2j + K S p - 1 . i f D i K
p »By using {JL ) and a -1 e N we have

(a-l)(b-l)W = (b-l)U (a-l) mod N1* 1 (u > D  . (4)

(a-l)P (b-l) = (b-1)(a-l)W mod N^ 1 (U > 1 ) (5)
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ux

Hence by using (4) and (5) we have 

xu = [£ & K (a-l)X(b-l)j (c-l)K + ct]
Eli

X [o^tb-l) + a2 (b-l) 2 + ... + ap_i/2 b̂-1  ̂ + W1

Eli
- [a1 (b-l) + a2 (b-l) 2 + ... + ap-1/2 (h“ 15 + w]

X [T B. . (a-1) 1 (b-1)j (c-X)K + o]
1 r  J t

'= [6i,o,o - aiei,o,o(b-1)(a-1)] + n '

where n € nP-+1

By using we deduce that

ux - xu = a B. (aP-l) + ft , where ft e nP+1 . This implies that
1 J. f  01 0

ux - xu e T and then x e U , i.e. S £ U .

Now we prove that U £  S . If not we choose u e U\S and we

write u in terms of Jennings basis. Since (b-1)^ for 2j < p 

belongs to S we assume that no terms of the form (b-1)^ with

2j < p occur in the representation of u . Now we prove by

induction on t that u € N for t ^ p • For t = 1 there is

nothing to prove because u e N . Let u e N with t < p .

Then we prove as follows that u € N • Now we can write

u = I a, . (a-1) ̂ (b-1)^ (c-l)K mod Nt+ 1
1 # j f K.

where i + 2j + K = t and «0(j/0 = 0 • since u € u ' a-1 e N

and c-1 e N we have

[(a-1), u] e T , [(c-1), u] e T , and

[ (a-1), u] e T + Nt+2 , [ (c-1), u] e T + Nt+2 .



Now we prove by induction on K(K 2: 1) that 

[(a-1), u] = l K a v (a-l)i (b-l)j+1 (c-l) K_1 mod Nt+2 . (6)
K21 1,3'K

[(c-1), u] = -  ̂i a v (a-1) i_ 1 (b-1) 3+1 (c-1)K mod Nt+2 . (7)

By (II) and 

modulo Nt+  ̂ •

t(a-1 ) ,

t < p we know that (a-1 ) commutes with

Hence to prove (6) it is enough to prove

, , V 1 X / 1 »K~1 J „K+2(c-1) ] = K(b-l) (c-1) mod N

(b-1 )

( 8 )

By using (T) there is nothing to prove when K = 1 . Suppose 

(8) holds for K . Then we wish to prove the corresponding result 

for K + 1 . We have

[ (a-1), (c-l)K+1l = (a-1 ) (c-l) K+1 - (c-l) K+1 (a-1 )
Y K+l= ((a-1 ) (c-1 ) ] (c-1 ) - (c-1 ) (a-1 )

= { (c-1)K (a-1) + K(b-l) (c-l) K_1 + 61 }(c-l) - (c-l)K+1 (a-l)
K+2where 6  ̂e N

From this and (1), (3) we conclude that 

[(a-1 ), (c-l)K+1] = (c-1 ) K [ (c-1 ) (a-1 ) + (b-1 ) + 621 + K(b-l) (c-l)K + e^c- 1 )

j - (c-1 ) (a-1 )
WMn*. i j t y  l l )  T h u , ,

= (c-l)K (b-l) + ( c - 1 ) K 6 2 + K(b-l) (c-l)K + 6  ̂(c-1 )

= (K+i) (b-i) (c-i)K + e3 
v K+3where 63 - (c-l)K02 + e.^c-1) e N . Hence (8) has been 

established and so (6) has been established.

The proof of (7) is similar to the proof of (6) and so we omit
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By using (6), (7), [(a-l), u] e T + Nt+2 = <Nt+2, aP - 1>

[(c-1), u] e T + Nt+2 = <Nt+2, aP-l> we conclude that

I K a „ (a-l) 1 (b-1) j+ 1 (c-1)K_* = 0 (9)
K 1 1,3,K

l i a „(a-l)1-1 (b-1 )j+1 (c-l)K = 0 (1 0)
m  1'3'K

because i + 2 (j+1 ) + (k-1 ) = (i + 2j + K ) + l  = t + l,

(i-1) + 2 (j+1) + K = t + 1 , and 1 £ i, j S t < p . This implies
t+1 Pthat a. . „ . and then u = 0 mod N . Hence u e tr <= Si,3,K = 0 -

which is false, i.e. S = U . A

We remark that, on the one hand, sub-space S is determined 

by a particular basis in terms of the group elements and that, 

on the other hand, U is determined solely by the ring-theoretic 

structure. Thus this lemma shows that S is itself determined 

solely by the ring-theoretic structure.

2 2Now we choose an element x e N\N with <t>(x + N ) = 0 , and
2we choose y e N with <p (y + N ) f 0 . By (5.1) and the fact

p pthat a-l e N we can write

x = X[Y(a-l) - (c-1 )] + n , 

y “ ppffa-!) " (c-1 )] + y(a-l) + m ,

where n, m e N2 and X, u f 0 . But by using (I) we have
3 p i P[x, y] = yX(b-1) mod N . Thus, if s = yX(b-l) + \ b (b-1) mod N ,

i22
3then s e S and [x, y] = s mod N

By using ($| , (]H.) we have [x, (b-1)*] e N^ for i  ̂2 

and [n, s] e nP+1 . Hence we have

[x, s] = yX2 (iy(a-l) - (c-1)} , b-1] e yXY(aP-l) mod NP+1 .
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I

By using (6), (7), [(a-1), u] e T + Nt+2 = <Nt+2, aP - 1>

[(c-X), u] e T + Nt+2 = <Nt+2, aP-l> we conclude that

l K a v (a-l)i (b-l)j+1 (c-l) K_1 = 0 (9)
>T 1 • J t **

l i a v (a-l)1~1 (b-l)3+1 (c-l)K = 0 (1 0)
i k l  1 , 3 ' K

because i + 2(j+l) + (k-1) = (i + 2j + K) + 1 = t + 1 ,

(i-1) + 2 (j+1) + K = t + 1 , and 1 S i, j < t < p . This implies
t+1 Pthat a. . „ . and then u = 0 mod N . Hence u € N c s

=  0 - -

which is false, i.e. S = U . A

We remark that, on the one hand, sub-space S is determined 

by a particular basis in terms of the group elements and that, 

on the other hand, U is determined solely by the ring-theoretic 

structure. Thus this lemma shows that S is itself determined 

solely by the ring-theoretic structure.

2 2Now we choose an element x e N\N with |Mx + N ) = 0 ,  and
2we choose y e N with <(>(y + N ) ^ 0 .  By (5.1) and the fact 

P Pthat a - 1  e N we can write

x = X (t*(a-1 ) - (c-1 )] + n , 

y = p(t(a-l) - (c-1 )] + U(a-1 ) + m ,

where n, m e N2 and X, y ? 0 . But by using (I) we have
3 r i P[x, y] = yX(b-l) mod N . Thus, if s E yX(b-l) + l b.(b-l) mod N ,

iS2

then s e S and [x, y] E s mod N

By using ($J , we have [x, (b-1)^] e N^ for i k 2 

and [n, s] e nP+1 . Hence we have

[x, s] = pX2 [(y  (a-1) - (c-1)} , b-1] = yXY(aP-l) n»d NP+1 .
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If y  = 0 , then [x, s] H 0 mod nP+1 . Therefore the 

group for Y = 0 is distinguished from the other two.

Suppose Y ¥■ 0 . By lemma (5.1) we have 

y^ “ [x, s] = (y - yX^Xa^-l) mod , because yP = y .

If Y  = 1 we may choose x so that y^ - (x, s) = 0 mod N^+1

If Y is not a quadratic residue, then for all choices of x

yP - [x, iS*] % 0 mod NP+1 . Thus the three groups are distinguished.

Now we start with type I of groups of order p^ (p > 3) .

Type I

The groups of this type are given by the following relations, 
3 a, „ a-

<a, bl» t>2 1 aP = 1 , b

- 1b„ b, b_ = b,a>
2 1 2  1

of which there are three sub-types given by

“l 1 0 0

a2 0 1 0

We denote these sub-types by (I, 1), (I, 2), (I, 3) respectively. 

Observe a e Z(G) and we have

(1 ). n  . t , t n nt 
bl b 2 = b 2 bl 3

The elements of this type are of the form a b^ b ^  and we have
m(m-l) .

, a . ß . y.m ma + 2 ßY mß my(a b2 bi') = a b 2 ^

Now we calculate Z (G) . a b2ß b^^ e Z(G) if and only if

(b2ß b j j b ^  b ^ b /  b^) and <b2P b ^ ) ^  - b2(b2  ̂b^) . Hence 

if a“ b2ß b ^  e Z(G) then it ffatlws from (1) that a = 1

ß k y ß K y \ ß V, y »

and

1 . Therefore ß = ep and y » ap Hence

Z (G) - {aa b2ep b ^ 5} . Also we know that G' * <a>



Sub-type (I, 1)

For this sub-type we have a = 1, a2 = 0 . Hence 

Z(G) = .

= G .

Mi = «b^» (i = 2, 3, p) .
2 2 

= <bj^ > (j = p + 1 , ...,p) •

2 3M = <a> (K — p + I» •■•» P ) •1C

M = <1> .
P +1

Sub-type (I, 2)

Since a1 = 0 , a2 = 1 we have

Z(G) = <a> x <b1P> •

Mx = G .

M = <a> * <b,^> (i = 2, .. • i p) i 1

Mj = <D^ > (j = P+1 » •••» p )

p2+i
<1>
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For this sub-type we have = 0, = 0 . Hence

Z(G) = <a> x <b1P> .

Sub-type (I, 3)

M1 - G .

M2 “ <a> * v > •

Mi “

AÛ4HrQV (i ~ 3/ ... / p) •

M. = 3
2

V * (j
, 2, = p + 1 , ..., p )

M = <1 > .
P +1

Thus for type I we have the following table.

Group
number Z-type G/G' type V M2

type
V M3
type

M /M Jl P P+1
type

W + i
type

V /mp 3+i
type

(I, 1 ) <P3) (P3»P) (P»P) (1 ) (P) (P) (P)

(I, 2) (p2fP) (P3»P) (P»P) (1 ) (P»P) (P) (1 )

(I, 3) (P2.P) (P3«P) (P»P) (P) (P) (P) (1 )

TABLE I

According to the Table I and Proposition (4), Corollary (6) 

of [10] the groups of type I are distinguished.
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The groups of this type are given by the following relations, 

2 2
G = <a,b1 ,b2 |aP = 1, b ^  = aa , b2P = 1, ab3 = b^a, ab2 = b2a,

Type II

b1a> ;

Of which there are two sub-types given by a = 0, a = 1 . 

these sub-types by (II, 1), (II, 2) respectively.

We denote

The elements are of the form aa b2® b ^  and we have

, t  ̂ n , n , t nt 
bl b 2 = b 2 bl a ’

, m (m-1 ) „
a J . T , ® .  “  2 Yu mß w my(a b2  ̂bx') b2 bx

The elements of Z(G) are of the form aa eP b op

Sub-type (II, 1)
For this sub-type a = 0 and we have

M1
G .

<a> x <b P> x <b.P>

M = < b P> x < b P> .
p  2 1

p+i < i >  .

Sub-type (II, 2)
For this sub-type o = 1 and we have

Mx - G •

m2 - M 3 « M = < b P> x < b P> .P 2 1

M = M “ ... « M , - <•> .
p+i P+2 2

P

M = <1> .
p +1
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Hence we have the following table.

Group
Number Z-type G/G' type Ml/M2 M2/M3 M /M ., P P+1 V ' V + l

type type type type

(XI, 1 ) (P,P,P) (P2. P2> (P»P) (P) (P»P) (1 )

(II, 2) (P2,P) (P2. P2) (P»P) (1 ) (P»P) (P)

TABLE II

According to the Table II and Proposition (4), Corollary (6) 

of [10] the groups of type II are distinguished.

Type III
ScjL

For convenience we replace notation of a*, b^*, b2*

and b3* by a, bx, b2, and b3 respectively. The groups of 

this type are given by the following relations,

— <a, b^, b2' b3 | s = 1 , b^
2 „ a o,

p = i h p - a 1, b2P = a , b3P = a ,

ab^ = b^a ^  = 2# 3) / b^k^ = ^  ^

b2_1 bl b 2 “ bia> '

and
t
P

a \  b2P = a 2, b3P = 1 ,G — <3/ b^ t ^21 j ®

abi = b±a (i = lf 2, 3), b ^  = b.b (j * L, i) ,

ha" 1 b2 b3 - b2a> •
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Of which there are seven sub-types given by

al 1 0 0 0

“ 2
0 1 0 0

a3 0 0 1 0

and

B1 1 0 0

*2 0 1 0

We denote these sub-types by (III, 1), (III, 2), (III, 3), 

(III, 4), (III, 5), (III, 6), and (III, 7) respectively.

For sub-types (III, 1), (HI, 2), (III, 3), (III, 4), the elements 

are of the form a“ b3B b2Y bj6 and we have

t n , n , t nt 
bl b 2 = b 2 bl *

b 3<> » / I -  .  “  * ^  *  b «

The elements of Z (G) are of the form a b^ b2

For sub-types (III, 5), (III, 6) and (III, 7) the elements 

are of the form a“ b ^  b3Y b26 and also we have

. t . n . n . t  nt  
b2 b3 " b3 b2 a '

>> b3- b2‘," - ^ v5 b.*e b »,-*51 D3 °2 •

a , 8 . OPThe elements of Z(G) are of the form a b^ b2 . Hence

we have the following table.
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Group
Number

G/G'
type

Z(G)
type

Ml/M2
type

M2/M3
type

M /M .. P P+1 
type

V /Mp +1
type

(III, 1) (P2,P,P) (P2,P) (P,P,P) (1 ) (P) (P)

(III, 2) (P2,P,P) (P,P,P) (P,P,P) (1 ) (P,P) (1 )

(III, 3) (P2«P,P) »0
NJ (P,P,P) (1 ) (P,P) (1 )

(III, 4) (P2,P,P) (p,p,p) (P,P,P) (P) (P) (1 )

(III, 5) (P2,P,P) <p3> <P,P,P) (1 ) (P) (P)

(III, 6) (P2»P,P) (p2,p) (P»P,P) (1 ) (P,P) (1 )

(III, 7) (P2,P,P) (p2,p) (p,p,p) (P) (P) (1 )

TABLE III

Type IV

The groups of this type are given by the following relations

G — b^f bji bj,

abi = b.a (i = 1, 2, 3, 4), bjb. = b ^  (j = 1, 2, 4), 

b4bk = bkb4 (k “ 2)' b2 blb2 = bia> '

and

G - <a, b ^  b2, b3, b4 | aP = 1, b ^  = a , b2P = 1, b3 

ab^ = b^a ^  ^

b2 ~ \ b2 = V '  b4_lb3b4 = b 3a> '

1, b4P = 1, 

= 3, 4),

r



of which there are five sub-types given by

and

We denote these sub-types by (IV, X), (IV, 2), (IV, 3), (IV, 4), 

(IV, 5) respectively. The elements of a group of type IV are 

of the form aa b4® b ^  b ^  b^9

For sub-types (IV, 1), (IV, 2), (IV, 3) we have

. t n n t tn 
bl b 2 = b 2 bl 3 '

m(m-1 )
a 3 y 6 e.m ma + 2 mB my . m6 m0(•“ b4P b3y b2 bx ) = a b4 b3 b2 bj_

The elements of Z(G) are of the form a b4 b^ .

But for sub-type (IV, 4), (IV, 5) we have

w t . n . n K t ,nt i h " .  b3 b4 = b4 b3 a , fc, i2 - 2 .

»• -i9>" - ■“ ' * * *  <es*6Yl v *  '>3,y

a , apThe elements of Z(G) are of the form a bx

Hence we have the following table.
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Group
Number G/G' type Z(G) type M1/M2 type M2/M3 type V MP+i bype

(IV,1) (P»P»PrP) (PfPfP) (P»P/P»P) (P) (i)

(IV,2) (P»P»P»P) (P2 *P) (P/P>P>P) (1 ) (p)

(IV,3) (PfP'P-P) (P,P,P) (P»P»P>P) (1 ) (p)

(IV,4) (P»P»P»P) (P) (P#PfP»P) (P) (i)

(IV,5) (P/P»P*P) (P) (PfPfP/P) (1 ) (p )

TABLE IV

According to the TABLE IV the groups of type IV are distinguished.

Type V

In this case there is only one group, given by

G = <a, bx, b2 | aP = 1, = 1, b2P = a, bx Jab1 = a ab2 - b2a,- 1 1-P

b2 ~ \ b2 " bia> •

For this group and for the groups of type VI, G/G' is of 

type (p2, p) • Hence we need to compare this group with the 

groups of type VI. But Z-type for this group is (p) , which is 

different from the Z-types of groups of type VI. Thus this group 

is distinguished from the groups of type VI.
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Type VI

In order to simplify we replace and a2* by and a2

respectively.

The groups of this type are given by the following relations:

2 a1 a2
G = <ax, a2, b1# b2| a ^  = 1, a2P = 1, b ^  = a2 , b2P = a2 ,

aia 2 ~ a2al' a2bi = bia 2 ^  lf 2*' alb 2 = b2al'

bl’laibl " aia2' b2’lblb 2 “ bl V  '

with

“l 1 0 0 0

“2 0 1 V o

and
2 a,

P . . 1 v, PG = <a. , a , b. , b, a *  = 1, a * = 1, b.^ = a , b

ala 2 = a2al' a2bi “ bia 2 (i “ lf 2)' albl " blal'

b 2 lalb 2 = aia2' h2 ~ \ h2 = bl V  '

with

al 1 V 0 0

“ 2
0 0 1 0

where v is a fixed quadratic non-residue modulo p . Hence there 

are eight sub-types determined by the above tables and we denote 

these sub-types by (VI, 1), (VI, 2), (Vi, 3), (VI, 4), (VI, 5)

(VI, 6), (VI, 7) and (VI, 8) respectively.
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The elements of a group of type VI are of the form 

b ^ b ^ a ^ a ^  and the elements of Z(G) are of the form

b^m^a2  ̂ • Moreover for sub-types (VI, 1), (VI, 2), (VI, 3) 

and (VI, 4) we have

a1tb1K = b1Ka1ta2tK (t, K integers)

t(t-l)
^ -W •' v. K, t tK 2 b, b_ = b_ b, a, a.t. K _
J1 b2 "2 "1 “1 “2

(t, K integers)

6. v 8 a.m m6. my
(b2 bl a 2 al > = b 2 bl 1

m8
+ m(m-l) y (v-1 ), + m (m-1 ) + m(m-l) (2m-l). 2g

. m(m-l) P ma + — r-- yo
a (m integer)

But for sub-types (VI, 5), (VI, 6), (VI, 7) and (VI, 8) we have

a1tb2K = b2Ka1ta2tK (t' K inte9ers)

K(K-l),
t. K K t tK 7  ̂ (t, K integers)

V > 2  = b2% l al a2

m8 + EiElI>06 + EiElil + m(m-lH2m:l)yi ^
S y 8 a>m . m6. my

(b2 bl a 2 al > “ b 2 bl 3

m (m-1 ). 
2ma + f fc .

Hence we have the following table.

CMf
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Group
Number Z-type G/G1 type Ml/M2

type
M2/M3
type

V M4
type

Y V i
type

Mp2/Mp2+1
type

(VI,1) (P2) »0
ro (P-P) (P) (1 ) (P) (P)

(VI,2) (PfP) (p2»p) (P/P) (P) (1 ) (P*P) (1 )

(VI, 3) (P»P) (p2»p) (P/P) (P) (1 ) (P»P) (1 )

(VI,4) (P»P) »0
K) 5, (P.P) (P) (P) (P) (1 )

(VI,5) (P2) ro (P-P) (P) (1 ) (P) (P)

(VI, 6) (P2) (p2 .p) (P»P) (P) (1 ) (P) (P)

(VI,7) (P»P) (p2»p) (P/P) (P) (1 ) (P-P) (1 )

(VI,8) (P/P> (p2»p) (P»P) (P) (P) (P) (1 )

TABLE VI
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Type VII

In order to simplify we replace a. ̂  , ot_ , a,*1* a ^i.  ̂ O t  ̂ /

a2(2>, a3<2)» a2*> and a3* by V  a2' a3' “l' V  w3'

o , o2, and a3 respectively.

The groups of type VII are given by the following relations:

a ,  a), _

bl' b 2

“3 U3

P _ P  1 1 - P  z  z

“ lf b 1 ” al a 2 ' b 2 al a 2

b3P = ax a2 , axa2 = a ^ ,  a.b. = b ^  (± « 1, 2, j - 1, 2, 3), 

b2b3 = b3b2' blb2 = b2bl V  blb3 = b3bla2> '

with

“l a2 a3

“l “2 “3

0 1 0

0 0 1

0 1 1 \ / 0 g

0 0 1 / \ 0 0

0 X;L x2

0 yl y 2

0 0 0 \ /I o 0

0 0 0/ \ 0 0 0 ‘

/O 1 0

\ o 0 0

and

G

0 1 0  

1 0  0

0 0 1\ /0 0 1 

0 0 0 ' \ 1  o 0'

<ai' a2' bl' b 2' b3^aiP = lf a2P = X' blP a 2 ' V  = a2 2' b3P = a2 3

ala 2 " V l '  albi “ bial (i = 2' 3)' “ V 2 U  = 1# 2' 3)'

b1b3 - b3bx, - b ^ a ^ ,  blb2 “ b2blal' b2b3 “ b3b2a2 > '
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with

where g is a primitive root modulo p , v is a fixed quadratic 

non-residue modulo p , and

K = 1, 2, .... ^  , l = 1, 2, ..., ^  , and p is a primitive

2 1 2 root of x* ' 2 1  (mod p) in the Galois field of p elements.

Altogether from this the type VII yields p + 18 sub-types 

of group of order p^ .

We denote these sub-types by (VII, 1), (VII, 2), ...,

(VII, 20) of which (VII, 3) has sub-types and (VII, 4)

has sub-types.

The elements of a group of type VII are of the form

b30b26blYa2Bal°l ’ The elements of Z(G) for sub-tyPes (VI1' '
(VII, 2) ..., and (VII, 10) are of the form a ^ a ^  > and also

we have

b, V K = b , V la,tK1  “2 2 “1 “1

h V  ■ ‘ 3V *:
6 6 y 6 oi.m . m0. m6, my

(b3 b2 bl *2 al > “ b3 b2 bl

t tK

(t, K integers)

(t, K integers)

me + 5Li|zil̂Y ma + h y  

a 2 al
2 2
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But for sub-types (VII, 11),... (VII, 20) we have

(t, K integers).t, K K t tK 
ai bl = bl al a 2

t(t-l)
t, K . K. t tK 

bl b 2 = b2% l al a 2

. t. K K. t tKe 
b2 b3 " b3 °2 a2

K

The elements of Z(G) for sub-types (VII, 11), ..., (VII, 15)

m(m-l) . m(m-l) y (Y“1),m0 + — ^ -- ay + — =—  ,—  «

0 8are of the form b^ and we have

9. 6. y 0 a.m _ me m6 my
( b 3 b 2 bl a 2 3 1 ’ ' b3 b 2 bl

m(m-l) (2m-l)„2j A mftn-1 ).^ma +
x

Moreover the elements of Z(G) for sub-types (VII, 16) 

(VII > 20) are of the form an<̂  we ^ave
mB + + 5Li|zi)aY

9 6. v 0 a.m m6 m6 my * *
(b3 b 2 bl a 2 al 1 “ b3 b 2 bl a 2

m(m-l) Y(Y-l). + m(m-l)(2m-l) 2fi 
2 2 6

m(m-l) P ma + —  y 6

Hence for the groups of type VII we have the following tables.
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Group
Number Z-type G/G1 type Ml//M2 type m2/ m3 type V V i type
(VII, 1) (P/P) (P,P,P) (P,P/P) (1) (PfP)
(VII, 2) (P»P) (P,P,P) (p,p,p) (1) (P.P)

(VII, 3) (P»P) (P/P^P) (P,P<P) (1 ) (P»P)

(VII, 4) (P/P) (P,P,P) (P,P»P) (1 ) (P»P)

(VII, 5) (P.P) (P,P,P) (P,P>P) (P.P) (1 )

(VII, 6) (P-P) (P,P,P) (P.P.P) (P) (P)

(VII, 7) (P-P) (P»P»P) (P,P/P) (P) (P)

(VII, 8) (P»P) (P«P,P) (P.P.P) (1 ) (P.P)

(VII, 9) (P*P> (P,P,P) (P,P»P) (P) (P)

(VII, 10) (PfP) (P,P,P) (P,P/P) (1 ) (P*P)

TABLE VII

Group
Number Z-type G/G' type M1 /M2 type M2/M3

type
M3/M4
type

M /M P P+1 
type

(VII,11) (P2> (P,P»P) (PfPrP) (P) (1 ) (P)

(VII,12) (P»P) (P,P»P) (p,P,p) (P) (1 ) (P)

(VII, 13) (P.P) (P,P,P) (P/P<P) (P) (1 ) (P)

(VII,14) (P»P) (p,p.p) (PrP.P) (P) (1 ) (P)

(VII,15) (P.P) (p,p*p) (p.p.p) (P) (1 ) (P)

(VII,16) (P) (P,P/P) (p»P,p) (P) (1 ) (P)

(VII,17) (P) (P»P»P) (P.P>P) (P) (1 ) (P)

(VII,18) (P) (P»P«P) (p>p,p) (P) (1 ) (P)

(VII,19) (P) (P,P»P) (PrP/P) (P) (1 ) (P)

(VII, 20) (P) (P,P.P) (P-P/P) (P) (1 ) (P)

TABLE VIII
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a by a , 8,, a_, and 8, respectively. The groups in this

case are given by the following relations

Type VIII - Case 4

In order to simplify we replace a ^ 2 ,̂ ^  , a2^ '  and

G = «a^ a2> a3> b^, b2 | a ^  - 1 (i = 1, 2, 3), a^a^ - a ^  (i = 2, 3)

a2a3 ‘ a3a2' tt2"j " “j“2a,b4 = b4a0 (j = 1 , 2), a ^  = b.a3 (j = 1 , 2),

b2"1bib 2 = V l '  b f  a1b1 = aia2, b2” aib2 = aia3.

*, . . » a 2 62> 
bl “ a 2 a3 ' b2 a2 a3

a 8,p 1 1
r  PI

with
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= 1 , 2, ..., , x = 1, 2, ..., 1 = 1 » 2, ..., •

X = 1, 2, ..., [̂ -̂] . Here v, g, and p have the same 

meaning as in VII. Hence there are p + 7 sub-types of groups 

of order p5 in case 4. We denote these sub-types by (VIII, 4,1), 

..., (VIII, 4,11) of which (VIII, 4,4) has [^-] sub-types,

(VIII, 4,5) has [Eii-] sub-types, (VIII, 4,6) has

sub-types, and (VIII, 4,7) has t̂ -p] sub-types.

The elements of groups of this type are of the form 

b2eb1 6a1°‘a2ßa3Y . The elements of Z(G) are of the form a2ßa3Y

Also we have
t K . K t tK 

al “l = bl al a 2

t K . K t tK 
al b 2 = b 2 al a3

t K K. t tK 
bl b 2 = b 2 bl al a 2

t(t-l)„ K(K-l),

, . ma + — r---66„ 0. 6 a ß y.m _ mO m6 2
(b2 bl al a 2 a3 ” b 2 bl *1

X a„

„ m(m-l). m (m-1 ) (2m-l) m (w-1 ) 6 (6-1 ) „mß + — —̂  6a + -----¡r o o 1- 2 2

my m(m-l). . 96 .m(m-l) (2m-l) _ m(m-l). (.+ — r-- OCX T ~~TT L r o *x
V/ltnJL. t 2T <+~-J t if •

Thus we have the following table.
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Group Number Z (G) type G/G' type Ml/M2
type

V M3
type

M3/M4
type

M /M P P+1 
type

(VIII, 4,1) (P.P) <P»P) (P.P) (P) (1 ) (P.P)

(VIII, 4,2) (P.P) (P«P> (P.P) (P) (1 ) (P.P)

(VIII, 4,3) (P.P) <P.P> (P.P) (P) (1 ) (P.P)

(VIII, 4,4) (P.P) (P/P) <P.P> (P) (1 ) (P.P)

(VIII, 4,5) (P.P) (P.P) (P.P) (P) (1 ) (P.P)

(VIII, 4,6) (P.P) (P»P> (P.P) (P) (1 ) (P.P)

(VIII, 4,7) (P.P) (P.P> (P.P) (P) (1 ) (P.P)

(VIII, 4,8) (P.P) (P»P> (P.P) (P) (P.P) (1 )

(VIII, 4,9) (P.P) <P.P) (P.P) <P) (P) (P)

(VIII, 4,10) <P»P) <P.P) (P.P) (P) (P) (P)

(VIII, 4,11) (P.P) (P.P) (P.P) (P) (P) (P)

TABLE IX
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We replace a^* and a2* by and respectively.

The groups in this case are given by the following relations

ai
G = <a^, & 2  ' ^i ' ^2  ̂ ~   ̂  ̂̂ ~  9 ^  ~ r

Type VIII - Case 3

a^ai = a ^  (i = 2, 3), a2a3 = a ^ ,  a..b2 = b2&̂  (j = 1, 2, 3),

a3bl = bla3' a2bl = bla2a3' albl = blala2' blb2 " b2blal> *

For p = 1 (mod 3) there are five sub-types given by

“l 0 0 0 i 0

“2 1 g 2g 0 0

where g is a primitive root (mod p) .

For p = 2 (mod 3) there are three sub-types given by

al 0 1 0

°2
1 0 0

according to these tables we denote these sub-types by (VIII, 3, 1), 

(VIII, 3, 8) respectively.
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The elements of groups of these sub-types are of the form 

b2eb 1 6aiaa2ea3Y . The elements of Z(G) are of the form a^

Also we have
t K . K t tK 

a2 bl = bl a2 a3 •

K(K-l)J
K ^ K t tK 23.« 3 _t. K _ . K t 

*1^1 ' bl al *2 3

t(t-l)„ t(t-l)(t-2)
. t. K _ . K. t tK 2 
bl ®2 " b 2 ®1 1 2

0 6 a ß y.m . rn6 m6
(b2 bl ai a2 a3 } = b2 bl

. m(m-l) „ r ma + — 2 ' e°

x a„

mß + EiEzi)6ct + n'(m-lH2m-l)626 + “IEiIL ü ^ e

my
m(m-l) . m(m-l) 6 (6-1 ) (6-2), + »(»-!) (2^ 1 )

+ — ~-- Op + o 6 6 *
x a„

2 2
6 -m(m-l) (2m-l) , mhn^l), x (m~1) 6
2 1---- 6 0 2 2 4

x a3

wiuAc t bf ‘

Thus we have the following tables.

mfm-1 ) (2m-l)  ̂t
6 M
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p H 1 (mod 3)

Group Number Z-
type G/G' type Ml/M2

type
V M3
type

M3/M4
type

M4/M5
type

M /M P P+1 
type

(VIII, 3,1) (P) (P,P) (P»P) (P) (P) (1) (P)
(VIII, 3,2) (P) (P*P> (P»P) (P) (P) (1) (P)

(VIII, 3,3) (P) (P»P) (P»P) (P) (P) (1) (P)

(VIII, 3,4) (P) (P»P) (P»P) (P) (P) (1) (P)

(VIII, 3,5) (P) (P,P) (P/P) (P) (P) (P) (1)

TABLE X

p = 2 (mod 3)

Group Number Z-
type G/G' type V M2

type
2 3 

type
V M4
type

V S
type

P P+1 
type

(VIII, 3,6) (P) (P»P) (P»P) (P) (P) (1) (P)

(VIII, 3,7) (P) (P,P) (P»P) (P) (P) (1) (P)

(VIII, 3,8) (P) (P»P) (P.P) (P) (P) (P) (1)

TABLE XI
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We replace a^*, a2* bY “i' “ 2 respectively. The groups in 

this case are given by the following relations.

al a2G = <ax, a2, a3, b ^  b2 | a ^  = 1 (i - 1, 2, 3), b ^  = a3 , b2P = a3 ,

aiai = aiax (i = 2' 3)' a2a3 = a3a2' a2b2 = b2a2' 

a3bj = bja3 (j “ lf 2)' aibl = blala2' a2bl = bla2a3'

aib2 = b2aia3' blb2 = b2bial> •

For p = 1 (mod 12) there are eight sub-types given by

Type VIII - Case 6

al 0 0 0 1 g 2g 3g 0

“2 1 g g 2 0 0 0 0 0

For P E 5 (mod 12) there are six sub-types

For p =

al 0 1 g 2g 3g 0

°2 1 0 0 0 0 0

7 (mod 12) there are six sub-types

a1 0 0 0 1 - 1 0

°2 1 g ’2g 0 0 0
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For p = 11 (mod 12) there are four sub-types given by

al 0 1 -1 0

°2 1 0 0 0

Here g is a primitive root (mod p) .

Thus there are twenty four sub-types of type VIII - Case 6 and 

we denote these sub-types by (VIII, 6,1), ..., (VIII, 6,24) 

respectively.

9 6 a 8 yThe elements in this case are of the form b2 b.̂ a3 a2 a3 

The elements of Z(G) are of the form a3Y . Also we have

t. K . K t tK 
a2 bl " bl a2 a3

t, K . K t tK a, b„ = b_ a, a.1 2 2 1 3

K(K—1)
t K K t tK 2 

al bl = bl al a2 a3

t(t-l)„ K(K-l)^ , t(t-l)(t-2)„
K t K . K. t tK ~ T ~  \  2 6
bl \  " b2 ”l 31 a2 a3

. 0 6 a 6 y.m . m0 m6 2
(b2 \  ai a2 a3 ’ = b2 bl al

+ m(m-l) + m(m-l)(2m-l) + m(m-l) 6(6-1) 9m0
x a„

my
+ m(m-l)0  ̂| m(m-l) + m(m-l) 6(6-1) (¿-2) 0

i(m-l) (2m-l) 6(6-1).„ . ,m(m-l) (2m-l) _ m(m-1) 1 6a-----;----  — r—  6 0 + 1  c 5 1 1

* a ,

2 6

-2 (- " 2 
2 - 2 ' * 4

(m(m-1) (2m-l) Q _ m(m-l)j 06_ + ^  (m-1) 2, _ m(m-l) (2m-l) ] ifi + 1̂

t 1 A fc.
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Thus we have the following tables.
p E 1 (mod 12)

Group Number Z-type G/G'
type

Ml/M2
type

M2/m3
type

M3/M4
type

V M5
type

M /M P P+1 
type

(VIII, 6,1) (P) (P»P) (P.P) (P) (P) (1) (P)

(VIII, 6,2) (P) (P-P) (P-P) <P) (P) (1) (P)

(VIII, 6,3) (P) (P»P) (P.P) <P) (P) (I) (P)

(VIII, 6,4) (P) (P»P) <P*P) (P) (P) (1) (P)

(VIII, 6,5) (P) (P»P) (P/P) (P) (P) (1) (P)

(VIII, 6,6) (P) (P.P) (P.P) (P) (P) (1) (P)

(VIII, 6,7) (P) (P.P) (P.P) (P) (P) (1) (P)

(VIII, 6,8) (P) (P.P) (P/P) (P) (P) (p) (1)

TABLE XII

p E 5 (mod 12)

Group Number Z-type G/G'
type

V M2
type

M2/M3
type

M3/M4
type

V M5
type

M /M P P+1 
type

(VIII, 6,9) (P) (P*P> (P»P) (P) (P) (1) (P)

(VIII, 6,10) (P) (P*P) (P*P) (P) (P) (1) (P)

(VIII, 6,11) (P) (P»P) (P-P) (P) (P) (1) (P)

(VIII, 6,12) (P) (P»P> (P»P) (P) (P) (1) (P)

(VIII, 6,13) (P) (P*P) (P-P) (P) (P) (1) (P)

(VIII, 6,14) (P) (P»P) (P-P) (P) (P) (P) (1)

TABLE XIII
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p = 7 (mod 12)

Group Number Z-Type G/G'
type

V M2
type

M2/M3
type

M3/M4

type
V M5
type

M /M. ,P P+1 
type

(VIII, 6,15) (p) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6;16) (p) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,17) (P) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,18) (P) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,19) (P) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,20) (P) (P.P) (P.P) (P) (P) (P) (1 )

TABLE XIV

p 2 11 (mod 1 2)

Group Number Z-type G/G'
type

V S
type

M7H, 2 3
type

M3/M4
type

V M5
type

M /M P P+1 
type

(VIII, 6,21) (P) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,22) (P) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,23) (P) (P.P) (P.P) (P) (P) (1 ) (P)

(VIII, 6,24) (P) (P.P) (P.P) (P) (P) (P) (1)

TABLE XV
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