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CHAPTER I

PRELIMINARIES

1.1 Introduction

Given two topological vector spaces E and F and a linear mapping 

t : E -*■ F with a closed graph, t may or may not be continuous.

When such a linear mapping t is necessarily continuous, the closed 

graph theorem is said to hold for E and F . For example, if E and 

F are Banach spaces, then every linear mapping with a closed graph 

of E into F is necessarily continuous.

The main aim of this thesis is to give precise descriptions of 

certain topological vector spaces that can serve as domain spaces, 

and also those that can serve as range spaces for a closed graph theorem. 

This is motivated by the works of M. Mahowald [35], N. Adasch [1],

V. Eberhardt [12, 14, 11] and N.J. Kalton [25],

Chapter 2 of the thesis is concerned with the concept of 

essential separability which turns out to be a useful variation of 

separability. We look at various characterizations of essential 

separability and link it up with the well-known concepts of weak 

compactness and weak relative compactness (Section 2.2).

In Chapter 3, we introduce the class of 6-barrelled spaces which 

serve as domain spaces for some closed graph theorems (Theorems 3.1.2 

and 4,1.3). We show that in the separated case, 6-barrelled spaces 

can be characterized in terms of essential separability (Theorem 3.1.1). 

We establish also some of the basic permanence properties of 6-barrelled 

spaces including the countable codimensional subspace property 

(Theorem 3.1.6). It is seen that the class of separated 6-barrelled
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spaces is a proper subclass of Kalton's domain spaces and strictly 

contains the class of separated barrelled spaces (Example 3.1.1(a), (d)). 

Also in this Chapter, conditions under which a 6-barrelled space is 

barrelled are considered.

In Chapter 4, those locally convex spaces which can serve as 

range spaces in our closed graph theorem in which the domain space 

is an arbitrary 6-barrelled space with its Mackey topology are 

considered. These are the infra-6-spaces. We also look at the 

domain spaces (6-spaces) for the corresponding open mapping theorem 

(Theorem 4.1.4).

Finally, Chapter 5 deals with some topics that are closely 

related to the concept of 6-barrelledness. In particular, we look 

at the closed graph theorem when the range space is not assumed to 

be complete. Then we generalize 6-barrelledness to 6-ultrabarrelledness 

in general topological vector spaces. In a way similar to the 

characterization of 6-barrelledness, we obtain a characterization of 

6-ultrabarrelledness by means of a closed graph theorem (Theorem 5.2.2). 

We end the Chapter with a generalization of some of our concepts to 

arbitrary infinite cardinals.

1.2 Notations

Let E be a vector space over the field K of real or complex 

numbers with its usual topology. The vector space E together with 

a vector space topology 5 is called a topological vector space and 

denoted (E, C) or simply by E if it is unnecessary to name the 

topology. We shall denote the algebraic dual of E by E* and if 

(E, ?) is a separated locally convex space, its (continuous) dual

will be denoted by E' .



If A is a subset of a locally convex space E , the (absolute) 

polar of A in E* (respectively E') will be denoted by A* 

(respectively A0). The (linear) dimension of E will often be 

denoted by dim E . The topology induced on a subset A of a 

topological space (X, *3 ) will be denoted by ^  | and the 

cardinality of a set S will be written as |s| .

Let E be a separated locally convex space with dual E' .

Then a(E, E'), x(E, E') and B(E, E') denote respectively the weak, 

Mackey and strong topologies on E determined by E '..

Generally, we follow the topological vector space notation of 

[43] except that by a Mackey space E we mean a locally convex space 

endowed with its Mackey topology t (E, E'). Also, throughout, IR 

and (&  will denote the fields of real and complex numbers 

respectively and IN will denote the natural numbers. K will be 

used to denote the field of real or complex numbers when it is not 

necessary to specify the particular one. C(X) will denote the space

of scalar-valued continuous functions on a completely regular 

space X and Cc (X) will denote C(X) with the topology of compact 

convergence. The dual space of Cc (X) will be denoted by C (X)' 

and [C(X)']0 will represent C (X)• under its weak topology 

a (C (X) ’, C(X)) . We write c and for |i r | and | U  |

respectively.

1.3 Some Classes of Topological Vector Spaces

In a locally convex space E , a closed absolutely convex 

absorbent subset B is called a barrel and E is said to be barrelled 

if every barrel is a neighbourhood of the origin in E . More often 

than not, the dual characterization of barrelledness is used in 

practice. This states that a separated locally convex space E is
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barrelled if and only if every a(E', E)- bounded set is equicontinuous 

(see for example [43, Chapter IV §1]).

Locally convex spaces of the second category are barrelled. In 

particular, Frlchet spaces and so Banach spaces are barrelled. The 

inductive limit of barrelled spaces is again barrelled and a separated 

product of barrelled spaces is also barrelled. Also the completion 

of a barrelled space is a barrelled space. A closed vector subspace

of a barrelled space need not be barrelled. However any subspace

of countable codimension of a barrelled space is of the same type 

[46, 54].

According to T. Husain [20], a separated locally convex space

(E, 5) is countably barrelled if each o(E', E) bounded set which is

the union of a sequence of £-equicontinuous sets is £-equicontinuous. 

Later M. de Wilde and C. Houet in [9] defined a-barrelled spaces as 

those separated locally convex spaces (E, n) for which whenever 

(x'n) is a o(E', E)-bounded sequence, the set {x'^ : n £ * }  is 

H-equicontinuous. About the same time as De Wilde and Houet, the 

a-barrelled spaces were also considered independently by M. Levin and 

S. Saxon [31] who called them w-barrelled spaces.

Every countably barrelled space is o-barrelled. Countably 

barrelled spaces and a-barrelled spaces have some of the basic 

permanence properties that barrelled spaces have including the countable 

codimensional subspace property [56, Theorem 6; 31, §4 Theorem]. A 

separable a-barrelled space is barrelled [9, Corollary 4a]. In 

particular, every separable countably barrelled space is barrelled.

The concept of barrelled spaces is generalized to ultrabarrelled 

spaces in the general topological vector space setting. As defined 

by W. Robertson in [44], ultrabarrelled spaces are those topological



vector spaces (E, ?) for which any vector space topology

on E with a base of ¡¡-closed neighbourhoods of the origin is

necessarily coarser than C . A closed balanced subset B of a

topological vector space E is called an ultrabarrel if there exists

a sequence (Bn> of balanced absorbent subsets of E such that

B, + B, c B and B ,, + B ,, c B for each n £ N  . Such a 1 1 - n+1 n+1 ~ n
sequence (B̂ ) is called a defining sequence for B . A topological 

vector space (E, £) is ultrabarrelled if and only if every ultrabarrel 

in E is an ^-neighbourhood of the origin in E [21]. Every locally 

convex ultrabarrelled space is barrelled but the converse is not 

necessarily true (44, page 256).

The notion of fully complete spaces was introduced by Collins in 

[8], V. PtSk called such spaces B-complete and introduced the related 

class of Br-complete spaces in [42]. A separated locally convex

space E with dual E' is said to be B-complete if every vector
osubspace A of E' such that A n U is a(E', E)-closed for each 

neighbourhood U of the origin is necessarily a(E', E)-closed;

E is B^-complete if this holds for a(E‘, E)-dense subspaces (in 

which case the subspace coincides with E').

Every B-complete space is B^-complete and every Br-complete space 

is complete. A complete space need not be B-complete (see for 

example [43, Chapter VI, supplement (1)]). Every Frechet space is 

B-complete and so in particular every Banach space is B-complete.

Closely related to the notions of B-completeness and B^-completeness 

are the concepts of t-polar and weakly t-polar spaces introduced by 

Persson in [38]. A separated locally convex space E is said to be 

t-polar if each vector subspace H of E' is c(E', E)-closed 

whenever H n B° is a(E', E)-closed for every barrel B in E .

It is weakly t-polar if this property holds for a(E', E)-dense

vector subspaces H of E' . Every B-complete (respectively B -complete)



space is t-polar (respectively weakly t-polar). As shown in [38], 

there exist t-polar Mackey spaces which are not B-complete and not 

even complete. However for barrelled spaces, these concepts coincide.
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The following definitions of s-spaces and infra-s-spaces are due 

to N. Adasch [1]. Let E be a separated locally convex space with 

dual E' . Let H be a vector subspace of E' . Denote by ,h' the

intersection of all the o(E*, E)- quasi-closed subspaces of E* which 

contain H . E is called an s-space if for each vector subspace H 

of E1 we have n E 1 = H , the c(E’, E)-closure of H . It is 

called an infra-s-space if for each c(E', E)-dense vector subspace H 

of E' , we have H*n E' « E' , As pointed out in [1, §5], every 

(weakly) t-polar space is an (infra-)s-space. Examples are given in 

[1, §6] to show that there are s-spaces which are not t-polar and also 

that an infra-s-space need not be weakly t-polar.

These various classes of topological vector spaces we have been 

discussing in this section are linked up by closed graph theorems and 

open mapping theorems which have proved to be useful tools in the 

study of Functional Analysis. In [42], V. Pták showed that a linear 

mapping with a closed graph of a barrelled space into a B^-complete 

space F is continuous and that a linear mapping with a closed graph 

of a B-complete space onto a barrelled space is open. Thus in 

particular the closed graph theorem holds for the case when E is 

barrelled and F is a Banach space. Later Mahowald [35] established 

the converse that a separated locally convex space E is barrelled if 

whenever t : E -*■ F is a linear mapping with a closed graph of E into 

an arbitrary Banach space F then t is continuous.

A. Persson has shown in [38, Theorem 1], that a linear mapping with 

a closed graph of a barrelled space into a weakly t-polar space is
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continuous. He proved also that a linear mapping with a closed graph 

of a t-polar space onto a barrelled space is open [38, Theorem 2'].

Following Mahowald's characterization of barrelled spaces by means 

of the closed graph theorem, there has been growing interest in the 

question of characterizations of other topological vector spaces.

N. Adasch showed in [1, §3,(2)] that a separated locally convex space 

F is an infra-s-space if and only if whenever t: E F is a linear 

mapping with a closed graph of a barrelled space E into F , then 

t is continuous.

In the non-locally convex case, Iyahen [21, Theorem 3.2], gave 

a characterization of the ultrabarrelled spaces. He showed that a 

topological vector space E is ultrabarrelled if and only if every 

linear mapping with a closed graph of E into any complete metric 

linear space is continuous.

N.J. Kalton in [25], defined the class ^(Cg) (respectively C )) 

of locally convex spaces as those which can serve as domain spaces 

for a closed graph theorem in which the range space is an arbitrary 

separable Banach (respectively separable Br~complete) space. He also 

gave an example of a Mackey space in<(?) which is not barrelled.

V. Eberhardt [14, 11] has also described those spaces (GN-spaces) 

that serve as domain spaces for a closed graph theorem in which the 

range space is a normed space. The corresponding domain spaces 

(GM-spaces) for metrizable range spaces are discussed by Eberhardt 

and Roelcke in [15] (see also [11]).



1.4 Dense Subsets of Products

We recall that a subset of a topological space is said to be 

separable if it contains an at most countable dense subset. Every 

open subset of a separable set is again separable. The fact that a 

subset of a non-metrizable separable set need not be separable [10, 

Chapter VIII, Theorem 7.2 (2)], limits the use of separability. In 

Chapter 2 we introduce a variant of the idea of separability which 

has the hereditary property and which we can apply in Chapter 3 to 

the study of the closed graph theorem.

Let K be the field of real or complex numbers and let M be
M (M)a non-empty set. We denote by K (respectively K ) the product

IIK (respectively direct sum 9 K) of copies of K indexed by M . 
yeM yeM
The space KM (respectively K ^ )  with its product (respectively 

direct sum) topology is a topological vector space. We state the 

following result which is proved in [10, Chapter VIII, Theorem 7.2] 

for reference purposes.

Theorem 1.4.1

Let X^(yeM) be non-empty Hausdorff topological spaces where

M is an index set. Then IlXy is separable if and only if each X
yeM y

is separable and all but at most c are spaces consisting of a single

point.

As a special case of Theorem 1.4.1, we have the following: 

Corollary

Let M be a non-empty set and let K be the field of real or
Mcomplex numbers with its usual topology. Then K is separable if
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We note that by [10, Chapter VIII, §7, Ex.4], the cardinality of 

any subset of a separable space is at most 2 . We shall require the 

following partial extension of the Corollary to Theorem 1.4.1 above. 

The proof uses the techniques of the proof of part (3) of [10, Chapter 

VIII, Theorem 7.2].

Theorem 1.4.2

Let M be a set such that |m | > 2c . Then KM cannot have a 

dense subset of cardinality at most c .

Proof

Suppose on the contrary that KM has a dense subset A of 

cardinality at most c . For each y e M , choose two disjoint

non-empty open subsets U , V of K . Let A = A n d  ̂(U ),
U P  P *P P

Mwhere p is the projection of K onto the pth component space. 
P

Consider the mapping $ of M into ijp)(A) f the power set of 

A , defined by (|>(p) = Ay . We show that <f> is one-to-one. If

p, v e M and p /  v , let U y, Vy, Uy and Vy be as above. Since

PpX(0p) n p / o y  is a non-empty open set in KM and since A is 

dense in KM , there exists a e such that

a e A n p"1^ )  n p"1^ )  . Thus a £ A n p"1«^) = Ay and

a f  A V =A n p^ (uy) , since Uy n Vy = Hence A v f  Ay

Since 41 ! M w *  is one-to-one, it follows that 

|m | i | ^(A) | i 2C ([10, Chapter II, 7.2 ]). This contradiction

establishes the result.

1.5 Linear Dimension

We recollect the following definitions. A non-empty subset X

of a vector space E is said to be linearly independent if for every

finite sequence x., ..., x of distinct elements of X , whenever l n
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n
7 a x  = 0  we have that the scalars a = 0, (r = 1. ..., n). A 
r=l
maximal linearly independent subset of a non-zero vector space E is 

called a basis of E ; every such vector space E has a basis and 

all bases of E have the same cardinality which is called the (linear) 

dimension of E . By convention the dimension of the zero vector space 

is zero. Whenever we talk of the dimension of a (topological) vector 

space we shall mean the linear dimension of the vector space.

We shall need the following well-known result in our subsequent 

discussions. We give a proof for completeness.

Lemma 1.5.1

Let A and B be vector subspaces of a vector space E such 

that A £ B . Then dim E/^ £ dim E/ft .

Proof

Consider the mapping s : E/ ■+ E/ defined by s (x + A) = x + B .
A B

Since A £ B , we have that s is well-defined. It is clear that s 

is also linear and onto. Suppose that x^ + B, ..., xn + B are 

linearly independent in E/^ . Then if ]? “r (xr + A) = 0 e E/ft ,
r-1 0

we have on applying s to both sides that l  (x̂  + B) = 0 e E/^
r=l

and so af = 0 (r = 1, ..., n) . Since x^ + A, ..., x^ + A are then 

linearly independent in E/A, it follows that dim E/ £ dim E/ .
A  B

We note that if X is a topological vector space of dimension a 

over K , then X* under a(X*, X) is topologically isomorphic to 

KM , where |m | = a (see for example [28, §9, 1(3)] and [43, Chapter II, 

Proposition 12]). We use this observation together with the Corollary 

of Theorem 1.4.1 to obtain the following result.
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Theorem 1,5.1

Let E be a topological vector space over K . Then E* is 

separable under o(E*, E) if and only if the dimension of E is 

at most c .

Proof

By the above observation, (E*, o{E*, E)) is topologically
M i iisomorphic to K under its product topology, where |M[ = dim E .

MThus E* is separable under a(E*, E) if and only if K is separable,

which by the Corollary of Theorem 1.4.1 is equivalent to ¡M| i c .

In [34, Theorem I - 1] G.W. Mackey showed that the dimension of 

an infinite dimensional Banach space F is at least c and if F is 

in addition separable then the dimension is precisely c . Recently,

H.E. Lacey [30] has also shown by an elegant method that any infinite 

dimensional separable Banach space has dimension c .

We know also that the dimension of any infinite dimensional Frlchet 

space is at least c (see for example [5, Chapter II, §5, Exercise 24]). 

These results on the dimensions of infinite dimensional Banach spaces 

and infinite dimensional Fréchet spaces are established by duality 

arguments. It is perhaps surprising that the corresponding result 

for complete metrizable topological vector spaces can be deduced from 

these known results. We have the following theorem.

Theorem 1.5.2

The dimension of an infinite dimensional complete metrizable 

topological vector space is at least c . If in addition the space 

is separable, its dimension is precisely c .

. s s a s a a iá B = 2 ,£ ,J &  £ ,



Let (E, C) be an infinite dimensional complete metrizable

topological vector space and let (x̂ ) be a sequence of linearly

independent elements of E . Let p be an F-norm [28, §15, 11 (2)]

on E defining C . For each n , choose a > 0 such thatn
p (anxn  ̂ ~ 'fh and put = a^x^ . Let B be the absolutely convex

We show that B is {¡-bounded. Suppose that (Â ) is a 

sequence of scalars with only finitely many non-zero terms and such

that £ | A | £ 1 . For each m e ]N we have

p< 1 x yn> 5 I p (x„yn> 5 l  p (y J  -  7" -1 •

12

Given e>0 , we may therefore choose M>1 such that p( Y A y )  £ —“ n'n 2 n=M

for all such (An) . We deduce from [26, 7.3] that the set 
M-l M-l

A = { I P y s | U | Si) is C-bounded. Consequently there exists

6 ^ 1  such that A £ 6{x £ E s p(x) £ j  }. Thus for such a sequence

oo M-l 00 00

p(j l .W  * p(?  + p(?  I W  * I + p ( l xny„) 5 €n=l n=l n=M n=M

and consequently B £ 6{x £ E : p(x) £ £}

By [26, 5.2, 6.2], we have that the C-closure D of B is also 

C-bounded and absolutely convex. Let H be the linear span of D . 

The gauge of D is a norm on H and since D is absorbed by each 

C-neighbourhood of the origin, the resulting norm topology ri is finer 

than the topology induced on H by C . We now show that H is 

complete under n . Let (ẑ ) be an n-Cauchy sequence. It is also

l a a E B & M E f i H a '  2 ,



an S-Cauchy sequence and so converges under £ to Zg c E say.

Since {z^ : n e ]N} is absorbed by ^  and since D is {¡-closed 

it follows that Zg e H . Because n has a base of neighbourhoods 

of the origin which are ^-closed sets, we may now deduce from [28, 

§18, 4(4)] that (zn) converges under n to Zg .

Since each xn is an element of H , the Banach space (H, n) 

is infinite dimensional. We therefore have that dim E £ dim H £ c 

When E is separable its cardinality is c . This implies that the 

dimension of E cannot exceed c[33, Satz 2] and so must be c .

h e __ :________ ' - - - —
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CHAPTER II

ESSENTIAL SEPARABILITY

Certain topological properties are inherited by subsets of sets in 

topological vector spaces. For example, subsets of bounded sets are 

also bounded. Unfortunately, separability is not one of such properties. 

The notion of essential separability defined below is intended to cater 

for this defect. This notion is introduced in this Chapter and 

various characterizations of it are also given (Section 2.1). We 

also link it up with the concepts of weak compactness and relative 

weak compactness which are well-known (Section 2.2),

2.1 Definition and General Properties

Let (E, F) be a dual pair. A subset A of E (regarded as a 

vector subspace of F*) is said to be essentially separable for the 

dual pair (E,F) if it is contained in a c(F*, F)-separable set.

When the dual pair is clearly indicated, we simply say that A 

is essentially separable. For example, if E is a separated locally

convex space with dual E' and A and B are subsets of E and E' 

respectively, "A (respectively B) is essentially separable for the 

dual pair (E, E') (respectively (E', E))" will usually be written as 

"A (respectively B) is essentially separable".

For a dual pair (E,F), any a(E, F)-separable set or its subset 

is essentially separable. Although separability does not generally 

pass to subsets, each subset of an essentially separable set is again 

essentially separable.

If (E, F) is a dual pair such that F has dimension at most c , 

then any subset of E is essentially separable, for by Theorem 1.5.1,

■msammteMSPe’js. s
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we must have that F* is separable under o(F*, F) .

The following lemma gives us further examples of essentially 

separable sets in a given dual pair.

Lemma 2,1.1

Let (E, F) be a dual pair and let A be a non-empty essentially 

separable subset of E . If G is the a(E, F)-closed vector 

subspace of E generated by A , then each subset of G is

essentially separable for the dual pair (E, F) . If Afi (n e IN ) is
00

an essentially separable subset of E , then so also is ny^An *

Proof

Let X be a a(F*, F)-separable set containing A and let 

{x^* : n e M } be an at most countable a(F*, F)-dense subset of X .

Then the a(F*, F)-closed vector subspace generated by {xfi* : n e UN }

is cr(F*, F)-separable and contains G . Hence G and consequently 

any subset of it are essentially separable for the dual pair (E, F) .

To establish the second part, for each n e ]N let Bn be a

a(F*, F)-separable set such that A^ c . Then since a countable
00

union of separable sets is separable, B = nH^Bn is a(F*, F)-separable
00 00

and n^1An £ B . Consequently, n2^An is essentially separable.

Given a non-empty subset X of a vector space E , the linear 

span Y of X is a vector subspace of E . If (E, F) is a dual 

pair, then Y° , the polar of Y in F , is a a(F, E)-closed 

vector subspace of F and we can form the quotient space F/^ so that 

(Y, F/y0) is a dual pair. We give next a useful characterization of 

essential separability in terms of the dimension of such a quotient 

space.

* ...... III ■ 'I lul l III I ' 'T 2
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Theorem 2.1.1

Let (E, F) be a dual pair. Let A be a non-empty subset of 

E and let H be the linear span of A . Then A is essentially

separable if and only if dim F/^ £ c .

Proof

We observe first that (F/ )* is topologically isomorphic toHO
the o(F*, F)-closure G of H .

Suppose that dim F/^0 £ c . Then by Theorem 1.5.1., we have 

that G is cr(G, F/h0)-separable. Since a(F*, F) and a(G, f/h0) 

coincide on G , it follows that A is essentially separable.

If conversely we suppose that A is essentially separable, 

then there exists a a(F*, F)-separable set B which contains A .

Let L be the a(F*. F)-closed vector subspace generated by B .

Now (F/ )* is topologically isomorphic to L which is a(F*, F)-JjU

separable. Again from Theorem 1.5.1, it follows that dim F/l0 £ c . 

Further, since H c L , we have that L° £ H° and consequently by 

Lemma 1.5.1, we must have that dim f/h o £ dim F / j O 5 c •

Corollary

Let (E, F) be a dual pair and let G be a ct(F, E)-dense 

subspace of F . If A c E is essentially separable for the dual 

pair (E, F) , it is also essentially separable for the dual pair (E, G)

Proof

This is trivial if A = 0 . If A / 0 , the proof follows 

immediately from the theorem when we observe that if H is again the 

linear span of A , then G/ n ^  is isomorphic to a vector

subspace of F/H o > where H° is the polar of H in F .

ini—  k mu
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An essentially separable set A in a dual pair (E, F) is 

required to be contained in a a(F*, F)-separable set. The next 

result gives us a way of identifying one such containing set.

Theorem 2.1,2

Let (E, F) be a dual pair and let A be a non-empty essentially 

separable subset of E . If G is the o(F*, F)-closed vector 

subspace of F* generated by A , then G is a(F*, F)-separable.

If in addition A is a(E, F)- bounded, then there is a a(F*, F)- 

bounded separable subset of G which contains A .

Proof

That G is o (F*, F)-separable is already established in the 

proof of Theorem 2.1.1.

The second part is trivial if A = {0} . Otherwise let H be 

the linear span of A , let ( e ^ ) ^  be a basis in F/h Q(̂ {o }) and 

let t : F/ be the associated isomorphism. Suppose that

A is a(E, F)-bounded. Then t* (A) is o (k\  K ^ )-bounded where 

t* ¡ G -*• is the transpose of t . Now t* (A) c c = ^  p^ (t* (A)) ,

where p. is the projection of onto the Xth component space.

Also, C is a c (k \  K ̂ ^) -bounded separable set since | A| i c 

(Theorem 2.1.1, Theorem 1.4.1). Thus t*-1(C) is a a(F*, F)-bounded 

separable subset of G which contains A .

The preservation of some properties of sets by a continuous 

linear mapping is often desirable. For example, the continuous 

image of a compact set is again compact. The following lemma shows 

that essentially separable sets have this property which we use often 

in subsequent sections.
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Lemma 2.1.2

Let (E, F) and (G, H) be dual pairs and let t : E -*■ G be 

a weakly continuous linear mapping. If A c E is essentially 

separable, so also is t(A) .

Proof

If t' : H -*■ F is the transpose of t and t'* : F* ■+• H* is 

the algebraic transpose of t' , then t'*(x) = t(x) for all x e E . 

Let B be a o(F*, F)-separable set which contains A . Since t'* 

is continuous under a(F*, F) and o(H*, H) , it follows that t'*(B) 

is ct(H*, H)-separable. But t(A) = t'*| (A) c t'*(B) and so t(A) 

is essentially separable for the dual pair (G, H) .

Lemma 2.1.3

Let (E, F) be a dual pair and let A be a subset of E . If

G is a vector subspace of E which contains A , then A is

essentially separable for the dual pair (E, F) if and only if it is

essentially separable for the dual pair (G, F/g0) •

Proof

Let H be the a(F*, F)- closed linear span of A . We note 

first that (F/^) * is (up to isomorphism) the o(F*, F)-closed 

linear span of G . Since A ̂  G , we have that H is contained

in the a(F*, F)-closed linear span of G and so H is also the 

o((F /  ) * ,  F/g^-closed linear span of A . On H the topologies 

o(F*, F) and o ((F/gQ)*, f/qo) coincide and so H is a(F*, F)- 

separable if and only if it is cj((F/g0)*, F/g 0)-separable. The 

result now follows from the definition and Theorem 2.1.2



the linear span of B . Then (F/ o)* is the a(F*, F)-closure ofH
H and L is a a(F*, F)-dense vector subspace of it. It therefore

follows that (F/ o L) is a dual pair and B is cr(L, F/ o)- 
H t H

compact. Consider the seminorm p on F/ o defined by
B H

If p (x) = 0 , then <x, x'> = 0 for all x' e B 
B

Since B spans

L , this then implies that <x, x ‘> = 0 for all x' e L and

(F/^ L) being a dual pair we must have x = 0 . It therefore 

follows that p is a norm on F/ 0 and thus there is a topology of 

the dual pair (F/^g L) which is normable. Since any metrizable 

locally convex topology is the Mackey topology of the corresponding 

dual pair, this normable topology is x(F/o l ) with B as the 

closed unit ball of the dual L . We shall denote this normed space 

by J^(F, and *ts comPlet:'-on by A) and sometimes

refer to them as the normed and the Banach spaces respectively 

constructed from A .

r t a e r v j s s .
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The next theorem gives us a characterization of essential 

separability for such a set A in terms of the spaces JSf(F, A) 

and (&(F, A). First we establish the following lemma.

Lemma 2.1.4

If a normed space E has a total subset D with | D | < c ,

then dim E i c .

Proof

The linear span X of D has cardinality at most c . Since 

E is metrizable, each element of E is the limit of a sequence in

of E cannot exceed c .

Theorem 2,1,3

Let (E, F) be a dual pair and let A be a non-empty a(E, F)- 

bo"nded set. The following are equivalent:

(i) A is essentially separable;

Proof

The equivalence of (i) and (ii) is given by Theorem 2.1.1

(ii) = >  (iii) is immediate from Lemma 2.1.4. above.

(iii) (ii) is trivial.

The following theorem gives an interesting characterization of
(M) Messential separability for the case when E = K and E* = k , 

where K is the scalar field 1R or ^  and M is any non-empty

X . It therefore follows that Thus the dimension

(ii) dim

(iii) dim

index set.
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Theorem 2.1.4

A non-empty subset A of i  is essentially separable for the 
M (M)dual pair (K , K v ') if and only if there is a subset Mq of M

and a family (x'y} of elements of K (M) such that

(i) |Mj < c ,
m(y)

(ii) for each y £ M\M , we have x ’ = 7 X(r, y) e , . .
o' y r=i <*(r,

where a(r, y) £ Mq , X(r, y) e K (r = 1, ..., m(y)) and

e is the element (6 ) , of Kv vy yeM
(M)

(iii) if x = (SyJpgji £ A > then 5^ = <x, x’̂ > for each 

y £ M\M .

Proof

Suppose first that the conditions are satisfied. If p^ is the 
Mprojection of K onto its vth component space then by Theorem 1.4.1

the product Tr{p̂ (A) : y £ Mq} is separable. Let {(rî  n ) ^
o

be an at most countable dense subset of ir{p (A) : yeM } . For eachy o
n £ M  , define x r = (£y (n))yeM by

n £ IN }

n (n) if y £ M y O

m(y)
U) w) if M  M\Mq .

Then <x . x1 > = for all n £ IN and all M £ M'W■n ' u n / O

Let {y(l), ...» y(s)} be any non-empty finite subset of M and 

let e be a positive real number. If y(t) e MQ for some t , put 

m(y (t)) = 1, X (1, y(t)) = 1 and a(l, y(t)) = y(t) . Now define

a and N by
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a = max {| X (r, y(t))| t r « 1, 2, ..., m(y(t)) > t = 1, 2, ..., s} , 
N = max {m(y (t)) : t - 1, 2, ..., s}

For any x = «  > £ A , we have y = (ty €. H{py (A) : y£MQ}
o

and so there is a positive integer n such that 

(n) i . f
a(r, y (t)) ” na(r, y (t))1 J N(o+l) (r — 11 2, ■ • • , m(y (t)) t t — 1, ,.., s) .

Then we have 

. (n) m(y (t))
5y(t) ‘ M ( t )1 = X(r'y(t)) Ca(r,y(t))

m(u (t))\h \w / / » ih(m \w / . .
Mr,w(t>) na(r, (t))l £ lX(r'u(t))l l5a(r,y(t)) " na(r,y(t))

y (t))

£ NO N (a+1) £ £

It therefore follows that A is contained in the closure of

{x : n £ U } and so-it is essentially separable, n

Suppose conversely that A is essentially separable for the dual 
M (M)pair (K , K l ) . If A = {0} the conditions are clearly satisfied

with any non-empty subset Mq of M with |mq | £ c and

x' = 0  (y£M\M ) . Otherwise let H be the linear span of A and
y o

(M)let (f.) . be a basis in E = K /  0 . Then by Theorem 2.1.1,(p <$>£$ H

we must have |*| £ c . Now let q : -*■ E be the quotient map.

For each $ £ $ , choose ey ̂  ^  and scalars y(r, $) (r = 1, ..., n(<M)

n(<f)
such that f^ = q( l  y(r, $) ey(r . We now put

M = {y (r,<|>) s r = 1, 2, ..., n(i(i) ; <J> e <I>} . Then we haveo

A



W  « • » >  = c since |$| < c and for each 4 e $ there are 

finitely many r's .

If M = , then there is nothing to prove. Otherwise if

v £ M\Mq , choose <|)(s,v) e $ , B(s, v) £ K (s =1, ..., m(v))

B(s, v) y(r, <Ms, v)) e )U(r, (p(s, v)

B(s,v) y ( x , <)>(s, v)) e
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U(r, <|>(s, v) '

then for all x = (£ ) in H (in fact for all x in the closure y yeM
of H) we have ^  = <x, e^> = <x, x^> . This holds in particular

for all x e A and hence we have the required set Mq and the

If A is a subset of K , the support of A (supp A) is

defined to be {y £ M : 3  x = (5 ) „ £ A such that £ / 0 }.o y yew yo

Any subset A of Y?1 with |supp a | £ c is essentially

separable for the dual pair (1̂  , K ^ )  . If A = 0 or A = {0}

this is trivial. Otherwise in Theorem 2.1.4 above we may take

M = supp A and x1 = 0 for all y£M\M . o U 0

We note however that the condition that the cardinality of the

support be at most c is not necessary for essential separability.

For example if A is a subset of K with |supp A| £ c , we

can define B c kM by B = A U {(1) ^  • Then B is essentially
M (M)separable, for if C is a o(K , K )-separable set which contains
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A , then C u{(l) } is a o(KM , K ^ )-separable set whichU£M
contains B . Now supp B = M and we may choose M to have 

cardinality strictly greater than c • In applying Theorem 2.1.4 

to B when supp A $ M we can choose £ M\supp A and take

The following results give some useful topological properties 

associated with essential separability.

If A is essentially separable for the dual pair (E, F) , then 

o(E, F)| has a base consisting of at most c sets.

Proof

If A is empty, then the result is trivially true. Suppose 

A is non-empty and let H be the linear span of A and let G be 

the o(F*, F)-closed linear span of A . Then by Theorem 2.1.1, if

H° is the polar of H in F , we have that the dimension and

consequently the cardinality of F/rf3 are at most c . It follows 

also from Theorem 2.1.2 that G is o(F*, F)-separable.

Let $ be the set of all non-empty finite subsets of F/H° and

{x : n £ IN } be an at most countable a(F*, F)-dense subset of G . n
Then |4| £ c and if we d e f i n e ^  by 

^  = {{x £ A : | <x - x , x‘> | < 1 » x' £ ! ♦ £ 4} ,

then \ %  \ < c  . Since o(F*, F) , a(G, F/^) and a(E, F) all

coincide on A , each element of is <j(E, F) | A -open. We shall

show next that ^  is a base for a (E, F)|

Let y e A and let U be any o (E, F)|ft -neighbourhood of y .

There exists $ £ 4> such that V £  U , where

{x e A : | <x-y , x'> | < 1 , x* £ $ } .
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Since (xn : n e m} is a a (F*,F) -dense subsec of G (and therefore 

0(G, F/jjq) -dense) there exists nQ e H  such that

x £ {x £ G i |<x - y, x ’>| < 1, x' e 2 $ } .n ' 1 o

It is then clear that y e W . Also, if x is any element of W ,

and this establishes the result.

Corollary

If A is essentially separable for the dual pair (E, F), then 

A has a o(E, F)-dense subset of cardinality at most c .

This follows immediately from the fact that any topological space 

has a dense subset of cardinality at most that of a given base for its 

topology.

It is clear from Theorem 2.1.5 that each point in an essentially 

separable set has a base of neighbourhoods for the topology induced by 

the weak topology consisting of at most c sets. It will be shown

o

We now define by

W = {x e A : | <x «* x , x1 > I < 1, x' £ 2 1 )n oo

then x e A and for any x' € , we have

|<x - y, x'>| = j|<x - y, 2 x1 > |

< J|<x - x ,2 x'>I + J|<x - y, 2 x ’> n n0 o
< 5 + 5 = 1 , since 2 x' e 2 $

Hence x e. V and so W c V c U . Thus

Proof

later (Theorem 2.1,7) that for a non-empty absolutely convex o(E, F)-
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bounded set A to be essentially separable for the dual pair (E, F) 

it is in fact necessary and sufficient that zero has a base of 

neighbourhoods for o(E, F)|ft consisting of at most c sets. An 

example will be given later too to show that the converse of the 

Corollary to Theorem 2.1.5 is not true in general.

The next result describes precisely the situation when the result 

of Theorem 2.1.5 holds for an absolutely convex set. It is an 

analogue of [25, Proposition 1.3].

Theorem 2,1.6 * (i)

Let (E, F) be a dual pair and let A be a non-empty absolutely 

convex subset of E . Then a(E, F) | has a base consisting of at 

most c sets if and only if

(i) 0 has a base of neighbourhoods for a(E, F)|ft

consisting of at most c sets,

(ii) A has a c(E, F)-dense subset of cardinality at most c .

Since 0 e A , it is clear that the conditions are necessary.

Suppose conversely that (i) and (ii) are satisfied. L-»t $ be 

the set of all non-empty finite subsets of F . Then there exists

form {x e A : |<x, x'>| < 1, x' £ } (XeA) is a base of neighbourhoods

Proof

{$. : XeA} c $ with |a | < c such that the family of sets of the
A "

of 0 for <j(E, F) I . Let {x : y e M} be a a(E, F)-dense subset 
'A  y

of A with |m | i c and put

{[x e A : !<x - x , x'>I < 1, x' e $.} : XeA , y e M} .y a

Then we have that We show next that

0(E, F)Ia  .



to

It follows now from (*) that 0 c V and hence

o(E, F ) | A as required

The following includes a partial converse of Theorem 2.1.5 

Theorem 2,1.7

Let (E, F) be a dual pair and let A be a non-empty absolutely 

convex o(E, F)-bounded set. Then A is essentially separable if and 

only if 0 has a base of neighbourhoods for <j(E, F ) c o n s i s t i n g  of 

at most c sets.

Proof

The necessity of the condition is an immediate consequence of 

Theorem 2.1.5
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Suppose the condition is satisfied. Then there exists a set 

: X £ A} of non-empty finite subsets of F , such that |A| S c 

and {{x £ A ! |<x, x’>| < 1, x' € : X £ A} is a base of

neighbourhoods of 0 for a(E, F) | . The a(F*,F)-closure B of

A is an absolutely convex 0(F*, F)-compact set. We now show that

{x £ B s |<x, x'>| < 1, V  x' € <J>) and since U is a o(E, F) | -

neighbourhood of 0 , there exists $x such that

closure. This establishes the assertion.

Let z be a non-zero element of B . Since a(F*, F) | is a 

separated topology, there exists XQ £ A such that |<z, x* >| > 1  

for some x' £ ^  . It therefore follows that if T = U {^: X £ A} ,

then T separates the elements of B and so the set of equivalence

and consequently by Theorem 2.1.3, we have that A is essentially 

separable.

Corollary 1

Let E be a separated locally convex space and let A be a 

non-empty equicontinuous essentially separable subset of E'. If H 

is any vector subspace of the completion G of E which contains E ,

{{x £ B i |<x, x'>| <1, V  x’ £ : X £ A} is a base of neigh

bourhoods of 0 for o (F*, F) | . Let <f> be any non-empty finite 

subset of F . Since A is a a(F*, F)-dense subset of B,

U = {x £ A : | <x, x' > | < 1, V x' £ $} is o(F*, F)-dense in

o
V = {x £ A : |<x, x'>I <1, V X' £ 4>x } c U . Then

o
{ x  £ B : ] <X ,  X* > I < 1 ,  V f  X* £ <f>x }  C v  c  U =

o
{x £ B : |<x, x*>I SI, V  x' £ 4>} , where —  denotes a(F*, F) |

' B

O

classe:

of Besides, since |A| i c , we must have |t | < c .

of the elements of T is a total subset

From Lemma 2.1.4, it follows that has dimension at most c
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then A is essentially separable for the dual pair (E', H) .

Proof

By Lemma 2.1.1 and the fact that the absolutely convex envelope 

of an equicontinuous set is also equicontinuous it is enough to 

establish the result when A is absolutely convex. We note also 

that an equicontinuous subset of E' is necessarily a(E', E)-bounded.

From the discussion preceding Proposition 7 of [43, Chapter VI], 

we know that the dual of G is, up to isomorphism E' . Also by 

[28, §21, 6(2)], both c(E', G) and o(E', E) coincide on A .

Since E £  h c G , it follows that <j(E', H) |ft = ct(E’, E) | . 

Applying the theorem once more, we get that A is essentially 

separable for the dual pair (E', H) .

Corollary 2

Let E be a separated locally convex space and let G be a 

B(E, E')-dense vector subspace of E . If A is a a(E', E)-bounded 

set which is essentially separable for the dual pair (E', G) , then 

A is also essentially separable for the dual pair (E1, E) .

Proof

Let F be the B(E, E') -completion of E and let F' be the 

dual of F . Since G is 8(E, E’)-dense in E , we have that

(G, F ') is a dual pair and that the completion of G under B(E, E') |

is F . Since A is equicontinuous for B(E, E')l, Corollary 1VJ
above and the Corollary to Lemma 2.1.3 show that A is essentially 

separable for the dual pair (F*, F) . From the Corollary to Theorem 

2.1.1, it follows that A is essentially separable for the dual pair 

(F', E) . Applying the Corollary to Lemma 2.1.3 again gives the result.
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We now give an example to illustrate the fact that the Corollary 

to Theorem 2.1.5 does not have a converse similar to Theorem 2.1.7.

Example 2.1.2

Consider the dual pair (£", V )  . It is known (see for example 

[51, Lemma 4.61B]) that if E is a normed space its closed unit ball 

is a(E", E')-dense in the closed unit ball of E" . Hence the closed 

unit ball A of is a a [ V , l ')-dense subset of the closed unit

ball B of i." and IAI = c . It is clear from the definitions
00 I I

^)(IN) is the set of all subsets of IN . By Theorem 2.3 of the 

same paper, V  may be represented as the set of all bounded finitely

distinct elements which is false. Since dim i x  = c , we have

neither A nor B is essentially separable for the dual pair V J

Thus the fact that a set contained in E in a dual pair (E, F) 

has a a(E, F)-dense subset of cardinality at most c does not 

necessarily imply that it is essentially separable for the dual pair.

However, considering A in the above case as a subset of 

in the dual pair (1^ , we have that A is essentially separable

also shows the need for specifying the dual pair for which a given set

From Note 1.8(a) of [59], we know that there are at least 2C

distinct bounded finitely additive measures on (IN where

additive measures on (IN It then follows that the
C

dimension of Î.' is at least 2 . For if dim £' = a where
00 00

C Ca < 2 , then V  would have at most c  . a = max (c, a) < 2
’ 00

c c cdim £' < dim l *  = c = 2  . Hence dim i '  = 2 , and consequently
00 00 00 *

the dimension of „cis 2 > c Thus

even though |A| = c .

since and dim 5,̂ = c . This example

is said to be essentially separable.



We recall the following definition of the Schauder dimension of a 

Banach space given in [16]. A subset M of a Banach space X is 

said to be strongly linearly independent if it is not contained in the 

closed linear span of any proper subset. A maximal strongly linearly 

independent subset of X is called an extended Schauder basis for X 

Any two extended Schauder bases in the same space X have the same 

cardinality which is therefore called the Schauder dimension of X .

It is known (Corollary to Theorem 2.1.5 and Lemma 2.1.1) that 

every subset of an essentially separable set in a locally convex space 

E has a a(E, E')-dense subset of cardinality at most c . We give 

next a result which combines this property of essentially separable 

sets with the concept of Schauder dimension for Banach spaces.

Theorem 2.1.8

Let E be a Banach space and suppose that every subset of the 

closed unit ball of E' has a c(E', E)-dense subset of cardinality 

at most c . If E has a Schauder dimension, then the dimension of 

E is at most c .

Proof

Let {x, : X £ A} be a maximal strongly linearly independent
A

subset of E and let {x1^ : X £ A} be a subset of E ' such that

<xu' XY = 6Xu ' for 311 X, y £ A. Let A = { || X ' I I  -1x' • x
a!1 x  ‘ a

£ A)

Then A is a subset of the closed unit ball Of E' . Also if X 4 u

then we have <x^, || x'J| 1x:’x" H x’JI'lxV

XII  ̂ and so A

has no proper 0(E', E)-dense subset. Otherwise, if 

(|| x' || _1x' : y £ T} were a proper o(E', E)-dense subset of A ,

given p £ A\r , we would be able to find v e T such that 

|<xu, H x ’JI -1x')j - ||x-J| "1x,v>| < H x j r 1 which is false.

By the hypothesis we must have | A| £ c and from [16, Proposition 1], 

the set ix^ i X £ A) is total in E. Applying Lemma 2.1.4, we have
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the desired result.

We end this section with two lemmas which we shall need later in 

our subsequent discussions. The second of these shows that essential 

separability is preserved in forming products in the same way as 

separability is preserved (Theorem 1.4.1).

Let E, F be complex vector spaces forming a dual pair (E, F) .

The set of vectors in E can be made into a real vector space E ^

by simply restricting scalar multiplication to real scalars. The

set F^ of real linear forms x -*• Re <x, y> (y e F) is then a real

vector space such that (E , F ) is a dual pair (see for exampleir r
[28, §16, 3, §21, 11]).

Lemma 2,1.5

In the above notation, a subset A of E is essentially 

separable for the dual pair (E, F) if and only if it is essentially 

separable for the dual pair (E^, F^) .

Proof

We apply the same construction to the dual pair (F*, F) to get

((F*) _  , F ) . Since <r(F*, F) and F ) coincideIR r ir r
[28, §21, 11(2)], A is contained in a o(F*, F)-separable set if 

and only if it is contained in a (T((F*)^, F )-separable set. Since 

F* is complete under 0(F*, F), we must have (F*)̂  = (F )* , The 

result now follows from the definition of essential separability.

Lemma 2.1.6 * X

Let (E , F.) (X e A) be dual pairs and for each X 6 A , letX X
Ax be a non-empty subset of Ex . Then is essentially

separable for the dual pair (fl£AEx»j| F^) if and only if



(i) each A^ is essentially separable for the dual pair 

(Ê , F^), and

(ii) |{X ! |a J  S 2}| S c .

Proof

Suppose the conditions are satisfied. If |AJ £ 2 , chooseA
a o(Fx*, F^J-separable set such that A^ If |a |̂ = 1 ,

let B, = A, Then by Theorem 1.4.1, ir B

separable set which contains it A. . Since (£ F.)* = ir F *  ,
AeA AeA A:

it follows that ir A. is essentially separable as required

Applying Lemma 2.1.2 to the canonical projections 

p. s ir E. -*■ E. (AeA) establishes the necessity of condition (1),A ■» « A AAeA

Suppose that each E, is non-zero and for each Ac A , let M beA A
a set such that M, = dim F, and M, n M, = if Ax + A2 .

In the usual way, we may identify F^ with K " ' F^* with K

and with a vector subspace of K Suppose ir A. is

essentially separable for the dual pair (it E., £ F.) . With the
AeA AeA

above identifications, we have by the corollary to Lemma 2.1.3 and

Lemma 2.1.2 that tt a . is essentially separable for the dual pair
, , AeA A

KM, K (M)) where M = u{Mx : AeA} .

Now apply Theorem 2.1.4 to i A . There is a non-empty subset
AeA

T of A such that |r| £ c and Mq £  : AeT} . Suppose there

exists A eA\r such that |a | 2. 2 . For each AeA\{A } choose
o A0

a e A and let b. , c. be distinct elements of A . Then ifA A A A A _
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Mir A. whose components in K are the same over M
Xe A

Thus from
, (M)the properties of the elements x' £ K (y £ M\M ) it followsy o

that x and y are the same, which is a contradiction. Thus

|a |̂ = 1 if XfA\r . This establishes the necessity of condition (ii) 

when each + {0} . The result is trivial if some E^ = {0} ; 

otherwise we can reduce the problem to the non-zero case by observing 

that it E. is topologically isomorphic to i E.
Xe A XeA 

E^iO}

2.2 Weak Compactness and Essential Separability

In this section, we shall identify some particular essentially 

separable sets and bring out a link with .ideas associated with weak 

compactness and weak relative compactness.

In a dual pair (E, F) an arbitrary subset A of E of 

cardinality at most c need not be essentially separable. For 

example, the closed unit ball A of of Example 2.1.2 has 

cardinality c but it is not essentially separable for the dual 

pair (i", i'm) . In the situation when the subset is in addition 

o(E, F)-compact we have the following result.

TI

Theorem 2.2.1

Let (E, F) be a dual pair and let A be a a(E, F)-compact set 

with cardinality at most c . Then A is essentially separable for 

the dual pair (E, F).

oo ■ 
a J

Proof

The result is trivial if A is empty. Also by Lemma 2.1.5 and 

[28, §21, 11(1)], it is enough to establish the result when E is real.



Suppose that A is non-empty and for each pair of distinct

elements x^, x2 of A choose y £ F such that <x^, y> + <x2, y> . 

Consider C(A) the algebra of all continuous real-valued functions 

on A . Let A  be the subalgebra of C(A) generated by the set 

X consisting of the restrictions to A of all the y chosen above 

together with the unit function. Then by the Stone-Weierstrass 

Theorem [10, Chapter XIII, Theorem 3.3] we have that v A  is dense 

in C(A) for the topology of uniform convergence on A . By [10, 

Chapter XIII, 3.1] A  consists of all functions of the form 

p(f^, ..., fn>, where f^, ..., ffi belong to X and p ranges 

over all polynomials in n i l  indeterminates with no constant terms. 

Since there are c such polynomials and at most c functions from 

which to fill the indeterminates, it follows that ItK I = c ■

As the topology of uniform convergence on A is a norm topology, 

every element of C (A) is the limit of a sequence in c A .  since 

A  is dense in C(A) . It therefore follows that |C (A)| = c 

and consequently the dimension of C (A) is at most c . This then 

implies that the vector subspace L = {y|ft : y £ f } also has dimension 

at most c .

Let (y : AfiA} be a subset of F such that (y • ) is 
X X | A XcA

a basis for L (so that | A| s c ) . Let H be the linear span

of A . We show that (ŷ ) ̂  ^ is a basis in F/^ , where y^

indicates the equivalence class of y^ . Suppose that

n _  n
l  a ÿ  = 0 £ F / q . Then , x > = 0 for all x e H .
r=l r r r=l r

n n
Hence (£ > |A - 0 , i.e. ¡ |A - 0 . Since ( y j * ) ^

r=l r r=l r

is a basis, we must have a r = 0» 1» • ••» n) an<̂  s0 the y^

are linearly independent. Now let y e F / ^  . We have yx £ ÿ



if and only if = <y, x> for all x £ A . Now 

for some X £ A(t = 1, ..., s) and some scalars

8. (t = 1, ..., s) and consequently we have y = £ 8..y, • Thus
t t-1 * At

the y^ (XeA) span f/jjo and since we have seen that they are 

linearly independent, ( y ^ ) ^  is a basis in F/^q • Hence 

dim F/jjO s c an^ fr°m Theorem 2.1.1 it follows that A is essentially 

separable.

Corollary 1

Let (E, F) be a dual pair and let A be a subset of E such

that

(i) |a | £ c ,
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(ii) there exist a(E, F)-compact sets A^ (n £ M) such that

Then A is essentially separable for the dual pair (E, F) .

Clearly, for each n £ U , the cardinality of A^ is at most c

and so by Theorem 2.2.1 each A^ is essentially separable. From

Lemma 2.1.1, we have that U A is essentially separable.
n-1

Corollary 2

Let E be a normed space and let B be the closed unit ball of 

E' . If |B| = c then dim E ^ c .
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Proof

We note that for the dual pair (E1, E), B is a cr(E', E)- 

compact set with cardinality (at most) c . It therefore follows 

from the theorem that B is essentially separable for the dual pair

(E‘, E) . Consequently by Theorem 2.1.3 we have that dim AJ(E, B) < c ,
k /> Jwhere as in Section 2.1 M(E, B) t l̂e formed space constructed

from B . It is clear that , B) ~ E and so dim E £ c .

As an application of Theorem 2.2.1, we have the following result 

which gives us further conditions under which a set of cardinality at 

most c is essentially separable.

Theorem 2.2,2

Let E be a separated locally convex space whose topology is 

defined by at most c seminorms and let F be the completion of E . 

Then each subset of E which is o(F, E ')-relatively compact and 

whose cardinality is at most c is essentially separable for the 

dual pair (E, E') .



relatively compact since is continuous for each X e A . Since 

| A | S c ,  we have that |p^(A)| £ c , and since every element of the 

a(E^, E'^)-closure of p^(A) is the a(E^, E'^)-limit of a sequence 

in (A) [28, §24, 1(7)] it follows that the a(E^, E'^)-closure of

p^ (A) has cardinality at most c . Hence for each X € A , we have 

that p^(A) is essentially separable for the dual pair (Ê , E'^ , by 

Theorem 2.2.1

By Lemma 2.1.6, we have that it p. (A) is essentially separable
XeA A

for the dual pair (w E., £ E ' ) since | A| £ c . Thus since
XeA XeA

A c it p (A) , it follows that A is essentially separable for the
“  XeA"

dual pair (it E £ E ' ) . We apply Lemma 2.1.3 to conclude
XeA XeA

that A is essentially separable for the dual pair (E, E') and 

the proof is complete.

Remarks

(i) As we have in Example 2.1.2, let A be the closed unit ball

of i c 1" . Then IA | - c and the oU", V ) -closure of A is
00 00 1 1 00 00

a i r ,  tl-compact. But A is not essentially separable for the dual 

pair (JT,i'). Since A satisfies the conditions of Theorem 2.2.2, 

we deduce that no topology of the dual pair (T, V J  can be defined 

by at most c seminorms.

(ii) We rotealso that Theorem 2.2.2 does not hold for an arbitrary

subset with cardinality c . To see this we take E = l  , F = v00

and A = E so that | A | - 1Jl I = c . 00 1 The norm topology on is

a topology of the dual pair U . which is defined by 1 (<c)

seminorm. However is not essentially separable for the dual pair

U  , A') since t^/^o - and ~ 2° nVifeOlt«2.1.1'ei«ei ad'S-)'
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For the corollary to Theorem 2.2.2, we need the following lemma 

which is stated by Valdivia in [55, <b)].

Lemma 2.2.1

Let E be a locally convex space with dual E' which is the 

union of the infinite family {d  ̂ : As A} of a(E', E)-compact sets 

D with |A| < a . If A is an arbitrary subset of E then every
A

weak closure point x q of A is a weak closure point of a subset 

M of A with | m | S a.

Corollary (to Theorem 2.2,2)

Let E be a separated locally convex space whose topology is 

defined by at most c seminorms and let F be the completion of 

E . Suppose that B is a subset of E which is c(F, E *) — 

relatively compact. If x is any element of the a(F, E')-closure 

of B , then there is an essentially separable subset A of B 

such that x is in the a(F, E')-closure of A .

defines the topology of E . If $ is the set of all non-empty

which expresses E' as the union of at most c o(E', E)-compact 

sets. Thus we can use Lemma 2.2.1 above to deduce that there is a 

subset A of B with cardinality at most c such that x is in the 

o(F, E ')-closure of A . Being a subset of a a(F, E*)-relatively 

compact set, A is a(F, E')-relatively compact and so by Theorem

2.2.2 we have that A is essentially separable.

Proof

Let (p ). be a family of seminorms with |A| S c  which
A A 6 A

finite subsets of A , we have
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Remark

Let E and F be as we have in the above Corollary. Then j

Eberlein's theorem [43, Chapter VI, Theorem 4] gives a "natural" 

condition under which a subset A is a(F, E')-relatively compact, 

namely if every sequence of points of A has a a(F, E')-cluster 

point in F . We know also from a result given originally by 

R.C. James and in simplified form by J.D. Pryce [39, Theorem] that 

if E is real, a subset A is a(F, E')-relatively compact if and 

only if each element of E' attains its supremum on the a(F, E ') -closure 

of A .

In [40, Theorem 4.2], J.D. Pryce shows that if E is a 

metrizable locally convex space with dual E' , then for any topology 

of the dual pair (E, E') and any subset of E we have

(a) relative compactness, relative countable compactness 

and relative sequential compactness are equivalent,

(b) compactness, countable compactness and sequential 

compactness are equivalent

(c) each point in the closure of a relatively compact 

subset A is the limit of a sequence in A .

Applying the above Corollary, we obtain corresponding criteria for 

weak compactness and weak relative compactness in a separated locally 

convex space whose topology is defined by at most c seminorms.

Theorem 2.2.3

Let E be a separated locally convex space whose topology is 

defined by at most c seminorms. A subset B of E is a(E, E •) — 

relatively compact (respectively a(E, E')-compact) if and only if 

each essentially separable subset of B is a(E, E')-relatively 

compact (respectively o(E, E ') -relatively compact and has its
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a(E, E ')-closure contained in B).

Proof

It is clear that the conditions are necessary. Suppose that 

either condition is satisfied. A countable set is trivially 

essentially separable and so B is o(E, E')-relatively countably 

compact. Let F be the completion of E . Using Eberlein's 

theorem [28, §24, 2(1)] we have that B is a(F, E')-relatively 

compact. It then follows from the Corollary to Theorem 2.2.2 that 

each a(F, E')-point of closure x of B is already in E so that 

B is a(E, E1)-relatively compact under either condition. Under 

the bracketed condition, x is in B and so B is o(E, E’)-compact.

The following example shows that in Theorem 2.2.3 we cannot 

generally dispose of the condition that the topology be defined by 

at most c seminorms. It illustrates further that in general we 

cannot replace the hypothesis on the essentially separable sets by a 

weaker one on the separable subsets.

Example 2,2,1

Let M be a non-empty set and let

i |(u i' + o}| i c} ,
« V » « » '  * “ ' Uv .: 5W*0}| r-*-\oVI

*" .

Then each of (E, H), (F, H) and (G, H) is a dual pair. Let

J = [0, 1]M and put A = J n E and B = J n F . We note that A 

(respectively B) is not o(E, H)-relatively compact (respectively



a(F, H)-relatively compact since both A and B are dense subsets 

of the o(G, H)-compact set J .

We show first that if C is any subset of 3RM , and D is a 

dense subset of C , then supp C = supp D . Certainly,

supp D £  supp C . Suppose there exists v e supp C\supp D and 

choose (£ ) „ £ C\D such that £ 4 0 . Since D is dense in C ,
M J J € M  V

there exists (n ) £ D such that

l <(V y € M  '  ( V y e M
(6 ) > vy yeM 1

where

(6 ) „ e 3Rvy yeM
(M)

But <(£ ) , - (n ) .. , (6 ) > = £ - n = £ , sincey yeM y yeM ' vy yeM v v '
v f. supp D . This contradiction shows that supp C = supp D .

Let X be any o(E, H)-bounded essentially separable set.

Since each element of E has support of cardinality at most c and since

an essentially separable set has a weakly dense subset of cardinality

at most c , we have that |supp x| £ c . It then follows that

there exists Mq e M such that |m J  £ c and if (Cu>ueM 6 X ,

£ = 0 for all v £ M\M . Hence X c t J where each J is’v o -  ysM y y
a compact interval in TR and if y e M\Mq , = [0, 0] = {0} .

It therefore follows that it J c E . Now by Tychonoff’s theorem,y€M y ■“
it J is compact and consequently X is a(E, H)-relatively compact. yeM y
We have thus shown that each o(E, H)-bounded essentially separable 

set is o(E, H)-relatively compact.

If |m | > c , we have that A is a non-compact a(E, H)- 

closed set in which each essentially separable subset is o(E, H)- 

relatively compact. Consequently by Theorem 2.2.3 no topology of
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the dual pair (E, H) can be defined by at most c seminorms and it 

follows that the theorem may fail if the seminorm condition is removed. 

Furthermore, if we regard A as a subset of G , we see similarly 

that each essentially separable subset of A is o(G, H)-relatively 

compact and has its a(G, H)-closure contained in A . However A 

is not a(G, H)-compact, being dense in J , although it is a(G, H)- 

relatively compact.

Finally, let \m |= c  . The topology o(F, H) is then defined 

by c seminorms. Again each countable subset of B is o(F, H)- 

relatively compact and has its o(F, H)-closure contained in B . 

However B is a a(F, H)-closed essentially separable set which is 

not a(F, H)-compact, being dense in J .



CHAPTER III

¿-BARRELLED SPACES

Mahowald's characterization [35, Theorem 2.2] of barrelled spaces 

as those which serve as domain spaces for a closed graph theorem in 

which the range space is an arbitrary Banach space can be regarded 

as the beginning of attempts to use the closed graph theorem to 

describe certain locally convex spaces. Kalton in [25], considered 

this kind of characterization when the range space is an arbitrary 

separable Banach space. Recently, V. Eberhardt [11, 14] described 

the locally convex spaces which can serve as domain spaces for the 

case when the range space is an arbitrary normed space. The 

corresponding domain spaces for the situation in which the range space 

is an arbitrary metrizable locally convex space have also been studied 

by V. Eberhardt and W. Roelcke in [15] (see also [11]). In the 

non-locally convex situation, Iyahen [21], [24] has characterized 

ultrabarrelled (respectively hyperbarrelled) spaces as those topological 

vector spaces (respectively semiconvex) spaces for which the closed 

graph theorem holds when the range space is any complete metric 

(respectively complete separated locally bounded) topological vector 

space.

This chapter is concerned primarily with the study of those 

locally convex spaces ({-barrelled spaces) which can serve as domain 

spaces for a closed graph theorem when the range space is an arbitrary 

Banach space of dimension at most c . Many of the standard elementary 

Banach spaces, including all the separable ones, have dimension at 

most c . As we have already noted in Section 1.5, an infinite 

dimensional Banach space has dimension at least c . If we classify 

Banach spaces by dimension, we are therefore dealing in a natural
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sense, with the first class which contains infinite dimensional spaces.

We give various characterizations of the ¿-barrelled spaces (defined 

below) and we also establish some of their permanence properties 

(Corollaries, 1, 2 and 3 of Theorem 3.1.2). Conditions under which 

¿-barrelled spaces are barrelled are also investigated; in particular, 

we have an analogue of [52, Theorem 1],

3.1 Definitions and Basic Properties

Let E be a locally convex space. If A is a barrel in E ,

then j^X A is a closed vector subspace of E . A subset B of E

is called a ¿-barrel in E if it is a barrel such that the dimension

of E/n^B is at most c . We say that E is ¿-barrelled if each 
X>o

¿-barrel in E is a neighbourhood of the origin in E .

It is obvious from the above definitions that every barrelled 

space is ¿-barrelled. We shall show later by example that there are 

¿-barrelled spaces which are not barrelled even in the associated 

Mackey topology so that the class of barrelled spaces is a proper 

subclass of the class of ¿-barrelled spaces.

The following theorem gives a characterization of separated 

¿-barrelled spaces in terms of essential separability which we introduced 

in the previous chapter.

Theorem 3.1.1

A separated locally convex space E is ¿-barrelled if and only if 

each o(E', E)-bounded essentially separable set is equicontinuous.

Proof

Suppose first that E is ¿-barrelled. Let A be any non-empty 

o(E1, E)-bounded essentially separable subset of E' and let H be

Then A° is a barrel in E . Let C bethe linear span of A .



the absolutely convex envelope of A . Then A0 = C° and H = U  U Cp>o
Thus H = n>o —  c = jJ>QX A . Hence if, as in Section 2.1,

J^E, A) is the normed space constructed from A , then

jYk, A) . Since A is a(E', E)-boundeddim E/_ , .o = dim
X>oX A

and essentially separable, by Theorem 2.1.3, we have that 

dim j^(E, A) £ c . Thus A0 is a 6-barrel in E and it therefore 

follows by the hypothesis that A0 is a neighbourhood of the origin 

in E . By [28, §21, 3(1)], we must have that A is equicontinuous.

Conversely, assume that the condition is satisfied. Let B be

any 6-barrel in E . Then (h \ b )* , the polar of J* X B in E*
A>0 A>0

is a(E*,E)-separable, since the dimension of E/ n . is at most c
X>oA B

and (Ç1 X B)* is (isomorphic to) (E/ . )* . Let B° be theX>o xgQX B

polar of B in E' . Then since B° ^  ^x>oX B *̂ > we have that B° 

is essentially separable. As B is absorbent, B° is also a(E', E)- 

bounded. Hence by the hypothesis, B° is equicontinuous and so 

using [28, §21, 3(1)] again, B = B°° is a neighbourhood of the 

origin in E . This establishes the result.

Remarks

(i) It follows from the proof of Theorem 3.1.1 above that in a 

separated locally convex space E , the 6-barrels are precisely the 

polars of the a(E‘, E)-bounded essentially separable sets.

(ii) In a separated locally convex space E , every c(E', E)- 

bounded sequence is a c(E\ E)-bounded essentially separable set.

It then follows from the above characterization of 6-barrelledness 

that every separated 6-barrelled space is c-barrelled (Section 1.3).

As we shall see (Example 3.1.1(b)), there are o-barrelled spaces which

are not 6-barrelled.
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(iii) We note also that every {-barrelled space of dimension at 

most c is barrelled, for, in this case since

dim E/ x B S E 5 c ' for each barrel B i it follows that every
A>0

barrel in E is a 6-barrel.

(iv) We observe further that, from the above theorem, it follows 

that a separated {-barrelled space is {-barrelled under any finer topology 

of the same dual pair.

The next theorem provides our principal reason for introducing 

{-barrelled spaces. It corresponds to Mahowald's well-known characteri

zation of barrelled spaces [35, Theorem 2.2] which has already been 

mentioned. First we establish the following lemma which we need for 

the theorem.

Lemma 3,1,1

Let E, F be locally convex spaces and let t : E -*• F be a linear 

mapping. If B is a 6-barrel in F , then t 1(B) is a 6-barrel 

in E .

Proof

Certainly t”^(B) is a barrel in E . Let M = J>QX(t *

and N = J>qX B . Suppose that x^ + M, x2 + M, *••» xn + M are

linearly independent in E/^ . We must have that t(x^) + N ,

t(x2) + N, ..., t(xn) + N are linearly independent in F/^ , for if

they are not, we can choose scalars (r = 1, ..., n) , which are not 
n

all zero such that £ ar(t(xr) + N) = 0 in F/N . It then follows 
r=l

n
that t( l  a x ) e N . We must then have that 

r=l

r=l
a x £ r r t_1(N) t_1(S>oX B) ? *X>o t“1 (B) c 0 X(t_1(B))

—  A>0



which contradicts the fact that x, + M, , x + M are linearly

independent in E/ It therefore follows that

A similar argument establishes

Lemma 3.1.2

Let E, F be locally convex spaces and let

linear surjection. If B is a 6-barrel in E

Theorem 3.1.2

A locally convex space E is 6-barrelled if and only if whenever

F is a Banach space of dimension at most c and t » E -*■ F is a

linear mapping with a closed graph, t is necessarily continuous

Suppose first that E is 6-barrelled. Let t i E •+ F be a

linear mapping with a closed graph of E into a Banach space F of

Let B be the closed unit ball of Fdimension at most c

By Lemma 3.1.1 and Remark (iii) following Theorem 3.1.1, t (B) is

a 6-barrel in E and so by the hypothesis it is a neighbourhood of

the origin in E

continuous

that E satisfies the closed

graph condition and let B be a ¿-barrel in E

E -*■ e/ be the quotient map. The Minkowski functional of

Let G be the completion of E/ underis a norm on

the topology defined by this norm

dimension of E/„ is at most c , from which it follows by Lemma

As is shown in the2.1.4 that the dimension of G is at most c
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iî>m

• 8 j

proof of Lemma 3.1 of [21], the linear mapping k : E -+■ G defined by 

k(x) = q(x) has a closed graph. By the hypothesis therefore, 

k is continuous. Thus k ^(k(B)) is a neighbourhood of the origin 

in E . Since k 1 (k (B)) = B + N c b + B = 2B , it follows that 

B is a neighbourhood of the origin in E and so E is 6-barrelled 

as required.

The following corollaries give some basic permanence properties 

of 6-barrelled spaces.

Corollary 1

Any inductive limit of 6-barrelled spaces is 6-barrelled.

Proof

Let E be the inductive limit of the 6-barrelled spaces E^(AeA)

by the linear mappings t^(AeA) . Let t : E -*• F be a linear

mapping with a closed graph of E into a Banach space F of dimension

at most c . Then t o t^ : E^ + F is a linear mapping with a closed

graph for each A e A , for if (x ) is a net in E, such that (x ) 3 c a A a
converges to x in E^ , and (t(t^ (x^))) converges to y in F , 

then by continuity, we have that (t^fx^) converges to t^ (x) and 

by the closedness o(J the graph of t , we deduce that y = t(t^(x)) . 

Thus by the theorem, t o t ^  is continuous for each A e A . Using 

[43, Chapter 5, Proposition 5], we get that t is continuous and again 

by the theorem, E must be 6-barrelled.

We note that in the separated case, Corollary 1 may also be 

deduced from the theorem using [23, Theorem 2.1].

Corollary 2

Any product of 6—barrelled spaces is 6-barrelled.

3 Aft}
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Proof

In the separated case this follows from the theorem and [23, 

Theorem 2,2]. In the non-separated case, we can use Eberhardt's 

generalization of Iyahen's result [14, Lemma 1.4] with the method of 

[14, Theorem 1.3].

Corollary 3

_  . aThe completion E of a ¿-barrelled space E is also ¿-barrelled.

to E has a closed graph' and so is continuous by the theorem. Let

and the graph of t is closed, it follows that the linear mapping

is a net in X converging to x , then since (s - t)(x q) = 0 , 

we have that (s - t)(xa> converges to 0 . From the fact that s - t 

has a closed graph, it follows that (s - t) (x) = 0 . Thus s(x) = t(x)

contains the dense subspace E . Consequently X must be the whole

We can deduce from the closed graph theorem, in the usual way, 

that any linear mapping with a closed graph of a Banach space of 

dimension at most c onto a ¿-barrelled space is open. To do this 

we only need to observe that any quotient of such a Banach space by 

a closed vector subspace (in this case the null-space of the mapping) 

is also a Banach space of dimension at most c .

Proof

Suppose that t : Ê -*• F is a linear mapping^of E into a Banach

space F with dimension at most c . The restriction t| , of tE

s be the unique extension of t|E to a continuous linear mapping of 

E into F [27, Chapter I, §8.5, Theorem 1], Since s is continuous

s - t : E -*• F has a closed graph. If we define X by 

X = {x e E  : s(x) = t(x)} then X contains E . Besides, if (x )a

and so x e X . Hence X is a closed vector subspace of E which

of E and so t is continuous. The result now follows from the

theorem.

Remark



The next result will generally allow us to deduce properties of 

6-barrelled spaces (not necessarily separated) from the separated case.

Theorem 3.1.3

A locally convex space E is 6-barrelled if and only if E/^ 

(with the quotient topology) is 6-barrelled, where N is the closure 

of {0} in E .

Proof

If E is 6-barrelled, then it follows from Corollary 1 of

Theorem 3.1.2 that E/„ must be 6-barrelled.
N

Suppose conversely that E/^ is 6-barrelled. Let B be a

bourhoods of the origin in E . Then N = n U and if q : E -*• E/„
U e H  N

is the quotient map, by Lemma 3.1.2, we have that q(B) is a 6-barrel

neighbourhood of zero in E/N . Therefore, there exists an absolutely 

convex neighbourhood V of zero in E such that q(V) ^q(B). We 

th#n have that

Thus it follows that B is a neighbourhood of zero in E and so E 

is 6-barrelled.

Note

In the proof of Theorem 3.1.3 above, q(B) is in fact closed

6-barrel in E and let be a base of absolutely convex neigh-

in E/ . Since E/„ is 6-barrelled it follows that q(B) is a 
N N

V C q”1 (q (B)) = q”1^  o (B + U)) = n a-1(q(B + U))

since B is closed.



It is well known that if there is a continuous almost open linear 

mapping of the barrelled space E into a locally convex space F , 

than F is necessarily barrelled. The corresponding assertion for 

6-barrelled spaces holds as the next result shows.

Theorem 3.1.4

Let E and F be locally convex spaces such that E is 6-barrelled 

and there is a continuous almost open linear mapping of E into F .

Then F is 6-barrelled.

Proof

Let f : E -*■ F be a continuous almost open linear mapping of E 

into F and let g ¡ F + H  be a linear mapping with a closed graph 

of F into a Banach space H of dimension at most c . Then clearly, 

g o f : E -► H is a linear mapping with a closed graph of E into H  •

By Theorem 3.1.2, we have that g o f is continuous. If B is the

closed unit ball of H , we then have that f ^(g 1 (B)) is a 

neighbourhood of the origin in E . Since f is almost open, it

follows that f(f ^(g 1(B))) = g  ̂(B) is a neighbourhood of the origin 

in F . Thus by [26, 11.1], we have that g is continuous. Theorem

3.1.2 now shows that F is 6-barrelled.

Examples 3.1.1

(a) Let E = TR ̂  , where |m | > c ,

E ' = {<V i icm £ * | { , J  ! * 0)1 5 c }  •

MThen (E, E ') is a dual pair and E* = IR . As we have seen in 

Example 2.2.1., every a(E', E)-bounded essentially separable set is 

c(E1, E)-relatively compact. It therefore follows that (E, t (E, E')) 

is a 6-barrelled space. However (E, x(E, E')) is not barrelled,
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for if it were, [0, 1] n E' which is a(E', E)-bounded would be
Mequicontinuous. This is false since [0, 1] n E' is dense in the 

Mcompact set [0, 1] which is not contained in E' and so the a(E', E)- 
Mclosure of [0, 1] n e ' cannot be o(E', E)-compact.

(b) Let E = IR (M) , where |m  | = c ,

E ' " {(V y c M  e ! l{,J ! * 0}l £ H o } •

.M \ kAgain (E, E') is a dual pair with E* = 3R . Let LA. be the family 

of all subsets of E' of the form

{< V p e M  * * “v <y£A) ' 5y = ° otherwise} '

where A is an at most countable subset of M and for each y e A 

is a non-negative real number.

Since each element of t/A. is a a(E't E)-compact absolutely convex 

set and since the union of the elements of vA. is E 1 , it follows 

from the Mackey-Arens Theorem that ^  , the topology on E of

uniform convergence on the elements of A  , is a topology of the 

dual pair (E, E 1) . We have: (i) (E, ^  ) is countably barrelled.

Proof
00

Let Bn <n e H ) be equicontinuous sets and suppose that 

is a(E’, E)-bounded. Since the set of polars of elements of A

forms a base of neighbourhoods of the origin for J  , it follows that
00

each B has an at most countable support so that U.B has at most n n=l n
00

countable support. Since U.B is o(E', E)-bounded, for each y e M ,n=l n o
we have that sup {15 I »(?)..„ « uiB„ T exists. It therefore i ii ■ ii u£M n—i. n j

A  and so is j -

Hence (E, 3  ) is countably barrelled as required.

•y ' 6o

follows that U.B is contained in an element of n=l n
equicontinuous.
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(ii) E cannot have a 6-barrelled topology for the dual pair (E, E ') . 

Proof
i i MSince |M| = c , by Theorem 1.4.1, we have that E* = IR is

Mo(E*, E)-separable. Thus [0, 1] HE' is a c(E', E)-bounded
Messentially separable set. But [0, 1] n E' is not equicontinuous 

Msince [0, 1] n E' cannot be a(E', E)-relatively compact being dense 
Min [0, 1] . It therefore follows that no topology of the dual pair

(E, E') is 6-barrelled.

As we have pointed out earlier a countably barrelled space is also 

o-barrelled. Hence the space (E, £  ) in (b) above is a a-barrelled 

space which is not 6-barrelled.

(c) Let B be the first uncountable ordinal and consider the space 

[0, 0) of all ordinals less than B . We assert first that 

C([0, 0)) has dimension c . To see this we observe that by 

[17, 5.12(c)], every f in C([0, B )) is constant on a tail, that

is on a set of the form {x £ [0, fl ) : x a a} for some ordinal a

less than B . Also there are at most c tails and each tail has 

at most predecessors. It therefore follows that there are at

most c ways of making a continuous real-valued function with a given 

tail. Hence the cardinality and consequently the dimension of C ([0, i) )) 

cannot exceed c . Now, C([0, ft )) and C(B[0, fi )) = C[0, [) ])

are algebraically isomorphic so that the dimension of C ([0, fl )) 

and the dimension of C ([0, B ]) are equal. But C ([0, B ]) is

an infinite dimensional Banach space. It therefore follows that the

dimension of C([0, B )) is at least c and so C ([0, B )) has

dimension c .

From the last paragraph of §7 of [36], we know that ([0, B ))
is o-barrelled but not barrelled. We note also that {6X : x £ [0, B )) ,
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where 6^ is the point measure with mass 1 at x , is a bounded

(essentially separable) subset of C([0, 52 ))' which is not compact

in [C([0, (2 ))'] . This follows from the fact that (6 ) _
a x xe[0, (2

is a Cauchy net in [C((0, 52 ))' ] ̂  which converges weakly to the

linear functional x' defined by x'(f) = lim f(x) and

x' / C( (0, 52 ))' since it has no support in [0, 52 ) . It now

follows that C([0, 52 )) cannot be 6-barrelled for any topology of

the dual pair (C([0, 52 )) , C([0, 52 ))') .

It is interesting to note however that for a sufficiently large 

ordinal y , we can have that Cc ([0, y ) ) is 6-barrelled. For 

example, let T be any cardinal such that

(i) r > c

(ii) there exists I" < T such that if A < T , then A < I" . 

We may for example take T to be the least cardinal which is strictly 

greater than c .

Now let y be the least ordinal of cardinality T . Let 

X c [o, y ) and suppose that |x| S c . We show that X has an 

upper bound in [0, y ) . If a e X , than a + 1 £ [0, y ) since 

otherwise a + 1 = Y and so we would have that a and y have the 

same cardinality which is false. Hence we have

Thus we can choose B e [0, Y)\(U£X[0, a + 1)) and this 8 is an upper 

bound for X in (0, Y) .

Let A be any bounded essentially separable set in [C([0, Y))')a . 

Then by the Corollary to Theorem 2.1.5, there exists a dense subset

[0, a + 1) c [0, y ) and
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{y. s d e d } of A with |D| < c . For each d e D , supp y_ is d d
compact and so there exists cî e [0, y) such that supp y^ £  [0, â ]

Let 3 be an upper bound for {ad : d e d } in [0, Y) . Then we

have that supp A = supp D = cl (U supp ŷ ) £  [0, 3] £  [0, y) ,
d e D

where cl(X) denotes the closure of X . It follows that A is 

equicontinuous [57, Lemma 4] and consequently ([0,y)) is

¿-barrelled.

I>

(d) Consider the dual pair (£ , JL) . The space ( l  , t (£ , JL) is*  0 0 ' *  00 0 0 ’ J_

not ¿-barrelled. This is because the closed unit ball of is a

ffdl, 5.̂ )-separable bounded set which is not a(£^, S,^)-relatively 

compact.

We recall that, according to Kalton [25], -^(CB> is the class of

all separated locally convex spaces E with the property that whenever 

t : E -*■ F is a linear mapping with a closed graph of E into an 

arbitrary separable Banach space F , t is continuous. As mentioned 

earlier, every infinite dimensional separable Banach space has dimension 

c . The converse is not true; for example, has dimension c

but it is not separable in its usual norm. Our separated ¿-barrelled 

spaces therefore form a subclass of the class • In [25],

N.J. Kalton showed that (i n , x ( l m, is in ^ ( ? B) • As we have

seen above, (Jt̂ , T ( l^ , i.̂ )) is not ¿-barrelled. Hence the separated

¿-barrelled spaces constitute a proper subclass of Kalton's

A. Wilansky [58] has announced the following variant of Mahowald's

characterization of barrelled spaces. A locally convex space E is

barrelled if (and only if) every linear mapping with a closed graph of

E into C (X) is continuous, where X is an arbitrary compact c
Hausdorff space. We establish the corresponding result for ¿-barrelled 

spaces. First we give the following lemma which is needed for the

result.
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Lemma 3.1.3

Let E be a separated locally convex space and let A be a 

CÍE', E)-bounded subset of E‘. If B is the o(E*, E)-closed 

absolutely convex envelope of A , then the mapping t : E C (B) 

defined by (t(x)) (b) = <x, b> for all b £ B is linear and has a 

closed graph.

Proof

That t is linear is obvious. Let (x ) be a net in EA
converging to some x e E and let (t(x,)) converge to f in C (B) . 

We have to show that f = t(x), that is f(b) = <x, b> for all 

b in B . Now (t(x^)) converges to f in Cc (B) implies that

(t(x^))(b) converges to f (b) for all b in B . If C is the

absolutely convex envelope of A , then C is a(E*, E)-dense in B . 

Also since (x̂ ) converges to x in E , it follows that (<x^, x<>) 

converges to <x, x ’> for all x' £ E' and so f(b) = (t(x))(b) 

for all b £ C . Thus (f - t (x)) (b) = 0 for all b £ C . Since 

C is c(E*, E)-dense in B and f - t(x) is continuous, we have 

that (f - t(x))(b) = 0 for all b £ B and so f = t(x) .

Theorem 3.1,5

Let E be a locally convex space. Then E is 6-barrelled if

and only if whenever X is a compact Hausdorff space such that the

dimension of C (X) is at most c and t : E C (X) is a linear c c
mapping with a closed graph, then t is continuous.

Proof

The necessity of the condition follows immediately from Theorem

3.1.2 since C (X) is a Banach space of dimension at most c . c

Suppose conversely that the condition is satisfied. We consider 

first the case when E is separated. Let A be a non-empty o(E!, E)- 

bounded essentially separable set and let B be the a(E*, E)-closed
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absolutely convex envelope of A . Then B is compact and Hausdorff

under the topology induced by o(E*, E). We show that the Banach

space (B) has dimension at most c . By Theorem 2.1.3, the

of C (B) has dimension at most c and hence its cardinality is c
also at most c . By the Stone-Weierstrass theorem [10, Chapter 

XIII, Theorem 3.3 and page 283], we have that the subalgebra generated 

by {x| : x £ E} U {1} in the real case or •

{x| : x e E} U (x| : x £ E) U {l} in the complex case is dense in

Cc (B) in its norm topology. Similar reasoning aswe have in the proof 

of Theorem 2.2.1, now gives that the dimension of Cc (B) is at 

most c .

Now consider the mapping t : E -*• Cc (B) defined by

(t(x))(b) = <x, b> for all x in E . By Lemma 3.1.3, t is a

linear mapping with a closed graph. Hence by the hypothesis, t is

continuous and so its transpose t' : C(B)' -*■ E' maps equicontinuous

sets into equicontinuous sets. If 6^ is the point measure with

mass 1 at b , then since (6, : b £ B} is a subset of the closed

unit ball of C(B) we have that t' (i«Sjj : b £ B>) is equicontinuous.

But for all x £ E , and all b £ B , we have

<x, t' (6b )> = <t(x), 6fa> = (t(x))(b) = <x, b>

Thus t' ({6,_ i b £ b }) = B and so B c E' . Consequently, A is b “
equicontinuojs and therefore E is 6-barrelled.

If E is not separated, by considering the closure N of {0} 

and the quotient space E/^ , it will follow from the first part and

normed space constructed from A has dimension at most

c . It therefore follows that the vector subspace {x! : x £ E}
B

Theorem 3.1.3 that E is 6-barrelled. This completes the proof.
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Of recent, the inheritance of properties of certain locally convex 

spaces by vector subspaces of countable (i.e. at most countable) 

codimension has been of interest to some Mathematicians. It is now 

known for example that a vector subspace of countable codimension of 

a barrelled, cr-barrelled, or countably barrelled space is again of 

the same type ([46, Main theorem], [54, Theorem 3], [56, Theorem 6],

[31, §4 Theorem]). The analogous result for 6-barrelled spaces is 

also true as the following theorem shows.

Theorem 3.1.6

Let E be a 6-barrelled space and let X be a subspace of E 

of countable codimension. Then X is 6-barrelled in the induced 

topology.

Proof

We consider first the separated case. Since each o(E', E)- 

bounded sequence forms an equicontinuous set, E' is a(E', E)- 

sequentially complete. If G is the closure in E of X , then 

G also has countable codimension in E and so we deduce from 

[31, §3, Proposition] that G' is a(G', G)- sequentially complete.

Let A be a a(X', X)-bounded essentially separable set and let B 

be the subset of G' obtained by extending by continuity each 

element of A . By [31, §2, Lemma], B is a(G', G)-bounded.

If G f  E we can choose an at most countable family {xn> of 

linearly independent elements of E\G which spans a supplement of 

G in E . In this case we extend the elements of B to the whole 

of E by putting <xn, x’> = 0 for each n and each x' c B .

Let C be the set of all these extensions. By the Lemma of [46, §2], 

we have that C c e ' and it is clear that C is o(E', E)-bounded.

If G *= E, put C = B .

We show next that C is essentially separable. Since the result
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is trivial if X = {0}f we may assume that X ? {0} . In the usual

way, X* is topologically isomorphic to K*1 where |m | is the

dimension of X . Since X has countable codimension in E , this

topological isomorphism extends to a topological isomorphism of E*

onto KMUN , for some at most countable index set N such that

MnN = 0 . Let Mq ^  M and {x^'J be as we have in Theorem 2.1.4

for the image of A in K** , which is essentially separable by

Lemma 2.1.2. Now |m U n | < c and if for each y e (MuN)\(M UN) = M\M 1 o o o
(MUN)we define an element of K by the same formula as defines x '

(MUN)except that ^  ^  now lies in K , we can apply Theorem

2.1.4 to the image of C in KMUN . It follows from Lemma 2.1.2 

again that C is essentially separable for the dual pair (E', E) .

By the hypothesis therefore, C is equicontinuous and so C° is a 

neighbourhood of the origin in E . Hence C° n X is a neighbourhood

of the origin in the topology induced from E . But C° n X = A0 

and consequently A is equicontinuous. Thus X is 6-barrelled.

If E is not separated, let N be the closure of {0} in E and

let L = N n X . Now X/ is topologically isomorphic to theL
subspace {x + N : x e X} of E/N which clearly has an at most 

countable codimension in E/„ . The result now follows from theN

separated case and Theorem 3.1.3.

Later, we shall give a slightly different proof of Theorem 3.1.6

in a more general setting.
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3.2 The 6-topology of a ¿-barrelled Space

In this section, we discuss the 6-topology of a 6-barrelled space 

and use it to obtain some illustrative examples of 6-barrelled spaces. 

We begin with two lemmas which are needed for some of the results in 

this section.

The first lemma follows easily from the fact that a countable 

union of countable sets is again countable and the fact that the 

rational (respectively complex rational) numbers are dense in IR 

(respectively <£ ) .

Lemma 3,2,1

Let X (n e N ) be separable subsets of a topological vector n
space E and let Y be the closed absolutely convex envelope of

00

U,X . Then Y is separable. n=l n

Lemma 3.2.2

Let ^  be an at most countable set of 6-barrels in a locally 

convex space E . If Bq = n{B : B e } is absorbent, then Bq 

is a 6-barrel.

Proof

Any intersection of closed absolutely convex sets is closed and

absolutely convex. It follows therefore that Bq is a barrel in

E . It only remains to show that the dimension of E/nXB is at
X>o o

most c . We note first that

n  XB = n  X(n{B : B e >) = n { n  Xb ¡ B e ©  } .
X>o o x>o X>o

E/n has dimension at most
X>oA

is separable under
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B £ $ we have that

(n XB)* is separable under o(E*, E) . By [26, 16.3 (vii)],

B e \}r) , it follows from Lemma 3,2.1 that ( n  XB )* isx J  ' \>o o

a (E*, E)-separable. Consequently, by Theorem 1.5.1 again, we have

For the definition of the 6-topology of a 6-barrelled space, we 

need the following result.

Theorem 3.2.1

Let (E, £) be a 6-barrelled space. Then the set of all 

6-barrels in (E, 5) forms a base of neighbourhoods of the origin 

for a coarser locally convex topology 6(5) under which E is both 

6-barrelled and countably barrelled.

c u  satisfies C3. Any scalar multiple of a barrel is a barrel and 

for any barrel B and any non-zero scalar a , we have

By [43, Chapter I, Theorem 2], there is a locally convex topology,

'X><>—  ' ------ - ..............
( n  XB )* = ( n f n  XB : B e  ^  })* is the o(E*, E)-closed absolutely

convex envelope of u { ( n >  XB)* B e Q  } . Since ^  is at

most countable and since ( n  XB)* is a(E*, E)-separable for each

that E/ has dimension at most c and so B is a 6-barrelo
in E

Proof

Let be the set of all 6-barrels in (E, Ç) . We show

first that satisfies the conditions Cl - C3 of [43, Chapter I,

Theorem 2]. Since each U £ 0 4  is absolutely convex and absorbent

Hence if and a is a non-zero scalar

which is the condition C2. It is clear from Lemma

3.2.2 that if 0, V £ , then and this gives Cl.

6 (Ç) say with as a base of neighbourhoods of the origin in E
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It is clear, from the fact that (E,5) is ¿-barrelled that 

6(5) is coarser than 5 . If B is a ¿-barrel in (E, ¿(5)) , 

then since 5 is finer than ¿(5) , we have that B is a ¿-barrel 

in (E, 5) . It therefore follows that B is a 6(5)-neighbourhood 

of the origin in E . Thus E is ¿-barrelled under ¿(5) .

We show next that E is countably barrelled under ¿(5) .

Suppose that B = n U is absorbent, where for each n , U is a

closed absolutely convex 6(5)-neighbourhood of the origin in E .

We note that since each U contains a ¿-barrel B , we have that

U is itself a ¿-barrel for each n , as in this case by Lemma n ' 1

1.5.1 dim E/n  ̂ i dim E/n  ̂ <• c . It follows from Lemma
\>o n A>o n

3.2.2 that B is a ¿-barrel in (E, 6(5)) and consequently it is

a 6(5)-neighbourhood of the origin. Hence (E, ¿(5)) is countably 

barrelled.(Here we use Theorem 1 of [20] to extend the concept of 

countable barrelledness to the non-separated case).

Definition

Let (E, 5) be a ¿-barrelled space. The topology ¿(5) with 

the set of all ¿-barrels • as a base of neighbourhoods of the origin 

(Theorem 3.2.1) will be called the ¿-topology of (E, 5) .

When (E, 5) is a separated ¿-barrelled space, we have the 

following useful characterization of the 6-topology ¿(5) of (E, 5) .

Theorem 3.2.2

Let (E, 5) be a separated ¿-barrelled space. Then the ¿-topology 

¿(5) of (E, 5) is the topology of uniform convergence on the family 

of all o(E’, E)-bounded essentially separable sets. The set of

00

polars of elements of forms a base of neighbourhoods of the origin

for ¿(5)
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Consequently 6 (C) is separated and it is a topology of the 

dual pair (E, E') .

Proof

Let 6(E, E') be the topology of uniform convergence on the 

elements of • Since A  is closed under the formation

of finite unions and scalar multiples [Lemma 2.1.1], the polars of 

the elements of A  form a base of neighbourhoods for 6(E, E')

[43, Chapter III, §2], It follows from the fact that \A 
contains all finite subsets of E' that 6(E, E •) is finer than 

a(E, E') and consequently 6(E, E') is separated. Since E is 

6-barrelled in the original topology, each element of A  is 

equicontinuous in the original topology and therefore by the Mackey- 

Arens theorem [43, Chapter III, Theorem 7], the a(E', E)-closed 

absolutely convex envelope of each element of \A is a(E', E)- 

compact and so 6(E, E ') is a topology of the dual pair (E, E ') .

That 6 (E, E') = 6(C) follows immediately from Remark, (i) 

immediately after Theorem 3.1.1.

In the separated case, the 6-topology of a 6-barrelled space (E, C) 

with dual E' will be denoted by 6(E, E') as in the proof of 

Theorem 3.2.2 above.

Let E be a separated barrelled space with dual E' . Then E 

is 6-barrelled and its topology is x(E, E'). The 6-topology 6(E, E 1) 

can be strictly coarser than t (E, E'). We give two examples.
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Example 3.2.1

(i) Consider the dual pair { l'a , {.̂) discussed in Example 2.1.2.

Under its norm topology, V  is barrelled and therefore 6-barrelled. 

The 6-topology 6(V, T) is however strictly coarser than i £) ,

for if T ( l ’ ,  l " )  = 6(£', V )  , then the closed unit ball B of

i" would be 6(Jt', £")-equicontinuous. Theorem 3.2.2 would thenCO CO CO

tell us that B is essentially separable for the dual pair (5,̂ , I ' J  .

We have seen in Example 2.1.2 that this is not the case. Since the

closed unit ball A of l  is a(f.", f.')-dense in B , it follows

that A is not 6 i")-equicontinuous.

In [53], Valdivia calls a separated locally convex space E a 

y-barrelled space if each a(E', E)-bounded set of cardinality at 

most y is equicontinuous. Since |a | = c , the above example 

shows that a separated 6-barrelled space need not be c-barrelled. On 

the other hand a c-barrelled space is necessarily 6-barrelled, for by 

the Corollary to Theorem 2.1.5, every set which is essentially separable 

for the dual pair (E‘, E) has a a(E', E)-dense subset of cardinality 

at most c . Consequently, if X is a a(E', E)-bounded essentially 

separable set, it contains a a(E', E)-bounded dense subset Y of 

cardinality at most c . Hence if E is c-barrelled, then Y° = Y° 

is a neighbourhood of the origin in E and since Y° = X° , we have 

that X is equicontinuous. Thus from Theorem 3.1.1, it follows that 

E is 6-barrelled.

(ii) Let T be a set with cardinality strictly greater than c . The 

Hilbert space S-2 (T) has dimension strictly greater than c . Under 

its 6-topology 6(f.2 (D, i-2 (D) , the space *2 (D is 6-barrelled 

but not barrelled, since the closed unit ball X of ( r )  is

o(l2 (r)j fc (r)) -bounded but not 6 (¿2 (T), &2 (D) -equicontinuous since
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We note also that ¿2(r) is c-barrelled under S-2(T)) .

To see this, let A be a o(Jl2 (r), ¿2 ( D ) -bounded set with cardinality 

at most c . Applying Theorem 2.2.2 for the norm topology on ¡^(T) 

shows that A is essentially separable and consequently equicontinuous 

under 6 U 2 (r), i2 (r)) •

In Theorem 3.2.1, we diowed that a {-barrelled space (E, £) is 

both {-barrelled and countably barrelled under its {-topology {(£) . 

We now give an example of a {-barrelled space which is not countably 

barrelled. In [48, Proposition 4.4], J. Schmets describes a general 

method of constructing a-barrelled spaces which are not countably 

barrelled. We adapt his technique in our example, although our 

approach is rather different.

Example 3,2.2

Let M be a non-empty set and let 

E = TR (M)

E ’ " {(V y £M £ *  ! l(lJ ! ?y *  °}l * ° }

For each non-empty subset B of M define S (B) by

S ( B )  = { ( 5 u >u , m  e  ® M ! 5 u  = 0  i f  V i B  , l | E  | < 1 }  .n lit« m yeH

Now, £ 15 | < 1 implies that we only have £ / 0 for at most
yeM v y

countably many y and so S(B) £  E' . It is clear that S(B) is

o(E', E)-bounded and absolutely convex. We show that it is also closed.
MLet (£ ) , be in the closure of S(B) in IR . Let he anyy yeM

non-empty finite subset of M and suppose that $ has n elements.

Given e> 0, there exists (n ) in S(B) such that ' y y£M

5 - n ^ “  9 f o r all y e * y y 1 n 9

----------- m . M H M H f l a n 1*2
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Thus we have

I U  I * l  U  —  n | + l  |n | £ € + 1 ,
pe<t> w€<)> vie<t>

from which it follows that J |f | £ 1 , since e > 0 is arbitrary.

Hence £ |c | £ 1 since iji is an arbitrary non-empty finite subset 
yeM U

of M . It is easily seen that = 0  if y i  B . Consequently,

(S ) S (B) and so S(B) is closed. Thus S(B) is compact in
y yeM
MIR and since it is contained in E' , it is a(E', E)-compact.

Now take M = )̂(IR) , the power set of IR . Then |m | = 2C
Mso that E 1 ^ IR , and as we have seen in Example 3.1.1(a), it 

follows that (E, t (E, E ')) is 6-barrelled but not barrelled. Let

be the collection of all o(E', E)-bounded essentially separable 

sets together with the sets S ( (C)) where C is a compact

subset of IR . Let 5 be the topology of uniform convergence on 

the sets in . From the above observations and the Mackey-

Arens theorem, we have that 5 is a topology of the dual pair (E, E ') 

and that a base of neighbourhoods of the origin for £ is given by 

all sets of the form D° n e S(^p(C))° , where D is a non-empty 

a(E1, E)-bounded essentially separable set, € > 0 and C is a 

compact subset of IR (see for example [43, Chapter III, §2]). It 

is clear from Remark (iv) after Theorem 3.1.1 and Theorem 3.2.2 that 

5 is a 6-barrelled topology.

Let A = U^SijSU-n, n])) . Then being contained in S(^9dR)), 

A is a o (E1, E)-bounded set which is the union of a sequence of 

5-equicontinuous sets. As was noted in Example 2.2.1, if X is 

essentially separable for the dual pair (E1, E) , then |supp x| £ c . 

Using this and the fact that | ([-n, n])\ ^(C)| = 2C for all

sufficiently large n , given any set V of the form
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D° n £ S( ^5(C))° above, we may choose

v e ( 5. O  ([-n, n])) \{ (supp D) U *2 (C)} . Then (2 6, ), „ n=i <7 v yv y€M
is in V so that (6 ) i  V° . Since (6 ) e A ,yv yeM yv ycM '
this shows that A is not 5-equicontinuous and consequently (E, £) 

is not countably barrelled. Thus (E, 5) is a 6-barrelled space 

which is not countably barrelled.

Note

We have seen that 6-barrelledness is preserved in forming 

inductive limits, products and completions [Corollaries 1, 2 and 

3 of Theorem 3.1.2], Also 6-barrelledness is inherited by subspaces 

of countable codimension [Theorem 3.1.6], It is natural to enquire 

how the 6-topology behaves under these operations.

It follows from Lemma 3.1.2 that a quotient topology obtained 

from a 6-topology is of the same type. However the direct sum of 

6-topologies may fail to be a 6-topology e.g. ®  ̂  with |m | > c 

(c.f. Lemma 2.1.6). Lemmas 3.1.1 and 3.2.2 show that a product of 

6-topologier, is a 6-topology (see [43, Chapter V, §5]). Corollary 

1 of Theorem 2.1.7 shows that the completion of a space with a 

6-topology also has a 6-topology. Clearly the intersection of a 

6-barrel and a vector subspace is a 6-barrel in the vector subspace. 

Consequently the topology induced by a 6-topology on a vector subspace 

of countable codimension is a 6-topology.

3.3 Conditions under which a 6-barrelled space is barrelled 

This section is concerned with conditions under which a 

6-barrelled space is barrelled or has a finer barrelled topology of 

the same dual pair. As we have already observed in Remark (ii) 

after Theorem 3.1.1, a separated 6-barrelled space is o-barrelled. 

Corollary 4 (a) of [9] also tells us that a separable o-barrelled

mam .,
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space is barrelled. We deduce from this and the analogue of 

Theorem 3.1.3 for barrelled spaces that a separable 6-barrelled space 

is barrelled.

Our first result gives conditions under which a separated 

6-barrelled space E is barrelled under its Mackey topology t (E, E')-

Theorem 3,3.1

Let E be a separated 6-barrelled space with completion E . 

Suppose that there is a family of subsets of E such that

(i) |A| * c ,

(ii) U{x, : AeA} is total in E under B(E, E ') ,
A

(iii) for each AeA , is a(E, E')-relatively compact.

Then E is barrelled under x(E, E ') .

Proof

Let Y^ be the o(fe, E')-closed absolutely convex envelope of 

X^(AeA) . By Krein's theorem [28, §24, 5(4)] and the condition 

(iii), each Y. is o(fe, E')-compact. Denote by G the subspace
A

of E spanned by u{Y. : AeA} and let H be the subspace of E
A

spanned by U{X^ : AeA} .

Let B be a o(E*, E)-bounded closed set and let A be a 

subset of B which is essentially separable for the dual pair 

(E', G) . Now A is equicontinuous for the topology £ = B(E, E ')|H

and essentially separable for the dual pair (E’, H) (Corollary to 

Theorem 2.1.1). Since E is contained in the ^-completion of H , 

it follows from Corollary 2 of Theorem 2.1.7 that A is essentially 

separable for the dual pair (E•, E) . Since E is 6-barrelled,

A is equicontinuous. If C is the o(E', E)-closure of A , then 

C £  B and by [43, Chapter VI, Corollary to Theorem 2], we have that 

C is also c(E', E)-compact. It follows also that C is o(E', G)-
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compact since <J(E’, E) is finer than o(E', G) . Since 

UÍY^ ¡ XcA} spans G , the set of scalar multiples of finite 

intersections of polars of Y^(XeA) forms a base of neighbourhoods 

for a separated topology n on E' and since each Y^ is c(G, E')- 

compact and absolutely convex, this topology n is a topology of the 

dual pair (E’, G) . Besides since |A| i c , the set of all scalar 

multiples of finite intersections of polars of Y^(XeA) has cardinality 

at most c and so the topology ri is defined by at most c seminorms.

It therefore follows by Theorem 2.2.3 that B is a(E', G)-compact.

This implies that B is o(E', H)-compact. Since B is 5-equicontinuous 

and since E is contained in the 5-completion of H we have that B 

is a(E‘, E)-compact. It now follows that E is barrelled under 

T (E, E').

Corollary

Let E be a separated {-barrelled space which contains a 

6(E, E *)-dense subset of cardinality at most c . Then E is barrelled.

Proof

Let {x^ : XeA} be a B(E, E')-dense subset of E with |A| i c . 

Taking = {x^} (XeA) in the theorem we deduce that (E, x(E, E*))

is 6-barrelled. However by Corollary 2 of Theorem 2.1.7, each 

o(E', E)-bounded set is essentially separable for the dual pair (E1, E). 

Thus the initial topology of E is i (E, E1) .

Remark

In Theorem 3.3.1 above, the initial {-barrelled topology on E 

need not be the Mackey topology t (E, E') . Take for example 

¿2 (T) of Example 3.2.1 (ii) with | r |  > c . Then 

(i-2 (p), { (f2 ( r ) , i2 ^  is ^-barrelled but not barrelled. However 

the conditions of Theorem 3.3.1 are satisfied by taking the unit ball
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of !2(D as the single

Let (E, 5) be a topological >

We denote by *t the set $>

The family (z ) 
P yeM of »•»

9of all non-empty finite subsets of M 

elements of E is said to be unconditionally Cauchy if for each 

C-neighbourhood U of the origin, there exists ^  e $ such that

Sz e 0 for all <t> e $ with n if = 0 
eif M 1

We say that

is unconditionally convergent to z if for each such 

neighbourhood U , there exists (f>2 e $ such that

We then write this as

Ẑŷ  yeM

z - J z e U for all i e t with if. <=
M  V 2 "

z = y z .
y«M V

Our next theorem which involves the concept of unconditional 

convergence is an analogue of Theorem 1 of [52]. First we establish 

a lemma which is probably well known and the proof of which we include 

for completeness.

Lemma 3,3.1

Let E be a a-barrelled space. If £ x converges unconditionally
XeA K

in E , it also converges unconditionally under 6(E, E ') to the

same sum.

Proof

It is enough to show that £ x. is unconditionally Cauchy under
XeA

B(E, E ’) , for then the result will follow from [28, §18, 4(4)] 

since 8(E, E') has a base of neighbourhoods of the origin which are 

o(E, E ') -closed.

Suppose on the contrary that £ x is not unconditionally Cauchy
XeA

under £(E, E'). Let $ be the set of all non-empty finite subsets 

of A . Then there is a o(E', E)-bounded set B such that for each
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that

4 « * ,

We now take + = 1(1 e 4 and choose 4' = i, and x',, = x,'

such that (*) holds. Then put tf> = $ u  4^ and 4' =  ̂ and

x‘t, = x'2 such that (*) holds. Putting 4 ■ $0 u ^  u ^  and

continuing in this way, we obtain a sequence (4> ) in 4 and a
n

sequence (xn‘) in B such that 4n+x n (ry <j>r) = 0 and

|<£ x, , x ' >| > 1 , (n £ M) (**) .
Xe4Tn

Then since E is a-barrelled, {x ' : n e M } is equicontinuous.n
Hence £ Xj being unconditionally Cauchy in E , there exists 

AeA A

iji £ 4 such that if 4' £ 4 and 4' n 4 = 0 > we have

K  xx , x ->| i 1 
Ae4

This contradicts (**) since 

all sufficiently large n . 

under 6 (E, E ') .

, (n £ M  )

1 is finite and so 4 n i = 0 forn
Thus l  x is unconditionally Cauchy

XeA A

Theorem 3.3.2

Let E be a separated 6-barrel led space and suppose that there is

a family (x ) of elements of E such that 
1 y yeM

(a) for each x in E , there exists scalars (yeM) such that

£ a x is unconditionally convergent to x , 
yeM U P

(b) there is a family 

z. = l  a <A> x

one *A) j  0 .

(z.) . of elements of E such that
A A£ A

(XeA) , |A| S c  and for each yeM at least
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Then each a(E', E)-bounded set is essentially separable and 

consequently E is barrelled.

Proof

Let A be a non-empty a(E'f E)-bounded set. For each x in 

E let x denote its equivalence class in the normed space y t v ,  A) 

constructed from A (Section 2.1). If £ a^x^ converges
yeM

unconditionally to x , then since a {-barrelled space is also 

CJ-barrelled, it follows from Lemma 3.3.1 that £ a^x^ converges
yeM

to x unconditionally under B(E, E ') . Thus J a x  converges
yeM u y

unconditionally to x in cJsftE, A) . Since e r f E ' A) is a

normed space, we use [7, §5, Corollary to Proposition 1] to conclude 

that the set { y e M :  a x^ ^ 0} is at most countable. Consequently, 

U£A{y e M : a ^ x ^  f  0} has cardinality at most c . By the 

condition (b) this set is {y e M : x^ f  0} . Since the linear span 

of {x^ : y e M} is 8(E, E')-dense in E , {x^ : y e M) is total in 

JSAe , A) . By Lemma 2.1.4, we must have that the dimension of 

J^(E» A) is at most c . Consequently by Theorem 2.1.3, we have 

that A is essentially separable for the dual pair (E1, E) and the 

result is established.

Remark

The space E of Theorem 3.3.2 need not have a dense subset of
Mcardinality at most c . For example let E = IR , where 

|M| > 2C . Then by Theorem 1.4.2, we know that E has no dense 

subset of cardinality at most c . However, we may apply Theorem 3.3.2 

to 3RM with x = (6 ) and a single , namely \ x .
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3.4 The Associated ¿-barrelled Topology

Given a locally convex space E , the associated barrelled 

topology on E is defined and studied by Y. Komura in [29].

Various aspects of the associated barrelled topology of a locally 

convex space have also been discussed by N. Adasch [1], A. Robert [45] 

and V. Eberhardt [12]. In this section we define the associated 

6-barrelled topology of a locally convex space. We establish some 

results which are analogues of corresponding results for the associated 

barrelled topology. Some of our techniques are similar to those used 

in [12].

Definition 3,4,1

Let (E, £) be a locally convex space. We define, by

transfinite induction, a topology t^ on E for each ordinal y

as follows:

U) t = £ i
o

(ii) if y > 0 is not a limit ordinal, let t^ be the upper

bound topology of t^  ̂ and the locally convex topology on

E having as base of neighbourhoods of zero all the

t , - 6-barrels;
Y - l

(iii) if y is a limit ordinal, let t^ be the upper bound 

topology of (t^ : a < y} •

It should be noted that all the t^ cannot be distinct (otherwise 

| ^)(E)| would be arbitrarily large). Also if t^ = t^+1 , then

t =  t for all a £ ya y

Now let y q ■ inf (y : tQ = t , for all a i  y} and let

6, = t . Then t = 6, for all a Z y and 6. is a 6-barrelled5 y a 5 io
topology on E finer than 5 • Let n be any 6-barrelled topology 

on E finer than £ . It is clear that if t is coarser than n
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for some ordinal y , then the same is true for t
Y + l  *

Thus we must

have that 6^ is coarser than n . Hence 6^ is the coarsest 

6-barrelled topology on E which is finer than the initial topology £ 

The topology 6^ is called the associated 6-barrelled topology for 

(E, £) .

When (E, £) is a separated locally convex space with dual E' , 

we adapt Adasch's hull idea in [1] to give a dual characterization of 

the associated 6-barrelled topology in the following way.

Definition 3.4.2

For each vector subspace H of E' , let H* 1̂ be the intersection 

of all vector subspaces G of E* such that

(i) H c g ,

(ii) the a(E*, E)-closure of each o(E*, E)-bounded subset of 

G which is essentially separable for the dual pair 

(E*f E) is contained in G .

Consider the dual pair (E, (E')°) . If A is a ct((E1) , E)- 

bounded essentially separable set, then by the definition of (E') , 

the o (E*, Enclosure of A is contained in (E') and so A is 

o((E') , E)-relatively compact. Thus E is 6-barrelled under 

t (E, (E1) ) . If s is the upper bound topology of £ and 

6(E, (E1) ) , then s is the coarsest 6-barrelled topology of the 

dual pair (E, (E‘) ) which is finer than £. If n is a 

6-barrelled topology on E which is finer than £ , then the dual of 

(E, n) is one of the subspaces G of E* in the intersection
jtj

defining (E’) . Thus n is finer than s and consequently
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Remark

We note that it follows from the above dual characterization of 

the associated 6-barrelled topology that if E is a separated locally 

convex space and ( , n are topologies of the dual pair (E, E')f 

then 6^ and 6^ are topologies of the same dual pair.

The following is an analogue of (1.4) of [12],

Theorem 3.4.1

Let t be a continuous linear mapping of a 6-barrelled space 

(E, () into a locally convex space (F, n) . Then

t : (E,£) -*• (F, 6 ) is also continuous.n

Proof

Let ( be the locally convex topology on F having a base of 

neighbourhoods of the origin consisting of all absolutely convex 

subsets A of F such that t 1(A) is a (¡-neighbourhood of the 

origin in E . Since t is continuous under ( and n , it follows 

thac ( is finer than n . Let B be a 6-barrel in (F, () .

Since t is also continuous under ( and ( , we have from 

Lemma 3.1.1 that t_1(B) is a 6-barrel in E and so is an 

(-neighbourhood of the origin. Thus B is a (-neighbourhood of 

the origin in F and hence (F, () is 6-barrelled. It now follows 

that ( is finer than 6^ and consequently that t is continuous

under ( and 6 .n

Corollary

Let (E, () and (F, n) be separated locally convex spaces.

If the linear mapping t: (E, 0  -*■ (F, n) is weakly continuous and 

(E, () is 6-barrelled, then t s (E, () (F, 6 ) is also weakly

continuous.
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Proof

Let E' be the dual of E under £ . From [43, Chapter III, 

Proposition 14], it follows that t : (E, x(E, E')) -+ (F, n) is 

continuous. Since E is S-barrelled for all topologies of the dual 

pair (E, E ’) finer than 6(E, E') it follows from the theorem 

that t : (E, t (E, E')) (F, 6̂ ) is continuous. Since £ and

t (E, E ') are topologies of the same dual pair, the desired weak 

continuity of t follows from [43, Chapter II, Proposition 13].

We end this section with a lemma which is an analogue of (1.2) 

of [12], The proof is similar to that of (1.2) of [12] and so 

will be omitted.

Lemma 3.4.1

Let (E, £) be a separated locally convex space. Let F 

(respectively G) be the completion of E under £ (respectively 

under 6̂ ) . If i s G + F is the extension by continuity of

the identity mapping of (E, 6̂ ) onto (E, £) then l is 

one-to-one.



CHAPTER IV

¿-SPACES AND INFRA-i-SPACES

Consider the linear mapping t : E -*• F with a closed graph of a 

locally convex space E into a locally convex space F . We have 

seen in Chapter III that if t is continuous whenever F is a 

Banach space of dimension at most c .then this is equivalent to the 

¿-barrelledness of E . It is natural to ask for those separated 

locally convex spaces which can serve as range spaces for a closed 

graph theorem in which the domain space is an arbitrary ¿-barrelled, 

space. This Chapter is concerned mainly with describing such locally 

convex spaces when in addition the domain space is assumed to have its 

Mackey topology.

Many Mathematicians have considered similar problems for the case 

when the domain space is an arbitrary barrelled space. Such 

consideration led to the concept of B^-completeness discussed by 

V. Ptik in [42]. T. Husain in [18] and [19] introduced his class of 

B(^) -spaces and gave various characterizations of these spaces.

The classes of t-polar and weakly t-polar spaces were introduced by 

Persson in [38]. In [29, §3], Koinura treated the closed graph theorem 

and defined his concept of minimal topology which was adapted by 

N. Adasch to define his s- and infra-s-spaces which are discussed 

in [1].

We adapt Adasch's hull idea in [1] to describe those separated 

locally convex spaces (infra^-spaces) which can serve as range spaces 

for our closed graph theorem. The corresponding domain spaces 

(¿-spaces) for the open mapping theorem in which the range is a 

¿-barrelled space with its Mackey topology are also discussed.

Examples will be given to show that ¿-spaces and infra^-spaces form
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proper subclasses of the classes of s- and infra-s-spaces respectively. 

We shall see also that infra-6-spaces need not be weakly t-polar.

Definition 4.1.1

Let F be a separated locally convex space. If H is a vector
£

subspace of F 1 , we define H as we have in Section 3.4 of 

Chapter 3. We say that

(a) F is a 6-space if the a(F', F)-closure of each vector subspace 

H of F* coincides with F' n H ,

(b) F is an infra-6-space if for each o(F', F)-dense vector subspace 

H of F' we have that F' £  H .

Let F be a separated locally convex space. For any vector
£

subspace H of F' , we must have that F' n H is always contained 

in the cr(F', F)-closure of H . To see this, let G be the o(F*, F)- 

closure of H . Since the o(F*, F)-closure of any o(F*, F)-bounded 

subset of G is contained in G , it follows from the definition of

H that G is one of the subspaces in the intersection determining
6 6 6 H° . Hence H° £  G and consequently F' n H £  F' n G which is the

o(F', F)-closure of H .

Before discussing the properties of the 6-spaces and the infra-6- 

spaces, we look at some examples.

Example 4.1.1

(a) Every Frechet space F with dimension at most c is a 6-space, 

for if H is any vector subspace of F' and U is any neighbourhood 

of the origin in F , we have that U° n n F' is a o(F*, F)-

bounded subset of H . It is also essentially separable since F
£

has dimension at most c . By the construction of H , the a(F*, F)- 

closure A of 0° n /  (I F' must be contained in . Since U° is

.  . " X S m U Z -  Z X X Z S X 1  «*e
.sr-«



o(F', FJ-compact^it is a(F*, F)-closed. Thus A is also contained 

in U° . We now have that A c D° n = 0° n /  n F' so that 

U° n H n F' is o(F', F)-closed. Since F is B-complete, and

since U was an arbitrary neighbourhood of the origin in F , it
6 6 follows that H n F' is a(F', F)-closed. Since H £ H  n F'

•“ 6 6we have H £  H n F 1 . But as noted above, H n F' is contained in

the a(F', F)-closure H of H . Thus H n F' = H .

It should be noted however that an arbitrary complete locally 

convex space of dimension at most c need not be a 6-space. For

example, if E is a Banach space of dimension c , then E under 

the topology x(E, E*) is a complete locally convex space. Consider 

E' as a subspace of E* . Then (E1) = E' but the a(E*, E)-

closure of E' is the whole of E* + E' . Thus (E, t (E, E*)) is 

not a 6-space, nor an infra-6-space (c.f. [43, Chapter VI, Supplement 

(1) 1) .

(b) More generally, arguing in the same way, we see that if F is a 

B-complete space (respectively a t-polar space) such that the equi- 

continuous subsets of F' (respectively a(F', F)-bounded sets) are 

essentially separable, then F is a 6-space. Similar observations 

hold with B-complete, t-polar, 6-space replaced by B^-complete, 

weakly t-polar, infra-6-space respectively.

We adapt the method of [13, Example 1] to obtain our next example. 

First we state the following lemma the proof of which is effectively 

contained in [37, Theorem 2.1],

Lemma 4.1.1

Let Y = it Y be a product of first countable topological vector aeA a
spaces and let X be the vector subspace

{<eaW  Y ! l{a ‘ 5a*0}l * Ho} of Y .



Then whenever x is in the closure in X of a subset s of x , 

we have that S contains a sequence which converges to x .

(M)(c) Let E = JR , where M is a non-empty set,

E ' I*» ' 5 , - °>l s Xo> '
Then E is a 6-space for any topology of the dual pair (E, E ').

Proof

Let H be any vector subspace of E' and let (x'^) be a sequence

in H n E' which converges to x* under c(E', E) . Since

{x'n : n e M } is (essentially) separable, its a(E*, Enclosure 

must be contained in each G considered in constructing H .

Thus x' e H and so H n E' is a(E', E)-sequentially closed.

Since IRM is a product of first countable topological vector spaces,
£

it follows from Lemma 4.1.1 above that H n E' is a(E', E)-

closed. We now deduce as in (a) that the o(E', E)-closure of H

coincides with H n E' . Thus E is a 6-space.

Now let 'O be the topology on E of uniform convergence on

the family \A of sets of the form a^] where at most

countably many a^ f  0 . If H is a vector subspace of E' such 

that H n A is o(E', E)-closed for any set A £ L^. i then arguing 

as in [13, (2)], we have that H is o(E', E)-closed. Thus (E, j  ) 

is B-complete. More generally, by [43, Chapter VI, Proposition 8], 

we have that E is B-complete under any topology of the dual pair

J •(E, E') which is finer than
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NOTE

Since the property of being weakly t-polar is a property of the 

dual pair and since Br-complete spaces are necessarily weakly t-polar, 

the promised example of an infra-4-space which is not weakly t-polar 

(Example 4.1,3) will provide an example of an infra-6-space which is 

not Br-complete for any topology of its dual pair.

The following is an analogue of (1, §5, (4)].

Theorem 4.1.1

Let F be an (infra-) 4-space and let G be a c(F', F)-dense 

vector subspace of F' . Then F is an (infra-) 4-space for any 

topology of the dual pair (F, G) .

Proof

Let H be any vector subspace of G . We note that H' is 

the same for the dual pairs (F, F 1) and (F, G) since it depends 

only on H, F and F* . Let H (respectively H) denote the 

c (F1, F)-closure (respectively c(G, F)-closure) of H . Then 

H = H n G and if F is a 4-space, we have H = H' n F* .

Hence H = (H° n F1) n G = H n G . Thus F is a 4-space for the 

dual pair (F, G) .

Since G is a(F’, F)-dense in F ’

a (G, F)-dense vector subspace H of G

vector subspace of F •. Thus if F is
K

that H n F 1 * F‘ and consequently H6

infra-4-space for the dual pair (F, G ).

As illustrated by Exercise 11 of [47, Chapter IV], the quotient 

of a complete space by a closed vector subspace need not be 

complete. However the quotient of a B-complete space by a closed



vector subspace is also B-complete [47, Chapter IV, §8, Corollary to 

Theorem 8.3], From [1, 55, (5)], we know that a quotient by a 

closed vector subspace also inherits the property of being an s-space. 

The next result shows that this property is also shared by 6-spaces.

Theorem 4.1.2

Let F be a 6-space and let M be a closed vector subspace of 

F . Then F/M is a 6-space under its quotient topology.

Proof

We note first that (F/M)' is (isomorphic to) M° and that 

(F/M)* is (isomorphic to) M* . Let H be a vector subspace of 

M° and denote by H^1, H^2 the hulls of H constructed for the dual 

pairs (F/M, M°) and (F, F') respectively. To establish the 

result, we have to show that the o(M°, F/M)-closure of H coincides

with H^1 fl M° . Since o(F', F) and o(M°, F/M) coincide on M° ,
6 6it suffices to show that H 1 = H 2 , since the closure of H under 

a(M°, F/M) coincides with its closure under o(F', F) and its 

closure under a(F', F) is H^2 n F' = H^2 n M° .

Now let G be any vector subspace of M * which contains H 

and suppose that the c (M*, F/M)-closure of each a , F/M)-bounded 

subset of G which is essentially separable for the dual pair

(M*, F/M) is contained in G . Let A be a a(F*, F)-bounded

subset of G which is essentially separable for the dual pair (F*, F)

It follows from Lemma 2.1.3 that A is essentially separable for the 

dual pair (M*, F/M) so that the o(M*, F/M)-closure B of A is

contained in G . Now B is o(M*, F/M)-compact and since 

a(M*, F/M) and o(F*, F) coincide on M*, it follows that B is 

o (F*, F)-closed. Hence every vector subspace G of vT considered 

in constructing H 1 is already one of the vector rubspaces of F* 

considered in the construction of H^2 . Thus H^2 <= H^1
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On the other hand, let G be any vector subspace of F* which 

contains H and suppose that the a(F*, F)-closure of each a(F*, F)- 

bounded subset of G which is essentially separable for the dual 

pair (F*, F) is contained in G . Since M* is a(F*, F)-complete,

G n M* has the same property. Reasoning as before, we have that
6 6 6 6H * 1 £ H 2 so that H 1 = H 2 and the proof is complete.

The next two results are analogues of A, Â ,, A., of §3 and 

B, of §4 of [1]. The proofs make use of some of the techniques 

of the corresponding results in [1]. Our results characterize 

Mackey spaces which are {-barrelled and they give a precise description 

of the range spaces in our closed graph theorem in which a {-barrelled 

Mackey space is the domain space.

Theorem 4.1.3

(i) A linear mapping with a closed graph of a {-barrelled Mackey space 

into an infra-i-space is continuous.

(ii) Let F be a separated locally convex space with the property 

that any linear mapping with a closed graph of a {-barrelled Mackey 

space into F is continuous. Then F is an infra-i-space.

(iii) Let E be a Mackey space with the property that any linear 

mapping with a closed graph of E into an infra-i-space is continuous. 

Then E is {-barrelled.

Proof

(i) Let t : E -*■ F be a linear mapping with a closed graph of a 

{-barrelled Mackey space E into an infra-i-space F . Let 

t* : F* ■+■ E* be the algebraic transpose of t . Then t* is 

continuous under a(F*, F) and <J(E*, E) . If H = t*“^(E') n F' , 

then trivially H c t*“^(E') and also if A is any c(F*, F)-bounded 

essentially separable subset of t*_1(E') , by Lemma 2.1.2,

we have that t*(A) is a a(E', E)-bounded essentially separable
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subset of E 1 . Since E is 6-barrelled, t*(A) is ct(E', E)- 

relatively compact. Hence the c(E', E)-closure of t*(A) is 

a(E*, E)-closed and consequently t* maps the a(F*, F)-closure of 

A into E' . Thus the o(F*, F)-closure of A is contained in 

t*"l(E') . It therefore follows that t*-l(E') is one of the

subspaces of F* considered in the intersection which determines
6H . 6 6 Hence H ^t*"^(E') so that H n F' c t*-1(E') n F'

i.e. (t*-1(E') n F')6 n F' £ t * -1(E') n F' . It follows therefore

that t*-1(E') n F1 * (t*-1 (E1) n F')6 n F' = F 1 since F is an

infra-6 -space and t*-^(E') n F' is a a(F', F)-dense vector 

subspace of F' . Consequently t is weakly continuous and so by 

[43, Chapter III, Proposition 14], t is continuous since E is a 

Mackey space.

(ii) Let H be any o(F', F)-dense vector subspace of F' . Since
6 6H separates the points of F so also does H and so (F, H ) is

a dual pair. From the construction of H we see that every
6 6 6 c(H , F)-bounded essentially separable subset of H is o(H , F)-

relatively compact and so F is 6-barrelled under t (F, H ) . We
£

now consider the identity mapping i : (F, t (F, H )) (F, 5) , where

5 is the initial topology of F . The transpose i' : F' ■+• F* of

i is just the natural injection of F' into F* and so 
“1 6 6i' (H ) = H n F' o, H . Consequently, i has a closed graph [43, 

Chapter VI, Lemma 4]. Hence by the hypothesis, i is continuous and 

so H n F' ■ F' , Thus F is an infra-6-space.

(iii) As we have seen in Example 4.1.1(a), A Frlchet space of dimension 

at most c is a 6-space and so is an infra-6-space. Hence in 

particular every Banach space of dimension at most c is an infra-6- 

space. Thus if t : E -*■ F is a linear mapping with a closed graph

of E into an arbitrary Banach space of dimension at most c , by
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the hypothesis, t is continuous. Hence by Theorem 3,1.2, we have 

that E is 6-barrelled and the proof is complete.

The following is effectively established in the proof of (i) 

above.

Corollary

A linear mapping with a closed graph of a separated 6-barrelled 

space into an infra-6-space is weakly continuous.

Theorem 4.1.4

(i) A linear mapping with a closed graph of a 6-space onto a 

6-barrelled Mackey space is open.

(ii) Let F be a separated locally convex space with the property 

that any linear mapping with a closed graph of F onto a 6-barrelled 

Mackey space is open. Then F is a 6-space.

Proof

(i) The proof of (i) uses standard techniques and so we give a sketch 

of it. Let t : E -*• F be a linear mapping with a closed graph of a 

6-space E onto a 6-barrelled Mackey space F . Let N = t ^({0}) . 

We express t as t = soq , where q : E -+E/^ is the quotient map 

and s is a one-to-one linear mapping of E/N onto F . We observe 

that q is open since E/N has its quotient topology and that 

s * : F -*• E/„ is a linear mapping with a closed graph (see for example 

[43, Chapter VI, proof of Proposition 10 part (2)]. By Theorem 4.1.2, 

we have that E/N is an infra-6-space and so it follows from Theorem 

4.1.3(i) that s"* 1 is continuous. Hence s and consequently t 

are open.
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(ii) Let H be a vector subspace of F' . We note first that since 

(F/jjo) ' is the o(F', F)-closure of H and since H £  H^ £H°*, it

follows that (F/ao t H ) is a dual pair. Let q ! F -*• F/ ^  be the
£

quotient map of F onto F/h0 under the topology t (F/^q > H ) .

Reasoning as in the proof of Theorem 4.1.3(ii), we have that F/^q is

6-barrelled under T (f/yo i H^) • Also q has a closed graph since
£

its transpose is the natural injection of H into F* . By the
£

hypothesis therefore, q is open and so t (F/^q r H ) must be 

finer than the quotient topology on F / ^  for which the dual is the 

a(F', F)-closure H00 of H . Thus we have that H00 c_ .

The result now follows when we observe that H° n F' is contained 

in the o(F1, F)-closure of H .

It is interesting to note that in Theorem 4.1.3 and Theorem 

4.1.4, it is not enough to have an arbitrary separated 6-barrelled 

space. The following example illustrates this fact.

Example 4.1.2

Let E be the Hilbert space where |r| > c . As we

have noted in Example 3.2.1 (ii), the topology 6 (i.2(D , ^(r)) is 

strictly coarser than the norm topology of • F°r any topology

of the dual pair (¿2 (r), ^ ( H )  t a point of closure of any vector 

subspace H of (r) is the limit of a sequence in H and so 

H c h . It therefore follows that (r) is a 6-space for any such 

topology. Consider the identity mapping i of ( r )  under 

6 U 2 (r), i2 (r)) onto &2 (D with its norm topology. It is clear 

that i has a closed graph. However i is not continuous and its 

inverse is also not open even though it has a closed graph being

continuous.



We now give the premised example of an infra- £-space which is 

not weakly t-pclar. For this we adapt ideas from Sulley's example 

in 150].

Example 4.1.3

Let E be the real Banach space of all families

x = ( x ) „ of real numbers which converse to zero with respecta acjN x jv 3 r

to the filter of complements of finite subsets of 3N* * 2N with norm

j! x = sup x^ ([6, Chapter IV, pace 121, Exerci.se 14]).
aeK * 3K

For evew x = (x ) in E and for every £ > 0 , there

exists a finite subset t of IN x K  such that ' x || s £ 'if a 4 $ .

For each a £ ♦ , we choose rational c such that x - cr < eu a a
and put o = 0  if a i  $ . Then (q ) * € E ar.d we have

tx a a€xíx3N

ll(x«)a£j,x* - ‘V a * * « * ! !  - e . Hence

{ (x ) „  : x £ K \ , {a : x f  0} is finite} is a countablea acn x]n a a
dense subset of E and so E is separable in its norm topology.

If E ’ is the dual of E , then as shown in [6, Chapter IV, 

page 121, Ex. 14], there exists a proper c(E’, E)-dense vector 

subspace M of E' such that the c(E', El-closure of the intersection 

with M of the closed unit ball of E* generates a proper subspace 

of E' . Consider the dual pair (E, M) . It is shown in [50] 

that (E, o (E, M)) is an infra-s-space which is not weakly t-pclar.

We show that E is an infra-6-space for any topology of the dual 

pair (E, M) . We note first that since, in the norm topology, E is 

an infinite dimensional separable Banach space and so has dimension c , 

every linear mapping with a closed graph of a 6-barrelled space into 

E is necessarily continuous (Theorem 3.1.2). It then follows from 

Theorem 4.1.3 (ii) that E is an infra-£-space for the norm topology.



Since M is c(E', E)-<¡er.se, we now use Theorem 4.1.1 to conclude

that E is ar. infra- f -space for any topology of the dual pair (E, X) 

Thus an infra-f-space need not be weakly t-pclar.

It follows free Theoren 4.1.3(ii), Example 3.1.1(a) ar.d Adasch's

characterization of barrelled spaces [1, §3, A , A,] , that the1 2
infra-f-spaces fern a proper subclass of the ir.fra-s-spaces. We 

give next a specific example of an infra-s-space which is net ar. 

infra-f-space.

Example 4,1.4

Let £ - K  (y') , where ¡M; > c ,

Banach space constructed from B . Then F is an infra-s-space since

it is a Banach space and therefore is B-complete. As we have seen in

Exanple 3.1.1(a), E is ¿-barrelled under t (E, E ') . The natural

embedding j of the ¿-barrelled Mackey space (E, t (E, E 1)) into F

has a closed graph since its transpose j' is the natural injection
M -1of F' (the linear span of B), into E* = IR" and j' (E1) is 

ct(f ', F)-dense in F* . But j is not continuous since j'(F') £E' .

The associated ¿-barrelled topology of a locally convex space is 

defined in Section 3.4 in a way similar to the definitions in [12] and 

[1] of the associated barrelled topology. It is shown in [12] and 

[3] that an infra-s-space is complete in its associated barrelled 

topology. As we have seen, the infra-6-spaces form a proper subclass 

of the class of the infra-s-spaces. Thus an infra-5-space is also 

complete in its associated barrelled topology. We show next that an

Using the notations of Section 2.1, we let
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infra- 6-space is in fact complete in its associated 6-barrelled 

topology which is necessarily coarser than the associated 

barrelled topology. Further we given an example, later, of an 

infra-6-space for which the associated barrelled topology and the 

associated 6-barrelled topology are not even topologies of the 

same dual pair. This will then show that the completeness of 

an infra- 6-space in its associated 6-barrelled topology is in 

fact a genuine improvement on the corresponding earlier result.

The method used in the proof of Theorem 4.1.5 is a modifi

cation of the proof of Theorem 1.5 of [12] and so we give just 

a sketch of it.

Theorem 4.1.5

Let (F, ri) be an infra-6-space. Then (F, 6^), that is 

F under its associated 6-barrelled topology, is complete.

Proof

Suppose on the contrary that (F, 6^) is not complete.

Let F be the completion of (F, 6̂ ) and let x q e $\F .

If G is the linear span of x q then as in [12, Theorem 1.5],

the restriction q|p of the quotient map q : £ -*■ $ /Q to F is 

injective. Define f : F + q(F) by f(x) = q|p (x) . Then 

f is a bijection and since F is dense in F , by the lemma in 

[49, page 275], f is continuous and almost open when F has the 

topology 6^ and q(F) has the topology £ induced from the 

quotient topology of F/G (considering the extension of 6^ on 

£). Hence by Theorem 3.1.4 we must have that (q(F), £) is a

6-barrelled space.
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Reasoning as in the proof of (1.7) of [12] and using Lemma 3.4.1 

in place of (1.2), we have that the graph of f is closed in 

(F, n) * (q(F), 5) . Since closedness for convex sets is the same 

for all topologies of a given dual pair we have immediately that 

f 1 s (q(F), t) (F, n) is continuous, where x is the Mackey 

topology corresponding to 5 (Remark (iv) after Theorem 3.1.1, 

Theorem 4.1.3). By Theorem 3.4.1, we have that 

f ^ : (q(F), x) -*• (F, 6̂ ) is continuous and so weakly continuous. 

Consequently f ; (F, 6̂ ) -*■ (q(F), x) is weakly open (also open). 

Since a separated quotient of a weak topology is a weak topology and 

a weak topology induces a weak topology on a vector subspace, we may 

again apply the lemma in [49, page 275] (when F has its weak 

topology) to deduce that F n G is (weakly) dense in G which is 

impossible since F n G = {0} . This contradiction establishes the 

result.

(M)
Example 4.1.5

As we have in Example 4.1.1(c), define E, E' by E = ]R 

where |m | > c , E' = { ( C ^ ^  £ ! H p : ^ 0}| < > •

Then E is an infra-6-space for any topology of the dual pair (E, E').
MWe observe that for any subset B of E  which is a product of

symmetric intervals, B n E' is 0(®M, ]R^)-dense in B and also
Mthat every bounded subset of IR is contained in such a product of 

intervals. It then follows from these observations that the associated 

barrelled topology for any topology of the dual pair (E, E*) is 

x (]R (M), m M) = B(® (M) , ® M) •

Now let F' = {(5, .),.,„ « K  : | iu : £„ ¥ 0>| S c ) .  We have y yew y
seen in Examples 3.1.1(a) and 3.2.2 that E has 6-barrelled topologies 

for the dual pair (E, F'). Clearly, the associated 6-barrelled 

topology &o E .) is coarser than 6(E, F') (Section 3.2).



On the other hand, if B is a c(F', E)-bounded essentially 

separable subset of F', then |supp b | < c (Example 2.2.1). 

Since B is bounded, it follows that B is contained in a subset

ïï I  Of F ’ 
ueMy

,  where fo r  each y e M I  i s  o f
' y

the form [-a
y

and a = 0
U

i f  y i supp B . B u t (tt i  ) n E ' 
yeM y

i s C ( F ' ,  E ) -

dense in it I and it is also a a(E', E)-bounded essentially 
yeM y

separable set since it I is a separable subset of the algebraic 
yeM y

dual. Thus (it I ) n E' must be 5 . -equicontinuous. It
UeM y ° (E' E )

follows that it I and consequently B are contained in the dual 
yeM U

of E under 6 .. and are 6 . ,,-equicontinuous. This0[Ef E ) G\E/ E )

shows that 6 is finer than S(E, F•). Thus 6(E, F') = 6

Since F' ^ 1RM , the associated barrelled topology and the 

associated 6-barrelled topology of the space (E, a(E, E')) are not

topologies of the same dual pair.



CHAPTER V

SOME RELATED TOPICS

We devote this chapter to the discussion of some topics that are 

related to the notions of essential separability and 6-barrelledness 

which we have already met in the previous chapters. First we look 

at the domain spaces for the closed graph theorem in the unusual 

case in which the range space is not necessarily complete. Then we 

consider an extension of the idea of 6-barrelled spaces to general 

topological vector spaces. Finally we are concerned with the problem 

of replacing c with an arbitrary infinite cardinal where the 

significant factor is now density character rather than dimension.

In this setting we obtain a general closed graph theorem (Theorem 

5.3.1) which includes our earlier Theorem 3.1.2 and Kalton's closed 

graph theorem [25, 2.6] as special cases and also a characterization 

of Valdivia's v-barrelled spaces.

5.1 Incomplete Range Spaces

The topological vector spaces that serve as range spaces for the 

closed graph theorem usually have something to do with one kind of 

completeness or another. It is natural to ask what happens when the 

range space is not assumed to be complete. The situation when the 

range space is an arbitrary normed space has been considered by 

V. Eberhardt [14] and in [15], V. Eberhardt and W. Roelcke discuss the 

case when a metrizable locally convex space serves as the range space 

(see also [11]). In this section we discuss the domain spaces for a 

closed graph theorem in which the range space is a normed (respectively 

metrizable locally convex) space with dimension at most c . The 

following definitions are analogous to the definitions of the GN- 

and GM- spaces in [14] and [15] respectively.



Definition 5.1.1

We define the classes and n  of separated locally 

(respectively if
j C  “a f i c

convex spaces as follows: E e (respe „ g \ c '

whenever t : E + F  is a linear mapping with a closed graph of E 

into a normed (respectively metrizable locally convex) space F with 

dimension at most c , t is necessarily continuous.

We note that since a Banach space is trivially a normed space and 

a metrizable locally convex space, elements of 

are necessarily 6-barrelled (Theorem 3.1.2).
X  “a j t

ĵ li *"a A in termsWe now give descriptions of spaces in n : and 

of the concepts of essential separability and 6-topology. The 

results are similar to (1.2) of [14] and (2.3) of [15] but the proofs 

are rather different. Note that in Theorems 5.1.1 and 5.1.2 below, 

condition (a) implies that there are 6-barrelled topologies for the 

dual pair (E, E ‘) so that (b) is meaningful.

Theorem 5.1.1

Let (E, 5) be a separated locally convex space, 

if and only if

Then E

(a) for any sequence (B̂ ) of non-empty a(E‘, E)-bounded

essentially separable sets, the o(E', E)-closed linear span

of U. B is o(E‘, E)-complete, and n=l n

(b) 5 is finer than 6(E, E') .

Proof

Suppose first that E e J ^ c . Let (Bn) be any sequence of

o(E', E)-bounded essentially separable sets. For each n , let Cn

be the o(E', E)-closed absolutely convex envelope of Bn and let G

be the linear span of U, C . Then (E/ n) * is isomorphic to the n=i n ^



<J(E*, E)-closure H of G and H is cr(E*, E)-separable by Theorem

2.1.2 and Lemma 2.1.1. Thus by Theorem 1.5.1 the dimension of E/ _

is at most c . Also, (E/^, G) is a dual pair and by considering 

the topology of uniform convergence on the sets CR (n e 3N) each of 

which is a(G, E/^)-compact since E is 6-barrelled, we get that 

E/g0 is metrizable under t (E/q0, G).

Let x* be an arbitrary element of H and let L be the linear 

span of {x*} U G . Then E/g0 is also metrizable under t i E / ^ ,  L) 

which is finer than tfE/^, G). Since the linear span of G is 

a(E*, E)-dense in L , it follows from [43, Chapter VI, Lemma 4] 

that the graph of the quotient map q : E E/ 0 is closed in (E, 5) 

x (E/ o, x(E/^,, L)). Thus by the hypothesis, q is continuous and 

so since the transpose q' : L -*■ E' is the natural injection, it 

follows in particular that x* e E' . Since x* e H was arbitrary, 

this shows that H c e ' and establishes the necessity of (a) .

necessity of (b) now follows.

Conversely, suppose that (a) and (b) are satisfied and let

t : E + F be a linear mapping with a closed graph of E into a

metrizable locally convex space F with dimension at most c . Let

(U ) be a base of neighbourhoods of the origin in F. Then for each n
n , we have that Un° is an essentially separable subset of F1 ,

since the dimension of F is at most c . Since the transpose

t' j F' E* of t is weakly continuous it follows from Lemmas 2.1.1

and 2.1.2 and the Corollary to Lemma 2.1.3 that (t*(0n°) n E') is

a sequence of non-empty o(E', E)-bounded essentially separable sets.

If G is the o(E', E)-closed linear span of U,(t'(U °) n E'), thenn= i n
by (a) G is o(E', E)-complete and therefore c(E*, E)-closed. Now,

As already noted, each element of The
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t'_1 (E1) = nU1t'"1(t'(Un°) n E*) and t,_1(E‘) is o(F', F)-dense

in F'. It now follows that t'(F') ^ G £ E '  . Hence t' is 

weaky continuous and applying Lemma 2.1.2 again we have that for

set and so is equicontinuous by (b). Thus t is continuous as 

required.

The proof of Theorem 5.1.2 below is similar to that of Theorem

5.1.1 and so it will be omitted.

Theorem 5.1.2

Let (E, C) be a separated locally convex space. Then

(a) the a(E1, E)-closed linear span of each non-empty 

a(E', E)-bounded essentially separable set is

a(E1, E)-complete, and

(b) 5 is finer than 6 (E, E*).

Corollary

Let E e . Then 6(E, E') is the topology of uniform

convergence on the a(E', E)-bounded separable sets.

Proof

Let n be the topology on E of uniform convergence on the 

o(E',EJ-bounded separable sets. Clearly n is coarser than 6 (E, E•) . 

Let A be any non-empty o(E', E)-bounded essentially separable set 

and let H be the c(E', E)-closed linear span of A . Since H 

is a(E', E)-complete it follows from Theorem 2.1.2 that there is a 

o(E', E)-bounded separable subset B of H such that A £ B  .

This implies that n is finer than 6(E, E') and so we have 

n = 6 (E, E ’) .

each n , t'(U °) is a a(E', E)-bounded essentially separablen



The following theorem gives some basic permanence properties of

Proof

(a) Uses the usual techniques (cf. proof of Corollary 1 of Theorem 

3.1.2).

(b) Is obtained by Eberhardt's technique in [14, 1.3],

is F and the same subsets of E' are bounded and essentially 

separable for the dual pairs (E', E) and (E', F) (Corollary 3 of 

Theorem 3.1.2, Corollary to Theorem 2.1.1 and Corollary 1 of Theorem 

2.1.7). Let B be a non-empty bounded essentially separable subset 

of E' and let H be the a(E', E)-closed linear span of B .

essentially separable and since E is ¿-barrelled, the quotient 

topology on E/Ho is t (E/h<5 , H) «= 8 (E/^ , H) , under which 

E/ o is complete [43, Chapter III, supplement (2)].n

the classes and

Theorem 5.1.3

(a) An inductive limit of spaces in

belongs to (respectively

(b) The product of any collection of members of belongs to

of E , the

(c) If E and F is the completion

(c) We establish the result for the class The proof for

the class follows the same pattern.

Suppose that E Since E is ¿-barrelled, so also

Since E e H is c (E1, E)-complete (Theorem 5.1.2).

Consequently (E/ o)* = H and since each bounded subset of H isH



If z e F , then z is (J (E ', E)-continuous on each a(E', E)- 

bounded essentially separable set and therefore on each a(E', E)- 

bounded subset of H . This implies that the restriction of z to 

H belongs to the completion of the quotient space E/ o andH
therefore to E/ n •H

It follows that the topologies a(E', E) and o(E', F) coincide 

on H , which must therefore be the a(E', F)-closed linear span 

of B and a(E', F)-complete. The result now follows since F is 

6-barrelled.

Example 5.2.1

(i) It is clear from the definitions that 

In

X contains A
fact JV| c Properly contained in J \ c • For examPle let

TO & (m )
IR and let E ' = IR . We note that the product topologWe note that the product topology

to to (to ) IN (IN ) INon IR is o(IR , I R ')= T(1R , ' )  and that IR

is barrelled and so is in particular 6-barrelled. Since each
(IN ) INo(IR , IR )-bounded set is contained in 9

However,

w T , where neIN n '

T = IR for finitely many n and T = {0} otherwise, it is clear n n
that the oflR^' , IR^J-closed linear span of any a d R ^ ,  IR3N)-

bounded set is , IR313)-complete. Hence by Theorem 5.1.2,

we have that (IR^, otIR13 , IR ̂  ̂ e

O R ®  , « ( * » ,  IR(;lN)))/f

(B ) by S  = {(6 ) }, then (B ) is a sequence of o(IR ''Ja' , IRJm »n mn neIN m
00 (IN )

bounded essentially separable sets and spans IR . Thus

the o(IR ̂  X  iR^J-closed linear span of U. B is IR ̂  ̂m= l 111
IR ̂  is not a(lR ^  * , I R ^ )-complete, for it is weakly dense in

(IRM )* and IR ̂  ̂ i  (IR331)* since there exists a non-zero element
IN (in ) INof (IR )* which annihilates IR £  IR

(IN)

for if we define the sequence
(IN)

But

cannot be represented by an element of IR 
.IN5.1.1 we have that (IR IN (IN )a(IR , IR

But such a linear form 

Thus by Theorem

* A -

A
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(ii) As we have already noted, it follows immediately from the

space. On the other hand, n

Take for example any Banach space F with dimension c .

Trivially, F is separated and 6-barrelled. However F ^ ,

for the closed unit ball B of F' is a c(F', F)-bounded 

essentially separable set whose o(F', F)-closed linear span cannot 

be a(F•, F)-complete, the linear span of B being the whole of F' 

[43, Chapter III, supplement (2)].

(iii) It is not difficult to see that the separated locally convex 

space (E, 5) of Example 3.2.2 satisfies the conditions of Theorem 

5.1.1. Thus the space (E, £) provides us with an example of an

bounded sequence. Since (x'n : n e M } is an equicontinuous 

subset of G' , there is an equicontinuous subset C of E' such 

that {x1 : n e IN} c q ( c )  , where q : E' + E/_0 is the quotient

map. For each n e IN choose y'n e C such that q(y'n) = x 'n •

definition that every member

element of which is not countably barrelled (c.f. [15,2.5]).

The next result is an analogue of (2.4) of [141.

Theorem 5.1.4

subspace of

Let E

if G is 6-barrelled in the topology induced by 6 (E, E ') .

Proof

We give the proof for follows

the same pattern.

Suppose that G e We observe first that the dual of G

is (up to isomorphism) E'/Go • Let <x 'n) be anV a (E '/Go > G)_



Then íy'n : n £ ]N} is equicontinuous under 6(E, E') , from which 

it follovB using the Corollary to Theorem 5.1.2, that 6 (E, E ') 

induces 6(G, G') on G .

Conversely, suppose that G is 6-barrelled under the topology 

n induced by Í(E, E 1) , Let A be any o(E'/Go < G)-bounded 

essentially separable set, let B be the c(E'/Go > G)-closed 

absolutely convex envelope of A and let H be the linear span of 

B . Let q : E' •+• E'/go be the quotient map. Since B is 

n-equicontinuous, there exists a c(E', E)-compact essentially 

separable absolutely convex set Bj, such that B ^qtB^) . Put 

B2 = q ^(B) n B^ so that B^ has the same properties as B , and 

further q(B2> = B . Let F be the linear span of B2 ; clearly 

q(F) = H . Consider the linear mapping 1)1 : G / ^  + E/f0 defined by 

1)1 (x + H°) = x + F° . The mapping iji is well-defined since if 

x e H° and x' £ F then

<x, x ‘> = <q'(x) , x ’> = <x, q(x’)> = 0 ,

i.e. x £ F° . A similar argument shows that 1(1 is 1 - 1 . Also

since q maps F°° into H°° (bipolars in E', E'/gO respectively)

it is easy to see that <t>' = q|Foo and consequently that (j) is

continuous under a (G/ 0 H°° ) and a (E/ o , F ) .h , t

If l = ♦ (G/fjo) ' then <í|-1 : B + G/ho is trivially continuous 

since 0(E/p0 , F°°! induces a(L, L*) on L (f00 being c(E', E)- 

complete). Thus 0 (G/hO ,H°°) must be a(G/Ho ,  (G/Ho ) * > and so 

H00 is a(G', G)-complete. Thus the condition (a) of Theorem

5.1.2 is satisfied. It is clear that (b) of the theorem is also

/» •satisfied and consequently G £
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Corollary

If E « (respectively J ^ c) and G is a vector subspace

of E with countable codimension, then G e (respectively

Proof

By Theorem 3.1.6, we have that G is 6-barrelled under a 

topology induced by any 6-barrelled topology on E . In particular

G is 6-barrelled under 6 (E, E')

the theorem.

The result now follows from

It has been shown [14, 2.5) that the separated GN-spaces are, 

up to isomorphism, precisely the barrelled subspaces of products of 

spaces with the finest locally convex topologies. The following is 

the corresponding result for .

Theorem 5.1.5

Let G be a subspace of a product it E of separated locallya£A a
convex spaces such that

(i) dim E^ i  c  (a e A) ,

(ii) E^ has its finest locally convex topology (a e A) ,

(iii) G is 6-barrelled (in the topology induced by the product 

topology on J£AEQ) •

Then G e W l  . Conversely each element E of J ^ c  is 

isomorphic under 6(E, E') to such a G .

Proof

Trivially each Ea c J \ p c  and Eq has the topology 6 (Ê , E'a) 

By Theorem 5.1.3(b), JeAEa 6 and its product topology is

6 (it E y E' ) (see Section 3.3).n c a  ft “  CLCXfiA

that G e

It follows from Theorem 5.1.4
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We define t : E "*■ S£(g  e (b ) ^  t(x) = (qB (x))Be(&

where q : E -*■ E(B) is the quotient map. Then t is clearly 

one-to-one and linear. Let t' be the transpose of t .

t,(i,v * © 1 ■ f o r ‘ 11 "■'s1«® ‘ L g ™
so that t* (7 H (B)) c E' and since each a (7 H(B), i E(B))-

Be<g _  B e ©  B£©

bounded set is essentially separable, it follows that t is continuous

under 6(E, E') and the product of the topologies t (E(B), H(B))

which, as above is 6(i E(B), J H(B)) .
6 £ <8 Be ©

Let t  ̂ be the inverse of t on t(E) . For each B e^, 

q o t-1 = p i  , where p_ is the projection of j _  E(B) ontoB Blt(E) B
E(B) . Consequently t”1 is continuous when E has the projective

limit topology of the topologies x(E(B), H (B)) by the mappings

qB (B e (§ ) . We show finally that this projective limit topology

is 6 (E, E '). It has for a base of neighbourhoods of the origin all 
n -1sets of the form qg (Vf) where each Vr is the polar in

E(B ) of a o (H (B), E (B))-bounded set D . Then _ r r
n nrn^q“1(Vr) = , (by [43, Chapter II, Lemma 6] since the

r r_
transpose of q| is the natural injection) and since D is 

necessarily essentially separable, we just have a base of neighbourhoods
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of the origin for 6 (E, E ') .

5.2 Non-Locally Convex Spaces

Recently, there has been growing interest in topological vector 

spaces in which local convexity is not assumed. The notion of 

ultrabarrelledness which corresponds to barrelledness in this setting 

was first defined by W. Robertson [44]. Later, Iyahen [21, Theorem 

3.2] characterized ultrabarrelled spaces as those which can serve 

as domain spaces for a closed graph theorem in which the range space 

is an arbitrary complete metric linear space. He has also defined 

and discussed countably ultrabarrelled spaces in [22].

In this section we introduce the class of 6-ultrabarrelled spaces 

whose relationship with ultrabarrelled spaces is similar to that 

between 6-barrelled and barrelled spaces. Many of the properties of 

6-barrelled spaces are possessed in a suitable form by 6-ultrabarrelled 

spaces. In particular, one can always define a coarser linear 

topology on a 6-ultrabarrelled space which is both 6-barrelled and 

countably ultrabarrelled.

Recall that an ultrabarrel in a topological vector space E is

a closed balanced subset B for which there exists a sequence (Bn)

of balanced absorbent subsets of E such that B^ + B^ ^  B and

B . + B , c b for each n £ IN . The sequence (B ) is called n+1 n+1 -  n n
a defining sequence for B[21, §3],

Definition 5.2.1

Let E be a topological vector space and let U be an ultra

barrel in E . We say that U is a 6-ultrabarrel if there is a defining

sequence (U ) for U such that the dimension of E/«° is at n n un=l n
most c . The space E is said to be 6-ultrabarrelled if every
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6-ultrabarrel in E is a neighbourhood of the origin.

Let E be a locally convex space. As is pointed out in

[21, §3], if B is a barrel in E , then B is an ultrabarrel

with (2 nB) as a defining sequence. Thus if B is a 6-barrel

in E , then (2 nB) is a defining sequence for B and

xSo^B = 1,0 s0 that dim E/ ” (2-nB) ~ c * therefore
n=l'

follows that every 6-barrel is a 6-ultrabarrel. Consequently a 

locally convex 6-ultrabarrelled space is necessarily 6-barrelled.

The following theorem gives a useful equivalent definition of 

a 6-ultrabarrel.

Theorem 5.2.1

Let E be a topological vector space. An ultrabarrel B is

a 6-ultrabarrel if and only if B has a defining sequence (B̂ ) such

that ( n,B )* is c(E*, E)-separable. n=i n

Proof

This follows immediately from Theorem 1.5.1 and the fact that

(E/ n B >* n=l n
( n B ) n=l n

We now give a characterization of 6-ultrabarrelled spaces which 

corresponds to [21, Theorem 3.2], A simple modification of the 

techniques of Theorem 3.1.2 gives the result (see also the proof of 

[21, Theorem 3.2]). We recall that the dimension of an infinite 

dimensional complete metrizable topological vector space is at 

least c (Theorem 1.5.2).
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Theorem 5.2.2

A topological vector space E is 6-ultrabarrelled if and only 

if, whenever t : E ■* F is a linear mapping with a closed graph of 

E into a complete metrizable topological vector space of dimension 

at most c , then t is necessarily continuous.

The next result contains the basic permanence properties of 

6-ultrabarrelled spaces. The term ‘-inductive limit is due to 

Iyahen [21, §2],

Theorem 5.2,3

(i) Any ‘-inductive limit of 6-ultrabarrelled spaces is 

6-ultrabarrelled.

(ii) Any product of 6-ultrabarrelled spaces is also 6-ultrabarrelled.

(iii) The completion E of a 6-ultrabarrelled space E is again 

6-ultrabarrelled.

Proof

(i) and (iii) follow from Theorem 5.2.2 just as in the proofs of 

Corollaries 1 and 3 of Theorem 3.1.2.

(ii) is proved in a way similar to [2, (2)].

As in the case of the 6-topology for a 6-barrelled space, given 

a 6-ultrabarreUed space E , there is a coarser related 6-ultrabarrelled 

topology (6u-topology) on E . For the definition of the 6u-topology, 

we need the following result.

Theorem 5.2.4

Let (E, £) be a 6-ultrabarrelled space and let a ;  be the 

collection of all 6-ultrabarrels in (E,£). Then OJi is a base of 

neighbourhoods of the origin for a vector space topology on E which
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is coarser than £

Proof

To establish the result, it suffices to show that satisfies

conditions (i) - (iv) of [26, 5.1]

Let U e and let (U ) be a defining sequence of closedLet 0 e nn
sets for U . Clearly e • We have £  U . This

is (ii). Also since U is balanced XU c U for any scalar X

separable. Then it follows easily that U n V is an ultrabarrel in

E with a defining sequence (W ) defined by W = U n V  (n e B )  .n n n n
Reasoning in a way similar to that in the proof of Lemma 3.2.2, we

fact that (E, 5) is 6-ultrabarrelled that the vector space topology

coarser than £ .

Definition 5.2.1

If (E, S) is a 6-ultrabarrelled space, we call the vector space 

topology on E for which the 6-ultrabarrels in (E, £) form a base 

of neighbourhoods of the origin the 6u-topology on E and denote it 

by 6u(5) .

such that |x| £ 1 . (iii) is therefore satisfied. Since each 

element of O A  is absorbent, condition (iv) is already satisfied

Let U, V € and let (U ) , (V ) be defining sequences for
00 0 00 #

V, V respectively such that ( n.U ) and ( n,V ) are a (E*, E)-n=l n n=l n

have that ( n.W )* is c(E*, E)-separable. Thus by Theorem 5.2.1 n=l n
we have that U n V is a 6-ultrabarrel in (E, 5) and so

Hence (i) is also satisfied. It follows from the

on E with ' U  as a base of neighbourhoods of the origin is
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We recall the following definition given in [22, §2], 

Definition 5.2.2

An ultrabarrel U is said to be of type (a) if for each

of closed balanced neighbourhoods of the origin in E such that for

A topological vector space E is countably ultrabarrelled if every 

ultrabarrel of type (a) is a neighbourhood of the origin in E .

Theorem 5.2.5

Let (E, £) be a 6-ultrabarrelled space. Then E is both 

6-ultrabarrelled and countably ultrabarrelled under 6u(5) .

Let B be a 6-ultrabarrel in (E, 6u(0) . Since 5 is finer 

than 6u(S) , we have that B is ^-closed and so is a 6-ultrabarrel 

in (E, 5) . It follows from the construction of 6u(C) that B is

a 6u(5)-neighbourhood of the origin. Thus E is 6-ultrabarrelled 

under 6u(5) .

Let U be an ultrabarrel of type (a) in (E, 6u(5)) • Then
( n )for each j e IN , there is a sequence (U. 'n>0 close(  ̂balanced

6u(£)-neighbourhoods of the origin such that

.. (n+1) rT (n+1) (n) _ n , 7(l) U. + U, c U, , n - 0, I, ...
j 3 “  j

(ii) U (n) = is absorbent for all n = 0, 1, 2, ...

all n t  » ,  D.
(o)and U = U .

is absorbent
in)Note that (Uv is a defining sequence for U

Proof

0(iii)



108

For each j , let (V^n+1^>n>1 be a defining sequence for ^  

00 (n+1)such that if N. = n,V, then dim E/„ £ c . Let3 n=l ] IT

W.(n) = Uj + Nj , the 6u(5)-closure of t B, (n, j £ I)

Then

W. (tt+1) + W. ("+1) c u. (n+1) + 0. (l*+1) + N. c u. (n> + N. = W. (n) (n, j £ IN) . 
j j -  j 3 3 - 3  3 3

Each Wj ̂  is a 6u(5)-neighbourhood of the origin and ( W j ^ ) ^  ^

a defining sequence for W (1) 00 (n), . Since N c n W, , we have
3 3 “ n=2 3

(n) °° (n) °° (n)dim E/ ® (n) £ dim E/^ £ c . Also, u = ,n̂ U. £  .n^W.
n=2Wj Nj 3 3 3 3

00 ( n )so that ,n,W. is absorbing for each n = 1, 2, ... Hence 3=1 3
(again reasoning as in Lemma 3.2.2) we have by Theorem 5.2.1, that
oo t 1 \
jiljWj is a 6-ultrabarrel for the original topology and so is a 

neighbourhood of the origin in (E, 5u(C)) • But we have

j
00 (1) 00 (1) 00 (X) (1), «
.n.w.1 ' = ,n (u .  + n . )  c ,n u .  + u .  = .n u
3=1 3 3=1 3 j ~  3=1 3 3 “  3=1 3

(0) = J? o (0) = u (0) 
3 3=1 3

Hence U = is a neighbourhood of the origin in (E, 6u(?)) .

Thus (E, 6u(£)) is countably ultrabarrelled.

Example 5.2.1

Let A be a set such that | A| > c . Consider the space

fj(A) = {(£x)x . : 5X £ ®  , l  | Cxl5 < “> with the topology ^  
2 A e A  1

defined by the metric d( (n.),,») = I l?\ ~ hx|‘ •
XeA

This is a non-locally convex topology and one can show as with the 

ordinary l i space that £j(A) is complete under J . Consequently 

(i,̂ (A) ) is ultrabarrelled [44, Corollary to Proposition 12] and

therefore 6-ultrabarrelled. We note further that dim £ i (A)> c .

*? '"PI

r • ■ . , > »• .if -
■  •  •  f t - '  '- » . jr  • • • '

*



109

Now let U = 1 I £ 1} . Then U is an
Xe A

ultrabarrel. Let (Un) be any defining sequence for U . Then

N = n,U * {0}, , for if x £ N , since N is a subspace, n=l n
a x c N for all a e K . It follows that a x £ U for all a £ K .

Suppose x = (5x)^€A . Then 1 2 d(a x, 0) = | a | ̂ £ | e j 5
Xeh

for all a £ K , which is impossible unless J |ç.|5 = 0 in which

case = 0 for all X and so x = 0

X € A

It therefore follows that

0 is not a 6-ultrabarrel, since dim Hi (A) = dim Hi (A) > c .
5 /N 5

Consequently 6u(S) is coarser than .

Let ft be a subset of A with |ft| £ , let t be a

positive real number and put

I iw= «VxsA 6 VA) ' l j h \ ' * t} (*)

It is not difficult to see that W is balanced and absorbent. We 

show that W is also closed. Let y = (çx)XeA e w and let <yn> 

be a sequence in W converging to y , where yn = ^ j / ^ X e A  (n £ W  ) 

Then for all £ > 0 , we have

l  Uxl5 Ê l  IÇX ■ c;left left

5 I  U x ' s;XeA

S £ + t ,

lnll! * I  It, (n) I i

(n) IJ

X£ft

+ t

for all sufficiently large n . Hence I  | ç. |5 i t and so y £ W .
left

Thus W is closed.

It is clear that if = { U x) XeA « (A) * 1 S Tn ̂
Xefi 2n

(ne IN ) , then Wx + Wx c w and Wn+1 + Wn+1 c (n £ U ) . Also

as above each W is closed balanced and absorbent so that W is an n

ultrabarrel. Now n,W = {(Cx)XeA « *j(A) ■: Ç, = 0 if X £ ft} and



110

dim £ M A )  ;  = 0 if X fL Î 2 }  £ c . Consequently

cHmE/“ £ c so W is a 6-ultrabarrel.
n=l

Now let x = he a non-zero element of M A )  .
i

Then there exists a positive real number r such that

€ M A )  :  l  |U*£ r} . 
5 1,-A AX e A

If we construct W as above

with t = r and ¡2 = { X e A  : ? 0} , then W is a 6u(Ç)-

neighbourhood of 0 which does not contain x . This topology 

6u(Ç) is therefore separated.

According to S.O. Iyahen [24, §3], a semiconvex space E is said 

to be hyperbarrelled if every closed balanced semiconvex absorbent 

subset of E is a neighbourhood of the origin in E . A semiconvex 

space E is hyperbarrelled if and only if every linear mapping with 

a closed graph of E into any complete separated locally bounded 

space is continuous [24, Theorem 3.3].

In a way similar to Definition 5.2.1, we define a 6-hyperbarrelled

space F as a semiconvex space in which every closed balanced

semiconvex absorbent subset V such that dim F/-^v £ c is a
X > 0

neighbourhood of the origin. Similar techniques give results 

corresponding to some of the results in the case of the 6-ultrabarrelled 

spaces. In particular, we get that a semiconvex space E is 

6-hyperbarrelled if and only if whenever t : E + F  is a linear 

mapping with a closed graph of E into a complete locally bounded 

topological vector space of dimension at most c , t is continuous.

5.3 Generalizations to Arbitrary Infinite Cardinals

In contrast to the finite dimensional situation, linear dimension

does not generally play a significant role in the study of topological 

vector spaces. It does appear in our previous considerations of



essentially separable sets and 6-barrelled spaces, but there it 

obscures an underlying general principle from which we may generalize 

the idea of a 6-barrelled space.

Ill

Let E be a locally convex space, let B be a barrel in E

and let a be an infinite cardinal number. If q i E + E/ ., •'A Bx>o
is the quotient map, the Minkowski functional of q(B) is a norm 

on E/ . . If E/ . has a dense subset of cardinality
x5oA B l5o A B

at most a for the resulting norm topology, we say that B is a 

6(a)-barrel. A locally convex space in which each 6(g)-barrel 

is a neighbourhood of the origin will be called a 6(g)-barrelled 

space.

We know that a normed space with a dense subset of cardinality 

at most c has dimension at most c (Lemma 2.1.4). The converse 

is trivial so that 6(c)-barrels and 6-barrels are the same and 

consequently the classes of 6(c)-barrelled spaces and 6-barrelled 

spaces coincide.

The following result extends Theorem 3.1.2. We recall that the 

density character of a Banach space is the smallest cardinal for a 

dense subset of the space [32],

Theorem 5.3,1

A locally convex space E is 6 (a)-barrelled if and only if 

whenever F is a Banach space of density character at most a and 

t : E -*■ F is a linear mapping with a closed graph, t is continuous.

Proof

We refer to the proof of Theorem 3.1.2 and indicate necessary 

modifications, retaining the same notations.



112

Suppose {y^ : X £ A} is a dense subset of F with | A | ¿ a .  . 

Choose an element in each non-empty {y e F : || y - YjJ| i n t (E) ,

(n £ ]N , X £ A) . Clearly the set D of all these elements has 

cardinality at most a. We show that D is dense in t(E) .

Given z £ t(E) and £ > 0 , choose n £ M  , y. and y 6 D suchA
that 1

n S T '  11*-»»II 4 and ||y - yxll £ —  • Then n
|| z - y II 4 - -

Let D = {z : y £ m } (IMI £ a) , For each z , chooseU M l '  |j

x £ E such that t(x ) = z . Given x £ E and e > 0 , we cany y y
choose y e M such that t(x) - z £ eB , where B is the closed

0 y« ______
-1,unit ball of F . Then x - x e t (eB) c e t (B) . It now

y o  —

follows that if N = X t (B) then the set of equivalence classes

in E/„ of the elements x (y e M) is dense for the norm defined 
N ______  y

as above from t 1 (B) which is therefore a 6(a)-barrel.

The proof of the necessity of the condition is concluded as in 

Theorem 3.1.2. The only modification required in the sufficiency 

part is to note that if a normed space has a dense subset of 

cardinality a , then so has its completion.

To obtain an analogue of Theorem 3.1.1 we have to generalize the 

characterization of bounded absolutely convex essentially separable 

sets given in Theorem 2.1.7.

Theorem 5,3.2

A separated locally convex space E is 6(a)-barrelled if and 

only if each c(E', E)-bounded absolutely convex set A such that 

o(E', E)|a has a base of neighbourhoods of 0 consisting of at most 

a sets is equicontinuous.
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Proof

Suppose that A is a non-empty set with the properties stated 

in the Theorem. Then A° is a barrel in E and the normed space 

constructed as above is just J Î e , A) (section 2.1). Arguing 

as in Theorem 2.1.7, we deduce that K (E , A) has a total subset 

T of cardinality at most a . The set D of linear combinations 

with rational coefficients in the real case, complex rational 

coefficients in the complex case, of elements of T is dense in 

f. , A). Since a is infinite, we also have |d | i  a , so

that A0 is a 6 (a)-barrel. Thus if E is 6(a)-barrelled, A is 

equicontinuous as required.

J\PE

Suppose that B is a 6(o)-barrel in E . Let D be a dense 

subset of < M e , B°) with cardinality at most a . Since B*

is <j(E*, E)-compact, the coarsest topology on B* which makes 

each of the elements of D continuous must coincide with a(E*,E)| « . 

It now follows easily that B° has the properties enumerated for 

A . Thus if the condition is satisfied, B° is equicontinuous so

that B = B°° is a neighbourhood of zero, i.e. E is 6 (a)-barrelled.

Since the scalar field has a countable base for its topology, 

we deduce from the second part of the proof of the previous theorem

Corollary

Let A be a o(E', E)-bounded absolutely convex set such that

a(E', E)|A has a base of neighbourhoods of 0 consisting of at most

a sets where a is an infinite cardinal. Then o(E', E) L has aA
base consisting of at most a sets and A has a o(E', E)-dense 

subset of cardinality at most a .
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When a = , the condition of the last theorem on the

a(E', E)-bounded absolutely convex set A is equivalent to its 

metrizability under o(E', e )|ft . This is established in Proposition

1.3 of [25], We then have from the theorem and Theorem 2.6 of [25] 

that the class of separated 6( -barrelled spaces coincides

with Kalton's class ^(ç ) .B

It is immediate from the definition that if ot, 6 are infinite 

cardinals such that a < S , then each 6(8)-barrelled space is

also 5 (a)-barrelled. However we can always find 6(a)-barrelled
(M)spaces which are not 6(8)-barrelled. Take for example E = IR

Using the Corollary to Theorem 5.3.2 and arguing as in Examples

2.2.1 and 3.1.1(a), we see that (E, t(E, E')) provides such an 

example.

Note that in contrast to the situation with the dimension of a 

complete metrizable topological vector space if we reject the 

continuum hypothesis and assume that there is a cardinal y such 

that < y < c , then there is a 6 (y) -barrelled space which is

not 6-barrelled and consequently there is a Banach space of dimension 

c whose density character is strictly greater than y .

We note finally that 6 (a)-barrelled spaces have the countable 

codimension property. The proof of the result has much in common 

with that of Theorem 3.1.6. However the approach in the proof of 

Theorem 3.1.6 makes use of certain basic properties of essentially 

separable sets which do not appear to generalize.

Theorem 5.3,3

Let E be a 6 (a)-barrelled space and let X be a subspace of 

countable codimension. Then X is 6(a)-barrelled in the topology 

induced from E .
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We consider first the separated case. Let A be a non-empty 

o(X\ X)-bounded absolutely convex set such that a(X', X) j has a 

base of neighbourhoods of 0 consisting of at most a sets. Keeping 

the same notations as in the proof of Theorem 3.1.6, we construct 

B and C as before. The o(E', E)-sequential completeness of E' 

comes from [25, Corollary to Theorem 1.4 and Theorem 2.6] and the 

fact that E is also 6( )-barrelled.

There is a family of non-empty finite subsets of X

such that |A| < a and the sets

{x* e A : |<x, x '>| 6 1 , x e <f>̂} (XeA) form a base of neighbourhoods 

of zero for o(X', X)| . We may assume that G /  X , G ^ E 

(otherwise simple modifications give the result). Let 

{yn : n e IN } be an at most countable subset of G\X which spans a 

supplement of X in G and let {x^ : n e IN} be an at most 

countable subset of E\G which spans a supplement of G in E .

We show that the family of sets

x e

(X 6 A , M e M  ) is a base of neighbourhoods of zero for c(E', E)

Let U be any neighbourhood of 0 for c(E', E)| and choose

{x' e C : |<w , x •>| < 1  , r = 1, ..., n) £  U

n-empty finite subsets of M  and z e X (r = 1, ..., n)

Choose X such that o

{x'e A ; I«, x'>|fe 1, x «  <t\) £  (x1 e A : |<zr, x ’>| \ , r = l, ..
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We have that

V = {x* 1 e C s |<x, x*> I £ 1, x £ $. } n {x' e C : I<y > xI>l - r  1

xo s M

s - l ,  ...» M} c u , where M £ U  and M > 2N(1 + R) ,

for if x' £ V , then we have for each r £ {1, ..., n} ,

<r)l«V x,>l s l<v *'LH + l l°slr)I 1%» x,>l + l let (r)|l<xt» x'
S € 0  t £ 0 '

so that I <u , x ’ > I ^ 1 + N, R, 0 ¿5 + 5 = 1 . 
r  M

Thus is a base of neighbourhoods of 0 for o(E', E)|c .

Since |A| ¿ a  and a is infinite, it follows easily that

I < a and since E is 6 (a)-barrelled we have by Theorem 5,3.2 

that C is equicontinuous. Consequently as in the proof of

Theorem 3.1.6, it follows that A is equicontinuous. Hence X is 

6(a)-barrelled as required.

If E is not separated, we use the analogue of Theorem 3.1.3 

together with the first part to obtain the result (c.f. proof of 

Theorem 3.1.6).

The idea of essential separability arose from our initial attempts 

to characterize o-barrelled spaces by means of a closed graph theorem. 

We have in fact a general result characterizing the ybarrelled spaces 

of Valdivia mentioned in Example 3.2.1.

Theorem 5.3.4

Let (E, 5) be a separated locally convex space and let y be 

an infinite cardinal. The following are equivalent:

(i) E is y-barrelled;

(ii) whenever t : E •+ F is a linear mapping such that
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(a) F is a Banach space which is the dual of a Banach space 

G with density character at most y ,

(b) the graph of t is closed in (E, 5) * (F, a(F, G)),

then t is continuous under 5 and the norm topology of F ;

(iii) same assertion as (ii) with F = l  (A), G = l . (A) whereI
|a | = y .

Proof

(i) — (ii) Suppose that E is y-barrelled and let

t i E + F  be as in (ii). • Consider the transpose t' : F' -*■ E* 

of t . By the hypothesis, t' ^(E1) contains a a(G, F)-dense 

vector subspace of G . Since such a vector subspace is also dense 

in G under its norm topology t (G, F), each element y' of G 

is the limit under t (G, F) of a sequence (y'̂ ) in t'  ̂(E') n G . 

Since E is also c-barrelled, {t1 (y* ) : n £ M } is an equicontinuous 

subset of E' and so its a(E*, E)-closure is contained in E' .

This implies that t'(y') e E' and consequently G ^  t' 1 (E') .

The closed unit ball B of G is dense in the closed unit ball 

B' of F' under o(F', F) . If X is any dense subset of 

cardinality at most y in the Banach space G , then X n B is a 

o(F', F)-dense subset of B' of cardinality at most y . Now 

t'(xnB) is a(E', E)-bounded and therefore equicontinuous since E 

is y-barrelled. It follows as before that t'(B') ^  E' and is

equicontinuous. Since B' spans F' it follows that t'(F') ^  E'

and that t is continuous as required.

(ii) = >  (iii) In (A) let e^ = (u e A) .

We obtain a dense subset of (A) of cardinality y by taking the
n

set of all elements of the form £ e ,
r=l

where n is a positive
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integer and the ar are rational in the real case and complex 

rational in the complex case. Thus (A) has density character 

(at most) y . It then follows that (iii) is a special case of (ii).

sufficiently many x' , all equal to zero. Consider the mapping 

t : E -*• ¿„(A) defined by t(x) = (<x, Clearly t is

linear and if (“x^XeA is anV element of Jt̂ (A) with only finitely 

many non-zero components and if t' : ' ■* E* is the transpose

of t , then for each x e E , we have

o ( l m{A)' , ¡¡̂ (A) )-dense vector subspace of A) . This shows that 

the graph of t is closed for £ * a (5. „(A), (A)) .

It follows by the hypothesis that t is continuous under £ and 

the norm topology of ¿„(A) . If B is the closed unit ball of 

£ (A)' , we then have that t'(B) is an equicontinuous subset of E' . 

But A = f^x^XeA ' M  * l £ B  and t' (A) = (x'^ : XeA). Thus 

{x1. s XeA} is an equicontinuous subset of E' and so E is
A

■»■-barrelled.

Remark

We observe that the a-barrelled spaces correspond to the case

of separable Banach spaces and the spaces of (iii) are the usual

and i  . In the case Y = c , the Banach spaces F in (ii) are 
00

the duals of Banach spaces with dimension at most c .

(iii) = = »  (i) Let (x^XeA a a(E '» E)-bounded family 

with |A| £ y • We may assume without loss of generality that 

|A| = y since otherwise we may extend the family by introducing

<x' t,((0X)XeA)> = A “X <X' XV  = <X' J “X XY  * XeA XeA

Thus t.* ((â ) = E aXX 'x and S0

t'"1 (E') = {(“x *X£A ! 1^ ! “x ^ °̂ l < ’ which is a

The Banach spaces F in (ii) are then the dual spaces
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