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A B S T R A C T

Antimicrobial resistance is one of the biggest threats to global health, food

security, and development. Antibiotic overuse and misuse are the main drivers

for the emergence of resistance. Studies in the medical sphere have indicated

that shortened antibiotic treatments can be as effective as standard fixed-dose

ones, and have shown that an initial higher dose followed by a lower mainten-

ance dose are more beneficial to patients with critical illnesses. It is crucial to

optimise the use of existing antibiotics in order to improve medical outcomes,

decrease toxicity and reduce the emergence of resistance. We formulate the

design of antibiotic dosing regimens as a continuous optimisation problem,

and use several evolutionary algorithms as the search technique. Regimens are

represented as vectors of real numbers encoding daily doses, which can vary

across the treatment duration. A stochastic mathematical model of bacterial

infections with tuneable resistance levels is used to evaluate the effectiveness of

evolved regimens. The main objective is to minimise the treatment failure rate,

subject to a constraint on the maximum total antibiotic used. We consider sim-

ulations with different levels of bacterial resistance; two ways of administering

the drug (orally and intravenously); as well as coinfections with two strains of

bacteria. The approach produced effective dosing regimens, with an average

improvement in lowering the failure rate 30%, when compared with standard

fixed-daily-dose regimens with the same total amount of antibiotic. A general

pattern of an optimised treatment is found, where if 2× x is the standard

daily dose then the optimised treatment follows the 3× x mg, followed by

several 2× x mg with a last dose of x mg. A noise handling technique is used

to minimise the runtime of the experiments while maintaining the quality of

treatments. The results of this work indicate that clinical studies confirming the
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effectiveness of this approach could be highly beneficial to future of antibiotic

treatments.
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1
I N T R O D U C T I O N

In this chapter, the motivations for this work are presented as well as the

approach taken, the list of publications, a chapter plan for the entirety of the

work followed the main aims of this work are briefly introduced.

1.1 motivation

Antibiotic resistance is one of the major global health challenges today. The

increased use of antibiotics, as well as the misuse of antibiotics, has led to a

number of diseases becoming progressively harder to treat — the most com-

monly reported resistant bacteria are Escherichia coli, Klebsiella pneumoniae,

Staphylococcus aureus, and Streptococcus pneumoniae, followed by Salmon-

ella [1]. It was estimated in 2016 that by 2050 there would around 10 million

deaths a year caused by antibiotic and antimicrobial resistance [2]. According

to The Global Leaders Group in a meeting in the United Nations General

Assembly in September 2022 antimicrobial resistance contributes to almost 5

million deaths per year already, while disproportionately affecting low- and

middle-income countries [3] — the data is provided by Global Antimicrobial

Resistance and Use Surveillance System (GLASS) initiative started in October

2015 by the World Health Organisation (WHO). From those 5 million, 1.27

million deaths were the direct result of AMR and the rest died from illnesses in

which bacterial AMR played a part. Antibiotic resistance is an urgent problem

that needs to be addressed, and a way to minimise antibiotic resistance is to

decrease the misuse and overuse of those drugs.
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1.2 overview

1.2.1 Project Background

As a result of the discovery of antimicrobials in the 1910s, many lives have

been saved. Antimicrobials are agents that kill microorganisms or stop their

growth, and antibiotics are the type of antimicrobials used in living organisms

to fight bacterial infections.

Since the start of mass production of Penicillin in 1945, antibiotics have become

one of the most commonly prescribed drugs not only in human medicine but

also in agriculture, aquaculture, and food production. Many decades after

the discovery of the first antibiotics, bacterial infections have again become

a threat [4]. The World Health Organisation has stated that “antimicrobial

resistance is a global crisis that threatens a century of progress in health and

achievement” [5].

Epidemiological studies have found a direct link between the consumption

of antibiotics and the development of resistant bacteria strains. The overuse

and misuse of those medications are driving the evolution of resistant bacteria

strains. Figure 1.1 gives a summary of how antibiotic resistance occurs and

how resistance is passed on to different bacteria species [6] [7] [8].

Figure 1.1: How antibiotic resistance occurs. Source: World Health Organisation
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Due to antibiotic resistance, more bacterial infections become untreatable,

causing an increase in deaths. It is estimated that 25 000 people die each year

as a result of hospital infections caused by the top five resistant bacteria -

Escherichia coli (E. coli), Klebsiella pneumoniae (K.Pneumoniae), Enterococcus

faecium, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus

aureus (MRSA), which adds over 1 billion pounds to hospital treatment [9].

Between the 1940s and 1960s, more than 20 new classes of antibiotics were

marketed. Since the 1960s only two new classes reached the market [10] until

September 2018 when a new class of antibiotics named optimized arylomycins

was discovered [11].

1.2.2 Approach

In this project, we explore applying different treatment regimens using a

mathematical model to analyse how successful each treatment is. We aim

to minimise the overall amount of antibiotics prescribed while still having a

successful treatment. This will tackle the problem of overuse of antibiotics,

as the total number of antibiotics taken by the patient will be minimised. It

is important to note that overuse of antibiotics could include several other

problems that are not in the scope of this thesis — prescribing antibiotics where

antibiotic treatment is not the appropriate choice, giving more antibiotics

than needed or needing to take too much as the initial treatment was taken

inefficiently. The approach was first proposed by Paterson et al. [12] where

both deterministic and stochastic models were explored. More details on the

model are provided in Section 5.2.2.

1.3 publications produced

Publications produced during the course of this PhD are now mentioned. These

are in chronological order, starting with the oldest. For each, a statement about

4
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the authorship of the work is given. In the interest of clarity, no experiments

or results obtained by other authors are included in this thesis.

1.3.1 Optimising Antibiotic Treatments with Multi-objective Population-based Al-

gorithms

This paper forms Chapter 4 and is published in (the 2020 IEEE Congress

on Evolutionary Computation (CEC), track) with authors Mila Goranova,

Marco A. Contreras-Cruz, Andrew Hoyle and Gabriela Ochoa. All writing,

implementation, experiments, and results were conducted by the author of this

thesis, with the exception of the parameter tuning section of the conference

paper which is implemented and conducted by Marco A. Contreras-Cruz.

Proofreads and small edits were done by all co-authors.

1.3.2 Evolutionary optimisation of antibiotic dosing regimens for bacteria with

different levels of resistance

Currently, the paper is accepted and in the process of being published in the

journal Artificial Intelligence in Medicine with authors Mila Goranova, Gabriela

Ochoa, Patrick Maier and Andrew Hoyle. All draft writing, experiments and

results were conducted by the author of this thesis, other than proofreads

by the co-authors. The initial implementation was started by Gabriela Ochoa,

with some additions by Patrick Maier. The final version of the implementation

was done by the author of this thesis.

1.4 chapter plan

Chapter 2 introduces the biological processes that are modelled in our model,

then the initial mathematical model is described. Lastly, a literature review

5
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is presented where mathematical models and similar approaches are used to

solve problems in similar domains.

Chapter 3 describes the background of the computing science approach we

use. Each of the chapters shows a different computational method used, those

methods are detailed in this chapter.

Chapter 4 is based on [13] conference paper and shows the difference between

two multi-objective algorithms’ performance in optimising antibiotic treat-

ments.

Chapter 5 shows a new single-objective approach to the problem, where the

formulation is simplified and optimised for running time.

In Chapter 6 further optimisation to use of computation power is made

and presented while using a different algorithm and techniques. Runtime

comparisons are shown.

Chapter 7 summarises the results in the previous chapters and discusses

limitations and future work.

1.5 aim of thesis

This thesis aims to use various evolutionary algorithms and mechanics to

identify successful antibiotic treatment regimens and explore different strategies

while maintaining computational efficiency.

1.5.1 Mathematical Model Changes

One of the central aims of this thesis is to build upon the mathematical

model proposed by Paterson et al. in [12] and explore other scenarios of

bacterial infection and types of treatment. In Chapter 4 we introduced two new

modelling techniques to the mathematical model. Those modelling techniques

are used in the approach in the rest of the chapters.
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The first modelling technique is to make the model more realistic and is based

on how antibiotics are processed by the human body depending on the intake

(oral or intravenous). In Chapter 5 we add the exploration of different levels

of resistance where the intake is specified as well as if there is a single or

multiple bacteria strains present.

The second mathematical modelling technique is an approximate method for

the simulation, adding robustness for larger systems and experiments and

increasing computational efficiency.

1.5.2 Exploring Different Objective Approaches

In this thesis, we want to examine the problem in different formulations. The

problem is formulated and explored both as single and multi-objective in

this work. In Chapter 4, the problem has multiple objectives - minimising

the antibiotic used and minimising the failure rate. In Chapters 5 and 6, the

problem is approached as a single-objective where the only objective is to

minimise the failure rate — here the maximum antibiotic that could be used is

set as a constraint instead.

1.5.3 Exploring Different Algorithms

Another aspect which we aim to look into is the different types of evolutionary

algorithms and how each of them performs with our problem. In each of

the chapters, a different algorithm is used and motivation for the choice

is given. In Chapter 4 we look into two different types of multi-objective

evolutionary algorithms each inspired by different biological occurrences —

one of them is modelled after Darwin‘s theory of survival of the fittest and

natural selection and the other one — the behaviour of bird flocking and fish

schooling. Chapters 5 and 6’s algorithms are also inspired by Darwin‘s theory

of evolution but implement different aspects of it.

7
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1.5.4 Exploring Noisy Optimisation Function Handling

The problem this thesis is looking into is stochastic in nature as similar

antibiotic treatments might have a different outcome depending on the person

they are administered to, the stage of the infection, the resistance of the bacteria,

etc. This means that when running our mathematical model, there is some

noise in the evaluation of each one of the possible treatments. An uncertainty-

handling technique exploration is essential to the computational approach

to cope with the noise in the fitness function (for us this is the mathematical

model). In Chapter 6 we look into a specific uncertainty-handling technique

and a more robust approach to optimising antibiotic treatments.

8
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2
B A C K G R O U N D & L I T E R AT U R E R E V I E W

2.1 biological background

Antibiotics have been used more and more in medicine, agriculture, and

aquaculture since their discovery. The first antibiotic named Salvarsan (also

known as Arsphenamine or compound 606) was introduced at the beginning

of the 1910s as the first effective treatment for syphilis and African trypano-

somiasis. Then in 1928, penicillin was discovered, starting the golden age of

natural product antibiotic discovery that peaked in the mid-1950s. This led to

a drastic change in modern medicine, extending the average human lifespan

by 23 years [14]. Since then, a gradual decline in antibiotic discovery and

development, and the evolution of drug resistance in many human pathogens,

have led to the current antimicrobial resistance crisis. The development of

bacteria strains resistant to antibiotics has been aided by their pervasive use

and over-reliance on them. Antibiotics today sometimes find it difficult to kill,

or simply cannot kill, resistant bacteria due to its mutation, those bacteria then

mutate further, survive and multiply. [15], [16].

Conventional antibiotic treatments apply a constant dose for a set amount of

time - for example, take 100 mg per day for 7 days. However, studies in the

medical sphere have indicated that shortened treatments can be as effective

[17]. Other studies have shown that an initial higher dose followed by a lower

maintenance dose is more beneficial to patients with critical illnesses [18].

9
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2.1.1 Bacteria

To understand how antibiotics work, it is important to explain the biology

of the bacterium organisms. Bacteria are one of the lowest and simplest

forms of life. They are single-cell organisms with a prokaryotic structure (lack

of nucleus and member-bound cell compartments). Due to their biological

simplicity, bacteria are the most numerous of living organisms in terms of the

number of species, number of organisms, and total mass of the organisms on

Earth [19].

In Fig 2.1 an example structure of a typical bacteria cell is provided. Typical

bacteria cells have three main parts [20]:

• cell envelope — comprises the innermost cell membrane, cell wall, peri-

plasmic space between the plasma membrane and cell wall and the

outermost layers surrounding the cell wall.

• cytoplasm — contains nucleoids as genetic material, ribosomes as protein

synthesis machinery and inclusion bodies dispersed all over the cytoplas-

mic space. The nucleoid is responsible for controlling the activity of the

cell and reproduction and is where transcription and replication of DNA

take place. It is important to note that the nucleoid, in contrast to the

nucleus of a eukaryotic cell, is not surrounded by a nuclear membrane

allowing for easy transfer of DNA between bacteria.

• extracellular appendages (examples are fimbriae, pili and flagella) —

serve multiple functions and help cells in conjugation, attachment, and

locomotion.

10
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Figure 2.1: Structure of a typical bacterial cell. Source Wikimedia Commons (Creative

Commons Attribution license)

2.1.2 Bacterial DNA Mutations

Mutation of the bacteria‘s DNA can provide resistance to antibiotics. A bac-

terial mutation is a change in the nucleotide sequence of a short region of the

genome and can create new cellular functionalities or lead to the dysfunction

of others. Mutations can occur spontaneously or be caused by exposure to a

mutation-inducing environment. Spontaneous mutations occur at a rate of 1

in 105 to 108 [21] and contribute to random population variation. Mutation-

inducing environments include radiation or UV exposure, chemical mutagens,

base analog forms, deaminating agents, alkylating agents, etc. Beneficial muta-

tions can be passed on not only through a parent-offspring relationship.

2.1.3 Horizontal Gene Transfer

Horizontal gene transfer (HGT) is the sharing of genetic material between

organisms that are not in a parent-offspring relationship [22]. After a mutation
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has occurred, it can spread through the population through HGT. HGT is

responsible for increased propagation of resistance through bacterial popula-

tions [23]. If bacteria acquire resistant genes in an environment where they are

beneficial, HGT will facilitate the spread of these genes within the population

[24], [25].

2.1.4 Antibiotics

Antibiotics are a subset of antimicrobials, which are chemical substances used

to treat bacterial infections and diseases. Antibiotics act in two main ways:

they prevent the growth and reproduction of the bacterial cell (bacteriostatic)

or they actively kill the bacterial cell (bactericidal). Their origin could be nat-

ural, semisynthetic, or synthetic. For example, some natural antibiotics are

metals such as mercury, arsenic, copper, and silver. Semisynthetic antibiotics

are derived from natural ones but have been slightly improved to have more

beneficial characteristics — for example, fewer side effects or higher bacterial

resistance. Synthetic antibiotics are usually chemically related to natural anti-

biotics, examples of such antibiotics are sulphonamides, diaminopyrimidine,

co-trimoxazole, antivirals, antifungals, anticancer drugs, antimalarials, anti-

tuberculosis drugs, etc. [26]–[30].

Eighty years of use and misuse have increased the frequency of resistance for

the majority of antibiotic and bacterial combinations. In fact, this adaptive

evolution of bacteria has been so successful that some bacterial infections are

practically resistant to antibiotic treatment. The bacterium has not only altered

in its ability to withstand the drug but potentially also in its interaction with

the host and environment. [31].
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2.1.5 Minimum Inhibitory Concentration

Minimum inhibitory concentration (MIC) is the lowest concentration of a

chemical, usually a specific antibiotic, which prevents the visible growth of a

bacterium or bacteria culture. MIC depends on the microorganism, the affected

human being, and the antibiotic itself [32]. In this work, we use MIC as part

of our mathematical model to represent the resistance of the bacteria to the

antibiotics during the treatment.

2.1.5.1 Levels and Forms of Antibiotic Resistance

Multi-drug resistance (MDR) is defined by Magiorakos et al. as acquired non-

susceptibility to at least one agent in three or more antimicrobial categories,

however different definitions for the term exist. Another definition of MDR

bacteria is bacteria that are “resistant to one key antimicrobial agent“. Bacteria

could also be classified as extreme drug-resistant (XDR). They are significant

due not only to their resistance to multiple antimicrobial agents, but also to the

likelihood of being resistant to all, or almost all, approved antimicrobial agents.

Pandrug-resistant (PDR) bacteria are bacteria resistant to all antimicrobial

agents [33].

Antibiotic Heteroresistance happens when a pre-existing subpopulation of

resistant cells rapidly replicates in the presence of a given antibiotic, whereas

the majority population of susceptible cells is killed. This happens in scenarios

where a subculture is collected from the patient and isolated for resistance. In

the collected subculture, there is a subpopulation of cells that shows a higher

resistance compared to the main population. This sometimes leads to that

population being the primary bacterial population and making the bacterial

infection more resistant to antibiotics [34], [35].
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2.1.6 Other Approaches

It is important to note that there are other approaches to treating and prevent-

ing bacterial infections rather than antimicrobials [36].

• Antibodies that bind to and inactivate a pathogen, its virulence factors,

or its toxins were widely considered one of the alternative approaches

most likely to have a major clinical impact.

• Probiotics are defined as live microorganisms that, when administered

in adequate amounts, confer a health benefit to the host organism.

• Bacteriophages. Phage lysins are enzymes used by bacteriophages to

destroy the cell wall of a target bacterium. They infect and kill bacteria

and have the potential to replace antibiotics for some indications. Bac-

teriophages could be used in small doses because they replicate when

their host bacterium is present [37].

• Immune stimulation. Successful antimicrobial therapy depends on an

appropriate immune response. Immune stimulation has been proposed

as a potential adjunct approach in conjunction with antibiotic therapy.

• Vaccines. They substantially reduce the incidence of infection and, there-

fore, the need for antibiotics.

• Antimicrobial Peptides are a class of small peptides that exist in nature

and are an important part of the immune system of organisms. They

have a wide range of inhibitory effects against bacteria, fungi, parasites,

and viruses. Antimicrobial peptides constitute one of the most promising

alternatives to antibiotics since they could be used to treat bacterial

infections, especially those caused by multidrug-resistant pathogens [38].
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2.1.7 Impact of Antibiotic Resistance

Epidemiological studies have found a direct link between the consumption of

antibiotics and the development of resistant bacteria strains [8]. The overuse

and misuse of those medications are driving the evolution of resistant bacteria

strains. With the increasing growth of the human population and the demand

for animal protein, the use of antibiotics in food production continues to rise

as well [31], [39], [40].

Due to antibiotic resistance, more bacterial infections become untreatable,

causing an increase in deaths. It is estimated that 25 000 people die each year

as a result of hospital infections caused by the top five resistant bacteria -

Escherichia coli (E. coli), Klebsiella pneumoniae (K.Pneumoniae), Enterococcus

faecium, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus

aureus (MRSA), which adds over $1 billion to hospital treatment [9].

Even though alternatives to antibiotic treatments are being researched, the

world urgently needs to change the way it prescribes and uses antibiotics, as

it is still the most effective way to fight bacterial infections. However, even

if progress is made with new medicine development, without a change in

behaviour in the use of antibiotics, antibiotic resistance will still remain a

major threat.

2.2 mathematical model

This work is looking into optimising antibiotic treatments while ensuring the

prolonged effectiveness of the administered drugs. The model explored was

first introduced by Paterson et al. [12] where a mathematical model simulates

the progression of a bacterial infection. In this section we will explain that

initial model, and in the contribution chapters we have taken this model and

built upon it.
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2.2.1 Paterson et al. Model

Paterson et al. [12] propose two variants of the mathematical model — determ-

inistic and stochastic. Here we will first look into the deterministic equations

and then discuss the stochastic approach. In the contributing chapters, we

chose the stochastic mathematical model as it is closer to the real world, as

not all patients will respond the same to the same antibiotic treatment. The

stochastic process is achieved by using a Gillespie algorithm [41]. A later

work [42] takes the stochastic model and explores several formulations of the

problem.

2.2.1.1 Overview of Model

The formulation detailed in [12], where a mathematical model of the progres-

sion of a bacterial infection, and the effect of antibiotic treatment, is proposed.

When antibiotic treatments are designed, there are two key variables — the

daily dosages and the treatment duration. This is modelled as a vector of

doses x = (x1, x2, ..., xn), where xi represents the dosage taken on day i, where

0 ⩽ xi ⩽ x in works [12] and [42].

The stochastic model follows the steps below for each day and then additional

three days when no antibiotics are taken:

• Antibiotic dose for the day is taken. The following steps happen until

the next dose needs to be taken:

– Probabilities for bacteria’s population death and reproduction are

calculated.

– Bacteria population is updated based on the probabilities.

– Time increases by a time-step.

– New concentration of the antibiotic in the body is calculated.

• Next dose is taken.
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2.2.2 Differential Equations and Parameters

Differential equations in keeping with studies [24], [43]–[45] are used to

describe the dynamics of a population of bacteria and how the antibiotics

affect them. It is important to note that in the Paterson et al. work there are

two types of bacteria — susceptible S and resistant R, but in Chapter 4 and

Chapter 6 we only explore the model where the bacterial infection is caused by

only one type of bacteria. The equations 2.1, 2.2 and 2.3 represent the whole

deterministic mathematical model used by Paterson et al. where R stands for

resistant bacteria and S for susceptible:

dS

dt
= rS

(
1−

S+ R

K

)
− θS︸ ︷︷ ︸

Natural Growth

− βSR︸︷︷︸
Horizontal Gene Transfer

− AS(C)S︸ ︷︷ ︸
Antibiotics Death

(2.1)

dR

dt
= rR

(
1−

S+ R

K

)
(1− a) − θR︸ ︷︷ ︸

Natural Growth

+ βSR︸︷︷︸
Horizontal Gene Transfter

− AR(C)R︸ ︷︷ ︸
Antibiotics Death

(2.2)

dC

dt
=

10∑
n=1

Dnδ
(
t− t̂n

)
︸ ︷︷ ︸

Antibiotic Doses

− gC︸︷︷︸
Degradation

(2.3)
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Table 2.1: Initial mathematical model parameters in [12]

Parameter Description Value

r Replication Rate 2.7726

K Carrying Capacity 1000

β Rate of Transmission of Resistant Plasmid 0.00001

θ Natural Death Rate 0.2

a Cost of Resistance 0.2

g Degradation rate of antibiotic 0.48

min Min net growth at high AB concentrations 2.1

max Max net growth in absence of AB r− θ

mic Min inhibitory concentration (MIC) 16

k Hill coefficient 4

2.2.2.1 Gillespie Algorithm

Paterson et al. work uses the well-established Gillespie algorithm to obtain a

stochastic simulation for the different treatment regimens. By calculating the

probability of the individual events occurring, based on rates and parameter

values from the deterministic model, the Gillespie algorithm randomly chooses

the next event to happen and the time at which it will happen. An example for

two events for resistant bacteria, where C is the concentration of the antibiotic,

is given below:

ReproductionRate(bacteriaR) = rBR

(
1−

BR

K

)
(2.4)

DeathRate(bacteriaR) = mBR +
(maxR −minR)(

C
micR

)kR

( C
micR

)kR
minR
maxR

BR (2.5)
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The population of the bacteria is adjusted according to the events that have

happened, and the process is repeated. As the events are chosen randomly,

each simulation will be slightly different. The success rate for each treatment

regimen was obtained by calculating the total number of simulations which

resulted in the eradication of both susceptible and resistant bacteria.

As asexual reproduction requires energy, it is assumed that the growth rate

of bacteria is limited and therefore modelled using the standard logistic

growth equation. This choice for using the standard logistic growth equation

is made based on previous research such as [24], where a similar population

is modelled. A cost, a, is associated with carrying the genes which introduce

resistance to antibiotics and results in a reduced growth rate for the resistant

strain. Genes can pass from resistant to previously susceptible bacteria through

HGT, β, resulting in the loss of susceptible bacteria and the addition of resistant

bacteria. There are 3 main mechanisms of HGT: transformation, transduction

and conjugation. The mathematical model does not distinguish between the

differing modes of HGT. Both susceptible and resistant bacteria die at a natural

death rate, θ, and through exposure to antibiotics.

2.3 mathematical models in literature

Mathematical and bio-mathematical modelling has become an accessible way

of testing hypotheses in medicine and assessing the improvement of current

processes without a clinical trial. We will look into some prominent and recent

studies where different antibiotic treatment models were explored.

Birkegaard et al. [46] explore several mathematical models proposed in public-

ations and a comprehensive review is given where models are grouped based

on the approach used. The majority of models explored are population-based

models (77%) with a smaller number of agent-based models or individual

models as well as one nested model [47] where the main individual are pigs

and the bacterial populations inside them are modelled. From the listed pub-
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lications, [48] and [49] are concentrated on treatment optimisation and are

explored in more detail below.

D’Agata et al. [48] propose an individual-based model (IBM) formulated as a

system of stochastically determined events describing the complexities of the

transmission dynamics of antibiotic-resistant bacteria, as well as a healthcare

worker (HCW) model. Treatment scheduling was part of the IBM model,

where there are two types of bacteria modelled - bacteria (N) which are non-

resistant to the antibiotic treatment and bacteria (R) which are resistant to the

antibiotic treatment. The analysis of both models shows that for the emergence

and spread of antibiotic-resistant bacteria, it is crucial that early initiation of

treatment and minimisation of its duration is needed for preventing resistance

epidemics in hospitals.
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3
C O M P U TAT I O N A L A P P R O A C H

In the following sections of this thesis, we will look into the background of

optimisation algorithms - multi-objective optimisation and single-objective

optimisation as well as the background and some notable works where such

techniques are used in the medical field. Finally, we will present the algorithms

and techniques that are used in the following chapters.

3.1 optimisation and methaheuristics

Optimisation problems are present in many domains — science, engineering,

management and business. Such problems can be defined by the tuple (S, f),

where S represents the set of feasible solutions (search space), and f the

objective function to optimise. The individual solutions s ∈ S each have a

different objective function f(s) value [50].

Algorithms for optimisation can be roughly divided into two categories: exact

algorithms and heuristics. [51] The exact algorithms are designed in a way

where it is guaranteed that the optimal solution is found in a finite amount

of time. However, in order to do that, the exact algorithms have to explore

the search space and examine possible solutions, which could be very com-

putationally expensive and it does not scale for large problems. Heuristics

optimisations are strategies using readily available information to control

problem-solving processes and are often problem-dependent. A heuristic ap-

proach trades the optimality, completeness, accuracy, or precision of the exact

algorithms for speed and might not provide the optimal solution, but will

mostly produce a satisfactory one [52].
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A metaheuristic is a high-level problem-independent algorithmic framework

that provides a set of guidelines or strategies to develop heuristic optimisation

algorithms and are problem independent [53].

Some terminology describing metaheuristic algorithms [50], [54]–[60]:

• Local optima — a solution that is optimal (either maximal or minimal)

within a neighbouring set of candidate solutions.

• Global optima — the optimal solution among all possible solutions, not

just those in a particular neighbourhood of values.

• Single-solution algorithm — modifications and improvements to a single

solution are made (called current or incumbent solution) over a number

of iterations. A new solution is obtained in each iteration by a single

move of the initial solution from the neighbourhood of that solution.

Algorithms using this technique are Simulated Annealing, Iterated Local

Search, Variable Neighbourhood Search, Guided Local Search, etc.

• Population-based algorithm — good solutions are found by iteratively

selecting and then combining existing solutions from a set, usually

called a population. Such algorithms are Artificial Immune System, Ge-

netic Algorithm, Ant Colony Optimisation, Particle Swarm Optimisation,

Stochastic Diffusion Search, Artificial Bee Colony, etc.

• Optimization objective — is an effective approach to achieve a "best"

solution, where a single objective is maximized or minimised.

• Fitness function — a particular type of objective function that is used to

summarise, as a single figure of merit, how close a given design solution

is to achieving the set objective.

• Solution space — the set of all possible solutions for the combinatorial

optimisation problem.
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3.1.1 Evolutionary Optimisation

According to Blum et al. there are two ways evolutionary optimisation is

defined [61]:

• A specific term devoted to a group of algorithms, including Genetic

Algorithms, Genetic Programming, Evolution Strategies, Evolutionary

Programming, and to a lesser extent Differential Evolution and Estima-

tion of Distribution Algorithms.

• A general term describing population-based search methods that involve

some form of randomness and selection.

Evolutionary optimisation is a type of Artificial Intelligence and is mainly

inspired by natural processes, such as natural selection, species migration, bird

flocks, human culture, and ant colonies [62].

3.1.2 Exploitation and Exploration

Two key elements in evolutionary optimisation are exploitation and explor-

ation, and the tradeoff between the two is critical to the performance of the

algorithms [63]. Exploration is key in algorithms like Hill Climber, belonging

to the family of local search. Local search algorithms move from solution to

solution in the search space by making local changes until an optimal solution

is found, or a time limit is reached [64]. Exploitation algorithms like Random

Search, where every iteration is not dependent on the prior iteration’s can-

didate solution and is moving to different positions in the search space [65].

Balancing between the two is very important, as too much exploitation of the

same space might result in a local optima, and too much exploitation might

miss an optima altogether.
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3.1.3 Single-Objective Optimisation

A Single-Objective Problem is defined as minimising (or maximising) f(s)

subject to gi(s) ⩽ 0, i = {1, ...,m}, and hj(s) = 0, j = {1, ...,p} s ∈ Ω. A solution

minimises (or maximises) the scalar, f(s) where s is an n-dimensional decision

variable vector s = (s1, ..., sn) from some universe Ω. Here, hj(s) = 0 represents

a specific constraint that needs to be fulfilled. s could either be continuous or

discrete, and f could too be continuous or discrete. The goal of determining

the global optima solution is called the global optimisation problem for a

single-objective problem [66].

3.1.4 Multi-Objective Optimisation

Problems with multiple objectives are present in most disciplines. Many real-

world problems are usually presented as non-linear programming problems

with multiple conflicting objectives. Usually, mostly due to the lack of a

better solution technique, these problems are converted into a single-objective

problem and then solved on the basis of that new formulation.

Let us consider a problem in which you have to prescribe antibiotic treatment

for a specific infection. You have to minimise the total dosage, take into account

the strength of the antibiotic and minimise the treatment length. This is a

three-objective problem that cannot be solved as a single-objective problem

without introducing constraints on some objectives.

A Multi-Objective problem can be defined as a vector of decision variables

which satisfies constraints and optimises a vector function whose elements

represent the objective functions. These functions are usually in conflict with

one another, and we need to find such a solution that would find the values of

all the objective functions acceptable to the decision maker [67].
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For a problem to be considered multi-objective, it has to have the following

properties:

• Cardinality (the number of elements) of the optimal set has to be more

than one.

• There should be at least two different goals of the optimisation.

• The goals should have different search spaces.

In Figure 3.1, seven different solutions to the antibiotics prescription problem

are plotted where axis x is the total dosage prescribed in milligrams, axis

y is the treatment length in days and axis z is the strength of the class of

antibiotic marked from 1 to 5, where 1 has the lowest strength. Between any

of the seven solutions, one will always be better in terms of one objective, but

this betterment comes only from a sacrifice of other objectives. Such trade-off

solutions provide a clear front on an objective space plotted with objective

values. This front is called the Pareto-optimal front, and all such trade-off

solutions are called Pareto-optimal solutions.

A solution is called non-dominated, Pareto optimal, Pareto efficient or non-

inferior if none of the objective functions can be improved in value without

degrading some other objective values. Without additional subjective prefer-

ence information, all Pareto optimal solutions are considered equally good (as

vectors cannot be ordered completely).

25

[ 30 September 2022 ]



Figure 3.1: Representation of available solutions for a three-objective decision-making

problem. Note: These points are arbitrarily taken and lines are added for

easier reading.

The primary goals of a Multi-Objective Evolutionary Algorithm (MOEA) are

[66]:

• Preserve non-dominated points in objective space and associate solution

points in decision space.

• Continue to make algorithmic progress towards the Pareto Front in

objective function space.

• Maintain diversity of points on the Pareto front and/or of the Pareto

optimal solutions - decision space.

• Provide the decision maker with enough but also a limited number of

Pareto points for selection resulting in decision variable values.
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3.2 problem formulation

Conventional antibiotic treatments apply a constant dose for a fixed amount of

time — for example, take 60mg per day for 10 days. However, medical studies

have indicated that shorter treatments can be more effective [17]. Other studies

have shown that an initial higher dose followed by a lower maintenance dose

is beneficial to patients with critical illnesses [18]. Therefore, in this work, we

will look into optimising antibiotic treatments where different doses can be

taken on each day of the treatment.

The treatment is represented as a vector, where each one of the values is a daily

dosage and the length of the vector is the duration of treatment in days. An

example treatment can be represented like [45, 50, 30, 55, 30] — this indicates

a five-day-long treatment where the dose for the first day is 45mg, the dose

for the second day is 50mg, etc. The design of antibiotic treatments can be

formulated as an optimisation problem where one or several objectives need

to be satisfied.

In order to evaluate the fitness of treatments (solutions), we use a stochastic

mathematical model of bacterial infection which serves as our primary fitness

function. As explained in the previous chapter, a single run of the model

returns either 0 (unsuccessful treatment) or 1 (successful treatment). The

different result in the outcome depends on the the Gillespie algorithm and is

the reason we need to run the mathematical model several times to have an

accurate evaluation. In chapter 6 we explore the levels of noise depending on

how many times the mathematical model runs. In the following chapters, we

call this evaluation failure rate and reevaluation rate, and we aim to minimise

it.

A secondary fitness function is Atotal, which is the sum of all the antibiotics

in the treatment. In the case of s = [45, 50, 30, 55, 30], Atotal = 210mg. This

secondary fitness function is explored in Chapter 4 and then introduced as a

constraint on the solutions in the following chapters.
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3.3 algorithms used

In this thesis, several evolutionary algorithms are explored. It is important to

note that the listed ones are not the only ones that have been implemented, but

those are the ones that provided the best results from the available libraries.

Algorithms like HypE (An Algorithm for Fast Hypervolume-Based Many-

Objective Optimization) and IBEA (Indicator-Based Selection in Multiobjective

Search) were explored, but SMPSO and NSGA-II suited the problem better

from the jMetalPy library. From SciPy it was important that there was a

clause for adding constraints and Differential Evolution was chosen over the

minimisation algorithms. Covariance Matrix Adaptation Evolution Strategy is

chosen specifically for its uncertainty handling mechanics.

3.3.1 Non-dominated Sorting Genetic Algorithm II

The multi-objective algorithm chosen to solve our problem formulation first

for our model is the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

which is one of the benchmark algorithms used in the multi-objective evol-

utionary computation field proposed in 2002 by Deb et al. [68] which is an

extension and improvement of the NSGA proposed by Srinivas and Deb in

1995 [69]. The algorithm is based on an elitism approach and uses evolution-

ary operators such as selection, genetic crossover and genetic mutation. The

population is sorted into a hierarchy of subpopulations based on the ordering

of the Pareto dominance, where each subgroup of the population is evaluated

on the Pareto Front and the resulting groups. Similarity measures are used so

that a diverse population of non-dominated solutions is achieved.

In this work, we use the library jMetalPy [70] for solving our problem, where

the implementation follows the original proposal of the algorithm by Deb et

al. in [68].
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3.3.2 Speed-constrained Multi-objective Particle Swarm Optimisation Algorithm

Speed-constrained Multi-objective Particle Swarm Optimisation Algorithm

(SMPSO) [71], [72] is a multi-objective particle swarm optimisation algorithm

that uses a strategy to limit the velocity of the particles. This strategy allows

for producing new effective particle positions when the velocity becomes

too high. It also includes polynomial mutation and an external archive to

store the non-dominated solutions found during the search. SMPSO produced

remarkable results when compared to NSGA-II on a number of standard

benchmark functions in [71]. An interesting feature of SMPSO is the use of

polynomial mutation as a turbulence factor and an external archive to store

the non-dominated solutions found during the search. The library we use for

the implementation of SMPSO is jMetalPy [70] which follows the algorithm

pseudocode described in the algorithm templates section of the paper [71].

3.3.3 Differential Evolution

Differential Evolution (DE) is a population-based stochastic search method,

designed to solve continuous optimisation problems, and able to handle

non-differentiable, nonlinear and multimodal objective functions [73]. DE is

amongst the state-of-the-art evolutionary algorithms for continuous optimisa-

tion and has been successfully applied to a variety of problems in science and

engineering [74]. There is growing evidence supporting the excellent perform-

ance of DE in terms of accuracy, convergence speed and robustness, in domains

including electronics, manufacturing, machine learning, bioinformatics and

biomedical engineering [74], [75].

A feature of DE, distinguishing it from other evolutionary algorithms, is its

differential mutation operator. Given a population of candidate solutions in

Rn a new mutant vector x ′ is produced by adding a perturbation vector to

an existing one, x ′ = x + p, where the perturbation vector p is the scaled
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vector difference of two other, randomly chose population members p =

F× (y− z). The other reproduction operator is the uniform crossover, subject

to a crossover rate parameter Cr ∈ [0, 1]. In general, a DE algorithm has three

control parameters, the scaling or mutation factor F, the population size NP

and the crossover rate Cr.

The software library used for the experiments running DE in this work is

SciPy [76], where the implementation follows [73].

3.3.4 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evolu-

tionary algorithm for difficult non-linear non-convex black-box optimisation

problems in the continuous domain and is considered a state-of-the-art al-

gorithm. CMA-ES is usually applied to unconstrained or bounded constraint

(having an upper and/or lower bound value) problems. The algorithm uses

a second-order approach and estimates a positive definite matrix within an

iterative procedure — more specifically, a covariance matrix (a square matrix

giving the covariance between each pair of elements of a given random vector).

According to Hansen et al. this makes the method feasible on non-separable

and/or badly conditioned problems, non-smooth and even non-continuous

problems, as well as on multimodal and/or noisy problems [77]–[82].

It is beneficial that the CMA-ES implementation in pycma [83] used to run the

experiments in Chapter 6 does not require a lot of parameter tunings in order

to be implemented. This is due to the fact that the developers wanted the

strategy parameters to be part of the algorithm design, and not the application

— the aim being to have a high-performing algorithm out-of-the-box. The

starting population size is always small, allowing a fast convergence. There is

an automatic termination criterion implemented, but it could be overwritten

based on iterations or fitness function evaluations count [83].
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3.4 literature review

Evolutionary optimisation techniques have been used to solve real-world

problems in the health sector. In the following paragraphs, we will look into

some recent studies where single-objective and multi-objective approaches

were used for drug treatment optimisation or classification.

3.4.1 Single-Objective Optimisation

Other groups of authors have used genetic algorithms to optimise antibiotic

dosing regimens. Cicchese et al. [84] use genetic algorithms and surrogate-

assisted optimisation to design regimens to treat Tuberculosis infections. Their

formulation assumes that doses are fixed across the treatment, and instead vary

the frequency of application of multiple drugs. The single objective function

has two terms measuring the average time to eradication and the dose size and

frequency of antibiotics. Treatments are evaluated using a hybrid, multiscale

model that combines agent-based modelling with differential equations, and a

pharmacokinetic model.

Colin et al. [85] use a genetic algorithm to optimise a dosing guideline for

intermittent infusion of vancomycin in adults. They encode dosing regimens

as combinations of discretised loading doses, maintenance doses and dosing

intervals. Although the loading and maintenance doses can vary across can-

didate solutions, a given solution holds the same loading and maintenance

dose with varying dosing intervals. The formulation uses a single objective

function with several constraints, and only focuses on the pharmacokinetic

model (antibiotic concentrations), without explicitly modelling the bacteria

infection, to simulate an adult patient population.
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3.4.2 Multi-objective Optimisation

Petrovski and McCall [86] propose another use of multi-objective optimisation

for cancer treatment, where the goal is to minimise the size of the tumour/s

and maximise the patient survival time. A Strength Pareto Evolutionary Al-

gorithm (SPEA) approach was used to find the non-dominated chemotherapy

schedules, where the final decision-making is left to oncologists. The multi-

objective approach looked into multi-drug combinations where each of the

drugs has a different dose during the treatment. The study presents that the

evolutionary algorithm was able to detect solutions that were missed by other

optimisation techniques. A follow-up paper [87] compared the results from a

Particle Swarm Optimisation (PSO) and a Genetic Algorithm (GA), where the

PSO algorithm produced better treatment schedules.

Petrovic et al. [88] present a multi-objective optimisation model for schedul-

ing radiotherapy treatments for categories of cancer patients. The model was

developed for a real-life treatment process in the UK, where the constraints con-

sidered staff rota, machine availability, waiting time, etc. Two objectives were

defined - minimising the waiting time and minimising the breaching of waiting

time targets. Standard-GA, knowledge-based (KB)-GA and weighted-GA are

implemented and compared, where the KB-GA was the best performing one.

Bevilacqua et al. [89] present a new approach to artificial neural network

topology optimisation using a multi-objective genetic algorithm to find the

best network configuration for a breast cancer database classification problem

where two classes of tumours are considered - benign and malignant. The

first step of the approach uses a genetic algorithm (GA) to find the optimal

topology for the problem, and the second step of the research uses a multi-

objective GA to refine the topology space. After the space was refined, a neural

network was used to classify the tumours.

Cicchese et al. [90] present a new treatment strategy for prescribing antibiotics

for treating tuberculosis using an agent-based model capturing tuberculosis
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granuloma formation with algorithms for mathematical optimisation aiming

to identify the optimum treatment regimens. A Genetic Algorithm was used,

as well as a radial basis function (RBF) neural network, where they found

that the RBF network surrogate model was more suitable for predicting the

optimal treatments. In their previous work [91] a PK/PD model was already

implemented that captured the distribution and oral administration of the

antibiotics.

In 2007 Ochoa et al. [92] use the employment of evolutionary algorithms as a

decision system for designing chemotherapy schedules, where the schedule

is formulated as an optimal control problem. A mathematical model is used

for simulating the tumour growth during the chemotherapy schedules. The

objective of the study is to find effective drug schedules that help eradicate

the tumour while maintaining the patient’s health above the acceptable level.

In 2013, another study by Ochoa and Villasana [93] uses population-based

algorithms for designing combination cancer chemotherapies. The chemother-

apy sessions schedule is expressed as an optimisation problem with the main

objective of minimising the tumour size while minimising the compromise

of the patient’s health. A mathematical model similar to the one in [92] was

used to describe the tumour’s progression and evaluate the solution. Three

algorithms were used - a differential evolution (DE) algorithm, Covariance

Matrix Adaptation (CMA) evolution strategy and a particle swarm pattern

optimisation algorithm.

Villasana et al. [94] published another study using the mathematical model

of cancer cytotoxic chemotherapy from [92] where a new drug type was

considered - a cytostatic agent. This type of drug has the effect of arresting

cells in a phase of their cycle and then being targeted with a cytotoxic agent

with the objective of maximising cell killing fraction and minimising normal

cell killing. In comparison to treatments only using the cytotoxic agent, the

incorporation of the cytostatic agent drastically improved the performance of

the model.
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Luong et al. use benchmark multi-objective evolutionary algorithms for high-

dose-rate brachytherapy planning for prostate cancer treatment [95]. Four

different MOEAs are used on the problem - Non-dominated Sorting Genetic

Algorithm II (NSGA-II), Mulit-Objective Evolutionary Algorithm based on

Decomposition (MOEA/D), Multi-Objective Adapted Maximum-Likelihood

Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (MAM-

aLGaM) and Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolu-

tionary Algorithm (MO-RV-GOMEA). The results show that for this problem,

the recently proposed 2015 MO-RV-GOMEA [96] is the best-performing al-

gorithm.
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4
E X P L O R I N G M U LT I - O B J E C T I V E E V O L U T I O N A RY

O P T I M I S AT I O N

4.1 introduction

This chapter explores optimising antibiotic treatments, which are effective

while also short and using the least amount of drug possible. We extend a

mathematical model that simulates the progression of a bacterial infection,

first introduced by Paterson et al. [12] where a single-objective evolutionary

algorithm was used to design effective treatments. Ochoa et al. also applied

a multi-objective evolutionary algorithm in order to automatically design

successful antibiotic treatments where constraints and objectives are combined.

[42].

The main contributions of this chapter are as follows:

• To extend the mathematical model used in [12], [42] with a pharmacokin-

etics/pharmacodynamics (PK/PD) component modelling the antibiotic

absorption from the stomach to the blood flow.

• To use a Tau-leaping approach to speed up the simulation time of the

stochastic bacteria population model.

• To contrast two population-based algorithms (evolutionary vs. particle

swarm optimisation) in the task of optimising a multi-objective formula-

tion of the treatment design problem.

• Analyse the best performing treatments in terms of effectiveness and

establish common trends.

36

[ 30 September 2022 ]



4.2 mathematical model

We followed the formulation detailed in [12] and [42] and in Chapter 2, where

a mathematical (stochastic) model of the progression of a bacterial infection,

and the effect of antibiotic treatment, is proposed.

In this chapter, we consider a vector of real numbers to encode treatments, xi

∈ R, instead of a vector of integer numbers, xi ∈ Z as was the case in [12]

and [42]. This allows us to explore more precise prescriptions, which may be

relevant considering the recent trend in personalised medicine. There is also

only one type of bacteria instead of the two (resistant and susceptible) in [12].

The model follows similar steps to the ones in Chapter 2:

• Antibiotic dose for the day is taken. The following steps happen until

the next dose needs to be taken:

– Probabilities for bacteria’s population death and reproduction are

calculated.

– Bacteria population is updated based on the probabilities.

– Time increases by a time-step of 15 minutes.

– New concentration of the antibiotic in the body is calculated.

• Next dose is taken.

The model is detailed in Algorithm 1 where the steps listed above are described

further.

4.2.0.1 Parameters and Equations

The equations below show how the reproduction rate and the death rate of

the bacteria population are calculated. Table 4.1 provides a breakdown with

the parameter description and values. All but a,g and p parameter values are

taken from [12]. The rest of the parameter values were chosen by Paterson

et al. such that as the concentration of antibiotics increases, the death rate

37

[ 30 September 2022 ]



will increase as well until it reaches a saturation point. The concentration of

antibiotics naturally decays within a host, so that was taken into account when

choosing the parameters’ values.

ReproductionRate(bacteria) = rB

(
1−

B

K

)
(4.1)

DeathRate(bacteria) = mB+
(max−min)(CBlood

mic )k

(CBlood
mic )k min

max

B (4.2)

Table 4.1: List of parameters and values. All the values except for a, g and p are taken

from [12].

Parameter Description Value

r Replication rate of bacteria B 2.7726

K Carrying capacity 1000

m Mortality rate of bacteria 0.2

a Degradation rate of antibiotics in the stomach 0.6

g Degradation rate of antibiotics in the blood 0.4

p Proportion of antibiotics that reaches the blood 0.54

max Max net growth rate in absence of antibiotics 2.5

min Min net growth rate at high antibiotic levels -2.1

mic Min inhibitory concentration (MIC) 16

k Hill coefficient 4

4.2.0.2 Pharmacokinetics/Pharmacodynamics

Pharmacokinetics/pharmacodynamics (PK/PD) modelling is the basis of

modern-day pharmacotherapy. Pharmacokinetics describes the drug concen-

tration over time as it courses in the body/host, while pharmacodynamics ob-

serves the effects resulting from the certain concentration of the drug present
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in the body/host. In other words, pharmacokinetics answers the question

’what the body does to the drug’, while pharmacodynamics — ’what the drug

does to the body’ [97] [98].

In our approach, the PK/PD model is used when calculating the concentration

of antibiotics when the daily dose is administered orally. We represent this

concentration as CStomach, and its slow decrease during the simulation is

calculated by the following equation:

dCStomach

dt
= −aCStomach (4.3)

However, for the antibiotics to be effective, they need to reach the bloodstream

where they can fight the bacterial infection. The equation below calculates the

level of antibiotics in the blood during the day:

dCBlood

dt
= paCStomach − gCBlood (4.4)

The parameter values for a,g and p were chosen so that the maximum con-

centration in the blood corresponds to the half-life time of the drug. A curve

fitting analysis was done to find the best values for a,g and p, so that the

half-life of the antibiotics is about half a day and there are still some antibiotics

left in the system when the next dose is taken, when the dose is 60mg (the

maximum dosage).

As it could be observed from Equation 4.2 the death rate of the bacteria is cor-

related with the concentration of the antibiotics — the higher the concentration,

the higher the death rate is.

4.2.0.3 Tau-leaping

To save computation power and produce faster results, a Tau-leaping approach

is taken in this work, as proposed by Andrew Hoyle. Tau-leaping is an approx-

imate method for the simulation of a stochastic system based on the Gillespie

algorithm [99]. In Algorithm 1 we use a time-step of 15 minutes for the approx-

imation, as this value gives a good balance for speeding up the process without
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losing too much accuracy. For every time-step, an approximation is calculated

for how much the bacteria population has decreased (bacteria_decrease)

and increased (bacteria_increase). Then the whole bacteria population is up-

dated by summing the leftover bacteria from the previous time-step, adding

the bacteria_increase and subtracting the bacteria_decrease. In Equation

4.5 below, the mathematical formula is shown for that process, which also

corresponds to lines 15 to 17 in Algorithm 1.

B(t+τ) = B(t)+Poisson(τReproductionRate(bacteria))−Poisson(τDeathRate(bacteria))

(4.5)

4.2.0.4 Objectives

We consider a bi-objective formulation of the problem of optimising antibiotic

treatments. Specifically, the two objective functions to be minimised are:

• The percentage of simulation runs where the bacteria survives the treat-

ment — failure rate fr.

• The total amount of antibiotics used, as measured by the sum of the

entries in the dosage vector Atotal.

4.3 computational methods

4.3.1 Implementation of the objectives

The two objectives described in Section 4.2.0.4 — failure rate fr and the total

amount of antibiotics taken Atotal. The failure rate is estimated by running

the mathematical model with a fixed number of simulations and returning

the number of runs in which the bacteria population was not eliminated. For

example, the treatment vector x = (44.92, 60, 53.17, 39.25, 60, 1.70) has a Atotal

= 259.04mg and fr = 0.0391 which could be read as fr = 3.91%.
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4.3.2 Noisy Failure Rate

The failure rate is determined by the stochastic model and due to the random

elements in the approach, one treatment could have different outcomes per run

— failure (the bacteria population does not get eradicated) or success (bacteria

population is eradicated). The model is run 500 times for the same treatment,

and the failure rate is determined by how many times the outcome was a

failure. The number of model runs had to be carefully selected to minimise the

noise, but also minimise the number needed to reduce the computational effort.

After preliminary investigations, we have chosen to use 500 model simulations

for estimating the failure rate for the candidate treatment solutions.

4.3.3 Population-based algorithms

We considered two population-based algorithms, as described below. Our

implementation used the Python library JmetalPy [70].

4.3.3.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II uses non-dominated sorting of individuals in the population, with a

crowding distance penalty applied to individuals to maintain a diverse Pareto-

front [68]. As it is one of the best-known and widely used algorithms, and was

previously used for optimising antibiotic treatments in [42] and we wanted

to see its performance with the PK/PD element added to the mathematical

model.

4.3.3.2 Speed-constrained Multi-objective Particle Swarm Optimisation Algorithm

(SMPSO)

SMPSO [71], [72] is a multi-objective particle swarm optimisation algorithm

that uses a strategy to limit the velocity of the particles. SMPSO produced

remarkable results when compared to NSGA-II on a number of standard
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benchmark functions, and we wanted to test that for our problem. It was one

of the most recent additions to the multi-objective algorithms in the JmetalPy

library.

4.3.4 Hypervolume Indicator

To compare the two algorithms’ performance, we use the hypervolume indic-

ator. The hypervolume indicator is a set measure to evaluate the performance

of multi-objective algorithms using a reference point. In our case, this is the

solution with maximum total antibiotics and failure rate, as we are minimising

our objective functions. This solution is a treatment of the maximum 10 days

period with the maximum dosage of 60: x = [60, 60, 60, 60, 60, 60, 60, 60, 60, 60]

that will produce the maximum possible Atotal = 600mg and fr = 100%. The

reference point to the Pareto-front space is measured to produce a single

number — the hypervolume indicator. As our two objective functions need to

be minimised, the higher the hypervolume indicator, the better the solution is.

The implementation of the calculation for the hypervolume used in this work

is the one from Fonseca et al. [100].

4.3.5 Parameter Tuning

We used the same configuration effort to tune the multi-objective optimisation

algorithms in the design of antibiotic treatments. We applied an automatic

configurator to find the highest-performing configurations of the algorithms

to avoid a bias in the performance of the techniques and to develop a fair

comparison.

We selected the software package irace [101]. This software has been ap-

plied to a wide variety of configuration tasks, which include not only tuning

the numeric parameters of multi-objective optimisations but also designing

automatically new multi-objective optimisation algorithms [102]. We only
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configured the numerical parameters of the algorithms by using the iterated

F-race implemented in irace. It is important to note that the implementation

of the parameter tuning was developed by Marco A. Contreras-Cruz.

In iterative F-races, configurations are sampled according to a particular distri-

bution (that evolves with time), and the configurations are evaluated with a

racing method to find the optimal configuration. The racing consists of evaluat-

ing the performance of the configurations with a sequence of training instances

and developing the Friedman test (a statistical test that is used to detect differ-

ences in variables across multiple test attempts [103]) to remove statistically

worse configurations. This process is repeated until a stopping criterion is met;

for example, a maximum number of executions of the algorithm.

During the configuration, the NSGA-II algorithm used the SBX crossover, the

polynomial mutation, and the binary tournament selection with the rank-

ing and crowding distance comparator, while the SMPSO algorithm used

the polynomial mutation operator and the leader replacement based on the

crowding distance archive. For the configuration of the numerical parameters,

we used the iterated F-race with 120 executions of the algorithm. Each run

of the algorithm executed a maximum number of 5000 function evaluations,

with 500 runs of the mathematical model. The real numbers consider four

decimal places in the configuration. Tables 4.2 and 4.3 describes the numerical

parameters of both algorithms and the results of the tuning procedure.

4.4 results

4.4.1 Hypervolume Comparison of Algorithms

Figure 4.1 shows the hypervolume results of 30 runs for each of the multi-

objective algorithms — NSGA-II with default parameters, NSGA-II with tuned

parameters, SMPSO with default parameters and SMPSO with tuned paramet-

ers.
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Table 4.2: Description of the parameters of NSGA-II and parameters values found by

the iterated F-race. Population size and Offspring population values ∈ Z while

the rest ∈ R.

Parameter Domain Default Tuned

Population size (30,100) 100 62

Offspring population (30,100) 100 70

Mutation probability (0.0,1.0) 0.1 0.0971

Mutation distribution index (5.0, 400.0) 20 306.2005

Crossover probability (0.0, 1.0) 1 0.5084

Crossover distribution index (5.0, 400.0) 20 128.7306

Table 4.3: Description of the parameters of SMPSO and parameters values found by

the iterated F-race. Swarm size and Size of the archive parameter values ∈ Z

while Mutation probability and Mutation distribution index parameters values

∈ R.

Parameter Domain Default Tuned

Swarm size (30,100) 100 59

Mutation probability (0.0,1.0) 0.1 0.2821

Mutation distribution index (5.0, 400.0) 20 307.3271

Size of the archive (30, 100) 100 56

4.4.1.1 NSGA-II and SMPSO Performance

From Figure 4.1 we can clearly observe that the solutions produced by NSGA-

II performed better in regards to the hypervolume compared to SMPSO. The

median for the hypervolume for all 60 runs (both tuned and with default

parameters) of NSGA-II is 432.8654 and the one for SMPSO is 429.9859. The

p− value = 2.2e− 16 for Welch Two Sample t-test which is used to test the

hypothesis that two populations have equal means is significantly lower than
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Figure 4.1: A boxplot of the hypervolume of 30 runs for each of the algorithms -

NSGA-II with default and tuned parameters and SMPSO with default and

tuned parameters.

0.05 showing that the solutions between the two algorithms are significantly

different from one another. The p− value = 2.2e− 16 for Wilcoxon Signed

Rank Test that checks whether two samples follow the same distribution also

proves the same point. The p− value = 4.441e− 16 for Kolmogorov-Smirnov

Test used to compare the mean of two samples produced proves the same

hypothesis.

4.4.1.2 NSGA-II - tuned and with default parameters

It appears that the tuned NSGA-II performs slightly better than the default

parameters NSGA-II in terms of hypervolume results. The median of the tuned

NSGA-II is 433.00 and the default parameter NSGA-II’s median hypervolume

is 432.60. The best Pareto-front hypervolume indicator is significantly higher
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as well, the outlier is still better than the lowest-performing Pareto-front

by the default parameter NSGA-II. This result was expected and according

to the p− value = 0.01258 from Welch Two Sample t-test. This proves the

hypothesis that the tuned NSGA-II performs better than the default parameter

one. Running the Wilcoxon Signed Rank Test the p− value = 0.01317 and

Kolmogorov-Smirnov Test the p− value = 0.03458. The p− values from the

two tests are still less than 0.05 so this supports the hypothesis as well.

Figure 4.2: A partial view of the Pareto-front. All solutions with Failure Rate ⩽ 10%

(0.10) and Total Antibiotics ⩽ 300mg from 120 runs of the full multi-

objective model using the population-based algorithms NSGA-II and

SMPSO. The figure combines runs from both default parameters and

tuned parameter runs of the two algorithms.

4.4.1.3 SMPSO - tuned and with default parameters

In the case of SMPSO, the tuned algorithm does not perform significantly better

than the default parameter. The median of the tuned SMPSO is 429.75 and

the median of the default parameter SMPSO is 430.09. The p− value = 0.4189

from Welch Two Sample t-test proves that the tuned SMPSO is not performing

better in comparison with the default parameter one. The Wilcoxon Signed

Rank Test (p− value = 0.7091) and Kolmogorov-Smirnov Test (p− value =

0.808) show that we cannot prove that there is a big difference in performance
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between the two. This indicates that maybe a bigger budget for parameter

tuning is needed when tuning a PSO-based algorithm.

4.4.2 Partial Pareto-front of best results for NSGA-II and SMPSO

When comparing the performance of the two algorithms from the boxplot in

Figure 4.1 we can see that NSGA-II outperforms SMPSO. The median of the

hypervolume indicator for all NSGA-II runs is 432.8017 and the hypervolume

indicator median for SMPSO is 429.9207.

Figure 4.2 shows only a selected part of the Pareto-front with only the 10 best

solutions obtained from the 30 runs of each of the algorithms (NSGA-II with

default parameters and with tuned, SMPSO with default parameters). By best,

we mean the top 10 ranking solutions according to the lower obtained value

of the Failure Rate (%). These solutions all have Failure Rate ⩽ 10% and Total

Antibiotics (the sum of all dosages in the solution vector) ⩽ 280mg. The NSGA-

II with tuned parameters points coloured in yellow is visibly producing the

most non-dominated solutions followed by NSGA-II with default parameters,

and then the green points (NSGA-II with default parameters). This again adds

evidence for the hypothesis suggested at the beginning of Section 4.4 that

NSGA-II outperforms SMPSO.

4.4.3 Best Treatments

Table 4.4 shows the top 10 overall best solutions with Failure Rate ⩽ 0.10%

— we chose this as the threshold to remain consistent with previous research

done by Paterson et al. [12] as we are using the same parameters for the

mathematical model. The solutions are ordered by Re-Evaluated Failure Rate

from lowest to highest. Here, we refer to best as the solutions with the lowest

Failure Rate and lowest Total Antibiotics for that rate.
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Table 4.4: The best 10 treatments obtained by our approach. They all have a Failure

Rate between 0 and 0.10. The treatments are ordered by Re-eval. Failure

Rate starting from the lowest. The length of the treatment, as well as the

algorithm that has produced the result, is provided.

Treatment Vector Length (days) Total Antibiotics Failure Rate (%) Re-eval. Failure Rate (%) Algorithm

56.46, 46.70, 51.21, 41.14, 31.05, 46.82 6 273.38 0 2.17 NSGA-II Tuned

59.89, 41.88, 38.62, 56.52, 25, 46.63 6 268.54 0 2.78 NSGA-II Default

44.92, 60, 53.17, 39.25, 60, 1.70 6 259.04 0.4 3.91 SMPSO Default

58.01, 45.78, 55.60, 40.94, 51.85 5 252.18 0.8 4 NSGA-II Tuned

59.95, 44.53, 52.70, 36, 55.05, 0, 7 7 255.23 0.6 4.6 NSGA-II Default

58.75, 47, 57.36, 37.71, 37.71 5 238.53 1.4 5.57 NSGA-II Default

53, 53, 54.01, 29, 54.47 4 243.48 1.2 6.68 NSGA-II Tuned

57.14, 50, 45.66, 49.93, 20.67, 13.56 6 236.96 0 6.84 SMPSO Tuned

56.18, 44.96, 45.43, 42, 43 5 231.57 1.8 6.9 NSGA-II Default

58, 43.43, 46.99, 52, 25.20 5 225.62 3.2 7.91 NSGA-II Default

When designed, the treatments could be of lengths between 3 and 10 days,

and the upper bound for a single dosage is set to 60mg. In the course of

the mutation during the iterations of the multi-objective algorithms, some

mutations could occur when a single daily dose is 0.332mg. In cases where

there is a dosage below 1mg, it has been rounded down to 0mg as it makes

little difference to the failure rate. For example, the treatment x = (59.892,

41.879, 38.623, 56.518, 25, 46.632, 0.558, 0.48, 0, 0.004), where the initial length

of the treatment is 10 days and the last treatment is so close to 0mg that it has

been rounded down. After rounding up the dosages to the second decimal

this treatment is listed in the table as x = (59.89, 41.88, 38.62, 56.52, 25, 46.63)

where the final length is 6 days.

All the solution vectors listed in Table 4.4 were re-evaluated using the math-

ematical model with 10,000 runs. It was expected for some differences in
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Figure 4.3: Barplot representation of some of the treatments with the lowest failure

rate after re-evaluation. Each of the bars corresponds to a single day in the

treatment.

the Failure Rate to be present due to the noise produced by the stochastic

characteristic of the mathematical model. During the iterations of the two

multi-objective algorithms, the mathematical model was run 500 times which

could contribute further to the noise in the failure rate evaluation.

In Table 4.4, the top 10 of the solutions have a difference of over 5% between the

failure rate and the re-evaluated failure rate which is a lot higher than expected

but could be explained by the stochastic characteristic of the mathematical

model.

Another observation about the solutions listed in Table 4.4 is that only two out

of the ten were generated using the SMPSO algorithm (one solution with tuned

parameters and one with default parameters). Five out of the ten solutions

were generated with NSGA-II with default parameters and three with tuned

parameters. This is another indication of the better performance of NSGA-II

over SMPSO.

Figure 4.3 shows the top 5 treatments from Table 4.4, which have produced

the lowest failure rate after the re-evaluation. The Total Antibiotics for the

treatments presented are as follows: 273.4mg, 268.5mg, 259.1mg, 252.2mg and

255.2mg. Each of the treatments is represented by a barplot where each of the
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bars is a separate day from the treatment. The dose for the day could be seen

at the top of each of the bars, and the failure rate of the treatment is provided

below the barplot for that treatment.

What we can observe from Figure 4.3 is that three out of the five treatments

alternate between a very high dosage (between 50mg and 60mg) and a lower

dosage. The pattern observed in the top solutions in the previous studies [12],

[42] was towards tapered doses, where the first dose will be the highest and

every dose after it will be lower than the previous. This difference in dose

patterns could be explained by the introduction of the PK/PD model, as the

concentration of antibiotics in the body is modelled differently, impacting the

DeathRatebacteria calculation. As a higher dose of antibiotics stays longer in

the system due to the PK/PD mechanic, the next dose can be smaller, and the

antibiotics could still be effecting throughout the treatment.

4.5 conclusion

The proposed approach looks into the problem of overuse of antibiotics and

more specifically optimising the number of antibiotics prescribed and the

length of the overall treatment. The automatic design of possible treatments

and their evaluation has little constraints at the moment — upper and lower

limits on the treatment (3 to 10 days) and upper and lower limits on the daily

dosages (0mg to 60mg) where the bacteria levels are always the same.

In our study, we introduced new techniques to the mathematical model — the

PK/PD modelling and switched from using the standard Gillespie Algorithm

to another variation of the Gillespie Algorithm — Tau-leaping for predicting

events. Then two population-based multi-objective algorithms were chosen

— NSGA-II and SMPSO for designing the antibiotic treatments. Both of the

algorithms were then tuned and the hypervolume for each of the runs of the

algorithms was calculated. Those hypervolume indicators were then compared

as well as some of the best solutions. What could be concluded from the results
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is that the NSGA-II algorithm provided better results than SMPSO. There was

also not a significant improvement upon tuning the algorithms in terms of

results at the end of the budget of 5000 iterations.

In this model, the patient’s profile (overall health, diet, and other possible

medical conditions) and correct usage of the antibiotics are not taken into

account even though they play a big factor when fighting bacterial infections.

These points will be investigated for the future versions of this model as well

as including more objectives when designing the treatments.
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Algorithm 1 Outline of the simulation model

1: treatment = {x1, x2, . . . xn}

2: bacteria = 1000

3: concentrationblood = 0

4: concentrationstomach = 0

5: time = 0

6: timestep = 15 minutes

7: end_of_day = 1440 minutes

8: for day 1 until the last day of treatment do

9: concentrationstomach = concentrationstomach + treatmentxday

10: concentrationstomach0
= concentrationstomach

11: concentrationblood0 = concentrationblood

12: while time ⩽ end_of_day or bacteria = 0 do

13: reproduction_rate is calculated using Equation 4.1.

14: death_rate is calculates using Equation 4.2.

15: bacteria_increase = Poisson(timestep× reproduction_rate)

16: bacteria_decrease = Poisson(timestep× death_rate)

17: bacteria = bacteria + bacteria_increase - bacteria_decrease

18: time = time+ timestep

19: concentrationstomach is calculated using Equation 4.3.

20: concentrationblood is calculated using Equation 4.4.

21: end while

22: end for
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5
S I N G E O B J E C T I V E A L G O R I T H M W I T H C O N S T R A I N T

A P P R O A C H

5.1 introduction

In this chapter, we use our most recent bacterial infection model [13] presented

in Chapter 4, but make two fundamental changes to the optimisation problem

formulation. Firstly, the total amount of antibiotics is treated as a constraint

rather than an objective. The single objective to be minimised is the regimen

failure rate. This is because reducing the failure rate is the prominent aim of

any successful treatment while reducing the total amount of antibiotic used is

a secondary goal. Therefore, exploring the whole trade-off of these two goals,

as it is done by multi-objective evolutionary algorithms, is not interesting

in practice. The second fundamental change relies on the representation of

candidate dosing regimens. We use real-numbers for representing daily dosage

— we argue that this encoding allows the exploration of a wider search space

of possible dosing regimens. Moreover, this encoding prompted us to use

an evolutionary algorithm specifically tailored to continuous optimisation

(differential evolution [73], [75]), rather than standard genetic algorithms. This

chapter also departs from previous work as we experiment with varied levels

of bacterial resistance, coinfections with two strains of bacteria, and two ways

of administering the drug: orally and intravenously. We contrast the optimised

dosing regimens against the standard practice of fixed-daily doses with the

same total amount of antibiotics. In summary, this chapter is guided by the

following research questions.
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How do optimised regimens vary according to:

1. antimicrobial resistance level?

2. form of administering antibiotics, orally vs. intravenously?

3. presence of a single bacterial strain vs. two strains of bacteria with different

resistance levels?

5.2 methodology

5.2.1 Biomedical Background

Once an antibiotic is chosen, conventional treatments have three main charac-

teristics: the concentration of each dose, the time interval between doses and

the total number of doses given. These characteristics are usually decided by

the manufacturer or a health body and usually consist of fixed-sized doses at

fixed time intervals. For example, a course of Amoxicillin may be 250 mg taken

3 times daily for 5 to 7 days [104]. While these fixed-dose treatments may

be effective, they may not be the optimal dose or duration to administer the

antibiotic most efficaciously. Although we are taking a theoretical approach,

our parameters are ‘loosely’ based around an E. coli UTI infection being treated

with Amoxicillin. This is in comparison to some of the previous work, where

parameters were more arbitrarily chosen [12], [13], [42].

Dose regimens are often based on Pharmacokinetics and Pharmacodynamics

studies of target populations. One significant characteristic of the bacterial

population is the minimum inhibitory concentration (MIC). This is the lowest

concentration (in µg/mL) of an antibiotic that inhibits the population growth

of a given strain of bacteria. In this work, we have chosen four MIC values:

sensitive, 8 µg/mL, intermediate, 16 µg/mL and 24 µg/mL, and resistant, 32

µg/mL [105].
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For short-term infections, there is often only one type of bacteria present in the

host, which is the case for most healthy people when they are suffering from

a bacterial infection. Later in this chapter, we consider immunosuppressed

hosts. Here, the body is more susceptible to infection, and this could result in

the host having multiple bacterial infections at the same time. Alternatively,

two strains can also be present when a mutation occurs to create a more

antibiotic-resistant one.

5.2.2 Mathematical Model

The mathematical model used follows a similar formulation as in [12], [13],

[42], [106], where a population of bacteria is simulated with a Markov chain

approach using the Gillespie algorithm [99], and the effect of an antibiotic

treatment to eradicate the infection is considered as detailed below. The model

simulates the bacteria population through the duration of treatment plus an

extra 3 days to allow the antibiotic in the blood to dissipate and to establish

if the bacteria population has reached the count of 0 (treatment is successful)

or not (treatment is not successful, or failed). A n-day treatment is denoted

as a vector x = (x1, x2, . . . , xn), where xi represents the dosage taken on day

i, with xi ⩾ 0. In this formulation, xi are real positive numbers, xi ∈ R. The

maximum total antibiotic,
∑n

i=1 xi, is selected based on the amount needed

to cure the host with a fixed daily-dose regimen, for the specific MIC of the

bacteria determined empirically using the model. The time interval between

doses is fixed at 24 hours throughout this chapter.

Bacteria modelling (one strain). Where a single type of bacteria is present in

the host, there are two events that happen: the birth of bacteria (p1) and death

of bacteria (p2) shown in Table 5.2. In p1, the term rB represents the bacteria’s

binary fission for the time step, producing exponential growth at rate r - the

carrying capacity of the host is removed, as the host is likely to die before

the bacteria population reaches the carrying capacity [107]. Instead, the host
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dies when a fixed number of bacteria is reached, set as 2000. In p2, we sum

the natural death of the bacteria, due to the host’s immune system m, and

antibiotic-induced death rate represented by parameters b1, b2, mic and k.

The pseudocode, for the one-strain model, can be seen in Algorithm 2, with

parameters presented in Table 5.1.

Table 5.1: Mathematical model parameter values and references.

Parameter Description and reference Value

a Absorption rate of antibiotics in the stomach [108] 33.27

g Degradation rate of antibiotics in the blood [108] 1.11

p Proportion of antibiotics that reaches the blood [108] 0.95

m Immune system response rate [109] 0.1

r Replication rate of bacteria [110] 0.5

b1 Maximum kill rate of the antibiotic (as Cb → ∞) 2.5

b2 Level of antibiotic giving half max kill rate [12] 1.5137×mic

mic Min inhibitory concentration (MIC) 8,16,24 or 32

k Hill coefficient in antibiotic induced death 4
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Algorithm 2 Outline of the stochastic mathematical model with one bacteria

strain.
1: treatment = {x1, x2, . . . xn}

2: initial bacteria population B = 700

3: initial antibiotic concentrations CB = 0, CS = 0

4: time = 0 minutes

5: time step τ = 15 minutes

6: end_of_day = 1440 minutes (= 24 hours)

7: deadly_level_bacteria = 2000

8: for day 1 until the last day of treatment + 3 extra days do

9: CS = CS + treatment(day) (take dose)

10: while time ⩽ end_of_day and 0 < B < deadly_level_bacteria do

11: calculate average number of bacteria created p1 (Table 5.2)

12: calculate average number of bacteria deaths p2 (Table 5.2)

13: update bacteria population: B = B+ P(τp1) − P(τp2)

14: update time: time = time+ τ

15: update antibiotic concentrations, CS and CB (Table 5.2)

16: if B ⩾ deadly_level_bacteria then

17: Treatment is unsuccessful

18: end if

19: end while

20: end for

21: if B ⩽ 0 then

22: Treatment is successful

23: else

24: Treatment is unsuccessful

25: end if
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Table 5.2: List of all events for simulating the population of bacteria during treatment.

Events Description
Bacteria Population (B)

Change

p1 Birth of new bacteria rB

p2 Death of bacteria mB+
b1C

k
B

Ck
B + bk2

B

CB

Concentration of antibiotics

in the blood
CB + τ(paCS − gCB)

CS

Concentration of antibiotics

in the stomach
CS − τaCS

Bacteria modelling (two strains). When modelling two strains of bacteria,

S denotes the bacterial strain with a lower MIC and is more susceptible to

the antibiotic, while R denotes the bacterial strain with a higher MIC, being

more resistant and requiring a higher dose of antibiotics. In this case, the

mathematical equations in Table 5.2 are replaced by those in Table 5.3. There

are now five events that take place in the simulation: the birth of new bacteria

of each type (p1 and p2), death of each type of bacteria (p3 and p4) and finally

p5 representing the horizontal gene transfer process (resistance gene from the

R bacteria strain is passed on to the S bacteria strain.
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Table 5.3: List of all events for simulating the population of bacteria during treatment

where two strains of bacteria are present. Here, S bacteria is more susceptible

with a lower MIC and R is more resistant with a higher MIC.

Events Description
Bacteria Population (S,R)

Change

p1 Birth of new S bacteria strain rSS

p2 Birth of new R bacteria strain rRR

p3 Death of S bacteria mSS+
bS1C

kS
b

C
kS
b + b

kS
S2

S

p4 Death of R bacteria mRR+
bR1C

kR
b

C
kR
b + b

kR
R2

R

p5
S bacteria becomes R due to the

horizontal gene transfer process
θSR

Implementation and technical set up. To speed up the simulation process, an

approximation of the Gillespie algorithm is used, known as Tau-leaping [99].

Following preliminary model runs, we settled on a fixed time step of τ = 15

minutes and updated the number of bacteria using the equation in Algorithm

2 (line 14), where P(τpi) is a Poisson distributed random variable with mean

τpi. We chose 15 minutes as the time step as 20 and 30 minutes will result in

too much additional stochasticity and anything less than 10 minutes will not

provide enough computational power saving.

Our implementation uses Python with the Numba JIT compiler [111] to

parallelise the simulation runs on up to 32 computer cores, significantly

speeding up the process.
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5.3 computational optimisation

Problem formulation. The task at hand is formulated as an optimisation

problem. Specifically, as a single objective minimisation problem with a single

linear constraint. The objective to minimise is the failure rate fr measured as

the ratio of simulation runs, using the stochastic model described in section

5.2.2, where the bacteria population is not eradicated, that is where the bacteria

population size is above zero after three days of the last regimen dose. We

used a number of 10 000 simulation runs, and the failure rate is the ratio of

the number of runs where the bacterial population is eradicated out of the

10 000 runs.

The constraint accounts for the maximum total antibiotic allowed for treatment.

The total antibiotic used by a regimen vector x = (x1, x2, . . . , xn), is simply

the sum
∑n

i=1 xi of its daily doses. The maximum total antibiotic allowed is

modelled as a hard constraint, which means that a regimen vector that exceeds

the allowed maximum Atotal is deemed invalid and thus discarded by the

optimisation process. More formally, the optimisation problem can be stated

as follows:

Find vector x = (x1, x2, . . . , xn), xi ∈ R+

to minimise function fr

subject to the constraint
∑n

i=1 xi ⩽ Atotal

In our experiments, the duration of treatment was set to 10 days, n = 10 and

no upper bound is imposed on the daily doses. Table 5.4 reports the minimum

inhibitory concentration (MIC) values used in our experiments. For each MIC

value, two values for the total antibiotic constraint were considered, which we

name here in relative terms lower and higher. The higher values were selected in

such a way that the best fixed-dose treatments in simulation reach a failure rate
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Table 5.4: Values for the minimum inhibitory concentration (MIC), and maximum

total antibiotic used.

MIC [µg/mL] 8 16 24 32

Total Antibiotic [mg]
higher 150 300 450 600

lower 125 250 400 550

below 1%. The lower values allow us to explore the impact on the failure rate

of reducing the total amount of antibiotic for both fixed-dose and optimised

treatments.

Differential Evolution (DE) is the population-based stochastic search method

used in this chapter. Our experiments use dithering for the mutation factor F,

as it can help the speed of convergence. Dithering uniformly at random (from

a given tuple (min, max)) changes the mutation constant on a generation-

by-generation basis. Over the years, several DE variants have been proposed

[75]. Here we use the classic ‘rand/1/bin’ strategy, where ‘rand’ indicates that

base vectors are randomly chosen, ‘1’ means that only one vector difference

is used to form the mutated population, and the term ‘bin’ (from binomial

distribution) indicates that uniform crossover is employed when creating the

trial population.

Table 5.5: Differential evolution control parameter values.

Parameter Description Value

F Scaling factor (mutation) (0.7, 1)

NP Population size 150

Cr Crossover rate 0.7

Stopping condition. The stopping condition for the DE runs was set as a

maximum number of iterations. We used a maximum of 4 000 iterations for

experiments with MIC = 8 µg/mL, 8 000 iterations for MIC = 16 and MIC = 24
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µg/mL, and 10 000 iterations for MIC = 32 µg/mL. We needed to scale up the

iterations with the MIC value as a larger amount of antibiotic was required the

higher the MIC, which resulted in an increased feasible search space. Figure

5.1 shows typical DE failure rate convergence profiles. The failure rate appears

to stabilise (within a margin of error) well before the chosen iteration bounds.
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Figure 5.1: Failure rate convergence over DE iterations for experiments with different

MIC values and total antibiotic constraint TA = A as indicated in Table 5.4.

Constraint Handling. A common way of handling constraints within evol-

utionary algorithms is to apply penalty functions. In its simplest form, the

function to be minimised can be computed by penalising the objective function

with a weighted sum of constraint violations. A disadvantage of this approach,

however, is that one or more additional penalty parameters are expected to

be set by the user a priory, which requires additional effort. Therefore, in our

experiments we adopted the constraint handling technique proposed in [112],

where the replacement rule of the DE algorithm is modified. Specifically, when

compared with the corresponding member in the population, a trial (mutant)

vector will be selected if: (i) it is feasible and provides a lower or equal ob-

jective function value, (ii) it is feasible while the current vector is unfeasible,

or (iii) it is infeasible but provides a lower or equal constraint violation. This
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method has the advantage in our formulation of not requiring any additional

parameter value other than the total antibiotic (Atotal) constraint value.

Implementation and technical set up. The optimisation process was imple-

mented in Python using NumPy [113] and the Differential Evolution algorithm

with its associated constraint handling methods available in SciPy [76]. A total

of 10 DE runs were conducted for each MIC and Atotal constraint values.

Re-evaluation of best-found solutions. As the underlying mathematical model

of bacterial infection is stochastic, the evaluation of the failure rate fr during

DE runs is susceptible to noise. This is due to both the mathematical model

using a fixed number of 10 000 simulation runs, and the greedy DE selection

bias, where noise could produce optimistic estimates of the failure rate. To

counter these inaccuracies, all final solutions are re-evaluated by running

the stochastic model 1 000 000 times. Binomial confidence intervals (with 95%

confidence limit) are then calculated for each of the failure rates fr, and these

confidence intervals are used when comparing solutions in order to establish

which one truly performs best.

5.4 results

Our results are organised into 3 subsections, reporting experiments with a

single strain of bacteria and antibiotic administered orally (5.4.1), a single strain

of bacteria and antibiotic administered intravenously (5.4.2), and two strains

of bacteria and antibiotic administered orally (5.4.3). For all experiments,

the antibiotic is administered at fixed 24-hour intervals for the duration of

treatment.

5.4.1 Single Bacteria Strain and Oral Administration

We start by contrasting the effectiveness of fixed-dose treatments against those

optimised by DE. In order to identify the fixed-dose benchmarks, we compute
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the failure rates, using the mathematical model, of fixed-dose treatments with

a duration between 5 and 10 days, for all the MIC and total antibiotic constraint

values. The daily doses of fixed-dose treatments are simply the total antibiotic

values divided by the number of treatment days. The resulting failure rates

are plotted in Figure 5.2. We have re-scaled the plot to only include treatments

with fr ⩽ 8% so some data points are missing from the last two plots.

We observe that treatments of length 6, 7 and 8 days provide the lowest failure

rate fr, while 9 and 10 days regimens produce the highest failure rates fr,

especially for bacteria with MIC 8 and 16 µg/mL.

Treatment Duration (days) = 9 Treatment Duration (days) = 10

Treatment Duration (days) = 7 Treatment Duration (days) = 8

Treatment Duration (days) = 5 Treatment Duration (days) = 6

200 300 400 500 600 200 300 400 500 600

0.0%

2.0%

4.0%

6.0%

8.0%

0.0%

2.0%

4.0%

6.0%

8.0%

0.0%

2.0%

4.0%

6.0%

8.0%

Total Antibiotics (mg)

f r

MIC (µg/mL)

8

16

24

32

Figure 5.2: Treatments with fixed daily doses by MIC value, maximum total antibiotic

and length. The plot has been re-scaled so only solutions with fr ⩽ 8% are

presented.

To compare the best fixed-dose treatments against the DE-optimised treat-

ments, we completed 10 runs of DE for every combination of MIC and total

antibiotic. The resulting scatter plot of failure rates can be seen in Figure 5.3.
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For comparison, the figure also shows the best fixed-dose failure rates (taken

from Figure 5.2) as a black-coloured marker. Note that the failure rates fr of

all optimised regimens are based on re-evaluating the mathematical model

1 000 000 times. In addition, the dose was set to 0 for each day when a DE-

optimised treatment recommended a dose of less than 5 mg as doses under 5

mg have little effect on the success of the treatment

We observe that the fixed-dose treatments are less effective, that is, have a

higher failure rate fr than any of the optimised treatments. For the treatments

where the MIC is 8 and 16 we can see that even a small increase in the total

antibiotic results in an improvement from around fr = 2.25% to fr = 0.3%,

whereas with MIC at 24 and 32, the improvement is slightly less. This is

expected, as a higher MIC requires more antibiotics to kill the bacteria, so

adding 50 mg of antibiotic amounts to a lesser relative increase of the total

amount of antibiotic.
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Figure 5.3: Optimised treatments with different daily doses by MIC value and max-

imum total antibiotics. The black markers represent the fixed treatment

with the lowest failure rate fr for that configuration.

5.4.1.1 Dosage Profile of Optimised Treatments

Figure 5.4 plots the dosage profiles of the three best-optimised treatments

per each scenario in relation to MIC and Atotal. The best treatments for
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Figure 5.4: Comparison of the dosage profile of the three best-optimised treatments

against the best fixed-dose treatment (coloured in black and shaped with

a circle). Failure rates fr are listed on the right-hand side, with confidence

intervals in square brackets.
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each scenario are those with the lowest failure rates after re-evaluation. For

comparison, the (constant) dosage profile of the best fixed-dose treatment for

each scenario (as determined in Figure 5.2) is also shown in black. Failure

rates and confidence intervals are listed on the right-hand side of each plot.

Across all experiments, we observe that the failure rates of the best-optimised

treatments are approximately between 20% and 35% lower than the failure rate

of the corresponding best fixed-dose treatment for the scenarios. The failure

rate reduction appears to diminish with higher MIC and higher total antibiotic

values. For instance, the lowest failure rate reduction of 21% is found for the

experiment with MIC = 32 µg/mL and the higher total antibiotic constraint of

600 mg (Figure 5.4(h)).

None of the experiments produce a clear best optimised treatment, as the

confidence intervals of fr of several optimised treatments overlap each other.

In addition to being virtually indistinguishable by failure rate, the dosage

profiles of the three best-optimised treatments appear to follow a similar

pattern.

• All optimised treatments for a given MIC value and antibiotic constraint

agree on the treatment duration. In most cases, this is the same as the

length of the corresponding fixed-dose treatment (except for the exper-

iments with MIC = 8 or 16 µg/mL and the lower antibiotic constraint,

where optimised treatments take one day longer).

• All optimised treatments start with a high dose on the first day, followed

by n− 2 doses that are roughly similar to the corresponding fixed-dose

treatment, and tapering off with a lower dose on the final day, where

n is the duration of the treatment. The first and last doses vary across

experiments. In most cases, the first dose is approximately 150% of the

second dose, and the final dose is about 50% of the second dose.
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5.4.1.2 Distribution of Time to Clear Infections

In addition to treatment failure rates, we investigate the time to clear the

infection of successful treatments by counting the number of days it takes for

the bacterial population to drop to zero. Figure 5.5 plots the distributions of

the time to clear for each experiment, both for the best fixed-dose treatment

(the left-most column of each plot) and for the three best-optimised treatments.

Distributions are presented as colour-coded columns, where the height of

each colour block corresponds to the number of hosts (out of 1 000 000) that

cleared the infection on the given day of the treatment. Shown on top of each

column is the expected time to clear the infection in days. Note that even though

treatments are at most 8 days long, hosts may clear the infection after the last

day of treatment. Failed treatments, that is, cases where the infection is not

cleared within 13 days, are excluded from the distributions.

Across most experiments, we observe that optimised treatments clear infec-

tions faster. In particular, most optimised treatments clear significantly more

infections on or before day 4 than the corresponding fixed-dose treatments,

resulting in a reduction of the expected time to clear by between 0.4 and 0.8

days. The exception is the experiments with MIC levels 8 and 16 µg/mL and

lower total antibiotic constraint, where the distributions of time to clear of the

optimised treatments are very similar to the distributions of the corresponding

fixed dose treatments. However, the optimised treatments in these two experi-

ments are one day longer than the fixed-dose treatments, which explains why

we do not observe improvements in the time to clear infections in these cases.

(Note that we were only optimising the failure rate of treatments, not the time

to clear infections.)

5.4.1.3 Discussion

Our results suggest an optimal treatment duration of 7 days if optimised

against the lower total antibiotics constraint and 8 days if optimised against
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Figure 5.5: Distributions of the time to clear the infection, comparing the best fixed-

dose treatment (left-most column of each plot) to the three best-optimised

treatments. The expected time to clear is shown on top of each column.

Each treatment was evaluated 1 000 000 times.
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the higher constraint. This is broadly in line with clinical practice, where most

of the treatments prescribed are 5 or 7 days long.

We find that some optimised treatments are slightly longer than the fixed-dose

ones, but perform better. We see a bigger improvement in failure rate when the

MIC levels of the bacteria are at susceptible and intermediate resistance levels

(8 and 16 µg/mL) to the antibiotics than when they are more resistant (24

and 32 µg/mL). As these are the majority of bacterial infections in hospitals,

the optimised treatments would reduce the number of cases where bacteria

survive after the end of the treatment, thereby reducing the risk of resistant

strains emerging.

We also observe that optimised treatments clear infections faster than the

corresponding fixed-dose treatments. This effect appears stronger when MIC

levels are at the more resistant end (24 and 32 µg/mL). Thus, optimised

treatments confer a second advantage, particularly for infections with resistant

bacteria, by helping more patients recover quickly, thereby potentially reducing

the burden on hospitals.

We attribute both the improvements in the failure rate and in the time to clear

infections to the higher first-day dose of optimised treatments.

5.4.2 Single Bacteria Strain and Intravenous Administration

When antibiotics are injected intravenously, they go directly into the blood-

stream rather than through the stomach as in the previous Section 5.4.1. In

terms of the mathematical model (described in Section 5.2.2) CS, the concen-

tration of antibiotics in the stomach, is set to zero, and p, the proportion of

antibiotics that reaches the blood, is set to one (instead of the previous value

of 0.95). In order to keep results comparable, the experiments reported here

explore the same combinations of MIC value and total antibiotics constraint as

in Section 5.4.1.
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Figure 5.6: Optimised treatments administered intravenously by MIC value and max-

imum total antibiotics. The black markers represent the fixed-dose treat-

ment with the lowest failure rate fr for that configuration.
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Figure 5.7: Comparison of the dosage profile of the three best optimised intravenous

treatments against the best fixed-dose treatment (in black). Failure rates

fr are listed on the right-hand side, with confidence intervals in square

brackets.
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The scatter plot in Figure 5.6 compares the failure rates of the best fixed-dose

treatments against ten DE-optimised treatments. We observe a similar picture

as for orally administered treatments, that is, DE-optimised treatments tend

to have lower failure rates, and the difference between lower and higher total

antibiotics constraints diminishes the higher the MIC value. We also observe

that failure rates are lower than for the respective orally administered treat-

ments in Figure 5.3, which confirms that administering the drug intravenously

increases effectiveness.

Figure 5.7 plots the dosage profiles of the three best-optimised treatments. For

comparison, the profile of the best fixed-dose treatment is also shown in black

colour. Failure rates and confidence intervals are listed on the right-hand side

of each plot.

Across experiments with the lower total antibiotics constraint, we observe that

the failure rates of the best-optimised treatments are approximately between

15% and 30% lower than the failure rate of the corresponding best fixed-

dose treatment. However, we see almost no improvement in failure rates for

experiments with the higher total antibiotics constraint. In fact, the confidence

intervals of many of the DE-optimised treatments overlap the confidence

interval of the best fixed-dose treatment.

The general shape of the dosage profiles is similar to the shape of the orally

administered treatments: a high first dose, followed by roughly constant doses

and tapering off on the final day. However, more than half of the optimised

treatments are a day longer than the best fixed-dose treatment. In contrast,

most orally administered treatments matched the fixed-dose treatment in

duration.

5.4.2.1 Discussion

As observed in Figure 5.7, DE barely manages to improve on the failure rate

of the fixed-dose treatment in experiments with the higher total antibiotics

constraint. There are two hypotheses for this — due to the stochastic nature
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of the mathematical model, the fitness function might be too noisy, making it

difficult for the DE to find the optimal solution; or the fixed-dose failure rate

is already near the optimal value.

To check whether the failure of DE in finding better solutions is down to the

noisy fitness function, we performed additional experiments, increasing the

number of runs of the mathematical model from 10 000 to 100 000, thereby

reducing the noise on the fitness function by an order of magnitude (yet

increasing the computational cost by an order of magnitude). The best failure

rates found in these experiments ranged from 0.17% ± 0.01% to 0.19% ±

0.01%. This is an improvement on the best fixed-dose failure rates of 0.22% ±

0.01%, although the relative improvement of about 15% to 20% is smaller than

observed in other experiments.

The additional experiments suggest that noise on the fitness function may pre-

vent DE from converging to the optimum. However, the modest improvements

despite reducing the noise by an order of magnitude also suggest that there

is not a single optimal treatment but a wide basin of treatments with very

similar near-optimal failure rates.

5.4.3 Two Bacteria Strains with Oral Administration

In cases when people are immunocompromised, it is common that they

could carry multiple types of bacteria or several strains of the same type

of bacteria. In this set of results, we are modelling the case when 95% of the

bacterial population has a resistance of MIC = 8 µg/mL and 5% of the bacterial

population make up a strain with a more resistant MIC (16, 24 or 32 µg/mL).

Antibiotics are administered orally.

We first examined treatments using the same total amount of antibiotics as in

the experiments with only one strain of bacteria in Section 5.4.1. We observed

failure rates around 10% when the more resistant strain has MIC = 16 µg/mL.

However, the failure rates rise to an average of 97% for MIC = 24 µg/mL,
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Figure 5.8: Treatments with fr ⩽ 1% when there are two strains of bacteria — one

with MIC = 8 µg/mL that makes 95% of the initial bacteria population

and one that corresponds to the MIC shown in the plot that makes 5% of

the initial bacteria population.

and to 100% for MIC = 32 µg/mL. This shows that if a patient is treated for

less resistant bacteria when a more resistant strain is present even in small

amounts, the treatment will likely fail.

It seems plausible that treating a multi-strain infection will require more

antibiotics than would be required for the less susceptible strain on its own

and less than would be required to treat the most resistant strain on its own.

This is confirmed by the findings in Figure 5.8, which plots failure rates for

combinations of the total antibiotics constraint and the MIC value of the

more resistant strain. We are showing the result of five runs of the DE with

10 000 iterations for each scenario. For each MIC value, the figure shows two

treatments that differ by 50 mg in the total amount of antibiotics used. The

treatments with the lower total antibiotics constraint are 7 days long, and the

treatments with the higher constraint are 8 days. The shape of the treatments

is not shown but follows the same pattern we observed before — high first

dose, roughly constant middle doses, and tapering off with a smaller final

dose.
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5.4.3.1 Discussion

We saw that even if a small percentage of the bacteria population develops

a mutation-increasing resistance, the treatment could become unsuccessful.

Thus, more antibiotics are needed where a multi-strain infection is suspected.

In our model, we found that the amount of antibiotics needed to guarantee a

failure rate well below 1% is quite close to the number of antibiotics required

to treat the more resistant strain on its own — even though that more resistant

strain makes up only 5% of the initial bacteria population.

5.4.4 Extrapolating the Optimised Regimens

As observed in figures 5.4 and 5.7, the shape of optimised treatments always

follows the same pattern: a high first dose, followed by roughly constant doses,

and tapering off on the final day. The ratio of first to second doses varies across

experiments, but is often close to 1.5. This leads us to extrapolate the following

simple way of formulating an optimised treatment without running the DE

algorithm.

Suppose the standard fixed-dose regime is a daily dose of 2× x mg over n

days. Then the extrapolated optimised dose regime consists of a first dose of

3× x mg, followed by n− 2 doses of 2× x mg, followed by a final dose of x

mg. Table 5.6 contrasts the failure rates of the best DE-optimised treatments

(orally administered) against the failure rates of treatments of the same length

but using the extrapolated dosage regime. This shows a slight further improve-

ment (around 5 to 10%) of failure rates across the board. (We see a similar

improvement for intravenously administered drugs.)

The extrapolated dose regime could easily be implemented in a real-life

scenario where x mg is the dosage of a single pill, and the patient takes 3 pills

on the first day of treatment, followed by n− 2 days of 2 pill doses, and 1

pill on the final day. Our modelling predicts that such a dose regime would
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Table 5.6: Comparison of failure rates fr of the best fixed-dose treatments, the best

DE-optimised treatments, and the corresponding extrapolated treatments.

MIC [µg/mL] 8 16 24 32

total antibiotics [mg] 125 250 400 550

treatment length [days] 7 7 7 7

fr fixed dose [%] 2.76± 0.03 2.74± 0.03 1.41± 0.02 1.00± 0.02

fr best DE [%] 2.09± 0.03 2.06± 0.03 1.02± 0.02 0.76± 0.02

fr extrapolated [%] 2.00± 0.03 1.98± 0.03 0.98± 0.02 0.71± 0.02

MIC [µg/mL] 8 16 24 32

total antibiotics [mg] 150 300 450 600

treatment length [days] 8 8 8 8

fr fixed dose [%] 0.36± 0.01 0.38± 0.01 0.38± 0.01 0.38± 0.01

fr best DE [%] 0.28± 0.01 0.27± 0.01 0.29± 0.01 0.30± 0.01

fr extrapolated [%] 0.25± 0.01 0.25± 0.01 0.25± 0.01 0.25± 0.01
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significantly improve treatment failure rates compared to the standard fixed-

dose treatment. However, these predictions need to be clinically validated.

5.5 conclusion

Antimicrobial resistance is a growing global threat to healthcare and food

production. To deal with this complex challenge, a range of approaches are

required, critically including novel strategies to optimise the use of existing

antibiotics. This chapter uses mathematical modelling and state-of-the-art

evolutionary algorithms for optimising dosing regimes tailored to bacterial

infections with different levels of resistance. We also explored two forms of

administering antibiotics (orally and intravenously), as well as infections with

a single strain and two strains of bacteria. Our formulation encodes dosing

regimens as vectors of real numbers and uses a linear constraint on the total

antibiotic used.

The main goal was to design optimised regimens with lower failure rates than

the standard fixed-daily dose regimens for the same amount of antibiotics.

The resulting optimised regimes have varying daily doses and achieve an

improved lower failure rate of between 20% and 35% when compared to

fixed-dose regimens with the same amount of drug, demonstrating a relative

improvement. All optimised regimens, for n days in duration, start with a

high dose on the first day, followed by n− 2 doses that are roughly similar to

the corresponding fixed-dose regimen, and tapering off with a lower dose on

the final day. The first and last doses vary across experiments. In most cases,

the first dose is approximately 150% of the second dose, and the final dose is

about 50% of the second dose.

A general pattern can thus be extrapolated of how treatments could be optim-

ised, where the first dose is 3× x mg, followed by 2× x mg and the last dose

of x mg, where 2× x mg is the standard daily fixed dose currently prescribed.
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It is important to note that different antibiotics have different levels of toxicity,

however, taking an extra dose of antibiotics is unlikely to cause serious harm.
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6
N O I S Y H A N D L I N G M E C H A N I S M A N D R U N T I M E

O P T I M I S AT I O N

6.1 introduction

While many studies have explored different techniques for handling problems

with noisy objective functions [114]–[116] as well as specific implementations

for established algorithms [117]–[119] not many direct comparisons between

the approaches have been made. We have chosen CMA-ES over the rest of

the solutions as it showed promising results in several applications with

noisy objective functions [120], [121]. [122] describes CMA-ES less vulnerable

to noise because it applies a population-based approach, averaging in the

recombination process, and a rank-based, non-elitist selection. In Chapter 3 an

overview of the algorithm has been presented and later on in this chapter, an

overview of the noise-handling approach is described.

We employ the covariance matrix adaptation evolution strategy (CMA-ES) [78],

[123]–[127]. This choice is made because of several reasons:

• CMA-ES is a non-elitist continuous domain evolutionary algorithm.

Non-elitism avoids systematic fitness overvaluation on noisy objective

functions [117] because even solutions with superior fitness values sur-

vive only one generation. This is applicable to the fitness function we use,

as the mathematical model is stochastic, and is the reason we evaluate

each solution multiple times.

• The selection of CMA-ES is only based on the ranking of solutions.

This provides additional robustness in a noisy environment. Ranking-
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based selection (sorts the population first according to fitness value and

ranks them) is particularly necessary to the strictly order-preserving

transformations of the fitness function.

• The CMA-ES provides an effective adaptation of the search distribution

to the landscape of the objective function.

• The CMA-ES can be reliably used with small population sizes, allowing

for a fast adaptation in an online application or live systems. In future

work, the model is to be used by medical professionals to optimise and

personalise antibiotic treatment, so it is important for the results to be

delivered quickly.

• There is a UH-CMA-ES mechanism that is used for noise handling and

uncertainty handling.

A comparison between using CMA-ES and UH-CMA-ES is done, where the

number of mathematical runs is decreased in a few steps.

6.2 noise handling implementation — pycma

Hansen, Nikolaus, et al. in [126] propose a re-evaluation technique that

provides a quantification of the uncertainty for any ranking-based search

algorithm. As a ranking-based search algorithm changes the ordering of the

solutions, degrees of uncertainty are brought into the objective function. The

uncertainty quantification uses rank changes that happen as a result of the

reevaluation of the solutions. To counteract this, before the reevaluation is

carried out, a small perturbation is applied to count for the noisiness of the

fitness function. The base uncertainty handling mechanism reevaluates each

solution at most once, and that solution is chosen at random. There is an

option to change the solution to be reevaluated to the best solution so far,

but the paper does not indicate major differences in the results between the

two approaches. After the reevaluation process, the number of ranks changes.
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Finally, the measured rank changes are normalised, providing us with the

uncertainty measurement.

Another feature of the uncertainty handling mechanism is the increase in the

population variance. This is beneficial as it makes the population more diverse,

the population escapes search-space regions with too low a signal-to-noise

ratio, and premature convergence is prevented.

6.3 experimental setup

We have chosen the pycma library to implement the CMA-ES algorithm. [83].

For the experiments we have set the maximum budget for fitness function

evaluations to 40 000 and the starting population is the same for both sets

of experiments which is set to 4+ 3 ∗ log(N) according to the library’s docu-

mentation, where N = 10 which is the starting length of the treatment. The

initial global step size σ = 0.5 and the seed is set to 234 for all experiments.

After the run of the algorithm is finished, the result is reevaluated with 1

000 000 runs of the mathematical model, and we refer to that value as failure

rate fr. The difference in the experiments is whether the uncertainty handling

mechanism was enabled or not and how many times the mathematical model

was running during the experiment. The number of mathematical model runs

is referred to as rmathmodel in the following sections. It is important to note

that the population size increases when the noise handling mechanism is used,

and it is optimised during each run.

We have chosen MIC = 8 with Atotal = 150 scenario, where a single type of

bacteria is present, and the antibiotic is taken orally for all experiments. This

means the best fixed-dose treatment is the eight-day treatment x = (18.75mg,

18.75mg, 18.75mg, 18.75mg, 18.75mg, 18.75mg, 18.75mg, 18.75mg). The fail-

ure rate for that treatment is fr = 0.38% with the average time to clear infection

tcure = 5.39 days (in most treatments the patient will be cured during day 5 of

the treatment).
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Here, we have used a constraint on the treatments where the Atotal ⩽ 150.

Preliminary experiments were carried out where a weighted sum of the failure

rate and the Atotal was used as a fitness function with various weights with

the failure rate being the primary function, but the results were not satisfactory

when UH-CMA-ES was used with higher than expected failure rates after

reevaluation.

The values chosen for how many times the mathematical model runs during

the experiment are 10 000, 7500, 5000, 2500, 1000, 500, 250 and 100. For each of

those values, we have run 30 experiments with CMA-ES and 30 with UH-CMA-

ES. The aim of this chapter is to find the minimum number of mathematical

model runs rmathmodel that is required while maintaining a median failure

rate that is better than the fixed-dose rate.

6.4 preliminary results

6.4.1 Evaluations Per Treatment

In the work [13] which corresponds to Chapter 4 in this thesis, each solution

was evaluated using the mathematical model 500 times, and it was established

that this number was too low as the reevaluated solutions had noise in the

failure rate about 5% in comparison to the one calculated during the run of

the multi-objective algorithm. This led to a further analysis of how many eval-

uations would provide a good estimate of the failure rate without sacrificing

too much computational power which was then used in Chapter 5.
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Figure 6.1: Boxplots representing the fr calculated for various treatments with differ-

ent numbers of runs of the mathematical model. Each boxplot represents

30 runs.

In Figure 6.1 we have presented six different treatments and their failure rate

when running the mathematical model a different number of times - 100, 250,

500, 1000, 2500, 5000, 7500, 10 000 and 1 000 000. For each of the values, 30

runs have been made where the MIC = 8, the Atotal is around 150 and the

length of the treatments is between 8 and 10 days. We have added, 1 000 000

as a reference point to the real value of the fr which we use for establishing

the reevaluated fr throughout the rest of the chapter. What could be observed

for treatments where the fr ⩾ 1% is that 100 runs results is approximately 7%

noise; 250 runs — 5%; 500 runs — around 5% as well; 1000 — 3 to 2 %; 2500 —

1.5%; from 5000 to 10000 — or less than 1%. When the treatment has fr ⩽ 1%,

the noise is much smaller for all values. However, it is important to note that

when we start running the evolutionary algorithm, the treatments would be

closer to the ones with higher fr.
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6.4.2 CMA-ES

Some preliminary experiments were run to explore the behaviour of the CMA-

ES algorithm using the pycma library. In Figure 6.2 we have provided the plot

presented at the end of the run by the pycma library. On the top graph, we

can see on the y-axis coloured in blue the best value of fr for this run, in green

the axisratio, in red each iteration’s best value of fr and global step-size σ in

orange all in log10 scale. On the x-axis, we have the function evaluations. As

CMA-ES uses ranking of the solutions, this graph represents the ranking of

the solutions during runtime. In the middle graph, we can see the principal

axes lengths for each of the 10 variables that are representing our antibiotic

treatment. This represents the variance in the covariance matrix in relation to

the values of the 10 variables during the runs of the algorithm. On the bottom

graph, we can see the change in the actual 10 variables of the best solutions

during the run of the algorithm.

We can see from all three panels that there is a sharp jump in the values

around function evaluation 27 500 which is due to a change in the evolution

path (accumulates historical search directions in successive generations [128])

in the global step size control. When exploring the output files, this also stands

for a sudden decrease in the value of σ. As in this algorithm, σ is the global

step size starting with the initial value (we set that to 0.5) given and is updated

each iteration, this explains the jump in the graphs on Figure 6.2.

6.4.3 UH-CMA-ES

We can see in the caption of Figure 6.3 that the population size for this run was

set by the uncertainty handling mechanism, as it differs from the initial one to

increase the population diversity [126]. Comparing this run with CMA-ES one

from Figure 6.2, we can see that the reevaluated failure rate is much closer to

the true value than when using uncertainty handling.
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Figure 6.2: Example plot from the pycma library from CMA-ES run with the number

of mathematical model runs is set to 5000. The failure rate of this run is

0.35% after reevaluation, and the failure rate is 0.06% during the CMA-

ES runtime. The population size is approximately 10. In the top and the

middle plots, the y-axis is presented on a logarithmic scale of 10.
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Figure 6.3: Example plot from the pycma library from UH-CMA-ES run with the

number of mathematical model runs set to 5000. The failure rate of this run

is 0.32% after reevaluation and the algorithm evaluated it at 0.20% during

runtime. The population size for this run is set by the noise handling is

approximately 858. In the top and middle plots, the y-axis is presented on

a logarithmic scale of 10.
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On the top graph, we can see that the run’s best fr coloured in blue reaches

the minimum value at about 9000 function evaluations in this example run.

Then in the middle plot, the change in value is not as steep as the one in

Figure 6.2, but we also never reach a sudden change in the value of σ giving

us the jump in the top plot. This is explained by the large population and

the smaller number of iterations during the run of the algorithm, as in this

particular example there were 268 iterations (the run in Figure 6.2 has 4000

iterations). The bottom graph represents the values of the 10 variables, and

the noise in the values decreases near the same point where the fbest is at its

minimum. This shows a different behaviour to CMA-ES where the noise in

the variables was present only at the first few thousand evaluations and then

after the jump in the value of σ.

Noise handling does change the behaviour of CMA-ES, however, it does

not appear to significantly change the result of the optimisation as the dif-

ference in the final solution’s reevaluated fr 0.15%. Nevertheless, the final

non-reevaluated fr of the UH-CMA-ES solution is much closer to the real

value of fr.

6.5 results

When running the mathematical model on a powerful machine with processor

Intel Core i5-10400 CPU @ 2.90GHz with 12 threads and 8.00 GB of RAM,

a single run of the mathematical model takes around 0.0000075 seconds

while using JIT and Numba to optimise the Python runtime. In Chapter

5 the experiments where the MIC = 8, the maximum iterations of the DE

algorithm are 4000, the population size of each iteration is 150 and each one

of the individuals in each population runs the mathematical model 10 000

times. This means that for a single experiment (out of a total of 240), the

mathematical model is run 6 000 000 000 times, taking around 13 hours. While

these experiments were run on a more powerful machine with multiple cores
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with parallelised processes, here we aim to minimise that time. In the results of

this chapter, we will look into decreasing the mathematical model runs in the

individuals in the population during the time the algorithm runs. The values

we have chosen are 10 000, 7500, 5000, 2500, 1000, 500, 250 and 100, so we have a

base for comparison. We will refer to that number as rmathmodel (mathematical

model runs) in the following sections. 30 runs of each implementation (CMA-

ES and UH-CMA-ES) are run for each of the values — 480 experiments in

total.

6.5.1 Failure Rate

In Figure 6.4 are presented all experiments by the number of mathematical

runs used in each individual in the population indicated on the top of each

boxplot during the algorithm run. The grey line represents the best fixed-dose

treatment with fr = 0.38% with Atotal = 150.

6.5.1.1 CMA-ES

The median on all the experimental setups falls above the fr value of the

fixed-dosed treatment, except for when the rmathmodel = 1000. However, all

the experimental setups except when rmathmodel = 100 and 250 produced a

result better than the fixed-dose treatment within the 30 runs. The results for

CMA-ES are consistent in their failure rate, as there are not many outliers

with abnormal distances from the other values, showing that the algorithm

produces consistent results. This algorithm behaviour is already seen in Figure

6.2 where we can see there is little change in the values of the variables over

the run of the algorithm.

6.5.1.2 UH-CMA-ES

While the UH-CMA-ES performs better in terms of the median of the failure

rate, the outlier with abnormal distance from the other values is higher. On
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Treatment Failure Rate fr

17.96, 14.92, 17.70, 4.22, 29.34, 4.55, 16.92, 13.31, 11.43, 8.12 8.27%

39.02, 14.65, 23.18, 7.36, 7.02, 23.36, 7.68, 6.94, 11.16, 5.47 4.74%

22.12, 13.17, 26.39, 15.74, 12.88, 7.20, 16.45, 1.91, 11.00, 20.90 5.74%

12.32, 27.91, 11.67, 6.12, 20.42, 19.42, 2.76, 17.06, 24.86, 2.28 8.19%

Table 6.1: Treatments that resulted in local optimums during UH-CMA-ES experi-

ments.

the boxplot, we have limited the results to where the fr ⩽ 3%, however, there

are several runs which resulted in a failure rate higher than that. Interestingly,

all of those runs occurred when rmathmodel is 10 000, 7500, 5000 or 2500, the

population size is very high (around 4000), and the iterations are low (50 to

60). Those runs resulted in the treatments shown in Table 6.1. This could be

explained by the population variance mechanism. Nevertheless, the only three

experimental setups where the UH-CMA-ES median failure rate is significantly

above the fixed-dosed are for 100, 250 and 500 which is to be expected as the

noise in the fitness function is much higher as observed in Figure 6.1.
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Figure 6.4: Failure rate by implementation and rmathmodel. A gray line representing

the failure rate of the optimal fixed-dose treatment is added for comparison.

Please note that the plot has been restricted to show only results from 0%

to 3%.

6.5.2 Time to Clear Infections

Even though the failure rate is the main feature of our solutions, we investigate

the time to clear the infection of successful treatments by counting the average

number of days it takes for the bacterial population to drop to zero.

6.5.2.1 Distribution

Figure 6.5 graphs the distribution of the time to clear for each experimental

setup, where the fixed-dose treatment is the one in the leftmost column of

each plot and the other three are the best-optimised treatments. Similar to

Chapter 5, the distributions are colour-coded and the percentage represents
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Figure 6.5: Distributions of the expected time to clear the infection, comparing the

best fixed-dose treatment (left-most column of each plot) to the three best-

optimised treatments. The expected time to clear is shown on top of each

column. Each treatment was evaluated 1 000 000 times.
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what part of the 1 000 000 evaluations in which the infection was cleared. At

the top, we have noted the expected time to clear the infection in days. As

the mathematical model is the same as in Chapter 5, the mathematical model

runs for 13 days as the infection can be cleared in the days after the antibiotic

course is over. As some treatments fail, the distributions do not sum up to

100%.

We can clearly notice that the optimised treatments clear the infection faster

than the fixed-dose ones. More specifically, almost all the presented treatments

clear the infection in the second half of day 3, which reduces the expected

time to clear by almost 2 days. This is a better result than the one we had

in Chapter 5, where the three best-optimised treatments have the estimated

time to clear at 4.94, 4.79 and 4.76 — reduction with CMA-ES is just over a

day. Depending on if the uncertainty handling mechanism was used or not,

there is not a significant difference in the results as well as the number of

mathematic model runs based on the top three runs for each experimental

setup. Considering that the optimisation is not focused on the expected time

to clear the infection, the CMA-ES algorithm naturally found solutions that

clear the infection faster are more beneficial for achieving a lower failure rate.

6.5.2.2 Expected Time To Clear

Figure 6.6 presents the expected time to cure across all treatments, not just the

top three for each experimental setup. The data is split into panels depending

on the rmathmodel value, which is noted in the grey bar at the top of each

panel. While the best treatments perform similarly, overall UH-CMA-ES has

lower values in terms of median value but produces more outliers outside the

fixed-dose treatment value. If our goal is to produce a treatment that clears the

infection the fastest, we can even use the rmathmodel = 100 with UH-CMA-ES

mechanism setup, and we have a high probability to find a treatment with a

lower value than the fixed-dose treatment expected time to clear. However, it

is important to note that our primary objective is producing a low failure rate.
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Figure 6.6: Expected time to clear the infection by implementation and mathematical

model runs. A grey line representing the corresponding value of the

optimal fixed-dose treatment is added for comparison. Treatments with

failure rates over 3% are omitted from the plot.

In Figure 6.7 we have presented a scatterplot where on the x-axis we have the

expected time to clear and on the y-axis, we have fr. When looking at the UH-

CMA-ES points we can see that with rmathmodel ranging from 100 to 500, the

distance between the points is low, so they form a cluster and the covariance

between them is positive. When using CMA-ES the points are not that close

in proximity with bigger distance, and we have a higher noise even when

rmathmodel = 10 000. In relation to the aim of this chapter, using UH-CMA-ES

with rmathmodel = 1000 would be the optimal choice where the failure rate and

the expected time to clear infection is lower than the fixed-dose one, and the

computational time is 10 times faster. As there are outliers present, even if the

experiment needs to be run multiple times it will still be more efficient than

running a single experiment without UH-CMA-ES with 10 0000 rmathmodel.
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When rmathmodel = 1000 just over half of the final reevaluated treatments have

a fr ⩽ 0.38% (the failure rate of the best fixed-dose treatment). Therefore, if

the experiment was run 4 times, the chance of a solution better than the best

fixed-dose one is ⩾ 95% or 3 times for a change of 89.8%.

2500 5000 7500 10000

100 250 500 1000

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6
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1.0%

2.0%

3.0%

0.0%

1.0%

2.0%

3.0%

Time To Clear (days)

f r

Implementation

CMA-ES

UH-CMA-ES

Figure 6.7: Expected time to clear the infection and failure rate scatter plot by imple-

mentation and mathematical model runs.

6.5.3 Treatments

In Figure 6.8 the same treatments from Figure 5.5 are plotted with the fixed-

dose treatment shown in black. The failure rates and the confidence intervals

are presented on the top right-hand side of each panel. In Chapter 5 in the

experiments where there is a single bacteria present, and the antibiotics are

taken orally (same model as experiments here) the best failure rate with MIC=8

and Atotal = 150 is 0.28%. In the set of results here, we achieve fr = 0.27% with

the same computational budget as in Chapter 5 and achieve fr = 0.26% with
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the smaller budget of rmathmodel = 7500 and half the budget of rmathmodel =

5000. Even when taking into account the confidence interval of all treatments

being, [+/− 0.01%] we are producing a statistically better result using UH-

CMA-ES.

When it comes to the treatments themselves, we have similar patterns to the

one observed in Chapter 5 — high first dose, similar middle doses and low

last dose. Most of the treatments have a length of 8 days, with the exceptions

being the ones where the rmathmodel = 100 and 250. This treatment length of 8

days aligns with the discoveries from the last chapter.

When we use UH-CMA-ES with rmathmodel ⩾ 5000 we can see that the treat-

ments converge to the same solution - first dose between 25mg and 30mg,

middle doses at around 20mg, and last dose at day 8 at around 10mg. This

is slightly different to the treatment we observed in Chapter 5 as there the

last dose at day 8 is closer to 15mg. However, the treatments generated by

UH-CMA-ES are in line with our hypothesis of the extrapolated optimised

dose regime — first dose of 3× x mg, followed by n− 2 doses of 2× x mg,

followed by a final dose of x mg.

When comparing UH-CMA-ES and CMA-ES, there is a lot more fluctuation

when using CMA-ES in the doses - for example CMA-ES with 10 000 evalu-

ations‘s first doses are ranging from 25mg to 30mg, and then the same can

be observed for the rest of the doses in the treatment. In comparison, the

solutions for UH-CMA-ES with 10 000 evaluations are almost identical. Similar

observation can be made for UH-CMA-ES with 7500 and 5000 evaluations

and CMA-ES with 7500 and 5000 evaluations — here for CMA-ES with 7500

evaluations for one of the treatments we even have a higher dose of 25mg at

day 6. For UH-CMA-ES with 2500 and 1000 evaluations, the treatments
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Figure 6.8: Comparison of the dosage profiles of the three of the best treatments

against the best fixed-dose treatment (in black). Failure rates fr are listed

on the right-hand side, with confidence intervals in square brackets.
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are still aligned with one another, but we start seeing even more different

from one another when using the CMA-ES algorithm. When we go into lower

evaluation count than 500, the treatments generated with both UH-CMA-ES

and CMA-ES become less aligned to one another, with fr being worse than

the fixed-dose treatment’s one on average.

As suggested in the previous subsection, selecting rmathmodel = 1000 and using

an uncertainty handling mechanism for the optimal experimental setup, we

can see in the panel that the treatments have a high correlation with one

another between rmathmodel = 10 000 to rmathmodel = 1000. This shows that we

can achieve similar successful treatments that produce fr better than the best

fixed-dose one with a smaller computational budget.

6.6 conclusion

The main goal of this chapter is to investigate the effectiveness of noise

handling, at different noise levels, and compare it to experiments without the

noise handling mechanism. We implemented the CMA-ES algorithm with the

uncertainty handling UH-CMA-ES and applied it to the mathematical model

from Chapter 5, where there is only one type of bacteria present and the drugs

are taken orally. The specific experimental setup we chose was MIC with value

8 and maximum total antibiotics Atotal ⩽ 150.

As the mathematical model is the bottleneck in the runtime of our experiments,

we aim to minimise the number of mathematical model runs needed for each

experiment. A selection of eight values for the number of mathematical model

runs was made, and the results were tested in terms of that as well as if the

uncertainty handling was implemented or not with the CMA-ES algorithm.

Noise ranges from 10% down to about 1%; computational cost varies by a

factor of 100.

It is important to mention that noise handling has different effects in different

levels of noise. When the noise is low (rmathmodel is between 5000 and 10 000)
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and moderate (rmathmodel is 1000 or 2500) it performs well and is on average

better than the best fixed-dose treatment. However, when the noise is high

(rmathmodel is from 100 to 500) the fixed-dose treatment is better on average.

In addition, UH-CMA-ES produces more outliers than CMA-ES suggesting

the higher robustness of CMA-ES, however, UH-CMA-ES produces better

treatments in comparison.

We found that with only 1000 runs of the mathematical model (in comparison

to 10 000 in the previous chapter), we can achieve results that are better than

the best fixed-dose treatment available in terms of failure rate, and with 5 000

evaluations we can produce a better result than the best treatment for this

experimental setup in comparison with Chapter 5. As the experiments are

already very computationally heavy, even a reduction in half of the runtime is

significant.
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7
D I S C U S S I O N

This chapter summarises the results obtained from the work in this thesis and

discusses how these results relate to the global context. The limitations of this

work and possible future work will also be discussed.

7.1 summary of results

7.1.1 Chapter 4

In Chapter 4 we explored the addition of the PK/PD modelling as well as

the approximate method Tau-leaping based on the Gillespie algorithm. The

PK/PD modelling introduced more detailed mechanics on how the host

processes the antibiotic, depending on the intake type — oral or intravenous.

In Chapter 4 we only explored the scenario where the antibiotics are given

orally and then absorbed in the blood, where they kill the bacteria.

In addition to that, two different types of multi-objective population-based

evolutionary algorithms (NSGA-II and SMPSO) were tuned and applied. The

analysis showed that the NSGA-II algorithm provided better results than

SMPSO based on the hypervolume indicator. No statistical significance in the

performance of the algorithms was found in terms of whether they used tuned

parameters or not.

The treatments‘ characteristics were explored and found that the best-performing

ones alternate between a very high dose and a lower dose, where the first

dose was in most cases the highest one. This differed from previous studies
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that found the optimum solution to have tapered doses instead. However,

the change in the treatment‘s dose characteristic could be explained by the

addition of the PK/PD modelling.

7.1.2 Chapter 5

The single-objective algorithm DE was used in Chapter 5, where the main

objective was to produce treatments with a minimal failure rate and the

available amount of total antibiotics was set as a constraint. The parameters of

the mathematical model were revisited, following different laboratory studies

and other mathematical models. We explored different levels of resistance

(low, medium, high, very high) of the bacteria for the three scenarios — single

bacteria strain with oral administration, single bacteria strain and intravenous

administration, and two bacteria strains with oral administration. The best

standard fixed-dose treatment was produced for each level of resistance. The

resulting optimised regimes have varying daily doses and achieve an improved,

lower failure rate of between 20% and 35% when compared to fixed-dose

regimens with the same amount of drug. All optimised regimens, for n days

in duration, started with a high dose on the first day, followed by n× 2 doses

that are roughly similar to the corresponding fixed-dose regimen, and tapering

off with a lower dose on the final day. A general pattern was observed, where

the first dose is 3× x mg, followed by 2× x mg and the last dose of x mg,

where 2× x mg is the standard daily fixed dose from the standard fixed-dose

treatment. This differed from the treatments from Chapter 4, but it can be

explained by the change in the parameter values in the mathematical model.

7.1.3 Chapter 6

Chapter 6 explored another algorithm — CMA-ES, and the uncertainty hand-

ling technique UH-CMA-ES implemented for it. The main aim of this chapter

101

[ 30 September 2022 ]



was to analyse the effectiveness of the noise (uncertainty) handling at different

levels of noise in the objective function (failure rate) and compare that to

experiments without noise handling. Only one of the scenarios from Chapter

5 is used for the experiments — infection with a single bacteria strain with

oral administration of the antibiotics, where the bacteria have low levels of res-

istance to the antibiotic used. The same mathematical model and parameters

are used.

We also aim to minimise the number of mathematical model runs required

for each experiment. Eight values were chosen, and the results were examined

— low levels of noise with a high number of runs of the mathematical model,

moderate levels of noise where the mathematical model is run around half

of the times in comparison with Chapter 5 and high levels of noise with a

low number of runs of the mathematical model. We found that with moderate

levels of noise, we can produce treatments that are better on average than the

best fixed-dose treatment, no matter if the noise handling is enabled or not.

With noise handling the probability of a treatment being better than the best

fixed-dose treatment is higher, however, the chance for outliers is also higher.

Nevertheless, we produced better treatments in terms of minimal failure rate

in comparison with Chapter 5. The treatments‘ characteristics were similar to

those in Chapter 5 with the same pattern of the first dose is 3× x mg, followed

by 2× x mg and the last dose of x mg, where 2× x mg is the standard daily

fixed dose from the standard fixed-dose treatment.

7.2 future work

While personalised medicine is already used in life-threatening diseases like

cancer [129], [130], similar approaches are not generally established for bac-

terial and viral infections. The standard prescription issued by the pharma-

ceutical companies producing the drugs is often the one advised by medical

staff. As we are discovering, the overall patient‘s health plays a role in how the
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treatment progresses, and the standard prescription might not be optimum

for all.

The results from Chapters 5 and 6 show an easy-to-implement real-world scen-

ario approach to administering antibiotic treatments. However, it is important

to note that in order for that to happen, extensive laboratory and hospital

studies need to be conducted first. This will entail in an in vivo and/or in vitro

testing of the hypothesis presented in the two chapters. While this is out of

the scope of this thesis, such studies can evaluate the approach we have taken

to make a valuable impact on how drugs are prescribed not only in relation to

antibiotics but other types of drug prescriptions as well.

The final part of this research project would be to implement a computer

program system that could be directly used by medical professionals to treat

antibiotic infections. Using this system, we aim to increase the cured patients’

rate with initial treatment, which will therefore minimise the antibiotics being

prescribed as additional treatments would not be necessary. This tackles the

overuse and misuse of antibiotics scenario that contributes to a number of

resistance cases. The system would present the medical professional with

several options, but leave decision-making to them. However, it is important

that the main limitations of this approach be listed:

• Computational budget — not every medical facility might have the

necessary equipment to run our system, however a solution for that

could be a lookup table of pre-generated treatments that the medical

staff can use instead.

• Patient compliance — patients sometimes forget to take their medicine or

stop taking them shortly after they feel better with standard treatments.

Having different daily doses might be challenging for some patients,

however, medical professionals can ensure the treatment is taken appro-

priately or is packaged in a way which it is easy to follow. Further studies

on missed doses can provide interesting insight into such scenarios.
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• Establishing the level of resistance the bacteria has to the prescribed

antibiotic — while hospitals often do such tests, local clinics might not

have the opportunity to do so.

• Mathematical Model Parameters — a more robust way of collecting

the parameter values in a lab setting would benefit greatly from the

performance of this approach.

7.3 concluding remarks

While new antimicrobial and antibiotic drugs are researched and discovered,

bacteria eventually mutate and develop resistance to them. Therefore, it is

important that we use the available medicine in the most optimal manner. A

new approach to prescriptions is presented in this work that can maximise the

efficiency of treatments and thus minimise the overall antibiotics prescribed.
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