
 

 
 

 

 

OPTIMISING WLANS POWER SAVING: CONTEXT-

AWARE LISTEN INTERVAL 

AHMED SAEED 

 

 

A thesis submitted in fulfilment of the requirements for the degree of Doctor of 

Philosophy 

 

Doctor of Philosophy 

Institute of Computing Science and Mathematics 

University of Stirling 

September 2023



II 



III 

DECLARATION OF THE AUTHORSHIP 

 

I hereby declare that this thesis, 

 

“Optimising WLANs Power Saving: Context-Aware Listen Interval” 

 

To the best of my knowledge this is entirely my work, and where any material points 

to the ideas of others, it is thoroughly cited and referenced with appropriate 

acknowledgements given. Also, it has not been submitted for examination for any 

other degree at this university or any other learning institutions. 

 

 

Ahmed Saeed 

September 2023 



IV 

ABSTRACT 

Energy is a vital resource in wireless computing systems. Despite the increasing 

popularity of Wireless Local Area Networks (WLANs), one of the most important 

outstanding issues remains the power consumption caused by Wireless Network 

Interface Controller (WNIC). To save this energy and reduce the overall power 

consumption of wireless devices, a number of power saving approaches have been 

devised including Static Power Save Mode (SPSM), Adaptive PSM (APSM), and 

Smart Adaptive PSM (SAPSM). However, the existing literature has highlighted 

several issues and limitations in regards to their power consumption and 

performance degradation, warranting the need for further enhancements.  

This thesis proposes a novel Context-Aware Listen Interval (CALI), in which the 

wireless network interface, with the aid of a Machine Learning (ML) classification 

model, sleeps and awakes based on the level of network activity of each application. 

We focused on the network activity of a single smartphone application while ignoring 

the network activity of applications running simultaneously. 

We introduced a context-aware network traffic classification approach based on ML 

classifiers to classify the network traffic of wireless devices in WLANs. Smartphone 

applications’ network traffic reflecting a diverse array of network behaviour and 

interactions were used as contextual inputs for training ML classifiers of output 

traffic, constructing an ML classification model. A real-world dataset is constructed, 

based on nine smartphone applications’ network traffic, this is used firstly to evaluate 

the performance of five ML classifiers using cross-validation, followed by conducting 

extensive experimentation to assess the generalisation capacity of the selected 

classifiers on unseen testing data. The experimental results further validated the 

practical application of the selected ML classifiers and indicated that ML classifiers 

can be usefully employed for classifying the network traffic of smartphone 

applications based on different levels of behaviour and interaction. 

Furthermore, to optimise the sleep and awake cycles of the WNIC in accordance with 

the smartphone applications’ network activity. Four CALI power saving modes were 
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developed based on the classified output traffic. Hence, the ML classification model 

classifies the new unseen samples into one of the classes, and the WNIC will be 

adjusted to operate into one of CALI power saving modes. In addition, the 

performance of CALI’s power saving modes were evaluated by comparing the levels 

of energy consumption with existing benchmark power saving approaches using 

three varied sets of energy parameters. The experimental results show that CALI 

consumes up to 75% less power when compared to the currently deployed power 

saving mechanism on the latest generation of smartphones, and up to 14% less energy 

when compared to SAPSM power saving approach, which also employs an ML 

classifier. 
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INTRODUCTION  

1.1 Motivation  

IEEE 802.11 Wireless Local Area Networks (WLANs), commercially known as 

Wi-Fi, are in pervasive deployment and considered one of the most rapidly 

growing technologies in the world that play an integral role in our lives [44]. 

According to a recent study from the Wi-Fi Alliance, there will be more than 

16.4 billion Wi-Fi devices, including personal computers, laptops, 

smartphones, tablets, television and so on in use by the end of 2021 [45]. 

In an infrastructure-based WLANs, wireless devices are equipped with the 

Wireless Network Interface Controller (WNIC). WNIC allows wireless devices 

to share, communicate and access information wirelessly through an Access 

Point (AP) [46].  

Energy is a vital resource in wireless computing systems, and despite the 

rapidly growing popularity of WLANs, one of the most important outstanding 

issues remains the power consumption caused by WNIC during data 

transferring between a wireless device and an AP. The high level of power 

consumption during the communication of WNIC directly affects the battery 

life of a wireless device, if is not connected to a power outlet [47, 48]. 

The 802.11 standard defines the Static Power Save Mode (SPSM) to reduce the 

amount of energy consumed by WNIC. In SPSM, a wireless device conserves 

energy by allowing the WNIC to sleep and waking up periodically to receive 

the buffered packets from the AP [1].  
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However, the SPSM suffers from latency issues. These occur firstly, when a 

wireless device generates the Power Save Poll (PS-Poll) frames to retrieve the 

buffered packets from the AP, and secondly, when a delay of about 100-300ms 

is introduced when the WNIC is off during the beacon intervals, but buffered 

packets are available at the AP. These issues affect the performance of both 

real-time applications, for example VoIP, and interactive applications, such as 

web browsers [4, 5, 6]. 

The Adaptive PSM (APSM) has been deployed within the latest generation of 

mobile devices to overcome the latency related issues associated with SPSM. 

In APSM, by default, the WNIC remains in SPSM and switches into awake 

mode based on a network activity threshold [7, 8]. But without considering the 

priority level of the network traffic of applications, this leads to unnecessary 

wakeups [5, 10]. Moreover, the WNIC remains in awake mode for an idle 

timeout period before fully switching back to SPSM [11]. Examples of 

currently existing smartphones that employ APSM which is based on SPSM 

are: Samsung Galaxy S10, Xiaomi Mi 10, ASUS ROG, and ROG II [168]. 

To eliminate the issue of the threshold mechanism built-in APSM, Smart 

Adaptive PSM (SAPSM) was proposed in [10]. Unlike SPSM and APSM which 

have been commercially deployed, SAPSM is still a research topic. SAPSM 

labels each network-based application of smartphone into two sets of 

priorities; high and low, with aid the of a Machine Learning (ML) classifier. 

SAPSM replaced the threshold mechanism of APSM with a set of two 

priorities, high and low. Consequently, for applications set as high priority, 

the WNIC will be adaptively switched into awake mode, and stays in the 

SPSM with applications set as low priority conserving energy.  

However, no further priority levels or modes have been proposed in this work 

to cater for applications with different patterns of network activity: including 

the least levels of network interactivity, that receive network updates after 
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longer periods of time, secondly, applications with intermittent network 

interactions, and finally, for applications with buffering capabilities. Instead, 

SAPSM operates the WNIC in SPSM for all low priority applications. 

This does not achieve the full potential of a methodology that considers 

optimising the sleep and awake cycles of the WNIC more closely in accordance 

with the smartphone applications’ network traffic reflecting a diverse array of 

network behaviour and interactions. 

1.2 Aims and Objectives 

The aim of this thesis is to develop a power saving framework that optimises 

the sleep and awake cycles of the WNIC using Machine Learning (ML) 

techniques in accordance with smartphone applications’ network traffic. To 

achieve this aim, the following research objectives have been determined. 

• Identify and construct a real-world dataset based on a varied range of 

smartphone applications’ network traffic depicting different types of 

network behaviour and interaction. 

• Train ML classifiers to learn mapping the input features of each sample 

to an output class from the training data and build an ML classification 

model. The set of six input features are:  

• 1- receiving data rate in Kbytes/sec. 

• 2- transmitting data rate in Kbytes/sec. 

• 3- total received Kbytes. 

• 4- total transmitted Kbytes. 

• 5- total number of received packets. 

• 6- total number of transmitted packets. 
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These features were used as contextual inputs for training ML classifiers of 

output classes: 

• 1- high. 

• 2- varied. 

• 3- low. 

• 4- buffering. 

• Evaluate the performance of ML classifiers using 10-fold cross-

validation. Based on the result of the analysis, determine the more 

suitable ML classifier for classifying smartphone applications’ network 

traffic reflecting varied types of network behaviour and interaction. 

Then, assess the generalisation capacity of the selected classification 

models on unseen testing data of applications that were not included in 

training data. Along with evaluation metrics, provide a confusion 

matrix to enable a detailed breakdown of the predictions, including the 

distribution of correct and incorrect predictions made by the 

classification models. 

• Devise power saving modes based on the classified output traffic of the 

captured samples from a varied range of smartphone applications’ 

network traffic. 

• Evaluate the performance of the proposed power saving modes by 

comparing the levels of energy consumption with existing benchmark 

power saving approaches, using varied sets of energy parameters. 

These energy parameters are: 

• 1- txPower: the power consumption during packet transmission.  

• 2- rxPower: the power consumption during packet reception.  

• 3- idlePower: the power consumption when a WNIC is awake 

and not transmitting or receiving packets.  
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• 4- transitionPower: the power consumption when a WNIC 

transits from the sleep to idle state and vice versa.  

• 5- transitionTime: The amount of time required when a WNIC 

transits from sleep to idle state and vice versa. 

• 6- sleepPower: The power consumption when a WNIC is in sleep 

state. 

1.3 Contributions 

In this thesis we proposed a novel concept of Context-Aware Listen Interval 

(CALI), in which the wireless network interface, with the aid of an ML 

classification model, sleeps and awakes based on the level of network activity 

of each application. This is further divided into the following more specific 

contributions: 

• Context-Aware Network Traffic Classification 

We proposed a new ML based approach to classify the network traffic of 

wireless devices in WLANs. Smartphone applications’ network traffic 

reflecting a diverse array of network behaviour and interaction were used 

as contextual inputs for training ML classifiers of output traffic. We 

employed five commonly used ML classifiers to classify the network traffic 

of a varied range of smartphone applications, firstly using 10-fold cross-

validation for the initial classification, followed by extensive 

experimentation to assess the generalisation capacity of the selected 

classifiers on unseen testing data. The experimental results further 

validated the practical application of the selected ML classifiers, where the 

classification models have demonstrated strong generalisation capabilities 

and indicated that ML classifiers can be usefully applied for classifying the 

network traffic of smartphone applications based on different levels of 

behaviour and interaction. 
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• CALI Power Saving Modes 

To optimise the sleep and awake cycles of the WNIC in accordance with 

the smartphone applications’ network activity, we have developed four 

CALI power saving modes. These power saving modes enable additional 

power saving opportunities and have been devised based on the classified 

output traffic of the captured samples from a varied range of smartphone 

applications’ network traffic. Hence, the ML classification model classifies 

the new unseen samples into one of the classes, and the WNIC will be 

adjusted to operate into one of CALI power saving modes. The 

experimental results have demonstrated that CALI power saving modes 

consume up to 75% less power when compared to the currently deployed 

power saving mechanism on the latest generation of smartphones, and up 

to 14% less energy when compared to Pyles’ et al. SAPSM power saving 

approach, which also employs an ML classifier. 

• Dataset 

We have constructed a real-world dataset based on the network traffic of 

nine selected smartphone applications depicting different types of network 

behaviour and interactions; including, two VoIP applications, two 

applications of video calls, two applications of intermittent network 

interaction, two applications of very low network interaction, and finally 

one application representing applications with buffer streaming. This has 

resulted in the construction of a dataset, named Dataset 1, consisting of 

1350 instances, with 150 instances per application and 6 features per 

instance. These features are statistical-based and unique for specific types 

of applications. Additionally, inspection into the packet content is not 

required to extract these features, hence statistical features have low 

computational overhead and are applicable for both encrypted and 

unencrypted traffic. Moreover, these features reflect the applications’ 
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network interactivity better than non-network features like touch screen 

rate, as regularly touching the screen, does not always mean that network 

traffic is occurring. For instance, video games are highly interactive in 

terms of user and screen, but practically non-interactive in terms of 

network interaction. Furthermore, four output classes were assigned to 

cater for the network traffic of these applications. Thereby out of the nine 

chosen applications, the first output class was assigned to the four 

applications that represent real-time applications with high and constant 

levels of network interaction. The reason for having four applications for 

this output class is to ensure more variation in the range of network traffic 

included in the training data by having two VoIP applications and two 

video-calling applications. For the remaining three types of network traffic, 

the second output class was assigned to the two applications that represent 

network traffic with intermittent levels of interaction, while the third 

output class was assigned to the two applications that represent the least 

levels of network interaction. Finally, the fourth output class was assigned 

to one application that represents the network traffic of audio streaming 

applications. In addition, further datasets were constructed from Dataset 1 

by the application of different feature selection algorithms. Dataset 2CBFS 

is based on a consistency feature selection algorithm and Dataset 3IGFS is 

based on an information gain feature selection algorithm. 

1.4 Thesis Structure 

The remainder of this thesis is structured as follows: 

Chapter 2 - Background and Related Work: this chapter reviews state-of-the-

art power saving protocols in IEEE 802.11 Family including their comparative 

drawbacks. This is followed by a critical review of power saving approaches 

proposed in the scientific literature. This chapter also discusses the 
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performance evaluation methods used in communication networks, with 

more attention given to the chosen method. 

Chapter 3 - Network Traffic Classification: this chapter reviews the existing 

techniques used for network traffic classification, including ML methods. It 

then introduces and explains the essential steps required to perform an ML 

based traffic classification. This chapter also presents an ML classifier 

taxonomy, it then describes which ML classifier goes with which kind of data. 

This chapter also justifies the selection of the chosen ML classifiers. It then 

proceeds to describe the ML classifiers employed in this research, followed by 

presenting a comparison of ML classifiers. This chapter also provides an 

overview of other DL methods and illustrates how they differ from the ML 

ones. This is followed by an overview of ML classifiers. Lastly, it presents a 

review of proposed ML methods in the scientific literature. 

Chapter 4 - Optimising WLANs Power Saving: this chapter discusses our 

novel Context-Aware Listen Interval framework for optimising WLANs 

power saving. It describes how different levels of traffic behaviour and 

interaction in the background of smartphone applications are used as 

contextual inputs for training ML classifiers of output traffic constructing an 

ML classification model. This chapter also justifies the selection of the chosen 

applications and the assignment of output modes. It also explains how the 

CALI power saving modes were used to optimise the sleep and awake cycles 

of the WNIC in accordance with the smartphone applications’ network 

activity. This chapter also presents the process of data extraction and 

preparation used in this research to construct the dataset. It then proceeds to 

describe the experimental settings employed in this chapter for traffic 

classification, including the description of parameter settings for the selected 

ML classification models. Lastly, it evaluates the performance of ML classifiers 

using 10-fold cross-validation before and after the application of feature 

selection methods. 
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Chapter 5 - Experimentation: Analyses and Discussions: this chapter 

conducts extensive experimentation to determine whether the selected 

classification models generalise well on unseen testing data of applications 

that were not included in training data. This chapter also provides an in-depth 

analysis of the network traffic for the selected applications used in training 

and testing. To assess the generalisation capacity of the selected classification 

model, four main experiments are conducted in this chapter. For each 

experiment, it describes the experimental setup, followed by presenting the 

results and discussing the outcomes. This chapter also provides detailed 

conclusions based on conducted experiments. Lastly, it explores the feasibility 

of manually crafting rules to hand-classify the training data. Where an attempt 

to hand-classify the training data is made, followed by a discussion and 

comparison of the outcomes with the classification models constructed using 

ML classifiers. 

Chapter 6 - Hyperparameter Optimisation: this chapter conducts the 

hyperparameter optimisation process using both manual and automated 

tuning methods to identify the optimal settings that result in a better-

performing classification model. In this chapter, various hyperparameter 

settings were explored by performing 10-fold cross-validation firstly on the 

training data of experiment three consisting of 185 samples. Followed by 

evaluating the performance of the constructed classification models using the 

obtained optimal sets of hyperparameter values on the testing data of the same 

experiment. This chapter further assesses the performance of the classification 

models by repeating the previous four experiments conducted in chapter 5, 

using the optimal sets of hyperparameter values that were obtained through 

the optimisation process. Since the experimental results particularly of the 

repeated experiments one and four showed that using the optimised 

hyperparameters for a particular training data may not always lead to an 

improved model performance when there are changes in the overall 
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distribution of new training data, and the default hyperparameter settings in 

some cases perform comparably or better than the optimised 

hyperparameters. Thus, this chapter conducts further hyperparameter tuning, 

where the optimal sets of hyperparameter values were determined for 

classification models of the first and fourth experiments and the experimental 

results confirmed that better results can be obtained by conducting a 

hyperparameter optimisation process independently for each training data. 

Chapter 7 - Performance Evaluation of CALI Power Saving Modes: this 

chapter evaluates the effect of adjusting the WNIC on energy consumption 

after the accomplishment of the classification process using an ML 

classification model. It describes experimental setup employed in the creation 

of the corresponding traffic scenarios of CALI power saving modes. It then 

assesses the performance of CALI power saving modes by comparing the 

levels of energy consumption with existing benchmark power saving 

approaches, using varied sets of energy parameters. This is followed by 

assessing the performance of CALI against the value variations of energy 

parameters. 

Chapter 8 - Conclusion and Future Work: this chapter summarises the thesis, 

reviews the objectives and discusses how they were addressed. Finally, this 

chapter highlights the limitations and outlines possible future research 

directions. 
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2                                                   

BACKGROUND AND RELATED WORK 

2.1 Introduction  

This chapter explains and critically reviews the state-of-the-art power-saving 

protocols in the IEEE 802.11 Family. This is followed by a critical review of 

power-saving approaches proposed in the scientific literature. This chapter 

also discusses the performance evaluation methodologies in communication 

networks, it then describes the employed method in this thesis to evaluate the 

performance of CALI power saving modes. 

2.2 Related Work 

This section reviews the deployed power saving protocols in WLANs, in 

particular SPSM and APSM including their comparative drawbacks, and 

further developments of power saving protocols in the IEEE 802.11 Family. 

This is followed by a critical review of power saving approaches proposed in 

the scientific literature. 

2.2.1 PSMs for IEEE 802.11 Family 

2.2.1.1 Static PSM  

In the WLAN Infrastructure Basic Service Set (IBSS), the 802.11 standard 

defines SPSM to reduce the amount of energy consumed by the WNIC when 

the wireless devices are connected to an AP. The WNIC of a wireless device in 

SPSM operates in two modes: awake mode and sleep mode. In the awake 
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mode, the radio transceiver of a wireless device is on, fully powered and ready 

to receive and transmit consuming a significant amount of power. While in 

sleep mode, the radio transceiver of a wireless device is not fully powered, 

meaning that the wireless device cannot receive or transmit in order to 

conserve power [1]. 

In SPSM, the AP announces the presence of any buffered packets intended to 

a wireless device via a Traffic Indication Map (TIM) in a beacon frame. Thus, 

the wireless device stays in sleep mode and periodically wakes up during its 

listening interval (multiples of the beacon interval) to listen to the TIM in the 

beacon frame. If the TIM does not indicate packets for the wireless device at 

AP, the wireless device immediately goes back into sleep mode to save power. 

In the case a TIM indicates the existence of buffered packets at AP, the wireless 

device remains awake and generates the Power Save Poll (PS-Poll) frames to 

retrieve the buffered packets from the AP. Upon receiving the PS-Poll frames, 

the AP transmits the buffered packets to the wireless device, one packet at a 

time and receives its corresponding Acknowledgment (Ack) until all buffered 

packets are received successfully and the AP finally indicating the existence of 

no more packets by setting the value of the More Data field to zero [2, 3]. 

Figure 2.1 illustrates the operation of SPSM in IBSS.  
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So, the Wireless device wakes up and turning on its receiver in the listen 

interval to listen for TIM, TIM which is sent by AP through beacon frame 

indicates that, the AP has no buffered packet for the wireless device, so the 

wireless device immediately goes back into sleep mode, and skips the 

following beacon, because the listen interval is a multiple of beacon interval. 

Now again the wireless device wakes up and listens to the third beacon 

interval, this time the TIM indicates the presence of buffered packets for the 

wireless device in the AP.  

Now, the wireless device sends a PS-Poll frame to AP requesting its buffered 

packets, these PS-Poll frames are sent by the wireless device according to 

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). AP 

receives the Poll-Frame from the wireless device and then starts transmitting 

the buffered packets one by one, (transmits one packet and receives its 

corresponding ack frame from the wireless device and so on).  

So, the wireless device keeps sending the PS-Poll frames till the value of more 

data field in the data frame set to zero, which means there are no more packets 

buffered in AP for the wireless device. 

Figure 2. 1: Static PSM 
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The SPSM conserves energy by allowing a wireless device to sleep and wake 

up periodically. Nevertheless, SPSM suffers from latency issues for the 

following two reasons: firstly, when a wireless device generates the PS-Poll 

frames in order to retrieve the buffered packets one at a time from AP [4, 5]. 

Secondly, when a delay of 100-300ms is introduced when the WNIC is off 

during the beacon intervals and there are incoming packets for a wireless 

device buffered at AP [6]. These issues impact on the performance of both, 

real-time applications such as VoIP and interactive applications such as web 

browsers. 

2.2.1.2 Adaptive PSM  

APSM has been deployed within the most recent generation of mobile devices 

to overcome the delay of the WNIC being off during the beacon interval and 

the delay caused by the PS-Poll frames. In APSM, a wireless device adaptively 

switches between sleep and awake mode depending on the network traffic [7]. 

In APSM, by default, a wireless device remains in SPSM [8]. To switch from 

SPSM mode to the awake mode, the wireless device notifies the AP by sending 

a null data frame with the power management bit set to zero. When the AP 

receives the null frame, it stops buffering packets for the wireless device.  

To switch back into SPSM mode, the wireless device sends a null data frame 

with the power management bit set to one, so that the AP resumes buffering 

packets for the wireless device [5, 9]. 

APSM operates based on a threshold, i.e., ingress and egress packets between 

a timer start and expiry are counted. If the counted packets exceed the 

threshold, the WNIC switches to the awake mode. On the other hand, if the 

counted packets are below the threshold, the WNIC remains in SPSM mode 

[10]. Figure 2.2 shows the threshold mechanism of APSM. 



15 

Latency related issues found in SPSM are eliminated in APSM. However, the 

WNIC of a wireless device does not take into consideration the type of 

network traffic, whether this type of network traffic is important or not, 

instead it switches from sleep to awake mode based on network activity 

thresholds.  

This may lead to the WNIC being switched into awake mode unnecessarily, 

receiving low priority traffic consuming energy which could be better used for 

more important traffic [10, 5]. Moreover, the WNIC remains in awake mode 

for an idle timeout period before being fully switched back to SPSM [11]. 
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2.2.1.3 Other Power Saving Protocols in IEEE 802.11 Family 

Automatic Power Save Delivery (APSD) has been presented in the 

requirements of IEEE 802.11e. It includes Quality Access Point (QAP) which 

automatically delivers downlink frames to power-saving devices, thus 

avoiding the regular need for polls for each frame. APSD identifies two 

delivery schemes, Unscheduled U-APSD and Scheduled S-APSD [12].  

An upgraded version of APSD called Power Save Multi Poll (PSMP) mode, 

was introduced in the 802.11n standard, this protocol has two modes: 

Unscheduled Power Save Multi Poll (U-PSMP) mode and Scheduled Power 

Save Multi Poll (S-PSMP). The issue with PSMP is the higher occurrence 

probability of buffer overflow which may cause packet loss. This is due to the 

fact that frames are buffered for a longer time at the AP. 

In S-PSMP mode, AP delivers schedules to wireless devices that provide 

information on precise time intervals where the frames will be sent. Therefore, 

wireless devices sleep for the majority of their time and then wake up at the 

scheduled time only [13]. 

In U-PSMP mode, the AP is informed by a wireless device that all designated 

frames must be buffered and sent only when AP receives a frame from that 

wireless device. Therefore, a frame serves as a trigger that causes the AP to 

send frames to a wireless device instantly [14]. 

Another antenna-compatible technique named Spatial Multiplexing Power 

Save (SMPS) was also adopted in 802.11n standard. This technique enables the 

wireless device to power down all but one of the reception chains. However, 

the issue with this mode is the decreased number of receiving chains which 

contribute to lower overall communication link performance [15]. 
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Target Wake Time (TWT) mechanism was adopted under the IEEE 802.11ah 

standard in order to avoid the long-time listening for Beacon [16]. An AP and 

involved station will arrange the exploitation of TWT features and schedule a 

particular time to access the media to a particular station. The AP and the 

station share details such as the operation time estimation. The AP will then 

monitor the superposition and competition for the required media access by 

the station to prevent collisions and contention between different stations. The 

sleep mode could be entered prior to TWT by using the TWT to decrease 

power consumption. The TWT in 802.11ax is divided into two sorts: broadcast 

TWT and Individual TWT. The individual TWTs require individual TWT 

agreements between the TWT scheduling AP and scheduled stations, whereas 

it is not required in broadcast TWT [17].  

2.2.2 Sleep Optimisation (Extending Sleep Period) 

Li et al. [18] proposed Dynamic Listen Interval (DLI) to reduce the energy 

consumption caused by unnecessary wakeups. In this scheme, the listen 

interval of a wireless device is incremented by 1 each time a wireless device 

wakes up during its listen interval and finds the presence of no packets 

buffered at AP. Moreover, a wireless device reverts its listen interval to 1 when 

it finds the presence of buffered packets at the AP. The proposed scheme 

conserves power in comparison with SPSM by adjusting longer listen 

intervals, but an additional delay will be added if packets of interactive 

applications are buffered at an AP during the increased listening interval. 

Attempting to eliminate the issues related to APSM, Pyles et al. [10] proposed 

SAPSM, which is based on categorising smartphone applications as either low 

or high priority apps using an ML classifier. Consequently, the traffic of 

applications, which have been tagged as high priority, switches the WNIC into 

awake mode. Conversely, network traffic of low priority applications keeps 

the WNIC in SPSM conserving energy. To train the ML classifier and set 
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applications’ priority, a study was conducted. In this study, participants 

interacted with a range of applications that have diverse levels of network 

interactions. Initially, all applications are configured with SPSM, and based on 

the participants’ experience with the selected application, the priority of each 

application was determined. The priority is set to high if the observed delay 

by a participant is unacceptable. In contrast, it is set to low if the observed 

delay has not impacted the participants’ experience. The Support Vector 

Machine (SVM) classification model that was used in the study has achieved 

an accuracy of 88.1%.  

However, no further priority levels or modes have been proposed in this work 

to cater for applications with different patterns of network activity: including 

the least levels of network interactivity, that receive network updates after 

longer periods of time, secondly, applications with intermittent network 

interactions, and finally, for applications with buffering capabilities. Instead, 

SAPSM operates the WNIC in SPSM for all low priority applications. 

Li et al. [19] introduced a similar approach to SAPSM, which is also based on 

prioritising smartphone applications into low and high priorities. Authors of 

this approach conducted measurements of smartphone applications’ usage. 

Based on these measurement results, two features that reflect network 

interactivity: the receiving rate and the screen touch rate were extracted. 

Finally, based on these two features, a prioritisation scheme that classifies 

applications’ network traffic into low or high priorities was presented. For 

high priority applications the network traffic will be operating in the awake 

mode, and for low priority applications the network traffic will remain 

operating in SPSM. The proposed scheme in [19] was only evaluated against a 

user study. Moreover, no further priority or mode was considered for 

applications that are capable to operate with extended periods of WNIC 

listening intervals. 
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Kwon and Cho [20] proposed a simple priority scheme inter-user Quality of 

Service (QoS). In this proposed scheme, the priority of each wireless device is 

already defined. So, the AP retrieves the user profile information from the 

Authentication, Authorization and Accounting (AAA) server upon the 

registration of the wireless device. Thus, after determining the priority for each 

wireless device, the wireless device with high priority is allowed to send the 

PS-Poll frames to retrieve its buffered packets immediately and earlier than 

the wireless device which has been assigned as low priority. Therefore, a high 

priority wireless device goes into sleeping mode for the rest of the beacon 

interval. Moreover, wireless devices set with the same priority levels are 

contended to access channel according to the Distributed Coordination 

Function (DCF) scheme. However, the proposed scheme is only beneficial and 

in the favour of high priority wireless devices, as high priority wireless devices 

can fetch their buffered packets faster with minimal delay. But causing delay 

and energy consumption for low priority wireless devices, as they keep 

sensing the channel till other wireless devices with higher priorities finish 

capturing their buffered packets from the AP. 

Authors of [21] propose Catnap, a system which decreases wireless devices' 

power consumption by enabling them to sleep while transferring data. It 

utilises wired and wireless bandwidth discrepancies to optimise wireless 

device’s power saving. By integrating small gaps into significant sleep periods 

between packets, Catnap uses high bandwidth-wireless interfaces that have 

far greater bandwidth than the bandwidth available over the Internet to allow 

the device including its WNIC to doze off. Catnap's core elements are an 

independent application proxy that separates wireless and cabled segments; 

also, a scheduler that runs on Application Data Units (ADUs) to optimise 

mobile device sleep duration without affecting the average time of ADU 

transfer. Catnap is intended for data-oriented applications like browsing and 
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transfer of files so that individual packets are delayed but the overall times of 

transfer are not increased. 

In [22] researchers presented an approach called Snooze, which is an 802.11n 

energy management strategy that incorporates a micro sleeping method with 

an antenna configuration management technique. Moreover, micro sleeping 

allows the WNIC to sleep at low power levels during few milliseconds and the 

antenna configuration management adaptively changes the amount of 

powered RF chains. In order to enhance the energy efficiency, Snooze adjusts 

user sleep and antenna configurations for the entered/out traffic of wireless 

internet packets; this adjustment is performed by a traffic shaping which 

provides sleep possibilities while minimising latencies, and also taking the 

inter-reliance between the microsleep and antenna configurations into 

consideration.  

Pyles et al. [23], propose a silence prediction approach called SiFi. Applications 

such as VoIP do not operate well in PSM mode since the power footprint is 

fairly high in real time. SiFi provides a technical approach for this kind of 

application. SiFi checks audio streams of smartphone calls and monitors from 

the start till the stop of silence intervals. These parameters are contained in 

prediction models, with the help of these historical records, future silence 

periods are predicted and used to set the WNIC into sleep mode. 

In [24], authors propose a solution called Micro-Power Management (μPM) 

which is inspired by the incompatibility between the high-performance 802.11 

standards and the moderate data rate specifications of a wide range of 

common network applications. The μPM allows an 802.11 wireless device to 

join saving modes such as the one between MAC frames. To handle data loss, 

μPM employs the re-transmission technique in 802.11 and manages frame 

delays, with limited cooperation from the AP. 
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The emphasis of this research is on reducing power in the brief idle periods, 

which is not handled by 802.11 PSM. Such idle periods are abundant due to 

the difference between the high data rate enabled by current 802.11 standards 

and the moderate data rates requested by several common applications. In 

fact, it is also due to the wired link limitations such as DSL. 

The study of [25] propose a Centralized-PSM (C-PSM) an AP's Centric PSM 

for 802.11 networks. C-PSM optimises the overall power consumption for 

wireless devices by allowing the AP to select the optimum PSM parameters 

including, the listen and beacon intervals according to the client's traffic 

pattern. These periods are adjusted to decrease power consumption due to 

excessive wake ups and contentions of the channel. As the power loss in the 

contention can be very costly since all the involved wireless devices cannot 

turn to sleep mode during the time of contention. Furthermore, the AP 

provides wireless devices with optimum congestion time windows such that 

the less frequently active device can retransmit faster. Moreover, C-PSM offers 

the first wake up schedule to help improve power efficiency by minimising 

simultaneous wake ups for wireless devices. 

Tan et al. [26] propose a PSM-throttling, in which a wireless device identifies 

a bandwidth throttling link by detecting the TCP flow throughput. As a result 

of the throttling, the client can anticipate when a packet will arrive and switch 

on/off the WNIC by reshaping TCP traffic into intermittent bursts of the same 

average rate as the server transmission.  

In [156] Jiang et al. proposed QoS-aware architecture to reduce the energy 

consumption in Wi-Fi networks for wireless devices steaming Danmu videos. 

Danmu also known as bullet comments or barrage videos, is a special type of 

interactive video streaming that shows users' comments on top of the videos 

during the playback. As the network transmissions of video related packets 

from the streaming server and barrage related packets from and to the mobile 
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user device are not coordinated for Danmu videos. Authors of [156] deployed 

a client proxy on a mobile user device and an edge proxy on a home Wi-Fi 

router, both proxies are used to coordinate the transmissions of video data and 

barrages. 

To improve the energy efficiency of APs in WLANs, the authors of [159] 

proposed a reinforcement learning-based solution. The proposed solution 

considers the network conditions such as queue length, and channel gains to 

the user in order to control AP’s transmit power and determines whether an 

AP should use single or bounded channels. 

Venkateswaran et al. [160] propose a power saving optimisation algorithm for 

low powered IoT devices operating under Wi-Fi networks. In this work, 

authors have only considered a specific scenario of sparse periodic uplink 

traffic. This is the scenario where an IoT sensing device periodically reports on 

measurements such as soil moisture level, temperate and so on, or sends keep-

alive packets to a remote server over a Wi-Fi-based AP. Authors firstly 

introduced five potential energy optimisation strategies including SPSM, 

based on simulations results, they have developed the power saving 

optimisation algorithm. 

Seth et al. [163] proposed an EAPS, 802.11 AP based solution to reduce the 

power consumption of IoT devices by minimising the duration of the idle 

listening. In this work, upon the reception of uplink packets from an IoT 

device, the AP computes the estimated delay that occurs till the reception of 

downlink packets using an ML-based model. Once the estimated delay is 

computed, the AP informs the device of the scheduled time to wake up in 

order to receive the downlink packets. 

In relation to harvesting energy from WLANs, wherein wireless devices can 

be charged via radio frequency signals emitted from an AP. The work in [161] 
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presented a transmit power allocation policy for a solar-powered AP. The 

proposed policy allows AP to control the transmit power in order to deliver 

the required data to nonenergy harvesting wireless devices such as laptops, 

iPads and so on. And simultaneously ensures the IoT sensing devices with 

energy harvesting capability receive sufficient energy. Finally, to derive the 

policy, the authors employ ML approaches to determine the optimal transmit 

power that satisfies the requirements of both types of wireless devices based 

on AP’s current and historical battery status. 

To examine whether the application of different schedulers for TWT 

scheduling improve throughput and energy efficiency. Yang et al. [164] 

presented max-rate and proportional fairness schedulers to enhance the 

throughput and energy efficiency of TWT capable wireless devices operating 

under 802.11 ax. The findings of this research show that applying different 

schedulers for TWT will improve the energy and enhance the throughput. 

To improve the throughput and energy efficiency of wireless devices in a 

coexistence area of Wi-Fi and cellular networks. Zhang et al. [165] propose 

TAUD scheme, the proposed scheme splits the wireless devices in the 

coverage area of dual networks into two groups: WLAN-based group, and 

cellular-based group. Thus, wireless devices in the WLAN group only connect 

to the Wi-Fi system whereas wireless devices in cellular group connect to a 

cellular network. 

802.11ah was introduced to accommodate the dense IoT networks. In this 

multi-rate network, different IoT devices have different data rate 

requirements. And IoT devices access the channel using group based 

Restricted Access Window (RAW) mechanism. As the standard does not 

specify any scheme for group forming, by default a uniform grouping scheme 

is employed, which forms random groups of an equal size, resulting in a 

performance anomaly. To resolve this issue, and optimise energy efficiency, 
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the Authors of [166] proposed RAW-RA scheme, in this scheme the IoT 

devices are grouped based on data rates and the RAW slots are assigned to the 

groups proportional to their data rates. 

2.2.3 Handling Traffic Contention 

Rozner et al. [5] introduced a Network Assistant Power Management solution 

(NAPman). The authors conducted a variety of experiments to show that 

current implementations of PSM strategies in wireless devices and APs are not 

efficient due to competing background traffic which increases the energy 

consumption of a wireless device and decreases the network capacity due to 

unnecessary retransmissions. To mitigate these issues, NAPman employs 

virtualisation and an energy-aware scheduling algorithm for AP based on the 

First Come First Serve (FCFS) policy that applies only to packets of wireless 

devices that are awake at a given time. By leveraging AP virtualisation, 

contention among wireless devices is mitigated, as several virtual APs from 

one physical AP are created. Each wireless device is connected to its own 

dedicated copy of a virtual AP. As NAPman relies on virtualisation, one 

physical AP can only support a limited number of virtual APs. This causes 

disruption when the number of assigned wireless devices to virtual AP 

exceeds the threshold limit. 

In [27] He and Yuan propose a time division multiple access approach based 

on MAC protocol, called scheduled PSM. In this approach, the beacon interval 

is divided into an equal number of slices by an AP. The slices can be assigned 

to a single wireless device or multiple wireless devices. The TIM was 

restructured to hold slice assignment information. Scheduled PSM eliminates 

channel contention, as each wireless device wakes up on its designated time 

slot to retrieve the buffered data from the AP, and sleeps during its non-

allocated time slots to save power. This approach conserves energy as the 

channel is contention free, but time slots will be wasted if a wireless device 
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does not wake up at its designated time slot. Also, this approach suffers from 

additional delay: data frames arriving at the current beacon interval will only 

be scheduled for transmission to a wireless device in the next beacon interval. 

Finally, all the time slots are identical in size, which may not be appropriate 

for small frames or light traffic. 

Opportunistic Power Saving Mode (OPSM) is proposed in [28]. The 

application of OPSM is limited to a specific scenario: wireless devices are 

engaged in web browsing to download short files with a short duration of 

inactivity or think time in between downloads. The authors of [28] observed 

that the throughput share of an individual wireless device decreases in SPSM 

when multiple wireless devices are associated with a single AP and download 

files simultaneously. Therefore, to gain the maximum throughput and reduce 

energy consumption, only one wireless device is permitted to download a file 

at a time in OPSM. During this time other wireless devices remain in sleep 

mode. One additional bit has been added to the beacon header indicating 

whether the AP is currently serving another wireless device. To avoid a 

number of wireless devices from initiating a file download simultaneously on 

completion of the service of the current wireless device, wireless devices wait 

for a random period of time before initiating their file download. 

In [29] Omori et al. present a power saving approach that utilises Network 

Allocation Vector (NAV) periods set by the Request to Send (RTS) and Clear 

to Send (CTS) handshake mechanism. The proposed approach allows other 

wireless devices to sleep when they overhear the CTS or RTS during the NAV 

duration. Moreover, the NAV duration is extended which allows multiple 

bidirectional burst transmission between a device and an AP. In their previous 

work [30] the authors of this approach utilised NAV duration by allowing the 

burst transmission in an unidirectional manner for incoming packets from AP 

only. 
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Authors of [31] proposed an energy efficient technique called SleepWell that 

avoids wireless network contentions. The APs control the client's sleeping 

window so that various APs are awake/sleep in time windows which are not 

overlapping. The approach is similar to the general insight of late arriving at 

the office and late leaving, thus eliminating hours with congestion. As APs are 

always on, wireless continuous traffic from neighbouring APs is monitored. 

Because SPSM periodically causes traffic bursts, each AP monitors the 

regularity of the other APs, and re-plan its own period dynamically to 

marginally overlap with the others. Lesser overlap eliminates competitiveness 

so that any client can download their own packets continuously and sleep 

while other transmissions are established on the channel.  

Authors of [32], propose Harmonious Power Saving Mechanism (HPSM) 

which addresses the situation of many PSM clients linked with a single AP. 

The core principle of HPSM in handling the traffic contention, is to utilise the 

underlying sociological principle [33]. The connecting resource and the battery 

life of wireless devices are defined as public and private resources, 

respectively. When a PSM client uses large amounts of public resources, it is 

considered wealthy and vice versa for poor devices. Similar to real life 

societies, poor citizens cannot obtain more costly public facilities such as 

higher education, but they pay significantly less tax. Correspondingly, devices 

utilising a significant portion of the public resource should pay for the service 

more in a network consisting of one AP and several PSM clients, but those that 

consume a limited portion of the resource should have less expensive service 

cost. HPSM deliberately places priority on the transfer of data for poor or weak 

over wealthy devices. Thus, as the data transfer is completed early, the weak 

wireless devices will go back to sleep mode for greater power savings. In the 

meantime, since poor wireless interfaces only use the communication channel 

for very short times, the taxes charged by these rich wireless devices on latency 

and power are small. 
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Authors of [34] found that, the standard FCFS mechanism is unideal for sleep 

since it keeps the PSM wireless devices awake needlessly. A downlinking 

traffic scheduler called SOFA on the AP is proposed. It saves power by 

encouraging its PSM devices to sleep more while the service of other PSM 

devices. If a device’s buffered packet exists in the AP and it chooses to retrieve 

it, it must be kept awake till the last packet planned for it is provided during 

the time cycle of the beacon. As the AP delivers packets to other wireless 

devices a substantial amount of power consumption occurs before the last 

packet of the wireless device is transmitted to its destination. SOFA decreases 

that energy consumption and enhances all wireless devices' overall sleep time. 

This is done by calculating the quota of all wireless devices and forwarding 

packets based upon the calculated quota. 

To minimise the number of contention's wireless devices, researchers in [35] 

proposed Load-Aware Wakeup Scheduling (LAWS), a technique which 

organises wakeup schedules for sleeping wireless devices such that the 

amount of wakeup devices are balanced for each beacon interval. To minimise 

both collision likelihood and energy usage, the AP announces a subset of PSM 

clients in the beacon frame which is exploited by the client to decide their 

polling sequence. Three methods for access schedules were proposed to 

prevent contention. First, the multiple wakeups single access, where only a 

single wakeup device is planned for access to the buffered data. Second, 

multiple wakeups multiple access with smallest Association ID (AID), where 

the access's planning is based on the smallest AID. And finally, multiple 

wakeups multiple access with the smallest queue length first scheme, where 

the shortest queue length is first in a beacon interval.  

2.2.4 PHY-Assisted Power Saving 

In [36] a technique called DozyAP is proposed to enhance the energy efficiency 

of Wi-Fi tethering. Based on a conducted analysis of traditional applications, 
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authors of [36] have identified various occasions that the tethering phone 

could sleep to conserve energy. DozyAP's main concept is to place the Wi-fi 

tethering based phone which acts as mobile AP's Wi-Fi interface in the sleep 

mode to reduce power consumption. After analysing the traffic pattern of 

different online applications. Authors noted that the Wi-Fi network is inactive 

for a significant duration of the overall application time so that the AP could 

sleep for this idle time. In addition, it is well known that a cellular link is 

usually slower than a Wi-Fi link. Therefore, when waiting for data 

transmission via the cellular network, the Wi-Fi interface of a mobile AP can 

sleep. All these show that mobile AP energy demand can be reduced in several 

ways.  

Similarly, GreenAP has recently been introduced in [157] to solve the issue of 

higher power consumption of mobile AP. Two strategies were considered in 

the design of GreenAP: first, delaying the transmission of AP’s sleep indication 

frames in order to minimise the traffic delay when AP encounters incoming 

packets from a wireless device. Second, is the selection of an appropriate sleep 

time for the AP based on the mean traffic statistics. 

An energy-efficient AP selection approach for IoT nodes in hybrid Wi-Fi and 

Li-Fi I networks is presented in [158]. In the proposed solution, the IoT client 

selects either a Wi-Fi AP or a Li-Fi AP based on the satisfied QoS requirement 

of throughput. In the case of both APs provide the same satisfaction of QoS 

constraint. An AP which provides a better energy efficiency is chosen. 

Whereas the node remains in Li-Fi based AP when none of the APs satisfies 

the QoS constraint. 

The authors of [162] have proposed a computation offloading technique to 

reduce the energy consumption of wearable devices. In this work, when a task 

is given in a wearable device such as a smartwatch, the wearable device firstly 

decides whether to execute it locally or offload it to a smartphone. The 
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offloading decision is made by comparing the cost of operating the task locally 

and the cost of energy consumption when offloaded to a smartphone along 

with the cost of the Bluetooth communication between a wearable device and 

a smartphone. Based on this proposition, a wearable device offloads the 

computation task to the smartphone.  

Now, when a smartphone receives the offloading request, it decides whether 

to execute the task locally or offload it to a cloud server based on the battery’s 

remaining energy and the cost associated if the task is handled locally in the 

smartphone. In case the total cost is high, then the smartphone offloads the 

computation task to the cloud via a Wi-Fi connection. 

Studies [6] and [37] explore conserving power by utilising multiple radios of 

wireless devices. Authors of [6] introduced Bluesaver, which employs 

Bluetooth and Wi-Fi combined at an AP and wireless device. The wireless 

device switches between Wi-Fi and Bluetooth radios. The wireless device 

receives and sends packets over Bluetooth when it is within range of the 

Bluetooth radio of the AP. When a higher data rate is required or a wireless 

device is out of range of the Bluetooth radio of the AP, it switches to Wi-Fi 

radio. However, this approach requires an additional Bluetooth adaptor at the 

AP. 

Zhang and Li [37] developed a Wi-Fi ZigBee message delivery scheme, which 

delegates some of Wi-Fi operations to ZigBee radio. In this case, the Wi-Fi 

radio of a wireless device is turned off, and instead, low power ZigBee radio 

is utilised to discover the presence of Wi-Fi networks. It then listens to 

incoming beacon frames from the AP to detect the presence of any buffered 

packets intended to a wireless device. However, the developed scheme in [37] 

requires an external chipset on smartphones. 
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Similarly, in [38] authors have introduced a Blue-Fi, a system that detect the 

presence of Wi-Fi AP through a Bluetooth and cell tower information. This 

allows the wireless device to turn on the Wi-Fi interface only during the 

presence of Wi-Fi connection, thereby eliminating lengthy periods of idle time 

and reducing the number of scans for exploration substantially. 

Vergara and Nadjm-Tehrani [39] proposed Watts2Share, an architecture that 

enhances power saving by consolidating the traffic in only one link. The 

proposed architecture combines multiple nodes for communication and use a 

single node’s 3G interface for data transferring. The Wi-Fi radio is used as the 

secondary radio whereas the 3G channel is employed as a primary channel for 

communication. 

Chung et al. [40] present C-SCAN, which utilises a low power personal 

wireless network interface that is embedded in the wireless device such as 

Bluetooth and ZigBee, to perform the unnecessary scanning of AP-free Wi-Fi 

channels to unload Wi-Fi scanning overhead. C-SCAN examines Bluetooth 

radio channel information and detects which Wi-Fi channels are in operation 

before the real Wi-Fi interface channel is scanned. The Wi-Fi scanning manager 

can search only on available Wi-Fi channels by removing channels that are 

determined to be null. Thereby delay reduction and energy efficiency 

improvement are achieved. 

Other studies [41-43] focused on decreasing the radio’s clock rate to conserve 

energy. SloMo [41] proposed a transceiver that enables a wireless device to 

operate at a lower clock rate during transmitting and receiving. E-Mili [42] 

allows the WNIC to operate at a lower clock rate during idle listening and 

transits to the full clock rate during data transmission and reception. In [43] 

the authors proposed Sampless Wi-Fi, which enables the wireless device to 

recover under-sampled packets via multiple transmissions. 
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The authors of [167] developed a multi-mode transceiver combining a set of 

wireless connectivity protocols. The transceiver was designed for IoT wireless 

devices and supports Wi-Fi, Bluetooth classic and Bluetooth low energy 

wireless connectivity protocols. The reported measurement results in this 

study show that the developed combo chip achieves better or comparable 

performance in comparison with standalone chip architectures. 

2.3 Evaluation Methodology    

This section discusses the most commonly used methods in communication 

networks for evaluating the performance of a proposed system or framework, 

it then describes the employed method in this thesis to evaluate the 

performance of CALI power saving modes. 

Typically, the efficiency of communication networks can be assessed using 

three main methods. These methods are real experimental, analytical 

modelling and simulation [49, 50]. 

The real experimental method requires the use of a testbed to evaluate the 

proposed approach. Typically, a testbed comprises a set of wireless 

components, which are designed to run the proposed approach. The benefit of 

using this method is that realistic circumstances are taken into consideration, 

which provides a better insight of the proposed approach before 

implementing it in the real world.  

Nevertheless, it is costly and time consuming to build and maintain a testbed, 

particularly when assessing the efficiency of the proposed approach in larger 

networks. The required components, individuals, and coding cause higher 

costs for building and maintaining a testbed. Thus, teamwork will be 

necessary for this method. 
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On the other side, the mathematical description of the proposed approach, i.e., 

analytical modelling, is based on applied mathematical theories including 

stochastic process and queuing. Numerical techniques may then be added to 

the model to have more insight into the model.  

Mathematical modelling fits into basic networks which are comparatively 

small. It may become more difficult to derive certain models for a complex 

network such as WLAN. As, this type of network involves taking into 

consideration several factors, certain assumptions in the model may simplify 

some factors. Simplified assumptions may therefore generate imprecise results 

which influence the validity of the system analysis [50]. 

Simulation tools may also be used to test the performance of the proposed 

approach.  A network simulator is designed for simulating a computer 

network including the operation of the networking nodes and links. The 

simulation approach has benefits over the other methods of assessment, such 

as having scalability, repeatable outcomes, and simulating complex scenarios. 

 In comparison with analytical modelling, the simulation based assessment 

often requires fewer assumptions. It also enables the designer to characterise 

the analysed approach in more detail. Simulation is a cheaper alternative 

compared to the real experiment method. Also, the efficiency of the proposed 

approach under different loads and various network scenarios can easily be 

investigated.  

Therefore, to evaluate the performance of CALI power saving modes, the 

simulation based evaluation method has been adopted in this thesis. 
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2.3.1 Simulation Tools 

A varied range of network simulators are used for simulating wireless 

networks such as NS [51], OMNeT++ [52], Riverbed [53], and QualNet [54]. 

These simulators are briefly discussed in the following paragraphs.  

• NS-2 

Network Simulator 2 (NS-2) is a simulator of discrete network events. This 

includes models for simulating cable and wireless networking standards on 

various levels, including network, data link, and physical layers. NS-2 was 

employed extensively in scientific research. It utilises C++ as the language of 

programming. Apart from C++, the Object Extension Tool command language 

(OTcl) of MIT allows the utiliser to define the C++ code parameters. NS-2 was 

substituted by its NS-3 successor. NS-3 was also designed with C++ from 

scratch. It emphasises the resolution of current NS-2 simulator issues, but it 

does not support all the NS-2 models since it has a compatibility problem with 

NS-2. NS-3 utilises C++ or python scripts. These simulators are open source 

and accessible free of charge for research, development, and utilisation. 

• Riverbed 

Riverbed is a discrete event simulator previously called OPNET, Riverbed 

consists of C++ based protocols and technology suit. It supports wired and 

wireless networking protocols, such as IEEE 802.11 a, b, and g standards. 

Besides, it is available as a commercial simulator and is one of the most 

commonly used network simulators. Riverbed offers excellent interactive 

support as a commercial simulator, enabling an individual to construct 

network model objects from the application layer to the physical layer. The 

users can also interpret and simulate the effects of the simulation using the 

available graphical interfaces.  
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• QualNet 

QualNet is a network simulator based on GloMoSim simulator for commercial 

use. The GloMoSim simulator, which was developed for MANETs, is also a 

discrete event simulator. QualNet is GloMoSim's industrial derivative, which 

is not supported any more by its developers. QualNet provides varied wired 

and wireless network technologies simulations. QualNet offers a good user 

experience by its graphical interface which enables users to build the 

components of their scenarios and to set their parameters. It moreover offers 

excellent methods for analysing simulation outcomes. QualNet utilises C/C++ 

to build novel models, but it is not commonly employed in research because it 

is commercial. 

• OMNeT++ 

OMNeT++ is a C++ object-oriented, extensible, flexible simulation library and 

network simulator platform. It is not an individual simulator but offers simple 

tools that enable developers to design their own simulators. Frameworks are 

individual projects that complement particular environments. For instance, 

there are frameworks supporting wireless networks, modelling of the 

performance, internet protocols, Peer to Peer (P2P) overlays, etc. The open-

source OMNeT++ platform is provided for academic use, free of charge. It 

provides comprehensive graphical interface support. Simple modules, which 

are written in C++, are assembled for components of greater size. A high-level 

language known as Network Description (NED) that operates in an identical 

way to OTcl in NS-2 is used to model the components.  

2.3.2 NS-2 Extension  

For the performance evaluation in this thesis, we have utilised the NS-2 

simulator. To support the power management functions in WLAN, we used 
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the NS-2 extension proposed in [55], which has been applied in several studies 

including [32] and [56].  

This NS-2 extension provides PSM mechanisms, such as the PS-Poll, AP buffer, 

and TIM. Furthermore, it includes an energy model which uses four energy 

parameters: txPower, rxPower, idlePower, and sleepPower. 

The extension supports infrastructure mode where two wireless devices are 

connected to an AP based on PSM. The first wireless device sends data 

destined to wireless device 2 via AP. 

Next model’s operational behaviour is shown graphically as the model moves 

during the simulation. This is followed by the displaying the remaining power 

of the receiver device in both scenarios (with PSM enabled and disabled). We 

used the default simulation parameters shown in table 2.1, with a simulation 

duration of 600 seconds and initial energy of 100 J. 
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Table 2. 1: Simulation parameters 

Simulator NS-2.33 

Routing Protocol DumbAgent 

MAC type 802.11 

Antenna model Omni Antenna 

Number of devices 2 Wireless devices (sender and receiver) and 1 AP 

Simulation time 600 S 

Initial Energy 100 J 

Packet Size 512B 

Data rate 256 KB 

txPower 0.660 W 

rxPower 0.395 W 

idlePower 0.035 W 

sleepPower 0.001 W 

 

Figure 2.3 shows the sender and receiver wireless devices surrounded with a 

blue hexagon which indicates that the wireless devices are in sleeping mode. 

The AP is denoted as 0. Figure 2.4, shows that, the wireless device 1 wakes up 

to send data to wireless device 2 through AP. 
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Figure 2. 4: PSM operational behaviour 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 shows that, both wireless devices are awake, and the wireless device 

2 sends the PS-Poll frames to retrieve the buffered packets from the AP. The 

AP transmits the buffered packets to wireless device 2, one packet at a time 

and receives its corresponding Ack. Figure 2.6 shows, the wireless device 2 

Figure 2. 3: PSM operational behaviour 1 
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Figure 2. 5: PSM operational behaviour 3 

Figure 2. 6: PSM operational behaviour 4 

immediately switches into sleep mode after receiving all its buffered packets 

from the AP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The comparison between PSM enabled and disabled is shown in figure 2.7. 

The remaining energy is 71.69 out of 100 when the wireless device 2 (the 

receiver device) operates on PSM. While the remaining energy of the same 

wireless device falls to 50.48 in case the PSM is disabled. 
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Figure 2. 7: PSM vs. PSM Disabled 

2.4 Summary  

This chapter presented and critically reviewed the static and adaptive power 

saving mechanisms deployed in WLANs, including other power saving 

protocols in the IEEE 802.11 Family. It also has critically reviewed the power 

saving approaches proposed in the scientific literature. This chapter also has 

investigated the performance evaluation methods adopted in communication 

networks. This is followed by demonstrating the employed method in this 

thesis to evaluate the performance of CALI power saving modes.    

PSM Enabled PSM  Disabled

Power 71.69 50.48

0

10

20

30

40

50

60

70

80

90

100

R
e

m
ai

n
in

g 
P

o
w

e
r 

in
 J

o
u

le
 

PSM



40 

3 

NETWORK TRAFFIC CLASSIFICATION 

3.1 Introduction  

This chapter starts by explaining the concept of network traffic classification 

(section 3.2), it then discusses the existing classification techniques including 

ML methods used for classifying the network traffic (section 3.3). This chapter 

also describes the steps required to classify the network traffic using ML 

classifiers (section 3.4).  Section 3.5 presents an ML classifier taxonomy based 

on different properties that define how the classification algorithm works, 

followed by a description of which ML classifier goes with which kind of data. 

Section 3.6 begins by justifying the selection of the chosen ML classifiers. It 

then proceeds to describe the ML classifiers employed in this research, 

followed by presenting a comparison of ML classifiers. Section 3.7 provides an 

overview of other DL methods and illustrates how they differ from the ML 

ones. While section 3.8 reviews the proposed ML methods in the scientific 

literature for network traffic classification. 

3.2 Importance of Traffic Classification 

Traffic analysis is the process of analysing the data in the traffic for finding 

patterns, misconfigurations, relationships, and anomalies. Network traffic 

classification is a technique used to analyse and classify the traffic into 

categories such as type of applications, normal or subnormal traffic based on 

features observed in the traffic according to specific goals of the application 
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[57, 58]. The phenomenon of linking the network traffic with its applications 

is known as traffic classification [59]. 

Network traffic classification plays a vital role in traffic management in 

computer networks which involves satisfying the QoS requirements of the 

end-users. Each network has its own QoS requirements and identifying the 

applications from the traffic is very important to satisfy the Service Level 

Agreements (SLA) and managing the network resources efficiently. Traffic 

classification has also importance in the area of troubleshooting where the 

main functionality is to locate faulty sensors, devices, misconfigurations and 

locate the point of network errors.  

Furthermore, the traffic classification is very useful in the area of security for 

intrusion detection and avoiding malware from heterogeneous networks [60]. 

With the emergence of other types of communication architectures such as 

Internet of Things (IoT) and 5G, applications are generating a large volume of 

traffic with more stringent QoS requirements, thus a more accurate network 

traffic classification technique is required compared to traditional 

classification techniques [61, 62]. 

3.3 Traffic Classification Techniques 

3.3.1 Port-Based Method 

The traditional traffic classification techniques involve port-based and 

payload-based methods. The port-based traffic classification technique 

extracts the value from packet header and identifies the port numbers for 

many applications. User Datagram Protocol (UDP) and Transmission Control 

Protocol (TCP) communicates between the end users by using the port 

numbers of different flow connections.  
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Most of the applications have a known port identification number used for 

local host communications for example, Simple Mail Transfer Protocol (SMTP) 

is used for sending emails at well-known port number 25 [63].  

Initially, during the TCP three-way handshaking mechanism, the classifier 

residing at the middle of the network looks for the TCP SYN packets to know 

the information of a new client-server TCP connection at the server side. The 

application is then searched in the TCP SYN packets destination port number 

that are assigned by Internet Assigned Numbers Authority (IANA) [64]. The 

UDP utilises a similar approach for identifying the port number without 

performing the three-way hand shaking mechanism.  

This approach performs well with massive network traffic. However, some 

P2P applications such as Kazaa and Napster have not registered their port 

numbers with the IANA. Or applications may use other port numbers than its 

registered port number to avoid the operating system access control 

restrictions.  In some cases, the port numbers are assigned dynamically for e.g., 

real video streamer allocates dynamic port numbers for the transferring of 

data [65].  

As a result, the port-based traffic classification approach fails to perform in all 

above scenarios. The experimental results from the literature show that port-

based techniques are not efficient. In [66] authors employed the port-based 

approach for network traffic classification and found that no more than 70 % 

accuracy is achieved by utilising the port addresses of IANA list. The 

researchers in [67] proposed a port-based traffic classification technique and 

concluded that the simulation did not accurately predict 30-70% of traffic 

flows. 
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3.3.2 Payload-Based Method 

To address the issue of the port-based traffic classification approach, the 

payload-based technique is introduced and is also known as Deep Packet 

Inspection (DPI). The DPI compares the features extracted from packets with 

a set of characteristic signatures and features to identify different application 

protocols. This approach is specifically designed for P2P applications [65, 68].  

The tools for the DPI are PACE, L7-filter, NBAR and nDPI. The DPI tools have 

faced several challenges with the growing number of protocols and new 

applications. Specifically, the DPI tools need to be updated with the creation 

of new protocols and applications. If these tools are not regularly updated, the 

performance in terms of prediction will result in erroneous or unknown 

signatures. Thus, the list of signatures needs to be updated regularly.  

This technique solves the issue associated with port-based approaches; 

however, this technique is computationally expensive. Furthermore, this 

technique also needs to update the signature pattern for new applications. 

Finally, this technique fails when privacy policies deny inspection of the 

packet content and is problematic in dealing with encrypted traffic [69, 70]. 

3.3.3 ML Based Traffic Classification 

Recently, ML methods have been successfully used for network traffic 

classification. ML methods have addressed the limitations of port-based and 

payload-based classification methods [71]. These methods can classify the 

encrypted traffic accurately. These methods can learn the patterns from 

network traffic automatically. They can characterise network traffic to 

respective flows and applications after training [71, 72].  

ML methods have been proved as a powerful tool for classifying the network 

traffic using prior knowledge or statistical information extracted from the raw 
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traffic in the form of features. ML methods are suitable for classifying the 

network traffic into specified categories having similar characteristics. Each 

traffic instance is labelled with the specific network application as per its 

features without inspecting the packet header and payload directly. The 

significant features involve the statistical patterns such as network traffic 

duration, number of packets in a given time, the time between two 

constructive packets and order of packet arrivals etc. [73].  

The general process of ML consists of two phases: the training phase and the 

testing phase. During the training phase, the ML algorithm is executed by 

feeding network traffic data for the purpose of identifying and differentiating 

patterns in the network traffic, the ML algorithm learns the network traffic 

patterns. After the training phase of the ML model, is used to predict the 

category of unseen network traffic during the testing phase [71]. 

ML based network traffic classification process consists of five major steps 

followed in sequence. The significant steps are:  1) data collection, 2) data pre-

processing, 3) feature extraction, 4) model training and 5) performance 

analysis [74]. 

ML methods have been proved as faster and accurate methods for network 

traffic classification in comparison to the conventional port-based and 

payload-based classification methods. These methods work equally well for 

encrypted network traffic. However, the accuracy of the ML method relies 

upon the quality and quantity of the training data in addition to the selection 

of right features extracted from network traffic. Extraction and selection of 

appropriate network traffic features play a critical role in the successful 

discrimination of network traffic patterns. However, this task has become 

difficult due to the increased complexity of modern networks and their 

applications [75]. 
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ML methods can be broadly categorised into three categories for network 

traffic classification in general. The significant categories involved supervised 

ML methods, unsupervised ML methods, and semi-supervised ML methods 

[71].  

Supervised ML methods require labelling the instances of network traffic. 

During the training phase the ML classifier infers the model parameters (SVM) 

or the rules (decision tree).  

The trained ML model predicts the label of unknown traffic instance to already 

learnt labels automatically during the testing phase. Generally, a feature 

selection or reduction process is applied before using supervised learning for 

selecting the most relevant features for classifying network traffic. Several ML 

methods have been used in supervised learning modes such as decision 

trees, Naive Bayes, K-Nearest Neighbour (KNN), SVM, and neural networks 

[76].  

Unsupervised ML methods are helpful for network traffic classification when 

label data is not available. These methods are capable of extracting significant 

traffic patterns from unlabelled training data. Unsupervised ML methods are 

capable of detecting unknown traffic classes [77]. These methods have been 

widely used in network traffic classification due to the availability of 

unlabelled traffic [78].  

Several methods have been developed in unsupervised learning, such as 

clustering. This method classifies the network traffic into similar groups based 

upon similar characteristics of network traffic. The most commonly used 

methods involve a K-means clustering method and the DBSCAN clustering 

method [79]. Clustering methods have been successfully employed for 

differentiating web and P2P network traffic in [80]. 
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Semi-supervised ML methods offer characteristics of both supervised and 

unsupervised ML methods. Semi-supervised methods enable the labelling of 

unlabelled network traffic based upon a limited amount of labelled network 

traffic. This process is generally known as label propagation [81]. The 

emergence of new applications and new types of network traffic require the 

application of semi supervised ML methods for detecting zero-day network 

traffic [82, 83]. For example, semi-supervised ML methods have been used for 

network traffic classification in [84]. Glennan et al. [84] used K-means 

clustering method for clustering the network traffic and passed the detected 

clusters to the supervised decision tree ML method to label network traffic 

based upon the available label in the labelled training data set.  

Similarly, Ran et al. [85] have also used K-means clustering method followed 

by KNN as supervised ML method for network traffic classification and 

labelling the unlabelled network traffic. 

3.4 Steps of ML Traffic Classification  

ML based network traffic classification process consists of five major steps 

following in sequence. The significant steps include data collection, data pre-

processing, feature extraction, model training and performance analysis. The 

detail is provided as below.  

1) Data collection: 

 Data collection is the important and most significant step in applying ML 

methods to any problem. The goal of this step is to gather sufficient 

information regarding the problem at hand. It involves applying different 

procedure of measuring the data using digital or physical sensing devices. The 

collected data describes the current status, and it is used to define the 

benchmark data set. Different types of data samples are gathered under 

multiple experimental scenarios to define the benchmark dataset [60]. 
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In the case of traffic classification, the data collection step involves the 

collection of a large representative network data without any bias [86]. 

Network data may be collected from network sessions, and traffic traces at 

different network layers depend upon the application requirement. For 

example, network traffic classification requires collecting packet level data 

labelled with their respective applications [87]. Data can be collected in two 

phases, offline and online. The offline phase involves the collection of 

historical data for the training of the ML model. In contrast, the online phase 

consists of real time network traffic used as inputs to train the ML model.  

2) Feature extraction:  

Feature extraction involves driving or computing the significant 

characteristics of the traffic, representing the current state of the process [60]. 

This step involves the computation of various metrics that reflect specific 

characteristics of the collected data. The primary purpose of feature extraction 

is to compute descriptors for characterising the problem of traffic classification 

[60, 88]. This phase produces data in form of rows and columns to represent 

samples along with their labels as the target class if available.  

The process of identification of relevant and non-redundant features from the 

raw training data is the most significant step that unleash the potential of 

data. It is also known as feature engineering in ML research community. 

Extracting meaningful features from training data set generally require 

domain expertise [89]. Therefore, it is a challenging and manual task. The use 

of Deep Learning (DL) methods can automate the feature extraction process 

[86, 90]. 

Several feature types have been defined in literature for network traffic 

classification. The essential types of features include statistical features, graph-

based features, and time series-based features [60].   
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Statistical features are extracted from network packet flows, assuming the 

traffic flowing at the network layer. The most common statistical features 

include flow duration, idle time, length of the network packets, the time 

between conjunctive packets. Statistical features have unique values for 

different types of applications. 

Graph based features represent the internal composition of networks that 

enables representation into interconnected graphs [91]. In this scenario, a 

network is generally assumed as a collection of interconnected nodes 

representing hosts, and the edges between the nodes representing interaction 

among hosts. These interactions can be assumed as a communication session 

for exchanging the network packets between different nodes. 

Time series based features represent the sequence of events with respect to 

time. Interaction among network nodes lies in the order of events such as 

opening and closing communication sessions, starting or finishing 

transmission of data etc [92]. Time series features generally represent the 

relationship between inter arrival time and network packet size of the given 

floor and enable the characterisation of the applications using time series 

representation [60]. 

3) Data pre-processing:  

The features extracted from raw training data in the feature extraction step of 

the ML process may contain some missing values and unknown values [86]. In 

order to make effective use of extracted features to train the ML model, data 

pre-processing strategies are applied to clean the data from missing values, 

unknown values and detecting outliers. These issues of missing value, 

unknown values, and outliers affect the ML model's performance.  

Data pre-processing strategies also transform the data to a standard form by 

using different normalisation, and aggregation operation on feature values. In 
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the aggregation process, some features are aggregated into a single feature that 

becomes more valuable to characterise the network data. The normalisation 

process transforms the values of a feature to a given range such that 0 to 1 [60, 

86].  

Another essential step during the pre-processing stage in case of supervised 

ML is to check the class imbalance. The class imbalance presents a scenario 

containing instances belonging to one or more classes much higher than the 

other classes. Imbalanced data set may lead to biased training of ML models. 

In [93] some strategies have been proposed for dealing with class imbalance 

problem, over sampling data and under sampling data.  

Another significant and optional step involves the selection of relevant 

features used for the training of ML models [60]. The feature selection process 

discards the irrelevant and redundant features for reducing the number of 

features using some techniques like principal component analysis. Feature 

selection helps to reduce the amount of training data that causes faster training 

of ML models and avoids the curse of dimensionality problem.  

Several methods have been proposed for the feature selection process. These 

methods can be categorised into three categories, filter methods, wrapper 

methods, and hybrid methods [94].  

Filter methods involve scoring each feature based upon some computed 

metric to signify the relevance of feature to characterise the target label of the 

sample. Some methods in the filter category contain Gini index [95], Maximum 

Relevance Minimum Redundancy (MRMR) [96], Information gain [97], Gain 

ratio, and Correlation based feature selection [98]. 

In contrast, wrapper methods involve supervised learning for defining an 

objective to determine the impact of features sets on the classification accuracy 

of the model. The features providing the best accuracy are selected as the final 
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selected feature set for training of the ML model. The essential methods in this 

category are the genetic algorithm and sequential search methods [99]. Hybrid 

methods involve the combination of filter and wrapper methods for selecting 

significant features from the training data set. 

4) Model training:  

The pre-processing step of ML process generates a dataset that is compatible 

with the processing of any ML model [60]. Output is saved in the form of rows 

and columns as CSV file format in general. The model training step involves 

training the ML algorithm to solve a specific problem such as classification 

problem, regression problem and clustering problem.  

Supervised ML classifiers adjust their parameters for minimising the error 

between actual and output of the model corresponding to a given input during 

the training process. Common supervised ML classifiers include decision 

trees, Naive Bayes, neural networks, KNN, SVM, and Random forest. 

In contrast, unsupervised algorithms determine the association between input 

without prior knowledge of output. Associations are computed in terms of 

similarity or distance. Supervised models are generally used for classification 

purposes, whereas unsupervised models are used for clustering purposes. 

Examples of unsupervised ML models consist of K-means clustering [100], EM 

clustering [101], and DBSCAN clustering method [102].  

Many algorithms take advantage of supervised and unsupervised learning. 

For example, the semi-supervised method exploits the unlabelled data to train 

classifiers using clustering methods and labelled data to label the clusters. 

Several methods have been proposed that combine the output of different 

classifiers called hybrid method or ensemble methods. Examples of methods 

in this category are the bagging method, stacking method and boosting 

method [103].  
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Generating a well-trained ML model involves two steps, training and tuning 

the ML model. We need to select an appropriate ML model as per training data 

size and features of network scenario and problem category. The ML model is 

trained based upon the training data set with the tuning of the 

hyperparameters. There exist no well-defined theoretical guidelines for tuning 

hyperparameters. Generally, it involves searching an ample space to 

determine acceptable hyperparameters or to apply domain expertise to 

achieve an optimised set of hyperparameters. After the training process, ML 

models are validated based upon cross validation strategy for evaluating the 

accuracy of the ML model [86].  

Validation results signify the level of overfitting or underfitting of the ML 

model. Validation results provide guidelines for optimising a ML model, such 

that increasing the size of the training data set and reducing the complexity of 

the model for avoiding overfitting problem [86]. 

5) Performance analysis:  

In order to perform a comprehensive evaluation of ML models, several 

objective metrics have been defined. Performance analysis step in ML process 

computes performance metrics quantitatively for evaluating ML models.   

Supervised learning models are generally evaluated in terms of the 

classification performance of the model. Many associations have been 

identified between ground truth and the prediction of the model. 

The most important representation is the confusion matrix that represents the 

true positives, true negatives, false positives, and false negatives in the form 

of a matrix. However, the confusion matrix is not directly compared to 

different ML models. Many metrics can be derived using the information 

present in the confusion matrix such as classification accuracy, precision, recall 

or True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate 
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(FNR), True Negative Rate (TNR), F-measure, area under Receiver Operator 

Characteristics (ROC) curve, area under Precision Recall (PR) curve and kappa 

statistics [60, 104]. 

In the case of a multi-class classification problem, the micro or macro average 

of the above-mentioned performance metrics can be used to evaluate and 

compare the performance of ML models. These metrics provide different 

aspects of the performance of ML models [105, 106].   

3.5 Classifier Taxonomy 

A number of properties exist that describe each ML classifier. The following 

four main properties define how the classification algorithm works, what kind 

of data it requires and how good the classifier is [170, 171]: 

1) Generative classifier or discriminative classifier: 

Generative classifiers e.g., Naive Bayes, learn models for each class, and to 

classify a feature vector, generative classifiers compute the likelihood of 

each class and choose the most likely. In contrast discriminative classifiers 

e.g., SVM, only learn the way of discriminating the classes in order to 

classify a feature vector directly [172]. 

2) Dynamic or Static 

Dynamic classifiers have the capability of considering the temporal 

information during the classification as a sequence of feature vectors can 

be classified. This involves extracting features from different time 

segments in order to build a temporal sequence of feature vectors and feed 

into the dynamic classifier. so dynamic classifiers e.g., hidden Markov 

model, possess the ability to detect or catch the relevant temporal 

variations present in the extracted features. whereas static classifiers e.g., 
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MLP do not catch the relevant temporal variations during the classification 

as they classify a single feature vector [172, 179, 183]. 

3) Stable or Unstable  

Stable classifiers e.g., Linear Discriminant Analysis (LDA), SVM, etc., are 

robust against the small changes or variations in the training set, and their 

performance is not significantly impacted. In the contrast, unstable 

classifiers e.g., MLP, decision tree, etc., are susceptible to the small 

variations in the training set which may lead to considerable changes in the 

constructed classifier [173, 174].  

Training a classifier can often be divided into several stages in an attempt 

to minimise the bias-variance trade-off problem. This first starts by using a 

training set to estimate the classifier’s decision boundary, followed by a 

validation set, which is used to test and further refine the classifier’s 

decision boundary [174]. There is a natural trade-off between bias and 

variance, and to achieve a low classification error both bias and variance 

must be low. Stable classifiers tend to have a high bias and a low variance, 

whereas a low bias and high variance are observed in unstable classifiers 

[179, 184].  

Stable classifiers perform better than unstable classifiers in the presence of 

non-stationary features that vary rapidly or frequently over time or 

sessions i.e., training sets coming from different sessions [179, 185]. 

4) Regularised classifier  

Regularisation is the process of controlling or regularising the complexity 

of a classifier in order to prevent overfitting. Thus, the regularised classifier 

is more robust against outliers [173]. 
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3.5.1 Which Classifier Goes with which Kind of data 

• Noise and outliers 

An outlier is defined as a data point that is different from the remaining 

data. Whereas noise can be defined as errors in the values of attributes or 

mislabelled class values [186]. So regularised classifiers e.g., the 

regularised version of LDA (RLDA), Linear SVM, deal better than an 

unregularised version of LDA in the presence of outliers and errors in the 

training set. Similarly, a nonlinear SVM is more appropriate for dealing 

with outliers and errors than an unregularised MLP.  As they use a 

regularisation parameter that enables accommodation to outliers and 

allows errors on the training set. This results in increasing the 

generalisation capabilities of the classifier [179, 185]. 

• High dimensionality 

SVM is one of the most appropriate classifiers to handle the feature vectors 

of high dimensionality, for example, features extracted from a number of 

channels and from a number of time segments before combining them into 

a single feature vector. Moreover, dynamic classifiers also have the 

capacity to cope well if high dimensionality is due to a large number of 

time segments, as they have the ability to deal with sequences of feature 

vectors at a time instead of dealing with a single feature vector of high 

dimensionality. KNN should not be used with high dimensional feature 

vectors due to the sensitivity to the curse of dimensionality, but it can be 

efficient with a small number of features [179, 185]. 
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• Time information 

Dynamic classifiers possess the ability to efficiently exploit temporal 

information contained in features. Moreover, combining classifiers over 

time can also be efficient in utilising the time information [179, 185]. 

• Non-stationarity 

In the presence of non-stationary features, one of the efficient ways of 

dealing with this issue is a combination of classifiers as it reduces the 

variance. Stable classifiers such as SVM or LDA can also be applied in this 

context, but this would be outperformed by combining classifiers [179, 

185]. 

• Small training sets 

In the presence of small training sets, simple classifiers with few 

parameters such as LDA should be considered [179, 185]. 

3.6 ML Classifiers 

3.6.1 Overview 

This section describes the ML classifiers employed in this research for 

classifying smartphone applications’ network traffic. There are a variety of ML 

classifiers that exist; however, they can still be categorised into five main 

tribes: Bayesians, Evolutionists, Connectionists, Analogists and Symbolists 

[109, 125]. 

Bayesians are influenced by statistics and focused on using probabilistic 

inference to evaluate a hypothesis where certain outcomes are more likely than 

others. Naive Bayes is an example of an ML classifier that belongs to the 

Bayesians tribe. While evolutionists are influenced by biology and natural 
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selection and they focused on using the principles of natural selection to 

produce dependents that are most successful within their environment. 

genetic algorithms are an example that belongs to this type of tribe [109, 125]. 

Moreover, from the following three tribes; connectionists, analogists and 

symbolists, five commonly used ML classifiers with distinct learning 

approaches were considered in this research. These ML classifiers are MLP, 

KNN, decision tree, Random forests and SVM. 

For example, MLP is one of popular Artificial Neural Networks (ANNs) that 

is inspired by biological neural networks. MLP belongs to the connectionists 

tribe that is formed of linked nodes and directed linkages. wherein each node 

performs a biased weighted sum of its inputs and applies an activation 

function to transfer its output to the next layer. 

While both KNN and SVM belong to the analogists ML tribe, as they focus on 

identifying similarities between situations and thereby inferring other 

similarities. Thus, the learning rests upon building analogies between 

available data. However, they differ in their learning approaches. SVM is 

considered an eager learner, as the model is constructed from the training data 

before classifying the unseen testing data. Whereas KNN is known as a lazy 

learner. Unlike SVM, KNN has no explicit training phase. Instead, the learning 

phase is deferred till the test cases are executed against the model. 

Finally, decision trees and random forests belong to the symbolists ML tribe, 

where knowledge is built by constructing symbolic representations of a 

concept. However, the main distinction between decision tree and random 

forests is that the random forest is an ensemble-based learning method that 

comprises multiple decision trees and is formed by using a bagging technique 

along with a randomised selection of features. 
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3.6.2 Artificial Neural Networks: Multilayer Perceptron (MLP) 

MLP is a feed forward neural network consisting of different layers of 

interconnected neurons. It contains three layers: the input layer, hidden layer, 

and output layer containing different neurons in each layer. Each neuron 

performs a biased weighted sum of its inputs and applies an activation 

function to transfer its output to the next layer. MLP can model any arbitrary 

complexity with a number of layers and the number of units in each layer. 

During the training process, weights are optimised to obtain minimum error 

at the output layer [107]. 

 

Figure 3. 1: Multilayer Perceptron 

Figure 3. 1 depicts an MLP network with a single hidden layer. The first layer 

is the input layer which takes each training instance and passes through the 

input neurons unchanged. Each neuron or node in each layer is connected to 

all nodes of the following layer, and the connection between the nodes is 

associated with weighting values ranging from [-1.0 to 1.0], or [-0.5 to 0.5] 
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[141]. Nodes of each layer except of the input layer, also have a constant input 

called a bias that is added to the associated weights.  Each neuron of an MLP 

has two functions, summation, and activation functions. The summation 

function is used to obtain the product of the input values, values of associated 

weights and bias [108]. 

n 

                                   sj =       wij xi + bj                         (3.1) 

   i=1 

Equation 3.1 represents the summation function sj of the hidden neuron hj , 

where n denotes the total number of the inputs, xi  is the input variable, bj is 

the bias value of the hidden nodes, and wij refers to the connection weight 

between the node i of input layer to node j of the hidden layer. 

The next step is the application of the activation function, so the result of the 

computation in equation 3.1 of the summation function is passed onto an 

activation function to produce the output of the neuron [169]. An activation 

function is also known as a squashing function because it restricts the output 

values of neurons in hidden and output layers onto two small values. A 

number of activation functions exist and can be utilised in MLP, these include 

linear function, heaviside step function, gaussian function, etc [107, 141]. The 

most common is the S-shaped sigmoid function, which can be stated as 

follows: 

   1 

                            fj (sj) =                                                  (3.2) 

        1 + e -sj 

Σ 
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Therefore, the final output of neuron hj in hidden layer is: 

n 

                              hj = fj (       wij xi + bj)                        (3.3) 

   i=1 

And the predicted output of node yk in the output layer is calculated as 

follows: 

m 

                             yk = fk (       wjk hj + bk)                       (3.4) 

   j=1 

where m is the total number of hidden nodes, fk is the activation function of 

node yk of output layer, bk is another bias value for nodes in output layer, and 

wjk  refers to the connection weight between the node j of hidden layer to node 

k of output layer. 

During the supervised training of an MLP, weights and biases are learned 

usually using the backpropagation algorithm to approximate an unknown 

input-output relation. Therefore, the objective is to minimize the difference 

between the network's prediction and the actual output [107]. 

An MLP without a hidden layer is called a perceptron and is applied to classify 

the linearly separable data, but it is not well suited for nonlinear cases. 

whereas an MLP solves this issue and is applied to classify the data that are 

not linearly separable. This is because each neuron in the hidden and output 

layers has a nonlinear activation function allowing an MLP to distinguish data 

that is not linearly separable [187, 188]. 

Σ 

Σ 
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MLP is the most popular and widely used neural network architecture which 

has been successfully applied in solving a wide variety range of classification 

and regression problems [175, 176]. 

An MLP is known as a universal approximator the strength of an MLP lies in 

the fact that is capable to approximate any smooth function to any desired 

degree of accuracy as long as the number of hidden layer neuron increases 

[177]. However, this makes a classifier sensitive to overtraining which causes 

overfitting, meaning that the classifier tends to memorise the training data 

causing it to generalize poorly on unseen data [178, 179].  

One of the most common limitations of an MLP that restricts and complicates 

its application lies in its knowledge representation. This is known as black box 

limitation; the weights of an MLP provide no explicit information that users 

could be able to interpret, thus, it is difficult to acquire explicit information 

about the underlying function implemented by an MLP [180]. 

Another common limitation of an MLP is associated with the optimisation 

algorithm. The backpropagation algorithm during the weights and biases 

adjustment to minimise the prediction error using the gradient descent 

method does not guarantee to find the globally optimal set of weights and 

biases during the training. As a result, becomes trapped in local minima 

instead of finding the global minimum [181, 182]. 

3.6.3 Lazy Learner: K-Nearest Neighbour (KNN) 

KNN is a supervised machine learning method for solving classification and 

regression problems. It works by analysing the distance between input data 

samples. KNN is also known as a non-parametric lazy learning algorithm. 

Non-parametric means the learning algorithm makes no assumptions about 

the structure or distribution of the underlying data. Being a lazy learner means 

there is no explicit learning phase, instead the learning phase deferrers till the 
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test cases are being executed against the model [117]. KNN is also called an 

instance-based learning algorithm, as it stores the training set and for 

classifying a new unclassified instance or test record, it firstly searches through 

the training set for the most similar instances (k nearest neighbours) using a 

distance measure function, and then classifies the test record according to the 

majority class among k nearest neighbours [118]. 

To define which of k nearest neighbours in the training set are the most similar 

to the new test sample, a distance measure function is used. various distance 

functions have been used in the literature such as Euclidean Distance, 

Hamming Distance, Manhattan Distance, etc., among these distance measure 

functions; Euclidean is the most popular and widely used one [189, 190]. 

Euclidean distance is calculated as the square root of the sum of the squared 

differences between the elements of two factors [191]. 

The following paragraphs will illustrate how KNN classifies a new test sample 

using the Euclidean distance. Table 3.1 shows a small dataset of 5 records of 

student results labelled as pass or fail (binary classification), with two input 

variables: 1- mathematics 2- computer science [118, 191]. 

Table 3. 1: Small training set of student results 

Mathematics Computer science Result (Pass/Fail) 

4 3 Fail 

6 7 Pass 

7 8 Pass 

5 5 Fail 

8 8 Pass 

The objective here is to classify a new unlabelled test sample given in table 3.2 

into class pass or fail. 
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Table 3. 2: An unlabelled testing set 

Mathematics Computer science Result (Pass/Fail) 

6 8 ?? 

The training set in table 3.1 contains only two features, so the KNN algorithm 

treats the features as coordinates in a two-dimensional feature space.  

The first step is to calculate the Euclidean distance between the new test 

sample or instance in table 3.2 and all instances in the training set in table 3.1 

based on the following Euclidean distance formula: 

Euclidean distance =    √ (xo1 – xa1)2 + (xo2 – xa2)2                      (3.5)                      

where o represents the observed value that given in test sample, and a 

represents the actual value in a training set. 

Table 3.3 lists the Euclidean distances between each training instance and the 

new unlabelled test sample. 

Table 3. 3: Euclidean distances for training data to the new unlabelled instance 

No 
Euclidean 

measure 

Squared 

difference 

Sum of squared 

differences 

Square root 

of the sum 
Distance 

1 
d= 

√(6−4)2+(8−3)2 

(6 - 4)2 = 2 

(8 - 3)2 = 5 

(2)2 + (5)2 

= 4 + 25 = 29 
√29 5.38 

2 
d= 

√(6−6)2+(8−7)2 

(6 - 6) = 0 

(8 - 7) = 1 

(0)2 + (1)2 

= 0 + 1 = 1 
√1 1 

3 
d= 

√(6−7)2+(8−8)2 

(6 - 7) = -1 

(8 - 8) = 0 

(-1)2 + (0)2 

= 1 + 0 = 1 
√1 1 

4 
d= 

√(6−5)2+(8−5)2 

(6 - 5) = 1 

(8 - 5) = 3 

(1)2 + (3)2 

= 1 + 9 = 10 
√10 3.16 

5 
d= 

√(6−8)2+(8−8)2 

(6 - 8) = -2 

(8 - 8) = 0 

(-2)2 + (0)2 

= 4 + 0 = 4 
√4 2 



63 

For this case, the value of k is set to 3 for the KNN algorithm, so that the new 

unlabelled test sample would be classified according to the smallest distance 

or closest 3 data points or neighbours to it. 

Thus, The K = 3 most similar neighbours with minimum distances to the new 

unlabelled test instance are: no 2, no 3, and no 5.  Now, we apply the majority 

of voting technique and select the majority class in the neighbours. In this case, 

all the three neighbours have the same class label of pass. Therefore, the new 

unlabelled test instance will be classified as pass. 

The value of k (number of neighbours) is considered an important 

hyperparameter that plays a crucial role in the KNN algorithm, when the 

value of k decreases or increases, a major change in the outcomes of the KNN 

classifier can be noted. For the classification, it is recommended to select a k 

with odd values to avoid a tie in the voting phase. Decreasing the k value e.g., 

k = 1, might lead to misclassification, particularly in the presence of noisy 

samples. It could be possible that the nearest neighbour of this particular 

sample is one of the noisy samples, resulting in a wrong prediction. Moreover, 

a smaller k value = 1, could sharpen the boundaries and might lead the 

classifier towards overfitting, tending to memorise the training set at the cost 

of generalisability. In contrast, k with large values is more robust to noise due 

to the contribution of more neighbours during majority voting. So, it is more 

likely a classifier keeps making more accurate predictions when the value of k 

increases till a certain k value, in which after that certain point, classifier’s 

accuracy starts to decrease, thus this would be the point of an optimal k value 

[117, 192].   

In some cases, it is common that some features are more relevant than others, 

when the number of irrelevant features increases, the distances computed in 

the KNN classifier will be dominated by these features. This is known as the 

curse of dimensionality. Generally, most ML classifiers suffer from irrelevant 
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features, as a result, they perform poorly. But KNN is more sensitive to the 

curse of dimensionality than other classifiers in the presence of irrelevant 

features and its performance is heavily degraded with a large number of 

features in comparison to other classifiers [117, 193]. 

KNN is fast in training as it does not require building a model, but for 

classifying a new instance, the distance between the new instance and all 

instances in the training set must be calculated, which makes the KNN slow in 

the testing phase and this becomes significantly slower as the number of 

examples increases [117]. 

3.6.4 Decision Tree 

Decision tree is a supervised ML method that involves building tree shaped 

graph to predict possible output corresponding to input values. The built tree 

contains one root element and some internal elements called decision nodes, 

used to test the input against a learnt expression. The leaf nodes of the tree 

correspond to the final prediction of the classifier. The decision tree is used to 

drive decision rules for solving the decision problem by starting at the root 

node and moving downward to word leaf nodes to predict the target class. 

Many variants have been proposed in decision trees classifiers such as 

Iterative Dichotomiser 3 (ID3), and C4.5 [110]. 

3.6.5 Ensemble-Based Learner: Random Forest 

Random forest is a supervised learning algorithm that is used for solving both 

classification and regression problems. Random forest is a popular ensemble-

based learning method that is formed by using a bagging technique along with 

a randomised selection of features. 

Bagging, which stands for bootstrap aggregating is an ensemble learning 

technique in which a homogeneous group of individual learners of the same 
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type also known as base learners (e.g., decision trees) are trained 

independently and in parallel then their predictions are combined. For the 

classification, a voting method is adopted whereas averaging method is 

applied for regression [194]. 

The bagging process is described as follows: given the original data set D 

consisting of m samples and since bagging employs bootstrap sampling 

method, thus one sample is randomly picked from the original data set D and 

copied into a sampling set D’ and then placed back into the original data set D 

so it has the opportunity to be picked once again and copied into D’.  

So, by repeating the process of sampling with replacement m times, a bootstrap 

sampling data set D’ is constructed consisting of m samples. Due to sampling 

with replacement, a number of samples may be repeated in D’ while other 

samples from the original data set D may never appear in D’ even if the size 

of  D’ data set is equivalent to the original data set D. So, the probability of a 

particular sample not being selected from D in any of m rounds is (1 - 1/m)m. 

  lim                1            1                                           
m →∞             m              e                                                                                                 (3.6) 

This means that around 36.8 % of the original samples are not included in D’. 

Furthermore, applying the process of constructing a bootstrap sampling data 

set D’ for T times results in T data sets where each consists of m bootstrap 

samples. Next, the base learners are trained on these data sets, then in the test 

stage the results from the base learners are combined and the final prediction 

for the classification is made by conducting the majority voting among the 

base learners. Moreover, in case of multiple classes have the same number of 

votes, one can be chosen at random, or confidence of votes can be further 

investigated [194, 199]. 
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Since the effectiveness of ensemble learning depends on whether or not all 

individual learners are diverse enough, therefore the main idea is to enhance 

the diversity between the individual learners which is achievable by 

introducing some randomness into the learning process. Thus, bagging 

introduces diversity through data sample manipulation which is particularly 

useful with unstable learners that are sensitive to training data manipulation, 

thus when bagging is applied to unstable learners such as decision trees it 

helps in reducing the variance which alleviates overfitting [194, 111]. 

Random forest is an extension of bagging and is constructed by using the 

bagging technique along with the randomised selection of features.  

Random forest further enlarges the diversity among the base learners by 

employing both data sample manipulation and input feature manipulation. 

Thus, each tree in the Random forest is built from a different random subset 

of the features which is also known as subspace sampling. The random 

sampling of the features avoids the domination of some strong features that 

have more predictive power for the output class, as no matter how many 

bootstrap samples are used, stronger features will be selected alone in many 

trees leading to high tree correlation. Therefore, Random forest helps in 

reducing the correlation between the trees in the ensemble by adding extra 

randomness into the tree-growing process. More specifically, instead of 

searching for the best feature when splitting a node, the algorithm searches the 

best feature only across randomly selected features from the feature set [115, 

217]. 

Hence, adding the random selection of features on top of bagging encourages 

diversity and leads to a better generalisation ability. Additionally, the training 

time of each tree is reduced [194, 199]. 
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Each tree in the Random forest is constructed based on the following steps 

[115, 194]: 

Step 1:  Given the original data set D, follow the bootstrap sampling 

method with replacement by randomly picking samples from the 

original data set D copying them into sampling set D’ and placing them 

back into D. The size of the sampling set D’ is adjustable parameter, the 

most common choice is |D’| = |D|. 

Step 2: Train the decision tree on D’ with one major modification, 

instead of evaluating all the features to find the best split point to split 

the node, consider only the randomly selected features m from the 

feature set p. 

The size of the random subset of features m that is considered at any 

given split is also a free parameter. Typically for the classification 

problem, the most common choice is using the square root of the total 

number of features m=√p. 

For the classification, based on the majority voting method where an ensemble 

consists of T decision trees {h1, h2,. . . , hT}, where hi predicts the class label {c1, 

c2, . . . , cN}, given a test sample x, hj
i (x) is the output of hi on test sample x for 

the class label cj. 

H(X) = C argmax           hj
i (x).                                                                                       (3.7) 

No particular value type assumed in the above equation, however, in case of 

assuming the class label hj
i (x) ∈ {0, 1}: then the output would be 1 in case of hi 

predicted the class label as cj and otherwise 0. Figure 3.2 illustrates the 

graphical formulation of Random forest. 
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In addition to the advantage of diversity generation mechanisms employed by 

the Random forest to enhance the diversity among the base learners which 

consequently leads to a better generalisation ability. Another advantage of 

using Random forest is its ability to measure the importance of each feature 

across all trees in the forest in terms of their contribution to the classification 

and then sorting the features in descending order according to their predictive 

power for the output class [208, 115]. 

However, in terms of disadvantages, Random forest is less interpretable by 

users and requires more time to build compared to a single tree classifier. This 

is due to a large number of trees being used as base learners in which each tree 

is heavily influenced by random selections of samples and features [207, 218]. 

3.6.6  Support Vector Machine (SVM) 

SVM is used for both regression and classification tasks, but it is more 

commonly applied in solving classification problems [117]. Despite the ability 

of SVM to perform linear classification, moreover, in cases when the original 

data set is linearly non-separable in the original input space, SVM uses the 

kernel trick to transform data from the original input space into higher 

Figure 3. 2: Random forest [116] 
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dimensional feature space. Once this transformation is achieved in this feature 

space, a linear hyperplane is obtained to separate the different classes involved 

in the classification task [111].   

The goal of the SVM is to construct a hyperplane, i.e., a decision boundary that 

has a maximum margin (distance) between samples of different classes. 

Support vectors are the nearest data points to the hyperplane that affect the 

position and the orientation of the hyperplane and based on these support 

vectors, classifier's margin is maximised [117]. 

3.6.6.1 Linear SVM 

Assuming the training data is linearly separable, the basic concept of the 

classification is to find a separating hyperplane that separate the samples of 

different classes, given a training set D defined by the following: 

D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, yi ∈ {−1,+1}.                                                            (3.8) 

Where yi is either 1 or -1 for positive and negative classes. However, a number 

of separating hyperplanes possibly could be constructed as shown in figure 

3.3. In comparison to other hyperplanes, the hyperplane in red is precisely 

right in the middle of the two classes and it has the maximum separation 

distance from all training samples, and that is the one that should be chosen. 

Moreover, the red hyperplane is more robust against noises in data, as is less 

likely to be affected in the presence of small perturbations in the data, thus it 

provides better generalization capability [194]. 
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The hyperplane can be expressed as the following linear function:  

w1x1 + w2x2 +· · · + wdxd + b,                                                                                                      (3.9) 

where wd  is a coefficient or weight, xd is the input variable, and b refers to the 

bias [194, 195]. 

Or commonly written in the vector form 

w T x + b = 0,                                                                                                                      (3.10) 

where w = (w1;w2; . . . ;wd ) is the normal weight vector that controls the 

direction of the hyperplane, x is input vector and b is the bias offset which 

controls the distance between the hyperplane and the origin. So, w is slope and 

b is the intercept which determine the separating hyperplane [194], and the 

distance from any sample x to a hyperplane can calculated as: 

|w T x + b|                                                                                                                         (3.11) 

 

       ||w||                                      

 

 

 

Figure 3. 3: Multiple hyperplanes separating samples of two classes [194] 



71 

     

Figure 3. 4: SVM 

As depicted in figure 3.4, if the hyperplane (w, b) perfectly separates the 

training data points  for ∀ (xi , yi) ∈ D, there is: 

w T xi + b ≥ +1,   yi = +1,                 

w T xi + b ≤ -1,   yi = - 1,                                                                               (3.12) 

The nearest data points to the hyperplane called support vectors in which 

equality holds for in (3.12), and the total distance from support vectors of two 

different classes to the hyperplane called margin [111, 194]. Expressed as 

 γ =        2                                                                                                                           (3.13) 

            ||w||                                       

The next step is to find a maximum-margin hyperplane it also means finding 

the parameters w and b that maximise γ subject to the constraints in (3.12), that 

is: 

max       2                          

w, b      ||w||                                                                                                                        (3.14) 
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s.t    yi(w T xi + b)  ≥ 1,      i = 1, 2,…., m.          

To maximize the margin is the same as minimising ||w||2 thus (3.14) can be 

rewritten as: 

min      1                                                   

w, b      2                                                                                                                (3.15) 

s.t    yi(w T xi + b ) ≥ 1,      i = 1, 2,…., m.          

This is known as the primal form of SVM. (3.15) is a convex quadratic 

programming optimisation problem which can be approached by introducing 

Lagrange multipliers and based on Karush–Kuhn–Tucker (KKT) conditions 

[194, 196]. Adding the constraints with Lagrange multiplier αi  ≥ 0  for each 

training example in (3.15)  gives the Lagrange function: 

 

                     =                  +                                                                                           (3.16)  

Where α = (α1; α2; . . . ; αm). Taking the partial derivatives of L(w, b, α) with 

respect to w and b and setting those to zero, we obtain 

 

                                                                                                                                           (3.17) 

 

                                                                                                                                           (3.18) 

Furthermore, by Substituting (3.17) into (3.16) w is eliminated from L(w, b, α). 

Then with the constraint (3.18), the problem can be reformulated to the dual 

form problem expressed as follows: 
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         s.t.                                                                                                                             (3.19) 

Once the above dual optimisation problem is solved, we can obtain α of 

Lagrange multiplier in (3.16) corresponding to training data points (xi,yi), and 

subsequently w and b are obtained [194, 197]. Then, the desired model is 

obtained: 

 

 

            =                                                                                                                                           (3.20) 

 

Since (3.15) is an optimisation problem with inequality constraints. The KKT 

must be satisfied.  

ai ≥ 0; 

yi f (xi) - 1 ≥ 0;                                                                                                                    (3.21) 

ai(yi f (xi) - 1) = 0. 

Thus, for any training point (xi, yi) we either have data points whose 

corresponding Lagrange multiplier αi > 0 or αi = 0. When αi > 0 or yi f (xi) = 1, 

these data points are the support vectors, thus the maximum-margin 

hyperplane depends only on these points which are used in the summation in 

(3.20). While the rest of data points whose corresponding Lagrange multiplier 

αi = 0 are not the support vectors and have no impact on maximum-margin 

hyperplane, so removing them once the training is completed, results in the 

same maximum-margin hyperplane for the linear SVMs as the final model 

only depends on the support vectors [111, 194, 195]. 
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As the final solution of SVMs relies on a small number of training data points, 

SVMs are also called sparse models or machines. Sparse models are usually 

not Susceptible to limitations such as outliers and overfitting [111].   

Finally, to compute the bias b, we can observe that there is ysf (xs) = 1 for every 

support vector (xs, ys), that is 

 

                                                                                                                                           (3.22) 

It is possible to obtain the b by substituting any support vectors into the equation 

(2.22), however it is more convenient to average over all support vectors and compute 

b as: 

 

                                                                                                                                           (3.23) 

Where S denotes for index set of all support vectors S = {i| αi > 0, i = 1, 2, . . . 

,m} is the index set of all support vectors [194, 198]. 

3.6.6.2 Soft SVM and Regularisation 

The SVM formulation discussed previously is known as the hard margin SVM, 

which is only suitable for linearly separable data. However, in situations when 

the training data are not completely separable [196], the maximum-margin 

hyperplane may not exist [111]. 

The hard margin requires all training data points to be correctly classified 

subject to the constraints (3.12), whereas the soft margin allows violation of 

the constraint 

yi(w T xi + b) ≥ 1,                                                                                                              (3.24) 
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To be specific, the soft margin aims to maximise the margin and 

simultaneously tries to minimise the number of data points violating the 

constraint. In this case, nonnegative slack variables ξi ≥ 0  are introduced for 

each training data point to allow some of data points to be inside the margin 

or even at the wrong side of the hyperplane [199].  

Thus, each training data point has a corresponding slack variable that 

indicates the level to which the constraint (3.24) is violated [194]. 

The primal form of SVM in (3.15)  is extended by adding the slack term to the 

objective function resulting in the following soft margin optimisation problem 

[111]: 

   min        1                                                                

w, b, ξi      2                                                                                                                       (3.25) 
 

s.t    yi(w T xi + b )  ≥  1 -  ξi 

       ξi  ≥  0,      i = 1, 2,…., m.          

Where the regularisation term C  is a hyperparameter that controls the trade-

off between the margin maximization (corresponding to minimising ||w||                                     

2 /2) against slack variable minimisation (corresponding to minimising the 

sum of the slack terms) [195. 199].  By increasing the C value, a tighter margin 

is obtained, and more effort is made on minimising the number of 

misclassifications. In other words, large values of C forces all the training data 

points to obey the constraint (3.24) which is equivalent to (3.15) that is the hard 

margin [194, 196].  

On the other hand, decreasing the C value result in relaxed margin, and 

permits some data points to violate the constraint in order to achieve a large 

margin[194, 196]. Figure 3.5 shows the effect of large and low values of the 

regularisation parameter and margin violation, C2 has a tighter margin and 
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fewer training data points are within the margin, whereas C1 has a wider 

margin.  

 

Figure 3. 5: the effect of large and low values of the regularisation parameter C 
[196] 

The problem in (3.25) again is a quadratic programming problem similar to 

(3.15), hence, to resolve the optimisation problem in (3.25) the same procedure 

of resolving (3.15)  is followed [111].  

The soft-margin dual problem is almost identical to the hard-margin dual 

problem presented in (3.19), the only difference is that each dual variable is 

currently upper bounded by the regularization parameter C ( 0  ≤ αi ≤ C ) [111, 

196, 197]. 

3.6.6.3 Nonlinear SVM: the Kernel Trick 

In situations when the training data are not linearly separable in the original 

input space it may become linearly separable in a higher dimensional space. 



77 

In such cases training data are mapped from the original input space into a 

higher dimensional feature space in which the linear classification can be 

applied [111]. 

Let φ represent feature vector x that is mapped into the feature space, so the 

separating hyperplane model can be represented as follows in the feature 

space: 

f (x) = w T φ (x) + b,                                                                                                          (3.26) 

And its dual formulation is  

 
                           

 

 

       s.t.                                                                                                                               (3.27) 

 

To solve (3.27) it is required to calculate the inner product φ(xi) T φ(xj) of the 

mapped feature vectors of xi and xj. However, since the direct calculation of  

φ(xi) T φ(xj) is difficult as the mapped feature space could have high or even 

infinite dimensionality [194]. Therefore, we assume there exists a function 

denoted as: 

k(xi , xj) = (φ(xi), φ(xj)) = φ(xi) T φ(xj),                                                                             (3.28) 

This indicates that by the application of the function κ(·, ·) the inner product 

of vectors of xi and xj in the feature space can be calculated in the input space 

using the kernel function, so there is no need to perform the calculation of the 

inner product in the feature space (this process is called kernel trick) [194]. 

Thus (3.27) can be rewritten as: 
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     s.t.                                                                                                                               (3.29) 

 

Solving it gives 

 

 

                    =                                                                                   

 

                    =                                                                                                                                   (3.30) 

where k(·, ·) represents the application of a Kernel function to the SVM, from 

(3.30) we notice that by applying the kernel functions the optimal solution 

could be expanded by training data points, and this expansion is so-

called  support vector expansion [194]. 

A function could be specified as kernel function k(·, ·) if the details of mapping 

φ(.) are explicit. However, φ(.) usually are unknown, thus for a function to be 

a valid kernel function it must satisfy a certain condition known as Mercer's 

theorem condition. Thus, according to the Mercer's theorem a valid kernel 

function must be symmetric with a positive semi-definite kernel matrix [111, 

194]. 

Let X denote the input space, and k(·, ·) is a symmetric function on X × X. 

Then k is a valid kernel function if and only if its corresponding kernel matrix 

is positive semi-definite for any training set [ 111, 194].  

Therefore, for every positive semi-definite kernel matrix there always would 

be a corresponding mapping φ meaning that every kernel function implicitly 
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specifies a feature space, but we may not know explicitly the details of the 

feature mapping. For this reason, the selection of kernel is the biggest 

uncertainty for SVMs. Because selecting a poor kernel would map the training 

data into a poor feature space resulting in poor performance [194]. 

Table 3.4 shows different kernel functions commonly used in SVM for 

nonlinear data classification [194].  

Table 3. 4: Kernel functions 

Name Expression 

Linear kernel k(xi , xj) = xi T xj        
 

Polynomial kernel k(xi , xj) = (xi T xj)d   
d ≥ 1 denotes the degree of the polynomial when the 
degree reduced to d = 1 it represents the linear kernel. 
 

Gaussian kernel 
 

                       k(xi , xj) = exp  ( -                       ) 
also called RBF kernel, parameter σ ≥ 0 controls the 
width of the gaussian. 

3.6.6.4 Multiclass SVM 

Since the SVM is originally designed for binary classification, thus it does not 

support multiclass classification natively. However, the binary SVM can be 

easily extended to accommodate multiclass classification. The following are 

the two commonly used approaches with the SVM to perform the multiclass 

classifications [111, 196]: 

One versus One (OvO) 

Given a training set D  = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where yi ∈ { C1, C2, . . . 

, CN,}, based on the number of classes N, OvO approach constructs a binary 

classifier for each pair of classes resulting in  N(N − 1)/2 classifiers. For 

example, if N = 4 classes, then we have 4(4 − 1)/2 = 6 classifiers. OvO approach 

assigns a pair of classes Ci as positive and Cj as negative and trins the classifier 
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to distinguish between them. So, after classifying the new the test sample by 

all classifiers, the final class is determined by voting, and the class that received 

the most votes is assigned to the testing sample [194, 200]. 

One versus All (OvA) 

This is also known as one versus rest, OvA approach constructs a binary 

classifier for each class, each time one of the classes is compared against the 

rest of classes n -1. For example, if N = 4 classes, then we have 4 classifiers and 

during the training each class is considered as a positive while the remaining 

3 classes n - 1 are considered as negative. During the testing phase if one of the 

classifiers predicted a new test sample as positive, then this would be 

considered as the final classification. However, in case a number of classifiers 

have predicted the test sample as positive, then the final classification result is 

considered based on the prediction confidences, where the class with highest 

confidence is assigned to the testing sample [118, 194, 200]. A demonstration 

of OvO and OvA approaches are shown in figure 3.6. 

 

Figure 3. 6: Demonstration of OvO and OvA approaches [194] 



81 

3.6.6.5 Strengths and Weaknesses  

Some common strengths and weaknesses of the SVM classifier are listed 

below[197, 201]: 

Strengths of SVM 

• Training the SVM can lead to a unique solution since is formulated as a 

quadratic programming problem, this is one of the key benefits of SVM 

over MLP, whereas an MLP classifier is known to have multiple local 

minima and thus may not be robust enough against the unseen data. 

• Unlike the MLP which uses the sum of squares error to minimize the 

errors caused by outliers. As discussed in subsection 3.6.6.2, SVM uses 

the regularisation parameter C to control the misclassification error, by 

increasing the C value, a tighter margin is obtained, and more effort is 

made on minimising the number of misclassifications. Thus, outliers 

can be suppressed with a proper selection of the C value. 

• Better performance than an MLP in the presence of limited data. 

• One of the main differences compared to an MLP is mapping the 

nonlinear data from the original input space into a higher dimensional 

feature space, this provides an efficient and more accurate problem data 

analysis. 

Weaknesses of SVM 

• The selection of an appropriate kernel function is one of the main 

concerns of using the SVM. However, having selected an appropriate 

kernel function, more parameters need to be determined, including 

parameters of the selected kernel and the regularisation C parameter. 

Thus, determining the optimal values of these parameters is a time-

consuming and challenging task.  
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• In the presence of large training data, SVM spends more time solving 

the dual optimisation problem due to a large number of training data 

and consequently a large number of Lagrange multipliers engaged in 

finding the support vectors. 

3.6.7 Comparison of ML Classifiers 

Sensitivity towards data modification  

- Classifiers such as decision trees and MLPs fall into the category of 

unstable learners, the instability here means that a small modification 

in the training data that are used for training the unstable classifier 

leads to a significant change in the constructed classifier and therefore 

results in large differences in the prediction results.  

- On the other hand, SVM, including other classifiers such as linear 

classifiers, Naive Bayes, and KNN fall under the category of stable 

learners. Since they are more robust against training data manipulation 

than unstable classifiers. Thus, small modifications in the training data 

do not significantly influence the performance of the stable classifier. 

- Moreover, Random forest which was discussed in subsection 3.6.5, is 

an ensemble classifier based on the integration of multiple decision 

trees and formed by using a bagging technique along with a 

randomised selection of features. Since the significant feature of an 

unstable classifier is that a small modification in the training data 

results in a large change in the classification accuracy. Nevertheless, 

Bagging helps in reducing the variance of classification error, so that 

the classifier becomes more stable against data manipulation [173, 174, 

194, 202]. 
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Multiple classes 

- Since SVM is primarily introduced for binary classification, thus in 

terms of multiclass classification, SVM and linear classifiers are 

incapable of handling multiple classes natively. However, the binary 

SVM can be extended to perform the multiclass classification using 

strategies such as OvO and OvA described in 3.6.3.4.  

- In contrast, other classifiers such as KNN, MLP, Random forest, Naïve 

Bayes, and decision trees are naturally capable of handling the 

multiclass problem [203, 204, 205]. 

Model building (Training process)  

- Since training the SVM requires solving the dual optimisation problem 

whose number of variables is equal to the number of training samples. 

Thus, in case of a large number of data used for training, SVM spends 

more time solving the dual problem due to both a large number of 

training data and the Lagrange multipliers involved in finding the 

support vectors.  

- Furthermore, SVM model selection involves determining the SVM 

hyperparameters, this includes finding an appropriate kernel function 

which is one of the main concerns of using the SVM. Moreover, other 

SVM hyperparameters need to be determined such as parameters of the 

selected kernel and the regularisation C parameter. The process of 

finding the optimal values of these hyperparameters is called 

hyperparameter tuning which is time-consuming and not easy to 

perform. 

- Similar to SVM the training process of MLP is slow since optimisation 

techniques are used during the training and repeated for several 

network weight initialisations in case a poor local optimum has been 

reached [177].  
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- Both SVM and MLP generate nonlinear decision boundaries, but with 

SVM the nonlinear boundary is based on a user-defined kernel 

function, whereas for MLP the nonlinear boundary is learned and 

refined during the training process which might require more data and 

training time. Moreover, Similar to SVM determining the optimal 

hyperparameters of an MLP i.e., number of hidden layers, number of 

neurons in each layer, activation functions, etc. is difficult and time-

consuming [197, 201, 206]. 

- Moreover, decision tree and Random forest can be constructed without 

the need for data normalisation or scaling. However, compared to a 

single tree classifier, Random forest requires more time to build since a 

large number of trees are used as base learners [207].  

- Finally, since KNN is a representative of lazy learning so unlike other 

classifiers it has no explicit training phase it simply stores the entire 

training set during the training phase. In the testing phase for a given 

testing sample, it searches through the training set for the k nearest 

instances based on distance metric and classifies the testing sample 

according to the majority class among k neighbours. Thus, all the 

computational requirements are delayed till the classification is 

performed [194]. 

Interpretability of classification models  

- SVM and MLP are criticised as black box classifiers since the learned 

classification models cannot be explicitly understood or interpreted by 

users. The comparison of black-box classifiers is often made with white 

box classifiers whose produced classification models provide more 

transparent outputs that are easier for users to interpret [111, 194].   

- White box classification models include decision trees, Bayesian 

network classifiers, and KNN. On the other hand, examples of black 
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box classification models include SVM, MLP, and ensembles of 

classifiers [208, 209]. 

- Furthermore, the term grey box could be used to describe some 

ensemble-based classification models whose base learners of white 

boxes. An example of a grey box model is a Random forest, which is 

generally not a white box model since a large number of trees are used 

as base learners in which each tree is heavily influenced by random 

selections of samples and features. Hence it is not directly interpretable 

by users. However, the Random forest model is still partially 

interpretable by measuring the importance of features in all trees in the 

forest and then sorting the features in descending order according to 

their importance [208]. 

Sensitivity towards outliers 

- MLP classifier is vulnerable to outliers since it uses the sum of squares 

error to minimize the errors posed by outliers. Whereas in SVM the 

regularisation parameter C is used to control the misclassification error, 

so in case the value of C is large then a tighter margin is obtained and 

misclassification is suppressed. Thus, by a proper selection of the C 

value, outliers can be suppressed [201]. 

- KNN is also sensitive to outliers, since KNN classifies the new test 

record by searching through the training set for the most similar or 

nearest instances in the region of k-neighbourhood based on the value 

of k, thus in case of existing outliers in the region of k-neighbourhood. 

The classification performance of KNN is heavily affected by the 

outliers, If the value of k is small then the classification decision is 

heavily influenced by outliers, while a larger value of k might have 

more outliers [210]. 

- Moreover, the performance of a single decision tree classifier could be 

affected by the presence of outliers, whereas Random forest is more 
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robust to outliers, it improves the resilience of a single decision tree 

against outliers because of the randomness it provides with respect to 

samples and features [211, 212]. 

Types of data 

- Many ML classifiers including but not limited to SVM, MLP and KNN 

are incapable of dealing with categorical data and they require that all 

their inputs must be numerical. Thus, categorical features must be 

transformed into numerical values using encoding techniques such as 

label encoding and one-hot encoding.  

- On the other hand, classifiers such as decision trees, Random forest and 

Naïve Bayes can naturally deal with categorical and numerical features 

without a need for encoding [213, 214, 215]. 

High dimensional data 

- In the presence of high dimensional data, i.e., when a large number of 

features exist in a dataset, issues such as data sparsity and the difficulty 

of distance calculation are faced by ML classifiers. This fact is known as 

the curse of dimensionality. So, with a large number of features, KNN 

is more sensitive to the curse of dimensionality and performs much 

worse than other classifiers. This is because, in a high dimensional 

space, similar data points will have a large distance between them 

caused by the increase of dimensionality.  

- Conversely, compared to other classifiers SVM is more effective in 

dealing with high dimensional data [193, 214, 216]. 
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3.7 Overview of Other Deep Learning Methods  

DL is a subset of ML, which is constructed using multiple layers of ANNs. 

Compared to simple ANNs, DL models have more hidden layers that are 

organised in deeply nested network architecture [119, 120, 124].  

But what particularly makes DL algorithms unique and different from ML 

ones is their ability to automate the process of feature extraction, this allows 

researchers to extract discriminative features with minimal human effort and 

domain knowledge [119].  

DL algorithms follow the same mechanism of employing multiple hidden 

layers wherein the information is processed layer by layer, thus through the 

multilayer architecture, the original input representation is gradually 

converted from low-level feature representations into high-level feature 

representations. For this reason, DL is also referred to as feature or 

representation learning [119, 194]. Figure 3.7 shows the optimised features are 

learned in an automated way [125]. 

In recent years, there has been a rapid increase in the use of DL, this is due to 

the availability of large datasets and advances made in hardware technologies 

in particular the computational power of Graphics Processing Unit (GPU) 

[119]. Some of the most common applications of deep learning include Natural 

Language processing (NLP), computer vision, pattern recognition, signal 

processing and anomaly detection. Whereas the commonly used DL 

algorithms include Convolutional Neural Networks (CNNs) [121], Auto 

Encoders (AE) [122], Recurrent Neural Networks (RNNs) [123] and Deep 

Belief Networks (DBNs) [124]. 
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Figure 3. 7: Automatic feature extraction [125] 

Furthermore, it is important to understand when to apply DL instead of ML, 

for example, it will be challenging to use ML algorithms such as SVM or 

Random forest in certain domains such as computer vision and NLP since 

tasks related to these domains such as detecting and classifying objects within 

images or understanding and translating language are relatively easier to 

perform using DL algorithms. 

However, in cases where the application of the ML algorithm would suffice, 

then it should be considered rather than the DL because; computationally is 

less expensive, the constructed model is more interpretable by users and 

finally, it requires less data compared to DL algorithm [120, 125]. 

DL is known to be data-hungry and computationally expensive, training DL 

algorithm from scratch requires a sizeable amount of data and intensive 
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computational power in order to achieve a well-behaved performance model 

[119, 125]. However, in cases where there is a shortage of data the concept of 

Transfer Learning (TL) can be utilised to tackle the issue of undersized training 

data. 

TL is a technique that allows transferring the knowledge of a model that 

previously has learned on a source dataset to a target dataset [219]. For 

example, training the CNN on a sizeable amount of data, during the training 

process bias and weights are also learned, these parameters are then 

transferred to a similar new model with less data and used for retraining the 

new model instead of starting the process of training from scratch [119]. 

Fine-tuning is a common TL technique described in the following steps [219]: 

• Train a new ANN model, this is a source model trained on a source 

dataset. 

• Create a new ANN model, this would be the target model which copies 

the source model’s design and its parameters except for the output 

layer, with the assumption that these parameters hold the knowledge 

learned from the source dataset which also can be applied to the target 

dataset. 

• Next, add the output layer into the target model, whose outputs' 

number corresponds to the classes in the target dataset.  

• Finally, train the target model on the target dataset, only the parameters 

of the output layer are trained from the scratch, while parameters of all 

other layers are fine-tuned based on the target dataset. 

3.8 Review of ML Methods for Network Traffic Classification 

ML based classification methods are most suitable for the classification of 

network traffic. These methods can differentiate different 

smartphones’ applications based upon the traffic generated by them. 
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Successful implementation of ML methods depends on the features extracted 

from network traffic to discriminate their applications. These features are 

generally extracted from network packets and payload size [126]. 

Several ML methods have been successfully implemented for network traffic 

classification. For instance, Shbair et al. [127] proposed a two-tier hierarchical 

framework for network traffic classification. Their proposed framework can 

recognise different kinds of services running within the Hypertext Transfer 

Protocol Secure (HTTPS) connection based upon payload size and the time 

interval between constructive packets. They used decision tree and Random 

forest classification methods. The authors reported recall of more than 95% 

based upon real internet traffic. 

Aceto et al. [128] designed a hybrid classification method for differentiating 

encrypted mobile traffic by combining multiple classification methods. The 

authors reported improved performance of their proposed method over state-

of-the-art ML methods by 9.5% in terms of recall. 

Fu et al. [129] proposed a method named as CUMMA to classify services in 

mobile messaging applications. The authors employed Random forest, hidden 

Markov model and clustering methods for detecting different services in 

mobile messaging applications. They reported an accuracy of more than 96% 

for WhatsApp and WeChat based traffic generated from 15 volunteers.  

Taylor et al. [130] proposed a scanner application framework called 

AppScanner. Their framework helps to fingerprint and identify mobile 

applications. The authors demonstrated the performance of their framework 

based upon network traffic generated by 110 most popular apps available at 

Google Play Store. They pre-processed the network traces for removing 

background traffic and extracting features of network packets. They used a 

SVM and Random forest classification methods and reported more than 99% 



91 

accuracy for recognising different applications using their framework. 

Authors of [130] have extended the AppScanner framework in [134] along 

several dimensions. 

Alan and Kaur [131] employed supervised ML methods for classification of 

android apps. They used launch time traffic of TCP/IP headers to distinguish 

android apps. They captured network traffic of 86,109 app launches by 

repeatedly running 1,595 apps based on four Android devices. They 

concluded that the first 64 packets in network traffic can be identified with an 

accuracy of 88%, when the ML learning methods are trained and tested on the 

same device. They also demonstrated that when the data from another device 

(operates on different operating system) is used for testing, an accuracy of only 

67% could be achieved.  

The authors of [10] used SVM to classify the network traffic for a number of 

smartphone applications into two categories. They applied a 6-fold cross 

validation mechanism and achieved an accuracy of 88.1% for the SVM 

classification model. 

Zhao et al. [132] proposed RobotDroid, which is based on an SVM algorithm. 

The proposed framework detects unknown malware attacks on smartphones 

and mainly focuses on the disclosure of the confidential information, like 

private information of the users, payment/sales related information, etc.  

On the other hand, Stöber et al. [133] suggest a scheme in order to identify the 

network traffic by utilising the characteristics of the traffic patterns coming 

from the devices. The research also suggested that 70 percent of the traffic 

belongs to the activities that are running in the background; hence, creating 

fingerprints by using those activities. By creating those fingerprints, the model 

can compare the incoming traffic from the fingerprints and then identify the 

network traffic.  
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Erman et al. [135] performed a comprehensive experiment for comparing the 

performance of semi-supervised ML methods for network traffic 

classification. The authors aim to evaluate the performance power of ML 

methods for detecting new application.  

The authors in study [136] have evaluated clustering methods, DBSCAN and 

K-means clustering methods for network traffic classification. The results 

demonstrated that both K-means clustering and DBSCAN clustering methods 

exhibited better performance in network traffic classification. DBSCAN 

clustering method provided lower accuracy in comparison to K-means 

clustering method, but it produces better clusters.  

Williams et al. [137] also performed a comprehensive comparison of five ML 

methods for internet traffic classification. The authors reported that the 

decision tree achieved the maximum accuracy in internet traffic classification.  

Bernaille et al. [138] focused on the K-means clustering method for classifying 

network flows based on the first five network packets in the network flow. 

They aimed to classify the real-time network traffic using the clustering 

method.  

Several researchers have employed deep learning methods for classifying 

different applications based upon traffic generated by them.  

For instance, Aceto et al. [126] use deep learning methods for classifying 

mobile encrypted traffic based upon three data sets of real human user 

activity. They critically analysed the use of deep learning methods in 

classifying mobile encrypted traffic. 

 Chen et al. [139] applied deep learning for classifying malware traffic using 

features extracted from raw data and handcrafted features. They used the 

weighted back propagation method and hierarchical learning to handle the 
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imbalanced dataset issue for classifying malware traffic. The authors reported 

99.63 % accuracy and 85.44 % for precision based upon a synthetic dataset. 

Wang et al. [140] proposed a method for malware classification based on 2D-

CNNs, using two different choices of raw traffic images. They evaluated the 

performance of their method using a self-generated dataset (of ≈ 752k 

instances). Which is organised into two parts: ten types of malware traffic from 

public websites and ten types of normal traffic. They employed 2D-CNN for 

two different scenarios: malware / normal (binary) classification and traffic 

type classification (20 classes). 

3.9 Summary  

In summary, this chapter reviewed different network traffic classification 

approaches employed in communication networks, it also reviewed the 

methods of ML based network traffic classification. This was followed by an 

explanation of the necessary steps required to perform ML based traffic 

classification. An ML classifier taxonomy based on different properties was 

also presented in this chapter, including a description of which ML classifier 

goes with which kind of data. The chapter also described the commonly used 

ML classifiers that were adopted in this research, including a comparison of 

these ML classifiers. An overview of other DL methods was also provided in 

this chapter. This was followed by a review of ML methods proposed in the 

scientific literature for network traffic classification. 
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4 

OPTIMISING WLANS POWER SAVING  

4.1 Introduction  

This chapter introduces the Context-aware Listen Interval (CALI) approach 

for optimising WLANs power saving. Section 4.2 describes how smartphone 

applications’ network traffic reflecting a diverse array of network behaviour 

and interaction were exploited to provide the contextual inputs for training 

ML classifiers of the output traffic, thus building an ML classification model. 

Section 4.3 begins by justifying the selection of the chosen applications and the 

assignment of output modes. It then discusses how CALI power saving modes 

were employed to optimise the sleep and awake cycles of the WNIC based on 

the classified output traffic. This is followed by describing the process of data 

extraction and preparation employed in this research for constructing the 

dataset (section 4.4). Section 4.5 begins by describing the experimental settings 

employed in this chapter for traffic classification, including the description of 

parameter settings for the selected ML classification models. It then evaluates 

the performance of ML classifiers on Dataset 1 using 10-fold cross-validation 

prior to applying feature selection methods. It also evaluates the performance 

of selected ML classifiers after applying feature selection methods on Dataset 

2CBFS and Dataset 3IGFS, both using 10-fold cross-validation. 

4.2 Context-Aware Listen Interval (CALI) 

In ML, classification is defined as a learning method that maps or classifies 

instances to corresponding class labels which were predetermined in a given 
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dataset. According to Han et al. [141] data classification is a two-step process; 

the first step is learning, where a classification model is built from a given 

dataset, the data from which a classification model is learned called a training 

set. The second step is classification, where a model is used to predict class 

labels for previously unseen data. The dataset, which is used to test the 

classifying accuracy of the learned model is called the test set. 

In [57] we have constructed a real-world dataset based on the network traffic 

of nine smartphone applications, which reflects a diverse array of network 

behaviour and interaction. For high levels of network interactivity, both 

Google Hangouts and Skype audio and video calls were selected. For traffic 

with intermittent interactions, Gmail and Facebook were chosen. For 

applications with the lowest level of interactions New Star Soccer (NSS) and 

New Star Cricket (NSC) were considered. Network interactions of these 

applications mostly occur during fetching advertisements. For the network 

traffic that reflects applications with audio buffering capabilities, the traffic of 

XiiaLive internet radio application was captured. 

Figure 4.1 shows the flowchart of CALI, where instances of real-time network 

traffic of each application were captured, and then manually labelled to the 

right output or class. We have labelled all instances of applications with a high 

level of interaction as high, instances of applications with an intermittent level 

of interaction were labelled as varied, whereas instances of applications with 

the lowest level of interaction were labelled as low. Finally, instances of audio 

streaming application with buffering capability were labelled to buffering. 

After labelling the input samples of the captured traffic of each application, an 

ML classifier learns to map the input features of each sample to an output class 

from the training set, constructing the ML classification model.  
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The next step is the classification, where the ML classification model is used to 

predict class labels for previously unseen data. Test set is used to test the 

classifying accuracy of the learned model. Subsequently the ML classification 

model is capable to identify the new unobserved samples of traffic as one of 

the pre-defined classes, high, varied low and buffering, e.g., the ML 

classification model assigns samples of highly interactive application to the 

class high in accordance with the training accomplished in the previous step. 
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Figure 4. 1: Context-aware listen interval 
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4.3 CALI Power Saving Modes 

It is important to mention that the selection of the nine applications used in 

this research was initially driven by [10, 41] where authors of these studies 

described the network interaction of a wider range of smartphone 

applications, these include:  1- real-time applications with high and constant 

levels of network interaction. 2- Applications with intermittent levels of 

interaction that do not always receive data, as they run in the background 

while the screen is off and the WNIC wakes up intermittently when 

downloading content. Moreover, 3- applications with the least levels of 

network interactivity, these applications mostly are offline except for 

periodically fetching advertisements. Finally, 4- audio streaming applications 

with playback buffering capacity, where these applications are able to buffer 

the audio stream.  

Therefore, the criterion for selecting the nine applications employed in the 

research was based on the four types of variation in the levels of network 

interactions of the applications described in [10, 41]. 

Moreover, the authors in [10] assigned only two sets of priorities or modes, 

high and low, for the described four different types of network traffic of 

smartphone applications. Wherein no further priority levels or modes were 

assigned by them to cater for firstly, applications with intermittent levels of 

interaction, secondly, applications with the least levels of network 

interactivity, and finally audio streaming applications with playback buffering 

capacity. Instead, they assigned the three types of applications’ network into 

a single mode, low. 

So, having four modes assigned intuitively according to the described four 

types of network traffic would be more efficient. Therefore, in CALI, four 

modes: 1- Awake, 2- DLI , 3- Low and 4- buffering were assigned to cater for 
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the four different types of network traffic of applications, and the experimental 

results in chapter seven, subsection 7.2.2 and 7.2.3 showed their efficacy in 

optimising the sleep and awake cycles of the WNIC and reducing energy 

consumption. 

Moreover, in this research, we focused on the network activity of a single 

smartphone application opened at a given time, therefore no additional output 

class was assigned to cater for the network traffic of applications running 

simultaneously such as an audio streaming app running in the background 

while using a lower network usage gaming app. 

Furthermore, there is room for further investigation to find the optimal 

number of power saving modes that could be associated with the CALI’s 

framework. This would be based on further analysis of the captured network 

traffic of the applications and based on the analysed network traffic, optimal 

number of power saving modes can be determined and incorporated into 

CALI’s framework. 

However, in order to optimise the sleep and awake cycles of the WNIC in 

accordance with the applications’ network activity, we have defined four 

CALI power saving modes. 

These power saving modes enable additional power saving opportunities and 

have been devised based on the classified output traffic of the captured 

samples from a varied range of smartphone applications’ network traffic that 

reflect a diverse array of network behaviour and interactions. Hence, the ML 

classification model classifies the new unseen samples into one of the output 

classes, and the WNIC will be adjusted to operate into one of CALI power 

saving modes.  

Moreover, CALI handles applications, which it cannot map to one of the four 

modes by reverting the WNIC to operate in SPSM mode. That means, the 
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worst possible performance is that of SPSM, but if one of the four modes 

applies, a significant performance improvement with respect to power saving 

is achieved. 

• Awake Mode 

When the ML classification model classifies the new unseen samples of 

highly interactive applications to the output class high. Consequently, the 

WNIC is set to operate in awake mode. 

• DLI Mode 

The ML classification model classifies the traffic samples of applications 

with varied levels of interactivity to the output class varied. The WNIC will 

be adjusted to operate in DLI mode. We have considered employing the 

DLI methodology introduced in [18]. So, the listen interval is incremented 

by 1 at each time a wireless device wakes up during the listen interval and 

finds no packets buffered at the AP. The listen interval reverts back to 1 

when interactions occur. To prevent the listen interval from growing 

excessively we set an upper bound of 10 = 1000ms for the listen interval. 

Applications such as Gmail and Facebook have intermittent network 

interactions and do not always receive data. Therefore, assigning the 

background traffic of these applications to the awake mode would not be 

efficient. 

• Low Mode 

The ML classification model classifies the traffic of applications with the 

lowest level of interactions to the output class low. Consequently, the 

WNIC will be switched to operate on low mode, with an extended value of 

the listen interval. This is beneficial as network interactions of these 



101 

applications e.g., NSS and NCS mostly occur during fetching 

advertisements.  

• Buffering Mode 

The ML classification model classifies samples of audio streaming 

applications with buffering capability to the output class buffering. The 

WNIC will be set to operate in buffering mode. The buffering mode was 

defined for applications that allow users to stream audio over the Internet, 

according to [142] these applications are capable to buffer several seconds 

of audio stream. For such applications, switching off the WINC for short 

periods of time does not impact on the playback streaming quality. 

4.4 Data Extraction and Preparation  

This section describes the process of data extraction and preparation 

employed in this thesis. We have constructed a dataset by capturing real-time 

network traffic of nine selected smartphone applications depicting different 

types of network behaviour and interactions. Table 4.1 shows the chosen 

applications and the degree of network interactivity of each application. All 

the applications including NetworkLog installed from the official Google play 

store. 150 instances of the network traffic of each application were captured 

with the aid of NetworkLog, and the running time of 25 minutes resulted in a 

total of 1350 instances. Samsung Galaxy S5 is used to capture all the instances 

of the background traffic of the entire applications running Android version 

6.0.1. 
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Table 4. 1: Applications and the degree of network interactivity 

Applications Degree of interactivity 

1- Skype video call 

2- Google Hangouts video call 

3- Skype voice call 

4- Google Hangouts Voice call 

High 

level of interactivity 

5- Facebook 

6- Gmail 

Varied 

level of interactivity 

7- New Star Soccer (NSS) 

8- New Star Cricket (NSC) 

Low 

level of interactivity 

9- XiiaLive internet radio app Buffer stream 

The 9 applications represent different types of network behaviour and 

interactions, for high level of network interaction; we have considered video 

and voice calls of Skype and Google Hangouts. For the varied level of 

interactions Facebook and Gmail have been chosen, for Gmail, 23 emails were 

received at random instances. And 23 tagged posts were received at random 

instances for Facebook as updates. NSS and NSC were chosen to represent all 

applications with a lower degree of interaction, these applications mostly are 

offline and the interaction mostly occurs during fetching advertisements. 

Finally, to represent applications with audio buffering capability the XiiaLive 

internet radio application was considered; we chose a random station 

streaming at 128 kbps. 

We have manually labelled instances of the nine applications according to the 

levels of traffic interactivity in the background of each application. Figure 4.2 

shows the receiving data rate in Kbytes/sec of the first 50 instances which 

reflect varying levels of network interaction. 
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So, 1350 instances are used in the construction of a dataset, named Dataset 1, 

with 150 instances per application and 6 features per instance. Furthermore, 

four output classes were assigned to cater for the network traffic of these 

applications.  

Thereby out of the nine chosen applications, the first output class was assigned 

to the four applications that represent real-time applications with high and 

constant levels of network interaction. The reason for having four applications 

for this output class is to ensure more variation in the range of network traffic 

included in the training data by having two VoIP applications and two video-

calling applications. These applications are: 1-Skype video call, 2- Google 

Hangouts video call, 3- Skype voice call, and 4- Google Hangouts Voice call. 

Consist in a total of 600 samples and were assigned to class high. 

For the remaining three types of network traffic, the second output class was 

assigned to the two applications that represent network traffic with 

intermittent levels of interaction. These applications are: 5- Facebook, and 6- 

Gmail. consist in a total of 300 samples and were assigned to class varied.  

While the third output class was assigned to the two applications that 

represent the least levels of network interaction. These applications are: 7- 

New Star Soccer (NSS), and 8- New Star Cricket (NSC) consist of a total of 300 

samples and were assigned to class low. 

Finally, the fourth output class was assigned to one application that represents 

the network traffic of audio streaming applications. This application is:  9- 

XiiaLive internet radio app. Consists of 150 samples and was assigned to the 

class buffer. 
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Figure 4. 2: Arrays of network behaviour characterised by levels of traffic 
interaction 

Table 4.2 shows the full set of features extracted using NetworkLog from the 

background of each application. 

Table 4. 2: Full set of 6 features 

Feature Number Feature Name 

1 Receiving data rate in Kbytes/sec 

2 Transmitting data rate in Kbytes/sec 

3 Total received Kbytes 

4 Total Transmitted Kbytes 

5 Total number of received packets 

6 Total number of transmitted packets 

These features are statistical-based and unique for specific types of 

applications. Additionally, inspection into the packet content is not required 

to extract these features, hence statistical features have low computational 

overhead and are applicable for both encrypted and unencrypted traffic [60, 
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63]. Moreover, these features reflect the applications’ network interactivity 

better than non-network features like touch screen rate, as regularly touching 

the screen, does not always mean that network traffic is occurring. For 

instance, video games are highly interactive in terms of user and screen, but 

practically non-interactive in terms of network interaction. 

4.5 Initial Experiments (Traffic Classification) 

This section describes the experimental setup employed in this chapter for 

traffic classification, this is followed by performance analysis of the five ML 

classifiers on Dataset 1, Dataset 2CBFS and Dataset 3IGFS using 10-fold cross 

validation, in terms of classification accuracy, precision, recall and f-measure. 

4.5.1 Experimental Setup 

The main purpose of feature selection is to minimise the set of features by 

eliminating any irrelevant and redundant features resulting in less 

computational complexity, higher classication accuracy and maximised 

generalization capability [143, 144]. Moreover, in terms of energy 

consumption, the fewer the features the better they are for smartphone energy 

saving. 

Since the wrapper-based feature selection methods involve learning algorithm 

in the elimination of irrelevant and redundant features, they are slow and 

computationally expensive [145]. Therefore, to extract eliminated versions of 

datasets, two widely used filter-based feature selection algorithms were 

considered. These are Consistency Based Feature Selection (CBFS) and 

Information Gain Feature Selection (IGFS). 

CBFS evaluates all the subsets of features, in order to determine the smallest 

optimum subset of features, which is consistently capable to map to the output 

class as with full set of features. whereas IGFS evaluates all the features with 
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the output class; features with higher information gain value to the output 

class are selected. The best first search method was applied to attribute 

selection for CBFS algorithm, while the ranker method was selected for the 

IGFS algorithm. 

The WEKA tool was used, for the extraction and the application of the reduced 

features' datasets, named as Dataset 2CBFS and Dataset 3IGFS. 1350 data 

samples were included in each set representing the total of 9 applications, the 

total number of six features included in Dataset 1, reduced number of 4 

features were included in Dataset 2CBFS, and Dataset 3IGFS. Table 4.3 shows 

the list of features after applying the CBFS algorithm, while Table 4.4 shows 

the list of features after applying the IGFS algorithm, the top 4 features in 

ranking were chosen. 

Table 4. 3: Set of features for Dataset 2CBFS 

Feature 

Number 
Feature Name 

1 Receiving data rate in Kbytes/sec 

2 Transmitting data rate in Kbytes/sec 

3 Total received Kbytes 

4 Total Transmitted packets 

Table 4. 4: Set of features for Dataset 3IGFS 

Feature Number Feature Name 

1 Total received Kbytes 

2 Total Transmitted Kbytes 

3 Total number of received packets 

4 Total number of transmitted packets 

 

The experiments were performed with the aid of WEKA [146], a well-known 

ML tool, applied in many studies including [147, 148]. v3.6.12 on a desktop 
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computer operating Microsoft Windows 7 Enterprise with Intel core i7-4770 

CPU of 3.40 GHz and 4 GB of RAM, located within the university campus. 

For validating the accuracy of the ML classifier in predicting/mapping the 

inputs to the correct output class, and based on the recommendation of [149], 

cross validation of K =10 is used to avoid over-fitting and to see how well ML 

classifiers perform in classifying the unseen samples. Thus, the dataset is 

divided into 10 N equal parts or portions, each portion (1/N) is used for 

testing, while the remaining ((N − 1)/N) are used for training. 

In order to determine the suitable ML classifier in terms of classifying 

smartphone applications’ network traffic based on different levels of 

behaviour and interaction, the performance of the 5 ML classifiers described 

in section 3.6 will be analysed. Thus, the chosen ML classifiers are MLP, KNN, 

SVM, decision tree (C4.5), and Random forest. 

The performance of each classifier evaluated is based on the following metrics: 

Classification accuracy: is an evaluation metric that estimates the overall 

correctness of model's predictions. It calculated by dividing  the number of 

correctly classified instances by the total number of instances:  

Accuracy = (Correctly Classified Instances) / (Total Instances). 

Precision: is an evaluation metric that measures the proportion of correctly 

classified instances of a particular class out of all the instances that the model 

classified as that class: 

Precision = True Positives / (True Positives + False Positives). 

Recall: also known as sensitivity, is an evaluation metric that estimates model's 

ability to correctly identify the positive instances out of all the actual positive 

instances. 
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Recall = True Positives / (True Positives + False Negatives). 

F-measure: also known as the F1 score, this evaluation metric combines both 

precision and recall into a single value, is defined as the harmonic mean 

between precision and recall and is calculated as follows: 

F-measure = 2 * (precision * recall) / (precision + recall). 

Moreover, it is a common practice to initially train the ML model using the 

default hyperparameter setting as the baseline model and subsequently 

conduct a hyperparameter optimization process to enhance the model's 

performance [239]. 

Therefore, in this thesis, we have adopted this approach. Firstly, we trained 

the selected ML models using the default hyperparameter settings listed in 

table 4.5 as baseline models for the following experiments and experiments 

conducted in sections 5.2 to 5.5. We then conducted a hyperparameter 

optimisation process in sections 6.4 to 6.10 to further enhance the model's 

performance.  This was similarly followed in [240, 241, 242] where the authors 

of these studies initially trained the ML model using the default 

hyperparameter settings suggested by the WEKA tool and then conducted a 

hyperparameter optimisation process. 

Table 4. 5: WEKA default parameter settings 

Classifier Parameter values 

MLP  - The model is defined in 3 layers (an input layer, a hidden layer, and 

an output layer). 

- Number of nodes in an input layer: 6 nodes correspond to 6 features 

for Dataset 1. Whereas the number of nodes would be 4 for Dataset 

2CBFS and Dataset 3IGFS. 

- Number of nodes in  hidden layer: - H = “a”  = 5 nodes in a single 

hidden layer. In WEKA the parameter (-H) represents a number of 

hidden layers and the number of nodes in each layer, where the 

default setting of this parameter in WEKA is “a” which creates a 
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network with a single hidden layer and the number of nodes = 

(number of features + number of classes) /2. Thus, in the case of  

Dataset 1 with 6 features, the number of nodes would be 6 + 4 / 2 = 

5 nodes in a single hidden layer. Whereas the number of nodes would 

be 4 for Dataset 2CBFS and Dataset 3IGFS. 

- Number of nodes in an output layer: 4 nodes correspond to 4 classes. 

- Learning rate (-L) = 0.3. 

- momentum (-M ) = 0.2. 

- Activation function for nodes in the network = sigmoid. 

- Number of epochs (-N) to train through = 500. 

- Batch size = 100. 

- The value of seed (-S) is used to seed the random number generator 

which affects setting the initial weights of the connections between 

nodes. However, by default the value of this parameter is = 0. 

- Normalising the attributes is turned on by default. 

- Validation Set Size (-V) by default is set to 0, meaning no percentage 

of the data being set aside for validation and instead the network will 

train till the specified number of epochs is reached. 

- Occurrence of decaying (-D) the learning rate, this parameter is 

disabled by default. 

KNN - Number of nearest neighbours (-K) used: by default, = 1.  

- Distance function: Euclidean distance. 

- Attribute Indices: comma separated list of attribute indices with first 

and last valid values. 

- Normalisation of the attributes: this is turned on by default. 

- Distance weighting: by default, no distance weight assigned. 

- Nearest neighbour search algorithm (-A): a linear search by default 

is used. 

- Window Size (-W): it restricts the number of training instances 

maintained; it drops old instances above the value being specified 

according to FIFO. The default value of this parameter is = 0 means 

no restriction to the number of training instances. 

- Cross Validate (-X): For training data, if set to true then it determines 

the optimal K value between 1 and specified K value by using hold-

one-out cross-validation. By default, this parameter is set to false. 

- Number of decimal places to be used for the output of numbers in 

the model: = 2. 

- Batch Size: 100. 

SVM WEKA SVM library: SMO.  

Multiclass classification problems are solved using pairwise OvO 

strategy. 
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- Regularisation parameter (-C): the default value of this parameter = 

1.0. 

- Type of kernel (-K): normalised polynomial kernel. 

- Exponent (-E) value or degree of the normalised polynomial 

kernel: by default, E = 1.0. 

- Cache size: the size of the cache for the normalised 

polynomial kernel by default = 250007. 

- Calibrator: Logistic Regression.  

- Ridge value  (-R) = 1.0E-8.  

- Maximum number of iterations to perform (-M): default = -1, 

means until convergence. 

- Number of decimal places to be used for the output of 

numbers in the model: = 4. 

- Batch Size: 100. 

- Normalisation of the attributes: this is turned on by default. 

- Tolerance parameter (-L): which determines the stopping criterion 

for optimization process. By default, is = 0.001.  

- Number of decimal places to be used for the output of numbers in 

the model: = 2. 

- Epsilon parameter (-P): which is used for controlling the round-off 

error. By default, is = 1.0E-12. 

- Random Seed (-W): Random number seed for the cross-validation, 

by default = 1. 

- Number of folds (-V):  for cross-validation used to generate training 

data for calibration models is -1 means use training data. 

- Batch Size: 100. 

Decision tree 

(C4.5) 

Criterion: uses the gain ratio criterion by default to select the best 

split. 

- Confidence factor (-C): that controls the pruning of the tree = 0.25. 

- Minimum number of instances (minNumObj or -M)  that must be 

present in a leaf node =2. 

- Reduced error pruning (-R): this parameter specifies whether to use 

reduced error pruning instead of standard C4.5 pruning, however, is 

not enabled by default. So = False 

- Number of folds (-N): when reduced error pruning is selected, this 

parameter specifies the number of folds used for reduced error 

pruning where data is divided equally into specified parts and the 

last one used for pruning. However, the default value is 3. 

- Unpruned (-U) : is turned off by default, if enabled it builds 

unpruned tree. So pruning is performed by default.  

- Subtree raising (-S): Whether to perform the subtree raising pruning 

operation. This parameter is enabled by default. 
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- Number of decimal places to be used for the output of numbers in 

the model: = 2. 

seed (-Q) for randomising the data when reduced-error pruning is 

used then its default value is = 1. 

- Do not make split point actual value: set to false by default. 

However, If true, the split point is not relocated to an actual data 

value.  

- Use minimum description length correction: when finding splits, by 

default is set to true. 

- Collapse tree: is set to true, so parts are removed that do not reduce 

training error. 

- Bath size = 100. 

Random 

forest 

- Number of trees (-I) = 100. 

- Maximum depth (-depth): of trees indicates how deep the tree 

would be, by default is set to 0 for unlimited depth. 

- Number of features to consider in each split point (-K): is 0 which = 

log2(number of features).  

- Seed (-S) for random number generator: the default value of this 

parameter is = 1. 

- Bag size percent (-P): this parameter determines the percentage of 

the training data that is used for building each tree. By default, the 

value of this parameter is = 100. 

- Minimum number of instances (-M): minimum number of instances 

that must be present in a leaf node, by default is = 1. 

- Compute attribute importance: this parameter is used for 

computing and outputting feature importance based on average 

impurity decrease, is set off by default. 

- Break ties randomly: it breaks a tie randomly when multiple 

features have the same importance. However, is set to off by default. 

- Number of execution slots: use for constructing the ensemble by 

default, is = 1. 

- Minimum variance for split (-V): default = 1e-3. 

- Batch size: 100. 

Unless stated otherwise the parameters in table 4.5 are used in the subsequent 

experiments. 
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4.5.2 Results and Analysis  

This section analyses the performance of the five ML classifiers on Dataset 1, 

Dataset 2CBFS and Dataset 3IGFS, in terms of classification accuracy, 

precision, recall and f-measure. 

Figure 4.3 shows the performance of the five ML classifiers based on the 

classification accuracy on each of the 6 features applied in this research. The 

classification accuracies of the five ML classifiers were increased with the 

complete set of 6 features Dataset 1 as shown in figure 4.4. Where the highest 

classification accuracy of 99.48% was achieved by the Random Forest. 

Moreover, SVM produced the lowest accuracy of 96.59%. MLP achieved a 

classification accuracy of 97.85%, while both KNN and decision tree achieved 

accuracies of over 98%. 

 

Figure 4. 3: Classification accuracy of ML classifiers on individual feature 
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Figure 4. 4: Classification accuracy of ML classifiers on dataset 1 

 

Figure 4. 5: Comparison of recall, precision and f-measure on dataset 1 

In terms of recall, precision, and f-measure values of the 5 ML classifiers on 

Dataset 1, figure 4.5 shows that Random forest attained the highest values of 

0.995 compared to all other classifiers. On the other hand, SVM had the lowest 

recall, precision, and f-measure values of 0.966, 0.967, and 0.966, respectively, 

when compared to all other classifiers. 

Classification accuracy of the five ML classifiers on the reduced set of 4 

features dataset 2CBFS; with the application of best first search method and 

consistency-based feature selection technique is represented in figure 4.6. 
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However, MLP produced the same classification accuracy of 97.85% as 

opposed to Dataset 1. Whereas the classification accuracy for the remaining 

ML classifiers was slightly decreased in Dataset 2CBFS compared to Dataset 

1. It decreased by 0.14% for KNN, and 1.71% for SVM, while the accuracy of 

the decision tree decreased by 0.07% and 0.82% for the random forest. 

 

Figure 4. 6: Classification accuracy of ML classifiers on Dataset 2CBFS 

 

Figure 4. 7: Comparison of recall, precision and f-measure on dataset 2CBFS 

Figure 4.7 shows the comparison of recall, precision, and f-measure values on 

dataset 2CBFS. The recall, precision, and f-measure values of 0.979 for MLP 
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remain unchanged as opposed to Dataset 1. While the metrics values of the 

rest of the ML classifiers slightly decreased in comparison to Dataset 1. 

 

Figure 4. 8: Classification accuracy of ML classifiers on dataset 3IGFS 

Figure 4.8 represents the Dataset 3IGFS, where the set of features extracted 

from the full set of 6 features using the information gain technique. The top 4 

features were selected based on ranker method. 

KNN achieved the highest classification accuracy of 99.62% in Dataset 3IGFS. 

Moreover, both SVM and decision tree produced better classification accuracy 

of 98.66% and 99.11% compared to dataset 1 and dataset 2CBFS.  

Furthermore, the classification accuracy of 99.33% for Random forest was 

decreased compared to dataset 1. While the classification accuracy of 91.77% 

for MLP was the lowest in Dataset 3IGFS compared to Dataset 1 and Dataset 

2CBFS. 

Figure 4.9 displays the comparison of recall, precision and f-measure values of 

the five ML classifiers on Dataset 3IGFS. 

The recall, precision, and f-measure value of 0.996 was the highest in Dataset 

3IGFS and was achieved by KNN. Moreover, the metrics values of recall, 
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precision, and f-measure for MLP were the lowest in Dataset 3IGFS compared 

to Dataset 1 and Dataset 2CBFS. Whereas both SVM and decision tree 

produced better values in terms of recall precision and f-measure compared to 

dataset 1 and dataset 2CBFS. 

 

Figure 4. 9: Comparison of recall, precision and f-measure on dataset 3IGFS 

Comparing the results obtained for the five ML classifiers in all datasets in 

terms of all evaluation metrics, we found that a number of effective features 

can be considered to improve the overall results. Moreover, we conclude that 

the optimum results in terms of all evaluation metrics used in these 

experiments were achieved by KNN in Dataset 3IGFS using10-fold cross-

validation. We determined KNN to be the most suitable ML classifier in terms 

of classifying smartphone applications’ network traffic based on different 

levels of behaviour and interaction. 

Narudin et al. [150] discussed, the time taken by classifiers to build a model is 

very crucial and affects the resource consumption of a wireless device. Thus, 

considering the processing time of classifiers to build a model is very 

important. 
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Table 4.6 shows the time taken by each of ML classifier in all datasets to build 

an ML classification model. 

The processing time of 0.01s for KNN was the shortest time to build a model 

and remain identical in all datasets, while the processing time of 1.42 s for MLP 

to build a model in dataset 1 was the longest compared with all other classifiers 

in all datasets. Moreover, the model building time for MLP, SVM and Random 

forest decreased in Dataset 3IGFS when compared with Dataset 1 and Dataset 

2CBFS. Finally, the processing time of 0.01 s for the decision tree remains 

identical in Dataset 2CBFS and Dataset 3IGFS. Overall, the computational cost of 

constructing a model across all datasets has a minimal effect, and for KNN, it 

remained identical and did not vary when using either four or six features. 

Table 4. 6: Processing time to build the classification model (in seconds) 

ML Classifier Dataset 1 Dataset 2CBFS Dataset 3IGFS 

MLP 1.42 1.11 1.09 

KNN 0.01 0.01 0.01 

SVM 0.41 0.42 0.32 

C4.5 0.02 0.01 0.01 

Random forest 0.26 0.24 0.22 

4.6 Summary  

This chapter presented the CALI approach in which the WNIC with the aid of 

an ML classification model, sleeps and awakes based on the level of network 

activity of each application. It described how different levels of traffic 

behaviour and interactions of nine smartphone applications were contextually 

exploited for the classification by the application of ML classifiers. This chapter 

also has described how CALI power saving modes enable additional power 

saving opportunities by adjusting the WNIC to sleep and awake in accordance 

with the smartphone applications’ network activity. This was followed by 
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describing the process of data extraction and preparation employed in this 

research for building the training data. The chapter also described the 

experimental settings used for traffic classification, including the description 

of parameter settings for the selected ML classification models. This was 

followed by the performance evaluation of five ML classifiers on Dataset 1, 

Dataset 2CBFS and Dataset 3IGFS using 10-fold cross-validation. 
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5 

EXPERIMENTATION: ANALYSES AND 

DISCUSSIONS  

5.1 Introduction  

This chapter provides detailed experimentation, analyses and discussions to 

determine whether the selected classification models not only perform well on 

training data but also generalise well on unseen testing data of applications 

that were not included in training data. For all the experiments conducted in 

this chapter, specifically in sections 5.2 to 5.5, the ML classifiers are trained 

using the default hyperparameter settings listed in table 4.5 as baseline 

models, and then in chapter six, sections 6.4 to 6.10, a hyperparameter 

optimisation process is conducted to further enhance the model's 

performance. Section 5.2 starts by illustrating the applications used for 

training and testing the classification models, where an app of each class was 

selected for training the selected ML classifiers and the generalisation capacity 

of the classification models was tested on different apps that were not included 

in training data. This section also provides an in-depth analysis of the network 

traffic for the selected applications used for training and testing, It then 

describes the experimental setup, followed by presenting the results and 

discussing the outcomes. Sections 5.3 to 5.5 follow the same structure 

described for 5.2, but with the following differences in training and testing 

data. Section 5.3 extends the training data by including a voice call application 

taken from the testing data. While section 5.4 reduces the training data and 

further assesses the generalisation capacity of learned classification models on 



120 

reduced training data. Section 5.5 further assesses the generalisation capacity 

by training ML classifiers on applications that were previously used for testing 

in sections 5.2 and 5.3 and assesses their generalisation performance on 

applications that were used for training in sections 5.2 and 5.3. Section 5.6 

provides detailed conclusions based on previous sections. Furthermore, given 

that the classification models in sections 5.3 to 5.5 were capable of achieving 

high results on unseen testing data of applications that were not included in 

the training data. Thus, this section also explores the feasibility of manually 

crafting rules to hand-classify the training data. Where an attempt to hand-

classify the training data is made, followed by a discussion and comparison of 

the outcomes with the classification models constructed using ML classifiers. 

5.2 Training with an App of Each Class and Testing on Different 

App(s) of the Same Class 

In this section, experiments are performed to determine whether the 

classification models not only perform well on training data but also generalise 

well on unseen testing data of applications that were not included in training 

data. 

Table 5.1 lists the selected applications that are used for training the ML 

classifiers, whereas Table 5.2 lists the applications that are used for testing the 

classification models. 

Training set based on the following applications: 

Table 5. 1: Training set 1 

Applications Class Samples 

1- Skype video call High 150 

2- Facebook Varied 150 

3- New Star Soccer (NSS) Low 150 

4- XiiaLive internet radio app Buffer 150 

Total Training Samples: 600 
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Testing set based on the following applications: 

Table 5. 2: Testing set 1 

Applications Class Samples 

1- Google Hangouts video call 

2- Google Hangouts Voice call 

3- Skype voice call 

High 

150 

150 

150 

4- Gmail Varied 150 

5- New Star Cricket (NSC) Low 150 

Total Testing Samples: 750 

Moreover, figure 5.1 shows the receiving traffic of both, the listed applications 

in Table 5.1 that are used for training the ML classifiers and the listed 

applications in Table 5.2 that are used for testing the classification models. 

Whereas the transmitting traffic of previously mentioned applications is 

shown in figure 5.2. 

By observing the receiving and transmitting traffic of both the training and 

testing data in figures 5.1 and 5.2, we can see the similarity between the Skype 

video call that is used for training the ML classifiers and the Google Hangouts 

video call that is used for testing the classification models.  

This similarity is in terms of there being a clear separation between the training 

data of Skype video call and other applications in the training set, similarly in 

the testing data of Google Hangouts video call and other applications in the 

testing set. But, with a noticeable variation in the traffic range between the 

training data of Skype video call and the testing data of Google Hangouts 

video call. 

So, by observing the receiving traffic in figure 5.1 it can be seen that the traffic 

range of Skype video call varies between 57.43 and 145 KBs, while a higher 

variation can be seen in the traffic range of Google Hangouts video call that 

varies between 50.17 and 521.25 KBs. This variation in the traffic range is also 
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similar to the transmitting traffic that can be seen in figure 5.2, where the traffic 

for Skype video call varies between 60.41 to 156.25 KBs and it varies between 

32.31 and 471.25 KBs for Google Hangouts video call. 

However, since there is a clear-cut separation between the traffic of video call 

applications and other applications in the training and testing data, therefore, 

it would be expected that the learned classification models on training data of 

Skype video call would be capable to capture the aforementioned variance in 

the traffic range and generalise to unseen testing data of Google Hangouts 

video call. 

Furthermore, by observing the traffic of the voice call applications; Skype 

voice call and Google Hangouts voice call, an overlapping can be observed 

between the testing data of these applications and the testing data of 

applications of other classes. However, due to the differences in the traffic 

trends of the training data of Skype video call and the testing data of voice call 

applications, it is possible that the learned classification models on Skype 

video might be incapable to generalise to testing samples of both Skype and 

Google Hangouts voice calls. 

Finally, by observing the training data in figures 5.1 and 5.2 an overlapping 

can be seen between the traffic of applications that belong to classes buffer, 

varied and low with more overlapping can be noticed between varied and low 

classes. Thus, it would be interesting to test the generalisation capacity of the 

learned classification models on overlapping training data, more specifically 

of classes varied and low. 
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Figure 5. 1: Levels of network interaction of receiving traffic for apps listed in table 5.1 that are used for training and for apps listed 
in table 5.2 that are used for testing 

Figure 5. 2: Levels of network interaction of transmitting traffic for apps listed in table 5.1 that are used for training and for apps 
listed in table 5.2 that are used for testing 
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5.2.1 Experimental Setup 

The following experiment was performed with the aid of WEKA tool. On a 

desktop computer operating Microsoft Windows 10, with Intel core i7-

4800MQ CPU of 3.70 GHz and 12 GB of RAM. 

To assess the generalisation capacity, the ML classifiers used in the 4.5 

experiments were chosen. These are MLP, KNN, SVM, decision tree (C4.5), 

and Random Forest. The five ML classifiers were trained on samples with six 

features of applications listed in table 5.1, and their generalisation capacity was 

tested on samples of applications listed in table 5.2. 

This experiment was carried out by training the chosen five ML classification 

models using WEKA’s default parameter settings listed in table 4.5. 

The performance of each classifier is evaluated in terms of classification 

accuracy, along with other evaluation metrics used for multiclass 

classification, such as confusion matrix, macro-average of precision, recall and 

weighted average f-measure.  

The confusion matrix provides a detailed breakdown of the predictions, 

including the distribution of correct and incorrect predictions made by the 

classification models. Macro-average is the arithmetic mean of the per-class 

measures and is represented as a single value. Whereas weighted average f-

measure takes into account the imbalanced distribution of classes, it calculates 

the F1-scores for each class and then weights them by the number of actual 

instances in each class [249, 251]. 
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5.2.2 Results 

5.2.2.1 Classification Model: MLP 

=== Results === 

Correctly Classified Instances        445               59.33% 

Incorrectly Classified Instances      305               40.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.795. 

Recall: 0.593. 

Weighted Avg: 

F-Measure: 0.562.  

5.2.2.2 Classification Model: KNN 

=== Results === 

Correctly Classified Instances         516               68.8% 

Incorrectly Classified Instances       234               31.2% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.896. 

Recall: 0.688. 

Weighted Avg: 

F-Measure: 0.752.  

5.2.2.3 Classification Model: SVM 

=== Results === 

Correctly Classified Instances         536               71.46% 

Incorrectly Classified Instances       214               28.53% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.868. 

Recall: 0.715. 

Weighted Avg: 

F-Measure: 0.733. 

High Varied Low Buffer 

High 149 159 141 1 

Varied 1 148 0 1 

Low 0 1 148 1 

Buffer 0 0 0 0 

High Varied Low Buffer 

High 252 14 84 100 

Varied 1 148 0 1 

 Low 0 0 116 34 

Buffer 0 0 0 0 

High Varied Low Buffer 

High 246 202 0 2 

Varied 5 142 2 1 

Low 0 1 148 1 

Buffer 0 0 0 0 
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5.2.2.4 Classification Model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances         371               49.46% 

Incorrectly Classified Instances       379               50.53% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.867. 

Recall: 0.495. 

Weighted Avg: 

F-Measure: 0.533.   

 

5.2.2.5 Classification Model: Random Forest 

=== Results === 

Correctly Classified Instances         413               55.06% 

Incorrectly Classified Instances       337               44.93% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.884. 

Recall: 0.551. 

Weighted Avg: 

F-Measure: 0.606.  

5.2.3 Discussion  

The previous experiment was performed to determine whether the learned 

classification models on training data of applications listed in table 5.1 are able 

to generalise to testing data of applications listed in table 5.2. 

Firstly, in terms of correctly classifying class high samples. By observing the 

confusion matrices of all the classification models, it can be seen that testing 

samples of class high were mainly misclassified into other classes. This is 

because the learned classification models were only capable of capturing the 
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variance in the traffic range of video call applications and that by generalising 

well to unseen testing samples of Google Hangouts video call only. 

Moreover, since Skype voice call and Google Hangouts voice call were only 

included in the testing data and since the traffic of these applications is 

overlapping with the traffic of applications of other classes. As a result, the 

resultant classification models were incapable to generalise to testing samples 

of both Skype and Google Hangouts voice calls, and thus classifying them 

mostly into other classes. Consequently, the training data should contain a 

wider range of sample data. 

Furthermore, SVM has comparatively produced better classification results in 

terms of correctly classifying the testing samples from all classes with an 

overall accuracy of 71.46%. As outlined in subsection 3.6.6.5, this is due to the 

presence of a lower degree of non-linearity in the training and testing data 

overall, along with the strength of applying the normalised polynomial kernel 

which normalises the kernel values and improves the numerical stability, as a 

result, better performance was achieved by SVM compared to other 

classification models. Moreover, in terms of the macro average of precision, 

recall, and weighted f-measure. KNN achieved the highest macro average 

precision of 0.896 and weighted F-measure of 0.752. While SVM attained the 

highest macro average recall of 0.715. 

Finally, in terms of assessing the generalisation capacity of the learned 

classification models on the overlapping training data of classes varied and 

low. By observing the confusion matrices, it can be seen that the classification 

models were able to capture the overlapping and that by achieving good 

generalisation performance on the testing data of these classes. 

Since the resultant classification models were incapable to generalise to testing 

data of both Skype and Google Hangouts voice calls. Because none of the voice 
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call applications were included in the training data as both were only included 

in the testing data. Therefore, the following experiment will be performed 

using extended training data, which will include samples from the Skype voice 

call application. 

5.3 Extending the Training Data by Including the Skype Voice Call 

Application 

Table 5.3 lists the applications that are used for training the ML classifiers, 

whereas table 5.4 lists the applications that are used for testing the 

classification models. 

Training set based on the following apps: 

Table 5. 3: Training set 2 

Applications Class Samples 

1- Skype video call 

2- Skype voice call 
High 

150 

150 

3- Facebook Varied 150 

4- New Star Soccer (NSS) Low 150 

5- XiiaLive internet radio app Buffer 150 

Total Training Samples: 750 

Testing set based on the following apps: 

Table 5. 4: Testing set 2 

Applications Class Samples 

1- Google Hangouts video call 

2- Google Hangouts Voice call 
High 

150 

150 

3- Gmail Varied 150 

4- New Star Cricket (NSC) Low 150 

Total Testing Samples: 600 
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In addition, figure 5.3 shows the receiving traffic of both, the listed 

applications in table 5.3 that are used for training the ML classifiers and the 

listed applications in table 5.4 that are used for testing the classification 

models. Whereas the transmitting traffic of previously mentioned applications 

is shown in figure 5.4. 

By observing the receiving traffic of the training data in figure 5.3, a higher 

variation can be seen in the range of traffic after the inclusion of Skype voice 

call into the training data. So, when the receiving traffic of both Skype video 

call and Skype voice call is combined it varies between 0.76 to 145 KBs, while 

this varies between 0.79 and 521.25 KB in the testing data when the receiving 

traffic of Google Hangouts video call and Google Hangouts voice call is 

combined. 

This variation in the traffic range is also similar to the transmitting traffic that 

can be noticed in Figure 5.4, where the combined transmitting traffic of Skype 

video call and Skype voice call varies between 3.69 to 156.25 KBs, and in the 

testing data, it varies between 2.93 and 471.25 KBs when the transmitting 

traffic of Google Hangouts video call and Google Hangouts voice call is 

combined. 

Moreover, by observing the receiving traffic of the training data, an 

overlapping can be seen between the training data of Skype voice call and the 

training data of applications of other classes. While this also can be noticed in 

the receiving traffic of the testing data of Google Hangouts voice call.  

Furthermore, by observing the transmitting traffic of the training data in figure 

5.4, slighter overlapping can be seen between the training data of Skype and 

class varied, while no overlapping can be seen between the testing data of 

Google Hangouts voice call and the testing data of applications of other 

classes. 
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Figure 5. 3: Levels of network interaction of receiving traffic for apps listed in table 5.3 that are used for training and for apps listed 
in table 5.4 that are used for testing 

Figure 5. 4: Levels of network interaction of transmitting traffic for apps listed in table 5.3 that are used for training and for apps 
listed in table 5.4 that are used for testing 
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Finally, it would be interesting to test the generalisation capacity of the learned 

classification models on training data of applications listed in table 5.3, more 

specifically after the inclusion of the Skype voice call application into the 

training data. 

5.3.1 Experimental Setup 

The setup of this experiment remains the same as in 5.2.1, where the five 

selected ML classifiers MLP, KNN, SVM, decision tree (C4.5), and Random 

Forest are trained using the default hyperparameter settings listed in table 4.5.  

The only difference is in the training and testing data of the applications being 

used. Where tables 5.3 and 5.4 list the applications used for training and testing 

the classification models.  

Moreover, similar to experiment 5.2.1, the performance of each classifier is 

evaluated in terms of classification accuracy, macro-average of precision, 

recall and weighted average f-measure. Additionally, a confusion matrix is 

provided to examine the distribution of correct and incorrect predictions made 

by the classifiers. 

5.3.2 Results 

5.3.2.1 Classification Model: MLP 

=== Results === 

Correctly Classified Instances         572               95.33% 

Incorrectly Classified Instances        28                4.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.992. 

Recall: 0.953. 

Weighted Avg: 

F-Measure: 0.972.  
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5.3.2.2 Classification Model: KNN 

=== Results === 

Correctly Classified Instances         561               93.5% 

Incorrectly Classified Instances        39                6.5% 

=== Confusion Matrix === 

 

 

 

 

Macro Avg: 

Precision: 0.992. 

Recall: 0.935. 

Weighted Avg: 

F-Measure: 0.961.  

5.3.2.3 Classification Model: SVM 

=== Results === 

Correctly Classified Instances         562               93.66% 

Incorrectly Classified Instances        38                6.33% 

=== Confusion Matrix === 

 

 

 

 Macro Avg: 

Precision: 0.948. 

Recall: 0.937. 

Weighted Avg: 

F-Measure: 0.941. 

5.3.2.4 Classification Model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances         494               82.33% 

Incorrectly Classified Instances       106              17.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.906. 

Recall: 0.823. 

Weighted Avg: 

F-Measure: 0.844. 
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5.3.2.5 Classification Model: Random Forest 

=== Results === 

Correctly Classified Instances         548               91.33% 

Incorrectly Classified Instances        52                8.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.964. 

Recall: 0.913. 

Weighted Avg: 

F-Measure: 0.937. 

 

5.3.3 Discussion  

The previous experiment was performed by training the ML classifiers on 

training data of applications listed in table 5.3, and the generalisation capacity 

of the classification models was tested on unseen testing data of applications 

listed in table 5.4. 

So, based on the experimental results, it can be seen that the learned 

classification models on extended training data that included Skype voice call, 

were capable of achieving good generalisation performance more specifically 

on testing samples of class high with an overall accuracy ranging from 82.33% 

for C4.5 to 95.33% for MLP. Moreover, both MLP and KNN achieved the 

highest weighted average f-measure of 0.972 and 0.961 respectively, while the 

lowest weighted average f-measure of 0.844 was achieved by decision tree. 

This improvement in the generalisation performance was due to the training 

of the ML classifiers on a wider variation range that was noticed in the 

receiving and transmitting traffic in figures 5.3 and 5.4 after the inclusion of 

Skype voice call into the training data, where the learned classification models 

were capable to capture this variance by generalising well to unseen testing 

data of class high. 
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However, since the classification models have consistently demonstrated 

strong generalisation capabilities, the following experiment will be conducted 

by training the models on reduced training data to determine if they can still 

achieve good generalisation performance on the testing data. 

5.4 Reducing the Training Data by Half and then by a Quarter 

The following experiment is performed to assess the generalisation capacity of 

the learned classification models on a reduced training data. This would be 

carried on by reducing the amount of the training samples of each application 

listed in table 5.3 to half and then to the quarter while keeping the size of the 

testing samples the same.  

Thus, out of 750 training samples that were used for training the ML classifiers 

in the second experiment, the ML classifiers will be trained with 375 samples 

and then with 185 samples in this experiment. Finally, their generalisation 

performance will be assessed on applications that are listed in table 5.4. 

Training set based on the following apps: 

Table 5. 5: (Training set 3 of 185 samples), (Training set 4 of 375 samples) 

Applications Class Samples 

1- Skype video call 

2- Skype voice call 
High 

75, 37 

75, 37 

3- Facebook Varied 75, 37 

4- New Star Soccer (NSS) Low 75, 37 

5- XiiaLive internet radio app Buffer 75, 37 

Total Training Samples: 375, 185 
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Testing set based on the following apps: 

Table 5. 4: Testing set 2 

Applications Class Samples 

1- Google Hangouts video call 

2- Google Hangouts Voice call 
High 

150 

150 

3- Gmail Varied 150 

4- New Star Cricket (NSC) Low 150 

Total Testing Samples: 600 

5.4.1 Experimental Setup 

The setup of this experiment remains the same as in 5.2.1, where the five 

selected ML classifiers MLP, KNN, SVM, decision tree (C4.5), and Random 

Forest are trained using the default hyperparameter settings listed in table 4.5. 

Moreover, the training and testing data of applications remain the same as in 

5.3.1, with differences in the amount of training data being used for training. 

Table 5.5 lists the applications and the amount of training data used for 

training. While table 5.4 lists the applications that are used for testing the 

classification models. 

Furthermore, similar to experiment 5.2.1, the performance of each classifier is 

evaluated in terms of classification accuracy, macro-average of precision, 

recall and weighted average f-measure. Additionally, a confusion matrix is 

provided to examine the distribution of correct and incorrect predictions made 

by the classifiers. 
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5.4.2 Results 

5.4.2.1 Classification Model: MLP       

Training samples: 750 

=== Results === 

Correctly Classified Instances         572               95.33% 

Incorrectly Classified Instances        28                4.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.992. 

Recall: 0.953. 

Weighted Avg: 

F-Measure: 0.972. 

 

Training samples: 375 

=== Results === 

Correctly Classified Instances         530               88.33% 

Incorrectly Classified Instances        70               11.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.998. 

Recall: 0.883. 

Weighted Avg: 

F-Measure: 0.935. 

 

Training samples: 185 

=== Results === 

Correctly Classified Instances         486               81% 

Incorrectly Classified Instances       114               19% 

=== Confusion Matrix === 
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5.4.2.2 Classification Model: KNN 

Training samples: 750 

=== Results === 

Correctly Classified Instances         561               93.5% 

Incorrectly Classified Instances        39                6.5% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.992. 

Recall: 0.935. 

Weighted Avg: 

F-Measure: 0.961.  

 

Training samples: 375 

=== Results === 

Correctly Classified Instances         564               94% 

Incorrectly Classified Instances        36                6% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.998. 

Recall: 0.940. 

Weighted Avg: 

F-Measure: 0.966.  

 

Training samples: 185 

=== Results === 

Correctly Classified Instances         592               98.66% 

Incorrectly Classified Instances        8                 1.33% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.997. 

Recall: 0.987. 

Weighted Avg: 

F-Measure: 0.992.  
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5.4.2.3 Classification Model: SVM 

Training samples: 750 

=== Results === 

Correctly Classified Instances         562               93.66% 

Incorrectly Classified Instances        38                6.33% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.948. 

Recall: 0.937. 

Weighted Avg: 

F-Measure: 0.941. 

 

Training samples: 375 

=== Results === 

Correctly Classified Instances         550               91.66% 

Incorrectly Classified Instances        50                8.33% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.941. 

Recall: 0.917. 

Weighted Avg: 

F-Measure: 0.926. 

 

Training samples: 185 

=== Results === 

Correctly Classified Instances          482                80.33% 

Incorrectly Classified Instances        118                19.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.869. 

Recall: 0.803. 

Weighted Avg: 

F-Measure: 0.822. 
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5.4.2.4 Classification Model: Decision tree (C4.5) 

Training samples: 750 

=== Results === 

Correctly Classified Instances         494               82.33% 

Incorrectly Classified Instances       106               17.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.906. 

Recall: 0.823. 

Weighted Avg: 

F-Measure: 0.844. 

 

Training samples: 375 

=== Results === 

Correctly Classified Instances          425               70.83% 

Incorrectly Classified Instances       175               29.16% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.772. 

Recall: 0.708. 

Weighted Avg: 

F-Measure: 0.682. 

 

Training samples: 185 

=== Results === 

Correctly Classified Instances          465                77.5% 

Incorrectly Classified Instances        135                22.5% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.946. 

Recall: 0.775. 

Weighted Avg: 

F-Measure: 0.792. 
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5.4.2.5 Classification Model: Random Forest 

Training samples: 750 

=== Results === 

Correctly Classified Instances         548               91.33% 

Incorrectly Classified Instances        52                8.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.964. 

Recall: 0.913. 

Weighted Avg: 

F-Measure: 0.937. 

 

Training samples: 375 

=== Results === 

Correctly Classified Instances         488               81.33% 

Incorrectly Classified Instances      112                18.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.902. 

Recall: 0.813. 

Weighted Avg: 

F-Measure: 0.833. 

 

Training samples: 185 

=== Results === 

Correctly Classified Instances         470                78.33% 

Incorrectly Classified Instances      130                21.66% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.980. 

Recall: 0.783. 

Weighted Avg: 

F-Measure: 0.810. 
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5.4.3 Discussion  

The previous experiment was performed to assess the generalisation capacity 

of the learned classification models on reduced training data, where the 

training samples of each application listed in table 5.5 were reduced to half 

and then to a quarter. 

Based on the experimental results, it can be observed that, reducing the 

amount of training data has a minimal impact on the generalisation 

performance of classification models, as they still were capable of achieving 

good generalisation performance on the testing data. 

Moreover, in contrast to other classification models, an increase in the 

generalisation performance of the KNN was observed when the training 

samples kept decreasing. As outlined in subsections 3.5.1 and 3.6.7, in the 

presence of a small number of features and limited training data, KNN can be 

more efficient. This is because, unlike other classifiers, KNN has no explicit 

learning phase. Instead during the testing phase, it searches through the 

training data for the most similar or nearest instances in the region of k-

neighbourhood, and since there is an overall similarity between the training 

and testing data, in this case, the nearest neighbours to a test instance are 

similar and more representative of the overall distribution of the data, as a 

result, better generalisation performance was achieved by KNN when the 

training samples were reduced. In addition, the KNN classification model 

achieved the highest macro average of precision 0.998, recall 0.940 and 

weighed average of f-measure 0.966, when it was trained on a reduced training 

data of a quarter of the size. 

Furthermore, a slight increase in the generalisation performance of the 

decision tree was observed when the amount of training data was reduced 

from 375 samples to 185 samples. This matches what was outlined in 
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subsection 3.6.7 in relation to unstable classifiers, such as decision trees, that 

are sensitive to training data manipulation, where a small modification in 

training data leads to a significant change in the constructed classifier and 

therefore results in large differences in the prediction results. So, with 185 

samples different rules were generated, whereby the algorithm generated 

fewer but more generalisable rules to the testing data, whereas the generated 

rules with 375 samples were more specific to the training data but less 

generalisable to the testing data. 

5.5 Further Assessment of the Generalisation Capacity 

To further assess the generalisation capacity, the following experiment will be 

conducted by switching the training and testing data of applications that were 

used in the previous experiments 2 and 3. This involves training the ML 

classifiers on applications that were previously used for testing and assessing 

their generalisation performance on applications that were used for training. 

Training set based on the following apps: 

Table 5. 6: Training set 5 

Applications Class Samples 

1- Google Hangouts video call 

2- Google Hangouts Voice call 
High 

150 

150 

3- Gmail Varied 150 

4- New Star Cricket (NSC) Low 150 

5- XiiaLive internet radio app Buffer 150 

Total Training Samples: 750 
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Testing set based on the following apps: 

Table 5. 7: Testing set 3 

Applications Class Samples 

1- Skype video call 

2- Skype voice call 
High 

150 

150 

3- Facebook Varied 150 

4- New Star Soccer (NSS) Low 150 

Total Testing Samples: 600 

5.5.1 Experimental Setup 

The setup of this experiment remains the same as in 5.2.1, where the five 

selected ML classifiers MLP, KNN, SVM, decision tree (C4.5), and Random 

Forest are trained using the default hyperparameter settings listed in table 4.5.  

The only difference is in the training and testing data of the applications being 

used. Where tables 5.6 and 5.7 list the applications used for training and testing 

the classification models. Moreover, similar to experiment 5.2.1, the 

performance of each classifier is evaluated in terms of classification accuracy, 

macro-average of precision, recall and weighted average f-measure.  

Additionally, a confusion matrix is provided to examine the distribution of 

correct and incorrect predictions made by the classifiers. 

5.5.2 Results 

5.5.2.1 Classification Model: MLP 

=== Results === 

Correctly Classified Instances         586               97.66% 

Incorrectly Classified Instances        14                2.33% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.984. 

Recall: 0.977. 

Weighted Avg: 

F-Measure: 0.980. 
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5.5.2.2 Classification Model: KNN 

=== Results === 

Correctly Classified Instances         589               98.16% 

Incorrectly Classified Instances        11                1.83% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.992. 

Recall: 0.982. 

Weighted Avg: 

F-Measure: 0.987. 

5.5.2.3 Classification Model: SVM 

=== Results === 

Correctly Classified Instances         558               93% 

Incorrectly Classified Instances        42                7% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.957. 

Recall: 0.930. 

Weighted Avg: 

F-Measure: 0.940.  

5.5.2.4 Classification Model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances         597               99.5% 

Incorrectly Classified Instances         3                0.5% 

=== Confusion Matrix === 

 

 Macro Avg: 

Precision: 0.995. 

Recall: 0.995. 

Weighted Avg: 

F-Measure: 0.995.  
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5.5.2.5 Classification Model: Random Forest 

=== Results === 

Correctly Classified Instances         595              99.16% 

Incorrectly Classified Instances         5                0.83% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.992. 

Recall: 0.992. 

Weighted Avg: 

F-Measure: 0.992.  

5.5.3 Discussion  

To further assess the generalisation capacity, this experiment was performed 

by switching the training and testing data that were used in the previous 

experiments 2 and 3. This involved training the ML classifiers on applications 

that were previously used for testing and assessing their generalisation 

performance on applications that were used for training. 

The obtained results showed an improvement in the generalisation 

performance of all classification models, this is due to the training of the 

classifiers on a wider variation range which therefore improved the 

generalisation performance on unseen data. 

To illustrate this further, by referring to the receiving traffic of testing data in 

figure 5.3 a wider variation in the traffic range can be seen when the testing 

data of Google Hangouts video and Google Hangouts voice are combined, 

compared to the combined training data of Skype video call and Skype voice 

call. This variability is also apparent in the transmitting traffic of these 

applications, as shown in Figure 5.4. Thus, training the ML classifiers on 

training data with a wider variation in the traffic range leads to better 
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generalisation performance. Moreover, the decision tree achieved a macro 

average of precision, recall, and weighted average f-measure of 0.995. 

5.6 Conclusions 

The previous experiments were performed to determine whether the 

classification models not only perform well on training data but also generalise 

well on unseen testing data of applications that were not included in training 

data.  

In terms of generalising to unseen testing data of class high, the results of the 

first experiment showed that the learned classification models were only 

capable of capturing the variance in the traffic range of video call applications 

and that by generalising well to unseen testing data of Google Hangouts video 

call only. But, in terms of the voice call applications, the resultant classification 

models were incapable to generalise to testing data of both Skype and Google 

Hangouts voice calls, this is because none of the voice call applications were 

included in the training data as both were only included in the testing data 

and the traffic of these applications was overlapping with the traffic of 

applications of other classes. 

However, SVM has comparatively produced better classification results in 

terms of correctly classifying the testing samples from all classes. And that 

matches what was outlined in subsection 3.6.6.5 about the strength of applying 

the kernel and with the application of the normalised polynomial kernel, the 

kernel values are normalised which improves the numerical stability, as a 

result, better performance was achieved by SVM compared to other 

classification models. 

Moreover, in terms of generalising to unseen testing data of classes varied and 

low, the obtained results showed that the classification models were able to 
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capture the overlapping and that by achieving good generalisation 

performance on the testing data of these classes. 

The second experiment was performed to assess the generalisation capacity of 

the learned classification models on extended training data, particularly after 

the inclusion of the Skype voice call application into the training data. Where 

the experimental results showed an improvement in the generalisation 

performance specifically on testing data of class high, this was due to the 

training of the ML classifiers on a wider variation range that resulted from 

combining the training data of Skype video call and Skype voice call. 

The third experiment was performed to assess the generalisation capacity of 

the learned classification models on reduced training data. Where the training 

samples of each application used for training the ML classifiers in the second 

experiment were reduced to half and then to a quarter. However, the results 

of this experiment showed that reducing the amount of training data has a 

minimal impact on the generalisation performance, but still, better 

generalisation performance can be achieved by training with more samples. 

However, in contrast to other classification models, an increase in the 

generalisation performance of the KNN was observed when the training 

samples kept decreasing. This matches what was outlined in subsections 3.5.1 

and 3.6.7, in the presence of a small number of features and limited training 

data, KNN can be more efficient. This is because, unlike other classifiers, KNN 

has no explicit learning phase. Instead during the testing phase, it searches 

through the training data for the most similar or nearest instances in the region 

of k-neighbourhood, and since there is an overall similarity between the 

training and testing data, in this case, the nearest neighbours to a test instance 

are similar and more representative of the overall distribution of the data, as a 

result, better generalisation performance was achieved by KNN when the 

training samples were reduced. Also, a slight increase in the generalisation 
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performance of the decision tree was observed when the amount of training 

data was reduced from 375 samples to 185 samples. This matches what was 

outlined in subsection 3.6.7 in relation to unstable classifiers, such as decision 

trees, that are sensitive to training data manipulation, where a small 

modification in training data leads to a significant change in the constructed 

classifier and therefore results in large differences in the prediction results. So, 

with 185 samples different rules were generated, whereby the algorithm 

generated fewer but more generalisable rules to the testing data, whereas the 

generated rules with 375 samples were more specific to the training data but 

less generalisable to the testing data. 

Furthermore, the fourth experiment was performed to further assess the 

generalisation capacity. In this experiment, the ML classifiers were trained on 

applications that were previously used for testing, and their generalisation 

performance was tested on applications that were used for training. However, 

the results of this experiment showed that training the ML classifiers on 

training data with a wider variation in the traffic range leads to better 

generalisation performance. 

Overall, the experimental results indicate that the classification models 

constructed using ML classifiers were capable of achieving good 

generalisation performance on testing data by recognising the overlapping 

and capturing all the patterns or trends from the training data, including the 

dominant one. 

However, since the experiments conducted in sections 5.3 to 5.5, specifically 

in section 5.4, where the learned classification models on reduced training data 

were still capable of achieving high results on unseen testing data of 

applications that were not included in the training data. Therefore, the 

following attempt would be to hand-classify the training data by crafting the 

rules manually.  
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So, by observing the receiving and transmitting traffic of training data in 

figures 5.3 and 5.4, the following rules can be hand-crafted: 

Rule 1: IF the application’s receiving data rates = > 6 KBs AND transmitting 

data rates = > 6 KBs then the class = High. 

Rule 2: IF the application’s receiving data rates = > 10 KBs AND transmitting 

data rates <=  1 KBs then the class = Buffer. 

Although there is an overlapping between samples of the Skype voice call 

application that belong to class high with samples belonging to other classes, 

however, it is feasible to classify applications belonging to classes high and 

buffer using hand-crafted rules which also can be further refined. 

Moreover, by observing the training data in figures 5.3 and 5.4 it can be seen 

that samples belonging to classes; varied and low are extremely overlapping, 

thus it will be difficult to distinguish between samples of these classes by 

constructing a set of rules manually. 

However, if we do construct the rules manually, then the results would be 

extremely overfitted to training samples. And here comes the role of ML, 

whereby algorithms learn from training data and produce a set of rules in an 

automated fashion. Therefore, the complexity of manually constructing a set 

of rules, more specifically for samples of classes varied and low, is handed to 

ML classifiers. 

So, while it is feasible to hand-classify the training data by crafting the rules 

manually, however, classification models constructed using ML classifiers 

introduce the following: 
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Automatic rule generation: Faster development 

Defining a set of rules manually for the entire training data can be challenging 

and time-consuming, as noted by observing the training data in figures 5.3 and 

5.4, regardless of overlapping between the classes, however, it was feasible to 

define rules for training data belonging to classes high and buffer in an attempt 

to hand-classify training data of these classes. 

Moreover, by observing the training data belonging to classes varied and low 

in aforementioned figures 5.3 and 5.4, it can be seen that the training data are 

highly overlapping, so it was difficult to distinguish between the training data 

of these two classes and define a set of rules that hand-classify the training 

data. Since there is no clear-cut boundary between the classes that can be 

translated into a set of predefined rules. 

This is in contrast to the ML approach, where the complexity of manually 

constructing a set of rules is handed over to the ML, whereby an ML classifier 

such as a decision tree does not require manual labour to create and maintain 

a set of rules, instead, it automatically learns to create its own set of if-then 

statements based on patterns it finds in training data, which significantly 

accelerates and simplifies the development process with less human 

intervention. 

Generalisation 

In terms of generalisation, the ML algorithms are designed with the ability to 

learn different variations and relationships in the data. Thus, the ability to 

learn the underlying patterns and relationships enables ML-based algorithms 

to generalise on previously unseen data in an effective manner.  

In contrast, a predefined set of rules can be prone to overfitting, more 

specifically in case there are no clear-cut decision boundaries between the 
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classes. In such cases, defining a set of rules can lead to overfitting, where these 

rules might perform well on training data, but not on new and unseen data 

since no consideration of the complex relationships and patterns in the data 

have been taken into account. 

5.7 Summary  

This chapter provided detailed experimentation, analyses and discussions to 

determine whether the selected classification models not only perform well on 

training data but also generalise well on unseen testing data of applications 

that were not included in training data. This chapter also provided an in-depth 

analysis of the network traffic for the selected applications used in training 

and testing. To assess the generalisation capacity of the selected classification 

model, four main experiments were conducted in this chapter. For each 

experiment, an experimental setup, results, and discussion were provided. In 

the first experiment, a representative application from each class was selected 

for training the ML classifiers, and their generalisation capacity was evaluated 

on different applications that were not included in the training data. The 

second experiment was performed to assess the generalisation capacity of the 

learned classification models on extended training data, particularly after the 

inclusion of the Skype voice call application into the training data. While the 

third experiment was performed to assess the generalisation capacity of the 

learned classification models on reduced training data. Where the training 

samples of each application used for training the ML classifiers in the second 

experiment were reduced to half and then to a quarter. To further assess the 

generalisation capacity, the fourth experiment was performed by switching 

the training and testing data that were used in the previous experiments 2 and 

3. This involved training the ML classifiers on applications that were 

previously used for testing and assessing their generalisation performance on 

applications that were used for training. This chapter also provided detailed 

conclusions based on conducted experiments, since the classification models 
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achieved high results on unseen testing data of applications not included in 

the training data, this chapter further explored the feasibility of manually 

crafting rules to hand-classify the training data. Where an attempt was made 

to hand-classify the training data, followed by a discussion and comparison of 

the outcomes with the classification models constructed using ML classifiers. 
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6 

HYPERPARAMETER OPTIMISATION 

6.1 Introduction  

This chapter conducts a hyperparameter optimisation process to identify the 

optimal settings that result in a better-performing classification model. Section 

6.2 overviews the common hyperparameter tuning methods. Section 6.3 

describes the experimental setup carried out to perform the hyperparameter 

optimisation process. This section also justifies the selection of the chosen 

hyperparameter tuning methods employed in this chapter. This is Followed 

by conducting the hyperparameter optimisation process using both manual 

and automated tuning methods in sections 6.4 to 6.8. This is carried out by 

performing 10-fold cross-validation on the training data of the applications 

listed in table 5.5 of experiment three section 5.4 consisting of 185 samples. 

And then evaluating the performance of the constructed classification models 

using the obtained optimal sets of hyperparameter values on the testing data 

of the applications listed in table 5.4. Section 6.9 repeats the previous four 

experiments conducted in chapter five, sections 5.2 to 5.5 using the optimal 

sets of hyperparameter values that were obtained in sections 6.4 to 6.8 for the 

five classification models. However, the experimental results in section 6.9, 

particularly of the repeated experiments one and four indicated that using the 

optimised hyperparameters for a particular training data may not always lead 

to improved model performance when there are changes in the overall 

distribution of new training data. Therefore, in section 6.10 the optimal sets of 

hyperparameter values for classification models for the first and fourth 

experiments of (sections 5.2 and 5.5) are determined. The same method for 
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identifying the optimal sets of hyperparameter values described in 6.3 and 

employed in sections 6.4 to 6.8 is applied to determine the optimal settings that 

result in better-performing classification models. Where 10-fold cross-

validation is performed to explore different hyperparameter settings on the 

training data of the applications listed in table 5.1 of the first experiment and 

table 5.6 of the fourth experiment. This is followed by evaluating the 

performance of the constructed classification models on the testing data of  the 

applications listed in table 5.2 of the first experiment and table 5.7 of the fourth 

experiment. Section 6.11 provides a deeper analysis of the confusion matrix, 

and then describes the process of reweighting the training inputs by assigning 

costs to the class misclassifications in the cost matrix. 

6.2 Hyperparameter Settings 

The performance of ML models is highly dependent on the selection of the 

most appropriate hyperparameter values, where tuning these 

hyperparameters and finding the most appropriate setting can and often leads 

to a better-performing model [112, 113]. Some studies have shown that there 

is no single hyperparameter tuning method that can be deemed as the best 

[114], and some hyperparameter optimisation methods can yield accuracies 

similar to those obtained with default configurations [230, 231, 232]. While 

recent studies have shown that the Bayesian optimisation method can be more 

reliable for optimising the hyperparameter values, particularly in large search 

spaces [113, 233, 234, 235]. Moreover, ML practitioners tend to prefer manual 

tuning over other hyperparameter tuning methods since it increases their 

comprehension of the model [113, 236, 237]. Furthermore, when the 

computational resources are limited, research has also suggested using the 

default hyperparameter setting suggested by ML tools [230, 238].  

However, it is a common practice to initially train the ML model using the 

default hyperparameter setting as the baseline model and subsequently 
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conduct a hyperparameter optimisation process to enhance the model's 

performance [239]. This was similarly followed in [240, 241, 242] where the 

authors of these studies initially trained the ML model using the default 

hyperparameter setting suggested by the WEKA tool and then conducted a 

hyperparameter optimisation process. 

There are many methods that exist for optimising the hyperparameters, 

including manual tunning, grid search, random search, and Bayesian 

optimisation.  

In manual tuning, a user tries different combinations of hyperparameter 

configurations based on personal knowledge or from the literature. Whereas 

the grid search method, searches for the optimal combination of 

hyperparameters by tying every parameter setting over a user-predefined 

range of hyperparameter values. While in a random search, the optimal 

combination of hyperparameters is searched by randomly sampling 

hyperparameter configurations from a user-predefined search space. Both 

grid search and random search treat each hyperparameter configuration 

independently. While in contrast, Bayesian optimisation determines the next 

set of hyperparameters to try by taking into account the previous results of 

tested hyperparameter values [112, 113, 239]. 

6.3 Experimental Setup 

In the following sections 6.4 to 6.8, the hyperparameter optimisation process 

is performed to identify the optimal settings that result in a better-performing 

classification model. To explore different hyperparameter settings, 10-fold 

cross-validation was performed on the training data of experiment three 

section 5.4 consisting of 185 samples. This is followed by evaluating the 

performance of the constructed classification model on the testing data of the 

applications listed in table 5.4. 
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To identify the optimal hyperparameter values, we have utilised the manual 

tuning option, since it increases the comprehension of the model and allows 

us to understand the hyperparameter tuning effect in training and testing the 

classification models. The manual hyperparameter tuning is performed to 

optimise the hyperparameter values of MLP and SVM classification models. 

Additionally, in a similar manner to the authors of [253, 254] who utilised both 

manual and automated tuning methods, WEKA’s built-in parameter selection 

function called CVParameterSelection was utilised to automate the process of 

searching for optimal parameters. CVParameterSelection is a widely used 

method for tuning the hyperparameters adopted by many studies including 

[240, 243, 244, 245, 246]. This method involves searching through a user-

specified range of values for the given parameters and identifying the optimal 

parameter values within that range. We used the CVParameterSelection to 

identify the optimal parameters of KNN, decision tree and Random forest 

using internal 10-fold cross-validation. 

Finally, for the experiments in this chapter, except for the specified parameters 

that are used to identify the optimal values, all other parameter values for the 

five classification models remained unchanged as listed in table 4.5. 

6.4 MLP Settings 

6.4.1 Default Setting  

To identify the optimal hyperparameter values of an MLP, the following most 

common hyperparameters are considered based on [247]: hidden layer (-H), 

learning rate (-L) and momentum (-M). While the range of hyperparameter 

values specified in [255] for L and M were considered. Moreover, since there 

are no clear rules to determine the optimal number of hidden layers and the 

number of nodes in each layer [248]. The tuning of the hidden layer parameter 
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(-H) is carried out using WEKA's four predefined wildcards of the hidden 

layer described in the following subsection. 

In WEKA the parameter (-H) represents a number of hidden layers and the 

number of nodes in each layer, where the default setting of this parameter in 

WEKA is “a” which creates a network with a single hidden layer and the 

number of nodes = (number of features + number of classes) /2. 

Thus, in our case with 6 features the default setting for the number of nodes 

would be 6 + 4 / 2 = 5 nodes in a single hidden layer. 

The Learning rate hyperparameter of the backpropagation algorithm (-L) 

determines the size of the steps the weights are updated during training. The 

value of this hyperparameter ranges between 0 to 1, a higher learning rate 

values allow the model to learn faster but at a risk of overshooting the optimal 

weights. In contrast, lower learning rate values require longer training but are 

more likely to converge to the optimal weights. The default value for L in 

WEKA is 0.3. 

During the training, the momentum parameter (-M) is added to speed up the 

optimisation algorithm's convergence towards the global minimum. Since the 

learning rate determines the size of the steps that are taken towards the 

minimum of the loss function during the gradient descent. During the weight 

updates, the value of the momentum parameter between 0 to 1 is added to 

determine how much influence the previous weight update has on the current 

weight update, in case the M value set to 0.9 means the current weight update 

is strongly influenced by the previous weight update. However, this also 

enables the algorithm to maintain a more consistent direction for these 

updates and thus accelerates the convergence towards the global minimum of 

the loss function. The default value of M in WEKA = 0.3. 
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Table 6.1 shows classification results obtained using the default parameter 

settings of an MLP in WEKA listed in table 4.5. 

Table 6. 1: MLP default setting 

Results of 

training and validation 

using 10-fold cross validation 

Results of testing the constructed 

classification model on unseen testing data 

of applications listed in table 5.4 

Correctly classified Instances          

179 - 96.75%. 

Incorrectly classified instances 

6 - 3.24%. 

Correctly classified instances          

486 - 81%. 

Incorrectly classified instances       

114 - 19%. 

In the following subsections the optimal hyperparameter values for H, L and 

M will be manually determined. While the rest of the parameters remained 

unchanged as listed in table 4.5. 

6.4.2 Hidden Layers 

In this subsection, the tuning of the hidden layer parameter H is carried out 

using WEKA's four predefined wildcards of the hidden layer, which are as 

follows: 

1. WEKA’s default setting “a” as described in 6.4.1. 

2. “o” which creates a network of a single hidden layer and the number of 

nodes equal to a number of classes, thus the number of nodes in our case 

would be 4 nodes in a single hidden layer. 

3. “i” creates a network of a single hidden layer and the number of nodes equal 

to a number of features, thus the number of nodes in our case would be 6 nodes 

in a single hidden layer. 

4.“t” creates a network of a single hidden layer and the number of nodes = a 

number of features + a number of classes. Thus, in our case with 6 features, 

the number of nodes would be 6 + 4 = 10 nodes in a single hidden layer. 
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Moreover, the number of hidden layers and the nodes per layer can also be 

specified in WEKA, for example with the following values of 5,3,2. The 

number of hidden layers created for the network would be 3, with 5 nodes in 

layer 1, 3 nodes in layer 2 and 2 nodes in layer 3. 

Table 6. 2: MLP hidden layers setting 

Parameter values 

Results of 

training and validation 

using 10-fold cross validation 

Results of testing the 

constructed classification 

model on unseen testing data of 

applications listed in table 5.4 

Default 

 “a”  = 5 nodes in a 

single hidden layer.  

 

Correctly classified instances          

179 - 96.75%. 

Incorrectly classified instances 

6 - 3.24%. 

 

Correctly classified instances          

486 - 81%. 

Incorrectly classified instances       

114 - 19%. 

“o” = 4 nodes in a 

single hidden layer. 

 

Correctly classified instances          

179 - 96.75% 

Incorrectly classified instances         

6 - 3.24% 

Correctly classified instances         

460 – 76.66% 

Incorrectly classified instances        

140 – 23.33% 

“i” = 6 nodes in a single 

hidden layer. 

 

Correctly classified instances          

179 - 96.75% 

Incorrectly classified instances         

6 - 3.24% 

Correctly classified instances         

466 – 77.66% 

Incorrectly classified instances        

134 – 23.33% 

“t” = 10 nodes in a 

single hidden layer. 

 

Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances         

495 – 82.5% 

Incorrectly classified instances        

105 – 17.5% 

 

6.4.2.1 Discussion  

Table 6.2 shows the impact of altering the values of parameter H, which 

corresponds to the number of hidden layers and nodes in each layer. While 

the rest of the parameters remained unchanged as listed in table 4.5. 

However, it can be observed that the highest accuracy was achieved on the 

testing data when we selected the predefined parameter “t” denoting a single 

hidden layer with 10 nodes. Therefore, the value of parameter H was set to “t” 

prior to conducting the following parameter tuning of the learning rate. 
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6.4.3 Learning Rate 

Table 6. 3: Performance of different learning rate values 

Parameter values 

Results of 

training and validation 

using 10-fold cross validation 

Results of testing the 

constructed classification 

model on unseen testing data of 

applications listed in table 5.4 

Default  

Learning rate 0.3  

 

Correctly  classified instances          

179 – 96.75% 

Incorrectly  classified instances         

6 – 3.24%  

 

Correctly  classified instances         

495 – 82.5% 

Incorrectly classified instances        

105 – 17.5% 

Learning rate 0.1 

 

Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances       

 553 - 92.16% 

Incorrectly classified instances        

 47 - 7.83% 

Learning rate 0.2 

 

Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances         

493 – 82.16% 

Incorrectly classified instances        

107 – 17.88% 

Learning rate 0.4 

 

Correctly Classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances         

508 – 84.66% 

Incorrectly classified instances        

92 – 15.33% 

Learning rate 0.42 Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances         

493 – 82.16% 

Incorrectly classified instances        

107 – 17.83% 

6.4.3.1 Discussion  

After setting the optimal parameter values of H, we proceed to determine the 

optimum value of the learning rate L. Table 6.3 displays the effect of varying 

the values of the learning rate from 0.1 to 0.5 with a step of 0.1. A decrease in 

the accuracy can be observed when the value exceeds 0.4. While the best result 

was obtained for a learning rate of 0.1 on testing data as compared to the 

default value of 0.3. 

Therefore, the value of parameter H was set to “t” and the optimal value of L 

was set to 0.1, prior to conducting the following parameter tuning of the 
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Momentum. While the rest of the parameters remained unchanged as listed in 

table 4.5. 

6.4.4 Momentum 

Table 6. 4: Performance of different momentum values 

Parameter values 

Results of 

training and validation 

using 10-fold cross validation 

Results of testing the 

constructed classification 

model on unseen testing data 

of applications listed in table 

5.4 

Default  

Momentum 0.2 

 

Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24%  

 

Correctly classified instances       

 553 – 92.16% 

Incorrectly classified instances        

 47 – 7.83% 

 Momentum 0.1 Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances       

 553 – 92.16% 

Incorrectly classified instances        

 47 – 7.83% 

 Momentum 0.3 Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances       

 553 – 92.16% 

Incorrectly classified instances        

 47 – 7.83% 

 Momentum 0.4 Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances       

 556 – 92.66% 

Incorrectly classified instances        

 44 – 7.33% 

 Momentum 0.5 Correctly classified instances          

179 – 96.75% 

Incorrectly classified instances         

6 – 3.24% 

Correctly classified instances       

 549 – 91.5% 

Incorrectly classified instances        

 51 – 8.5% 

 

6.4.4.1 Discussion  

After setting the optimal parameter values of H and L, we proceed to identify 

the optimum value of the momentum M, where the value of the momentum 

was varied from 0.1 to 0.5 with an increment of 0.1, and the results of these 

variations are presented in table 6.4. The same results were obtained when the 

value changed from 0.1 to 0.3, while the best result was achieved for a 
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momentum of 0.4 on testing data where a reduction in accuracy was observed 

when the value of the momentum exceeded 0.4. 

In conclusion, better results on testing data were achieved by the MLP 

classification model with the optimal hyperparameter values of H set to “t”, L 

of 0.1 and M of 0.4 as compared to the original setup using the default values. 

Where the classification accuracy improved by almost 11.66% and the number 

of misclassified instances reduced by 11.67% 

6.5 SVM Settings 

6.5.1 Default Setting  

To identify the optimal hyperparameter values of an SVM, the following most 

common hyperparameters are considered based on [240, 250]: regularisation 

hyperparameter (-C) and the exponent (-E) value or degree of the kernel. 

In WEKA, the default value of the regularisation hyperparameter C is 1.0. 

while the exponent E value or degree of the selected normalised polynomial 

kernel by default is 1.0, which behaves like a linear kernel. 

Table 6.5 shows classification results obtained using the default parameter 

settings of SVM in WEKA listed in table 4.5. 

Table 6. 5: SVM default setting 

Results of 

training and validation 

using 10-fold cross validation 

Results of testing the constructed classification 

model on unseen testing data of applications 

listed in table 5.4 

Correctly classified instances          

175 - 94%. 

Incorrectly classified instances         

10 - 5.40%. 

Correctly Classified instances          

482 - 80.33%. 

Incorrectly classified instances        

118 - 19.66%. 
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6.5.2 Tuning the Values of C and E 

In the subsection, the optimal hyperparameter values for C and E are manually 

searched by adopting the method and range of values used in [240]. While the 

rest of the parameters remained unchanged as listed in table 4.5.  

To determine the optimal values of these hyperparameters, the normalised 

polynomial kernel was tested using two different exponent values; 1.0, which 

behaves like a linear kernel, and an exponent or degree value of 2.0 that 

equivalent to a nonlinear kernel. Whereas the regularisation parameter C was 

tested over a range of one to four. The effect of varying the values of 

regularisation parameter C and kernel exponent is shown in table 6.6. 

Table 6. 6: Performance for different C and E values 

Parameter values 

Results of 

training and validation 

using 10-fold cross validation 

Results of testing the 

constructed classification 

model on unseen testing data 

of applications listed in table 

5.4 

Regularisation 

parameter C = 2 

Exponent value = 1.0   

Correctly classified instances          

177 – 95.67% 

Incorrectly classified instances         

8 – 4.32% 

Correctly classified instances          

504 - 84% 

Incorrectly classified instances        

96 - 16% 

Regularisation 

parameter C = 3 

Exponent value = 1.0  

Correctly Classified instances          

179 – 96.75% 

Incorrectly classified instances          

6 – 3.24%  

Correctly Classified instances         

510 - 85% 

Incorrectly classified instances        

90 - 15% 

Regularisation 

parameter C = 4 

Exponent value = 1.0  

Correctly Classified instances          

179 – 96.75% 

Incorrectly classified instances          

6 – 3.24% 

Correctly Classified instances         

510 - 85% 

Incorrectly classified instances        

90 - 15% 

Regularisation 

parameter C = 1 

Exponent value = 2.0 

Correctly Classified instances          

177 – 95.67% 

Incorrectly classified instances          

8 – 4.32% 

Correctly Classified instances          

525 – 87. 5% 

Incorrectly classified instances        

75 - 12.5% 

Regularisation 

parameter C = 2 

Exponent value = 2.0 

Correctly Classified instances          

179  - 96.75% 

Incorrectly classified instances          

6 - 3.24% 

Correctly Classified instances          

533 – 88.83% 

Incorrectly classified instances         

67 – 11.16% 
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Regularisation 

parameter C = 3 

Exponent value = 2.0 

Correctly Classified instances          

179  - 96.75% 

Incorrectly classified instances          

6 - 3.24% 

Correctly Classified instances          

536 – 89.33% 

Incorrectly classified instances         

64 – 10.66% 

Regularisation 

parameter C = 4 

Exponent value = 2.0  

Correctly Classified instances          

179  - 96.75% 

Incorrectly classified instances          

6 - 3.24% 

Correctly Classified instances          

536 – 89.33% 

Incorrectly classified instances         

64 – 10.66% 

6.5.3 Discussion  

Firstly, in the case when the exponent value E was set to 1, the highest results 

on testing data were obtained when the value of the regularisation parameter 

C value was set to 3, while an increment in the C value to 4 caused no change 

in the model’s performance. 

Moreover, an improvement in the results was observed when the value of E 

was set to 2 and the model’s performance kept improving as the value of C 

kept incrementing by 1, while the best performance was achieved when the 

value of C was set to 3. However, further increasing the value of C to 4 caused 

no change in the model’s performance. 

In conclusion, compared to the results presents in table 6.5 for the SVM 

classification model with the original setup using the default values. Improved 

results were obtained on the testing data with the optimal hyperparameter 

values of E = 2 and C = 3. Where the classification accuracy improved by 9% 

and the number of misclassified instances was also reduced by 9%. 

6.6 KNN Settings 

6.6.1 Default Setting  

As outlined 3.6.3 the value of hyperparameter (-K) number of neighbours, is 

considered an important hyperparameter that plays a crucial role in the KNN 

algorithm. The default value of the hyperparameter K in WEKA is 1. 

Additionally, the default distance measure function is Euclidean distance with 
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no weight assigned. Table 6.7 shows classification results obtained using the 

default parameter settings of the KNN in WEKA listed in table 4.5. 

Table 6. 7: KNN default setting 

Results of 
training and validation 
using external 10-fold cross validation 

Results of testing the constructed 
classification model on unseen testing data 
of applications listed in table 5.4 

Correctly Classified instances          
179 – 96.75%. 
Incorrectly classified instances         
6 – 3.24%. 

Correctly Classified instances         
592 – 98.66%. 
Incorrectly classified instances       
8 – 1.33%. 

6.6.2 Performing CV Parameter Selection 

In this subsection, the optimal value of hyperparameter K is determined by 

performing the CV Parameter Selection using Euclidean and Manhattan 

distance functions with different distance weightings. While the rest of the 

parameters remained unchanged as listed in table 4.5. 

This is carried out by following the method of applying different distance 

functions with different distance weightings and the range of the K value used 

in [250]. The K value ranged from 1.0 to 10.0 with 10 steps, table 6.8 shows the 

classification results of the optimal K value for the Euclidean and Manhattan 

distance functions with different distance weightings. While the rest of the 

parameters remained unchanged as listed in table 4.5. 

Table 6. 8: Performance for the optimal K value using Euclidean and Manhattan 
distance functions 

Parameter values 

Results of 
training and validation 
using internal 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.4 

Distance function: Euclidean 

Distance weighting by 1 / 

distance 

Optimal K = 3 

Correctly classified instances          
185 - 100% 
Incorrectly classified 
instances         
0 – 0% 

Correctly classified instances         
592 – 98.66% 
Incorrectly classified 
instances       
8 – 1.33% 

Distance function: Euclidean Correctly classified instances          

180 – 97.29% 

Correctly classified instances         

592 – 98.66% 
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Distance weighting by 1 – 

distance 

Optimal K = 4 

Incorrectly classified 

instances         

5 – 2.70% 

Incorrectly classified 

instances       

8 – 1.33% 

Distance function: 

Manhattan 

Distance weighting by 1 / 

distance 

Optimal K = 3 

Correctly classified instances          
185 - 100% 
Incorrectly classified 
instances         
0 – 0% 

Correctly classified instances         
595 – 99.16% 
Incorrectly classified 
instances       
5 – 0.83% 

Distance function: Manhattan 

Distance weighting by 1 - 

distance Optimal K = 3 

Correctly classified instances          

181 – 97.83% 

Incorrectly classified 

instances         

4 – 2.16% 

Correctly classified instances         

505 – 89.53% 

Incorrectly classified 

instances       

59 – 10.46% 

6.6.3 Discussion 

Based on the classification results on testing data, it can be observed that the 

highest classification results were obtained with the CV parameter selection 

returning the optimal K value = 3 using the Manhattan distance function and 

the distance weighting of 1 / distance. While the same results were obtained 

on testing data using the Euclidean distance function regardless of the distance 

weighting used. 

Furthermore, compared to the results shown in table 6.7 of KNN with the 

original setup using the default values. The optimal KNN configuration 

produced results with 0.5% higher classification accuracy and reduced the 

number of misclassified instances by 0.5%. 

6.7 Decision Tree (C4.5) Settings 

6.7.1 Default Setting  

To identify the optimal hyperparameter values of decision tree (C4.5), the 

following most common hyperparameters are considered based on [252]: 

confidence factor (-C) and the minimum number of instances (minNumObj or 

-M) in leaf node. 
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In WEKA the default parameter setting of the C that controls the pruning of 

the tree is 0.25. Whereas the minimum number of instances M that must be 

present in a leaf node by default is 2, denoting no further split is carried out if 

the node contains less than two instances. Table 6.9 shows classification results 

obtained using the default parameter settings of the decision tree (C4.5) in 

WEKA listed in table 4.5. 

Table 6. 9: Decision tree (C4.5) default setting 

Results of 
training and validation 
using external 10-fold cross validation 

Results of testing the constructed classification 
model on unseen testing data of applications 
listed in table 5.4 

Correctly classified instances         
178 - 96.21%. 
Incorrectly classified instances          
7 - 3.78%. 

Correctly classified instances          
465 - 77.5%. 
Incorrectly classified instances        
135 - 22.5%. 

 

6.7.2 Performing CV Parameter Selection 

In this subsection, the search for the optimal values of hyperparameters M and 

C was conducted using WEKA's CV Parameter Selection. While the rest of the 

parameters remained unchanged as listed in table 4.5. 

This was carried out by following the method and the range of 

hyperparameter values used in [252]. Where M ranged from 1.0 to 10.0 with 

10 steps, and C ranged from 0.1 to 0.9 with an increment of 0.1. By performing 

the CV Parameter Selection, the optimal set of parameter values was obtained 

which is C = 0.5 and M = 1. 

Table 6. 10: Performance for the optimal C and M values 

Parameter values 

Results of 
training and validation 
using  internal 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing data of 
applications listed in table 5.4 

Optimal values 

C = 0.5 

M = 1 

 
Correctly classified instances          
185 - 100% 
Incorrectly classified 
instances         
0 – 0% 

 
Correctly classified instances          
473 - 78.83% 
Incorrectly classified instances        
127 - 21.16% 
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6.7.3 Discussion  

Table 6.10 shows the results of the decision tree classification model using the 

optimal C and M values. Compared to the results obtained using the default 

configuration in table 6.9, improved results were obtained on the testing data 

with the optimal hyperparameter values of C = 0.5 and M = 1. Where the 

classification accuracy of the model was improved by approximately 1.33%, 

while the number of misclassified instances was reduced by 1.34%. 

6.8 Random Forest Settings 

6.8.1 Default Setting  

To identify the optimal hyperparameter values of Random forest, the 

following hyperparameters are considered based on [253]: the number of trees 

that can be generated (-I), the number of features to consider in each split point 

(-K) and the maximum depth (-depth) of trees indicates how deep the tree 

would be. 

In WEKA, the default settings for these parameters are as follows: the number 

I is set to 100 by default, the number K is calculated as log2(number of 

features), and the maximum depth is set to 0 by default, allowing for unlimited 

depth. Table 6.11 shows classification results obtained using the default 

parameter settings of the Random forest in WEKA listed in table 4.5. 

Table 6. 11: Random forest default setting 

Results of 
training and validation 
using external 10-fold cross validation 

Results of testing the constructed 
classification model on unseen testing data of 
applications listed in table 5.4 

Correctly classified instances          
181 - 97.83%. 
Incorrectly classified instances         
 4 -  2.16%. 

Correctly classified instances          
470 - 78.33%. 
Incorrectly classified instances        
130 - 21.66%. 

 

 

 



169 

6.8.2 Performing CV Parameter Selection 

Similar to KNN and decision tree, in this subsection the optimal 

hyperparameter values of I, depth and K are searched by utilising the CV 

Parameter Selection. While the rest of the parameters remained unchanged as 

listed in table 4.5.  

Where the depth ranged from 1.0 to 10.0 with 10.0 steps, K ranged from 2.0 to 

6.0 with 5.0 steps, according to our case with six features and I ranged from 

10.0 to 100.0 with 10.0 steps. After performing the CV Parameter Selection, the 

optimal hyperparameter values obtained were depth = 3, K = 3, and I = 20. 

Table 6. 12: Performance of Random forest with optimal configuration 

Parameter values 

Results of 
training and validation 
using internal 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing data 
of applications listed in table 
5.4 

Optimal values 
depth = 3 
K = 3 
I = 20 

 
Correctly classified instances          
185 - 100% 
Incorrectly classified 
instances         
0 – 0% 

 
Correctly classified instances          
470 - 78.33% 
Incorrectly classified instances        
130 - 21.66% 

6.8.3 Discussion  

The performance of Random forest on testing data using the optimal values of 

depth = 3, K = 3 and I = 20 is shown in table 6.12. Compared to the results 

obtained in table 6.11 with the original setup using the default values, no 

improvement was observed in terms of the classification results. However, the 

model with the optimal configuration required less computational cost to 

achieve the same classification results, where a smaller number of trees I = 20 

were used as compared to the original setup with the default value of I = 100. 

 

 



170 

6.9 Repeating the Experiments Using the Optimal Settings  

This section repeats the four experiments conducted in chapter five, 

specifically in sections 5.2 to 5.5. In those experiments, the selected ML 

classifiers were trained as baseline models using the default hyperparameter 

settings listed in table 4.5. However, in this section, the same experiments are 

repeated using the optimal sets of hyperparameter values obtained in sections 

6.4 to 6.8 for the five classification models. The remaining parameters, as listed 

in table 4.5, remain unchanged. 

6.9.1 Experimental Setup 

For the first experiment, the five ML classifiers are trained on the training data 

of applications listed in table 5.1 using the optimal sets of hyperparameter 

values that were obtained in sections 6.4 to 6.8. And their performance is 

assessed on the testing data of applications listed in table 5.2. While the rest of 

the parameters remained unchanged as listed in table 4.5. 

For the second experiment, the five ML classifiers are trained on the training 

data of applications listed in table 5.3 using the optimal sets of hyperparameter 

values that were obtained in sections 6.4 to 6.8. And their performance is 

assessed on the testing data of applications listed in table 5.4. While the rest of 

the parameters remained unchanged as listed in table 4.5. 

For the third experiment, the five ML classifiers are trained on reduced 

training data of applications listed in table 5.5, where the size of this training 

data was reduced to half of the training data used in the second experiment. 

This is carried out using the optimal sets of hyperparameter values that were 

obtained in sections 6.4 to 6.8. 4.5. The performance of the classification models 

is then assessed on the testing data of applications listed in Table 5.4, While 

the rest of the parameters remained unchanged as listed in table 4.5. 
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For the fourth experiment, the five ML classifiers are trained on the training 

data of applications listed in table 5.6 using the optimal sets of hyperparameter 

values that were obtained in sections 6.4 to 6.8. And their performance is 

assessed on the testing data of applications listed in table 5.7. While the rest of 

the parameters remained unchanged as listed in table 4.5. 

Moreover, the performance of each classifier is evaluated in terms of 

classification accuracy, macro-average of precision, recall and weighted 

average f-measure. Additionally, a confusion matrix is provided to examine 

the distribution of correct and incorrect predictions made by the classifiers. 

6.9.2 Results of the First Experiment: Training with an App of Each Class 

and Testing on Different App(s) of the Same Class 

Classification model: MLP 

=== Results === 

Correctly Classified Instances        434               57.86% 

Incorrectly Classified Instances      316               42.13% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.796. 

Recall: 0.579. 

Weighted Avg: 

F-Measure: 0.546.  

Classification model: KNN 

=== Results === 

Correctly Classified Instances         442               58.93% 

Incorrectly Classified Instances       308               41.06% 

=== Confusion Matrix === 

 

Macro Avg: 

Precision: 0.850. 

Recall: 0.589. 

Weighted Avg: 

F-Measure: 0.594.  
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Classification model: SVM 

=== Results === 

Correctly Classified Instances         590               78.66% 

Incorrectly Classified Instances       160               21.33% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.881. 

Recall: 0.787. 

Weighted Avg: 

F-Measure: 0.799.  

Classification model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances         371               49.46% 

Incorrectly Classified Instances       379               50.53% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.867. 

Recall: 0.495. 

Weighted Avg: 

F-Measure: 0.533.  

Classification model: Random Forest 

=== Results === 

Correctly Classified Instances         430               57.33% 

Incorrectly Classified Instances       320               42.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.876. 

Recall: 0.573. 

Weighted Avg: 

F-Measure: 0.601.  
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6.9.2.1 Discussion  

Compared to the results obtained using WEKA's default configurations in 

section 5.2, it can be observed that SVM and Random forest produced better 

results using optimal hyperparameter values, where the classification 

accuracy of SVM improved by 7.20% and by 2.27% for the Random Forest. 

Moreover, better results were attained for the macro average of precision, 

recall, and f-measure when using optimal hyperparameter values for SVM. 

Similarly, an improvement in the macro average of recall was observed for 

Random forest, while the macro average of precision and weighted average of 

f-measure remained slightly better with the WEKA’s default configurations. 

In contrast, overall results for MLP and KNN, including the macro average of 

precision, recall, and weighted average F-measure, remained better with 

default hyperparameter settings. For MLP, using the optimal set of 

hyperparameter values resulted in a decrease in classification accuracy by 

1.47%, while for KNN it decreased by 9.87%. Finally, the decision tree 

classification model yielded the same results as those obtained using the 

default configuration. 

6.9.3 Results of the Second Experiment: Extending the Training Data by 

Including the Skype Voice Call Application 

Classification model: MLP 

=== Results === 

Correctly Classified Instances         590               98.33% 

Incorrectly Classified Instances        10                1.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.993. 

Recall: 0.983. 

Weighted Avg: 

F-Measure: 0.988.  
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Classification model: KNN 

=== Results === 

Correctly Classified Instances         592             98.66% 

Incorrectly Classified Instances        8                1.33% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 1.000. 

Recall: 0.987. 

Weighted Avg: 

F-Measure: 0.993.  

Classification model: SVM 

=== Results === 

Correctly Classified Instances         566               94.33% 

Incorrectly Classified Instances       34                5.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.949. 

Recall: 0.943. 

Weighted Avg: 

F-Measure: 0.945.  

Classification model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances         494               82.33% 

Incorrectly Classified Instances       106              17.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.906. 

Recall: 0.823. 

Weighted Avg: 

F-Measure: 0.844.  
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Classification model: Random Forest 

=== Results === 

Correctly Classified Instances         578               96.33% 

Incorrectly Classified Instances        22                3.66% 

=== Confusion Matrix === 

 

 

 

Macro Avg: 

Precision: 0.967. 

Recall: 0.963. 

Weighted Avg: 

F-Measure: 0.963.  

6.9.3.1 Discussion  

Compared to the experimental results obtained using WEKA's default settings 

in section 5.3, slightly better results, including for the macro average of 

precision, recall, and weighted average f-measure, were achieved by 

classification models on testing data using the optimal set of hyperparameter 

values. However, no improvement was observed in the performance of the 

decision tree classification model, as the results obtained using the optimal set 

of hyperparameter values were identical to those obtained using WEKA's 

default setting. 

6.9.4 Results of the Third Experiment: Reducing the Training Data by Half 

Classification model: MLP       

=== Results === 

Correctly Classified Instances         579             96.5% 

Incorrectly Classified Instances        21               3.5% 

=== Confusion Matrix === 
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Classification model: KNN 

=== Results === 

Correctly Classified Instances         563               93.83% 

Incorrectly Classified Instances        37                6.16% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 1.000. 

Recall: 0.938. 

Weighted Avg: 

F-Measure: 0.965.  

Classification model: SVM 

=== Results === 

Correctly Classified Instances         564              94% 

Incorrectly Classified Instances        36                6% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.953. 

Recall: 0.940. 

Weighted Avg: 

F-Measure: 0.945.  

 

Classification model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances          426               71% 

Incorrectly Classified Instances       174               29% 

=== Confusion Matrix === 

 

 

Macro Avg: 
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Recall: 0.710. 

Weighted Avg: 

F-Measure: 0.684.  
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Classification model: Random Forest 

=== Results === 

Correctly Classified Instances         526              87.66% 

Incorrectly Classified Instances       74                12.33% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.892. 

Recall: 0.877. 

Weighted Avg: 

F-Measure: 0.879.  

6.9.4.1 Discussion  

The results of this experiment showed an improvement in the performance of 

MLP and Random forest using the optimal set of hyperparameter values when 

compared to the results obtained in section 5.4 using WEKA’s default 

hyperparameter settings. While a drop of only 0.17% in the classification 

accuracy of the KNN model was observed with the optimal set of 

hyperparameter values. Moreover, a slight improvement was observed in the 

performance of SVM and decision tree classification models using the optimal 

set of hyperparameter values, where the classification accuracy was improved 

by 2.34% for the SVM and only by 0.17% for the decision tree. Overall 

improvements in the results, including for the macro average of precision, 

recall, and weighted average f-measure were observed by using the optimised 

hyperparameters. 
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6.9.5 Results of the Fourth Experiment: Further Assessment of the 

Generalisation Capacity 

Classification model: MLP 

=== Results === 

Correctly Classified Instances         587              97.83% 

Incorrectly Classified Instances        13                2.16% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.985. 

Recall: 0.978. 

Weighted Avg: 

F-Measure: 0.982.  

 

Classification model: KNN 

=== Results === 

Correctly Classified Instances         589               98.16% 

Incorrectly Classified Instances        11                1.83% 

=== Confusion Matrix === 

 

 

Macro Avg: 
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Recall: 0.982. 

Weighted Avg: 

F-Measure: 0.987.  

 

Classification model: SVM 

=== Results === 
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Classification model: Decision tree (C4.5) 

=== Results === 

Correctly Classified Instances         597               99.5% 

Incorrectly Classified Instances         3                0.5% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.995. 

Recall: 0.995. 

Weighted Avg: 

F-Measure: 0.995.  

 

Classification model: Random Forest 

=== Results === 

Correctly Classified Instances         594              99% 

Incorrectly Classified Instances        6                  1% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.995. 

Recall: 0.990. 

Weighted Avg: 

F-Measure: 0.992.  

6.9.5.1 Discussion  

Compared to the results obtained in section 5.5 using WEKA's default 

hyperparameter settings, the only improvement observed by using the 

optimal set of hyperparameter values was in the performance of MLP, where 

the classification accuracy was only improved by 0.17. Both KNN and decision 

tree classification models produced the same results with the optimal 

hyperparameters as those obtained using WEKA's default configurations. 

These results were also similar in terms of the macro average of precision, 

recall, and weighted average f-measure. Moreover, the results achieved by 

SVM and Random forest using WEKA's default hyperparameter settings 

remained better, even in terms of the weighted average of precision, recall, and 

High Varied Low Buffer 

High 299 1 0 0 

Varied 0 150 0 0 

Low 1 1 148 0 

Buffer 0 0 0 0 

High Varied Low Buffer 

High 299 1 0 0 

Varied 0 150 0 0 

Low 0 2 145 3 

Buffer 0 0 0 0 

A
ct

u
al

  

Predicted 

 

 

A
ct

u
al

  

Predicted 

 

 



180 

f-measure, than those obtained using the optimal set of hyperparameter 

values. With the optimal set of hyperparameter values, the classification 

accuracy of SVM dropped from 93% to 78.83% and from 99.16% to 99% for the 

random forest. 

6.9.6 Conclusion  

In this section, the previous experiments conducted in chapter five sections 5.2 

to 5.5 were repeated to assess the performance of the ML classification models 

using the optimal sets of hyperparameter values obtained in sections 6.4 to 6.8. 

However, the results of these experiments showed that using the optimal set 

of hyperparameter values did not always lead to better results compared to 

those obtained with default configurations. In some cases, the results obtained 

using WEKA's default hyperparameter settings were similar to or better than 

those achieved using the optimal set of hyperparameter values. 

Since the optimal sets of hyperparameter values for classification models were 

determined using the reduced training data to a quarter of the size in 

experiment three section 5.4 consisting of 185 samples. Therefore, overall 

improvements in the results were observed by using the optimised 

hyperparameters on the full training data of 750 samples in the second 

experiment section 5.3 and on half of the size in the third experiment section 

5.4. This is because the training data being used in the second and third 

experiments is the same and the only difference is in the size of the training 

data. 

However, in the first and fourth experiments (sections 5.2 and 5.5), where the 

overall distribution of the training data was different from that used in the 

second and third experiments, the default hyperparameter settings in some 

cases performed comparably or better than the optimised hyperparameters.  
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This indicates that optimising hyperparameters for a particular training data 

may not always improve the model's performance when the overall 

distribution of the training data changes, and default settings may be just as 

effective or even better. 

6.10 Optimal Hyperparameter Settings for the First and the Fourth 

Experiments 

Since the experimental results in the previous section, particularly of the 

repeated experiments one and four indicated that using the optimised 

hyperparameters for a particular training data may not always lead to 

improved model performance when there are changes in the overall 

distribution of new training data.  

6.10.1 Experimental Setup 

Therefore, in this section, the optimal sets of hyperparameter values for 

classification models in the first and fourth experiments of (sections 5.2 and 

5.5) are determined. The same method for identifying the optimal sets of 

hyperparameter values described in 6.3 and employed in sections 6.4 to 6.8 

was applied to determine the optimal settings that result in better-performing 

classification models. Where 10-fold cross-validation is performed to explore 

different hyperparameter settings on the training data of the applications 

listed in table 5.1 of the first experiment and table 5.6 of the fourth experiment. 

This is followed by evaluating the performance of the constructed 

classification models on the testing data of the applications listed in table 5.2 

of the first experiment and table 5.7 of the fourth experiment. 
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6.10.2 Results of the First Experiment  

Classification model: MLP 

Table 6. 13: Performance of MLP 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Using default parameter 
settings listed in table 4.5. 

 
Correctly classified 
Instances          
584 – 97.33%. 
Incorrectly classified 
instances 
16 – 2.66%.  

 
Correctly classified instances          
445 – 59.33%. 
Incorrectly classified 
instances       
305 – 40.66%. 

Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Optimal values 
- H = 10,10. Two hidden 
layers with 10 nodes in each 
hidden layer. 
- L = 0.1. 
- M = 0.4. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
590 – 98.33%. 
Incorrectly classified 
instances         
10 – 1.66%. 

 
Correctly classified instances          
447 – 59.6%. 
Incorrectly classified 
instances        
303 – 40.4%. 

Classification model: SVM 

Table 6. 14: Performance of SVM 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing data of 
applications listed in table 5.2 

Using default 
parameter settings 
listed in table 4.5. 

 

Correctly classified Instances          

574 – 95.66%. 

Incorrectly classified 

instances 

26 – 4.33%.  

 

Correctly classified instances          

536 – 71.46%. 

Incorrectly classified instances       

214 – 28.53%. 
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Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing data of 
applications listed in table 5.2 

Optimal values 
- Regularisation 
parameter C = 2. 
- Exponent value = 2.0. 
 
- The rest of the 
parameters remained 
unchanged as listed in 
table 4.5. 

 
Correctly classified instances          
579 – 96.5% 
Incorrectly classified 
instances         
21 – 3.5% 

 
Correctly classified instances          
612 – 81.6% 
Incorrectly classified instances        
138 – 18.4% 

Classification model: KNN 

Table 6. 15: Performance of KNN 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Using default parameter 
settings listed in table 4.5. 

 

Correctly classified 

Instances          

593 – 98.83%. 

Incorrectly classified 

instances 

7 – 1.16%.  

 

Correctly classified instances          

516 – 68.8%. 

Incorrectly classified 

instances       

234 – 31.2%. 

Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Optimal values 
- Distance function: 
Euclidean. 
- Distance weighting: with 
no distance weight 
assigned. 
Optimal K = 2. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
596 – 99.33%. 
Incorrectly classified 
instances         
4 – 0.66%. 

 
Correctly classified instances          
519 – 69.2%. 
Incorrectly classified 
instances        
231 – 30.8%. 
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Classification model: Decision tree (C4.5) 

Table 6. 16: Performance of Decision tree (C4.5) 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Using default parameter 
settings listed in table 4.5. 

 
Correctly classified 
instances         
590 – 98.33%. 
Incorrectly classified 
instances          
10 – 1.66%. 

 
Correctly classified instances          
371 – 49.46%. 
Incorrectly classified 
instances        
379 – 50.53%. 

Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Optimal values 

- C = 0.3. 

- M = 4. 

 

- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
594 - 99% 
Incorrectly classified 
instances         
6 – 1% 

 
Correctly classified instances          
374 – 49.86% 
Incorrectly classified 
instances        
376 – 50.13% 

 

Classification model: Random forest 

Table 6. 17: Performance of Random forest 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Using default parameter 
settings listed in table 4.5. 

 
Correctly classified 
instances          
594 - 99% 
Incorrectly classified 
instances         
 6 - 1% 

 
Correctly classified instances          
413 – 55.06% 
Incorrectly classified 
instances        
337 – 44.93% 
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Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.2 

Optimal values 
- depth = 5. 
- K = 2. 
- I = 50. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
600 – 100% 
Incorrectly classified 
instances         
0– 0% 

 
Correctly classified instances          
492 – 65.6% 
Incorrectly classified 
instances        
258 – 34.4% 

6.10.2.1 Discussion  

Tables 6.13 to 6.17 show the results obtained from classification models using 

both the default and optimised hyperparameter settings. It can be observed 

that all classification models achieved better results on testing data using the 

optimal sets of hyperparameter values as compared to the results obtained 

using the default hyperparameter settings. Where classification accuracy of 

Random forest and SVM improved by 10.54% and 10.14% respectively, while 

it improved by 0.27% for MLP.  Finally, both KNN and the decision tree 

showed an improvement of 0.4%. 

6.10.3 Results of the Fourth Experiment  

Classification model: MLP 

Table 6. 18: Performance of MLP 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Using default parameter 
settings listed in table 4.5. 

 

Correctly classified Instances          

736 – 98.13%. 

Incorrectly classified 

instances 

14 – 1.86%.  

 

Correctly classified instances          

586 – 97.66%. 

Incorrectly classified 

instances       

14 – 2.33%. 
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Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Optimal values 
- H = “i”  = 6 nodes in a 
single hidden layer. 
- L = 0.1. 
- M = 0.2. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
740 – 98.66%. 
Incorrectly classified 
instances         
10 – 1.33%. 

 
Correctly classified instances          
588 – 98%. 
Incorrectly classified 
instances        
12 – 2%. 

Classification model: SVM 

Table 6. 19: Performance of SVM 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Using default parameter 
settings listed in table 4.5. 

 

Correctly classified 

Instances          

716 – 95.46%. 

Incorrectly classified 

instances 

34 – 4.53%.  

 

Correctly classified instances          

558 – 93%. 

Incorrectly classified 

instances       

42 – 7%. 

Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Optimal values 
- Regularisation parameter 
C = 1.4. 
- Exponent value = 1.0. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
731 – 97.46%. 
Incorrectly classified 
instances         
19 – 2.53%. 

 
Correctly classified instances          
564 – 94%. 
Incorrectly classified 
instances        
36 – 6%. 
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Classification model: KNN 

Table 6. 20: Performance of KNN 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Using default parameter 
settings listed in table 4.5. 

 

Correctly classified 

Instances          

743 – 99.06%. 

Incorrectly classified 

instances 

7 – 0.93%.  

 

Correctly classified instances          

589 – 98.16%. 

Incorrectly classified 

instances       

11 – 1.83%. 

Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Optimal values 
- Distance function: 
Manhattan. 
- Distance weighting by 1 / 
distance. 
- Optimal K = 2. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
750 – 100%. 
Incorrectly classified 
instances         
0 – 0%. 

 
Correctly classified instances          
592 – 98.66%. 
Incorrectly classified 
instances        
8 – 1.33%. 

Classification model: Decision tree (C4.5) 

Table 6. 21: Performance of Decision tree (C4.5) 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Using default parameter 
settings listed in table 4.5. 

 
Correctly classified 
instances         
748 – 99.73%. 
Incorrectly classified 
instances          
2 – 0.26%. 

 
Correctly classified instances          
597 – 99.5%. 
Incorrectly classified 
instances        
3 – 0.5%. 
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Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Optimal values 

- C = 0.6. 

- M = 1. 

 

- The rest of the parameters 
remained unchanged as 
listed in table 4.5. 

 
Correctly classified 
instances          
750 - 100%. 
Incorrectly classified 
instances         
0– 0%. 

 
Correctly classified instances          
597 – 99.5%. 
Incorrectly classified 
instances        
3 – 0.5%. 

 

Classification model: Random forest 

Table 6. 22: Performance of Random forest 

Default hyperparameter settings 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Using default parameter 
settings listed in table 4.5. 

 
Correctly classified 
instances          
745 – 99.33%. 
Incorrectly classified 
instances         
 5 – 0.66%. 

 
Correctly classified instances          
595 – 99.16%. 
Incorrectly classified 
instances        
5 – 0.83%. 

Optimal hyperparameter values 

 
Parameter values 

Results of 
training and validation 
using 10-fold cross 
validation 

Results of testing the 
constructed classification 
model on unseen testing 
data of applications listed in 
table 5.7 

Optimal values 
- depth = 7. 
- K = 2. 
- I = 40. 
 
- The rest of the parameters 
remained unchanged as 
listed in table 4.5.  

 
Correctly classified 
instances          
750 – 100%. 
Incorrectly classified 
instances         
0 – 0%. 

 
Correctly classified instances          
596 – 99.33%. 
Incorrectly classified 
instances        
4 – 0.66%. 
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6.10.3.1 Discussion  

The experimental results of using both the default and optimised 

hyperparameter settings are shown in tables 6.18 to 6.22. Overall 

improvements in the results were observed by using the optimised 

hyperparameters. Where the classification accuracy of the MLP improved by 

0.34% on testing data compared to the default hyperparameter settings, while 

it improved by 1% for the SVM classification model. Moreover, an 

improvement of 0.5% in the accuracy of KNN was observed, while an 

improvement of 0.17% was observed in the accuracy of the Random Forest. 

Furthermore, the decision tree model showed an improvement of 0.27% on the 

training data using cross-validation, although the accuracy remained the same 

at 99.5% on the testing data.  

Overall, the results in this section confirm that better results can be obtained 

by conducting a hyperparameter optimisation process independently for each 

training data. 

6.11 Further Analyses 

This section provides a deeper analysis of the confusion matrix, focusing on 

the breakdown of the predictions, including the distribution of correct and 

incorrect predictions made by the classification model.  

6.11.1 Confusion Matrix 

To analyse the confusion matrix, we consider the confusion matrix of an MLP 

classification model in subsection 6.9.3 Results of the second experiment: 

Extending the training data by including the Skype voice call application. 
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Classification model: MLP 

=== Results === 

Correctly Classified Instances         590               98.33% 

Incorrectly Classified Instances        10                1.66% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.993. 

Recall: 0.983. 

Weighted Avg: 

F-Measure: 0.988.  

 

Each element in a confusion matrix denotes the number of predictions made 

by a classification model for a specific class. Moreover, it provides insights into 

these predictions by indicating whether the predictions were classified 

correctly or incorrectly. 

There are four terms used for interpreting the confusion matrix: 

True Positives (TP): where the classifier correctly predicts the positive class, 

and the actual is positive.  

True Negatives (TN): where the classifier correctly predicts the negative class, 

and the actual is negative.  

False Positives (FP): where the classifier incorrectly predicts the positive class, 

and the actual is negative. 

False Negatives (FN): where the classifier incorrectly predicts the negative 

class, and the actual is positive. 

Where the TP, TN, FP and FN for class high are as follows: 

TP = 294. 

High Varied Low Buffer 

High 294 2 0 4 

Varied 1 148 0 1 

Low 0 1 148 1 

Buffer 0 0 0 0 

A
ct

u
al

  

Predicted 
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TN = 148 + 0 + 1 + 1 + 148 + 1 + 0 + 0 + 0 = 299. 

FP = 1 + 0 + 0 = 1. 

FN = 2 + 4 = 6. 

And the evaluation metrics for class high are calculated as follows: 

Precision = True Positives / (True Positives + False Positives). 

                 = 294 / (294+1) = 0.997. 

Recall or sensitivity = True Positives / (True Positives + False Negatives). 

                 = 294 / (294+6) = 0.980.  

F-measure = 2 * (precision * recall) / (precision + recall). 

                    = 2 * (0.997 * 0.980) / (0.997 + 0.980) = 0.988. 

Specificity = True Negatives / (True Negatives + False Positives). 

                    = 299 / (299+1) = 0.997. 

The TP, TN, FP and FN for class Varied are calculated as follows: 

TP = 148. 

TN = 294 + 0 + 4 + 0 + 148 + 1 + 0 + 0 + 0 = 447. 

FP = 2 + 1 + 0 = 3. 

FN = 1 + 0 + 1 = 2. 

Precision = True Positives / (True Positives + False Positives). 

                 = 148 / (148+3) = 0.980. 
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Recall or sensitivity = True Positives / (True Positives + False Negatives). 

                 = 148 / (148+2) = 0.987.  

F-measure = 2 * (precision * recall) / (precision + recall). 

                    = 2 * (0.980 * 0.987) / (0.980 + 0.987) = 0.983. 

Specificity = True Negatives / (True Negatives + False Positives). 

                 = 447 / (447+3) = 0.993. 

The TP, TN, FP and FN for class Low are calculated as follows: 

TP = 148. 

TN = 294 + 2 + 4 + 1 + 148 + 1 + 0 + 0 + 0 = 450. 

FP = 0 + 0 + 0 = 0. 

FN = 1 + 0 + 1 = 2. 

Precision = True Positives / (True Positives + False Positives). 

                 = 148 / (148+0) = 1.000. 

Recall or sensitivity = True Positives / (True Positives + False Negatives). 

                 = 148 / (148+2) = 0.987.  

F-measure = 2 * (precision * recall) / (precision + recall). 

                    = 2 * (1.000 * 0.987) / (1.000 + 0.987) = 0.993. 

Specificity = True Negatives / (True Negatives + False Positives). 

                 = 450 / (450+0) = 1.000. 
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Moreover, the current model handles the true negative instances that are 

correctly identified as not belonging to a certain class. For example, if the 

model correctly predicts that an instance does not belong to the High class, 

then it must belong to one of the remaining three classes. Since the classifier 

was not practically trained to consider instances of none of the above classes. 

6.11.2 Cost Matrix 

This subsection describes the process of reweighting the training inputs by 

assigning costs to the class misclassifications in the cost matrix. 

By default, in WEKA, the output classification threshold set to 0.5, assuming a 

balanced distribution of class labels, where the classification treats all 

misclassifications (false positives and false negatives) equally. Cost sensitive 

classification is a method of reweighting the training inputs based on 

predefined class cost of misclassification or estimating a class with the lowest 

misclassification cost. It involves adjusting the probability threshold of the 

classifier's output based on the cost of misclassifications [256, 257]. 

Equation 6.1 represents the general cost matrix C; the diagonal elements 

represent the cost of correct classifications and μ and λ denote the assigned 

costs of the class misclassifications. Where μ represents the cost of false 

positives and λ represents the cost of false negatives [256]. 

                                                                                                                                     (6.1) 

The following experiments are carried out by employing the MLP 

classification model that was used for analysing the confusion matrix in the 

previous subsection 6.11.1. We have utilised the same experimental setup of 

6.9.1, where the MLP was trained on the training data of applications listed in 

table 5.3 using the optimal sets of hyperparameter values that were obtained 
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in section 6.4 and assessed on the testing data of applications listed in table 5.4. 

While the rest of the parameters remained unchanged as listed in table 4.5. 

By examining the confusion matrix in subsection 6.11.1, we can observe that 

for the class high, the model correctly predicted 294 instances as TP, where the 

predicted class and the actual class were the same. Moreover, it predicted 299 

instances as TN, so its prediction in classifying these instances into other 

classes than high was correct. 

In terms of misclassification (FP and FN) for the class high, the model 

incorrectly predicted 1  instance as FP, where its prediction to classify this 

instance as class high was incorrect, as its actual class is varied. Moreover, the 

model incorrectly predicted 6 instances as FN. So, its prediction in classifying 

these instances into other classes than high was incorrect since their actual 

class is high. 

Furthermore, in terms of other classes, for class varied, the model correctly 

predicted 148 instances as TP, it also correctly predicted 447 instances as TN. 

While it incorrectly predicted 3 instances as FP and 2 instances as FN. 

In terms of class low, the model correctly predicted 148 instances as TP, it also 

correctly predicted 450 instances as TN. While it incorrectly predicted 2 

instances as FN and had no FP. 

The following cost matrix corresponds to the confusion matrix of section 

6.11.1. 

Cost Matrix 
0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 
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To minimise the misclassifications of class high, as observed in the confusion 

matrix of subsection 6.11.1, the model has a total of 7 misclassifications for the 

class high, including 1 FP and 6 FNs. Where the model incorrectly predicted 1 

instance as FP and its prediction to classify this instance as class high was 

incorrect, as its actual class is varied. Additionally, the model incorrectly 

predicted 6 instances as FN and its prediction to classify these 6 instances into 

other classes (2 as varied and 4 as buffer) was incorrect, as their actual class is 

high. 

Consequently, in the subsequent experiment, we adjust the misclassification 

of false negatives. In the corresponding cost matrix, the cost value assigned to 

4 FNs is adjusted to 2. 

Cost Matrix 
0 1 1 2 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Classification model: MLP 

=== Results === 

Correctly Classified Instances         592               98.66% 

Incorrectly Classified Instances        8                1.33% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.995. 

Recall: 0.987. 

Weighted Avg: 

F-Measure: 0.991.  

 

Compared to the confusion matrix in subsection 6.11.1, it can be seen that 2 

instances out of the 6 false negatives are now correctly classified as true 

positives. Additionally, the count of false positives for class varied reduced 

from 3 to 2 and it reduced from 6 to 5 for class buffer. However, since 4 

instances are still incorrectly misclassified as false negatives by the model, the 

High Varied Low Buffer 

High 296 1 0 3 

Varied 1 148 0 1 

Low 0 1 148 1 

Buffer 0 0 0 0 

A
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Predicted 
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cost value assigned to false negatives is adjusted to 3 for the following 

experiment. 

Cost Matrix 
0 1 1 3 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Classification model: MLP 

=== Results === 

Correctly Classified Instances         595               99.16% 

Incorrectly Classified Instances        5                0.83% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.997. 

Recall: 0.992. 

Weighted Avg: 

F-Measure: 0.994.  

Compared to the confusion matrix in subsection 6.11.1, now it can be seen that 

the model correctly classified all instances as true positives for the class high.  

Moreover, the count of false positives for class varied reduced from 3 to 1 and 

it reduced from 6 to 3 for class buffer. However, in terms of the FNs of the class 

low, the model incorrectly classified 1 more instance as an FN. The total count 

of FNs for class low is now 2, whereas it was only 1 in the confusion matrix of 

section 6.11.  

Therefore, the cost value assigned to these two FNs is adjusted to 2 in the cost 

matrix for the following experiment. 

Cost Matrix 
0 1 1 3 
1 0 1 1 
1 1 0 2 
1 1 1 0 

 
 

High Varied Low Buffer 

High 300 0 0 0 

Varied 1 148 0 1 

Low 0 1 147 2 

Buffer 0 0 0 0 

A
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Predicted 
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Classification model: MLP 

=== Results === 

Correctly Classified Instances         586               97.66% 

Incorrectly Classified Instances        14                2.33% 

=== Confusion Matrix === 

 

 

Macro Avg: 

Precision: 0.995. 

Recall: 0.977. 

Weighted Avg: 

F-Measure: 0.986.  

By observing the confusion matrix, it can be seen that no further improvement 

can be achieved, and the model's overall performance can decline after 

reaching a certain point. 

6.11.3 Discussion  

The experimental results showed that reweighting the training inputs by 

assigning costs of the class misclassifications in the cost matrix, allows a 

classification model to consider the varying costs associated with 

misclassifications. This enhances the model's predictions with a focus on 

minimising the overall cost of misclassifications. However, careful 

consideration should be given to the design of the cost matrix by taking into 

account the consequences of misclassifications.  

Moreover, in a multi class classification, the FNs of one class correspond to the 

FPs of other classes. Thus, when the number of FNs for a specific class was 

minimised, this indirectly led to a reduction in the FP for the remaining classes. 

6.12 Summary  

In this chapter, the process of hyperparameter optimisation was carried out to 

identify the optimal settings that result in a better-performing classification 

model. This chapter also reviewed the common hyperparameter tuning 

High Varied Low Buffer 

High 291 1 0 8 

Varied 1 148 0 1 

Low 0 1 147 2 

Buffer 0 0 0 0 

A
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Predicted 
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methods. It then  described the experimental setup employed in this research 

to perform the hyperparameter optimisation process. This was followed by 

conducting the hyperparameter optimisation process using both manual and 

automated tuning methods. Where this was carried out by performing 10-fold 

cross-validation on the training data of the applications listed in table 5.5 of 

experiment three section 5.4 consisting of 185 samples. This chapter also 

evaluated the performance of the constructed classification models using the 

obtained optimal sets of hyperparameter values on unseen testing data of the 

applications listed in table 5.4. This chapter further assessed the performance 

of the classification models by repeating the previous four experiments 

conducted in chapter five, using the optimal sets of hyperparameter values 

that were obtained through the optimisation process. Moreover, since the 

experimental results of the repeated experiments one and four showed that 

the default hyperparameter settings, in some cases, performed comparably or 

better than the optimised hyperparameters. Further hyperparameter tuning 

was performed in this chapter, where the optimal sets of hyperparameter 

values were determined for classification models of the first and fourth 

experiments (sections 5.2 and 5.5). Where this was achieved by performing 10-

fold cross-validation and exploring different hyperparameter settings on the 

training data of the applications listed in table 5.1 of the first experiment and 

table 5.6 of the fourth experiment. This was followed by evaluating the 

performance of the constructed classification models on the testing data of the 

applications listed in table 5.2 of the first experiment and table 5.7 of the fourth 

experiment. 
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7 

PERFORMANCE EVALUATION OF CALI 

POWER SAVING MODES 

7.1 Introduction  

The experiments in this chapter are conducted to observe the effect of 

adjusting the listen interval on energy consumption after the ML classification 

model has classified new unseen samples into one of the output modes. 

Subsection 7.2.1 begins by describing the experimental setup employed in the 

creation of the corresponding traffic scenarios of CALI power saving modes. 

Subsection 7.2.2 focuses on assessing the performance of CALI power saving 

modes by comparing the levels of energy consumption with existing 

benchmark power saving approaches, using varied sets of energy parameters. 

This is followed by assessing the performance of CALI against the value 

variations of energy parameters in subsection 7.2.3. 

7.2 CALI Power Saving Modes 

7.2.1 Experimental Setup  

The described NS-2 extension in subsection 2.3.2 supports a WLAN in an 

infrastructure mode, where two wireless devices are connected to an AP. The 

first wireless device (node 1) sends data destined to wireless device 2 (node 2) 

via AP (node 0). 
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This extension also supports power management functions such as PS-Poll, 

AP buffer, TIM, and listen interval. Additionally, it includes an energy model 

that supports various energy parameters, enabling the estimation of energy 

consumption for wireless nodes within a network. However, to conduct this 

experiment the following steps were followed: 

First step 

To experiment with the four CALI power saving modes, we used the provided 

Tcl script in tcl/ex/powersave.tcl. And then created four corresponding traffic 

scenarios: Buffering, DLI, Low, and Awake. 

Second step 

To estimate the energy consumption for wireless nodes within a network. We 

have configured the energy parameters for the energy model using three sets 

of energy parameters reported in major previous studies. Each set consists of 

6 energy parameters; Set 1 has been widely employed in studies including [18, 

151, 152]. Set 2 reflects the energy parameters of Wavelan WNIC [153, 1], 

whereas Set 3 reflects the energy parameters of Intel WNIC [154, 155]. 

The six parameters are: 

1. txPower: the power consumption during packet transmission. 

2. rxPower: the power consumption during packet reception. 

3. idlePower: the power consumption when a WNIC is awake and not 

transmitting or receiving packets. 

4. transitionPower: the power consumption when a WNIC transits from 

the sleep to idle state and vice versa. This must be twice that of 

idlePower [151]. 

5. transitionTime: The amount of time required when a WNIC transits 

from sleep to idle state and vice versa. 
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6. sleepPower: The power consumption when a WNIC is in sleep state. 

The three sets of energy parameters are shown in table 7.1. 

Table 7. 1: Sets of energy parameters 

Parameter Set 1 

Value 

Set 2 

Value 

Set 3 

Value 

txPower 1.4 W 1.675 W 1.44 W 

rxPower 0.9 W 1.425 W 1.34 W 

idlePower 0.7 W 1.319 W 1.27 W 

transitionPower 1.4 W 2.638 W 2.54 W 

transitionTime 0.002 S 0.002 S 0.002 S 

sleepPower 0.06 W 0.177 W 0.22 W 

Third step 

The third step involves configuring the traffic for the corresponding scenarios 

within the Tcl script. Since smartphone applications spend longer in receiving 

packets than transmitting, the downlink receiving traffic has been considered 

in our simulation of node 2. From the dataset, we have used the following 

features as inputs to configure the four corresponding traffic scenarios of CALI 

power saving modes: 1- receiving data rates, 2- number of received bytes, and 

3- number of received packets.  

Moreover, to establish the traffic flow between node 1 and node 2 using UDP 

through node 0, the UDP connection and the source (Agent/UDP) are defined 

at node 1 using the following: 

set udp [new Agent/UDP] 

$ns_ attach-agent $node_(1) $udp 

And the UDP destination (Agent/UDP) is defined at node 2. 
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set null [new Agent/Null] 

$ns_ attach-agent $node_(2) $null 

$ns_ connect $udp $null 

This is followed by defining the Constant Bit Rate (CBR) traffic generator 

model that uses UDP to send the traffic. 

set cbr [new Application/Traffic/CBR]. 

Where the buffering scenario uses traffic from the XiiaLive internet radio 

application using a random station with a 128kbps stream.  

For the DLI scenario, the traffic of 30 emails in Gmail and receiving 30 

Facebook posts at random intervals was employed.  

For the low scenario, NSS was run several times. We observed that the 

duration of one game is about 110 seconds, after that time an advertisement 

will be loaded.  

Finally, for the awake scenario, traffic of 10min Skype video call was used. 

Fourth step 

The fourth step involves optimising the sleep and awake cycles of the WNIC, 

which is achieved by adjusting the listen interval.  

Finally, the simulation environment is based on Ubuntu 10.04.4 LTS, which is 

compatible with the NS-2 extension. The simulation duration is set to 600 

seconds and initial energy of 1000 J. 

7.2.2 Results and Analysis 

This section evaluates the performance of CALI power saving modes by 

comparing the levels of energy consumption of CALI with existing power 
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saving approaches. We selected APSM as the most current approach deployed 

in smartphones and SAPSM as a recent technique also employing ML. 

 

Figure 7. 1: Comparison of CALI, SAPSM, and APSM in buffering mode against 
set 1 of energy parameters 

Figures 7.1, 7.2 and 7.3 show the energy consumption of CALI, SAPSM, and 

APSM in buffering mode for the 3 sets of energy parameters. We set the listen 

interval of CALI to 10 = 1000ms. The listen interval value has been determined 

to not affect audio quality in several experiments with the audio streaming 

application XiiaLive.  

We found that the added delay did not impact the playback streaming quality 

as was also noted in [10] and [142]. For all 3 sets of energy parameters, CALI 

consumes less energy in comparison to SAPSM and APSM. In Set 2, CALI 

consumes 14.14% less energy compared to SAPSM and 75.89% when 

compared with APSM. For all 3 sets of energy parameters, APSM consumes 

more energy in comparison to SAPSM and CALI. This is due to the behaviour 

of APSM with this type of traffic, as the WNIC remains awake and always on. 
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When the values of rxPower and idlePower increased in Set 2, more power 

was consumed using APSM compared to Set 1 and Set 3. 

 

Figure 7. 2: Comparison of CALI, SAPSM, and APSM in buffering mode against 
set 2 of energy parameters 

 

Figure 7. 3: Comparison of CALI, SAPSM, and APSM in buffering mode against 
set 3 of energy parameters 
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Figures 7.4, 7.5 and 7.6 show the levels of energy consumption of CALI, 

SAPSM, and APSM in DLI mode for the 3 sets of energy parameters. Recall 

that for DLI mode, the listen interval of a wireless device is incremented by 1 

at each time a wireless device wakes up during its listen interval and does not 

find any packets buffered at the AP, and reverting to 1 when interactions 

occur.  

We adjusted the listen interval of CALI to 2,4,6,8, and 10, for applications with 

varied levels of network activity (Gmail and Facebook), as these applications 

have intermittent network interactions and do not always receive data. Based 

on 30 emails and 30 Facebook posts, CALI consumes less energy in 

comparison to SAPSM and APSM for all 3 sets of energy parameters. Figure 

7.5 shows CALI consumes 8.58% to 14.37% less energy compared to SAPSM 

when the listen interval is set to between 2 and 10. This increases to between 

44.48% and 48.00% less energy in comparison with APSM. In contrast, APSM 

consumes more energy than SAPSM and CALI in all 3 sets of energy 

parameters. As it switches to awake mode when interaction occurs in the 

background and remains in awake mode for an idle timeout period before 

fully switching back to SPSM. 

Although these applications run in the background non-interactively and do 

not always receive data, SPSM could add an approximate delay of 100-300ms 

of delay when the WNIC is off during the beacon intervals, but buffered 

packets are available at the AP. This added delay could reach 1000ms in the 

case of CALI when the listen interval is increased to 10.  
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Figure 7. 4: Comparison of CALI, SAPSM, and APSM in DLI mode against set 1 
of energy parameters 

 

Figure 7. 5: Comparison of CALI, SAPSM, and APSM in DLI mode against set 2 
of energy parameters 
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Figure 7. 6: Comparison of CALI, SAPSM, and APSM in DLI mode against set 3 
of energy parameters 

The levels of energy consumption of CALI, SAPSM and APSM in low mode 

against the 3 sets of energy parameters are shown in Figures 7.7, 7.8 and 7.9. 

For all 3 sets of energy parameters CALI consumes less energy than SAPSM 

and APSM. Low mode reflects applications with the lowest degree of 

interaction in the background. Where interactions mostly occur during 

fetching advertisements. In the experiments the listen interval of CALI was set 

to 20. Besides, after the playing time of 110 seconds when the network traffic 

to load the advertisements occurs, we also observed a small level of network 

interaction during playing time. While small this was sufficient to switch 

APSM to awake mode. In Set 2, CALI consumes 14.39% less energy compared 

to SAPSM and 41.83% when compared to APSM. 
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Figure 7. 7: Comparison of CALI, SAPSM, and APSM in low mode against set 1 of 
energy parameters 

 

Figure 7. 8: Comparison of CALI, SAPSM, and APSM in low mode against set 2 of 
energy parameters 
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Figure 7. 9: Comparison of CALI, SAPSM, and APSM in low mode against set 3 of 
energy parameters 

Figure 7.10 shows the levels of energy consumption of CALI, SAPSM, and 

APSM in awake mode for the 3 sets of energy parameters. As awake mode 

reflects applications with higher levels of network traffic, the WNIC is always 

on. Therefore, based on traffic of Skype video call, in all 3 sets of energy 

parameters, the levels of energy consumption of CALI, SAPSM, and APSM are 

identical. This is due to the behaviour of CALI, SAPSM and APSM to this type 

of traffic. 
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Figure 7. 10: Comparison of CALI, SAPSM, and APSM in awake mode against the 
3 sets of energy parameters 

7.2.3 Value Variations of Energy Parameters 

Further investigation was carried out observing the behaviour of CALI, as we 

varied the values of individual energy parameters between their max and min 

across the three sets. We chose each individual energy parameter and 

gradually increased its value from the minimum as in Set 1 to match the max 

value as in Set 2. The values for the other energy parameters were kept 

unchanged. 

Figures 7.11, 7.12, 7.13, 7.14 and 7.15 show the energy consumption of CALI in 

buffering mode as the value of the individual power parameters were varied. 

Figure 7.11 shows the energy consumption of CALI in buffering mode for 

changing values of txPower 1.4W (Set 1), to 1.675W (Set 2). In this context, 

txPower reflects the energy consumption of the acknowledgment packets sent 

by the wireless device to an AP upon receiving the destined packets. 



211 

 

Figure 7. 11: Levels of energy consumption of CALI in buffering mode against the 
value variations of txPower energy parameter 

 

Figure 7. 12: Levels of energy consumption of CALI in buffering mode against the 
value variations of rxPower energy parameter 
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Figure 7. 13: Levels of energy consumption of CALI in buffering mode against the 
value variations of idlePower and transitionPower energy parameters 

Figure 7.12 illustrates levels of energy consumption of CALI in buffering mode 

when incrementing rxPower from 0.9W (Set 1), to 1.425W (Set 2). rxPower 

reflects the energy consumption of the wireless device while receiving packets 

from an AP. 

As mentioned before, the value of transitionPower must be twice that of 

idlePower. Therefore, we have incremented the values of transitionPower 

along with the value of idlePower. 

Levels of energy consumption of CALI in buffering mode when incrementing 

transitionPower and idlePower from values in Set 1 to values in Set 2 are 

shown in Figure 7.13. 
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Figure 7. 14: Levels of energy consumption of CALI in buffering mode against the 
value variations of transitionTime 

The transitionTime value is identical in all 3 sets of 0.002s. In order to further 

analyse its impact on energy consumption, we have varied transitionTime 

between 0.005s and 0.0008s. The impact of increasing and decreasing the 

transitionTime on energy consumption of CALI in buffering mode is shown 

in Figure 7.14. 

Figure 7.15 shows levels of energy consumption of CALI in buffering mode 

while increasing sleepPower from 0.06W (Set 1), to 0.177W (Set 2). As can be 

expected, we observe that the value of the sleepPower parameter has a major 

impact on the levels of energy consumption of CALI in comparison to the 

other energy parameters. 
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Figure 7. 15: Levels of energy consumption of CALI in buffering mode against the 
value variations of sleepPower energy parameter 

 

Figure 7. 16: Levels of energy consumption of CALI, SAPSM, and APSM in 
buffering mode against the value variations of sleepPower energy parameter 

Figure 7.16 shows the levels of energy consumption of CALI, SAPSM, and 

APSM in buffering mode when increasing sleepPower from 0.06W (Set 1), to 
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0.177W (Set 2). CALI consumes less energy than SAPSM and APSM. The 

power consumption of APSM remains static, as the WNIC remains awake and 

thus the value of sleepPower has no impact on energy consumption. 

7.3 Summary  

In summary, this chapter evaluated the effect of adjusting the WNIC on energy 

consumption after the accomplishment of the classification process using an 

ML classification model. It also described the experimental setup used in the 

creation of the corresponding scenarios of CALI power saving modes. This 

was followed by assessing the performance of CALI power saving modes by 

comparing the levels of energy consumption with existing benchmark power 

saving approaches, including APSM and SAPSM using the three sets of energy 

parameters. Furthermore, it assessed the performance of CALI against the 

value variations of energy parameters.
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8 

CONCLUSION AND FUTURE WORK 

8.1 Introduction 

This chapter concludes the thesis. It starts by summarising the motivation 

behind this research work and then discusses the main findings (section 8.2).  

section 8.3 revisits the research objectives and describes how they were 

fulfilled. Section 8.4 highlights the limitations and outlines possible future 

research directions. 

8.2 Thesis Summary  

Regardless of the rapid growth and popularity of WLANs, the energy 

consumption caused by WNIC during wireless communication remains a 

significant factor in reducing the battery life of power-constrained wireless 

devices.  

The authors of [10] proposed SAPSM. SAPSM replaced the threshold 

mechanism of APSM with a set of two priorities, high and low. Thus, each 

network based smartphone application is labelled as high and low, with the 

aid of an ML classifier. Consequently, for applications set as a high priority, 

the WNIC switches into awake mode and remains in SPSM with low priority 

applications. 

However, no additional priority or mode has been proposed, e.g., for 

applications with very low levels of network interactivity or applications 

using buffer streaming. 
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Comparing with SAPSM, this thesis has extended the number of categories by 

considering a varied range of smartphone applications’ network traffic that 

reflect a diverse array of network behaviour and interactions. 

Hence, the aim of this thesis was to develop a power saving mechanism that 

optimises the sleep and awake cycles of the WNIC in accordance with 

smartphone applications’ network traffic, reflecting a diverse array of network 

behaviour and interactions. 

In this thesis, we have developed a Context-Aware Listen Interval (CALI), in 

which the wireless network interface, with the aid of an ML classification 

model, sleeps and awakes based on the level of network activity of each 

application. 

Firstly, we introduced a context-aware network traffic classification approach 

based on ML classifiers to classify the network traffic of wireless devices in 

WLANs. Different levels of traffic behaviour and interaction were contextually 

exploited for the classification by the application of ML classifiers. 

A real-world dataset is recorded, based on nine smartphone applications’ 

network traffic, reflecting different types of network behaviour and 

interaction. This is used firstly to evaluate the performance of five ML 

classifiers using 10-fold cross-validation, this was followed by conducting 

extensive experimentation to determine whether the selected classification 

models not only perform well on training data but also generalise well on 

unseen testing data of applications that were not included in training data. 

In the first experiment, a representative application from each class was 

selected for training the ML classifiers, and their generalisation capacity was 

evaluated on different applications that were not included in the training data. 

In terms of generalising to unseen testing data of class high, the results of the 

first experiment showed that the learned classification models were only 
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capable of capturing the variance in the traffic range of video call applications 

and that by generalising well to unseen testing data of Google Hangouts video 

call only. But, in terms of the voice call applications, the resultant classification 

models were incapable to generalise to testing data of both Skype and Google 

Hangouts voice calls.  

The second experiment was performed to assess the generalisation capacity of 

the learned classification models on extended training data, particularly after 

the inclusion of the Skype voice call application into the training data. Where 

the experimental results showed an improvement in the generalisation 

performance specifically on testing data of class high, this was due to the 

training of the ML classifiers on a wider variation range that resulted from 

combining the training data of Skype video call and Skype voice call. 

The third experiment was performed to assess the generalisation capacity of 

the learned classification models on reduced training data. Where the training 

samples of each application used for training the ML classifiers in the second 

experiment were reduced to half and then to a quarter. However, the results 

of this experiment showed that reducing the amount of training data has a 

minimal impact on the generalisation performance, but still, better 

generalisation performance can be achieved by training with more samples. 

To further assess the generalisation capacity, the fourth experiment was 

performed by switching the training and testing data that were used in the 

previous experiments 2 and 3. This involved training the ML classifiers on 

applications that were previously used for testing and assessing their 

generalisation performance on applications that were used for training. 

However, the results of this experiment showed that training the ML 

classifiers on training data with a wider variation in the traffic range leads to 

better generalisation performance. 
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Moreover, given that the classification models in the second, third and fourth 

experiments were capable of achieving high results on unseen testing data of 

applications that were not included in the training data. This thesis further 

explored the feasibility of manually crafting rules to hand-classify the training 

data. Where attempt was made to hand-classify the training data and the 

outcomes were subsequently discussed and compared with the benefits 

offered by classification models constructed using ML classifiers.  

In addition, this thesis conducted the hyperparameter optimisation process 

using both manual and automated tuning methods to identify the optimal 

settings that result in a better-performing classification model. Where various 

hyperparameter settings were explored by performing 10-fold cross-

validation firstly on the training data of experiment three consisting of 185 

samples. Followed by evaluating the performance of the constructed 

classification models using the obtained optimal sets of hyperparameter 

values on the testing data of the same experiment. 

This thesis further assessed the performance of the classification models by 

repeating the previous four experiments using the optimal sets of 

hyperparameter values that were obtained through the optimisation process.  

Where the experimental results particularly of the repeated experiments one 

and four showed that using the optimised hyperparameters for a particular 

training data may not always lead to improved model performance when 

there are changes in the overall distribution of new training data, and the 

default hyperparameter settings in some cases perform comparably or better 

than the optimised hyperparameters.  

Thus, further hyperparameter tuning was performed in this thesis, where the 

optimal sets of hyperparameter values were determined for classification 

models of the first and fourth experiments and the experimental results 
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confirmed that better results can be obtained by conducting a hyperparameter 

optimisation process independently for each training data. 

Moreover, in order to optimise the sleep and awake cycles of the WNIC in 

accordance with the smartphone applications’ network activity, we have 

developed four CALI power saving modes. 

These power saving modes enabled additional power saving opportunities 

and have been devised based on the classified output traffic of the captured 

samples from the nine smartphone applications’ network traffic. Hence, the 

ML classification model classifies the new unseen samples into one of the 

modes, where the WNIC will be adjusted to operate into one of CALI power 

saving modes. 

Moreover, CALI handles applications, which it cannot map to one of the four 

modes by reverting the WNIC to operate in SPSM mode. That means, the 

worst possible performance is that of SPSM, but if one of the four modes 

applies, a significant performance improvement with respect to power saving 

is achieved. 

We evaluated the performance of CALI power saving modes, by comparing 

the levels of energy consumption with existing benchmark power saving 

approaches, including APSM and SAPSM using varied sets of energy 

parameters. And the experimental results have demonstrated that CALI 

consumes up to 75% less power when compared to APSM, and up to 14% less 

energy when compared to SAPSM power saving approach. 

Lastly, our approach relies on an ML classification model to optimise the 

energy efficiency of power-constrained wireless devices. Therefore, the 

computational cost of training and testing the ML classifier is crucial. In this 

research, we have demonstrated high accuracy and low computational cost for 

building a classification model. Clearly, this is a one-off cost during 
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deployment. In addition, the cost of our approach at runtime is minimal as the 

WNIC simply operates in one of the CALI power saving modes, once the 

classification of the traffic is completed. 

8.3 Meeting the Objectives 

This section discusses how the research objectives stated in chapter 1 have 

been satisfied and addressed during our research. 

• Identify and construct a real-world dataset based on a varied range of 

smartphone applications’ network traffic depicting different types of 

network behaviour and interaction. 

Section 4.4 describes the process of data extraction and preparation 

employed in this research for constructing the dataset. The dataset was 

constructed by capturing real-time instances of network traffic from nine 

selected smartphone applications depicting varied types of network 

behaviour and interaction; including, two VoIP applications, two 

applications of video calls, two applications of intermittent network 

interaction, two applications of very low network interaction, and finally 

one application representing applications with buffer streaming 

capabilities. This has resulted in the construction of a dataset, named 

Dataset 1, consisting of 1350 instances, with 150 instances per application 

and 6 features per instance. Section 4.3 begins by justifying the selection of 

the chosen applications and the assignment of output classes. Where four 

output classes were assigned to cater for the network traffic of these 

applications. Thereby out of the nine chosen applications, the first output 

class was assigned to the four applications that represent real-time 

applications with high and constant levels of network interaction. The 

reason for having four applications for this output class is to ensure more 

variation in the range of network traffic included in the training data by 
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having two VoIP applications and two video-calling applications. For the 

remaining three types of network traffic, the second output class was 

assigned to the two applications that represent network traffic with 

intermittent levels of interaction, while the third output class was assigned 

to the two applications that represent the least levels of network 

interaction. Finally, the fourth output class was assigned to one application 

that represents the network traffic of audio streaming applications. Section 

4.5.1 describes the construction of further datasets from Dataset 1 by the 

application of different feature selection algorithms, Dataset 2CBFS is 

based on a consistency feature selection algorithm and Dataset 3IGFS is 

based on an information gain feature selection algorithm. 

• Train ML classifiers to learn mapping the input features of each 

sample to an output class from the training set and build an ML 

classification model.  

Section 4.2 discuss how the network traffic of the nine smartphone 

applications reflecting a diverse array of network behaviour and 

interaction were exploited to provide the contextual inputs for training ML 

classifiers of the output traffic, thus building an ML classification model 

which is capable of classifying the new unseen samples into one of the 

classes. The set of six input features are: 1- receiving data rate in 

Kbytes/sec. 2- transmitting data rate in Kbytes/sec. 3- total received 

Kbytes. 4- total transmitted Kbytes. 5- total number of received packets. 6- 

total number of transmitted packets. These features were used as 

contextual inputs for training ML classifiers of output classes: 1- high. 2- 

varied. 3- low. 4- buffering. 
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• Evaluate the performance of ML classifiers using 10-fold cross-

validation. Based on the result of the analysis, determine the more 

suitable ML classifier for classifying smartphone applications’ 

network traffic reflecting varied types of network behaviour and 

interaction. Then, assess the generalisation capacity of the selected 

classification models on unseen testing data of applications that were 

not included in training data. Along with evaluation metrics, provide 

a confusion matrix to enable a detailed breakdown of the predictions, 

including the distribution of correct and incorrect predictions made 

by the classification models. 

Section 4.5.2 evaluates the performance of the five commonly used ML 

classifiers described in section 3.6. The applied ML classifiers were MLP, 

KNN, SVM, decision tree (C4.5), and Random forest.  And the performance 

of each classifier was evaluated on Dataset 1, Dataset 2CBFS and Dataset 

3IGFS using 10-fold cross validation, in terms of classification accuracy, 

precision, recall and f-measure. This section also assessed the processing 

time to build a classification model. Comparing the results obtained for the 

five ML classifiers in all datasets in terms of all evaluation metrics, we 

found that a number of effective features can be considered to improve the 

overall results. Moreover, we conclude that the optimum results in terms 

of all evaluation metrics used in these experiments were achieved by KNN 

in Dataset 3IGFS using10-fold cross-validation. We determined KNN to be 

the best ML classifier in terms of classifying smartphone applications’ 

network traffic based on different levels of behaviour and interaction. This 

was followed by conducting extensive experimentation in sections 5.2 to 

5.5 to determine whether the selected classification models not only 

perform well on training data but also generalise well on unseen testing 

data of applications that were not included in training data. Where the 

performance of each classifier is evaluated in terms of classification 

accuracy, macro-average of precision, recall and weighted average f-
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measure. Along with evaluation metrics, a confusion matrix was provided 

to enable a detailed breakdown of the predictions, including the 

distribution of correct and incorrect predictions made by the classification 

models. In the first experiment,  a representative application from each 

class was selected for training the ML classifiers, and their generalisation 

capacity was evaluated on different applications that were not included in 

the training data. In terms of generalising to unseen testing data of class 

high, the results of the first experiment showed that the learned 

classification models were only capable of capturing the variance in the 

traffic range of video call applications and that by generalising well to 

unseen testing data of Google Hangouts video call only. But, in terms of 

the voice call applications, the resultant classification models were 

incapable to generalise to testing data of both Skype and Google Hangouts 

voice calls. The second experiment was performed to assess the 

generalisation capacity of the learned classification models on extended 

training data, particularly after the inclusion of the Skype voice call 

application into the training data. Where the experimental results showed 

an improvement in the generalisation performance specifically on testing 

data of class high, this was due to the training of the ML classifiers on a 

wider variation range that resulted from combining the training data of 

Skype video call and Skype voice call. The third experiment was performed 

to assess the generalisation capacity of the learned classification models on 

reduced training data. Where the training samples of each application used 

for training the ML classifiers in the second experiment were reduced to 

half and then to a quarter. However, the results of this experiment showed 

that reducing the amount of training data has a minimal impact on the 

generalisation performance, but still, better generalisation performance 

can be achieved by training with more samples. To further assess the 

generalisation capacity, the fourth experiment was performed by 

switching the training and testing data that were used in the previous 
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experiments 2 and 3. This involved training the ML classifiers on 

applications that were previously used for testing and assessing their 

generalisation performance on applications that were used for training. 

However, the results of this experiment showed that training the ML 

classifiers on training data with a wider variation in the traffic range leads 

to better generalisation performance. Moreover, given that the 

classification models in the second, third and fourth experiments were 

capable of achieving high results on unseen testing data of applications 

that were not included in the training data. Section 5.6 further explored the 

feasibility of manually crafting rules to hand-classify the training data. 

Where attempt was made to hand-classify the training data and the 

outcomes were subsequently discussed and compared with the benefits 

offered by classification models constructed using ML classifiers. 

• Devise power saving modes based on the classified output traffic of 

the captured samples from a varied range of smartphone 

applications’ network traffic. 

Section 4.3 discusses how the CALI power saving modes were employed 

for optimising the sleep and awake cycles of the WNIC in accordance with 

the smartphone applications’ network activity. We introduced four CALI 

power saving modes based on the classified output traffic of the captured 

samples from the nine smartphone applications’ network traffic. Therefore, 

once the ML classification model classifies the new unseen samples into 

one of the classes, the WNIC is adjusted to operate into one of CALI power 

saving modes. In addition, CALI handles smartphone applications, which 

it cannot map to one of the four modes by reverting the WNIC to operate 

in SPSM mode. That means, the worst possible performance is that of 

SPSM, but if one of the four modes applies, a significant performance 

improvement with respect to power saving is achieved. 
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• Evaluate the performance of the proposed power saving modes by 

comparing the levels of energy consumption with existing 

benchmark power saving approaches, using varied sets of energy 

parameters. 

Subsection 7.2.2 evaluates the performance of CALI power saving modes 

by comparing the levels of energy consumption with existing benchmark 

power saving approaches, using varied sets of energy parameters. We 

selected APSM as the most current power saving approach deployed in 

smartphones and SAPSM as a recent technique also employing ML. The 

experimental results show that CALI consumes up to 75% less power when 

compared to APSM, and up to 14% less energy when compared to SAPSM 

power saving approach. This is followed by assessing the performance of 

CALI against the value variations of energy parameters in subsection 7.2.3. 

8.4 Limitations and Future Work 

This section highlights the limitations and outlines possible future research 

directions. 

8.4.1 Limitations  

• Dataset 

In this research, we investigated the network activity of a single 

smartphone application opened at a given time without considering the 

network activity of applications that run simultaneously. Where the 

classification models were constructed from the training samples captured 

from the network traffic of nine smartphone applications that were 

running individually. 

Therefore, there is room for further investigation that can be carried out by 

capturing the network traffic of applications with different behaviours and 
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interactions. For example, to represent the network traffic of applications 

that run simultaneously, additional samples can be recorded from both an 

audio streaming app running in the background, along with a lower 

network usage gaming app and then added to the dataset. 

Moreover, to represent the network traffic of audio streaming applications 

with playback buffering capacity, in this research, we chose a radio station 

streaming at 128 kbps. However, additional samples from a radio station 

streaming at 320 kbps or higher could be recorded and then added to the 

dataset. 

• Power saving modes 

There is a scope for further investigation to find the optimal number of 

power saving modes that could be associated with the CALI’s framework. 

This would be based on further analysis of the captured network traffic of 

applications with different behaviours and interactions. 

For example, based on the analysed network traffic of applications that run 

simultaneously, an additional power saving mode can be introduced with 

its listening interval resides between the current low and buffering modes. 

Similarly, based on the analysed network traffic of radio station streaming 

at  320 kbps or higher, an additional CALI power saving mode can be 

developed and incorporated into CALI’s framework. 

• The framework 

The ML based classification models employed in this research were 

capable of achieving high results on unseen testing data of applications 

that were not included in the training data. Therefore, we explored the 

feasibility of manually crafting rules to hand-classify the training data. 

Where attempt was made to hand-classify the training data and the 
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outcomes were subsequently discussed and compared with the benefits 

offered by classification models constructed using ML classifiers. 

However, it also can be worthwhile to employ simpler mechanisms such 

as thresholding as an approach to classify network traffic of wireless 

devices in WLANs. 

Moreover, the application of the CALI power saving framework is limited 

to wireless devices operating on WLANs and this possibly could be 

extended to other similar types of wireless networks such as 4G/5G mobile 

data networks and WiMAX. 

Furthermore, a context-aware power saving framework could also 

potentially be applied to other devices like Internet of Things (IoT) 

appliances; as long as these devices have or operate on a set of finite modes 

or states, and there are inputs that cause the transition into one of states or 

modes. However, it is challenging but worth trying to design a context-

aware power saving framework for devices or appliances that do not have 

a finite set of states and are always on e.g., battery chargers. 

• WEKA tool 

Weka tool may not provide customisation options for certain parameters, 

e.g., the only activation function for an MLP is sigmoid. However, the tool 

was sufficient for training and hyperparameter optimisation, and this did 

not restrict from obtaining optimum results. 

8.4.2 Future Work 

This section outlines possible future research directions based on the above 

limitations. 
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• Larger dataset 

Future work should consider investigating, training, and evaluating ML 

classifiers on a larger dataset containing samples of network traffic 

captured from a wider range of smartphone applications , these include 

samples captured from Video on Demand (VoD) applications streaming 

4K/8k Ultra HD video content, samples captured from applications 

running simultaneously, and samples captured from audio streaming 

applications e.g., radio stations streaming at 320 kbps or higher. 

• Additional power saving modes 

Future work should also investigate the possibility of developing 

additional CALI power saving modes based on the classified output traffic 

from further smartphone applications’ network traffic. 

• Energy optimisation  

In this research we developed a context-aware listen interval to optimise 

energy efficiency of power-constrained wireless devices in WLANs. 

However, future work should include implementation and evaluation of 

the CALI power saving framework on wireless networks similar to 

WLANs such as 4G/5G mobile data networks and WiMAX. Also, it will be 

worthwhile investigating a context-aware power saving framework for 

continuously variable devices.  

• Real implementation 

Another possible future study would be to implement the CALI power 

saving approach in a real environment. Although real deployment is 

complex, costly, and time-consuming. However, it would provide a better 

insight and more realistic results.  
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