

OPTIMISING WLANS POWER SAVING: CONTEXT-

AWARE LISTEN INTERVAL

AHMED SAEED

A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy

Doctor of Philosophy

Institute of Computing Science and Mathematics

University of Stirling

September 2023

II

III

DECLARATION OF THE AUTHORSHIP

I hereby declare that this thesis,

“Optimising WLANs Power Saving: Context-Aware Listen Interval”

To the best of my knowledge this is entirely my work, and where any material points

to the ideas of others, it is thoroughly cited and referenced with appropriate

acknowledgements given. Also, it has not been submitted for examination for any

other degree at this university or any other learning institutions.

Ahmed Saeed

September 2023

IV

ABSTRACT

Energy is a vital resource in wireless computing systems. Despite the increasing

popularity of Wireless Local Area Networks (WLANs), one of the most important

outstanding issues remains the power consumption caused by Wireless Network

Interface Controller (WNIC). To save this energy and reduce the overall power

consumption of wireless devices, a number of power saving approaches have been

devised including Static Power Save Mode (SPSM), Adaptive PSM (APSM), and

Smart Adaptive PSM (SAPSM). However, the existing literature has highlighted

several issues and limitations in regards to their power consumption and

performance degradation, warranting the need for further enhancements.

This thesis proposes a novel Context-Aware Listen Interval (CALI), in which the

wireless network interface, with the aid of a Machine Learning (ML) classification

model, sleeps and awakes based on the level of network activity of each application.

We focused on the network activity of a single smartphone application while ignoring

the network activity of applications running simultaneously.

We introduced a context-aware network traffic classification approach based on ML

classifiers to classify the network traffic of wireless devices in WLANs. Smartphone

applications’ network traffic reflecting a diverse array of network behaviour and

interactions were used as contextual inputs for training ML classifiers of output

traffic, constructing an ML classification model. A real-world dataset is constructed,

based on nine smartphone applications’ network traffic, this is used firstly to evaluate

the performance of five ML classifiers using cross-validation, followed by conducting

extensive experimentation to assess the generalisation capacity of the selected

classifiers on unseen testing data. The experimental results further validated the

practical application of the selected ML classifiers and indicated that ML classifiers

can be usefully employed for classifying the network traffic of smartphone

applications based on different levels of behaviour and interaction.

Furthermore, to optimise the sleep and awake cycles of the WNIC in accordance with

the smartphone applications’ network activity. Four CALI power saving modes were

V

developed based on the classified output traffic. Hence, the ML classification model

classifies the new unseen samples into one of the classes, and the WNIC will be

adjusted to operate into one of CALI power saving modes. In addition, the

performance of CALI’s power saving modes were evaluated by comparing the levels

of energy consumption with existing benchmark power saving approaches using

three varied sets of energy parameters. The experimental results show that CALI

consumes up to 75% less power when compared to the currently deployed power

saving mechanism on the latest generation of smartphones, and up to 14% less energy

when compared to SAPSM power saving approach, which also employs an ML

classifier.

VI

Dedicated to

My loving Parents, Brothers, Sister, and their children

For their love, prayers, encouragement, and support. I love you all!

VII

ACKNOWLEDGEMENTS

In the name of Allah, the most gracious and the most merciful. First and foremost, I

am extremely thankful to Almighty Allah for his blessings and for giving me the

strength and knowledge to carry out this research, without which none of my work

would have been possible.

My sincerest gratitude and deepest appreciation goes to my principal supervisor, Dr.

Mario Kolberg, an exceptional mentor, for his continuous and unlimited guidance,

encouragement, motivation, and support throughout my PhD study, without which

this thesis would not have been produced in the current form. His insightful

comments, frequent availability, constant feedback, and suggestions from him have

provided valuable guidance in various phases throughout this research journey.

Working with him has been one of the most rewarding experiences of my professional

life. I am very proud and honoured to be one of his PhD students.

I would also like to express my deepest thanks to my parents, Dr. Saeed Inayatullah

and Mrs. Nargis Sarwar, for their unconditional love, kindness, and encouragement

to whom this work is dedicated. They supported me unconditionally throughout my

education and dedicated their entire lives to my success.

Finally, my greatest thanks go to my brothers and sister, Mr. Muhammad, Mrs. Sobia,

Mr. Hammad, Mr. Hamzah, and their children Miss Sara, Miss Raudah, Miss Eman,

and Mr Mustafa for their love, support, and encouragement throughout my study. I

wish them health, happiness and just everything their heart desires.

VIII

LIST OF PUBLICATIONS

During the period of this research, the following journal papers have been

published:

1 A. Saeed and M. Kolberg, "Towards Optimizing WLANs Power Saving:

Context-Aware Listen Interval," in IEEE Access, vol. 9, pp. 141513-141523,

2021, doi: 10.1109/ACCESS.2021.3120348. (Materials from this journal paper

are included within this thesis in Chapter 2, 3, 4, and 7).

2 A. Saeed and M. Kolberg, "Towards Optimizing WLANs Power Saving:

Novel Context-Aware Network Traffic Classification Based on a Machine

Learning Approach," in IEEE Access, vol. 7, pp. 3122-3135, 2019, doi:

10.1109/ACCESS.2018.2888813. (Materials from this journal paper are

included within this thesis in Chapter 2, 3, 4, and 7).

IX

CONTENTS

OPTIMISING WLANS POWER SAVING: CONTEXT-AWARE LISTEN INTERVAL I

DECLARATION OF THE AUTHORSHIP .. III

ABSTRACT .. IV

ACKNOWLEDGEMENTS .. VII

LIST OF PUBLICATIONS ... VIII

CONTENTS .. IX

LIST OF ACRONYMS .. XVII

LIST OF FIGURES ... XXI

LIST OF TABLES .. XXIV

1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Aims and Objectives .. 3

1.3 Contributions .. 5

1.4 Thesis Structure .. 7

2. BACKGROUND AND RELATED WORK .. 11

2.1 Introduction .. 11

2.2 Related Work .. 11

2.2.1 PSMs for IEEE 802.11 Family ... 11

2.2.1.1 Static PSM .. 11

2.2.1.2 Adaptive PSM ... 14

2.2.1.3 Other Power Saving Protocols in IEEE 802.11 Family 16

X

2.2.2 Sleep Optimisation (Extending Sleep Period) ... 17

2.2.3 Handling Traffic Contention.. 24

2.2.4 PHY-Assisted Power Saving .. 27

2.3 Evaluation Methodology .. 31

2.3.1 Simulation Tools .. 33

2.3.2 NS-2 Extension ... 34

2.4 Summary ... 39

3. NETWORK TRAFFIC CLASSIFICATION .. 40

3.1 Introduction .. 40

3.2 Importance of Traffic Classification .. 40

3.3 Traffic Classification Techniques ... 41

3.3.1 Port-Based Method .. 41

3.3.2 Payload-Based Method ... 43

3.3.3 ML Based Traffic Classification ... 43

3.4 Steps of ML Traffic Classification .. 46

3.5 Classifier Taxonomy .. 52

3.5.1 Which Classifier Goes with which Kind of data ... 54

3.6 ML Classifiers ... 55

3.6.1 Overview .. 55

3.6.2 Artificial Neural Networks: Multilayer Perceptron (MLP) 57

3.6.3 Lazy Learner: K-Nearest Neighbour (KNN) ... 60

3.6.4 Decision Tree .. 64

3.6.5 Ensemble-Based Learner: Random Forest ... 64

3.6.6 Support Vector Machine (SVM) ... 68

XI

3.6.6.1 Linear SVM ... 69

3.6.6.2 Soft SVM and Regularisation ... 74

3.6.6.3 Nonlinear SVM: the Kernel Trick .. 76

3.6.6.4 Multiclass SVM .. 79

3.6.6.5 Strengths and Weaknesses ... 81

3.6.7 Comparison of ML Classifiers ... 82

3.7 Overview of Other Deep Learning Methods .. 87

3.8 Review of ML Methods for Network Traffic Classification 89

3.9 Summary .. 93

4. OPTIMISING WLANS POWER SAVING ... 94

4.1 Introduction .. 94

4.2 Context-Aware Listen Interval (CALI) ... 94

4.3 CALI Power Saving Modes .. 98

4.4 Data Extraction and Preparation.. 101

4.5 Initial Experiments (Traffic Classification) ... 105

4.5.1 Experimental Setup ... 105

4.5.2 Results and Analysis ... 112

4.6 Summary ... 117

5. EXPERIMENTATION: ANALYSES AND DISCUSSIONS 119

5.1 Introduction .. 119

5.2 Training with an App of Each Class and Testing on Different App(s) of the
Same Class ... 120

5.2.1 Experimental Setup ... 124

5.2.2 Results ... 125

5.2.2.1 Classification Model: MLP ... 125

XII

5.2.2.2 Classification Model: KNN ... 125

5.2.2.3 Classification Model: SVM ... 125

5.2.2.4 Classification Model: Decision tree (C4.5) .. 126

5.2.2.5 Classification Model: Random Forest ... 126

5.2.3 Discussion ... 126

5.3 Extending the Training Data by Including the Skype Voice Call Application
 128

5.3.1 Experimental Setup ... 131

5.3.2 Results ... 131

5.3.2.1 Classification Model: MLP ... 131

5.3.2.2 Classification Model: KNN ... 132

5.3.2.3 Classification Model: SVM ... 132

5.3.2.4 Classification Model: Decision tree (C4.5) .. 132

5.3.2.5 Classification Model: Random Forest ... 133

5.3.3 Discussion ... 133

5.4 Reducing the Training Data by Half and then by a Quarter.......................... 134

5.4.1 Experimental Setup ... 135

5.4.2 Results ... 136

5.4.2.1 Classification Model: MLP ... 136

5.4.2.2 Classification Model: KNN ... 137

5.4.2.3 Classification Model: SVM ... 138

5.4.2.4 Classification Model: Decision tree (C4.5) .. 139

5.4.2.5 Classification Model: Random Forest ... 140

5.4.3 Discussion ... 141

5.5 Further Assessment of the Generalisation Capacity 142

XIII

5.5.1 Experimental Setup ... 143

5.5.2 Results ... 143

5.5.2.1 Classification Model: MLP ... 143

5.5.2.2 Classification Model: KNN ... 144

5.5.2.3 Classification Model: SVM ... 144

5.5.2.4 Classification Model: Decision tree (C4.5) .. 144

5.5.2.5 Classification Model: Random Forest ... 145

5.5.3 Discussion ... 145

5.6 Conclusions ... 146

5.7 Summary ... 151

6. HYPERPARAMETER OPTIMISATION .. 153

6.1 Introduction ... 153

6.2 Hyperparameter Settings ... 154

6.3 Experimental Setup .. 155

6.4 MLP Settings ... 156

6.4.1 Default Setting ... 156

6.4.2 Hidden Layers ... 158

6.4.2.1 Discussion ... 159

6.4.3 Learning Rate ... 160

6.4.3.1 Discussion ... 160

6.4.4 Momentum ... 161

6.4.4.1 Discussion ... 161

6.5 SVM Settings ... 162

6.5.1 Default Setting ... 162

XIV

6.5.2 Tuning the Values of C and E .. 163

6.5.3 Discussion ... 164

6.6 KNN Settings ... 164

6.6.1 Default Setting ... 164

6.6.2 Performing CV Parameter Selection ... 165

6.6.3 Discussion ... 166

6.7 Decision Tree (C4.5) Settings ... 166

6.7.1 Default Setting ... 166

6.7.2 Performing CV Parameter Selection ... 167

6.7.3 Discussion ... 168

6.8 Random Forest Settings ... 168

6.8.1 Default Setting ... 168

6.8.2 Performing CV Parameter Selection ... 169

6.8.3 Discussion ... 169

6.9 Repeating the Experiments Using the Optimal Settings 170

6.9.1 Experimental Setup ... 170

6.9.2 Results of the First Experiment: Training with an App of Each Class and
Testing on Different App(s) of the Same Class ... 171

6.9.2.1 Discussion .. 173

6.9.3 Results of the Second Experiment: Extending the Training Data by Including
the Skype Voice Call Application ... 173

6.9.3.1 Discussion .. 175

6.9.4 Results of the Third Experiment: Reducing the Training Data by Half 175

6.9.4.1 Discussion .. 177

6.9.5 Results of the Fourth Experiment: Further Assessment of the Generalisation
Capacity .. 178

XV

6.9.5.1 Discussion .. 179

6.9.6 Conclusion .. 180

6.10 Optimal Hyperparameter Settings for the First and the Fourth Experiments
 181

6.10.1 Experimental Setup ... 181

6.10.2 Results of the First Experiment .. 182

6.10.2.1 Discussion .. 185

6.10.3 Results of the Fourth Experiment .. 185

6.10.3.1 Discussion .. 189

6.11 Further Analyses .. 189

6.11.1 Confusion Matrix ... 189

6.11.2 Cost Matrix ... 193

6.11.3 Discussion ... 197

6.12 Summary ... 197

7. PERFORMANCE EVALUATION OF CALI POWER SAVING MODES 199

7.1 Introduction ... 199

7.2 CALI Power Saving Modes ... 199

7.2.1 Experimental Setup ... 199

7.2.2 Results and Analysis ... 202

7.2.3 Value Variations of Energy Parameters ... 210

7.3 Summary .. 215

8. CONCLUSION AND FUTURE WORK ... 216

8.1 Introduction ... 216

8.2 Thesis Summary .. 216

8.3 Meeting the Objectives ... 221

XVI

8.4 Limitations and Future Work .. 226

8.4.1 Limitations .. 226

8.4.2 Future Work ... 228

9. REFERENCES .. 230

XVII

LIST OF ACRONYMS

Acronyms Meaning of Acronyms

AAA The Authentication, Authentication, and Accounting

Ack Acknowledgment

ADUs Application Data Units

AE Auto Encoders

AID Association ID

ANNs Artificial Neural Networks

AP Access Point

APSD Automatic Power Save Delivery

APSM Adaptive Power Save Mode / Adaptive PSM

CALI Context-Aware Listen Interval

CBFS Consistency Based Feature Selection

CNN Convolutional Neural Networks

C-PSM Centralized-Power Save Mode / Centralized-PSM

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSV Comma-Separated-Values

CTS Clear to Send

DBNs Deep Belief Networks

DBSCAN Density-based spatial clustering of applications with noise

DCF Distributed Coordination Function

DL Deep Learning

DLI Dynamic Listen Interval

DPI Deep Packet Inspection

DSL Digital Subscriber Line

EM Expectation-Maximisation clustering

E-MiLi Energy-Minimizing idle Listening

FCFS First Come First Serve

FN False Negatives

FNR False Negative Rate

FP False Positives

XVIII

FPR False Positive Rate

GPU Graphics Processing Unit

HD High Definition

HPSM Harmonious Power Saving Mechanism

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IBSS Infrastructure Basic Service Set

ID3 Iterative Dichotomiser 3

IEEE Institute of Electrical and Electronics Engineers

IGFS Information Gain Feature Selection

IoT Internet of Things

IP Internet Protocol

KKT Karush–Kuhn–Tucker

KNN K-Nearest Neighbour

LAWS Load-Aware Wakeup Scheduling

LDA Linear Discriminant Analysis

MAC Media Access Control

ML Machine Learning

MLP Multilayer Perceptron

MRMR Maximum Relevance Minimum Redundancy

ms Millisecond

NAPman Network Assistant Power Management

NAV Network Allocation Vector

NED Network Description

NLP Natural Language processing

NS Network Simulator

NSC New Star Cricket

NSS New Star Soccer

OMNeT++ Objective Modular Network Testbed in C++

OPSM Opportunistic Power Saving Mode

OS Operating system

OTcl Object Extension Tool command language

XIX

OvA One versus All

OvO One versus One

P2P Peer to Peer

PHY-

Assisted

Power

Saving

Physical layer Assisted Power Saving

PR Precision Recall

PSM Power Save Mode

PSMP Power Save Multi Poll

PS-Poll Power Save Poll

QAP Quality Access Point

QoS Quality of Service

RAM Random Access Memory

RBF Radial Basis Function

RF Radio frequency

RLDA Regularised Linear Discriminant Analysis

RNNs Recurrent Neural Networks

ROC Receiver Operator characteristics

RTS Request to Send

S-APSD Scheduled Adaptive Power Save Mode / Scheduled S-APSD

SAPSM Smart Adaptive Power Save Mode / Smart Adaptive PSM

SiFi A silence prediction-based Wi-Fi energy adaptation approach

SLA Service Level Agreements

SMPS Spatial Multiplexing Power Save

SMTP Simple Mail Transfer Protocol

SYN Synchronise

SOFA A Sleep-Optimal Fair-Attention

SPSM Static Power Save Mode

S-PSMP Scheduled Power Save Multi Poll

SVM Support Vector Machine

TCP Transmission Control Protocol

XX

TDMA Time Division Multiple Access

TIM Traffic Indication Map

TL Transfer Learning

TN True Negatives

TNR True Negative Rate

TP True Positives

TPR True Positive Rate

TWT Target Wake Time

U-APSD Unscheduled Adaptive Power Save Mode / Unscheduled U-APSD

UDP User Datagram Protocol

U-PSMP Unscheduled Power Save Multi Poll

VoD Video on Demand

VoIP Voice over Internet Protocol

Wi-Fi Wireless Fidelity

Wi-Fi

Alliance

wireless industry organisation that exists to promote wireless

technologies and interoperability

WiMAX Worldwide Interoperability for Microwave Access

WLANs Wireless Local Area Networks

WNIC Wireless Network Interface Controller

WSNs Wireless Sensor Networks

μPM Micro-Power Management

XXI

LIST OF FIGURES

Figure 2. 1: Static PSM .. 13

Figure 2. 2: Threshold mechanism of APSM ... 15

Figure 2. 3: PSM operational behaviour 1 .. 37

Figure 2. 4: PSM operational behaviour 2 .. 37

Figure 2. 5: PSM operational behaviour 3 .. 38

Figure 2. 6: PSM operational behaviour 4 .. 38

Figure 2. 7: PSM vs. PSM Disabled ... 39

Figure 3. 1: Multilayer Perceptron .. 57

Figure 3. 2: Random forest [116] ... 68

Figure 3. 3: Multiple hyperplanes separating samples of two classes [194] 70

Figure 3. 4: SVM .. 71

Figure 3. 5: the effect of large and low values of the regularisation parameter C [196]

 .. 76

Figure 3. 6: Demonstration of OvO and OvA approaches [194]................................... 80

Figure 3. 7: Automatic feature extraction [125] ... 88

Figure 4. 1: Context-aware listen interval .. 97

Figure 4. 2: Arrays of network behaviour characterised by levels of traffic interaction

 .. 104

Figure 4. 3: Classification accuracy of ML classifiers on individual feature 112

Figure 4. 4: Classification accuracy of ML classifiers on dataset 1 113

Figure 4. 5: Comparison of recall, precision and f-measure on dataset 1 113

Figure 4. 6: Classification accuracy of ML classifiers on Dataset 2CBFS 114

file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834789
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834790
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834791
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834792
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834793
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834794
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834802
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2017.1.docx%23_Toc142834803

XXII

Figure 4. 7: Comparison of recall, precision and f-measure on dataset 2CBFS 114

Figure 4. 8: Classification accuracy of ML classifiers on dataset 3IGFS 115

Figure 4. 9: Comparison of recall, precision and f-measure on dataset 3IGFS 116

Figure 5. 1: Levels of network interaction of receiving traffic for apps listed in table

5.1 that are used for training and for apps listed in table 5.2 that are used for testing

 .. 123

Figure 5. 2: Levels of network interaction of transmitting traffic for apps listed in table

5.1 that are used for training and for apps listed in table 5.2 that are used for testing

 .. 123

Figure 5. 3: Levels of network interaction of receiving traffic for apps listed in table

5.3 that are used for training and for apps listed in table 5.4 that are used for testing

 .. 130

Figure 5. 4: Levels of network interaction of transmitting traffic for apps listed in table

5.3 that are used for training and for apps listed in table 5.4 that are used for testing

 .. 130

Figure 7. 1: Comparison of CALI, SAPSM, and APSM in buffering mode against set 1

of energy parameters .. 203

Figure 7. 2: Comparison of CALI, SAPSM, and APSM in buffering mode against set 2

of energy parameters .. 204

Figure 7. 3: Comparison of CALI, SAPSM, and APSM in buffering mode against set 3

of energy parameters .. 204

Figure 7. 4: Comparison of CALI, SAPSM, and APSM in DLI mode against set 1 of

energy parameters ... 206

Figure 7. 5: Comparison of CALI, SAPSM, and APSM in DLI mode against set 2 of

energy parameters ... 206

file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646663
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646663
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646663
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646664
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646664
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646664
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646665
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646665
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646665
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646666
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646666
file:///C:/Users/Dr%20Sosan%20Algahtani/Downloads/Thesis%20Draft%2020.docx%23_Toc143646666

XXIII

Figure 7. 6: Comparison of CALI, SAPSM, and APSM in DLI mode against set 3 of

energy parameters ... 207

Figure 7. 7: Comparison of CALI, SAPSM, and APSM in low mode against set 1 of

energy parameters ... 208

Figure 7. 8: Comparison of CALI, SAPSM, and APSM in low mode against set 2 of

energy parameters ... 208

Figure 7. 9: Comparison of CALI, SAPSM, and APSM in low mode against set 3 of

energy parameters ... 209

Figure 7. 10: Comparison of CALI, SAPSM, and APSM in awake mode against the 3

sets of energy parameters .. 210

Figure 7. 11: Levels of energy consumption of CALI in buffering mode against the

value variations of txPower energy parameter ... 211

Figure 7. 12: Levels of energy consumption of CALI in buffering mode against the

value variations of rxPower energy parameter .. 211

Figure 7. 13: Levels of energy consumption of CALI in buffering mode against the

value variations of idlePower and transitionPower energy parameters 212

Figure 7. 14: Levels of energy consumption of CALI in buffering mode against the

value variations of transitionTime .. 213

Figure 7. 15: Levels of energy consumption of CALI in buffering mode against the

value variations of sleepPower energy parameter ... 214

Figure 7. 16: Levels of energy consumption of CALI, SAPSM, and APSM in buffering

mode against the value variations of sleepPower energy parameter 214

XXIV

LIST OF TABLES

Table 2. 1: Simulation parameters ... 36

Table 3. 1: Small training set of student results .. 61

Table 3. 2: An unlabelled testing set ... 62

Table 3. 3: Euclidean distances for training data to the new unlabelled instance 62

Table 3. 4: Kernel functions .. 79

Table 4. 1: Applications and the degree of network interactivity 102

Table 4. 2: Full set of 6 features ... 104

Table 4. 3: Set of features for Dataset 2CBFS ... 106

Table 4. 4: Set of features for Dataset 3IGFS .. 106

Table 4. 5: WEKA default hyperparameter settings ... 108

Table 4. 6: Processing time to build the classification model (in seconds) 117

Table 5. 1: Training set 1 ... 120

Table 5. 2: Testing set 1 ... 121

Table 5. 3: Training set 2 ... 128

Table 5. 4: Testing set 2 ... 128

Table 5. 5: Training set 2 ... 134

Table 5. 6: Testing set 2 ... 135

Table 5. 7: Training set 3 ... 142

Table 5. 8: Testing set 3 ... 143

Table 6. 1: MLP default setting .. 158

Table 6. 2: MLP hidden layers setting .. 159

Table 6. 3: Performance of different learning rate values .. 160

XXV

Table 6. 4: Performance of different momentum values .. 161

Table 6. 5: SVM default setting .. 162

Table 6. 6: Performance for different C and E values ... 163

Table 6. 7: KNN default setting ... 165

Table 6. 8: Performance for the optimal K value using Euclidean and Manhattan

distance functions.. 165

Table 6. 9: Decision tree (C4.5) default setting .. 167

Table 6. 10: Performance for the optimal C and M values .. 167

Table 6. 11: Random forest default setting .. 168

Table 6. 12: Performance of Random forest with optimal configuration 169

Table 6. 13: Performance of MLP .. 182

Table 6. 14: Performance of SVM .. 182

Table 6. 15: Performance of KNN ... 183

Table 6. 16: Performance of Decision tree (C4.5)... 184

Table 6. 17: Performance of Random forest ... 184

Table 6. 18: Performance of MLP .. 185

Table 6. 19: Performance of SVM .. 186

Table 6. 20: Performance of KNN ... 187

Table 6. 21: Performance of Decision tree (C4.5)... 187

Table 6. 22: Performance of Random forest ... 188

Table 7. 1: Sets of energy parameters ... 201

1

1

INTRODUCTION

1.1 Motivation

IEEE 802.11 Wireless Local Area Networks (WLANs), commercially known as

Wi-Fi, are in pervasive deployment and considered one of the most rapidly

growing technologies in the world that play an integral role in our lives [44].

According to a recent study from the Wi-Fi Alliance, there will be more than

16.4 billion Wi-Fi devices, including personal computers, laptops,

smartphones, tablets, television and so on in use by the end of 2021 [45].

In an infrastructure-based WLANs, wireless devices are equipped with the

Wireless Network Interface Controller (WNIC). WNIC allows wireless devices

to share, communicate and access information wirelessly through an Access

Point (AP) [46].

Energy is a vital resource in wireless computing systems, and despite the

rapidly growing popularity of WLANs, one of the most important outstanding

issues remains the power consumption caused by WNIC during data

transferring between a wireless device and an AP. The high level of power

consumption during the communication of WNIC directly affects the battery

life of a wireless device, if is not connected to a power outlet [47, 48].

The 802.11 standard defines the Static Power Save Mode (SPSM) to reduce the

amount of energy consumed by WNIC. In SPSM, a wireless device conserves

energy by allowing the WNIC to sleep and waking up periodically to receive

the buffered packets from the AP [1].

2

However, the SPSM suffers from latency issues. These occur firstly, when a

wireless device generates the Power Save Poll (PS-Poll) frames to retrieve the

buffered packets from the AP, and secondly, when a delay of about 100-300ms

is introduced when the WNIC is off during the beacon intervals, but buffered

packets are available at the AP. These issues affect the performance of both

real-time applications, for example VoIP, and interactive applications, such as

web browsers [4, 5, 6].

The Adaptive PSM (APSM) has been deployed within the latest generation of

mobile devices to overcome the latency related issues associated with SPSM.

In APSM, by default, the WNIC remains in SPSM and switches into awake

mode based on a network activity threshold [7, 8]. But without considering the

priority level of the network traffic of applications, this leads to unnecessary

wakeups [5, 10]. Moreover, the WNIC remains in awake mode for an idle

timeout period before fully switching back to SPSM [11]. Examples of

currently existing smartphones that employ APSM which is based on SPSM

are: Samsung Galaxy S10, Xiaomi Mi 10, ASUS ROG, and ROG II [168].

To eliminate the issue of the threshold mechanism built-in APSM, Smart

Adaptive PSM (SAPSM) was proposed in [10]. Unlike SPSM and APSM which

have been commercially deployed, SAPSM is still a research topic. SAPSM

labels each network-based application of smartphone into two sets of

priorities; high and low, with aid the of a Machine Learning (ML) classifier.

SAPSM replaced the threshold mechanism of APSM with a set of two

priorities, high and low. Consequently, for applications set as high priority,

the WNIC will be adaptively switched into awake mode, and stays in the

SPSM with applications set as low priority conserving energy.

However, no further priority levels or modes have been proposed in this work

to cater for applications with different patterns of network activity: including

the least levels of network interactivity, that receive network updates after

3

longer periods of time, secondly, applications with intermittent network

interactions, and finally, for applications with buffering capabilities. Instead,

SAPSM operates the WNIC in SPSM for all low priority applications.

This does not achieve the full potential of a methodology that considers

optimising the sleep and awake cycles of the WNIC more closely in accordance

with the smartphone applications’ network traffic reflecting a diverse array of

network behaviour and interactions.

1.2 Aims and Objectives

The aim of this thesis is to develop a power saving framework that optimises

the sleep and awake cycles of the WNIC using Machine Learning (ML)

techniques in accordance with smartphone applications’ network traffic. To

achieve this aim, the following research objectives have been determined.

• Identify and construct a real-world dataset based on a varied range of

smartphone applications’ network traffic depicting different types of

network behaviour and interaction.

• Train ML classifiers to learn mapping the input features of each sample

to an output class from the training data and build an ML classification

model. The set of six input features are:

• 1- receiving data rate in Kbytes/sec.

• 2- transmitting data rate in Kbytes/sec.

• 3- total received Kbytes.

• 4- total transmitted Kbytes.

• 5- total number of received packets.

• 6- total number of transmitted packets.

4

These features were used as contextual inputs for training ML classifiers of

output classes:

• 1- high.

• 2- varied.

• 3- low.

• 4- buffering.

• Evaluate the performance of ML classifiers using 10-fold cross-

validation. Based on the result of the analysis, determine the more

suitable ML classifier for classifying smartphone applications’ network

traffic reflecting varied types of network behaviour and interaction.

Then, assess the generalisation capacity of the selected classification

models on unseen testing data of applications that were not included in

training data. Along with evaluation metrics, provide a confusion

matrix to enable a detailed breakdown of the predictions, including the

distribution of correct and incorrect predictions made by the

classification models.

• Devise power saving modes based on the classified output traffic of the

captured samples from a varied range of smartphone applications’

network traffic.

• Evaluate the performance of the proposed power saving modes by

comparing the levels of energy consumption with existing benchmark

power saving approaches, using varied sets of energy parameters.

These energy parameters are:

• 1- txPower: the power consumption during packet transmission.

• 2- rxPower: the power consumption during packet reception.

• 3- idlePower: the power consumption when a WNIC is awake

and not transmitting or receiving packets.

5

• 4- transitionPower: the power consumption when a WNIC

transits from the sleep to idle state and vice versa.

• 5- transitionTime: The amount of time required when a WNIC

transits from sleep to idle state and vice versa.

• 6- sleepPower: The power consumption when a WNIC is in sleep

state.

1.3 Contributions

In this thesis we proposed a novel concept of Context-Aware Listen Interval

(CALI), in which the wireless network interface, with the aid of an ML

classification model, sleeps and awakes based on the level of network activity

of each application. This is further divided into the following more specific

contributions:

• Context-Aware Network Traffic Classification

We proposed a new ML based approach to classify the network traffic of

wireless devices in WLANs. Smartphone applications’ network traffic

reflecting a diverse array of network behaviour and interaction were used

as contextual inputs for training ML classifiers of output traffic. We

employed five commonly used ML classifiers to classify the network traffic

of a varied range of smartphone applications, firstly using 10-fold cross-

validation for the initial classification, followed by extensive

experimentation to assess the generalisation capacity of the selected

classifiers on unseen testing data. The experimental results further

validated the practical application of the selected ML classifiers, where the

classification models have demonstrated strong generalisation capabilities

and indicated that ML classifiers can be usefully applied for classifying the

network traffic of smartphone applications based on different levels of

behaviour and interaction.

6

• CALI Power Saving Modes

To optimise the sleep and awake cycles of the WNIC in accordance with

the smartphone applications’ network activity, we have developed four

CALI power saving modes. These power saving modes enable additional

power saving opportunities and have been devised based on the classified

output traffic of the captured samples from a varied range of smartphone

applications’ network traffic. Hence, the ML classification model classifies

the new unseen samples into one of the classes, and the WNIC will be

adjusted to operate into one of CALI power saving modes. The

experimental results have demonstrated that CALI power saving modes

consume up to 75% less power when compared to the currently deployed

power saving mechanism on the latest generation of smartphones, and up

to 14% less energy when compared to Pyles’ et al. SAPSM power saving

approach, which also employs an ML classifier.

• Dataset

We have constructed a real-world dataset based on the network traffic of

nine selected smartphone applications depicting different types of network

behaviour and interactions; including, two VoIP applications, two

applications of video calls, two applications of intermittent network

interaction, two applications of very low network interaction, and finally

one application representing applications with buffer streaming. This has

resulted in the construction of a dataset, named Dataset 1, consisting of

1350 instances, with 150 instances per application and 6 features per

instance. These features are statistical-based and unique for specific types

of applications. Additionally, inspection into the packet content is not

required to extract these features, hence statistical features have low

computational overhead and are applicable for both encrypted and

unencrypted traffic. Moreover, these features reflect the applications’

7

network interactivity better than non-network features like touch screen

rate, as regularly touching the screen, does not always mean that network

traffic is occurring. For instance, video games are highly interactive in

terms of user and screen, but practically non-interactive in terms of

network interaction. Furthermore, four output classes were assigned to

cater for the network traffic of these applications. Thereby out of the nine

chosen applications, the first output class was assigned to the four

applications that represent real-time applications with high and constant

levels of network interaction. The reason for having four applications for

this output class is to ensure more variation in the range of network traffic

included in the training data by having two VoIP applications and two

video-calling applications. For the remaining three types of network traffic,

the second output class was assigned to the two applications that represent

network traffic with intermittent levels of interaction, while the third

output class was assigned to the two applications that represent the least

levels of network interaction. Finally, the fourth output class was assigned

to one application that represents the network traffic of audio streaming

applications. In addition, further datasets were constructed from Dataset 1

by the application of different feature selection algorithms. Dataset 2CBFS

is based on a consistency feature selection algorithm and Dataset 3IGFS is

based on an information gain feature selection algorithm.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 - Background and Related Work: this chapter reviews state-of-the-

art power saving protocols in IEEE 802.11 Family including their comparative

drawbacks. This is followed by a critical review of power saving approaches

proposed in the scientific literature. This chapter also discusses the

8

performance evaluation methods used in communication networks, with

more attention given to the chosen method.

Chapter 3 - Network Traffic Classification: this chapter reviews the existing

techniques used for network traffic classification, including ML methods. It

then introduces and explains the essential steps required to perform an ML

based traffic classification. This chapter also presents an ML classifier

taxonomy, it then describes which ML classifier goes with which kind of data.

This chapter also justifies the selection of the chosen ML classifiers. It then

proceeds to describe the ML classifiers employed in this research, followed by

presenting a comparison of ML classifiers. This chapter also provides an

overview of other DL methods and illustrates how they differ from the ML

ones. This is followed by an overview of ML classifiers. Lastly, it presents a

review of proposed ML methods in the scientific literature.

Chapter 4 - Optimising WLANs Power Saving: this chapter discusses our

novel Context-Aware Listen Interval framework for optimising WLANs

power saving. It describes how different levels of traffic behaviour and

interaction in the background of smartphone applications are used as

contextual inputs for training ML classifiers of output traffic constructing an

ML classification model. This chapter also justifies the selection of the chosen

applications and the assignment of output modes. It also explains how the

CALI power saving modes were used to optimise the sleep and awake cycles

of the WNIC in accordance with the smartphone applications’ network

activity. This chapter also presents the process of data extraction and

preparation used in this research to construct the dataset. It then proceeds to

describe the experimental settings employed in this chapter for traffic

classification, including the description of parameter settings for the selected

ML classification models. Lastly, it evaluates the performance of ML classifiers

using 10-fold cross-validation before and after the application of feature

selection methods.

9

Chapter 5 - Experimentation: Analyses and Discussions: this chapter

conducts extensive experimentation to determine whether the selected

classification models generalise well on unseen testing data of applications

that were not included in training data. This chapter also provides an in-depth

analysis of the network traffic for the selected applications used in training

and testing. To assess the generalisation capacity of the selected classification

model, four main experiments are conducted in this chapter. For each

experiment, it describes the experimental setup, followed by presenting the

results and discussing the outcomes. This chapter also provides detailed

conclusions based on conducted experiments. Lastly, it explores the feasibility

of manually crafting rules to hand-classify the training data. Where an attempt

to hand-classify the training data is made, followed by a discussion and

comparison of the outcomes with the classification models constructed using

ML classifiers.

Chapter 6 - Hyperparameter Optimisation: this chapter conducts the

hyperparameter optimisation process using both manual and automated

tuning methods to identify the optimal settings that result in a better-

performing classification model. In this chapter, various hyperparameter

settings were explored by performing 10-fold cross-validation firstly on the

training data of experiment three consisting of 185 samples. Followed by

evaluating the performance of the constructed classification models using the

obtained optimal sets of hyperparameter values on the testing data of the same

experiment. This chapter further assesses the performance of the classification

models by repeating the previous four experiments conducted in chapter 5,

using the optimal sets of hyperparameter values that were obtained through

the optimisation process. Since the experimental results particularly of the

repeated experiments one and four showed that using the optimised

hyperparameters for a particular training data may not always lead to an

improved model performance when there are changes in the overall

10

distribution of new training data, and the default hyperparameter settings in

some cases perform comparably or better than the optimised

hyperparameters. Thus, this chapter conducts further hyperparameter tuning,

where the optimal sets of hyperparameter values were determined for

classification models of the first and fourth experiments and the experimental

results confirmed that better results can be obtained by conducting a

hyperparameter optimisation process independently for each training data.

Chapter 7 - Performance Evaluation of CALI Power Saving Modes: this

chapter evaluates the effect of adjusting the WNIC on energy consumption

after the accomplishment of the classification process using an ML

classification model. It describes experimental setup employed in the creation

of the corresponding traffic scenarios of CALI power saving modes. It then

assesses the performance of CALI power saving modes by comparing the

levels of energy consumption with existing benchmark power saving

approaches, using varied sets of energy parameters. This is followed by

assessing the performance of CALI against the value variations of energy

parameters.

Chapter 8 - Conclusion and Future Work: this chapter summarises the thesis,

reviews the objectives and discusses how they were addressed. Finally, this

chapter highlights the limitations and outlines possible future research

directions.

11

2

BACKGROUND AND RELATED WORK

2.1 Introduction

This chapter explains and critically reviews the state-of-the-art power-saving

protocols in the IEEE 802.11 Family. This is followed by a critical review of

power-saving approaches proposed in the scientific literature. This chapter

also discusses the performance evaluation methodologies in communication

networks, it then describes the employed method in this thesis to evaluate the

performance of CALI power saving modes.

2.2 Related Work

This section reviews the deployed power saving protocols in WLANs, in

particular SPSM and APSM including their comparative drawbacks, and

further developments of power saving protocols in the IEEE 802.11 Family.

This is followed by a critical review of power saving approaches proposed in

the scientific literature.

2.2.1 PSMs for IEEE 802.11 Family

2.2.1.1 Static PSM

In the WLAN Infrastructure Basic Service Set (IBSS), the 802.11 standard

defines SPSM to reduce the amount of energy consumed by the WNIC when

the wireless devices are connected to an AP. The WNIC of a wireless device in

SPSM operates in two modes: awake mode and sleep mode. In the awake

12

mode, the radio transceiver of a wireless device is on, fully powered and ready

to receive and transmit consuming a significant amount of power. While in

sleep mode, the radio transceiver of a wireless device is not fully powered,

meaning that the wireless device cannot receive or transmit in order to

conserve power [1].

In SPSM, the AP announces the presence of any buffered packets intended to

a wireless device via a Traffic Indication Map (TIM) in a beacon frame. Thus,

the wireless device stays in sleep mode and periodically wakes up during its

listening interval (multiples of the beacon interval) to listen to the TIM in the

beacon frame. If the TIM does not indicate packets for the wireless device at

AP, the wireless device immediately goes back into sleep mode to save power.

In the case a TIM indicates the existence of buffered packets at AP, the wireless

device remains awake and generates the Power Save Poll (PS-Poll) frames to

retrieve the buffered packets from the AP. Upon receiving the PS-Poll frames,

the AP transmits the buffered packets to the wireless device, one packet at a

time and receives its corresponding Acknowledgment (Ack) until all buffered

packets are received successfully and the AP finally indicating the existence of

no more packets by setting the value of the More Data field to zero [2, 3].

Figure 2.1 illustrates the operation of SPSM in IBSS.

13

So, the Wireless device wakes up and turning on its receiver in the listen

interval to listen for TIM, TIM which is sent by AP through beacon frame

indicates that, the AP has no buffered packet for the wireless device, so the

wireless device immediately goes back into sleep mode, and skips the

following beacon, because the listen interval is a multiple of beacon interval.

Now again the wireless device wakes up and listens to the third beacon

interval, this time the TIM indicates the presence of buffered packets for the

wireless device in the AP.

Now, the wireless device sends a PS-Poll frame to AP requesting its buffered

packets, these PS-Poll frames are sent by the wireless device according to

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). AP

receives the Poll-Frame from the wireless device and then starts transmitting

the buffered packets one by one, (transmits one packet and receives its

corresponding ack frame from the wireless device and so on).

So, the wireless device keeps sending the PS-Poll frames till the value of more

data field in the data frame set to zero, which means there are no more packets

buffered in AP for the wireless device.

Figure 2. 1: Static PSM

14

The SPSM conserves energy by allowing a wireless device to sleep and wake

up periodically. Nevertheless, SPSM suffers from latency issues for the

following two reasons: firstly, when a wireless device generates the PS-Poll

frames in order to retrieve the buffered packets one at a time from AP [4, 5].

Secondly, when a delay of 100-300ms is introduced when the WNIC is off

during the beacon intervals and there are incoming packets for a wireless

device buffered at AP [6]. These issues impact on the performance of both,

real-time applications such as VoIP and interactive applications such as web

browsers.

2.2.1.2 Adaptive PSM

APSM has been deployed within the most recent generation of mobile devices

to overcome the delay of the WNIC being off during the beacon interval and

the delay caused by the PS-Poll frames. In APSM, a wireless device adaptively

switches between sleep and awake mode depending on the network traffic [7].

In APSM, by default, a wireless device remains in SPSM [8]. To switch from

SPSM mode to the awake mode, the wireless device notifies the AP by sending

a null data frame with the power management bit set to zero. When the AP

receives the null frame, it stops buffering packets for the wireless device.

To switch back into SPSM mode, the wireless device sends a null data frame

with the power management bit set to one, so that the AP resumes buffering

packets for the wireless device [5, 9].

APSM operates based on a threshold, i.e., ingress and egress packets between

a timer start and expiry are counted. If the counted packets exceed the

threshold, the WNIC switches to the awake mode. On the other hand, if the

counted packets are below the threshold, the WNIC remains in SPSM mode

[10]. Figure 2.2 shows the threshold mechanism of APSM.

15

Latency related issues found in SPSM are eliminated in APSM. However, the

WNIC of a wireless device does not take into consideration the type of

network traffic, whether this type of network traffic is important or not,

instead it switches from sleep to awake mode based on network activity

thresholds.

This may lead to the WNIC being switched into awake mode unnecessarily,

receiving low priority traffic consuming energy which could be better used for

more important traffic [10, 5]. Moreover, the WNIC remains in awake mode

for an idle timeout period before being fully switched back to SPSM [11].

Count the Received
Packets

Timer
Expired?

Yes

Yes

No

No

Packet count
Exceeds

Threshold

Timer Started

Switch to
Awake Mode

SPSM
Mode

Start

Figure 2. 2: Threshold mechanism of APSM

16

2.2.1.3 Other Power Saving Protocols in IEEE 802.11 Family

Automatic Power Save Delivery (APSD) has been presented in the

requirements of IEEE 802.11e. It includes Quality Access Point (QAP) which

automatically delivers downlink frames to power-saving devices, thus

avoiding the regular need for polls for each frame. APSD identifies two

delivery schemes, Unscheduled U-APSD and Scheduled S-APSD [12].

An upgraded version of APSD called Power Save Multi Poll (PSMP) mode,

was introduced in the 802.11n standard, this protocol has two modes:

Unscheduled Power Save Multi Poll (U-PSMP) mode and Scheduled Power

Save Multi Poll (S-PSMP). The issue with PSMP is the higher occurrence

probability of buffer overflow which may cause packet loss. This is due to the

fact that frames are buffered for a longer time at the AP.

In S-PSMP mode, AP delivers schedules to wireless devices that provide

information on precise time intervals where the frames will be sent. Therefore,

wireless devices sleep for the majority of their time and then wake up at the

scheduled time only [13].

In U-PSMP mode, the AP is informed by a wireless device that all designated

frames must be buffered and sent only when AP receives a frame from that

wireless device. Therefore, a frame serves as a trigger that causes the AP to

send frames to a wireless device instantly [14].

Another antenna-compatible technique named Spatial Multiplexing Power

Save (SMPS) was also adopted in 802.11n standard. This technique enables the

wireless device to power down all but one of the reception chains. However,

the issue with this mode is the decreased number of receiving chains which

contribute to lower overall communication link performance [15].

17

Target Wake Time (TWT) mechanism was adopted under the IEEE 802.11ah

standard in order to avoid the long-time listening for Beacon [16]. An AP and

involved station will arrange the exploitation of TWT features and schedule a

particular time to access the media to a particular station. The AP and the

station share details such as the operation time estimation. The AP will then

monitor the superposition and competition for the required media access by

the station to prevent collisions and contention between different stations. The

sleep mode could be entered prior to TWT by using the TWT to decrease

power consumption. The TWT in 802.11ax is divided into two sorts: broadcast

TWT and Individual TWT. The individual TWTs require individual TWT

agreements between the TWT scheduling AP and scheduled stations, whereas

it is not required in broadcast TWT [17].

2.2.2 Sleep Optimisation (Extending Sleep Period)

Li et al. [18] proposed Dynamic Listen Interval (DLI) to reduce the energy

consumption caused by unnecessary wakeups. In this scheme, the listen

interval of a wireless device is incremented by 1 each time a wireless device

wakes up during its listen interval and finds the presence of no packets

buffered at AP. Moreover, a wireless device reverts its listen interval to 1 when

it finds the presence of buffered packets at the AP. The proposed scheme

conserves power in comparison with SPSM by adjusting longer listen

intervals, but an additional delay will be added if packets of interactive

applications are buffered at an AP during the increased listening interval.

Attempting to eliminate the issues related to APSM, Pyles et al. [10] proposed

SAPSM, which is based on categorising smartphone applications as either low

or high priority apps using an ML classifier. Consequently, the traffic of

applications, which have been tagged as high priority, switches the WNIC into

awake mode. Conversely, network traffic of low priority applications keeps

the WNIC in SPSM conserving energy. To train the ML classifier and set

18

applications’ priority, a study was conducted. In this study, participants

interacted with a range of applications that have diverse levels of network

interactions. Initially, all applications are configured with SPSM, and based on

the participants’ experience with the selected application, the priority of each

application was determined. The priority is set to high if the observed delay

by a participant is unacceptable. In contrast, it is set to low if the observed

delay has not impacted the participants’ experience. The Support Vector

Machine (SVM) classification model that was used in the study has achieved

an accuracy of 88.1%.

However, no further priority levels or modes have been proposed in this work

to cater for applications with different patterns of network activity: including

the least levels of network interactivity, that receive network updates after

longer periods of time, secondly, applications with intermittent network

interactions, and finally, for applications with buffering capabilities. Instead,

SAPSM operates the WNIC in SPSM for all low priority applications.

Li et al. [19] introduced a similar approach to SAPSM, which is also based on

prioritising smartphone applications into low and high priorities. Authors of

this approach conducted measurements of smartphone applications’ usage.

Based on these measurement results, two features that reflect network

interactivity: the receiving rate and the screen touch rate were extracted.

Finally, based on these two features, a prioritisation scheme that classifies

applications’ network traffic into low or high priorities was presented. For

high priority applications the network traffic will be operating in the awake

mode, and for low priority applications the network traffic will remain

operating in SPSM. The proposed scheme in [19] was only evaluated against a

user study. Moreover, no further priority or mode was considered for

applications that are capable to operate with extended periods of WNIC

listening intervals.

19

Kwon and Cho [20] proposed a simple priority scheme inter-user Quality of

Service (QoS). In this proposed scheme, the priority of each wireless device is

already defined. So, the AP retrieves the user profile information from the

Authentication, Authorization and Accounting (AAA) server upon the

registration of the wireless device. Thus, after determining the priority for each

wireless device, the wireless device with high priority is allowed to send the

PS-Poll frames to retrieve its buffered packets immediately and earlier than

the wireless device which has been assigned as low priority. Therefore, a high

priority wireless device goes into sleeping mode for the rest of the beacon

interval. Moreover, wireless devices set with the same priority levels are

contended to access channel according to the Distributed Coordination

Function (DCF) scheme. However, the proposed scheme is only beneficial and

in the favour of high priority wireless devices, as high priority wireless devices

can fetch their buffered packets faster with minimal delay. But causing delay

and energy consumption for low priority wireless devices, as they keep

sensing the channel till other wireless devices with higher priorities finish

capturing their buffered packets from the AP.

Authors of [21] propose Catnap, a system which decreases wireless devices'

power consumption by enabling them to sleep while transferring data. It

utilises wired and wireless bandwidth discrepancies to optimise wireless

device’s power saving. By integrating small gaps into significant sleep periods

between packets, Catnap uses high bandwidth-wireless interfaces that have

far greater bandwidth than the bandwidth available over the Internet to allow

the device including its WNIC to doze off. Catnap's core elements are an

independent application proxy that separates wireless and cabled segments;

also, a scheduler that runs on Application Data Units (ADUs) to optimise

mobile device sleep duration without affecting the average time of ADU

transfer. Catnap is intended for data-oriented applications like browsing and

20

transfer of files so that individual packets are delayed but the overall times of

transfer are not increased.

In [22] researchers presented an approach called Snooze, which is an 802.11n

energy management strategy that incorporates a micro sleeping method with

an antenna configuration management technique. Moreover, micro sleeping

allows the WNIC to sleep at low power levels during few milliseconds and the

antenna configuration management adaptively changes the amount of

powered RF chains. In order to enhance the energy efficiency, Snooze adjusts

user sleep and antenna configurations for the entered/out traffic of wireless

internet packets; this adjustment is performed by a traffic shaping which

provides sleep possibilities while minimising latencies, and also taking the

inter-reliance between the microsleep and antenna configurations into

consideration.

Pyles et al. [23], propose a silence prediction approach called SiFi. Applications

such as VoIP do not operate well in PSM mode since the power footprint is

fairly high in real time. SiFi provides a technical approach for this kind of

application. SiFi checks audio streams of smartphone calls and monitors from

the start till the stop of silence intervals. These parameters are contained in

prediction models, with the help of these historical records, future silence

periods are predicted and used to set the WNIC into sleep mode.

In [24], authors propose a solution called Micro-Power Management (μPM)

which is inspired by the incompatibility between the high-performance 802.11

standards and the moderate data rate specifications of a wide range of

common network applications. The μPM allows an 802.11 wireless device to

join saving modes such as the one between MAC frames. To handle data loss,

μPM employs the re-transmission technique in 802.11 and manages frame

delays, with limited cooperation from the AP.

21

The emphasis of this research is on reducing power in the brief idle periods,

which is not handled by 802.11 PSM. Such idle periods are abundant due to

the difference between the high data rate enabled by current 802.11 standards

and the moderate data rates requested by several common applications. In

fact, it is also due to the wired link limitations such as DSL.

The study of [25] propose a Centralized-PSM (C-PSM) an AP's Centric PSM

for 802.11 networks. C-PSM optimises the overall power consumption for

wireless devices by allowing the AP to select the optimum PSM parameters

including, the listen and beacon intervals according to the client's traffic

pattern. These periods are adjusted to decrease power consumption due to

excessive wake ups and contentions of the channel. As the power loss in the

contention can be very costly since all the involved wireless devices cannot

turn to sleep mode during the time of contention. Furthermore, the AP

provides wireless devices with optimum congestion time windows such that

the less frequently active device can retransmit faster. Moreover, C-PSM offers

the first wake up schedule to help improve power efficiency by minimising

simultaneous wake ups for wireless devices.

Tan et al. [26] propose a PSM-throttling, in which a wireless device identifies

a bandwidth throttling link by detecting the TCP flow throughput. As a result

of the throttling, the client can anticipate when a packet will arrive and switch

on/off the WNIC by reshaping TCP traffic into intermittent bursts of the same

average rate as the server transmission.

In [156] Jiang et al. proposed QoS-aware architecture to reduce the energy

consumption in Wi-Fi networks for wireless devices steaming Danmu videos.

Danmu also known as bullet comments or barrage videos, is a special type of

interactive video streaming that shows users' comments on top of the videos

during the playback. As the network transmissions of video related packets

from the streaming server and barrage related packets from and to the mobile

22

user device are not coordinated for Danmu videos. Authors of [156] deployed

a client proxy on a mobile user device and an edge proxy on a home Wi-Fi

router, both proxies are used to coordinate the transmissions of video data and

barrages.

To improve the energy efficiency of APs in WLANs, the authors of [159]

proposed a reinforcement learning-based solution. The proposed solution

considers the network conditions such as queue length, and channel gains to

the user in order to control AP’s transmit power and determines whether an

AP should use single or bounded channels.

Venkateswaran et al. [160] propose a power saving optimisation algorithm for

low powered IoT devices operating under Wi-Fi networks. In this work,

authors have only considered a specific scenario of sparse periodic uplink

traffic. This is the scenario where an IoT sensing device periodically reports on

measurements such as soil moisture level, temperate and so on, or sends keep-

alive packets to a remote server over a Wi-Fi-based AP. Authors firstly

introduced five potential energy optimisation strategies including SPSM,

based on simulations results, they have developed the power saving

optimisation algorithm.

Seth et al. [163] proposed an EAPS, 802.11 AP based solution to reduce the

power consumption of IoT devices by minimising the duration of the idle

listening. In this work, upon the reception of uplink packets from an IoT

device, the AP computes the estimated delay that occurs till the reception of

downlink packets using an ML-based model. Once the estimated delay is

computed, the AP informs the device of the scheduled time to wake up in

order to receive the downlink packets.

In relation to harvesting energy from WLANs, wherein wireless devices can

be charged via radio frequency signals emitted from an AP. The work in [161]

23

presented a transmit power allocation policy for a solar-powered AP. The

proposed policy allows AP to control the transmit power in order to deliver

the required data to nonenergy harvesting wireless devices such as laptops,

iPads and so on. And simultaneously ensures the IoT sensing devices with

energy harvesting capability receive sufficient energy. Finally, to derive the

policy, the authors employ ML approaches to determine the optimal transmit

power that satisfies the requirements of both types of wireless devices based

on AP’s current and historical battery status.

To examine whether the application of different schedulers for TWT

scheduling improve throughput and energy efficiency. Yang et al. [164]

presented max-rate and proportional fairness schedulers to enhance the

throughput and energy efficiency of TWT capable wireless devices operating

under 802.11 ax. The findings of this research show that applying different

schedulers for TWT will improve the energy and enhance the throughput.

To improve the throughput and energy efficiency of wireless devices in a

coexistence area of Wi-Fi and cellular networks. Zhang et al. [165] propose

TAUD scheme, the proposed scheme splits the wireless devices in the

coverage area of dual networks into two groups: WLAN-based group, and

cellular-based group. Thus, wireless devices in the WLAN group only connect

to the Wi-Fi system whereas wireless devices in cellular group connect to a

cellular network.

802.11ah was introduced to accommodate the dense IoT networks. In this

multi-rate network, different IoT devices have different data rate

requirements. And IoT devices access the channel using group based

Restricted Access Window (RAW) mechanism. As the standard does not

specify any scheme for group forming, by default a uniform grouping scheme

is employed, which forms random groups of an equal size, resulting in a

performance anomaly. To resolve this issue, and optimise energy efficiency,

24

the Authors of [166] proposed RAW-RA scheme, in this scheme the IoT

devices are grouped based on data rates and the RAW slots are assigned to the

groups proportional to their data rates.

2.2.3 Handling Traffic Contention

Rozner et al. [5] introduced a Network Assistant Power Management solution

(NAPman). The authors conducted a variety of experiments to show that

current implementations of PSM strategies in wireless devices and APs are not

efficient due to competing background traffic which increases the energy

consumption of a wireless device and decreases the network capacity due to

unnecessary retransmissions. To mitigate these issues, NAPman employs

virtualisation and an energy-aware scheduling algorithm for AP based on the

First Come First Serve (FCFS) policy that applies only to packets of wireless

devices that are awake at a given time. By leveraging AP virtualisation,

contention among wireless devices is mitigated, as several virtual APs from

one physical AP are created. Each wireless device is connected to its own

dedicated copy of a virtual AP. As NAPman relies on virtualisation, one

physical AP can only support a limited number of virtual APs. This causes

disruption when the number of assigned wireless devices to virtual AP

exceeds the threshold limit.

In [27] He and Yuan propose a time division multiple access approach based

on MAC protocol, called scheduled PSM. In this approach, the beacon interval

is divided into an equal number of slices by an AP. The slices can be assigned

to a single wireless device or multiple wireless devices. The TIM was

restructured to hold slice assignment information. Scheduled PSM eliminates

channel contention, as each wireless device wakes up on its designated time

slot to retrieve the buffered data from the AP, and sleeps during its non-

allocated time slots to save power. This approach conserves energy as the

channel is contention free, but time slots will be wasted if a wireless device

25

does not wake up at its designated time slot. Also, this approach suffers from

additional delay: data frames arriving at the current beacon interval will only

be scheduled for transmission to a wireless device in the next beacon interval.

Finally, all the time slots are identical in size, which may not be appropriate

for small frames or light traffic.

Opportunistic Power Saving Mode (OPSM) is proposed in [28]. The

application of OPSM is limited to a specific scenario: wireless devices are

engaged in web browsing to download short files with a short duration of

inactivity or think time in between downloads. The authors of [28] observed

that the throughput share of an individual wireless device decreases in SPSM

when multiple wireless devices are associated with a single AP and download

files simultaneously. Therefore, to gain the maximum throughput and reduce

energy consumption, only one wireless device is permitted to download a file

at a time in OPSM. During this time other wireless devices remain in sleep

mode. One additional bit has been added to the beacon header indicating

whether the AP is currently serving another wireless device. To avoid a

number of wireless devices from initiating a file download simultaneously on

completion of the service of the current wireless device, wireless devices wait

for a random period of time before initiating their file download.

In [29] Omori et al. present a power saving approach that utilises Network

Allocation Vector (NAV) periods set by the Request to Send (RTS) and Clear

to Send (CTS) handshake mechanism. The proposed approach allows other

wireless devices to sleep when they overhear the CTS or RTS during the NAV

duration. Moreover, the NAV duration is extended which allows multiple

bidirectional burst transmission between a device and an AP. In their previous

work [30] the authors of this approach utilised NAV duration by allowing the

burst transmission in an unidirectional manner for incoming packets from AP

only.

26

Authors of [31] proposed an energy efficient technique called SleepWell that

avoids wireless network contentions. The APs control the client's sleeping

window so that various APs are awake/sleep in time windows which are not

overlapping. The approach is similar to the general insight of late arriving at

the office and late leaving, thus eliminating hours with congestion. As APs are

always on, wireless continuous traffic from neighbouring APs is monitored.

Because SPSM periodically causes traffic bursts, each AP monitors the

regularity of the other APs, and re-plan its own period dynamically to

marginally overlap with the others. Lesser overlap eliminates competitiveness

so that any client can download their own packets continuously and sleep

while other transmissions are established on the channel.

Authors of [32], propose Harmonious Power Saving Mechanism (HPSM)

which addresses the situation of many PSM clients linked with a single AP.

The core principle of HPSM in handling the traffic contention, is to utilise the

underlying sociological principle [33]. The connecting resource and the battery

life of wireless devices are defined as public and private resources,

respectively. When a PSM client uses large amounts of public resources, it is

considered wealthy and vice versa for poor devices. Similar to real life

societies, poor citizens cannot obtain more costly public facilities such as

higher education, but they pay significantly less tax. Correspondingly, devices

utilising a significant portion of the public resource should pay for the service

more in a network consisting of one AP and several PSM clients, but those that

consume a limited portion of the resource should have less expensive service

cost. HPSM deliberately places priority on the transfer of data for poor or weak

over wealthy devices. Thus, as the data transfer is completed early, the weak

wireless devices will go back to sleep mode for greater power savings. In the

meantime, since poor wireless interfaces only use the communication channel

for very short times, the taxes charged by these rich wireless devices on latency

and power are small.

27

Authors of [34] found that, the standard FCFS mechanism is unideal for sleep

since it keeps the PSM wireless devices awake needlessly. A downlinking

traffic scheduler called SOFA on the AP is proposed. It saves power by

encouraging its PSM devices to sleep more while the service of other PSM

devices. If a device’s buffered packet exists in the AP and it chooses to retrieve

it, it must be kept awake till the last packet planned for it is provided during

the time cycle of the beacon. As the AP delivers packets to other wireless

devices a substantial amount of power consumption occurs before the last

packet of the wireless device is transmitted to its destination. SOFA decreases

that energy consumption and enhances all wireless devices' overall sleep time.

This is done by calculating the quota of all wireless devices and forwarding

packets based upon the calculated quota.

To minimise the number of contention's wireless devices, researchers in [35]

proposed Load-Aware Wakeup Scheduling (LAWS), a technique which

organises wakeup schedules for sleeping wireless devices such that the

amount of wakeup devices are balanced for each beacon interval. To minimise

both collision likelihood and energy usage, the AP announces a subset of PSM

clients in the beacon frame which is exploited by the client to decide their

polling sequence. Three methods for access schedules were proposed to

prevent contention. First, the multiple wakeups single access, where only a

single wakeup device is planned for access to the buffered data. Second,

multiple wakeups multiple access with smallest Association ID (AID), where

the access's planning is based on the smallest AID. And finally, multiple

wakeups multiple access with the smallest queue length first scheme, where

the shortest queue length is first in a beacon interval.

2.2.4 PHY-Assisted Power Saving

In [36] a technique called DozyAP is proposed to enhance the energy efficiency

of Wi-Fi tethering. Based on a conducted analysis of traditional applications,

28

authors of [36] have identified various occasions that the tethering phone

could sleep to conserve energy. DozyAP's main concept is to place the Wi-fi

tethering based phone which acts as mobile AP's Wi-Fi interface in the sleep

mode to reduce power consumption. After analysing the traffic pattern of

different online applications. Authors noted that the Wi-Fi network is inactive

for a significant duration of the overall application time so that the AP could

sleep for this idle time. In addition, it is well known that a cellular link is

usually slower than a Wi-Fi link. Therefore, when waiting for data

transmission via the cellular network, the Wi-Fi interface of a mobile AP can

sleep. All these show that mobile AP energy demand can be reduced in several

ways.

Similarly, GreenAP has recently been introduced in [157] to solve the issue of

higher power consumption of mobile AP. Two strategies were considered in

the design of GreenAP: first, delaying the transmission of AP’s sleep indication

frames in order to minimise the traffic delay when AP encounters incoming

packets from a wireless device. Second, is the selection of an appropriate sleep

time for the AP based on the mean traffic statistics.

An energy-efficient AP selection approach for IoT nodes in hybrid Wi-Fi and

Li-Fi I networks is presented in [158]. In the proposed solution, the IoT client

selects either a Wi-Fi AP or a Li-Fi AP based on the satisfied QoS requirement

of throughput. In the case of both APs provide the same satisfaction of QoS

constraint. An AP which provides a better energy efficiency is chosen.

Whereas the node remains in Li-Fi based AP when none of the APs satisfies

the QoS constraint.

The authors of [162] have proposed a computation offloading technique to

reduce the energy consumption of wearable devices. In this work, when a task

is given in a wearable device such as a smartwatch, the wearable device firstly

decides whether to execute it locally or offload it to a smartphone. The

29

offloading decision is made by comparing the cost of operating the task locally

and the cost of energy consumption when offloaded to a smartphone along

with the cost of the Bluetooth communication between a wearable device and

a smartphone. Based on this proposition, a wearable device offloads the

computation task to the smartphone.

Now, when a smartphone receives the offloading request, it decides whether

to execute the task locally or offload it to a cloud server based on the battery’s

remaining energy and the cost associated if the task is handled locally in the

smartphone. In case the total cost is high, then the smartphone offloads the

computation task to the cloud via a Wi-Fi connection.

Studies [6] and [37] explore conserving power by utilising multiple radios of

wireless devices. Authors of [6] introduced Bluesaver, which employs

Bluetooth and Wi-Fi combined at an AP and wireless device. The wireless

device switches between Wi-Fi and Bluetooth radios. The wireless device

receives and sends packets over Bluetooth when it is within range of the

Bluetooth radio of the AP. When a higher data rate is required or a wireless

device is out of range of the Bluetooth radio of the AP, it switches to Wi-Fi

radio. However, this approach requires an additional Bluetooth adaptor at the

AP.

Zhang and Li [37] developed a Wi-Fi ZigBee message delivery scheme, which

delegates some of Wi-Fi operations to ZigBee radio. In this case, the Wi-Fi

radio of a wireless device is turned off, and instead, low power ZigBee radio

is utilised to discover the presence of Wi-Fi networks. It then listens to

incoming beacon frames from the AP to detect the presence of any buffered

packets intended to a wireless device. However, the developed scheme in [37]

requires an external chipset on smartphones.

30

Similarly, in [38] authors have introduced a Blue-Fi, a system that detect the

presence of Wi-Fi AP through a Bluetooth and cell tower information. This

allows the wireless device to turn on the Wi-Fi interface only during the

presence of Wi-Fi connection, thereby eliminating lengthy periods of idle time

and reducing the number of scans for exploration substantially.

Vergara and Nadjm-Tehrani [39] proposed Watts2Share, an architecture that

enhances power saving by consolidating the traffic in only one link. The

proposed architecture combines multiple nodes for communication and use a

single node’s 3G interface for data transferring. The Wi-Fi radio is used as the

secondary radio whereas the 3G channel is employed as a primary channel for

communication.

Chung et al. [40] present C-SCAN, which utilises a low power personal

wireless network interface that is embedded in the wireless device such as

Bluetooth and ZigBee, to perform the unnecessary scanning of AP-free Wi-Fi

channels to unload Wi-Fi scanning overhead. C-SCAN examines Bluetooth

radio channel information and detects which Wi-Fi channels are in operation

before the real Wi-Fi interface channel is scanned. The Wi-Fi scanning manager

can search only on available Wi-Fi channels by removing channels that are

determined to be null. Thereby delay reduction and energy efficiency

improvement are achieved.

Other studies [41-43] focused on decreasing the radio’s clock rate to conserve

energy. SloMo [41] proposed a transceiver that enables a wireless device to

operate at a lower clock rate during transmitting and receiving. E-Mili [42]

allows the WNIC to operate at a lower clock rate during idle listening and

transits to the full clock rate during data transmission and reception. In [43]

the authors proposed Sampless Wi-Fi, which enables the wireless device to

recover under-sampled packets via multiple transmissions.

31

The authors of [167] developed a multi-mode transceiver combining a set of

wireless connectivity protocols. The transceiver was designed for IoT wireless

devices and supports Wi-Fi, Bluetooth classic and Bluetooth low energy

wireless connectivity protocols. The reported measurement results in this

study show that the developed combo chip achieves better or comparable

performance in comparison with standalone chip architectures.

2.3 Evaluation Methodology

This section discusses the most commonly used methods in communication

networks for evaluating the performance of a proposed system or framework,

it then describes the employed method in this thesis to evaluate the

performance of CALI power saving modes.

Typically, the efficiency of communication networks can be assessed using

three main methods. These methods are real experimental, analytical

modelling and simulation [49, 50].

The real experimental method requires the use of a testbed to evaluate the

proposed approach. Typically, a testbed comprises a set of wireless

components, which are designed to run the proposed approach. The benefit of

using this method is that realistic circumstances are taken into consideration,

which provides a better insight of the proposed approach before

implementing it in the real world.

Nevertheless, it is costly and time consuming to build and maintain a testbed,

particularly when assessing the efficiency of the proposed approach in larger

networks. The required components, individuals, and coding cause higher

costs for building and maintaining a testbed. Thus, teamwork will be

necessary for this method.

32

On the other side, the mathematical description of the proposed approach, i.e.,

analytical modelling, is based on applied mathematical theories including

stochastic process and queuing. Numerical techniques may then be added to

the model to have more insight into the model.

Mathematical modelling fits into basic networks which are comparatively

small. It may become more difficult to derive certain models for a complex

network such as WLAN. As, this type of network involves taking into

consideration several factors, certain assumptions in the model may simplify

some factors. Simplified assumptions may therefore generate imprecise results

which influence the validity of the system analysis [50].

Simulation tools may also be used to test the performance of the proposed

approach. A network simulator is designed for simulating a computer

network including the operation of the networking nodes and links. The

simulation approach has benefits over the other methods of assessment, such

as having scalability, repeatable outcomes, and simulating complex scenarios.

 In comparison with analytical modelling, the simulation based assessment

often requires fewer assumptions. It also enables the designer to characterise

the analysed approach in more detail. Simulation is a cheaper alternative

compared to the real experiment method. Also, the efficiency of the proposed

approach under different loads and various network scenarios can easily be

investigated.

Therefore, to evaluate the performance of CALI power saving modes, the

simulation based evaluation method has been adopted in this thesis.

33

2.3.1 Simulation Tools

A varied range of network simulators are used for simulating wireless

networks such as NS [51], OMNeT++ [52], Riverbed [53], and QualNet [54].

These simulators are briefly discussed in the following paragraphs.

• NS-2

Network Simulator 2 (NS-2) is a simulator of discrete network events. This

includes models for simulating cable and wireless networking standards on

various levels, including network, data link, and physical layers. NS-2 was

employed extensively in scientific research. It utilises C++ as the language of

programming. Apart from C++, the Object Extension Tool command language

(OTcl) of MIT allows the utiliser to define the C++ code parameters. NS-2 was

substituted by its NS-3 successor. NS-3 was also designed with C++ from

scratch. It emphasises the resolution of current NS-2 simulator issues, but it

does not support all the NS-2 models since it has a compatibility problem with

NS-2. NS-3 utilises C++ or python scripts. These simulators are open source

and accessible free of charge for research, development, and utilisation.

• Riverbed

Riverbed is a discrete event simulator previously called OPNET, Riverbed

consists of C++ based protocols and technology suit. It supports wired and

wireless networking protocols, such as IEEE 802.11 a, b, and g standards.

Besides, it is available as a commercial simulator and is one of the most

commonly used network simulators. Riverbed offers excellent interactive

support as a commercial simulator, enabling an individual to construct

network model objects from the application layer to the physical layer. The

users can also interpret and simulate the effects of the simulation using the

available graphical interfaces.

34

• QualNet

QualNet is a network simulator based on GloMoSim simulator for commercial

use. The GloMoSim simulator, which was developed for MANETs, is also a

discrete event simulator. QualNet is GloMoSim's industrial derivative, which

is not supported any more by its developers. QualNet provides varied wired

and wireless network technologies simulations. QualNet offers a good user

experience by its graphical interface which enables users to build the

components of their scenarios and to set their parameters. It moreover offers

excellent methods for analysing simulation outcomes. QualNet utilises C/C++

to build novel models, but it is not commonly employed in research because it

is commercial.

• OMNeT++

OMNeT++ is a C++ object-oriented, extensible, flexible simulation library and

network simulator platform. It is not an individual simulator but offers simple

tools that enable developers to design their own simulators. Frameworks are

individual projects that complement particular environments. For instance,

there are frameworks supporting wireless networks, modelling of the

performance, internet protocols, Peer to Peer (P2P) overlays, etc. The open-

source OMNeT++ platform is provided for academic use, free of charge. It

provides comprehensive graphical interface support. Simple modules, which

are written in C++, are assembled for components of greater size. A high-level

language known as Network Description (NED) that operates in an identical

way to OTcl in NS-2 is used to model the components.

2.3.2 NS-2 Extension

For the performance evaluation in this thesis, we have utilised the NS-2

simulator. To support the power management functions in WLAN, we used

35

the NS-2 extension proposed in [55], which has been applied in several studies

including [32] and [56].

This NS-2 extension provides PSM mechanisms, such as the PS-Poll, AP buffer,

and TIM. Furthermore, it includes an energy model which uses four energy

parameters: txPower, rxPower, idlePower, and sleepPower.

The extension supports infrastructure mode where two wireless devices are

connected to an AP based on PSM. The first wireless device sends data

destined to wireless device 2 via AP.

Next model’s operational behaviour is shown graphically as the model moves

during the simulation. This is followed by the displaying the remaining power

of the receiver device in both scenarios (with PSM enabled and disabled). We

used the default simulation parameters shown in table 2.1, with a simulation

duration of 600 seconds and initial energy of 100 J.

36

Table 2. 1: Simulation parameters

Simulator NS-2.33

Routing Protocol DumbAgent

MAC type 802.11

Antenna model Omni Antenna

Number of devices 2 Wireless devices (sender and receiver) and 1 AP

Simulation time 600 S

Initial Energy 100 J

Packet Size 512B

Data rate 256 KB

txPower 0.660 W

rxPower 0.395 W

idlePower 0.035 W

sleepPower 0.001 W

Figure 2.3 shows the sender and receiver wireless devices surrounded with a

blue hexagon which indicates that the wireless devices are in sleeping mode.

The AP is denoted as 0. Figure 2.4, shows that, the wireless device 1 wakes up

to send data to wireless device 2 through AP.

37

Figure 2. 4: PSM operational behaviour 2

Figure 2.5 shows that, both wireless devices are awake, and the wireless device

2 sends the PS-Poll frames to retrieve the buffered packets from the AP. The

AP transmits the buffered packets to wireless device 2, one packet at a time

and receives its corresponding Ack. Figure 2.6 shows, the wireless device 2

Figure 2. 3: PSM operational behaviour 1

38

Figure 2. 5: PSM operational behaviour 3

Figure 2. 6: PSM operational behaviour 4

immediately switches into sleep mode after receiving all its buffered packets

from the AP.

The comparison between PSM enabled and disabled is shown in figure 2.7.

The remaining energy is 71.69 out of 100 when the wireless device 2 (the

receiver device) operates on PSM. While the remaining energy of the same

wireless device falls to 50.48 in case the PSM is disabled.

39

Figure 2. 7: PSM vs. PSM Disabled

2.4 Summary

This chapter presented and critically reviewed the static and adaptive power

saving mechanisms deployed in WLANs, including other power saving

protocols in the IEEE 802.11 Family. It also has critically reviewed the power

saving approaches proposed in the scientific literature. This chapter also has

investigated the performance evaluation methods adopted in communication

networks. This is followed by demonstrating the employed method in this

thesis to evaluate the performance of CALI power saving modes.

PSM Enabled PSM Disabled

Power 71.69 50.48

0

10

20

30

40

50

60

70

80

90

100

R
e

m
ai

n
in

g
P

o
w

e
r

in
 J

o
u

le

PSM

40

3

NETWORK TRAFFIC CLASSIFICATION

3.1 Introduction

This chapter starts by explaining the concept of network traffic classification

(section 3.2), it then discusses the existing classification techniques including

ML methods used for classifying the network traffic (section 3.3). This chapter

also describes the steps required to classify the network traffic using ML

classifiers (section 3.4). Section 3.5 presents an ML classifier taxonomy based

on different properties that define how the classification algorithm works,

followed by a description of which ML classifier goes with which kind of data.

Section 3.6 begins by justifying the selection of the chosen ML classifiers. It

then proceeds to describe the ML classifiers employed in this research,

followed by presenting a comparison of ML classifiers. Section 3.7 provides an

overview of other DL methods and illustrates how they differ from the ML

ones. While section 3.8 reviews the proposed ML methods in the scientific

literature for network traffic classification.

3.2 Importance of Traffic Classification

Traffic analysis is the process of analysing the data in the traffic for finding

patterns, misconfigurations, relationships, and anomalies. Network traffic

classification is a technique used to analyse and classify the traffic into

categories such as type of applications, normal or subnormal traffic based on

features observed in the traffic according to specific goals of the application

41

[57, 58]. The phenomenon of linking the network traffic with its applications

is known as traffic classification [59].

Network traffic classification plays a vital role in traffic management in

computer networks which involves satisfying the QoS requirements of the

end-users. Each network has its own QoS requirements and identifying the

applications from the traffic is very important to satisfy the Service Level

Agreements (SLA) and managing the network resources efficiently. Traffic

classification has also importance in the area of troubleshooting where the

main functionality is to locate faulty sensors, devices, misconfigurations and

locate the point of network errors.

Furthermore, the traffic classification is very useful in the area of security for

intrusion detection and avoiding malware from heterogeneous networks [60].

With the emergence of other types of communication architectures such as

Internet of Things (IoT) and 5G, applications are generating a large volume of

traffic with more stringent QoS requirements, thus a more accurate network

traffic classification technique is required compared to traditional

classification techniques [61, 62].

3.3 Traffic Classification Techniques

3.3.1 Port-Based Method

The traditional traffic classification techniques involve port-based and

payload-based methods. The port-based traffic classification technique

extracts the value from packet header and identifies the port numbers for

many applications. User Datagram Protocol (UDP) and Transmission Control

Protocol (TCP) communicates between the end users by using the port

numbers of different flow connections.

42

Most of the applications have a known port identification number used for

local host communications for example, Simple Mail Transfer Protocol (SMTP)

is used for sending emails at well-known port number 25 [63].

Initially, during the TCP three-way handshaking mechanism, the classifier

residing at the middle of the network looks for the TCP SYN packets to know

the information of a new client-server TCP connection at the server side. The

application is then searched in the TCP SYN packets destination port number

that are assigned by Internet Assigned Numbers Authority (IANA) [64]. The

UDP utilises a similar approach for identifying the port number without

performing the three-way hand shaking mechanism.

This approach performs well with massive network traffic. However, some

P2P applications such as Kazaa and Napster have not registered their port

numbers with the IANA. Or applications may use other port numbers than its

registered port number to avoid the operating system access control

restrictions. In some cases, the port numbers are assigned dynamically for e.g.,

real video streamer allocates dynamic port numbers for the transferring of

data [65].

As a result, the port-based traffic classification approach fails to perform in all

above scenarios. The experimental results from the literature show that port-

based techniques are not efficient. In [66] authors employed the port-based

approach for network traffic classification and found that no more than 70 %

accuracy is achieved by utilising the port addresses of IANA list. The

researchers in [67] proposed a port-based traffic classification technique and

concluded that the simulation did not accurately predict 30-70% of traffic

flows.

43

3.3.2 Payload-Based Method

To address the issue of the port-based traffic classification approach, the

payload-based technique is introduced and is also known as Deep Packet

Inspection (DPI). The DPI compares the features extracted from packets with

a set of characteristic signatures and features to identify different application

protocols. This approach is specifically designed for P2P applications [65, 68].

The tools for the DPI are PACE, L7-filter, NBAR and nDPI. The DPI tools have

faced several challenges with the growing number of protocols and new

applications. Specifically, the DPI tools need to be updated with the creation

of new protocols and applications. If these tools are not regularly updated, the

performance in terms of prediction will result in erroneous or unknown

signatures. Thus, the list of signatures needs to be updated regularly.

This technique solves the issue associated with port-based approaches;

however, this technique is computationally expensive. Furthermore, this

technique also needs to update the signature pattern for new applications.

Finally, this technique fails when privacy policies deny inspection of the

packet content and is problematic in dealing with encrypted traffic [69, 70].

3.3.3 ML Based Traffic Classification

Recently, ML methods have been successfully used for network traffic

classification. ML methods have addressed the limitations of port-based and

payload-based classification methods [71]. These methods can classify the

encrypted traffic accurately. These methods can learn the patterns from

network traffic automatically. They can characterise network traffic to

respective flows and applications after training [71, 72].

ML methods have been proved as a powerful tool for classifying the network

traffic using prior knowledge or statistical information extracted from the raw

44

traffic in the form of features. ML methods are suitable for classifying the

network traffic into specified categories having similar characteristics. Each

traffic instance is labelled with the specific network application as per its

features without inspecting the packet header and payload directly. The

significant features involve the statistical patterns such as network traffic

duration, number of packets in a given time, the time between two

constructive packets and order of packet arrivals etc. [73].

The general process of ML consists of two phases: the training phase and the

testing phase. During the training phase, the ML algorithm is executed by

feeding network traffic data for the purpose of identifying and differentiating

patterns in the network traffic, the ML algorithm learns the network traffic

patterns. After the training phase of the ML model, is used to predict the

category of unseen network traffic during the testing phase [71].

ML based network traffic classification process consists of five major steps

followed in sequence. The significant steps are: 1) data collection, 2) data pre-

processing, 3) feature extraction, 4) model training and 5) performance

analysis [74].

ML methods have been proved as faster and accurate methods for network

traffic classification in comparison to the conventional port-based and

payload-based classification methods. These methods work equally well for

encrypted network traffic. However, the accuracy of the ML method relies

upon the quality and quantity of the training data in addition to the selection

of right features extracted from network traffic. Extraction and selection of

appropriate network traffic features play a critical role in the successful

discrimination of network traffic patterns. However, this task has become

difficult due to the increased complexity of modern networks and their

applications [75].

45

ML methods can be broadly categorised into three categories for network

traffic classification in general. The significant categories involved supervised

ML methods, unsupervised ML methods, and semi-supervised ML methods

[71].

Supervised ML methods require labelling the instances of network traffic.

During the training phase the ML classifier infers the model parameters (SVM)

or the rules (decision tree).

The trained ML model predicts the label of unknown traffic instance to already

learnt labels automatically during the testing phase. Generally, a feature

selection or reduction process is applied before using supervised learning for

selecting the most relevant features for classifying network traffic. Several ML

methods have been used in supervised learning modes such as decision

trees, Naive Bayes, K-Nearest Neighbour (KNN), SVM, and neural networks

[76].

Unsupervised ML methods are helpful for network traffic classification when

label data is not available. These methods are capable of extracting significant

traffic patterns from unlabelled training data. Unsupervised ML methods are

capable of detecting unknown traffic classes [77]. These methods have been

widely used in network traffic classification due to the availability of

unlabelled traffic [78].

Several methods have been developed in unsupervised learning, such as

clustering. This method classifies the network traffic into similar groups based

upon similar characteristics of network traffic. The most commonly used

methods involve a K-means clustering method and the DBSCAN clustering

method [79]. Clustering methods have been successfully employed for

differentiating web and P2P network traffic in [80].

46

Semi-supervised ML methods offer characteristics of both supervised and

unsupervised ML methods. Semi-supervised methods enable the labelling of

unlabelled network traffic based upon a limited amount of labelled network

traffic. This process is generally known as label propagation [81]. The

emergence of new applications and new types of network traffic require the

application of semi supervised ML methods for detecting zero-day network

traffic [82, 83]. For example, semi-supervised ML methods have been used for

network traffic classification in [84]. Glennan et al. [84] used K-means

clustering method for clustering the network traffic and passed the detected

clusters to the supervised decision tree ML method to label network traffic

based upon the available label in the labelled training data set.

Similarly, Ran et al. [85] have also used K-means clustering method followed

by KNN as supervised ML method for network traffic classification and

labelling the unlabelled network traffic.

3.4 Steps of ML Traffic Classification

ML based network traffic classification process consists of five major steps

following in sequence. The significant steps include data collection, data pre-

processing, feature extraction, model training and performance analysis. The

detail is provided as below.

1) Data collection:

 Data collection is the important and most significant step in applying ML

methods to any problem. The goal of this step is to gather sufficient

information regarding the problem at hand. It involves applying different

procedure of measuring the data using digital or physical sensing devices. The

collected data describes the current status, and it is used to define the

benchmark data set. Different types of data samples are gathered under

multiple experimental scenarios to define the benchmark dataset [60].

47

In the case of traffic classification, the data collection step involves the

collection of a large representative network data without any bias [86].

Network data may be collected from network sessions, and traffic traces at

different network layers depend upon the application requirement. For

example, network traffic classification requires collecting packet level data

labelled with their respective applications [87]. Data can be collected in two

phases, offline and online. The offline phase involves the collection of

historical data for the training of the ML model. In contrast, the online phase

consists of real time network traffic used as inputs to train the ML model.

2) Feature extraction:

Feature extraction involves driving or computing the significant

characteristics of the traffic, representing the current state of the process [60].

This step involves the computation of various metrics that reflect specific

characteristics of the collected data. The primary purpose of feature extraction

is to compute descriptors for characterising the problem of traffic classification

[60, 88]. This phase produces data in form of rows and columns to represent

samples along with their labels as the target class if available.

The process of identification of relevant and non-redundant features from the

raw training data is the most significant step that unleash the potential of

data. It is also known as feature engineering in ML research community.

Extracting meaningful features from training data set generally require

domain expertise [89]. Therefore, it is a challenging and manual task. The use

of Deep Learning (DL) methods can automate the feature extraction process

[86, 90].

Several feature types have been defined in literature for network traffic

classification. The essential types of features include statistical features, graph-

based features, and time series-based features [60].

48

Statistical features are extracted from network packet flows, assuming the

traffic flowing at the network layer. The most common statistical features

include flow duration, idle time, length of the network packets, the time

between conjunctive packets. Statistical features have unique values for

different types of applications.

Graph based features represent the internal composition of networks that

enables representation into interconnected graphs [91]. In this scenario, a

network is generally assumed as a collection of interconnected nodes

representing hosts, and the edges between the nodes representing interaction

among hosts. These interactions can be assumed as a communication session

for exchanging the network packets between different nodes.

Time series based features represent the sequence of events with respect to

time. Interaction among network nodes lies in the order of events such as

opening and closing communication sessions, starting or finishing

transmission of data etc [92]. Time series features generally represent the

relationship between inter arrival time and network packet size of the given

floor and enable the characterisation of the applications using time series

representation [60].

3) Data pre-processing:

The features extracted from raw training data in the feature extraction step of

the ML process may contain some missing values and unknown values [86]. In

order to make effective use of extracted features to train the ML model, data

pre-processing strategies are applied to clean the data from missing values,

unknown values and detecting outliers. These issues of missing value,

unknown values, and outliers affect the ML model's performance.

Data pre-processing strategies also transform the data to a standard form by

using different normalisation, and aggregation operation on feature values. In

49

the aggregation process, some features are aggregated into a single feature that

becomes more valuable to characterise the network data. The normalisation

process transforms the values of a feature to a given range such that 0 to 1 [60,

86].

Another essential step during the pre-processing stage in case of supervised

ML is to check the class imbalance. The class imbalance presents a scenario

containing instances belonging to one or more classes much higher than the

other classes. Imbalanced data set may lead to biased training of ML models.

In [93] some strategies have been proposed for dealing with class imbalance

problem, over sampling data and under sampling data.

Another significant and optional step involves the selection of relevant

features used for the training of ML models [60]. The feature selection process

discards the irrelevant and redundant features for reducing the number of

features using some techniques like principal component analysis. Feature

selection helps to reduce the amount of training data that causes faster training

of ML models and avoids the curse of dimensionality problem.

Several methods have been proposed for the feature selection process. These

methods can be categorised into three categories, filter methods, wrapper

methods, and hybrid methods [94].

Filter methods involve scoring each feature based upon some computed

metric to signify the relevance of feature to characterise the target label of the

sample. Some methods in the filter category contain Gini index [95], Maximum

Relevance Minimum Redundancy (MRMR) [96], Information gain [97], Gain

ratio, and Correlation based feature selection [98].

In contrast, wrapper methods involve supervised learning for defining an

objective to determine the impact of features sets on the classification accuracy

of the model. The features providing the best accuracy are selected as the final

50

selected feature set for training of the ML model. The essential methods in this

category are the genetic algorithm and sequential search methods [99]. Hybrid

methods involve the combination of filter and wrapper methods for selecting

significant features from the training data set.

4) Model training:

The pre-processing step of ML process generates a dataset that is compatible

with the processing of any ML model [60]. Output is saved in the form of rows

and columns as CSV file format in general. The model training step involves

training the ML algorithm to solve a specific problem such as classification

problem, regression problem and clustering problem.

Supervised ML classifiers adjust their parameters for minimising the error

between actual and output of the model corresponding to a given input during

the training process. Common supervised ML classifiers include decision

trees, Naive Bayes, neural networks, KNN, SVM, and Random forest.

In contrast, unsupervised algorithms determine the association between input

without prior knowledge of output. Associations are computed in terms of

similarity or distance. Supervised models are generally used for classification

purposes, whereas unsupervised models are used for clustering purposes.

Examples of unsupervised ML models consist of K-means clustering [100], EM

clustering [101], and DBSCAN clustering method [102].

Many algorithms take advantage of supervised and unsupervised learning.

For example, the semi-supervised method exploits the unlabelled data to train

classifiers using clustering methods and labelled data to label the clusters.

Several methods have been proposed that combine the output of different

classifiers called hybrid method or ensemble methods. Examples of methods

in this category are the bagging method, stacking method and boosting

method [103].

51

Generating a well-trained ML model involves two steps, training and tuning

the ML model. We need to select an appropriate ML model as per training data

size and features of network scenario and problem category. The ML model is

trained based upon the training data set with the tuning of the

hyperparameters. There exist no well-defined theoretical guidelines for tuning

hyperparameters. Generally, it involves searching an ample space to

determine acceptable hyperparameters or to apply domain expertise to

achieve an optimised set of hyperparameters. After the training process, ML

models are validated based upon cross validation strategy for evaluating the

accuracy of the ML model [86].

Validation results signify the level of overfitting or underfitting of the ML

model. Validation results provide guidelines for optimising a ML model, such

that increasing the size of the training data set and reducing the complexity of

the model for avoiding overfitting problem [86].

5) Performance analysis:

In order to perform a comprehensive evaluation of ML models, several

objective metrics have been defined. Performance analysis step in ML process

computes performance metrics quantitatively for evaluating ML models.

Supervised learning models are generally evaluated in terms of the

classification performance of the model. Many associations have been

identified between ground truth and the prediction of the model.

The most important representation is the confusion matrix that represents the

true positives, true negatives, false positives, and false negatives in the form

of a matrix. However, the confusion matrix is not directly compared to

different ML models. Many metrics can be derived using the information

present in the confusion matrix such as classification accuracy, precision, recall

or True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate

52

(FNR), True Negative Rate (TNR), F-measure, area under Receiver Operator

Characteristics (ROC) curve, area under Precision Recall (PR) curve and kappa

statistics [60, 104].

In the case of a multi-class classification problem, the micro or macro average

of the above-mentioned performance metrics can be used to evaluate and

compare the performance of ML models. These metrics provide different

aspects of the performance of ML models [105, 106].

3.5 Classifier Taxonomy

A number of properties exist that describe each ML classifier. The following

four main properties define how the classification algorithm works, what kind

of data it requires and how good the classifier is [170, 171]:

1) Generative classifier or discriminative classifier:

Generative classifiers e.g., Naive Bayes, learn models for each class, and to

classify a feature vector, generative classifiers compute the likelihood of

each class and choose the most likely. In contrast discriminative classifiers

e.g., SVM, only learn the way of discriminating the classes in order to

classify a feature vector directly [172].

2) Dynamic or Static

Dynamic classifiers have the capability of considering the temporal

information during the classification as a sequence of feature vectors can

be classified. This involves extracting features from different time

segments in order to build a temporal sequence of feature vectors and feed

into the dynamic classifier. so dynamic classifiers e.g., hidden Markov

model, possess the ability to detect or catch the relevant temporal

variations present in the extracted features. whereas static classifiers e.g.,

53

MLP do not catch the relevant temporal variations during the classification

as they classify a single feature vector [172, 179, 183].

3) Stable or Unstable

Stable classifiers e.g., Linear Discriminant Analysis (LDA), SVM, etc., are

robust against the small changes or variations in the training set, and their

performance is not significantly impacted. In the contrast, unstable

classifiers e.g., MLP, decision tree, etc., are susceptible to the small

variations in the training set which may lead to considerable changes in the

constructed classifier [173, 174].

Training a classifier can often be divided into several stages in an attempt

to minimise the bias-variance trade-off problem. This first starts by using a

training set to estimate the classifier’s decision boundary, followed by a

validation set, which is used to test and further refine the classifier’s

decision boundary [174]. There is a natural trade-off between bias and

variance, and to achieve a low classification error both bias and variance

must be low. Stable classifiers tend to have a high bias and a low variance,

whereas a low bias and high variance are observed in unstable classifiers

[179, 184].

Stable classifiers perform better than unstable classifiers in the presence of

non-stationary features that vary rapidly or frequently over time or

sessions i.e., training sets coming from different sessions [179, 185].

4) Regularised classifier

Regularisation is the process of controlling or regularising the complexity

of a classifier in order to prevent overfitting. Thus, the regularised classifier

is more robust against outliers [173].

54

3.5.1 Which Classifier Goes with which Kind of data

• Noise and outliers

An outlier is defined as a data point that is different from the remaining

data. Whereas noise can be defined as errors in the values of attributes or

mislabelled class values [186]. So regularised classifiers e.g., the

regularised version of LDA (RLDA), Linear SVM, deal better than an

unregularised version of LDA in the presence of outliers and errors in the

training set. Similarly, a nonlinear SVM is more appropriate for dealing

with outliers and errors than an unregularised MLP. As they use a

regularisation parameter that enables accommodation to outliers and

allows errors on the training set. This results in increasing the

generalisation capabilities of the classifier [179, 185].

• High dimensionality

SVM is one of the most appropriate classifiers to handle the feature vectors

of high dimensionality, for example, features extracted from a number of

channels and from a number of time segments before combining them into

a single feature vector. Moreover, dynamic classifiers also have the

capacity to cope well if high dimensionality is due to a large number of

time segments, as they have the ability to deal with sequences of feature

vectors at a time instead of dealing with a single feature vector of high

dimensionality. KNN should not be used with high dimensional feature

vectors due to the sensitivity to the curse of dimensionality, but it can be

efficient with a small number of features [179, 185].

55

• Time information

Dynamic classifiers possess the ability to efficiently exploit temporal

information contained in features. Moreover, combining classifiers over

time can also be efficient in utilising the time information [179, 185].

• Non-stationarity

In the presence of non-stationary features, one of the efficient ways of

dealing with this issue is a combination of classifiers as it reduces the

variance. Stable classifiers such as SVM or LDA can also be applied in this

context, but this would be outperformed by combining classifiers [179,

185].

• Small training sets

In the presence of small training sets, simple classifiers with few

parameters such as LDA should be considered [179, 185].

3.6 ML Classifiers

3.6.1 Overview

This section describes the ML classifiers employed in this research for

classifying smartphone applications’ network traffic. There are a variety of ML

classifiers that exist; however, they can still be categorised into five main

tribes: Bayesians, Evolutionists, Connectionists, Analogists and Symbolists

[109, 125].

Bayesians are influenced by statistics and focused on using probabilistic

inference to evaluate a hypothesis where certain outcomes are more likely than

others. Naive Bayes is an example of an ML classifier that belongs to the

Bayesians tribe. While evolutionists are influenced by biology and natural

56

selection and they focused on using the principles of natural selection to

produce dependents that are most successful within their environment.

genetic algorithms are an example that belongs to this type of tribe [109, 125].

Moreover, from the following three tribes; connectionists, analogists and

symbolists, five commonly used ML classifiers with distinct learning

approaches were considered in this research. These ML classifiers are MLP,

KNN, decision tree, Random forests and SVM.

For example, MLP is one of popular Artificial Neural Networks (ANNs) that

is inspired by biological neural networks. MLP belongs to the connectionists

tribe that is formed of linked nodes and directed linkages. wherein each node

performs a biased weighted sum of its inputs and applies an activation

function to transfer its output to the next layer.

While both KNN and SVM belong to the analogists ML tribe, as they focus on

identifying similarities between situations and thereby inferring other

similarities. Thus, the learning rests upon building analogies between

available data. However, they differ in their learning approaches. SVM is

considered an eager learner, as the model is constructed from the training data

before classifying the unseen testing data. Whereas KNN is known as a lazy

learner. Unlike SVM, KNN has no explicit training phase. Instead, the learning

phase is deferred till the test cases are executed against the model.

Finally, decision trees and random forests belong to the symbolists ML tribe,

where knowledge is built by constructing symbolic representations of a

concept. However, the main distinction between decision tree and random

forests is that the random forest is an ensemble-based learning method that

comprises multiple decision trees and is formed by using a bagging technique

along with a randomised selection of features.

57

3.6.2 Artificial Neural Networks: Multilayer Perceptron (MLP)

MLP is a feed forward neural network consisting of different layers of

interconnected neurons. It contains three layers: the input layer, hidden layer,

and output layer containing different neurons in each layer. Each neuron

performs a biased weighted sum of its inputs and applies an activation

function to transfer its output to the next layer. MLP can model any arbitrary

complexity with a number of layers and the number of units in each layer.

During the training process, weights are optimised to obtain minimum error

at the output layer [107].

Figure 3. 1: Multilayer Perceptron

Figure 3. 1 depicts an MLP network with a single hidden layer. The first layer

is the input layer which takes each training instance and passes through the

input neurons unchanged. Each neuron or node in each layer is connected to

all nodes of the following layer, and the connection between the nodes is

associated with weighting values ranging from [-1.0 to 1.0], or [-0.5 to 0.5]

58

[141]. Nodes of each layer except of the input layer, also have a constant input

called a bias that is added to the associated weights. Each neuron of an MLP

has two functions, summation, and activation functions. The summation

function is used to obtain the product of the input values, values of associated

weights and bias [108].

n

 sj = wij xi + bj (3.1)

 i=1

Equation 3.1 represents the summation function sj of the hidden neuron hj ,

where n denotes the total number of the inputs, xi is the input variable, bj is

the bias value of the hidden nodes, and wij refers to the connection weight

between the node i of input layer to node j of the hidden layer.

The next step is the application of the activation function, so the result of the

computation in equation 3.1 of the summation function is passed onto an

activation function to produce the output of the neuron [169]. An activation

function is also known as a squashing function because it restricts the output

values of neurons in hidden and output layers onto two small values. A

number of activation functions exist and can be utilised in MLP, these include

linear function, heaviside step function, gaussian function, etc [107, 141]. The

most common is the S-shaped sigmoid function, which can be stated as

follows:

 1

 fj (sj) = (3.2)

 1 + e -sj

Σ

59

Therefore, the final output of neuron hj in hidden layer is:

n

 hj = fj (wij xi + bj) (3.3)

 i=1

And the predicted output of node yk in the output layer is calculated as

follows:

m

 yk = fk (wjk hj + bk) (3.4)

 j=1

where m is the total number of hidden nodes, fk is the activation function of

node yk of output layer, bk is another bias value for nodes in output layer, and

wjk refers to the connection weight between the node j of hidden layer to node

k of output layer.

During the supervised training of an MLP, weights and biases are learned

usually using the backpropagation algorithm to approximate an unknown

input-output relation. Therefore, the objective is to minimize the difference

between the network's prediction and the actual output [107].

An MLP without a hidden layer is called a perceptron and is applied to classify

the linearly separable data, but it is not well suited for nonlinear cases.

whereas an MLP solves this issue and is applied to classify the data that are

not linearly separable. This is because each neuron in the hidden and output

layers has a nonlinear activation function allowing an MLP to distinguish data

that is not linearly separable [187, 188].

Σ

Σ

60

MLP is the most popular and widely used neural network architecture which

has been successfully applied in solving a wide variety range of classification

and regression problems [175, 176].

An MLP is known as a universal approximator the strength of an MLP lies in

the fact that is capable to approximate any smooth function to any desired

degree of accuracy as long as the number of hidden layer neuron increases

[177]. However, this makes a classifier sensitive to overtraining which causes

overfitting, meaning that the classifier tends to memorise the training data

causing it to generalize poorly on unseen data [178, 179].

One of the most common limitations of an MLP that restricts and complicates

its application lies in its knowledge representation. This is known as black box

limitation; the weights of an MLP provide no explicit information that users

could be able to interpret, thus, it is difficult to acquire explicit information

about the underlying function implemented by an MLP [180].

Another common limitation of an MLP is associated with the optimisation

algorithm. The backpropagation algorithm during the weights and biases

adjustment to minimise the prediction error using the gradient descent

method does not guarantee to find the globally optimal set of weights and

biases during the training. As a result, becomes trapped in local minima

instead of finding the global minimum [181, 182].

3.6.3 Lazy Learner: K-Nearest Neighbour (KNN)

KNN is a supervised machine learning method for solving classification and

regression problems. It works by analysing the distance between input data

samples. KNN is also known as a non-parametric lazy learning algorithm.

Non-parametric means the learning algorithm makes no assumptions about

the structure or distribution of the underlying data. Being a lazy learner means

there is no explicit learning phase, instead the learning phase deferrers till the

61

test cases are being executed against the model [117]. KNN is also called an

instance-based learning algorithm, as it stores the training set and for

classifying a new unclassified instance or test record, it firstly searches through

the training set for the most similar instances (k nearest neighbours) using a

distance measure function, and then classifies the test record according to the

majority class among k nearest neighbours [118].

To define which of k nearest neighbours in the training set are the most similar

to the new test sample, a distance measure function is used. various distance

functions have been used in the literature such as Euclidean Distance,

Hamming Distance, Manhattan Distance, etc., among these distance measure

functions; Euclidean is the most popular and widely used one [189, 190].

Euclidean distance is calculated as the square root of the sum of the squared

differences between the elements of two factors [191].

The following paragraphs will illustrate how KNN classifies a new test sample

using the Euclidean distance. Table 3.1 shows a small dataset of 5 records of

student results labelled as pass or fail (binary classification), with two input

variables: 1- mathematics 2- computer science [118, 191].

Table 3. 1: Small training set of student results

Mathematics Computer science Result (Pass/Fail)

4 3 Fail

6 7 Pass

7 8 Pass

5 5 Fail

8 8 Pass

The objective here is to classify a new unlabelled test sample given in table 3.2

into class pass or fail.

62

Table 3. 2: An unlabelled testing set

Mathematics Computer science Result (Pass/Fail)

6 8 ??

The training set in table 3.1 contains only two features, so the KNN algorithm

treats the features as coordinates in a two-dimensional feature space.

The first step is to calculate the Euclidean distance between the new test

sample or instance in table 3.2 and all instances in the training set in table 3.1

based on the following Euclidean distance formula:

Euclidean distance = √ (xo1 – xa1)2 + (xo2 – xa2)2 (3.5)

where o represents the observed value that given in test sample, and a

represents the actual value in a training set.

Table 3.3 lists the Euclidean distances between each training instance and the

new unlabelled test sample.

Table 3. 3: Euclidean distances for training data to the new unlabelled instance

No
Euclidean

measure

Squared

difference

Sum of squared

differences

Square root

of the sum
Distance

1
d=

√(6−4)2+(8−3)2

(6 - 4)2 = 2

(8 - 3)2 = 5

(2)2 + (5)2

= 4 + 25 = 29
√29 5.38

2
d=

√(6−6)2+(8−7)2

(6 - 6) = 0

(8 - 7) = 1

(0)2 + (1)2

= 0 + 1 = 1
√1 1

3
d=

√(6−7)2+(8−8)2

(6 - 7) = -1

(8 - 8) = 0

(-1)2 + (0)2

= 1 + 0 = 1
√1 1

4
d=

√(6−5)2+(8−5)2

(6 - 5) = 1

(8 - 5) = 3

(1)2 + (3)2

= 1 + 9 = 10
√10 3.16

5
d=

√(6−8)2+(8−8)2

(6 - 8) = -2

(8 - 8) = 0

(-2)2 + (0)2

= 4 + 0 = 4
√4 2

63

For this case, the value of k is set to 3 for the KNN algorithm, so that the new

unlabelled test sample would be classified according to the smallest distance

or closest 3 data points or neighbours to it.

Thus, The K = 3 most similar neighbours with minimum distances to the new

unlabelled test instance are: no 2, no 3, and no 5. Now, we apply the majority

of voting technique and select the majority class in the neighbours. In this case,

all the three neighbours have the same class label of pass. Therefore, the new

unlabelled test instance will be classified as pass.

The value of k (number of neighbours) is considered an important

hyperparameter that plays a crucial role in the KNN algorithm, when the

value of k decreases or increases, a major change in the outcomes of the KNN

classifier can be noted. For the classification, it is recommended to select a k

with odd values to avoid a tie in the voting phase. Decreasing the k value e.g.,

k = 1, might lead to misclassification, particularly in the presence of noisy

samples. It could be possible that the nearest neighbour of this particular

sample is one of the noisy samples, resulting in a wrong prediction. Moreover,

a smaller k value = 1, could sharpen the boundaries and might lead the

classifier towards overfitting, tending to memorise the training set at the cost

of generalisability. In contrast, k with large values is more robust to noise due

to the contribution of more neighbours during majority voting. So, it is more

likely a classifier keeps making more accurate predictions when the value of k

increases till a certain k value, in which after that certain point, classifier’s

accuracy starts to decrease, thus this would be the point of an optimal k value

[117, 192].

In some cases, it is common that some features are more relevant than others,

when the number of irrelevant features increases, the distances computed in

the KNN classifier will be dominated by these features. This is known as the

curse of dimensionality. Generally, most ML classifiers suffer from irrelevant

64

features, as a result, they perform poorly. But KNN is more sensitive to the

curse of dimensionality than other classifiers in the presence of irrelevant

features and its performance is heavily degraded with a large number of

features in comparison to other classifiers [117, 193].

KNN is fast in training as it does not require building a model, but for

classifying a new instance, the distance between the new instance and all

instances in the training set must be calculated, which makes the KNN slow in

the testing phase and this becomes significantly slower as the number of

examples increases [117].

3.6.4 Decision Tree

Decision tree is a supervised ML method that involves building tree shaped

graph to predict possible output corresponding to input values. The built tree

contains one root element and some internal elements called decision nodes,

used to test the input against a learnt expression. The leaf nodes of the tree

correspond to the final prediction of the classifier. The decision tree is used to

drive decision rules for solving the decision problem by starting at the root

node and moving downward to word leaf nodes to predict the target class.

Many variants have been proposed in decision trees classifiers such as

Iterative Dichotomiser 3 (ID3), and C4.5 [110].

3.6.5 Ensemble-Based Learner: Random Forest

Random forest is a supervised learning algorithm that is used for solving both

classification and regression problems. Random forest is a popular ensemble-

based learning method that is formed by using a bagging technique along with

a randomised selection of features.

Bagging, which stands for bootstrap aggregating is an ensemble learning

technique in which a homogeneous group of individual learners of the same

65

type also known as base learners (e.g., decision trees) are trained

independently and in parallel then their predictions are combined. For the

classification, a voting method is adopted whereas averaging method is

applied for regression [194].

The bagging process is described as follows: given the original data set D

consisting of m samples and since bagging employs bootstrap sampling

method, thus one sample is randomly picked from the original data set D and

copied into a sampling set D’ and then placed back into the original data set D

so it has the opportunity to be picked once again and copied into D’.

So, by repeating the process of sampling with replacement m times, a bootstrap

sampling data set D’ is constructed consisting of m samples. Due to sampling

with replacement, a number of samples may be repeated in D’ while other

samples from the original data set D may never appear in D’ even if the size

of D’ data set is equivalent to the original data set D. So, the probability of a

particular sample not being selected from D in any of m rounds is (1 - 1/m)m.

 lim 1 1
m →∞ m e (3.6)

This means that around 36.8 % of the original samples are not included in D’.

Furthermore, applying the process of constructing a bootstrap sampling data

set D’ for T times results in T data sets where each consists of m bootstrap

samples. Next, the base learners are trained on these data sets, then in the test

stage the results from the base learners are combined and the final prediction

for the classification is made by conducting the majority voting among the

base learners. Moreover, in case of multiple classes have the same number of

votes, one can be chosen at random, or confidence of votes can be further

investigated [194, 199].

m

m

(

(

)

)

1 -

1 -

=

=

≈ 0.368,

≈ 0.368,

66

Since the effectiveness of ensemble learning depends on whether or not all

individual learners are diverse enough, therefore the main idea is to enhance

the diversity between the individual learners which is achievable by

introducing some randomness into the learning process. Thus, bagging

introduces diversity through data sample manipulation which is particularly

useful with unstable learners that are sensitive to training data manipulation,

thus when bagging is applied to unstable learners such as decision trees it

helps in reducing the variance which alleviates overfitting [194, 111].

Random forest is an extension of bagging and is constructed by using the

bagging technique along with the randomised selection of features.

Random forest further enlarges the diversity among the base learners by

employing both data sample manipulation and input feature manipulation.

Thus, each tree in the Random forest is built from a different random subset

of the features which is also known as subspace sampling. The random

sampling of the features avoids the domination of some strong features that

have more predictive power for the output class, as no matter how many

bootstrap samples are used, stronger features will be selected alone in many

trees leading to high tree correlation. Therefore, Random forest helps in

reducing the correlation between the trees in the ensemble by adding extra

randomness into the tree-growing process. More specifically, instead of

searching for the best feature when splitting a node, the algorithm searches the

best feature only across randomly selected features from the feature set [115,

217].

Hence, adding the random selection of features on top of bagging encourages

diversity and leads to a better generalisation ability. Additionally, the training

time of each tree is reduced [194, 199].

67

Each tree in the Random forest is constructed based on the following steps

[115, 194]:

Step 1: Given the original data set D, follow the bootstrap sampling

method with replacement by randomly picking samples from the

original data set D copying them into sampling set D’ and placing them

back into D. The size of the sampling set D’ is adjustable parameter, the

most common choice is |D’| = |D|.

Step 2: Train the decision tree on D’ with one major modification,

instead of evaluating all the features to find the best split point to split

the node, consider only the randomly selected features m from the

feature set p.

The size of the random subset of features m that is considered at any

given split is also a free parameter. Typically for the classification

problem, the most common choice is using the square root of the total

number of features m=√p.

For the classification, based on the majority voting method where an ensemble

consists of T decision trees {h1, h2,. . . , hT}, where hi predicts the class label {c1,

c2, . . . , cN}, given a test sample x, hj
i (x) is the output of hi on test sample x for

the class label cj.

H(X) = C argmax hj
i (x). (3.7)

No particular value type assumed in the above equation, however, in case of

assuming the class label hj
i (x) ∈ {0, 1}: then the output would be 1 in case of hi

predicted the class label as cj and otherwise 0. Figure 3.2 illustrates the

graphical formulation of Random forest.

 T

i=1

 T

i=1

Σ
j

Figure 3.

7: Naive

Bayesj

68

In addition to the advantage of diversity generation mechanisms employed by

the Random forest to enhance the diversity among the base learners which

consequently leads to a better generalisation ability. Another advantage of

using Random forest is its ability to measure the importance of each feature

across all trees in the forest in terms of their contribution to the classification

and then sorting the features in descending order according to their predictive

power for the output class [208, 115].

However, in terms of disadvantages, Random forest is less interpretable by

users and requires more time to build compared to a single tree classifier. This

is due to a large number of trees being used as base learners in which each tree

is heavily influenced by random selections of samples and features [207, 218].

3.6.6 Support Vector Machine (SVM)

SVM is used for both regression and classification tasks, but it is more

commonly applied in solving classification problems [117]. Despite the ability

of SVM to perform linear classification, moreover, in cases when the original

data set is linearly non-separable in the original input space, SVM uses the

kernel trick to transform data from the original input space into higher

Figure 3. 2: Random forest [116]

69

dimensional feature space. Once this transformation is achieved in this feature

space, a linear hyperplane is obtained to separate the different classes involved

in the classification task [111].

The goal of the SVM is to construct a hyperplane, i.e., a decision boundary that

has a maximum margin (distance) between samples of different classes.

Support vectors are the nearest data points to the hyperplane that affect the

position and the orientation of the hyperplane and based on these support

vectors, classifier's margin is maximised [117].

3.6.6.1 Linear SVM

Assuming the training data is linearly separable, the basic concept of the

classification is to find a separating hyperplane that separate the samples of

different classes, given a training set D defined by the following:

D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, yi ∈ {−1,+1}. (3.8)

Where yi is either 1 or -1 for positive and negative classes. However, a number

of separating hyperplanes possibly could be constructed as shown in figure

3.3. In comparison to other hyperplanes, the hyperplane in red is precisely

right in the middle of the two classes and it has the maximum separation

distance from all training samples, and that is the one that should be chosen.

Moreover, the red hyperplane is more robust against noises in data, as is less

likely to be affected in the presence of small perturbations in the data, thus it

provides better generalization capability [194].

70

The hyperplane can be expressed as the following linear function:

w1x1 + w2x2 +· · · + wdxd + b, (3.9)

where wd is a coefficient or weight, xd is the input variable, and b refers to the

bias [194, 195].

Or commonly written in the vector form

w T x + b = 0, (3.10)

where w = (w1;w2; . . . ;wd) is the normal weight vector that controls the

direction of the hyperplane, x is input vector and b is the bias offset which

controls the distance between the hyperplane and the origin. So, w is slope and

b is the intercept which determine the separating hyperplane [194], and the

distance from any sample x to a hyperplane can calculated as:

|w T x + b| (3.11)

 ||w||

Figure 3. 3: Multiple hyperplanes separating samples of two classes [194]

71

Figure 3. 4: SVM

As depicted in figure 3.4, if the hyperplane (w, b) perfectly separates the

training data points for ∀ (xi , yi) ∈ D, there is:

w T xi + b ≥ +1, yi = +1,

w T xi + b ≤ -1, yi = - 1, (3.12)

The nearest data points to the hyperplane called support vectors in which

equality holds for in (3.12), and the total distance from support vectors of two

different classes to the hyperplane called margin [111, 194]. Expressed as

 γ = 2 (3.13)

 ||w||

The next step is to find a maximum-margin hyperplane it also means finding

the parameters w and b that maximise γ subject to the constraints in (3.12), that

is:

max 2

w, b ||w|| (3.14)

72

s.t yi(w T xi + b) ≥ 1, i = 1, 2,…., m.

To maximize the margin is the same as minimising ||w||2 thus (3.14) can be

rewritten as:

min 1

w, b 2 (3.15)

s.t yi(w T xi + b) ≥ 1, i = 1, 2,…., m.

This is known as the primal form of SVM. (3.15) is a convex quadratic

programming optimisation problem which can be approached by introducing

Lagrange multipliers and based on Karush–Kuhn–Tucker (KKT) conditions

[194, 196]. Adding the constraints with Lagrange multiplier αi ≥ 0 for each

training example in (3.15) gives the Lagrange function:

 = + (3.16)

Where α = (α1; α2; . . . ; αm). Taking the partial derivatives of L(w, b, α) with

respect to w and b and setting those to zero, we obtain

 (3.17)

 (3.18)

Furthermore, by Substituting (3.17) into (3.16) w is eliminated from L(w, b, α).

Then with the constraint (3.18), the problem can be reformulated to the dual

form problem expressed as follows:

 m

j=1

 m

1
2

1

||w||2

||w||2

L(w, b, α)
1
2

||w||2

 m

i=1
Σ αi(1 – yi(w T xi + b))

w =

w =

Σ
 m

 i=1

 m

 i=1

αiyixi

αiyixi

0 =

0 =

Σ
 m

 i=1

 m

 i=1

αiyi

αiyi

 m

i=1

 m

i=1

Σ max
 α

max
 α

α -

α -

Σ
 m

i=1

 m

Σ αiαjyiyj xi T xj

αiαjyiyj xi T xj

 m

i=1

73

 s.t. (3.19)

Once the above dual optimisation problem is solved, we can obtain α of

Lagrange multiplier in (3.16) corresponding to training data points (xi,yi), and

subsequently w and b are obtained [194, 197]. Then, the desired model is

obtained:

 = (3.20)

Since (3.15) is an optimisation problem with inequality constraints. The KKT

must be satisfied.

ai ≥ 0;

yi f (xi) - 1 ≥ 0; (3.21)

ai(yi f (xi) - 1) = 0.

Thus, for any training point (xi, yi) we either have data points whose

corresponding Lagrange multiplier αi > 0 or αi = 0. When αi > 0 or yi f (xi) = 1,

these data points are the support vectors, thus the maximum-margin

hyperplane depends only on these points which are used in the summation in

(3.20). While the rest of data points whose corresponding Lagrange multiplier

αi = 0 are not the support vectors and have no impact on maximum-margin

hyperplane, so removing them once the training is completed, results in the

same maximum-margin hyperplane for the linear SVMs as the final model

only depends on the support vectors [111, 194, 195].

Σ αiyi = 0

αiyi = 0

αi ≥ 0, i = 1,2,…, m.

αi ≥ 0, i = 1,2,…, m.

f (x) = w T x + b

f (x) = w T x + b

 m

i=1

 m

i=1

Σ aiyixi
T x + b.

aiyixi
T x + b.

74

As the final solution of SVMs relies on a small number of training data points,

SVMs are also called sparse models or machines. Sparse models are usually

not Susceptible to limitations such as outliers and overfitting [111].

Finally, to compute the bias b, we can observe that there is ysf (xs) = 1 for every

support vector (xs, ys), that is

 (3.22)

It is possible to obtain the b by substituting any support vectors into the equation

(2.22), however it is more convenient to average over all support vectors and compute

b as:

 (3.23)

Where S denotes for index set of all support vectors S = {i| αi > 0, i = 1, 2, . . .

,m} is the index set of all support vectors [194, 198].

3.6.6.2 Soft SVM and Regularisation

The SVM formulation discussed previously is known as the hard margin SVM,

which is only suitable for linearly separable data. However, in situations when

the training data are not completely separable [196], the maximum-margin

hyperplane may not exist [111].

The hard margin requires all training data points to be correctly classified

subject to the constraints (3.12), whereas the soft margin allows violation of

the constraint

yi(w T xi + b) ≥ 1, (3.24)

i∈S

i∈S

Σ aiyixi
T xs + b = 1,

aiyixi
T xs + b = 1,

ys

ys

(

(

)

)
s∈S

s∈S

Σ aiyixi
T xs

aiyixi
T xs

b =

b =

 1
|S|

 1
|S|

(

(

 1

 ys

 1

 ys

-

-

Σ

i∈S

i∈S

)

)

75

To be specific, the soft margin aims to maximise the margin and

simultaneously tries to minimise the number of data points violating the

constraint. In this case, nonnegative slack variables ξi ≥ 0 are introduced for

each training data point to allow some of data points to be inside the margin

or even at the wrong side of the hyperplane [199].

Thus, each training data point has a corresponding slack variable that

indicates the level to which the constraint (3.24) is violated [194].

The primal form of SVM in (3.15) is extended by adding the slack term to the

objective function resulting in the following soft margin optimisation problem

[111]:

 min 1

w, b, ξi 2 (3.25)

s.t yi(w T xi + b) ≥ 1 - ξi

 ξi ≥ 0, i = 1, 2,…., m.

Where the regularisation term C is a hyperparameter that controls the trade-

off between the margin maximization (corresponding to minimising ||w||

2 /2) against slack variable minimisation (corresponding to minimising the

sum of the slack terms) [195. 199]. By increasing the C value, a tighter margin

is obtained, and more effort is made on minimising the number of

misclassifications. In other words, large values of C forces all the training data

points to obey the constraint (3.24) which is equivalent to (3.15) that is the hard

margin [194, 196].

On the other hand, decreasing the C value result in relaxed margin, and

permits some data points to violate the constraint in order to achieve a large

margin[194, 196]. Figure 3.5 shows the effect of large and low values of the

regularisation parameter and margin violation, C2 has a tighter margin and

||w||2

||w||2

+ C

+ C

 m

i=1

 m

i=1

Σ ξi

ξi

76

fewer training data points are within the margin, whereas C1 has a wider

margin.

Figure 3. 5: the effect of large and low values of the regularisation parameter C
[196]

The problem in (3.25) again is a quadratic programming problem similar to

(3.15), hence, to resolve the optimisation problem in (3.25) the same procedure

of resolving (3.15) is followed [111].

The soft-margin dual problem is almost identical to the hard-margin dual

problem presented in (3.19), the only difference is that each dual variable is

currently upper bounded by the regularization parameter C (0 ≤ αi ≤ C) [111,

196, 197].

3.6.6.3 Nonlinear SVM: the Kernel Trick

In situations when the training data are not linearly separable in the original

input space it may become linearly separable in a higher dimensional space.

77

In such cases training data are mapped from the original input space into a

higher dimensional feature space in which the linear classification can be

applied [111].

Let φ represent feature vector x that is mapped into the feature space, so the

separating hyperplane model can be represented as follows in the feature

space:

f (x) = w T φ (x) + b, (3.26)

And its dual formulation is

 s.t. (3.27)

To solve (3.27) it is required to calculate the inner product φ(xi) T φ(xj) of the

mapped feature vectors of xi and xj. However, since the direct calculation of

φ(xi) T φ(xj) is difficult as the mapped feature space could have high or even

infinite dimensionality [194]. Therefore, we assume there exists a function

denoted as:

k(xi , xj) = (φ(xi), φ(xj)) = φ(xi) T φ(xj), (3.28)

This indicates that by the application of the function κ(·, ·) the inner product

of vectors of xi and xj in the feature space can be calculated in the input space

using the kernel function, so there is no need to perform the calculation of the

inner product in the feature space (this process is called kernel trick) [194].

Thus (3.27) can be rewritten as:

 m

i=1

 m

i=1

Σ max
 α

max
 α

α -

α -

1
2

1
2

Σ Σ
 m

i=1

 m

i=1

 m

j=1

 m

j=1

αiαjyiyjφ(xi) T φ(xj)

αiαjyiyjφ(xi) T φ(xj)

 m

i=1

 m

i=1

Σ αiyi = 0

αiyi = 0

0 ≤ αi ≤ C, i = 1,2,…, m.

0 ≤ αi ≤ C, i = 1,2,…, m.

78

 s.t. (3.29)

Solving it gives

 =

 = (3.30)

where k(·, ·) represents the application of a Kernel function to the SVM, from

(3.30) we notice that by applying the kernel functions the optimal solution

could be expanded by training data points, and this expansion is so-

called support vector expansion [194].

A function could be specified as kernel function k(·, ·) if the details of mapping

φ(.) are explicit. However, φ(.) usually are unknown, thus for a function to be

a valid kernel function it must satisfy a certain condition known as Mercer's

theorem condition. Thus, according to the Mercer's theorem a valid kernel

function must be symmetric with a positive semi-definite kernel matrix [111,

194].

Let X denote the input space, and k(·, ·) is a symmetric function on X × X.

Then k is a valid kernel function if and only if its corresponding kernel matrix

is positive semi-definite for any training set [111, 194].

Therefore, for every positive semi-definite kernel matrix there always would

be a corresponding mapping φ meaning that every kernel function implicitly

1
2

 m

i=1

Σ max
 α

α -

 m

i=1

Σ
 m

j=1

Σ αiαjyiyjk(xi , xj)

 m

i=1

 m

i=1

Σ αiyi = 0

αiyi = 0

0 ≤ αi ≤ C, i = 1,2,…, m.

0 ≤ αi ≤ C, i = 1,2,…, m.

 m

i=1

 m

i=1

Σ aiyiφ(xi) T φ(x) + b

aiyiφ(xi) T φ(x) + b

 m

i=1

 m

i=1

Σ aiyik(x , xi) + b,

aiyik(x , xi) + b,

 f (x) = w T φ(x) + b

 f (x) = w T φ(x) + b

79

specifies a feature space, but we may not know explicitly the details of the

feature mapping. For this reason, the selection of kernel is the biggest

uncertainty for SVMs. Because selecting a poor kernel would map the training

data into a poor feature space resulting in poor performance [194].

Table 3.4 shows different kernel functions commonly used in SVM for

nonlinear data classification [194].

Table 3. 4: Kernel functions

Name Expression

Linear kernel k(xi , xj) = xi T xj

Polynomial kernel k(xi , xj) = (xi T xj)d
d ≥ 1 denotes the degree of the polynomial when the
degree reduced to d = 1 it represents the linear kernel.

Gaussian kernel

 k(xi , xj) = exp (-)
also called RBF kernel, parameter σ ≥ 0 controls the
width of the gaussian.

3.6.6.4 Multiclass SVM

Since the SVM is originally designed for binary classification, thus it does not

support multiclass classification natively. However, the binary SVM can be

easily extended to accommodate multiclass classification. The following are

the two commonly used approaches with the SVM to perform the multiclass

classifications [111, 196]:

One versus One (OvO)

Given a training set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where yi ∈ { C1, C2, . . .

, CN,}, based on the number of classes N, OvO approach constructs a binary

classifier for each pair of classes resulting in N(N − 1)/2 classifiers. For

example, if N = 4 classes, then we have 4(4 − 1)/2 = 6 classifiers. OvO approach

assigns a pair of classes Ci as positive and Cj as negative and trins the classifier

||xi - xj||2

||xi - xj||2

2σ

2

2σ

2

80

to distinguish between them. So, after classifying the new the test sample by

all classifiers, the final class is determined by voting, and the class that received

the most votes is assigned to the testing sample [194, 200].

One versus All (OvA)

This is also known as one versus rest, OvA approach constructs a binary

classifier for each class, each time one of the classes is compared against the

rest of classes n -1. For example, if N = 4 classes, then we have 4 classifiers and

during the training each class is considered as a positive while the remaining

3 classes n - 1 are considered as negative. During the testing phase if one of the

classifiers predicted a new test sample as positive, then this would be

considered as the final classification. However, in case a number of classifiers

have predicted the test sample as positive, then the final classification result is

considered based on the prediction confidences, where the class with highest

confidence is assigned to the testing sample [118, 194, 200]. A demonstration

of OvO and OvA approaches are shown in figure 3.6.

Figure 3. 6: Demonstration of OvO and OvA approaches [194]

81

3.6.6.5 Strengths and Weaknesses

Some common strengths and weaknesses of the SVM classifier are listed

below[197, 201]:

Strengths of SVM

• Training the SVM can lead to a unique solution since is formulated as a

quadratic programming problem, this is one of the key benefits of SVM

over MLP, whereas an MLP classifier is known to have multiple local

minima and thus may not be robust enough against the unseen data.

• Unlike the MLP which uses the sum of squares error to minimize the

errors caused by outliers. As discussed in subsection 3.6.6.2, SVM uses

the regularisation parameter C to control the misclassification error, by

increasing the C value, a tighter margin is obtained, and more effort is

made on minimising the number of misclassifications. Thus, outliers

can be suppressed with a proper selection of the C value.

• Better performance than an MLP in the presence of limited data.

• One of the main differences compared to an MLP is mapping the

nonlinear data from the original input space into a higher dimensional

feature space, this provides an efficient and more accurate problem data

analysis.

Weaknesses of SVM

• The selection of an appropriate kernel function is one of the main

concerns of using the SVM. However, having selected an appropriate

kernel function, more parameters need to be determined, including

parameters of the selected kernel and the regularisation C parameter.

Thus, determining the optimal values of these parameters is a time-

consuming and challenging task.

82

• In the presence of large training data, SVM spends more time solving

the dual optimisation problem due to a large number of training data

and consequently a large number of Lagrange multipliers engaged in

finding the support vectors.

3.6.7 Comparison of ML Classifiers

Sensitivity towards data modification

- Classifiers such as decision trees and MLPs fall into the category of

unstable learners, the instability here means that a small modification

in the training data that are used for training the unstable classifier

leads to a significant change in the constructed classifier and therefore

results in large differences in the prediction results.

- On the other hand, SVM, including other classifiers such as linear

classifiers, Naive Bayes, and KNN fall under the category of stable

learners. Since they are more robust against training data manipulation

than unstable classifiers. Thus, small modifications in the training data

do not significantly influence the performance of the stable classifier.

- Moreover, Random forest which was discussed in subsection 3.6.5, is

an ensemble classifier based on the integration of multiple decision

trees and formed by using a bagging technique along with a

randomised selection of features. Since the significant feature of an

unstable classifier is that a small modification in the training data

results in a large change in the classification accuracy. Nevertheless,

Bagging helps in reducing the variance of classification error, so that

the classifier becomes more stable against data manipulation [173, 174,

194, 202].

83

Multiple classes

- Since SVM is primarily introduced for binary classification, thus in

terms of multiclass classification, SVM and linear classifiers are

incapable of handling multiple classes natively. However, the binary

SVM can be extended to perform the multiclass classification using

strategies such as OvO and OvA described in 3.6.3.4.

- In contrast, other classifiers such as KNN, MLP, Random forest, Naïve

Bayes, and decision trees are naturally capable of handling the

multiclass problem [203, 204, 205].

Model building (Training process)

- Since training the SVM requires solving the dual optimisation problem

whose number of variables is equal to the number of training samples.

Thus, in case of a large number of data used for training, SVM spends

more time solving the dual problem due to both a large number of

training data and the Lagrange multipliers involved in finding the

support vectors.

- Furthermore, SVM model selection involves determining the SVM

hyperparameters, this includes finding an appropriate kernel function

which is one of the main concerns of using the SVM. Moreover, other

SVM hyperparameters need to be determined such as parameters of the

selected kernel and the regularisation C parameter. The process of

finding the optimal values of these hyperparameters is called

hyperparameter tuning which is time-consuming and not easy to

perform.

- Similar to SVM the training process of MLP is slow since optimisation

techniques are used during the training and repeated for several

network weight initialisations in case a poor local optimum has been

reached [177].

84

- Both SVM and MLP generate nonlinear decision boundaries, but with

SVM the nonlinear boundary is based on a user-defined kernel

function, whereas for MLP the nonlinear boundary is learned and

refined during the training process which might require more data and

training time. Moreover, Similar to SVM determining the optimal

hyperparameters of an MLP i.e., number of hidden layers, number of

neurons in each layer, activation functions, etc. is difficult and time-

consuming [197, 201, 206].

- Moreover, decision tree and Random forest can be constructed without

the need for data normalisation or scaling. However, compared to a

single tree classifier, Random forest requires more time to build since a

large number of trees are used as base learners [207].

- Finally, since KNN is a representative of lazy learning so unlike other

classifiers it has no explicit training phase it simply stores the entire

training set during the training phase. In the testing phase for a given

testing sample, it searches through the training set for the k nearest

instances based on distance metric and classifies the testing sample

according to the majority class among k neighbours. Thus, all the

computational requirements are delayed till the classification is

performed [194].

Interpretability of classification models

- SVM and MLP are criticised as black box classifiers since the learned

classification models cannot be explicitly understood or interpreted by

users. The comparison of black-box classifiers is often made with white

box classifiers whose produced classification models provide more

transparent outputs that are easier for users to interpret [111, 194].

- White box classification models include decision trees, Bayesian

network classifiers, and KNN. On the other hand, examples of black

85

box classification models include SVM, MLP, and ensembles of

classifiers [208, 209].

- Furthermore, the term grey box could be used to describe some

ensemble-based classification models whose base learners of white

boxes. An example of a grey box model is a Random forest, which is

generally not a white box model since a large number of trees are used

as base learners in which each tree is heavily influenced by random

selections of samples and features. Hence it is not directly interpretable

by users. However, the Random forest model is still partially

interpretable by measuring the importance of features in all trees in the

forest and then sorting the features in descending order according to

their importance [208].

Sensitivity towards outliers

- MLP classifier is vulnerable to outliers since it uses the sum of squares

error to minimize the errors posed by outliers. Whereas in SVM the

regularisation parameter C is used to control the misclassification error,

so in case the value of C is large then a tighter margin is obtained and

misclassification is suppressed. Thus, by a proper selection of the C

value, outliers can be suppressed [201].

- KNN is also sensitive to outliers, since KNN classifies the new test

record by searching through the training set for the most similar or

nearest instances in the region of k-neighbourhood based on the value

of k, thus in case of existing outliers in the region of k-neighbourhood.

The classification performance of KNN is heavily affected by the

outliers, If the value of k is small then the classification decision is

heavily influenced by outliers, while a larger value of k might have

more outliers [210].

- Moreover, the performance of a single decision tree classifier could be

affected by the presence of outliers, whereas Random forest is more

86

robust to outliers, it improves the resilience of a single decision tree

against outliers because of the randomness it provides with respect to

samples and features [211, 212].

Types of data

- Many ML classifiers including but not limited to SVM, MLP and KNN

are incapable of dealing with categorical data and they require that all

their inputs must be numerical. Thus, categorical features must be

transformed into numerical values using encoding techniques such as

label encoding and one-hot encoding.

- On the other hand, classifiers such as decision trees, Random forest and

Naïve Bayes can naturally deal with categorical and numerical features

without a need for encoding [213, 214, 215].

High dimensional data

- In the presence of high dimensional data, i.e., when a large number of

features exist in a dataset, issues such as data sparsity and the difficulty

of distance calculation are faced by ML classifiers. This fact is known as

the curse of dimensionality. So, with a large number of features, KNN

is more sensitive to the curse of dimensionality and performs much

worse than other classifiers. This is because, in a high dimensional

space, similar data points will have a large distance between them

caused by the increase of dimensionality.

- Conversely, compared to other classifiers SVM is more effective in

dealing with high dimensional data [193, 214, 216].

87

3.7 Overview of Other Deep Learning Methods

DL is a subset of ML, which is constructed using multiple layers of ANNs.

Compared to simple ANNs, DL models have more hidden layers that are

organised in deeply nested network architecture [119, 120, 124].

But what particularly makes DL algorithms unique and different from ML

ones is their ability to automate the process of feature extraction, this allows

researchers to extract discriminative features with minimal human effort and

domain knowledge [119].

DL algorithms follow the same mechanism of employing multiple hidden

layers wherein the information is processed layer by layer, thus through the

multilayer architecture, the original input representation is gradually

converted from low-level feature representations into high-level feature

representations. For this reason, DL is also referred to as feature or

representation learning [119, 194]. Figure 3.7 shows the optimised features are

learned in an automated way [125].

In recent years, there has been a rapid increase in the use of DL, this is due to

the availability of large datasets and advances made in hardware technologies

in particular the computational power of Graphics Processing Unit (GPU)

[119]. Some of the most common applications of deep learning include Natural

Language processing (NLP), computer vision, pattern recognition, signal

processing and anomaly detection. Whereas the commonly used DL

algorithms include Convolutional Neural Networks (CNNs) [121], Auto

Encoders (AE) [122], Recurrent Neural Networks (RNNs) [123] and Deep

Belief Networks (DBNs) [124].

88

Figure 3. 7: Automatic feature extraction [125]

Furthermore, it is important to understand when to apply DL instead of ML,

for example, it will be challenging to use ML algorithms such as SVM or

Random forest in certain domains such as computer vision and NLP since

tasks related to these domains such as detecting and classifying objects within

images or understanding and translating language are relatively easier to

perform using DL algorithms.

However, in cases where the application of the ML algorithm would suffice,

then it should be considered rather than the DL because; computationally is

less expensive, the constructed model is more interpretable by users and

finally, it requires less data compared to DL algorithm [120, 125].

DL is known to be data-hungry and computationally expensive, training DL

algorithm from scratch requires a sizeable amount of data and intensive

89

computational power in order to achieve a well-behaved performance model

[119, 125]. However, in cases where there is a shortage of data the concept of

Transfer Learning (TL) can be utilised to tackle the issue of undersized training

data.

TL is a technique that allows transferring the knowledge of a model that

previously has learned on a source dataset to a target dataset [219]. For

example, training the CNN on a sizeable amount of data, during the training

process bias and weights are also learned, these parameters are then

transferred to a similar new model with less data and used for retraining the

new model instead of starting the process of training from scratch [119].

Fine-tuning is a common TL technique described in the following steps [219]:

• Train a new ANN model, this is a source model trained on a source

dataset.

• Create a new ANN model, this would be the target model which copies

the source model’s design and its parameters except for the output

layer, with the assumption that these parameters hold the knowledge

learned from the source dataset which also can be applied to the target

dataset.

• Next, add the output layer into the target model, whose outputs'

number corresponds to the classes in the target dataset.

• Finally, train the target model on the target dataset, only the parameters

of the output layer are trained from the scratch, while parameters of all

other layers are fine-tuned based on the target dataset.

3.8 Review of ML Methods for Network Traffic Classification

ML based classification methods are most suitable for the classification of

network traffic. These methods can differentiate different

smartphones’ applications based upon the traffic generated by them.

90

Successful implementation of ML methods depends on the features extracted

from network traffic to discriminate their applications. These features are

generally extracted from network packets and payload size [126].

Several ML methods have been successfully implemented for network traffic

classification. For instance, Shbair et al. [127] proposed a two-tier hierarchical

framework for network traffic classification. Their proposed framework can

recognise different kinds of services running within the Hypertext Transfer

Protocol Secure (HTTPS) connection based upon payload size and the time

interval between constructive packets. They used decision tree and Random

forest classification methods. The authors reported recall of more than 95%

based upon real internet traffic.

Aceto et al. [128] designed a hybrid classification method for differentiating

encrypted mobile traffic by combining multiple classification methods. The

authors reported improved performance of their proposed method over state-

of-the-art ML methods by 9.5% in terms of recall.

Fu et al. [129] proposed a method named as CUMMA to classify services in

mobile messaging applications. The authors employed Random forest, hidden

Markov model and clustering methods for detecting different services in

mobile messaging applications. They reported an accuracy of more than 96%

for WhatsApp and WeChat based traffic generated from 15 volunteers.

Taylor et al. [130] proposed a scanner application framework called

AppScanner. Their framework helps to fingerprint and identify mobile

applications. The authors demonstrated the performance of their framework

based upon network traffic generated by 110 most popular apps available at

Google Play Store. They pre-processed the network traces for removing

background traffic and extracting features of network packets. They used a

SVM and Random forest classification methods and reported more than 99%

91

accuracy for recognising different applications using their framework.

Authors of [130] have extended the AppScanner framework in [134] along

several dimensions.

Alan and Kaur [131] employed supervised ML methods for classification of

android apps. They used launch time traffic of TCP/IP headers to distinguish

android apps. They captured network traffic of 86,109 app launches by

repeatedly running 1,595 apps based on four Android devices. They

concluded that the first 64 packets in network traffic can be identified with an

accuracy of 88%, when the ML learning methods are trained and tested on the

same device. They also demonstrated that when the data from another device

(operates on different operating system) is used for testing, an accuracy of only

67% could be achieved.

The authors of [10] used SVM to classify the network traffic for a number of

smartphone applications into two categories. They applied a 6-fold cross

validation mechanism and achieved an accuracy of 88.1% for the SVM

classification model.

Zhao et al. [132] proposed RobotDroid, which is based on an SVM algorithm.

The proposed framework detects unknown malware attacks on smartphones

and mainly focuses on the disclosure of the confidential information, like

private information of the users, payment/sales related information, etc.

On the other hand, Stöber et al. [133] suggest a scheme in order to identify the

network traffic by utilising the characteristics of the traffic patterns coming

from the devices. The research also suggested that 70 percent of the traffic

belongs to the activities that are running in the background; hence, creating

fingerprints by using those activities. By creating those fingerprints, the model

can compare the incoming traffic from the fingerprints and then identify the

network traffic.

92

Erman et al. [135] performed a comprehensive experiment for comparing the

performance of semi-supervised ML methods for network traffic

classification. The authors aim to evaluate the performance power of ML

methods for detecting new application.

The authors in study [136] have evaluated clustering methods, DBSCAN and

K-means clustering methods for network traffic classification. The results

demonstrated that both K-means clustering and DBSCAN clustering methods

exhibited better performance in network traffic classification. DBSCAN

clustering method provided lower accuracy in comparison to K-means

clustering method, but it produces better clusters.

Williams et al. [137] also performed a comprehensive comparison of five ML

methods for internet traffic classification. The authors reported that the

decision tree achieved the maximum accuracy in internet traffic classification.

Bernaille et al. [138] focused on the K-means clustering method for classifying

network flows based on the first five network packets in the network flow.

They aimed to classify the real-time network traffic using the clustering

method.

Several researchers have employed deep learning methods for classifying

different applications based upon traffic generated by them.

For instance, Aceto et al. [126] use deep learning methods for classifying

mobile encrypted traffic based upon three data sets of real human user

activity. They critically analysed the use of deep learning methods in

classifying mobile encrypted traffic.

 Chen et al. [139] applied deep learning for classifying malware traffic using

features extracted from raw data and handcrafted features. They used the

weighted back propagation method and hierarchical learning to handle the

93

imbalanced dataset issue for classifying malware traffic. The authors reported

99.63 % accuracy and 85.44 % for precision based upon a synthetic dataset.

Wang et al. [140] proposed a method for malware classification based on 2D-

CNNs, using two different choices of raw traffic images. They evaluated the

performance of their method using a self-generated dataset (of ≈ 752k

instances). Which is organised into two parts: ten types of malware traffic from

public websites and ten types of normal traffic. They employed 2D-CNN for

two different scenarios: malware / normal (binary) classification and traffic

type classification (20 classes).

3.9 Summary

In summary, this chapter reviewed different network traffic classification

approaches employed in communication networks, it also reviewed the

methods of ML based network traffic classification. This was followed by an

explanation of the necessary steps required to perform ML based traffic

classification. An ML classifier taxonomy based on different properties was

also presented in this chapter, including a description of which ML classifier

goes with which kind of data. The chapter also described the commonly used

ML classifiers that were adopted in this research, including a comparison of

these ML classifiers. An overview of other DL methods was also provided in

this chapter. This was followed by a review of ML methods proposed in the

scientific literature for network traffic classification.

94

4

OPTIMISING WLANS POWER SAVING

4.1 Introduction

This chapter introduces the Context-aware Listen Interval (CALI) approach

for optimising WLANs power saving. Section 4.2 describes how smartphone

applications’ network traffic reflecting a diverse array of network behaviour

and interaction were exploited to provide the contextual inputs for training

ML classifiers of the output traffic, thus building an ML classification model.

Section 4.3 begins by justifying the selection of the chosen applications and the

assignment of output modes. It then discusses how CALI power saving modes

were employed to optimise the sleep and awake cycles of the WNIC based on

the classified output traffic. This is followed by describing the process of data

extraction and preparation employed in this research for constructing the

dataset (section 4.4). Section 4.5 begins by describing the experimental settings

employed in this chapter for traffic classification, including the description of

parameter settings for the selected ML classification models. It then evaluates

the performance of ML classifiers on Dataset 1 using 10-fold cross-validation

prior to applying feature selection methods. It also evaluates the performance

of selected ML classifiers after applying feature selection methods on Dataset

2CBFS and Dataset 3IGFS, both using 10-fold cross-validation.

4.2 Context-Aware Listen Interval (CALI)

In ML, classification is defined as a learning method that maps or classifies

instances to corresponding class labels which were predetermined in a given

95

dataset. According to Han et al. [141] data classification is a two-step process;

the first step is learning, where a classification model is built from a given

dataset, the data from which a classification model is learned called a training

set. The second step is classification, where a model is used to predict class

labels for previously unseen data. The dataset, which is used to test the

classifying accuracy of the learned model is called the test set.

In [57] we have constructed a real-world dataset based on the network traffic

of nine smartphone applications, which reflects a diverse array of network

behaviour and interaction. For high levels of network interactivity, both

Google Hangouts and Skype audio and video calls were selected. For traffic

with intermittent interactions, Gmail and Facebook were chosen. For

applications with the lowest level of interactions New Star Soccer (NSS) and

New Star Cricket (NSC) were considered. Network interactions of these

applications mostly occur during fetching advertisements. For the network

traffic that reflects applications with audio buffering capabilities, the traffic of

XiiaLive internet radio application was captured.

Figure 4.1 shows the flowchart of CALI, where instances of real-time network

traffic of each application were captured, and then manually labelled to the

right output or class. We have labelled all instances of applications with a high

level of interaction as high, instances of applications with an intermittent level

of interaction were labelled as varied, whereas instances of applications with

the lowest level of interaction were labelled as low. Finally, instances of audio

streaming application with buffering capability were labelled to buffering.

After labelling the input samples of the captured traffic of each application, an

ML classifier learns to map the input features of each sample to an output class

from the training set, constructing the ML classification model.

96

The next step is the classification, where the ML classification model is used to

predict class labels for previously unseen data. Test set is used to test the

classifying accuracy of the learned model. Subsequently the ML classification

model is capable to identify the new unobserved samples of traffic as one of

the pre-defined classes, high, varied low and buffering, e.g., the ML

classification model assigns samples of highly interactive application to the

class high in accordance with the training accomplished in the previous step.

97

Figure 4. 1: Context-aware listen interval

98

4.3 CALI Power Saving Modes

It is important to mention that the selection of the nine applications used in

this research was initially driven by [10, 41] where authors of these studies

described the network interaction of a wider range of smartphone

applications, these include: 1- real-time applications with high and constant

levels of network interaction. 2- Applications with intermittent levels of

interaction that do not always receive data, as they run in the background

while the screen is off and the WNIC wakes up intermittently when

downloading content. Moreover, 3- applications with the least levels of

network interactivity, these applications mostly are offline except for

periodically fetching advertisements. Finally, 4- audio streaming applications

with playback buffering capacity, where these applications are able to buffer

the audio stream.

Therefore, the criterion for selecting the nine applications employed in the

research was based on the four types of variation in the levels of network

interactions of the applications described in [10, 41].

Moreover, the authors in [10] assigned only two sets of priorities or modes,

high and low, for the described four different types of network traffic of

smartphone applications. Wherein no further priority levels or modes were

assigned by them to cater for firstly, applications with intermittent levels of

interaction, secondly, applications with the least levels of network

interactivity, and finally audio streaming applications with playback buffering

capacity. Instead, they assigned the three types of applications’ network into

a single mode, low.

So, having four modes assigned intuitively according to the described four

types of network traffic would be more efficient. Therefore, in CALI, four

modes: 1- Awake, 2- DLI , 3- Low and 4- buffering were assigned to cater for

99

the four different types of network traffic of applications, and the experimental

results in chapter seven, subsection 7.2.2 and 7.2.3 showed their efficacy in

optimising the sleep and awake cycles of the WNIC and reducing energy

consumption.

Moreover, in this research, we focused on the network activity of a single

smartphone application opened at a given time, therefore no additional output

class was assigned to cater for the network traffic of applications running

simultaneously such as an audio streaming app running in the background

while using a lower network usage gaming app.

Furthermore, there is room for further investigation to find the optimal

number of power saving modes that could be associated with the CALI’s

framework. This would be based on further analysis of the captured network

traffic of the applications and based on the analysed network traffic, optimal

number of power saving modes can be determined and incorporated into

CALI’s framework.

However, in order to optimise the sleep and awake cycles of the WNIC in

accordance with the applications’ network activity, we have defined four

CALI power saving modes.

These power saving modes enable additional power saving opportunities and

have been devised based on the classified output traffic of the captured

samples from a varied range of smartphone applications’ network traffic that

reflect a diverse array of network behaviour and interactions. Hence, the ML

classification model classifies the new unseen samples into one of the output

classes, and the WNIC will be adjusted to operate into one of CALI power

saving modes.

Moreover, CALI handles applications, which it cannot map to one of the four

modes by reverting the WNIC to operate in SPSM mode. That means, the

100

worst possible performance is that of SPSM, but if one of the four modes

applies, a significant performance improvement with respect to power saving

is achieved.

• Awake Mode

When the ML classification model classifies the new unseen samples of

highly interactive applications to the output class high. Consequently, the

WNIC is set to operate in awake mode.

• DLI Mode

The ML classification model classifies the traffic samples of applications

with varied levels of interactivity to the output class varied. The WNIC will

be adjusted to operate in DLI mode. We have considered employing the

DLI methodology introduced in [18]. So, the listen interval is incremented

by 1 at each time a wireless device wakes up during the listen interval and

finds no packets buffered at the AP. The listen interval reverts back to 1

when interactions occur. To prevent the listen interval from growing

excessively we set an upper bound of 10 = 1000ms for the listen interval.

Applications such as Gmail and Facebook have intermittent network

interactions and do not always receive data. Therefore, assigning the

background traffic of these applications to the awake mode would not be

efficient.

• Low Mode

The ML classification model classifies the traffic of applications with the

lowest level of interactions to the output class low. Consequently, the

WNIC will be switched to operate on low mode, with an extended value of

the listen interval. This is beneficial as network interactions of these

101

applications e.g., NSS and NCS mostly occur during fetching

advertisements.

• Buffering Mode

The ML classification model classifies samples of audio streaming

applications with buffering capability to the output class buffering. The

WNIC will be set to operate in buffering mode. The buffering mode was

defined for applications that allow users to stream audio over the Internet,

according to [142] these applications are capable to buffer several seconds

of audio stream. For such applications, switching off the WINC for short

periods of time does not impact on the playback streaming quality.

4.4 Data Extraction and Preparation

This section describes the process of data extraction and preparation

employed in this thesis. We have constructed a dataset by capturing real-time

network traffic of nine selected smartphone applications depicting different

types of network behaviour and interactions. Table 4.1 shows the chosen

applications and the degree of network interactivity of each application. All

the applications including NetworkLog installed from the official Google play

store. 150 instances of the network traffic of each application were captured

with the aid of NetworkLog, and the running time of 25 minutes resulted in a

total of 1350 instances. Samsung Galaxy S5 is used to capture all the instances

of the background traffic of the entire applications running Android version

6.0.1.

102

Table 4. 1: Applications and the degree of network interactivity

Applications Degree of interactivity

1- Skype video call

2- Google Hangouts video call

3- Skype voice call

4- Google Hangouts Voice call

High

level of interactivity

5- Facebook

6- Gmail

Varied

level of interactivity

7- New Star Soccer (NSS)

8- New Star Cricket (NSC)

Low

level of interactivity

9- XiiaLive internet radio app Buffer stream

The 9 applications represent different types of network behaviour and

interactions, for high level of network interaction; we have considered video

and voice calls of Skype and Google Hangouts. For the varied level of

interactions Facebook and Gmail have been chosen, for Gmail, 23 emails were

received at random instances. And 23 tagged posts were received at random

instances for Facebook as updates. NSS and NSC were chosen to represent all

applications with a lower degree of interaction, these applications mostly are

offline and the interaction mostly occurs during fetching advertisements.

Finally, to represent applications with audio buffering capability the XiiaLive

internet radio application was considered; we chose a random station

streaming at 128 kbps.

We have manually labelled instances of the nine applications according to the

levels of traffic interactivity in the background of each application. Figure 4.2

shows the receiving data rate in Kbytes/sec of the first 50 instances which

reflect varying levels of network interaction.

103

So, 1350 instances are used in the construction of a dataset, named Dataset 1,

with 150 instances per application and 6 features per instance. Furthermore,

four output classes were assigned to cater for the network traffic of these

applications.

Thereby out of the nine chosen applications, the first output class was assigned

to the four applications that represent real-time applications with high and

constant levels of network interaction. The reason for having four applications

for this output class is to ensure more variation in the range of network traffic

included in the training data by having two VoIP applications and two video-

calling applications. These applications are: 1-Skype video call, 2- Google

Hangouts video call, 3- Skype voice call, and 4- Google Hangouts Voice call.

Consist in a total of 600 samples and were assigned to class high.

For the remaining three types of network traffic, the second output class was

assigned to the two applications that represent network traffic with

intermittent levels of interaction. These applications are: 5- Facebook, and 6-

Gmail. consist in a total of 300 samples and were assigned to class varied.

While the third output class was assigned to the two applications that

represent the least levels of network interaction. These applications are: 7-

New Star Soccer (NSS), and 8- New Star Cricket (NSC) consist of a total of 300

samples and were assigned to class low.

Finally, the fourth output class was assigned to one application that represents

the network traffic of audio streaming applications. This application is: 9-

XiiaLive internet radio app. Consists of 150 samples and was assigned to the

class buffer.

104

Figure 4. 2: Arrays of network behaviour characterised by levels of traffic
interaction

Table 4.2 shows the full set of features extracted using NetworkLog from the

background of each application.

Table 4. 2: Full set of 6 features

Feature Number Feature Name

1 Receiving data rate in Kbytes/sec

2 Transmitting data rate in Kbytes/sec

3 Total received Kbytes

4 Total Transmitted Kbytes

5 Total number of received packets

6 Total number of transmitted packets

These features are statistical-based and unique for specific types of

applications. Additionally, inspection into the packet content is not required

to extract these features, hence statistical features have low computational

overhead and are applicable for both encrypted and unencrypted traffic [60,

105

63]. Moreover, these features reflect the applications’ network interactivity

better than non-network features like touch screen rate, as regularly touching

the screen, does not always mean that network traffic is occurring. For

instance, video games are highly interactive in terms of user and screen, but

practically non-interactive in terms of network interaction.

4.5 Initial Experiments (Traffic Classification)

This section describes the experimental setup employed in this chapter for

traffic classification, this is followed by performance analysis of the five ML

classifiers on Dataset 1, Dataset 2CBFS and Dataset 3IGFS using 10-fold cross

validation, in terms of classification accuracy, precision, recall and f-measure.

4.5.1 Experimental Setup

The main purpose of feature selection is to minimise the set of features by

eliminating any irrelevant and redundant features resulting in less

computational complexity, higher classication accuracy and maximised

generalization capability [143, 144]. Moreover, in terms of energy

consumption, the fewer the features the better they are for smartphone energy

saving.

Since the wrapper-based feature selection methods involve learning algorithm

in the elimination of irrelevant and redundant features, they are slow and

computationally expensive [145]. Therefore, to extract eliminated versions of

datasets, two widely used filter-based feature selection algorithms were

considered. These are Consistency Based Feature Selection (CBFS) and

Information Gain Feature Selection (IGFS).

CBFS evaluates all the subsets of features, in order to determine the smallest

optimum subset of features, which is consistently capable to map to the output

class as with full set of features. whereas IGFS evaluates all the features with

106

the output class; features with higher information gain value to the output

class are selected. The best first search method was applied to attribute

selection for CBFS algorithm, while the ranker method was selected for the

IGFS algorithm.

The WEKA tool was used, for the extraction and the application of the reduced

features' datasets, named as Dataset 2CBFS and Dataset 3IGFS. 1350 data

samples were included in each set representing the total of 9 applications, the

total number of six features included in Dataset 1, reduced number of 4

features were included in Dataset 2CBFS, and Dataset 3IGFS. Table 4.3 shows

the list of features after applying the CBFS algorithm, while Table 4.4 shows

the list of features after applying the IGFS algorithm, the top 4 features in

ranking were chosen.

Table 4. 3: Set of features for Dataset 2CBFS

Feature

Number
Feature Name

1 Receiving data rate in Kbytes/sec

2 Transmitting data rate in Kbytes/sec

3 Total received Kbytes

4 Total Transmitted packets

Table 4. 4: Set of features for Dataset 3IGFS

Feature Number Feature Name

1 Total received Kbytes

2 Total Transmitted Kbytes

3 Total number of received packets

4 Total number of transmitted packets

The experiments were performed with the aid of WEKA [146], a well-known

ML tool, applied in many studies including [147, 148]. v3.6.12 on a desktop

107

computer operating Microsoft Windows 7 Enterprise with Intel core i7-4770

CPU of 3.40 GHz and 4 GB of RAM, located within the university campus.

For validating the accuracy of the ML classifier in predicting/mapping the

inputs to the correct output class, and based on the recommendation of [149],

cross validation of K =10 is used to avoid over-fitting and to see how well ML

classifiers perform in classifying the unseen samples. Thus, the dataset is

divided into 10 N equal parts or portions, each portion (1/N) is used for

testing, while the remaining ((N − 1)/N) are used for training.

In order to determine the suitable ML classifier in terms of classifying

smartphone applications’ network traffic based on different levels of

behaviour and interaction, the performance of the 5 ML classifiers described

in section 3.6 will be analysed. Thus, the chosen ML classifiers are MLP, KNN,

SVM, decision tree (C4.5), and Random forest.

The performance of each classifier evaluated is based on the following metrics:

Classification accuracy: is an evaluation metric that estimates the overall

correctness of model's predictions. It calculated by dividing the number of

correctly classified instances by the total number of instances:

Accuracy = (Correctly Classified Instances) / (Total Instances).

Precision: is an evaluation metric that measures the proportion of correctly

classified instances of a particular class out of all the instances that the model

classified as that class:

Precision = True Positives / (True Positives + False Positives).

Recall: also known as sensitivity, is an evaluation metric that estimates model's

ability to correctly identify the positive instances out of all the actual positive

instances.

108

Recall = True Positives / (True Positives + False Negatives).

F-measure: also known as the F1 score, this evaluation metric combines both

precision and recall into a single value, is defined as the harmonic mean

between precision and recall and is calculated as follows:

F-measure = 2 * (precision * recall) / (precision + recall).

Moreover, it is a common practice to initially train the ML model using the

default hyperparameter setting as the baseline model and subsequently

conduct a hyperparameter optimization process to enhance the model's

performance [239].

Therefore, in this thesis, we have adopted this approach. Firstly, we trained

the selected ML models using the default hyperparameter settings listed in

table 4.5 as baseline models for the following experiments and experiments

conducted in sections 5.2 to 5.5. We then conducted a hyperparameter

optimisation process in sections 6.4 to 6.10 to further enhance the model's

performance. This was similarly followed in [240, 241, 242] where the authors

of these studies initially trained the ML model using the default

hyperparameter settings suggested by the WEKA tool and then conducted a

hyperparameter optimisation process.

Table 4. 5: WEKA default parameter settings

Classifier Parameter values

MLP - The model is defined in 3 layers (an input layer, a hidden layer, and

an output layer).

- Number of nodes in an input layer: 6 nodes correspond to 6 features

for Dataset 1. Whereas the number of nodes would be 4 for Dataset

2CBFS and Dataset 3IGFS.

- Number of nodes in hidden layer: - H = “a” = 5 nodes in a single

hidden layer. In WEKA the parameter (-H) represents a number of

hidden layers and the number of nodes in each layer, where the

default setting of this parameter in WEKA is “a” which creates a

109

network with a single hidden layer and the number of nodes =

(number of features + number of classes) /2. Thus, in the case of

Dataset 1 with 6 features, the number of nodes would be 6 + 4 / 2 =

5 nodes in a single hidden layer. Whereas the number of nodes would

be 4 for Dataset 2CBFS and Dataset 3IGFS.

- Number of nodes in an output layer: 4 nodes correspond to 4 classes.

- Learning rate (-L) = 0.3.

- momentum (-M) = 0.2.

- Activation function for nodes in the network = sigmoid.

- Number of epochs (-N) to train through = 500.

- Batch size = 100.

- The value of seed (-S) is used to seed the random number generator

which affects setting the initial weights of the connections between

nodes. However, by default the value of this parameter is = 0.

- Normalising the attributes is turned on by default.

- Validation Set Size (-V) by default is set to 0, meaning no percentage

of the data being set aside for validation and instead the network will

train till the specified number of epochs is reached.

- Occurrence of decaying (-D) the learning rate, this parameter is

disabled by default.

KNN - Number of nearest neighbours (-K) used: by default, = 1.

- Distance function: Euclidean distance.

- Attribute Indices: comma separated list of attribute indices with first

and last valid values.

- Normalisation of the attributes: this is turned on by default.

- Distance weighting: by default, no distance weight assigned.

- Nearest neighbour search algorithm (-A): a linear search by default

is used.

- Window Size (-W): it restricts the number of training instances

maintained; it drops old instances above the value being specified

according to FIFO. The default value of this parameter is = 0 means

no restriction to the number of training instances.

- Cross Validate (-X): For training data, if set to true then it determines

the optimal K value between 1 and specified K value by using hold-

one-out cross-validation. By default, this parameter is set to false.

- Number of decimal places to be used for the output of numbers in

the model: = 2.

- Batch Size: 100.

SVM WEKA SVM library: SMO.

Multiclass classification problems are solved using pairwise OvO

strategy.

110

- Regularisation parameter (-C): the default value of this parameter =

1.0.

- Type of kernel (-K): normalised polynomial kernel.

- Exponent (-E) value or degree of the normalised polynomial

kernel: by default, E = 1.0.

- Cache size: the size of the cache for the normalised

polynomial kernel by default = 250007.

- Calibrator: Logistic Regression.

- Ridge value (-R) = 1.0E-8.

- Maximum number of iterations to perform (-M): default = -1,

means until convergence.

- Number of decimal places to be used for the output of

numbers in the model: = 4.

- Batch Size: 100.

- Normalisation of the attributes: this is turned on by default.

- Tolerance parameter (-L): which determines the stopping criterion

for optimization process. By default, is = 0.001.

- Number of decimal places to be used for the output of numbers in

the model: = 2.

- Epsilon parameter (-P): which is used for controlling the round-off

error. By default, is = 1.0E-12.

- Random Seed (-W): Random number seed for the cross-validation,

by default = 1.

- Number of folds (-V): for cross-validation used to generate training

data for calibration models is -1 means use training data.

- Batch Size: 100.

Decision tree

(C4.5)

Criterion: uses the gain ratio criterion by default to select the best

split.

- Confidence factor (-C): that controls the pruning of the tree = 0.25.

- Minimum number of instances (minNumObj or -M) that must be

present in a leaf node =2.

- Reduced error pruning (-R): this parameter specifies whether to use

reduced error pruning instead of standard C4.5 pruning, however, is

not enabled by default. So = False

- Number of folds (-N): when reduced error pruning is selected, this

parameter specifies the number of folds used for reduced error

pruning where data is divided equally into specified parts and the

last one used for pruning. However, the default value is 3.

- Unpruned (-U) : is turned off by default, if enabled it builds

unpruned tree. So pruning is performed by default.

- Subtree raising (-S): Whether to perform the subtree raising pruning

operation. This parameter is enabled by default.

111

- Number of decimal places to be used for the output of numbers in

the model: = 2.

seed (-Q) for randomising the data when reduced-error pruning is

used then its default value is = 1.

- Do not make split point actual value: set to false by default.

However, If true, the split point is not relocated to an actual data

value.

- Use minimum description length correction: when finding splits, by

default is set to true.

- Collapse tree: is set to true, so parts are removed that do not reduce

training error.

- Bath size = 100.

Random

forest

- Number of trees (-I) = 100.

- Maximum depth (-depth): of trees indicates how deep the tree

would be, by default is set to 0 for unlimited depth.

- Number of features to consider in each split point (-K): is 0 which =

log2(number of features).

- Seed (-S) for random number generator: the default value of this

parameter is = 1.

- Bag size percent (-P): this parameter determines the percentage of

the training data that is used for building each tree. By default, the

value of this parameter is = 100.

- Minimum number of instances (-M): minimum number of instances

that must be present in a leaf node, by default is = 1.

- Compute attribute importance: this parameter is used for

computing and outputting feature importance based on average

impurity decrease, is set off by default.

- Break ties randomly: it breaks a tie randomly when multiple

features have the same importance. However, is set to off by default.

- Number of execution slots: use for constructing the ensemble by

default, is = 1.

- Minimum variance for split (-V): default = 1e-3.

- Batch size: 100.

Unless stated otherwise the parameters in table 4.5 are used in the subsequent

experiments.

112

4.5.2 Results and Analysis

This section analyses the performance of the five ML classifiers on Dataset 1,

Dataset 2CBFS and Dataset 3IGFS, in terms of classification accuracy,

precision, recall and f-measure.

Figure 4.3 shows the performance of the five ML classifiers based on the

classification accuracy on each of the 6 features applied in this research. The

classification accuracies of the five ML classifiers were increased with the

complete set of 6 features Dataset 1 as shown in figure 4.4. Where the highest

classification accuracy of 99.48% was achieved by the Random Forest.

Moreover, SVM produced the lowest accuracy of 96.59%. MLP achieved a

classification accuracy of 97.85%, while both KNN and decision tree achieved

accuracies of over 98%.

Figure 4. 3: Classification accuracy of ML classifiers on individual feature

113

Figure 4. 4: Classification accuracy of ML classifiers on dataset 1

Figure 4. 5: Comparison of recall, precision and f-measure on dataset 1

In terms of recall, precision, and f-measure values of the 5 ML classifiers on

Dataset 1, figure 4.5 shows that Random forest attained the highest values of

0.995 compared to all other classifiers. On the other hand, SVM had the lowest

recall, precision, and f-measure values of 0.966, 0.967, and 0.966, respectively,

when compared to all other classifiers.

Classification accuracy of the five ML classifiers on the reduced set of 4

features dataset 2CBFS; with the application of best first search method and

consistency-based feature selection technique is represented in figure 4.6.

114

However, MLP produced the same classification accuracy of 97.85% as

opposed to Dataset 1. Whereas the classification accuracy for the remaining

ML classifiers was slightly decreased in Dataset 2CBFS compared to Dataset

1. It decreased by 0.14% for KNN, and 1.71% for SVM, while the accuracy of

the decision tree decreased by 0.07% and 0.82% for the random forest.

Figure 4. 6: Classification accuracy of ML classifiers on Dataset 2CBFS

Figure 4. 7: Comparison of recall, precision and f-measure on dataset 2CBFS

Figure 4.7 shows the comparison of recall, precision, and f-measure values on

dataset 2CBFS. The recall, precision, and f-measure values of 0.979 for MLP

115

remain unchanged as opposed to Dataset 1. While the metrics values of the

rest of the ML classifiers slightly decreased in comparison to Dataset 1.

Figure 4. 8: Classification accuracy of ML classifiers on dataset 3IGFS

Figure 4.8 represents the Dataset 3IGFS, where the set of features extracted

from the full set of 6 features using the information gain technique. The top 4

features were selected based on ranker method.

KNN achieved the highest classification accuracy of 99.62% in Dataset 3IGFS.

Moreover, both SVM and decision tree produced better classification accuracy

of 98.66% and 99.11% compared to dataset 1 and dataset 2CBFS.

Furthermore, the classification accuracy of 99.33% for Random forest was

decreased compared to dataset 1. While the classification accuracy of 91.77%

for MLP was the lowest in Dataset 3IGFS compared to Dataset 1 and Dataset

2CBFS.

Figure 4.9 displays the comparison of recall, precision and f-measure values of

the five ML classifiers on Dataset 3IGFS.

The recall, precision, and f-measure value of 0.996 was the highest in Dataset

3IGFS and was achieved by KNN. Moreover, the metrics values of recall,

116

precision, and f-measure for MLP were the lowest in Dataset 3IGFS compared

to Dataset 1 and Dataset 2CBFS. Whereas both SVM and decision tree

produced better values in terms of recall precision and f-measure compared to

dataset 1 and dataset 2CBFS.

Figure 4. 9: Comparison of recall, precision and f-measure on dataset 3IGFS

Comparing the results obtained for the five ML classifiers in all datasets in

terms of all evaluation metrics, we found that a number of effective features

can be considered to improve the overall results. Moreover, we conclude that

the optimum results in terms of all evaluation metrics used in these

experiments were achieved by KNN in Dataset 3IGFS using10-fold cross-

validation. We determined KNN to be the most suitable ML classifier in terms

of classifying smartphone applications’ network traffic based on different

levels of behaviour and interaction.

Narudin et al. [150] discussed, the time taken by classifiers to build a model is

very crucial and affects the resource consumption of a wireless device. Thus,

considering the processing time of classifiers to build a model is very

important.

117

Table 4.6 shows the time taken by each of ML classifier in all datasets to build

an ML classification model.

The processing time of 0.01s for KNN was the shortest time to build a model

and remain identical in all datasets, while the processing time of 1.42 s for MLP

to build a model in dataset 1 was the longest compared with all other classifiers

in all datasets. Moreover, the model building time for MLP, SVM and Random

forest decreased in Dataset 3IGFS when compared with Dataset 1 and Dataset

2CBFS. Finally, the processing time of 0.01 s for the decision tree remains

identical in Dataset 2CBFS and Dataset 3IGFS. Overall, the computational cost of

constructing a model across all datasets has a minimal effect, and for KNN, it

remained identical and did not vary when using either four or six features.

Table 4. 6: Processing time to build the classification model (in seconds)

ML Classifier Dataset 1 Dataset 2CBFS Dataset 3IGFS

MLP 1.42 1.11 1.09

KNN 0.01 0.01 0.01

SVM 0.41 0.42 0.32

C4.5 0.02 0.01 0.01

Random forest 0.26 0.24 0.22

4.6 Summary

This chapter presented the CALI approach in which the WNIC with the aid of

an ML classification model, sleeps and awakes based on the level of network

activity of each application. It described how different levels of traffic

behaviour and interactions of nine smartphone applications were contextually

exploited for the classification by the application of ML classifiers. This chapter

also has described how CALI power saving modes enable additional power

saving opportunities by adjusting the WNIC to sleep and awake in accordance

with the smartphone applications’ network activity. This was followed by

118

describing the process of data extraction and preparation employed in this

research for building the training data. The chapter also described the

experimental settings used for traffic classification, including the description

of parameter settings for the selected ML classification models. This was

followed by the performance evaluation of five ML classifiers on Dataset 1,

Dataset 2CBFS and Dataset 3IGFS using 10-fold cross-validation.

119

5

EXPERIMENTATION: ANALYSES AND

DISCUSSIONS

5.1 Introduction

This chapter provides detailed experimentation, analyses and discussions to

determine whether the selected classification models not only perform well on

training data but also generalise well on unseen testing data of applications

that were not included in training data. For all the experiments conducted in

this chapter, specifically in sections 5.2 to 5.5, the ML classifiers are trained

using the default hyperparameter settings listed in table 4.5 as baseline

models, and then in chapter six, sections 6.4 to 6.10, a hyperparameter

optimisation process is conducted to further enhance the model's

performance. Section 5.2 starts by illustrating the applications used for

training and testing the classification models, where an app of each class was

selected for training the selected ML classifiers and the generalisation capacity

of the classification models was tested on different apps that were not included

in training data. This section also provides an in-depth analysis of the network

traffic for the selected applications used for training and testing, It then

describes the experimental setup, followed by presenting the results and

discussing the outcomes. Sections 5.3 to 5.5 follow the same structure

described for 5.2, but with the following differences in training and testing

data. Section 5.3 extends the training data by including a voice call application

taken from the testing data. While section 5.4 reduces the training data and

further assesses the generalisation capacity of learned classification models on

120

reduced training data. Section 5.5 further assesses the generalisation capacity

by training ML classifiers on applications that were previously used for testing

in sections 5.2 and 5.3 and assesses their generalisation performance on

applications that were used for training in sections 5.2 and 5.3. Section 5.6

provides detailed conclusions based on previous sections. Furthermore, given

that the classification models in sections 5.3 to 5.5 were capable of achieving

high results on unseen testing data of applications that were not included in

the training data. Thus, this section also explores the feasibility of manually

crafting rules to hand-classify the training data. Where an attempt to hand-

classify the training data is made, followed by a discussion and comparison of

the outcomes with the classification models constructed using ML classifiers.

5.2 Training with an App of Each Class and Testing on Different

App(s) of the Same Class

In this section, experiments are performed to determine whether the

classification models not only perform well on training data but also generalise

well on unseen testing data of applications that were not included in training

data.

Table 5.1 lists the selected applications that are used for training the ML

classifiers, whereas Table 5.2 lists the applications that are used for testing the

classification models.

Training set based on the following applications:

Table 5. 1: Training set 1

Applications Class Samples

1- Skype video call High 150

2- Facebook Varied 150

3- New Star Soccer (NSS) Low 150

4- XiiaLive internet radio app Buffer 150

Total Training Samples: 600

121

Testing set based on the following applications:

Table 5. 2: Testing set 1

Applications Class Samples

1- Google Hangouts video call

2- Google Hangouts Voice call

3- Skype voice call

High

150

150

150

4- Gmail Varied 150

5- New Star Cricket (NSC) Low 150

Total Testing Samples: 750

Moreover, figure 5.1 shows the receiving traffic of both, the listed applications

in Table 5.1 that are used for training the ML classifiers and the listed

applications in Table 5.2 that are used for testing the classification models.

Whereas the transmitting traffic of previously mentioned applications is

shown in figure 5.2.

By observing the receiving and transmitting traffic of both the training and

testing data in figures 5.1 and 5.2, we can see the similarity between the Skype

video call that is used for training the ML classifiers and the Google Hangouts

video call that is used for testing the classification models.

This similarity is in terms of there being a clear separation between the training

data of Skype video call and other applications in the training set, similarly in

the testing data of Google Hangouts video call and other applications in the

testing set. But, with a noticeable variation in the traffic range between the

training data of Skype video call and the testing data of Google Hangouts

video call.

So, by observing the receiving traffic in figure 5.1 it can be seen that the traffic

range of Skype video call varies between 57.43 and 145 KBs, while a higher

variation can be seen in the traffic range of Google Hangouts video call that

varies between 50.17 and 521.25 KBs. This variation in the traffic range is also

122

similar to the transmitting traffic that can be seen in figure 5.2, where the traffic

for Skype video call varies between 60.41 to 156.25 KBs and it varies between

32.31 and 471.25 KBs for Google Hangouts video call.

However, since there is a clear-cut separation between the traffic of video call

applications and other applications in the training and testing data, therefore,

it would be expected that the learned classification models on training data of

Skype video call would be capable to capture the aforementioned variance in

the traffic range and generalise to unseen testing data of Google Hangouts

video call.

Furthermore, by observing the traffic of the voice call applications; Skype

voice call and Google Hangouts voice call, an overlapping can be observed

between the testing data of these applications and the testing data of

applications of other classes. However, due to the differences in the traffic

trends of the training data of Skype video call and the testing data of voice call

applications, it is possible that the learned classification models on Skype

video might be incapable to generalise to testing samples of both Skype and

Google Hangouts voice calls.

Finally, by observing the training data in figures 5.1 and 5.2 an overlapping

can be seen between the traffic of applications that belong to classes buffer,

varied and low with more overlapping can be noticed between varied and low

classes. Thus, it would be interesting to test the generalisation capacity of the

learned classification models on overlapping training data, more specifically

of classes varied and low.

123

Figure 5. 1: Levels of network interaction of receiving traffic for apps listed in table 5.1 that are used for training and for apps listed
in table 5.2 that are used for testing

Figure 5. 2: Levels of network interaction of transmitting traffic for apps listed in table 5.1 that are used for training and for apps
listed in table 5.2 that are used for testing

124

5.2.1 Experimental Setup

The following experiment was performed with the aid of WEKA tool. On a

desktop computer operating Microsoft Windows 10, with Intel core i7-

4800MQ CPU of 3.70 GHz and 12 GB of RAM.

To assess the generalisation capacity, the ML classifiers used in the 4.5

experiments were chosen. These are MLP, KNN, SVM, decision tree (C4.5),

and Random Forest. The five ML classifiers were trained on samples with six

features of applications listed in table 5.1, and their generalisation capacity was

tested on samples of applications listed in table 5.2.

This experiment was carried out by training the chosen five ML classification

models using WEKA’s default parameter settings listed in table 4.5.

The performance of each classifier is evaluated in terms of classification

accuracy, along with other evaluation metrics used for multiclass

classification, such as confusion matrix, macro-average of precision, recall and

weighted average f-measure.

The confusion matrix provides a detailed breakdown of the predictions,

including the distribution of correct and incorrect predictions made by the

classification models. Macro-average is the arithmetic mean of the per-class

measures and is represented as a single value. Whereas weighted average f-

measure takes into account the imbalanced distribution of classes, it calculates

the F1-scores for each class and then weights them by the number of actual

instances in each class [249, 251].

125

5.2.2 Results

5.2.2.1 Classification Model: MLP

=== Results ===

Correctly Classified Instances 445 59.33%

Incorrectly Classified Instances 305 40.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.795.

Recall: 0.593.

Weighted Avg:

F-Measure: 0.562.

5.2.2.2 Classification Model: KNN

=== Results ===

Correctly Classified Instances 516 68.8%

Incorrectly Classified Instances 234 31.2%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.896.

Recall: 0.688.

Weighted Avg:

F-Measure: 0.752.

5.2.2.3 Classification Model: SVM

=== Results ===

Correctly Classified Instances 536 71.46%

Incorrectly Classified Instances 214 28.53%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.868.

Recall: 0.715.

Weighted Avg:

F-Measure: 0.733.

High Varied Low Buffer

High 149 159 141 1

Varied 1 148 0 1

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 252 14 84 100

Varied 1 148 0 1

 Low 0 0 116 34

Buffer 0 0 0 0

High Varied Low Buffer

High 246 202 0 2

Varied 5 142 2 1

Low 0 1 148 1

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

A
ct

u
al

Predicted

126

5.2.2.4 Classification Model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 371 49.46%

Incorrectly Classified Instances 379 50.53%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.867.

Recall: 0.495.

Weighted Avg:

F-Measure: 0.533.

5.2.2.5 Classification Model: Random Forest

=== Results ===

Correctly Classified Instances 413 55.06%

Incorrectly Classified Instances 337 44.93%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.884.

Recall: 0.551.

Weighted Avg:

F-Measure: 0.606.

5.2.3 Discussion

The previous experiment was performed to determine whether the learned

classification models on training data of applications listed in table 5.1 are able

to generalise to testing data of applications listed in table 5.2.

Firstly, in terms of correctly classifying class high samples. By observing the

confusion matrices of all the classification models, it can be seen that testing

samples of class high were mainly misclassified into other classes. This is

because the learned classification models were only capable of capturing the

High Varied Low Buffer

High 144 0 201 105

Varied 1 79 69 1

Low 0 0 148 2

Buffer 0 0 0 0

High Varied Low Buffer

High 147 7 136 160

Varied 0 149 0 1

Low 0 0 117 33

Buffer 0 0 0 0

Predicted

Predicted

A
ct

u
al

A

ct
u

al

127

variance in the traffic range of video call applications and that by generalising

well to unseen testing samples of Google Hangouts video call only.

Moreover, since Skype voice call and Google Hangouts voice call were only

included in the testing data and since the traffic of these applications is

overlapping with the traffic of applications of other classes. As a result, the

resultant classification models were incapable to generalise to testing samples

of both Skype and Google Hangouts voice calls, and thus classifying them

mostly into other classes. Consequently, the training data should contain a

wider range of sample data.

Furthermore, SVM has comparatively produced better classification results in

terms of correctly classifying the testing samples from all classes with an

overall accuracy of 71.46%. As outlined in subsection 3.6.6.5, this is due to the

presence of a lower degree of non-linearity in the training and testing data

overall, along with the strength of applying the normalised polynomial kernel

which normalises the kernel values and improves the numerical stability, as a

result, better performance was achieved by SVM compared to other

classification models. Moreover, in terms of the macro average of precision,

recall, and weighted f-measure. KNN achieved the highest macro average

precision of 0.896 and weighted F-measure of 0.752. While SVM attained the

highest macro average recall of 0.715.

Finally, in terms of assessing the generalisation capacity of the learned

classification models on the overlapping training data of classes varied and

low. By observing the confusion matrices, it can be seen that the classification

models were able to capture the overlapping and that by achieving good

generalisation performance on the testing data of these classes.

Since the resultant classification models were incapable to generalise to testing

data of both Skype and Google Hangouts voice calls. Because none of the voice

128

call applications were included in the training data as both were only included

in the testing data. Therefore, the following experiment will be performed

using extended training data, which will include samples from the Skype voice

call application.

5.3 Extending the Training Data by Including the Skype Voice Call

Application

Table 5.3 lists the applications that are used for training the ML classifiers,

whereas table 5.4 lists the applications that are used for testing the

classification models.

Training set based on the following apps:

Table 5. 3: Training set 2

Applications Class Samples

1- Skype video call

2- Skype voice call
High

150

150

3- Facebook Varied 150

4- New Star Soccer (NSS) Low 150

5- XiiaLive internet radio app Buffer 150

Total Training Samples: 750

Testing set based on the following apps:

Table 5. 4: Testing set 2

Applications Class Samples

1- Google Hangouts video call

2- Google Hangouts Voice call
High

150

150

3- Gmail Varied 150

4- New Star Cricket (NSC) Low 150

Total Testing Samples: 600

129

In addition, figure 5.3 shows the receiving traffic of both, the listed

applications in table 5.3 that are used for training the ML classifiers and the

listed applications in table 5.4 that are used for testing the classification

models. Whereas the transmitting traffic of previously mentioned applications

is shown in figure 5.4.

By observing the receiving traffic of the training data in figure 5.3, a higher

variation can be seen in the range of traffic after the inclusion of Skype voice

call into the training data. So, when the receiving traffic of both Skype video

call and Skype voice call is combined it varies between 0.76 to 145 KBs, while

this varies between 0.79 and 521.25 KB in the testing data when the receiving

traffic of Google Hangouts video call and Google Hangouts voice call is

combined.

This variation in the traffic range is also similar to the transmitting traffic that

can be noticed in Figure 5.4, where the combined transmitting traffic of Skype

video call and Skype voice call varies between 3.69 to 156.25 KBs, and in the

testing data, it varies between 2.93 and 471.25 KBs when the transmitting

traffic of Google Hangouts video call and Google Hangouts voice call is

combined.

Moreover, by observing the receiving traffic of the training data, an

overlapping can be seen between the training data of Skype voice call and the

training data of applications of other classes. While this also can be noticed in

the receiving traffic of the testing data of Google Hangouts voice call.

Furthermore, by observing the transmitting traffic of the training data in figure

5.4, slighter overlapping can be seen between the training data of Skype and

class varied, while no overlapping can be seen between the testing data of

Google Hangouts voice call and the testing data of applications of other

classes.

130

Figure 5. 3: Levels of network interaction of receiving traffic for apps listed in table 5.3 that are used for training and for apps listed
in table 5.4 that are used for testing

Figure 5. 4: Levels of network interaction of transmitting traffic for apps listed in table 5.3 that are used for training and for apps
listed in table 5.4 that are used for testing

131

Finally, it would be interesting to test the generalisation capacity of the learned

classification models on training data of applications listed in table 5.3, more

specifically after the inclusion of the Skype voice call application into the

training data.

5.3.1 Experimental Setup

The setup of this experiment remains the same as in 5.2.1, where the five

selected ML classifiers MLP, KNN, SVM, decision tree (C4.5), and Random

Forest are trained using the default hyperparameter settings listed in table 4.5.

The only difference is in the training and testing data of the applications being

used. Where tables 5.3 and 5.4 list the applications used for training and testing

the classification models.

Moreover, similar to experiment 5.2.1, the performance of each classifier is

evaluated in terms of classification accuracy, macro-average of precision,

recall and weighted average f-measure. Additionally, a confusion matrix is

provided to examine the distribution of correct and incorrect predictions made

by the classifiers.

5.3.2 Results

5.3.2.1 Classification Model: MLP

=== Results ===

Correctly Classified Instances 572 95.33%

Incorrectly Classified Instances 28 4.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.992.

Recall: 0.953.

Weighted Avg:

F-Measure: 0.972.

High Varied Low Buffer

High 279 4 0 17

Varied 1 148 0 1

Low 0 0 145 5

Buffer 0 0 0 0

Predicted

A
ct

u
al

132

5.3.2.2 Classification Model: KNN

=== Results ===

Correctly Classified Instances 561 93.5%

Incorrectly Classified Instances 39 6.5%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.992.

Recall: 0.935.

Weighted Avg:

F-Measure: 0.961.

5.3.2.3 Classification Model: SVM

=== Results ===

Correctly Classified Instances 562 93.66%

Incorrectly Classified Instances 38 6.33%

=== Confusion Matrix ===

 Macro Avg:

Precision: 0.948.

Recall: 0.937.

Weighted Avg:

F-Measure: 0.941.

5.3.2.4 Classification Model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 494 82.33%

Incorrectly Classified Instances 106 17.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.906.

Recall: 0.823.

Weighted Avg:

F-Measure: 0.844.

High Varied Low Buffer

High 297 1 2 0

Varied 1 148 0 1

Low 0 0 116 34

Buffer 0 0 0 0

High Varied Low Buffer

High 272 26 0 2

Varied 5 142 2 1

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 298 0 0 2

Varied 1 79 69 1

Low 0 0 117 33

Buffer 0 0 0 0

A
ct

u
al

Predicted

Predicted

Predicted

A
ct

u
al

A

ct
u

al

133

5.3.2.5 Classification Model: Random Forest

=== Results ===

Correctly Classified Instances 548 91.33%

Incorrectly Classified Instances 52 8.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.964.

Recall: 0.913.

Weighted Avg:

F-Measure: 0.937.

5.3.3 Discussion

The previous experiment was performed by training the ML classifiers on

training data of applications listed in table 5.3, and the generalisation capacity

of the classification models was tested on unseen testing data of applications

listed in table 5.4.

So, based on the experimental results, it can be seen that the learned

classification models on extended training data that included Skype voice call,

were capable of achieving good generalisation performance more specifically

on testing samples of class high with an overall accuracy ranging from 82.33%

for C4.5 to 95.33% for MLP. Moreover, both MLP and KNN achieved the

highest weighted average f-measure of 0.972 and 0.961 respectively, while the

lowest weighted average f-measure of 0.844 was achieved by decision tree.

This improvement in the generalisation performance was due to the training

of the ML classifiers on a wider variation range that was noticed in the

receiving and transmitting traffic in figures 5.3 and 5.4 after the inclusion of

Skype voice call into the training data, where the learned classification models

were capable to capture this variance by generalising well to unseen testing

data of class high.

High Varied Low Buffer

High 300 0 0 0

Varied 1 130 19 0

Low 0 0 118 32

Buffer 0 0 0 0

Predicted

A
ct

u
al

134

However, since the classification models have consistently demonstrated

strong generalisation capabilities, the following experiment will be conducted

by training the models on reduced training data to determine if they can still

achieve good generalisation performance on the testing data.

5.4 Reducing the Training Data by Half and then by a Quarter

The following experiment is performed to assess the generalisation capacity of

the learned classification models on a reduced training data. This would be

carried on by reducing the amount of the training samples of each application

listed in table 5.3 to half and then to the quarter while keeping the size of the

testing samples the same.

Thus, out of 750 training samples that were used for training the ML classifiers

in the second experiment, the ML classifiers will be trained with 375 samples

and then with 185 samples in this experiment. Finally, their generalisation

performance will be assessed on applications that are listed in table 5.4.

Training set based on the following apps:

Table 5. 5: (Training set 3 of 185 samples), (Training set 4 of 375 samples)

Applications Class Samples

1- Skype video call

2- Skype voice call
High

75, 37

75, 37

3- Facebook Varied 75, 37

4- New Star Soccer (NSS) Low 75, 37

5- XiiaLive internet radio app Buffer 75, 37

Total Training Samples: 375, 185

135

Testing set based on the following apps:

Table 5. 4: Testing set 2

Applications Class Samples

1- Google Hangouts video call

2- Google Hangouts Voice call
High

150

150

3- Gmail Varied 150

4- New Star Cricket (NSC) Low 150

Total Testing Samples: 600

5.4.1 Experimental Setup

The setup of this experiment remains the same as in 5.2.1, where the five

selected ML classifiers MLP, KNN, SVM, decision tree (C4.5), and Random

Forest are trained using the default hyperparameter settings listed in table 4.5.

Moreover, the training and testing data of applications remain the same as in

5.3.1, with differences in the amount of training data being used for training.

Table 5.5 lists the applications and the amount of training data used for

training. While table 5.4 lists the applications that are used for testing the

classification models.

Furthermore, similar to experiment 5.2.1, the performance of each classifier is

evaluated in terms of classification accuracy, macro-average of precision,

recall and weighted average f-measure. Additionally, a confusion matrix is

provided to examine the distribution of correct and incorrect predictions made

by the classifiers.

136

5.4.2 Results

5.4.2.1 Classification Model: MLP

Training samples: 750

=== Results ===

Correctly Classified Instances 572 95.33%

Incorrectly Classified Instances 28 4.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.992.

Recall: 0.953.

Weighted Avg:

F-Measure: 0.972.

Training samples: 375

=== Results ===

Correctly Classified Instances 530 88.33%

Incorrectly Classified Instances 70 11.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.998.

Recall: 0.883.

Weighted Avg:

F-Measure: 0.935.

Training samples: 185

=== Results ===

Correctly Classified Instances 486 81%

Incorrectly Classified Instances 114 19%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.938.

Recall: 0.810.

Weighted Avg:

F-Measure: 0.810.

High Varied Low Buffer

High 279 4 0 17

Varied 1 148 0 1

Low 0 0 145 5

Buffer 0 0 0 0

High Varied Low Buffer

High 237 0 0 63

Varied 1 148 0 1

 Low 0 0 145 5

Buffer 0 0 0 0

High Varied Low Buffer

High 193 0 46 61

Varied 1 147 0 2

Low 0 0 146 4

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

A
ct

u
al

Predicted

137

5.4.2.2 Classification Model: KNN

Training samples: 750

=== Results ===

Correctly Classified Instances 561 93.5%

Incorrectly Classified Instances 39 6.5%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.992.

Recall: 0.935.

Weighted Avg:

F-Measure: 0.961.

Training samples: 375

=== Results ===

Correctly Classified Instances 564 94%

Incorrectly Classified Instances 36 6%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.998.

Recall: 0.940.

Weighted Avg:

F-Measure: 0.966.

Training samples: 185

=== Results ===

Correctly Classified Instances 592 98.66%

Incorrectly Classified Instances 8 1.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.997.

Recall: 0.987.

Weighted Avg:

F-Measure: 0.992.

High Varied Low Buffer

High 297 1 2 0

Varied 1 148 0 1

Low 0 0 116 34

Buffer 0 0 0 0

High Varied Low Buffer

High 300 0 0 0

Varied 1 148 0 1

Low 0 0 116 34

Buffer 0 0 0 0

High Varied Low Buffer

High 300 0 0 0

Varied 1 148 0 1

Low 0 0 144 5

Buffer 0 0 0 0

A
ct

u
al

A

ct
u

al

A
ct

u
al

Predicted

Predicted

Predicted

138

5.4.2.3 Classification Model: SVM

Training samples: 750

=== Results ===

Correctly Classified Instances 562 93.66%

Incorrectly Classified Instances 38 6.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.948.

Recall: 0.937.

Weighted Avg:

F-Measure: 0.941.

Training samples: 375

=== Results ===

Correctly Classified Instances 550 91.66%

Incorrectly Classified Instances 50 8.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.941.

Recall: 0.917.

Weighted Avg:

F-Measure: 0.926.

Training samples: 185

=== Results ===

Correctly Classified Instances 482 80.33%

Incorrectly Classified Instances 118 19.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.869.

Recall: 0.803.

Weighted Avg:

F-Measure: 0.822.

High Varied Low Buffer

High 272 26 0 2

Varied 5 142 2 1

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 264 32 0 4

Varied 5 140 2 3

Low 0 0 146 4

Buffer 0 0 0 0

High Varied Low Buffer

High 210 87 0 3

Varied 11 125 2 12

Low 0 0 147 3

Buffer 0 0 0 0

A
ct

u
al

Predicted

Predicted

A
ct

u
al

Predicted

 A
ct

u
al

139

5.4.2.4 Classification Model: Decision tree (C4.5)

Training samples: 750

=== Results ===

Correctly Classified Instances 494 82.33%

Incorrectly Classified Instances 106 17.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.906.

Recall: 0.823.

Weighted Avg:

F-Measure: 0.844.

Training samples: 375

=== Results ===

Correctly Classified Instances 425 70.83%

Incorrectly Classified Instances 175 29.16%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.772.

Recall: 0.708.

Weighted Avg:

F-Measure: 0.682.

Training samples: 185

=== Results ===

Correctly Classified Instances 465 77.5%

Incorrectly Classified Instances 135 22.5%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.946.

Recall: 0.775.

Weighted Avg:

F-Measure: 0.792.

High Varied Low Buffer

High 298 0 0 2

Varied 1 79 69 1

Low 0 0 117 33

Buffer 0 0 0 0

High Varied Low Buffer

High 299 0 1 0

Varied 0 41 107 2

Low 64 0 85 1

Buffer 0 0 0 0

High Varied Low Buffer

High 291 1 8 0

Varied 1 27 20 102

Low 2 0 147 1

Buffer 0 0 0 0

Predicted

A
ct

u
al

A

ct
u

al

Predicted

A
ct

u
al

Predicted

140

5.4.2.5 Classification Model: Random Forest

Training samples: 750

=== Results ===

Correctly Classified Instances 548 91.33%

Incorrectly Classified Instances 52 8.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.964.

Recall: 0.913.

Weighted Avg:

F-Measure: 0.937.

Training samples: 375

=== Results ===

Correctly Classified Instances 488 81.33%

Incorrectly Classified Instances 112 18.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.902.

Recall: 0.813.

Weighted Avg:

F-Measure: 0.833.

Training samples: 185

=== Results ===

Correctly Classified Instances 470 78.33%

Incorrectly Classified Instances 130 21.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.980.

Recall: 0.783.

Weighted Avg:

F-Measure: 0.810.

High Varied Low Buffer

High 300 0 0 0

Varied 1 130 19 0

Low 0 0 118 32

Buffer 0 0 0 0

High Varied Low Buffer

High 300 0 0 0

Varied 2 72 26 50

Low 33 0 116 1

Buffer 0 0 0 0

High Varied Low Buffer

High 300 0 0 0

Varied 1 27 5 117

Low 6 0 143 1

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

Predicted

A
ct

u
al

141

5.4.3 Discussion

The previous experiment was performed to assess the generalisation capacity

of the learned classification models on reduced training data, where the

training samples of each application listed in table 5.5 were reduced to half

and then to a quarter.

Based on the experimental results, it can be observed that, reducing the

amount of training data has a minimal impact on the generalisation

performance of classification models, as they still were capable of achieving

good generalisation performance on the testing data.

Moreover, in contrast to other classification models, an increase in the

generalisation performance of the KNN was observed when the training

samples kept decreasing. As outlined in subsections 3.5.1 and 3.6.7, in the

presence of a small number of features and limited training data, KNN can be

more efficient. This is because, unlike other classifiers, KNN has no explicit

learning phase. Instead during the testing phase, it searches through the

training data for the most similar or nearest instances in the region of k-

neighbourhood, and since there is an overall similarity between the training

and testing data, in this case, the nearest neighbours to a test instance are

similar and more representative of the overall distribution of the data, as a

result, better generalisation performance was achieved by KNN when the

training samples were reduced. In addition, the KNN classification model

achieved the highest macro average of precision 0.998, recall 0.940 and

weighed average of f-measure 0.966, when it was trained on a reduced training

data of a quarter of the size.

Furthermore, a slight increase in the generalisation performance of the

decision tree was observed when the amount of training data was reduced

from 375 samples to 185 samples. This matches what was outlined in

142

subsection 3.6.7 in relation to unstable classifiers, such as decision trees, that

are sensitive to training data manipulation, where a small modification in

training data leads to a significant change in the constructed classifier and

therefore results in large differences in the prediction results. So, with 185

samples different rules were generated, whereby the algorithm generated

fewer but more generalisable rules to the testing data, whereas the generated

rules with 375 samples were more specific to the training data but less

generalisable to the testing data.

5.5 Further Assessment of the Generalisation Capacity

To further assess the generalisation capacity, the following experiment will be

conducted by switching the training and testing data of applications that were

used in the previous experiments 2 and 3. This involves training the ML

classifiers on applications that were previously used for testing and assessing

their generalisation performance on applications that were used for training.

Training set based on the following apps:

Table 5. 6: Training set 5

Applications Class Samples

1- Google Hangouts video call

2- Google Hangouts Voice call
High

150

150

3- Gmail Varied 150

4- New Star Cricket (NSC) Low 150

5- XiiaLive internet radio app Buffer 150

Total Training Samples: 750

143

Testing set based on the following apps:

Table 5. 7: Testing set 3

Applications Class Samples

1- Skype video call

2- Skype voice call
High

150

150

3- Facebook Varied 150

4- New Star Soccer (NSS) Low 150

Total Testing Samples: 600

5.5.1 Experimental Setup

The setup of this experiment remains the same as in 5.2.1, where the five

selected ML classifiers MLP, KNN, SVM, decision tree (C4.5), and Random

Forest are trained using the default hyperparameter settings listed in table 4.5.

The only difference is in the training and testing data of the applications being

used. Where tables 5.6 and 5.7 list the applications used for training and testing

the classification models. Moreover, similar to experiment 5.2.1, the

performance of each classifier is evaluated in terms of classification accuracy,

macro-average of precision, recall and weighted average f-measure.

Additionally, a confusion matrix is provided to examine the distribution of

correct and incorrect predictions made by the classifiers.

5.5.2 Results

5.5.2.1 Classification Model: MLP

=== Results ===

Correctly Classified Instances 586 97.66%

Incorrectly Classified Instances 14 2.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.984.

Recall: 0.977.

Weighted Avg:

F-Measure: 0.980.

High Varied Low Buffer

High 292 8 0 0

Varied 0 148 0 2

Low 0 2 146 2

Buffer 0 0 0 0

A
ct

u
al

Predicted

144

5.5.2.2 Classification Model: KNN

=== Results ===

Correctly Classified Instances 589 98.16%

Incorrectly Classified Instances 11 1.83%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.992.

Recall: 0.982.

Weighted Avg:

F-Measure: 0.987.

5.5.2.3 Classification Model: SVM

=== Results ===

Correctly Classified Instances 558 93%

Incorrectly Classified Instances 42 7%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.957.

Recall: 0.930.

Weighted Avg:

F-Measure: 0.940.

5.5.2.4 Classification Model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 597 99.5%

Incorrectly Classified Instances 3 0.5%

=== Confusion Matrix ===

 Macro Avg:

Precision: 0.995.

Recall: 0.995.

Weighted Avg:

F-Measure: 0.995.

High Varied Low Buffer

High 296 0 0 4

Varied 3 147 0 0

Low 0 2 146 2

Buffer 0 0 0 0

High Varied Low Buffer

High 300 0 0 0

Varied 24 121 0 5

Low 1 2 137 10

Buffer 0 0 0 0

High Varied Low Buffer

High 299 1 0 0

Varied 0 150 0 0

Low 1 1 148 0

Buffer 0 0 0 0

A
ct

u
al

Predicted

Predicted

A
ct

u
al

Predicted

A
ct

u
al

145

5.5.2.5 Classification Model: Random Forest

=== Results ===

Correctly Classified Instances 595 99.16%

Incorrectly Classified Instances 5 0.83%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.992.

Recall: 0.992.

Weighted Avg:

F-Measure: 0.992.

5.5.3 Discussion

To further assess the generalisation capacity, this experiment was performed

by switching the training and testing data that were used in the previous

experiments 2 and 3. This involved training the ML classifiers on applications

that were previously used for testing and assessing their generalisation

performance on applications that were used for training.

The obtained results showed an improvement in the generalisation

performance of all classification models, this is due to the training of the

classifiers on a wider variation range which therefore improved the

generalisation performance on unseen data.

To illustrate this further, by referring to the receiving traffic of testing data in

figure 5.3 a wider variation in the traffic range can be seen when the testing

data of Google Hangouts video and Google Hangouts voice are combined,

compared to the combined training data of Skype video call and Skype voice

call. This variability is also apparent in the transmitting traffic of these

applications, as shown in Figure 5.4. Thus, training the ML classifiers on

training data with a wider variation in the traffic range leads to better

High Varied Low Buffer

High 300 0 0 0

Varied 2 148 0 0

Low 1 2 147 0

Buffer 0 0 0 0

Predicted

 A
ct

u
al

146

generalisation performance. Moreover, the decision tree achieved a macro

average of precision, recall, and weighted average f-measure of 0.995.

5.6 Conclusions

The previous experiments were performed to determine whether the

classification models not only perform well on training data but also generalise

well on unseen testing data of applications that were not included in training

data.

In terms of generalising to unseen testing data of class high, the results of the

first experiment showed that the learned classification models were only

capable of capturing the variance in the traffic range of video call applications

and that by generalising well to unseen testing data of Google Hangouts video

call only. But, in terms of the voice call applications, the resultant classification

models were incapable to generalise to testing data of both Skype and Google

Hangouts voice calls, this is because none of the voice call applications were

included in the training data as both were only included in the testing data

and the traffic of these applications was overlapping with the traffic of

applications of other classes.

However, SVM has comparatively produced better classification results in

terms of correctly classifying the testing samples from all classes. And that

matches what was outlined in subsection 3.6.6.5 about the strength of applying

the kernel and with the application of the normalised polynomial kernel, the

kernel values are normalised which improves the numerical stability, as a

result, better performance was achieved by SVM compared to other

classification models.

Moreover, in terms of generalising to unseen testing data of classes varied and

low, the obtained results showed that the classification models were able to

147

capture the overlapping and that by achieving good generalisation

performance on the testing data of these classes.

The second experiment was performed to assess the generalisation capacity of

the learned classification models on extended training data, particularly after

the inclusion of the Skype voice call application into the training data. Where

the experimental results showed an improvement in the generalisation

performance specifically on testing data of class high, this was due to the

training of the ML classifiers on a wider variation range that resulted from

combining the training data of Skype video call and Skype voice call.

The third experiment was performed to assess the generalisation capacity of

the learned classification models on reduced training data. Where the training

samples of each application used for training the ML classifiers in the second

experiment were reduced to half and then to a quarter. However, the results

of this experiment showed that reducing the amount of training data has a

minimal impact on the generalisation performance, but still, better

generalisation performance can be achieved by training with more samples.

However, in contrast to other classification models, an increase in the

generalisation performance of the KNN was observed when the training

samples kept decreasing. This matches what was outlined in subsections 3.5.1

and 3.6.7, in the presence of a small number of features and limited training

data, KNN can be more efficient. This is because, unlike other classifiers, KNN

has no explicit learning phase. Instead during the testing phase, it searches

through the training data for the most similar or nearest instances in the region

of k-neighbourhood, and since there is an overall similarity between the

training and testing data, in this case, the nearest neighbours to a test instance

are similar and more representative of the overall distribution of the data, as a

result, better generalisation performance was achieved by KNN when the

training samples were reduced. Also, a slight increase in the generalisation

148

performance of the decision tree was observed when the amount of training

data was reduced from 375 samples to 185 samples. This matches what was

outlined in subsection 3.6.7 in relation to unstable classifiers, such as decision

trees, that are sensitive to training data manipulation, where a small

modification in training data leads to a significant change in the constructed

classifier and therefore results in large differences in the prediction results. So,

with 185 samples different rules were generated, whereby the algorithm

generated fewer but more generalisable rules to the testing data, whereas the

generated rules with 375 samples were more specific to the training data but

less generalisable to the testing data.

Furthermore, the fourth experiment was performed to further assess the

generalisation capacity. In this experiment, the ML classifiers were trained on

applications that were previously used for testing, and their generalisation

performance was tested on applications that were used for training. However,

the results of this experiment showed that training the ML classifiers on

training data with a wider variation in the traffic range leads to better

generalisation performance.

Overall, the experimental results indicate that the classification models

constructed using ML classifiers were capable of achieving good

generalisation performance on testing data by recognising the overlapping

and capturing all the patterns or trends from the training data, including the

dominant one.

However, since the experiments conducted in sections 5.3 to 5.5, specifically

in section 5.4, where the learned classification models on reduced training data

were still capable of achieving high results on unseen testing data of

applications that were not included in the training data. Therefore, the

following attempt would be to hand-classify the training data by crafting the

rules manually.

149

So, by observing the receiving and transmitting traffic of training data in

figures 5.3 and 5.4, the following rules can be hand-crafted:

Rule 1: IF the application’s receiving data rates = > 6 KBs AND transmitting

data rates = > 6 KBs then the class = High.

Rule 2: IF the application’s receiving data rates = > 10 KBs AND transmitting

data rates <= 1 KBs then the class = Buffer.

Although there is an overlapping between samples of the Skype voice call

application that belong to class high with samples belonging to other classes,

however, it is feasible to classify applications belonging to classes high and

buffer using hand-crafted rules which also can be further refined.

Moreover, by observing the training data in figures 5.3 and 5.4 it can be seen

that samples belonging to classes; varied and low are extremely overlapping,

thus it will be difficult to distinguish between samples of these classes by

constructing a set of rules manually.

However, if we do construct the rules manually, then the results would be

extremely overfitted to training samples. And here comes the role of ML,

whereby algorithms learn from training data and produce a set of rules in an

automated fashion. Therefore, the complexity of manually constructing a set

of rules, more specifically for samples of classes varied and low, is handed to

ML classifiers.

So, while it is feasible to hand-classify the training data by crafting the rules

manually, however, classification models constructed using ML classifiers

introduce the following:

150

Automatic rule generation: Faster development

Defining a set of rules manually for the entire training data can be challenging

and time-consuming, as noted by observing the training data in figures 5.3 and

5.4, regardless of overlapping between the classes, however, it was feasible to

define rules for training data belonging to classes high and buffer in an attempt

to hand-classify training data of these classes.

Moreover, by observing the training data belonging to classes varied and low

in aforementioned figures 5.3 and 5.4, it can be seen that the training data are

highly overlapping, so it was difficult to distinguish between the training data

of these two classes and define a set of rules that hand-classify the training

data. Since there is no clear-cut boundary between the classes that can be

translated into a set of predefined rules.

This is in contrast to the ML approach, where the complexity of manually

constructing a set of rules is handed over to the ML, whereby an ML classifier

such as a decision tree does not require manual labour to create and maintain

a set of rules, instead, it automatically learns to create its own set of if-then

statements based on patterns it finds in training data, which significantly

accelerates and simplifies the development process with less human

intervention.

Generalisation

In terms of generalisation, the ML algorithms are designed with the ability to

learn different variations and relationships in the data. Thus, the ability to

learn the underlying patterns and relationships enables ML-based algorithms

to generalise on previously unseen data in an effective manner.

In contrast, a predefined set of rules can be prone to overfitting, more

specifically in case there are no clear-cut decision boundaries between the

151

classes. In such cases, defining a set of rules can lead to overfitting, where these

rules might perform well on training data, but not on new and unseen data

since no consideration of the complex relationships and patterns in the data

have been taken into account.

5.7 Summary

This chapter provided detailed experimentation, analyses and discussions to

determine whether the selected classification models not only perform well on

training data but also generalise well on unseen testing data of applications

that were not included in training data. This chapter also provided an in-depth

analysis of the network traffic for the selected applications used in training

and testing. To assess the generalisation capacity of the selected classification

model, four main experiments were conducted in this chapter. For each

experiment, an experimental setup, results, and discussion were provided. In

the first experiment, a representative application from each class was selected

for training the ML classifiers, and their generalisation capacity was evaluated

on different applications that were not included in the training data. The

second experiment was performed to assess the generalisation capacity of the

learned classification models on extended training data, particularly after the

inclusion of the Skype voice call application into the training data. While the

third experiment was performed to assess the generalisation capacity of the

learned classification models on reduced training data. Where the training

samples of each application used for training the ML classifiers in the second

experiment were reduced to half and then to a quarter. To further assess the

generalisation capacity, the fourth experiment was performed by switching

the training and testing data that were used in the previous experiments 2 and

3. This involved training the ML classifiers on applications that were

previously used for testing and assessing their generalisation performance on

applications that were used for training. This chapter also provided detailed

conclusions based on conducted experiments, since the classification models

152

achieved high results on unseen testing data of applications not included in

the training data, this chapter further explored the feasibility of manually

crafting rules to hand-classify the training data. Where an attempt was made

to hand-classify the training data, followed by a discussion and comparison of

the outcomes with the classification models constructed using ML classifiers.

153

6

HYPERPARAMETER OPTIMISATION

6.1 Introduction

This chapter conducts a hyperparameter optimisation process to identify the

optimal settings that result in a better-performing classification model. Section

6.2 overviews the common hyperparameter tuning methods. Section 6.3

describes the experimental setup carried out to perform the hyperparameter

optimisation process. This section also justifies the selection of the chosen

hyperparameter tuning methods employed in this chapter. This is Followed

by conducting the hyperparameter optimisation process using both manual

and automated tuning methods in sections 6.4 to 6.8. This is carried out by

performing 10-fold cross-validation on the training data of the applications

listed in table 5.5 of experiment three section 5.4 consisting of 185 samples.

And then evaluating the performance of the constructed classification models

using the obtained optimal sets of hyperparameter values on the testing data

of the applications listed in table 5.4. Section 6.9 repeats the previous four

experiments conducted in chapter five, sections 5.2 to 5.5 using the optimal

sets of hyperparameter values that were obtained in sections 6.4 to 6.8 for the

five classification models. However, the experimental results in section 6.9,

particularly of the repeated experiments one and four indicated that using the

optimised hyperparameters for a particular training data may not always lead

to improved model performance when there are changes in the overall

distribution of new training data. Therefore, in section 6.10 the optimal sets of

hyperparameter values for classification models for the first and fourth

experiments of (sections 5.2 and 5.5) are determined. The same method for

154

identifying the optimal sets of hyperparameter values described in 6.3 and

employed in sections 6.4 to 6.8 is applied to determine the optimal settings that

result in better-performing classification models. Where 10-fold cross-

validation is performed to explore different hyperparameter settings on the

training data of the applications listed in table 5.1 of the first experiment and

table 5.6 of the fourth experiment. This is followed by evaluating the

performance of the constructed classification models on the testing data of the

applications listed in table 5.2 of the first experiment and table 5.7 of the fourth

experiment. Section 6.11 provides a deeper analysis of the confusion matrix,

and then describes the process of reweighting the training inputs by assigning

costs to the class misclassifications in the cost matrix.

6.2 Hyperparameter Settings

The performance of ML models is highly dependent on the selection of the

most appropriate hyperparameter values, where tuning these

hyperparameters and finding the most appropriate setting can and often leads

to a better-performing model [112, 113]. Some studies have shown that there

is no single hyperparameter tuning method that can be deemed as the best

[114], and some hyperparameter optimisation methods can yield accuracies

similar to those obtained with default configurations [230, 231, 232]. While

recent studies have shown that the Bayesian optimisation method can be more

reliable for optimising the hyperparameter values, particularly in large search

spaces [113, 233, 234, 235]. Moreover, ML practitioners tend to prefer manual

tuning over other hyperparameter tuning methods since it increases their

comprehension of the model [113, 236, 237]. Furthermore, when the

computational resources are limited, research has also suggested using the

default hyperparameter setting suggested by ML tools [230, 238].

However, it is a common practice to initially train the ML model using the

default hyperparameter setting as the baseline model and subsequently

155

conduct a hyperparameter optimisation process to enhance the model's

performance [239]. This was similarly followed in [240, 241, 242] where the

authors of these studies initially trained the ML model using the default

hyperparameter setting suggested by the WEKA tool and then conducted a

hyperparameter optimisation process.

There are many methods that exist for optimising the hyperparameters,

including manual tunning, grid search, random search, and Bayesian

optimisation.

In manual tuning, a user tries different combinations of hyperparameter

configurations based on personal knowledge or from the literature. Whereas

the grid search method, searches for the optimal combination of

hyperparameters by tying every parameter setting over a user-predefined

range of hyperparameter values. While in a random search, the optimal

combination of hyperparameters is searched by randomly sampling

hyperparameter configurations from a user-predefined search space. Both

grid search and random search treat each hyperparameter configuration

independently. While in contrast, Bayesian optimisation determines the next

set of hyperparameters to try by taking into account the previous results of

tested hyperparameter values [112, 113, 239].

6.3 Experimental Setup

In the following sections 6.4 to 6.8, the hyperparameter optimisation process

is performed to identify the optimal settings that result in a better-performing

classification model. To explore different hyperparameter settings, 10-fold

cross-validation was performed on the training data of experiment three

section 5.4 consisting of 185 samples. This is followed by evaluating the

performance of the constructed classification model on the testing data of the

applications listed in table 5.4.

156

To identify the optimal hyperparameter values, we have utilised the manual

tuning option, since it increases the comprehension of the model and allows

us to understand the hyperparameter tuning effect in training and testing the

classification models. The manual hyperparameter tuning is performed to

optimise the hyperparameter values of MLP and SVM classification models.

Additionally, in a similar manner to the authors of [253, 254] who utilised both

manual and automated tuning methods, WEKA’s built-in parameter selection

function called CVParameterSelection was utilised to automate the process of

searching for optimal parameters. CVParameterSelection is a widely used

method for tuning the hyperparameters adopted by many studies including

[240, 243, 244, 245, 246]. This method involves searching through a user-

specified range of values for the given parameters and identifying the optimal

parameter values within that range. We used the CVParameterSelection to

identify the optimal parameters of KNN, decision tree and Random forest

using internal 10-fold cross-validation.

Finally, for the experiments in this chapter, except for the specified parameters

that are used to identify the optimal values, all other parameter values for the

five classification models remained unchanged as listed in table 4.5.

6.4 MLP Settings

6.4.1 Default Setting

To identify the optimal hyperparameter values of an MLP, the following most

common hyperparameters are considered based on [247]: hidden layer (-H),

learning rate (-L) and momentum (-M). While the range of hyperparameter

values specified in [255] for L and M were considered. Moreover, since there

are no clear rules to determine the optimal number of hidden layers and the

number of nodes in each layer [248]. The tuning of the hidden layer parameter

157

(-H) is carried out using WEKA's four predefined wildcards of the hidden

layer described in the following subsection.

In WEKA the parameter (-H) represents a number of hidden layers and the

number of nodes in each layer, where the default setting of this parameter in

WEKA is “a” which creates a network with a single hidden layer and the

number of nodes = (number of features + number of classes) /2.

Thus, in our case with 6 features the default setting for the number of nodes

would be 6 + 4 / 2 = 5 nodes in a single hidden layer.

The Learning rate hyperparameter of the backpropagation algorithm (-L)

determines the size of the steps the weights are updated during training. The

value of this hyperparameter ranges between 0 to 1, a higher learning rate

values allow the model to learn faster but at a risk of overshooting the optimal

weights. In contrast, lower learning rate values require longer training but are

more likely to converge to the optimal weights. The default value for L in

WEKA is 0.3.

During the training, the momentum parameter (-M) is added to speed up the

optimisation algorithm's convergence towards the global minimum. Since the

learning rate determines the size of the steps that are taken towards the

minimum of the loss function during the gradient descent. During the weight

updates, the value of the momentum parameter between 0 to 1 is added to

determine how much influence the previous weight update has on the current

weight update, in case the M value set to 0.9 means the current weight update

is strongly influenced by the previous weight update. However, this also

enables the algorithm to maintain a more consistent direction for these

updates and thus accelerates the convergence towards the global minimum of

the loss function. The default value of M in WEKA = 0.3.

158

Table 6.1 shows classification results obtained using the default parameter

settings of an MLP in WEKA listed in table 4.5.

Table 6. 1: MLP default setting

Results of

training and validation

using 10-fold cross validation

Results of testing the constructed

classification model on unseen testing data

of applications listed in table 5.4

Correctly classified Instances

179 - 96.75%.

Incorrectly classified instances

6 - 3.24%.

Correctly classified instances

486 - 81%.

Incorrectly classified instances

114 - 19%.

In the following subsections the optimal hyperparameter values for H, L and

M will be manually determined. While the rest of the parameters remained

unchanged as listed in table 4.5.

6.4.2 Hidden Layers

In this subsection, the tuning of the hidden layer parameter H is carried out

using WEKA's four predefined wildcards of the hidden layer, which are as

follows:

1. WEKA’s default setting “a” as described in 6.4.1.

2. “o” which creates a network of a single hidden layer and the number of

nodes equal to a number of classes, thus the number of nodes in our case

would be 4 nodes in a single hidden layer.

3. “i” creates a network of a single hidden layer and the number of nodes equal

to a number of features, thus the number of nodes in our case would be 6 nodes

in a single hidden layer.

4.“t” creates a network of a single hidden layer and the number of nodes = a

number of features + a number of classes. Thus, in our case with 6 features,

the number of nodes would be 6 + 4 = 10 nodes in a single hidden layer.

159

Moreover, the number of hidden layers and the nodes per layer can also be

specified in WEKA, for example with the following values of 5,3,2. The

number of hidden layers created for the network would be 3, with 5 nodes in

layer 1, 3 nodes in layer 2 and 2 nodes in layer 3.

Table 6. 2: MLP hidden layers setting

Parameter values

Results of

training and validation

using 10-fold cross validation

Results of testing the

constructed classification

model on unseen testing data of

applications listed in table 5.4

Default

 “a” = 5 nodes in a

single hidden layer.

Correctly classified instances

179 - 96.75%.

Incorrectly classified instances

6 - 3.24%.

Correctly classified instances

486 - 81%.

Incorrectly classified instances

114 - 19%.

“o” = 4 nodes in a

single hidden layer.

Correctly classified instances

179 - 96.75%

Incorrectly classified instances

6 - 3.24%

Correctly classified instances

460 – 76.66%

Incorrectly classified instances

140 – 23.33%

“i” = 6 nodes in a single

hidden layer.

Correctly classified instances

179 - 96.75%

Incorrectly classified instances

6 - 3.24%

Correctly classified instances

466 – 77.66%

Incorrectly classified instances

134 – 23.33%

“t” = 10 nodes in a

single hidden layer.

Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

495 – 82.5%

Incorrectly classified instances

105 – 17.5%

6.4.2.1 Discussion

Table 6.2 shows the impact of altering the values of parameter H, which

corresponds to the number of hidden layers and nodes in each layer. While

the rest of the parameters remained unchanged as listed in table 4.5.

However, it can be observed that the highest accuracy was achieved on the

testing data when we selected the predefined parameter “t” denoting a single

hidden layer with 10 nodes. Therefore, the value of parameter H was set to “t”

prior to conducting the following parameter tuning of the learning rate.

160

6.4.3 Learning Rate

Table 6. 3: Performance of different learning rate values

Parameter values

Results of

training and validation

using 10-fold cross validation

Results of testing the

constructed classification

model on unseen testing data of

applications listed in table 5.4

Default

Learning rate 0.3

Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

495 – 82.5%

Incorrectly classified instances

105 – 17.5%

Learning rate 0.1

Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

 553 - 92.16%

Incorrectly classified instances

 47 - 7.83%

Learning rate 0.2

Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

493 – 82.16%

Incorrectly classified instances

107 – 17.88%

Learning rate 0.4

Correctly Classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

508 – 84.66%

Incorrectly classified instances

92 – 15.33%

Learning rate 0.42 Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

493 – 82.16%

Incorrectly classified instances

107 – 17.83%

6.4.3.1 Discussion

After setting the optimal parameter values of H, we proceed to determine the

optimum value of the learning rate L. Table 6.3 displays the effect of varying

the values of the learning rate from 0.1 to 0.5 with a step of 0.1. A decrease in

the accuracy can be observed when the value exceeds 0.4. While the best result

was obtained for a learning rate of 0.1 on testing data as compared to the

default value of 0.3.

Therefore, the value of parameter H was set to “t” and the optimal value of L

was set to 0.1, prior to conducting the following parameter tuning of the

161

Momentum. While the rest of the parameters remained unchanged as listed in

table 4.5.

6.4.4 Momentum

Table 6. 4: Performance of different momentum values

Parameter values

Results of

training and validation

using 10-fold cross validation

Results of testing the

constructed classification

model on unseen testing data

of applications listed in table

5.4

Default

Momentum 0.2

Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

 553 – 92.16%

Incorrectly classified instances

 47 – 7.83%

 Momentum 0.1 Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

 553 – 92.16%

Incorrectly classified instances

 47 – 7.83%

 Momentum 0.3 Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

 553 – 92.16%

Incorrectly classified instances

 47 – 7.83%

 Momentum 0.4 Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

 556 – 92.66%

Incorrectly classified instances

 44 – 7.33%

 Momentum 0.5 Correctly classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly classified instances

 549 – 91.5%

Incorrectly classified instances

 51 – 8.5%

6.4.4.1 Discussion

After setting the optimal parameter values of H and L, we proceed to identify

the optimum value of the momentum M, where the value of the momentum

was varied from 0.1 to 0.5 with an increment of 0.1, and the results of these

variations are presented in table 6.4. The same results were obtained when the

value changed from 0.1 to 0.3, while the best result was achieved for a

162

momentum of 0.4 on testing data where a reduction in accuracy was observed

when the value of the momentum exceeded 0.4.

In conclusion, better results on testing data were achieved by the MLP

classification model with the optimal hyperparameter values of H set to “t”, L

of 0.1 and M of 0.4 as compared to the original setup using the default values.

Where the classification accuracy improved by almost 11.66% and the number

of misclassified instances reduced by 11.67%

6.5 SVM Settings

6.5.1 Default Setting

To identify the optimal hyperparameter values of an SVM, the following most

common hyperparameters are considered based on [240, 250]: regularisation

hyperparameter (-C) and the exponent (-E) value or degree of the kernel.

In WEKA, the default value of the regularisation hyperparameter C is 1.0.

while the exponent E value or degree of the selected normalised polynomial

kernel by default is 1.0, which behaves like a linear kernel.

Table 6.5 shows classification results obtained using the default parameter

settings of SVM in WEKA listed in table 4.5.

Table 6. 5: SVM default setting

Results of

training and validation

using 10-fold cross validation

Results of testing the constructed classification

model on unseen testing data of applications

listed in table 5.4

Correctly classified instances

175 - 94%.

Incorrectly classified instances

10 - 5.40%.

Correctly Classified instances

482 - 80.33%.

Incorrectly classified instances

118 - 19.66%.

163

6.5.2 Tuning the Values of C and E

In the subsection, the optimal hyperparameter values for C and E are manually

searched by adopting the method and range of values used in [240]. While the

rest of the parameters remained unchanged as listed in table 4.5.

To determine the optimal values of these hyperparameters, the normalised

polynomial kernel was tested using two different exponent values; 1.0, which

behaves like a linear kernel, and an exponent or degree value of 2.0 that

equivalent to a nonlinear kernel. Whereas the regularisation parameter C was

tested over a range of one to four. The effect of varying the values of

regularisation parameter C and kernel exponent is shown in table 6.6.

Table 6. 6: Performance for different C and E values

Parameter values

Results of

training and validation

using 10-fold cross validation

Results of testing the

constructed classification

model on unseen testing data

of applications listed in table

5.4

Regularisation

parameter C = 2

Exponent value = 1.0

Correctly classified instances

177 – 95.67%

Incorrectly classified instances

8 – 4.32%

Correctly classified instances

504 - 84%

Incorrectly classified instances

96 - 16%

Regularisation

parameter C = 3

Exponent value = 1.0

Correctly Classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly Classified instances

510 - 85%

Incorrectly classified instances

90 - 15%

Regularisation

parameter C = 4

Exponent value = 1.0

Correctly Classified instances

179 – 96.75%

Incorrectly classified instances

6 – 3.24%

Correctly Classified instances

510 - 85%

Incorrectly classified instances

90 - 15%

Regularisation

parameter C = 1

Exponent value = 2.0

Correctly Classified instances

177 – 95.67%

Incorrectly classified instances

8 – 4.32%

Correctly Classified instances

525 – 87. 5%

Incorrectly classified instances

75 - 12.5%

Regularisation

parameter C = 2

Exponent value = 2.0

Correctly Classified instances

179 - 96.75%

Incorrectly classified instances

6 - 3.24%

Correctly Classified instances

533 – 88.83%

Incorrectly classified instances

67 – 11.16%

164

Regularisation

parameter C = 3

Exponent value = 2.0

Correctly Classified instances

179 - 96.75%

Incorrectly classified instances

6 - 3.24%

Correctly Classified instances

536 – 89.33%

Incorrectly classified instances

64 – 10.66%

Regularisation

parameter C = 4

Exponent value = 2.0

Correctly Classified instances

179 - 96.75%

Incorrectly classified instances

6 - 3.24%

Correctly Classified instances

536 – 89.33%

Incorrectly classified instances

64 – 10.66%

6.5.3 Discussion

Firstly, in the case when the exponent value E was set to 1, the highest results

on testing data were obtained when the value of the regularisation parameter

C value was set to 3, while an increment in the C value to 4 caused no change

in the model’s performance.

Moreover, an improvement in the results was observed when the value of E

was set to 2 and the model’s performance kept improving as the value of C

kept incrementing by 1, while the best performance was achieved when the

value of C was set to 3. However, further increasing the value of C to 4 caused

no change in the model’s performance.

In conclusion, compared to the results presents in table 6.5 for the SVM

classification model with the original setup using the default values. Improved

results were obtained on the testing data with the optimal hyperparameter

values of E = 2 and C = 3. Where the classification accuracy improved by 9%

and the number of misclassified instances was also reduced by 9%.

6.6 KNN Settings

6.6.1 Default Setting

As outlined 3.6.3 the value of hyperparameter (-K) number of neighbours, is

considered an important hyperparameter that plays a crucial role in the KNN

algorithm. The default value of the hyperparameter K in WEKA is 1.

Additionally, the default distance measure function is Euclidean distance with

165

no weight assigned. Table 6.7 shows classification results obtained using the

default parameter settings of the KNN in WEKA listed in table 4.5.

Table 6. 7: KNN default setting

Results of
training and validation
using external 10-fold cross validation

Results of testing the constructed
classification model on unseen testing data
of applications listed in table 5.4

Correctly Classified instances
179 – 96.75%.
Incorrectly classified instances
6 – 3.24%.

Correctly Classified instances
592 – 98.66%.
Incorrectly classified instances
8 – 1.33%.

6.6.2 Performing CV Parameter Selection

In this subsection, the optimal value of hyperparameter K is determined by

performing the CV Parameter Selection using Euclidean and Manhattan

distance functions with different distance weightings. While the rest of the

parameters remained unchanged as listed in table 4.5.

This is carried out by following the method of applying different distance

functions with different distance weightings and the range of the K value used

in [250]. The K value ranged from 1.0 to 10.0 with 10 steps, table 6.8 shows the

classification results of the optimal K value for the Euclidean and Manhattan

distance functions with different distance weightings. While the rest of the

parameters remained unchanged as listed in table 4.5.

Table 6. 8: Performance for the optimal K value using Euclidean and Manhattan
distance functions

Parameter values

Results of
training and validation
using internal 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.4

Distance function: Euclidean

Distance weighting by 1 /

distance

Optimal K = 3

Correctly classified instances
185 - 100%
Incorrectly classified
instances
0 – 0%

Correctly classified instances
592 – 98.66%
Incorrectly classified
instances
8 – 1.33%

Distance function: Euclidean Correctly classified instances

180 – 97.29%

Correctly classified instances

592 – 98.66%

166

Distance weighting by 1 –

distance

Optimal K = 4

Incorrectly classified

instances

5 – 2.70%

Incorrectly classified

instances

8 – 1.33%

Distance function:

Manhattan

Distance weighting by 1 /

distance

Optimal K = 3

Correctly classified instances
185 - 100%
Incorrectly classified
instances
0 – 0%

Correctly classified instances
595 – 99.16%
Incorrectly classified
instances
5 – 0.83%

Distance function: Manhattan

Distance weighting by 1 -

distance Optimal K = 3

Correctly classified instances

181 – 97.83%

Incorrectly classified

instances

4 – 2.16%

Correctly classified instances

505 – 89.53%

Incorrectly classified

instances

59 – 10.46%

6.6.3 Discussion

Based on the classification results on testing data, it can be observed that the

highest classification results were obtained with the CV parameter selection

returning the optimal K value = 3 using the Manhattan distance function and

the distance weighting of 1 / distance. While the same results were obtained

on testing data using the Euclidean distance function regardless of the distance

weighting used.

Furthermore, compared to the results shown in table 6.7 of KNN with the

original setup using the default values. The optimal KNN configuration

produced results with 0.5% higher classification accuracy and reduced the

number of misclassified instances by 0.5%.

6.7 Decision Tree (C4.5) Settings

6.7.1 Default Setting

To identify the optimal hyperparameter values of decision tree (C4.5), the

following most common hyperparameters are considered based on [252]:

confidence factor (-C) and the minimum number of instances (minNumObj or

-M) in leaf node.

167

In WEKA the default parameter setting of the C that controls the pruning of

the tree is 0.25. Whereas the minimum number of instances M that must be

present in a leaf node by default is 2, denoting no further split is carried out if

the node contains less than two instances. Table 6.9 shows classification results

obtained using the default parameter settings of the decision tree (C4.5) in

WEKA listed in table 4.5.

Table 6. 9: Decision tree (C4.5) default setting

Results of
training and validation
using external 10-fold cross validation

Results of testing the constructed classification
model on unseen testing data of applications
listed in table 5.4

Correctly classified instances
178 - 96.21%.
Incorrectly classified instances
7 - 3.78%.

Correctly classified instances
465 - 77.5%.
Incorrectly classified instances
135 - 22.5%.

6.7.2 Performing CV Parameter Selection

In this subsection, the search for the optimal values of hyperparameters M and

C was conducted using WEKA's CV Parameter Selection. While the rest of the

parameters remained unchanged as listed in table 4.5.

This was carried out by following the method and the range of

hyperparameter values used in [252]. Where M ranged from 1.0 to 10.0 with

10 steps, and C ranged from 0.1 to 0.9 with an increment of 0.1. By performing

the CV Parameter Selection, the optimal set of parameter values was obtained

which is C = 0.5 and M = 1.

Table 6. 10: Performance for the optimal C and M values

Parameter values

Results of
training and validation
using internal 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing data of
applications listed in table 5.4

Optimal values

C = 0.5

M = 1

Correctly classified instances
185 - 100%
Incorrectly classified
instances
0 – 0%

Correctly classified instances
473 - 78.83%
Incorrectly classified instances
127 - 21.16%

168

6.7.3 Discussion

Table 6.10 shows the results of the decision tree classification model using the

optimal C and M values. Compared to the results obtained using the default

configuration in table 6.9, improved results were obtained on the testing data

with the optimal hyperparameter values of C = 0.5 and M = 1. Where the

classification accuracy of the model was improved by approximately 1.33%,

while the number of misclassified instances was reduced by 1.34%.

6.8 Random Forest Settings

6.8.1 Default Setting

To identify the optimal hyperparameter values of Random forest, the

following hyperparameters are considered based on [253]: the number of trees

that can be generated (-I), the number of features to consider in each split point

(-K) and the maximum depth (-depth) of trees indicates how deep the tree

would be.

In WEKA, the default settings for these parameters are as follows: the number

I is set to 100 by default, the number K is calculated as log2(number of

features), and the maximum depth is set to 0 by default, allowing for unlimited

depth. Table 6.11 shows classification results obtained using the default

parameter settings of the Random forest in WEKA listed in table 4.5.

Table 6. 11: Random forest default setting

Results of
training and validation
using external 10-fold cross validation

Results of testing the constructed
classification model on unseen testing data of
applications listed in table 5.4

Correctly classified instances
181 - 97.83%.
Incorrectly classified instances
 4 - 2.16%.

Correctly classified instances
470 - 78.33%.
Incorrectly classified instances
130 - 21.66%.

169

6.8.2 Performing CV Parameter Selection

Similar to KNN and decision tree, in this subsection the optimal

hyperparameter values of I, depth and K are searched by utilising the CV

Parameter Selection. While the rest of the parameters remained unchanged as

listed in table 4.5.

Where the depth ranged from 1.0 to 10.0 with 10.0 steps, K ranged from 2.0 to

6.0 with 5.0 steps, according to our case with six features and I ranged from

10.0 to 100.0 with 10.0 steps. After performing the CV Parameter Selection, the

optimal hyperparameter values obtained were depth = 3, K = 3, and I = 20.

Table 6. 12: Performance of Random forest with optimal configuration

Parameter values

Results of
training and validation
using internal 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing data
of applications listed in table
5.4

Optimal values
depth = 3
K = 3
I = 20

Correctly classified instances
185 - 100%
Incorrectly classified
instances
0 – 0%

Correctly classified instances
470 - 78.33%
Incorrectly classified instances
130 - 21.66%

6.8.3 Discussion

The performance of Random forest on testing data using the optimal values of

depth = 3, K = 3 and I = 20 is shown in table 6.12. Compared to the results

obtained in table 6.11 with the original setup using the default values, no

improvement was observed in terms of the classification results. However, the

model with the optimal configuration required less computational cost to

achieve the same classification results, where a smaller number of trees I = 20

were used as compared to the original setup with the default value of I = 100.

170

6.9 Repeating the Experiments Using the Optimal Settings

This section repeats the four experiments conducted in chapter five,

specifically in sections 5.2 to 5.5. In those experiments, the selected ML

classifiers were trained as baseline models using the default hyperparameter

settings listed in table 4.5. However, in this section, the same experiments are

repeated using the optimal sets of hyperparameter values obtained in sections

6.4 to 6.8 for the five classification models. The remaining parameters, as listed

in table 4.5, remain unchanged.

6.9.1 Experimental Setup

For the first experiment, the five ML classifiers are trained on the training data

of applications listed in table 5.1 using the optimal sets of hyperparameter

values that were obtained in sections 6.4 to 6.8. And their performance is

assessed on the testing data of applications listed in table 5.2. While the rest of

the parameters remained unchanged as listed in table 4.5.

For the second experiment, the five ML classifiers are trained on the training

data of applications listed in table 5.3 using the optimal sets of hyperparameter

values that were obtained in sections 6.4 to 6.8. And their performance is

assessed on the testing data of applications listed in table 5.4. While the rest of

the parameters remained unchanged as listed in table 4.5.

For the third experiment, the five ML classifiers are trained on reduced

training data of applications listed in table 5.5, where the size of this training

data was reduced to half of the training data used in the second experiment.

This is carried out using the optimal sets of hyperparameter values that were

obtained in sections 6.4 to 6.8. 4.5. The performance of the classification models

is then assessed on the testing data of applications listed in Table 5.4, While

the rest of the parameters remained unchanged as listed in table 4.5.

171

For the fourth experiment, the five ML classifiers are trained on the training

data of applications listed in table 5.6 using the optimal sets of hyperparameter

values that were obtained in sections 6.4 to 6.8. And their performance is

assessed on the testing data of applications listed in table 5.7. While the rest of

the parameters remained unchanged as listed in table 4.5.

Moreover, the performance of each classifier is evaluated in terms of

classification accuracy, macro-average of precision, recall and weighted

average f-measure. Additionally, a confusion matrix is provided to examine

the distribution of correct and incorrect predictions made by the classifiers.

6.9.2 Results of the First Experiment: Training with an App of Each Class

and Testing on Different App(s) of the Same Class

Classification model: MLP

=== Results ===

Correctly Classified Instances 434 57.86%

Incorrectly Classified Instances 316 42.13%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.796.

Recall: 0.579.

Weighted Avg:

F-Measure: 0.546.

Classification model: KNN

=== Results ===

Correctly Classified Instances 442 58.93%

Incorrectly Classified Instances 308 41.06%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.850.

Recall: 0.589.

Weighted Avg:

F-Measure: 0.594.

High Varied Low Buffer

High 138 179 121 12

Varied 1 148 0 1

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 150 21 238 41

Varied 0 149 0 1

Low 0 0 143 7

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

172

Classification model: SVM

=== Results ===

Correctly Classified Instances 590 78.66%

Incorrectly Classified Instances 160 21.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.881.

Recall: 0.787.

Weighted Avg:

F-Measure: 0.799.

Classification model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 371 49.46%

Incorrectly Classified Instances 379 50.53%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.867.

Recall: 0.495.

Weighted Avg:

F-Measure: 0.533.

Classification model: Random Forest

=== Results ===

Correctly Classified Instances 430 57.33%

Incorrectly Classified Instances 320 42.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.876.

Recall: 0.573.

Weighted Avg:

F-Measure: 0.601.

High Varied Low Buffer

High 297 144 8 1

Varied 3 145 2 0

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 144 0 201 105

Varied 1 79 69 1

Low 0 0 148 2

Buffer 0 0 0 0

High Varied Low Buffer

High 147 5 192 106

Varied 0 141 9 0

Low 0 0 142 8

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

A
ct

u
al

Predicted

173

6.9.2.1 Discussion

Compared to the results obtained using WEKA's default configurations in

section 5.2, it can be observed that SVM and Random forest produced better

results using optimal hyperparameter values, where the classification

accuracy of SVM improved by 7.20% and by 2.27% for the Random Forest.

Moreover, better results were attained for the macro average of precision,

recall, and f-measure when using optimal hyperparameter values for SVM.

Similarly, an improvement in the macro average of recall was observed for

Random forest, while the macro average of precision and weighted average of

f-measure remained slightly better with the WEKA’s default configurations.

In contrast, overall results for MLP and KNN, including the macro average of

precision, recall, and weighted average F-measure, remained better with

default hyperparameter settings. For MLP, using the optimal set of

hyperparameter values resulted in a decrease in classification accuracy by

1.47%, while for KNN it decreased by 9.87%. Finally, the decision tree

classification model yielded the same results as those obtained using the

default configuration.

6.9.3 Results of the Second Experiment: Extending the Training Data by

Including the Skype Voice Call Application

Classification model: MLP

=== Results ===

Correctly Classified Instances 590 98.33%

Incorrectly Classified Instances 10 1.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.993.

Recall: 0.983.

Weighted Avg:

F-Measure: 0.988.

High Varied Low Buffer

High 294 2 0 4

Varied 1 148 0 1

Low 0 1 148 1

Buffer 0 0 0 0

A
ct

u
al

Predicted

174

Classification model: KNN

=== Results ===

Correctly Classified Instances 592 98.66%

Incorrectly Classified Instances 8 1.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 1.000.

Recall: 0.987.

Weighted Avg:

F-Measure: 0.993.

Classification model: SVM

=== Results ===

Correctly Classified Instances 566 94.33%

Incorrectly Classified Instances 34 5.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.949.

Recall: 0.943.

Weighted Avg:

F-Measure: 0.945.

Classification model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 494 82.33%

Incorrectly Classified Instances 106 17.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.906.

Recall: 0.823.

Weighted Avg:

F-Measure: 0.844.

High Varied Low Buffer

High 300 0 0 0

Varied 0 149 0 1

Low 0 0 143 7

Buffer 0 0 0 0

High Varied Low Buffer

High 274 18 7 1

Varied 4 144 2 0

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 298 0 0 2

Varied 1 79 69 1

Low 0 0 117 33

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

A
ct

u
al

Predicted

175

Classification model: Random Forest

=== Results ===

Correctly Classified Instances 578 96.33%

Incorrectly Classified Instances 22 3.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.967.

Recall: 0.963.

Weighted Avg:

F-Measure: 0.963.

6.9.3.1 Discussion

Compared to the experimental results obtained using WEKA's default settings

in section 5.3, slightly better results, including for the macro average of

precision, recall, and weighted average f-measure, were achieved by

classification models on testing data using the optimal set of hyperparameter

values. However, no improvement was observed in the performance of the

decision tree classification model, as the results obtained using the optimal set

of hyperparameter values were identical to those obtained using WEKA's

default setting.

6.9.4 Results of the Third Experiment: Reducing the Training Data by Half

Classification model: MLP

=== Results ===

Correctly Classified Instances 579 96.5%

Incorrectly Classified Instances 21 3.5%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.998.

Recall: 0.965.

Weighted Avg:

F-Measure: 0.981.

High Varied Low Buffer

High 298 1 1 0

Varied 0 131 19 0

Low 0 1 149 0

Buffer 0 0 0 0

High Varied Low Buffer

High 284 0 0 16

Varied 1 148 0 1

Low 0 0 147 3

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

176

Classification model: KNN

=== Results ===

Correctly Classified Instances 563 93.83%

Incorrectly Classified Instances 37 6.16%

=== Confusion Matrix ===

Macro Avg:

Precision: 1.000.

Recall: 0.938.

Weighted Avg:

F-Measure: 0.965.

Classification model: SVM

=== Results ===

Correctly Classified Instances 564 94%

Incorrectly Classified Instances 36 6%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.953.

Recall: 0.940.

Weighted Avg:

F-Measure: 0.945.

Classification model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 426 71%

Incorrectly Classified Instances 174 29%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.774.

Recall: 0.710.

Weighted Avg:

F-Measure: 0.684.

High Varied Low Buffer

High 300 0 0 0

Varied 0 149 0 1

Low 0 0 114 36

Buffer 0 0 0 0

High Varied Low Buffer

High 274 22 0 4

Varied 5 142 2 1

Low 0 1 148 1

Buffer 0 0 0 0

High Varied Low Buffer

High 299 0 1 0

Varied 0 41 107 2

Low 63 0 86 1

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

A
ct

u
al

Predicted

177

Classification model: Random Forest

=== Results ===

Correctly Classified Instances 526 87.66%

Incorrectly Classified Instances 74 12.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.892.

Recall: 0.877.

Weighted Avg:

F-Measure: 0.879.

6.9.4.1 Discussion

The results of this experiment showed an improvement in the performance of

MLP and Random forest using the optimal set of hyperparameter values when

compared to the results obtained in section 5.4 using WEKA’s default

hyperparameter settings. While a drop of only 0.17% in the classification

accuracy of the KNN model was observed with the optimal set of

hyperparameter values. Moreover, a slight improvement was observed in the

performance of SVM and decision tree classification models using the optimal

set of hyperparameter values, where the classification accuracy was improved

by 2.34% for the SVM and only by 0.17% for the decision tree. Overall

improvements in the results, including for the macro average of precision,

recall, and weighted average f-measure were observed by using the optimised

hyperparameters.

High Varied Low Buffer

High 299 0 1 0

Varied 0 113 36 1

Low 31 0 114 5

Buffer 0 0 0 0

A
ct

u
al

Predicted

178

6.9.5 Results of the Fourth Experiment: Further Assessment of the

Generalisation Capacity

Classification model: MLP

=== Results ===

Correctly Classified Instances 587 97.83%

Incorrectly Classified Instances 13 2.16%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.985.

Recall: 0.978.

Weighted Avg:

F-Measure: 0.982.

Classification model: KNN

=== Results ===

Correctly Classified Instances 589 98.16%

Incorrectly Classified Instances 11 1.83%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.993.

Recall: 0.982.

Weighted Avg:

F-Measure: 0.987.

Classification model: SVM

=== Results ===

Correctly Classified Instances 473 78.83%

Incorrectly Classified Instances 127 21.16%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.858.

Recall: 0.788.

Weighted Avg:

F-Measure: 0.801.

High Varied Low Buffer

High 294 6 0 0

Varied 0 148 0 2

Low 1 2 145 2

Buffer 0 0 0 0

High Varied Low Buffer

High 298 0 0 2

Varied 1 147 0 2

Low 1 2 144 3

Buffer 0 0 0 0

High Varied Low Buffer

High 195 105 0 0

Varied 12 133 0 5

Low 1 1 145 3

Buffer 0 0 0 0

A
ct

u
al

Predicted

Predicted

A
ct

u
al

Predicted

A
ct

u
al

179

Classification model: Decision tree (C4.5)

=== Results ===

Correctly Classified Instances 597 99.5%

Incorrectly Classified Instances 3 0.5%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.995.

Recall: 0.995.

Weighted Avg:

F-Measure: 0.995.

Classification model: Random Forest

=== Results ===

Correctly Classified Instances 594 99%

Incorrectly Classified Instances 6 1%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.995.

Recall: 0.990.

Weighted Avg:

F-Measure: 0.992.

6.9.5.1 Discussion

Compared to the results obtained in section 5.5 using WEKA's default

hyperparameter settings, the only improvement observed by using the

optimal set of hyperparameter values was in the performance of MLP, where

the classification accuracy was only improved by 0.17. Both KNN and decision

tree classification models produced the same results with the optimal

hyperparameters as those obtained using WEKA's default configurations.

These results were also similar in terms of the macro average of precision,

recall, and weighted average f-measure. Moreover, the results achieved by

SVM and Random forest using WEKA's default hyperparameter settings

remained better, even in terms of the weighted average of precision, recall, and

High Varied Low Buffer

High 299 1 0 0

Varied 0 150 0 0

Low 1 1 148 0

Buffer 0 0 0 0

High Varied Low Buffer

High 299 1 0 0

Varied 0 150 0 0

Low 0 2 145 3

Buffer 0 0 0 0

A
ct

u
al

Predicted

A
ct

u
al

Predicted

180

f-measure, than those obtained using the optimal set of hyperparameter

values. With the optimal set of hyperparameter values, the classification

accuracy of SVM dropped from 93% to 78.83% and from 99.16% to 99% for the

random forest.

6.9.6 Conclusion

In this section, the previous experiments conducted in chapter five sections 5.2

to 5.5 were repeated to assess the performance of the ML classification models

using the optimal sets of hyperparameter values obtained in sections 6.4 to 6.8.

However, the results of these experiments showed that using the optimal set

of hyperparameter values did not always lead to better results compared to

those obtained with default configurations. In some cases, the results obtained

using WEKA's default hyperparameter settings were similar to or better than

those achieved using the optimal set of hyperparameter values.

Since the optimal sets of hyperparameter values for classification models were

determined using the reduced training data to a quarter of the size in

experiment three section 5.4 consisting of 185 samples. Therefore, overall

improvements in the results were observed by using the optimised

hyperparameters on the full training data of 750 samples in the second

experiment section 5.3 and on half of the size in the third experiment section

5.4. This is because the training data being used in the second and third

experiments is the same and the only difference is in the size of the training

data.

However, in the first and fourth experiments (sections 5.2 and 5.5), where the

overall distribution of the training data was different from that used in the

second and third experiments, the default hyperparameter settings in some

cases performed comparably or better than the optimised hyperparameters.

181

This indicates that optimising hyperparameters for a particular training data

may not always improve the model's performance when the overall

distribution of the training data changes, and default settings may be just as

effective or even better.

6.10 Optimal Hyperparameter Settings for the First and the Fourth

Experiments

Since the experimental results in the previous section, particularly of the

repeated experiments one and four indicated that using the optimised

hyperparameters for a particular training data may not always lead to

improved model performance when there are changes in the overall

distribution of new training data.

6.10.1 Experimental Setup

Therefore, in this section, the optimal sets of hyperparameter values for

classification models in the first and fourth experiments of (sections 5.2 and

5.5) are determined. The same method for identifying the optimal sets of

hyperparameter values described in 6.3 and employed in sections 6.4 to 6.8

was applied to determine the optimal settings that result in better-performing

classification models. Where 10-fold cross-validation is performed to explore

different hyperparameter settings on the training data of the applications

listed in table 5.1 of the first experiment and table 5.6 of the fourth experiment.

This is followed by evaluating the performance of the constructed

classification models on the testing data of the applications listed in table 5.2

of the first experiment and table 5.7 of the fourth experiment.

182

6.10.2 Results of the First Experiment

Classification model: MLP

Table 6. 13: Performance of MLP

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Using default parameter
settings listed in table 4.5.

Correctly classified
Instances
584 – 97.33%.
Incorrectly classified
instances
16 – 2.66%.

Correctly classified instances
445 – 59.33%.
Incorrectly classified
instances
305 – 40.66%.

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Optimal values
- H = 10,10. Two hidden
layers with 10 nodes in each
hidden layer.
- L = 0.1.
- M = 0.4.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
590 – 98.33%.
Incorrectly classified
instances
10 – 1.66%.

Correctly classified instances
447 – 59.6%.
Incorrectly classified
instances
303 – 40.4%.

Classification model: SVM

Table 6. 14: Performance of SVM

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing data of
applications listed in table 5.2

Using default
parameter settings
listed in table 4.5.

Correctly classified Instances

574 – 95.66%.

Incorrectly classified

instances

26 – 4.33%.

Correctly classified instances

536 – 71.46%.

Incorrectly classified instances

214 – 28.53%.

183

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing data of
applications listed in table 5.2

Optimal values
- Regularisation
parameter C = 2.
- Exponent value = 2.0.

- The rest of the
parameters remained
unchanged as listed in
table 4.5.

Correctly classified instances
579 – 96.5%
Incorrectly classified
instances
21 – 3.5%

Correctly classified instances
612 – 81.6%
Incorrectly classified instances
138 – 18.4%

Classification model: KNN

Table 6. 15: Performance of KNN

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Using default parameter
settings listed in table 4.5.

Correctly classified

Instances

593 – 98.83%.

Incorrectly classified

instances

7 – 1.16%.

Correctly classified instances

516 – 68.8%.

Incorrectly classified

instances

234 – 31.2%.

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Optimal values
- Distance function:
Euclidean.
- Distance weighting: with
no distance weight
assigned.
Optimal K = 2.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
596 – 99.33%.
Incorrectly classified
instances
4 – 0.66%.

Correctly classified instances
519 – 69.2%.
Incorrectly classified
instances
231 – 30.8%.

184

Classification model: Decision tree (C4.5)

Table 6. 16: Performance of Decision tree (C4.5)

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Using default parameter
settings listed in table 4.5.

Correctly classified
instances
590 – 98.33%.
Incorrectly classified
instances
10 – 1.66%.

Correctly classified instances
371 – 49.46%.
Incorrectly classified
instances
379 – 50.53%.

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Optimal values

- C = 0.3.

- M = 4.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
594 - 99%
Incorrectly classified
instances
6 – 1%

Correctly classified instances
374 – 49.86%
Incorrectly classified
instances
376 – 50.13%

Classification model: Random forest

Table 6. 17: Performance of Random forest

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Using default parameter
settings listed in table 4.5.

Correctly classified
instances
594 - 99%
Incorrectly classified
instances
 6 - 1%

Correctly classified instances
413 – 55.06%
Incorrectly classified
instances
337 – 44.93%

185

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.2

Optimal values
- depth = 5.
- K = 2.
- I = 50.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
600 – 100%
Incorrectly classified
instances
0– 0%

Correctly classified instances
492 – 65.6%
Incorrectly classified
instances
258 – 34.4%

6.10.2.1 Discussion

Tables 6.13 to 6.17 show the results obtained from classification models using

both the default and optimised hyperparameter settings. It can be observed

that all classification models achieved better results on testing data using the

optimal sets of hyperparameter values as compared to the results obtained

using the default hyperparameter settings. Where classification accuracy of

Random forest and SVM improved by 10.54% and 10.14% respectively, while

it improved by 0.27% for MLP. Finally, both KNN and the decision tree

showed an improvement of 0.4%.

6.10.3 Results of the Fourth Experiment

Classification model: MLP

Table 6. 18: Performance of MLP

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Using default parameter
settings listed in table 4.5.

Correctly classified Instances

736 – 98.13%.

Incorrectly classified

instances

14 – 1.86%.

Correctly classified instances

586 – 97.66%.

Incorrectly classified

instances

14 – 2.33%.

186

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Optimal values
- H = “i” = 6 nodes in a
single hidden layer.
- L = 0.1.
- M = 0.2.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
740 – 98.66%.
Incorrectly classified
instances
10 – 1.33%.

Correctly classified instances
588 – 98%.
Incorrectly classified
instances
12 – 2%.

Classification model: SVM

Table 6. 19: Performance of SVM

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Using default parameter
settings listed in table 4.5.

Correctly classified

Instances

716 – 95.46%.

Incorrectly classified

instances

34 – 4.53%.

Correctly classified instances

558 – 93%.

Incorrectly classified

instances

42 – 7%.

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Optimal values
- Regularisation parameter
C = 1.4.
- Exponent value = 1.0.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
731 – 97.46%.
Incorrectly classified
instances
19 – 2.53%.

Correctly classified instances
564 – 94%.
Incorrectly classified
instances
36 – 6%.

187

Classification model: KNN

Table 6. 20: Performance of KNN

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Using default parameter
settings listed in table 4.5.

Correctly classified

Instances

743 – 99.06%.

Incorrectly classified

instances

7 – 0.93%.

Correctly classified instances

589 – 98.16%.

Incorrectly classified

instances

11 – 1.83%.

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Optimal values
- Distance function:
Manhattan.
- Distance weighting by 1 /
distance.
- Optimal K = 2.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
750 – 100%.
Incorrectly classified
instances
0 – 0%.

Correctly classified instances
592 – 98.66%.
Incorrectly classified
instances
8 – 1.33%.

Classification model: Decision tree (C4.5)

Table 6. 21: Performance of Decision tree (C4.5)

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Using default parameter
settings listed in table 4.5.

Correctly classified
instances
748 – 99.73%.
Incorrectly classified
instances
2 – 0.26%.

Correctly classified instances
597 – 99.5%.
Incorrectly classified
instances
3 – 0.5%.

188

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Optimal values

- C = 0.6.

- M = 1.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
750 - 100%.
Incorrectly classified
instances
0– 0%.

Correctly classified instances
597 – 99.5%.
Incorrectly classified
instances
3 – 0.5%.

Classification model: Random forest

Table 6. 22: Performance of Random forest

Default hyperparameter settings

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Using default parameter
settings listed in table 4.5.

Correctly classified
instances
745 – 99.33%.
Incorrectly classified
instances
 5 – 0.66%.

Correctly classified instances
595 – 99.16%.
Incorrectly classified
instances
5 – 0.83%.

Optimal hyperparameter values

Parameter values

Results of
training and validation
using 10-fold cross
validation

Results of testing the
constructed classification
model on unseen testing
data of applications listed in
table 5.7

Optimal values
- depth = 7.
- K = 2.
- I = 40.

- The rest of the parameters
remained unchanged as
listed in table 4.5.

Correctly classified
instances
750 – 100%.
Incorrectly classified
instances
0 – 0%.

Correctly classified instances
596 – 99.33%.
Incorrectly classified
instances
4 – 0.66%.

189

6.10.3.1 Discussion

The experimental results of using both the default and optimised

hyperparameter settings are shown in tables 6.18 to 6.22. Overall

improvements in the results were observed by using the optimised

hyperparameters. Where the classification accuracy of the MLP improved by

0.34% on testing data compared to the default hyperparameter settings, while

it improved by 1% for the SVM classification model. Moreover, an

improvement of 0.5% in the accuracy of KNN was observed, while an

improvement of 0.17% was observed in the accuracy of the Random Forest.

Furthermore, the decision tree model showed an improvement of 0.27% on the

training data using cross-validation, although the accuracy remained the same

at 99.5% on the testing data.

Overall, the results in this section confirm that better results can be obtained

by conducting a hyperparameter optimisation process independently for each

training data.

6.11 Further Analyses

This section provides a deeper analysis of the confusion matrix, focusing on

the breakdown of the predictions, including the distribution of correct and

incorrect predictions made by the classification model.

6.11.1 Confusion Matrix

To analyse the confusion matrix, we consider the confusion matrix of an MLP

classification model in subsection 6.9.3 Results of the second experiment:

Extending the training data by including the Skype voice call application.

190

Classification model: MLP

=== Results ===

Correctly Classified Instances 590 98.33%

Incorrectly Classified Instances 10 1.66%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.993.

Recall: 0.983.

Weighted Avg:

F-Measure: 0.988.

Each element in a confusion matrix denotes the number of predictions made

by a classification model for a specific class. Moreover, it provides insights into

these predictions by indicating whether the predictions were classified

correctly or incorrectly.

There are four terms used for interpreting the confusion matrix:

True Positives (TP): where the classifier correctly predicts the positive class,

and the actual is positive.

True Negatives (TN): where the classifier correctly predicts the negative class,

and the actual is negative.

False Positives (FP): where the classifier incorrectly predicts the positive class,

and the actual is negative.

False Negatives (FN): where the classifier incorrectly predicts the negative

class, and the actual is positive.

Where the TP, TN, FP and FN for class high are as follows:

TP = 294.

High Varied Low Buffer

High 294 2 0 4

Varied 1 148 0 1

Low 0 1 148 1

Buffer 0 0 0 0

A
ct

u
al

Predicted

191

TN = 148 + 0 + 1 + 1 + 148 + 1 + 0 + 0 + 0 = 299.

FP = 1 + 0 + 0 = 1.

FN = 2 + 4 = 6.

And the evaluation metrics for class high are calculated as follows:

Precision = True Positives / (True Positives + False Positives).

 = 294 / (294+1) = 0.997.

Recall or sensitivity = True Positives / (True Positives + False Negatives).

 = 294 / (294+6) = 0.980.

F-measure = 2 * (precision * recall) / (precision + recall).

 = 2 * (0.997 * 0.980) / (0.997 + 0.980) = 0.988.

Specificity = True Negatives / (True Negatives + False Positives).

 = 299 / (299+1) = 0.997.

The TP, TN, FP and FN for class Varied are calculated as follows:

TP = 148.

TN = 294 + 0 + 4 + 0 + 148 + 1 + 0 + 0 + 0 = 447.

FP = 2 + 1 + 0 = 3.

FN = 1 + 0 + 1 = 2.

Precision = True Positives / (True Positives + False Positives).

 = 148 / (148+3) = 0.980.

192

Recall or sensitivity = True Positives / (True Positives + False Negatives).

 = 148 / (148+2) = 0.987.

F-measure = 2 * (precision * recall) / (precision + recall).

 = 2 * (0.980 * 0.987) / (0.980 + 0.987) = 0.983.

Specificity = True Negatives / (True Negatives + False Positives).

 = 447 / (447+3) = 0.993.

The TP, TN, FP and FN for class Low are calculated as follows:

TP = 148.

TN = 294 + 2 + 4 + 1 + 148 + 1 + 0 + 0 + 0 = 450.

FP = 0 + 0 + 0 = 0.

FN = 1 + 0 + 1 = 2.

Precision = True Positives / (True Positives + False Positives).

 = 148 / (148+0) = 1.000.

Recall or sensitivity = True Positives / (True Positives + False Negatives).

 = 148 / (148+2) = 0.987.

F-measure = 2 * (precision * recall) / (precision + recall).

 = 2 * (1.000 * 0.987) / (1.000 + 0.987) = 0.993.

Specificity = True Negatives / (True Negatives + False Positives).

 = 450 / (450+0) = 1.000.

193

Moreover, the current model handles the true negative instances that are

correctly identified as not belonging to a certain class. For example, if the

model correctly predicts that an instance does not belong to the High class,

then it must belong to one of the remaining three classes. Since the classifier

was not practically trained to consider instances of none of the above classes.

6.11.2 Cost Matrix

This subsection describes the process of reweighting the training inputs by

assigning costs to the class misclassifications in the cost matrix.

By default, in WEKA, the output classification threshold set to 0.5, assuming a

balanced distribution of class labels, where the classification treats all

misclassifications (false positives and false negatives) equally. Cost sensitive

classification is a method of reweighting the training inputs based on

predefined class cost of misclassification or estimating a class with the lowest

misclassification cost. It involves adjusting the probability threshold of the

classifier's output based on the cost of misclassifications [256, 257].

Equation 6.1 represents the general cost matrix C; the diagonal elements

represent the cost of correct classifications and μ and λ denote the assigned

costs of the class misclassifications. Where μ represents the cost of false

positives and λ represents the cost of false negatives [256].

 (6.1)

The following experiments are carried out by employing the MLP

classification model that was used for analysing the confusion matrix in the

previous subsection 6.11.1. We have utilised the same experimental setup of

6.9.1, where the MLP was trained on the training data of applications listed in

table 5.3 using the optimal sets of hyperparameter values that were obtained

194

in section 6.4 and assessed on the testing data of applications listed in table 5.4.

While the rest of the parameters remained unchanged as listed in table 4.5.

By examining the confusion matrix in subsection 6.11.1, we can observe that

for the class high, the model correctly predicted 294 instances as TP, where the

predicted class and the actual class were the same. Moreover, it predicted 299

instances as TN, so its prediction in classifying these instances into other

classes than high was correct.

In terms of misclassification (FP and FN) for the class high, the model

incorrectly predicted 1 instance as FP, where its prediction to classify this

instance as class high was incorrect, as its actual class is varied. Moreover, the

model incorrectly predicted 6 instances as FN. So, its prediction in classifying

these instances into other classes than high was incorrect since their actual

class is high.

Furthermore, in terms of other classes, for class varied, the model correctly

predicted 148 instances as TP, it also correctly predicted 447 instances as TN.

While it incorrectly predicted 3 instances as FP and 2 instances as FN.

In terms of class low, the model correctly predicted 148 instances as TP, it also

correctly predicted 450 instances as TN. While it incorrectly predicted 2

instances as FN and had no FP.

The following cost matrix corresponds to the confusion matrix of section

6.11.1.

Cost Matrix
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

195

To minimise the misclassifications of class high, as observed in the confusion

matrix of subsection 6.11.1, the model has a total of 7 misclassifications for the

class high, including 1 FP and 6 FNs. Where the model incorrectly predicted 1

instance as FP and its prediction to classify this instance as class high was

incorrect, as its actual class is varied. Additionally, the model incorrectly

predicted 6 instances as FN and its prediction to classify these 6 instances into

other classes (2 as varied and 4 as buffer) was incorrect, as their actual class is

high.

Consequently, in the subsequent experiment, we adjust the misclassification

of false negatives. In the corresponding cost matrix, the cost value assigned to

4 FNs is adjusted to 2.

Cost Matrix
0 1 1 2
1 0 1 1
1 1 0 1
1 1 1 0

Classification model: MLP

=== Results ===

Correctly Classified Instances 592 98.66%

Incorrectly Classified Instances 8 1.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.995.

Recall: 0.987.

Weighted Avg:

F-Measure: 0.991.

Compared to the confusion matrix in subsection 6.11.1, it can be seen that 2

instances out of the 6 false negatives are now correctly classified as true

positives. Additionally, the count of false positives for class varied reduced

from 3 to 2 and it reduced from 6 to 5 for class buffer. However, since 4

instances are still incorrectly misclassified as false negatives by the model, the

High Varied Low Buffer

High 296 1 0 3

Varied 1 148 0 1

Low 0 1 148 1

Buffer 0 0 0 0

A
ct

u
al

Predicted

196

cost value assigned to false negatives is adjusted to 3 for the following

experiment.

Cost Matrix
0 1 1 3
1 0 1 1
1 1 0 1
1 1 1 0

Classification model: MLP

=== Results ===

Correctly Classified Instances 595 99.16%

Incorrectly Classified Instances 5 0.83%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.997.

Recall: 0.992.

Weighted Avg:

F-Measure: 0.994.

Compared to the confusion matrix in subsection 6.11.1, now it can be seen that

the model correctly classified all instances as true positives for the class high.

Moreover, the count of false positives for class varied reduced from 3 to 1 and

it reduced from 6 to 3 for class buffer. However, in terms of the FNs of the class

low, the model incorrectly classified 1 more instance as an FN. The total count

of FNs for class low is now 2, whereas it was only 1 in the confusion matrix of

section 6.11.

Therefore, the cost value assigned to these two FNs is adjusted to 2 in the cost

matrix for the following experiment.

Cost Matrix
0 1 1 3
1 0 1 1
1 1 0 2
1 1 1 0

High Varied Low Buffer

High 300 0 0 0

Varied 1 148 0 1

Low 0 1 147 2

Buffer 0 0 0 0

A
ct

u
al

Predicted

197

Classification model: MLP

=== Results ===

Correctly Classified Instances 586 97.66%

Incorrectly Classified Instances 14 2.33%

=== Confusion Matrix ===

Macro Avg:

Precision: 0.995.

Recall: 0.977.

Weighted Avg:

F-Measure: 0.986.

By observing the confusion matrix, it can be seen that no further improvement

can be achieved, and the model's overall performance can decline after

reaching a certain point.

6.11.3 Discussion

The experimental results showed that reweighting the training inputs by

assigning costs of the class misclassifications in the cost matrix, allows a

classification model to consider the varying costs associated with

misclassifications. This enhances the model's predictions with a focus on

minimising the overall cost of misclassifications. However, careful

consideration should be given to the design of the cost matrix by taking into

account the consequences of misclassifications.

Moreover, in a multi class classification, the FNs of one class correspond to the

FPs of other classes. Thus, when the number of FNs for a specific class was

minimised, this indirectly led to a reduction in the FP for the remaining classes.

6.12 Summary

In this chapter, the process of hyperparameter optimisation was carried out to

identify the optimal settings that result in a better-performing classification

model. This chapter also reviewed the common hyperparameter tuning

High Varied Low Buffer

High 291 1 0 8

Varied 1 148 0 1

Low 0 1 147 2

Buffer 0 0 0 0

A
ct

u
al

Predicted

198

methods. It then described the experimental setup employed in this research

to perform the hyperparameter optimisation process. This was followed by

conducting the hyperparameter optimisation process using both manual and

automated tuning methods. Where this was carried out by performing 10-fold

cross-validation on the training data of the applications listed in table 5.5 of

experiment three section 5.4 consisting of 185 samples. This chapter also

evaluated the performance of the constructed classification models using the

obtained optimal sets of hyperparameter values on unseen testing data of the

applications listed in table 5.4. This chapter further assessed the performance

of the classification models by repeating the previous four experiments

conducted in chapter five, using the optimal sets of hyperparameter values

that were obtained through the optimisation process. Moreover, since the

experimental results of the repeated experiments one and four showed that

the default hyperparameter settings, in some cases, performed comparably or

better than the optimised hyperparameters. Further hyperparameter tuning

was performed in this chapter, where the optimal sets of hyperparameter

values were determined for classification models of the first and fourth

experiments (sections 5.2 and 5.5). Where this was achieved by performing 10-

fold cross-validation and exploring different hyperparameter settings on the

training data of the applications listed in table 5.1 of the first experiment and

table 5.6 of the fourth experiment. This was followed by evaluating the

performance of the constructed classification models on the testing data of the

applications listed in table 5.2 of the first experiment and table 5.7 of the fourth

experiment.

199

7

PERFORMANCE EVALUATION OF CALI

POWER SAVING MODES

7.1 Introduction

The experiments in this chapter are conducted to observe the effect of

adjusting the listen interval on energy consumption after the ML classification

model has classified new unseen samples into one of the output modes.

Subsection 7.2.1 begins by describing the experimental setup employed in the

creation of the corresponding traffic scenarios of CALI power saving modes.

Subsection 7.2.2 focuses on assessing the performance of CALI power saving

modes by comparing the levels of energy consumption with existing

benchmark power saving approaches, using varied sets of energy parameters.

This is followed by assessing the performance of CALI against the value

variations of energy parameters in subsection 7.2.3.

7.2 CALI Power Saving Modes

7.2.1 Experimental Setup

The described NS-2 extension in subsection 2.3.2 supports a WLAN in an

infrastructure mode, where two wireless devices are connected to an AP. The

first wireless device (node 1) sends data destined to wireless device 2 (node 2)

via AP (node 0).

200

This extension also supports power management functions such as PS-Poll,

AP buffer, TIM, and listen interval. Additionally, it includes an energy model

that supports various energy parameters, enabling the estimation of energy

consumption for wireless nodes within a network. However, to conduct this

experiment the following steps were followed:

First step

To experiment with the four CALI power saving modes, we used the provided

Tcl script in tcl/ex/powersave.tcl. And then created four corresponding traffic

scenarios: Buffering, DLI, Low, and Awake.

Second step

To estimate the energy consumption for wireless nodes within a network. We

have configured the energy parameters for the energy model using three sets

of energy parameters reported in major previous studies. Each set consists of

6 energy parameters; Set 1 has been widely employed in studies including [18,

151, 152]. Set 2 reflects the energy parameters of Wavelan WNIC [153, 1],

whereas Set 3 reflects the energy parameters of Intel WNIC [154, 155].

The six parameters are:

1. txPower: the power consumption during packet transmission.

2. rxPower: the power consumption during packet reception.

3. idlePower: the power consumption when a WNIC is awake and not

transmitting or receiving packets.

4. transitionPower: the power consumption when a WNIC transits from

the sleep to idle state and vice versa. This must be twice that of

idlePower [151].

5. transitionTime: The amount of time required when a WNIC transits

from sleep to idle state and vice versa.

201

6. sleepPower: The power consumption when a WNIC is in sleep state.

The three sets of energy parameters are shown in table 7.1.

Table 7. 1: Sets of energy parameters

Parameter Set 1

Value

Set 2

Value

Set 3

Value

txPower 1.4 W 1.675 W 1.44 W

rxPower 0.9 W 1.425 W 1.34 W

idlePower 0.7 W 1.319 W 1.27 W

transitionPower 1.4 W 2.638 W 2.54 W

transitionTime 0.002 S 0.002 S 0.002 S

sleepPower 0.06 W 0.177 W 0.22 W

Third step

The third step involves configuring the traffic for the corresponding scenarios

within the Tcl script. Since smartphone applications spend longer in receiving

packets than transmitting, the downlink receiving traffic has been considered

in our simulation of node 2. From the dataset, we have used the following

features as inputs to configure the four corresponding traffic scenarios of CALI

power saving modes: 1- receiving data rates, 2- number of received bytes, and

3- number of received packets.

Moreover, to establish the traffic flow between node 1 and node 2 using UDP

through node 0, the UDP connection and the source (Agent/UDP) are defined

at node 1 using the following:

set udp [new Agent/UDP]

$ns_ attach-agent $node_(1) $udp

And the UDP destination (Agent/UDP) is defined at node 2.

202

set null [new Agent/Null]

$ns_ attach-agent $node_(2) $null

$ns_ connect $udp $null

This is followed by defining the Constant Bit Rate (CBR) traffic generator

model that uses UDP to send the traffic.

set cbr [new Application/Traffic/CBR].

Where the buffering scenario uses traffic from the XiiaLive internet radio

application using a random station with a 128kbps stream.

For the DLI scenario, the traffic of 30 emails in Gmail and receiving 30

Facebook posts at random intervals was employed.

For the low scenario, NSS was run several times. We observed that the

duration of one game is about 110 seconds, after that time an advertisement

will be loaded.

Finally, for the awake scenario, traffic of 10min Skype video call was used.

Fourth step

The fourth step involves optimising the sleep and awake cycles of the WNIC,

which is achieved by adjusting the listen interval.

Finally, the simulation environment is based on Ubuntu 10.04.4 LTS, which is

compatible with the NS-2 extension. The simulation duration is set to 600

seconds and initial energy of 1000 J.

7.2.2 Results and Analysis

This section evaluates the performance of CALI power saving modes by

comparing the levels of energy consumption of CALI with existing power

203

saving approaches. We selected APSM as the most current approach deployed

in smartphones and SAPSM as a recent technique also employing ML.

Figure 7. 1: Comparison of CALI, SAPSM, and APSM in buffering mode against
set 1 of energy parameters

Figures 7.1, 7.2 and 7.3 show the energy consumption of CALI, SAPSM, and

APSM in buffering mode for the 3 sets of energy parameters. We set the listen

interval of CALI to 10 = 1000ms. The listen interval value has been determined

to not affect audio quality in several experiments with the audio streaming

application XiiaLive.

We found that the added delay did not impact the playback streaming quality

as was also noted in [10] and [142]. For all 3 sets of energy parameters, CALI

consumes less energy in comparison to SAPSM and APSM. In Set 2, CALI

consumes 14.14% less energy compared to SAPSM and 75.89% when

compared with APSM. For all 3 sets of energy parameters, APSM consumes

more energy in comparison to SAPSM and CALI. This is due to the behaviour

of APSM with this type of traffic, as the WNIC remains awake and always on.

204

When the values of rxPower and idlePower increased in Set 2, more power

was consumed using APSM compared to Set 1 and Set 3.

Figure 7. 2: Comparison of CALI, SAPSM, and APSM in buffering mode against
set 2 of energy parameters

Figure 7. 3: Comparison of CALI, SAPSM, and APSM in buffering mode against
set 3 of energy parameters

205

Figures 7.4, 7.5 and 7.6 show the levels of energy consumption of CALI,

SAPSM, and APSM in DLI mode for the 3 sets of energy parameters. Recall

that for DLI mode, the listen interval of a wireless device is incremented by 1

at each time a wireless device wakes up during its listen interval and does not

find any packets buffered at the AP, and reverting to 1 when interactions

occur.

We adjusted the listen interval of CALI to 2,4,6,8, and 10, for applications with

varied levels of network activity (Gmail and Facebook), as these applications

have intermittent network interactions and do not always receive data. Based

on 30 emails and 30 Facebook posts, CALI consumes less energy in

comparison to SAPSM and APSM for all 3 sets of energy parameters. Figure

7.5 shows CALI consumes 8.58% to 14.37% less energy compared to SAPSM

when the listen interval is set to between 2 and 10. This increases to between

44.48% and 48.00% less energy in comparison with APSM. In contrast, APSM

consumes more energy than SAPSM and CALI in all 3 sets of energy

parameters. As it switches to awake mode when interaction occurs in the

background and remains in awake mode for an idle timeout period before

fully switching back to SPSM.

Although these applications run in the background non-interactively and do

not always receive data, SPSM could add an approximate delay of 100-300ms

of delay when the WNIC is off during the beacon intervals, but buffered

packets are available at the AP. This added delay could reach 1000ms in the

case of CALI when the listen interval is increased to 10.

206

Figure 7. 4: Comparison of CALI, SAPSM, and APSM in DLI mode against set 1
of energy parameters

Figure 7. 5: Comparison of CALI, SAPSM, and APSM in DLI mode against set 2
of energy parameters

207

Figure 7. 6: Comparison of CALI, SAPSM, and APSM in DLI mode against set 3
of energy parameters

The levels of energy consumption of CALI, SAPSM and APSM in low mode

against the 3 sets of energy parameters are shown in Figures 7.7, 7.8 and 7.9.

For all 3 sets of energy parameters CALI consumes less energy than SAPSM

and APSM. Low mode reflects applications with the lowest degree of

interaction in the background. Where interactions mostly occur during

fetching advertisements. In the experiments the listen interval of CALI was set

to 20. Besides, after the playing time of 110 seconds when the network traffic

to load the advertisements occurs, we also observed a small level of network

interaction during playing time. While small this was sufficient to switch

APSM to awake mode. In Set 2, CALI consumes 14.39% less energy compared

to SAPSM and 41.83% when compared to APSM.

208

Figure 7. 7: Comparison of CALI, SAPSM, and APSM in low mode against set 1 of
energy parameters

Figure 7. 8: Comparison of CALI, SAPSM, and APSM in low mode against set 2 of
energy parameters

209

Figure 7. 9: Comparison of CALI, SAPSM, and APSM in low mode against set 3 of
energy parameters

Figure 7.10 shows the levels of energy consumption of CALI, SAPSM, and

APSM in awake mode for the 3 sets of energy parameters. As awake mode

reflects applications with higher levels of network traffic, the WNIC is always

on. Therefore, based on traffic of Skype video call, in all 3 sets of energy

parameters, the levels of energy consumption of CALI, SAPSM, and APSM are

identical. This is due to the behaviour of CALI, SAPSM and APSM to this type

of traffic.

210

Figure 7. 10: Comparison of CALI, SAPSM, and APSM in awake mode against the
3 sets of energy parameters

7.2.3 Value Variations of Energy Parameters

Further investigation was carried out observing the behaviour of CALI, as we

varied the values of individual energy parameters between their max and min

across the three sets. We chose each individual energy parameter and

gradually increased its value from the minimum as in Set 1 to match the max

value as in Set 2. The values for the other energy parameters were kept

unchanged.

Figures 7.11, 7.12, 7.13, 7.14 and 7.15 show the energy consumption of CALI in

buffering mode as the value of the individual power parameters were varied.

Figure 7.11 shows the energy consumption of CALI in buffering mode for

changing values of txPower 1.4W (Set 1), to 1.675W (Set 2). In this context,

txPower reflects the energy consumption of the acknowledgment packets sent

by the wireless device to an AP upon receiving the destined packets.

211

Figure 7. 11: Levels of energy consumption of CALI in buffering mode against the
value variations of txPower energy parameter

Figure 7. 12: Levels of energy consumption of CALI in buffering mode against the
value variations of rxPower energy parameter

212

Figure 7. 13: Levels of energy consumption of CALI in buffering mode against the
value variations of idlePower and transitionPower energy parameters

Figure 7.12 illustrates levels of energy consumption of CALI in buffering mode

when incrementing rxPower from 0.9W (Set 1), to 1.425W (Set 2). rxPower

reflects the energy consumption of the wireless device while receiving packets

from an AP.

As mentioned before, the value of transitionPower must be twice that of

idlePower. Therefore, we have incremented the values of transitionPower

along with the value of idlePower.

Levels of energy consumption of CALI in buffering mode when incrementing

transitionPower and idlePower from values in Set 1 to values in Set 2 are

shown in Figure 7.13.

213

Figure 7. 14: Levels of energy consumption of CALI in buffering mode against the
value variations of transitionTime

The transitionTime value is identical in all 3 sets of 0.002s. In order to further

analyse its impact on energy consumption, we have varied transitionTime

between 0.005s and 0.0008s. The impact of increasing and decreasing the

transitionTime on energy consumption of CALI in buffering mode is shown

in Figure 7.14.

Figure 7.15 shows levels of energy consumption of CALI in buffering mode

while increasing sleepPower from 0.06W (Set 1), to 0.177W (Set 2). As can be

expected, we observe that the value of the sleepPower parameter has a major

impact on the levels of energy consumption of CALI in comparison to the

other energy parameters.

214

Figure 7. 15: Levels of energy consumption of CALI in buffering mode against the
value variations of sleepPower energy parameter

Figure 7. 16: Levels of energy consumption of CALI, SAPSM, and APSM in
buffering mode against the value variations of sleepPower energy parameter

Figure 7.16 shows the levels of energy consumption of CALI, SAPSM, and

APSM in buffering mode when increasing sleepPower from 0.06W (Set 1), to

215

0.177W (Set 2). CALI consumes less energy than SAPSM and APSM. The

power consumption of APSM remains static, as the WNIC remains awake and

thus the value of sleepPower has no impact on energy consumption.

7.3 Summary

In summary, this chapter evaluated the effect of adjusting the WNIC on energy

consumption after the accomplishment of the classification process using an

ML classification model. It also described the experimental setup used in the

creation of the corresponding scenarios of CALI power saving modes. This

was followed by assessing the performance of CALI power saving modes by

comparing the levels of energy consumption with existing benchmark power

saving approaches, including APSM and SAPSM using the three sets of energy

parameters. Furthermore, it assessed the performance of CALI against the

value variations of energy parameters.

216

8

CONCLUSION AND FUTURE WORK

8.1 Introduction

This chapter concludes the thesis. It starts by summarising the motivation

behind this research work and then discusses the main findings (section 8.2).

section 8.3 revisits the research objectives and describes how they were

fulfilled. Section 8.4 highlights the limitations and outlines possible future

research directions.

8.2 Thesis Summary

Regardless of the rapid growth and popularity of WLANs, the energy

consumption caused by WNIC during wireless communication remains a

significant factor in reducing the battery life of power-constrained wireless

devices.

The authors of [10] proposed SAPSM. SAPSM replaced the threshold

mechanism of APSM with a set of two priorities, high and low. Thus, each

network based smartphone application is labelled as high and low, with the

aid of an ML classifier. Consequently, for applications set as a high priority,

the WNIC switches into awake mode and remains in SPSM with low priority

applications.

However, no additional priority or mode has been proposed, e.g., for

applications with very low levels of network interactivity or applications

using buffer streaming.

217

Comparing with SAPSM, this thesis has extended the number of categories by

considering a varied range of smartphone applications’ network traffic that

reflect a diverse array of network behaviour and interactions.

Hence, the aim of this thesis was to develop a power saving mechanism that

optimises the sleep and awake cycles of the WNIC in accordance with

smartphone applications’ network traffic, reflecting a diverse array of network

behaviour and interactions.

In this thesis, we have developed a Context-Aware Listen Interval (CALI), in

which the wireless network interface, with the aid of an ML classification

model, sleeps and awakes based on the level of network activity of each

application.

Firstly, we introduced a context-aware network traffic classification approach

based on ML classifiers to classify the network traffic of wireless devices in

WLANs. Different levels of traffic behaviour and interaction were contextually

exploited for the classification by the application of ML classifiers.

A real-world dataset is recorded, based on nine smartphone applications’

network traffic, reflecting different types of network behaviour and

interaction. This is used firstly to evaluate the performance of five ML

classifiers using 10-fold cross-validation, this was followed by conducting

extensive experimentation to determine whether the selected classification

models not only perform well on training data but also generalise well on

unseen testing data of applications that were not included in training data.

In the first experiment, a representative application from each class was

selected for training the ML classifiers, and their generalisation capacity was

evaluated on different applications that were not included in the training data.

In terms of generalising to unseen testing data of class high, the results of the

first experiment showed that the learned classification models were only

218

capable of capturing the variance in the traffic range of video call applications

and that by generalising well to unseen testing data of Google Hangouts video

call only. But, in terms of the voice call applications, the resultant classification

models were incapable to generalise to testing data of both Skype and Google

Hangouts voice calls.

The second experiment was performed to assess the generalisation capacity of

the learned classification models on extended training data, particularly after

the inclusion of the Skype voice call application into the training data. Where

the experimental results showed an improvement in the generalisation

performance specifically on testing data of class high, this was due to the

training of the ML classifiers on a wider variation range that resulted from

combining the training data of Skype video call and Skype voice call.

The third experiment was performed to assess the generalisation capacity of

the learned classification models on reduced training data. Where the training

samples of each application used for training the ML classifiers in the second

experiment were reduced to half and then to a quarter. However, the results

of this experiment showed that reducing the amount of training data has a

minimal impact on the generalisation performance, but still, better

generalisation performance can be achieved by training with more samples.

To further assess the generalisation capacity, the fourth experiment was

performed by switching the training and testing data that were used in the

previous experiments 2 and 3. This involved training the ML classifiers on

applications that were previously used for testing and assessing their

generalisation performance on applications that were used for training.

However, the results of this experiment showed that training the ML

classifiers on training data with a wider variation in the traffic range leads to

better generalisation performance.

219

Moreover, given that the classification models in the second, third and fourth

experiments were capable of achieving high results on unseen testing data of

applications that were not included in the training data. This thesis further

explored the feasibility of manually crafting rules to hand-classify the training

data. Where attempt was made to hand-classify the training data and the

outcomes were subsequently discussed and compared with the benefits

offered by classification models constructed using ML classifiers.

In addition, this thesis conducted the hyperparameter optimisation process

using both manual and automated tuning methods to identify the optimal

settings that result in a better-performing classification model. Where various

hyperparameter settings were explored by performing 10-fold cross-

validation firstly on the training data of experiment three consisting of 185

samples. Followed by evaluating the performance of the constructed

classification models using the obtained optimal sets of hyperparameter

values on the testing data of the same experiment.

This thesis further assessed the performance of the classification models by

repeating the previous four experiments using the optimal sets of

hyperparameter values that were obtained through the optimisation process.

Where the experimental results particularly of the repeated experiments one

and four showed that using the optimised hyperparameters for a particular

training data may not always lead to improved model performance when

there are changes in the overall distribution of new training data, and the

default hyperparameter settings in some cases perform comparably or better

than the optimised hyperparameters.

Thus, further hyperparameter tuning was performed in this thesis, where the

optimal sets of hyperparameter values were determined for classification

models of the first and fourth experiments and the experimental results

220

confirmed that better results can be obtained by conducting a hyperparameter

optimisation process independently for each training data.

Moreover, in order to optimise the sleep and awake cycles of the WNIC in

accordance with the smartphone applications’ network activity, we have

developed four CALI power saving modes.

These power saving modes enabled additional power saving opportunities

and have been devised based on the classified output traffic of the captured

samples from the nine smartphone applications’ network traffic. Hence, the

ML classification model classifies the new unseen samples into one of the

modes, where the WNIC will be adjusted to operate into one of CALI power

saving modes.

Moreover, CALI handles applications, which it cannot map to one of the four

modes by reverting the WNIC to operate in SPSM mode. That means, the

worst possible performance is that of SPSM, but if one of the four modes

applies, a significant performance improvement with respect to power saving

is achieved.

We evaluated the performance of CALI power saving modes, by comparing

the levels of energy consumption with existing benchmark power saving

approaches, including APSM and SAPSM using varied sets of energy

parameters. And the experimental results have demonstrated that CALI

consumes up to 75% less power when compared to APSM, and up to 14% less

energy when compared to SAPSM power saving approach.

Lastly, our approach relies on an ML classification model to optimise the

energy efficiency of power-constrained wireless devices. Therefore, the

computational cost of training and testing the ML classifier is crucial. In this

research, we have demonstrated high accuracy and low computational cost for

building a classification model. Clearly, this is a one-off cost during

221

deployment. In addition, the cost of our approach at runtime is minimal as the

WNIC simply operates in one of the CALI power saving modes, once the

classification of the traffic is completed.

8.3 Meeting the Objectives

This section discusses how the research objectives stated in chapter 1 have

been satisfied and addressed during our research.

• Identify and construct a real-world dataset based on a varied range of

smartphone applications’ network traffic depicting different types of

network behaviour and interaction.

Section 4.4 describes the process of data extraction and preparation

employed in this research for constructing the dataset. The dataset was

constructed by capturing real-time instances of network traffic from nine

selected smartphone applications depicting varied types of network

behaviour and interaction; including, two VoIP applications, two

applications of video calls, two applications of intermittent network

interaction, two applications of very low network interaction, and finally

one application representing applications with buffer streaming

capabilities. This has resulted in the construction of a dataset, named

Dataset 1, consisting of 1350 instances, with 150 instances per application

and 6 features per instance. Section 4.3 begins by justifying the selection of

the chosen applications and the assignment of output classes. Where four

output classes were assigned to cater for the network traffic of these

applications. Thereby out of the nine chosen applications, the first output

class was assigned to the four applications that represent real-time

applications with high and constant levels of network interaction. The

reason for having four applications for this output class is to ensure more

variation in the range of network traffic included in the training data by

222

having two VoIP applications and two video-calling applications. For the

remaining three types of network traffic, the second output class was

assigned to the two applications that represent network traffic with

intermittent levels of interaction, while the third output class was assigned

to the two applications that represent the least levels of network

interaction. Finally, the fourth output class was assigned to one application

that represents the network traffic of audio streaming applications. Section

4.5.1 describes the construction of further datasets from Dataset 1 by the

application of different feature selection algorithms, Dataset 2CBFS is

based on a consistency feature selection algorithm and Dataset 3IGFS is

based on an information gain feature selection algorithm.

• Train ML classifiers to learn mapping the input features of each

sample to an output class from the training set and build an ML

classification model.

Section 4.2 discuss how the network traffic of the nine smartphone

applications reflecting a diverse array of network behaviour and

interaction were exploited to provide the contextual inputs for training ML

classifiers of the output traffic, thus building an ML classification model

which is capable of classifying the new unseen samples into one of the

classes. The set of six input features are: 1- receiving data rate in

Kbytes/sec. 2- transmitting data rate in Kbytes/sec. 3- total received

Kbytes. 4- total transmitted Kbytes. 5- total number of received packets. 6-

total number of transmitted packets. These features were used as

contextual inputs for training ML classifiers of output classes: 1- high. 2-

varied. 3- low. 4- buffering.

223

• Evaluate the performance of ML classifiers using 10-fold cross-

validation. Based on the result of the analysis, determine the more

suitable ML classifier for classifying smartphone applications’

network traffic reflecting varied types of network behaviour and

interaction. Then, assess the generalisation capacity of the selected

classification models on unseen testing data of applications that were

not included in training data. Along with evaluation metrics, provide

a confusion matrix to enable a detailed breakdown of the predictions,

including the distribution of correct and incorrect predictions made

by the classification models.

Section 4.5.2 evaluates the performance of the five commonly used ML

classifiers described in section 3.6. The applied ML classifiers were MLP,

KNN, SVM, decision tree (C4.5), and Random forest. And the performance

of each classifier was evaluated on Dataset 1, Dataset 2CBFS and Dataset

3IGFS using 10-fold cross validation, in terms of classification accuracy,

precision, recall and f-measure. This section also assessed the processing

time to build a classification model. Comparing the results obtained for the

five ML classifiers in all datasets in terms of all evaluation metrics, we

found that a number of effective features can be considered to improve the

overall results. Moreover, we conclude that the optimum results in terms

of all evaluation metrics used in these experiments were achieved by KNN

in Dataset 3IGFS using10-fold cross-validation. We determined KNN to be

the best ML classifier in terms of classifying smartphone applications’

network traffic based on different levels of behaviour and interaction. This

was followed by conducting extensive experimentation in sections 5.2 to

5.5 to determine whether the selected classification models not only

perform well on training data but also generalise well on unseen testing

data of applications that were not included in training data. Where the

performance of each classifier is evaluated in terms of classification

accuracy, macro-average of precision, recall and weighted average f-

224

measure. Along with evaluation metrics, a confusion matrix was provided

to enable a detailed breakdown of the predictions, including the

distribution of correct and incorrect predictions made by the classification

models. In the first experiment, a representative application from each

class was selected for training the ML classifiers, and their generalisation

capacity was evaluated on different applications that were not included in

the training data. In terms of generalising to unseen testing data of class

high, the results of the first experiment showed that the learned

classification models were only capable of capturing the variance in the

traffic range of video call applications and that by generalising well to

unseen testing data of Google Hangouts video call only. But, in terms of

the voice call applications, the resultant classification models were

incapable to generalise to testing data of both Skype and Google Hangouts

voice calls. The second experiment was performed to assess the

generalisation capacity of the learned classification models on extended

training data, particularly after the inclusion of the Skype voice call

application into the training data. Where the experimental results showed

an improvement in the generalisation performance specifically on testing

data of class high, this was due to the training of the ML classifiers on a

wider variation range that resulted from combining the training data of

Skype video call and Skype voice call. The third experiment was performed

to assess the generalisation capacity of the learned classification models on

reduced training data. Where the training samples of each application used

for training the ML classifiers in the second experiment were reduced to

half and then to a quarter. However, the results of this experiment showed

that reducing the amount of training data has a minimal impact on the

generalisation performance, but still, better generalisation performance

can be achieved by training with more samples. To further assess the

generalisation capacity, the fourth experiment was performed by

switching the training and testing data that were used in the previous

225

experiments 2 and 3. This involved training the ML classifiers on

applications that were previously used for testing and assessing their

generalisation performance on applications that were used for training.

However, the results of this experiment showed that training the ML

classifiers on training data with a wider variation in the traffic range leads

to better generalisation performance. Moreover, given that the

classification models in the second, third and fourth experiments were

capable of achieving high results on unseen testing data of applications

that were not included in the training data. Section 5.6 further explored the

feasibility of manually crafting rules to hand-classify the training data.

Where attempt was made to hand-classify the training data and the

outcomes were subsequently discussed and compared with the benefits

offered by classification models constructed using ML classifiers.

• Devise power saving modes based on the classified output traffic of

the captured samples from a varied range of smartphone

applications’ network traffic.

Section 4.3 discusses how the CALI power saving modes were employed

for optimising the sleep and awake cycles of the WNIC in accordance with

the smartphone applications’ network activity. We introduced four CALI

power saving modes based on the classified output traffic of the captured

samples from the nine smartphone applications’ network traffic. Therefore,

once the ML classification model classifies the new unseen samples into

one of the classes, the WNIC is adjusted to operate into one of CALI power

saving modes. In addition, CALI handles smartphone applications, which

it cannot map to one of the four modes by reverting the WNIC to operate

in SPSM mode. That means, the worst possible performance is that of

SPSM, but if one of the four modes applies, a significant performance

improvement with respect to power saving is achieved.

226

• Evaluate the performance of the proposed power saving modes by

comparing the levels of energy consumption with existing

benchmark power saving approaches, using varied sets of energy

parameters.

Subsection 7.2.2 evaluates the performance of CALI power saving modes

by comparing the levels of energy consumption with existing benchmark

power saving approaches, using varied sets of energy parameters. We

selected APSM as the most current power saving approach deployed in

smartphones and SAPSM as a recent technique also employing ML. The

experimental results show that CALI consumes up to 75% less power when

compared to APSM, and up to 14% less energy when compared to SAPSM

power saving approach. This is followed by assessing the performance of

CALI against the value variations of energy parameters in subsection 7.2.3.

8.4 Limitations and Future Work

This section highlights the limitations and outlines possible future research

directions.

8.4.1 Limitations

• Dataset

In this research, we investigated the network activity of a single

smartphone application opened at a given time without considering the

network activity of applications that run simultaneously. Where the

classification models were constructed from the training samples captured

from the network traffic of nine smartphone applications that were

running individually.

Therefore, there is room for further investigation that can be carried out by

capturing the network traffic of applications with different behaviours and

227

interactions. For example, to represent the network traffic of applications

that run simultaneously, additional samples can be recorded from both an

audio streaming app running in the background, along with a lower

network usage gaming app and then added to the dataset.

Moreover, to represent the network traffic of audio streaming applications

with playback buffering capacity, in this research, we chose a radio station

streaming at 128 kbps. However, additional samples from a radio station

streaming at 320 kbps or higher could be recorded and then added to the

dataset.

• Power saving modes

There is a scope for further investigation to find the optimal number of

power saving modes that could be associated with the CALI’s framework.

This would be based on further analysis of the captured network traffic of

applications with different behaviours and interactions.

For example, based on the analysed network traffic of applications that run

simultaneously, an additional power saving mode can be introduced with

its listening interval resides between the current low and buffering modes.

Similarly, based on the analysed network traffic of radio station streaming

at 320 kbps or higher, an additional CALI power saving mode can be

developed and incorporated into CALI’s framework.

• The framework

The ML based classification models employed in this research were

capable of achieving high results on unseen testing data of applications

that were not included in the training data. Therefore, we explored the

feasibility of manually crafting rules to hand-classify the training data.

Where attempt was made to hand-classify the training data and the

228

outcomes were subsequently discussed and compared with the benefits

offered by classification models constructed using ML classifiers.

However, it also can be worthwhile to employ simpler mechanisms such

as thresholding as an approach to classify network traffic of wireless

devices in WLANs.

Moreover, the application of the CALI power saving framework is limited

to wireless devices operating on WLANs and this possibly could be

extended to other similar types of wireless networks such as 4G/5G mobile

data networks and WiMAX.

Furthermore, a context-aware power saving framework could also

potentially be applied to other devices like Internet of Things (IoT)

appliances; as long as these devices have or operate on a set of finite modes

or states, and there are inputs that cause the transition into one of states or

modes. However, it is challenging but worth trying to design a context-

aware power saving framework for devices or appliances that do not have

a finite set of states and are always on e.g., battery chargers.

• WEKA tool

Weka tool may not provide customisation options for certain parameters,

e.g., the only activation function for an MLP is sigmoid. However, the tool

was sufficient for training and hyperparameter optimisation, and this did

not restrict from obtaining optimum results.

8.4.2 Future Work

This section outlines possible future research directions based on the above

limitations.

229

• Larger dataset

Future work should consider investigating, training, and evaluating ML

classifiers on a larger dataset containing samples of network traffic

captured from a wider range of smartphone applications , these include

samples captured from Video on Demand (VoD) applications streaming

4K/8k Ultra HD video content, samples captured from applications

running simultaneously, and samples captured from audio streaming

applications e.g., radio stations streaming at 320 kbps or higher.

• Additional power saving modes

Future work should also investigate the possibility of developing

additional CALI power saving modes based on the classified output traffic

from further smartphone applications’ network traffic.

• Energy optimisation

In this research we developed a context-aware listen interval to optimise

energy efficiency of power-constrained wireless devices in WLANs.

However, future work should include implementation and evaluation of

the CALI power saving framework on wireless networks similar to

WLANs such as 4G/5G mobile data networks and WiMAX. Also, it will be

worthwhile investigating a context-aware power saving framework for

continuously variable devices.

• Real implementation

Another possible future study would be to implement the CALI power

saving approach in a real environment. Although real deployment is

complex, costly, and time-consuming. However, it would provide a better

insight and more realistic results.

230

REFERENCES

[1] F. Wu et al., “Named Data Networking Enabled Power Saving Mode Design for

WLAN,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 901-913, 2020.

[2] “IEEE 802.11-2012: Wireless LAN Medium Access Control MAC and Physical

Layer PHY Specifications,” IEEE 802.11 LAN Standards 2012, 2012.

[3] S. Baek and B. D. Choi, "Performance analysis of power save mode in IEEE 802.11

infrastructure WLAN", Int. Conf. Telecommun., pp. 1-4, Jun. 2008.

[4] N. Ding, A. Pathak, D. Koutsonikolas, C. Shepard, Y. C. Hu and L. Zhong,

“Realizing the full potential of PSM using proxying,” in 2012 Proceedings IEEE

INFOCOM, Orlando, FL, USA, 2012, pp. 2821-2825.

[5] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu, “NAPman: Network assisted

power management for WiFi devices,” in Proc. 8th Int. Conf. Mobile Syst., Appl.,

Services, pp. 91-106, Jun. 2010.

[6] A. Pyles, D. T. Nguyen, X. Qi and G. Zhou, “Bluesaver: A Multi-PHY Approach to

Smartphone Energy Savings,” IEEE Transactions on Wireless Communications, vol.

14, no. 6, pp. 3367-3377, Jun. 2015.

[7] V. Bernardo, B. Correia, M. Curado, and T. I. Braun, “Towards end-user driven

power saving control in Android devices,” in Internet of Things, Smart Spaces, and

Next Generation Networks and Systems (Lecture Notes in Computer Science), vol.

8638. Cham, Switzerland: Springer, 2014, pp. 231–244. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-319-10353-2_20#aboutcontent,

doi: 10.1007/978-3-319-10353-2_20.

[8] A. J. Pyles, Z. Ren, G. Zhou and X. Liu, "SIFI: Exploiting voip silence for WiFi

energy savings insmart phones", Proc. 13th Int. Conf. Ubiquitous Comput., pp. 325-

334, 2011.

231

[9] Kwon, H., Kim, S., Son, Y., Yang, C., Byeon, S. and Choi, S., 2019, November.

AWARE: Adaptive Wi-Fi Power Save Operation Coexisting with LTE-U. In 2019 IEEE

16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (pp.

208-216). IEEE.

[10] A. J. Pyles, X. Qi, G. Zhou, M. Keally and X. Liu, “SAPSM: Smart adaptive 802.11

PSM for smartphones,” in Proc. ACM Conf. Ubiquitous Comput., pp. 11-20, Sept.

2012.

[11] X. Xia, S. Li, Y. Zhang, B. Li, Y. Zheng and T. Gu, “Enabling Out-of-Band

Coordination of Wi-Fi Communications on Smartphones,” IEEE/ACM Transactions

on Networking, vol. 27, no. 2, pp. 518-531, Apr. 2019.

[12] Pérez-Costa, X. and Camps-Mur, D., 2006, June. AU-APSD: Adaptive IEEE 802.11

e unscheduled automatic power save delivery. In 2006 IEEE International Conference

on Communications (Vol. 5, pp. 2020-2027). IEEE.

[13] Westcott, D.A., Coleman, D.D., Miller, B. and Mackenzie, P., 2011. CWAP

Certified Wireless Analysis Professional Official Study Guide: Exam PW0-270. John

Wiley & Sons.

[14] Pérez-Costa, X. and Camps-Mur, D., 2010. IEEE 802.11 E QoS and power saving

features overview and analysis of combined performance [Accepted from Open Call].

Wireless Communications, IEEE, 17(4), pp.88-96.

[15] R. Prasad, A. Kumar, R. Bhatia, "Electronics, Computing and Communication

Technologies (IEEE CONECCT), 2014 IEEE International Conference on," Ubersleep:

An innovative mechanism to save energy in IEEE 802.11 based WLANs, Vol., no. , pp.

1 - 6, 6-7 Jan. 2014.

[16] IEEE Computer Society LAN MAN Standards Committee, Amendment to IEEE

Standard 802.11: Sub 1 GHz License Exempt Operation, IEEE Standard 802.11ah, Feb.

2016

232

[17] H. Yang, D. Deng and K. Chen, "On Energy Saving in IEEE 802.11ax," in IEEE

Access, vol. 6, pp. 47546-47556, 2018, doi: 10.1109/ACCESS.2018.2865763.

[18] Y. Li, X. Zhang and K. L. Yeung, “DLI: A dynamic listen interval scheme for

infrastructure-based IEEE 802.11 WLANs,” IEEE 26th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong

Kong, China, 2015, pp. 1206-1210.

[19] Y. Li, G. Zhou, G. Ruddy, and B. Cutler, “A Measurement-Based Prioritization

Scheme for Smartphone Applications,” Wireless personal communications, vol. 78,

no. 1, pp.333-346, Sept. 2014.

[20] Kwon, S.W. and Cho, D.H., 2006, September. Efficient power management

scheme considering inter-user QoS in wireless LAN. In Vehicular Technology

Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th (pp. 1-5). IEEE.

[21] Fahad R. Dogar, Peter Steenkiste, and Konstantina Papagiannaki. Catnap:

exploiting high bandwidth wireless interfaces to save energy for mobile devices. In

Proceedings of the 8th international conference on Mobile systems, applications, and

services, MobiSys 2010.

[22] K. J. Jang, S. Hao, A. Sheth, and R. Govindan “Snooze: Energy management in

802.11n WLANs,” in Proc. CoNEXT, Dec. 2011, Art. no. 12.

[23] A. J. Pyles, Z. Ren, G. Zhou, and X. Liu, “SiFi: exploiting VoIP silence for WiFi

energy savings in smart phones,” in Proc. UbiComp, Sep. 2011, pp. 325–334.

[24] J. Liu and L. Zhong, “Micro power management of active 802.11 interfaces,” in

Proc. MobiSys, Jun. 2008, pp. 146–159.

[25] Y. Xie, X. Luo and R. K. C. Chang, "Centralized PSM: An AP-centric power saving

Mode for 802.11 infrastructure networks," 2009 IEEE Sarnoff Symposium, 2009, pp. 1-

5, doi: 10.1109/SARNOF.2009.4850348.

233

[26] E. Tan, L. Guo, S. Chen and X. Zhang, "PSM-throttling: Minimizing Energy

Consumption for Bulk Data Communications in WLANs," 2007 IEEE International

Conference on Network Protocols, 2007, pp. 123-132, doi:

10.1109/ICNP.2007.4375843.

[27] Y. He and R. Yuan, "A Novel Scheduled Power Saving Mechanism for 802.11

Wireless LANs," in IEEE Transactions on Mobile Computing, vol. 8, no. 10, pp. 1368-

1383, Oct. 2009, doi: 10.1109/TMC.2009.53.

[28] P. Agrawal, A. Kumar, J. Kuri, M. K. Panda, V. Navda and R. Ramjee, "OPSM -

Opportunistic Power Save Mode for Infrastructure IEEE 802.11 WLAN," 2010 IEEE

International Conference on Communications Workshops, 2010, pp. 1-6, doi:

10.1109/ICCW.2010.5503903.

[29] K. Omori, Y. Tanigawa, H. Tode, “Power-Saving for Wireless Stations Using

RTS/CTS Handshake and Burst Transmission in Wireless LANs,” 2017 14th IEEE

Annual Consumer Communications & Networking Conference (CCNC), Las Vegas,

NV, pp. 708-711, Jul. 2017.

[30] K. Omori, Y. Tanigawa and H. Tode, “A study on power saving using RTS/CTS

handshake and burst transmission in wireless LAN,” 2015 10th Asia-Pacific

Symposium on Information and Telecommunication Technologies (APSITT),

Colombo, pp. 1-3, Aug. 2015.

[31] Justin Manweiler and Romit Roy Choudhury. Avoiding the rush hours: Wifi

energy management via traffic isolation. In Proceedings of the 9th international

conference on Mobile systems, applications, and services, MobiSys 2011.

[32] D. Liu, H. Wang, G. Zhou, W. Mao, and B. Li, “Arbitrating traffic contention for

power saving with multiple PSM clients,” IEEE Trans. Wireless Commun., vol. 15, no.

10, pp. 7030–7043, Oct. 2016.

[33] G. M. Fisher, “Remembering mollie orshansky—The developer of the poverty

thresholds,” Soc. Secur. Bull., vol. 68, no. 3, pp. 78–83, 2008.

234

[34] Z. Zeng, Y. Gao and P. R. Kumar, "SOFA: A Sleep-Optimal Fair-Attention

Scheduler for the Power-Saving Mode of WLANs," 2011 31st International

Conference on Distributed Computing Systems, 2011, pp. 87-98, doi:

10.1109/ICDCS.2011.78.

[35] Hsiao-Po Lin, Shih-Chang Huang, and Rong-Hong Jan. A power-saving

scheduling for infrastructure-mode 802.11 wireless LANs. Comput. Commun.,

29(17):3483–3492, November 2006.

[36] H. Han, Y. Liu, G. Shen, Y. Zhang, Q. Li and C. C. Tan, "Design, Realization, and

Evaluation of DozyAP for Power-Efficient Wi-Fi Tethering," in IEEE/ACM

Transactions on Networking, vol. 22, no. 5, pp. 1672-1685, Oct. 2014, doi:

10.1109/TNET.2013.2283636.

[37] Y. Zhang and Q. Li, "Exploiting ZigBee in Reducing WiFi Power Consumption

for Mobile Devices," in IEEE Transactions on Mobile Computing, vol. 13, no. 12, pp.

2806-2819, 1 Dec. 2014, doi: 10.1109/TMC.2014.2315788.

[38] G. Ananthanarayanan and I. Stoica, “Blue-Fi: Enhancing Wi-Fi performance

using Bluetooth signals,” in Proc. ACM MobiSys, 2009, pp. 249–262.

[39] E.J. Vergara and S. Nadjm-Tehrani. Watts2share: Energy-aware traffic

consolidation. In Green Computing and Communications (GreenCom), 2013 IEEE

and Internet of Things (iThings/CPSCom), IEEE International Conference on and

IEEE Cyber, Physical and Social Computing, pages 14–22, Aug 2013.

[40] J. Chung, J. Park, C. Kim and J. Choi, "C-SCAN: Wi-Fi Scan Offloading via

Collocated Low-Power Radios," in IEEE Internet of Things Journal, vol. 5, no. 2, pp.

1142-1155, April 2018, doi: 10.1109/JIOT.2018.2811240.

[41] F. Lu, G. M. Voelker, and A. C. Snoeren, “SloMo: Downclocking WiFi

communication,” in Proc. USENIX NSDI, pp. 255–258, 2013.

235

[42] X. Zhang and K. G. Shin, “E-MiLi: Energy-Minimizing Idle Listening in

WirelessNetworks,” IEEE Transactions on Mobile Computing, vol. 11, no. 9, pp. 1441-

1454, Sept. 2012.

[43] W. Wang, Y. Chen, L. Wang and Q. Zhang, “Sampleless Wi-Fi: Bringing Low

Power to Wi-Fi Communications,” IEEE/ACM Transactions on Networking, vol. 25,

no. 3, pp. 1663-1672, Jun. 2017.

[44] C. Deng et al., “IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities,” IEEE

Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2136-2166, 2020.

[45] Wi-fi.org. 2021. certification url check | Wi-Fi Alliance. [online] Available at:

https://www.wifi.org/download.php?file=/sites/default/files/private/Economic

_Value_of_Wi-Fi_Highlights_202109_0.pdf. [Accessed 13 September 2021].

[46] J. Saldana et al., “Attention to Wi-Fi Diversity: Resource Management in WLANs

With Heterogeneous APs,” IEEE Access, vol. 9, pp. 6961-6980, Jan. 2021.

[47] X. Xie, W. Yang and K. Tian, “Delay-aware Power Saving Mechanism for 802.11

Wireless LANs via NDN,” 2018 1st IEEE International Conference on Hot

Information-Centric Networking (HotICN), Shenzhen, 2018, pp. 154-159.

[48] M. F. Tuysuz, “Towards providing optimal energy‐efficiency and throughput for

IEEE 802.11 WLANs,” International Journal of Communication Systems, vol. 31, no.

13, pp. e3725, Jun. 2018.

[49] M. Jeruchim, P. Balaban, and K. Shanmugan, ‘‘Simulation of communication

systems: Modeling, methodology and techniques,’’ in Information Technology:

Transmission, Processing and Storage. New York, NY, USA: Springer, 2006.

[50] A. R. Khan, S. M. Bilal and M. Othman, "A performance comparison of open

source network simulators for wireless networks," 2012 IEEE International

Conference on Control System, Computing and Engineering, 2012, pp. 34-38, doi:

10.1109/ICCSCE.2012.6487111.

236

[51] “The Network Simulator-ns-2.” [Online]. Available:

https://www.isi.edu/nsnam/ns/.

[52] “OMNET++ network simulator.” [Online]. Available: https://omnetpp.org/.

[53] “Riverbed (OPNET).” [Online]. Available: https://www.riverbed.com/

products/steelcentral/opnet.html?redirect=opnet

[54] “QualNet.” [Online]. Available: https://www.scalable-

networks.com/products/qualnet-network-simulation-software/.

[55] M. Fujinami, Y. Miyamoto and T. Murakami, “Wireless LAN Power Management

Extension for ns-2”[Online]. Available: http://nspme.sourceforge.net/.

[56] A. Ksentini and Y. Hadjadj-Aoul, “QoE-based energy conservation for VoIP over

WLAN,” 2012 IEEE Wireless Communications and Networking Conference (WCNC),

Paris, France, 2012, pp. 1692-1697.

[57] A. Saeed and M. Kolberg, "Towards optimizing WLANs power saving: Novel

context-aware network traffic classification based on a machine learning approach",

IEEE Access, vol. 7, pp. 3122-3135, 2019.

[58] Al-Obeidat, F., El-Alfy, ES.M. Hybrid multicriteria fuzzy classification of network

traffic patterns, anomalies, and protocols. Pers Ubiquit Comput 23, 777–791 (2019).

https://doi.org/10.1007/s00779-017-1096-z.

[59] A. Dainotti, A. Pescape and K. C. Claffy, "Issues and future directions in traffic

classification," in IEEE Network, vol. 26, no. 1, pp. 35-40, January-February 2012, doi:

10.1109/MNET.2012.6135854.

[60] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin and J. Aguilar, "Towards the

Deployment of Machine Learning Solutions in Network Traffic Classification: A

Systematic Survey," in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp.

1988-2014, Secondquarter 2019, doi: 10.1109/COMST.2018.2883147.

237

[61] Tahaei, H., Afifi, F., Asemi, A., Zaki, F., & Anuar, N. B. (2020). The rise of traffic

classification in IoT networks: A survey. Journal of Network and Computer

Applications, 154, 102538.

[62] Z. Md. Fadlullah, F. Tang, B. Mao, J. Liu and N. Kato, "On Intelligent Traffic

Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep

Learning Approach," in IEEE Communications Letters, vol. 22, no. 12, pp. 2479-2482,

Dec. 2018, doi: 10.1109/LCOMM.2018.2875431.

[63] Al Khater, N. and Overill, R.E., 2015, October. Network traffic classification

techniques and challenges. In 2015 Tenth international conference on digital

information management (ICDIM) (pp. 43-48). IEEE.

[64] T. T. T. Nguyen and G. Armitage, "A survey of techniques for internet traffic

classification using machine learning," in IEEE Communications Surveys & Tutorials,

vol. 10, no. 4, pp. 56-76, Fourth Quarter 2008, doi: 10.1109/SURV.2008.080406.

[65] Shafiq, M., Tian, Z., Bashir, A. K., Jolfaei, A., & Yu, X. (2020). Data mining and

machine learning methods for sustainable smart cities traffic classification: A survey.

Sustainable Cities and Society, 60, 102177.

[66] Moore A, Papagiannaki K. “Toward the accurate identification of network

applications”, Proceedings of Passive and Active Measurement Workshop (

PAM2005). Boston(USA), 2005.

[67] A. Madhukar and C. Williamson, "A Longitudinal Study of P2P Traffic

Classification," 14th IEEE International Symposium on Modeling, Analysis, and

Simulation, 2006, pp. 179-188, doi: 10.1109/MASCOTS.2006.6.

[68] T. Bujlow, V. Carela-Español and P. Barlet-Ros, "Independent comparison of

popular DPI tools for traffic classification", Comput. Netw., vol. 76, pp. 75-89, Jan.

2015.

238

[69] Pacheco, F., Exposito, E. and Gineste, M., 2020. A framework to classify

heterogeneous Internet traffic with Machine Learning and Deep Learning techniques

for satellite communications. Computer Networks, 173, p.107213.

[70] T. Shapira and Y. Shavitt, "FlowPic: A Generic Representation for Encrypted

Traffic Classification and Applications Identification," in IEEE Transactions on

Network and Service Management, vol. 18, no. 2, pp. 1218-1232, June 2021, doi:

10.1109/TNSM.2021.3071441.

[71] Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2020). A review on ML–based

approaches for internet traffic classification. Annals of Telecommunications, 75(11),

673-710.

[72] Aceto, G., Ciuonzo, D., Montieri, A. and Pescapè, A., 2019. MIMETIC: Mobile

encrypted traffic classification using multimodal deep learning. Computer Networks,

165, p.106944.

[73] Gu, C., Zhang, S., Xue, X., & Huang, H. (2011). Online wireless mesh network

traffic classification using ML. Journal of Computational Information Systems, 7(5),

1524-1532.

[74] Rezaei, S. and Liu, X., 2019. Deep learning for encrypted traffic classification: An

overview. IEEE communications magazine, 57(5), pp.76-81.

[75] D’Angelo, G., & Palmieri, F. (2021). Network traffic classification using deep

convolutional recurrent autoencoder neural networks for spatial–temporal features

extraction. Journal of Network and Computer Applications, 173, 102890.

[76] Thupae, R., Isong, B., Gasela, N. and Abu-Mahfouz, A.M., 2018, October. Machine

learning techniques for traffic identification and classifiacation in SDWSN: A survey.

In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society

(pp. 4645-4650). IEEE.

[77] Takyi, K., Bagga, A. and Goopta, P., 2018, August. Clustering techniques for

traffic classification: a comprehensive review. In 2018 7th International Conference on

239

Reliability, Infocom Technologies and Optimization (Trends and Future

Directions)(ICRITO) (pp. 224-230). IEEE.

[78] Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.L.A., Elkhatib, Y., Hussain, A. and

Al-Fuqaha, A., 2019. Unsupervised machine learning for networking: Techniques,

applications and research challenges. IEEE Access, 7, pp.65579-65615.

[79] Kim, J., Sim, A., Tierney, B., Suh, S., & Kim, I. (2019). Multivariate network traffic

analysis using clustered patterns. Computing, 101(4), 339-361.

[80] Erman, J., Mahanti, A., Arlitt, M., & Williamson, C. (2007, May). Identifying and

discriminating between web and peer-to-peer traffic in the network core. In

Proceedings of the 16th international conference on World Wide Web (pp. 883-892).

[81] Iliyasu, A.S. and Deng, H., 2019. Semi-supervised encrypted traffic classification

with deep convolutional generative adversarial networks. IEEE Access, 8, pp.118-126.

[82] Shaikh, Z. A., & Harkut, D. G. (2015, April). A novel framework for network

traffic classification using unknown flow detection. In 2015 Fifth International

conference on communication systems and network technologies (pp. 116-121). IEEE.

[83] Zhang, J., Chen, X., Xiang, Y., & Zhou, W. (2013, November). Zero-day traffic

identification. In International Symposium on Cyberspace Safety and Security (pp.

213-227). Springer, Cham.

[84] Glennan, T., Leckie, C., & Erfani, S. M. (2016, July). Improved classification of

known and unknown network traffic flows using semi-supervised ML. In

Australasian conference on information security and privacy (pp. 493-501). Springer,

Cham.

[85] Ran, J., Kong, X., Lin, G., Yuan, D., & Hu, H. (2017, December). A self-adaptive

network traffic classification system with unknown flow detection. In 2017 3rd IEEE

International Conference on Computer and Communications (ICCC) (pp. 1215-1220).

IEEE.

240

[86] M. Wang, Y. Cui, X. Wang, S. Xiao and J. Jiang, "Machine Learning for

Networking: Workflow, Advances and Opportunities," in IEEE Network, vol. 32, no.

2, pp. 92-99, March-April 2018, doi: 10.1109/MNET.2017.1700200.

[87] Zhang, J., Chen, X., Xiang, Y., Zhou, W., & Wu, J. (2014). Robust network traffic

classification. IEEE/ACM transactions on networking, 23(4), 1257-1270.

[88] S. Khalid, T. Khalil and S. Nasreen, "A survey of feature selection and feature

extraction techniques in machine learning," 2014 Science and Information Conference,

2014, pp. 372-378, doi: 10.1109/SAI.2014.6918213.

[89] Jiang, J., Sekar, V., Milner, H., Shepherd, D., Stoica, I. and Zhang, H., 2016. {CFA}:

A practical prediction system for video qoe optimization. In 13th {USENIX}

Symposium on Networked Systems Design and Implementation ({NSDI} 16) (pp. 137-

150).

[90] Fadlullah, Z.M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T. and Mizutani,

K., 2017. State-of-the-art deep learning: Evolving machine intelligence toward

tomorrow’s intelligent network traffic control systems. IEEE Communications

Surveys & Tutorials, 19(4), pp.2432-2455.

[91] M. Iliofotou, H. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu and G. Varghese,

"Graph-Based P2P Traffic Classification at the Internet Backbone," IEEE INFOCOM

Workshops 2009, 2009, pp. 1-6, doi: 10.1109/INFCOMW.2009.5072151.

[92] Iwana, B.K. and Uchida, S., 2020. Time series classification using local distance-

based features in multi-modal fusion networks. Pattern Recognition, 97, p.107024.

[93] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017).

Learning from class-imbalanced data: Review of methods and applications. Expert

Systems with Applications, 73, 220-239.

[94] Ansari, G., Ahmad, T. and Doja, M.N., 2019. Hybrid Filter–Wrapper feature

selection method for sentiment classification. Arabian Journal for Science and

Engineering, 44(11), pp.9191-9208.

241

[95] Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y., & Wang, Z. (2007). A novel feature

selection algorithm for text categorization. Expert Systems with Applications, 33(1),

1-5.

[96] Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy. IEEE

Transactions on pattern analysis and machine intelligence, 27(8), 1226-1238.

[97] Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini

index and information gain criteria. Annals of Mathematics and Artificial

Intelligence, 41(1), 77-93.

[98] Karegowda, A. G., Manjunath, A. S., & Jayaram, M. A. (2010). Comparative study

of attribute selection using gain ratio and correlation based feature selection.

International Journal of Information Technology and Knowledge Management, 2(2),

271-277.

[99] Klepaczko, A., & Materka, A. (2010, June). Combining evolutionary and

sequential search strategies for unsupervised feature selection. In International

Conference on Artificial Intelligence and Soft Computing (pp. 149-156). Springer,

Berlin, Heidelberg.

[100] Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering

algorithm. Pattern recognition, 36(2), 451-461.

[101] Yang, M. S., Lai, C. Y., & Lin, C. Y. (2012). A robust EM clustering algorithm for

Gaussian mixture models. Pattern Recognition, 45(11), 3950-3961.

[102] Khan, K., Rehman, S. U., Aziz, K., Fong, S., & Sarasvady, S. (2014, February).

DBSCAN: Past, present and future. In The fifth international conference on the

applications of digital information and web technologies (ICADIWT 2014) (pp. 232-

238). IEEE.

[103] Cheng, Y., Xu, Y., Zhong, H. and Liu, Y., 2019, October. HS-TCN: A semi-

supervised hierarchical stacking temporal convolutional network for anomaly

242

detection in IoT. In 2019 IEEE 38th International Performance Computing and

Communications Conference (IPCCC) (pp. 1-7). IEEE.

[104] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters,

27(8), 861-874.

[105] Lipton, Z.C., Elkan, C. and Naryanaswamy, B., 2014, September. Optimal

thresholding of classifiers to maximize F1 measure. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases (pp. 225-239). Springer,

Berlin, Heidelberg.

[106] Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation. arXiv preprint arXiv:2010.16061

[107] Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J. and Atkinson, P.M.,

2018. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image

classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, pp.133-

144.

[108] Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M. (2020). Ant lion

optimizer: theory, literature review, and application in multi-layer perceptron neural

networks. Nature-inspired optimizers, 23-46.

[109] Rosa, João PS, et al. Using artificial neural networks for analog integrated circuit

design automation. Vol. 1. Berlin: Springer, 2020.

[110] Kulin, M., Kazaz, T., De Poorter, E., & Moerman, I. (2021). A survey on machine

learning-based performance improvement of wireless networks: PHY, MAC and

network layer. Electronics, 10(3), 318.

[111] Jiang, Hui. Machine Learning Fundamentals: A Concise Introduction.

Cambridge University Press, 2021.

243

[112] Alsharef, Ahmad, et al. "Review of ML and AutoML solutions to forecast time-

series data." Archives of Computational Methods in Engineering 29.7 (2022):

5297-5311.

[113] Hasebrook, Niklas, et al. "Why Do Machine Learning Practitioners Still Use

Manual Tuning? A Qualitative Study." arXiv preprint arXiv:2203.01717 (2022).

[114] Tu, Huy, and Vivek Nair. "Is one hyperparameter optimizer enough?."

Proceedings of the 4th ACM SIGSOFT international workshop on software analytics.

2018.

[115] El-Nasr, Magy Seif, et al. Game Data Science. Oxford University Press, 2021.

[116] Sun, Y., Zhang, H., Zhao, T., Zou, Z., Shen, B. and Yang, L., 2020. A new

convolutional neural network with random forest method for hydrogen sensor fault

diagnosis. IEEE Access, 8, pp.85421-85430.

[117] Mirtaheri, Seyedeh Leili, and Reza Shahbazian. Machine Learning: Theory to

Applications. CRC Press, 2022.

[118] Chakraborty, Sanjay, SK Hafizul Islam, and Debabrata Samanta. Data

Classification and Incremental Clustering in Data Mining and Machine Learning.

Springer, 2022.

[119] Alzubaidi, Laith, et al. "Review of deep learning: Concepts, CNN architectures,

challenges, applications, future directions." Journal of big Data 8.1 (2021): 1-74.

[120] Janiesch, Christian, Patrick Zschech, and Kai Heinrich. "Machine learning and

deep learning." Electronic Markets 31.3 (2021): 685-695.

[121] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018).

Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377.

[122] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

244

[123] Yin, C., Zhu, Y., Fei, J. and He, X., 2017. A deep learning approach for intrusion

detection using recurrent neural networks. Ieee Access, 5, pp.21954-21961.

[124] Nasir, Vahid, and Farrokh Sassani. "A review on deep learning in machining

and tool monitoring: methods, opportunities, and challenges." The International

Journal of Advanced Manufacturing Technology 115.9 (2021): 2683-2709.

[125] Fergus, Paul, and Carl Chalmers. Applied Deep Learning: Tools, Techniques,

and Implementation. Springer Nature, 2022.

[126] Aceto, G., Ciuonzo, D., Montieri, A., & Pescapé, A. (2019). Mobile encrypted

traffic classification using deep learning: Experimental evaluation, lessons learned,

and challenges. IEEE Transactions on Network and Service Management, 16(2), 445-

458.

[127] Shbair, W. M., Cholez, T., Francois, J., & Chrisment, I. (2016, April). A multi-

level framework to identify https services. In NOMS 2016-2016 IEEE/IFIP Network

Operations and Management Symposium (pp. 240-248). IEEE.

[128] Aceto, G., Ciuonzo, D., Montieri, A., & Pescapé, A. (2018). Multi-classification

approaches for classifying mobile app traffic. Journal of Network and Computer

Applications, 103, 131-145.

[129] Y. Fu, H. Xiong, X. Lu, J. Yang and C. Chen, "Service Usage Classification with

Encrypted Internet Traffic in Mobile Messaging Apps," in IEEE Transactions on

Mobile Computing, vol. 15, no. 11, pp. 2851-2864, 1 Nov. 2016, doi:

10.1109/TMC.2016.2516020.

[130] Taylor, V. F., Spolaor, R., Conti, M., & Martinovic, I. (2016, March). Appscanner:

Automatic fingerprinting of smartphone apps from encrypted network traffic. In 2016

IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 439-454). IEEE.

[131] Alan, H. F., & Kaur, J. (2016, July). Can Android applications be identified using

only TCP/IP headers of their launch time traffic?. In Proceedings of the 9th ACM

conference on security & privacy in wireless and mobile networks (pp. 61-66).

245

[132] Zhao M, Zhang T, Ge F, Yuan Z (2012) RobotDroid: a lightweight malware

detection framework on smartphones. J Netw 7(4):715.

[133] Stöber T, Frank M, Schmitt J, Martinovic I. Who do you sync you are?

Smartphone fingerprinting via application behaviour. InProceedings of the sixth

ACM conference on Security and privacy in wireless and mobile networks 2013 Apr

17 (p. 8). ACM.

[134] V. F. Taylor, R. Spolaor, M. Conti and I. Martinovic, "Robust Smartphone App

Identification via Encrypted Network Traffic Analysis," in IEEE Transactions on

Information Forensics and Security, vol. 13, no. 1, pp. 63-78, Jan. 2018, doi:

10.1109/TIFS.2017.2737970.

[135] Erman, J., Mahanti, A., Arlitt, M., Cohen, I., & Williamson, C. (2007).

Offline/realtime traffic classification using semi-supervised learning. Performance

Evaluation, 64(9-12), 1194-1213.

[136] Erman, J., Arlitt, M., & Mahanti, A. (2006, September). Traffic classification using

clustering algorithms. In Proceedings of the 2006 SIGCOMM workshop on Mining

network data (pp. 281-286).

[137] Williams, N., Zander, S., & Armitage, G. (2006). A preliminary performance

comparison of five machine learning algorithms for practical IP traffic flow

classification. ACM SIGCOMM Computer Communication Review, 36(5), 5-16.

[138] Bernaille L, Teuxeira R, Akodkenous I, Soule A, Slamatian K. Traffic

classification on the fly. ACM SIGCOMM Computer Communication Review 36: 23–

26, 2006.

[139] Chen, Y. C., Li, Y. J., Tseng, A., & Lin, T. (2017, October). Deep learning for

malicious flow detection. In 2017 IEEE 28th Annual International Symposium on

Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1-7). IEEE.

246

[140] Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2017, January). Malware traffic

classification using convolutional neural network for representation learning. In 2017

International Conference on Information Networking (ICOIN) (pp. 712-717). IEEE.

[141] J. Han, J. Pei and M. Kamber, Data Mining: Concepts and Techniques,

Amsterdam, The Netherlands:Elsevier, 2011.

[142] M. Anand, E.B. Nightingale and J. Flinn, “Self-tuning wireless network power

management” in Proc. of the 9th Annual International Conference on Mobile

Computing and Networking (MOBICOM ‘03), San Diego, CA, Sept. 2003, pp. 176–

189.

[143] H. Peng, F. Long and C. Ding, "Feature selection based on mutual information

criteria of max-dependency max-relevance and min-redundancy", IEEE Trans.

Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.

[144] J. Li et al., "Feature selection: A data perspective", ACM Comput. Surv., vol. 50,

no. 6, pp. 94, Jan. 2017.

[145] L. Morán-Fernández, V. Bolón-Canedo and A. Alonso-Betanzos, "Centralized

vs. distributed feature selection methods based on data complexity measures",

Knowl.-Based Syst., vol. 117, pp. 27-45, Feb. 2017.

[146] “Weka Website” [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/.

[147] L. Verde, G. De Pietro and G. Sannino, "Voice disorder identification by using

machine learning techniques", IEEE Access, vol. 6, pp. 16246-16255, 2018.

[148] S. B. Sakri, N. B. A. Rashid and Z. M. Zain, "Particle swarm optimization feature

selection for breast cancer recurrence prediction", IEEE Access, vol. 6, pp. 29637-

29647, 2018.

247

[149] R. Kohavi et al., "A study of cross-validation and bootstrap for accuracy

estimation and model selection", Proc. Int. Joint Conf. AI, vol. 14, no. 2, pp. 1137-1145,

Aug. 1995.

[150] F. A. Narudin, A. Feizollah, N. B. Anuar and A. Gani, "Evaluation of machine

learning classifiers for mobile malware detection", Soft Comput., vol. 20, no. 1, pp.

343-357, 2016.

[151] Y. Li, X. Zhang and K. L. Yeung, “A novel delayed wakeup scheme for efficient

power management in infrastructure-based IEEE 802.11 WLANs,” in 2015 IEEE

Wireless Communications and Networking Conference (WCNC), New Orleans, LA,

USA, 2015, pp. 1338-1343.

[152] Y. Xie, X. Luo and R. K. C. Chang, "Centralizing the power saving mode for

802.11 infrastructure networks" in Energy Technology and Management, London,

U.K.:IntechOpen, pp. 3-24, 2011, [online] Available:

https://www.intechopen.com/chapters/20631.

[153] D. Jung, R. Kim, and H. Lim, “Power-saving strategy for balancing energy and

delay performance in WLANs,” Computer Communications, vol. 50, pp.3-9, 2014.

[154] F. Wu et al., “Cutting Down Idle Listening Time: A NDN-Enabled Power Saving

Mode Design for WLAN,” in ICC 2019 - 2019 IEEE International Conference on

Communications (ICC), Shanghai, China, 2019, pp. 1-6.

[155] S. Sur, T. Wei, and X. Zhang, “Bringing multi-antenna gain to energy-

constrained wireless devices,” in Proc. of the 14th International Conference on

Information Processing in Sensor Networks, pp. 25-36, 2015.

[156] Jiang, N., Vuran, M. C., Wei, S., & Xu, L. (2021, June). QoS-Aware Network

Energy Optimization for Danmu Video Streaming in WiFi Networks. In 2021

IEEE/ACM 29th International Symposium on Quality of Service (IWQOS) (pp. 1-10).

IEEE.

248

[157] Liu, Z., Qin, X., & Wei, G. (2021, June). GreenAP: An Energy-Saving Protocol for

Mobile Access Points. In International Conference on Wireless Algorithms, Systems,

and Applications (pp. 553-565). Springer, Cham.

[158] Asad, M., & Qaisar, S. (2022). Energy Efficient QoS Based Access Point Selection

in Hybrid WiFi and LiFi IoT Networks. IEEE Transactions on Green Communications

and Networking.

[159] Luo, Y., & Chin, K. W. (2021). An Energy Efficient Channel Bonding and

Transmit Power Control Approach for WiFi Networks. IEEE Transactions on

Vehicular Technology, 70(8), 8251-8263.

[160] Venkateswaran, S. K., Tai, C. L., Ben-Yehezkel, Y., Alpert, Y., & Sivakumar, R.

(2021, November). Extending Battery Life for Wi-Fi-Based IoT Devices: Modeling,

Strategies, and Algorithm. In Proceedings of the 19th ACM International Symposium

on Mobility Management and Wireless Access (pp. 147-156).

[161] Luo, Y., & Chin, K. W. (2021). Learning to Charge RF-Energy Harvesting Devices

in WiFi Networks. IEEE Systems Journal, 15 (4), 5516-5525.

[162] Ko, Jaejun, Young-June Choi, and Rajib Paul. "Computation offloading

technique for energy efficiency of smart devices." Journal of Cloud Computing 10.1

(2021): 1-14. Springer.

[163] Sheth, J., Miremadi, C., Dezfouli, A., & Dezfouli, B. (2022). EAPS: Edge-assisted

predictive sleep scheduling for 802.11 IoT stations. IEEE Systems Journal.

[164] Yang, C., Lee, J., & Bahk, S. (2021, March). Target wake time scheduling

strategies for uplink transmission in IEEE 802.11 ax networks. In 2021 IEEE Wireless

Communications and Networking Conference (WCNC) (pp. 1-6). IEEE.

[165] Zhang, M., Zhu, Y. H., & Liu, Y. (2021, March). Throughput Aware Users

Allocation Scheme for Coexistence of the LTE system and 802.11 ax WLANs. In 2021

IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-7).

IEEE.

249

[166] Badarla, S. P., & Harigovindan, V. P. (2021). Restricted Access Window-Based

Resource Allocation Scheme for Performance Enhancement of IEEE 802.11 ah Multi-

Rate IoT Networks. IEEE Access, 9, 136507-136519.

[167] Lu, C., Zhao, Y., Bao, J., Chen, S. L., Liu, J., Chien, C. M., ... & Li, Y. (2021,

September). A Highly Efficient Combo Transceiver for 802.11 b/g/n/ax and BT/BLE

in 22nm CMOS. In ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference

(ESSCIRC) (pp. 503-506). IEEE.

[168] Aggarwal, S., Ghoshal, M., Banerjee, P., Koutsonikolas, D., & Widmer, J. (2021,

May). 802.11 ad in Smartphones: Energy Efficiency, Spatial Reuse, and Impact on

Applications. In IEEE INFOCOM 2021-IEEE Conference on Computer

Communications (pp. 1-10). IEEE.

[169] Menzies, T., Kocaguneli, E., Turhan, B., Minku, L., & Peters, F. (2015). Sharing

data and models in software engineering. Morgan Kaufmann.

[170] Lotte, F. (2008). Study of electroencephalographic signal processing and

classification techniques towards the use of brain-computer interfaces in virtual

reality applications (Doctoral dissertation, INSA de Rennes).

[171] Somerset, V. S. (2010). Intelligent and Biosensors, Edited by Vernon S. Somerset.

Intech, January.

[172] Hassanien, A. E., & Azar, A. A. (2015). Brain-computer interfaces. Switzerland:

Springer, 74.

[173] Wang, L., Wang, X. V., Váncza, J., & Kemény, Z. (Eds.). (2021). Advanced

Human-Robot Collaboration in Manufacturing. Springer International Publishing.

[174] Boo, Y. L., Stirling, D., Chi, L., Liu, L., Ong, K. L., & Williams, G. (Eds.). (2018).

Data Mining: 15th Australasian Conference, AusDM 2017, Melbourne, VIC, Australia,

August 19-20, 2017, Revised Selected Papers (Vol. 845). Springer.

250

[175] Thomas, P., & Suhner, M. C. (2015). A new multilayer perceptron pruning

algorithm for classification and regression applications. Neural Processing Letters,

42(2), 437-458.

[176] Marwala, T. (2018). Handbook Of Machine Learning-Volume 1: Foundation Of

Artificial Intelligence. World Scientific.

[177] Nelles, O. (2020). Nonlinear system identification: from classical approaches to

neural networks, fuzzy models, and gaussian processes. Springer Nature.

[178] Arévalo, A., Niño, J., Hernandez, G., Sandoval, J., León, D., & Aragón, A. (2017,

September). Algorithmic Trading Using Deep Neural Networks on High Frequency

Data. In Workshop on Engineering Applications (pp. 144-155). Springer, Cham.

[179] Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review

of classification algorithms for EEG-based brain–computer interfaces. Journal of

neural engineering, 4(2), R1.

[180] Swingler, K. (2016). Opening the black box: analysing MLP functionality using

walsh functions. In Computational Intelligence (pp. 303-323). Springer, Cham.

[181] Swingler, K. (2016). Mixed Order Hyper Networks for Function Approximation

and Optimisation. PhD thesis, Stirling University.

[182] Al Bataineh, A., Kaur, D., & Jalali, S. M. J. (2022). Multi-Layer Perceptron

Training Optimization Using Nature Inspired Computing. IEEE Access, 10, 36963-

36977.

[183] Haselsteiner, E., & Pfurtscheller, G. (2000). Using time-dependent neural

networks for EEG classification. IEEE transactions on rehabilitation engineering, 8(4),

457-463.

[184] Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder by the

author). The annals of statistics, 26(3), 801-849.

251

[185] Das, S., Tripathy, D., & Raheja, J. L. (2019). Real-time BCI system design to

control arduino based speed controllable robot using EEG. Springer.

[186] Salgado, Cátia M., et al. "Noise versus outliers." Secondary analysis of electronic

health records (2016): 163-183.

[187] Hemanth, J., Bestak, R., & Chen, J. I. Z. (Eds.). (2021). Intelligent data

communication technologies and internet of things: proceedings of ICICI 2020.

Springer Singapore.

[188] Meng, W., & Furnell, S. (2019). Security and Privacy in Social Networks and Big

Data. Springer Singapore.

[189] Hu, Li-Yu, et al. "The distance function effect on k-nearest neighbor

classification for medical datasets." SpringerPlus 5.1 (2016): 1-9.

[190] Du, Zhi-Gang, et al. "QUasi-Affine TRansformation evolutionary algorithm for

feature selection." Advances in Smart Vehicular Technology, Transportation,

Communication and Applications. Springer, Singapore, 2022. 147-156.

[191] Brownlee, Jason. "Master Machine Learning Algorithms: Discover How They

Work and Implement Them From Scratch, 2016." URL https://books. google.

ca/books.

[192] Larose, Daniel T., and Chantal D. Larose. Discovering knowledge in data: an

introduction to data mining. Vol. 4. John Wiley & Sons, 2014.

[193] Venugopal, Deepak, Lih-Yuan Deng, and Max Garzon. "Solutions to Data

Science Problems." Dimensionality Reduction in Data Science. Springer, Cham, 2022.

29-65.

[194] Zhou, Zhi-Hua. Machine learning. Springer Nature, 2021.

[195] Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Machine Learning:

Fundamental Concepts and Algorithms, 2nd Edition, Cambridge University Press,

March 2020. ISBN: 978-1108473989.

252

[196] Awad, Mariette, and Rahul Khanna. Efficient learning machines: theories,

concepts, and applications for engineers and system designers. Springer nature, 2015.

[197] Gholami, Raoof, and Nikoo Fakhari. "Support vector machine: principles,

parameters, and applications." Handbook of neural computation. Academic Press,

2017. 515-535.

[198] Li, Li. Selected applications of convex optimization. Vol. 103. Berlin, Germany:

Springer, 2015.

[199] Flach, Peter. Machine learning: the art and science of algorithms that make sense

of data. Cambridge university press, 2012.

[200] Silva, Warley Almeida, and Saulo Moraes Villela. "Improving the one-against-

all binary approach for multiclass classification using balancing techniques." Applied

Intelligence 51.1 (2021): 396-415.

[201] Abe, Shigeo. Support vector machines for pattern classification. Vol. 2. London:

Springer, 2010.

[202] Zhou, Jian, Shuai Huang, and Yingui Qiu. "Optimization of random forest

through the use of MVO, GWO and MFO in evaluating the stability of underground

entry-type excavations." Tunnelling and Underground Space Technology 124 (2022):

104494.

[203] Aridas, Christos K., et al. "Random resampling in the one-versus-all strategy for

handling multi-class problems." International Conference on Engineering

Applications of Neural Networks. Springer, Cham, 2017.

[204] A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and

TensorFlow. Sebastopol, CA, USA: O’reilly, 2019.

[205] Caballé, Santi, et al., eds. Intelligent systems and learning data analytics in

online education. Academic Press, 2021.

253

[206] Chandak, Aniket, Wendy Lee, and Mark Stamp. "A comparison of Word2Vec,

HMM2Vec, and PCA2Vec for malware classification." Malware Analysis Using

Artificial Intelligence and Deep Learning. Springer, Cham, 2021. 287-320.

[207] Samanta, D., Islam, S.H., Chilamkurti, N., & Hammoudeh, M. (Eds.). (2022).

Data Analytics, Computational Statistics, and Operations Research for Engineers:

Methodologies and Applications (1st ed.). CRC Press.

[208] Freitas, Alex A. "Automated machine learning for studying the trade-off

between predictive accuracy and interpretability." International cross-domain

conference for machine learning and knowledge extraction. Springer, Cham, 2019.

[209] Ismail, Muhammad, Changjing Shang, and Qiang Shen. "Towards a Framework

for Interpretation of CNN Results with ANFIS." UK Workshop on Computational

Intelligence. Springer, Cham, 2021.

[210] Gou, Jianping, et al. "A generalized mean distance-based k-nearest neighbor

classifier." Expert Systems with Applications 115 (2019): 356-372.

[211] Tanwar, Sudeep, Sudhanshu Tyagi, and Neeraj Kumar, eds. Multimedia big

data computing for IoT applications: concepts, paradigms and solutions. Vol. 163.

Springer, 2019.

[212] A. V. Joshi, Machine Learning and Artificial Intelligence, 2nd Edition, Cham,

Switzerland: Springer, 2023. doi: https://doi.org/10.1007/978-3-031-12282-8.

[213] Dahouda, Mwamba Kasongo, and Inwhee Joe. "A deep-learned embedding

technique for categorical features encoding." IEEE Access 9 (2021): 114381-114391.

[214] N. Dey and A.S. Ashour, Classification and Clustering in Biomedical Signal

Processing, 2016.

[215] Valdez-Valenzuela, Eric, Angel Kuri-Morales, and Helena Gomez-Adorno.

"CESAMMO: Categorical Encoding by Statistical Applied Multivariable

254

Modeling." Mexican International Conference on Artificial Intelligence. Springer, Cham,

2022.

[216] Gupta, Richa, et al. "Transformation of Medical Imaging Using Artificial

Intelligence: Its Impact and Challenges with Future Opportunities." Soft Computing:

Theories and Applications. Springer, Singapore, 2022. 201-212.

[217] Kantardzic, Mehmed. Data mining: concepts, models, methods, and algorithms.

John Wiley & Sons, 2019.

[218] Khalid, Nur Hidayah Mohd, Amelia Ritahani Ismail, and Normaziah A. Aziz.

"Interpretation of Machine Learning Model Using Medical Record Visual

Analytics." Proceedings of the 8th International Conference on Computational

Science and Technology. Springer, Singapore, 2022.

[219] Zhang, Aston, et al. "Dive into deep learning." arXiv preprint arXiv:2106.11342

(2022).

[230] Mantovani, Rafael G., et al. "A meta-learning recommender system for

hyperparameter tuning: Predicting when tuning improves SVM classifiers."

Information Sciences 501 (2019): 193-221.

[231] Moon, Jihoon, et al. "A short-term electric load forecasting scheme using 2-stage

predictive analytics." 2018 IEEE International Conference on Big Data and Smart

Computing (BigComp). IEEE, 2018.

[232] Khalid, Rabiya, and Nadeem Javaid. "A survey on hyperparameters

optimization algorithms of forecasting models in smart grid." Sustainable Cities and

Society 61 (2020): 102275.

[233] Chen, Yutian, et al. "Bayesian optimization in alphago." arXiv preprint

arXiv:1812.06855 (2018).

[234] Zhang, Baohe, et al. "On the importance of hyperparameter optimization for

model-based reinforcement learning." International Conference on Artificial

Intelligence and Statistics. PMLR, 2021.

255

[235] Kadra, Arlind, et al. "Well-tuned simple nets excel on tabular datasets."

Advances in neural information processing systems 34 (2021): 23928-23941.

[236] Bouthillier, Xavier, and Gaël Varoquaux. Survey of machine-learning

experimental methods at NeurIPS2019 and ICLR2020. Diss. Inria Saclay Ile de France,

2020.

[237] Blom, K. van der, Serban, A. C., Hoos, H. H., & Visser, J. M. W. (2021). AutoML

adoption in ML software. 8Th Icml Workshop On Automated Machine Learning.

Retrieved from https://hdl.handle.net/1887/3277270.

[238] Mantovani, Rafael Gomes, et al. "Rethinking default values: a low cost and

efficient strategy to define hyperparameters." arXiv preprint arXiv:2008.00025 (2020).

[239] Yang, Li, and Abdallah Shami. "On hyperparameter optimization of machine

learning algorithms: Theory and practice." Neurocomputing 415 (2020): 295-316.

[240] Mbiki, Sarah, et al. "Classifying changes in LN-18 glial cell morphology: a

supervised machine learning approach to analyzing cell microscopy data via FIJI and

WEKA." Medical & Biological Engineering & Computing 58 (2020): 1419-1430.

[241] Chou, Jui-Sheng, Dillon-Brandon Fleshman, and Dinh-Nhat Truong.

"Comparison of machine learning models to provide preliminary forecasts of real

estate prices." Journal of Housing and the Built Environment (2022): 1-36.

[242] Idri, Ali, et al. "Assessing the impact of parameters tuning in ensemble based

breast Cancer classification." Health and Technology 10 (2020): 1239-1255.

[243] Sung, Sheng-Feng, Chia-Yi Lin, and Ya-Han Hu. "EMR-based phenotyping of

ischemic stroke using supervised machine learning and text mining techniques." IEEE

journal of biomedical and health informatics 24.10 (2020): 2922-2931.

[244] Carlin, Domhnall, Philip O’Kane, and Sakir Sezer. "A cost analysis of machine

learning using dynamic runtime opcodes for malware detection." Computers &

Security 85 (2019): 138-155.

[245] Alis, D. E. N. İ. Z., et al. "The diagnostic value of quantitative texture analysis of

conventional MRI sequences using artificial neural networks in grading gliomas."

Clinical radiology 75.5 (2020): 351-357.

256

[246] Li, Tengyue, et al. "Empowering multi-class medical data classification by

Group-of-Single-Class-predictors and transfer optimization: Cases of structured

dataset by machine learning and radiological images by deep learning." Future

Generation Computer Systems 133 (2022): 10-22.

[247] Nieto, Paulino José García, et al. "Forecast of the higher heating value based on

proximate analysis by using support vector machines and multilayer perceptron in

bioenergy resources." Fuel 317 (2022): 122824.

[248] Bhojani, Shital H., and Nirav Bhatt. "Wheat crop yield prediction using new

activation functions in neural network." Neural Computing and Applications 32

(2020): 13941-13951.

[249] Kumar, J. Ashok, and S. Abirami. "Ensemble application of bidirectional LSTM

and GRU for aspect category detection with imbalanced data." Neural Computing

and Applications 33.21 (2021): 14603-14621.

[250] Zhou, Gordon, Amir Etemadi, and Austin Mardon. "Machine learning-based

cost predictive model for better operating expenditure estimations of US light rail

transit projects." Journal of Public Transportation 24 (2022): 100031.

[251] Altuve, Miguel, Antonio J. Alvarez, and Erika Severeyn. "Multiclass

classification of metabolic conditions using fasting plasma levels of glucose and

insulin." Health and Technology 11 (2021): 953-962.

[252] Carballo-Meilan, Ara, et al. "Meta-analysis of vaterite secondary data revealed

the synthesis conditions for polymorphic control." Chemical Engineering Research

and Design 188 (2022): 668-680.

[253] Rao, U. Mohan, et al. "Identification and application of machine learning

algorithms for transformer dissolved gas analysis." IEEE Transactions on Dielectrics

and Electrical Insulation 28.5 (2021): 1828-1835.

[254] Shawki, N., et al. "On automating hyperparameter optimization for deep

learning applications." 2021 IEEE Signal Processing in Medicine and Biology

Symposium (SPMB). IEEE, 2021.

[255] Mukherjee, Himadri, et al. "Automatic lung health screening using respiratory

sounds." Journal of Medical Systems 45 (2021): 1-9.

257

[256] Ghatasheh, Nazeeh, et al. "Cost-sensitive ensemble methods for bankruptcy

prediction in a highly imbalanced data distribution: A real case from the Spanish

market." Progress in Artificial Intelligence 9 (2020): 361-375.

[257] Kumaravel, A., and T. Vijayan. "Comparing cost sensitive classifiers by the false-

positive to false-negative ratio in diagnostic studies." Expert Systems with

Applications 227 (2023): 120303.

