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Abstract

Modelling is a powerful method for understanding complex systems, which works by simplifying

them to their most essential components. The choice of the components is driven by the aspects

studied. The tool chosen to perform this task will determine what can be modelled, the maximum

number of components which can be represented, as well as the analyses which can be performed

on the system.

Performance Evaluation Process Algebra (PEPA) was initially developed to tackle computer

systems issues. Nevertheless, it possesses some interesting properties which could be exploited for

the study of epidemiological systems. PEPA’s main advantage resides in its capacity to change

scale: the assumptions and parameter values describe the behaviour of a single individual, while

the resulting model provides information on the population behaviour. Additionally, stochasticity

and continuous time have already proven to be useful features in epidemiology. While each of these

features is already available in other tools, to find all three combined in a single tool is novel, and

PEPA is proposed as a useful addition to the epidemiologist’s toolbox. Moreover, an algorithm

has been developed which allows converting a PEPA model into a system of Ordinary Differential

Equations (ODEs). This provides access to countless additional software and theoretical analysis

methods which enable the epidemiologist to gain further insight into the model. Finally, most

existing tools require a deep understanding of the logic they are based on and the resulting model

can be difficult to read and modify. PEPA’s grammar, on the other hand, is easy to understand

since it is based on few, yet powerful concepts. This makes it a very accessible formalism for any

epidemiologist.



The objective of this thesis is to determine precisely PEPA’s ability to describe epidemiological

systems, as well as extend the formalism when required. This involved modelling two systems:

the bubonic plague in prairie dogs, and measles in England and Wales. These models were chosen

as they exhibit a good range of typical features, allowing to thoroughly test PEPA. All features

required in each of these models have been analysed in detail, and a solution has been provided for

representing each of these features. While some of them could be expressed in a straightforward

manner, PEPA did not provide the tools to express others. In those cases, we determined methods

to approach the desired behaviour, and the limitations of said methods were carefully analysed. In

the case of models with a structured population, PEPA was extended to simplify their expression

and facilitate the writing process of the PEPA model. The work also required the development of

an algorithm to derive ODEs adapted to the type of models encountered. Finally, the PEPAdum

software was developed to assist the modeller in the generation and analysis of PEPA models,

by simplifying the process of writing a PEPA model with compartments, performing the aver-

age of stochastic simulations and deriving and explicitly providing the ODEs using the Stirling

Amendment.
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Chapter 1

Introduction

According to the World Health Organization [95], in 2002, about 19.1% of worldwide deaths, and

52.7% of deaths in Africa were caused by infectious and parasitic diseases. In order to avoid as many

of them as possible, it is important to carry out research on the topic to understand, prevent, cure

and reduce the impact of a given disease. To achieve these goals, different areas of expertise must be

involved, ranging from medicine to geography, sociology, biology and mathematics. Mathematical

modelling is an important part of this process of understanding the disease and its behaviour.

For some, modelling is not a scientifically acceptable technique of describing biological systems.

To a certain extent, these critics are right. A model will never be able to describe accurately a

system involving living organisms, whether they are animals, plants, bacteria or cells. Yet, as the

statistician George Box said [12, p.424]: “essentially, all models are wrong, but some are useful”.

A model, by definition, is an incomplete representation of a system. The simplification required

to construct the model serves a purpose. Complete biological systems are often very complex and

their behaviour is influenced by many factors. This has two consequences: the actual influence of
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each of the factors is usually not known and the size of the system renders it too complicated to

understand and analyse in its entirety. Models can help in both cases. Firstly, different hypotheses

concerning the way factors influence the model can be tested and the parameter space can be

explored in order to validate a theory. Secondly, in order to simplify the considered system, the

model can focus on a reduced set of carefully chosen factors, depending on the questions that it is

asked to answer.

The objective of this thesis is to determine to what extent Performance Evaluation Process

Algebra (PEPA) is suitable for modelling diseases, as well as extend the formalism when required.

This involves recognizing PEPA’s strengths and weaknesses, and remedy any issues encountered

when possible. The first objective will be achieved by modelling two epidemiological systems, the

bubonic plague in prairie dogs, and measles in England and Wales, and analysing each of the

features required to describe those systems. The second required the update of the algorithm to

generate the set of ordinary differential equations from a PEPA model, and the development of a

software, PEPAdum, in order to assist the modeller in the analysis of the model, by simplifying

the process of writing a PEPA model with compartments, performing the average of stochastic

simulations and deriving and explicitly providing the ODEs using the Stirling Amendment.

Today, many formalisms are available to modellers. Their principal characteristics are their

expressivity, the capacity to handle large and complex models and the ease of performing theoretical

analysis on the resulting model. Unfortunately, no existing formalism has a very flexible grammar

and is able to handle large and/or complex models and offers the possibility to perform an extensive

theoretical analysis of the model. In order to have at our disposal tools adapted to different types

of analyses, different formalisms with as wide a range of strengths as possible are essential. The

following list of formalisms is given as an indication of existing options and a to give some historical

context, but this work will not try to compare them directly and in depth to PEPA, as this beyond
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the scope of this study.

General-purpose programming languages [76, 77], such as Java or C, are probably the most

flexible tool that can be used to model epidemiological systems. They give a total freedom to the

modeller, and any computable feature can be expressed. The main drawback of this method is

that it requires a high proficiency in the programming language by the modeller. Also, the freedom

provided comes with a price. First, the capacity of the model to efficiently describe a high number

of individuals or a complex system is entirely in the hands of the programmer. Secondly, everything

has to be programmed from scratch, leading to a time-consuming, tedious and error-prone process

of building the model. Finally, very few tools exists to check the validity of the model and perform

additional analyses of the model.

Cellular automata [4, 93] is a discrete technique that explicitly describes individuals and space.

The basic technique divides the world into squared compartments, which have a set of valid states.

Simple rules define the evolution of the state of each compartment, depending on the state of its

neighbours. For example in the case of an epidemiological model, the compartments could be in

a healthy individual, infectious individual or empty state, and a rule could be that if two or more

neighbouring compartments are in an infectious individual state, and the considered compartment

is in a healthy individual state, it evolves to an infectious individual state. Some more complex

variants allow the compartments to have different shapes, explicitly model individuals, or have a

three or more dimensional space. Cellular automata are particularly suitable for systems where

space and individual level behaviour (as opposed to population level behaviour) are important.

The drawbacks of cellular automata lie in their lack of efficiency and the availability of tools to

perform additional analyses. Since a cellular automaton explicitly exhibits all compartments and

individuals, the processing time increases with the population size and the number of compartments

considered, limiting the size the model can reach. Also, the technique is very flexible, and as such,

15



very little theory exists to help in the analysis of the model. For example, the existing algorithms

deriving the average behaviour of the system are limited to a restricted set of cellular automata.

Ordinary differential equations [54, 55] are by far the most commonly used modelling technique

in epidemiology. It is a population level technique, in the sense that the rules dictating the

evolution of the system are describing the behaviour of groups of individuals rather than the

individuals themselves. A model is presented as a system of equations. Each species represents

a group of individuals, and the corresponding equation describes its behaviour. In general, the

equations are deterministic and can only present the average behaviour of the system. This means

that the information related to the inherent stochasticity of biological systems is not available to

the modeller. Ordinary differential equations also have an expressivity more limited than either of

the two previous techniques presented, and struggle in particular to represent spatial structures.

Yet differential equations remain a very powerful modelling technique. First, the processing time

remains practically constant when the population size is increased. Where cellular automata are

often limited to a population size in the tens or hundreds of thousand individuals, differential

equations can handle a virtually infinite population size. Also, since the technique has been used

for centuries, very efficient tools have been developed to carry out the analysis of models. Finally,

its restrictive grammar allows several types of checks and analyses to be performed easily and

efficiently.

Process algebra is the most recent of the modelling techniques presented here. The basic

principle behind it is that each individual can be in one of several states. Depending on the state

she is in, she can then choose between a set of actions, each of them having a probability or rate

and a target state associated with it. In some respects, process algebra has a lot in common with

cellular automata. In both cases, the focus is on individual behaviour. Also, change happens in a

similar manner: individual agents are in a certain state and simple rules are used to describe how
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they evolve. Major differences can also be identified. First, individual agents are tracked during a

simulation of a cellular automaton model, which makes it possible to study their evolution, while

process algebra formalisms only track the number of agents in a particular state. Also, contrary

to process algebra, space is an essential part of a cellular automaton’s behaviour. Finally, process

algebras usually have a more rigid grammar. While this makes it difficult or even impossible to

model some behaviours, it also allows efficient model checking and more analyses can be performed

on the model.

The first modern process algebra is the work of Robin Milner: calculus of communicating

systems (CCS) [66]. CCS and its extension π-calculus [67] have since been used to model parallel

programming [63] and biochemical processes [73]. π-calculus has also been adapted to specifically

deal with chemical reactions [14]. Since then, numerous process algebras have been developed,

each adapted to different systems or questions studied. Beta-binders [20] is based on π-calculus

specifically conceived to describe biological systems. It has been so far mainly used to model

signalling pathways [10, 38]. Jane Hillston’s PEPA [42] later further extended CCS. The language

was particularly adapted to study properties such as throughput, utilisation, deadlock and livelock,

particularly important when studying computer systems. More than ten years later, BioPEPA [17],

a variant of PEPA , was developed to specifically deal with biochemical networks.

Process algebra has not been studied very extensively in an epidemiological context. McCaig

et al. [60, 59, 58] have studied the use of WSCCS [84], a CCS inspired process algebra, for epidemi-

ological systems. He initially analysed how to describe basic disease features [60] and developed

an algorithm [61] to derive Mean Field Equations from a WSCCS model. Once he was able to

successfully describe a model, he studied the concept of superspreaders and supershedders [57],

which is essential to understand the evolution of diseases such as AIDS or SARS. Ciocchetta and

Hillston [18] have also analysed how Bio-PEPA could be used to model epidemiological systems,
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and developed a model of avian influenza. Finally, Bradley et al. [13] used PEPA to describe the

behaviour of internet worm attacks. While they modelled a computer system, some of the key

features are very similar of those witnessed in epidemiological systems.

1.1 PEPA

1.1.1 Background

PEPA was originally developed to evaluate performance of computer and network systems. It has

been applied to a range of issues, from the optimisation of the bandwidth resource allocation in a

cellular phone network [31], to the analysis of queues and server breakdowns [2]. It has also been

used to model the performance and correctness of a robotic workcell designed for an automated

manufacturing system [34, 47], or quality of service analysis of high-availability web server.

PEPA is a promising candidate as a tool for disease modelling. Its main strength is the ability

to “change scale”. A PEPA model is written at the individual level. This means that all the

assumptions and parameter values are defined for the behaviour of an individual. This makes

designing the model simpler and more reliable for two main reasons. First, modellers sometimes

have to rely on their intuition to fill the gaps in the knowledge of the system studied, either because

the information is not accessible, and because it would be too expensive (in time or money) to be

worth the investment. In that case, it is easier to reason at the individual level, granting more

likely to be accurate assumptions. The output of the model however is at the population level,

for both stochastic simulations or Ordinary Differential Equations (ODEs). This means that the

resulting data describe the population behaviour as a whole, ignoring single individual disparities.

This allows us to have a general picture of the problem, and test the impact of low level behavioural

assumptions on the population level dynamics.
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PEPA also allows the modeller to take advantage of the research that has been done on both

stochastic simulations and ODEs. Indeed, a full understanding of an issue involves being able to

analyse both single simulations and average behaviour. Other formalisms usually only provide one

or the other. ODEs for example only the average behaviour of the model. In general, cellular

automata only provide individual stochastic simulations. While it can be argued that the average

behaviour can be derived by averaging those simulations, no formal analysis can be performed on

the average behaviour in the case of a cellular automaton model. PEPA, on the other hand, gives

access to both types of analyses with a supporting analytical theory via several available tools. The

one that has been used in this thesis is the PEPA Eclipse Plug-in [85], developed by Edinburgh

University. This tool allows several kinds of analyses:

• It can derive the Continuous Time Markov Chain from small models: the full state-space

of the model is generated, which allows passage-time and steady state analyses [37, Section

11.5]. It also provides information about the utilisation of different processes (what is the

probability that it is in a certain state?), the throughput of actions (how many times per

time step is this action fired?) and the distribution of the population (how many processes

are in a certain state on average?).

• It can perform stochastic simulation: several types of analyses can be performed using

stochastic simulations. Population level analysis gives the average number of processes in

each state over time of one or more simulations. The throughput analysis counts the average

number of times each action has been fired per time step. Finally, the average response time

is also available, typically useful for queuing systems.

• It can derive the ODEs from the model: Algorithms [41, 13, 43] have been developed which

allow the ODEs to be derived from PEPA models. The same type of analyses can be per-
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formed as for the stochastic simulations. The tool however does not explicitly provide the

expression of the ODEs, and only the result of the analysis is available.

Yet, PEPA suffers from drawbacks that might prevent it from being an efficient tool in disease

modelling. Indeed, as opposed to cellular automata for example, space cannot currently be easily

expressed in PEPA. This can be a major issue in some diseases such as measles or bovine tuber-

culosis [21]. Also, the set of possible rates is restricted to real (positive) numbers. This means

that, the PEPA Eclipse Plug-in does not allow rates to be a function of the number of individuals

in a certain state, which is a common way of modelling some features. Finally, communication

between processes is also limited. Indeed, it is not possible in PEPA to have two processes that

belong to the same subgroup communicating directly. More details will be given on this problem

in section 2.2.

It is important to note that the version of the PEPA plugin used here is the 0.0.13, which is

not the last available version. The main reason behind the choice to keep this version rather than

upgrading to a more up-to-date version lies in the fact that its developers mainly use computer

systems based models. During the development of version 0.0.13, we had the chance to collaborate

with the developers on several occasions, which made that version more stable and reliable when

confronted with the kind of models epidemiological systems require. Also, the version 0.0.13 does

not check for deadlocks. In some of the models presented in this thesis, deadlocks may occur. It

would have been simple to circumvent them, but it would have only resulted in more complicated

models, without any additional benefit. For these two reasons, it has been decided to rely on the

version 0.0.13 throughout the thesis.
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1.1.2 Syntax

PEPA has a similar philosophy to other process algebras: systems are represented as the composi-

tion of components which undertake actions. In PEPA the actions are assumed to have a duration,

or delay. Thus the expression (α, r).P denotes a component which can undertake an α action,

at rate r (where rate is 1/delay) to evolve into a component P . Here α ∈ A where A is the set

of action types and P ∈ C where C is the set of component types.The following section is largely

based on a paper from Benkirane et al. [7].

PEPA has a small set of combinators, allowing system descriptions to be built up as the

concurrent execution and interaction of simple sequential components. We informally introduce

the syntax below. More detail can be found in [42]. The structured operational semantics are

shown in Fig. 1.1.

Prefix: The basic mechanism for describing the behaviour of a system with a PEPA model is

to give a component a designated first action using the prefix combinator, denoted by a full stop,

which was introduced above. As explained, (α, r).P carries out an α action with rate r, and it

subsequently behaves as P .

Choice: The component P + Q represents a system which may behave either as P or as Q.

The activities of both P and Q are enabled. The first activity to complete distinguishes one of

them: the other is discarded. The system will behave as the derivative resulting from the evolution

of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour associated

with components. Constants are components whose meaning is given by a defining equation. The
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Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A
def
= E)

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α ∈/L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Cooperation

E
(α,r)
−−−→ E′

E BC
L
F

(α,r)
−−−→ E′ BC

L
F

(α ∈/L)
F

(α,r)
−−−→ F ′

E BC
L
F

(α,r)
−−−→ E BC

L
F ′

(α ∈/L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E BC
L
F

(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L), R =
r1

rα(E)

r2
rα(F )

min(rα(E), rα(F ))

Figure 1.1: Operational Semantics of PEPA
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notation for this is X
def
= E. The name X is in scope in the expression on the right hand side

meaning that, for example, X
def
= (α, r).X performs α at rate r forever.

Hiding: The possibility to abstract away some aspects of a component’s behaviour is provided

by the hiding operator, denoted P/L. Here, the set L identifies those activities which are to be

considered internal or private to the component and which will appear as the unknown type τ .

Cooperation: We write P BC
L
Q to denote cooperation between P and Q over L. The set

which is used as the subscript to the cooperation symbol, the cooperation set L, determines those

activities on which the cooperands are forced to synchronise. For action types not in L, the

components proceed independently and concurrently with their enabled activities. We write P ‖ Q

as an abbreviation for P BC
L
Q when L is empty.

If a component enables an activity whose action type is in the cooperation set it will not be

able to proceed with that activity until the other component also enables an activity of that type.

The two components then proceed together to complete the shared activity. The rate of the shared

activity may be altered to reflect the work carried out by both components to complete the activity.

The total capacity of a component C to carry out activities of type α is termed the apparent rate

of α in P , denoted rα(P ). See section 1.1.3 for the definition.

In some cases, when an activity is known to be carried out in cooperation with another com-

ponent, a component may be passive with respect to that activity. This means that the rate of

the activity is left unspecified (denoted >) and is determined upon cooperation by the rate of the

activity in the other component. All passive actions must be synchronised in the final model.

If more than one activity with a passive rate can be enabled within a sequential component, a

weight can be attached to the passive rate. The weight is a natural number, which determines in

which proportion one activity will be enabled. For example, if we have (α,w1>).P + (α,w2>).Q,
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then the sequential component has a probability w1/(w1 + w2) to subsequently behave as P, and

a probability w2/(w1 + w2) to subsequently behave as Q.

The syntax may be formally introduced by means of the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P BC
L
P | P/L | C

where S denotes a sequential component and P denotes a model component which executes in par-

allel. C stands for a constant which denotes either a sequential component or a model component.

CS stands for constants which denote sequential components. The effect of this syntactic separa-

tion between these types of constants is to constrain legal PEPA components to be cooperations of

sequential processes, a necessary condition for an ergodic underlying Markov process. We denote

the set of all sequential components by S, the set of model components by M, and the set of all

activities of a process P by Act(P ).

1.1.3 Apparent Rate

The apparent rate at which an action type occurs within a component is of importance when

comparing components or when defining how they interact. We assume that the apparent rate of

an action type represents the total capacity of a component to carry out activities of that type

when it is in its current state. The following section is largely based on a paper from Benkirane et

al. [7].

Definition 1 (Apparent Rate) The apparent rate of action of type α in a component P , de-

noted rα(P ), is the sum of the rates of all activities of type α in Act(P ).

24



1. rα((β, r).P ) =


r if β = α

0 if β 6= α

2. rα(P +Q) = rα(P ) + rα(Q)

3. rα(P/L) =


rα(P ) if α ∈/L

0 if α ∈ L

4. rα(P BC
L
Q) =


min(rα(P ), rα(Q)) if α ∈ L

rα(P ) + rα(Q) if α ∈/L

Unlike some other stochastic process algebras, PEPA assumes bounded capacity : a component

cannot be made to perform an activity faster by cooperation, so the rate of a shared activity is

the minimum of the rates of the activity in the cooperating components.

The apparent rate will be undefined for component expressions containing unguarded rates, i.e.

rates which are not prefixed by an activity. Consequently we do not allow a component to be

defined by such an expression.

Note that in cases of cooperation, the apparent rate of the shared activity will be the minimum

of the apparent rates of the components involved, where

m> < n> : for m < n and m,n ∈ Q

n>+ r = n> : for n ∈ Q, r ∈ R

r < n> : for all r ∈ R, n ∈ Q

m>+ n> = (m+ n)> : for all m,n ∈ Q

m>
n>

=
m

n
: for all m,n ∈ Q

For passive actions bounded capacity means that the corresponding component does not contribute

to the apparent rate of the shared activity.
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1.1.4 Additional definitions

Additional definitions will be used throughout this thesis. First however, a small PEPA model will

be used to illustrate those definitions.

C
def
= (α, r).C ′

C ′
def
= (β, r ′).C

B
def
= (α,>).B

C [c]BC
α

B [b]

In this model, there are initially c instances of C and b instances of B . C and B communicate

over the action α at rate r and > respectively (> meaning that B is passive). When the commu-

nication is performed, an individual in C “moves” to C ′ while the individual in B remains in B .

Finally, individuals in C ′ “move” back to C at rate r ′.

Definition 2 (Component type) A component type of a PEPA model corresponds to a state an

individual can be in. It can also be referred to as component.

The model presented previously contains three component types: C , C ′ and B .

Definition 3 (Sequential component) A sequential component is the representation of an in-

dividual in the model. The local state of a sequential component at time t corresponds to the

component in which the sequential component is at time t. Sequential components are also referred

to as agents.

The total number of sequential components is constant throughout the simulation, as PEPA

does not allow them to be created or deleted. The number of sequential components in each
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component type however varies over the course of the simulation. In the model presented earlier,

they are b + c sequential components. Initially, b of them are in state B and c of them are in state

C .

Definition 4 (Model component) The model component is the equation which defines the ini-

tial state of the model as well as the cooperation sets between the different component types.

In the example, the model component is C [c]BC
α

B [b] and BC
α

corresponds to the cooperation

set between the sequential components initially in C and the ones initially in B .

Definition 5 (Subgroup) Two component types C1 and C2 belong to the same subgroup if and

only if there exist n activities a1, ..., an such as C1

a1
−−−→ ...

an
−−−→ C2 or C2

a1
−−−→ ...

an
−−−→ C1.

SG(S ) refers to the subgroup to which S belongs.

This means that a subgroup is a group of components that can “reach” one another. In our

example, we have two subgroups: {C ,C ′} and {B}.

1.2 BioPEPA

BioPEPA [17] is a modification of PEPA developed in 2009 to handle some biological features

such as stoichiometry and general kinetic laws. It was specifically aimed at describing biochemical

networks. While based on PEPA, BioPEPA has several conceptual differences with PEPA and is

considered a different process algebra in the context of this study. The objective of this section is

to answer the common question: why did we choose to study PEPA and not BioPEPA.
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The major feature of BioPEPA is the introduction of functional rates to express general kinetic

laws. This is particularly useful in epidemiology as it allows to reproduce some of the well-studied

terms previously modelled (usually using ODEs). For example in the case of births, the Verhulst-

Pearl equation dN/dt=birth rate × N.(1 − N/K), with N the number of individuals capable of

giving birth, and K the carrying capacity [86] can be directly expressed using BioPEPA, while it

is not possible to do so in simple terms using PEPA, as detailed in section 5.2, mainly because

it depends on the population size. BioPEPA also added the option to include space in the form

of discrete compartments. While discrete space might not be sufficient in some cases, it allows a

significant number of systems where space is an essential feature to be described.

At first sight, BioPEPA seems to be an extension of PEPA more adapted to disease modelling

in every way. Most of PEPA’s drawbacks have been dealt with. Functional rates are included, and

a lot of flexibility is allowed when defining them. It is possible to include compartments which

could describe cities or burrows, which means that space can be added to a model.

The way rates are expressed however denotes a major difference between PEPA and BioPEPA.

In the case of PEPA, the rate represents how long it takes a sequential component to perform a

certain action, regardless of the rest of the system. In case cooperation is required, it can only be

performed when two sequential components in the right state are ready to perform it. BioPEPA on

the other hand explicitly gives the overall rate of the reaction, which corresponds to a population

level representation of the rate. Similarly, component types have a concentration rather than a

number of sequential components in this particular state. While a modification to the grammar

now allows to explicitly represent individuals, the natural way of modelling in BioPEPA remains

describing chemical species.

In conclusion, BioPEPA might be a good candidate for modelling diseases. It has many useful

features PEPA is lacking, and looks like the perfect candidate to model diseases. It is hard however
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to compare the two process algebras: while the model is written at the individual level in the case

of PEPA, it is described at the population level in BioPEPA. As a result, BioPEPA cannot be

considered an extension of PEPA, and their respective characteristics make them valuable for

different types of systems and analyses.

1.3 Presentation of the running examples

The objective of this thesis is to assess to what extent PEPA can be considered a valid tool

in the field of epidemiology and to extend the formalism and its available tools when required.

This will be achieved by modelling a series of features that are considered important for disease

modelling. Based on this first step, the required additions to the formalism will be developed. In

order to determine which features are important, and if PEPA can accurately model them, two

epidemiological systems have been chosen, which cover the most essential features required. The

first disease, the bubonic plague in a population of prairie dogs, is an interesting disease to study

as it includes two main vectors of transmission, indirect and direct transmission (more details in

section 5.5), and the question of which of these vectors drives the epidemic has been an open

question until very recently. While data is not freely available to validate the model, it is still

possible to do so by comparing the results to those obtained in previous papers [92], whose results

were validated against a (non-available) set of data. The second disease, measles, is a very different

disease, as its behaviour is fairly simple, but some features such as immigration or seasonality are

important. It is also easier to include space in the measles model as it is less complex. Finally,

a large data set is freely available which covers the reported the number of cases of measles in

England and Wales over more than 20 years.
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1.3.1 The Bubonic Plague in a community of Black-Tailed Prairie Dogs

Prairie dogs are rodents within the squirrel family [90] located exclusively in North America. The

black-tailed prairie dog is a very sociable animal, living in towns of hundreds of animals, which are

collections of families consisting of 1 male and 1 to 4 females [79]. Contacts between members of

a colony are very frequent. Indeed, the town is very well connected, with several corridors in and

out of each family burrow. Contact is very close: in order to recognize each other, prairie dogs

seem to“kiss”: they actually gently touch their front teeth together.

Black-tailed prairie dogs are on the verge of being placed on the list of endangered species.

Indeed, since the arrival of the European settlers, the number of prairie dogs in the American

prairies has decreased by 98% [79]. They have suffered from a bad reputation for several reasons

(and still do [26]). They have been thought to compete with cattle and bison over grass. The

holes they dig in the ground are hazardous to horses. In addition to this, the bubonic plague

has almost exterminated them. However, recent studies [3] have shown that they are actually a

keystone species in the grassland ecosystem, and eradicating them would have a devastating effect

on both the fauna and the flora.

The bubonic plague is an infection of the lymphatic system. It is mainly transmitted by the bite

of an infectious flea [96, 15, 1]. The bite causes the plague bacteria, Yersinia pestis, to replicate in

the host’s body. This will result in the appearance of swollen lymph nodes, which are very painful

and can evolve into a suppurating open sore.

The plague mainly affects wild rodents, but is still an issue in human populations and animal

to human transmission is possible in some rare cases. If left untreated, the plague kills its human

host in 30 to 60% of cases. According to WHO [96], in 2003, 9 countries reported 2118 cases and

182 deaths. As for prairie dogs, because they had never been exposed to the bubonic plague before
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it was introduced at the beginning of the 20th century, they had no natural defences against it,

which results in death within a week of infection for almost 100% of the infected animals.

In the context of our analysis, this biological and epidemiological system has been chosen mainly

to illustrate different types of transmission, since the two main types play an essential role in the

behaviour of the system. Births and deaths are also an important feature in the system, and it

will be used to demonstrate how the theory developed can be used in a model.

1.3.2 Measles in England and Wales between 1944 and 1964

Despite the worldwide efforts to vaccinate children against it, measles is still the vaccine-preventable

disease of childhood that causes the most deaths [22]. According to UNICEF [88], 875.000 people

died of measles in 1999, most of them in Africa and South-East Asia. While it is generally a

very benign disease, malnutrition, and in particular vitamin A deficiency, can cause very serious

complications [78], ranging from diarrhoea or otitis to pneumonia or blindness, and can even lead

to death.

Without any vaccination, measles infects 95-98% of children before they turn eighteen [71], and

an infectious person will infect 75%-90% of susceptible household contacts. The incubation lasts for

six to nine days [9], then measles begins with increasing fever, cough, coryza and conjunctivitis [71].

This is when the infectivity is highest. A rash then appears on the face and the neck, and may

spread to the rest of the body. Usually, the individual recovers after six to seven days and then

has a lifelong immunity to the disease.

Measles was probably first described when the so-called Antonine Plague ravaged the Roman

army and killed one-third of the population of some areas between 165 and 180 AD. It has since
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killed, among others, two-thirds of Cuba’s native inhabitants in 1529, half the population of Hon-

duras in 1531, a fifth of the Hawaiian population in the 1850s, and, along with influenza and

pneumonia, decimated the Adamanese population in the 19th century, as they had not previously

been exposed to these diseases. Overall, it is estimated to have killed about 200 million people

worldwide over the last 150 years [83].

In 1954, the virus responsible for the disease was isolated, which led to the creation of the

vaccine [25] in 1959 that was first licensed in 1963 [83]. This led to a campaign of mass vaccination

in developed countries, resulting in the near eradication of the disease. However, it is still very

deadly in developed countries [88], with a death ratio ranging from 3% to 34% [71]. Recently, a

rise in the number of cases in the last 10 years has been witnessed, resulting from the diminishing

vaccination coverage [33, 69, 16]. This is due to parents becoming unwilling to vaccinate their

children as the side effects of the vaccine (fever or measles-like rash) currently outweigh the risk of

getting the disease. On the other hand, the vaccination coverage has increased quickly in developing

countries, reducing the number of deaths caused by the disease by 78% between 2000 and 2008 [62].

Measles has a very different profile compared to the bubonic plague. The transmission mech-

anism is trivial, which simplifies the model greatly. On the other hand, the population involved

is much larger, at the scale of cities or even countries, which reveals different types of problems

related to PEPA. Finally, space is a more important feature in this case, as it is believed to be

the reason behind the epidemic cycles observed. Lastly, a detailed set of data is freely available,

which allows the validation of the results obtained using PEPA. Due to the nature of this data, this

thesis will focus on the number of cases of measles in England and Wales between 1944 and 1964.

In 1944, national notification of measles patients was made mandatory in England and Wales [27].

This provided some very good data on the number and location of measles cases, with a reporting

rate of over 50% [9]. Mass vaccination was introduced in 1968, changing entirely the landscape
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of the disease in those areas. However, the administrative creation of “Greater London” changed

the boundaries of the city in 1965. For this reason, it is not possible to draw a consistent map of

England for the whole 1944-1968 period, so the focus will be on the 1944-1964 period only.

1.4 Structure of the thesis

The objective of this thesis is to determine to what extent PEPA is suitable for disease modelling,

and to extend it where necessary. In order to achieve this, several essential epidemiological features

will be studied to evaluate the possibility to model them in PEPA, and when necessary and possible,

solutions will be provided for each of them. It is important to note that, unless stated otherwise,

the parameters are not based on any actual biological system. This is due to the fact that we are

only interested in knowing if PEPA can model the studied features, and we do not try to gain any

insight into the diseases which are being represented.

For this purpose, this thesis has been divided into six chapters. The first chapter presents the

two main types of transmission mechanisms, indirect and direct transmission, and presents the

first issues related to PEPA’s limitations. The second chapter then explains how to derive ODEs

from a PEPA model, and the limitations of the developed algorithm. It then presents software

that automatically executes the algorithm on a PEPA model to derive the ODEs. Finally, an

example shows how the ODEs can be a useful tool to have in addition to having access to the

stochastic simulations, and that the algorithm is also adapted to computer systems models as well

as biological ones. The third chapter analyses how frequency and density dependent transmission

can be expressed in PEPA. Births and deaths are then dealt with in chapter four, with different

methods to model them presented in detail. Since the features required have been studied in a

different work (in [92] in the case of the plague and in [9] in the case of measles), the model of the
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bubonic plague in a prairie dog town is then presented and analysed. Chapter five deals with timed

events, and describes how intervention, the circadian clock and seasonality can be modelled. These

features are then used in the examples of control policies and measles in Leeds, the latter being

analysed in detail and compared to the data available. Finally, the sixth chapter presents how

space, in the form of compartments, can be used in PEPA, and a new grammar is presented which

allows the PEPA models with space to be more concisely presented, before software translates it

to a valid PEPA model. Space is then added to the examples of the bubonic plague and measles

analysed earlier. Finally, we will conclude on PEPA’s main strengths and weaknesses, and review

the perspectives for PEPA in an epidemiological context.
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Chapter 2

First epidemiological models

As a first step in applying PEPA to epidemiology, the different forms of transmission will be

modelled, as it is a fundamental mechanism in every disease. These first models, presented in

a paper from Benkirane et al. [7] will be based on the SIR model, first described by Kermack

and McKendrick [51] in 1927. SIR corresponds to Susceptible, Infectious and Recovered, and

corresponds to a general model of disease spread which has since been applied to a wide range of

different diseases. The model splits the population into three groups:

Susceptibles represent the people that never had the disease, and may acquire it after exposure

to the infection.

Infectious are the people who carry the disease, and may pass it (directly or indirectly) to sus-

ceptible individuals.

Recovered (or Removed) are immune to the disease. This might be because they have been

infectious and recovered from it, because they have been vaccinated, or because they are
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naturally immune to the disease. The immunity might be lifelong or temporary, in which

case the individuals might become susceptibles again.

This basic pattern needs to be adapted to each disease, and additional classes might be necessary.

Here are a few common ones:

Exposed : once infected, a susceptible is not usually immediately infectious. An incubation period

is normally necessary. The infectivity usually coincides with the start of the first symptoms,

but it is not the case for every disease.

Superspreaders are infectious individuals that are more likely to infect susceptibles than “nor-

mal” infectious individuals. This can be either because they have more contacts with other

individuals (children at school, nurses) or because they are more infectious (in the case of

the human influenza, some people produce more bioaeorosols [64]), and the probability for a

contact to successfully pass the disease is higher. Superspreaders have a significant impact

on the behaviour of a disease, such as AIDS [48], or SARS [56].

These classes can be used to create variants of the standard SIR model. SEIR (including an

incubation period), SIRS (the recovereds may lose their immunity), SEIRS (with both features

- this is the one used in this section), SIS (when there is no immunity) are frequently used in

epidemiology [52, 53].

The most commonly used formulation of the SEIRS model is:

dS

dt
= −βSI/N + αR ,

dE

dt
= −δE + βSI/N ,

dI

dt
= −γI + δE ,

dR

dt
= −αR+ γI , (2.1)
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where β is the effective transmission rate, δ is the incubation rate, γ is the rate at which the

infectious individual recovers and becomes immune, α is the rate of losing immunity and becoming

susceptible again, and N = S +E + I +R. This standard model will be used in the later sections

of this chapter and in the next chapter as a benchmark.

McCaig [57, page 137-138] showed in his work on WSCCS (Weighted Synchronous Calculus of

Communicating Systems) [84] and epidemiology that in process algebra, all forms of transmission

can be reduced to either direct or indirect transmission. Being able to model such transmission

mechanisms is a necessary condition (but obviously not sufficient) in modelling a disease. It is

therefore essential to verify that PEPA has the capacity to perform this task. For this purpose,

both transmission mechanisms will be modelled. First, a model including indirect transmission,

which can be more intuitively translated into PEPA, will be presented. Then a second model will

describe how direct transmission can be approached in PEPA.

2.1 Indirect Transmission

Indirect transmission corresponds to the case where host-to-host contact does not result in passing

the infection, but a intermediary is needed for that purpose. This intermediary can have different

forms [68]:

Airborne: refers to the case where dust particles containing microorganisms residue from evapo-

rated droplets (droplets nuclei) generated when the host coughs, sneeze or talks, can remain

suspended in air for extended periods of time, and may travel over large distance. Diseases,

such as influenza, pneumonia, tuberculosis, or polio, rely on airborne transmission [68].
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Fecal-oral: corresponds to diseases that infect the digestive system, resulting in infectious faeces.

Without proper hygiene measures, this can result in secondary infection via infected water,

infected food if handled with the presence of faeces, or directly handling faeces or anything

that has been in contact with faeces. Typhoid, for example, mainly relies on this mode of

transmission.

Fomite: some organisms are capable of surviving on hard surfaces (fomites) such as door handles,

medical instruments, computer keyboards and mice for an extended period of time. Any

contact with the infected surface might result in an ingestion of the organism. The list of

diseases that can transmit via fomites includes Norwalk virus, a virus that causes vomiting

and diarrhoea, conjunctivitis or Escherichia coli infection.

Vector-borne: Vectors are animals that can transmit the disease from one host to another.

Mosquitoes (malaria), fleas (bubonic plague), rats (rabies), ticks (Louping Ill Virus) can

be potential vectors in different diseases. The behaviour of the disease largely depends on

the vector, but the latter can potentially remain infectious for extended periods of time, and

travel over long distances.

Obviously, it is possible for a single disease to spread via several transmission mechanisms. How-

ever, the infectiousness or the time before the infectious material decays may vary depending on

the mechanism, which may result in in a difference in disease transmission.

The model of indirect transmission presented in Figure 2.1 is a simple SEIRS model, with

a surface (similar to the fomite) acting as the agent of transmission. The amount of available

environment that can be infected is finite and the infectiousness decays probabilistically. While

having limited amount of environment might be considered unrealistic, it is possible to increase it

in order to avoid depleting the healthy environment during the stochastic simulation runs. In this
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S
def
= (contact ,>).E

E
def
= (infected, ir).I

I
def
= (infect env , ier).I + (contact ,>).I + (recover , rr).R

R
def
= (contact ,>).R + (lose immunity , li).S

InfEnv
def
= (contact , cr).InfEnv + (decay , dr).Env

Env
def
= (infect env,>).InfEnv

S [990] ‖ I [10] BC
{contact,infect env}

Env [10000]

Figure 2.1: Indirect transmission

case, we can consider the amount of healthy environment infinite, as the model behaves as if it was

infinite.

The agents S, E, I and R respectively represent the Susceptible, Exposed, Infectious and Recov-

ered individuals, while InfEnv and Env represent the infectious and the healthy environment. The

{S,E,I,R} and the {InfEnv,Env} subgroups do not communicate within subgroups, as indicated

by the ‖ operator. This means that S, E, I and R do not communicate with each other, and

neither do Env and InfEnv . However, they do communicate between subgroups. For example, in

a communication, one agent in S can communicate with one agent in InfEnv .

Basically, the infection spreads as follows:

• Each I repeatedly (at rate ier) carries out the infect env action, infecting a healthy environ-

ment agent, which becomes InfEnv. I also recovers at rate rr.

• Each InfEnv agent carries out the contact action at rate cr to infect S, I or R agents.

Obviously, it only succeeds in passing on the infection when an S is contacted. It also loses

infectiousness at rate dr.

39



200 400 600 800
time

200

400

600

800

1000

S

200 400 600 800
time

50

100

150

200

Inf

Figure 2.2: Comparison between the standard ODEs and the PEPA model for the indirect

transmission example for the susceptible (left) and the infectious (right) individuals. For both

graphs, average of 1000 stochastic simulations (dotted line), modified standard ODEs (solid line)

• Once an S is contacted, it has an incubation period of 1/ir time steps (the E state), and

then becomes infectious (I ).

• R is immune to the disease, but loses its immunity at rate li and becomes S again.

The standard system of equations 2.1 cannot be used here. Indeed, its transmission mechanism

corresponds to direct transmission, described in the next section. However, this system can be

adapted in order to incorporate a vector:

dS

dt
= −βS .InfEnv/N + αR ,

dE

dt
= −δE + βS .InfEnv/N ,

dI

dt
= −γI + δE ,

dR

dt
= −αR + γI ,

dInfEnv

dt
= −ηInfEnv + ζI (2.2)

To obtain this model, the standard system (2.1) was modified to describe the new transmission

mechanism. In particular, the path of infection is now different: S is infected by InfEnv , and
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Figure 2.3: Indirect Transmission. S (solid line), I (dotted line), R (dashed line). Parameter

values: cr = 0.08, li = 0.0005, ir = 1, rr = 0.02, ier = 0.01, dr = 0.005.

InfEnv is infected by I. The output of this system of ODEs is compared to the average of 1000

stochastic simulations in Figure 2.2. The parameters, while not representative of any particular

disease, have been chosen to be biologically realistic. Even if both graphs are not exactly similar,

the overall behaviour of the two models is very similar. Figure 2.3 represents the evolution of the

S, I and R population in the average of 1000 simulations of the model presented in Figure 2.1.

The graph output corresponds to the typical behaviour of a disease during an outbreak, as can be

seen in the literature [50, 91, 30].

We can now move on to direct transmission.

2.2 Direct Transmission

Direct transmission [68] requires a physical contact between a susceptible and a infectious individual

for the disease to spread. Two different direct transmission mechanisms exist:
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Direct contact: the disease requires physical contact of the infectious and susceptible hosts,

as the microorganisms responsible for the disease requires a host to live. The infection is

usually passed by body contact, as in the case of herpes simplex virus, or via body fluids, as

for Sexually Transmitted Diseases (STDs) or conjunctivitis.

Droplets: in this case, the infectious person coughs or sneezes and generates droplets that can

enter another organism via the eye, nose or the mouth. Measles, influenza or tuberculosis

rely on this type of transmission mechanism. The difference with airborne transmission is

the fact that the droplets are short-lived, and will not remain in the air for a long time.

Obviously, a disease can rely on several different mechanisms, direct or indirect, to spread. The

Bubonic Plague in prairie dogs [92], for example, can transmit via direct contact, via the animal’s

faeces, or via fleas.

Direct transmission is less natural and intuitive to model in PEPA than indirect transmission.

Indeed, the PEPA syntax does not allow only two agents in the same subgroup to communicate.

If the communication happens between an agent of component type A and an agent of component

type B, with A and B in the same subgroup, then all agents of component type A and B at time

t are required to participate in the communication. This is obviously not what is needed here.

Instead, one I should communicate with one S at any given time step. One solution would be to

change the way PEPA behaves in this situation. The choice has however been made to operate

within the constraints of standard PEPA. Therefore, it was necessary to “split” the I agent in

two. On the one hand, we have I as an individual. It can be contacted, or recover. On the other

hand, we have the transmitter side of I , the side of it that is infectious, and is trying to contact

other individuals. At all times, the number of I and the number of transmitter are equal, which

guarantees that the model remains consistent. Because the number of I changes throughout the
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lifetime of the model, the number of Transmitter must also change. However, it is not possible to

create (or delete) new agents in PEPA. For this reason, a new component type, Dormant has been

created. Effectively, the Dormant are waiting to be activated as Transmitter. A side effect of the

constraint that I = Transmitter is that Dormant =S+E+R. The components Transmitter and

Dormant constitute what will be referred to in section 4.1 as the mirror subgroup of the {S , I ,R}

subgroup.

The PEPA model for direct transmission can be seen in Figure 2.4. S, E and R have the same

behaviour they had in Figure 2.1. The disease spreads as a Transmitter contacts an S, which

becomes exposed. Once the incubation is over, E and Dormant communicate over the action

infected and E becomes I , while Dormant becomes Transmitter. I recovers at rate rr, and while

doing so, communicates with Transmitter, so they respectively move to R and Dormant. These

activities synchronise the number of I and Transmitter.

S
def
= (contact ,>).E

E
def
= (infected, ir).I

I
def
= (contact ,>).I + (recover , rr).R

R
def
= (contact ,>).R + (lose immunity , li).S

Transmitter
def
= (contact , cr).Transmitter + (recover ,>).Dormant

Dormant
def
= (infected,>).Transmitter

S [990] ‖ I [10] BC
{infected,contact,recover}

Transmitter [10] ‖ Dormant [990]

Figure 2.4: Direct transmission

The model resembles the one presented in Figure 2.1. However, the role of Transmitter is very

different from the one of InfEnv. Indeed, in the indirect transmission model, the environment is

infected by the infectious individual regularly. The amount of InfEnv is usually different from
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the number of I , as a single I can infect several pieces of environment, and the environment can

remain infectious after the agent in I that infected it has recovered. In the case of Transmitter,

only one agent is moved from Dormant to Transmitter each time an agent moves from E to I ,

and it is moved from Transmitter to Dormant again when I recovers, leading to a perfect match

between the number of agents in I and Transmitter.
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Figure 2.5: Comparison between the standard ODEs and the PEPA model for the direct trans-

mission example. For both graphs, average of 1000 stochastic simulations (dotted line), modified

standard ODEs (solid line)

Figure 2.5 shows the comparison between the average behaviour of the model in Figure 2.4 and

the standard ODEs of equation (2.1) for S and I. The graph shows a nearly perfect match between

the two methods. Figure 2.6 represents the evolution of the S, I and R population in the average

of 1000 simulations of the model presented earlier, under the same parameter settings as indirect

transmission. The parameters have been chosen with the same mindset as in section 2.1: they do

not strictly represent a disease, but have been chosen to be biologically realistic. And once again,

the results show the kind of behaviour expected.
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Figure 2.6: Direct Transmission. S (solid line), I (dotted line), R (dashed line). Parameter

values: cr = 0.08, ir = 1, li = 0.0005, rr = 0.02.

2.3 Summary

This chapter has demonstrated that PEPA can describe the two essential types of transmission in

epidemiology, direct and indirect. It is however already obvious here that PEPA’s limitations might

affect the systems that can be expressed using this formalism. As seen with the direct transmission

example, some features might require the use of counter-intuitive solutions to be described.
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Chapter 3

Deriving ODEs from a PEPA

model

Before studying the bubonic plague and measles, a need will be addressed in this chapter. Indeed,

while stochastic simulations are very powerful and often required to the study of some issues,

having access to the average behaviour of the model can also provide important information on

the disease.

Ordinary Differential Equations (ODEs) have been used for a long time in modelling, and

especially for disease modelling. This has resulted in a lot of experience and expertise in using the

formalism for this purpose, and makes it the perfect complementary tool to modelling in PEPA.

However, the changes in a PEPA model are inherently discrete. Indeed, when an activity takes

place at time t, one or several agents change from one state to another. For example, if a component

type C allows the activity (action name, rate).TargetComponent , the action action name for an
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agent in C happens at a specific time t0. This means that the number of agents in C decreases

by one between t − ε and t + ε, ∀ε ∈ R+, with ε sufficiently small. This does not seem to be

compatible with continuous Ordinary Differential Equations (ODEs). A hypothesis on the PEPA

model allows the approximation to hold: if the number of agents is large enough, the stochastic

simulations exhibit a behaviour resembling the one of a continuous model. Finally, using ODEs to

study PEPA models brings scalability to the formalism. Indeed, process algebras in general cannot

deal with models with a large population. As the computation is performed at the population

level, the ODEs, on the other hand, do not suffer from this drawback.

In this chapter, the existing algorithm, the Hillston Method [43], is first presented. An im-

provement of the method that I developed, the Stirling Amendment, is then described, and the

two algorithms are compared. These first two sections have been presented in the paper from

Benkirane et al. [7]. In section 3.3, the Dining Philosophers Problem is translated to PEPA and

analysed using the ODEs derived from the model, showing a possible use of the ODEs. Finally,

software, PEPAdum, automatically deriving ODEs from a PEPA model using the Stirling Amend-

ment is presented.

3.1 Existing methods

3.1.1 Jane Hillston Method

The first algorithm to generate ODEs was provided by Hillston [43]. It was originally created

to deal with systems with a large number of replicated components, where stochastic simulations

could not be performed, and specifically designed to deal with computer systems. This section will

present the key elements of this algorithm, as presented in the paper by Hillston [43].
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Hillston restricts the set of PEPA models to which the algorithm can be applied. The permitted

models need to feature certain criteria:

1. Cooperating components must share the same local rate (no passive components).

2. Actions may not be hidden.

3. Cooperation must include all common actions.

4. Components cannot cooperate if they belong to the same subgroup.

Through the models presented in chapter 2 we discovered a fifth limitation:

5. There should not be implicit choice between independent but distinct components offering

the same action for synchronisation. In other words, two sequential components that belong

the same subgroup cannot allow the same action to be fired.

First, Hillston defines what an entry and an exit activity are:

Definition 6 (Exit Activity) An activity (α, r) is an exit activity of D if D enables (α, r), i.e.

there is a transition D
(α,r)−→ in the derivation graph of D. We denote the set of exit activities of D

by Ex(D).

Definition 7 (Entry Activity) Similarly, an activity (β, s) is an entry activity of D if there is

a derivative D′ which enables (β, s), and D is the one-step β-derivative of D′, i.e. D′
(β,r)−→ D is in

the labelled transition system of D′. We use En(D) to denote the set of entry activities of D.

These definition are necessary as the impact of an activity on each component type needs to

be recorded. Finally, the activity matrix is defined:
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Definition 8 (Activity Matrix) For a model with NA activities and ND distinct local deriva-

tives, the activity matrix Ma is an ND ×NA matrix, and the entries are defined as follows:

(ni, aj) =


+1 if aj is an entry activity of ni

−1 if aj is an exit activity of ni

0 otherwise.

Each row of the activity matrix represents a component type, while each column represents an

activity. A cell records whether the activity is an entry or exit activity for the component type.

In the final system of ODEs, there is one equation of each component type. The algorithm for

generating those ODEs is detailed in Figure 3.1.

The Hillston algorithm has been written with computer systems based models in mind. This

implies that some features vital to epidemiology have been left out. In particular, as detailed in [7],

because self-loops are uncommon in computer systems, the Hillston algorithm has been written

ignoring the influence they can have on the system and the actions involving a self-loop are dealt

with as if they were absent from the model. In the context of a single agent, this makes sense:

in a indirect transmission system for example as presented in Figure 3.2, the number of agents in

I remains constant when the action infect env is performed. However, when the impact of the

action is considered at the scale of the whole system, this does not make sense anymore: indeed, as

it is involved in the communication with Env , the number of times the infectious agents perform

the action infect env have an impact on the number of agents moving from Env to InfEnv .

The model presented in Figure 3.2 is a modified version of the model presented in Figure 2.1

of section 2.1, in order to ensure that the restrictions required by the Hillston algorith are met.

Two changes have been necessary for this. First, in order not to violate condition (5), the action

contact now only involves InfEnv and S . Also, the passive rates have all been replaced in order
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//Form one ODE for each local derivative/state variable

For i = 1...ND

//Find the activities involving this derivative

For j = 1....NA

If Ma(i, j) 6= 0

//Form exit set Ex(j) for activity j

Ex(j) = ∅

For k = 1...ND

If Ma(k, j) = −1

Ex(j) = Ex(j) ∪ {k}

//Record the impact of each such activity

If Ma(i, j) = +1

Add

+rj × min
k∈Ex(j)

(nk(t))

to the equation.

If Ma(i, j) = −1

Add

−rj × min
k∈Ex(j)

(nk(t))

to the equation.

Figure 3.1: Pseudo-code of the Hillston Algorithm as presented in [43].
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S
def
= (contact , cr).E

E
def
= (infected , ir).I

I
def
= (infect env , ier).I + (recover , rr).R

R
def
= (lose immunity , li).S

InfEnv
def
= (contact , cr).InfEnv + (decay , dr).Env

Env
def
= (infect env , ier).InfEnv

S [990] ‖ I [10] BC
contact,infect env

Env [10000]

Figure 3.2: Indirect transmission model adapted to comply to the restrictions required by the

Hillston algorithm.

to make sure that all the activities involved in a cooperation share the same rate (condition (1)).

The ODEs of this model have been derived using the Hillston Method:

dS/dt = −cr .S + li .R

dE/dt = −ir .E + cr .S

dI /dt = −rr .I + ir.E

dR/dt = −li.R+ rr.I

dInfEnv/dt = −dr.InfEnv + ier.Env

dEnv/dt = −ier.Env + dr.InfEnv

Even before plotting the ODEs against the average of stochastic simulations, some terms intu-

itively seem not to represent the behaviour of the model properly. Indeed, each subgroup behaves

independently of the other. This is due to actions involved in a cooperation between the SEIR

and the environment subgroups to be a self-loop on one side, and thus the influence of the SEIR

subgroup and the environment subgroup is ignored for the infect env and the contact actions
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respectively. This is further shown by direct comparison of the ODEs with the average of 1000

stochastic simulations for I presented in Figure 3.3. Because the term generating Is, that is cr×S ,

only depends on the number of susceptible individuals, and does not depend on the number of in-

fectious environments, the number of Is quickly rises in the case of the ODEs, while the change is

slower in the case of the simulations, as it depends on both the number of S and the number of

InfEnv , which is initially zero.
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Figure 3.3: Indirect transmission model adapted to comply to the restrictions imposed by the

Hillston Method: average of 1000 simulation (dashed line) and ODEs derived with the Hillston

Method (solid line)

The Hillston Method is the first existing algorithm designed to derive ODEs from a PEPA

model. After that, the Stirling Amendment was published, and several additional methods have

since been developed, that are more general than the Hillston method. The Stirling Amendment

is presented in the next section, and the other existing algorithms are then briefly presented in the

following section to allow comparison with the Stirling Amendment.
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3.1.2 The Stirling Amendment

The Hillston Method is not suitable for deriving ODEs of epidemiological models. First, as shown in

section 3.2.1, the ODEs obtained do not provide a good match to the average behaviour of the model

in the case of self-loops. Also, the conditions imposed by the Hillston Method are too constricting

and prevent a number of useful features in epidemiological systems to be modelled. In particular,

condition (5) only allows communication with two processes to be performed, and condition (1)

forces the actions in the two to share the same rate. In the first models written in chapter 2, it is

already obvious why this is a handicapping limitation: the source of infection (whether it is InfEnv

or Transmitter) communicates with S , I and R. Even though the communication with I and R

does not result in a change of state, it reduces the number of contacts with S and thus influences

on overall rate of the action.

This section presents a modification of the Hillston Method. The resulting method generates

a set of ODEs which are at least as good as the Hillston Method’s ODEs in matching the average

of stochastic simulations under the restrictions imposed by the Hillston Method. It also extends

the scope of the Hillston Method by releasing condition (1) and modifying (5). The new set of

limitations of the PEPA model for the Stirling Amendment are:

1. Actions may not be hidden.

2. Cooperation must include all common actions.

3. Components do not cooperate if they belong to the same subgroup.

4. Cooperation can only involve components belonging to exactly two different subgroups.

The last condition is a modification of condition (5) detailed in section 3.1.1. Whereas the condition

as expressed by the Hillston Method restricted cooperations to involve only two component types
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in two different subgroups, condition 4 as presented in the Stirling Amendment only restricts the

component types to belong to two different subgroups. The number of component types involved

in each subgroup is not restrained.

Two modifications have been made to the original algorithm. First, the activity matrix, initially

presented in section 3.1.1 has been modified to account for the new required information. The entry

and exit activities were represented with +1 and−1. In the Stirling Amendment, it is also necessary

to record to which subgroup a component type belongs to, in order to know the component types

it competes against in the cooperation. An entry and an exit activity are now described with +1S

and −1S respectively, with S representing the subgroup the component type belongs to. A third

type of entry, ±1S , has also been added. It records an action which is both an entry and an exit

activity for the component type. This can occur in two cases. The first case corresponds to the

situation where the component type C allows the action to be fired, and a different component

type also allows it, with the target component type being C. This situation could not occur in

the Hillston Method, as condition (5) did not allow two components within the same subgroup

to fire the same action to be fired. The second case is a particular situation of the first case. It

corresponds to the situation where the activity involving the action is actually a self-loop. While

this situation could occur in the PEPA models accepted by the Hillston Method, the algorithm

simply ignored the activity. In the Stirling Amendment however, while the self-loop does not add

a term to the ODEs, their influence is taken into account when considering the dynamics of the

other component types.

The second modification concerns the rate of the activity. The Hillston Method uses the

local rate, assumed to be the same within a communication. In the Stirling Amendment, the

rate is the overall apparent rate rα(Sys) multiplied by component contribution. The component

contribution corresponds to the proportion of demand for cooperation from agents of the other
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subgroup actually met by agents of the considered subgroup. For example, if S, I and R compete

over the action contact in an indirect transmission model, each time an agent from the environment

subgroup is ready to perform the action, the probability that an agent from S performs the action

is S/(S + I + R). More generally, for a row ni, if the matrix entry subscript is Sl (say) then

the contribution of ni to the activity is ni(t)/
∑
k∈ExSl (j)∪LoopSl (j)

nk(t). That is, the sum of

all components tagged −1Sl or ±1Sl in that column. This change is specified in the amended

algorithm of Figure 3.4. As before there will be one ODE in the system for each row of the matrix.

Definition 9 (Activity Matrix) For a model with NA activities and ND distinct local deriva-

tives, the activity matrix Ma is an ND ×NA matrix, and the entries are defined as follows:

(ni, aj) =



+1S if aj is an entry activity of ni, S = SG(ni)

−1S if aj is an exit activity of ni, S = SG(ni)

±1S if aj is both an entry and an exit activity of ni, S = SG(ni)

0 otherwise.

Using the Stirling Amendment, the following ODEs are obtained when derived from the model

of direct transmission presented in section 2.2:
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//Form one ODE for each local derivative/state variable

For i = 1...ND

//Find the activities involving this derivative

For j = 1....NA

//Record the impact of each such activity

If Ma(i, j) = +1S or ± 1S

Add

+rj(Sys)×
r × ni(t)
γ(rj(S))

to the equation of ni for all nz
(j,r)−→ ni.

If Ma(i, j) = −1S or ± 1S

Add

−rj(Sys)×
r × ni(t)
γ(rj(S))

to the equation of ni for all ni
(j,r)−→ nz.

with

γ(t) =


1 if t = 0

t otherwise.

Figure 3.4: Pseudo-code for generating the set of ODEs
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dS/dt = − >.S
>.S +>.I +>.R

×min(>.S, cr.Transmitter) + li.R

dE/dt =
>.S

>.S +>.I +>.R
×min(>.S, cr.Transmitter)

−min(ir.E,>.Dormant)

dI/dt = min(ir.E,>.Dormant)−min(rr.I,>.Transmitter)

dR/dt = min(rr.I,>.Transmitter)− li.R

dTransmitter/dt = −min(rr.I,>.Transmitter) +min(ir.E,>.Dormant)

dDormant/dt = min(rr.I,>.Transmitter)−min(ir.E,>.Dormant)

(3.1)

A few simplifications can be made to this system, in order to make it more readable. First of

all, at all times, N(Transmitter) = N(I), so Transmitter can be replaced by I. This means that

min(rr.I,>.T ransmitter) = rr.I. Also, N(Dormant) = N(S) + N(E) + N(R) > N(E) as the

number of sequential components in a particular component type is always positive. This means

that N(Dormant) = 0 implies that N(E) = 0 and so, min(ir.E,>.Dormant) = ir.E. Finally,

>.S
>.S+>.I+>.R ×min(>.S, cr.T ransmitter) can be simplified to cr.S.I

S+I+R . Indeed:

• if N(S) = 0, then >.S
>.S+>.I+>.R ×min(>.S, cr.T ransmitter) = 0 and cr.S.I

>.S+>.I+>.R = 0.

• if N(S) > 0, then min(>.S, cr.T ransmitter) = cr.I, as >.S > cr.Transmitter (by definition

of the apparent rate) and N(Transmitter) = N(I) and > can be taken out in the top and the

bottom of the fraction. We finally obtain >.S
>.S+>.I+>.R×min(>.S, cr.T ransmitter) = cr.S.I

S+I+R

Once these simplifications have been made, the resulting set of ODEs becomes:
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dS/dt = − cr.S.I

S + I +R
+ li.R

dSC/dt =
cr.S.I

S + I +R
− ir.E

dI/dt = ir.E − rr.I

dR/dt = rr.I − li.R (3.2)

Using the same reasoning to simplify them 1, the Stirling Amendment produces this set of

ODEs for the indirect transmission model presented in section 2.1:

dS/dt = −cr.S.InfEnv

S + I +R
+ li.R

dE/dt =
cr.S.InfEnv

S + I +R
− ir.E

dI/dt = ir.E − rr.I

dR/dt = rr.I − li.R

dInfEnv/dt = ier.I − dr.InfEnv

dEnv/dt = −ier.I + dr.InfEnv (3.3)

The graphs of Figure 3.5 and Figure 3.6 compare the output of the ODEs and the average

behaviour of the models presented in chapter 2. In Figure 3.5, the derived ODEs fit well to the

average behaviour of the direct transmission model. For indirect transmission however, Figure 3.6

shows that the match between the ODEs and the average of the stochastic simulation is rather

poorer. This difference can be noticed in several models. Usually, the outbreak has a bigger

amplitude in the case of the ODEs. This is caused by the continuous nature of the ODEs. For

example, in the case of an SIR model, the number of infectious agents is typically low at the start of

1It has also been assumed that the healthy environment is abundant enough never to be depleted. In other

words, ∀t.N(Env, t) > 0. In this case, min(ier.I,>.Env) = ier.I
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Figure 3.5: Direct Transmission: average of 1000 stochastic simulations (dashed line), Stirling

Amendment ODE. Parameters as in Figure 2.5 of chapter 2. RMS = 7.
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Figure 3.6: Indirect Transmission: average of 1000 stochastic simulations (dashed line), Stirling

Amendment ODE (solid line). Parameters as in Figure 2.2 of chapter 2. RMS = 15.
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the simulation. During the stochastic simulations, this leads to some runs witnessing the number

of infectious individuals dropping to zero. This results in all the communications involving I

being blocked, potentially leading to a completely different behaviour. In the indirect transmission

model, if the number of I drops to zero too early, before the environment has been contaminated,

it leads to the infection fading out and the number of I remaining zero for the rest of the run.

However, if this does not happen, the outbreak will take place, with the number of I rising quickly.

However, in the case of the ODEs, the number of I never drops to zero. Indeed, it always remains

positive, allowing the communication to happen at all time. This has been confirmed in the work

of Robertson [75]. In his work, Robertson performed a large amount of stochastic simulations of

the prairie dog model presented in Figure 5.4 of section 5.5.1. He then removed all the runs where

the infection died out in the first days of the simulation, and then compared the average of the

remaining runs with the derived ODEs. He found that the ODEs had a much better match with

the stochastic simulations without fade-out, compared to the entirety of the simulations.

3.1.3 Other existing methods

Since the paper by Benkirane et al. [7] was published, two notable algorithms have independently

been published. The paper by Bradley et al. [13] takes an approach very similar to the one presented

in the next section: based on the Hillston Method, it generalises the algorithm to be able to release

some of the conditions, and applies it to a direct transmission SIR model. However, the resulting

algorithm completely ignores self-loops. We will see on the first model presented in this paper is

presented in Figure 3.7 how it can lead to an erroneous interpretation of the model.

Using the algorithm presented by Bradley et al. [13], the main infection term is:

dS

dt
= −βIsNet
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S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= stop

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

S [1000] ‖ I BC
{infectS,infectI}

Net [200]

Figure 3.7: Model of transmission of a worm in a computer network, as presented in [13]

where

Is(t) =


0 if S(t)=0

1 otherwise.

However, the infection involves a competition between S, I and R. This means that when an

individual infects another individual, she can potentially infect either a susceptible, infectious

or recovered individual. Obviously, when the individual infected is infectious or recovered, the

infection does not have any impact on the state of the individual. It does however have an impact

on the overall system. The number of infections per unit of time only depends on the number of

agents of infection (I in our example). If only susceptible individuals can be targeted, this means

that the infectious individuals somehow manage to only contact them, whereas if everyone can be

infected (as in the original model), the susceptible individuals only get a fraction of the infectious

contacts.

Hayden et al. [41] also proposed an algorithm to derive ODEs from a PEPA model. A different

approach is taken here. Instead of comparing the ODEs to the average of stochastic simulations,

the CTMC is used as a benchmark to test the validity of the ODEs. The algorithm is more

general than the Stirling Amendment presented in the next section. Indeed, the only remaining
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restriction to the PEPA model is condition (4), which proscribes cooperation within a subgroup.

However, even though the ODEs can be derived, some of the results, and in particular the explicit

expression of the ODEs only apply to “split-free” models, which corresponds to models complying

to condition (5), which prohibits any implicit choice in the model. This condition is very limiting

when it comes to epidemiology, as components often compete over an action, like contact in the

case of the model presented in Figure 2.1 in section 2.1.

Even though these algorithms can be used on a greater set of PEPA models than the Stirling

Amendment, this algorithm will still be used in the subsequent sections. The algorithm from

Bradley et al. [13] was clearly not ready to deal with some of the issues, and self-loops in particular.

The ODEs expression from Hayden et al. [41] does however tackle the points necessary to model

disease transmission models. However, it is geared toward computer systems, and the focus is not

on the features that epidemiology requires. In the next section, a new algorithm will be presented,

specifically designed to handle epidemiological systems.

3.2 The Hillston Method and the Stirling Amendment com-

pared

The Stirling Amendment attempts to generalise the Hillston Method, in order to be able to apply

it to PEPA models of epidemiological systems. The objective of this section is to formally show

that the Stirling Amendment is indeed an extension of the Hillston Method, in order to benefit

from the results Hillston obtained in [43]. This is achieved by proving that the two algorithms

produce the same set of ODEs for PEPA models meeting the following conditions:
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Conditions

1. Cooperating components must share the same local rate (no passive components).

2. Actions may not be hidden.

3. Cooperation must include all common actions.

4. Components of the same type do not cooperate.

5. There should not be implicit choice between independent but distinct components offering

the same action for synchronisation.

6. No self-loops.

The first five conditions are the ones imposed by the Hillston Method. Condition 6 was not

explicitly expressed in [43], but is rather implicit as self-loops are uncommon in computer systems.

As shown in section 3.2.1, the output from the Hillston Method and the Stirling Amendment are

different for models with self-loops. More details will be given in that section.

The objective of this section is to prove that the Hillston Method and the Stirling Amendment

are equivalent under the conditions above. This is achieved by applying the five conditions to the

algorithm and the Activity matrix of the Stirling Amendment, respectively presented in Figure 3.4

and in Definition 9 and showing that these are equivalent to the definitions of Hillston presented

in section 3.1.1. The new expression of the algorithm presented in Figure 3.1.2 is presented in

Figure 3.8, while the Activity matrix is reformulated below:

Activity matrix The activity matrix is now exactly identical to its definition in the Hillston

Method, detailed in Definition 8. Indeed, the entries of the activity matrix for a model are defined
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as follows.

(ni, aj) =


+1 if aj is an entry activity of ni

−1 if aj is an exit activity of ni

0 otherwise.

Two changes can be noticed in the activity matrix, compared to the one seen in section 3.1.2.

First, the information about the side is not needed any more. Indeed, it was only needed in the

“r × ni(t)/rj(S)” part of the algorithm, which is shown in (A) to be equal to 1. Also, ±1S is not

necessary anymore. It was only needed for the case where an action was both an entry and an exit

activity for a component type. Condition (5) assures that there is no more implicit competition,

hence ∀aj ,∃!(n1, n2)/ n1
(aj ,r)−→ n2. Also, condition (6) ensures that self-loops are not permitted

either. The resulting definition corresponds exactly to the definition presented in section 3.1.1.

Concerning the algorithm itself, its formulation varies slightly when compared to the one pre-

sented in Figure 3.1. The set of exit components of activity j is not explicitly calculated in the

algorithm presented in Figure 3.8. The definition however is exactly the same. The expression of

the term added to the ODEs is presented differently. Its value is however the same, as shown by

the proof (B). Overall, for all the models satisfying the set of conditions presented in this section,

both algorithms produce the same set of ODEs.

Additional proofs

(A)Why is r × ni(t)/γ(rj(S)) = 1

As S corresponds to a subgroup, condition (4) guarantees that the components within the subgroup

do not cooperate. This means that if S = n1||n2||...||ni||...||nl, then,

rj(S) =

l∑
k=1

rj(nk) .
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//Form one ODE for each local derivative/state variable

For i = 1...ND

//Find the activities involving this derivative

For j = 1....NA

//Record the impact of each such activity

If Ma(i, j) = +1

Add

+rj(Sys) (A)

to the equation for each (nz, ni) / nz
(j,r)−→ ni. However, there will one such transition due

to condition (5).

If Ma(i, j) = −1

Add

−rj(Sys) (A)

to the equation for each (nz, ni) / ni
(j,r)−→ nz. However, there will one such transition due

to condition (5).

and

rj(Sys)=rj ×mink∈Ex(j)(nk(t)) (B)

Figure 3.8: Pseudo-code of the algorithm under Hillston Method’s restrictions
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Also, because of condition (5), we know that ∃!(ni, nz) / ni
(j,r)−→ nz. This means that ∀k ∈

[1, l], k 6= i, rj(nk)=0, which results in rj(S) = r×ni(t), and thus, eventually r×ni(t)/γ(rj(S)) = 1.

(B)Value of rj(Sys)

Notation

In this proof, we will need new notation:

• P is used to represent a single component.

• For all component P, N(P ) is the number of instances of the component P.

Definition 10 The set of possible components is C.

Definition 11 The set of system equations is S. It is defined by ∀Q ∈ S, Q ::=

QBC
L
Q|P, with P ∈ C.

Definition 12 The length of the system equation is the number of single components it contains.

It will be noted N(Sys).

For example Sys = (P ||P )BC
L
Q is of length 3, assuming P and Q are sequential components.

Definition 13 The set of exit components of an activity j is defined as Ex(j) = {P ∈ C, ∃Px ∈

C, ∃r ∈ R+, P
(j,r)−→ Px}.
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Lemma 3.2.1 ∀Q1, Q2 ∈ S, ∀L, N(Q1 BC
L
Q2) = N(Q1) +N(Q2).

We want to show that, for every system equation of the form Sys ::= QBC
L
Q|P , with N(Sys) =

n and for every action j, we have

∃i0, i1, ..., ik ∈ N,∃r ∈ R

rj(Sys) =


r ×min(N(Pi0), ..., N(Pik)) where {Px, x ∈ {i0, i1, ..., ik}} = Ex(j)

0 if ∀P,Q ∈ S,∀r ∈ R+, P
(j,r)−→/ Q

Inductive reasoning will be used to prove this statement.

Proof 3.2.2 Basis: Show that the statement holds for a system equation of length 1.

This means that ∃P ∈ C, Sys = P . Then, two cases appear:

First case: ∃Q ∈ C, ∃r ∈ R P
(j,r)−→ Q

In this case, rj(Sys) = r = r ×N(P ) as N(P ) = 1, with P = Ex(j) as it is the only component

in the system such that ∃Q ∈ C, ∃r ∈ R P
(j,r)−→ Q.

Second case: ∀Q ∈ C, ∀r ∈ R P
(j,r)−→/ Q

In this case, rj(Sys) = 0.

So the statement holds for a system equation of length 1.

Inductive step: Show that if ∀k ∈ [[1, n]], the property holds for a system of length k,

then it also holds for a system of length n+ 1.

Let’s call R a system equation of length N(R) = (n + 1). As n ≥ 2, we know that

∃Q1, Q2, ∃L R = Q1 BC
L
Q2. This means that rj(R) = rj(Q1 BC

L
Q2). The length of a
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system verifies the Lemma 3.2.1, so N(R) = N(Q1) +N(Q2). The length of Q1 and the length of

Q2 are both greater or equal to 1, which means that their respective lengths are also smaller or

equal to n.

Here again, this can be divided into two cases:

First case: j ∈ L

In this case, according to the rules for the calculation of the apparent rate, we know that

rj(R) = min(rj(Q1), rj(Q2)). As both N(Q1) and N(Q2) are smaller or equal to n, we can use

the induction hypothesis on Q1 and Q2:

∃P10 , P11 , ..., P1Q1
, P20 , P21 , ..., P2Q2

∈ C, with {Px, x ∈ {10, ..., 1Q1 , 20, ..., 2Q2}} = Ex(j),∃r1, r2 ∈

R,

rj (R) = min(rj(Q1), rj(Q2))

= min(r1 ×min(N (P10
), ...,N (P1Q1

)), r2 ×min(N (P20
), ...,N (P2Q2

)))

= r1 ×min(min(N (P10 ), ...,N (P1Q1
)),min(N (P20 ), ...,N (P2Q2

))) cond. (1)

rj (R) = r1 ×min(N (P10
), ...,N (P1Q1

),N (P20
), ...,N (P2Q2

)) because min is associative

In this case, the property holds for a system of length n+ 1.

Second case: j ∈/ L

Here, we have rj(R) = rj(Q1) + rj(Q2). However, condition (3) ensures that if Q1 and Q2 had

common actions, they would have to cooperate on them. So they do not share any common action.

This means that:

rj(R) =


rj(Q1) if ∃Py ∈ Q1,∃Px Py

(j,r)−→ Px

rj(Q2) if ∃Py ∈ Q2,∃Px Py
(j,r)−→ Px

0 otherwise
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If rj(R) = 0, then the statement holds. If ∃i ∈ {1, 2} rj(R) = rj(Qi), then as N(Qi) ≤ n, we can

apply the induction hypothesis to Qi and so:

∃Pi0 , Pi1 , ..., PiQi ∈ C, with {Px, x ∈ {10, ..., 1Q1
}} = Ex(j),∃r ∈ R, rj(R) =

r ×min(N(Pi0), ..., N(PiQi ))

In this case again, the property holds for a system of length n+ 1.

Thereby, we have shown that in all cases, the property holds for a system of length n+ 1.

�

Since both the basis and the inductive step have been proved, it has now been proved by

mathematical induction that for all system equations:

∃i0, i1, ..., ik ∈ N,∃r ∈ R

rj(Sys) =


r ×min(N(Pi0), ..., N(Pik)) where {Px, x ∈ {i0, ..., ik}} = Ex(j)

0 if ∀P,Q ∈ S,∀r ∈ R+, P
(j,r)−→/ Q

3.2.1 Condition (6): an illustrative example

The Stirling Amendment has a different behaviour compared to the Hillston Method when it comes

to self-loops. In order to compare the output of the sets of ODEs generated by both algorithms,

this section shows an example of a model which complies with the first five conditions presented

in the previous section, but does not satisfy condition (6).

The model here is a very simple SI model with indirect transmission, with a fixed amount of

infected environment. InfEnv only tries to infect S individuals, but always stays in the same state.

This example shows how the Hillston Method and our algorithm have different outputs when a

self-loop is involved in a cooperation.
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S
def
= (contact , cr).I

I
def
= (recover , rr).S

InfEnv
def
= (contact , cr).InfEnv

S [990] ‖ I [10] BC
contact

InfEnv[50]

Using the algorithm presented in [43], the ODEs obtained from this model are:

dS

dt
= −cr × S + rr × I ,

dI

dt
= −dS

dt
,

dInfEnv

dt
= 0 , (3.4)

When the Stirling Amendment is used, the ODEs are:

dS

dt
= −cr ×min(S, InfEnv) + rr × I ,

dI

dt
= −dS

dt
,

dInfEnv

dt
= 0 , (3.5)

The difference between the two sets of ODEs lies in how the contact activity has been dealt

with. Indeed, in the case of Hillston Method, as InfEnv does a self-loop, it is completely ignored.

The same results would be obtained for a model without InfEnv . However, the way the model

was written implies that without it, no cooperation is possible. In the Stirling Amendment’s set

of ODEs, the case of the contact activity is dealt differently. Indeed, the S can only be contacted
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Figure 3.9: Graph of the model illustrating the difference in handling self-loops. Average of

200 simulations and the Stirling Amendment ODEs (superposed, solid line), the Hillston Method

ODEs (dashed line). Parameter values: cr = 1, rr = 0.1.

if there is some InfEnv available. This is why the rate at which S becomes I depends on the

minimum between the number of S and InfEnv.

Figure 3.9 further illustrates this point. While the ODEs obtained with the Stirling Amendment

provide a very good match to the average of 200 simulations, the ODEs obtained with the Hillston

Method exhibit a very different behaviour, due to the number of S decreasing without InfEnv

limiting it.

3.3 The Dining Philosophers Problem

The motivation for the Stirling Amendment came from examples in epidemiology; however, it has

a wider application. In this section, we present an example from computer science to illustrate

that, and to demonstrate the type of further analysis possible with the ODEs.
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3.3.1 Presentation of the problem

Pthink
def
= (hungry , h).P0

P0
def
= (acquire,>).P1

P1
def
= (acquire,>).Peat + (release,n).P0

Peat
def
= (eating , e).PR2

PR2
def
= (release, r).PR1

PR1
def
= (release, r).Pthink

Fork A
def
= (acquire, a).Fork U

Fork U
def
= (release,>).Fork A

Pthink [p] BC
{acquire,release}

Fork A[f ]

Figure 3.10: PEPA model for the Philosophers’ problem.

The dining philosophers problem is a very famous problem in the history of computer science.

It was first presented by Hoare [46], and gives a simple and appealling presentation of a number

key features in concurrency, such as resource allocation, deadlock, livelock, starvation and fairness.

Moreover, solutions to these problems can be modelled in the same framework. In a generalisation

of the problem, we have p philosophers around a table, with f forks and a bowl of spaghetti in the

middle. Each philosopher can spend his time thinking or eating. When a philosopher is hungry,

he needs two forks to eat his spaghetti. The features mentioned above arise when the number of

forks is smaller then the number of philosophers.

The PEPA model presented in Fig. 3.10 captures the behaviour of the philosophers in a variant

of the problem, as the original problem is not very suited to PEPA. In the most commonly used

version of the problem, each philosopher has two forks, one on his left and one on his right, that she

shares with her neighbour. To represent it in PEPA, the model would need to explicitly represent
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each philosopher and its associated forks, as there is no way to distinguish between agents of the

same state otherwise.

In order to have a more PEPA-friendly problem, we have p philosophers are collaborating with

f forks, with the forks available for everyone to use. At the beginning, all the philosophers are

thinking, and all the forks are available. The forks have no special placement: effectively, we

have a pile of forks in the middle of the table from which any philosopher can choose. When a

philosopher wishes to eat, he asks for a fork. Once he manages to get one, he asks for a second

fork. Then, he spends some time eating, releases the first fork, and the second fork, and finally

thinks again. In this simple situation, deadlock may arise when p ≥ f : f philosophers have one

fork and cannot eat without a second fork, but there are no free forks available. Therefore, we

allow hungry philosophers with one fork (P1) to release it and return to the state P0. In other

words, he just stops waiting for the second fork, releases the one he has in his hand, but as he is

still hungry, comes back to the state where he is waiting for his first fork. By allowing the hungry

philosophers to release their fork, we provide the opportunity for another to obtain two forks.

We have then derived the ODEs from the PEPA model, using the Stirling Amendment:

dPthink(t)/dt = −h.P think(t) +
r.PR1(t)

R(t)
min(R(t),>.Fork U(t)) ,

dP0(t)/dt = h.P think(t) +
n.P1(t)

R(t)
min(R(t),>.Fork U(t))

−P0(t)

P (t)
min(>.P (t), a.Fork A(t)) ,

dP1(t)/dt = −n.P0(t)

R(t)
min(R(t),>.Fork U(t))

+
P0(t)− P1(t)

P (t)
min(>.P (t), a.Fork A(t)) ,

dPeat(t)/dt = −e.Peat(t) +
P1(t)

P (t)
min(>.P (t), a.Fork A(t)) ,

dPR2(t)/dt = e.Peat(t)− r.PR2(t)

R(t)
min(R(t),>.Fork U(t)) ,
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dPR1(t)/dt =
r.(PR2(t)− PR1(t))

R(t)
min(R(t),>.Fork U(t)) ,

dFork A(t)/dt = min(R(t),>.Fork U(t))−min(>.P (t), a.Fork A(t)) ,

dFork U(t)/dt = min(>.P (t), a.Fork A(t))−min(R(t),>.Fork U(t)) , (3.6)

where R(t) = r(PR2(t)+PR1(t))+n.P1(t) and P (t) = P0(t)+P1(t). Simulations show that both

the simulations and the ODEs quickly reach an equilibrium, which will be exploited in the next

section. Since this model has a steady state, the Markov analysis of the PEPA tool can be used.

The steady state value of Peat can be computed easily for twelve philosophers and nine forks 2.

3.3.2 Optimisation of the service

What added benefit can be gained from having ODEs for the philosophers model? Recall that n

is the rate at which a hungry philosopher releases the single fork already acquired. Given values

for h, e, a, r, and of course p and f , what would be the optimal value of n, call it nmax, in order

to serve as many philosophers as possible?

An analysis of the Markov chain has two drawbacks. First, the system becomes quickly unman-

ageable as its size increases. Indeed, the size of the Markov chain increases exponentially with the

number of processes, and the limit of the computer power is quickly reached. Second, the analysis

is dependent on the values of the parameters, and must be repeated in its entirety when parameter

values change. Finally, it is only possible to have an approximate value for nmax by trying several

different values and finding which one gives the biggest Peat at steady state.

Simulation may also be used to answer this question; however, as for the Markov Chain method,

it is only possible to get an approximate value for nmax using a try and fail method. This approach

2There are 1837 states in the model. The calculation takes only twelve seconds on a computer with a P4 2.80GHz

processor and 1Gb of RAM, but larger values of p and f are not possible without more memory.
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is time consuming as tens of sets of a few hundred simulations are needed, which results in thousands

of simulations 3. As above, if one or more of the other parameters are modified, all the simulations

must be done again, which makes this approach both time consuming and approximate.

ODEs provide a better approach to solving this problem. The solution will be exact, and nmax

can be calculated for new parameter values in a few seconds. Once the system is solved, the

solution does not change.

To answer the question and find nmax, the ODEs (3.6) are considered in the steady state, when

all derivatives are equal to zero. This yields the following equations (dropping the (t) parameter):

0 = −h.P think + r.PR1 (3.7)

0 = h.P think + n.P1− P0

P0 + P1
a.Fork A (3.8)

0 = −n.P0 +
P0− P1

P0 + P1
a.Fork A (3.9)

0 = −e.Peat+
P1

P0 + P1
a.Fork A (3.10)

0 = e.Peat− r.PR2 (3.11)

0 = r.(PR2− PR1) (3.12)

0 = r.(PR2 + PR1) + n.P1− a.Fork A (3.13)

0 = a.Fork A− r.(PR2 + PR1)− n.P1 (3.14)

p = Peat+ P0 + P1 + PR2 + PR1 + Pthink (3.15)

f = Fork U + Fork A (3.16)

Fork U = P1 + 2.P eat+ 2.PR2 + PR1 (3.17)

3To obtain a smooth mean, around 10,000 simulations are required for each set of parameter values. To give an

idea, 10,000 simulations takes about 41min on a computer with a P4 2.80GHz processor and 1Gb of RAM.
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Equations (3.7) to (3.14) come directly from the ODEs. The min terms of (3.6) have been

simplified using the knowledge that P0, P1 and Fork U are strictly positive. Equations (3.15) and

(3.16) use the fact that the number of philosophers and the number of forks is constant over time.

Finally, the last equation states that the number of forks used, i.e. those unavailable for others, is

equal to the sum of the number of philosophers with at least a fork, multiplied by the number of

forks they have.

It seems here that there are more equations than unknowns. Actually, some of the equations can

be derived from others. Equations (3.13) and (3.14) are identical. Equation (3.9) can be derived

by adding (3.8) and (3.10) (and using (3.7), (3.11) and (3.12) to prove that h.P think = e.Peat).

Finally, (3.14) can be obtained by subtracting (3.8) from (3.10) (and using (3.7), (3.11), and (3.12)

to prove that 2.h.P think = 2.e.Peat = r(PR2 + PR1)). So we eventually end up with eight

equations with eight unknowns. This system has been solved with the help of Mathematica, in

order to get a function for Peat(n) in terms of the rates, p and f which allows us to solve the

question orignally posed. For example, by setting the parameters to h = e = 1 and r = a = 10,

we get:

Peat(n) =
50(n2 − n(−380 +

√
25 + 245n+ n2)− 10(5 +

√
25 + 245n+ n2))

−1400 + 3095n+ 11n2
.

Once again using Mathematica, we can obtain nmax such that Peat(nmax) is maximal:

nmax =
10

13
(17−

√
94) = 5.62 with Peat(nmax) = 4.67 .

In other words, with h = e = 1, r = a = 10, twenty philosophers and fifteen forks, the value for

n to ensure a maximum of philosophers eating is n = 5.62, and this value allows 4.67 philosophers
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to eat on average. Although this example is simplistic, the principle can be translated to, for

example, a resource allocation problem in an operating system. In this case, the value of nmax

would tell us how to set the back off to allow maximum throughput of clients.

3.4 PEPAdum: automatically deriving the ODEs from a

PEPA model

The PEPA Eclipse plugin [85] has the option to derive the ODEs of a PEPA model and gives

the graph that those ODEs generate. However, the algorithms the program uses to generate the

ODEs only gives a numerical approximations of the ODEs, and more importantly, the ODEs are

not explicitly given, which prevents any theoretical analysis.

To overcome these issues, software, PEPAdum, has been developed in Java (more details in

section 3.4.2). The objective here is to facilitate the analysis of the model by giving as much

information to the modeller about the system. PEPAdum allows both the average of stochastic

simulations, based on the PEPA Eclipse code, and the derivation of ODEs, using the Stirling

Amendment, to be performed. It is also possible to obtain the standard deviation of the simulations,

in order to get more insight on the variability of the model. Finally, the average of the simulations

and the ODEs can be compared using the Root Mean Square (RMS) value. The output is written

in a Mathematica [94] file, which allows any further analysis to be performed and in particular in

the generation of graphs.

3.4.1 PEPAdum description

PEPAdum itself is fairly intuitive to use and tries to address the issues of the PEPA Eclipse plugin,

which is tailored for computer systems models. Once the file itself has been chosen in the window
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Figure 3.11: PEPAdum main page

shown in Figure 3.11, the user can choose in the next window shown in Figure 3.12 :

• the stop time: the time at which the simulations stop. The experiments always start at t = 0.

• the number of experiments: the number of experiments to be averaged. This number is

ignored in the case of ODE derivation.

• the number of data points: this corresponds to the number of points at which the number

of agents in each of the requested component type’s state is recorded. This number is also

ignored in the case of ODE derivation.

• the recorded component types: this is actually done in a different way compared to the PEPA

Eclipse plugin. In the plugin, several occurrence of each component might appear. If the

initial system equation is S [s]||I [i ], and one susceptible individual becomes infectious, the

system should become S [s − 1]||I [i + 1]. The PEPA Eclipse plugin however differentiates the
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Figure 3.12: PEPAdum available options
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between agents in the same state but with a different initial state. In this case, we obtain

S [s − 1]||I 1[1]||I 2[i ]. In most cases, and in particular in epidemiology, this information is

not required as the only difference between the two is the initial state the agents were in. In

PEPAdum, this differentiation is not made, and we obtain S [s − 1]||I [i + 1] as expected.

• Derive ODEs: the user can choose whether she wants the ODEs to be derived. In the

resulting Mathematica file, the actual ODEs are given, as well as the code to plot the graph

of each component type.

• Do the simulation: the user can choose whether or not she wants the simulations to be

performed, using the stop time, number of experiments, number of data points, recorded

component types given earlier. The resulting Mathematica file includes the actual data

points and the time it took for the experiments to run (ignoring all the processing happening

before and after them). The code is given to plot the graph of each selected component type.

• Include Standard Deviation: If the simulations are to be run, the standard deviation can be

included in the data.

• Generate File: generates the Mathematica file including all the selected features. The default

file name is the same as the PEPA file used as input, with the “.nb” extension.

• Open: this option is only available after the file has been generated, and opens the Mathe-

matica file with the default software on the machine.

• Select Output File: allows the user to choose the name of the generated file.

When both the simulations and the ODEs are requested, additional information is added in

the final Mathematica file. For each component type, the instructions for a graph comparing the

ODEs and the stochastic simulations (and the standard deviation if requested) as well as for the
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Root Mean Square (RMS) value of the difference between the average of the simulations and the

ODEs, are added. The objective here is to allow the modeller to have access to all the tools with

minimal knowledge of Mathematica.

3.4.2 PEPAdum architecture

The PEPA plugin does actually perform ODE derivation and analysis. A few ODES solvers are

available to choose from (from the Runge-Kutta family of solvers and adaptive step-size 5th-

order Dormand Prince ODE solver), but they only provide a numerical approximation of the

solution of the system, but cannot explicitly provide the expression of the equations. For these

reasons, it was decided to directly parse the PEPA model, using JavaCC [49], with a Java-based

underlying platform. Basically, once the file has been chosen, it is parsed immediately, with all

the relevant information retrieved. Then, once the options described in section 3.4.1 are given by

the user, the information required is fed to the function in the PEPA Eclipse plugin that runs

stochastic simulations and the ODEs are generated when the option has been chosen. Because

of the possibility to include the standard deviation, the simulations are requested one by one.

Indeed, the PEPA Eclipse plugin only gives the values for the average of the number of simulations

requested, while the values of all simulations are needed for the standard deviation.

Some basic error handling has also been included, either reporting the Java error messages,

some PEPA errors (which are usually quite general and unhelpful), or some restriction linked

to Mathematica (for example, I and E are not allowed, as Mathematica interprets them as the

mathematical number).

Once the simulation results and/or the ODEs are obtained, the output is written in a Mathe-

matica 5 (and usually Mathematica 6 and 7) compatible file.
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3.4.3 Limitations

PEPAdum has been developed to deal with the models accepted by the Stirling Amendment, both

for the stochastic simulations and the derivation of the ODEs. In particular, the set of limitations

presented in section 3.1.2 are still relevant for PEPAdum. Also, some models require a series of

actions to be performed in order for the state to change. In the model presented in Figure 6.6, the

action go winter must be performed p times before an agent in Summer can go in the state Winter .

This feature is not allowed by PEPAdum, both for stochastic simulations and the derivation of the

ODEs.

3.5 Summary

Being able to derive ODEs from a PEPA model is an asset to epidemiological systems study. Even

though it requires the different populations in the model to be large, it brings scalability to process

algebra, as well as a long experience of being used as a tool in epidemiology. The existing Hillston

Method was not adapted for epidemiological systems, so an extension, the Stirling Amendment,

was developed to deal with issues preventing the ODEs of models based on those systems to be

derived. We have shown that the Stirling Amendment deals with a superset of the models dealt

with by Hillston Method. In addition to this, the models including self-loops did not match the

simulations in the case of the Hillston Method. The way self-loops are represented have been

changed in the Stirling Amendment, and the match improved significantly. Finally, it has been

proved that for all the models accepted by the Hillston Method that do not have self-loops, the

resulting ODEs are identical, whichever algorithm is chosen.

The example of the Dining Philosophers has then shown that the Stirling Amendment can be

used to find the mean behaviour of PEPA models not only of biologically inspired problems, but of
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computer science inspired problems as well. The ODEs derived from the model correctly represent

the mean behaviour of the model and have also shown to facilitate quick calculation of properties

not easily or accurately addressed using only the Markov chain or stochastic simulations. Finally,

a piece of software, PEPAdum, has then been presented. The aim of PEPAdum is to provide the

modeller tools to derive ODEs using the Stirling Amendment, and then be able to compare the

result to stochastic simulations.
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Chapter 4

Modelling disease transmission

As mentioned in [70, 57], disease transmission usually exhibits one of two different transmission

terms: frequency and density dependent transmission. Both types of transmission are essential

in epidemiology, as they commonly appear in different types of diseases. Frequency and density

dependent transmission is also used for other features, such as births and deaths.

It has been shown by Norman et al. [70] that frequency dependent transmission terms arise

naturally from process algebra models. This remains true in PEPA, as seen in the two examples

presented in chapter 2. Even then however, the direct transmission model, where a cooperation

within a subgroup was needed, already showed the limitations in PEPA’s expressivity. The objec-

tive of this chapter is to generalise the methods presented in chapter 2 for any kind of frequency

or density dependent cooperation.

In this chapter, the mirror subgroup, briefly mentioned in section 2.2, will be described in

details. Frequency dependent transmission will then be studied, in order to give a general method

to express it. The case of density dependent transmission, which cannot be directly expressed in

PEPA, will then be examined.
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4.1 The mirror subgroup

Before the frequency and density dependent terms are presented, an important feature, the mirror

subgroup, is defined, as it will be extensively used in this chapter and the next. The notion of

the mirror subgroup will be formally defined, a method to generate it will be described, and an

example will show how it can be used, as well as how to simplify it.

The mirror subgroup has been briefly mentioned in section 2.2, where the Transmitter and the

Dormant component types were mirroring the number of agents in the Inf component type and

the S, E and R component types respectively. This notion can be further formalised:

Definition 14 (Mirror subgroup) A subgroup S′ with component types {C ′i}i∈I is a mirror

subgroup of a subgroup S with component types {Cj}j∈J if and only if there exist two partitions

with the same number of elements χ′={C ′[i]}i∈I and χ={C[j]}j∈J such that all reachable states

verify:

N (C ′[i0 ])=N (C [j0 ])

In other words, this means that a group of components in the mirror subgroup will always have

the same number of agents as the group of components it represents in the original subgroup.

A method to construct the mirror subgroup of a subgroup can be described in two steps. This

method is inspired from epidemiological systems, but can be applied to any models. In the first

step, every component type C of the original subgroup needs to be replicated as a component

C ′. The required cooperations can then be added in both subgroups. The next step consists in

ensuring that the number of agents in the original component and its mirror component is identical

at all times. In order to achieve this, for all the activities in the form (α, r).Ctarget of a component

C in the original subgroup, six cases arise:
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• the action α is a self-loop and not involved in a communication: the model does not need to

be modified.

• the action α is a self-loop and involved in a communication with a component type not in

the mirror subgroup: the model does not need to be modified.

• the action α is a self-loop and involved in a communication with a component type C ′0

belonging to the mirror subgroup: in this case, the action is not a self-loop in the component

type in the mirror subgroup1. If the activity is (α, r′).C ′1, it is necessary to update the original

subgroup to reflect this change in C0. To do so, the activity is changed to (α, r′).C ′0temp

and the component type C ′0temp is added, allowing the activity (α′, big).C ′1, with big a rate

high relatively to the other rates of the model. The component C0 also allows the activity

(α′,>).C1, to update simultaneously the number of agents in both the original and the mirror

subgroup.

• the action α is not a self-loop and is not involved in a communication: in this case, C ′ will

allow the action α with a passive rate and the target component will be C ′target, and both

the initial and replicated component will communicate over α.

• the action α is not a self-loop and is involved in a communication with a component type

which is not in the mirror subgroup: this time, it is not possible for the replicated component

to communicate over α with the component C. In order to make sure the number of agents in

each component remains the same, a temporary state will be added to the original subgroup.

The original activity is modified to (α, r).Ctemp and a component type Ctemp is added to the

subgroup, which allows one activity (α′, big).Ctarget with big a rate relatively bigger than

the other rates used in the model. On the other hand, in the component C ′ in the mirror

1If the action is a self-loop in the mirror subgroup as well, it has no impact on the behaviour of the model and

can be removed entirely.
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subgroup, the activity (α′,>).C ′target is added.

• the action α is not a self-loop and is involved in a communication with a component type C ′0

belonging to the mirror subgroup: this case simply requires both C ′ and C0 to be updated

using the method described in the previous point, creating the two component types Ctemp

and C ′0temp .

To illustrate this method, if we consider the following PEPA model:

Original subgroup

C1
def
= (α,>).C1 + (β, r1 ).C2

C2
def
= (ζ, r2 ).C3

C3
def
= (δ, r3 ).C1

Rest of the model

R1
def
= (β, rate1 ).R2

R2
def
= (α, rate2 ).R1

C1 [c1] ‖ C2 [c2] ‖ C3 [c3] BC
{α,β}

R1 [r1] ‖ R2 [r2]

Now the action γ on which C1 and C3 are to cooperate over is to be added to the model. The

obvious way to achieve this is to directly add γ to the expression of C1 and C3:

Original subgroup

C1
def
= (α,>).C1 + (β, r1 ).C2 + (γ, r ′γ).C2

C2
def
= (ζ, r2 ).C3

C3
def
= (δ, r3 ).C1 + (γ, rγ).C1

Rest of the model

R1
def
= (β, rate1 ).R2

R2
def
= (α, rate2 ).R1

(C1 [c1]BC
γ

C2 [c2]BC
γ

C3 [c3]) BC
{α,β}

(R1 [r1] ‖ R2 [r2] )

87



This, unfortunately, does not result in the expected behaviour. In this case, the action γ is fired

only if every agent in the {C1, C2, C3} subgroup is involved in it.

In order to have only one agent in C1 and one in C3 cooperating over the action γ as required,

a mirror subgroup is to be added to the first subgroup. So first, the component types C ′1, C ′2 and

C ′3 are added to the model, as well as the action γ.

Original subgroup

C1
def
= (α,>).C1 + (β, r1 ).C2

C2
def
= (ζ, r2 ).C3

C3
def
= (δ, r3 ).C1 + (γ, rγ).C1

Replicated subgroup

C ′1
def
= (γ, r ′γ).C ′2

C ′2
def
=

C ′3
def
=

Rest of the model

R1
def
= (β, rate1 ).R2

R2
def
= (α, rate2 ).R1

(C1 [c1] ‖ C2 [c2] ‖ C3 [c3]BC
γ

C ′1 [c1] ‖ C ′2 [c2] ‖ C ′3 [c3]) BC
{α,β}

R1 [r1] ‖ R2 [r2]

Two actions, β, ζ and δ, result in agents in either C1, C2 or C3 going to a different component

type. α does not need any particular treatment as it is a self-loop for C1. ζ and δ are not involved

in any cooperation, which means it is simply required to add the action to C ′2 and C ′3 respectively.

β on the other hand, is involved in a cooperation with R1. In this case, an additional component

type C1temp is added to the model. Finally, γ is involved in a cooperation between components in

the original (C3) and the mirror (C ′1) subgroups, neither of which are self-loops. Both C ′3 and C1

need to be updated to account for the change in number of agents in C3 and C ′1 due to the action
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γ.

Original subgroup

C1
def
= (α,>).C1 + (β, r1 ).C1temp

+ (γ′′,>).C2

C1temp

def
= (β′, big).C2

C2
def
= (ζ, r2 ).C3

C3
def
= (δ, r3 ).C1 + (γ, rγ).C3temp

C3temp

def
= (γ′, big).C1

Replicated subgroup

C ′1
def
= (γ, r ′γ).C ′2 + (β′,>).C ′2

C1temp

def
= (γ′′, big).C ′2

C ′2
def
= (ζ,>).C ′3

C ′3
def
= (δ,>).C ′1 + (γ′,>).C ′1

Rest of the model

R1
def
= (β, rate1 ).R2

R2
def
= (α, rate2 ).R1

(C1 [c1] ‖ C2 [c2] ‖ C3 [c3] BC
{γ,γ′,γ′′,β′,ζ,δ}

C ′1 [c1] ‖ C ′2 [c2] ‖ C ′3 [c3]) BC
{α,β}

R1 [r1] ‖ R2 [r2]

It can however be noticed that the model can be simplified and the component types C ′2 and

C ′3 can be merged. The reason the mirror is required is to have C1 and C3 communicate over γ.

In the model presented above, C ′1 and C3, which results in the same behaviour as C1 and C ′1 have

the same number of agents. C ′2 and C ′3 are not involved in any cooperation apart from the ones

that ensure that C2 and C ′2, and C3 and C ′3 respectively, have the same number of agents. It is

then possible to have a component C ′23 which would represent both C2 and C3. The model can
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then be simplified to:

Original subgroup

C1
def
= (α,>).C1 + (β, r1 ).C1temp

+ (γ′′,>).C2

C1temp

def
= (β′, big).C2

C2
def
= (ζ, r2 ).C3

C3
def
= (δ, r3 ).C1 + (γ, rγ).C3temp

C3temp

def
= (γ′, big).C1

Replicated subgroup

C ′1
def
= (γ, r ′γ).C ′2 + (β′,>).C ′2

C1temp

def
= (γ′′, big).C ′23

C ′23
def
= (δ,>).C ′1 + (γ′,>).C ′1

Rest of the model

R1
def
= (β, rate1 ).R2

R2
def
= (α, rate2 ).R1

(C1 [c1] ‖ C2 [c2] ‖ C3 [c3] BC
{γ,γ′,γ′′,β′,δ}

C ′1 [c1] ‖ C ′2 [c2] ‖ C ′3 [c3]) BC
{α,β}

R1 [r1] ‖ R2 [r2]

It can be noticed that the action ζ does no longer appear on the replicated subgroup, or in the

cooperation set. This is due to the fact that this action was resulting in an agent in C ′2 going to

C ′3. As both components have been merged, it would have resulted in a self-loop with a passive

rate. In this case, only if N(C ′2) = 0 does ζ in C ′2 have an influence in the model. However, if

N(C ′2) = 0, then N(C2) = 0 as they have the same number of agents, so the action could not be

fired anyway. This means that ζ does not have any influence in the model’s behaviour, and can

therefore be removed entirely.
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4.2 Frequency dependent transmission

As shown by Norman et al. [70], frequency dependent transmission is the most natural way of

expressing contact in process algebra. The model in section 2.1 highlights this fact, and gives a

first example. In this section, a more general expression is given.

Frequency dependent transmission assumes that the number of contacts made by a single

individual does not change with the population size. Begon et al. [5] details how it can be translated

for epidemiological disease modelling purposes. In the situation where a Susceptible contacts other

individuals at rate cr, with cr constant, the probability of this Susceptible to meet an infectious

individual is I/N with I the number of infectious individuals and N the total number of individuals

alive 2. If the probability for a contact to actually result in an infection is p, then the rate at which

a susceptible individual is infected is cr × p IN . So the overall number of new infections per time

step is cr × pS×IN , which corresponds to the β SIN use in mathematical biology.

Consider the case where a set A = Ci0 , ..., Cim communicates over an action β with a set

B = Cj0 , ..., Cjk , with A ∩ B potentially non-empty. This could correspond to the case where

the individuals in A represent different types of infectious individuals, and B individuals that can

be contacted (it does not necessarily contain the whole population, as strictly quarantined people

might not be available for contact for example). An illustrative example is shown in Figure 4.1,

where {C2, C4}=A and {C3, C4}=B, and will be used to illustrate the different cases in the next

paragraph.

In this case again, a mirror subgroup will be needed. Just as in the case of direct transmission,

the original subgroup, called S, needs to be replicated to allow the Ci’s to communicate with

the Cj ’s. Basically, the model will be changed, with S mostly staying unchanged, S′ with the

2In the next chapter, a way of representing births and deaths will allow the number of individuals alive to change.
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Original subgroup

C0
def
= (α0 , r1 ).C1

C1
def
= (α1 , r2 ).C2

C2
def
= (β, r3 ).C2temp

C2temp

def
= (quick2 , big).C3

C3
def
= (α3 , r4 ).C4

C4
def
= (β, r5 ).C4temp + (quick ′4 ,>).C2

C4temp

def
= (quick4 , big).C0

Replicated subgroup

C ′012
def
= (quick2 ,>).C ′3

C ′3
def
= (β, r6 ).C ′3 + (α3 ,>).C ′4

C ′4
def
= (β, r7 ).C ′4temp

+ (quick4 ,>).C ′1

C ′4temp

def
= (quick ′4 , big).C ′012

Figure 4.1: An example of frequency dependent transmission in a model. The action the agents

communicate over is β

component types of S replicated (C ′ correspond to the replicated component type of C), and the

remainder of the model remaining unchanged. An exception however would be that when an agent

evolves to a new state in S, its counterpart in S′ needs to change as well, and vice versa. How to

do this is detailed next.

Overall in S and S′, we have four types of component types:
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C ∈/ A and C ∈/ B:

When an agent in C moves to a new state Ctarget over an action δ, the replicated agent in C ′ needs

to move to C ′target too. Two cases can arise:

• the action δ did not involve a communication: in this case, C simply needs to communicate

over that same action with C ′.

C = (δ, rC).Ctarget

C ′ = (δ,>).C ′target

• the action δ involves a communication: in this case, C ′ cannot be included in the communi-

cation, as it would change its overall rate.

C = (δ, rC).Ctemp

Ctemp = (δ′, big).Ctarget

C ′ = (δ′,>).C ′target

The agent in C first needs to move to a temporary state Ctemp, that will communicate with

C ′ in order for both the agent in C and the one in C ′ to respectively move to Ctarget and

C ′target and make sure S′ still replicate the behaviour of S.
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C ∈ A and C ∈/ B:

In this case, we need to include the communication and update both C and C ′.

C = (β, rC).Ctemp

Ctemp = (δ, big).Ctarget

C ′ = (δ,>).C ′target

So here, the communication with C happens at rate rC . Because C goes to a different state, its

replicated component type C ′ needs to be notified, in order to change as well. As both cannot

happen at the same time, C first goes to a temporary state Ctemp which quickly communicates

with C ′ (the rate big corresponds to a big number, as both sides of the communication cannot use

>), so that the latter goes to state C ′target.

C ∈/ A and C ∈ B:

In this case, the communication mechanism needs to be included in C ′, while C needs to be updated

as well.

C = (δ′,>).Ctarget′

C ′ = (β, r′C).C ′temp

C ′temp = (δ′, big).C ′target′

This is the same as the previous case, the only difference being the S′ is updated rather than S.

It might not seem important in the case of one component type. However, when several component
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types are involved, as in the example of Figure 4.1, it is important to make sure that the right

subgroup is updated.

C ∈ A and C ∈ B:

Finally, this case is merging the two previous cases:

C = (β, rC).Ctemp + (δ′,>).Ctarget′

Ctemp = (δ, big).Ctarget

C ′ = (β, r′C).C ′target + (δ,>).C ′target

C ′temp = (δ′, big).C ′target′

It should be noted here that the rate at which the action β happens and the state to which the

agent evolves can be different for C and C ′. Examples can be seen in section 2.2 or in Figure 4.1.

Finally, these general rules need to be adapted to the situation. In particular, it is not necessar-

ily needed to include all the component types in the replicated subgroup S′. As seen in Figure 4.1,

it is possible to group all the component types of S that do not belong to B in one single compo-

nent type. This simplifies the process of updating S′ and reduces the model’s size and complexity,

resulting in shorter processing time. This is illustrated in Figure 4.1, where C ′0, C ′1 and C ′2 are

merged as C ′012.

It had been already shown that process algebra more naturally expressed frequency dependent

transmission [70] and PEPA is no exception. However, detailed instructions are given on how

to implement frequency dependent communication in a PEPA model. Now, the case of density

dependent transmission will be dealt with.
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4.3 Density dependent transmission

Density dependent transmission cannot be naturally expressed in PEPA. However in this section,

we will give a method to express it.

Density dependent transmission corresponds to the case where the number of contacts an

individual deals is proportional to the population size. It is, for example, frequently used for

droplets based diseases, such as influenza. Again, Begon et al. [5] details how it can be expressed.

The term is exactly the same as in the case of frequency dependent transmission, the exception

being that the contact rate cr varies with the population size. So this time, the number of new

infections per time step is cr(N)× pS×IN . In the particular case where cr is proportional to N , the

rate can be written cr′×N , which gives a number of new infections of cr′××pS×IN =cr′× p×SI.

In PEPA, it will be modelled by adapting a particular case of the frequency dependent trans-

mission model shown in the previous section. However, the resulting method will be less general

than the one for expressing frequency dependent transmission. Indeed, in the case of density de-

pendent transmission, the contact rate will be assumed to be proportional to the population size,

and only the agents in the mirror subgroup will regularly contact the ones in the original subgroup,

the latter ones being passively contacted.

The principle of this method is to make use of the fact that the number of agents in the original

subgroup is constant. Indeed, PEPA does not allow the creation or deletion of any processes at

any time during a simulation, which guarantees this. Consider the case where Cj needs to contact

Ci over the action β at rate rCj . If an agent aj in Cj can contact all N agents in the original

subgroup, this means only 1 over N contacts made will be with the agent ai in Ci. Now, if the

rate is changed to rCj × N , the rate at which aj contacts ai is
rCj×N
N =rCj . The overall rate of

this action would then be rCj × Cj × Ci, which corresponds to the one described by Begon [5].
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However, one question may arise: why not simply establish a communication between Cj and

Ci? Well, the final rate would not be the same, and would not correspond to what we try to

achieve here. Indeed, if the model was 3:

Ci = (β,>).Ctarget

C ′j = (β, rCj ).C
′
j

the overall rate of the action would be min(>×Ci, rCj×C ′j)=rCj×Cj (if we ignore the case where

Ci=0), which means that each agent in Cj communicates with agents in Ci at rate rCj , but the

number of contacts made by each agent in Cj is rjC per time step, regardless of the number

of Ci’s (unless there are none), whereas we need to have rjC contacts between each agent in C ′j

and each agent of Ci.

In practice, the four component types described in the previous section require the following

activities:

C ∈/ A and C ∈/ B:

These component types will need to allow the communication over β to happen, but the agents

remain in the same state. The communication needs to be instantaneous.

C = (β,>).C

3to simplify the model, we ignore the update of S′ here. However, it would not change the overall rate of the

action β anyway

97



C ∈ A and C ∈/ B:

As in the previous section, C needs to be able to communicate over β and update S′. However,

the rate has to be > this time.

C = (β,>).Ctemp

Ctemp = (δ, big).Ctarget

C ′ = (δ,>).C ′target

C ∈/ A and C ∈ B:

Again, this case is very similar to what has been done in frequency dependent transmission. How-

ever, like in the first case, C has to allow the communication over β while remaining in the same

state. The rate at which C ′ communicates has also been updated:

C = (β,>).C + (δ,>).Ctarget′

C ′ = (β, r ′C ×N ).C ′temp

C ′temp = (δ, big).C ′target′
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C ∈ A and C ∈ B:

Finally in this case, we merge the two previous cases.

C = (β,>).Ctemp + (δ′,>).Ctarget′

Ctemp = (δ, big).Ctarget

C ′ = (β, r′C ×N).C ′target + (δ,>).C ′target

C ′temp = (δ′, big).C ′target′

Obviously, the different component types in B can have different rates at which they fire β,

and as in frequency dependent transmission, the mirror subgroup does not have to include all of

the component rates of the original subgroup, some of them can often be merged.

An example is given in Figure 4.2, where the different cases are illustrated. It is very similar to

the one given in section 4.2. Again here, C0 and C1 are not involved initially in the communication

over β, {C2, C4} ∈ A and {C3, C4} ∈ B. There are two differences though. Some of the rates have

been updated: the component types in the original subgroup are now passive, while the ones in

the mirror subgroup fire at rate r4 and r5 for respectively C3 and C4, which is translated in a rate

of r4 ×N and r5 ×N . The second change concerns C0 and C1: even though they are not directly

involved in the communication, they now passively allow it to happen.

4.4 Summary

Frequency and density dependent transmission can now be expressed in PEPA. There are some lim-

itations on the density dependent methods, but most cases are covered, and most epidemiological

disease terms can now be translated.
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Original subgroup

C0
def
= (β,>).C0 + (α0 , r1 ).C1

C1
def
= (β,>).C1 + (α1 , r2 ).C2

C2
def
= (β,>).C2temp

C2temp

def
= (quick2 , big).C3

C3
def
= (β,>).C3 + (α3 , r3 ).C4

C4
def
= (β,>).C4temp + (quick ′4 ,>).C2

C4temp

def
= (quick4 , big).C0

Replicated subgroup

C ′012
def
= (quick2 ,>).C ′3

C ′3
def
= (β, r4 ×N ).C ′3 + (α3 ,>).C ′4

C ′4
def
= (β, r5 ×N ).C ′4temp

+ (quick4 ,>).C ′1

C ′4temp

def
= (quick ′4 , big).C ′012

Figure 4.2: An example showing how density dependent transmission can be expressed in PEPA

These methods will form the basis of the next section, that will study how births and deaths

can be modelled.
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Chapter 5

Modelling births and deaths

The birth and death feature is essential to model populations over long time-spans. It might be

acceptable for simulations over a short period of time to ignore natural population fluctuations;

however, their influence on population behaviour gets noticeable as the timespan studied increases.

Usually, when a simulation run is comparable to the life expectancy of an individual, births and

deaths have a significant impact on the behaviour of the model. Also, when the immunity to the

disease is lifelong, as in the case of measles, described in Chapter 6, the only source of susceptible

individuals is usually newborns. In this case, it is also essential to include births and deaths in

the model. PEPA, however, is very limited when expressing births and deaths. The main reason

is that agents, that would correspond to individuals being born and dying respectively, cannot

be created or deleted. Considering that this feature is essential for disease modelling, and more

generally to population modelling, this chapter is devoted to detailing different methods to include

births and deaths to a PEPA model.

This chapter will be separated in four sections. First some early issues and simple solutions

to this problem will be examined. Then, two methods will be presented. The first one assumes
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that the birth rate decreases with the population size, until reaching a carrying capacity K and

that the death rate remains constant. The second method assumes a constant birth rate, but each

individual in the population has to compete for a limited resource. As the amount of available

resource remains constant, the population cannot grow over a threshold that depends on the

amount of resource. Finally, now that all the necessary tools and methods are available, a full

model of the bubonic plague in a prairie dog town will be presented and analysed.

5.1 Introducing births and deaths to a PEPA model

PEPA’s grammar does not allow processes to be created or deleted. This means that an agent

cannot be created to represent a newborn individual, and the agent representing an individual

dying cannot be deleted.

5.1.1 Including births and deaths in a constant population

In a population that remains constant at all times, it is possible to introduce births and deaths by

assuming that a birth occurs each time an individual dies. In other words, an agent representing

an individual dying will immediately then represent a newborn. This means that the dying agent

goes directly to the state in which individuals are born in this particular model.

While this solution might be suitable for some models, in particular if the population is big

enough for the approximation to be made, and the simulation time is short enough, it is too big

an assumption for most models.
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5.1.2 Introducing Ghosts

In order to overcome the limitation on the creation and deletion of processes, a new component

type is created: the ghosts. The ghosts correspond to available souls, ready to be born when

needed. Also, when an individual dies, it becomes a ghost. The initial number of ghosts has to be

chosen carefully: too many means longer processing times for the model, too few and the pool of

ghosts might run out and the number of births will be blocked as long as it is empty, leading to a

behaviour not reflecting what the modeller had in mind.

A method to describe births and deaths arises naturally from the introduction of ghosts, as

detailed in the following example:

Alive
def
= (death, death rate).Ghost

Ghost
def
= (birth, birth rate).Alive

In this example, the Alive individuals die at a rate death rate and the Ghost individuals give

birth at a rate birth rate. This basic solution needs to be modified to be used practically. If the

death rate is smaller than the birth rate, then the population size will increase until the pool of

ghosts runs out, and if the birth rate is bigger, the population size will decrease until everyone is

dead. Furthermore, the number of births depends on the number of agents in Ghost, which has

no biological justification.

One solution to avoid population explosion is to use the number of available ghosts to regulate

the population size. If the birth and death rate are roughly constant, the number of agents initially

in Ghost can be chosen such that Ghost+Alive=K with K the carrying capacity of the population.

This way, the population can never increase past the carrying capacity, and the overall number

of births naturally decreases with the number of ghosts. In general, this solution is biologically

unrealistic, and may only be acceptable for cases where the population does not fluctuate much.
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5.1.3 Vertical transmission

Vertical transmission corresponds to the situation where an infectious mother gives birth to a

infected child. While it is a transmission mechanism, it was not dealt with in the transmission

section as it is included in the birth mechanism. Indeed, vertical transmission requires the agent in

Ghost corresponding to the newly born individual to go in the exposed/infectious (depending on

the disease) state. This may imply, depending on the mechanism, a second birth action, in order

to differentiate between the healthy mother giving birth and the infectious one.

5.2 Modelling births and deaths directly

This method of modelling births and deaths is based on the principle that both the birth and

the death rates are constant with the population size, but newborns are more likely to die if the

population density is high. The rate at which the newborns die is density dependent, and this

section will extensively use the results obtained in section 4.3. The biological reason behind this

lies in the fact that the mortality of children before the age of five is usually higher than the rest

of the population, and one can imagine that when the population approaches its carrying capacity,

and resources (food, access to medical care, etc...) becomes scarce, children are more vulnerable

than the rest of the population.

A few notations will be used in this section. In the considered model, the subgroup which

contains the individuals giving birth/dying will be referred to as S and its replicated subgroup

as S ′. If required, the replicated subgroup can be constructed using the method presented in

section 4.1. The number of agents in S, which is constant over time, is noted s. B, D and N

correspond to the groups of component types that can give birth, die and are alive respectively,
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and the corresponding replicated groups of components will be noted B′, D′ and N ′. It can be

noticed that B ⊆ N , D ⊆ N and N ⊆ S. The number of agents in N is N . K is the population

carrying capacity, which means that at all times, N ≤ K .

Three actions are to be considered for this method: birth, infant death and death. As the birth

rate is constant over time, the addition of birth is straightforward: for each component type C ∈ B,

the activity (birth, birth rate).C is added to the equation of C . death is modelled exactly the same

way. For infant death, the method used in section 4.3 can be adapted to this case: the overall rate

at which infants die has to increase with the population size. Furthermore, the population must

not exceed the carrying capacity K, which means that the rate at which infant death happens

must be equal to the birth rate when the population size is equal to K. This can be obtained by

having an overall rate equal to βSN /K . This can be achieved as described in the following steps:

• for every component C ∈/ B (including Ghost): add (infant death,>).C to the original

subgroup. These activities are required in order to obtain the desired rate, as detailed in

section 4.3.

• for every component C ∈ B: add (infant death,>).Ctemp to the original subgroup. A

component Ctemp is also required, which allows the action (quickC , big).Ghost . The ac-

tion (quickC ,>).Ghost ′ also needs to be added in C ′, the replicated component of C . The

action quickC and the component type Ctemp are required to update the replicated subgroup,

as detailed in section 4.1.

• for every component C ∈ N : the action (infant death, birth rate × s/K ).C has to be added,

with s the total number of agents in the original subgroup (including Ghost).

Figure 5.1 illustrates this method. This model focuses on births and deaths, and ignores all
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other mechanisms. In this example, {S ,R}=B, {S ,R, I }=D, s is the total number of agents

(S + I + R + Ghost) and K the carrying capacity.

Original subgroup

S
def
= (birth, birth rate).S + (infant death,>).Stemp

+(death, death rate).Ghost

Stemp
def
= (quicksr , big).Ghost

I
def
= (infant death,>).I + (death, death rate).Ghost

R
def
= (birth, birth rate).R + (infant death,>).Rtemp

+(death, death rate).Ghost

Rtemp
def
= (quicksr , big).Ghost

Ghost
def
= (newborn, big).S + (infant death,>).Ghost

Replicated subgroup

SR′
def
= (infant death, birth rate × s/K ).SR′ + (quicksr ,>).Ghost ′

+(death,>).Ghost

I ′
def
= (infant death, birth rate × s/K ).I ′ + (death,>).Ghost

Ghost ′
def
= (birth, big).Ghosttemp

Ghosttemp
def
= (newborn, big).SR′

Figure 5.1: An example of how birth can be directly modelled.

This method, while not being very intuitive, is quite simple to set up. The overall population

growth derived from this model corresponds to the Verhulst logistic equation, also referred as

as the Verhulst-Pearl equation widely used in population growth modelling [86, 8, 50]. It also

corresponds to the term used by Webb et al. [92] in the system used for the bubonic plague

model presented in section 5.5. When the two terms corresponding to the actions birth and
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infant death are put together, the resulting overall number of effective births for a component type

C is birth rate × C (1−N /K ).

5.3 Modelling births and deaths using limited resources

Another way to model births and deaths and avoid population explosion, is to force the individuals

in the population to compete for a resource. While the resulting methods are not explicitly density

dependent, the resulting population growth exhibits a density dependent behaviour.

In all this section, the notation introduced in section 5.2, and in particular S, s, B, D, N , N

and K will be used in the description of the two methods. In addition to this notation, the number

of agents in B and D will be noted b and d respectively.

Birth Token

In this first method, the fight for resource is necessary to give birth. This means that the average

number of births per individual per time steps depends both on the birth rate and on the number

of available resources. The latter in turn depends on the overall number of individuals trying to

give birth, the average number of births will therefore decrease with the population size, until the

threshold set by the amount of available tokens is reached.

A new subgroup is first added to the model, corresponding to the available resource. The

resource can be in two different states: available, or not available. Then in the original subgroup

S, each of the components in B will fire an action may birth, and try this way to contact an agent

in Resource. If the contact is made, the agent in Resource temporarily moves to a state BirthGiven
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that ensures a new individual is created by cooperating with an agent in Ghost , which in turn goes

to a component type in N . The agent in BirthGiven then moves to the state ResourceUnavailable,

where it remains, unavailable for contact, until it comes back to Resource, where it can cooperate

again. Concerning death, it is similar to what has been presented in the previous section. Each

component capable of dying from natural causes can fire an action death at the rate death rate. A

simple example is presented in Figure 5.2.

Resource subgroup

Resource
def
= (may birth, available rate).BirthGiven

BirthGiven
def
= (birth, big).ResourceUnavailable

ResourceUnavailable
def
= (wait , unavailable rate).Resource

Original subgroup

C
def
= (may birth, birthrate).C + (death, death rate).Ghost

Ghost
def
= (birth,>).C

Figure 5.2: A resource based birth and death model based on the first method.

One question still remains: how are the parameters and initial conditions for the resource

chosen? The objective here is to make sure the population remains under, or close to, the carrying

capacity K . This means that the overall number of births must be smaller than or equal to the

overall number of deaths when the carrying capacity is reached. Before we treat this question,

some notation is necessary. For this question, PotentialResource will be the number of agents

in the subgroup dealing with the resources, which means that PotentialResource=Resource +

BirthGiven + ResourceUnavailable, and available rate and unavailable rate will have the same

meaning they have in Figure 5.2. We will also assume that everyone in the population can die,

which means that D=N and d=n. Two cases arise here:
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• birth rate < death rate and B=D: in this case, the population size can only decrease, and

will never reach the carrying capacity.

• otherwise: in this case, the overall number of deaths at carrying capacity is death rate ×

d=death rate ×K . On the other hand, the overall number of births must be limited by the

resource. And the resource only allows (available rate+unavailable rate)×PotentialResource

births. The reason behind this term is that a resource can only be used every (available rate+

unavailable rate)−1 time steps, and there is PotentialResource of them. So in the end, the

parameters and initial conditions must be chosen such that:

(available rate + unavailable rate)× PotentialResource=death rate ×K

Given that the death rate and the carrying capacity are given by the biological system, two of

the other three rates can be chosen, and this equation then determines the third one.

Competition for Food

This method is a lot more biologically intuitive than the first one. In this case, every living

individual in the population is required to eat at rate eat rate. If the individual succeeds, it lives.

Otherwise, it dies. Both the birth and the death processes are straightforward actions occurring

at their respective apparent rate.

In order to model this principle, the resource has first to be modelled. This is identical to the

Birth Token method above. One difference concerns the names. Obviously now, the individuals

eat rather than may birth. The second more important difference is the absence of the component

BirthGiven. The reason it was needed in the first method was to make sure the information about

the successful birth was passed to the Ghost , so a new individual was created. In this case, no

109



individual is born as a result of the consumption of the resource, so it is not necessary. Finally,

the eat rate is now very big. The reason is that when the individual attempts to eat, it either

succeeds, or dies if it does not after 1/starve rate time steps. This means that if the eat rate was

small, there would be a chance for this individual to die, even though some food is available.

Concerning the original model, some additional components have to be added. Each component

included in the calculation of the carrying capacity K needs to regularly fight for food. This implies

that each of these components needs to be able to fire two new actions. The first one is the eat

activity, which is passive, as explained previously. The second activity is starve: after an average

of 1/starve rate time steps, if the individual does not manage to have access to the resource, it

dies. If these two actions are added directly to the components, two problems arise. First, because

the activity eat is fired at a big rate, this means that it will be fired in very rapid succession until

the Resource runs out. This could not be solved by replacing the big rate by the rate at which the

agent needs to eat, as it would compete with the other components, and in particular starve rate.

The other issue concerns starve rate. Indeed, even if the agent eats regularly, because of the way

the rate resets, the agent might fire starve anyway. In order to avoid this, a new action has been

created: need to eat . This action is fired regularly, and when this happens, an agent in C goes

to C ′. This component allows the two actions eat and starve to be fired, respectively at big and

starve rate. Once the agent has eaten, it comes back to C . If it does not eat, it fires starve and

becomes a Ghost .

Finally, birth and death have also to be added to the model. While including death is very

straightforward, and only requires a death action to be added to the component types, the birth

process will require the addition of two additional components. When an agent gives birth, it needs

to communicate with a Ghost agent, so a new individual is generated. As they are in the same

subgroup, it cannot be done directly. In a similar fashion to what has been done previously in the
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Resource subgroup

Resource
def
= (eat ,>).ResourceUnavailable

ResourceUnavailable
def
= (wait , unavailable rate).Resource

Original subgroup

C1food

def
= (eat , big).C1 + (starve, starve rate).Ghost

C2food

def
= (eat , big).C2 + (starve, starve rate).Ghost

C1
def
= (give birth, birth rate).C1 + (need to eat ,n2e rate).C1food

+(death, death rate).Ghost

C2
def
= (need to eat ,n2e rate).C2food

+ (death, death rate).Ghost

Ghost
def
= (birth,>).C1

Messenger subgroup

Receiver
def
= (give birth,>).Stork

Stork
def
= (birth, big).Receiver + (no ghost , 100.0).Receiver

Figure 5.3: A resource based birth and death model based on the second method.
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replicated subgroup, a Receiver communicates with the agent over the action give birth, becomes

a Stork which in turn communicates with a Ghost to create a new individual. In the case where

no agents are in Ghost , the Stork would have to wait for agents to be available, and no additional

births would be possible. For this reason, an action no ghost is added to Stork with a rate much

bigger than all the rates in the model, but still much smaller than big , in order to avoid this

situation. If the number of agents in Ghost is sufficient, the action no ghost can be ignored. One

agent initially in Receiver is sufficient to perform this task, as the time it remains in Stork is very

short. Receiver and Stork can however be included in the replicated subgroup if there is one, for a

simpler model.

Once again, the parameters and initial conditions of the resource subgroup need to be de-

termined. As in the first method, if birth rate < death rate and all the components capable of

giving birth can also die, the resource is irrelevant as the carrying capacity cannot be reached.

In all other cases, we need to make sure that the population can only grow until the food is

not sufficient to sustain it. When the carrying capacity K is attained, the population requires

n2e rate × K resources per time step to survive. The amount of resource available per time step

is unavailable rate×PotentialResource, with PotentialResource=Resource + ResourceUnavailable,

which is constant over time. Overall, this means that:

unavailable rate × PotentialResource=n2e rate ×K

Once again, either unavailable rate or PotentialResource can be chosen without constraint, the

second one will then be derived from the equation.
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5.4 Conclusion on births and deaths techniques

In the sections 5.2 and 5.3, we have presented three different methods to include births and deaths

in a PEPA model. The first method considers the population size by considering the possibility

for infants to die, the probability depending on the overall population size. This method usually

generates the simplest model, and does not usually (granted that the replicated subgroup is already

needed) require extra component types. However, the terms used are unusual in PEPA, and

the philosophy behind them is not intuitive, and does not have any biological justification. The

methods based on competition for resources are more intuitive. The first method in that category

is not completely natural. Even though a new subgroup is required, it remains simple, and scales

well with the number of component types in the original model. Finally, the second method is

the most intuitive: the resource corresponds to food, which is in limited supply. Unfortunately

the model’s complexity increases proportionally to the number of component types, which in turns

increases the processing time. The choice between these methods will ultimately depend on the

biology of the disease as well as the complexity of the problem.

Now that the tools required to build the model are available, we can move on to modelling the

bubonic plague in a population of prairie dogs.

5.5 Modelling a prairie dog town during a bubonic plague

outbreak

The methods presented in the first chapters provided all the necessary tools to build our first

epidemiological model based on a real biological system. This model consists of a town of a

hundred prairie dogs, two of which are infectious, a thousand fleas, 10 of which are infectious and
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a healthy environment reservoir, big enough to be considered infinite. The model itself is available

in Figure 5.4.

5.5.1 Description of the model

This model is based on the paper by Webb et al. [92]. According to this paper, the bubonic plague

has three main routes of transmission. First of all, it can be transmitted from one infectious animal

to another by direct contact. Indeed, prairie dogs being very sociable animals, close contacts

between animals from the same town are very frequent. The second vector of transmission is

indirect: the bodies of dead infectious prairie dogs remain infectious for an extended period of

time. The last vector is the flea. When it bites a prairie dog, a flea can become infected, and might

pass the disease to another prairie dog. This last vector has long been considered the main source

of transmission [87, 72], but recent papers [92, 24] suggested that the long incubation period and

the short infectious window of the bubonic plague in the flea indicated that another important

source of transmission was involved. In this section, we will analyse the relative influence of each

of the vectors, in order to validate the conclusion presented in the paper by Webb et al. [92],

that indirect transmission is the main contributor to disease transmission, and that fleas could not

sustain the disease alone.

The model itself is composed of five subgroups. The first two subgroups represent the original

prairie dogs subgroup and its replicated subgroup. The three types of contacts are modelled

(direct via the direct contact action, indirect via the indirect contact action and vector-borne via

the contact action), with methods similar to the ones described in Chapter 2. Direct transmission

uses a frequency dependent term, while indirect transmission via the infected soil is using a density

dependent term, as proposed in [92]. The term for the vector-borne infection differs from the one

in the article. Indeed, the term used in the paper’s ODE model is transmission rate × Iq × S (1−
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S
def
= (contact direct , big).Exposed + (indirect contact , big).Exposed+

(contact , big).Exposed + (birth, birth rate).S + (die 1 , death rate PD).Ghost+
(infant death, big).Stemp

Stemp
def
= (quick S , big).Ghost

Exposed
def
= (contact direct , big).Exposed + (indirect contact , big).Exposed+

(contact , big).Exposed + (infected , incubation rate).Infectious+
(die 1 , death rate PD).Ghost + (infant death, big).Exposed

Infectious
def
= (contact direct , big).Infectious + (indirect contact , big).Infectious+

(infect flea, inf flea rate).Infectious + (infect environment , inf env rate).Infectious
+(contact , big).Infectious + (die inf , death rate inf PD).Ghost+
(birth, birth rate).Infectious + (die 2 , death rate PD).Ghost+
(infant death, big).Infectious

Ghost
def
= (indirect contact , big).Ghost + (alive, big).S + (infant death, big).Ghost

SainPD
def
= (die 1 , big).GhostPD + (infected , big).InfectiousPD + (quick S , big).GhostPD+

(infant death, birth rate ∗ n/K ).SainPD

InfectiousPD
def
= (die inf , big).GhostPD + (die 2 , big).GhostPD+

(contact direct , contact direct rate).InfectiousPD+
(infant death, birth rate ∗ n/K ).InfectiousPD

GhostPD
def
= (birth, big).TempPD

TempPD
def
= (alive, big).SainPD

Sq
def
= (death, fdeath rate).GhostF + (findHost , eff ∗meanNbHost).Sh

Sh
def
= (flea birth, fbirth rate).Sh + (death, fdeath rate).GhostF+

(leaveHost , leave Host Rate).Sq + (infect flea, big).Eh

Eq
def
= (death, fdeath rate).GhostF + (findHost , eff ∗meanNbHost).Eh+

(infectiousF ,flea incubation rate).Iq

Eh
def
= (flea birth, fbirth rate).Eh + (death, fdeath rate).GhostF+

(leaveHost , leave Host Rate).Eq + (infect flea, big).Eh+
(infectiousF ,flea incubation rate).Ih

Iq
def
= (death,finf death rate).GhostF + (findHost , eff ∗meanNbHost).Ih

Ih
def
= (death,finf death rate).GhostF + (leaveHost , leave Host Rate).Iq+

(infect flea, big).Ih + (contact , transmission rate ∗ eff ∗meanNbHost).Ih

GhostF
def
= (flea alive, big).Sq

AliveFlea
def
= (death, big).GhostFlea

GhostFlea
def
= (flea birth, big).TempFlea

TempFlea
def
= (flea alive, big).AliveFlea

InfEnv
def
= (indirect contact , contact env rate ∗ n).InfEnv + (decay , decay rate).HealthyEnv

HealthyEnv
def
= (infect environment , big).InfEnv

((S [98] ‖ Infectious[2] ‖ Ghost [150]) BC
<∗>

(SainPD [98] ‖ InfectiousPD [2] ‖ GhostPD [150])) BC
<∗>

((Sq [990] ‖ Iq [10] ‖ GhostF [10000]) BC
<∗>

(AliveFlea[1000] ‖ GhostFlea[10000])) BC
<∗>

HealthyEnv [100000]

Figure 5.4: PEPA model of a prairie dog town infection by the bubonic plague
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e−eff .N/B ) with Iq the number of infectious fleas questing for a host, N the number of living

prairie dogs,eff the searching efficiency of questing fleas and B the number of burrows a host

enters. Because the effect of the exponential cannot be reproduced in PEPA, as only constant rates

are allowed, it had to be approximated. Begon [6] showed that this term can be approximated

by transmission rate × Iq × S × eff .N /B . Birth is modelled as described in section 5.2. The

introduction of death however, required a few modifications to be made to the method presented

in section 5.2. First of all, two different causes of death had to be considered: death from natural

causes (die 1 and die 2 ) and death from the disease (die inf ). The reason why two different

actions had to be used for natural death, is to make sure the correct component in the replicated

subgroup is updated when a prairie dog dies. If a susceptible prairie dog dies, for example, we

need to ensure that a SainPD dies, rather that an InfectiousPD . Finally, the action infect flea

correspond to the infection of a flea by a prairie dog.

The next two subgroups correspond to the flea. Each flea is either questing, or on a host. This

results in 7 components in the subgroups: Sq (susceptible questing), Sh (susceptible, on the host),

Eq (exposed questing), Eh (exposed, on the host), Iq (infectious questing), Ih (infectious, on the

host), and GhostF (the pool of ghosts for the fleas). Each questing agent tries to find a host, while

each agent on a host might leave the host. The fleas on a prairie dog host might be infected via

the action infect flea. It has to be noted that there is no way in PEPA to track which flea is on

which prairie dog. This means that it is possible that a flea might have a contact with two different

prairie dogs even though it has not gone through a questing phase in between the two contacts.

The approximation is however also made in the ODE model proposed by Webb, and it is assumed

that the rates provided take it into account. The same approximation has been made for the action

contact , for the same reasons. Here again, in a similar fashion to the prairie dog subgroup, fleas

can die either naturally, or from the disease. However, the action is the same, as all the living fleas

belong to the same component type (AliveFlea) in the replicated subgroup. Finally, birth has not
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been modelled the way it is by Webb et al. [92]. Indeed, the method used in that paper could not

be replicated in PEPA, and a simple action flea birth with a constant rate was chosen, in order to

keep to model simple. As the actual rate was not given by Webb, its value has been chosen within

biologically realistic bounds.

The last subgroup corresponds to the soil. The method used here is the one described in

section 2.1.

All the parameters, apart from fbirth rate, meanNbHost and inf env rate, are taken from the

paper from Webb et al. [92], and reported in Figure 6.7. It has however to be noted that the

number of potential hosts n is greater that the carrying capacity K . The reason is that while K is

the carrying capacity, and the overall number of births is equal to the number of infant deaths, the

stochasticity of PEPA can result in a population higher than K at some point in the simulation.

So having n higher than K limits the likelihood that the pool of ghosts is exhausted in one of the

stochastic simulation runs.

5.5.2 Results

Initially, the objective was to compare the results of our model (both the average of a hundred

stochastic simulations and the ODEs derived from the model) to the data gathered on the Pawnee

National Grasslands and used by Webb et al. [92]. This data was unfortunately not publicly

available, and the point of comparison of this study will be the ODEs provided by Webb et al.,

who are said to give “a good qualitative and quantitative fit to the data”.

The average of a hundred simulations, the ODEs derived from the model and the original ODEs

presented in the paper from Webb et al. [92] are compared in Figures 5.6, 5.7 and 5.8, respectively
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Parameter Value Description

birth rate 0.0866 Intrinsic rate of increase (host)

K 200 Carrying capacity (host)

n 250 Total number of host (including the ghosts)

death rate PD 0.0002 Natural mortality rate (host)

transmission rate 0.09 Flea transmission rate

contact direct rate 0.073 Airborne transmission rate

contact env rate 0.073/20 Transmission rate from reservoir

inf env rate 0.5 Transmission rate of the infectious prairie dogs

to the reservoir

incubation rate 0.21 Incubation period−1 (host)

death rate inf PD 0.5 Infected host mortality rate

decay rate 0.006 Reservoir decay rate

leave Host Rate 0.05 Rate of leaving hosts

eff 0.004 Searching efficiency of questing fleas

meanNbHost 100 Average number of prairie dogs alive

fdeath rate 0.07 Natural mortality rate (vector)

inf flea rate 0.28 Transmission rate: hosts to vector

flea incubation rate 0.009 Incubation period−1 (vector)

finf death rate 0.33 Disease-induced mortality rate (vector)

fbirth rate 0.14 Intrinsic rate of increase (vector)

Figure 5.5: The parameters used in the model in Figure 5.4.
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representing the number of infectious prairie dogs, the number of susceptible prairie dogs, and the

number of infectious fleas.

The differences between the three graphs are fairly small. In particular, both sets of ODEs

give very similar results, with a Root Mean Square (RMS) value of between 28.05 for the whole

population of prairie dogs, 2.36 in the case of infectious prairie dogs, and 0.17 in the case of the

infectious fleas. However, it can be noticed that, in the case of the graphs of the infectious prairie

dogs and whole town, the difference between the output of the Stochastic Simulation Algorithm

(SSA) and the ODEs is larger. This is caused by the phenomenon explained at the end of section

3.1.2: in some simulations, the disease simply dies out, and the average number of prairie dogs

increases, while the average of infectious prairie dogs decreases. In the case of the ODEs, this

cannot happen. This feature can be used to estimated the percentage of times when the disease

will successfully eradicate the prairie dog town. Indeed, if the disease fades, the number of prairie

dogs will grow until the population reaches the carrying capacity K . However, if the disease

persists, every prairie dog is killed, and the population size is zero. This means that if the number

of prairie dogs at steady state is s on average, the disease success rate is:

1− s/K (5.1)

We now consider the relative influence of each vector of transmission.

First of all, the model was analysed with the exact same parameters as in Figure 6.7, but

contact direct rate and flea contact rate (which is transmission rate × eff ×meanNbHost) are set

to zero. This means that only indirect transmission via the environment was active in that model.

The population size over time is presented in Figure 5.9. The resulting graph is very similar to

the one including the three vectors shown in Figure 5.6. However, one difference is to be noticed:

while the steady population size was around 40 in the case of the three vectors, it is around 60 now.
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Figure 5.6: Total population of prairie dogs. SSA (solid line), ODEs derived from the PEPA

model (dashed line), Webb’s ODEs (dotted line). RMS=28.05
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Figure 5.7: Infectious prairie dogs. SSA (solid line), ODEs derived from the PEPA model (dotted

line), Webb’s ODEs (dashed line). RMS =2.36
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Figure 5.8: Infectious fleas. SSA (solid line), ODEs derived from the PEPA model (dotted line),

Webb’s ODEs (dashed line). RMS=0.17
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Figure 5.9: PEPA model of a town of prairie dogs infected with the bubonic plague, where the

infection can only be passed by the infectious prairie dogs. SSA (solid line), ODES derived from

the PEPA model (dotted line).
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Using the formula (5.1), we conclude that the prairie dog town is eradicated by the bubonic plague

70% of the time now, whereas it is wiped 80% of the time when the three vectors are present.

The model has then been run with only direct transmission and the transmission via fleas

activated. The graph in Figure 5.10 shows that even both vectors together do not make the

bubonic plague infectious enough to kill all prairie dogs in the town. The fact that the average

of the stochastic simulations reaches the carrying capacity K and that the ODEs successfully

describe the behaviour of the model shows that total elimination did not happen in any of the 100

simulations.
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Figure 5.10: PEPA model of a town of prairie dogs infected with the bubonic plague, where the

infection can only be passed by the fleas and prairie dogs directly.

5.5.3 Conclusion

Modelling the outbreak of bubonic plague in a prairie dog town provided a lot of insight on the

capacity of PEPA to describe epidemiological problems. Indeed, all the essential features could
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be integrated in the model. The results have also been validated by confirming the findings on

previous models. Finally, stochastic simulations have shown that they could be an essential element

of the study of an outbreak, as ODEs do not give the whole picture.

Overall, PEPA has been used to reproduce the results previously obtained by Webb et al. [92],

and to show some flaws in the previous study, highlighting some of the issues that ODEs have when

used for disease modelling. A few elements however could not be expressed exactly as the actual

behaviour of the species. Indeed, the choices made in the original model from Webb et al. [92] for

features such as flea to prairie dog transmission, or flea birth, could not be directly translated into

PEPA, and an approximation had to be used. While it did not result in a significant difference in

the resulting model, as seen in Figure 5.10, it might only be a consequence of the small impact of

the flea infection and the short duration of the simulations.
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Chapter 6

Introducing Timed Events to

PEPA

Timed events correspond to events that happen at fixed times, either once (introduction of the

vaccine), or regularly (circadian clock, seasonality, immigration). These are essential in many

biological and epidemiological systems. Different types of interventions are essential to describe

control measures such as vaccination, vector culling, or quarantine, as it is important to take into

account the delay in applying such measures in the event of a disease outbreak. Seasonality is

an essential feature to the behaviour of measles, and the dynamics changes completely when it

is not included in the model, as the transmission rate is strongly influenced by the aggregation

of children at school [9]. Immigration also has an influence on the dynamics of measles, and in

particular provides new infectious individuals to a city where the disease had faded out, especially

in the case of small and isolated cities.
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This chapter will first present how to model intervention, both for a one-time event, such as

the introduction of a vaccination or as a regular occurrence, such as immigration. Section 6.2

will then describe the particular cases of the circadian clock and seasonality. Finally, the methods

presented will be used to present how control policies can be described, and the model describing

the occurrence of measles in Leeds will be thoroughly investigated.

6.1 Intervention

PEPA’s grammar does not allow timed events in a model. It is not possible to specify precisely

when an action α allowed by a component type P should be fired, as the rate r at which the action

happens follows the cumulative distribution function of the exponential distribution Fα(t)=1−e−rt

which only ensures that on average, α will be fired after 1/r time steps. It is, however, still possible

to approximate the happening of a timed event by having a single agent fire the action either once

or at regular intervals, depending on need:

• the action α has to be fired once: this corresponds to the case of a sudden change in the

behaviour of the model, such as the introduction of a vaccine. The one agent in P , once

firing the action α, goes to a state P ′ for the rest of the simulation.

• the action α has to be fired every t time steps: this corresponds to the case of immigration

for example, where a new immigrant arrives every t days. The agent in P remains in the

state P after having fired the action α. The rate here would be 1/t .

Using this method to approximate an intervention does not completely solve the problem.

While on average, the action will indeed be fired after 1/t time steps, the actual moment at which

the intervention takes place varies. For example, an action firing at rate 1 has actually only a
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38% probability of happening between 0.5 and 1.5 time steps. In order to reduce this variability,

one solution is to split the action into several steps. In other words, an expression (α, r).P will

be rewritten (α, r × n).(α, r × n).....(α, r × n).P with n the number of steps, that we will denote

(α, r × n)n .P for readability purposes. The distribution of the resulting action can be calculated

using the following theorem [23]:

Theorem 6.1.1 If X1,X2,...Xn are independent following an exponential distribution Exp(α)

then
n∑
i=1

Xi follows a Gamma distribution Gamma(n, 1/α)

As the rate of each of the activities is actually rn, the resulting probability density function is:

fn,r(x) =
xn−1.e−rnx.(rn)n

(n− 1)!
(6.1)

The cumulative density function can be simplified, in the special case where n ∈ N to the

following expression:

Fn,r(x) =

>∑
i=n

(rnx)i

i!
e−rnx (6.2)

This formula allows us to estimate the probability for an event to happen between time t=a

and t=b (with b > a) as:

Fn,r(b)− Fn,r(a) =

>∑
i=n

(rnb)i

i!
e−rnb −

>∑
i=n

(rna)i

i!
e−rna (6.3)

The methods presented here also present a major drawback: the ODEs that would be derived

from the model are not accurate any more. Indeed, as explained in chapter 3, the approximation

of the mean behaviour of PEPA models by ODEs is only valid when the number of agents is large

enough. However, in the methods presented in this section, only one agent is in the subgroup
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describing the timed event. The ODEs can be derived from the model using the Stirling Amend-

ment, as presented in section 3.1.2, but the resulting set of equations will not describe the system

accurately, as the hypothesis the ODEs derivation is based on is invalid. In the case of a single

intervention in particular, it is however possible to describe the model using two sets of ODEs,

corresponding to the behaviour of the model before and after the intervention. For the moment

though, there is no algorithm for deriving the ODEs in such a way. The modeller has to either

rely on her intuition, or write two PEPA models corresponding to the two situations, derive the

ODEs using the Stirling Amendment, and then add what would be necessary to “link” both sets

of ODEs.

This problem, however, is not specific to PEPA models. The same method would need to be

applied to a model written directly using ODEs. Indeed, the issues lies in the capacity to switch

behaviour instantaneously. In order to achieve this, a value, a series of values, or a function for

the time of the switch need to be predefined. In each set of equations representing on of the states

(before or after the intervention), an “link” statement allows to switch from one set to the other.

6.2 Cyclic behaviour

Two common time driven features in epidemiology and biological systems in general are the cir-

cadian clock and seasonality. Most organisms have a different behaviour in daylight and at night

time, or depending the season. In disease modelling in particular, this can have an important

impact on the dynamics of the system. The two features are very similar: both correspond to a

cyclic change, whether it is two or four states cycle. The method presented in this section, based

on the technique presented in the previous section, can be adapted to any number of states the

cycle might have.
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For the case of the circadian clock, for example, two component types need to be added to

the model, each representing a state of the cycle: Day and Night . The change of states is ruled

by the actions go day and go night for the transitions from night to day and from day to night

respectively, at the rate r in both cases. As detailed in the previous section, in order to reduce the

variability of the length of the cycles, both actions will have to be performed n times consecutively.

The resulting component types are:

Day
def
= (go night ,n × r)n .Night

Night
def
= (go day ,n × r)n .Day

Additional activities will be necessary in order to communicate with the rest of the model,

so it can adjust its behaviour. The most likely case is when all agents in a particular state in a

different subgroup need to go to another state which describes their new behaviour, as in the case

of Inf ′s and Inf ′w in the measles model presented in Figure 6.6. In those cases, an additional activity

during day and during night are added to the component types, as well as to the component types

affected by the change in the cycle. If Cday and Cnight are the two component types representing

the behaviour of the agents during the day and the night respectively, the resulting model would

be:

Day
def
= (go night ,n × r)n .Night + (during day , big).Day

Night
def
= (go day ,n × r)n .Day + (during night , big).Night

Cday
def
= (during night ,>).Cnight

Cnight
def
= (during day ,>).Cday

Here again, equation (6.3) can be used to evaluate the probability of the duration of a cycle to

remain within certain boundaries. The restriction on ODEs also applies in this case, as once again,

the assumption that the number of agents is large is not fulfilled in the subgroup representing

the cycle. The method which consists in writing a set of ODEs for each state of the cycle, and
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then making sure the switch from one behaviour to the other happens at the expected time, can

however also be used in this situation.

Now that the methods incorporating timed events to PEPA models are available, a series of

examples will be presented in the next sections. First, three different control policies, which are

heavily relying on timed-events, will be modelled. Then, the model of measles in Leeds will be

thoroughly investigated, with seasonality and immigration playing a central role in the dynamics

of the disease.

6.3 Control policies

Control policies are an essential part of the epidemiologist’s toolbox, that allows her to determine

the best way to react in the case of an outbreak, or the best preventive measure to take. However,

the description of control policies usually requires a sudden change in the behaviour of the model.

In the case of culling, the death rate of the vector increases dramatically when the culling takes

place. For vaccination, susceptible individuals move the the recovered/immune class massively

when it happens. Finally for quarantine, the contact rate decreases massively for some infected

individuals when the policy is enforced.

6.3.1 Vector culling

The first model, shown in Figure 6.1 corresponds to a vector-borne disease, such as malaria [36].

The context corresponds to an outbreak of the disease, where as soon as it is detected, a vector

culling measure is enforced. The model itself is a simple vector-borne transmission SEIR model.
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There is no birth nor death, which means the population remains constant. The recovered indi-

viduals do not lose their immunity, which means the initial pool of susceptibles only decreases in

size over time. The vector can be either healthy or infected. The infectious vector can however

recover from the disease and come back to a healthy state. It cannot die naturally or give birth

either. The vector can only die when the culling is performed. In the model, only the successful

contacts from vector to host are represented by the action contact .

The culling is divided into three steps, each of them with a corresponding component type.

First, BeforeCulling corresponds to the situation before the culling takes place. The amount of

time before it happens depends on (firstculling , fcr)n. The period before the culling starts is n/fcr

time steps on average. Then the agent responsible for the culling goes to the state Culling . What

happens then is that the action culling is fired in quick succession. The agents in InfVector and

HealthyVector cooperate over the action culling and move respectively to the state VectorCullingI

and VectorCullingH , where there is a probability that they die. If they do so, they go to a

state DeadVector , and stay there for the remaining of the simulation. Finally, when the culling

is over, the agent in Culling fires the action endofculling and moves to the state CullingOver ,

while the agents in InfVector and HealthyVector come back respectively to the state InfVector and

HealthyVector .

Figure 6.2 shows one 250 days simulation of the model presented above. In this case, the culling

starts after five days, lasts for fifty days, and each living host has a probability of 25% of dying

every day. The culling has in this case a major impact, as the peak of the infection is under 1000

infectious individuals, while it reaches over 6000 without the culling.
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Host

S
def
= (contact ,>).Exposed

Exposed
def
= (infected , incubation rate).Inf

Inf
def
= (infect vector , inf vector rate).Inf + (contact ,>).Inf

+(recover , recover rate).R

R
def
= (contact ,>).R

Vector

HealthyVector
def
= (infect vector ,>).InfVector + (culling ,>).VectorCullingH

InfVector
def
= (infect vector ,>).InfVector

+(contact , contact rate).InfVector

+(recovery vector , recovery rate).HealthyVector

+(culling ,>).VectorCullingI

VectorCullingH
def
= (killed , killed prob).DeadVector + (infect vector ,>).VectorCullingI

VectorCullingI
def
= (killed , killed prob).DeadVector

+(contact , contact rate).VectorCullingI

+(recovery vector , recovery rate).VectorCullingH

DeadVector
def
= (stay , 1.0).DeadVector

Culling

BeforeCulling
def
= (before culling , fctr)n.Culling

Culling
def
= (culling , big).Culling + (endofculling , 0.02).CullingOver

CullingOver
def
= (stay , 1.0).CullingOver

System equation

S [9900] ‖ Inf [100] BC
contact,infect vector

HealthyVector [100000] BC
culling

BeforeCulling [1]

Figure 6.1: Example presenting how culling can be implemented.
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Figure 6.2: Comparison between two simulations where the vector has been culled (solid line) or

not (dotted line). The graph on the right corresponds to the infectious host, the one on the left

the infectious vector.

6.3.2 Vaccination

This model, presented in Figure 6.3 is a simple indirect transmission SEIRS model with yearly

vaccination. In this case, a percentage of the susceptible individuals are vaccinated every year, and

moved to the recovered category.

The principle behind vaccination is similar to the one used for culling. The agent is in the

state No vaccination until the action vaccine starting is fired n times, which takes wait period

on average, and results in the agent moving to the state Vaccination. The action vaccine is then

fired in quick succession. All the agents in S cooperate over this action and move to the state

SVaccine. Each agent in SVaccine has then a probability vaccined prob to be vaccinated, which

results in it being immune to the disease. It can be noticed that the susceptible agents can still be

contacted when in a SVaccine state, so the vaccination process does not interrupt the dynamics of

the disease. If an agent is successfully vaccinated, it becomes recovered and immune to the disease.

Figure 6.4 shows an example of how vaccination could decrease the number of infectious indi-

viduals in the case of an outbreak. In this case, the vaccination starts at day 70 of the start of

the simulation and half the susceptible individuals are vaccinated. While the number of infectious
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Original subgroup

S
def
= (contact ,>).Exp + (vaccine, big).SVaccine

SVaccine
def
= (contact ,>).Exp + (vaccined , vaccined prob).R

+(not vaccined , (1− vaccined prob)).S

Exp
def
= (infected , incubation rate).Inf

Inf
def
= (contact ,>).Inf + (recover , recover rate).R

R
def
= (contact ,>).R + (lose immunity , lose immun rate).S

Mirror subgroup

Transmitter
def
= (contact , contact rate).Transmitter + (recover ,>).Dormant

Dormant
def
= (infected ,>).Transmitter

Vaccination

No vaccination
def
= (vaccine starting ,n/wait period)n .Vaccination

Vaccination
def
= (endVaccine, 1/vaccine period).No vaccination

+(vaccine,>).Vaccination

System equation

(S [990] ‖ Inf [10] BC
infected,contact,recover

Transmitter [10] ‖ Dormant [990])

BC
vaccine

No vaccination[1]

Figure 6.3: Example presenting how vaccination can be implemented.
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Figure 6.4: Comparison between two simulations where the susceptibles are being vaccinated

(solid line) or not (dotted line).

individuals continues to increase in the case where the vaccination is not performed, it immediately

drops in the case where susceptibles are vaccinated.

6.3.3 Quarantine

Finally, this model corresponds again to a simple indirect transmission SEIRS model. A number

of days after the outbreak has started, identified infected individuals are asked to remain at home,

decreasing their contact rate dramatically.
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Original subgroup

S
def
= (contact ,>).Exp

Exp
def
= (infected , incubation rate).InfProv

InfProv
def
= (quarantined , quar prob ∗ big).Inf temp

+(not quarantined , (1 − quar prob) ∗ big).Inf

Inf temp
def
= (infQ , big).Inf

Inf
def
= (contact ,>).Inf + (recover ,>).R

R
def
= (contact ,>).R + (lose immunity , lose immun rate).S

Mirror subgroup

Transmitter
def
= (contact , contact rate).Transmitter + (recover , recover rate).Dormant

TransmitterQ
def
= (contact , contact rate Q).TransmitterQ + (recover , recover rate).Dormant

Dormant
def
= (not quarantined ,>).Transmitter + (infQ ,>).TransmitterQ

Quarantine

No quarantine
def
= (quarantine starting ,n/waitperiod)n.Quarantine

Quarantine
def
= (quarantined , 50000.0).Quarantine

System equation

(S [9900] ‖ Inf [100] BC
not quarantined,contact,recover,infQ

Transmitter [100] ‖ Dormant [9900])

BC
quarantine started

No quarantine[1]

The mechanism behind the quarantine subgroup is fairly simple. First, the action

quarantine starting must be fired n times. The total period before the quarantine starts is

wait period time steps, as explained in section 6.1. Once the quarantine has started, and the

agent in No quarantine has moved to the state Quarantine, the action quarantine started is pas-

sively available for cooperation. A few changes were also made to the subgroup describing the

behaviour of the population. When the incubation period ends, the agent in Exp moves to a state
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InfProv . The objective of this component type is to determine whether the infected individual

will be quarantined or not. Two actions are available: quarantined and not quarantined . The first

action must cooperate with the agent in Quarantine. This ensures that an individual can only be

quarantined if the quarantine has actually started. The rate at which the action takes place is

quar prob ∗big to ensure this is performed quickly and the delay is negligible compared to the other

actions of the model. quar prob corresponds to the probability to be quarantined, and here again,

the actual rate is quar prob ∗ big . Once the action quarantine started has been performed, the

action infQ is then fired at rate big , which has the role of cooperation with an agent in Dormant

to make sure an agent is moved to the expected component type. The action not quarantined plays

a similar role. However, as it is not required to cooperate with an agent in Quarantine, the action

not quarantined can directly cooperate with an agent in Dormant . Depending on which action is

fired, the agent in Dormant moves to either Transmitter or TransmitterQ . The two component

types have exactly the same behaviour, the only difference lying in the rate at which the contact

happens. It can be noticed that the action recover is active in the mirror subgroup. This is to

ensure the correct component,Transmitter or TransmitterQ , is updated. Indeed, if it was active

in the original subgroup, the information about whether a quarantined or not quarantined infec-

tious individual is recovering is not available, and it would randomly choose from Transmitter or

TransmitterQ . By having recover active in the mirror subgroup, the choice is avoided.

Figure 6.5 shows a simulation of the model presented in this section, when the quarantine is

and is not active. In this case, the quarantine starts 6 days after the start of the outbreak and the

contact rate is divided by 80 when an infectious individual is quarantined. In the case of the solid

line, once the quarantine has started, 100% of newly infectious individuals are quarantined, while

in the case of the dashed line, only 90% of them are quarantined. We can see there the influence

of this parameter as a mere 10% difference completely changes the behaviour of the disease.
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Figure 6.5: Comparison between two simulations where the infectious can be efficiently quaran-

tined (solid line), less efficiently quarantined (dashed line) or not (dotted line).

6.4 Measles in Leeds between 1944 to 1964

The last tools needed to build a model of measles are now available. The model is a representation

of the city of Leeds from 1944 to 1964. The city initially has a population of 508, 010, ten of

whom are assumed to be infectious. In this section, the model will be described, and simulations

performed. A comparison of the simulations and the data available on the University of Cambridge

website [89] will be performed.

6.4.1 Presentation of the model

The model presented in Figure 6.6 is based on a paper from Bjørnstad et al. [9], apart from

the immigration mechanism and parameters, which are inspired by a paper from Finkenstädt et

al. [29]. Measles has one route of transmission: it transmits from one individual to another via

direct frequency dependent contact only. A few additional features are important. Births and

deaths are described in a very simple manner: the birth rate and the death rate share the same

value. As the disease is not usually deadly, and the number of immigrants over the twenty years is

low compared to the total population, this will ensure that the population size remains constant.

All the living agents S,Exp, Inf and R can give birth and die naturally.
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Summer
def
= (go winter , srs)p.Winter + (insummer , big).Summer

Winter
def
= (go summer , srw)p.Summer + (inwinter , big).Winter

S
def
= (contact ,>).Exp + (birth, br).S + (die, dr).Ghost

Exp
def
= (contact ,>).Exp + (incubation, ir).Inf + (die, dr).Ghost + (birth, br).Exp

Inf
def
= (contact ,>).Inf + (recover , rr).R + (dieI , dr).Ghost + (birth, br).Inf

R
def
= (contact ,>).R + (birth, br).R + (die, dr).Ghost

Ghost
def
= (born, big).S + (immigration,>).Immi

Immi
def
= (gotoInf , big).Inf

S ′
def
= (incubation,>).Inf ′s + (birth,>).DS + (gotoInf ,>).Inf ′s

Inf ′s
def
= (contact , crs).Inf ′s + (recover ,>).S ′

+(inwinter ,>).Inf ′w + (dieI ,>).S ′

Inf ′w
def
= (contact , crw).Inf ′w + (recover ,>).S ′

+(insummer ,>).Inf ′s + (dieI ,>).S ′

DS
def
= (born,>).S ′ + (timeout , 100.0).S ′

Immigration
def
= (immigration, imrate).Immigration

((S [508000] ‖ Inf [10] ‖ Ghost [100000]

BC
born,birth,incubation,recover,contact,dieI ,gotoInf

S ′[608000] ‖ Inf ′w [10]) BC
immigration

Immigration) BC
insummer,inwinter

Winter

Figure 6.6: The final measles model for Leeds.
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Immigration and seasonality have been implemented using the method described in the previous

section. Immigration is represented by a subgroup formed by a single component type, Immigra-

tion. The one instantiation of the component type fires the action immigration every 1/imrate

time step. Each time this happens, one infectious immigrant arrives in the city, which translates

in the model by one agent in Ghost moving to the Inf state. The reason why only infectious

immigrants are represented here is linked to the influence of immigration. Susceptible immigrants

and emigrants do not have an influence on the dynamics of the disease. As their numbers are

considered equal, they do not have any impact on the evolution of the model. Infectious emigrants

also do not have any influence on the dynamics of the disease in the studied city, and their number

is sufficiently low to have a negligible impact on the population size. Infectious immigrants on the

other hand, can start a new outbreak, if the timing is right. The model is composed of two seasons:

a four month summer, and an eight month winter. The contact rate is the only difference between

the two seasons. The reason for this difference lies in the difference in behaviour of the children.

Indeed, because the disease is very infectious, and getting infected grants a lifelong immunity, the

average age of the infected individual in the real world is low [65, Table II]. The average number of

contacts a child makes change significantly depending on the period of the year, as more contacts

are made when children go to school. For this purpose, the year has been divided into two seasons,

summer and winter, that correspond to the children’s holidays and school period respectively. The

two seasons only have an impact on Inf ′, the replicated component of Inf . Inf ′ has been divided

in Inf ′s for the summer, and Inf ′w for the winter. Seasonality is implemented as follows:

Summer
def
= (go winter , p/summer duration)p.Winter + (insummer , big).Summer

Winter
def
= (go summer , p/winter duration)p.Summer + (inwinter , big).Winter

Inf ′s
def
= (contact , crs).Summer + (inwinter ,>).Inf ′w

Inf ′w
def
= (contact , crw).Summer + (insummer ,>).Inf ′s
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In this sub-model, all the actions not related to or not modified by seasonality have been

removed from the component types’ expressions. In this extract of the measles model, once the

season changes, from Summer to Winter for example, Winter cooperates with the agents in Inf ′s

over the action inwinter, in order for them to move to Inf ′w . The rate at which the cooperation

is performed has to be very big compared to the other parameters of the model, in order for the

process to be considered instantaneous. In this model, this rate is at least big/crs=1.66 × 108

times bigger than any other rate in the model. The number of infectious individuals is always

under 1000, so the whole operation takes less than 1000/big = 10−6 time step to be performed.

This way, the contact rate used is indeed crw , which is the rate of contact over the winter season.

After the action go summer has been fired p times, the agent describing the season moves from

Winter to Summer, and the agents in Inf ′s are updated again. The choice of the value of p entirely

depends on the precision required by the modeller, as well as the processing time of the model.

6.4.2 The parameters

According to Bjørnstad et al. [9, p. 171], the critical community size, in order for the virus not to

go extinct, appears to be between 300, 000 and 500, 000 in England and Wales. For this reason,

the city of Leeds has been chosen to test this model. Indeed, its population in 1944 was about

508, 000 inhabitants. The proportion of susceptibles seems to vary from one study to another.

Bjørnstad [9] mentions studies where the proportion of susceptibles varies from 3.5% [9, p. 180] to

9% [28]. This number, however, is not crucial. According to our experiments, the model evolves

to a steady state proportion of susceptibles between 3.5 and 9%, regardless of initial proportion

of susceptibles. For this reason, the model starts with 100% susceptible individuals, and evolves

naturally towards its steady state susceptible proportion. In the graphs shown in this section, the

transient section, which has been empirically determined to correspond to the first thousand steps,
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Parameter Rate (per day) Description

n 508010 Total population size

big 999999999 The big rate used of immigration and seasonality

ir 1/7.5 [9] Incubation rate

rr 1/6.5 [9] Recover rate

crw 39.1/6.5 [9] Winter contact rate

crs 19.8/6.5 [9] Summer contact rate

br 0.017/365 [9] Birth rate

dr 0.017/365 [9] Death rate

imrate 0.02 ∗
√
n/365 [29] Immigration rate of infectious individual

p 96 Number of iterations of the change of season action

srw 1/(8× 30)× p Rate of one iteration of the change of season action (winter)

srs 1/(4× 30)× p Rate of one iteration of the change of season action (summer)

Figure 6.7: The parameters used in the model in Figure 6.6.
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has been removed from the results shown in the next section. The results obtained in this portion

of the graph does not indeed have any basis on the real behaviour of the disease, and does not

provide any insight on the disease behaviour.

The incubation and infectiousness period are respectively 6 to 9 days, and 6 to 7 days [9]. The

average of those values has been chosen in order to derive the rate used in the model. The annual

per capita birth rate ranges from 0.01 to 0.02 for the period between 1944 and 1964 [9]. The

data on the city of Leeds provided by Grenfell [89] provides an average birth rate over this time

period of 0.017 birth per year and inhabitant. In order to keep the population constant, the death

rate has been chosen to have the same value. The only increase in population size results from the

immigration of infectious individuals, which is proved to be negligible later in this section. The fact

that the population remains constant throughout the study period does not have an important

impact on the behaviour of the disease. Indeed, the simulation time is short compared to the

lifespan of an individual, and every individual already infected gets lifelong immunity. This means

that the adult population does not participate in disease transmission, as almost all of them are

immune to the disease. Also, the number of births is the important number here: young children

are the ones susceptible to the disease. The data shows that the number of births does not vary

significantly during the studied period. Having a constant population and a constant birth rate

ensures that the number of births does indeed remain constant during the time of the simulation.

The value for immigration has been given in a paper from Finkenstädt et al [29, p. 755]. According

to this paper, the number of infectious imports per year can be approached by the formula:

average number of imports per year=0.02
√

population size

In the case of our model, it results in 0.02
√

508000=14.25 imports per year. This results in a total

of 285 immigrants across the twenty years studied, who increase the overall population by 0.056%.

The contact rate has been chosen based on the value of R0 given in the paper by Bjørnstad et
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al. [9, p. 180]. R0 is the number of successful contacts an infectious individual would make in an

entirely susceptible population. According to this paper, its maximum value is 39.1 in December,

and its minimum value is 19.8 in August. In the absence of an average value over the course of a

season, or a monthly value, these values are used for the winter and summer season respectively.

The daily number of contacts can then be derived from R0 by dividing it by the number of days

a sick person is infectious. Finally, the parameters related to the seasons are srw, srs and p. As

explained in the previous section, in order to change the season from winter to summer, a series

of actions (go summer , p/winter duration)p is needed. In this model, the winter season lasts eight

months. If we consider that a month lasts 30 days 1 on average, the overall winter duration is

8 × 30 days, so the rate of change is 1/(8 × 30). However, as the action go summer needs to be

fired p times, the resulting rate for each action is p/(8× 30). The method is similar for the winter

to summer action. Because the summer, in this model, lasts four months, the resulting rate is

p/(4×30). Finally, the choice of the value of p lies in the hands of the modeller: it must be chosen

in order to give an acceptable variability in the season length, while not increasing the length of

the simulations too much. With p=96, and using equation (6.3), the probability that the winter

lasts between 7 and 9 months, and that the summer lasts between 3.5 and 4.5 months is 78%,

which is deemed sufficient for the scope of this study.

6.4.3 Results

The analysis of this model is performed through a series of single stochastic simulations. Indeed,

due to the variability of the time of change of season, stochastic simulations cannot be averaged

meaningfully. Also, as mentioned earlier, ODEs cannot be derived from the PEPA model, as the

1To simplify the way seasonality is modelled, a month has been decided to always last 30 days. This results in

a year of 360 days in the simulations.
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hypothesis behind the derivation, that the number of agents is large, is not met. However, given

the size of the population studied here, the difference between different simulations is reduced.

Moreover, the analysis will only be performed on quantitative factors, such as the length of the

cycle between two consecutive outbreaks and the average size of the peak of each epidemic.
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Figure 6.8: Comparison between the reconstructed and the number of infectious individuals in a

single simulation in Leeds between 1944 and 1964 .

The data the model is compared to is accessible from the University of Cambridge’s website [89].

In this section, only the data related to the city of Leeds will be used. Changes to the data are
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first required to allow the analysis to be performed. First of all, the data of the number of reported

cases has a time step of two weeks. In other words, each year is divided into 26 data points, each of

the data points recording the number of cases in the previous 2 weeks. Two modifications have to

be made. The first change is necessary to make sure the format of the data is compatible with the

data obtained with the stochastic simulation of the PEPA model, in order for the two sets of data

to be easily compared. It seemed more natural to translate the original data to the format of the

result of the simulation, as it seemed more intuitive to record the number of infectious individuals

at any given time. For that purpose, each data point in the original data has been divided by 14,

in order to get the number of reported infectious individual per day during that period of time. It

has then been multiplied by 6.5, to reflect the fact that each infected individual remains infectious

for an average of 6.5 days. The second change concerns the reporting rate. Bjørnstad et al. [9,

p. 172] mention a reporting rate across England and Wales of just over 50%. In this study, it is

assumed that every individual is infected at some point in her life. Given the high contact rate,

this is a fair assumption. This means that the number of births should correspond to the number

of cases. In the case of Leeds, between 1944 and 1964 (inclusive), 181, 539 births were recorded,

while 109, 730 cases of measles were reported. Assuming the birth rate was constant in the years

just before the record, this gives an average reporting of 60.4%. A further assumption that the

birth rate is constant throughout the twenty recorded years is needed. While this was not the

case in reality (the maximum number of births recorded was 10821 in 1947, and the minimum was

7584 in 1954), the difference can be considered negligible for the scope of this analysis. Finally, a

constant reporting rate will be assumed. This allows the number of infectious individuals at each

data point to be corrected by multiplying the reported number of cases by the ratio between the

total number of birth over the twenty years and the total number of reported cases. The graph in

Figure 6.8 shows the corrected data.

The result of the simulation of the model described in the previous section is shown in Figure 6.8.
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It corresponds to 8200 days of simulations, where the first 1000 days have been removed, as

described previously. The remaining 8200 days correspond to the twenty years of simulations. The

two graphs presented exhibit a comparable behaviour. In both cases, measles outbreaks occur

on a regular cycle. The length of the cycle varies between the gathered data and the stochastic

simulation. In the case of the data, the cycle lasts exactly two years, with very little variation

over the length of the studied period, apart from a single one year cycle between the 1963 and

the 1964 epidemics. The simulation on the other hand, has biennial cycles most of the time, but

sometimes exhibits 2.5 years cycles. Across the studied period, the gathered data experiences 11

outbreaks, for 9 in the simulation. As detailed by Bjørnstad et al. [9], the cycles are a consequence

of the addition of seasonality to the model. The presence of a summer season where the contact

rate is lower allows more time for the pool of susceptibles to increase in size, until the contact

rate increases again in the winter. The number of infectious individuals at the peak of infection

in both cases can vary a lot, between 260 and 920 in the case of the gathered data, and 260 and

710 in the simulation. The average of the number of individuals at the peak of each outbreak

confirms this difference: 479 infecteds in the case of the gathered data, for 424 in the case of the

simulations. Finally, the graph of the gathered data seems to experience less local variability than

the one representing the simulation data. This is however only an artefact of the reconstruction

technique applied to the data.

6.4.4 Conclusion

For the first time in this study, a PEPA model has been compared to actual gathered data. The

results are promising: many similarities can be noticed between the simulations and the actual

data. The difference can have several origins. Some are tied to some of PEPA’s limitations. As

the rates cannot change during the simulation, the birth and death rates have the same value
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throughout the simulation. Even if the value does not seem to vary vastly according to the data, it

might have an influence on the results. A second limitation of PEPA might have a bigger impact

on the simulation result. Seasonality has been approximated by splitting the year into two seasons

each with a single contact rate which does not change throughout the season. The value used by

Bjørnstad et al. [9, Fig. 7, p. 178] varies noticeably within each season. Since the results are very

sensitive to the contact rate’s value, this might affect the conclusions of the PEPA model. Some

additional explanations might have a link with insufficient biological knowledge of the disease.

First, some of the parameter values given by Bjørnstad et al. [9] and used in this model seem to

have a degree of uncertainty. Indeed, different papers give different values to the parameters. The

paper from Bolker et al. [11] report an incubation period of ten days, and infectious period of

3.7 days, while for Bjørnstad et al. [9], the values are actually 7.5 and 6.5 days respectively. The

approximation made regarding the reporting rate might also be sometimes excessive. However,

while this might impact on the actual number of infectious individuals at any time step, it would

not have an influence on the duration of the cycles. Finally, the influence of the nearby cities have

been completely ignored in this study. This will be analysed in the next chapter.

6.5 Summary

This chapter has first presented techniques to approximate different timed events features, such as

interventions, seasonality and the circadian clock. While the methods do not give an exact solution

to the problem, the modeller has control over the precision of this approximation. Three different

control policies, each offering a different challenge, have then been presented. Finally, the model

describing the behaviour of measles in Leeds has been presented and analysed. While the results

do not fit the data exactly, the model showed promising similarities with the expected behaviour.
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In the next chapter, the possibility of incorporating compartments in a PEPA model will be

explored and added to the models of the bubonic plague (chapter 5) and measles (this chapter).
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Chapter 7

Modelling structured populations

The capacity to sort the population in different categories can be essential in describing certain

diseases. For AIDS, age plays an essential role in the sexual behaviour of individuals. Indeed, young

adults usually have more sexual contacts than elderly people, while children do not have any. In the

case of measles, the interaction between cities has an important impact on the overall behaviour of

the disease. Smaller cities usually experience fade outs of the disease, but still experience regular

outbreaks, often within weeks of neighbouring cities. The actual structuring category can be

diverse: age, social, hobbies, space, etc... depending on which feature has an important influence

in the behaviour of the disease.

This chapter will present how this can be done in PEPA. In particular, syntactic sugar on top of

PEPA has been developed in order to be able to concisely describe situations where the modelled

population can be divided into different categories. Software that allows the translation of the

model based on this syntactic sugar into a valid PEPA model will then be presented. Finally, the

models of the bubonic plague in prairie dogs and measles in England and Wales will be expanded
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to describe the behaviour and interactions of a few cities, along with an analysis of the problems

encountered while modelling these cases.

7.1 PEPA and structured populations

Two approaches have already been made to incorporate structured populations in PEPA. PEPA

nets [35] are a modification of PEPA’s grammar to incorporate compartments. Inside each com-

partment, the components have the same behaviour as a PEPA component. However, a second

type of change of state is allowed. In addition to the standard transitions, firings of the net cor-

respond to moving an agent from one compartment to another. PEPA nets are based on Petri

nets [74], which have shown their efficacy in different fields. However, PEPA nets suffer from a

handicapping drawback: the formalism imposes severe limitations on communication [35]. Indeed,

shared activities between components in different compartments are not allowed and two compo-

nents in one place cannot cooperate and transfer to another place in a single atomic action. While

the second limitation can be easily bypassed by including a temporary component type in the ini-

tial compartment, the first one can prevent some systems from being fully modelled. A situation

where two actions need to compete, one of them being shared with a component in a different

compartment, cannot be described using PEPA nets. However, this may arise in epidemiology:

for example, when seasonality is included in the model. Indeed, as shown in Chapter 6, each sea-

son has two actions competing: one regulating the change of season (go winter in the case of the

Summer), the other one communicating with the component types in different subgroups in order

to make sure they behave in the correct way (insummer). Because the season must be the same

in all the subgroups, it is essential that only one agent of the Winter and Summer component

types are be introduced in the model. This agent needs to communicate with agents in different
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subgroups, in order to make sure the behaviours that depend on the season perform the right set

of actions and use the correct rate. This type of behaviour is not permitted by PEPA nets.

The second approach to incorporate structured populations in PEPA is proposed by Galpin [32].

This solution is meant to be a more general approach to introducing compartments to process

algebras in general, but PEPA is used as the case study. The objective of the formalism is to

add named compartments and labelled transitions to the grammar of the process algebra. The

approach is promising, and could lead to some interesting form of analysis for epidemiology. For

the moment though, it is still at a very early stage of development. It is not supported by any tool,

making any analysis on a model very tedious, especially as the number of compartments grows.

In order to overcome the absence of formalisms adapted to spatial epidemiological models, two

approaches were considered. A new formalism could have been developed which would include the

features required. This is the approach chosen by Galpin [32]. In this work, we have chosen a more

pragmatic approach. PEPA already benefits from existing software which allows the analysis of a

given model to be performed. Instead of developing a whole new formalism, we have decided to

describe a new grammar, which would allow compartments, but the model would then have to be

converted into a valid PEPA model for any analysis to be performed. This grammar, referred to

as CPEPA, consists of a syntactic sugar on top of PEPA rather than a new formalism, as it is only

a way of expressing some PEPA concept in a more compact way. In order to avoid the tedious

conversion operation being performed by the modeller, the PEPAdum software initially presented

in section 3.4 has been amended to allow this task to be automated, as described in section 7.2.5.

7.2 Grammar

In order to describe structured populations in PEPA models, a grammar that would reduce the

size of the model written has been conceived. Often, groups of individuals in different locations will
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have a very similar behaviour: minor differences might result from difference in actions available

and parameters. In the case of disease modelling for example, the population might be divided

into susceptible, infectious, recovered in every location, but the contact rate might be different in

some location, or people might be quarantined in some places only. For this purpose, the grammar

described here allows the modeller to describe all the similar subgroups in different compartments

as a single subgroup. She can then specify which actions/rates are identical or different from a

subgroup to another.

7.2.1 General overview

The syntactic sugar defines a general grammar which has a very similar format compared to a

PEPA model. At the top of the file, it needs to define the names of the different compartments.

The grammar of the new format is defined as detailed in Figure 7.1. Similarly to section 1.1.2,

S denotes a sequential component and P denotes a model component which executes in parallel.

C stands for a constant which denotes either a sequential component or a model component. CS

stands for constants which denote sequential components. Ta and Ts correspond to the valid

expressions of the list of locations. CS @Ts is the expression of a sequential component, but

with information about the location attached to it. β is a strictly positive integer representing the

number of agents in a particular state initially, and r is a strictly positive real representing the rate.

f(#i) corresponds to a function of #i, which determines the location to be used (more detailed are

given in section 7.2.3). Its expression is detailed in section 7.2.3. Finally, there is one limitation

on the expression of GBC
L
G, G a model component. When two model components G1 and G2

cooperate over a non-empty cooperation set, the intersection of the union of the subgroups of the

sequential components of G1 and G2 must be empty. More details are provided in section 7.2.4.
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S ::= Sc | CS@Ts

Sc ::= (α, r).S | S + S

CS@Ts ::= (α@Ta, r@Ta).CS@Ta | [i](a@Ta, r@Ta).CS@Ta | (α, r).S | CS@Ts + CS@Ts

Ta ::= list | [a, b] | f(#i)

Ts ::= list | [a, b] | ALL

P ::= GBC
L
G | G

G ::= Gl@Tg < L >| Gc

Gc ::= Gc BCGc

Gl ::= Gt BCGt | Gt

Gt ::= C[{βa}] | C[β]

βa ::= βa, β | β

L ::= L, action | action

action ::= name | name@[a, b] | name@list

Tg ::= list | [a, b]

list ::= list, location | location

Figure 7.1: Grammar of the syntactic sugar allowing space for a PEPA model.
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Each component type can exist in several locations. The actions and rates can also have

locations attached to them. In the case of the actions, it is important to have the option to define

them with or without a location. Locations are required in the case where an agent from a single

location cooperates with an agent in a different location or in a different subgroup altogether. In

this case, the location of the action is only used to differentiate different actions: only one location

is defined even if agents from two different compartments are involved. Moreover, the choice of

the location is in the hands of the modeller. This means that a cooperation between an agent in

location A and an agent location B may happen over an action which is defined to take place in

location A, B or even a different location C. Actions without specific locations are also essential,

for example in the case where an agent in each location needs to be involved in the cooperation,

or in the case where agents in every location are competing over the same action.

7.2.2 Definition of the compartments

A PEPA model can be divided into 3 parts: the definition of the variables, definition of the

sequential components (or component types) and definition of the model component (or system

equation). A fourth one is added here. At the start of the model, the names of the different

compartments are defined in the form #compartments=L, with L expressed in one of the two

following ways:

• {name 0, ...,name (n− 1)}; : The compartments are described as a list of names. This will

be preferred in the case where locations names are meaningful, such as cities.

• [start , stop]; with start and stop positive natural numbers: This time, the compartments are

only described with numbers, going from start to stop included, incremented by 1. This case

will be chosen in the case of a large number of locations (in order to avoid having to name

all of them), or if the locations do not have any meaningful name.
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In the next sections, the locations are in some cases referred to as numbers. In the case of a

list of names of locations, the indices of the locations go from 0 to n− 1, while if the locations are

described using the second option, the indices are the numbers used for each location.

7.2.3 Definition of the component types

While the definition of variables remains the same as in the original definition of PEPA, the se-

quential components grammar has been heavily modified to be able to describe different population

groups. The original PEPA plugin grammar for a sequential component is:

S :: = Action+Action | Action

Action :: = (α, r).S

The grammar of all the terms in this definition is changed. For the component types, compartment

can be defined in three ways: a list of names of compartments, a pair of numbers designating a

range of compartments, or using the reserved word ALL as follows:

• ComponentName@{l1, l2,..., ln}

• ComponentName@[a,b]

• ComponentName@ALL

The list of compartments must contains names already specified in the list L.

In the definition of a component type that has a different expression depending on the compart-

ment, each action that it can perform can also be different depending on the compartment. In the

case where the action is only allowed in one of the compartments, adding [a] before its definition
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expresses the fact that the action only appears in the expression of the component type in the

compartment at the index a in the list of compartments attached to the component type. The

action name then has different options to express the compartment. Every other action is assumed

to appear in the expression of the component type in every compartment, with possible differences

in each of the components of the action (action name, rate, target component) depending on the

compartment.

Before detailing the different methods to express the compartment in the action name, an

explanation on the meaning of the compartment of the action name is necessary. Indeed, an action

named action at l1 in the derived PEPA model does not mean that the action only happens

between individuals in l1. This name is only a convention that implies that one of the individuals

firing the action is in l1. The grammar does not prevent two individuals respectively in l2 and l3

from communicating over the action action at l1 . The modeller is the one responsible for making

sure the naming remains coherent. Also, a series of compartments is attached to each action of

the definition of the component type. The order of the compartments in this list indicates which

action (and compartment) is linked to which component type (and compartment). For example,

if the component type C has the compartments {l1, l2, l3} and the action a has {l2, l1, l3}, the

resulting model will have a at l2, a at l1 and a at l3 as a respective possible action for C at l1,

C at l2 and C at l3.

An activity of a component type can either apply to every location, or for a single location

only:

• (action, rate).targetComponent : this syntax indicates that the expression of the activity ap-

plies to all the compartments defined in the component type definition

• [j](action, rate).targetComponent : this syntax indicates that the expression of the activity

only applies to the jth compartment of the component type list of locations. In this case,
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a single action (with or without compartment defined), a single rate and a single target

component are required.

The first method to indicate the compartments attached to the action consists of a list of names

of compartments. It is also possible to define the compartments with an expression [a, b], which

is equivalent to a list of compartments between the one at index a and the one at index b in the

list L. The reason the definition of the compartment given in the first section of the file has been

used rather than the component type’s one is that it is possible to have a compartment for the

action name not included in the list of compartments defined in the component type. The third

method is to write a function f(#i) that determines which compartment to use, where #i is the

variable of the function f . Only the four arithmetic operations +, −, × and / can be used, as well

as parentheses. In other words, in order to express the fact that we want the next location (as

detailed next), the modeller would ask for the action #i+ 1. The value of #i depends on how the

compartments on the component type are defined. If the compartments of the component type

are defined as a list, or with the reserved word ALL, then the jth value of #i (with j ∈ [0, n− 1]

with n the number of possible compartments for the component type) will take the value of the

index in the original subgroup of the jth compartment in the list of possible compartments for the

component type. If the component type is described as ComponentName@[a, b], then the value

of #i will vary from a to b and for each j ∈ [a, b], the compartment of the action allowed by the

component at the jth compartment in L will be the f(j)th in L when translated to PEPA. If the

number obtained is bigger than the number of compartments in L or negative, the positive value

of the modulo of f(j) and the size of L is used.

Even though it does not necessarily indicate that an action happens in a specific compartment

or group, specifying a compartment appears to be useful in practice. This is particularly useful

when two component types communicate only when in the same compartment. For example, in
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the case of vector-borne transmission, the vector can only contact the host when they are in the

same compartment. This can be easily modelled by adding the notion of space to the action they

communicate over. This is also useful in the case of a communication between two compartments,

in order to have a unique action name between compartment a and compartment b. This might

happen in the case of age groups, where individuals in different groups have to communicate over

an action (in other words, they are in different subgroups). In that case, for an individual to move

from one group to another, it needs to communicate with a Ghost in the next group so a new

individual in that group is added, while the one on the lower age group is removed (and goes to

the Ghost state). In order to simply and concisely allow this, a function can be used to define

the compartment of the action depending on the component rate. For example, in the case of n

age groups a1, a2 ... an, a component C at aj in aj needs to communicate with C at aj+1 over

the action grow at aj , for j between 1 and n − 1. In that case, for every component C at aj at

the compartment aj , j ∈ [2, n − 1]1, two actions are required: grow at aj , which corresponds to

individuals growing from aj−1 to aj and grow at aj+1 which corresponds to individuals growing

from aj to aj+1. The first action can be generally described as grow@(#i) and the second one as

grow@(#i + 1). In this particular case though, it can also be expressed as grow@[2, n − 1] and

grow@[3, n] respectively.

The rate can also be different depending on the compartment with which an action is associated.

It can be expressed in two ways. First, a list of strictly real numbers or operations over real numbers

(the result must be a real strictly positive number) indicate that for each number on the list, the

ith number of this list needs to be associated with the ith action. The second method is a function

f(#i). The #i corresponds to the index in L of the ith compartment of the component type. In

both cases, only the four arithmetic operations +, −, × and / can be used.

1The cases of j = 1 and j = n would need to be treated separately, as only one of the two actions is required.
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Finally, the target component also contains information about the compartment. Here, it can

be expressed in three ways.

• List of compartments: the order of the compartments indicates to which compartment of the

target component type defined here each of them corresponds.

• Function of #i: where the jth value of #i has the value of the index in L of the jth com-

partment in the list of compartments in the component type defined here.

• A subset of L: in the form start , stop. This indicates that the list of compartments is the

subset from the compartment index start until the compartment at index stop of L.

7.2.4 Definition of the model component

The PEPA grammar of the model component has also been altered to incorporate information

about the compartment. Some restrictions have been applied, as some available expressions of

the model component are not used in epidemiology. Indeed, the way communication between two

component types in the same subgroup works renders it impractical in most cases, as it requires all

the agents in that subgroup to communicate at the same time for the action to happen. In the case

of epidemiological studies, which often involve large groups of individuals, this is not a common

behaviour. Hiding has also been prohibited from the model components grammar considered here.

This results in the following grammar for a model component:

P :: =P1 BC
S
P2|K

(7.1)
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where K denotes a constant which can be either a sequential component, or a model component,

and P1 and P2 two model components that verify the following condition: with C(P ) the set of

reachable sequential components in the model component P , ∀C1 ∈ C(P1) and ∀C2 ∈ C(P2),

C1 6= C2. This prohibits any communication between component types belonging to the same

subgroup. This is enforced in order to make the underlying PEPA model valid for PEPAdum.

This type of behaviour is also very rarely used in epidemiology and is more likely to be a mistake

from the modeller.

Based on these restrictions on the grammar of the model component in PEPA, a new grammar

allowing compartments has been defined. This new grammar only allows the model component to

be written in such a way that it can be then translated into a valid PEPA model component. It

is based on the restricted PEPA grammar, with two modifications adding the information about

compartments. The first modification concerns cooperation set, called S in the grammar presented

here. In order to indicate the compartments in which each action can be located, two options are

available:

• actionName@[start ,stop]: this translates to a list of actions actionName at compartment

where the compartments are the ones between indices start and stop in the original list of

compartments L.

• actionName@{list of compartment names}: this simply attaches each of the compartments

to the action name.

The second modification concerns the model components composed of component types all

belonging to the same subgroup. Because of the simplification made here, these component types

cannot communicate with one another. However, component types in different compartments can

still communicate, as long as they do not belong to the same subgroup. For example, let’s consider
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a model consisting of two components C1 and C2, each of which can be in a compartment a and

b. C1 at a and C2 at a belong to the same subgroup, and so do C1 at b and C2 at b. However,

the components in a and b belong to different subgroups. A formulation is needed to express this

situation. The allowed expressions to describe this are:

1. [C1[c1]||C2[c2]||..||Cn[cn]]@{list of compartment names} <list of action names>

2. or [C1[c1]||C2[c2]||..||Cn[cn]]@[start, stop] <list of action names>

The list of action names corresponds to the cooperation set between the subgroups located in

different compartments.

The first block of this expressions is [C1[c1]||C2[c2]||..||Cn[cn]]. This corresponds to the initial

number of agents in each component type. However, for each component Ci, ci needs to contain

the information about the initial number of agents in Ci at each possible compartments. This can

be done in two ways. The first way is a simple arithmetic expression. This implies that the initial

value for this component type is the same regardless of the compartment. The second option is

to give a list of values {a, b, ...}, the number of value having to correspond to the number of

compartments allowed for this component type.

The second block can be written in two ways, but both options correspond to a list of com-

partments. In the first case, where the list is defined: {list of compartment names}, the list of

compartments is given explicitly. In the second case [start , stop], two numbers are given, start

and stop, which correspond to the sub-list of L starting at index start and stopping at index stop.

This list of compartments will then be attached to each of the component types specified in the

previous block.
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The final block follows the expression <list of action names>. The grammar of this expression

is exactly the same as the one for the set of actions previously called S over which the model

components communicate. This expression corresponds to the actions over which the component

types in different compartments communicate.

To illustrate how the grammar works, consider the following example containing the initial list

of compartments and the different options for the model component:

#compartments = {l1, l2, l3};

([C1 [{98, 0, 2}] ‖ C2 [{0, 50, 0}]]@[0, 2] < action1 @[0, 1] >)

< action2 @{l1, l2, l3} >

(C3 [10] <> C4 [2 ])

How is this translated to a valid PEPA model component? The line ([C1 [{98, 0, 2}] ‖

C2 [{0, 50, 0}]]@[0, 2] < action1 @[0, 1] >) will be first considered. The number of agents initially in

C1 and C2 are defined for the compartments at index 0, 1 and 2 in the initial list of compartments,

which respectively correspond to l1, l2 and l3. In order to derive the PEPA model component,

the cooperation set between components at different compartments still needs to be determined.

action1 @[0, 1] corresponds to the list of action {action1 @l1, action1 @l2}. This results in this

valid PEPA model component: (C1 at l1 [98] < action1 at l1 , action1 at l2 > C2 at l2 [50] <

action1 at l1 , action1 at l2 > C1 at l3 [2].

The line {< action2 @{l1, l2, l3} >} requires a version of action2 for each of the compartments

specified in the list. This translates as: < action2 at l1 , action2 at l2 , action2 at l3 >. Finally,

the last line (C3 [10] <> C4 [2]) does not need any changes, as it does not have any information

about compartments. However, for harmonisation purposes, <> will be rewritten ||. The initial
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model component can finally be rewritten:

(C1 at l1 [98] BC
action1 at l1,action1 at l2

C2 at l2 [50] BC
action1 at l1,action1 at l2

C1 at l3 [2])

BC
action2 at l1,action2 at l2,action2 at l3

(C3 [10] ‖ C4 [2])

7.2.5 Automatically deriving a PEPA model from a PEPA model with

compartments

The software presented in Section 3.4 has been expanded in order to derive PEPA models from

models following the new grammar presented here. The change is straightforward: the initial

window, previously used to select the PEPA file to analyse, has now a second option. It is now

possible to select a file written following the rules of the new grammar allowing compartments, in

order to translate it into a valid PEPA model.

The underlying algorithm used to translate the model is based on JavaCC [49]. The model is

parsed, and translated to a valid PEPA model using the rules presented in the previous section 7.2.

7.3 Modelling the interaction between prairie dog towns af-

fected by the bubonic plague

The model of a prairie dog town during a bubonic plague outbreak presented in section 5 has

provided useful insight on the behaviour of the disease in one town, but ignored the interactions

with nearby towns. While their influence is negligible for the study of one, already infected, town,

given the duration and impact of the outbreak, it is essential to include them to understand the

dynamic of the disease on the bigger scale.
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In this section, a system consisting of four nearly identical prairie dog towns will be analysed.

Each town consists of a hundred prairie dogs and a thousand fleas. The only difference lies in the

infectivity of each of the towns. Indeed, only one town is initially infected, while the other three

are healthy. The initial population break down of the infected town is the same as in the model

described in section 5.5.1: 2 prairie dogs and 10 fleas are infectious, while the remaining individuals

of their respective species are healthy. In the other towns, every prairie dog and flea is healthy.

A model written in the grammar presented in Section 7.2 will be presented and translated

into a valid PEPA model, which will in turn be analysed using both the ODEs, using the Stirling

Amendment, and stochastic simulations. The issues arising from this first study will then lead to

a further search for ways to overcome them.

7.3.1 The model

The model consists of four towns: t1, t2, t3 and t4. The behaviour of the prairie dogs within

each of the towns is exactly identical to the behaviour described in the original model presented

in section 5.5.1. In addition to that, each prairie dog and flea can travel from a town to another

and infectious prairie dogs can directly infect prairie dogs from different towns, expressing the case

where two prairie dogs from neighbouring towns randomly meet.

In order to reproduce the behaviour previously described in section 5.5.1 in each of the towns,

each action already allowed in the original model has some added information complying with

the new grammar attached to it. For example, an action (α, rate).TargetComponent permitted

by Component in the original model is translated into (α@[0 , 3 ], rate).TargetComponent@[0, 3],

performed by Component@ALL. Component@ALL describes the fact that the component is

present in all four locations. In the final PEPA model, it will translate into Component at ti with
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i between 1 and 4. α@[0, 3] means that the action α is permitted for the component Component

in all four locations, but the name is different depending on the location. In location ti, the

action will be called α at ti, resulting in a different name per location, to avoid an unwanted

communication between individuals from different towns. The rate however, remains the same

wherever the action happens, so its expression does not change from the original PEPA model

to the model written using the new grammar. Finally, TargetComponent is required to be at the

same location as Component . For this reason, it is written TargetComponent@[0, 3] which ties the

component TargetComponent at ti to the component Component at ti , ensuring that both belong

to the same town.

In addition to these actions already present in the original PEPA model, additional actions

describing the relationship between towns are required. First, the movement of both the prairie

dogs and the fleas is to be added to the model. In the case of the prairie dog, each living individual

from a town is capable of travelling to any of the other three towns. The fleas however, need to

be on a host in order to move over long distances. In any case, whichever species is concerned,

the principle behind the set of actions describing movement is the same. For a given component

located in town t, it is necessary to allow a different action for each location to which it can

travel. This results, in this case, in three actions per component. Ideally, the action describing the

movement to a town t would be the same for each original location. This would result, in the case

of the susceptible flea on a host for example, with each component Sh at ti describing fleas on

a host to be able to fire three actions (movementFlea at tj , space movement flea).Sh at tj , with

j ∈ [1, 4] and j 6= i. This means that the set of actions is different for each location, and it is

required to specify a different set for each of them. It results in the component Sh@ALL requiring
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the following set of actions:

[0](movementFlea1 @{t2, t3, t4}, {list of rates}).Sh@{t2, t3, t4}+

[1](movementFlea2 @{t1, t3, t4}, {list of rates}).Sh@{t1, t3, t4}+

[2](movementFlea3 @{t1, t2, t4}, {list of rates}).Sh@{t1, t2, t4}+

[3](movementFlea4 @{t1, t2, t3}, {list of rates}).Sh@{t1, t2, t3} (7.2)

For example, for the component at the location at index 0, which corresponds to Sh at t1 ,

this set of actions indicates that the actions movementFlea1 at t2 , movementFlea1 at t3 and

movementFlea1 at t4 are allowed. These actions specify that an agent can move from Sh at t1 to

Ch at t2 , Sh at t3 and Sh at t4 respectively. A similar set is defined for the component Sh at t2 ,

Sh at t3 and Sh at t4 . Similar actions have been added to Eh and Ih.

The reason why four different actions for movement are required lies in the necessity to update

the mirror subgroup. Indeed, to preserve the relationship between the number of agents in the

components in the original subgroup and their respective counterparts in the mirror subgroup,

each change of location in the original subgroup must result in the same change in the mirror

subgroup. In order to do so, the component AliveFlea needs to communicate with Sh, Eh or Ih

in order for an agent to move to the correct location. This results in the addition of the same

set of actions to AliveFlea, with the exception that the rate at which it happens needs to be >,

as this component is passive here. However, it is essential to distinguish a flea going from town

t1 to t3 from a flea going from t2 to t3 . If the actions were only movementFlea at t3 , then it

would be impossible for AliveFlea to distinguish between the two, and it would randomly move

an agent from t1 or t2 to t3 . By defining precisely the town of origin of the travelling flea,

this confusion is avoided. Concerning the rate, it is assumed here that the rate of movement is

different for each pair of towns. This means that we need to specify a different rate for each

possible cooperation. Here, we will assume that the rate of travel between town ti and tj is
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the same as the rate of travel from town tj and ti 2. If the rate of travelling from a town ti

to a town tj is called space movement fleaij , with i < j, then list of rates for i=2 for example,

will be {space movement flea12 , space movement flea23 , space movement flea24}. So in this case,

{space movement flea12 represents both the movement of the fleas from the first burrow to the

second, and from the second burrow to the first. We have chosen to have i < j in order to ensure

we only have one action name for movements in both directions.

In the case of the prairie dogs, a single set of actions for the whole population was not sufficient

to describe the movement between towns. Indeed, because the infectious and healthy individ-

uals are represented by different components in the mirror subgroups, two different actions are

required to describe the movement of the prairie dogs. This means that both will rely on a set of

actions similar to the set presented earlier (7.2), with a different action name (movementInf and

movementHealthy), a different rate (infectious individuals travel more or less than healthy ones,

which is not the case here) and a different target component depending on the component type

considered.

Another set of actions has been added to the prairie dog components, describing direct contact

between two prairie dogs of different towns. In this model, infectious prairie dogs have a chance to

meet animals from different towns, and may infect them. In the case of simple direct transmission

within a town, the mirror component of the infectious individual InfectiousPD was infecting every

prairie dog alive in the main subgroup, namely S , Exposed and Infectious through the action

contact direct at the rate contact direct rate. In this case, the principle is identical, but instead

of infecting prairie dogs from the same town, InfectiousPD only infects prairie dogs in a different

location via the action direct contact space. This can be modelled in different ways, but the

2This has only been assumed in order to reduce the number of parameters. In reality however, geographical

specificities, such as the difference in altitude between two towns, might render this hypothesis unrealistic. It is

possible, using the same setup, to specify a different rate for each way.
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simplest is to use a function to describe the action name. Indeed, while this form of contact

is very similar to direct contact between prairie dogs, the main difference is that the contact is

now only allowed with a prairie dog in a different location. This could have been done using the

same method described for movement, using the set of actions seen in (7.2). However, because the

infected prairie dog does not need to know the town the infectious prairie dog came from, the name

of the action can be the same for each target location. This means that all the actions describing

the infection of a prairie dog in a town ti from a prairie dog in a different town can share the

same name. It could even be the name used for direct transmission within the town. However,

the names will be chosen to be different to avoid confusion. Following the grammar described in

section 7.2, this set of actions for all the components in the original subgroup representing prairie

dogs that are alive (S , Exposed and Infectious) can be written as follows:

(direct contact space@(#i+ 1),>).C@[0, 3] +

(direct contact space@(#i+ 2),>).C@[0, 3] +

(direct contact space@(#i+ 3),>).C@[0, 3] (7.3)

As an example, let’s consider the case of the third term of the list [0, 3]. In other words, this corre-

sponds to #i=2 for direct contact space and C @2. This means that the component allowed to fire

these actions is at the location t3, as it is the location with index 2 in the original list of compart-

ments L. In this case, direct contact space@(#i + 1) can be rewritten direct contact space@(3),

and the location at index 3 in L being t4, it translates as direct contact space at t4 in PEPA.

However, for direct contact space@(#i+ 2), corresponding here to direct contact space@(4), there

is no location with index 4 in L, as the size of this list is 4. Using the modulo of 4 by 4, we obtain

an index 0 for the location, which is t1, resulting in the action direct contact space at t1 in PEPA.

Using the same process, direct contact space@(#i + 3) translates as direct contact space at t2 .

It can be noticed here that the action located in t3, is not used for these actions. This was the
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objective here, as this results in alive prairie dogs in t3 not being able to be infected with this

action by prairie dogs in the same town. The rate is > for all three actions. This is due to the

component passively waiting to be infected. Finally, the target component will be C at t3 in all

cases in our example.

InfectiousPD , on the other hand, only requires one term in the new grammar to describe the

action of infecting prairie dogs in different towns. Indeed,

(direct contact space@[0, 3], {space direct contact rate1 ,

space direct contact rate2 , space direct contact rate3 ,

space direct contact rate4}).InfectiousPD@[0, 3] (7.4)

contains all the information needed to express it. For example, InfectiousPD at t3 would translate

as: (direct contact space at t3 , space direct contact rate3 ).InfectiousPD at t3 , which will only

communicate with prairie dogs not in t3. Concerning the rate, it has been assumed that the

rate is for infectious individuals of a given town, regardless of the origin of the contacted prairie

dog. The value of this rate is to be determined by the modeller. This is obviously not biologically

plausible, as the distance between the towns will have an impact on the rate of contact. However,

modelling this would have required actions similar to the set of actions (7.2) to be incorporated, as

this time, the location of the contacted prairie dog is necessary to determine the rate. In order to

simplify the model, and exhibit the use of functions in the definition of the actions, this assumption

has been made.

Finally, the system equation also needs to be modified to account for the in-

troduction of space. Each of the subgroups is modified to incorporate the infor-

mation about space. The original prairie subgroup for example, is now written:

([S [{98, 100, 100, 100}]||Infectious[{2, 0, 0, 0}]||Ghost [150]]@[0, 3] <>). This expression means that
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the first town t1 initially has 98 susceptible prairie dogs, 2 infectious and 150 ghosts while the

other towns have 100 susceptible, no infectious and 150 ghosts. The final <> expresses the

fact that these component types do not communicate over any action. The other subgroups

have also been modified in a similar fashion. The expression of the actions in each communi-

cation set has also been updated. Each of the actions already present in the original model

is now written action name@[0 , 3 ] to express the fact that the four actions action name at t1 ,

action name at t2 , action name at t3 and action name at t4 are now in the cooperation set.

This has also been performed on space direct contact . The other new actions, movementSi ,

movementInfi and movementFleai with i ∈ [1, 4], have not been dealt in the same way, as

movementSi at ti is not an action used in the model. In order to avoid having this extra action

in the cooperation set3, these actions have been expressed using a list of locations. For example,

in the case of the action movementS2 , it has been described as movementS2 @{t1, t3, t4} in the

new grammar. This translates as movementS2 at t1 ,movementS2 at t3 ,movementS2 at t4 in

the derived PEPA model.

The model of a bubonic plague outbreak in a prairie dog community of four towns has now

been written. The next step is now to study the results that the model can provide, given the

tools that are available.

7.3.2 Results

The objective of this section is to test the model described in the previous section, to see whether

the results obtained from it can be used to increase our knowledge of the disease. As explained

in section 1.4, it does not however aim to give any actual additional biological knowledge, as too

3Writing an expression which would include this extra action would result in a perfectly valid PEPA model.

However, we chose here to prevent this as it would only add actions not used in the model.
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many assumptions, and in particular the new parameters used in this section, have no biological

justification.

First, the remaining parameters have to be chosen. In order to test different scenarios, the

four towns are placed such that three of them are close to one another, and the last one is further

away. If placed in a grid, t1, t2, t3 and t4 would have the coordinate (0, 0), (0, 1), (1, 0) and (12, 5)

respectively. The hypothesis is made that the ground is uniformly flat with no obstacles. Also, a

prairie dog or a flea travels a distance of 1 in the grid once every 1000 days, which results in a rate

of 0.001 and the travelling rate is inversely proportional to distance travelled. In other words, for

a travel of 5 on the grid, the rate is 0.0002. Finally, the effective contact rate of infectious prairie

dogs with prairie dogs from a different location of different towns have been set to 0.00073, which

corresponds to a hundredth of the value for the direct contact rate within a town.
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Figure 7.2: Comparison of the total number of susceptible prairie dogs during a bubonic plague

outbreak in the initially infected town between the ODEs of the model featuring only one town

(dashed line), and the ODEs of the model with four towns (dotted line).

The simulations of the resulting model cannot be performed. Indeed, the size and complexity of
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the model was too much to handle for the PEPA Eclipse plugin. Even reducing the model to only

represent two locations does not solve the issue. However, it is still possible to derive and solve

the ODEs from the model. First, a validation of the behaviour of the location already infected

(t1) was performed, and the resulting graph from the ODEs was compared to the graph obtained

using the original model presented in section 6.4.1. The result of the comparison is presented in

Figure 7.2. This graph confirms that the model representing four towns still exhibits the same

behaviour within a single town.

The next step is to analyse the impact of the infectivity of the first town t1 on its three

neighbouring towns. Figure 7.3 shows the evolution of the number of susceptible prairie dogs in

the towns t1, t2 and t4. The town t3 is not represented as it is very similar to t2. This graph

shows the expected delay between the outbreak in t1 and the one in t2, and a bigger delay for

the one in t4, which is consistent with the parameter values. However, the difference in delay

between the outbreaks in t2 and t4 is very small (about five days) compared to the delay between

the ones in t1 and t2 (about 25 days), considering that t4 is 13 times further from the original

source of transmission than t2. This is related to how ODEs function, as detailed in section 3.1.2.

Indeed, the ODEs only record occurring epidemics, and discard situations where the disease dies

out. This means that what Figure 7.3 actually shows is the average number of susceptible prairie

dogs when an outbreak occurred in their town of origin. This explains why the delay does not

increase significantly with the distance between towns. Indeed, all the prairie dogs in t1 are dead

by the 45th day of the epidemic. This means that regardless of the distance between t1 and t4,

either t4 is contacted by an infectious prairie dog before day 45, or the outbreak in t1 does not

have a direct influence on the presence of the bubonic plague in t4. One could argue that t2 and

t3 also can have an influence on the presence or not of the bubonic plague in town t4. However,

in practice, their influence is actually minimal compared to the influence of t1. Indeed, t2 or t3

infecting t4 would require both t1 to infect t2 (or t3) and t2 (or t3) to infect t4. As we will see
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later in this section, the probability of each of these events happening is low, which results in an

influence of t2 and t3 negligible compared to the influence of t1, especially as the distance between

t1 and t4 is almost the same as the distance between t2 and t4 and between t3 and t4.
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Figure 7.3: Comparison of the total number of susceptible prairie dogs during a bubonic plague

outbreak in the initially infected town t1 (solid line), the town t2 (dotted line) and the town t4

(dashed line).

While the model and the ODEs derived from it do not give us the average behaviour of the

biological system, but rather the average behaviour of the successful transmission from one burrow

to another, they give us information about what happens when the disease spreads to nearby

towns. Indeed, assuming that the parameters used in this study are correct, it shows how long it

takes on average for the bubonic plague to spread to nearby towns, and how severe the outbreak

is. But in this section so far, PEPA has not given any information about the model that directly

writing the ODEs would not have provided.

The key information missing here is, given a set of parameters, how often does an infected town
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A infect a nearby town B?

In order to answer this question, the original prairie dog model described in section 5.5.1 will be

altered in order to add some information about space in it, while keeping it simple. A few actions

representing the movement of the prairie dogs and fleas, and the direct contact of infectious prairie

dogs with individuals from a different town will be incorporated to the model. The objective here

is to record how a nearby town gets infected by its neighbours, how many infectious prairie dogs

or fleas travel to this new town, and how many infectious direct contacts are made on average

over the course of the outbreak with the originally infected town. With this information obtained,

it is then possible to model different likely initial conditions for the newly infected town. The

behaviour of the third town can then be approximated by taking into account the influence of the

first two towns. The behaviour of the whole system can be approximated by increased the system’s

size by one burrow at a time. The resulting information must however be considered caution: the

interactions between towns have been greatly simplified (what about the influence of the third

town on the second?), and this might alter significantly the conclusions depending on the system.

The original model has been modified as follows:

• the action movementPD has been added to the Infectious component, which fires at the

rate movement rate, and brings the agent firing it to the component type InfectiousMoved .

At the same time, the component Infectious communicates with InfectiousPD in the mirror

subgroup, to ensure the number of agents remains the same in both component types.

• A similar action is added to the component Ih. A new component type InfFleaMoved has

been added to the model in order to record the number of agents moving to the new town.

• A new subgroup is added to the model, representing the prairie dogs in the target town

infected via direct contact with an infectious prairie dog from the originally infected town.
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An agent in this subgroup can be in two component types: Idle or DirectInfections. This

follows the assumption that all the prairie dogs in the target town are susceptible. However,

this makes sense in this context, as if the target town is already infected, the influence

of the infectious town would be insignificant, as the plague would kill the prairie dogs in

this town in every case. Initially, all agents are in the Idle state. Each agent in Idle can

passively communicate with an agent in Infectious over the action direct contact space to

move to the DirectInfections state. The rate at which the action can be fired in Infectious is

direct contact space rate.

The parameters describing the movement between the infected and target towns are the

ones previously used to describe the movement and communication between towns t1 and

t2. In other words, we used movement flea rate=0 .0001 , movement rate=0 .0001 and

direct contact space rate=0 .00073 . Under these conditions, a thousand simulations have been

performed, and their average, as well as the ODEs derived from the model, are shown in Fig-

ure 7.4. According to the stochastic simulations, on average, 0.041 infectious prairie dogs and

0.004 fleas travel from the original town to the new one, and 0.277 direct contacts are made. The

reason more infectious prairie dogs are travelling is the result of two factors. First, over the course

of the disease outbreak, more prairie dogs are infected than fleas. Furthermore, only fleas on the

host are capable of travelling, as the insect cannot cover long distances, which reduce even further

the number of infected fleas which can potentially infect the susceptible town. The number of fleas

having travelled must however be taken with a pinch of salt: only four fleas overall have travelled

to the susceptible town during the thousand runs. Given this information, and considering the

behaviour of a town with one infected prairie dog or flea4, the behaviour of the system including

4By only considering situations where one prairie dog or one flea is infected at the start of the experiment, the

hypothesis that the town is infected at most once is made. Given the scale of the number of infections, the case

where the town is infected more than once is negligible. However, if it ceases to be the case, it is possible to write
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both towns can be derived. Towns can then be added to the system one by one, by determining

the influence of each previously added town.
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Figure 7.4: Average number of infection of a nearby prairie dog town by vector (direct contact,

movement of an infectious prairie dog, and movement of a infectious flea). Both the average of

1000 stochastic simulations (dotted line) and the ODEs (solid line) are shown.

While this solution is not optimal and the analysis can be tedious, it allows a good understand-

ing of the behaviour of the system, and gives detailed information about how the disease spreads

in a spatial context.

7.4 Adding space to measles

The incorporation of different towns in the prairie dog model showed some promising results.

Indeed, the model itself was simpler to write than it would have been to write it all by hand, and

a supplementary model that only records if the town has been infected, and which vector was responsible of the

infection. With the information given by these two graphs, a more accurate picture of the system can be drawn.
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would be fairly simple to extend to more towns. Also, some results were obtained through the

automatic derivation of the ODEs, while others were obtained by using a slightly modified version

of the initial model. However, due to computer/software limitations, simulations of the model

including the four towns could not be performed, and obtaining results about the behaviour of the

whole system using the presented methods is tedious.

In this section, the measles model presented in section 6.4.1 will be extended to include four

cities. The four cities chosen are Cardiff, Newport, Bristol and Bath. The reason behind this choice

lies in the proximity of the cities (typically about 15 to 30 miles from one city to the next one), and

their size. The cities cover a wide range of scenarios: the biggest, Bristol, had 436, 300 inhabitants

in 1944, the smallest, Bath, had 79, 550 inhabitants, while Cardiff and Newport population sizes

lay somewhere in the middle, with 248, 000 and 104, 795 inhabitants respectively [89]. The system

underlying this model is less complex than the one underlying the bubonic plague: only one species

is represented, the disease spreads through one transmission route only and the way birth has been

modelled is simpler. For these reasons, the model is more suitable to an incorporation of different

locations, and it is possible to perform stochastic simulations directly on the model.

7.4.1 The model

The model is based on the original model describing measles in Leeds presented in section 6.4.1.

All the actions already present in that model are still allowed in the one including several locations,

resulting in preserved behaviour within a city. While people moving permanently from one of those

cities to another have been ignored due to the limited impact it has, commuting has been added

to the model.

First, the list of cities has been added to the model. This has been done with the instruction

#compartments={cardiff ,newport , bristol , bath}; . Capital letters for the name of the different
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cities is not allowed by the grammar. Contact rates for individuals, and birth and death rates

depend on the city. The contact rates are designated by crCN , crCBr , crCBa, crNBr , crNBa and

crBrBa, with the assumption that the contact rate between an infectious individual from a city A

and a susceptible individual from a city B is the same as the contact rate between an infectious

individual from a city B and a susceptible individual from a city A. In the case of the birth and

the death rate, the rates have been respectively renamed brC and drC for Cardiff, brN and drN

for Newport, brBr and drBr for Bristol and brBa and drBa for Bath. The values chosen will be

discussed in the parameters section 7.4.2. Each component type expression has also been updated.

The component type itself had the information about the location added, by attaching @ALL to

its name. Each action and target component type have also been updated by adding @[0, 3] to

their respective expression. When the rate is the same regardless of the city, the rate’s expression

remains unchanged.

One subgroup remains unchanged. The Winter and Summer component types are supposed

to provide identical information regardless of the location, and thus do not have a location. Also,

a limitation in the software used to translate the model from the new grammar to a valid PEPA

model prevents the use sequences of actions. This results in a modification in the description of

the change of season. It was modelled in the original model as (go summer , srw)p.Winter for the

summer to winter transition. Here, it was simplified as (go summer , srw).Winter , reducing the

sequence to a single action. Given that no location is involved in this subgroup, the expression

can be manually reverted back to its original description in the resulting PEPA model. The same

operation would have to be performed for the winter to summer transition.

The only new possible behaviour allowed in this model corresponds to commuting. Two types

of individuals can commute: healthy individuals5 and infected individuals. One solution to avoid

5Healthy individual commuting is restricted to S only. Including Exp or R would not change the behaviour of
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this distinction would have been to consider that if a susceptible individual contacts an infectious

one when she commutes, it is the same as if the infectious one was commuting. However, while

this might be a sensible approximation when the proportion of healthy and infectious individuals

is similar in the two towns, the behaviour can change dramatically if it is not. If a situation where

two towns t1 and t2, with 2 and 5 Infectious, 0 and 1 S and 10 and 50 R is considered, the overall

rate of transmission would be dramatically different if this approximation is made. Indeed, if the

susceptible individual from t2 travels to t1 and contacts 3 individuals (it can be the same individual

twice), assuming a contact with an Infectious is always successful, then the probability of her being

infected after her day is 1 − (9/10)3=0.271. If the approximation was made, and the infectious

individual travels to t2, and contacts 3 individuals, the probability for the S to be infected is

1 − (55/56)3 ' 0.053, about 5 times lower. In the case of measles, the proportion of susceptible

individuals between a city where an outbreak started a few weeks earlier and one where the disease

has faded out a few years before might vary significantly, especially in smaller communities, where

the disease might fade out for extended periods of time. This is the choice of the modeller.

First, the case where Infectious individuals commute has been introduced to the model. The

opposite approach compared to the prairie dog direct contact space is chosen: in this case, the

location specified in the action name will indicate the location to which the infectious individual

commutes. This simplifies greatly the expression added to S, Exp, Infectious and R. Indeed, only

the term (contact space@[0, 3],>).TargetComponent@[0, 3] is required. Infprimes and Infprimew

contain the remaining information. Indeed, it is essential to ensure that each infectious individual

only communicates with individuals in different towns. This has been realised with the following

the disease: S drives the cooperation (as detailed later in the section), which means there is no competition between

the susceptible individuals and the exposed and recovered ones.
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expression for Infprimew :

[0](contact space@{newport , bristol , bath}, {crCN , crCBr , crCBa})

.Infprimew@{cardiff , cardiff , cardiff }+

[1](contact space@{cardiff , bristol , bath}, {crCN , crNBr , crNBa})

.Infprimew@{newport ,newport ,newport}+

[2](contact space@{cardiff ,newport , bath}, {crCBr , crNBr , crBrBa})

.Infprimew@{bristol , bristol , bristol}+

[3](contact space@{cardiff ,newport , bristol}, {crCBa, crNBa, crBrBa})

.Infprimew@{bath, bath, bath} (7.5)

The four expressions follow a similar principle. For example, in the case of the first expression, it

corresponds to the infectious individual being in Cardiff, which means she can only communicate

with individuals in Newport, Bristol and Bath, at different rates, and remain in Cardiff in all

cases. The corresponding expression in Infprimes only requires every Infprimew to be replaced by

Infprimes. The rate remains the same, as will be detailed in the parameters section 7.4.2.

The second term added to the original model corresponds to the contact of susceptible individ-

uals commuting with infectious individual in a different city. In this term, the information about

the location corresponds to the city of origin of the commuting S. First, the S component type is

required to allow the action contact spaceS to be fired. Because the rates are different depending

on the pair of cities involved in the communication, a different expression is required depending
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on the city from which the susceptible individual comes:

[0](contact spaceS@{cardiff , cardiff , cardiff }, {crCN , crCBr , crCBa})

.S@{cardiff , cardiff , cardiff }+

[1](contact spaceS@{newport ,newport ,newport}, {crCN , crNBr , crNBa})

.S@{newport ,newport ,newport}+

[2](contact spaceS@{bristol , bristol , bristol}, {crCBr , crNBr , crBrBa})

.S@{bristol , bristol , bristol}+

[3](contact spaceS@{bath, bath, bath}, {crCBa, crNBa, crBrBa})

.S@{bath, bath, bath}; (7.6)

It can also be noticed that S needs to be the component driving the communication. Indeed,

unlike previous direct transmission examples, the infectious individuals are the ones competing

with healthy individuals sharing the same location to contact the susceptible commuters. Also,

having Inf (Infprimes/Infprimew) driving the communication would mean having the commuting

susceptible competing against individuals in a different location.

The action contact space S is also required in the expression of Sprime, Infprimes and

Infprimew . Here again the expression is different depending on the location. For Sprime, the
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expression would be:

[0](contact spaceS@{newport , bristol , bath},>)

.Sprime@{newport , bristol , bath}+

[1](contact spaceS@{cardiff , bristol , bath},>)

.Sprime@{cardiff , bristol , bath}+

[2](contact spaceS@{cardiff ,newport , bath},>)

.Sprime@{cardiff ,newport , bath}+

[3](contact spaceS@{cardiff ,newport , bristol},>)

.Sprime@{cardiff ,newport , bristol} (7.7)

An agent in one of the component types in a given location can only passively communicate over

an action with an agent in a different location. For example, the first term corresponds to Cardiff,

and can only communicate over the actions contact spaceS at newport , contact spaceS at bristol

or contact spaceS at bath. In the case of Infprimes or Infprimew , the expression used is similar.

However, if left as it is, when the communication happens the agent in S cannot differentiate be-

tween a communication with an Sprime agent or a communication with an Infprimes or Infprimew

agent. In order to make sure a communication with an infectious agent results in a new infection

in the original location of the agent in S, the target component of the actions in Infprimes and

Infprimew is replaced by InfprimeTempi , with i ∈ [1, 4]. These four new component types have
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the following expression:

InfprimeTemp1 @[1, 3] = (infected@[1, 3], big).Infprimes@{cardiff , cardiff , cardiff };

InfprimeTemp2 @{cardiff , bristol , bath} = (infected@{cardiff , bristol , bath}, big)

.Infprimes@{newport ,newport ,newport};

InfprimeTemp3 @{cardiff ,newport , bath} = (infected@{cardiff ,newport , bath}, big)

.Infprimes@{bristol , bristol , bristol};

InfprimeTemp4 @[0, 2] = (infected@[0, 2], big).Infprimes@{bath, bath, bath}; (7.8)

Each component type corresponds to the location where the infection happened. For

example,InfprimeTemp1 indicates that the infection happened in Cardiff. The location of these

component type specifies the location from which the infected susceptible commuter came. With

these two pieces of information, the component first fires the action infected at location, which com-

municate with an S in location that has been infected, and returns at a high rate to Infprimes6

at the location indicated by the component type’s name. An action infected is also added in the

expression of S, with both the action and the component belonging to the same location. This

action passively brings an agent to the state Exp, as it indicates that it has been infected while

commuting. This agent might not be the one that has been infected in the first place, but as they

both belong to the same component type, they are indistinguishable anyway.

The final modifications concern the system equation. Most of the changes have already pre-

sented in the prairie dog model in section 7.3.1: each component type needs to indicate its initial

conditions in each location, each subgroup is modified to specify that it exists in all four locations,

and the cooperation set needs to be updated in the same manner. The actions contact space@[0, 3],

6It returns to Infprimes even when the season is Winter . It does not change the overall behaviour of the model

as the agent will immediately go to Infprimew in the case where the season is Winter , given the way this has been

modelled.
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contact spaceS@[0, 3] and infected@[0, 3] are to be added to the cooperation set between the sub-

group describing the behaviour of the individuals and its mirror subgroup. However, the subgroup

representing seasonality, along with its cooperation set with the rest of the model, remains un-

changed, as the season is the same regardless of the location.

7.4.2 Parameters

The parameters describing the behaviour of the system within a city have been detailed in sec-

tion 6.4.2. The birth rate and the death rate have however been adapted to fit to the new cities

presented here. The method used to derive them is identical to the one used to derive them in the

case of Leeds. This results in the birth and death rates presented in Figure 7.5.

Birth rate (10−3) Death rate (10−3)

Cardiff 5.23 5.23

Newport 5.07 5.07

Bristol 4.06 4.06

Bath 4.20 4.20

Figure 7.5: The birth and death rate used for the different cities.

The only new parameters in this model correspond to the contact rate of individuals belonging

to different cities. Miller [65, Table II] confirmed that measles infects essentially children before

they reach the age of 10. This means that work commuting does not play a role in disease

behaviour. Only commuting resulting from weekend trips to neighbouring cities, for shopping

or family/friends’ visits, is to be considered. The consequence of this is that the season has no

influence on the contact rate for individuals in different cities: it remains the same throughout the
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year. Three assumptions have been made to determine the actual contact rate between individuals

from two given cities. The first one is that the commuting rate is independent of the city size.

The second is that the rate is inversely proportional to the distance between the two cities. The

third assumption is that one in thirty individuals (adults and children alike) travels to a city 30

minutes drive from his home town once a week. The approximate driving times between Cardiff

and Newport, Newport and Bristol, and Bristol and Bath are 30, 45 and 30 minutes respectively.

It is also assumed that the time to go from two cities is the sum of the times it takes to travel

through all the cities along the way. This results in the trip between Cardiff and Bristol assumed

to take 30 + 45=75 minutes, 30 + 45 + 30=105 minutes for Cardiff-Bath, and 45 + 30=75 for

Newport-Bath. The values used in this study are presented in Figure 7.6.

Cardiff Newport Bristol Bath

Cardiff NA 0.0145 0.0058 0.00414

Newport 0.0145 NA 0.00967 0.0058

Bristol 0.0058 0.00967 NA 0.0145

Bath 0.00414 0.0058 0.0145 NA

Figure 7.6: The contact rate between individuals from different cities.

Different sets of initial conditions have been tested. The initial proportion of susceptible varied

between 3% and 100%, while the number of cities initially infected varied from one to four. The

size of the pool of Ghost , on the other hand, is constant throughout the simulations, and has

been chosen large enough to avoid it being depleted, but small enough to reduce its impact on

the performance of the simulations. In the case of the cities studied here, the number of Ghost ,

determined experimentally, correspond to 13.7% of the population of Bristol, up to 31% of the

population of Bath, with 20% and 28% for Cardiff and Newport. The reason behind this difference
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lies in the reduced influence of stochastic events in larger populations.

7.4.3 Results

The models and parameters exposed in the previous sections have been used to perform a series of

single stochastic simulations, similarly to what was done in section 6.4.3. Unfortunately, probably

due to the PEPA Eclipse plugin not having been conceived to deal with the type of models presented

here, all the simulations were giving incorrect results after a varying number of time steps, with

negative numbers of agents, or unnaturally constant number of agents in a certain state.
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Figure 7.7: Number of infectious individuals in Cardiff, Newport, Bristol and Bath over one

nine-year simulation.

The graph presented in Figure 7.7 shows the best simulation obtained. In this simulation, 5%

of the population of each city is initially susceptible, while the rest is immune to the disease. The

reason the number is lower than before lies in the fact that the simulation were only running for a

few years, and we wanted to discard as few days as possible, due to the proportion of susceptible

being unrealistic. In this simulation, the whole range of the simulation was kept, as the initial
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conditions were not very far from the range of proportions of susceptibles witnessed throughout

the experiment. Initially, only Bristol has ten infectious individuals, with the rest of the cities

free of infection. As a result, it is the only city that experiences disease outbreaks after the first

year, and they seem to happen every one to two years, which is consistent with the data available.

Whether it has a link remains to be determined. The disease then settles in a steady state, and no

subsequent outbreaks are witnessed. The three remaining cities do not experience any outbreak

and quickly reach steady state.
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Figure 7.8: Number of infectious individuals in Cardiff and Newport over a twenty-year simula-

tion.

In an attempt to get more significant results, the model was simplified to consist of only two

cities (Cardiff and Newport), with the remaining parameters the same as before, with the whole

population but 10 infectious individuals in each city being susceptible to the disease.Once again,

some of the simulations exhibited unrealistic results, and were discarded. This time however, the

experiments were running for longer on average before their behaviour was incorrect. The graph

on Figure 7.8 shows the most successful simulation obtained. In this particular simulation, the first

1000 days have been removed from the graph. In this case, sensible results are obtained during the
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first 9 years of simulations. After that, the number of infectious individuals in Cardiff stabilises

around 11, which is not biologically realistic. In the case of Newport on the other hand, the results

remain more sensible. In the initial years, both towns seem to experience a disease outbreak every

other year, which is consistent with the data. Afterwards, only 4 outbreaks are recorded in 11

years in the case of Newport and none in Cardiff. The reduced number of outbreaks in Newport

could be the consequence of increase stochasticity resulting from the absence of nearby cities. The

higher peak witnessed at the outbreak following the four year period without any is sensible, as

the number of susceptible individuals will have increased in those years.

7.5 Summary

This chapter aimed at providing ways to add spatiality to PEPA models. The choice has been

made to conceive syntactic sugar on top of PEPA which would simplify the conception of PEPA

models with compartments. The resulting model can then automatically be translated to a valid

PEPA model. This solution comes with strengths and weaknesses. The fact that the analysis is

performed on a PEPA model allows the powerful tools already available to be used. Also, it is

easier to learn how to use this syntactic sugar when PEPA is already known, allowing the modeller

to avoid having to learn two completely different modelling tools. On the other hand, this also

means that the tools are not tailored to the particular form of those PEPA models, and may not

be very efficient in terms of performance. Additionally, the expressivity of those models is limited

by PEPA’s grammar, which was not initially developed with compartments in mind.

The method developed was then illustrated through a generalisation of the models initially

presented in section 5.5 and section 6.6, of the bubonic plague in prairie dogs to include more than

one town, and the model of measles in Leeds, in order to account for four cities. In the case of the
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prairie dogs model, the resulting PEPA model, even restricted to two towns, could not be used for

analysis, as the available tools were not able to handle its complexity. A solution has been provided

to nonetheless allow for some limited analysis to be performed. The measles model described the

behaviour of four cities (Newport, Cardiff, Bristol and Bath). The simulations including all four

cities were usually limited to a few years, and the results were often questionable. When reduced

to Newport and Cardiff only, the model provided more meaningful results. It showed however that

tools adapted to these kind of models might provide a significant improvement in their capacity to

deal with PEPA models with compartments.
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Chapter 8

Conclusion

8.1 Thesis summary

The aim of this thesis is to investigate the potential of PEPA as a tool to model and analyse

epidemiological systems, and extend the formalism when necessary. The approach used in this work

was to study two systems as case studies, bubonic plague outbreaks in a prairie dog population and

measles in England and Wales, to determine the important features in epidemiology, and examine

how these features can be modelled using PEPA.

First, the two different types of transmission, direct and indirect have been modelled in chap-

ter 2. The result of the analysis led to the conclusion that a new algorithm to derive ODEs was

required. Indeed, the Hillston algorithm [43] was not initially tailored to deal with epidemiological

models. As those often have terms which are not common in computer system models, the re-

sulting ODEs were often not describing the average behaviour of the model accurately. Chapter 3
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presented an amendment of this algorithm, extending its scope to allow cooperation between sev-

eral component types from two subgroups. As a result, most epidemiological models can now be

translated from PEPA to ODEs. Four aspects of epidemiological systems have then been studied

in separate chapters. First, methods to obtain frequency and density dependent transmission in

a model have been described in chapter 4. The birth and death feature has then been studied in

depth in chapter 5. Different methods have been designed to adapt to the modelled system and to

the amount of complexity the modeller wants to reach. The chapter also showed the model of a

bubonic plague outbreak in a single prairie dog town, which included the features presented in the

first chapters. In chapter 6, timed events were presented, and the principle has been used to derive

a method to model seasonality and the circadian clock. It has then been applied to simple models

with control measures and measles in Leeds. Finally in chapter 7, a new grammar based on PEPA

was conceived to allow the inclusion of compartments in the model. The grammar consists of a

syntactic sugar build on top of PEPA, and the rules used to translate the model in a valid PEPA

model have been provided. The translation is automated by a software presented in that chapter.

The two cases studies seen earlier, the bubonic plague and measles, have then been expanded to

represent four prairie dog towns and four cities respectively.

8.2 Strengths and weaknesses of PEPA when modelling epi-

demiological systems

PEPA inherently has some characteristics that makes it a good potential candidate to be used

as a tool to model epidemiological systems. The most important of those is the ability to move

from the individual to the population scale. Indeed, being able to express the behaviour of single

individuals allows the modeller to express more biologically realistic information in the model. The
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analysis is obtained at the population level, which results in conclusions applicable to the whole

system.

The ability to express stochastic events also helps to describe epidemiological systems more

accurately. Indeed, the variability resulting from stochastic events shows the spectrum of possible

outputs of a given situation which a deterministic tool, such as ODEs, would not exhibit. However,

this comes with a drawback: not all events are stochastic. As seen in the case of seasonality, or for

external interventions, being able to impose a specific time for an event can be essential for some

systems. The method presented in chapter 6 gives an approximation which is satisfactory in most

cases, but it may still lack precision in cases where the timing is essential.

PEPA also gives access to ODEs describing the average behaviour of the model in most cases.

Using PEPA to obtain the ODEs has several advantages over writing them directly. As seen

previously, the assumptions used in the model are at the individual level, and some model checking

is available to prevent some common mistakes. Moreover, the same model has now access to both

the type of analyses available for PEPA models and the extensive research performed in the use of

ODEs in modelling.

PEPA also has access to a very complete tool, the PEPA Eclipse plugin, to facilitate the

analysis of a model. One of its underestimated potential uses is the capacity to perform a basic

model checking. A series of properties are tested, which often leads to the early discovery of errors.

These errors are usually PEPA related, but some of them may indicate modelling or conceptual

mistakes made in the model. A previously unknown error in a published biological model has

been spotted by Clark et al. [19]. In that case, the original model was translated in BioPEPA,

which immediately detected a dubious behaviour, leading to a straightforward correction. Similar

verifications are performed on PEPA models, and errors such as using one parameter instead of
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another, or forgetting to add an action, could more easily be spotted. These potential errors are

usually the most difficult to uncover as they can give perfectly sensible results.

From the work presented in this thesis, several features have been modelled using PEPA, with

varying degrees of success. Indirect transmission can be modelled very naturally in PEPA, whether

through an infected environment or via a host. Direct transmission requires more subtle changes to

the model. A solution has been provided in chapter 4, whether it concerns frequency (section 4.2)

or density (section 4.3) dependent transmission. However, density dependent transmission required

a non-biologically inspired solution, which required population to individual level reasoning, which

defeats the purpose of using process algebra in this case. Births and deaths however, were provided

with very satisfactory solutions. Various solutions were conceived, each of them adapted to a

different situation.

Compartments cannot directly be modelled in PEPA. However, a solution approaching it has

been provided in chapter 7. The grammar conceived allowed them to be easily expressed, in

a concise and intuitive way. The translation of the model written following the rules of this

grammar to a valid PEPA model has been made simple by the addition of software that does it

automatically. However, the resulting model grows in size and complexity linearly with the number

of compartments, quickly resulting in a situation where the current tools are not able to deal with

it.

PEPA does not have the option to directly allow some features to be included in the model.

Functional rates, timed events, or direct cooperation between 2 agents in the same subgroup,

among others, are not permit by PEPA’s grammar. It has been shown however that for each of the

limitations encountered throughout this thesis, there was a way to approach the desired behaviour.
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8.3 Current developments in PEPA

While the scope of PEPA may seem currently constrained in the complexity of the model and the

size of the population used, some largely unpublished ongoing research focuses on increasing the

set of PEPA models and initial parameters amenable to automated analysis.

A new tool is being developed by Anton Stefanek [81, 80] based on the slightly modified version

of PEPA, GPEPA, proposed by Hayden and Bradley [40]. Several types of analyses are available:

average of stochastic simulations, ODEs, variance of one component, covariance of two components,

central moment and standardised central moment of one component1.

Another novel type of analysis, also based on GPEPA, is being developed [82] and already

exhibits some potential in allowing simulations to be performed for models considered too large

or complex by previous tools. The principle underlying this analysis is that ODEs give a good

approximation of the average of stochastic simulations on some intervals of the timeline, but

cannot describe the behaviour properly on others. Within the intervals where the ODEs give an

unsatisfactory approximation of the average of the stochastic simulation, the ODEs are replaced

by the average of a number of stochastic simulations. In practice, if the interval where the ODEs

are unreliable is [t0, t1] , and the analysis is run between [a, b], with a < t0 < t1 < b, then the ODEs

are used to calculate the average number of each component between a and t0. The values for each

component at t = t0 are then fed to stochastic simulation software2. A series of simulations are

1The variance, covariance, central and standardised centre moments calculations are based on the approximation

of the component counts given by the ODEs analysis.
2Two methods exist at the moment to perform this task. The first one simply uses the real values for the

components, and the stochastic simulation software has been adapted to be able to perform this task. The second

one uses ODEs to calculate the mean and covariance of each component to determine the proportion of simulations

starting with different natural numbers of agents in each component type.
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performed between t0 and t1. The average number of agents in each component is then fed to the

ODEs at t=t1. The component counts are then computed for the interval [t1, b].

8.4 Future work

PEPA could be used as it is to model epidemiological systems. However, some of the issues which

prevent the model being fully expressed or analysed can be handled better.

Getting the mean of simulations for a model with timed events

The analysis of the measles model in section 6.4 was limited by the fact that the mean of different

stochastic simulations would not have provided meaningful results. Indeed, because timed events,

and in this case season changes, do not happen exactly at the same time from one simulation to

the next, a simple average of the different runs would result in intervals where different simulations

are in different seasons. In the case of measles, increasing the population sizes decreases the

stochasticity, and allows results that would be reasonably close to the average behaviour using

only one simulation, but this is not the case in general. Indeed, the smaller the population size,

the more stochasticity has an influence on the behaviour of the system, and as a result, individual

simulations will show greater differences with one another.

A solution would be to align all the points where the behaviour changes, and extend or reduce

the length of the intervals so they have the same duration. Consider an event that must happen

exactly tdiff time steps after t = t0. In some simulations, the event might happen at time t =

ts, which might occur after or before tdiff . In order to normalise the duration of the event in

every simulation, the time at which each data point is recorded is updated in order to be equally
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distributed between t0 and tdiff . For each data point di t recorded at time t, the new time associated

with it is:

t′=
(tdiff − t0)

(ts − t0)
× (t− t0) + t0

(tdiff−t0)
(ts−t0) represents the new interval between data points for the event. t− t0 represent the number

of time steps since the start of the event. The final +t0 term simply adds the time steps that

happened before the event started.

For example, consider the case where a winter season starts at t0=6, and finishes at t1=11 for

simulation 1, and t2=13 for simulation 2, and the season lasts until tdiff =12 on average. We want

to force the season to finish at t=12 in both cases. This implies that the winter has to be extended

in the first simulation and shortened in the second. Assuming the data on the population size is

gathered at each time step, the number of data points available is 5 and 7 respectively, denoted

d17 to d111 for simulation 1 and d27 to d213 for simulation 2.

For simulation 1, the new interval between data points is 6
(11−6)=

6
5 , expressing the fact that

fewer data points are available than there are time steps between 6 and 12. This results in the

points (7.2, d17), (8.4, d18), (9.6, d19), (10.8, d110), (12, d111). The same principle can be applied

to simulation 2, with in this case, intervals between data points equal to 6/7, representing the fact

that more data points are available than there are time steps between 6 and 12.

This algorithm could be automated to the simulations, detect the switching points, and average

the runs after having aligned the switching points.

Functional rates

Hillston and Kloul [45, 44] introduced a modified version of PEPA where rates can be a function

of the state of a particular agent, while all the remaining grammar remains the same. The new
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syntax for the rate is the following:

e ::= r|f |r × f

where f : 2C −→ R∗, with 2C the set of functions from C, the set of component types, to {0, 1},

and R∗={r|r ≥ 0; r ∈ R} ∪ {>}.

In epidemiology, rates can be a function of the number of individuals in a particular state. The

new definition of the rate presented above can be used for that purpose. Indeed, all the agents in

a particular subgroup can be tracked, and the rate can be adjusted depending on the number of

agents in a particular state. For example, the definition of the birth rate as seen in Section 5.2 can

be simplified dramatically by using the rate:

f(x1, x2, ..., xn) = birth rate× (1−
n∑
i=1

xi/K)

with the value xi being 1 if the ith agent of the subgroup is considered alive, 0 otherwise. The func-

tional rate would replace an expression that already indirectly uses population level assumptions,

while potentially being more intuitive that its PEPA model counterpart.

However, this novel definition of the rate cannot be used for practical purposes yet. Indeed,

there is no tool that supports this new formalism, preventing any stochastic simulation analysis.

Scalability is an issue as well. The new definition of the rate requires every agent to be tracked

individually. Therefore, the performance of the algorithm might suffer from the size of biological

systems, even more than it does with the currently-used definition of PEPA. Finally, using func-

tional rates might defeat the purpose of using PEPA in the first place. Indeed, the objective in

this thesis is to make assumptions about individual behaviour explicit in order to draw conclusions

about the population level behaviour via analysis. Rates that depend on the size of the population

already include some assumptions on the overall behaviour of the population. However, in the

case of well-known features, the knowledge already available might this approximation and keep

the model amenable to automated analysis.
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Improving the efficiency of models with compartments

While it is now possible to split the population into different compartments, the resulting PEPA

model is largely inefficient in the sense that the tools used to analyse it do not take into account

the fact that some of the components belonging to different compartments might have a similar

behaviour.

This is due to the fact that PEPA was not inherently conceived to allow compartments, and

neither were the tools build to analyse models in PEPA. Two evolutions are possible to improve

the efficiency of these models. The first one would be to develop a tool which would take into

account the similarities between components in different compartments. Whether it is possible or

not is still to be determined. The second option is to design a new process algebra based on PEPA,

which would allow the possibility of having different compartments, and whose tools are conceived

with this new feature in mind. The approach proposed by Galpin [32] described in section 7.1

might provide the required theory.

Helping the epidemiologists

While PEPA is based on a fairly simple principle, its syntax might look daunting to epidemiologists

more used to handling ODEs. Furthermore, some of the methods presented in this thesis are

complex and may easily lead to mistakes in the model, despite the use of tools to help detect and

correct errors.

In order to overcome these issues, software that would hide the PEPA file, could be conceived, in

which a basic understanding of the principle of components undertaking actions would be sufficient

to generate PEPA models. The complex terms, such as density dependent transmission, birth and
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death, or seasonality could also be easily added without having to understand the concept and

expression behind the feature. For example, Harel statecharts [39] could be used as a graphical

representation of the model, which would then be translated to a valid PEPA model.

8.5 General conclusion

Overall, PEPA has proven to be a useful tool that could be used to model biological systems. In the

systems studied in this thesis, it has successfully described the population and disease behaviour,

and when analysis could be performed, it has reproduced the results obtained in the literature.

It has also been shown how the tools could be used to further the analysis of the model, with

potential additional biological knowledge to be gained.

Over the course of this thesis, it has also been noted that some features could not be naturally

described in PEPA, and artificial solutions had to be provided to represented them in the model.

The size of the studied population and the complexity of the models have also proven to be a

challenge as some of the existing tools could not handle some of the developed models.
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