
 

 

 

Empirical Essays On Volatility Forecasting 

 

XINPENG ZHANG 

 

 

 

This thesis is submitted for the degree of PhD 

at the 

 

School of Management 

University of Stirling 

Dec 2023 



 

 

 

Declarations 

1.  Candidate's declarations: 

I, XINPENG ZHANG, hereby certify that this thesis, which is approximately 45000 words in 

length, has been written by me, that it is the record of work carried out by me and that it has 

not been submitted in any previous application for a higher degree.  

I was admitted as a research student in January 2019 and as a candidate for the degree of PhD 

in February 2020; the higher study for which this is a record was carried out in the University 

of Stirling between 2019 and 2025.  

Date:     Signature of candidate: Supervisor's declarations 

I, hereby certify that the candidate has fulfilled the conditions of the Resolution and 

Regulations appropriate for the degree of PhD in the University of Stirling and that the 

candidate is qualified to submit this thesis in application for that degree.  

Date:     Signature of supervisor:   

2.  Permission for electronic publication  

In submitting this thesis to the University of Stirling I understand that I am giving permission 

for it to be made available for use in accordance with the regulations of the University 

Library for the time being in force, subject to any copyright vested in the work not being 

affected thereby. I also understand that the title and the abstract will be published, and that a 

copy of the work may be made and supplied to any bona fide library or research worker, that 

my thesis will be electronically accessible for personal or research use unless exempt by 

award of an embargo as requested below, and that the library has the right to migrate my 

thesis into new electronic forms as required to ensure continued access to the thesis. I have 

obtained any third-party copyright permissions that may be required in order to allow such 

access and migration or have requested the appropriate embargo below. 

The following is an agreed request by candidate and supervisor regarding the electronic 

publication of this thesis:  

Access to printed copy and electronic publication of thesis through the University of Stirling. 

Date    Signature of candidate:    Signature of supervisor   

  



 

 

 

Empirical Essays On Volatility Forecasting 

 

XINPENG ZHANG 

 

 

 

This thesis is submitted for the degree of PhD 

at the 

 

School of Management 

University of Stirling 

Dec 2023 

 

  



 

 

 

Abstract 

This thesis aims to examine and improve forecasting performance for both univariate volatility 

and multivariate covariance models. This thesis investigated the forecasting ability of volatility 

models and covariance models including univariate GARCH methods, HAR models, and 

multivariate DCC process on stock indices in twelve countries. Moreover, several hybrid 

models combined by the current GARCH genres and neural networks are investigated in three 

empirical exercises. The accuracy of forecasting by different models is addressed. There are 

four main contributions of this study. First, the comparison among the univariate normal 

GARCH genre, HAR model and hybrid models by neural networks reveals that the hybrid 

models are superior to others which gives an empirical result in a wide comparison. The 

policymakers can benefit from the results to formulate their policies to avoid risk. Second, with 

the application of DCC process, the new multivariate model built by neural networks are 

preferred rather than original DCC GARCH models when forecasting covariance which give 

some empirical results on multivariate covariance forecasting. The results are able to provide 

some suggestions for market managers on risk control, especially for the portfolios containing 

multivariate assets in different countries. Third, the trading volume is found to be useful for 

improving volatility forecasting in the hybrid process. Finally, the original neural networks are 

improved by a deep learning model which has more hidden layers than the previous neural 

networks. The forecasting ability of all the models are investigated and the hybrid model built 

with deep learning are still superior. This research provides valuable insights and a reliable 

framework for improving stock volatility predictions.   
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1. Introduction 

In the past few decades, with the rapid development of the stock market, lots of events related 

to risk management in the stock markets happened. Some of them caused huge losses and 

nearly destroyed the stock market. On 19th October 1987, which is called “Black Monday”, the 

New York Stock Exchange (NYSE) lost more than US$500 billion in market capitalization. 

Between October 19 and 23, the stock crash has influence on global market include: United 

Kingdom, Japan, USA, Hong Kong, Frankfurt, Amsterdam, Mexico City and Sydney, etc. 

(Carlson, 2007). Another one is the global financial crisis happened in United States of America 

in 2008 and then spread to the whole world, it caused billions of losses, and the market appeared 

to get down in a long time. Therefore, the stock volatility has attracted lots of attention in the 

finance literature, lots of papers were proposed to investigate the volatility. Although various 

models and measurements have been proposed, there is still some space for the improvement 

of the volatility forecast. With this thesis, we wish to follow the steps of the current literature 

and conduct research by comparing the existing models and investigate some new hybrid-built 

models by using machine learning methods. Some key parameters will be explored as well in 

the improvement of the volatility forecast. 

Since the market can be highly volatile, the volatility is directly related to market uncertainty, 

and it will affect anyone in the markets. By the view of Bhowmik & Wang (2020), in financial 

markets, volatility is mainly reflected in the deviation of the expected future value of assets, 

and it represents the uncertainty of the future price of an asset. A good estimate or forecasting 

of the volatility can present significant investment risk. Investors who deal with derivative 

securities, accurate and precise volatility forecasting can help them manage their portfolios and 



 

2 

 

get more chance to succeed in trading which will generate more profits or avoid losses. 

Moreover, volatility stands an important position in investment, security valuation, risk 

management and monetary policy making. Poon & Granger (2001) mentioned on page 478 that 

“Volatility forecast crucially affects investment choice and is the key input to the valuation of 

corporate and public liabilities. The forecast of volatility is also the most important parameter 

affecting prices of market-listed options, of which trading volume has quadrupled in the last 

decade.” 

Since volatility plays an important role in both theoretical and empirical applications in finance, 

the forecasting of volatility forecasting has obviously become crucial to almost anyone who is 

involved in the financial markets, it will affect the markets as well as the whole economy in a 

country even in the world. An accurate volatility forecasting becomes an important mission in 

the finance area including portfolio pricing, hedging, and option strategy, etc. It will help the 

market stay stable and avoid a potential crash. In addition, a good understanding and 

measurement of volatility can be useful across different areas including politics, banking, risk 

management, individual investors, enterprises and lots of other institutions. 

With this thesis, we aimed to add some new knowledge to the literature on volatility forecasting 

including a hybrid volatility forecasting model with neural networks, and several investigations 

on different normal models with different parameters to be considered in the modelling process. 

The reason to use the neural networks is that the method does not need too much formal 

statistical training. It can not only detect complex nonlinear relationships between dependent 

and independent variables but detect all possible interactions between predictor variables as 

well addressed by Tu (1996). Moreover, it can be simple to combine any other different models 
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with their training algorithms. 

There are four main contributions of this thesis: 

First, the hybrid model built with GARCH genre and simple neural networks were used to 

make forecasts of univariate volatility. After performing the volatility exercise among the 

hybrid models, GARCH series and HAR model, it suggests that the hybrid models are superior 

to the GARCH series or HAR models which gives an empirical result in a wide comparison. 

The policymakers can benefit from the results to formulate their policies to avoid risk. Second, 

when forecasting the covariance/correlations, a model which combined the neural networks 

and the DCC process was considered. After comparing the performance between several DCC 

GARCH models and hybrid models, the hybrid models appeared to be better when considering 

the covariance/correlation forecasting which give some empirical results on multivariate 

covariance forecasting. The results are able to provide some suggestions for market managers 

on risk control, especially for the portfolios containing multivariate assets in different countries. 

Third, the hybrid models were improved by a machine leaning method called Deep Learning. 

More hidden layers were considered in the process and the machine with more hidden layers 

has a better performance than the original machine. Forth, with the contribution of trading 

volume on the forecasting ability, both the GARCH model and hybrid models has a better 

forecasting performance when considering the trading volume and the hybrid models with 

Deep Learning performs best among all the models. The empirical results of the models with 

consideration of trading volume provides a view for further research on the volatility 

forecasting when using deep learning methods. It provides valuable insights and a reliable 

framework for improving stock volatility predictions. Apart from the main contribution 

mentioned above, some other issues are considered as well. Since some of the exist literature 

focus on a single model or very limited data, this thesis provides a more comprehensive 



 

4 

 

comparison among nine models in a wide range of stock index from twelve different countries. 

Both developed and emerging countries are included. It is better to have a whole view of the 

trend or dynamics from different angles.  

The structure of the thesis contains a literature review chapter, three empirical chapters and a 

conclusion chapter. The next chapter (Chapter 2) is the literature review chapter. The evolution 

of the volatility as well as a definition of the volatility in stock market are introduced. The 

importance and implications of forecasting volatility are given by different literatures. Some 

stylized facts of the data are introduced including non-normality, volatility clustering, long 

memory, asymmetric volatility phenomenon, co-movements, asymmetric vertical dependence. 

After that, a list of GARCH models, the HAR model and several machine learning methods 

are noted. The models introduced in this chapter will be used in the rest of the thesis. After that, 

a state of the literature is proposed which several of research on volatility in past two decades 

are reviewed and the research question of this thesis are addressed. 

In Chapter 3, an empirical comparison exercise among different volatility models is carried 

out. This is a very popular topic in financial literature. However, there does not exist a general 

conclusion which model performs the best. Since numerous studies in financial literature have 

conducted lots of comparisons among the normal volatility models such as simple models like 

Exponential Smoothing (ES) and the Moving Average model (MA), ARCH/GARCH type 

models, this chapter uses a hybrid model built with GARCH models and neural networks. A 

new comparison between three model categories is proposed: the normal ARCH/GARCH 

models, Heterogenous autoregressive models (HAR), and the hybrid models built with neural 

networks. 
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A wide range of stock index from twelve countries is selected in order to make more 

comprehensive view of the comparison between different models. The daily closing price of 

the stock index from these countries is obtained. Five measures of comparison techniques are 

applied in the exercise based on a loss function with the realized volatility. A model confidence 

set is created at the end to identify a better model at a certain confidence interval. There are 

two main results: among the comparison of GARCH series model, the long memory models 

outperform the asymmetric models and HAR model, the other result is among the whole 

comparison between GARCH series, HAR model and hybrid models, the hybrid-built type 

models outperform the normal GARCH or HAR models. The asymmetric GARCH models 

built with neural networks have a better forecasting performance rather than other types of 

hybrid models. 

In Chapter 4, another empirical comparison exercise among different covariance models is 

carried out. There exists lots of papers talking about the volatility behaviors of a univariate 

asset, while a discussion of the conditional covariance or correlation among multivariate assets 

is limited. This chapter (Chapter 4) makes an empirical comparison exercise among different 

covariance models. There are different methods to capture the dynamics of the covariance such 

as the vector error correction model (VEC), the direct extension of univariate GARCH model 

called BEKK model, the Constant conditional correlation (CCC) model, the standard dynamic 

conditional correlation (DCC) model, etc. Following the step of previous chapter (Chapter 3), 

the standard dynamic conditional correlation (DCC) GARCH models are selected and a new 

hybrid model built with neural networks and DCC GARCH models are introduced. 

Comparisons among the normal multivariate DCC GARCH models and the new built hybrid 

models are created. The same daily closing price of the stock index is used from Chapter 3. 

Since the covariance matrix of all the countries will be a huge matrix and most of the procedure 

could be iterated, we take a covariance forecasting between USA and all other countries as an 
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empirical exercise to make the chapter more concise and direct to understand and read. The 

realized covariance will be used to test the distance between the forecast series and the “actual” 

with the application of four comparison techniques. A model confidence set will be created as 

well to test the forecasting ability of different models. There are two main results: The new 

proposed method built with the DCC model and neural networks outperforms the traditional 

DCC GARCH models when forecasting covariance, particularly, the EGARCH DCC process 

built on neural networks has the best forecasting performance within the whole comparison 

technique. Likewise, the results show that there is no strong evidence that the results from 

conditional variance forecast in DCC process (Step one) will have greater impact on the 

forecasting of the conditional covariance.  

In Chapter 5, the effect of the trading volume on the volatility forecasting is investigated. 

Moreover, the forecasting ability of a new machine built with more hidden layers will be tested 

as well. The relationship between the volatility of financial markets and trading volume has 

attracted a great deal of attention during the past three decades, lots of paper and several 

theoretical models have been developed to investigate the relationship between the volatility 

and trading volume. We will explore the impact of trading volume on the volatility forecasting 

with the application of the GARCH series. Furthermore, an improved machine with more 

hidden layers which could be called Deep Learning Machine generalized from Chapter 3 will 

be introduced and a test of the forecasting ability will be carried out. Several comparisons will 

be created including standard GARCH with/without considering trading volume, the old hybrid 

model with/without considering trading volume, the new hybrid model with/without 

considering trading volume. 

The same dataset from Chapter 3 is used in order to make the comparison with different 

models in the same out-of-sample forecasting. There are two main objectives of the exercise: 
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one is to test the impact of the trading volume on volatility forecasting, the other is to test the 

forecasting ability of new hybrid models with more hidden layers when training the machine. 

Four same comparison techniques will be used for consistency. The results show that the 

accuracy of the volatility forecasting will be improved with the consideration of the trading 

volume not only in traditional GARCH series, but the hybrid models as well. Moreover, with 

the application of more hidden layers in neural networks, the ability of volatility will be 

improved. 

Finally, Chapter 6 summarizes the main findings: the univariate volatility forecasting 

performance among GARCH series, HAR model and hybrid models with neural networks; the 

forecasting ability conditional covariance of DCC GARCH model and neural networks; the 

superiority of the GARCH series models, the old machine with less hidden layers, and the new 

machine with more hidden layers and the effect of the trading volume on volatility forecasting. 
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2. Literature review 

Abstract 

The main aim of this chapter is to review literature and related works about the measurement 

and forecasting of volatility. A list of Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models, Heterogeneous Autoregressive (HAR) model and hybrid 

GARCH model based on Machine Learning methods (ML) are introduced. With the application 

of the GARCH models which is the one of the most widely used volatility models, the 

characteristics and dynamics of volatility could be captured. Moreover, with the development 

of machine learning methods, a hybrid GARCH model based on Machine Learning methods 

has proved to be effective to enhance the forecasting performance of traditional GARCH 

models. However, there still existed a debate which model can be considered as the “best” one 

for volatility forecasting. However, some of the empirical results by hybrid GARCH models 

were very limited. They are limited to using data from one or two assets, which is not sufficient 

to give a general result. Likewise, some related work only considered a corresponding hybrid 

GARCH model which has a good estimation in original GARCH step which has a lack of 

reporting the full performance of all the hybrid GARCH models. In this chapter, the literature 

about volatility and covariance is reviewed and the superiority of different models by different 

empirical exercises are addressed. 
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2.1 Introduction 

In the past twenty years, with the rapid development of the stock market, lots of events related 

to risk management in the stock markets have happened. There are some events which are very 

famous. On 19th October 1987, which is called “Black Monday”, the New York Stock Exchange 

(NYSE) lost more than US$500 billion in market capitalization. Between October 19 and 23, 

the stock crash has influence on global market include: United Kingdom, Japan, USA, Hong 

Kong, Frankfurt, Amsterdam, Mexico City and Sydney, etc. which is investigated by Goldman 

Sachs (2019). Another is the 2008 global financial crisis happened in United States of America 

and then spread to the whole world, it caused lots of billions loss and the market appeared to 

get down in a long time by Duffie (2019). By the report of Stevenson (2020), the 2015 stock 

market crisis happened in China which made lots of people lose their house. Therefore, risk 

measurement appeared to be crucial to avoid loss and market disruption, which leads to a 

popularity of studying on topic of stock market volatility. 

In the early years, funds were judged largely by the performance of fund managers until 

Markowitz (1952) argued that fund performance should be judged compared to the amount of 

risk it takes, which can be considered as the early stage for volatility measurement. The “risk” 

was a vague concept which cannot be described as a number and unobservable so that the 

volatility is considered to be the “variance” by Markowitz. 

Studies used measures of the variance or “volatility” of speculative asset prices to provide 

evidence against simple models of market efficiency. According to the work of LeRoy & Porter 

(1981) and Shiller (1979), the measures were interpreted as implying that prices show too much 

variation to be explained in terms of the random arrival of new information about the 
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fundamental determinants of price in connection with stock price, bonds, dividends, foreign 

exchange rates, etc.  

The entire financial industry started using volatility to measure risk in the early times. After the 

crash, a financial institution, JPMorgan, began to use a new daily report which would describe 

the loss of a bank on its trading positions on any given day. The report then comes to be a new 

tool that is known as “Value-at-Risk” (VaR). The VaR report was first designed by a banker 

called Till Guldimann (1980), who used the historical volatility of markets to calculate the 

maximum the bank could lose on any given day, with 95% certainty. Later the VaR estimate is 

defined as the minimum expected loss with a 1% confidence level (sometimes 5% confidence 

level) for a given time horizon (usually 1 or 10 days) which is readily available to give volatility 

estimates and widely used among banks and trading institutions.  

The changes in volatility can be influenced by lots of factors. Becketti & Roberts (1990) 

suggested that stock market volatility can be divided into two types: normal volatility and jump 

volatility. In a simple word, the normal volatility is the ordinary variability of stock prices, that 

is, the normal movements in stock prices, while the jump volatility refers to accidental and 

sudden extreme changes in stock prices such as the price shocks in 1987, the volatility jumped 

up from roughly 20 percent to over 50 percent although jumps in returns generate more than 

half of the crash in 1987 while high volatility explains the rest. Eraker et al. (2003) mentioned 

that “It is especially important to determine the contribution of jumps to periods of market 

stress because jump risk, either in returns or in volatility, cannot typically be hedged away, and 

investors may demand a large premia to carry these risks”. Jumps in stock prices over a 

relatively short time-period which may lead to a jump of volatility, and it can temporarily 

disrupt capital markets. Furthermore, with an increased jump volatility, the confidence of 

investor will be reduced dramatically in the stock market, leading to decreased trading activity, 
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lower liquidity, and higher investment cost, all of which could seriously threaten market 

stability documented by Darrat & Rahman (1995). For example, stocks are more volatile than 

bonds, so investors would shift their portfolio to a more stable asset to avoid risk. Similarly, 

the shares of smaller companies tend to trade less than bigger companies' shares in order to 

make profits with less risks. In the early time, lots of researcher blame the future trading 

activities as the source of the increased jump volatility. However, Darrat & Rahman (1995) 

suggested that futures trading activity (however measured) is not a force behind the recent 

episodes of jump volatility. Similarly, Becketti & Roberts (1990) argued that recent regulations 

aimed at reducing the general level of futures activity are unwarranted and would not contribute 

to a more stable environment in the stock market. 

Jones et al. (1994) suggested that public information is the major source of short-term return 

volatility by investigating the stock price movements with the effect of public information. The 

main reason could be considered as the action of the investors to the information, which will 

lead to high fluctuations (volatility) in the market. The crash in 1987 was a good symbol that 

the investors gave responds to the market investigated by the survey of Campbell & Shiller 

(1988). 

The monetary policy on the stock market is also a factor which cannot be ignored. In general, 

a loose monetary policy may increase the probability of a rise in the stock market. Relatively, 

a tight monetary policy may increase the probability of a drop in the stock market. The 

policymaker can either reduce the market volatility by investing money in the market which 

will increase the confidence of the market by a loose monetary policy. Alternatively, the 

policymaker can stay calm with a tight monetary policy, standing as a lender to the market 

when the probability of a financial crash rises and be ready to save the market addressed by 

Mishkin (1999). 
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Volatility plays a really important role almost everywhere in financial market. It is directly 

linked to market uncertainty or risks and affects the investment behaviors of investors and 

financial institutions. A high volatility is usually found by a wide range of fluctuations in the 

prices over short time periods. It means security values are not dependable, and the capital 

markets are not functioning as well as they should mentioned by Figlewski (1997). In financial 

markets, the issue of volatility forecasting is indispensable since it is often taken to represent 

the risk and plan the investment portfolio. In recent years, studies follow the trend to improve 

the ability of forecasting volatility in financial markets. A reliable forecast of the volatility will 

direct investor to make a more correct decision, especially for institutions involved in pricing 

financial derivatives like options trading and portfolio management since almost all modern 

option-pricing techniques rely on a correct volatility parameter for price evaluation. 

Mathematically, a model of asset pricing without taking volatility into account will have an 

unpersuasive result. With the assistance of modelling the volatility, the dependencies between 

the current values of the financial indicators and their future expected values will be detected. 

The main aim of this chapter will be set to explore the issues happened in volatility forecasting, 

especially, the characteristics of volatility models in stock market which explained by the 

researcher and investors. For beginning in this section, a list of different models or approaches 

to estimate volatility are introduced below. 
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2.2 Modelling Volatility 

In the financial market, a clear understanding of both return and risk is the first necessary task 

for either investing or research. The return is widely considered as a change of one certain asset 

over a period while the risk is considered to be a potential variability or volatility of the return. 

The measurement or prediction of the volatility has held the attention of academics and 

practitioners over the last two decades although several models and methods are introduced. In 

the next section, an early definition of volatility and models is reviewed. 

2.2.1 Early stage of volatility measurement 

Some conceptual issues including volatility, standard deviation, and risk are elucidated by the 

early work of Poon & Granger (2003). In finance, volatility is often used to refer to standard 

deviation, 𝜎, or variance, 𝜎2, computed from a set of observations as 

𝜎̂2 =
1

𝑁−1
∑ (𝑟𝑡 − 𝑟̅𝑡)

2𝑁
𝑡=1                 (2.2.1) 

where 𝑟̅𝑡 is the mean return.  

The sample standard deviation statistic 𝜎̂  is a distribution free parameter representing the 

second moment characteristic of the sample. 

Figlewski (1997) noted that since the statistical properties of sample mean make it a very 

inaccurate estimate of the true mean, especially for small samples, taking deviations around 
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zero instead of the sample mean as in equation (2.2.1) typically increases volatility forecast 

accuracy. In his work, he constructed a good concept of volatility by using "efficient markets 

hypothesis" and "random walk" model. In an efficient market, asset price movements can be 

described by an equation as follows: 

𝑟𝑡 =
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
= 𝜇𝑡 + 𝜀𝑡               (2.2.2) 

where 𝐸(𝜀𝑡) = 0; 𝑣𝑎𝑟(𝜀𝑡) = 𝜎𝑡
2 

The term, “return” 𝑟𝑡 means the rate of change in the asset price S that occurs between two 

time periods from t-1 to t. In his work, the return is the sum of a nonrandom mean return µ𝑡 of 

period t, plus a zero mean random disturbance ε𝑡 which is independent of all past and future 

values. It means that {… 𝜀𝑡−1, 𝜀𝑡, 𝜀𝑡+1, … }  are independent. Since {… εt−1, εt, εt+1, … }  is 

independent, he mentioned “the lack of serial correlation defines characteristic of efficient 

market pricing: past price movements give no information about the sign of the random 

component of return in period t”. 

A continuous time analogue can be obtained by  

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑧                 (2.2.3) 

The formula comes from the logical extension of the random walk model to continuous time 

which was adopted by Black & Scholes (1973). They aimed to model stock price movements 

over a very short interval of time by deriving the option price formula so that it is possible for 
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them to consider a trading strategy in a short time interval. The formula seeks to observe the 

price movements by limiting the time to zero. With this measure, the mean return µ and the 

standard deviation of return σ which is defined as the volatility will be a constant over a year. 

dz is a time independent random disturbance with mean zero and variance 1 ∗ 𝑑𝑡. 

In the long history of research of modelling volatility, there are lots of models generated to 

measure or capture the volatility. Volatility forecasting becomes a hot topic in recent years. The 

volatility can be measured as mentioned above by standard deviation or variance of the returns. 

Alternatively, it can be measured by the Black & Scholes formula. Among these measurements, 

the most important part is to consider a return process. The model describing the returns of an 

asset at time t can be defined as 

𝑋𝑡 = 𝜇 + 𝜎𝑡𝜐𝑡                 (2.2.4) 

where µ is the mean process which could be an AR process, MA process or ARMA process, 𝜈𝑡 

and 𝜎𝑡 are independent. 

𝜀𝑡 = 𝜎𝑡𝜐𝑡                   (2.2.5) 

{𝜎𝑡} is non-negative stochastic process t for a fixed t. {𝜈𝑡} is a sequence of independent and 

identically distributed (i.i.d) random and symmetric random variables. Volatility process is 

identified by {𝜎𝑡} . The time series {𝑋𝑡}  and the volatility process {𝜎𝑡}  are assumed to be 

strictly stationary. Stock return is unique from returns of other types of investments because of 

the implication of continuous compounding concept. Such nature of stock return requires its 

measurement from a natural. 



 

16 

 

2.3 Stylized facts of the asset return and volatility 

Following the work of Tsay (2005), financial time series data analysis was different from other 

time series analysis due to their characteristics. The empirical time series contained an element 

of complex dynamic system with high volatility and a great amount of noise. The uncertainty 

and noise make the series exhibit some empirical regularity, which are known as stylized facts. 

At an early stage, research on the empirical distribution of the stock returns found that the 

distribution often appeared to be different from the normal distribution. The empirical 

distribution of the stock returns turned out to be leptokurtic or skewed (either right or left). This 

leads to a non-constant variance over time and the volatility tends to be clustering. Both non-

normality and clustering are identified as the stylized fact or empirical regularity of the returns 

and volatility. There are lots of stylized facts which are believed to be the truth, and the facts 

are necessary to be identified when making selection of models. 

Non-normality 

It is a widely accepted stylized fact that most financial asset returns exhibit non-normal 

distribution characteristics. At the early stage, by the work of Mandelbrot (1963), Fama (1965), 

and Cootner (1970) when studying the distribution of stock returns, they reported that the 

empirical distribution of a return series has properties different from the normal distribution. 

By observing the real asset returns, the extreme event appears to be larger than what is assumed 

by common data generating process (normal distribution). The returns distribution has fat tails 

with a more peaked central section. The non-normality of market returns is also confirmed by 

the work of Sheikh & Qiao (2009). When they try to make an asset allocation decision, the 

extreme negative events will be observed in a much higher frequency than current risk 
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frameworks allow for caused by the non-normality of asset returns. 

Volatility clustering 

Mandelbrot (1963) observed a feature of returns that “large changes tend to be followed by 

large changes of either sign; small changes followed by small changes.” which is represented 

as the volatility clusters. It can be understood that observing a large (small) return today 

(whatever its sign) is a good precursor of large (small) returns in the coming days. Since the 

distribution of the stock returns may not follow the normal distribution in most cases (non-

normality mentioned above), the variance of the returns will not keep a constant over time, and 

this may lead to volatility clustering i.e. volatility is not constant and tends to cluster through 

time. The research by Niu & Wang (2013) used an autocorrelation analysis to demonstrate the 

volatility clustering properties for the actual return series. 

Long memory 

With the work of Ding et al. (1993) by studying the property of the stock market returns, they 

suggested that not only there is substantially more correlation between absolute returns than 

returns themselves, but the power transformation of the absolute return also has quite high 

autocorrelation for long lags. A simple explanation with the work of them is that the volatility 

exhibits a significant autocorrelation even for very long lags which indicates that the changes 

of volatility typically have a long-lasting impact on its after performance. The property can be 

identified as a long memory effect.  

Asymmetric volatility phenomenon 
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The degree of leverage with a firm value will have an impact on its stock volatility which is 

commonly explained by the asymmetry property or leverage effect. By the early work of Black 

& Scholes (1973), they discussed the impact of leverage on stock price behavior, and the 

argument was documented by Merton (1974), Galai & Masulis (1976), Geske (1979). It could 

be described as the movements of stock price displayed a negative relation with volatility, a 

decrease of returns will lead to more volatility changes rather than a same amplitude increase 

of returns. The phenomenon has been confirmed by Christie (1982), Schwert (1989), Glosten 

et al. (1993), Braun et al. (1995), etc. 

Co-movements of volatility 

In a simple word, the returns and volatility of different assets and different markets tend to 

move together. Black & Scholes (1973) documented that when volatility changes, they all 

tend to change in the same direction. Lots of researches give evidence of this fact. Kim & 

Rogers (1995) examined the spread of volatility from Japan and USA to Korea. A conclusion 

made by them is that the spillover effect on the volatility of returns is more than on returns 

themselves. Subsequently, Liu & Pan (1997) examine stock return and volatility spillover 

effects from the developed markets to emerging stock market and has discovered that the 

volatility changes do have a spread over the international stock markets. 

Asymmetric vertical dependence 

In their work, Gençay et al. (2010) documented a property called asymmetric vertical 

dependence which indicated that it was asymmetric in the sense that a low volatility state 

(regime) at a long-time horizon was most likely followed by low volatility states at shorter 
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time horizons. On the other hand, a high volatility stated at long time horizons did not 

necessarily imply a high volatility stated at shorter time horizons. His work gave evidence 

that volatility is a mixture of high and low volatility regimes, resulting in a distribution that is 

non-Gaussian. This result has important implications regarding the scaling behavior of 

volatility. 

Since the volatility and return has some stylized facts or empirical regularities, the simple 

time series model in the early-stage face difficulties to capture the facts. With the help of the 

work by Engle (1982), a famous model called the Autoregressive Conditional 

Heteroscedasticity model (ARCH) was proposed in order to capture the dynamics of the 

volatility mentioned above. 
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2.4 ARCH/GARCH modelling 

In this section, a series of ARCH/GARCH models are reviewed in finance literature, different 

GARCH type models are selected in order to capture the stylized facts. 

Autoregressive conditional heteroskedasticity (ARCH) model 

The autoregressive conditional heteroskedasticity (ARCH) model is one of the most well-

known models to measure time-varying volatility. The model was proposed by Engle (1982) 

which is a mean zero serially uncorrelated processes. In his work, this model was used to 

estimate the means and variances of inflation in the United Kingdom. The process contains 

two important concepts. One is the conditional variance which is a nonconstant variable 

conditional on the past information. The other is the unconditional variance which stays 

constant.  

The ARCH effect documented by Engle (1982) which described the conditional variance can 

be specified as  

𝜎𝑡
2 = 𝑣𝑎𝑟(𝜀𝑡|𝜀𝑡−1,𝜀𝑡−2, … ) (2.4.1) 

The conditional variance 𝜎𝑡
2 is time-varying by the past information. In general ARCH (q) 

can be represented as: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−1

2𝑞
𝑖=1  (2.4.2) 
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The financial time series analysis has become more comprehensive by the invention of ARCH. 

The ARCH models took care of volatility clustered errors, nonlinearity and changes in the 

econometrician’s ability to forecast addressed by Bera & Higgins (1993).  

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models 

The GARCH model developed independently by Bollerslev (1986) is a generalization of the 

Autoregressive Conditional Heteroscedasticity (ARCH) model. It is a combination of a mean 

model and a variance process in order to model the conditional heteroskedasticity in a 

parsimonious way. The conditional variance equation in the simplest case, GARCH (1,1) can 

be written as the form: 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  (2.4.3)  

The conditional variance is represented as 𝜎𝑡
2 and it calculates the variance based on the 

history estimates. 

𝜀𝑡 = 𝜎𝑡𝜐𝑡 (2.4.4) 

The mean error is normally distributed with a zero mean and a conditional variance 𝜎𝑡
2 

which can be changed over a time period. 

The GARCH (p, q) specification is given by 
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𝜎𝑡
2 = 𝜔 + 𝛼(𝐿)𝜀𝑡−1

2 + 𝛽(𝐿)𝜎𝑡−1
2  (2.4.5) 

𝛼(𝐿) = 𝛼1𝐿 + 𝛼2𝐿
2 +⋯+ 𝛼𝑞𝐿

𝑞; 𝛽(𝐿) = 𝛽1𝐿 + 𝛽2𝐿
2 +⋯+ 𝛽𝑞𝐿

𝑝 (2.4.6) 

Since the conditional variance 𝜎𝑡
2 is clearly positive, the parameter on the right hand of the 

function should satisfy the “non-negativity constraints”, which means 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0. 

The main idea is that 𝜎𝑡
2, the conditional variance of 𝜀𝑡

2 given information available up to time 

t−1, has an autoregressive structure and is positively correlated to its own recent past and to 

recent values of the squared returns 𝜀𝑡
2 . This captures the idea of volatility (conditional 

variance) being “persistent” or clustering: large (small) values of 𝜀𝑡
2 are likely to be followed 

by large (small) values. The GARCH models permit a wider range of behaviors. It allows the 

conditional variance to be dependent upon previous own lags, that is the huge values of the 

lags(q) will not influence the accuracy of the prediction. 

Exponential GARCH (EGARCH) models 

The GARCH model, mathematically, explains conditional variance by formulating a linear 

regression between the squared disturbance error term in return process and the past variance. 

There is a limitation of this method that an equal size of positive and negative news will have 

the same impact on the conditional variance. In empirical research, an asymmetric effect 

usually existed which was explained by Black & Scholes (1973). A negative shock will increase 

more with the conditional variance than a same magnitude of positive shock, which is called a 

“leverage/asymmetric effect”. A widely used asymmetric GARCH model put forward by 

Nelson (1991) namely the exponential GARCH (EGARCH) model provides a first explanation 

for the 𝜎𝑡
2 depends on both the size and the sign of lagged residuals in the return process. In 
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particular, 

𝑙𝑛(𝜎𝑡
2) = 𝜔 + ∑ 𝛽𝑖𝑙𝑛(𝜎𝑡−𝑖

2 ) + ∑ 𝛼𝑖{𝜙𝜐𝑡−1 + 𝜓[|𝜐𝑡−𝑖| − 𝐸|𝜐𝑡−𝑖|]}
𝑞
𝑖=1

𝑝
𝑖=1  (2.4.7) 

Consider p=1 and q=1, {𝜐𝑡} is a sequence of i.i.d with a zero mean, the function could be a 

simple EGARCH (1,1)  

𝑙𝑛(𝜎𝑡
2) = 𝜔 +  𝑙𝑛(𝜎𝑡−1

2 ) + 𝛼𝜙𝜐𝑡−1 + 𝛼𝜓|𝜐𝑡−𝑖| (2.4.8) 

If define  

𝑔(𝜐𝑡) = 𝜙𝜐𝑡 + 𝜓|𝜐𝑡| (2.4.9) 

Here {𝑔(𝜈𝑡)} is a zero-mean, i.i.d random sequence since the components of 𝑔(𝜈𝑡) are 𝜙𝜐𝑡 

and 𝜓|𝜐𝑡|  are zero mean. With the assumption in return process that {𝜈𝑡}  is normally 

distributed, the components of 𝑔(𝜐𝑡) are orthogonal, though they are not independent. If 0≤ 

𝜈𝑡 < ∞ , with refers to a positive news, 𝑔(𝜈𝑡) is linear in 𝜈𝑡  with slope 𝜙 + 𝜓 , and if -

∞ ≤ 𝜈𝑡 < 0，with refers to a negative news 𝑔(𝜈𝑡)  is linear with slope 𝜙 − 𝜓 . If 𝜙 < 0 , 

𝑔(𝜈𝑡) allows for the conditional variance process {𝜎𝑡
2} to respond asymmetrically to rises and 

falls in stock price by |𝜙 − 𝜓| > |𝜙 + 𝜓| and the clustering is captured by the parameter 𝜓. 

In the EGARCH model ln (𝜎𝑡
2)  is homoscedastic conditional on 𝜎𝑡

2  , and the partial 

correlation between 𝜈𝑡 and ln (𝜎𝑡
2) is constant conditional on 𝜎𝑡

2. 

Threshold-GARCH (TGARCH) models 
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Another alternative asymmetric model is selected as Threshold-GARCH (TGARCH) model. 

In GARCH model, by the assumption that the conditional variance is a linear combination of 

its squared errors and the historical variance, both the negative and positive shocks will cause 

a same impact on the variance. However, the leverage effect which is mentioned as the stylized 

fact of the volatility often occurs in empirical studies. It can be represented as a negative 

relationship between the returns and volatility. The leverage effect describes a negative shock 

will have a greater impact than the equal positive shocks on the variance. The Threshold-

GARCH (TGARCH) model proposed by Zakoian (1994) and GJR GARCH model studied by 

Glosten et al. (1993) define the conditional variance as a linear piecewise function will capture 

the effect in most cases. In TGARCH (1,1): 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛿𝐷𝑡𝜀𝑡−1
2 + 𝛽𝜎𝑡−1

2  (2.4.10) 

𝐷𝑡 = {
1    𝜀𝑡−1 < 0
0    𝜀𝑡−1 > 0

 (2.4.11) 

It can be clearly seen that the leverage effect is captured by the function 𝐷𝑡 with measuring 

the value of 𝜀𝑡−1. Similar with EGARCH models, ω provides the weighted average of the 

variance, positive news will reflect by the value of 𝛼 and negative news will be reflected by 

𝛼 + 𝛿. If 𝛿 > 0, the innovation in conditional variance is now positive when returns 

innovations are negative. The TGARCH model relaxes the linear restriction on the 

conditional variance dynamics. It could capture the stylized fact that conditional variance 

tends to be higher after a decrease in return than after an equal increase. 
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Component GARCH (CGARCH) 

Component GARCH models, which were first proposed by Engle & Lee (1999), constitute a 

convenient method of incorporating long-memory-like features into a short-memory model, at 

least for the horizons relevant for option valuation. In CGARCH model, the volatility of returns 

consists of a long-run and a short-run component. With the work of Chan & Maheu (2002), he 

provides evidence that a component model can capture long-range volatility dynamics by 

Monte Carlo. The component GARCH (CGARCH) model following is derived by replacing 

the constant 𝜎𝑡
2  with a time varying long-run component 𝑞𝑡 . The conditional variance 

changes by a long run component which is calculated by itself, autoregressive of the first order. 

The CGARCH model specification is: 

𝜎𝑡
2 = 𝑞𝑡 + 𝛼(𝜀𝑡−1

2 − 𝑞𝑡−1) + 𝛽(𝜎𝑡−1
2 − 𝑞𝑡−1) (2.4.12) 

𝑞𝑡 = 𝜔 + 𝜌𝑞𝑡−1 + 𝜑(𝜀𝑡−1
2 − 𝜎𝑡−1

2 ) (2.4.13) 

The long-run component 𝑞𝑡 will present the effect by computing the parameter 𝜌 larger than 

𝛼 + 𝛽, the value of (𝜀𝑡
2 − 𝜎𝑡

2) will control the time varying movement of the long-run effect. 

It constitutes a method of making the long-memory-like features into a short-memory model 

to capture the salient features of speculative returns. 

The conditional variance is the main object of interest and there exists varieties of GARCH 

type models, other parametric specifications for volatility addressed by Hansen and Lunde 

(2005) are listed below: 
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IGARCH: 

𝜎𝑡
2 = 𝜔 + 𝜀𝑡−1

2 + ∑ 𝛼𝑖(𝜀𝑡−𝑖
2 −𝜀𝑡−1

2 )𝑞
𝑖=2 + ∑ 𝛽𝑗(𝜎𝑡−𝑗

2 −𝜀𝑡−1
2 )𝑝

𝑗=1      (2.4.14) 

TS-GARCH:  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖|𝜀𝑡−𝑖

2 | + ∑ 𝛽𝑗|𝜎𝑡−𝑗
2 |𝑝

𝑗=1
𝑞
𝑖=1           (2.4.15) 

A-GARCH：  

𝜎𝑡
2 = 𝜔 + ∑ (𝛼𝑖𝜀𝑡−𝑖

2 + 𝛾𝑖𝜀𝑡−𝑖) + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑝

𝑗=1
𝑞
𝑖=1          (2.4.16) 

NA-GARCH:  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖(𝜀𝑡−𝑖 + 𝛾𝑖𝜎𝑡−𝑖)

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑝

𝑗=1
𝑞
𝑖=1         (2.4.17) 

V-GARCH:  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖(𝜀𝑡−𝑖 + 𝛾𝑖)

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑝

𝑗=1
𝑞
𝑖=1          (2.4.18) 

Log-GARCH:  
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𝑙𝑛(𝜎𝑡) = 𝜔 + ∑ 𝛼𝑖|𝜀𝑡−𝑖| + ∑ 𝛽𝑗𝑙𝑛(𝜎𝑡−𝑗)
𝑝
𝑗=1

𝑞
𝑖=1          (2.4.19) 

NGARCH:  

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖|𝜀𝑡−𝑖|

𝛿 + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿𝑝

𝑗=1
𝑞
𝑖=1           (2.4.20) 

A-PARCH:  

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖(|𝜀𝑡−𝑖| − 𝛾𝑖𝜀𝑡−𝑖)

𝛿 + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿𝑝

𝑗=1
𝑞
𝑖=1         (2.4.21) 

GQ-ARCH:  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

𝑞
𝑖=1 + ∑ 𝛼𝑖𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛼𝑖𝑗𝜀𝑡−𝑖𝜀𝑡−𝑗

𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1    (2.4.22) 

H-GARCH:  

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖𝛿𝜎𝑡−𝑖

𝛿 (|𝜀𝑡 − 𝜅| − 𝜏(𝜀𝑡 − 𝜅))
𝜐𝑞

𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿𝑝

𝑗=1      (2.4.23) 

2.5 Heterogenous autoregressive models (HAR model) 

The standard heterogeneous autoregressive (HAR) model is perhaps the most popular 
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benchmark model for forecasting return volatility mentioned by Clements & Preve (2021) It is 

estimated using raw realized variance (RV) and ordinary least squares (OLS). 

 

Corsi (2004) first proposed the heterogeneous autoregressive (HAR) model for realized 

volatility, which recognizes the presence of heterogeneity in trades. The definition of realized 

volatility involves both the intraday return interval and the aggregation period one day which 

vary over time. The daily HAR is expressed by 

𝜎𝑡 = 𝛽0 + 𝛽𝐷𝑅𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡,𝑡+1 (2.5.1) 

Where 𝑅𝑉𝑡−1,𝑡, 𝑅𝑉𝑡−5,𝑡, 𝑅𝑉𝑡−22,𝑡 represents to the 1 day, 5 days and 22 days of the realized 

volatility in a time period which can be viewed as “one trading week” and “one trading month” 

refer to the average realized volatility of 5 days lagged and 22 days lagged. 𝛽0, 𝛽𝐷 , 𝛽𝑊, 𝛽𝑀 

can be estimated with the application of an Ordinary Least Squares (OLS) estimation. The 

HAR model believes that the latent realized volatility can be observed over time horizons 

longer than one day. It creates an AR regression of the 1 day, 5 days and 22 days average 

realized volatility to make forecasting. Xu et al. (2024) and Fan et al. (2023) mentioned that 

the HAR-RV model offers a more comprehensive and realistic representation of market 

dynamics by combining realized volatility at different time scales.  
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2.6 Machine learning approach 

The machine learning methods described below refer to the traditional and most widely used 

algorithm not only in financial literature but other areas as well. For instance, Winter (2019) 

use the machine learning algorithm to analysis the data of human health. There are some widely 

used algorithms of machine learning during the past two decades. 

K-Nearest Neighbors (KNN) methods 

The K-Nearest Neighbors (KNN) is a non-parametric method proposed by Cover & Hart 

(1967).  It is one of the most common and straightforward methods in machine learning 

methods. The KNN concept aims to make it a good tool for classification in different 

applications. Particularly, it can be used as a local nonlinear model for regression as well.  

In the case of regression, the method allows a simple model to be fitted to the neighborhood of 

the point to be predicted. The neighborhood of a point in KNN model is defined by taking the 

k values having the lowest values for a chosen distance notation (usually Euclidean distance) 

defined on the space of the input vector. Similarly, the nearest neighbors of a test point are 

selected by looking for the k smallest distances between the test point and the training points. 

Then the prediction for an unknown input vector 𝑥∗ is computed as follows: 

𝑦(𝑥∗) =
1

𝑘
∑ 𝑦(𝑥𝑖)𝑖∈𝐾𝑁𝑁  (2.6.1) 

Here, 𝑦(𝑥𝑖) is the output vector based on the ith nearest neighbor of the input vector in the 

https://en.wikipedia.org/wiki/Non-parametric_statistics
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sample. The choice of the optimal number of neighbors k will be performed through automatic 

leave-one-out selection. In a simple word, if the machine receives a sample, the algorithm first 

searches for its K nearest neighbors in the feature space depending on the feature vectors and 

defined distance. In this case, every data point is represented in the form (x, y) where x 

represents the vector of input values and y the corresponding output vector which will usually 

defined as a forecasting series when doing regression. What is worth to note, the amount of 

training set data mainly affects the accuracy of the KNN which means that the more historical 

data fed to the machine, the more accurate result will be get.  

Artificial Neural Network (ANN) method 

In machine learning, an artificial neural network (ANN) is a network of interconnected 

elements, which are called neurons. Neural networks are non-linear and non-parametric 

models that have their roots in biology which is stated by the work of Hornik et al. (1989). 

The neurons are used to estimate functions based on the inputs. The neurons are connected by 

joint mechanism which is consisted of a set of assigned weights. The back propagation 

training (BP) algorithm by Rumelhart et al. (1986) is usually used to minimize the quadratic 

error by descent maximum gradient. Therefore, the ANN method can be called back 

propagation neural network (BPNN). The method can be described as follows: 

𝜇𝑝 = ∑ 𝜔𝑝𝑖𝑥𝑖
𝑛
𝑖=1  (2.6.2) 

𝑦𝑝 = 𝜑(𝑢𝑝 + 𝑏𝑝) (2.6.3) 
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{𝑥𝑖} is the input data and {𝜔𝑝𝑖} describes the connection weights of neurons. 𝑢𝑝 is the input 

combiner, 𝑏𝑝 is the bias, 𝜑(∗) is the activation function and 𝑦𝑝 is the output of the neuron. 

In ANN works, multi-layer feed forward (MLP) is a common approach which has three layers: 

input layer, output layer, and hidden layer. Neuron takes the values of inputs parameters, sums 

them up with the assigned weights, and adds a bias. With the application of transfer function, 

the outputs which are the forecasts of volatility will be displayed.  

𝜎𝑡+ℎ
2 = 𝜑0

ℎ (𝑏0 + ∑ 𝜔𝑖0𝑥𝑡−𝑖
2𝑚

𝑖=1⏟          
𝐿𝑖𝑛𝑒𝑟 𝐴𝑅

+∑ 𝜔𝑗0 ∙ 𝜑ℎ(∑ 𝜔𝑖𝑗𝑥𝑡−𝑖
2 + 𝑏𝑗

𝑚
𝑖=1 )𝐻

𝑗=1⏟                    
𝑁𝑜𝑛−𝑙𝑖𝑛𝑛𝑒𝑎𝑟 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑡

) (2.6.4) 

It describes the structure of the model for a single forecasting horizon, where the input 𝑥𝑡−𝑖 

can be a matrix of the volatility generated by the GARCH type models and other explanatory 

variables. The model can be separated into a linear autoregressive component of order and a 

nonlinear component whose structure depends on the number of hidden nodes which is the 

hidden layer in ANN. 

Support Vector Regression (SVR) methods 

Support Vector Regression is a regression methodology, based on the Support Vector Machine 

(SVM). The key idea behind SVR is that the regression model can be expressed using a subset 

of the input training samples called the support vectors. In SVM, the methods can be specified 

as:  

𝑦𝑘|𝜔
𝑇𝜙(𝑥𝑘) + 𝑏| ≥ 1 − 𝜉𝑘 (2.6.5) 
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min
𝑎,𝑏

1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑘

𝑁
𝑘=1  (2.6.6) 

where {𝑥𝑘} is the variable that prepared to be predicted called predictor variable, 𝜔 is the 

weight vector and {𝑦𝑘}  is the sample classification. The variable 𝜉𝑘 ≥ 0  is defined as a 

tolerance margin in the classification to make the classifier more flexible in an accepting error 

and the formula (2.6.5) is called a hyperplane condition. Therefore, the SVM methods is to find 

an optimal solution of formula (2.6.6) under the hyperplane condition where C describes the 

edge of the hyperplane space. When forecasting volatility, the target is not classification as 

SVM, but the real value series. Therefore, a regression model needs to be found when SVR is 

applied not the hyperplane in SVM. The SVR seeks for the linear regression function with an 

optimal function specified as: 

𝑓(𝑥, 𝜔) = 𝜔𝑇𝑥 + 𝑏 (2.6.7) 

|𝑦 − 𝑓(𝑥, 𝜔)|𝜀 = {
0                                     𝑖𝑓 |𝑦 − 𝑓(𝑥, 𝜔)| < 𝜀
|𝑦 − 𝑓(𝑥, 𝜔)| − 𝜀                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.6.8) 

𝑅 =
1

2
‖𝜔‖2 + 𝑐(∑ |𝑦𝑖 − 𝑓(𝑥𝑖, 𝜔)|𝜀

𝑁
𝑖=1 ) (2.6.9) 

During seeking for the linear regression function, a threshold error 𝜀  is introduced to be 

minimized in the expression. The SVR methods like SVM aim to find a minimum value of 𝜀 

and ‖𝜔‖2 under the 𝜀 -insensitivity loss error function. (formula 2.6.8). A tolerance variable 

is introduced as well in SVR process, which can be written as 
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𝑅 =
1

2
‖𝜔‖2+c(∑ 𝜉𝑖 + 𝜉𝑖

∗1
𝑖=1 ) (2.6.10) 

(𝜔𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 (2.6.11) 

𝑦𝑖 − (𝜔
𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖

∗ (2.6.12) 

where 𝜉 is used to describe the excess of error 𝜀 and 𝜉∗ comes to be a constraint which will 

limit the value to the regression target. With the help of tolerance variables, a condition is 

formulated by (2.6.10) and (2.6.11). Thus, the SVR is seeking for a minimum value of ‖𝜔‖2 

under the conditions with the tolerance variables 𝜉 and 𝜉∗ more than zero. 

The above optimization problem can be converted into a more formal term as: 

𝑦 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥, 𝑥𝑖)

𝑛
𝑖=1  (2.6.13) 

where n is the number of the support vector. In more formal terms, the model is a linear 

combination over all the n support vector in a kernel function 𝑘(∙  , ∙). It takes the inputs of 

the data point x which needs to be forecasted and creates the support vector 𝑥𝑖.  

𝑘(𝑥, 𝑥𝑖) = 𝜙(𝑥)
𝑇𝜙(𝑥) (2.6.14) 

0 ≤ 𝛼𝑖 ≤ C; 0 ≤ 𝛼𝑖
∗ ≤ C  (2.6.15) 
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where C is the kernel parameters. The coefficients 𝛼𝑖, 𝛼𝑖
∗ are determined through taking the 

minimum value of an empirical risk function, solved as a continuous optimization problem. 

The kernel function could be the linear, radial and polynomial functions. 

Liner: 𝑘(𝑥, 𝑥𝑖) = 𝑥
𝑇𝑥𝑖 (2.6.16) 

Radial: 𝑙𝑛[𝑘(𝑥, 𝑥𝑖)] =
‖𝑥−𝑥𝑖‖

2

2𝑦2
  (2.6.17) 

Polynomial: 𝑘(𝑥, 𝑥𝑖) = (𝑥
𝑇𝑥𝑖 + 1)

𝑑 (2.6.18) 

Deep learning  

Deep learning is recently introduced and applied in some of finance literature. Several 

literatures mainly focus on three types of approaches: Recursive Neural Networks (RNN), 

Long Short Term Memory (LSTM) and Convolutional neural networks (CNN). Although they 

are all the extension of normal neural networks, they have different characters when capture 

data dynamics. 

Recursive Neural Networks (RNN) is a class of neural network but deeper than normal neural 

networks. RNN can use their internal memory to process arbitrary sequence of inputs. The units 

which can be calculated as a time varying real valued activation and modifiable weight and 

will form a circle with connect to the networks. RNNs are created by applying the same set of 

weights recursively over a graph-like structure. Their hidden units can be expressed as: 
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ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡; 𝜃) (2.6.19) 

In the case of RNN, the learned model always has the same input size, because it is specified 

in terms of transition from one state to another by using the same transition function with the 

same parameters at each step. A special extension of RNN called Long Short Term Memory 

(LSTM) is proposed by Hochreiter & Schmidhuber (1997) which replaces the hidden layers 

with LSTM cells. The cells are composed of various gates including input gate, cell state, forget 

gate, and output gate that can control the input flow. A sigmoid layer is constructed to describe 

how much of each component should be let through by generating a series of numbers between 

zero and one. In addition, a tanh layer vector is generated and will be added to the cell state to 

help the cell state to be updated based on the output gates by point wise multiplication operation 

𝜎. Mathematically, it can be specified as: 

The input gate which consists of the input vector 𝑥𝑖 

𝑖𝑡 = 𝜎(𝑊𝑖(ℎ𝑡−1,𝑥𝑖) + 𝑏𝑖) (2.6.20) 

The cell gate which constructs the entire network and the information can be added or removed 

information by the gates vector 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐(ℎ𝑡−1,𝑥𝑖) + 𝑏𝑐) (2.6.21) 

The forgot gate vector which decides what kind of the information to be allowed 
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𝑓𝑡 = 𝜎(𝑊𝑓(ℎ𝑡−1,𝑥𝑖) + 𝑏𝑐) (2.6.22) 

The output gate vector  

𝑜𝑡 = 𝜎(𝑊𝑜(ℎ𝑡−1,𝑥𝑖) + 𝑏𝑜) (2.6.23) 

The output vector: 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (2.6.24) 

Convolutional neural network (CNN) is another kind of neural network for processing data that 

has a known topological pattern. The network employs a mathematical operation on processing 

data called convolution which is a special kind of linear operation instead of general matrix 

multiplication in at least one of their layers. There is a difference between RNN/ LSTM and 

CNN. The RNN/LSTM consider long term dependencies which is the long memory facts exists 

in time series data and uses them for future forecasting while CNN focuses on the given input 

sequence and does not use any previous history or information during the learning process 

prediction. 

2.7 State of literature 

Volatility is a hot issue in economic or financial research. It is directly related to market 

uncertainty or shocks, and it will influence the behavior of investors or companies. The trend 
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of modelling volatility has remained popular over the past years and a huge number of papers 

and research could be found. Researchers did lots of work on volatility prediction using 

different models on various assets in different markets. This section will reviewed the literature 

about the volatility forecasting from early stage to recent popular methods. Different works in 

last two decades are reviewed and mentioned in this section. 

2.7.1 Early stage of volatility forecasting 

With application of different methods on the stock returns and volatility, an empirical fact had 

been found that the correlation among volatility is stronger than that among returns which is 

confirmed by Diebold (1998). It means that the financial time series has complex structure, 

especially in volatility. Several related works and research were carried out to forecast or 

measure the volatility. In the early time, Taylor (1987) studied the use of high, low, and closing 

prices to forecast one to twenty days DM/US (exchange rate) futures volatility and found a 

weighted average composite forecast to perform best. In the next ten years, more research 

appeared to model the volatility. Kroner (1996) gave an explanation on how to create a 

volatility forecast and how to use volatility to measure or observe the shock of the stock returns. 

Diebold (1998) found that the volatility had a complex structure when examining the exchange 

rate. He mentioned that “Forecast estimates will differ depending on the current level of 

volatility, volatility structure and the forecast horizon”. In the long history of the volatility 

measurement, the main topic almost focused on “If the volatility can be forecasted, which 

method will give the best performance?” Since several models were developed to calculate or 

forecast the volatility, the topic became to find a “best” performance model. 
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2.7.2 GARCH models vs simple models 

There are lots of methods to measure the volatilities, some simple models which is traditional 

and widely used in the past were proposed to capture the dynamics of the volatility such as 

Random Walk, Historical Average, Moving average, Exponential Smoothing (ES), 

Exponential Weighted Moving average or RiskMetrics. When considering about the financial 

time series, the assumption that the volatility stay constant over the time is not suitable for its 

structure since many stylized facts mentioned above have indicated that the volatility has 

some more empirical regularity. Among them, volatility clustering is a typical phenomenon. 

The clustering can be explained by “large changes tend to be followed by large changes of 

either sign, small changes followed by small changes”, which is caused by the non-normality 

of the returns. In this case, some simple models like Random Walk which forecasts the 

volatility by taking the value of the last time period or historical Average models by taking 

the average value of all the past period volatility are not appropriate enough to identify the 

clustering.  

Therefore, the ARCH models by Engle (1982) or its generalization by Bollerslev (1986) were 

proposed to capture the dynamics of the volatility. With the application of ARCH/GARCH 

models, Akgiray (1989) tested the predictive power of GARCH and argued that the forecasts 

based on the GARCH model are found to be superior rather than the Historical Average and 

EWMA methods. However, a wider comparison work finished by Brailsford & Faff (1996) 

among Random Walk model, Historical Mean model, Moving Average model, Exponential 

Smoothing model, Exponentially Weighted Moving Average (EWMA) model, a simple 

regression model, two standard GARCH models and two asymmetric GJR-GARCH models 

suggested that no single model is clearly superior since the rankings of the various model 

forecasts are sensitive to the choice of error statistic.  



 

39 

 

More recently, Balaban et al. (2002) evaluated the out-of-sample forecasting accuracy of 

eleven models for weekly and monthly volatility in fourteen stock markets. A comparison of 

several models including Random Walk model, Historical Mean model, Moving Average 

models, Weighted Moving Average models, Exponentially Weighted Moving Average 

models, Exponential Smoothing model, a regression model, an ARCH model, a GARCH 

model, a GJR-GARCH model, and an EGARCH model were given out. A result was obtained 

that the Exponential Smoothing model provides superior forecasts of volatility and ARCH-

based models generally prove to be the worst forecasting models.  

A later work by examining the performance of GARCH type models, moving average and 

Exponential Smoothing (ES) in daily exchange rate of 17 countries carried out by (McMillan 

& Speight (2004) stated that the simple GARCH outperforms the Exponential Smoothing and 

Moving Average model for the majority of currencies by using cumulative squared returns 

based on 30-minute intra-day observations as the measure of ‘true volatility’ . 

By the work of Ayele et al. (2017), they used the EWMA method and several GARCH 

models to forecast the volatility of gold and suggested that the GARCH models with 

explanatory variables are superior for volatility forecasting after the comparison. However, 

by the work of Arı (2022), after the comparison among GARCH model, Conditional 

Autoregressive Range (CARR) and EWMA model, the GARCH model acted the worst 

model. 

In recent years, the ARCH/GARCH models were selected as the most popular models, while 

other simple models or regression models mentioned above proved to be useful approaches to 

measure the volatility as well. Although the development of the GARCH is more likely to 
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capture more empirical facts of the volatility, the existing literature still contains different 

evidence which supports different methods regarding to the accuracy of stock market volatility 

forecasts. Evidence can be found supporting the superiority of GARCH class models, while 

there is also evidence supporting the superiority of more simple alternatives models and 

questioned the superiority of the GARCH model. Since 2003, there is a review paper carried 

out by Poon & Granger (2003) which collected a large variety of volatility models. They 

reviewed about 93 papers regarding to the volatility forecasting in finance literature and 

suggested that number of literatures in favor of simple volatility model are roughly equal to the 

number of GARCH. There is no general conclusion which models were the best. 

2.7.3 Standard GARCH vs alternative GARCH 

The ARCH/GARCH models were considered to be one of the most widely used approaches to 

measure volatility and many extensions of them proved to be useful as well. Due to the complex 

structure of volatility, varieties of models are proposed as extensions of GARCH model in order 

to capture more empirical facts of volatility like the asymmetric effects of positive and negative 

shocks or long memory effects. The asymmetric models such as the EGARCH by Nelson (1991) 

and other asymmetric models like TGARCH or GJRGARCH by (Glosten et al. (1993), 

Quadratic GARCH (QGARCH) model by Sentana (1995) and the long memory models like 

Component GARCH (CGARCH) by Engle & Lee, (1999) were proposed. Further, another 

model called Asymmetric Power (A-PARCH) was proposed by Ding et al. (1993) which allows 

the power of the heteroskedasticity equation to be estimated from the data.  

Since there is no mathematical evidence to show which model has the “best” performance of 

volatility forecasting, lots of empirical studies are carried out. Franses & Van Dijk (1996) 
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studied the performance of the GARCH model and two of its modification QGARCH and 

GJRGARCH model, the result gives evidence that the QGARCH is best performance model 

when the estimation sample did not contain extreme observations such as the 1987 stock market 

crash. Miron & Tudor (2010) examined daily stock return volatility based on U.S. and 

Romanian daily stock return data and reported that volatility estimates given by the EGARCH 

model exhibit generally lower forecast errors and are therefore more accurate than the estimates 

given by the other asymmetric GARCH models like A-PARCH and TGARCH.  

With the work of Nugroho et al. (2019) a variety of GARCH type models including GARCH, 

GARCH-M, GJR-GARCH, and log-GARCH were investigated. They used two datasets, one 

is the simulation data by random, the other is the empirical data from stock index. The results 

showed that the GARCH model is superior to other models when using the simulation data. 

The GJR-GARCH model was suggested as the best performer in the empirical exercise.  

 However, a forecasting performance evaluation carried out by Gabriel (2012) states that the 

TGARCH model is the most successful when forecasting the volatility based on Romania BET 

index. More recently, Dixit & Agrawal (2019) examined the performance of GARCH, 

EGARCH, P-GRACH in Bombay Stock Exchange (BSE) and National Stock Exchange (NSE) 

markets and suggested that the P-GARCH model is most suitable to predict and forecast the 

stock market volatility. Later by their work in Dixit et al. (2022), after a further analysis with 

the GARCH family models, they suggested that E-GARCH was the most acceptable model for 

the purpose of predicting and forecasting the market volatility. 

With the work of Sharma et al. (2021), they used the standard GARCH, TGARCH and 

EGARCH to investigate the forecasting performance of in 5 major emerging countries and the 
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findings indicated that the standard GARCH model are the best performer. 

In general, it is difficult to define which type of GARCH is the best performance model.  The 

result was related to the data they were fit since the data has lots of complex structure which 

might be well captured by different type of GARCH models. There is very little literature 

discussed if one method is significantly better than another since each research uses different 

data sets, different time intervals and a variety of evaluation techniques. 

2.7.4 GARCH model vs other traditional methods 

With the hard identification of a best model on volatility forecasting, the recent literature moved 

their attention on how to improve the estimation of the parameters in an existing model or how 

to improve their forecast ability. With the application of GARCH type models, most researchers 

tended to use GARCH (1,1) model to avoid using the high order one since the high order of 

GARCH will increase the complexity and difficulty of calculation.  

There was some evidence that a small lag such as GARCH (1,1) was sufficient to model the 

variance changing over long sample periods confirming by the work of Franses & Van Dijk 

(1996). In financial risk management a method called Value at Risk (VaR) model which is one 

of the most used models which measure the amount one could lose. Many banks and other 

financial institutions use the concept to measure the risks faced by their portfolios. The 1% 

value at risk is defined as the amount of cash that one can be 99% certain exceeds any losses 

for the next day. Statisticians call this as 1% quantile, because 1% of the outcomes are worse 

than the rest of 99 %. Oskay et al. (2017) carried out a VaR model based on GARCH family 

and found the obtained volatility estimates in a VaR-GARCH model should eventually increase 
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the forecasting ability beyond a traditional VaR method.  

Echaust & Just (2020) combined the Extreme Value Theory with GARCH model to build a 

new GARCH-EVT model to estimate out-of-sample Value at Risk (VaR) forecasts. However, 

the GARCH-EVT model produces similar Value at Risk estimates and there is no improvement 

of VaR accuracy being observed. 

Although methods like GARCH and other simple regression models occupied most of area in 

measuring the volatility in finance literature, some weaknesses were still discovered. The 

conditional variance is latent and slowly decreasing, and hence is not directly observable. It 

can only be estimated among these approaches which will lead to a failure to describe in an 

adequate manner. Some research by Andersen & Bollerslev (1998); Andersen et al. (2001) 

suggested that this relative failure of GARCH models arises not from a failure of the model but 

a failure to specify correctly the ‘true volatility’ measure against which forecasting performance 

is measured. They tried to avoid the failure of GARCH by measuring the daily foreign 

exchange volatility by aggregating 288 squared five-minutes returns. A method of calculating 

the high frequency data is proposed by Merton (1980): the variance over a fixed interval can 

be estimated arbitrarily, although accurately, as the sum of squared realizations, provided the 

data are available at a sufficiently high sampling frequency. Moreover, by the work of 

McMillan & Speight (2004), they suggested that the prediction performance of GARCH model 

will be improved by using the high frequency intraday data confirmed. The method of 

calculating the volatility by high frequency data can be introduced as the realized volatility. 

The realized volatility essentially becomes “observable”, it can be modeled directly, rather than 

being treated as a latent variable. More and more papers used this new volatility measure to 

evaluate the out-of-sample forecasting performance of GARCH models such as Hansen & 

Lunde (2005), and Patton (2011). 
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With the appearance of realized volatility, several comparisons were made by Andersen (2008) 

including Quadratic Return Variation, Jumps and Bi-power Variation, Conditional Return 

Variance Efficient Sampling and Microstructure Noise. This comparison gave evidence that the 

RV measures facilitate direct estimation of parametric models. It gave empirical content to the 

latent variance variable and was therefore useful for specification testing of the restrictions 

imposed on volatility by parametric models previously estimated with low frequency data. The 

HAR-RV model proposed by Corsi (2004) paved a good approach to measure and forecast the 

realized volatility. It is a simple AR-type model of the realized volatility with the feature of 

considering different volatility components realized over different time horizons and thus 

termed as Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). The HAR-

RV model successfully captures the main empirical features of financial returns (long memory, 

fat tails, and self-similarity) in a very tractable and parsimonious way and it has a good 

forecasting performance. A recent work carried out by Mastro (2014) confirmed that the HAR-

RV model outperforms ARCH/GARCH and EGARCH. Huang et al. (2016) combined the HAR 

model and traditional GARCH model and developed a parsimonious variant of the Realized 

GARCH model in order to capture more dynamics of volatility. The finding of their work 

showed that the new model specification better captures the long memory dynamics of 

volatility.   

Bergsli et al. (2022) investigated the forecasting performance of volatility with the application 

of several GARCH and two heterogeneous autoregressive (HAR) models. By a wide 

comparison among GARCH series and HAR model, they found that EGARCH and APARCH 

were superior to other type of GARCH models in GARCH family. HAR models based on 

realized variance perform better than GARCH models when using daily data, which showed 

the superiority of HAR models over GARCH models when using short-term/high frequency 

data. 



 

45 

 

More recently, by the work of Zahid et al. (2022), they used a model built with HAR model 

and GARCH model which is introduced as HAR-GARCH model. They further extended the 

model by incorporating jumps and continuous components. This new extension model 

provided better forecasting accuracy for Bitcoin volatility as compared to other realized 

volatility models in their empirical exercise. 

Chen et al. (2023) investigated three realized GARCH series models including the realized 

exponential GARCH (EGARCH), realized heterogeneous autoregressive GARCH (HAR-

GARCH), and realized threshold GARCH (TGARCH) models. After considering the out-of-

sample result of 5 years by S&P500 stock index, it showed that the realized EGARCH model 

performs best with regard to volatility forecasts. 

2.7.5 GARCH vs Machine Learning 

In recent years, some other methods from machine learning concept were being used in 

forecasting the volatility as well. Although the concept of machine learning methods was 

proposed in early 60s, their ability to improve the forecast of volatility along with other models 

were developed in recent years. In most of finance literature regarding with the machine 

learning methods, three main methods including Artificial Neural Networks (ANN) proposed 

by Warren McCulloch and Walter Pitts in 1943, Support Vector Machine (SVM) by Vladimir 

in 1963 and Deep Learning (DL) by Alexey in 1960s were used widely. The main reason of 

using machine learning methods was their flexible abilities to approximate any nonlinear 

functions arbitrarily without priori assumptions on data distribution confirmed by S. Haykin 

(1999). Several literatures about machine learning methods of forecasting volatility tended to 

combine the machine learning methods with GARCH to make more accurate or reliable 

https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts
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forecasts, especially with the application of ANN hybrid GARCH model. In order to enhance 

the forecasting performance of GARCH family model, Neural Networks (NNs) were brought 

into this field. The reason is that NNs has the functional flexibility to capture the nonlinear 

relationship between past return innovations and future volatility. Donaldson & Kamstra (1997) 

introduced a new nonlinear semi-nonparametric model for conditional stock volatility. In their 

work, a nonlinear GARCH model based on the Artificial neural network was constructed. The 

performance of the new model is compared both in-the-sample and out-of-sample with other 

popular volatility models in four international stock market indices. They state that the new 

GARCH model based on ANN performs better than the other GARCH approaches. Later by 

the work of Hu & Tsoukalas (1999), they combined four conditional models including Moving 

Average, GARCH, EGARCH and IGARCH with a simple averaging model, an ordinary least 

squares model, and an artificial neural network. The conclusion drawn by them gave evidence 

that the ANN combined model performed better forecast in the crisis period, and it proved 

superior to linear combining models like simple averaging and ordinary least squares models.  

More recently, Hyup Roh (2007) proposed the hybrid model between the ANN and financial 

time series models to forecast the volatility of stock price index. He addressed that ANN-time 

series models can enhance the predictive power for the perspective of deviation and direction 

accuracy witch a same result is confirmed by Bildirici & Ersin (2009). He discussed the 

ARCH/GARCH family models and enhanced them with artificial neural networks to evaluate 

the volatility of daily returns of Istanbul Stock Exchange. The ANN-extended versions of the 

obtained GARCH models improved forecast results by capturing the strong volatility clustering, 

asymmetric effect, and nonlinearity facts better. Some more details about the improvement of 

GARCH by the NNs method have been discussed in the past few years. Kristjanpoller et al. 

(2014) carried out a study which demonstrated that the ANN-GARCH model improves the 

forecasts of the GARCH model by 30.6% for the oil spot price volatility and 29.8% for the oil 
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futures price volatility when using 21 days as a horizon. The study found the coefficients of 

input variables by financial time series process and extracted new variables that greatly 

influence the results through analyzing stock market. 

Liu & So (2020) developed a GARCH model into an artificial neural network (ANN) for 

financial volatility modeling. The results showed that the new model built with neural networks 

can outperform the standard GARCH (1,1) model with standardized Student’s t distribution.  

Mademlis & Dritsakis (2021) combined the neural networks with GARCH models in order to 

improve the volatility forecasts. The conclusions reveal that the hybrid models based on an 

EGARCH model provides the best predictive power. 

However, there is also some investigation said that the traditional GARCH model is better than 

machine leaning methods. Ampountolas (2021) made a wide range comparison among Holt–

Winters (HW) triple exponential smoothing model, the autoregressive integrated moving 

average (ARIMA) model, a seasonal autoregressive integrated moving average (SARIMAX) 

model with exogenous variables, the artificial neural networks model (ANNs), a sGARCH and 

GJR-GARCH models. He suggested that the GJR-GARCH model shows a superior predictive 

accuracy at all horizons. 

The literature of neural networks confirm their usefulness in modeling the conditional volatility 

of stock returns due to their data-driven and nonparametric weak properties but one of the 

important weaknesses of neural networks is that they cannot avoid getting trapped in local 

minima, which means that the increase of variable freedom will lead the training process to a 

trap in some local minimum of the high dimensional functional space. More generally, the over-



 

48 

 

fitting problem will exist which can be attributed to the fact that a neural network captures not 

only useful information contained in the given data, but also unwanted noise. This usually leads 

to a large generalization error or local minima mentioned above.  

Unlike most of the traditional learning machines that adopt the Empirical Risk Minimization 

Principle, SVMs implement the Structural Risk Minimization Principle, which seeks to 

minimize an upper bound of the generalization error rather than minimize the training error 

which will lead to a better generalization than conventional techniques. Cao & Tay (2001) also 

confirmed the feasibility of SVM in financial time series forecasting by comparing it with a 

multilayer Back Propagation Neural Network (BPNN) and a result reported that SVM 

outperforms the BPNN. A SVM-based model proposed by Gavrishchaka & Ganguli (2003) for 

the volatility forecasting from the multiscale (such as volatility clustering) and high-

dimensional market data can efficiently extract information from the high-dimensional inputs 

of lagged returns and can handle both long memory and multiscale effects of in homogeneous 

markets without restrictive assumptions and approximations required by other models. Later 

he applied the SVM-based volatility model to stock market data and concluded “the SVM-

based volatility model can be comparable and often superior to the main-stream models such 

as generalized ARCH and its generalizations” addressed by Gavrishchaka & Ganguli (2003). 

Pérez-cruz et al. (2003) used the Support Vector Machines (SVMs) as a new nonparametric 

tool for regression estimation of a GARCH model to predict the conditional volatility of stock 

market returns. Theoretically, GARCH models are usually estimated using maximum 

likelihood (ML) procedures which assumes that the data are normally distributed, while 

empirical data usually has a different distribution with normal. Pérez-cruz et al. (2003) gave a 

method to estimate GARCH models by using SVMs and that such estimates have a higher 

predicting ability than those obtained via common ML methods. In more recent years, a more 

comprehensive comparison is carried out by Chen et al. (2009), they used four methods of 
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volatility forecasting. First, the simple model, simple moving average. Second, the GARCH 

type model. Third, traditional ANN-GARCH models and fourth the SVM under the GARCH 

framework. Empirical results from both simulation and real data reveal that, under a recursive 

forecasting scheme, SVM-GARCH models significantly outperform the competing models in 

most situations of one-period-ahead volatility forecasting. In addition, the standard GARCH 

model also performs well in the case of normality and large sample size, while EGARCH model 

is good at forecasting volatility under the high skewed distribution. 

More recently, Sun & Yu (2019) combined the SVR method and GARCH model together. 

Unlike SVR-GARCH model, they do not choose the way to replace the maximum likelihood 

estimation with the SVR estimation method when estimating the GARCH parameters. They 

propose two SVR-GARCH models on normal distribution and t distribution, respectively when 

investigating the effect of innovation. The results showed that the GARCH-(t)-SVR models 

and GJR-(t)-SVR models improve the volatility forecasting ability. (Papadimitriou et al. (2020) 

used a GARCH-SVM approach to make the out-of-sample volatility forecasting. The model 

they created by SVM and GARCH reached 79.17% out-of-sample forecasting accuracy. Aras 

(2021) proposed a new combining method based on support vector machines (SVM) and 

GARCH type models and suggested that the new method leads to more accurate volatility 

forecasts than original GARCH type models.  

Another approach is the Deep Learning method. It can be seen as an extension method of neural 

networks. As mentioned above, the neural networks face a problem of overfitting and in fact 

the increase of freedom will lead the training process to a trap in some local minimum of the 

high dimensional functional space even when the model is an honest representation of the 

system by Huang (2009). To solve the problem, some procedures like providing more insight 

into how they operate on neural networks. A deep learning method will leverage their predictive 
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power and systematically avoiding the problem of overfitting. In particular, there are some new 

regularization methods and faster training techniques such as using piecewise linear activation 

functions as opposed to transcendental functions, which allow for neural nets with many hidden 

layers to be trained easily. In a simple word, the deep learning methods can be seen as a neural 

network method with enough hidden layers so that the neural networks will reduce the 

regression error. Some latest works are carried out by using deep learning to study the 

characteristic of volatility.  The study on Chinese Yuan's volatility in the onshore and offshore 

markets carried out by Lee & Chun (2016) proposed MLP-GARCH (neural networks based) 

and a DL-GARCH (deep learning based) by employing Artificial Neural Network to the 

GARCH. In his work, both models show their overall outperformance in forecasting over the 

GARCH. 

Amirshahi & Lahmiri (2023) made a combination of Deep Learning and GARCH-type models 

and tested the forecasting ability in cryptocurrencies market. Their finding revealed that the 

deep learning methods will improve the forecasts of GARCH-type models with any distribution 

assumption. Furthermore, when treating the forecasts of GARCH-type models as informative 

features, it can also increase the predictive power of the studied deep learning models as well. 

Michańków et al. (2023) developed a new approach by combining the common GARCH 

models with deep learning methods. The GARCH type models are GARCH, EGARCH, GJR-

GARCH and APARCH and concluded that the hybrid solutions produce more accurate point 

volatility forecasts. 

Ni & Xu (2021) introduces a new method which is developed on deep learning method and 

DCC-GARCH models in order to investigate the stock market correlation. The results indicate 
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that the introduction of deep learning can help improve the efficacy of existing correlation 

forecasting methods. 

2.8 Conclusion 

In this thesis, we will continue the work of exploring the improvement of existing models for 

producing a more accurate volatility forecast by an appropriate model. As mentioned in the 

literature, lots of work are carried out to forecast volatility, a list of modes is introduced for 

empirical exercise. However, there is no general census on which model has performed the best 

so far. GARCH models are proposed to capture different dynamics of volatility such as 

clustering, leptokurtic, leverage effect and long memory. Although the hybrid GARCH model 

based on machine learning is pointed to be effective in enhancing the forecasting performance 

of volatility, there is very few literatures concerns about the input variable. Some questions still 

remains, like how many or what type of explanatory variable should be used to train and test 

the machine since each empirical result from literature are based on their own dataset and most 

of them are limited in one or two countries. Which model will capture the long-memory effect 

in most cases in the stock markets?  A basic comparison will be made among the GARCH 

family models and the hybrid models. With the application of deep learning, theoretically, if 

enough hidden layers are given, the methods can capture sufficient features of the data. A 

further comparison will be carried out by different variables as input among these models. 

Finally, in this thesis, we will explore the forecasting performance of several hybrid models 

and build some new approaches based on machine learning methods and traditional models. 
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3.Emprical chapter of volatility forecasting 

GARCH type models versus Hybrid GARCH based on Neural 

Networks & HAR models 

Abstract 

In this chapter, several comparisons of univariate volatility models are carried out. This chapter 

investigates the forecasting performance between several models including GARCH type 

models which have been proved to be able to capture the volatility clustering, leverage effect 

and long memory effect in the data, their extension based on neural networks and HAR-RV 

model which measure the volatility in a realized way. Twelve stock indices from different 

countries and five measures of comparison are applied in the exercise. The results show that 

the GARCH type models based on neural networks perform better overall than GARCH type 

models, especially the hybrid asymmetric GARCH models. However, these hybrid models 

have some weakness to capture the “long memory” effect exists in the data. More specifically, 

the CGARCH model outperforms than others to identify any “long memory” effect. The results 

gives an empirical result in a wide comparison. The policymakers can benefit from the results 

to formulate their policies to avoid risk. 
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3.1 Introduction 

In recent years, stock markets have had a rapid development. With the rapid development, lots 

of events related to risk management in the stock markets happened. There are some events 

which are very famous. One is the stock market crash in 1929 caused by excessive leverage, 

the stock market suffered a huge loss and declined by more than 20%. Another is the 2008 

global financial crisis happened in United States of America and then spread to the whole world, 

it caused lots of billion’s loss and the market appeared to get down in a long time. More recent 

is the 2015 stock market crisis happened in China which made lots of people lose their house.  

Therefore, measuring the risk is one of the most important tasks to avoid loss and market 

disruption. It is highly confirmed in financial market that the profit and the risk is related 

positively with a simple word “high risk comes with a high return”. Volatility, as a measurement 

of risk, reflects a financial situation in a certain period. Moreover, high unexpected volatility 

usually leads to a loss of the expected returns. Therefore, capturing the movement of volatility 

in stock market appears to be an important issue. Particularly, in stock market, measuring and 

forecasting volatility is vital for the investors or the supervisors of the market since investors 

tend to make profits with less risk and the supervisors like government or institutions are more 

likely to observe the early appearance of the market disruption through the changes of volatility. 

Finding a reliable way to measure and forecast volatility is important in stock markets to 

manage risk and make profits. Lots of studies in the finance literature focus on volatility 

forecasting models, but different results are generated from varieties of research when 

identifying the “best performance” models or methods. Followed with the key question of 

finding a model with a better performance to forecast the volatility, several models are proposed. 

In general, with application of the work by Poon & Granger (2003), most of the literature focus 

on the time series models or stochastic volatility models based on option prices. This chapter 

puts the emphasis on the time series models, especially the GARCH models proposed by 



 

54 

 

Bollerslev (1986). Although some other regression models are proved to be superior in the 

literature, the GARCH type models are still the most widely used. In more detail, GARCH type 

models, as a time series models, measures or forecast the volatility by conditional on its past 

variance and error term in the return process, which has the ability to capture the volatility 

clustering recognized by Mandelbrot (1963a). More recently, some literatures report that the 

volatility forecasting can be improved by a GARCH model based on machine learning methods 

like neural networks or a direct regression on realized volatility of different time period. Follow 

the step of the research, a hybrid GARCH model based on the neural networks and a HAR-RV 

model by Corsi (2004) will be included. This empirical chapter aims to examine the forecasts 

performance on univariate volatility of different models including GARCH genres, HAR 

model and hybrid ones and a wide and comprehensive comparison among these models are 

expected. Likewise, some researchers only concern with the hybrid models from a certain 

GARCH model with a good estimation in GARCH process without checking the performance 

of other hybrid models based on different GARCH process. The empirical exercise used four 

traditional GARCH type models, four hybrid GARCH models, and a HAR-RV model to find a 

model with better performance. Twelve stock indices from different countries are included in 

the analysis, a more comprehensive analysis of the hybrid models will be reported which will 

be contributed to the gaps mentioned above. 

The appearance of GARCH models can be seen as the milestone of volatility forecasting 

history since its better fit for forecasting volatility based on time series when the data exhibits 

heteroskedasticity and volatility clustering. Comparing with the simple models such as 

Historical Average (HA), Moving Average (MA), Exponential Weighted Moving Average 

(EWMA), etc. in the early stage, the GARCH models calculate the conditional variance of the 

return series with maximum likelihood method instead of using the sample standard deviations. 

In this chapter, all the analysis will be considered by a GARCH (1,1) type models rather than 
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the more sophisticated model with large lag number of past conditional variance and squared 

returns for the reason of time consuming. Likewise, there is no evidence that a GARCH (1,1) 

is outperformed by more sophisticated models which confirmed by (Hansen & Lunde, 2005). 

With the development of the first generation of GARCH model, some extensions are proposed 

to identify more characteristics of the volatility. The “leverage effect”, which an unexpected 

price drop increases volatility more than an analogous unexpected price increase are considered. 

The exponential GARCH (EGARCH) model generated by Nelson (1991) allows for an 

asymmetric effect (“leverage effect”) between positive and negative asset returns. Another 

asymmetric model which has been widely used to identify the asymmetric effect is the 

Threshold GARCH (TGARCH) model, which is also known as the GJR GARCH model by 

Glosten et al. (1993). With the appearance of the “long memory” effect, which the current 

information remains important for the forecasts of the conditional variances for all horizon, 

several “long memory” models are proposed in order to capture the “long memory” effect by 

their property of “persistent variance”. The Fractionally Integrated GARCH (FIGARCH) by 

Baillie et al. (1996) and Component GARCH (CGARCH) by Engle & Lee (1999) are 

introduced, which are able to capture the “long memory” in the horizon. 

Another type of extension of the GARCH model is based on the machine learning methods, 

neural networks. The GARCH models mainly focus on the past conditional variance and 

squared returns using maximum likelihood method, while the neural networks have the ability 

to concerns more explanatory variables of the volatility by formulating them with an activation 

function including both linear and nonlinear function like Logistic, Hyperbolic Tangent, 

SoftMax, etc. Neural networks are considered to be one of most widely used techniques to 

enhance the forecasting performance of GARCH models. Compared with the traditional 

GARCH type models, the method does not need to satisfy lots of constraints of GARCH model, 
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it is able to approximate any nonlinear functions arbitrarily without prior assumptions on data 

distribution. Technically, the method can take more information which may affect the volatility 

like prices, volumes, returns, etc. by feeding the machine. However, the method will generate 

overfitting error if too many freedoms of inputs are fed which is also called a local minimum. 

This chapter reports the one-day rolling window of forecast ability of a list of volatility models 

including the GARCH model, the extension of the GARCH model TGARCH and EGARCH 

which is cataloged as the asymmetric models, the long memory model, CGARCH, some hybrid 

GARCH models based on neural networks, GARCH-NN, EGARCH-NN, TGARCH-NN, 

CGARCH-NN and a HAR model as well. Basically, the volatility generated by the GARCH 

type models will be used as the main input data to train the hybrid models and make a 

forecasting of the volatility with the application of hybrid models. Four measures of 

comparison including Mean Absolute Error (MAE), Mean Squared Error (MSE), Quasi-

Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺  loss function are used to find the a model with better 

performance and a wider performance report of different models on twelve stock indices are 

lay out. The Mincer-Zarnowiz regression test (MZ test) are used to test the regression and the 

Model Confidence Set (MCS) are used to select a best model. 

There are three main contributions of this chapter: First, a series of hybrid-built model which 

combined the GARCH family and neural networks were introduced. This new approach proved 

to be superior to the traditional GARCH models on stock index from twelve countries. Second, 

the forecasting ability in GARCH family was examined in a wide range of stock indices across 

twelve countries, the long memory model CGARCH performed better than other GARCH 

series. Third, the empirical results revealed that the neural networks are more likely to capture 

asymmetric effects. This chapter gave a more comprehensive view of the comparison among 

nine volatility models including GARCH series, HAR models and hybrid models. For further 



 

57 

 

research, the results can be a reference when choosing volatility models.  

The structure of the chapter is organized as follows. Section 2 gives the data series, source, 

time periods. Section 3 describes the list of volatility forecasting models and a measure of 

realized volatility. Section 4 shows the method used to compare the performance of the models 

in the previous section. In section 5, a full report of the performance will be displayed, and 

section 6 will discuss the conclusions and findings. 

3.2 Data  

The main data set being used in this paper is the daily stock price index in twelve countries 

over the world. The countries which are selected are based on the principle of market 

capitalization in the stock market, particularly, countries with over $1500 billons market 

capitalization which is presented by the end of year 2017 will be included. The market 

capitalization represents the total value of a company's stock, the stock with a high market 

capitalization means the size of the stock market is large. With the application of market 

capitalization, it allows investors to size up a stock index. The thesis aims to select the stock 

index with large size to test the forecast ability of different models. Therefore, the twelve daily 

stock price indexes are selected. 

More specifically, the selected countries can be classified in regions: Europe, America, and 

Asia, including both developed and emerging markets. In more details, the EEA union contains 

lots of countries while the market capitalization of it is calculated together, therefore, only 

countries with more comprehensive data to access currently are selected. In order to compare 

the performance of different methods, a sample which contains the realized volatility of each 
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stock index which act as a “true volatility” in these countries are included in the data set as 

well. The selected countries in alphabetical orders are Australia, Canada, China, France, 

German, Hong Kong, India, Japan, Korea, Switzerland, United Kingdom and United States of 

America. 

 

Table 3.2.1 Sample countries by region 

Region/country Europe America Australia Asia 

1 France Canada Australia China* 

2 German USA  HK 

3 Switzerland   Japan 

4 UK   Korea* 

5    India* 

Note: * Emerging/Developing Market  

 

The markets of selected countries in Europe, Australia and America are all developed market 

since the market in these countries have already experienced a long history of development 

while the emerging market are mainly located in the Asian area including 3 markets: China, 

Korea and India. The data comes from different type markets will give a comprehensive 

result that whether the performance of the methods is suitable or effective when the market 

changes. The stock price indices in different countries usually cannot be compared directly 

since the structure or trading rules are different among countries. The structure of an index is 

usually sorted by three criterions: market capitalization weighted index, equal weighted 

index, and price weighted index. In order to replicate of the performance in the market itself, 
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the market capitalization weighted indexes are selected since it is more possible to form a 

much better representation of the market, which the index will represent the change of a stock 

by weight and are more likely to avoid bias. The index selected will differ in countries which 

is the most widely used and representative, Table 3.2.2 will give an overview of the index 

selected in these countries.  

Table 3.2.2 Indices selection in sample countries 

Region Country Stock Index 

Europe France CAC-40 

German DAX 

Switzerland SMI 

United Kingdom FTSE-100 

America USA S&P-500 

Canada TSX 

Australia Australia AORD 

Asia China* SSEC 

Hong Kong HSI 

Japan Nikkei-225 

Korea* KS-11 

India Nifti-50 

 

All the price data are obtained by the Application Programming Interface (API) finance data 

from “Yahoo Finance”, while the realized volatility data is obtained by “Oxford Man”. In all 
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the countries, the adjusted daily closing price is chosen, the time period is from 5 January 

2005 which is the first available trading date in year 2005 to 28 December 2018 which is the 

final available trading date in year 2018. In order to train the machine (neural networks) with 

more data, the long time period of data is selected. Since some of the daily stock price data 

are not comprehensive before 2005, due to the data availability, this time period was selected. 

The prices of the index are transformed in returns by standard methods which make it more 

measurable in equation (3.2.1). 

𝑟𝑡 =
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
∗ 100% (3.2.1) 

The realized volatility data is calculated by daily high-frequency intraday data (average of 5-

minutes returns). The data across all the sample countries are separated into two parts which 

is the in-sample estimation from 5 January 2005 to 25 November 2014 (2400 observations or 

approximate 10 years) and out of sample forecasting from 26 November 2014 to 28 

December 2018 (1000 observations or approximate 4 years). The returns and volatility can be 

viewed in Figure 3.2.1. It can be seen that the volatility tends to be the highest during the 

period of 2007 and 2008, the amplitude of return changes is great as well. This should be 

referred to the global financial crisis happening in 2008. Moreover, during the period of year 

2015, there also a high volatility gathers together, which should be referred to the Chinese 

stock market crisis in 2015 since the volatility of SSEC in 2015 tends to be strong higher than 

other countries even higher than the volatility during the 2008 global financial crisis period. 
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Figure 3.2.1 Returns and realized volatility of the sample index 
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Some descriptive statistics of the returns are reported in Table 3.2.3. The price of the indices 

is converted into a return series that jumps around zero which can be observed that the mean 

of the returns is close to zero. It is not surprising to find that the standard deviation in 

emerging market is higher rather than in developed countries, particularly, China market 

appears to be the most unstable while Australia market is the most stable. The skewness and 

kurtosis of all the return series are calculated and a Jarque-Bera (JB) test is carried out to 

discover the normality of the return series. The statistics of the JB test give evidence that 

there exists significant difference in skewness and kurtosis compared with the normal 

distribution, which means the normality is rejected for all series. 

 

Table 3.2.3 Statistics of returns in all sample countries 

 
Mean Maximum Minimum Median St.Dev Kurtosis Skewness J.B test 

Australia 0.00015 0.055064 -0.08198 0.000546 0.0102 5.033131 -0.42902 3837.521 

Canada 0.000188 0.098233 -0.09324 0.000719 0.010746 11.43234 -0.48617 19258.39 

China* 0.000463 0.094551 -0.08841 0.000925 0.016938 4.067061 -0.40052 2197.946 

France 0.000148 0.111762 -0.09037 0.000337 0.013602 7.35191 0.147217 8061.94 

German 0.000344 0.11402 -0.07164 0.00089 0.0133 6.96382 0.118507 7179.474 

HK 0.000289 0.143471 -0.127 0.000679 0.014849 10.15159 0.25123 14807.36 

India* 0.00042 0.177441 -0.12203 0.000496 0.01418 13.98701 0.435273 22544.43 

Japan 0.000277 0.141503 -0.11406 0.000594 0.015031 8.096362 -0.31853 9420.848 

Korea* 0.000318 0.119457 -0.10571 0.000597 0.012291 9.12867 -0.38028 12048.23 

Switzerland 0.000169 0.11391 -0.08671 0.000518 0.010913 9.133535 -0.06709 12279.51 

UK 0.000161 0.098387 -0.08848 0.000416 0.011374 8.602499 0.029216 10851.19 

USA 0.000281 0.1158 -0.09035 0.000634 0.011812 11.93823 -0.12037 20905.68 

Note: * Emerging/Developing Market; St.Dev: Standard deviation  
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3.3 Methodology 

This chapter will present a selection of models including GARCH type models, HAR models 

and hybrid GARCH models based on neural networks. The different GARCH model is built in 

different structures or features in order to capture the characteristic of volatility empirically like 

clustering, leverage effect, long memory, while the HAR model is a new approach to measure 

the realized volatility directly. The hybrid GARCH models based on neural networks are 

considered to be some extensions of the GARCH genre which aim to improve the forecasting 

performance. The chapter will focus on the forecasting performance in different methods and 

the possibility whether the hybrid GARCH will give a better empirical result in selected 

countries. Four GARCH type models are considered including the symmetric GARCH: 

standard GARCH model, the asymmetric GARCH: TGARCH by Glosten et al. (1993) and 

EGARCH by Nelson (1991) models, the long-memory models: CGARCH by Engle & Lee 

(1999). Four hybrid GARCH based on machine learning are considered, particularly, neural 

networks in this chapter: the GARCH-NN, TGARCH-NN, EGARCH-NN, CGARCH-NN. The 

HAR-RV model is used as well to capture the realized volatility more directly. Recent research 

of the comparison between GARCH and simple models are very comprehensive, however, 

different views on application of the hybrid ones still exists, an explanation of the hybrid 

models will be included in this chapter. 

In order to document the model more clearly by mathematics, some definition and assumption 

should be made. The return series 𝑋𝑡 is generates by below 

where 𝜇 is the mean process which could be an AR process, MA process or ARMA process, 

𝜀𝑡 is a disturbance which can be written as:  
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𝑋𝑡 = 𝜇 + 𝜀𝑡 (3.3.1) 

𝜀𝑡 = 𝜎𝑡𝜐𝑡 (3.3.2) 

{𝜈𝑡} is a sequence of independent and identically distributed (i.i.d) random variables with a 

constant mean zero and variance.{𝜎𝑡} is non-negative stochastic process for a fixed t which is 

identified as the volatility process with a forecast value presented by 𝜎̂𝑡 in empirical exercise. 

The sample data is separated into an in-sample period and out-of-sample period. The “actual 

volatility”, specifically, which the volatility forecasts will be compared to is defined as the 

realized volatility calculated by 5minutes high frequency intraday data. It can be retrieved from 

the dataset directly as a time series. 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models 

The GARCH model developed by Bollerslev (1986) is a generalization of the Autoregressive 

Conditional Heteroscedasticity (ARCH) model. In GARCH model, the disturbance error term 

𝜀𝑡 is under an assumption that it is distributed by zero mean and the conditional variance 𝜎𝑡 

will change with the time. The conditional variance equation in the simplest case which is the 

GARCH (1,1) can be written as the form: 

𝜎̂𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  (3.3.3) 

𝜀𝑡 = 𝜎𝑡𝜐𝑡 (3.3.4) 
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The conditional variance is represented as 𝜎𝑡
2  and it calculated the variance based on the 

history estimates and the past disturbance error term from the mean model. More general, the 

GARCH (p, q) can be retrieved by derive the formula (3.3.5) 

𝜎𝑡
2 = 𝜔 + 𝛼(𝐿)𝜀𝑡−1

2 + 𝛽(𝐿)𝜎𝑡−1
2  (3.3.5) 

𝛼(𝐿) = 𝛼1𝐿 + 𝛼2𝐿
2 +⋯+ 𝛼𝑞𝐿

𝑞; 𝛽(𝐿) = 𝛽1𝐿 + 𝛽2𝐿
2 +⋯+ 𝛽𝑞𝐿

𝑝 (3.3.6) 

 

Since the conditional variance  𝜎𝑡
2 is clearly positive, the parameter on the right hand of the 

function should satisfy the “nonnegativity constraints”, which means 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0 . 

The main idea is that 𝜎𝑡
2, the conditional variance of 𝜀𝑡

2 given information available up to time 

k−1, has an autoregressive structure and is positively correlated to its own recent past and to 

recent values of the squared returns 𝜀𝑡
2 are likely to be followed by large (small) values. The 

GARCH models permit a wider range of behaviors which allows the conditional variance to 

be dependent upon previous own lags so that the huge values of the lags (q) will not influence 

the accuracy of the prediction. 

Exponential GARCH (EGARCH) models 

The GARCH model, mathematically, explains conditional variance by formulating a linear 

regression between the squared disturbance error term in return process and the past variance. 

There is a limitation of this method that an equal size of positive and negative news will have 
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a same impact on the conditional variance. In empirical research, an asymmetric effect usually 

exists which was explained by Black & Scholes (1973). A negative shock will increase more 

with the conditional variance than a same magnitude of positive shock, which is called a 

“leverage/asymmetric effect”. A widely used asymmetric GARCH model put forward by 

Nelson (1991) namely the exponential GARCH (EGARCH) model provides a first explanation 

for the 𝜎𝑡
2 depends on both the size and the sign of lagged residuals in the return process. In 

particular, 

𝑙𝑛(𝜎̂𝑡
2) = 𝜔 + ∑ 𝛽𝑖𝑙𝑛(𝜎𝑡−𝑖

2 ) + ∑ 𝛼𝑖{𝜙𝜐𝑡−1 + 𝜓[|𝜐𝑡−𝑖| − 𝐸|𝜐𝑡−𝑖|]}
𝑞
𝑖=1

𝑝
𝑖=1  (3.3.7) 

Consider p=1 and q=1, {𝜐𝑡} is a sequence of i.i.d with a zero mean, the function could be a 

simple EGARCH (1,1): 

𝑙𝑛(𝜎̂𝑡
2) = 𝜔 +  𝑙𝑛(𝜎𝑡−1

2 ) + 𝛼𝜙𝜐𝑡−1 + 𝛼𝜓|𝜐𝑡−𝑖| (3.3.8) 

If define  

𝑔(𝜐𝑡) = 𝜙𝜐𝑡 + 𝜓|𝜐𝑡| (3.3.9) 

Here {𝑔(𝜈𝑡)} is a zero-mean, i.i.d, random sequence since the components of 𝑔(𝜈𝑡) are 𝜙𝜐𝑡 

and 𝜓|𝜐𝑡|  are zero mean. With the assumption in return process that {𝜈𝑡}  is normally 

distributed, the components of 𝑔(𝜐𝑡) are orthogonal, though they are not independent. If 0≤ 

𝜈𝑡 < ∞ , with refers to a positive news, 𝑔(𝜈𝑡) is linear in 𝜈𝑡  with slope 𝜙 + 𝜓 , and if -

∞ ≤ 𝜈𝑡 < 0，with refers to a negative news 𝑔(𝜈𝑡) is linear with slope 𝜙 − 𝜓. If𝜙 < 0, 𝑔(𝜈𝑡) 
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allows for the conditional variance process {𝜎𝑡
2} to respond asymmetrically to rises and falls 

in stock price by |𝜙 − 𝜓| > |𝜙 + 𝜓| and the clustering is captured by the parameter 𝜓. In the 

EGARCH model ln (𝜎𝑡
2)  is homoscedastic conditional on 𝜎𝑡

2  , and the partial correlation 

between 𝜈𝑡 and ln (𝜎𝑡
2) is constant conditional on 𝜎𝑡

2. 

Threshold-GARCH (TGARCH) models 

Another alternative asymmetric model is selected as TGARCH model. The Threshold GARCH 

(TGARCH) model studied by Glosten et al. (1993) define the conditional variance as a linear 

piecewise function. In TGARCH (1,1): 

𝜎̂𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛿𝐷𝑡𝜀𝑡−1
2 + 𝛽𝜎𝑡−1

2  (3.3.10) 

𝐷𝑡 = {
1    𝜀𝑡−1 < 0
0    𝜀𝑡−1 > 0

 (3.3.11) 

It can be clearly seen that the leverage effect is captured by the function 𝐷𝑡 with measuring 

the value of 𝜀𝑡−1. Similar with EGARCH models, ω provides the weighted average of the 

variance, positive news will reflect by the value of 𝛼 and negative news will be reflected by 

𝛼 + 𝛿. If δ >0, the negative news will have a greater impact α+δ on volatility rather than the 

same magnitude of positive news by α. The TGARCH model relaxes the linear restriction on 

the conditional variance dynamics. It could capture the stylized fact that conditional variance 

tends to be higher after a decrease in return than after an equal increase. 

Component GARCH (CGARCH) 
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The component GARCH (CGARCH) model following by Engle and Lee (1999) is derived by 

replacing the constant 𝜎𝑡
2  with a time varying long-run component 𝑞𝑡 . The conditional 

variance changes by a long run component which is calculated by itself, autoregressive of the 

first order. The CGARCH model specification is: 

𝜎̂𝑡
2 = 𝑞𝑡 + 𝛼(𝜀𝑡−1

2 − 𝑞𝑡−1) + 𝛽(𝜎𝑡−1
2 − 𝑞𝑡−1) (3.3.12) 

𝑞𝑡 = 𝜔 + 𝜌𝑞𝑡−1 + 𝜑(𝜀𝑡−1
2 − 𝜎𝑡−1

2 ) (3.3.13) 

The long-run component 𝑞𝑡 will present the effect by computing the parameter 𝜌 larger than 

𝛼 + 𝛽, the value of (𝜀𝑡
2 − 𝜎𝑡

2) will control the time varying movement of the long-run effect. 

It constitutes a method of making the long-memory-like features into a short-memory model 

to capture the salient features of speculative returns. 

 

Realized Volatility 

With rapid growth in financial markets, the volatility in financial time series plays an important 

role for both theoretical and empirical need. The volatility of the returns seems to be related to 

the returns easier to forecast than returns. In general, estimating variances depends on the size 

of the sample, which is the number of observations, while estimating the means of returns 

depends on the length of the sample which is the time period observation. Therefore, using 

realized variance is easier than returns due to the availability of high-frequency intraday data. 
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However, the conditional variance is latent, and hence is not directly observable. It can be 

estimated, among other approaches, by the GARCH as mentioned above. Although these 

GARCH type models have been extended in lots of directions based on the empirical evidence 

that the volatility process is non-linear, asymmetry, and has a “long memory” effect, researchers 

have found that those models cannot describe the whole day volatility information well enough 

because they were developed within low-frequency time series of squared roots will influence 

the conditional variance. As observed by Bollerslev (1987), the GARCH models fail to describe 

all the facts which is important in financial time series. McAleer & Medeiros (2008) 

documented an empirical fact that standard latent volatility models fail to describe in an 

adequate manner which is low but slowly decreasing, autocorrelations in the squared returns 

that are associated with high excess kurtosis of returns. Therefore, making the volatility to be 

“observable” has led to appearance of the realized volatility. 

The estimation and forecasting of the conditional variance with stock return becomes a work 

to measure a high frequency intraday data. With the work of Merton (1980), if the data can be 

estimated at an enough high sampling frequency, the variance over a fixed interval or time 

horizon can be estimated arbitrarily, as a sum of squared realizations. The work by Andersen 

& Bollerslev (1998) showed that the daily foreign exchange volatility can be best measured by 

aggregating 288 squared five-minutes returns which make the volatility now appear to be 

“observable”. More recent work by Takahashi et al. (2024) also suggests that realized volatility 

provides useful information in forecasting volatility. More specifically, the daily realized 

volatility which will be used as the “actual volatility” in this chapter are calculated as: 

𝑅𝑉𝑡 = ∑𝑟𝑡,𝑖
2  (3.3.14) 
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𝑟𝑡,𝑖 =
𝑠𝑡,𝑖−𝑠𝑡,𝑖−⧍

𝑠𝑡,𝑖−⧍
∗ 100% (3.3.15) 

where the ⧍ is a time interval of 5 minutes, the 𝑟𝑡,𝑖 is calculated every 5 minutes to represent 

the returns and sum the square returns to calculate the intraday realized variance 𝑅𝑉𝑡. 

Since the volatility becomes “observable,” it can be modeled directly, rather than being treated 

as a latent variable. Several recent studies have documented the properties of realized 

volatilities constructed from high frequency data in the literature. The Heterogeneous 

Autoregressive Model (HAR) by Corsi (2004) gives a good approach to focus on the realized 

volatility in different time horizons by formulating an AR regression on different period of the 

volatility to measure different weight of volatility in different time horizon so that the property 

that a short-term movement of the markets might act differently to volatility swings compared 

to a medium or long-term movements will be identified. 

Heterogenous autoregressive models (HAR model) 

Another model which is able to capture the long memory effect is first proposed by Corsi 

(2004), particularly, the heterogeneous autoregressive (HAR) model. It proves to successfully 

achieve the purpose of modeling the long-memory behavior of volatility in a very simple and 

parsimonious way (although not formally belonging to the class of long-memory models) by 

taking the realized volatility into account. The daily HAR is expressed by 

𝜎̂𝑡 = 𝛽0 + 𝛽𝐷𝑅𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡,𝑡+1      (3.3.16) 
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where 𝑅𝑉𝑡−1,𝑡, 𝑅𝑉𝑡−5,𝑡, 𝑅𝑉𝑡−22,𝑡 represents to the 1 day, 5 days and 22 days of the realized 

volatility in a time period which can be viewed as “one trading week” and “one trading month” 

refer to the average realized volatility of 5 days lagged and 22 days lagged. 𝛽0, 𝛽𝐷 , 𝛽𝑊, 𝛽𝑀can 

be estimated with the application of an Ordinary Least Squares (OLS) estimation. The HAR 

model believes that the latent realized volatility can be observed over time horizons longer than 

one day. It creates an AR regression of the 1 day, 5 days and 22 days average realized volatility 

to make forecasting. 

Hybrid GARCH model based on Artificial Neural Network (GARCH-NN)  

Machine learning methods are widely used not only in financial literature but other areas as 

well. Specifically, in order to improve the forecasting performance of the GARCH model, a 

hybrid model based on neural networks is introduced. An artificial neural network (ANN) is a 

network of interconnected elements called neurons. The neurons are used to estimate functions 

based on the inputs. The neurons are connected with each other by joint mechanism which 

consists of a set of assigned weights. The method can be described as follows: 

𝜎̂𝑡
2 = 𝜑(∑ 𝜔𝑡𝑥𝑖

𝑡−1
𝑖=1 + 𝑏𝑡) (3.3.17) 

{𝑥𝑖} is the input data and {𝜔𝑝𝑖} describes the connection weights of neurons and 𝑏𝑝 is the 

bias, 𝜑(∗) is the activation function and 𝜎̂𝑡 is the output of the neuron. In ANN works, multi-

layer feed forward (MLP) is a common approach which has three layers: input layer, output 

layer, and hidden layer. Neuron takes the values of inputs parameters, sums them up with the 

assigned weights, and adds a bias. With the application of transfer function, the outputs will be 

displayed.  
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A hybrid GARCH model can be built on the conception of neural networks. In neural networks, 

the input data can be set as an explanatory variable of financial time series, such as returns, 

squared returns, trading volumes, etc. A hybrid GARCH of volatility forecasting will set the 

target on the volatility. The input data will be set as some explanatory variables and the 

volatility generated by the GARCH type models including standard GARCH, EGARCH, 

TGARCH and CGARCH mentioned above. A simple specification can be interpreted as: 

𝜎̂𝑡
2 = 𝜑(𝑏𝑡 + ∑ 𝜔𝑡𝑥𝑖

2𝑡−1
𝑖=1 )             (3.3.18)

 

It describes the structure of the model for a single forecasting horizon, where the input 𝑥𝑡−1 is 

a matrix of the volatility generated by the GARCH type. The model can be separated into a 

linear autoregressive component of order and a nonlinear component whose structure depends 

on the number of hidden nodes which is the hidden layer in ANN.  

The whole dataset is separated into two parts: one is from 5 January 2005 to 25 November 

2014 (2400 observations or approximate 10 years), it is the training set for the machine. The 

other is from 26 November 2014 to 28 December 2018 (1000 observations or approximate 4 

years), it is the part to check the 1 day rolling window forecasting performance of the machine. 

The reason to use the GARCH genres is that it provides a more real-world context than other 

models when trying to predict the prices and rates of financial instruments addressed by Kenton 

(2020). The reason to combine the GARCH with neural networks is that it do not need too 

much formal statistical training and it can detect not only complex nonlinear relationships 

between dependent and independent variables but all possible interactions between predictor 

variables as well which is mentioned by Tu (1996). 
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3.4 Comparison methods of forecast performance  

The accuracy of forecasting is the main concern when using different models. In order to check 

the performance of several methods, lots of measurements are used to calculate the forecasting 

error in financial literature. The chapter selected four widely used methods first to make 

comparison: the Mean Absolute Error (MAE), the Mean squared error (MSE), the Quasi-

Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺  loss function. Moreover, a regression test called Mincer-

Zarnowiz regression test (MZ test) is applied to make sure that the “actual volatility” is 

regressed on the forecast series. Finally, a Model Confidence Set (MCS) procedure by Hansen 

(2011) is considered to test the equal predictive ability (EPA) at certain confidence level α. It 

tests models on various aspects depending on the chosen loss function mentioned above 

including MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺 . To retrieve a “actual volatility”, the realized 

volatility (calculated by 5 mins intraday returns) 𝜎̃𝑡 is considered both the in-sample and out-

of-sample period, which are believed to be closer to the unobservable volatility. The reason to 

use the realized volatility is that the conditional variance is latent, and hence is not directly 

observable, the realized volatility provides a measure of the historical performance of an asset 

which implies that one comes to know if the asset's price has been fluctuating a lot or not. 

The forecasting values are specified as 𝜎̂𝑡. 

Mean Absolute Error (MAE) and Mean Squared Error (MSE) 

The Mean Absolute Error (MAE) statistics are based on the average absolute forecast error, it 

measures the average magnitude of the errors in a set of predictions, without considering their 

direction. It calculates the average difference of the comparison with equal weight of all 
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individual differences. Another method called Mean-Squared Error (MSE) calculates the 

average squared difference between the estimated values and the actual values. Since the 

errors are squared before they are averaged, the MSE is sensitive with large errors due to the 

relatively high weight of them by squared function, which means that the MSE should be 

more useful when large errors are particularly undesirable. Both comparison measures report 

the better performance by a lower statistic.  

𝑀𝐴𝐸 =
1

𝛿
∑ |𝜎̃𝑡

2 − 𝜎̂𝑡
2|𝑇+𝛿

𝑡=𝑇+1  (3.4.1) 

𝑀𝑆𝐸 =
1

𝛿
∑ (𝜎̃𝑡

2 − 𝜎̂𝑡
2)2𝑇+𝛿

𝑡=𝑇+1  (3.4.2) 

Quasi-Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺 loss function 

The Quasi-Likelihood (QLIKE) loss function is a test of forecast bias implied by a Gaussian 

likelihood which has a specification: 

𝑄𝐿𝐼𝐾𝐸𝑡 = 𝑙𝑛(𝜎̂𝑡
2) +

𝜎̂𝑡
2

𝜎̃𝑡
2 (3.4.3) 

The QLIKE is found to be robust to noise when used to compare matching volatility prediction 

models. It means that using a proxy for volatility does not influence the performance ranking 

as using the true conditional variance is more reliable than MAE. The other loss function is the 

𝑅2𝐿𝑂𝐺 which measure the goodness of fit of the out-of-sample forecasts. 
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𝑅2𝐿𝑂𝐺𝑡 = [𝑙𝑛 (
𝜎̂𝑡
2

𝜎̃𝑡
2)]

2

 (3.4.4) 

Mincer-Zarnowitz Regression test 

A useful testing tool called Mincer-Zarnowitz regression test (MZ test) is applied to make 

sure that the “actual volatility” is regressed on the forecast series. The test procedure was 

proposed by Mincer & Zarnowitz (1969). Particularly, for volatility forecasting, the test tries 

to find a linear regression between on the “actual volatility”, here, the realized volatility, and 

the forecast values. The regression specification can be written as: 

𝜎̃𝑡
2 = 𝛼 + 𝛽 𝜎̂𝑡

2 + 𝜀𝑡 (3.4.5) 

It tests the joint hypothesis that the intercept is 0 and the slope is 1. The 𝑅2 statistics will report 

how well the regression should be. However, there are still lots of methods to test the regression 

such as Diebold-Mariano regression, Giacomini-White regression, etc. Since the forecast 

values by each model are univariate individuals, the Mincer-Zarnowiz regression test is suitable 

to analysis the regression. 

Model Confidence Set (MCS) 

Since varieties of models are available in recent years, it is crucial to find a statistical method 

or procedure that delivers the best performing models with respect to a given criterium. The 

Model Confidence Set procedure (MCS) as a statistic testing method, permits to construct a 

set of “superior” models which is called “Superior Set Models” (SSM) by testing whether the 
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null hypothesis of equal predictive ability (EPA) is not rejected at certain confidence level α. 

The EPA statistic tests are evaluated for an arbitrary loss function which can be customed 

with individuals. The Model Confidence Set procedure starts from an initial set 𝑀0 including 

all the models being compared and results in a smaller set 𝑀̂1−𝛼
∗  (SSM). The procedure will 

iterate with the EPA hypothesis test until null hypothesis is accepted and create an optimal 

SSM set. Otherwise, the EPA should be tested again after eliminating the worst model. The 

procedure specification of volatility can be viewed by some steps: 

First the loss function can be defined as equation (3.4.5), where the 𝜎𝑡 is the actual volatility 

and 𝜎̂𝑖,𝑡 is the output of model i at time t. The loss differential between models i and j is 

specified as equation (3.4.6) 

𝑙𝑖,𝑡 = 𝑙(𝜎̃𝑡, 𝜎̂𝑖,𝑡) (3.4.6) 

𝑑𝑖𝑗,𝑡 = 𝑙𝑖,𝑡 − 𝑙𝑗,𝑡 (3.4.7) 

The loss function for volatility in this chapter are specified as the MAE, MSE, QLIKE, 

𝑅2𝐿𝑂𝐺 mentioned above and there are more measures proposed by Hansen & Lunde (2005). 

The average loss of model i relative to any other model j at time t can be defined as equation 

(3.4.7), where the M is the initial set of m competing models at the first step mentioned above  

𝑑𝑖∙,𝑡 = (𝑚 − 1)
−1∑ 𝑑𝑖𝑗,𝑡𝑗∈𝑀  (3.4.8) 

The EPA hypothesis mentioned above for the given set M can be formulated in two 
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alternative ways: 

Null hypothesis: 𝐻0,𝑚: 𝐸(𝑑𝑖𝑗) = 0 for all i, j = 1, 2, …, m (3.4.9)    

Alternative hypothesis: 𝐻𝐴,𝑚: 𝐸(𝑑𝑖𝑗) ≠ 0 for some i, j = 1, 2, …, m (3.4.10) 

Or 

Null hypothesis: 𝐻0,𝑚: 𝐸(𝑑𝑖∙) = 0  for all i, j = 1, 2, …, m (3.4.11)    

Alternative hypothesis: 𝐻𝐴,𝑚: 𝐸(𝑑𝑖∙) ≠ 0  for some i, j = 1, 2, …, m (3.4.12) 

Two statistics corresponding with the test procedure are created by Hansen (2011): 

𝑡𝑖𝑗 =
𝑑̅𝑖𝑗

√𝑣𝑎𝑟̂(𝑑̅𝑖𝑗)
 and 𝑡𝑖∙ =

𝑑̅𝑖∙

√𝑣𝑎𝑟̂(𝑑̅𝑖∙)
 (3.4.13) 

𝑇𝑅,𝑀 = max
𝑖,𝑗∈𝑀

|𝑡𝑖𝑗| and 𝑇𝑚𝑎𝑥,𝑀 = max
𝑖,∈𝑀

|𝑡𝑖∙|  (3.4.14)

  

where 𝑑̅𝑖𝑗 =
∑ 𝑑𝑖𝑗,𝑡𝑇
𝑡=1

𝑇
 measures the relative sample average loss between the model i and 

model j during the whole time period T. Likewise,  𝑑̅𝑖∙ =
∑ 𝑑̅𝑖𝑗𝑗∈𝑀

𝑚−1
 measure the sample loss of 
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the model i relative to the averages losses across models in the set M. The 𝑣𝑎𝑟̂(𝑑̅𝑖𝑗) and 

𝑣𝑎𝑟̂(𝑑̅𝑖∙) are the bootstrapped variance estimates. The test statistics defined in formula 

(3.4.13) can be used to test the two hypotheses mentioned above, respectively. 

The MCS procedure will eliminate the worst model at each step if the null hypothesis of 

equal predictive ability (EPA) is not accepted and the procedure will iterate until all models 

with EPA hypothesis entered in the “Superior Set Models” (SSM). The choice of the model is 

made by an eliminated rule with equation (3.4.14) corresponding to the statistics defined 

above. Ideally, the best scenario is when the final set consists of a single model.  

𝑒𝑅,𝑀 = argmax
𝑖
{𝑠𝑢𝑝⏟
𝑗∈𝑀

𝑑̅𝑖j

𝑣𝑎𝑟̂(𝑑̅𝑖j)
} and 𝑒𝑚𝑎𝑥,𝑀 = argmax

𝑖∈𝑀

𝑑̅𝑖∙

𝑣𝑎𝑟̂(𝑑̅𝑖∙)
 (3.4.15) 

Hansen et al. (2010) pointed out the advantage of MCS procedure is that it is able to make 

statements about significance that are valid, in the traditional sense.  

In the comparison of predictive ability with different volatility models, common comparing 

measures usually does not report a unique result since different models are usually built to 

identify different stylized facts such as clustering, asymmetry and “long memory”. It is hard 

to point out that a single model outperforms others by the reason of their statistically 

equivalent property or not enough information from the data. The MCS procedure provides a 

new approach to identify the best fitting model. 

The reason to choose MAE and MSE is that MAE is useful for consistent error measurement 

across all data points, while MSE is preferred when penalizing significant errors is crucial. 
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However, the MSE method penalizes symmetrically. Therefore, QLIKE function which 

Sturesson & Wennström, (2023) states that is an asymmetrical loss function that penalizes 

under-prediction heavier than over-prediction is selected. The 𝑅2𝐿𝑂𝐺 is selected as well 

since it is often easier to interpret since it doesn't depend on the scale of the data. 

3.5 Results and analysis of empirical exercise  

All the data and models and comparisons are applied with R studio in an R language 

environment.  

Table 3.5.1 shows the MAE statistics of the volatility forecasting models including GARCH 

type models, their extension based on neural networks and a HAR-RV model as well. The 

realized volatility which is calculated based on the five-minutes intraday returns each day acts 

as the “actual” volatility. The value of the MAE statistics in the table is multiplied by 104 to 

make it simpler to read and compare in an appropriate term. The hybrid GARCH models based 

on neural networks are written as GARCH-NN, EGARCH-NN, TGARCH-NN and CGARCH-

NN which correspond to the different GARCH type models in the table. 

From the table, it can be seen that the CGARCH model has a better performance than others in 

4 out of 12 sample countries which is same with result of the work by Kambouroudis (2012). 

The second is the hybrid model GARCH-NN which is a standard symmetric GARCH model 

based on neural networks in 3 countries followed by the TGARCH-NN and CGARCH-NN for 

in 2 countries, respectively. Finally, the EGARCH-NN reports a minimum MAE value in 1 

country. In addition, there is no minimum MAE value reported for GARCH, EGARCH, 

TGARCH, and HAR models which means that these models do not appear to be the best model 
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when using MAE statistics in the12 sample countries. 

The second-best performing models can be found by the second minimum MAE values 

reported in each row. Both HAR model and CGARCH-NN appear to be the first with a second 

minimum MAE value in 4 countries, respectively. TGARCH-NN comes to be the second of 

the 2 countries. The rest are the GARCH-NN and EGARCH-NN in 1 country each. Again, 

there is no second minimum MAE values reported for GARCH, EGARCH, TGARCH and 

CGARCH, which means the whole GARCH type models are excluded from the second-best 

performer. 

The third-best performing models can be observed by the third minimum MAE values in each 

row. The results are in a wide dispersion. The GARCH, GARCH-NN and TGARCH-NN takes 

the first in 3 countries, second is TGARCH, CGARCH, and EGARCH-NN in 1 country each.  

Finally, Table 3.5.1 also reported the worst performing models of volatility forecasting by 

considering the maximum MAE statistics in every country. Here, the EGARCH appears to be 

the worst performer with a maximum MAE value in 5 countries. 

With looking the whole performance of the selected models, although the best models are 

considered to be a “long memory” model, the CGARCH - in 4 countries out of 12, the hybrid 

GARCH type models based on neural networks also perform well overall, particularly, they act 

as the best model in the rest of 8 countries. An overall conclusion can be drawn that the hybrid 

GARCH models outperform the GARCH type models and HAR model. Moreover, the second-

best models are still taken by these hybrid GARCH models, especially the extension of a long 

memory GARCH models, CGARCH-NN, in 4 out of 12 countries. These hybrid GARCH 
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models come to be superior when considering the third best model as well, which performs 

better in 7 countries out of twelve rather than the GARCH type models in 5 countries. Although 

the HAR model is marked as the second-best performer as well as CGARCH-NN, it has not 

been reported as the best or third best models in the rest of the countries. 

Since the MAE methods are the simplest way like an “naïve method” to compare the error 

which takes the difference with an equal weight, the MSE measure is carried out to identify if 

there exist some outlier predictions with huge errors. 

Similarly, Table 3.5.2 reports the MSE statistics for the volatility forecasting models in 12 

sample countries. The MSE will puts larger weight on the errors due to the squaring part of 

the function which will enlarge the outlier prediction error. Unlike when using MAE 

statistics, the TGARCH-NN model comes to be the first with a minimum MSE value in 5 out 

of 12 countries. The second is the GARCH-NN in 3 countries and the third is the CGARCH-

NN in 2 countries. There are only 1 minimum MSE values reported for each country of 

CGARCH and HAR models although the CGARCH are the best performer when using MAE. 

Again, there is no minimum MSE value reported for GARCH, EGARCH, TGARCH and 

EGARCH-NN. 

The second-best model is the CGARCH-NN in 4 countries, TGARCH-NN and EGARCH-NN 

in 3 countries, the CGARCH and HAR model in 1 country each. The GARCH, EGARCH, 

TGARCH are found to have no countries where they perform as best or second best. Some 

similar results are also obtained by the research of Chen (2023). 

The third-best model is recorded as EGARCH-NN in 4 countries. The second is the GARCH, 



 

83 

 

CGARCH and GARCH-NN in 2 countries, respectively. The TGARCH-NN and CGARCH-

NN come to the last with a minimum MSE value in 1 country each.  

The EGARCH once again comes to be the worst performing model with the highest MSE 

statistics in 6 out of 12 sample countries. 

By taking a whole view of Table 3.5.2, the conclusion is different of the measure MSE. The 

hybrid model TGARCH-NN has come to be the best performing model. Moreover, these hybrid 

models appear to be superior to others in the best, second, and third best performer category, 

which outperforms in 10 out of 12 countries when considering the best and second, outperforms 

8 out of 12 countries when considering the third best models. 

With the application of MZ test, there is a disadvantage: a large value will has a larger impact 

on the regression and it may generates bias on the test results. Therefore, with the work of 

Pagan & Schwert (1990) and Kambouroudis (2012), two regressions are introduced in the 

general form of MZ test but has the ability to rescale the parameters: 

𝜎̃𝑡
2 = 𝛼 + 𝛽 𝜎̂𝑡

2 + 𝜀𝑡               (3.5.1) 

log (𝜎̃𝑡
2)𝜎̃𝑡

2 = 𝛼 + 𝛽log ( 𝜎̂𝑡
2) + 𝜀𝑡            (3.5.2) 

In Table 3.5.3, the 𝑅2 statistics for the coefficient of the regression of all the models are 

reported. The EGARCH-NN performs better in 6 out of 12 sample countries followed by 

TGARCH-NN in 3 countries. The EGARCH, TGARCH and HAR models has a higher 𝑅2 in 
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1 country, respectively. In addition, there is no maximum 𝑅2 value reported for GARCH, 

CGARCH, GARCH-NN and CGARCH-NN. 

The second-best performer can be found by estimating the second highest 𝑅2 value. The 

TGARCH-NN outperforms the rest of the models in 6 out of 12 countries. The second place 

is the TGARCH and CGARCH-NN with a second maximum 𝑅2 value in 2 countries, 

respectively. The third is EGARCH and EGARCH-NN in 1 country each. Again, the 

GARCH, CGARCH and GARCH-NN models are found to have no countries where they 

perform as best or second best. 

The third-best performing model is the GARCH-NN and CGARCH-NN model in 4 out of 12 

countries, respectively. The rest are the EGARCH, CGARCH, EGARCH-NN and HAR 

comes with a third maximum 𝑅2 value in 1 country each. 

The worst performing model can be identified by observing the lowest 𝑅2 value in Table 

3.5.3. The GARCH model comes to be the worst performer in 8 out of 12 sample countries. 

The HAR model are reported to be the worst in 3 countries and EGARCH, GARCH-NN, 

CGARCH-NN in 1 country, respectively. 

The overall performance of the volatility models by regression test suggests that the hybrid 

GARCH type models, especially the asymmetric hybrid models (TGARCH, EGARCH) 

based on neural networks has a better regression of forecast values than the rest of the 

models.  

There are some weaknesses or limitations of the MAE, MSE or MZ regression test. The MAE 
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only compares the error which takes the difference with an equal weight, which will average 

some outlier predictions with huge errors. Although the MSE measure can enlarge the error 

with its squaring part of function, the squaring part will magnify the error if the model only 

makes a single bad prediction, and this will affect the overall judgement of a model. Likewise, 

the MZ regression test only concerns the linear regression of the coefficient. In order to observe 

the forecasting performance of each volatility model more detailly, the MCS procedure is 

introduced. 

Loss of the volatility  

Model Confidence Set procedure (MCS) is an iteration of a sequence of statistic tests which 

permits to construct a set of “superior” models, the “Superior Set Models” (SSM), under the 

null hypothesis of equal predictive ability (EPA) is not rejected at certain confidence level α 

based on a loss function. There are six loss function of volatility evaluating based on the 

(MCS) addressed by Hansen and Lunde (2005) which is mentioned above in section 3.5. 

Before applying this statistic tests procedure, a direct comparison based on the loss function 

are taken out. The details of the “Superior Set Models” (SSM) will be displayed as a 

conclusion in next section.  

The QLIKE and 𝑅2𝐿𝑂𝐺 are selected to check if there is any significant difference. The loss 

function specification is: 

𝑄𝐿𝐼𝐾𝐸𝑡 = 𝑙𝑛(𝜎̂𝑡
2) +

𝜎̂𝑡
2

𝜎̃𝑡
2 (3.5.3) 
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𝑅2𝐿𝑂𝐺𝑡 = [𝑙𝑛 (
𝜎̂𝑡
2

𝜎̃𝑡
2)]

2

 (3.5.4) 

where 𝜎̃𝑡 refers to the “actual volatility” and evaluated volatility is specified as 𝜎̂𝑡. 

 

The 𝑅2𝐿𝑂𝐺 statistics prefers a value closer to zero which indicates that the distance between 

the “actual” volatility and forecasting volatility is small enough. The value is no doubt 

nonnegative due to the squaring part of the function so that a lower 𝑅2𝐿𝑂𝐺 statistics is 

preferred when comparing different models. 

With the application of the QLIKE loss function in equation (3.5.1), it is hard to say that a 

lower statistic indicates a better performance. In order to make it more appropriate to 

compare directly, a specification is defined as: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = (𝑙𝑛(𝜎̃𝑡+1
2 ) − 𝑙𝑛(𝜎̂𝑡+1

2 ))⏟              
1

+ (
𝜎̂𝑡
2

𝜎̃𝑡
2 − 1)⏟    
2

 (3.5.5) 

The two parts of the QLIKE statistic measures the log difference between the “actual” 

volatility and forecasting volatility and their rates. Both two parts tends to be zero if the 

forecasting volatility tends to be same as the “actual” volatility so that a QLIKE statistics 

closer to zero will be preferred when comparing different models. 
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In Table 3.5.4 the QLIKE statistics based on equation (3.5.3) are reported. Both GARCH-NN 

and TGARCH-NN model comes to be the first with a minimum QLIKE value in 3 out of 12 

countries, respectively. The CGARCH and CGARCH-NN appear to be the second both with 

a minimum QLIKE value in 2 countries. The third is the TGARCH and HAR in 1 country 

each. Similarly, there is no minimum QLIKE value reported for GARCH, EGARCH and 

EGARCH-NN. 

The second-best performing models can be found by the second minimum QLIKE statistics 

reported in each row. CGARCH-NN appears to be the first in 4 countries followed by 

CGARCH in 3 countries. The third is the HAR model in 2 countries and the rest are 

GARCH-NN, EGARCH-NN, TGARCH-NN in 1 country each. Again, there is no second 

minimum QLIKE value reported for GARCH, EGARCH and TGARCH. 

The third-best performing models can be observed by the third minimum QLIKE values in 

each row. The results are similar as the MAE and MSE results in a wide dispersion with no 

doubt. The EGACH-NN is the first in 3 counties followed by GARCH, TGARCH-NN and 

HAR in 2 countries, respectively. Other models including TGARCH, CGARCH and GARCH-

NN in 1 country each. 

Finally, Table 3.5.4 also reported the worst performing models of volatility forecasting by 

considering the maximum QLIKE statistics in each country. The EGARCH appears to be the 

worst performer with a maximum QLIKE value in 4 countries. 

The overall conclusion of Table 3.5.4 generated by the whole performance of the selected 

models are similar with the measures applied above. The hybrid GARCH models perform 
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better than others, but the best models are considered to be in a difference when using different 

measures: CGARCH when using MAE, TGARCH-NN when using MSE, EGARCH-NN when 

using MZ test and here GARCH-NN and TGARCH-NN when using QLIKE. Likewise, with 

the application of QLIKE measure these hybrid models appear to be superior when considering 

the second and third best models as well. These hybrid models come to be a second-best 

performer in 7 countries while GARCH type in 3 and HAR in 2. When considering the third-

best performer, these hybrid models outperforms in 6 countries while GARCH type in 4 and 

HAR in 2. 

Another measure of the loss function based on the MCS procedure mentioned above is the 

𝑅2𝐿𝑂𝐺. Unlike the QLIKE measure it only concerns the LOG difference between the “actual” 

volatility and the forecasting values. 

Similar as the QLIKE measure, Table 3.5.5 reports the 𝑅2𝐿𝑂𝐺 statistics of the loss function 

for the volatility forecasting models in 12 sample countries. A lower value is preferred when 

selecting a better performance model. Unlike when using QLIKE, the 𝑅2𝐿𝑂𝐺 statistics 

indicated that CGARCH, GARCH-NN and TGARCH-NN performs better in 3 out of 12 

countries, respectively, which both include the “long memory” GARCH type models and 

hybrid GARCH models.  The second is CGARCH-NN in 2 countries followed by the third 

of TGARCH in 1 country. Again, there is no minimum 𝑅2𝐿𝑂𝐺 value reported for GARCH, 

EGARCH and HAR model 

The second-best model is the CGARCH-NN in 4 countries, HAR model in 3 countries, the 

CGARCH in 2 countries and the GARCH-NN, EGARCH-NN, TGARCH-NN in 1 country, 
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respectively. GARCH and EGARCH models are found to have no countries where they 

perform as best or second best. 

The third-best model is recorded as EGARCH-NN in 4 countries. The second is the GARCH, 

EGARCH and TGARCH-NN in 2 countries, respectively. The TGARCH and CGARCH 

come to the last in only 1 country each.  

The EGARCH not surprisingly comes to be the worst performing model with the highest 

𝑅2𝐿𝑂𝐺 values in 4 out of 12 sample countries. 

Again, in attempt to look at the overall performance of the models using 𝑅2𝐿𝑂𝐺 loss 

function in Table 3.5.5, the conclusion is similar to the results from QLIKE loss function. The 

hybrid model GARCH-NN, TGARCH-NN and CGARCH-NN takes most of the position 

when identifying a best model. Moreover, the “long memory” GARCH type models, 

CGARCH also has a good performance in 𝑅2𝐿𝑂𝐺 statistic report. Likewise, the hybrid 

models are still superior when considering the second-best models by outperforming in 7 

countries out of 12, while the GARCH type models comes to more when considering the 

third-best models. Both GARCH type models and hybrid ones appear to be the third-best 

models in 6 countries. 
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3.6 Discussion and Findings 

In order to determine the best and worst performance models, Table 3.6.1 which summary the 

empirical results are created. It recorded the best, and worst performer based on five measures 

of evaluating the forecast among GARCH type models, their extension based on neural 

networks and HAR model in the 12 sample countries. 

It cannot make a clear suggestion that a certain model has the best performance. By ranking all 

the individual models in the table above, the results showed that the TGARCH-NN ranked the 

first, followed is GARCH-NN and CGARCH. The CGARCH-NN ranked fourth and 

EGARCH-NN fifth. The TGARCH and HAR model are the sixth, the EGARCH eighth and 

finally GARCH ninth. If ranking by the category, the hybrid GARCH type models is the first, 

the traditional GARCH models is the second, the HAR-RV model is the third. Based on the 

classification, the asymmetric hybrid model first, the standard hybrid GARCH second, the 

traditional “long memory” model third, the “long memory” hybrid model fourth followed by 

HAR and traditional asymmetric model. 

3.6.1 GARCH estimation for Neural Networks 

The ranking above raises a question that whether a good estimating performance by GARCH 

will results in a good forecasting performance in the hybrid GARCH based on neural 

networks. For this reason, the table is separated into two parts which recorded the estimation 

of GARCH type models and the forecasting performance of the hybrid models based on the 

corresponding GARCH models. 
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Table 3.6.2 summarizes a result of the best and worst performers in the estimation of 

GARCH type models, similarly, using the five comparing techniques mentioned in previous 

chapter. The asymmetric GARCH type models, especially EGARCH in the exercise, come to 

be the best performance model when estimation followed by the TGARCH which indicates 

the asymmetric models as well. The worst performer is identified as the standard GARCH.  

Table 3.6.3 summarizes the results of the best and worst performers in hybrid GARCH type 

models based on neural networks. The TGARCH-NN comes to be the best performer 

followed by GARCH-NN. However, the standard GARCH model  

is identified as the worst of estimation in Table 3.6.2. Likewise, although the EGARCH is 

record as the best model of estimation in the Table 3.6.2 above, EGARCH-NN is not 

identified as the best forecasting hybrid models but the second-worst performer for 15 times 

in Table 3.6.3. 

3.6.2 Model Confidence Set 

As mentioned in the comparing technique section (section 3.5), a “Superior Set Models” (SSM) 

will be generated after the Model Confidence Set procedure (MCS) to test the equal predictive 

ability (EPA) hypothesis. The models which enters the SSM set will be assumed to have an 

equal predictive ability under a confidence level. With the direct comparison of the measure of 

MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺 statistics, although some basic results are reported in section 

3.5, it is still necessary to consider the forecasting ability of each model. 

Table 3.6.4 reports the compositions of the Superior Set of Models discriminating by model 
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based on the volatility loss function of at a 95% confidence level, particularly, the MAE, MSE, 

QLIKE and 𝑅2𝐿𝑂𝐺 measures. The different values in each column represent the number of 

models that enters the Superior Set Model at the end of the MCS procedure, when the null 

hypothesis of equal predictive ability (EPA) is not rejected at the 95% confidence level. 

It can be seen that the CGARCH and GARCH-NN rank the first by “surviving” from the 

procedure of 24 times followed by TGARCH-NN with the number of 23. The fourth place is 

the HAR model with number of 19. The EGARCH and EGARCH-NN ranked the fifth with 

the number of 18, respectively. The seventh and eighth is the GARCH and TGARCH models, 

while the CGARCH-NN appears to be the last. This result gives evidence that the “long 

memory”, CGARCH as well as the hybrid GARCH model are more likely to capture the 

dynamics existed in the data. However, the hybrid GARCH based on a “long memory” model 

perform the worst. 

3.6.3 Conclusion  

Taking an overview of all these tables both in section 3.5 and section 3.6, some conclusions 

can be generated. The first thing is that the hybrid GARCH model based on neural networks 

will improve the forecasting performance of a traditional GARCH model which is contributed 

to the literature such as Hyup Roh, (2007), Bildirici & Ersin (2009) and Werner & Hanka 

(2016). Second, by comparing the performance in GARCH class models, the long memory 

model comes to be the first followed by asymmetric ones and the symmetric GARCH models 

comes to the last which can be found in lots of literatures. Third, there is no strong evidence to 

support that the success in GARCH type estimation will yield in a success of the application 

of a corresponding hybrid GARCH models based on neural networks which can be generated 
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from the comparison in section 3.6.2. It means that although the input which generated from a 

“winner” among GARCH type models, there do not exist empirical evidence that the input will 

give a more accurate forecasts than others. Since some of the literature concerned with the 

hybrid models only selected one or two tradition GARCH type models to build hybrid ones, or 

just fit the model in a certain asset, which makes the results very limited or not comprehensive. 

The conclusion of the exercise makes a new approach to compare four GARCH type models 

and four hybrid GARCH in twelve countries with five comparison measures, which fill the gap 

of limited models or samples mentioned above.  For further conclusion, the results from the 

Superior Set of Models (SSM) of the Model Confidence Set (MCS) procedure gives empirical 

evidence that that “The hybrid GARCH models will not have equal predictive ability as their 

corresponding GARCH models. 

Moreover, the hybrid GARCH model based on neural networks are more likely to capture 

asymmetric effects. The sum number of TGARCH-NN and EGARCH-NN in MCS procedure 

are far more than the sum of traditional EGARCH and TGARCH. The results in section 3.5 

also indicate that either the TGARCH-NN or EGARCH-NN models have a better performance 

overall. However, by looking with the surviving number of “CGARCH-NN” by MCS 

procedure, which is the lowest number in the table, it gives some hints that the hybrid long 

memory GARCH model, CGARCH-NN has some weakness to identify the “long memory” 

effect. In more detail, although the CGARCH model performs better than others, it does not 

mean that the CGARCH-NN will outperform. The CGARCH model are more suitable to 

identify the “long memory”. The results is useful for future research, the hybrid models can be 

applied directly when forecasting univariate volatility. For economics, the policymakers can 

benefit from the results to formulate their policies to avoid risk. The investors can use to 

appropriate models in this empirical chapter to forecast more recent volatility to avoid risk and 

loss or to revise their portfolio to make more profits. 
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Table 3.6.1 Summary for all models 

Mea

sure 

Perfor

mance 

GA

RC

H 

EGA

RCH 

TGA

RCH 

CGA

RCH 

GARC

H-NN 

EGAR

CH-NN 

TGAR

CH-NN 

CGAR

CH-NN 

H

A

R 

MA

E 

Best 0 0 0 4 3 1 2 2 0 

Worst 2 5 1 0 0 1 2 1 0 

MS

E 

Best 0 0 0 1 3 0 5 2 1 

Worst 2 6 1 0 0 0 1 2 0 

𝑅2 
Best 0 1 1 0 0 6 3 0 1 

Worst 6 1 0 0 1 0 0 1 3 

QLI

KE 

Best 0 0 1 2 3 0 3 2 1 

Worst 1 4 2 0 1 1 1 2 0 

𝑅2𝐿𝑂𝐺 
Best 0 0 1 3 3 0 3 2 0 

Worst 2 4 1 0 0 1 2 2 0 

Tota

l 

Best 0 1 3 10 12 7 16 8 3 

Worst 12 20 5 0 2 3 6 9 3 
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Table 3.6.2 Summary performance of GARCH type estimation 

Measure Performance GARCH EGARCH TGARCH CGARCH 

MAE 
Best 0 9 1 2 

Worst 10 1 1 0 

MSE 
Best 0 10 1 1 

Worst 11 0 0 1 

𝑅2 
Best 0 10 2 0 

Worst 8 0 0 4 

QLIKE 
Best 0 0 6 6 

Worst 9 2 1 0 

𝑅2𝐿𝑂𝐺 
Best 0 0 7 5 

Worst 9 1 2 0 

Total 

Best 0 29 17 14 

Worst 47 4 4 5 
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Table 3.6.3 Summary performance of hybrid GARCH forecasting 

Measure Performance GARCH-NN EGARCH-NN TGARCH-NN CGARCH-NN 

MAE 
Best 4 2 3 3 

Worst 1 5 3 3 

MSE 
Best 4 0 5 3 

Worst 4 2 2 4 

𝑅2 
Best 1 7 4 0 

Worst 6 1 0 5 

QLIKE 
Best 4 1 4 3 

Worst 2 4 3 3 

𝑅2𝐿𝑂𝐺 
Best 4 1 4 3 

Worst 2 3 4 3 

Total 
Best 17 11 20 12 

Worst 15 15 12 18 
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Table 3.6.4 Number of models that belong to SSM 

Models/Loss function MAE MSE R2LOG QLIKE Total 

GARCH 4 5 3 5 17 

EGARCH 2 4 6 6 18 

TGARCH 3 4 3 5 15 

CGARCH 6 6 5 7 24 

GARCH-NN 5 9 5 5 24 

EGARCH-NN 3 8 3 4 18 

TGARCH-NN 4 10 4 5 23 

CGARCH-NN 2 2 5 5 14 

HAR 4 4 4 7 19 
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4.Emprical chapter of covariance Forecasting 

Covariance forecasting using DCC-GARCH and a hybrid-

built Artificial Neural Networks 

Abstract  

This chapter introduced a hybrid model combining DCC process and Artificial Neural 

Networks in order to promote the forecasting ability of the traditional approaches when 

forecasting covariance or correlation. The covariance between the S&P 500 stock index and 

other eleven stock indices from different countries will be investigated by using four standard 

DCC GARCH models and four hybrid models built with neural networks. A wide comparison 

by four measures among these models is created to check the forecasting performance of 

these models. Three findings are addressed by this chapter. First, the proposed model could 

fit the covariance matrix well and give a simple way to deal with the high-dimension problem 

that may occur in forecasting covariance by traditional GARCH model. Second, the results 

revealed that the new hybrid method outperforms the traditional DCC GARCH models. 

Finally, the EGARCH DCC process built on neural networks has the best forecasting 

performance within the whole comparison technique. The results are able to provide some 

suggestions for market managers on risk control, especially for the portfolios containing 

multivariate assets in different countries. 

  



 

105 

 

4.1 Introduction 

Covariance forecasting has been a hot topic in risk management. Modeling and forecasting the 

covariance matrix of financial assets are essential for portfolio allocation and risk management. 

Lots of papers and research focused on the traditional models like VEC, BEKK, CCC/DCC 

process in the past. With the development of technology these days, many studies appear to 

concentrate on machine learning approaches since it will not be restricted to the heavy 

parameter or high dimension estimation. Most of them used these approaches individually. 

Moreover, it is hard to tell which model or approaches are the better one. In this chapter, the 

study aims to explore the covariance forecasting by using traditional DCC-GARCH models 

and a hybrid-built model based on neural networks.  

In this chapter, a new approach which combines neural networks and the DCC GARCH model 

will be introduced. A wide comparison among the different approaches will be created. The 

forecasting power will be explored by using both DCC GARCH methods and several hybrid-

built models based on neural networks. Four measures of comparison including Mean Absolute 

Error (MAE), Mean Squared Error (MSE), Quasi-Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺  loss 

function will be used to discover the forecast ability. The Model Confidence Set (MCS) will be 

created at the end as well to find a better performing model.  

There are three main contributions in this chapter: First, a approach built with DCC GARCH 

genres and neural networks is introduced in this chapter. The forecast ability of the new method 

has been investigated. Second, since there does not exist a general accepted conclusion to state 

the best models or best methods in the covariance forecasting, this chapter will go into the 

discussion of the covariance forecasting with the application of several models including both 
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the traditional DCC GARCH model and the new hybrid approach methods in order to identify 

a better model for covariance forecasting. Most of today’s study are talking about the traditional 

multivariate GARCH or machine learning methods individually when forecasting covariance. 

This chapter aimed to provide a more comprehensive view of the covariance forecasting 

performance of traditional DCC GARCH, and hybrid approaches built with neural networks. 

Furthermore, this exercise aims to introduce a new approach which is more efficient to forecast 

the covariance. Four different GARCH models including GARCH, EGARCH, TGARCH and 

CGARCH are used in the first step of the DCC process in order to identify whether different 

models used in first step will affect the forecast accuracy of the covariance in the results. 

Likewise, since some of the study only considered about the forecasting performance among 

very limited samples by only one or two models, this chapter aims to make a wider comparison 

among 12 stock indices from different countries with the application of 8 models. 

The structure of the chapter is organized as follows. Section 2 summarizes the background of 

the covariance forecasting and some main questions which have been investigated in this area. 

Section 3 gives the data series, source, time periods. Section 4 describes the list of covariance 

forecasting models, and a hybrid-built model is proposed as well. Section 5 shows the method 

used to compare the performance of the models. In section 6, a full report of the performance 

will be displayed, and section 7 will discuss the conclusions and findings. 
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4.2 Background 

In financial literature, it is important to consider the volatility of an asset since it is linked with 

the “risk” directly. However, it is not enough to only observe a univariate asset since the 

behaviors among different assets still play an important role when estimating the conditional 

distribution of returns which is confirmed by the work of Bollerslev, Engle and Wooldridge 

(1988). There are several methods to estimate or forecast the covariance including historical 

methods, MA, EWMA and a series of multivariate GARCH (MGARCH) models. Since a large 

number of univariate GARCH models are proposed, it is not hard to make some extension to 

them to multivariate ones for the measurement of the covariance. The multivariate GARCH 

are divided into four categories by Silvennoinen & Terasvirta (2008) including the models 

calculated the conditional covariance directly like the VEC and BEKK models; the factor 

models which assume the return process 𝑟𝑡 is generated by a (small) number of unobserved 

heteroskedastic factors; the semiparametric and nonparametric approaches that can offset the 

loss of efficiency of the parametric estimators which do not impose a particular structure (that 

can be mis-specified) on the conditional covariance matrices and finally the models of 

conditional variances and correlations which built on the idea of modelling the conditional 

variances and correlations instead of straightforward modelling of the conditional covariance 

matrix like the Constant Conditional Correlation (CCC) model, Dynamic Conditional 

Correlation (DCC) model which will be introduced in following part. Bollerslev et al. (1988) 

first introduced a vector error correction model (VEC) which is a multivariate generalized 

autoregressive conditional heteroscedastic process. They found that the conditional 

covariances are quite variable over time and are a significant determinant of time-varying risk 

premia. With the later work by Engle & Kroner (1995), another direct extension of univariate 

GARCH model called BEKK which named after Baba, Engle, Kraft and Kroner were proposed. 

They built a new parameterization of the multivariate ARCH process which gives an effective 
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way for the estimation of covariance between different assets. However, these models are 

usually heavily parameterized and may only be suitable for a small number of series. Some 

other alternative models are proposed such as the orthogonal GARCH model. It is a n-

dimension GARCH model based upon the principal components of a constant unconditional 

covariance matrix which is able to reduce the dimension of the covariance matrix by (Ding & 

Engle (2008) and Klaassen (2002). Van der Weide (2002) also proposed a new type of 

multivariate GARCH model in which potentially large covariance matrices can be 

parameterized with a fairly large degree of freedom while estimation of the parameters remains 

feasible. 

Furthermore, study took more attention to the conditional correlation models since it can be 

used in a more widely environment by its muti-step procedure. The constant conditional 

correlation model (CCC) was first introduced by Bollerslev (1990) which parameterizes each 

of the conditional variances as a univariate GARCH process. Another model called the standard 

dynamic conditional correlation (DCC) was proposed by Engle (2002) which allows the 

dynamic conditional correlation. Engle states that “The DCC process have the flexibility of 

univariate GARCH coupled with parsimonious parametric models for the correlations.” Since 

the process can be estimated with univariate or two-step methods by likelihood function, it has 

been proved to perform well in lots of empirical situations by the work of Engle. Cappiello et 

al. (2003) introduced a new generalization of the standard DCC model with Engle called 

asymmetric generalized dynamic conditional correlation (AG-DCC) model which allows for 

series-specific news impact and smoothing parameters. Conditional asymmetries in correlation 

dynamics are also permitted as well. It gives a suitable method to examine the dynamics of 

correlation between different type of assets. 

However, by the work of Aielli (2011), they proved that DCC large system estimator can be 
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inconsistent which may lead to misleading conclusions by the traditional interpretation of the 

DCC correlation parameters. Therefore, they suggested a more tractable dynamic conditional 

correlation model called cDCC-GARCH models which the large system estimator are proven 

to be consistent. Both DCC and cDCC were tested in two different datasets, one is a small 

dataset with 10 equity indices and the other is a larger dataset with 100 equity indices. The 

results show that the cDCC correlation forecasts perform as well as or significantly better than 

the DCC correlation forecasts. 

Since varieties of models are introduced to measure or forecast the covariance or correlation, 

increasing attention has been devoted to the comparison of different models. There still existed 

a debate on which model performs better. Caporin & McAleer (2008) examined the forecasting 

performance using a set of multivariate GARCH models including BEKK, DCC, cDCC, CCC 

of Bollerslev (1990), Exponentially Weighted Moving Average, and covariance shrinking of 

Ledoit & Wolf (2004). The results show that many models have similar forecasting 

performance including both direct and indirect evaluation methods. They cannot give a best 

performer since the preferred models is not stable over alternative approaches and sample 

periods. A later empirical study by Huang et al. (2010) made a comparison among BEKK 

GARCH and DCC GARCH Models using the dataset of Euro zero-coupon bonds with different 

maturities. They found that the DCC model performs better by its simple two-step estimation 

method and give a conclusion that “significant fitting and forecasting performances originate 

from the trade-off between parsimony and flexibility of the MGARCH models.” Basher & 

Sadorsky (2016) use 3 methods including DCC, ADCC and GO-GARCH to model volatilities 

and conditional correlations between emerging market stock prices, oil prices, VIX, gold prices 

and bond prices. The results are different between different assets. The ADCC models are 

preferred for emerging market stock prices with oil, VIX, or bonds, while the GO-GARCH are 

more effective for emerging market stock prices with gold in some instances.  
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In the past twenty years, the study of the correlation or covariance using different models 

among financial assets has never been stopped. Several new models and new approaches are 

proposed. Lots of comparisons among models are created. Fiszeder et al. (2019) suggest an 

extension of DCC model that incorporates high and low prices into the DCC framework. They 

made an empirical study on currencies, stocks, and commodity exchange traded funds with the 

application of their new models. The new models have proved to be superior to the standard 

DCC model and alternative range-based DCC model. Besides the traditional parametric models, 

the machine learning methods also appeared to be an effective way. Since the traditional 

GARCH has limitations to deal with the high-dimensional cases, more and more study are 

focusing on machine learning methods. The neural networks, which were introduced in the 

previous chapter, are the one of the most widely used techniques when making forecasts among 

time series. Cai et al., (2012) forecasted a large-scale conditional volatility and covariance 

using neural network. Their experiment results indicate that the neural networks are better in 

modeling for large-scale cases rather than traditional GARCH models. Fang et a. (2021) 

proposed a neural networks methodology to forecast the realized covariance matrix which are 

able to handle high-dimensional realized covariance matrices consistently. The machine was 

trained with the historical realized covariance matrices with the application of a nonlinear 

mapping. Their results proved that the method they proposed has more excellent forecasting 

ability than other several traditional advanced volatility models. Liu et al., (2021) made a 

comparison between the multivariate dynamic covariance GARCH models and the artificial 

neural networks. They measure the portfolio optimization and the distances between the actual 

covariance matrices and predicted covariance matrices by using two different models and found 

that the neural networks outperforms the DCC model in terms of mean portfolio returns. 

Support vector regression, as another effective way for time-series forecasting, is able to 

capture the dynamics of the financial processes and has an overall stable performance. 

Fałdziński et al. (2020) introduced a methodology using support vector regression (SVR) to 
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forecast the covariance matrices. The results from the new method were proved to be more 

accurate than the forecasts from the benchmark dynamic conditional correlation model. 

Although there exist lots of methods to investigate the dynamics of the covariance, it is hard to 

tell which method has a better performance. Most of the research talks about a single method 

like a traditional DCC process, a Neural Network or a Support vector machine and make 

comparisons among them between very limited assets. This study proposed a new approach 

which combined the traditional DCC process and neural networks. A wider comparison will be 

created as well to test the forecasting ability of the hybrid machine and traditional DCC process. 

4.3 Data 

The target of this exercise is to check the forecasting performance of several models which the 

main work is to calculate the conditional covariance. The main data set being used in this paper 

is the daily stock price index in twelve countries over the world. The countries which are 

selected are based on the principle of market capitalization in the stock market, particularly, 

countries with over $1500 billons market capitalization which is presented by the end of year 

2017 will be included. The time period was selected as same as the previous chapter due to the 

data access availability and the convenience for comparison across different chapter in the 

future. The market capitalization represents the total value of a company's stock, the stock with 

a high market capitalization means the size of the stock market is large. With the application 

of market capitalization, it allows investors to size up a stock index. The thesis aims to select 

the stock index with large size to test the forecast ability of different models. Therefore, the 

twelve daily stock price indexes are selected. The markets of selected countries in Europe, 

Australia and America are all developed market since the market in these countries have 
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already experienced a long history of development while the emerging market are mainly 

located in the Asian area including 3 markets: China, Korea and India. The data comes from 

different type markets will give a comprehensive result that whether the performance of the 

methods is suitable or effective when the market changes. 

The daily adjusted closing price is selected, the time period is from 5 January 2005 which is 

the first available trading date in year 2005 to 28 December 2018 which is the final available 

trading date in year 2018. In order to train the machine (neural networks) with more data, the 

long time period of data is selected. Since some of the daily stock price data are not 

comprehensive before 2005, due to the data availability, this time period was selected. The 

prices of the index are transformed in returns by standard methods which make it more 

measurable in equation. All the price data are obtained by the Application Programming 

Interface (API) finance data from “Yahoo Finance”  

The returns are calculated by the standard method (4.3.1). In order to compare the performance 

of different methods, the realized covariance of these returns which act as the “true covariance/ 

correlation” is calculated by the method (4.3.2)/ (4.3.3). The corresponding high frequency 

returns are obtained from the source of “Oxford Man”, the source provides the 5-mins intraday 

returns of different assets and the covariance were calculated with the method of formula (4.3.2) 

and (4.3.3). 

The index prices are transformed in returns by standard methods which make it more 

measurable in equation: 

𝑅𝑡 =
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
∗ 100% (4.3.1) 
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The daily realized covariance between two assets computed from intraday returns recorded at 

m subintervals each day and equals to the sum of cross products of the intraday returns by 

equation: 

𝑅𝐶𝑜𝑣12,𝑡
𝑚 = ∑ 𝑅1 ,𝑡−1+𝑗/𝑚𝑅2 ,𝑡−1+𝑗/𝑚

𝑚
𝑗=1  (4.3.2) 

Further, the realized correlation can be obtained by: 

𝑅𝐶𝑜𝑟𝑟12,𝑡
𝑚 =

𝑅𝐶𝑂𝑉12,𝑡
𝑚

√𝑅𝑉1,𝑡
𝑚𝑅𝑉2,𝑡

𝑚  (4.3.3) 

where 𝑅𝑉1,𝑡
𝑚 and 𝑅𝑉2,𝑡

𝑚  are the daily realized variance of two assets which has been 

introduced in Chapter 3. 

The returns and realized covariance between two indices were plotted for a basic view of the 

data. Since the space is limited, it is impossible to plot all the covariance and returns in pairs. 

Here only the covariance between USA and other countries were presented. It can be seen 

that the covariance or movements between USA and other countries tends to be similar, most 

of high covariance tends to appear during the period of year 2007 and 2008 in all the samples 

as well as the amplitude of return changes. This should be referred to the global financial 

crisis happening in 2008.  
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4.4 Methodology 

Modelling 

In order to make a clear explanation about the methods to be used, a multivariate returns 

process 𝒓𝒕 is given by: 

𝒓𝒕 = 𝝁𝒕 + 𝜺𝒕 (4.4.1） 

where 𝝁𝒕 is a n × 1 vector of the mean process of different assets. Similarly, the n × 1 vector 

𝜺𝒕 which is the error term can be written as: 

𝜺𝒕 = 𝑯𝒕
𝟏/𝟐
𝒛𝒕 (4.4.2） 

where 𝒛𝒕 is n × 1 vector of independent and identically distributed (i.i.d) random variables 

with a constant mean zero and variance. 𝐻𝑡 is a n × n matrix of conditional variances to be 

estimated and forecast. 

The DCC model 

The DCC model was introduced by Engle & Sheppard (2001). The idea of the models in this 

class is that the covariance matrix 𝑯𝒕, can be decomposed into conditional standard deviations 

𝑫𝒕 and a correlation matrix 𝑅𝑡.In the DCC-GARCH model both 𝑫𝒕 and 𝑅𝑡 are designed to 
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be time-varying.  

𝒓𝒕 = 𝝁𝒕 + 𝜺𝒕 (4.4.3) 

𝜺𝒕 = 𝑯𝒕
𝟏/𝟐
𝒛𝒕 (4.4.4) 

𝑯𝒕=𝑫𝒕𝑹𝒕𝑫𝒕 (4.4.5) 

where 𝑫𝒕 = 𝑑𝑖𝑎𝑔(√ℎ𝑖,𝑡) is a 𝑛 ×  𝑛 diagonal matrix of conditional volatility of 𝜺𝒕 which 

can be obtained from a univariate GARCH model 𝑹𝒕 is the 𝑛 ×  𝑛 conditional correlation 

matrix which can be time varying. 

The conditional correlation 𝑹𝒕 is a matrix of the standardized disturbance 𝜖𝑡 which can be 

specified as: 

𝜖𝑡 = 𝐷𝑡
−1𝒓𝒕~𝑵(𝟎,𝑹𝒕)               (4.4.6) 

Obviously, 𝑹𝒕 is a symmetric matrix which means that 𝜌𝑖𝑗,𝑡 = 𝜌𝑗𝑖,𝑡 and 𝜌𝑖𝑖,𝑡 = 1. 

A simple 𝑹𝒕 with two assets can be specified as: 

 [
1  𝜌12,𝑡 

𝜌21,𝑡  1
] (4.4.7) 
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The covariance matrix 𝑯𝒕 should be positive definite which means that 𝑹𝒕 should be 

positive definite as well since 𝑫𝒕 = 𝑑𝑖𝑎𝑔(√ℎ𝑖,𝑡) is positive definite and all the elements in 

the correlation matrix 𝑹𝒕 need to be equal to or less than one by correlation definition. 

Therefore 𝑹𝒕 is decomposed as: 

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1  (4.4.8) 

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑄̅ + 𝑎𝜖𝑡−1𝜖𝑡−1
𝑇 + 𝑏𝑄𝑡−1 (4.4.9) 

where 𝑄̅ = 𝑐𝑜𝑣(𝜖𝑡𝜖𝑡
𝑇) is the unconditional covariance matrix of 𝜖𝑡 and can be estimated by: 

𝑄̅= 𝑐𝑜𝑣(𝜖𝑡𝜖𝑡
𝑇) =

1

𝐾
∑ 𝜖𝑡−1𝜖𝑡−1

𝑇𝐾
𝑡=1  (4.4.10) 

𝑄𝑡
∗ is a diagonal matrix with the square root of the diagonal elements of 𝑄𝑡 

𝑄𝑡
∗ =  𝑑𝑖𝑎𝑔(√𝑞𝑖𝑖,𝑡) (4.4.11) 

Therefore, |𝜌𝑖𝑗| = |
𝑞𝑖𝑗,𝑡

√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡
| ≤ 1 are satisfied by the rescaling of 𝑄𝑡

∗. Further, the scalars 𝑎 

and 𝑏 should satisfy: 𝑎 ≥ 0, 𝑏 ≥ 0 𝑎𝑛𝑑 𝑎 + 𝑏 < 1 to make sure the requirement of positive 

definite. 

The one-step ahead forecasting of the conditional covariance 𝑯𝒕+𝟏=𝑫𝒕+𝟏𝑹𝒕+𝟏𝑫𝒕+𝟏 when the 
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history up to time t is known can be done by two steps, particularly, the forecasts of 𝑫𝒕+𝟏 

and 𝑹𝒕+𝟏 can be done separately. 

Step 1: Forecasting the conditional variances in 𝑫𝒕+𝟏 

As mentioned above the 𝑫𝒕+𝟏 = 𝑑𝑖𝑎𝑔(√ℎ𝑖,𝑡+1) is a 𝑛 ×  𝑛 diagonal matrix of conditional 

volatility of 𝜺𝒕+𝟏. The forecast of ℎ𝑖,𝑡+1 which means the conditional variance of asset 𝑖 can 

be done by the univariate GARCH models. Moreover, the specification of the univariate 

GARCH models is not limited to the standard GARCH. Therefore, the varieties of GARCH 

specification which were introduced in Chapter 3 could be used for the forecasting of ℎ𝑖,𝑡+1 

Standard Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models  

ℎ𝑖,𝑡+1 = 𝜔 + 𝛼𝜀𝑖,𝑡
2 + 𝛽ℎ𝑖,𝑡 (4.4.12) 

Exponential GARCH (EGARCH) models 

𝑙𝑛(ℎ𝑖,𝑡+1) = 𝜔 + 𝛽𝑙𝑛(ℎ𝑖,𝑡) + 𝛼𝜑 (
𝜀𝑖,𝑡

√ℎ𝑖,𝑡
) + 𝛼𝜓 |(

𝜀𝑖,𝑡

√ℎ𝑖,𝑡
)| (4.4.13) 

Threshold-GARCH (TGARCH) models 

 ℎ𝑖,𝑡+1 = 𝜔 + 𝛼𝜀𝑖,𝑡
2 + 𝛿𝐼𝑡𝜀𝑖,𝑡

2 ++𝛽ℎ𝑖,𝑡  (4.4.14) 
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𝐼𝑡 = {
1       𝜀𝑖,𝑡 < 0

0       𝜀𝑖,𝑡 > 0
  (4.4.15) 

Component GARCH (CGARCH) 

ℎ𝑖,𝑡+1 = 𝑔𝑖,𝑡+1 + 𝛼(𝜀𝑖,𝑡
2 − 𝑔𝑖,𝑡) + 𝛽(ℎ𝑖,𝑡 − 𝑔𝑖,𝑡) (4.4.16) 

𝑔𝑖,𝑡+1 = 𝜔 + 𝛾𝑔𝑖,𝑡 + 𝜑(𝜀𝑖,𝑡
2 − ℎ𝑖,𝑡) (4.4.17) 

Step two: forecasting the conditional correlation matrix 𝑹𝒕+𝟏: 

The forecasting of 𝑹𝒕+𝟏 can be transferred to the calculation of 𝑄𝑡 and 𝑄̅ which is 

mentioned above. Therefore, the forecasts of 𝑹𝒕+𝟏 can be specified as: 

𝑅𝑡+1 = 𝑄𝑡+1
∗−1𝑄𝑡+1𝑄𝑡+1

∗−1 (4.4.18) 

 

𝑄𝑡+1 = (1 − 𝑎 − 𝑏)𝑄̅ + 𝑎𝜖𝑡𝜖𝑡
𝑇 + 𝑏𝑄𝑡 (4.4.19) 

The neural networks built on DCC GARCH model 

With the hope to improve the forecasting performance of the multivariate GARCH model, a 
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hybrid model based on neural networks are introduced. An artificial neural network (ANN) is 

a network of interconnected elements called neurons. The neurons are used to estimate 

functions based on the inputs. The neurons are connected with each other by joint mechanism 

which consists of a set of assigned weights. The method can be described as follows: 

𝐶𝑜𝑣𝑡 = 𝜑(∑ 𝜔𝑝𝑥𝑖
𝑡−1
1 + 𝑏𝑡) (4.4.20) 

{𝑥𝑖} is the input data which is the variance and covariance, and {𝜔𝑝} describes the connection 

weights of neurons., 𝑏𝑡 is the bias, 𝜑(∙) is the activation function and 𝐶𝑜𝑣𝑡 is the output of 

the neuron which is the forecasting covariance. In ANN works, multi-layer feed forward (MLP) 

is a common approach which has three layers: input layer, output layer, and hidden layer. 

Neuron takes the values of inputs parameters, sums them up with the assigned weights, and 

adds a bias. With the application of transfer function, the outputs will be displayed. The 

algorithm can be viewed directly in Figure 4.4.1. 

With the conception of neural networks, a hybrid multivariate GARCH model can be built, 

particularly here a hybrid DCC GARCH model. In neural networks, the input data can be set 

as an explanatory variable of financial time series, such as returns, squared returns, trading 

volumes, etc. Since the target of the DCC GARCH model is to forecast the covariance, the 

input data will be set as the variance generated by univariate GARCH models including the 

standard GARCH, EGARCH, TGARCH and CGARCH mentioned above and the correlation 

as well. It will take two steps when forecasting the covariance. 

Step 1: Train the machine: 
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A training set which includes the train variances of two assets and the correlation will be entered 

into the neural networks and to calculate the train covariance. An error will be calculated 

between the train covariance and the “true” covariance and run back to the system until the 

error becomes convergence. The whole dataset is separated into two parts: one is from 5 

January 2005 to 25 November 2014 (2400 observations or approximate 10 years), it is the 

training set for the machine. The other is from 26 November 2014 to 28 December 2018 (1000 

observations or approximate 4 years), it is the part to check the 1 day rolling window 

forecasting performance of the machine. 

Step 2: Forecast the covariance: 

A testing set which includes the test variances of two assets and the correlation will be entered 

into the neural networks and to calculate the test covariance which here is the forecasting values. 

Since the machine is trained in step one, it has formulated a function to deal with the testing 

set and been able to output the forecasting values. 
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Figure 4.4.1 Hybrid model demonstration 

 

4.5 Comparison techniques for forecast performance  

The exercise will mainly focus on the covariance forecasting between USA and other countries 

since the market value of USA are the highest in the dataset. More analysis could be done by 

repeating the same procedure in the software and will be added into the appendix. As 

introduced in chapter 3, the Mean Absolute Error (MAE) and Mean squared error (MSE) are 

selected. The Model Confidence Set (MCS) procedure by Hansen (2011) are selected as well 

to test the equal predictive ability (EPA) at certain confidence level α depending on the loss 

functions including MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺. To retrieve a “actual” covariance, the 



 

124 

 

realized covariance 𝐶𝑜𝑣̃12,𝑡+1 (calculated by the product of 5 mins intraday returns with two 

selected countries) is considered both the in-sample and out-of-sample period, which are 

believed to be closer to the unobservable covariance. The reason to use the realized covariance 

is that the conditional covariance is latent and unobservable directly, the realized covariance 

provides a measure of the historical performance among two different assets, here the stock 

indices, which implies that the fluctuations of one asset will have effect on the other. 

The forecasting values are specified as 𝐶𝑜𝑣̂12,𝑡+1. Since the covariance of the two selected 

assets are a symmetric matrix as: [
𝑉𝑎𝑟1  𝐶𝑜𝑣12
𝐶𝑜𝑣12  𝑉𝑎𝑟2

], the 𝐶𝑜𝑣12 will be retrieved into a series of 

time series to make the comparison with the realized covariance. 

Mean Absolute Error (MAE) and Mean Squared Error (MSE) 

The MAE calculates the average difference of the comparison with equal weight of all 

individual differences. The MSE calculates the average squared difference between the 

estimated values and the actual values. The comparison with covariance is similar with 

volatility. Both comparison measures report the better performance by a lower statistic.  

𝑀𝐴𝐸 =
1

𝛿
∑ |𝐶𝑜𝑣̃12,𝑡 − 𝐶𝑜𝑣̂12,𝑡+1|
𝑇+𝛿
𝑡=𝑇+1  (4.5.1) 

𝑀𝑆𝐸 =
1

𝛿
∑ (𝐶𝑜𝑣̃12,𝑡 − 𝐶𝑜𝑣̂12,𝑡+1)

2𝑇+𝛿
𝑡=𝑇+1  (4.5.2) 

Quasi-Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺 loss function 
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The Quasi-Likelihood (QLIKE) loss function is a test of forecast bias implied by a Gaussian 

likelihood which has a specification: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = 𝑙𝑜𝑔(𝐶𝑜𝑣̂12,𝑡+1) +
𝐶𝑜𝑣̂12,𝑡+1

𝐶𝑜𝑣̃12,𝑡+1
 (4.5.3) 

The other loss function is the 𝑅2𝐿𝑂𝐺 which measure the goodness of fit of the out-of-sample 

forecasts. 

𝑅2𝐿𝑂𝐺𝑡+1 = [𝑙𝑜𝑔 (
𝐶𝑜𝑣̂12,𝑡+1

𝐶𝑜𝑣̃12,𝑡+1
)]
2

 (4.5.4) 

Model Confidence Set (MCS) 

The statistical method called Model Confidence Set (MCS) are selected to deliver the best 

performing models with respect to a given criterium since it is hard to point a single model 

outperforms others by the reason of their statistically equivalent property or not enough 

information from the data. The MCS procedure will eliminate the worst model at each step if 

the null hypothesis of equal predictive ability (EPA) is not accepted and the procedure will 

iterate until all models with EPA hypothesis entered in the “Superior Set Models” (SSM). An 

optimal SSM set will be created to make a clear view of the selected models. 

The reason to choose MAE and MSE is that MAE is useful for consistent error measurement 

across all data points, while MSE is preferred when penalizing significant errors is crucial. 

However, the MSE method penalizes symmetrically. Therefore, QLIKE function which 

Sturesson & Wennström, (2023) states that is an asymmetrical loss function that penalizes 



 

126 

 

under-prediction heavier than over-prediction is selected. The 𝑅2𝐿𝑂𝐺 is selected as well 

since it is often easier to interpret since it doesn't depend on the scale of the data. 
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4.6 Results and analysis of empirical exercise  

All the data and models and comparisons are applied with R studio in an R language 

environment.  

Since the covariance matrix among 12 countries will be a huge matrix (12*12), and most of 

the procedure is iteration process, which is easy to repeat, the exercise takes the results of 

forecasting covariance between the stock index of USA and other 11 countries in order to 

make a tidy and direct report. With the application of 8 different models, the forecasting 

covariance were compared with the realized covariance which is calculated by the product of 

intra-day returns of two countries mentioned above. The hybrid models based on neural 

networks are addressed with “NN” to make it clear in the table. The different GARCH model 

recorded in the results correspond to the different GARCH type models in the “step one” of 

DCC estimation. 

Table 4.5.1 gives the MAE statistics of the traditional DCC GARCH process and the hybrid 

models. From the table, the neural networks built on TGARCH DCC model has a better 

performance than others in 5 out of 11 sample countries. The second is also the hybrid model 

GARCH DCC-NN in 3 countries followed by the EGARCH DCC in 2 countries and 

CGARCH DCCNN in 1 country. 

The second-best performing models can be found by the second minimum MAE values 

reported in each row. The neural networks built on EGARCH DCC-NN model appears to be 

the first with a second minimum MAE value in 5 countries. The rest are TGARCHDCC-NN in 

3 countries, TGARCHDCC in 2 countries, and CGARCHDCC-NN in 1 country.  
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The third-best performing models can be observed by the third minimum MAE values in each 

row. The results are in a wide dispersion. The GARCH DCC-NN, takes the first in 7 countries 

followed by CGARCH DCC-NN in 2 countries. The rest are EGARCH DCC-NN, TGARCH 

DCC-NN in 1 country, respectively.  

Finally, Table 4.5.1 also reported the worst performing models of covariance forecasting by 

considering the maximum MAE statistics in each row. Here, the CGARCH DCC appears to be 

the worst performer with a maximum MAE value in 8 countries. 

Looking at the whole performance of the selected models, the best models can be identified as 

the neural networks built on asymmetric models since the best and second-best performer are 

recorded as TGARCH DCC-NN and EGARCH DCC-NN, respectively. (Both of them gives 5 

minimum and second-minimum MAE values). Moreover, the third-best performer are also 

recorded as the neural networks built on GARCH DCC models. The EGARCH DCC also have 

a good performance with 2 best cases, but the CGARCH DCC appears to be the worst 

performer for 8 times. Therefore, An overall conclusion can be drawn that the hybrid model 

based on neural networks outperforms the original models by using MAE comparison 

techniques.  

Since the MAE methods are the simplest way like an “naïve method” to compare the error 

which takes the difference with an equal weight, the MSE measure is carried out to identify if 

there exist some outlier predictions with huge errors. 

Similarly, Table 4.5.2 reports the MSE statistics for the covariance forecasting results between 

USA and other 11 countries by using different models. The MSE will puts larger weight on the 
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errors due to the squaring part of the function which will enlarge the outlier prediction error.  

Like using MAE statistics, the TGARCH DCC-NN model comes to be the first with a 

minimum MSE value in 7 out of 11 countries. The rest are EGARCH DCC and CGARCH 

DCC-NN which both report 2 minimum MSE value, respectively.  

The second-best model is the neural networks built on GARCH DCC and EGARCH DCC 

models. They both reported a second minimum MSE value in 5 countries each, while the 

TGARCH DCC-NN appeared to be second performer in 1 country.  

The third-best model is recorded as GARCH DCC-NN and EGARCH DCC-NN in 4 out of 

11 countries, respectively. The rest are CGARCH DCC-NN in 2 countries and TGARCH 

DCC in 1 country.  

Unlike the results with using MAE statistics, the standard GARCH DCC comes to be the 

worst performing model with the highest MSE statistics in 5 out of 11 sample countries. 

Moreover, the CGARCH DCC was identified as the worst performer 3 times as well. The 

hybrid model TGARCH DCC-NN also performed the worst in 2 countries. 

By taking a whole view of Table 4.5.2, the conclusion is similar with the measure MAE. The 

hybrid model TGARCH DCC-NN again comes to be the best performing model although it 

has become the worst performer 2 times. The CGARCH DCC-NN and EGARCH DCC has a 

good performance as well. 
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Loss function of the covariance  

Model Confidence Set procedure (MCS) is an iteration of a sequence of statistic tests which 

permits to construct a set of “superior” models, the “Superior Set Models” (SSM), under the 

null hypothesis of equal predictive ability (EPA) is not rejected at certain confidence level α 

based on a loss function. It is introduced in chapter 3 and the MCS are applied as well to 

check the predictive ability. A direct comparison based on the loss function QLIKE and 

𝑅2𝐿𝑂𝐺 are taken out. The details of the “Superior Set Models” (SSM) will be displayed as a 

conclusion in next section.  

The QLIKE and 𝑅2𝐿𝑂𝐺 are selected to check if there is any significant difference. The loss 

function specification for covariance is specified as: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = 𝑙𝑜𝑔(𝐶𝑜𝑣̂12,𝑡+1) +
𝐶𝑜𝑣̂12,𝑡+1

𝐶𝑜𝑣̃12,𝑡+1
 (4.6.1) 

 𝑅2𝐿𝑂𝐺𝑡+1 = [𝑙𝑜𝑔 (
𝐶𝑜𝑣̂12,𝑡+1

𝐶𝑜𝑣̃12,𝑡+1
)]
2

 (4.6.2) 

where 𝐶𝑜𝑣̃12,𝑡+1 refers to the “actual” covariance and evaluated covariance is specified as 

𝐶𝑜𝑣̂12,𝑡+1. 

The 𝑅2𝐿𝑂𝐺 statistics prefers a value closer to zero which indicates that the distance between 

the “actual” covariance and forecasting covariance is small enough. The value is no doubt 

nonnegative due to the squaring part of the function so that a lower 𝑅2𝐿𝑂𝐺 statistics is 

preferred when comparing different models. 
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With the application of the QLIKE loss function in equation (4.6.1), it is hard to say that a 

lower statistic indicates a better performance. In order to make it more appropriate to 

compare directly, a specification is defined as: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = (𝑙𝑜𝑔( 𝐶𝑜𝑣̃12,𝑡+1) − 𝑙𝑜𝑔(𝐶𝑜𝑣̂12,𝑡+1)) + (
𝐶𝑜𝑣̂12,𝑡+1

𝐶𝑜𝑣̃12,𝑡+1
− 1) (4.6.3) 

QLIKE statistic measures the log difference between the “actual” covariance and forecasting 

covariance and their rates. The two parts tend to be zero if the forecasting values tend to be 

same as the “actual” value so that a QLIKE statistic closer to zero will be preferred when 

comparing different models. 

In Table 4.5.3 the QLIKE statistics based on equation (4.6.3) are reported.  

The TGARCH DCC-NN comes to be the first with a minimum QLIKE value reported in 6 

out of 11 countries followed by ERCH DCC-NN in 3countries. There is 1 minimum QLIKE 

value reported by EGARCH DCC and GARCH DCC-NN, respectively. 

The second-best performing models can be found by the second minimum QLIKE statistics 

reported in each row. The EGARCH DCC-NN appears to be the first in 5 country samples. The 

rest are GARCH DCCNN in 4 countries and TGARCH DCC and TGARCH DCC-NN with a 

minimum QLIKE values in 1 country each. 

The third-best performing models can be observed by the third minimum QLIKE values in 

each row. The GARCH DCC-NN are reported to be the first with a third minimum QLIKE in 
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6 countries followed by EGARCH DCC-NN in 3 countries. There are 2 third minimum QLIKE 

value reported by TGARCH DCC-NN as well. 

Finally, Table 4.5.3 also reported the worst performing models of the covariance forecasting 

by considering the maximum QLIKE statistics in each row. The CGARCH appears to be the 

worst performer with a maximum QLIKE value in 7 countries. 

The overall conclusion of Table 4.5.4 generated by the whole performance of the selected 

models are similar with the measures applied above. The hybrid GARCH models perform 

better than others. In more detail, the TGARCH DCC-NN appears to be the first, the EGARCH 

DCC-NN second and the GARCH DCC-NN third. Likewise, with the application of QLIKE 

measure, these hybrid models appear to be superior since all the best performers are located in 

the neural networks built on a GARCH DCC-NN models. 

Another measure of the loss function based on the MCS procedure mentioned above is the 

𝑅2𝐿𝑂𝐺. Unlike the QLIKE measure it only concerns the LOG difference between the “actual” 

volatility and the forecasting values. 

Similar as the QLIKE measure, Table 4.5.4 reports the 𝑅2𝐿𝑂𝐺 statistics of the loss function 

for the covariance forecasting models in 11 country samples. A lower value is preferred when 

selecting a better performance model.  

The TGARCH DCC-NN appears to be the best performer like using other methods above. A 

minimum 𝑅2𝐿𝑂𝐺 value is reported in 5 countries. The second is the EGARCH DCC and 

GARCH DCC-NN with a minimum 𝑅2𝐿𝑂𝐺 value recorded in 2 countries, respectively. The 
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CGARCH DCC and EGARCH DCC-NN are identified as the best performers for once each 

in 1 country. 

The second-best model is identified as the EGARCH DCC-NN in 4 countries followed by 

TGARCH DCC-NN with a minimum 𝑅2𝐿𝑂𝐺 values in 3 countries. The TGARCH DCC and 

GARCH DCC-NN comes to be the third with the second minimum 𝑅2𝐿𝑂𝐺 in 2 countries, 

respectively. 

The third-best model is recorded as GARCH DCC-NN in 6 countries. The second is the 

EGARCH DCC-NN in 3 countries. The GARCH DCC and the TGARCH DCC-NN are 

counted as the third best performer in 1 country each. 

 

The CGARCH DCC not surprisingly comes to be the worst performing model with the 

highest 𝑅2𝐿𝑂𝐺 values in 5 countries and GARCH DCC in 6 countries as well.  

Again, in attempt to look at the overall performance of the models using 𝑅2𝐿𝑂𝐺 loss 

function in Table 4.5.4, the conclusion is similar to the results from other comparison 

techniques. The hybrid model TGARCH DCC-NN and GARCH DCC-NN takes most of the 

position when identifying the best model. Likewise, the hybrid models are still superior when 

considering the second-best models and third-best performer while the worst performer are 

identified as the CGARCH DCC within all the comparison techniques. 
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4.7 Discussion and Findings 

In order to determine the best and worst performance models, Table 4.7.1 which summary the 

empirical results are created. It sums up the times of each model to be the best performer or 

worst performer.  

A strong suggestion can be made that the neural networks built on a DCC model will improve 

the forecast performance which contributed to the results of Cai et al., (2012). The neural 

networks build on a TGARCH DCC model acted as the best model for 23 times. Others like 

the neural networks build on standard GARCH DCC and EGARCH DCC also outperforms the 

rest of the specifications in some of the cases. The original EGARCH DCC model showed to 

be the best for 7 times and other original GARCH DCC models haven’t been counted for the 

best model in the whole comparison except for the CGARCH DCC for 1 time. It provides the 

evidence that the neural networks will not only improve the forecasting ability of the univariate 

GARCH model but will improve the DCC GARCH models which is a multivariate GARCH 

specification as well. 

Model Confidence Set 

As mentioned in the comparing technique section (section 4.5), a “Superior Set Models” (SSM) 

will be generated after the Model Confidence Set procedure (MCS) to test the equal predictive 

ability (EPA) hypothesis. The models which enter the SSM set will be assumed to have an 

equal predictive ability under a confidence level. With the direct comparison of the measure of 

MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺 statistics, although some basic results are reported in section 

4.5, it is still necessary to consider the forecasting ability of each model. 



 

139 

 

Table 4.7.3 count the times of the entrance of different models reports to the Superior Set of 

Models based on loss function of at a 95% confidence level, particularly, the MAE, MSE, 

QLIKE and 𝑅2𝐿𝑂𝐺 techniques. The different values in each column represent the number of 

models that enter the Superior Set Model at the end of the MCS procedure, when the null 

hypothesis of equal predictive ability (EPA) is not rejected at the 95% confidence level. 

The neural networks build on TGARCH DCC process rank the first by “surviving” from the 

procedure of 40 times. Following is the traditional EGARCH DCC process with 34 times. The 

GARCH DCC combined with neural networks comes to be the third model. 

Take an overview of the Superior Set of Models, it can be found that the covariance generated 

by a symmetric model will perform better than others, both the original EGARCH DCC and 

neural networks build on a symmetric GARCH(TGARCH/EGARCH) outperforms other 

models. However, the long memory GARCH (CGARCH) acted as the worst performer again 

that the accuracy of forecasting covariance takes the short run rather than a long memory.  
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Table 4.7 Summary of best/worst performer 

Measure MAE MSE QLIKE 𝐑𝟐𝐋𝐎𝐆 Total 

Performance Best Worst Best Worst Best Worst Best Worst Best Worst 

GARCH DCC 0 0 0 5 0 1 0 6 0 12 

EGARCH DCC 2 0 2 0 1 1 2 0 7 1 

TGARCH DCC 0 2 0 1 0 1 0 0 0 4 

CGARCH DCC 0 8 0 3 0 7 1 5 1 23 

GARCH DCC-NN  3 0 0 0 1 0 2 0 6 0 

EGARCH DCC-NN  0 0 0 0 3 0 1 0 4 0 

TGARCH DCC-NN 5 1 7 2 6 1 5 0 23 4 

CGARCH DCC-NN 1 0 2 0 0 0 0 0 3 0 

 

Table 4.7.1 Number of models that belong to SSM 

Models/Loss function MAE MSE QLIKE 𝑹𝟐𝑳𝑶𝑮 Total 

GARCH DCC 7 2 2 5 16 

EGARCH DCC 9 9 8 8 34 

TGARCH DCC 4 4 5 5 18 

CGARCH DCC 1 3 1 2 7 

GARCH DCC-NN  10 5 9 6 30 

EGARCH DCC-NN  6 6 10 6 28 

TGARCH DCC-NN 10 11 10 9 40 

CGARCH DCC-NN 7 8 6 6 27 
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4.8 Conclusion and Implications 

In this chapter, a methodology for covariance forecasting based on neural networks was 

introduced, and it is able to capture the dynamics of the financial assets, which is our main 

contribution. There exists co-movements and correlations among stock indices in different 

countries. The proposed model could fit the covariance matrix well and give a simple way to 

deal with the high-dimension problem that may occur in forecasting covariance by traditional 

GARCH model which linked with the work of Fang et a. (2021). The empirical results show 

that the proposed model has an outstanding performance on covariance forecasting rather than 

traditional DCC process. Although to our knowledge, this study is not the first attempt to apply 

neural networks to model the conditional variance, it is a good method to build the DCC 

GARCH model with the neural networks and it gives a wide comparison among twelve 

different assets in a large data scale, which includes more than 3600 intraday stock prices. The 

procedure ensures the positive value of the forecasting results, which is the covariance matrix. 

With the application of the method, several traditional models in finance literature could be 

combined with the concept of neural networks and path a new way to make forecasting for 

time series. The related factors including returns, volatility of single asset and realized 

covariance are “fed” to the machine. Afterwards, the machine was applied to forecast the 

covariance matrix as a result after training by these factors. 

The proposed procedure was applied to analyze the stock index pairs from different countries 

including Australia/USA, France/USA, Germany/USA, Switzerland/USA, Korea/USA, 

Canada/USA, China/USA, HK/USA, Japan/USA, India/USA. The second primary 

contribution of this chapter was to give empirical results to show that there do exist movements 

and correlations between different stock indices and the correlation or covariance can be 

forecasted. The covariance forecasts of these 11 pairs obtained by the hybrid model based on 
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the neural networks were more accurate than the forecasts obtained by traditional DCC process. 

Moreover, the empirical results showed that there is no direct evidence that a good fitness in 

the first step of DCC process will lead to a more accurate forecasting covariance. The third 

primary contribution of this chapter was to investigate the forecasting ability of covariance 

models in a wide range of data set across 12 countries with the application of 8 different models. 

Several different GARCH type models were selected in the first step of DCC process including: 

GARCH, EGARCH, TGARCH and CGARCH, 4 corresponding hybrid models built with 

neural networks were proposed and their ability of covariance forecasting was tested. This will 

fill the gap in the related literature which only considered very few assets and make 

comparisons with limited models 

The main conclusion of the study is strong with the application of 4 comparison techniques 

including: MSE, MAE, QLIKE and 𝑅2𝐿𝑂𝐺. In this chapter, we used the DCC GARCH model 

as a competitor since it is one of the most widely used models in covariance forecasting. The 

procedure of DCC is simple to perform and related factors and parameters are easy to estimate 

when the dataset is in a large scale. Furthermore, since it is convenient to obtain the related 

factors and parameters in the DCC process, it is possible to use these factors to train the 

machine (neural networks), which makes the proposed method to be a robust model. Although 

other multivariate GARCH models were proved to be efficient in covariance forecasting, the 

DCC process was the most appropriate for rebuilding with the neural networks. The proposed 

procedure in this chapter was an effective approach to forecast the covariance in pairs, however, 

it can still be improved by some techniques. For example, we can add more hidden layers in 

the neural networks which contribute to a deep learning networks and control the activate 

function is also an efficient way for further study in the future. These issues were not the 

primary objective of this work but can be investigated in future studies. The results is useful 

for future research, the hybrid models can be applied directly when forecasting multivariate 
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covariance or correlations among different assets. The results are able to provide some 

suggestions for market managers on risk control, especially for the portfolios containing 

multivariate assets in different countries. For economics, the investors can use to appropriate 

models in this empirical chapter to forecast the covariance and investigate the co-movements 

of different assets across the world which is useful for them to observe risk and revise their 

portfolio. 
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5.Emprical chapter of volatility forecasting 

Volatility forecasting using Hybrid GARCH based on deep 

learning with trading volume  

 

Abstract 

  

In this chapter forecasting performance of several volatility models are investigated with the 

consideration of trading volume. Since the trading volume proved to be useful information 

when forecasting volatility, this empirical chapter will consider trading volume in the univariate 

volatility models. A wide volatility forecasting comparison with trading volume using four 

traditional GARCH models and four hybrid-built models with deep learning models will be 

addressed in this empirical exercise. Different stock indices from twelve countries will be 

investigated and the forecasting performance will be tested. Four measures of comparison are 

applied in the exercise based on a loss function with the realized volatility. The results show 

that the GARCH and TGARCH models based on deep learning method perform better than 

original GARCH type models and HAR models. Moreover, the results showed a positive effect 

of trading volume, which gives evidence that the trading volume provide additional forecasting 

power to the volatility forecasting when using both traditional GARCH models and hybrid 

GARCH models. It provides a view about the effect of trading volume on univariate volatility 

forecasting by both traditional GARCH genres and the hybrid models built by neural networks 

and deep learnings. Our findings highlight the importance of the trading volume in forecasting 

the volatility. It also gives a valuable insights for improving stock volatility predictions. 
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5.1 Introduction 

Volatility forecasting has been a main topic in recent years. The trading volume as a key factor 

in financial assets plays an important role in volatility forecasting. The trading Volume is a 

variable which can be observed directly on the market. It is a variable changed daily like the 

returns which is relayed to the market movements. There exists a positive relationship between 

volatility and traded volume by the work of Álvarez et al. (2025) after examining a large 

number of crypto-assets. In this chapter, the exercise aimed to explore the effect of trading 

volume on the volatility forecasting. Up to today’s work and research, the trading volume has 

been considered in both traditional model and machine learning approaches individually when 

forecasting volatility in lots of paper. Most of them are talking about volatility forecasting by 

using GARCH model or machine learning models alone. Some of them only focus on the price 

changes and omit the possible effect caused by trading volume. With the development of 

machine learning, it is easy to consider the effect of the trading volume in volatility forecasting. 

In this chapter, the empirical exercise aims to examine the forecasting performance of different 

models with the consideration of trading volume. A hybrid model which combines the 

traditional GARCH method and machine learning method (Deep Learning) together are 

introduced to investigate the effects of trading volume in volatility forecasting since there only 

exist a small number of studies to investigate a hybrid model. 

In this chapter, a new approach which a deep learning (machine learning method) built with 

different GARCH approaches will be introduced. Unlike the hybrid model in Chapter 3, more 

hidden layers were added into the neural networks in order to make the machine work more 

efficiently. The new neural networks could be called a deep learning method. A deep learning 

method is made of multiple layers of interconnected nodes, each building upon the previous 
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layer to refine and optimize the prediction or categorization. The trading volume will be 

considered as an input variable when using deep learning method. The forecasting power will 

be explored by using both GARCH methods and several hybrid models with deep learning 

methods. Basically, the volatility series generated by the GARCH type models will come into 

the neural networks as well as the trading volume to train the machines and a series of volatility 

forecasts will be generated by this deep learning method. 

This chapter reports the forecast ability of a list of traditional GARCH models including the 

GARCH model, TGARCH, EGARCH and CGARCH. The HAR model is considered as well. 

A comparison between the new machine learning approach and traditional GARCH models are 

listed as well.  

Four measures of comparison including Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Quasi-Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺  loss function will be used to discover the 

forecasting ability and report a wider performance in 12 countries of the hybrid models. The 

Model Confidence Set (MCS) will be created at the end to find a better performing model.  

The structure of the chapter is organized as follows. Section 2 shows the background of the 

relationship between volatility and trading volume and some studies on it. Section 3 gives the 

data series, source, time periods. Section 4 describes the list of volatility forecasting models 

and a measure of realized volatility. Section 5 shows the method used to compare the 

performance of the models in the previous sections. In section 6, a full report of the 

performance will be displayed. In section 7, some further and deeper analysis will be carried 

out and section 8 will discuss the findings and conclusions. 
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This chapter described a machine learning approach built by traditional GARCH models when 

forecasting univariate volatility. A more efficient machine will be figured out when training the 

machine by adding the trading volume variable. A list of both traditional GARCH models and 

machine learning approaches also make some positive contributions to the lack of attention of 

the effect of trading volume when forecasting volatility in most of the research. 
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5.2 Background 

The relationship between the volatility of financial markets and trading volume has attracted a 

great deal of attention during the past three decades. At the early stage, Karpoff (1987) 

reviewed previous research on the relation between price changes and trading volume in 

financial markets and made a conclusion that volume is positively related to the magnitude of 

the price change. After that, lots of papers and several theoretical models has been developed 

in order to investigate the relationship between the volatility and trading volume. The first one 

of them is the Mixture of Distribution Hypothesis (MDH) by Clark (1973). According to his 

work, he described a class of finite-variance distributions for price changes and suggested that 

“finite-variance distributions subordinate to the normal fit cotton futures price data better than 

members of the stable family.” The MDH model indicates that the volatility is positively related 

with the volume at a same time interval since the relation is dependent on the rate of 

information flow into the market. Tauchen & Pitts (1983) got some similar results with MDH. 

They made research on the relationship between the variability of the daily price change and 

the daily volume using the data of 90-day T-bills futures market which implies that the past 

volume will not make any additional positive contributions on the future volatility movement. 

In addition, many papers proposed by others like Epps & Epps (1976); Harris & Gurel (1986) 

and Andersen (1996) also have some findings to support the MDH model.  

However, there are also findings which are inconsistent with MDH. Bessembinder & Seguin 

(1992) partitioned each trading activity series into expected and unexpected components, and 

document that while equity volatility covaries positively with unexpected futures-trading 

volume, it is negatively related to forecastable futures-trading activity. Later work carried out 

by Aggarwal & Mougoue (2010) also implies a lack of support for the mixture of distributions 
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hypothesis (MDH). They tested competing hypotheses on the possible relationship between 

volatility and trading volume using data for three major currency futures contracts in foreign 

exchange markets (British pound, Canadian dollar and Japanese yen calculated by American 

dollars) and find that trading volumes and return volatility are negatively correlated. 

Another model called Sequential Information Arrival Hypothesis (SIAH) introduced by 

Copeland (1976) is different from MDH. The model assumes that the individuals receive 

information sequentially and in random order which means that the reactions from traders will 

not happen in the same time interval. Therefore, the response of each trader to the new 

information establishes an incomplete equilibrium. SIAH suggests that there should be a lead-

lag relation between volume and volatility. Girma & Mougoué (2002) investigated the relation 

between petroleum futures spread variability, trading volume, and open interest and found that 

“contemporaneous (lagged) volume and open interest provide significant explanation for 

futures spreads volatility when entered separately.” This finding gives evidence to support the 

SIAH. Some similar findings are also proposed, such as Darrat et al. (2007) and Chiang et al. 

(2010). However, there are also findings inconsistent with SIAH. The work by Boubaker and 

Makram (2011) show that “in the majority of cases volatility persistence vanish when trading 

volume is included as an explanatory variable in the conditional variance equation.” They 

tested the effect of trading volume on the persistence of the time-varying conditional volatility 

of returns and implies that the MDH explains the autoregressive conditional heteroskedasticity 

(ARCH) phenomenon better. 

Other model like the dispersion of beliefs hypothesis (DBH) proposed by Shalen (1993) and 

Harris and Raviv (1993) later states that “price changes and volume are positively correlated, 

consecutive price changes exhibit negative serial correlation, and volume is positively 

autocorrelated.” The work by BLUME et al. (1994) also showed how volume, information 



 

150 

 

precision, and price movements relate, and demonstrate how sequences of volume and prices 

can be informative. The work by Gebka and Wohar (2013) analyzes the causality between past 

trading volume and index returns in the Pacific Basin countries. The OLS results show a no 

causal link between volume and returns.  

A main topic whether the volume will give useful information when forecasting volatility has 

been discussed for many years. By the work of Vougas (2007), after examining the relationship 

between trading volume and returns in Greek stock index futures market, he suggests that there 

is a significant relationship between lagged volume and absolute returns, while a positive 

contemporaneous relationship does not hold. Similarly, Le & Zurbruegg, (2010) introduced 

trading volume into various ARCH frameworks to improve forecasts. 

More recently, the work by Kambouroudis & McMillan (2015) suggest that both the VIX and 

volume do provide some additional forecast power, and this is generally improved when 

considering both of these series jointly in the model. Aalborg et al. (2019) made a research on 

the behavior of Bitcoin by using return, volatility and trading volume and suggests that trading 

volume further improves this volatility model. Similarly, Sapuric et al. (2020) examined the 

relationship between volume, returns and volatility, using asymmetric models (EGARCH) in 4 

time periods/subsamples and show a positive and significant relationship between volume and 

volatility. 

However, some different views are also proposed such as Balcilar et al. (2017). They analyzed 

the causal relation between trading volume and Bitcoin returns and volatility, over the whole 

of their respective conditional distributions and showed that volume cannot help predicting the 

volatility of Bitcoin returns at any point of the conditional distribution. 
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In general, the investigation of the relationship between the volatility forecasting and volume 

in financial market has never stopped. Several models and results are proposed. It has obviously 

become crucial to almost anyone who is involved in the financial markets. In recent years, 

some new approaches appeared such as machine learning. 

Li et al. (2009) using two hybrid models: GARCH-based Support Vector Machine (SVM) and 

GARCH-based Artificial Neural Networks (ANN) to investigate the trading volume and asset 

price risk. They state that GARCH-based SVM outperforms GARCH-based ANN for volatility 

forecast, whereas GARCH-based ANN achieves a better forecast result for the volatility trend. 

Jiahong Li et al. (2017) also proved that a better volatility forecasting performance can be 

generated by using deep learning method which adopts the Long Short-Term Memory (LSTM) 

neural network, incorporates investor sentiment and market factors. 

In more recent work by Sebastião & Godinho (2021), they examined the predictability of three 

major cryptocurrencies—Bitcoin, Ethereum, and Litecoin using machine learning techniques 

including trading volume as information and suggest that machine learning provides robust 

techniques for exploring the predictability of cryptocurrencies. Some similar results are pointed 

out by Christensen et al. (2022) as well. They use several machine learning approaches 

including Regularization, tree-based algorithms, and neural networks to compare the volatility 

forecasting results produced by Heterogeneous Auto Regressive (HAR) model and show that 

the machine learning (ML) algorithms improve the forecasts of realized variance. 
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5.3 Data 

The target of this chapter is to explore the effect of daily trading volume on volatility 

forecasting. The exercise will investigate the impact of trading volume when trying to improve 

the volatility forecasting process. Different from previous chapters, since the trading volume 

was not introduced in the previous chapter, a new dataset will be used in this chapter. Both the 

daily adjusted closing price and trading volume were selected, the time period is from 5 January 

2005 which is the first available trading date in year 2005 to 28 December 2018 which is the 

final available trading date in year 2018. The time period was selected as same as the previous 

chapter due to the data access availability and the convenience for comparison across different 

chapter in the future. The twelve stock indices are selected based on the market capitalization 

which mentioned in Chapter 3. The market capitalization represents the total value of a 

company's stock, the stock with a high market capitalization means the size of the stock market 

is large. With the application of market capitalization, it allows investors to size up a stock 

index. The thesis aims to select the stock index with large size to test the forecast ability of 

different models. Therefore, the twelve daily stock price indexes are selected. The markets of 

selected countries in Europe, Australia and America are all developed market since the market 

in these countries have already experienced a long history of development while the emerging 

market are mainly located in the Asian area including 3 markets: China, Korea and India. The 

data comes from different type markets will give a comprehensive result that whether the 

performance of the methods is suitable or effective when the market changes. 

All the price and trading volume data are obtained by the Application Programming Interface 

(API) finance data from “Yahoo Finance”, while the realized volatility data is obtained by 

“Oxford Man”. 
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The whole dataset is separated into two parts: one is from 5 January 2005 to 25 November 

2014 (2400 observations or approximate 10 years), it is the training set for the machine. The 

other is from 26 November 2014 to 28 December 2018 (1000 observations or approximate 4 

years), it is the part to check the 1 day rolling window forecasting performance of the machine. 

The returns are calculated by the standard method (5.3.1). In order to compare the performance 

of different methods, the realized volatility/variance of these returns which act as the “true 

volatility” is obtained by the dataset used in previous chapter. 

The index prices are transformed in returns by standard methods which make it more 

measurable in equation: 

𝑟𝑡 =
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
∗ 100%              (5.3.1) 

Some descriptive statistics of the volumes of different stock indices are reported in Table 5.3 

All the volume is calculated by the local currency since the exchange rate has been changed 

rapidly during the sample period. The skewness and kurtosis of all the volume series are 

calculated and a Jarque-Bera (JB) test is carried out to discover the normality of the volume. 

The statistics of the JB test gives evidence that there exists significant difference in skewness 

and kurtosis compared with the normal distribution, which means the normality is rejected for 

all series which is the similar result of return series in previous chapter.  
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Since the volume is a large number compared with realized variance, it has been rescaled by 

the volume changes. 

𝑉𝑜𝑙𝑡 =
𝑉𝑜𝑙𝑡−𝑉𝑜𝑙𝑡−1

𝑉𝑜𝑙𝑡
   (5.3.2) 

The realized variance and volume difference were plotted for a basic view of the data. It can 

be seen that the high-volume changes usually indicates a high realized volatility. Similar to 

the previous chapter, high volume and realized volatility tends to appear during the period of 

year 2007 and 2008 in all the samples as well as the volume changes. This should be referred 

to the global financial crisis happening in 2008.  
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In order to test the stationarity of the trading volume among the 12 stock indices, the 

Augmented Dickey-Fuller test (ADF Test) by Dickey & Fuller (1979) was introduced. In the 

test, it assumes a null hypothesis that a unit root is present in a time series sample. The 

procedure for the ADF test can be written as: 

 

∆𝑥𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑥𝑡−1 + 𝛿1∆𝑥𝑡−1 +⋯+ 𝛿𝑝∆𝑥𝑡−𝑝+1 + 𝜀𝑡        (5.3.3) 
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where 𝛼  is a constant, 𝛽  is the coefficient on a time trend, p is the lag order of the 

autoregressive process. If the parameter 𝛼 = 0 and 𝛽 = 0 , it is referred to a random walk. 

The unit root test is then carried out under the null hypothesis 𝛾 = 0 against the alternative 

hypothesis of 𝛾 = 0 . A test statistic value will be calculated as follow: 

𝐷𝐹𝜏 =
𝛾̂

𝑆𝐸(𝛾̂)
                   (5.3.4) 

 

If the calculated test statistic is less (more negative) than the critical value, then the null 

hypothesis of 𝛾 = 0 is rejected and no unit root is present. 

 

After testing the stationarity of the trading volume among the 12 stock indices, all the volume 

data tends to be stationary with the application of Augmented Dickey-Fuller test. 

5.4 Methodology 

With the application of Mincer-Zarnowitz procedure, the lagged volume will be added into the 

regression formula to test the forecasting performance of different models. 

𝜎𝑡
2 =  𝛼 + 𝛽𝜎̂𝑡

2 + 𝛿𝑉𝑜𝑙𝑡−1 + 𝜀𝑡 (5.4.1) 

Four GARCH type models are considered including the symmetric GARCH: standard 

GARCH model, the asymmetric GARCH: TGARCH by Glosten, Jagannathan and Runkle 

(1993) and EGARCH by Nelson (1991) models, the long-memory models: CGARCH by 

Engle and Lee (1999). 
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Standard Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models  

The GARCH model developed by Bollerslev (1986) is a generalization of the Autoregressive 

Conditional Heteroscedasticity (ARCH) model. In GARCH model, the disturbance error term 

𝜀𝑡  is under an assumption that it is distributed by zero mean and the conditional variance ℎ𝑡
2 

will change with the time. The conditional variance equation in the simplest case which is the 

GARCH (1,1) can be written as the form: 

𝜎𝑡+1
2 = 𝜔 + 𝛼𝜀𝑡

2 + 𝛽𝜎𝑡
2 (5.4.2) 

Exponential GARCH (EGARCH) models 

A widely used asymmetric GARCH model put forward by Nelson (1991) namely the 

exponential GARCH (EGARCH) model provides a first explanation for the ℎ𝑡
2 depends on 

both the size and the sign of lagged residuals in the return process.  

In particular, 

𝑙𝑛(𝜎𝑡+1
2 ) = 𝜔 + 𝛽𝑙𝑛(𝜎𝑡

2) + 𝛼𝜑(
𝜀𝑡

√𝜎𝑡
2
) + 𝛼𝜓 |(

𝜀𝑡

√𝜎𝑡
2
)| (5.4.3) 

Threshold-GARCH (TGARCH) models 

Another alternative asymmetric model is selected as TGARCH model. The Threshold GARCH 

(TGARCH) model studied by Glosten, Jagannathan, and Runkle (1993) define the conditional 

variance as a linear piecewise function. 

 𝜎𝑡+1
2 = 𝜔 + 𝛼𝜀𝑡

2 + 𝛿𝐼𝑡𝜀𝑡
2 ++𝛽𝜎𝑡

2 (5.4.4) 
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𝐼𝑡 = {
1       𝜀𝑡 < 0
0       𝜀𝑡 > 0

  (5.4.5)  

 

Component GARCH (CGARCH) 

The component GARCH (CGARCH) model following by Engle and Lee (1999) is derived by 

replacing the constant mean with a time varying long-run component 𝑞𝑡 . The conditional 

variance changes by a long run component which is calculated by itself, autoregressive of the 

first order. The CGARCH model specification is: 

𝜎𝑡+1
2 = 𝑞𝑡+1 + 𝛼(𝜀𝑡

2 − 𝑞𝑡) + 𝛽(𝜎𝑡
2 − 𝑞𝑡) (5.4.6) 

𝑞𝑡+1 = 𝜔 + 𝛾𝑞𝑡 + 𝜑(𝜀𝑡
2 − 𝜎𝑡) (5.4.7) 

Heterogenous autoregressive models (HAR model) 

Another model which is able to capture the long memory effect is first proposed by Corsi 

(2003), particularly, the heterogeneous autoregressive (HAR) model. It proves to successfully 

achieve the purpose of modeling the long-memory behavior of volatility in a very simple and 

parsimonious way (although not formally belonging to the class of long-memory models) by 

taking the realized volatility into account. The daily HAR is expressed by 
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𝜎𝑡+1 = 𝛽0 + 𝛽𝐷𝑅𝑉𝑡−1,𝑡 + 𝛽𝑊𝑅𝑉𝑡−5,𝑡 + 𝛽𝑀𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡.𝑡+1 (5.4.8) 

Where 𝑅𝑉𝑡−1,𝑡, 𝑅𝑉𝑡−5,𝑡, 𝑅𝑉𝑡−22,𝑡 represents to the 1 day, 5 days and 22 days of the volatility 

in a time period which can be viewed as “one trading week” and “one trading month” refer to 

the average realized volatility of 5 days lagged and 22 days lagged. 𝛽0, 𝛽𝐷, 𝛽𝑊, 𝛽𝑀 can be 

estimated with the application of an Ordinary Least Squares (OLS) estimation. The HAR model 

believes that the latent realized volatility can be observed over time horizons longer than one 

day. It creates an AR regression of the 1 day, 5 days and 22 days average realized volatility to 

make forecasting. 

The neural networks built on GARCH model 

With the hope to improve the forecasting performance of the GARCH model, a hybrid model 

based on neural networks are introduced. An artificial neural network (ANN) is a network of 

interconnected elements called neurons. The neurons are used to estimate functions based on 

the inputs. The neurons are connected with each other by joint mechanism which is consisted 

of a set of assigned weights. The method can be described as follows: 

𝜎̂𝑡 = 𝜑(∑ 𝜔𝑝𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏𝑝)               (5.4.9) 

{𝑥𝑖} is the input data which includes the volatility and the trading volume {𝜎𝑡, 𝑣𝑜𝑙𝑡}  and 

{𝜔𝑝𝑖}  describes the connection weights of neurons. 𝑏𝑝  is the bias, 𝜑(∙)  is the activation 

function and 𝜎̂𝑡 is the output of the neuron which is the univariate volatility. In ANN works, 

multi-layer feed forward (MLP) is a common approach which has three layers: input layer, 
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output layer, and hidden layer. Neuron takes the values of inputs parameters, sums them up 

with the assigned weights, and adds a bias. With the application of transfer function, the outputs 

will be displayed. If more the hidden layers are added, the algorithm will turn to the deep 

learning method. 

With the conception of the neural networks, a hybrid GARCH model can be built, particularly 

here a hybrid GARCH model. In neural networks, the input data can be set as an explanatory 

variable of financial time series, such as returns, squared returns, trading volumes, etc. Since 

the target of the GARCH model is to forecast volatility, the input data will be set as the variance 

generated by univariate GARCH models including the standard GARCH, EGARCH, 

TGARCH and CGARCH mentioned above and the trading volumes as well. A deep learning 

model is a complicated neural network with more hidden layers. 
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5.5 Comparison of forecast performance  

As introduced in chapter 3, the Mean Absolute Error (MAE) and Mean Squared Error (MSE) 

are selected. The Model Confidence Set (MCS) procedure by Hansen (2011) are selected as 

well to test the equal predictive ability (EPA) at certain confidence level α depending on the 

loss functions including MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺. To retrieve a “actual” variance, the 

realized variance 𝜎̃𝑡+1
2  (calculated by the 5 mins intraday returns) is considered both the in-

sample and out-of-sample period, which are believed to be closer to the unobservable 

covariance. The forecasting values are specified as 𝜎̂𝑡+1
2 .  

Mean Absolute Error (MAE) and Mean Squared Error (MSE) 

The MAE calculates the average difference of the comparison with equal weight of all 

individual differences. The MSE calculates the average squared difference between the 

estimated values and the actual values. The comparison with covariance is similar with 

volatility. Both comparison measures report the better performance by a lower statistic.  

𝑀𝐴𝐸 =
1

𝛿
∑ |𝜎̃𝑡+1

2 − 𝜎̂𝑡+1
2 |𝑇+𝛿

𝑡=𝑇+1  (5.5.1) 

𝑀𝑆𝐸 =
1

𝛿
∑ (𝜎̃𝑡+1

2 − 𝜎̂𝑡+1
2 )2𝑇+𝛿

𝑡=𝑇+1  (5.5.2) 

Quasi-Likelihood (QLIKE) and 𝑅2𝐿𝑂𝐺 loss function 
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The Quasi-Likelihood (QLIKE) loss function is a test of forecast bias implied by a Gaussian 

likelihood which has a specification: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = 𝑙𝑜𝑔(𝜎̂𝑡+1
2 ) +

𝜎̂𝑡+1
2

𝜎̃𝑡+1
2  (5.5.3) 

The other loss function is the 𝑅2𝐿𝑂𝐺 which measure the goodness of fit of the out-of-sample 

forecasts. 

𝑅2𝐿𝑂𝐺𝑡+1 = [𝑙𝑜𝑔 (
𝜎̂𝑡+1
2

𝜎̃𝑡+1
2 )]

2

 (5.5.4) 

Model Confidence Set (MCS) 

The statistical method called Model Confidence Set (MCS) are selected to deliver the best 

performing models with respect to a given criterium since it is hard to point a single model 

outperforms others by the reason of their statistically equivalent property or not enough 

information from the data. The MCS procedure will eliminate the worst model at each step if 

the null hypothesis of equal predictive ability (EPA) is not accepted and the procedure will 

iterate until all models with EPA hypothesis entered in the “Superior Set Models” (SSM). An 

optimal SSM set will be created to give a clear view of the selected models. 
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5.6 Results and analysis of empirical exercise  

All the data and models and comparisons are applied with R studio in an R language 

environment.  

5.6.1 The traditional model performance with the consideration of trading 

volume 

Since the trading volume was considered in this exercise, it is essential to know whether there 

would be any positive or negative effects on forecasting performance. Therefore, several 

comparisons are carried out. The first exercise is to investigate the forecasting performance of 

traditional models including GARCH series (GARCH, EGARCH, TGARCH and CGARCH) 

and HAR model. The exercise marked the GARCH series and HAR model with a star “*” to 

represent the models with the consideration of trading volume. The models without the star 

“*” is a normal process without consideration of trading volume. The stock index in 12 

countries was selected as same as the previous chapter in order to make the comparison 

simpler to understand. 

In general, the forecasting performance are represented by the “distance” between the 

forecasting values outputted by the several models and the “realized variance” which 

calculated by the intraday high frequency data. The distance is calculated by several 

comparison techniques like MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺 in this chapter. Therefore, the 

accuracy of the forecasting can be presented by numbers easily so that it can be compared 

easily. In this exercise, all of the models are investigated, and the details of “distance” were 
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restored in several tables in the appendix since it is too big to list in the main body of this 

section. 

Several graphs and a report table 5.6.1 which using different comparing techniques are 

created to examine the performance of the models. (Other table details of all the models can 

be found in the appendix which mentioned above). Since the patterns of graphs by each 

certain comparison technique is similar, only GARCH results are presented in this section. 

(Other graphs can be found in the appendix chapter).  

By MAE statistics, the GARCH models with the consideration of volume has a negative 

effect in 3 countries which is Germany, India and Switzerland which means the accuracy will 

be lower when considering the trading volume. 

By MSE statistics, the models with the consideration of volume perform worse in 3 countries 

which is German and India and USA while the model with the consideration of trading 

volume has a better performance. 

By QLIKE statistics, the forecasting performance has a better accuracy in 9 countries when 

considering trading volume, while there still exists 3 countries which has a worse 

performance including Canada, German and Japan. 

With the application of 𝑅2𝐿𝑂𝐺 statistics, 3 countries are reported with a worse forecasting 

performance with the consideration of trading volume which is China, German and United 

Kingdom. 
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After producing all the figures of the distance by different comparison techniques, by an 

overview of all the graphs, it could be found that the lagged trading volume improve the 

accuracy of the forecasting volatility out of sample since the lines which represent the models 

with the consideration of volume run below the original models, however, this effect is not 

very significant. (The two lines are very close.) 

5.6.2 The Hybrid models performance 

Section 5.6.1 has investigated the performance or GARCH model when considering the trading 

volume. In this section, another investigation has been conducted in order to enhance the 

accuracy of forecasting with the application of the hybrid models by neural networks.  It is 

known that the results output by the neural networks will have difference when using different 

hidden layers. Therefore, the comparison among hybrid models with single hidden layer and 

serval hidden layers, particularly, in this exercise with 10 hidden layers, will be carried out. 

The hybrid model with single hidden layer is tailed with “-NN”, the hybrid models with 10 

hidden layers which is deep learning models are tailed with “-DL” in order to read the table 

more efficiently. 

Table 5.6.2 showed the MAE statistics of all the models in 12 countries. The hybrid model built 

by GARCH and deep learning are reported to be better in 8 countries while it has a worse 

forecasting performance in 4 countries which is German, India, Japan and Switzerland. The 

hybrid model built by EGARCH and deep learning are reported to has a worse performance in 

China, German, India and Switzerland. The hybrid model built by TGARCH and deep learning 

are reported to have a better performance in 7 countries while it fail to improve the forecasting 

accuracy in 5 countries including Canada, China, German, India and Switzerland. The hybrid 
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model built by CGARCH has been reported to be useful in 8 countries and has a worse 

performance in 4 countries in Canada, China, German and India. 

With a total calculation by the whole view of the table, the deep learning model has a better 

performance by 31 times in 48 cases (64.5%) while they have a worse performance by 17 times 

in 48 cases. (35.5%) 

Table 5.6.3 showed the MSE statistics of all the models in 12 countries. The hybrid model 

built by GARCH and deep learning are reported to be better in 9 countries and has a worse 

performance in 3 countries which is Canada, German and Korea. The hybrid model built by 

EGARCH and TGARCH and deep learning has a better performance in 10 countries while a 

worse performance is reported in 2 countries which is German and Switzerland. The hybrid 

model built by CGARCH and deep learning has a better performance in 9 countries and a 

worse performance in 2 countries which is German, Korea and Switzerland. 

By an overview of the table, the hybrid model with more hidden layers has a better 

performance than the hybrid model with single hidden layer. Particularly, the deep learning 

model was superior to the original neural networks by 38 times in 48 cases. (79.1%) 

Similarly, table 5.6.4 report the QLIKE statistics of the forecasting performance. The Hybrid 

model build by deep learning and standard GARCH has a better performance in 9 countries, 

while it was reported a worse performance in 3 countries including Hong Kong, Korea and 

Switzerland. The deep learning model built with EGARCH are reported to be better in 10 

countries except in China and Korea. The hybrid model built by TGARCH and Deep 

Learning has a better forecasting accuracy in 10 countries out of 12 while it fail to improve 
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the forecasting performance in China and France. The hybrid model built by CGARCH and 

deep learning also has a better performance in 10 countries out of 12 except in Hong Kong 

and India. 

With an overview of the table, the deep learning model was superior to the original neural 

networks by 39 times in 48 cases. (81.25%) 

Finally, Table 5.6.5 report the 𝑅2𝐿𝑂𝐺 statistics of the forecasting performance. It can be 

seen that the hybrid model built by GARCH and Deep Learning has a better performance in 9 

countries out of 12 except in Australia, China and Hong Kong. The hybrid model built by 

EGARCH and Deep Learning are reported to be better in 8 countries out of 12 while they are 

not able to improve the forecasting accuracy in China, Hong Kong, Korea and United 

Kingdom. By looking the performance of hybrid model built by TGARCH and deep learning. 

It is superior to the original neural networks in 8 countries but it still has a worse performance 

in Australia, France, German and Hong Kong. When investigating the performance of the 

hybrid model built by CGARCH and Deep Learning, the model acts to be better in 6 

countries including Canada, China, German, Korea, United Kingdom and United States. 

By an overview of the whole table, it can be found that the   was superior to the original 

neural networks by 31 times in 48 cases. (64.5%) 

After investigating the forecasting performance of the original hybrid models and the new 

deep learning model with the application of 4 comparison techniques, it can be found that the 

deep learning method has a positive effect on the forecasting process, the new hybrid model 
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built by deep learning has at least 60% percentage to be superior to the original neural 

networks.  

5.6.3 The forecasting performance among original GARCH series, HAR 

models and deep learning  

Since it is known that the forecasting performance will be improved when considering 

trading volume by previous exercise, the section will investigate the forecasting performance 

of GARCH series, HAR model, and the new built hybrid model with deep learning. 

The trading volume is considered in all the models in this exercise. The GARCH series with 

the consideration of trading volume is named as GARCH*, EGARCH*, TGARCH* 

CGARCH* and the HAR model is named as HAR*. The deep learning built on different type 

of GARCH models with the consideration of trading volume are recorded as GARCH-DL*, 

EGARCH-DL*, TGARCH-DL* and CGARCH-DL* which are corresponding to the 

different GARCH type models for the estimation of volatility. 

Table 5.6.6 gives the MAE statistics of the GARCH type models and their extension based on 

deep learning. The volatility forecasting results which considered the effect of volumes in 12 

different countries by using different models are recorded. The realized volatility is calculated 

by the high frequency 5 mins intraday returns and is obtained from the dataset which is 

introduced in the previous chapter. 

From the table, the best performer can be identified as hybrid model including GARCH-DL*, 

EGARCH-DL*, TGARCH-DL*, CGARCH-DL* and normal CGARCH* models. The details 
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about which model appears to be the best in which country can be found in the following table.  

There is no minimum MAE value reported for GARCH*, EGARCH*, TGARCH*,HAR* 

which means that these models do not appears to be the best model when using MAE statistics. 

Best performer 

CGARCH* GARCH-DL* EGARCH-

DL* 

TGARCH-DL* CGARCH-DL* 

Canada Australia China Germany HK 

India France   Japan 

UK Korea   Switzerland 

USA     

The second-best performing models can be found by the second minimum MAE values 

reported in each row which are reported as GARCH*, CGARCH*, GARCH-DL*, TGARCH-

DL*, CGARCH-DL* and HAR* model. A summary of the performance is recorded in 

following table. 

2nd Best performer 

GARCH* CGARCH* GARCH-DL* TGARCH-

DL* 

CGARCH-

DL* 

HAR* 

Canada Korea Germany China Australia USA 

India  HK Japan France UK 

   Switzerland   
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The third-best performing models can be observed by the third minimum MAE values in each 

row. The results are in a wide dispersion. The TGARCH-NN model comes to the first in 3 

countries. The GARCH, CGARCH and CGARCH-NN appeared to be the 3rd best performer 

in 2 countries, respectively, followed by HAR model in 1 country.  

3rd Best performer 

GARCH* TGARCH* GARCH-

DL* 

EGARCH-

DL* 

TGARCH-

DL* 

CGARCH-

DL* 

HAR 

Korea UK China Australia France Germany Canada 

USA  Switzerland HK   India 

   Japan    

Finally, Table 5.5.1 also reported the worst performing models of volatility forecasting by 

considering the maximum MAE statistics in each row. Here, the normal EGARCH* appears to 

be the worst performer with a maximum MAE value in 4 countries. 

Worst Performer 

GARCH* EGARCH* TGARCH* EGARCH-DL* CGARCH-DL* 

Japan Australia Korea India Canada 

China HK  USA  

 Germany  UK  

 France    

 Switzerland    

By observing the whole performance of the selected models, the best models can be identified 
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as the new model built on the deep learning since the best performer are recorded the most 

times in the series of new models. 

Since the MAE methods are the simplest way like an “naïve method” to compare the error 

which takes the difference with an equal weight, the MSE measure is carried out to identify if 

there exist some outlier predictions with huge errors. 

Similarly, Table 5.6.7 reports the MSE statistics for the volatility forecasting results between 

12 countries by using 9 different models with the consideration of volume. The MSE will put 

larger weight on the errors due to the squaring part of the function which will enlarge the 

outlier prediction error.  

Unlike using MAE statistics, the TGARCH-DL* and CGARCH-DL* model comes to be the 

first with a minimum MSE value in 3 out of 12 countries, respectively. The rest are GARCH-

DL* and EGARCH-DL* in 2 countries each.  The CGARCH* become to be the best 

performer in India. 

Best performer 

CGARCH* GARCH-DL* EGARCH-DL* TGARCH-DL* CGARCH-DL* 

India France Australia German Canada  

 Korea China Japan HK 

   Switzerland UK 

The second-best model can be identified as the TGARCH-DL* model with a second 

minimum MSE value in 4 countries. The rest are EGARCH-DL* in 3 countries, CGARCH-
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DL* in 2 countries. The CGARCH* HAR* and GARCH-DL* model are reported with a 

second minimum MSE value in 1 country each.  

2nd Best performer 

CGARCH* HAR* GARCH-

DL* 

EGARCH-

DL* 

TGARCH-

DL* 

CGARCH-

DL* 

Korea India Switzerland France Canada Australia 

   German China Japan 

   USA HK  

    UK  

The third-best model is recorded as CGARCH-DL* in 4 out of 12 countries. The rest are  

the GARCH-DL* in 3 countries and EGARCH-NN in 2 countries. The GARCH*, HAR*, 

and TGARCH-DL* model comes to the last with a third-minimum MSE value in 1 country 

each.  

3rd Best performer 

GARCH* HAR* GARCH-

DL* 

EGARCH-

DL* 

TGARCH-

DL* 

CGARCH-

DL* 

India Canada HK Korea Australia China 

  Japan UK  France 

  USA   German 

     Switzerland 
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Like the results with using MAE statistics, the normal EGARCH* comes to be the worst 

performing model again with the highest MSE statistics in 4 out of 12 sample countries. 

Likewise, The GARCH* model are reported as the worst performer for 4 times as well. The 

TGARCH*, CGARCH* EGARCH-DL* and TGARCH-DL* appeared to be the worst 

performer in 1 country each. 

Worst performer  

GARCH* EGARCH* TGARCH* CGARCH* EGARCH-

DL* 

TGARCH-

DL* 

China Australia Korea Switzerland Canada India 

Japan France     

UK German     

USA HK     

 

 

Loss of the variance  

Model Confidence Set procedure (MCS) is an iteration of a sequence of statistic tests which 

permits to construct a set of “superior” models, the “Superior Set Models” (SSM), under the 

null hypothesis of equal predictive ability (EPA) is not rejected at certain confidence level α 

based on a loss function. It is introduced in chapter 3 and the MCS are applied as well to 

check the predictive ability. A direct comparison based on the loss function QLIKE and 

𝑅2𝐿𝑂𝐺 are taken out. The details of the “Superior Set Models” (SSM) will be displayed as a 

conclusion in next section.  
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The QLIKE and 𝑅2𝐿𝑂𝐺 are selected to check if there is any significant difference. The loss 

function specification for covariance is specified as: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = 𝑙𝑜𝑔(𝜎̂𝑡+1
2 ) +

𝜎̂𝑡+1
2

𝜎̃𝑡+1
2  (5.6.1) 

𝑅2𝐿𝑂𝐺𝑡+1 = [𝑙𝑜𝑔 (
𝜎̂𝑡+1
2

𝜎̃𝑡+1
2 )]

2

 (5.6.2) 

 

where 𝜎̃𝑡+1
2  refers to the “actual” variance and evaluated covariance is specified as 𝜎̂𝑡+1

2 . 

The 𝑅2𝐿𝑂𝐺 statistics prefers a value closer to zero which indicates that the distance between 

the “actual” variance and forecasting variance is small enough. The value is no doubt non-

negative due to the squaring part of the function so that a lower 𝑅2𝐿𝑂𝐺 statistics is preferred 

when comparing different models. 

With the application of the QLIKE loss function in equation (5.5.1), it is hard to say that a 

lower statistic indicates a better performance. In order to make it more appropriate to 

compare directly, a specification is defined as: 

𝑄𝐿𝐼𝐾𝐸𝑡+1 = (𝑙𝑜𝑔( 𝜎̃𝑡+1
2 ) − 𝑙𝑜𝑔(𝜎̂𝑡+1

2 ))⏟                
𝑃𝑎𝑟𝑡 1

+ (
𝜎̂𝑡+1
2

𝜎̃𝑡+1
2 − 1)

⏟      
𝑃𝑎𝑟𝑡 2

 (5.6.3) 



 

176 

 

These two parts of the QLIKE statistic measures the log difference between the “actual” 

variance and forecasting variance and their rates. The two parts tend to be zero if the 

forecasting values tend to be same as the “actual” value so that a QLIKE statistic closer to 

zero will be preferred when comparing different models. 

In Table 5.6.8 the QLIKE statistics based on equation (5.6.3) are reported.  

The HAR* and GARCH-DL* comes to be the first with a minimum QLIKE value reported in 

3 out of 12 countries followed by normal GARCH* and TGARCH-DL* in 2 countries. The 

rest are EGARCH-DL*, CGARCH-DL* in 1 country, respectively.   

Best performer 

GARCH* HAR* GARCH-

DL* 

EGARCH-

DL* 

TGARCH-

DL* 

CGARCH-

DL* 

China Canada Australia France German HK 

India UK Japan  Switzerland  

 USA Korea    

The second-best performing models can be found by the second minimum QLIKE statistics 

reported in each row. The CGARCH* appears to be the first in 3 country samples followed by 

EGARCH-DL* and CGARCH-DL* model in 2 countries, respectively. The TGARCH*, 

GARCH-DL* and TGARCH-DL* appeared to be the 2nd best performer in 1 country each. 
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2nd Best performer  

TGARCH* CGARCH* HAR* GARCH-

DL* 

EGARCH-

DL* 

TAGRCH-

DL* 

CGARCH-

DL* 

USA Canada India France HK China German 

 Korea   Switzerland  Japan 

 UK      

The third-best performing models can be observed by the third minimum QLIKE values in 

each row. There are 8 models recorded as the 3rd best performer by QLIKE statistics. Their 

performance in details can be found in the following table. 

3rd Best performer 

GARC

H* 

TGARC

H* 

CGARC

H* 

HAR

* 

GARC

H-DL* 

EGARC

H-DL* 

TGARC

H-DL* 

CGARC

H-DL* 

 

Canada UK USA Chin

a 

HK Australia Japan France 

     German  India 

       Switzerla

nd 

       Korea 

Finally, Table 5.5.3 reported the worst performing models of the variance forecasting by 

considering the maximum QLIKE statistics in each row. The EGARCH* appears to be the 

worst performer with a maximum QLIKE value in 4 countries.  
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Worst performer  

EGARCH* TGARCH* HAR* GARCH-DL* TGARCH-

DL* 

CGARCH-

DL* 

Australia HK France Canada India China 

German Switzerland   USA UK 

Japan      

Korea      

The overall conclusion of Table 5.5.3 generated by the whole performance of the selected 

models are similar with the measures applied above. The hybrid GARCH models built on deep 

learning perform better than others when considering trading volume.  

Another measure of the loss function based on the MCS procedure mentioned above is the 

𝑅2𝐿𝑂𝐺. Unlike the QLIKE measure it only concerns about the LOG difference between the 

“actual” volatility and the forecasting values. Table 5.6.9 reports the 𝑅2𝐿𝑂𝐺 statistics of the 

loss function for the variance forecasting models in 12 country samples. A lower value is 

preferred when selecting a better performance model.  

The TGARCH-DL* appears to be the best performer with a minimum 𝑅2𝐿𝑂𝐺 value 

reported in 4 countries. The rest are CGARCH* in 3 countries and GARCH -DL*in 2 

countries. The TGARCH*, EGARCH-DL* and CGARCH-DL* model appeared to be the 

best performer in 1 country, respectively. 
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Best performer 

TGARCH* CGARCH* GARCH-

DL* 

EGARCH-

DL* 

TGARCH-

DL* 

CGARCH-

DL* 

USA Canada Korea Australia Switzerland HK 

 India France  Japan  

 UK   Germany  

    China  

The second-best model is identified as the GARCH-DL* and HAR models in 3 countries, 

respectively followed by EGARCH-DL* and CGARCH-DL* with a minimum 𝑅2𝐿𝑂𝐺 

value in 2 countries each. The TGARCH-DL* and CGARCH* comes to be the last with a 

minimum 𝑅2𝐿𝑂𝐺 value in 1 country each. 

2nd Best performer 

CGARCH* HAR* GARCH-

DL* 

EGARCH-

DL* 

TGARCH-

DL* 

CGARCH-

DL* 

USA UK Australia China HK France 

 India Japan German  Korea 

 Canada Switzerland    

The third-best model is recorded as EGARCH-DL* in 4 countries. The GARCH* and 

EGARCH* appeared to be the 3rd best model in 2 countries, respectively. The TGARCH*, 

GARCH-DL*, TGARCH-DL* and CGARCH-DL* model has a 3rd minimum  𝑅2𝐿𝑂𝐺 

value in 1 country each. 



 

180 

 

3rd Best performer 

GARCH

* 

EGARCH

* 

TGARCH

* 

GARCH

-DL* 

EGARCH

-DL* 

TGARCH

-DL* 

CGARCH

-DL* 

India USA UK Germany Switzerlan

d 

Korea Australia 

Canada China   Japan   

    HK   

    France   

The EGARCH* appears to be the worst performer again with a maximum 𝑅2𝐿𝑂𝐺 value in 4 

countries. The GARCH-DL* appeared to be the worst performer in 3 countries. The 

EGARCH-DL* was identified as the worst performer in 2 countries. The GARCH*, 

TGARCH* and TGARCH-DL* model also has a maximum 𝑅2𝐿𝑂𝐺 value in 1 country, 

respectively. 

Worst performer 

GARCH* EGARCH* TGARCH* GARCH-DL* EGARCH-

DL* 

TGARCH-

DL* 

Japan Switzerland Korea USA  UK France 

 HK  China India  

 Germany  Canada   

 Australia     

Again, in attempt to look at the overall performance of the models using 𝑅2𝐿𝑂𝐺 loss 

function in Table 5.5.4, the conclusion is similar to the results from other comparison 
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techniques. The Deep Learning built on GARCH models appears to be a better performer, 

while the EGARCH* model comes to be the worst performer in 4 comparison techniques.  
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5.7 Discussion and Findings 

In order to determine the best and worst performance models, a table which summary the 

empirical results are created (Table 5.7). It sums the times of each model to be the best 

performer or worst performer based on 4 measures of evaluating the forecast among GARCH 

type models, their extension based on deep learning in the 12 sample countries. 

A strong suggestion can be made that the deep learning built on a GARCH type model will 

improve the forecast performance. Both deep learning built on normal GARCH and 

asymmetric GARCH (TGARCH) models has an overall better performance. The deep learning 

built on a normal GARCH model acted as the best model for 10 times and the deep learning 

built on TGARCH* model acted as the best model for 11 times as well. Others like normal 

CGARCH* model outperforms 8 times the rest of the specifications. Its extension CGARCH-

DL* also has been recorded as the best model for 8 times. Moreover, the HAR* has been 

identified as the best model for 3 times, GARCH* for 2 times and TGARCH* for 1 time. 

However, other original GARCH* models haven’t been counted for the best model in the whole 

comparison. The EGARCH* has been counted by 17 times of 48 cases as the worst performer. 

By an overview of the table, it gives the evidence that the deep learning methods will improve 

the forecasting performance as well when considering the volumes. 

Model Confidence Set 

As mentioned in the comparing technique section (section 5.6), a “Superior Set Models” (SSM) 

will be generated after the Model Confidence Set procedure (MCS) to test the equal predictive 

ability (EPA) hypothesis. The models which enter the SSM set will be assumed to have an 
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equal predictive ability under a confidence level. With the direct comparison of the measure of 

MAE, MSE, QLIKE and 𝑅2𝐿𝑂𝐺 statistics, although some basic results are reported in section 

5.6, it is still necessary to have a look about the forecasting ability of each model. 

Table 5.7.2 count the times of the entrance of different models using the Superior Set of 

Models based on loss function of at a 95% confidence level, particularly, the MAE, MSE, 

QLIKE and 𝑅2𝐿𝑂𝐺 techniques. The different values in each column represent the number 

of models that enter the Superior Set Model at the end of the MCS procedure, when the null 

hypothesis of equal predictive ability (EPA) is not rejected at the 95% confidence level. 

The deep learning built on TGARCH* model rank the first by “surviving” from the procedure 

of 41 followed by GARCH-DL* of 38 times. The rest are the standard CGARCH* and its 

extension CGARCH-DL* with 30 times both. The last place is the traditional EGARCH* with 

no doubt since it appeared to be the worst performer in all the 4 comparing techniques. 

Take an overview of the Superior Set of Models, it can be found that the deep learning built on 

a standard GARCH or asymmetric GARCH (TGARCH) outperforms other models when 

considering trading volume.  
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Table 5.7.2 Number of models that belong to SSM 

Models/Loss function MAE MSE QLIKE R2LOG Total 

GARCH* 3 3 9 3 18 

EGARCH* 3 3 4 4 14 

TGARCH* 3 3 3 6 15 

CGARCH* 11 6 3 10 30 

HAR* 3 4 9 4 20 

GARCH-DL* 10 8 11 9 38 

EGARCH-DL* 5 8 6 5 24 

TGARCH-DL* 7 12 10 12 41 

 

5.8 Conclusion and Implication  

After investigating the forecasting performance of GARCH series models, HAR models and 

several hybrid-built models with deep learning by using 1-step ahead volatility and taking an 

overview of all these tables both in section 5.6 and section 5.7, some conclusions can be 

generated.  

The first conclusion is that the trading volume has a positive effect on variance forecasting with 

the application of GARCH model or HAR model. The second conclusion can be found that the 

deep learning method is an effective way to enhance the performance of original neural 

networks. The third conclusion is that with the consideration of trading volume, the new built 

hybrid models by deep learning still has a better forecasting performance than the original 

GARCH series or HAR model. Since there is very few paper explored the effect of trading 

volume on volatility forecasting, most of them only talk about the performance of 1 or 2 models 

using very limited stock index, this exercise provides a more comprehensive view of the 

volatility forecasting across 12 countries and 9 models when considering trading volume. With 
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the four comparison techniques, the results become more solid rather than using 1 or 2 

comparison methods. 

This exercise also provides a new approach which is deep learning (neural networks with multi 

hidden layers) rather than original neural networks to build the hybrid models, the results 

suggests that the new approach is still better than the original GARCH models when 

considering the trading volume and this new machine learning method also outperforms the 

original neural networks with single hidden layers.  

The wide comparison among GARCH series models, HAR models and hybrid models also 

gives some empirical suggestions that a hybrid model is an effective way to enhance the 

volatility forecasting performance. Moreover, after comparing the forecasting performance 

with the previous chapter, it could be found that the GARCH models with consideration of the 

trading volume will has a better performance than these without consideration of the trading 

volume which contributed to the finds of Liu et al. (2020). Similarly, the machine trained by 

trading volume has a better performance when forecasting volatility rather than the machine 

trained without volume which is a similar result of the finding by Zhu et al. (2008 The results 

showed a positive effect of trading volume, which gives evidence that the trading volume do 

provide additional forecasting power to the volatility forecasting when using both traditional 

GARCH models and hybrid GARCH models. 

 

The results can be addressed for further research on univariate volatility forecasting, studies 

can start from the results and apply a hybrid model with deep learning to forecast volatility 

with the consideration of the trading volume. It provides a view about the effect of trading 

volume on univariate volatility forecasting by both traditional GARCH genres and the hybrid 

models built by neural networks and deep learnings. It also gives a valuable insight for 
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improving stock volatility predictions. The investors can use the results to consider more about 

the trading volume on their investment portfolios and take action in advance to avoid risk and 

make profits. 
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6. Summary and Conclusion 

6.1 Summary 

In Chapter 2, which is the literature review chapter, some definitions and related works about 

the measurement and forecasting of volatility and covariance are reviewed for the next chapters. 

Although several models or methods have been proposed and proved to be efficient or superior 

for univariate volatility or multivariate covariance forecasting, there still existed a debate which 

model can be considered as the “best” performer. Moreover, with the development of machine 

learning methods, more and more studies and research tend to produce forecasts with machine 

learning method. However, some of the studies focused on very limited models and make 

comparisons in a small range of models, and there still no general conclusion on which model 

has the best performance. This thesis enters the debate on exploring the most appropriate and 

efficient model or methods to get better volatility or covariance forecasting performance.  

With the aim of finding a better performer on univariate volatility forecasting, a volatility 

forecasting empirical exercise has been carried out in Chapter 3. Several traditional volatility 

models have been selected including standard GARCH, EGARCH, TGARCH, CGARCH and 

HAR models. 

Since the GARCH models mainly focus on the past conditional variance and squared returns 

using maximum likelihood method, a hybrid model built with GARCH and neural networks is 

introduced. Neural networks have the ability to concerns more explanatory variables of the 

volatility by formulating them with an activation function including both linear and nonlinear 
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function. These hybrid models are built with four different GARCH type models, and a 

comparison among the wide range of volatility models is carried out. 

The results show that the proposed hybrid models built with GARCH genres and neural 

networks outperform overall the traditional models, which means that the hybrid GARCH 

model based on neural networks will improve the forecasting performance of a traditional 

GARCH model. After ranking the models by performance, the hybrid model built with 

TGARCH and neural networks comes to the first, followed by the hybrid model built by 

standard GARCH and neural networks. The third place was taken by the traditional long 

memory model CGARCH. 

Neural networks, as machine learning methods, needs plenty of related data to train the 

machine in order to get a more accurate performance. Since the proposed models are trained 

by lots of factors which are estimated from traditional GARCH model, there would be a 

question whether the factors come from different GARCH type models will have effect of the 

forecasting performance. Following the questions, another comparison is carried out, we first 

pick the best performer in traditional GARCH series and combined it with neural networks in 

order to investigate the forecasting performance of it. However, the results showed that there 

is no strong evidence to support that a better forecasting performance in GARCH type will 

yield in a success of a corresponding hybrid GARCH model based on neural networks. It means 

that although one of the GARCH models has been identified as the best performer in GARCH 

series, there do not exist empirical evidence to support that the model built with neural networks 

will has a better performance again.  

The results of the chapter are important to anyone who is involved in the volatility modelling 
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and forecasting. It confirms the effect of machine learning methodologies. Since some of the 

literature concerned with volatility models only selected very limited models and assets, our 

empirical results make a new approach to compare four GARCH type models and four hybrid 

GARCH in twelve countries stock indices with five comparison measures, which gives a wider 

and more comprehensive comparison. 

With the aim for improving the forecast ability of different models, Chapter 4 investigates the 

multivariate covariance models and builds a model with neural networks to improve 

forecasting ability. Since lots of paper and studies put emphasis on the covariance modelling 

with the application of traditional models like VEC, BEKK, CCC/DCC process in the past, our 

empirical exercise aims to explore the covariance forecasting by a hybrid-built model based on 

neural networks. Moreover, with the help of the neural networks, our new built model will not 

be restricted to heavy parameters or high dimension estimation. The DCC process is selected 

from the MGARCH series as a traditional methodology to model the covariance. Several 

different GARCH type models are chosen in the first step of DCC process including standard 

GARCH, EGARCH, TGARCH and CGARCH. Similar to the previous chapter, four 

corresponding hybrid models built by neural networks are proposed. A wide comparison among 

the different approaches will be created. The forecasting power will be explored by using both 

DCC GARCH methods and several hybrid-built models based on neural networks. 

The results showed that the proposed hybrid models are superior to the traditional DCC 

GARCH models. It gives evidence to support that the neural networks still have positive effect 

of improving forecasting accuracy on covariance models. After ranking all the models by their 

performance, the neural networks built on a TGARCH DCC model acted as the best model and 

other hybrid models built on standard GARCH DCC and EGARCH DCC also outperform the 

rest of the specifications.  
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In this chapter, we used the DCC GARCH model as a competitor since it is one of the most 

widely used models in covariance forecasting and the procedure of DCC is simple to perform 

and related factors and parameters are easy to estimate when the dataset is in a large scale, 

which will make the procedure of training machine to be efficient. Moreover, after investigating 

the performance of traditional DCC methods in the exercises individually, the results show that 

there is no direct evidence to support that good fitness in the first step of DCC process will lead 

to a more accurate forecasting covariance. 

The final empirical chapter aims to investigate the effects of trading volumes on volatility 

forecasting. After realizing the usefulness of the neural networks in previous chapter, we 

introduced a neural network with more hidden layers which could be called as a Deep Learning 

method (DL) in order to improve the forecasting ability of original neural networks. Several 

traditional models including standard GARCH, EGARCH, TGARCH, CGARCH and HAR 

models are selected and a new deep learning model with ten hidden layers is built with four 

different GARCH models. A comparison among the wide range of volatility models is carried 

out with the consideration of trading volume. 

The empirical results show that the proposed hybrid models built with GARCH and deep 

learning methods outperform overall the traditional models, which means that the hybrid 

GARCH model based on deep learnings will improve the forecasting performance of a 

traditional GARCH model. Moreover, after comparing the forecasting performance with the 

previous chapter, it could be found that the models with consideration of the trading volume 

will have a better performance than these without consideration of the trading volume. 
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Similarly, 

The machine trained by trading volume has a better performance when forecasting volatility 

rather than the machine trained without volume. The results showed a positive effect of trading 

volume, which gives evidence that the trading volume provides additional forecasting power 

to the volatility forecasting. Furthermore, it shows that the deep learning do has improved the 

forecasting ability than the normal neural networks. 
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6.2 Conclusions 

This thesis aims to fill some gaps and add some knowledge to the literature on the univariate 

volatility and multivariate covariance forecasting by several empirical exercises. With the 

application of neural networks and deep learning methods, several hybrid models were 

introduced to improve the accuracy of volatility and covariance forecasting.  

There are four main contributions. First, a  hybrid model which combined the neural networks 

and univariate GARCH genre of models were introduced. After a wide comparison among 

these models, the empirical results revealed that the hybrid model are superior to the original 

GARCH models and HAR models. The results is useful for future research, hybrid models can 

be applied directly when forecasting univariate volatility. For economics, the policymakers can 

benefit from the results to formulate their policies to avoid risk. The investors can use 

appropriate models in this empirical chapter to forecast more recent volatility to avoid risk and 

loss or to revise their portfolio to make more profits. Second, a multivariate hybrid model which 

built with the DCC GARCH models and neural networks is introduced. This hybrid model is 

built from the idea of the univariate model on the previous findings. After investigating the out-

of- sample forecasting performance among the multivariate models and DCC GARCH models, 

the findings showed that the hybrid models are still preferred rather than original DCC GARCH 

models. The results are able to provide some suggestions for market managers on risk control, 

especially for the portfolios containing multivariate assets in different countries. For economics, 

the investors can use to appropriate models in this empirical chapter to forecast the covariance 

and investigate the co-movements of different assets across the world which is useful for them 

to observe risk and revise their portfolio. Third, the trading volume is considered in empirical 

exercise, the effect of the trading volume are addressed in the GARCH models and previous 
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hybrid models. Finally, the original neural networks are improved by a deep learning model 

which has more hidden layers than the previous neural networks. The forecasting ability of a 

hybrid model which combined the univariate GARCH genre and deep learning are investigated. 

After the comparison of the hybrid-built models and GARCH genres with the consideration of 

trading volume, the proposed models are superior as well.  The results can be addressed for 

further research on univariate volatility forecasting. Studies can start from the results and apply 

a hybrid model with deep learning to forecast volatility with the consideration of the trading 

volume. It provides a view about the effect of trading volume on univariate volatility 

forecasting by both traditional GARCH genres and the hybrid models built by neural networks 

and deep learnings. Our findings highlight the importance of the trading volume in forecasting 

the volatility. It also gives a valuable insight for improving stock volatility predictions. The 

investors can use the results to consider more about the trading volume on their investment 

portfolios and take action in advance to avoid risks and make profits. 

In addition to these four main contributions mentioned above, some other properties of the 

models are examined as well. The data selected by the thesis are stock indices from twelve 

countries and the four different comparison techniques are selected. Since some of the exist 

literature investigated very few samples in their research, this thesis investigated the forecasting 

performance among different models to provide a more comprehensive view of the models in 

different countries. With the application of four comparison techniques among all the exercise, 

the thesis aimed to give more objective results, since the findings by one or two comparison 

techniques may cause bias. Moreover, the deep learning methods are introduced to replace the 

original neural networks in order to enhance the forecast ability of the previous models. After 

the investigation of the hybrid models with deep learning, the results revealed that the hybrid 

models built with deep learning are preferred rather than the hybrid models built with neural 

networks. 
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The forecasting of conditional volatility and covariance are addressed in lots of literature and 

it is still a hot topic in the finance area. There still exist lots of unsolved problems which need 

to be investigated further. The forecasting performance can be affected by the data frequency, 

the model selection, the time period of the data, the sample size, therefore it is still meaningful 

to do further research on these aspects. 

In this thesis, all the empirical investigations are based on a hybrid model which is built with 

neural networks. Although deep learning is a different method, it can be identified as a modern 

neural network with more hidden layers. For the further development of the traditional models, 

more machine learning methods like SVM can be a potential research topic. Moreover, the data 

used throughout all the chapters are intraday returns or realized volatility, and the forecasting 

results are the one-step ahead forecast. In further research, a further ahead could be investigated 

and the forecast ability of the model could be addressed with different ahead forecasts. 
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