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ABSTRACT 

Current feed formulations within the aquaculture industry have tended to rely on 

high dietary lipid thus offsetting relatively expensive protein as a source of energy.  In this 

way, protein can be ‘spared’ for synthesis of new tissue and the high lipid content can also 

fulfil both fish and consumer essential fatty acid (EFA) requirements.  However, the main 

disadvantage of feeding high lipid levels to farmed fish is a surplus of fat deposition in the 

flesh and other important tissues, which can detrimentally impact on quality characteristics 

central to the human consumer.  However, based on previous work in other animal models, 

it is entirely feasible that supplementation of the diet with bioactive fatty acids such as 

conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) may mitigate the 

deleterious effects of feeding farmed fish high fat diets by reducing fat deposition in 

particular.   

The general objective of this research work was to test the hypothesis that CLA 

and/or TTA could augment growth, reduce fat deposition and enhance fatty acid 

composition via incorporation of these bioactive fatty acids, and increase n-3 highly 

unsaturated fatty acid (HUFA) levels in the flesh of commercially important fish species 

such as Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua L.) and rainbow trout 

(Oncorhynchus mykiss).  This project also considered the influence of CLA and TTA on 

enzymes and transcription factors thought to be pivotal in lipid metabolism and fatty acid 

oxidation in particular.  A subsidiary aim of this research work was to investigate the 

immunological impact of dietary CLA and TTA administration in these fish.   
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The results of this project have revealed that the hypothesis was only partly proved.  

There was no effect in growth or biometry after either CLA or TTA supplementation in any 

of the fish species investigated.  Additionally, there were few physiologically significant 

effects on fat levels on fish as a result of TTA or CLA administration.  However, there 

were a number of effects on fatty acid metabolism including inhibition of steroyl coenzyme 

desaturase (SCD) in cod and trout in particular and also enhancement of hepatic n-3 HUFA 

levels in trout.  Importantly, it was determined that both TTA and CLA could be 

incorporated into the flesh thus providing a vehicle through which these bioactive fatty 

acids can be delivered to the consumer.  There were also a number of beneficial effects on 

activity and gene expression of a number of enzymes and transcription factors thought to 

be fundamental to the modulation of fatty acid oxidation in particular.  However, the 

effects on gene transcription and biochemistry had little impact at the whole body level.  

This research work also showed that there were no detrimental effects on immune status 

after supplementation with dietary CLA or TTA.  Conclusively, this thesis has contributed 

to the overall understanding of the influence of dietary CLA and TTA in farmed fish. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Fatty Acid Metabolism 

1.1.1 Structure and Nomenclature 

Lipids constitute a large and diverse group of oils and fats that are organic in nature 

and characteristically are soluble in organic solvents but only sparingly soluble in aqueous 

solvents.  Fatty acids are a family of lipids, which are generally aliphatic monocarboxylic 

acids that have the ability to be liberated via hydrolysis from naturally occurring fats and 

oils.  Fatty acids can be broadly classed into three structurally and ergo, functionally, 

diverse groups based on the presence or absence of carbon to carbon double bonds within 

the hydrocarbon chain of the molecule.  A fatty acid is referred to as saturated when it 

contains no carbon to carbon double bonds.  Conversely, monounsaturated fatty acids 

(MUFA) contain one double bond whilst fatty acids with two or more double bonds are 

termed polyunsaturated fatty acids (PUFA).  Methylene-interrupted (non-conjugated) 

bonds constitute the most common structural configuration of double bonds.  PUFA 

consisting of non-conjugated unsaturation can be of cis (Z) or cis (Z) and/or trans (E) 

configuration, which are terms used to denote geometry of the double bonds in this 

instance (Gunstone et al., 1994). Highly unsaturated fatty acids (HUFA) are a subgroup of 

PUFA distinguished by having chain lengths of ≥ C20 and with ≥ 3 double bonds; an 

abbreviation used frequently in aquaculture nutrition (Sargent et al., 2002). 

Fatty acid nomenclatures have to define chain length, degree of unsaturation and 

double bond position.  There are two accepted nomenclature systems used within lipid 

biochemistry.  Both systems are similar in view of the fact that a numerical value denotes 
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chain length followed by a colon, which in turn is followed by the number denoting the 

double bonds.  However, the two nomenclatures differ in how they represent double bond 

position.  The delta configuration (∆) uses numerical values in order to detail the position 

of each double bond in relation to the carboxyl terminus of the chain whilst the omega/n 

system designates the location of the first double bond from the methyl end of the fatty 

acid.  For example, arachidonic acid (ARA), 20:4 ∆5, 8, 11, 14 has a carbon chain length of 20 

and contains 4 double bonds, which are situated at carbons 5, 8, 11 and 14 from the 

carboxylic end of the fatty acid, respectively.  Using the n nomenclature, ARA is presented 

as 20:4n-6, indicating the first double bond is situated 6 carbons from the methyl moiety.  

In view of the fact that the majority of PUFA within organisms contain methylene-

interrupted double bonds, specifying only the position of the first double bond is usually 

sufficient.  Some key fatty acids denoted by their trivial and IUPAC names and their 

respective nomenclatures are illustrated in Table 1.1. 

Table 1.1 Structure and nomenclature of common long chain fatty acids. 

20:5n-3 20:5∆5,8,11,14,17 5,8,11,14,17-eicosapentaenoic EPA
20:4n-6 20:4∆5,8,11,14 5,8,11,14-eicosatetraenoic arachidonic acid
18:3n-3 18:3∆9,12,15 9,12,15-octadecatrienoic α-linolenic acid
18:2n-6 18:2∆9,12 9,12-octodecadienoic linoleic acid

n-designation ∆-designation Systematic Name Common Name

Saturated
12:0 12:0 dodecanoic lauric acid
14:0 14:0 tetradeconoic myristic acid
16:0 16:0 hexadecanoic palmitic acid
18:0 18:0 octadecanoic stearic acid
20:0 20:0 eicosanioc arachidic acid

Unsaturated

22:6n-3 22:6∆4,7,10,13,16,19 4,7,10,13,16,19,-docosahexanenoic DHA

16:1n-7 16:1∆9 9-hexadecenoic palmitoleic acid
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1.1.2 Biosynthesis 

All vertebrates share a similar fatty acid biosynthesis pathway, which principally 

begins with mitochondrial acetyl-CoA production via oxidative decarboxylation of 

pyruvate or mitochondrial β-oxidation.  Two cytoplasmic, multi-enzymatic polypeptide 

structures named acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS) are 

responsible for fatty acid biosynthesis in animals, with energy from NADPH oxidation 

principally driving the reaction  (Wakil et al., 1983).  After transfer from the mitochondria 

to the cytoplasm, acetyl-CoA is carboxylated to form malonyl-CoA via ACC, which is the 

first and rate-limiting step of fatty acid synthesis.  

 Regulation of ACC is achieved via a combination of mechanisms including 

hormone-mediated phosphorylation, allosteric binding and feedback inhibition by local 

metabolites.  In this way, the activated polymeric form of ACC is elevated through 

allosteric binding of citrate whilst inhibition results from feedback inhibition via long chain 

fatty acyl-CoAs. Acetyl-CoA and malonyl-CoA both bind to FAS and then undergo a 

series of cyclic condensation, reduction and dehydration processes each facilitated in turn 

by four enzymatic subcomponents of FAS, namely beta-keto-acyl carrier protein (ACP) 

synthase, beta-keto-ACP reductase, 3-OH acyl-ACP dehydratase and enoyl-CoA reductase.  

With each cycle, two successive saturated carbon atoms from malonyl-CoA are added to 

the original acetyl-CoA moiety, ultimately forming 16:0 (palmitic acid) and to a lesser 

extent, 18:0 (stearic acid).  These fatty acids are then able to undergo separate elongation 

and/or desaturation reactions in order to yield longer and/or unsaturated fatty acids 

respectively.  
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1.1.3 Desaturation and Elongation 

Fatty acid desaturation and elongation pathways are a necessity particularly when 

dietary long chain fatty acids are inadequately supplied. There are two main eukaryotic 

fatty acid elongation pathways localised to two different organelles within the cell.  

Mitochondrial fatty acid elongation predominates when fatty acyl CoA substrates are 

primarily shorter than 16 carbons.  This pathway is essentially the reversal of the β-

oxidation pathway described in section 1.1.4 except that one NADPH and one NADH are 

required (β-oxidation yields two NADH).  The second and most active pathway is confined 

to the endoplasmic reticulum (ER) and involves separate, ER-specific enzymes that are 

functionally similar to the enzymatic sub-domains of FAS.  Fatty acids sequestered for 

elongation must be activated to CoA derivatives; thus providing energy for attachment of 

the donor group to a growing fatty acyl chain.  A subsequent condensation reaction 

between malonyl-CoA and fatty acyl-CoA results in the addition of a two carbon moiety, 

thus the chain is lengthened.  It is noteworthy that the enzyme responsible for this first 

condensation step in the elongation process is aptly termed ‘elongase’ and furthermore, is 

rate limiting and determines fatty acyl specificity (www.medlib.med.utah.edu/Netbiochem/ 

fattyacids/6_2a.html). 

Further modification involves the addition of carbon-carbon double bonds in order 

to produce unsaturated fatty acids.  The family of enzymes that facilitate the introduction of 

double bonds between defined carbons of fatty acyl chains are named ‘desaturases’.  Delta 

(∆) desaturases are nonheme iron-containing enzymes that display broad chain length 

specificity and share the ability to create a double bond at a fixed position generally 

counted from the carboxyl end of the fatty acid.  The acyl-CoA desaturation pathway is 

localised to the ER of particular tissues and is an aerobic process involving the reduction of 
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CoA-linked substrates via a multi-component electron transport system comprising 

cytochrome b5 and cytochrome b5 reductase together with a terminal desaturase.   

All animals have the capacity to introduce double bonds at positions ∆5, ∆6 and ∆9 

of a fatty acid.  Monounsaturated fatty acids are synthesised from saturated fatty acids via 

∆9 desaturase; otherwise known as stearoyl-CoA desaturase (SCD).  Broad chain length 

specificity allows SCD to catalyse the desaturation of fatty acyl-CoA with 12 to 19 

carbons, including 16:0 and 18:0, thus producing 16:1∆9 (16:1n-7 or palmitoleic acid) and 

18:1∆9 (18:1n-9 or oleic acid) respectively (Nakamura and Nara, 2004).  ∆9 desaturase is 

of particular physiological significance given that regulation of cell membrane viscosity is 

achieved via introduction of 16:1n-7 and 18:1n-9 to constituent phosphoglycerides 

imbedded in the phospholipid bilayer (Tocher, 2003). 

In most animals, HUFA are synthesised from dietary PUFA via trans-membrane ∆6 

and ∆5 desaturases.  Higher animals, including all vertebrates and fish, lack desaturases 

with the ability to introduce double bonds between the ∆9 position and the methyl end of 

the carbon chain, which can only be facilitated by ∆12 and ∆15 (or n-3) desaturases 

generally found only in plants and insects (Tocher, 2003). Thus, the n-3 and n-6 fatty acid 

HUFA precursors (18:3n-3 and 18:2n-6), synthesised by ∆12 and ∆15 desaturases, are 

termed essential fatty acids (EFA) since most animals are unable to manufacture these de 

novo and therefore are reliant on dietary sources.  Furthermore, both ∆5 and ∆6 desaturase 

exhibit affinity towards EFA (18:3n-3 > 18:2n-6) over MUFA (Sargent et al., 2002).  It is 

therefore apparent that EFA, especially n-3 fatty acids in the case of fish, are nutritionally 

of major importance and as such are discussed in section 1.2.  The desaturation/elongation 

pathway outlined in Figure 1.1 appears to be the same, at least qualitatively, for rainbow 

trout (Oncorhynchus mykiss) (Buzzi et al., 1996, 1997) as in rats (Voss et al., 1991). 
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Figure 1.1. The vertebrate ∆5/∆6 desaturation/elongation pathway 

 

1.1.4 Cellular Transport, Esterification and Oxidation 

Outer membrane transport and cytosolic solubilisation of fatty acids are facilitated 

by a family of proteins collectively termed fatty acid binding proteins (FABP).  

Specifically, FABPs are responsible for fatty acid desorption into the cytosol and cytosolic 

transport itself (Chmurzynska, 2006) and are present in both mammalian and non-

mammalian organisms including fish (Londraville, 1996).  Once transported into the 

cytosol, fatty acids are usually esterified into different lipid classes or oxidised as a source 

of energy.  It is common for fatty acids to be assimilated into triacylglycerol (TAG) and 

stored in lipid droplets, particularly in adipose tissue, when energy supply exceeds 

expenditure.  Fatty acids that enter the cell can also be incorporated into phospholipids 

(PL) that form the lipid bilayer of biological membranes.  A small quantity of fatty acids 

can be esterified to cholesterol to form cholesteryl ester, which is the storage form of 

cholesterol in cells (Buzzi, 1996).  Esterification into PL, TAG and cholesteryl esters 
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proceeds following fatty acid activation in order to produce fatty acyl-CoA.  The formation 

of fatty acyl-CoA is catalysed by acyl-CoA synthetase, which is active in different 

subcellular compartments depending on tissue type (Buzzi, 1996).  Acyltranferase enzymes 

subsequently facilitate the incorporation of fatty acyl-CoA into PL and TAG.  However, 

esterification is a selective process in fish, by which PUFA are preferentially incorporated 

into PL or TAG based on degree of unsaturation.  For example, 18:3n-3 and 18:2n-6 may 

be more esterified into TAG, whilst eicosapentaenioc acid (20:5n-3), docosahexaenoic acid 

(22:6n-3) and arachidonic acid (20:4n-6) are found to a higher concentration in PL 

(Henderson and Tocher, 1987).  Early studies utilising rainbow trout hepatocytes showed 

that exogenous C18 fatty acids are retained in TAG for subsequent utilisation as 

desaturation and elongation substrates, which are later incorporated into 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (Sellner and Hazel, 1982a; 

1982b).  The pathways of de novo glyceride synthesis are essentially the same in fish as in 

higher vertebrates (Sargent et al., 1989).   

In a process analogous to fatty acid esterification, fatty acids destined for 

mitochondrial oxidation must first be modified via the addition of a CoA moiety in order to 

aid translocation through the outer mitochondrial membranes.  The fatty acyl CoA binds to 

carnitine in a reaction facilitated by a specific acyltransferase named carnitine palmitoyl 

transferase-1 (CPT-1).  The subsequent acyl carnitine esters are therefore able to transverse 

the inner mitochondrial membrane.  CPT-1 activation is rate limiting and the enzyme is 

allosterically inhibited by malonyl-CoA, thus preventing simultaneous cellular synthesis 

and degradation of fatty acids.  Once fatty acyl carnitine enters the mitochondrial matrix it 

interacts with CoA in a reaction facilitated by carnitine palmitoyl transferase-2 (CPT-2) to 

yield carnitine and fatty acyl-CoA.  Long chain fatty acyl-CoA can then be utilised in 
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mitochondrial β-oxidation.  Unlike cytosolic fatty acid synthesis, the β-oxidation pathway 

is compartmentalised to specific organelles, namely mitochondria and peroxisomes.  

Mitochondrial β-oxidation involves cyclic dehydration, hydration, second dehydration and 

cleavage of long chain fatty acyl-CoA in order to produce acetyl-CoA along with FADH2 

and NADH, the latter of which is oxidised by the mitochondrial electron transport system 

to yield cellular energy in the form of ATP (Lehninger, 1975). Moreover, acetyl-CoA can 

then be metabolised via the tricaboxylic cycle to produce additional NADH.  Peroxisomal 

β-oxidation produces the same two carbon acetyl-CoA, however it produces hydrogen 

peroxide in place of FADH2 and has a different fatty acid specificity compared with 

mitochondrial β-oxidation since there is no membrane transport system required for very 

long chain fatty acids to enter peroxisomes, thus they are able to freely diffuse.  Many of 

the enzymes involved in both mitochondrial and peroxisomal β-oxidation are genetically 

different but share common functionality.  Piscine β-oxidation is prevalent in liver, heart, 

white and red muscle.  High levels of peroxisomal β-oxidation have been observed in red 

muscle and liver of Atlantic salmon (salmo salar) (Frøyland et al., 2000) and haddock 

respectively (Nanton et al., 2000).  

 

1.2 Nutritional Aspects of Essential Fatty Acids 

1.2.1 EFA in Human Nutrition 

Fundamentally, essential fatty acids (EFA) are fatty acids that an organism must 

obtain through dietary means as the enzymatic processes required for de novo synthesis are 

not present.  Humans like all vertebrates and most animals, display an absolute dietary 

requirement for 18:2n-6 and α-linolenic acid (18:3n-3).  However, as a consequence of 
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modern civilisation, the human diet has significantly changed principally in the amount and 

type of fat consumed.  It is now apparent that saturated fat and n-6 PUFA constitute the 

majority of fat consumed in ‘western’ countries with an n-6/n-3 PUFA ratio estimated to be 

10:1 to 25:1, averaging around 15:1 whilst the purported optimum value should be closer to 

5:1 (Simopoulos, 1999b).  This is noteworthy considering n-3 and n-6 PUFA are not 

metabolically interconvertable and have different physiological functions or efficacies.  

Indeed, the observed changes in dietary fat intake have been linked with the occurrence of 

many pathologies and health disorders common in the modern industrialised world, which 

now extends to Asia (Janus et al., 1996; Okuyama et al., 1997; Bulliyya, 2000).  

Nonetheless, n-6 PUFA are still of physiological importance in humans.  For instance, 

18:2n-6 deficiency is known to interfere with growth, reproduction and skin function in 

mammals (Burr, 1942; Holman, 1968; Hansen and Jensen, 1985).  18:3n-3 is also 

responsible for maintaining normal growth and skin function (Burr, 1942; Fu and Sinclair, 

2000).  HUFA such as 20:4n-6, 20:5n-3 and 22:6n-3 derived from 18:2n-6 and 18:3n-3 are 

also physiologically important.  22:6n-3 is found largely in brain, retina and other neural 

tissues (Uauy et al., 1999) and is a requirement for normal cognitive and visual 

development particularly in foetal and newly born infants (Hornstra et al., 1995; Laurtizen 

et al., 2001).  There is also evidence to suggest that adult brain disorders such as 

schizophrenia, Alzheimer’s disease and clinical depression are associated with relatively 

low levels of n-3 HUFA, particularly 22:6n-3, in brain and adipose tissue (Mamalakis at 

al., 2002; Conquer and Holub, 1997)  

Eicosanoids are essentially a family of active fatty acid metabolites that include 

prostaglandins, leukotrienes and thromboxanes, which can collectively mediate many 

humoral and cellular immune functions and are derived primarily from the C20 HUFA, 
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20:3n-6, 20:4n-6 and 20:5n-3 (Fischer, 1989).  Moreover, increased consumption of n-3 

HUFA results in the prevention or attenuation of many inflammatory conditions that are 

prevalent in the developed world, including rheumatoid arthritis, atopic illness, psoriasis, 

multiple sclerosis, bronchial asthma and  type I diabetes among others (Leaf and Weber, 

1988; Harris, 1989; Kinsella et al., 1990; Calder, 1997; de Deckere et al., 1998; 

Simopoulos, 1990a; Connor, 2000).  There is also evidence to suggest that consumption of 

fish containing high levels of 20:5n-3 and 22:6n-3 helps prevent coronary heart disease 

(Dyerberg et al., 1975,1978; Stansby, 1990; Kelly, 1991), and dietary HUFA have been 

speculated to lower the risk of atherosclerotic plaque formation, colon and breast cancer 

(Bougnoux et al., 1994; Caygill et al., 1995).  Fish are the most abundant natural source of 

n-3 HUFA in the human food basket.  Therefore, increasing the amount of oily fish in the 

human diet will help rebalance the n-6/n-3 ratio and reduce many of the abovementioned 

diseases associated with n-3 HUFA deficiencies (British Nutrition Foundation, 1999).  

1.2.2 EFA in Fish Nutrition 

Fish, like other vertebrates, must obtain dietary sources of non-synthesisable fatty 

acids in order to sustain optimum health.  A lack of dietary EFA is known to interfere with 

growth, and reproduction, and in severe cases results in death through various pathologies 

(Castell et al., 1972; Watanabe, 1982; Sargent et al., 2002).  Moreover, lipids and their 

constituent fatty acids are also very important as a source of energy in fish, especially 

carnivorous species, which do not rely heavily on carbohydrate due to its low abundance in 

natural diets.  As aforementioned, vertebrates including fish lack an inherent ability to 

synthesise 18:3n-3 and 18:2n-6 and must therefore rely on dietary sources.  It is interesting 

to note that both 18:3n-3 and 18:2n-6 play no direct functional role in fish and rather serve 
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only as precursors of the functionally bioactive HUFA; 20:4n-6, 20:5n-3 and 22:6n-3 

(Tocher, 2003).  20:4n-6 is a component of PL contributing to the structural integrity of 

membranes and together with 20:5n-3, is the primary precursor of eicosanoids such as 

prostaglandins and leukotrienes (Cook and McMaster, 2002).  The most abundant n-3 fatty 

acids in fish are 20:5n-3 and 22:6n-3, which contribute the same basic structural functions 

in cell membrane phospholipids in fish as 20:4n-6 in terrestrial mammals (Sargent et al., 

1995).  Visual and neural impairment have also purported to be caused by dietary n-3 

HUFA deficiencies in juvenile herring (Clupea harengus) (Bell et al., 1995).  Thus, it is 

probable that n-3 HUFA share similar physiological roles in fish and humans. 

The fundamental EFA requirements of fish vary depending on species and habitat.  

Generally, freshwater/herbivorous fish can survive by converting dietary C18 PUFA to 

HUFA whereas marine/carnivorous fish rely on preformed dietary HUFA.  Thus, HUFA 

can be regarded as EFA in certain instances, particularly when considering the dietary 

requirements of marine and carnivorous species.  The habitual inadequacy of marine fish to 

convert C18 PUFA to HUFA is believed to be caused by enzymatic insufficiency within the 

desaturation/elongation pathway, specifically impairment of ∆5 desaturase and/or C18-20 

elongase (Owen et al., 1975, Tocher et al., 1989).  Anadromous fish such as Atlantic 

salmon display the EFA requirements of freshwater fish prior to parr-smolt transformation 

and, during adaptation prior to migration to seawater, develop fatty acid profiles similar to 

marine species.  Studies have suggested that the changes observed in the fatty acid profiles 

of anadromous fish are not solely dictated by dietary changes as a result of environment but 

instead may be due to an innate ability to alter desaturase activity (Bell et al., 1989).  It is 

clear that an important aspect of fish nutrition is the provision of sufficient amounts of the 



Chapter 1  

 12

correct EFA to satisfy growth and development by taking into account particular species 

specificities.   

1.3 Issues in Aquaculture 

1.3.1 High energy Diets 

With the continuing decline of wild fish stocks the consumer market has become 

increasingly reliant on the aquaculture industry to provide farmed fish that mirror the 

nutritional qualities of wild fish. High lipid levels, traditionally provided by fish oil (FO), 

are utilised in commercial aquaculture diets in order to offset relatively expensive protein 

as a source of energy.  In this way, protein can be ‘spared’ for synthesis of new tissue 

(Wilson, 1989; Bell, 1998) and the high lipid content can also fulfil both fish and consumer 

EFA requirements.  Paradoxically, the aquaculture industry relies on wild fisheries to 

provide FO and fish meal (FM) required to satisfy the dietary EFA requirements of 

cultured fish.  It is noteworthy that the recent average yield of FO from industrial fisheries, 

circa 1.4 million tonnes in 2000 (Sargent and Tacon, 1999) is unlikely to be exceeded in 

the future and climatic phenomena such as El Niño can significantly reduce this tonnage.  

Furthermore, 57% of the total world supply of FO in 2000 was used in aquaculture, with 

farmed salmon and trout consuming over 60% of that total (Sargent and Tacon, 1999).  

Global aquaculture has grown at 11.6% per annum compound growth since 1984 (Tacon, 

1996) and this rate shows no sign of abating greatly.  Thus, it is estimated that around 98% 

of the total world supply of FO will be required for aquafeeds by 2010 (Barlow, 2000). 

Compounding this issue is the growing consumer perception that pollutants such as 

dioxins, polychlorinated biphenyls (PCBs) and flame retardants in FOs have now reached 

unacceptable levels in farmed fish. In addition, high energy diets can promote excessive fat 
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deposition, particularly in the liver and flesh, which can compromise the overall market 

quality of the fish through various mechanisms including reduced pigment visualisation 

and smoking performance in the case of salmon (Sheehan et al., 1996; Johansen and 

Jobling, 1998).  Although early nutritional studies elucidated that dietary HUFA derived 

from FO is a requisite for optimum fish health (March, 1992), it has now been concluded 

that generally, levels of 20:5n-3 and 22:6n-3 in current aquafeeds are well in excess of the 

minimum n-3 EFA requirements (Sargent et al., 2002).  Despite this, technical advances in 

extruded feed production have enabled pelleted diets to continue an upward trend in dietary 

lipid quantity, particularly in the case of Atlantic salmon where diets containing up to 40% 

lipid have been used (Tocher, 2003).  Thus, research into feed formulation is necessary to 

address many of the aforementioned issues.   

1.3.2 FO Replacement 

It is apparent that alternatives to FO must be sought in order to increase current 

global production levels of farmed fish.  Although more judicious use of fish trimmings, 

offal and discards could increase FO output, it is a temporary solution given that the wild 

fish catch will ultimately decline.  It has been suggested that marine crustaceans such as 

krill and copepods could be harvested for FO however concerns have been raised over the 

potential impact on ecosystems reliant on such organisms.  Probably the most viable 

sustainable alternative involves the partial or complete replacement of FO with 

vegetable/plant derived, vegetable oils (VO). However, plant derived oils are rich in C18 

PUFA such as 18:2n-6 and 18:3n-3 but are devoid of n-3 HUFA abundant in FO.  

Nevertheless, it has been elucidated that some species of fish including Atlantic salmon 

display limited ability to convert 18:2n-6 to 20:4n-6, and 18:3n-3 to 20:5n-3 and 22:6n-3.  
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Therefore, current research has focussed on partial inclusion of VO in aquafeeds in order to 

test the hypothesis that some fish, such as Atlantic salmon, may be able to endogenously 

convert 18:3n-3 to n-3 HUFA.  To date, there is an extensive body of literature 

encompassing the biochemical and physiological effects of VO replacement on cultured 

fish; a review of which is beyond the scope of this discussion.  However, a number of 

studies have elucidated that substitution of FO by VOs is feasible (Torstensen et al., 2000; 

Bell et al., 2001, 2002; Rosenlund et al., 2001; Tocher et al., 2002).  Obviously, it is 

imperative that any replacement should not compromise fish health, welfare or growth 

performance, which in turn may affect health benefits, taste and other quality 

characteristics important to consumers.  Some of the key findings have shown that in 

salmon and trout, replacement of FO with VO up to 100% did not influence growth and 

feed conversion and that flesh lipid content was unaffected by dietary lipid source (Bell et 

al., 2004).  Thus, a diet rich in VO can provide the same energy for growth as one 

composed purely of FO.  Furthermore, it has been reported that a high level of dietary VO 

shows little to no effect on the organoleptic properties of salmon and trout, and organic 

pollutants such as PCBs and dioxins are also significantly reduced (Berntssen et al., 2005).  

However, a number of studies have also elucidated that flesh 22:6n-3 and 20:5n-3 

concentrations are significantly reduced in salmonids fed high levels of VO indicating that 

desaturation/elongation of 18:3n-3 is not sufficient in providing the same quantity of n-3 

HUFA found in FO (Bell et al., 2005).  Therefore, the obvious implications are that 

consumers cannot obtain the same quantity of n-3 HUFA from fish fed VO as opposed to 

FO but this has, to some extent been resolved by the introduction of FO ‘finishing’ diets.  

Although flesh lipid content is unaffected by VO, salmon fed linseed oil exhibit a higher 

incidence of ‘fatty liver’, which in severe cases has been known to  result in increased risk 
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of mortality (Bell et al., 2004).  Investigations into the immunological consequences of VO 

replacement concluded that 20:4n-6 derived prostaglandin production is reduced whilst 

incidences of cataract in salmon were significantly increased, raising potential fish welfare 

issues (Waagbo et al., 2004)  Linseed oil supplementation also altered a number of basic 

immune parameters including haematocrit, leukocyte numbers and macrophage respiratory 

burst (Good, 2004).   It is possible that some of these concerns can be resolved through VO 

and VO/FO blending however, the research described in this thesis investigating the 

physiological and biochemical effects of prospective dietary ‘bioactive’ fatty acids, is 

highly pertinent to this area as it was hypothesised that they may minimise detrimental 

effects of feeding cultured fish a diet high in lipid or VO.   

1.4 Conjugated Linoleic Acid (CLA) 

1.4.1 Introduction 

One prospective ‘functional’ fatty acid that has garnered a lot of interest within 

nutritional research is conjugated linoleic acid (CLA).  CLA was probably first identified in 

1935 after ultraviolet analysis established the presence of conjugated fatty acids in cow 

milk fat (Booth et al., 1935).  However, the nutritional potential of CLA was not realised 

until 1978 when Michael Pariza and colleagues identified a ‘beef-derived mutagenesis 

factor’ when studying the effects of temperature and time on mutagen formation in grilled 

ground beef (Pariza, et al., 1979).  Subsequent studies indicated that the mutagen displayed 

anti-carcinogenetic properties and was in fact a conjugated derivative of linoleic acid 

(Pariza and Hargaves, 1985; Ha et al., 1987).  Since that time, a vast amount of work 

concerning the structural and functional aspects of CLA has been conducted. It is now 

accepted that conjugated linoleic acids represent a mixture of positional and geometric 
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isomers of octadecadienoic acid with ‘non-methylene-interrupted’ double bonds.  The 

range of potential health benefits associated with CLA in experimental models now include 

anti-obesity, anti-atherogenic and immunomodulatory effects however only two isomers 

(cis-9, trans-11 and trans-10, cis-12) are thought to exhibit biological activity (Pariza et al., 

2001).  Both isomers are illustrated in Figure 1.2 below.  

  

Figure 1.2 The two principal biological isomers of conjugated linoleic acid (CLA) in 
comparison with linoleic acid 

 

 
A. Linoleic Acid. B. c9t11 CLA. C. t10c12 CLA. 

CLA are produced naturally mainly by bacterial biohydrogenation of linoleic acid 

(18:2n-6) in the ruminant gut by a variety of species including Butryrivibrio fibrosolvens 

(Kepler, 1966 in Riserus 2003; Griinari et al., 2000; Ogawa et al., 2006).  As a 

consequence, food products derived from ruminants are the major source of CLA in the 

human diet; with the cis-9, trans-11 (c9t11) and trans-10, cis-12 (t10c12) isomers 
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comprising 80 – 90 % and 3 – 5 % of the total, respectively (Khanal and Dhiman, 2004).  

However, recent studies have ascertained that c9t11 CLA can also be endogenously 

synthesised via ∆9 desaturation of trans-vaccenic acid in the mammary glands of cows, and 

monogastrics such as mice and humans  (Adolf et al., 2000; Santora et al., 2000; Turpeinen 

et al., 2002; Mosley, et al., 2006a, b).  In addition, 1:1 mixtures of the two bioactive CLA 

isomers are being produced commercially via alkaline isomerisation or partial 

hydrogenation of either linoleic acid itself or, more usually, sunflower or safflower oils that 

are rich in linoleic acid (Banni, 2002), and currently CLA is being marketed as a dietary 

supplement in amounts up to 1000 mg/capsule.  This is around five times the average 

purported natural human daily intake of CLA of 200 mg per day for men and 150 mg per 

day for women (Ritzenthaler et al., 2001).  It is likely that the current natural daily intake 

of CLA will not increase and perhaps may even decrease given that the amount of red meat 

and dairy produce consumed is declining as a consequence of the consumer understanding 

that excessive saturated fatty acids are promoters of chronic disease.   

The goal of increasing the quality of animal-derived food has, and continues to be, 

of major importance in the agricultural sector.  As a result, additional focus has been given 

to designing and enhancing foods with components that have beneficial effects on human 

health.  Thus, the majority of current CLA research is focused on the adjustment of animal 

diets in order to raise the CLA levels found in milk, meat and other agricultural foodstuffs.  

By introducing CLA into aquafeeds it is hoped that the reported physiological changes, 

particularly the anti-adipogenic and immunomodulatory effects (see following sections) 

established in other animals, could also be mirrored in fish.  
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1.4.2  CLA and Body Composition in Experimental Animals 

Most studies to date have explored the influence of mixed isomer preparations of 

dietary CLA (referred to as CLA for the remainder of this chapter).  Reductions in body 

weight and/or fat deposition in animals supplemented with CLA have been the most 

commonly reported effect thus far.  A decrease in body fat mass, an increase in lean body 

mass and growth rate, and improvements in feed efficiency were initially described in 

Fischer rats and ICR (Institute of Cancer Research) mice supplemented with 0.5 – 1 % 

CLA (Chin et al., 1994; Park et al., 1997).  In fact, recent studies have shown that dietary 

CLA concentrations as little as 0.4 % of total diet have decreased fat mass and increased 

lean mass in BALB/C male mice fed over a 14 week period (Bhattacharya et al., 2006). A 

reduction in fat deposition in brown and/or white adipose tissue has been particularly 

evident in C57BL/6J mice fed ≥ 1 % CLA (West et al., 1998; Tsuboyama-Kasaoka et al., 

2000; Whigham et al., 2000; Takahashi et al., 2002).  Similarly, 1 % CLA significantly 

reduced the weight of epididymal and perirenal adipose tissues in ICR mice (Akahoshi et 

al., 2002).  Studies investigating the interaction between dietary CLA and fat level found 

that concentrations of 0.5 – 1 % reduced fat deposition equivalently in AKR/J mice fed 

either a high-fat (45 % of calories) or a low-low fat (15 % of calories) diet (Delany et al., 

1999).  Thus, it seems likely that the attenuation of body fat evidenced through CLA 

supplementation is independent of dietary fat intake, at least in mice.  It is evident that the 

type of dietary lipid used does influence the anti-adipogenic capability of CLA however.  It 

has recently been shown that CLA, when fed in combination with coconut or soybean oil, 

can decrease body mass and epididymal fat mass in mice.  Mice fed CLA in combination 

with FO showed no effect on adiposity however (Hargrave et al., 2005). 
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The observed changes in body composition caused by dietary CLA are most 

obvious in mice, however doses as low as 0.25 % of total diet have also been shown to 

reduce retroperitoneal and parametrial fat pad weights without effecting growth rate or 

food intake in Sprague-Dawley rats (Azain et al., 2000).  Similar studies have also 

elucidated that 1.5 % dietary CLA can decrease white adipose tissue weight and fat pad 

mass in male Sprague-Dawley and ZDF rats, respectively (Ryder et al., 2001; Yamasaki et 

al., 2003).  Conversely, recent studies have shown that 2 % dietary CLA has no effect on 

body composition in adult male Wister rats (Mirand et al., 2004), and long term feeding of 

1 % CLA to Fischer rats for 18 months has shown no effect on body composition (Park et 

al., 2005).  Studies evaluating the impact of dietary fat on the anti-adiposity effects of CLA 

have shown that 1.5 % of a mixed isomer preparation had no effect in Sprague-Dawley rats 

given alongside diets rich in either coconut oil (EFA deficient) or corn oil (Kloss et al., 

2005).  It has been suggested that the effects of CLA on body composition may be limited 

to growing, lean animals. Feeding lean and obese rats diets containing 0.5 % CLA for 5 

weeks induced a reduction in fat mass of growing rats, but not in rats established with 

obesity (Sisk et al., 2001).  Taken together, it seems likely that the effects of CLA on fat 

deposition are based on dose, age, length of treatment, dietary lipid content and/or 

genotype variability in rats.   

Improved growth rates and feed efficiencies together with reductions in carcass fat 

have been observed in the majority of studies analysing the influence of mixed isomer 

preparations of CLA in pigs (Dugan et al., 2004).  Preliminary studies suggest that low 

concentrations of dietary CLA have no effect on adiposity in cats or dogs however (Jewell 

et al., 2006; Leray et al., 2006).  Advances in the manufacture of individual CLA isomers 

have made possible the independent analysis of t10c12 and c9t11 CLA.  A number of 
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studies have now indicated that t10c12 CLA is responsible for the attenuation of fat 

deposition in vitro and in vivo (Park et al.,1999; Gavino et al., 2000; Choi et al., 2001 

Ryder et al., 2001; Navarro et al., 2003; Wargent et al., 2005; Simon et al., 2006).   

1.4.3 CLA and Body Composition in Humans 

There are relatively few papers reporting the effects of CLA or its individual 

isomers in humans and current information available suggests the results are inconclusive.  

A 12 week study in which normal-weight exercising subjects were administered 1.8 g/d of 

a CLA mixture showed a 4 % decrease in body fat with no affect on body weight compared 

to that of the control group fed a hydrogel placebo (Thom et al., 2001). An earlier study 

carried out by the same laboratory administered 1.7, 3.4, 5.1, and 6.8 g/day CLA to 

exercising obese humans concluding that a dose of 3.4 g/day was enough to significantly 

decrease body fat without affecting body weight (Blankson et al., 2000).  Interestingly, 

exercising overweight subjects initially fed a fat-reducing diet and subsequently 1.8 to 3.6 

g/day CLA, increased their resting metabolic rate and lean mass without affecting body 

weight regain (Kamphuis et al., 2003).  The abovementioned studies seem to indicate that 

CLA has the ability to decrease fat and improve lean mass in humans who lead a physically 

active lifestyle in particular. Another study revealed that 4.2 g CLA/day for 4 weeks was 

enough to reduce sagittal abdominal diameter without effecting body weight in middle-

aged obese men with signs of metabolic syndrome (Riserus et al., 2001).  Thus, it may be 

concluded that dietary CLA can decrease fat mass without affecting cardiovascular health.  

Additionally, healthy individuals fed 0.7 g/day for 4 weeks and thereafter 1.4 g/day CLA 

for 4 weeks decreased in fat mass relative to control subjects (Kreider et al., 2002). 
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In contrast, a 64 day investigation into the effects of 3 g/d dietary CLA in sedentary 

and exercising healthy women found that lean body mass, body weight, energy 

expenditure, fat oxidation, rate of lypolysis and FA esterification were not altered (Zambell 

et al., 2000).  A similar trial involving 2.1 g/day CLA administered to sedentary women 

had no effect on body composition (Petridou et al., 2003). Two studies have evaluated the 

impact of CLA administered in the form of dairy products.  The first study analysed the 

effects of purified isomers at 1.5 and 3 g/day for 18 weeks supplemented as a drinkable 

dairy product and found that there were no differences in body composition in middle-aged 

overweight subjects (Malpuech-Brugere et al., 2004).  Similarly, abdominal and 

subcutaneous adipose tissue did not change in overweight and obese men fed butter fat 

comprising 4.2 % CLA (Desroches et al., 2005).   

The long-term effects of CLA on body composition have been addressed in two 

trials. In the first study, subjects of average body mass index were administered either CLA 

as a free fatty acid (CLA-FFA) or CLA in the form of TAG (CLA-TAG) for 12 months. 

Both forms of CLA decreased body fat mass significantly and a higher lean body mass was 

evidenced in subjects fed CLA-FFA (Gaullier et al., 2004).  A follow-up study purported 

that subjects administered 3.4 g/day CLA-TAG for 12 months could maintain a decrease in 

fat mass over a period of 24 months (Gaullier et al., 2005).  At present, the presumption 

that CLA can elicit an effect on body composition in humans is questionable considering 

the inconsistencies between studies.  The dramatic effects seen in animal studies, especially 

in mice, have not been reflected in human studies.  This may be attributed to lower CLA 

dosage in humans in comparison with experimental animal studies.  In humans, Isomer-

specific effects of t10c12 CLA have not been investigated, which is believed to be the 

causative agent of reduction in body composition in animal studies.  Age seems to be a 
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critical factor in determining CLA-specific effects.  Experiments using rodents have been 

conducted with growing animals and there is little evidence of CLA effectiveness in adult 

animals. Conversely, human studies have been performed solely with adults. However, 

preliminary evidence suggests that long-term supplementation of CLA can induce a fat-

lowering effect in humans.  Moreover, it would seem that dietary CLA administered in 

conjunction with regular exercise helps promote fat loss and improve lean body mass in 

humans. 

1.4.4 CLA and Immunomodulation  

The immune response in fish, like all other vertebrates, consists of two closely 

related defence mechanisms – the innate and adaptive immune system.  The adaptive  

immune system allows for specific cellular responses (such as antibody production) that are 

tailored to specific pathogens or pathogen-infected cells; a review of which is beyond the 

scope of this project.  The innate immune response is the first line of defence against 

pathogens and consists of a multitude of cells, proteins and peptides in tissue and body 

fluids (Robertson, 1999).  Skin, gills, mucus, macrophages, eicosanoids, cytokines, 

phagocytes and neutrophils all contribute to the innate immune system in fish.   

Macrophage activation, increased eicosanoid and cytokine production, increased 

phagocytosis, greater lymphocyte numbers and enhanced lysozyme activity are indicators 

of an elevated innate immune response (Sakai, 1999; Grannam and Schrock, 2001).  This 

non-specific defence system is routinely reported to be modulated by dietary 

supplementation with immuno-stimulants.  There is increasing evidence to suggest that 

CLA confers an immumo-modulatory effect in animals when fed as a dietary supplement 

(O’Shea et al., 2003).  For instance, CLA has been shown to inhibit cytokine (specifically 
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TNF-α) production in rat macrophages (Yang and Cook, 2003), ICR mice (Akahoshi et al., 

2002), and Sprague-Dawley rats (Yamasaki et al., 2003), and reduce prostaglandin 

synthesis in a variety of studies (Liu et al., 1998; Kavanaugh et al., 1999; Shen et al., 2004; 

Lai et al., 2005), suggesting this bioactive fatty acid may act as an anti-inflammatory agent. 

However, the majority of current evidence suggests that the inflammatory response is 

unaffected by dietary CLA in adult humans (Albers et al., 2003; Nugent et al., 2005; 

Gaullier et al., 2007; Mullen et al., 2007).  Recently, in vitro studies have revealed that 

t10c12 CLA increased phagocytosis in porcine blood cells (Kang et al., 2007). Moreover, 

dietary CLA increased serum lysozyme activity and enhanced phagocytic ability in broiler 

chicks (Zhang et al., 2005).  It is therefore plausible that dietary CLA may modulate the 

immune system, in part by enhancing the non-specific immune response in selective 

species.  Thus, dietary manipulation through provision of CLA may prove to be one of the 

optimal ways of improving fish health.   

 

1.4.5 Dietary CLA in Fish 

Another aspect of CLA research concerns the beneficial effects dietary CLA may 

elicit on cultured animals, including fish.  For example, it is hoped that some of the 

immuno-modulatory effects of CLA may have application in aquaculture as an alternative 

to feed antibiotics, by enabling increased stocking density or as a means of improving the 

response to vaccination and conferring disease resistance.  Of equal importance is the 

impact dietary CLA may have on feed efficiency, body composition and growth, which 

have all been improved in previous mammalian studies.   
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There are very few papers reporting the effects of CLA in fish.  On commencement 

of the project, only four papers had been published in the peer-reviewed literature.  The 

papers focussed in particular on the influence of dietary CLA on growth and biometry and 

in some instances the hepatic and muscle fatty acid compositions of freshwater species.  

Species studied included hybrid striped bass (Morone cyhrysops x M. saxatilus), yellow 

perch (Perca flavescens), channel catfish (Ictalurus punctatus), Nile tilapia (Oreochromis 

niloticus), rockfish (Sebastes schlegeli) and common carp (Cyprinus carpio) (Choi et al., 

1999; Twibell et al., 2000, 2001; Twibell and Wilson, 2003).  All these studies used dietary 

fat levels (< 10 % of total diet), which were arguably too low to adequately test the 

proposed protein sparing effect of dietary CLA.  Indeed, dietary CLA did not influence 

growth in yellow perch or channel catfish.  However, tilapia and rockfish fed CLA at 2.5 – 

10 % of total diet and carp fed 10 % CLA exhibited significantly lower weight gain and 

feed efficiencies compared with fish fed no CLA, suggesting a growth-inhibiting and 

possibly toxicological response when CLA was fed at extremely high levels.  In contrast, 

dietary CLA concentrations of up to 1 % of total diet significantly increased weight gain in 

carp (Choi et al., 1999) and improved feed efficiency in hybrid striped bass (Twibell et al., 

2000). Additionally, total liver lipid concentration decreased significantly in hybrid striped 

bass and yellow perch whilst HSI increased in bass fed 1 % CLA.  Hepatic and muscle 

fatty acid compositions have been assessed in yellow perch and hybrid striped bass fed 

CLA.  Of note is that flesh concentrations of 20:5n-3 and 22:6n-3 were significantly 

decreased in hybrid striped bass supplemented with 1 % CLA, but this was not reported in 

any other trial.  In addition, all the aforementioned trials were carried out using juvenile 

fish and so the effect of CLA on adult fish that were actively depositing lipid in the tissues 

had not been investigated.  Arguably the main and most consistent finding is that CLA 
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deposition occurs in fish muscle and liver and the amount of CLA retained in these tissues 

after supplementation can be higher than deposited in meat or milk fat derived from natural 

ruminant sources.  Thus, consumption of CLA-supplemented fish may be an effective 

means of increasing human intake of these fatty acids (Wahle et al., 2004).  In summary, it 

has been shown that the effects of CLA in fish are species-specific and dose-dependant.  It 

is also clear from other animal studies that experimental differences in CLA isomer 

content, dietary lipid source and/or amount, and age of fish may be of importance when 

detailing the physiological influence of dietary CLA. 

1.4.6 Prospective Biochemical Mechanisms of Action 

CLA have been reported to increase both the activity and gene expression of 

enzymes implicated in fatty acid catabolism in a number of animal studies.  Arguably the 

best gauge of mitochondrial fatty acid oxidation capacity is the measurement of carnitine 

palmitoyl transferase-1 (CPT-1) activity.  A number of studies are in agreement that t10c12 

CLA is implicated in enhancing mitochondrial fatty acid oxidation through increasing 

CPT-1 activity (Martin et al., 2000; Degrace et al., 2004; Marcarulla et al., 2005; Zabala et 

al., 2006) and gene expression  (Wang et al., 2005; LaRosa et al., 2006) particularly in 

liver and skeletal muscle.  Furthermore, elevated peroxisomal β-oxidation capacity has 

been reported to be caused by increased enzyme activity and/or transcript levels of hepatic 

acyl coenzyme-A oxidase (ACO) in animals fed CLA (Moya-Camarena et al., 1999; 

Yamasaki et al., 2001; Choi et al., 2004; Degrace et al., 2004). 

Transcriptional regulation of a number of enzymes involved in hepatic β-oxidation 

(including CPT-1 and ACO) is mediated, in part by peroxisome proliferator-activated 

receptor alpha (PPARα).  PPARα is known to instigate rapid increases in the size and 
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number of hepatic peroxisomes since it increases the activity of enzymes required for β-

oxidation (Ruyter et al., 1997).  CLA may arbitrate its effects via this transcription factor; 

indeed both c9t11 and t10c12 isomers are ligands for all three isoforms of PPAR (α,β,γ) 

(Moya-Camarena et al., 1999; Clement et al., 2002;).   

Other direct effects of CLA on lipid metabolism extend to encompass an increase in 

lipolysis and apoptosis, principally in adipocytes (Park et al., 1997; Tsuboyama-Kasaoka et 

al., 2000; Miner et al., 2001; Evans et al., 2002).  Studies exploring the effects of 

individual CLA isomers on primary cultures of stromal vascular cells from human adipose 

tissue identified t10c12 as the only lypolytic agent (Brown et al., 2001) and the resultant 

reduction in TAG content is associated with the differential localisation and expression of 

lipid droplet-associated proteins (Chung et al., 2005).  However, recent studies have argued 

that the fat lowering effects of t10c12 CLA is not due to increased apoptosis (Xu et al., 

2003) but rather reduced preadipocyte differentiation into mature adipocytes (Brodie et al., 

1999; Satory and Smith., 1999; Evans et al., 2000; Simon et al., 2005). Indeed, t10c12 

CLA did not appear to cause apoptosis in human adipocytes (Brown et al., 2003a, 2004).  

Modulation of preadipocyte differentiation and adipogenesis has been suggested to 

be mediated in part by PPARγ.  Activation of PPARγ is known to increase adipogenesis 

(Desvergne et al., 2006).  Both in vitro studies in human and 3T3-L1 adipocytes (Evans et 

al., 2000; Kang et al., 2003; Brown et al., 2003a, 2004; Granlund et al., 2003, 2005) and in 

vivo work in mice (Tsuboyama-Kasaoka et al., 2000; Takahasi et al., 2002; Kang et al., 

2004) hamsters (Zabala et al., 2006) and pigs (Brandebourg and Hu, 2005) have identified 

that upon CLA supplementation, with the t10c12 isomer in particular, there is a decrease of 

PPARγ expression.  Consistent with this, down-regulation of PPARγ downstream targets 
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aP2, perilipin-A and acyl-CoA-binding protein (ACBP) have been observed in rodents fed 

CLA (Houseknecht et al., 1998; Belury, 2002).  

Inhibition of lipogenesis is well documented in studies detailing the mechanisms 

behind the anti-obesity effects of CLA.  Indeed, reductions in TAG content after CLA 

supplementation have been verified in vitro and in vivo (Azain et al., 2000; Evans et al., 

2000; Tsuboyama-Kasaoka et al., 2000; Poulos et al., 2001; Rahman et al., 2002).  This 

has been purported to be caused by reductions in expression of adipocyte ACC 

(Tsuboyama-Kasaoka et al., 2000; Brown et al., 2003a; Peterson et al., 2003; Lin et al., 

2004; Zabala et al., 2006) and FAS (Tsuboyama-Kasaoka et al., 2000; Kang et al., 2003; 

Peterson et al., 2003; Lin et al., 2004; Zabala et al., 2006).  Moreover, evidence suggests 

that the glucose transporter GLUT 4 gene expression is down-regulated in human 

preadipocytes, white and brown adipose tissue during CLA supplementation (Takahishi et 

al., 2002; Brown et al., 2003a), and in 3T3-L1 adipocytes treated with 25 µm t10c12 CLA 

(Granlund et al., 2005).  Indeed, significantly higher levels of glucose and fatty acid have 

been found in serum, plasma, liver and surrounding tissues after CLA supplementation 

(Baumgard et al., 2002; Brown et al., 2003a).  The inhibitory effect of CLA on lipogenesis 

is also correlated with inhibition of uptake and transport of fatty acids as evidenced by 

decreased lipoprotein lipase (LPL) and FABP levels (Bretillion et al., 1999; Park et al., 

1999) and is probably due to the t10c12 isomer in particular (Peterson et al., 2003).  The 

fact that LPL and FABP are regulated via PPARγ only serves to strengthen the notion that 

CLA mediates its anti-lipogenic effects through this transcription factor in mammals (Khan 

and Vanden-Heuvel, 2003).  In vivo evidence of a TAG-lowering effect after CLA 

supplementation has also arisen from decreased gene expression levels of enzymes directly 

responsible for TAG synthesis (Baumgard et al., 2002).  Thus, the reduction in uptake of 
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glucose and fatty acids together with the inhibition of de novo fatty acid and TAG synthesis 

is likely to account for the reduction in the TAG content of adipocytes in this instance. 

Lipid-droplet size has also been shown to decrease in 3T3-L1 adipocyte cells 

treated with t10c12 CLA and has been attributed to reduced amounts of palmitoleic and 

oleic acid (Choi et al., 2000).  In vivo experiments with rats (Sebedio et al., 2001), mice 

(Lee et al., 1998) and pigs (Gatlin et al., 2002), and in vitro studies with HepG2 cells (Eder 

et al., 2002) and human preadipocytes (Brown et al., 2003a) have confirmed an increase in 

the ratio of saturated fatty acids to monounsaturated fatty acids in particular. Decreases in 

adipocyte size have also been noted in mice (Tsuboyama et al., 2000) and rats (Azain et al., 

2000; Ohnuki et al., 2001; Poulos et al., 2001).  In support of these findings, a number of 

studies have determined that SCD gene expression and/or activity is significantly decreased 

in mice, pigs and poultry fed CLA, particularly the t10c12 isomer (Lee et al., 1998; Choi et 

al., 2001; Park et al., 2001; Smith et al., 2002; Shang et al., 2005).  Thus, there is evidence 

to suggest that decreased lipogenesis and therefore cellular TAG content is as a result of 

decreased lipogenic enzyme activity/expression in studies involving t10c12 CLA. 

However, it is also likely that increased fatty acid oxidation could contribute to the TAG 

lowering effect in adipocytes.  

1.5 Tetradecylthioacetic Acid (TTA) 

Tetradecylthioacetic acid (TTA) belongs to a family of 3-thia fatty acids that 

contain a sulphur atom at the third position from the carboxyl terminus. Hence, TTA 

cannot be catabolised via the β-oxidation pathway and instead is processed via ω-oxidation 

(Skrede et al., 1997).  The chemical structure of TTA is illustrated in Figure 1.3 below. 
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Figure 1.3 The chemical structure of tetradecylthiocacetic acid (TTA). 

 

 

 

Although structurally very different from CLA, dietary TTA is responsible for a 

number of similar physiological and biochemical responses.  For instance, TTA fed in 

combination with a high fat diet is known to decrease epididymal adipose tissue mass in 

Wister rats (Madsen et al., 2002).  Furthermore, TTA has been shown to stimulate both 

hepatic peroxisomal and mitochondrial β-oxidation of fatty acids (Berge and Hvattum, 

1994) and increase the activity and up-regulate the gene expression of a number enzymes 

associated with both metabolic pathways.  For example, short term dosing of TTA in vitro 

resulted in up-regulation and increased enzyme activity of ACO in addition to an increase 

in activity of both CPT-I and CPT-II (Vaagenes et al., 1998).  Similar studies have also 

noted an increase in both gene expression and enzyme activity of CPT-II and ACO in 

isolated hepatocytes of rats fed 150 mg/kg body weight TTA for 10 days (Willumsen et al., 

1997).  Conversely, CPT-II, but not CPT-1, transcript level and associated activity 

increased in hepatocyte mitochondria after chronic treatment of rats with dietary TTA 

(Madsen and Berge, 1999; Madsen et al., 1999).  Both hepatic TAG synthesis rate and 

level are suppressed in rats supplemented with TTA (Berge et al., 2005) and preliminary 

evidence suggests that TTA can also modulate the immune response by acting as an anti-

inflammatory agent in peripheral blood mononuclear cells (Aukrust et al., 2003) and 

patients infected with HIV (Fredriksen et al., 2004)   

Although dietary CLA and TTA share a similar influence on lipid metabolism and 

both induce an anti-inflammatory response, TTA also elicits a number of effects which 
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have not been documented in trials involving CLA.  For example, TTA lowers serum lipid 

levels (Asiedu et al., 1996; Frøyland et al., 1997), increases the flux of plasma free fatty 

acids to the liver ready for catabolism, (Berge et al., 2005) and increases proliferation of 

both peroxisomes and mitochondria (Berge et al., 1989; Bremer, 2001) which are all likely 

to contribute to the overall anti-adipogenic and hypolipidemic effects associated with this 

bioactive fatty acid (Berge et al., 2005).   

The hypolipidemic and anti-inflammatory effect has been speculated to be caused 

by the ability of TTA to activate PPARα (Berge et al., 2001; Dyroy et al., 2005).  Indeed, 

like CLA, TTA is a potent ligand for all three PPAR isoforms (α,β,γ) (Gotticher et al., 

1993; Forman et al., 1996; Berge et al., 1999) in both human and murine cell lines (Berge 

et al., 2001; Westergaard et al., 2001).  Interestingly, mitochondria from TTA-treated rats 

were found to have a lower electrochemical potential and an increased UCP-2 expression 

(Grav et al., 2003) indicative of an enhancement in energy expenditure.  

1.6 General Objectives 

To summarise, there is a considerable body of evidence to suggest TTA and, 

particularly, CLA bestow a wide variety of biological effects in mammals.  These effects 

extend to encompass beneficial alterations in body composition via reduction in body fat 

mass, enhanced growth rate and immune function and anticarcinogenetic properties.  

Nevertheless. it has been evidenced in this chapter that the effects of CLA are variable in 

animals and not fully investigated in fish.   

Prior to this project no published data was available determining the influence of 

dietary CLA in salmonid or marine species. In addition, all of the previous studies on 

freshwater species utilised juvenile fish fed low lipid diets and focussed primarily on 
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potential alterations in growth and fatty acid compositional changes as a consequence of 

CLA supplementation. The potential influence of CLA on lipid metabolism and the 

mechanisms underpinning these effects had only previously been explored in mammals.  

Moreover, no effects of dietary TTA in cultured fish had been recorded prior to 

commencement of this study.   

It is clear that the physiological effects of dietary CLA and TTA described in other 

studies could have the potential for application in aquaculture, particularly in relation to 

issues pertaining to high fat or FO-substituted diets, fish welfare and human health 

benefits. The general hypothesis tested by this project was that CLA and TTA could elicit 

physiological and biochemical effects in fish leading, but not limited, to augmentation of 

growth, reduction in fat deposition and enhancement of fatty acid composition via 

incorporation of these bioactive fatty acids, and increased n-3 HUFA levels in the flesh of 

fish.  Additionally, it was also important to consider the impact of feeding CLA and TTA 

on fish health and welfare considering the reported immunomodulatory effects in other 

animal models.  

In detail, the specific aims of the present project were:- 

 

1. To determine the effects of dietary CLA on growth, biometry, lipid and fatty acid 

metabolism, and selected innate immune function parameters of Atlantic salmon, 

rainbow trout and Atlantic cod. 

2. To investigate the influence of dietary CLA in Atlantic salmon in response to 

dietary lipid level. 



Chapter 1  

 32

3. To determine the effects of dietary CLA and TTA on the gene expression of 

proteins and enzymes involved in lipid homeostasis and fatty acid oxidation in 

salmonids. 

4. To develop suitable analytical methods that would allow an accurate 

representation of the effects of dietary CLA and TTA on gene expression and 

fatty acid composition in fish. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1  Materials 

 [1-14C] Palmitoyl CoA (50-55 mCi/mmol) and [methyl-3H] L-carnitine (60-86 

Ci/mmol) were obtained from Amersham Biosciences (Little Chalfont, Bucks, U.K.). [1-

14C]18:3n-3 (50-55 mCi/mmol), was obtained from NEN Brand Radiochemicals (Perkin 

Elmer Life and Analytical Sciences (U.K.) Ltd., Beaconsfield, Buckinghamshire, U.K.). 

Adenosine triphosphate (ATP), aminotriazole, butylated hydroxytoluene (BHT), carnitine, 

coenzyme A, dichlorofluorescein diacetate, dimethylformamide, dithiothreitol, EDTA, 

fatty acid free–bovine serum albumin (FAF-BSA), glutathione, horseradish peroxidase, 

leuco-2, 7-dichlorofluorescein (DCF), magnesium chloride, N-acetylcysteine, NADP, 

nicotinamide, palmitoyl–CoA, potassium chloride, potassium fluoride, silver nitrate, 

sodium dodecyl sulphate (SDS), TriReagent and Triton X-100 were obtained from Sigma 

Chemical Co. (Poole, U.K.). TLC (20 cm × 20 cm × 0.25 mm) and HPTLC (10 cm × 10 

cm × 0.15 mm) plates, precoated with silica gel 60 (without fluorescent indicator) were 

obtained from Merck (Darmstadt, Germany). All solvents were HPLC grade and were 

obtained from Fisher Scientific UK, Loughborough, England.  All compressed gases were 

obtained from the British Oxygen Company (BOC, Glasgow, UK). 

2.2 Experimental Fish and Diet Formulations  

The fish that were used in this project are described in the relevant experimental 

chapters.  The experimental diets were formulated to satisfy the nutritional requirements 

for the species used in each experiment (U.S. National Research Council, 1993), and were 
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formulated and manufactured by Biomar A/S, Brande, Denmark.  The specific dietary 

formulations for each dietary trial are described respectively in the appropriate chapters. 

2.2.1 Determination of Growth Parameters 

Growth parameters were measured using the following formulae. 

Feed Conversion Ratio: 

 
(g)gain  wet weight

(g) intake feed FCR =  

Specific Growth Rate: 

days ofnumber 
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×=  

where Wo and W1 represent initial and final body weight, respectively. 

Thermal Growth Coefficient: 
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3
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Hepato-somatic index:  

 HSI = 100 x liver weight x body weight-1 

Viscero-somatic index:  

 VSI = 100 x viscera weight x body weight-1 
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2.3 Lipid Metabolism 

2.3.1 Preparation of Tissue Homogenates and Liver Microsomes 

Portions of tissues (liver, white and red muscle) were weighed and homogenised to 

10 % (w/v) in sucrose buffer, which was 0.25 M sucrose in 40 mM phosphate or HEPES 

buffers pH 7.4 containing 1 mM EDTA, 0.15 M KCl, 40 mM KF and 1 mM N-acetyl 

cysteine. The homogenates were centrifuged at 1880 x g for 10 min at 4˚C, the floating fat 

layer aspirated and the post-nuclear fractions collected, and 100 µl taken for protein 

determination according to Lowry et al. (1951) after incubation with 400 µl of 0.25% (w/v) 

SDS/1M NaOH for 45 min at 60 oC as described in section 2.3.6. The homogenates were 

used directly for assay of fatty acid oxidation, and associated enzyme assays.  To prepare 

microsomes for HUFA synthesis assays, the liver homogenate was centrifuged at 25,000 g 

for 15 min at 4 oC, the floating fat layer removed by aspiration and the remaining 

supernatant centrifuged at 105,000 g for 60 min at 4 oC.  The floating fat layer was 

aspirated and the supernatant decanted.  The pelleted microsomal fraction was resuspended 

in 1 ml of sucrose buffer and 50 µl taken for protein determination as described above.   

 

2.3.2  Determination of HUFA Synthesis  

The assay mixture, in sucrose buffer pH 7.4, contained 5 mM MgCl2, 1.5 mM 

glutathione, 0.5 mM nicotinamide, 1 mM NADH, 100 µM coenzyme A, and 5 mM ATP in 

a total volume of 0.75 ml. Fifty µl of [1-14C]18:3n-3 (0.25 µCi, 5 µM final concentration), 

as a FAF-BSA complex (Ghioni et al., 1997), was added and the reaction initiated by the 

addition of 200 µl of microsomes.  Incubation continued for 1 h at 20 oC and the reaction 

was stopped by the addition of 5 ml of chloroform/methanol (2:1, v/v) containing 0.01% 
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BHT, and total lipid extracted, transmethylated and FAME prepared according to section 

2.3.9. The extracted methyl esters were redissolved in 100 µl isohexane containing 0.01 % 

BHT and applied as 2.5 cm streaks to TLC plates impregnated by spraying with 2 g silver 

nitrate in 20 ml acetonitrile and pre-activated at 110 oC for 30 min.  Plates were fully 

developed in toluene/acetonitrile (95:5, v/v) (Wilson and Sargent, 1992).  Autoradiography 

was performed with Kodak MR2 film for 6 days at room temperature.  Areas of silica 

containing individual PUFA were scraped into scintillation mini-vials containing 2.5 ml of 

scintillation fluid (Ecoscint A, National Diagnostics, Atlanta, Georgia) and radioactivity 

determined in a TRI-CARB 2000CA scintillation counter (United Technologies Packard, 

U.K.).  Results were corrected for counting efficiency and quenching of 14C under exactly 

these conditions.  

2.3.3 Assay of Fatty Acyl Oxidation Activity in Selected Tissues. 

Fatty acyl β-oxidation in selected tissue homogenates was estimated by 

determination of acid-soluble radioactivity as described previously (Frøyland et al., 1996).  

Briefly, 30 µl of liver or red muscle or 300 µl of white muscle homogenate in sucrose 

buffer (prepared as described in section 2.3.1) was added to 250 µl of an assay master mix 

containing 16.5 mM MgCl2, 82.5 mM KCl, 13.2 mM DTT, 6.6 mM ADP, 0.2 mM NAD+, 

0.7 mM EDTA and 1.2 mM carnitine.  The tubes were left at room temperature to 

equilabrate for 2 min. 10 µl of [1-14C]palmitoyl-CoA substrate (0.1 µCi/100 µM) was 

subsequently added and the tubes left to incubate at room temperature for precisely 10 min.  

The reaction was stopped by the addition of 150 µl of 1.5 M KOH and 25 µl FAF-BSA 

(100 mg/ml) added as carrier and to bind any unreacted labelled fatty acyl substrate.  After 

briefly vortexing, 500 µl of ice-cold 4 M HClO4 (perchloric acid) was added to precipitate 
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protein.  The tubes were then centrifuged at 1880 g for 10 min and 500 µl of the resultant 

supernatant was measured for radioactivity as described in section 2.3.2   

2.3.4 Assay of Carnitine Palmitoyl Transferase-I Activity 

CPT-1 activity in tissue homogenates was determined according to the method 

described by Saggerson and Carpenter (1986).  Briefly, 90 µl of an assay master mix 

comprising 100 mM Tris buffer pH 7.4, 5 mg/ml BSA, 1 mM DTT, 4 mM MgCl2, 15 mM 

KCl, 1 mM KCN, 2 mM carnitine and 1 µl 3H-carnitine was added to 10 µl of tissue 

homogenate (prepared previously as described in section 2.3.1).  Five µl of a 100 µM 

palmitoyl-CoA substrate (in sucrose buffer) was then added to initiate the reactions.  After 

15 min at room temperature, the reactions were terminated by the addition of 60 µl of 1 M 

HCl followed by the addition of 500 µl of water-saturated butanol.  The samples were 

vortexed for 30 s and centrifuged for 5 min at 5000 g  in a microfuge to accelerate phase 

separation after which 300 µl of the upper butanol layer was recovered.  The recovered 

phase was back extracted by vigorous mixing with 1 ml of water for 30 s before 

centrifugation was repeated.  One hundred µl of the resultant upper butanol phase was 

transferred to a scintillation mini-vial and radioactivity determined as described in section 

2.3.2.  

2.3.5 Assay of Acyl CoA Oxidase Activity 

The spectrophotometric determination of ACO utilised the method devised by 

Small et al. (1985).  The assay is based on determination of H2O2 production, which is 

coupled to the oxidation of leuco-2, 7-DCF (leuco-DCF) in a reaction catalysed by 

exogenous peroxidase.  Precisely, 1 ml of peroxidase buffer comprising 0.08 mg/ml 
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horseradish peroxidase in 20 mM phosphate buffer pH 7.4, containing 40 mM 

aminotriazole and 0.02% (v/v) Triton X-100, was added to 30 µl of DCF reagent (1.6 mM 

2’,7’ dichlorofluorescein diacetate in NN-dimethylformamide/0.01 M NaOH, 1 : 9 by 

volume), and the appropriate volume of tissue homogenate (50 µl for red muscle and liver, 

500 µl for white muscle), with the final assay volume adjusted to 1.5 ml with 20 mM 

phosphate buffer pH 7.4.  This mixture was preincubated at room temperature in the dark 

for 5 min before being measured spectrophotometrically (RSA Cecil 2021 

spectrophotometer) at an absorbance of 502 nm for 2 min to determine autoxidation rate.  

The reaction was then initiated with the addition of 30 µM palmitoyl-CoA and the 

enzymatic reaction rate was determined.  Rates were then corrected for the substrate blank.  

2.3.6 Protein Determination 

Protein concentration in tissue homogenates or liver microsomes was determined 

according to the method of Lowry et al. (1951) after digestion.  In summary, 400- 450 µl of 

1 M NaOH/0.25 % (w/v) SDS were added to appropriate volumes of tissue homogenates or 

microsome preparations (see section 2.3.1).  Samples were incubated at 60 oC for 45 min in 

a water bath in order for solubilisation of cellular components to occur.  A standard curve 

of 0 – 100 µg protein in increments of 20 µg was prepared by addition of bovine serum 

albumin (1 mg/ml) to individual plastic test tubes and volumes adjusted to 100 µl with 

distilled water.  One percent (w/v) CuSO4 and 2% (w/v) sodium potassium tartrate was 

added to 2% (w/v) Na2CO3 (at a ratio of 1:1:100 respectively), and 2.5 ml of this solution 

was added to standards and samples.  After 15 min incubation at room temperature, 250 µl 

of Folin-Ciocaulteau phenol reagent, diluted 1:1 with water, was added to the standards and 

samples.  After vigorous mixing, the absorbance at a wavelength of 660 nm was read on a 
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spectrometer (RSA Cecil 2021) 30 min later.  Protein concentration (in mg/ml) was 

calculated from the resultant standard curve. 

2.3.7 Total Lipid Extraction and Quantification 

Total lipids of liver, flesh and diet were extracted by homogenisation in 

chloroform/methanol (2:1, v/v) containing 0.01 % (w/v) BHT as an antioxidant, according 

to the method of Folch et al. (1957).  Principally, 1 g of tissue or diet was homogenised 

using an UltraturraxTM tissue disrupter in quickfit boiling tubes (50 ml) with 16 ml of ice-

cold 2:1 chloroform/methanol and left for 1 h on ice.  After incubation, non-lipid impurities 

were removed by the addition of 4 ml aqueous 0.88 % (w/v) KCl and thorough mixing. 

After a further 5 min the tubes were centrifuged (Jouan C312, France) at 400 gave (1500 

rpm) for 2 - 3 min and the resultant upper aqueous phase containing non-lipid impurities 

was drawn off by aspiration and discarded.  The lower organic layer was transferred into a 

clean, pre-weighed 10 ml test tube, through a pre-washed (with chloroform/methanol, 2:1) 

9 cm filter paper (Whatman No.1).  Solvent was evaporated under a stream of oxygen-free 

nitrogen (OFN) on an N-Evap evaporator (Organomation Associates, Inc. USA). The 

weight of lipid was determined gravimetrically after overnight desiccation in vacuo prior to 

reconstitution in chloroform/methanol (2:1) at a concentration of 10 mg/ml and stored 

under nitrogen at -20 oC for future analyses. 

2.3.8 Determination of Lipid Class Composition 

Separation of lipid classes was performed by single-dimension double-development 

high performance thin-layer chromatography (HPTLC).  A 10 x 10 cm HPTLC plate was 

washed and ‘activated’ by fully developing in chloroform/methanol (2:1, v/v) and then 
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drying in an oven at 110 oC for 15 min.  Approximately 20 µg (2 µl of a 10 mg/ml lipid 

solution) of each total lipid sample was applied in 2 mm streaks 1 cm up from the bottom 

of the plate.  Plates were developed up to 5 cm in methyl acetate/isopropanol/ 

chloroform/methanol/0.25% KCl (25:25:25:10:9, by vol).  The plate was then briefly 

desiccated in vacuo prior to being fully developed in isohexane/diethyl ether/acetic acid 

(85:15:1, by vol).  The lipid classes were visualised by charring at 160 oC for 15 min after 

spraying with 3 % (w/v) cupric acetate in 8 % phosphoric acid and quantified by 

densitometry using a Camag 3 TLC Scanner (Camag, Muttenz, Switzerland) and winCATS 

software (Henderson and Tocher, 1987).  The identities of individual lipid classes were 

confirmed by comparison with reference to Rf values of authentic standards run alongside 

samples on HPTLC plates developed in the above solvent solutions.  

2.3.9 Analysis of Fatty Acid Composition 

Total lipids were subjected to acid-catalysed transesterification based on a standard 

method described by Christie (2003).  However, this basic method was modified as 

necessary to take account of problems associated with the quantitative preparation of fatty 

acid methyl esters (FAME) from CLA and TTA.  Thus, FAME were produced under 

conditions specific to each dietary trial, which are specified in the relevant sections of the 

experimental chapters.  Irrespective of the detailed transmethylation procedure, after 

methylation, FAME were extracted using 5ml isohexane/diethyl ether (1:1, v/v) with BHT 

(0.01%) (w/v) and centrifugation at 350-400gave (1500rpm) for 2 min.  The upper organic 

layer was transferred to a clean test tube.  Five ml of isohexane/diethyl ether (1:1, v/v), 

without BHT, was added to the original tube before mixing and centrifuging for a second 

time.  Again the upper organic layer was transferred to the tube containing the organic 
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portion of the previous extraction and the aqueous layer discarded.  Solvent was then 

evaporated under a stream of OFN on an N-Evap and the resultant FAME resuspended in 

100 µl of isohexane.  Methyl esters were purified prior to gas chromatography.  Briefly, 

FAME solutions were applied to 20 x 20 cm TLC plates using microsyringes (Hamilton) 

onto previously marked 1 cm origins and the plates developed using isohexane/diethyl 

ether/acetic acid (90:10:1 v/v) as the developing solvent as described previously (Tocher 

and Harvie, 1988).  After separation, the plate was partially sprayed with 1 % (w/v) iodine 

in chloroform to visualise the FAMEs. The bands were scraped from the TLC plate into 

test tubes using a straight edged scalpel.  FAME were eluted from the silca with 10 ml 

isohexane/diethyl ether (1:1, v/v) containing 0.01 % BHT, then vortexed and centrifuged at 

350-400gave (1500rpm) for 2 min in order to precipitate the silica.  The solvent was 

carefully decanted into a 15 ml glass quickfit tube and evaporated under OFN. The 

recovered FAME were dissolved in an appropriate volume of isohexane containing 0.01 % 

(w/v) BHT to make a 1-2 mg/ml solution of methyl esters. FAME were quantified by gas-

liquid chromatography using a Fisons GC8600 gas chromatograph (Fisons Ltd., Crawley, 

U.K.) equipped with on-column injection and a 60 m x 0.32 mm i.d. wall-coated capillary 

column (CP wax 52CB; Chrompak Ltd., London, U.K). Hydrogen was used as a carrier gas 

and temperature programming was from 50 oC to 150 oC at 40 oC/min and then to 225 oC at 

2 oC/min.  Individual methyl esters were identified by comparison with known standards 

and by reference to published data (Ackman, 1980). Data were collected and processed 

using Chromcard for Windows, Version 1.19 computer package (Thermoquest Italia 

S.p.A., Italy) 
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2.3.10 Whole Body Proximate Composition 

Fish were weighed to determine wet weight of whole fish.  Fish were cut into pieces 

and placed in a pre-weighed dish. Moisture content of whole fish was determined after 

drying in an oven at 80 oC for a minimum of 72 h.  The dishes were allowed to cool in a 

desiccator, reweighed and the dry sample weight determined and hence the percentage 

moisture rate determined by the formula:- 

 
% Moisture = Wet Sample weight (g) – Dried Sample Weight (g) x 100 
    Wet Sample Weight (g) 

 

The dried fish samples were then blended into a homogeneous crumble/meal and 

used for determination of percent protein, lipid and ash content. 

Lipid content of dried fish crumb was determined using the Soxhlet method of 

extraction (Avanti Soxtec 2050 Auto Extraction apparatus; Foss, Warrington, UK).  

Briefly, 1 g of fish crumb was accurately weighed (W1) and placed in an extraction thimble 

along with some glass beads, and the thimble then sealed with cotton wool.  The Soxtec 

extraction unit was switched on and the oil bath heated to 115 oC, the cold water supply to 

the condensers opened and the sample thimbles fixed into the unit.  Approximately 50 ml 

of petroleum ether (Sigma-Aldrich, Surrey, UK) was added to the extraction collection 

cups, which were subsequently attached to the Soxtec apparatus.  The samples were boiled 

for 20 min, then rinsed for 2 h before the solvent was evaporated for 15 min.  The cups 

were removed, dried at 100 oC for 1 h, and cooled in a desiccator before being reweighed 

(W2).  The percentage lipid was thus calculated using the formula:- 
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 % Lipid =  W2 (g) x 100 
  W1 (g) 

 

Protein content was determined in the fish crumble using the automated Kjeldahl 

method (Tecator Kjeltec Auto 1030 Analyser, Foss, Warrington, UK).  Two hundred mg of 

fish crumble was accurately weighed into a digestion tube and 2 mercury kjeltabs with 5 ml 

concentrated sulphuric acid added.  The samples were subsequently digested at 400 oC for 

1 h and then allowed to cool for 20 mins.  Then 20 ml of de-ionised water and 5 ml of 

sodium thiosulphate solution were added to the tubes prior to distillation and titration.  

Fifty mg of urea was used as a positive standard and background titre effects were taken 

into consideration by measuring tubes containing no sample.  Percent protein/nitrogen was 

calculated as follows:- 

 
*%  Nitrogen in the standards = (standard titre – blank titre) x 280.14 
     Standard weight (mg) 
 
**%  Protein in the samples = (sample titre – blank titre) x 1750.875 
     Sample weight (mg) 
 

* Derived from 14.007 (N2) x 0.2 (acid molarity) x 100 (%) 

** Derived from 14.007 x 0.2 x 100 x 6.25 (protein factor) 

 

Percent ash content of samples was determined by placing 1 g of dried crumb into a 

porcelain crucible, which was subsequently heated to 600 oC overnight in a muffle furnace. 

The samples were allowed to cool and then reweighed. Percentage ash composition was 

determined using the formula:- 
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% Ash =  Ash weight (g) x 100  
   Sample weight (g) 

2.4  Basic Haematology and Non-Specific Immune Response Analyses 

2.4.1 Extraction and Preparation of Blood  

Fish were bled by caudal venepuncture using 1 ml syringes pre-coated with lithium 

heparin (2500 U/ml in Leibovitz L-15 medium) with varying needle gauge sizes depending 

on size of fish (Terumo Europe N.V. Belgium).  As much blood as possible was removed 

from the fish before samples were placed into microcentrifuge tubes (ThermoLife Sciences, 

Basingstoke, Hampshire, UK) after collection.  Whole blood samples were stored at 4 oC.  

Plasma was extracted by centrifuging whole blood samples at 7000 rpm for 10 min at 4 oC 

(IEC micromax centrifuge, International Equipment Co. MA, USA).  The plasma 

supernatant was extracted and frozen at -20 oC for further analyses. 

2.4.2 Blood Cell Counts 

From whole blood samples, 10 µl was removed and mixed with 990 µl of 0.2 M 

phosphate buffered saline (PBS,  0.2 M NaH2PO4.2H2O, 0.2 M NaHPO4.1H2O, pH 5.8) 

and a drop of the 1:100 dilution placed on a Neubauer haemocytometer (Hawksley and 

Son, England).  Round and refractile cells were counted as white blood cells (WBC) under 

a phase contrast microscope at 100 x magnification.  The counts were expressed as WBC 

per ml of blood. 
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For red blood cell measurement, 100 µl of the 1:100 dilution prepared previously 

was added to 900 µl of PBS (1:1000 dilution)  Red blood cells (RBC) were then counted as 

described above and quantified per ml of blood. 

2.4.3 Total Packed Cell Volume 

A heparinised 25 µl capillary tube was inserted into the blood sample and the tube 

allowed to fill via capillary action until almost full.  One end of the tube was sealed with 

Critaseal (BDH) and then centrifuged at 800 g using a Hawksley Micro-haematocrit 

centrifuge (Hawksley and Son, England, UK).  The haematocrit was calculated by 

expressing the red blood cell layer as a percentage of the total sample volume. 

2.4.4 Lyzozyme Activity 

Lysozyme activity was measured turbidimetrically using a modified 96 multiwell 

plate method (Peddie et al., 2002).  Lyophilised Micrococcus lysodiekticus was added to 

0.04 M sodium phosphate buffer, pH 5.8 (0.2 M NaH2PO4.2H2O, 0.2 M Na2HPO4.H2O) to 

a concentration of 0.2 mg of bacteria/ml and incubated at 25 oC for 20 min.  To four 

replicate wells of a non-coated 96 multiwell plate (NUNC, BDH), 10 µl of plasma were 

added, with exception to the last column which contained only buffer as a negative control.  

To the plasma samples, 190 µl of bacterial suspension was quickly added to all except 

control well.  After 1 min the sample absorbance was read at 540 nm and again at 5 min, 

using a Dynex MRX II plate reader (Dynex Technologies, USA).  Lysozyme activity was 

expressed as the amount of sample causing a decrease in absorbance of 0.001 min-1 (U 

min/ml). 



Chapter 2  

 46

2.4.5 Phagocytosis by Head Kidney Macrophages 

A field technique developed by Crumlish et al. (2000) was utilised in order to 

isolate head kidney macrophages from fish due to the large number of samples required.  

Using aseptic technique, the kidney was dissected and placed on to sterile 100 µm nylon 

mesh.  The kidney sample was then teased through the mesh using the flat end of a sterile 

syringe into 5 ml of Leibovitz-15 medium (L-15, Sigma, Dorset, UK) containing 10 U/ml 

of heparin.  The resulting kidney suspension was then transferred to a sterile bijoux ready 

for analysis. 

Microscope slides were prepared by dipping in ethanol and then 2 wells drawn on 

the slide using a PAP pen (AGAR Scientific).  One hundred µl of kidney suspension was 

then placed onto each well and incubated for 1 h at room temperature to allow the 

macrophages to attach to the slide.  After this time, any non-adhered cells were washed off 

by rinsing with ice-cold L-15 medium.  Fifty µl of a 5 mg/ml yeast (Saccharomyces 

cerevisiae) suspension in L-15 medium were added to one of the wells containing the 

adhered macrophages and after 1-2 hours incubation at room temperature, subsequently 

washed off using L-15 media.  Slides were then fixed with 70 % ethanol and allowed to air 

dry before being stained using Rapi-diff staining kit (Sigma, Dorset, UK).  Slides were 

examined using oil immersion x1000 magnification and the number of yeast particles 

engulfed by 100 macrophages determined.  Phagocytic index (PI), which indicates the 

average number of particles engulfed per macrophage and also phagocytic ratio (PR), 

which is the ratio of phagocytic cells in the population (equation) were measured. 

 
PI =  Total number of ingested particles 
 Total number of macrophages counted 
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PR = No. of macrophages with 1 or more ingested particles x 100 
 Total number of macrophages counted 

2.4.6 Respiratory Burst of Head Kidney Macrophages 

Head kidney macrophages were isolated and prepared as described in section 2.4.5.  

A modified method adapted from Rook et al. (1985) was used to determine respiratory 

burst.  One hundred µl aliquots of head kidney suspension were placed into 8 replicate 

wells of a 96-well microtitre plate (NUNC) and left for 4 - 5 hours at 4 oC to allow the 

macrophages to adhere.  The non-adhered cells were then washed off by rinsing with L-15 

medium. The 96-well plate was divided into three separate sections. One hundred µl of 

1mg/ml nitrobluetetrazolium (NBT) in L-15 medium was added in triplicate to one section 

of the plate.  To separate wells on the same plate, 100 µl of L-15 medium containing 100 µl 

of 1 mg/ml NBT solution and 1 µl/ml of phorbol 12-myristste 13-acetate (PMA, phorbol 

ester) was added in triplicate.  One hundred µl of lysis buffer (0.1 M citric acid, 1 % (v/v) 

Tween 20, 0.05 % (w/v) crystal violet) was added to the remaining two columns of the 

plate.  The plate was then left for 1 h at room temperature after which all wells containing 

the NBT and NBT + PMA had the solution removed and 100 µl of methanol was added 

and incubated for 5 min at room temperature to stop the reaction.  The wells previously 

containing the NBT and NBT + PMA were rinsed three times with 70 % methanol and 

allowed to air dry.  One hundred and twenty µl of dimethylsulphoxide (DMSO) and 140 µl 

of 2 M potassium hydroxide were added to each of the washed wells to dissolve the blue 

formazan residue.  The absorbance of each well was then read at 610 nm (Dynex MRXII 

ELISA plate reader).  The number of attached cells was determined using a Neubeuar 

haemocytometer by counting released nuclei in wells containing lysis buffer.  The 
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absorbance and thus the respiratory burst activity in each well was adjusted to represent 

that from 1 x 104 cells. 

2.5  Gene Expression Analyses 

2.5.1 RNA Extraction 

Approximately 50-100 mg tissue was homogenised with 1 ml of TRIzol® in a 1.5 

ml microcentrufuge tube using an Ultramax TS S8N5G (IKA Labortechnik, Staufen, 

Germany).  The homogenised sample was then incubated at room temperature for 5 min 

before the addition of 200 µl of chloroform (Sigma-Aldrich, Dorset, UK).  The tube was 

then lightly mixed by inversion and then shaken vigorously for 15 s, incubated for a further 

3 min at room temperature and then centrifuged in a refrigerated centrifuge (4 oC) at 12,000 

g for 15 min (Sigma 4K15 centrifuge).  The aqueous phase was transferred to a clean 1.5 

ml microcentrifuge tube and 500 µl of isopropanol (Sigma-Aldrich, Dorset, UK) added in 

order to precipitate the RNA.  The mixture was subsequently incubated for 10 min at room 

temperature after which it was centrifuged at 12,000 g for 10 min at 4 oC.  The resultant 

supernatant was discarded and the pellet washed with 1 ml of 75 % ethanol (v/v).  The 

ethanol was aspirated and the pellet was allowed to air dry until it began to turn transparent 

and thereafter 50-100 µl of ultrapure H2O was added (volume dependant on pellet size) in 

order to resuspend the RNA.  The integrity of the RNA was verified by running a 1.2 % 

agarose gel with 1 x TBE buffer including 10 ng ethidium bromide (see appendix 1) and 

the ratio of absorbances at 260/280 nm determined spectrophotometrically (NanoDrop ND-

1000, Spectrophotometer, Sussex, U.K.).  The RNA solution was then stored at -70 oC for 

further analyses. 
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2.5.2 First Strand cDNA Synthesis 

cDNA was prepared by adding 5 µg (in the case of salmon) or 2 µg (in the case of 

cod and trout) RNA (diluted with ultrapure H2O) to 1 µg Oligo (dT) primer (Promega, 

Madison, WI, USA) in a sterile RNase-free 0.2 ml PCR tube, making a total volume of 14 

µl.  The mixture was then heated to 70 oC for 5 min in a PTC-100 thermocycler PCR 

machine (MJ Research, MA, USA) and then cooled on ice for 5 min.  5 µl of M-MLV 

(molony-murine leukaemia virus) reverse transcriptase (RT) reaction buffer (250 mM Tris-

HCl, pH 8.3, containing 375 mM KCl, 15 mM MgCl2 and 50 mM DTT), (Promega, 

Madison, WI, USA) was added to the mixture together with 1.25 µl of 10 mM dNTP 

(Promega, Madison, WI, USA), 1 µl of 200 U/µl M-MLV RT (H-) and brought to 11 µl 

with ultrapure H2O.  The tube was then mixed gently and incubated at 40 oC for 10 min, 

then 48 oC for 50 min and finally the RT enzyme was inactivated by heating for 15 min at 

70 oC according to the manufacturer’s protocol.  The resultant cDNA was diluted 1 in 5 

with ultrapure H2O and stored at -20 oC for future analyses.  

2.5.3 Preparation of Amplicons 

Sequences of interest (target and reference genes) were selected from the NCBI 

database and appropriate primers were designed for each gene using Primer 3 HTML 

applet.  PCR was performed on cDNA from liver in order to isolate the genes of interest.  

Briefly, the PCR consisted of 10 µl of 2x PCR master mix (50 U/ml Taq Polymerase, 400 

µM dATP, 400 µM dGTP, 400 µM dCTP, 400 µM dTTP, 3 mM MgCl2 (pH 8.5)) and 1 

µl/primer and 3 µl H2O.  The generic PCR reaction procedure consisted of 45 cycles of 15 

s at 95 oC, 15 s at 50 - 60 oC (depending upon gene) and 30 s at 72 oC.  An optimal 

annealing temperature was selected for all genes after temperature gradient analysis. 
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 One µl of the PCR product was visualised on a 1.2 % agarose gel containg 1x TBE 

buffer and 10 ng of ethidium bromide using a UV transilluminator (UVP, San Gabriel, CA, 

USA) in order to verify amplification. The remainder of the PCR product was subsequently 

purified using a GFXTM PCR DNA Purification Kit (Amersham Pharmacia Biotech, 

Buckinghamshire, UK), according to the manufacturers protocol (see appendix 2).   

2.5.4 Production of Recombinant DNA 

A pBluescript II KS (+/-) vector was first linearised at the polycloning site by 

digesting 4.4 µl of 1.1 µg/µl vector with 2 µl EcoR V (20 U/µl) enzyme (NewEngland 

Biolabs., MA, USA), 5 µl of 10X NEB Buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 mM 

MgCl2, 1 mM DTT, pH 7.9) (NewEngland Biolabs, MA, USA), 5 µl of 10X BSA 

(NewEngland Biolabs., MA, USA) and the final volume brought to 50 µl with ultrapure 

H2O in a sterile 0.2 ml PCR tube.  The mixture was incubated at 37 oC for 1 h and then 

purified using a GFXTM column (Amersham Pharmacia Biotech, Uppsala, Sweden) (see 

appendix 2). 

TA overhangs were added by incubating 1.25 µl of digested vector with 0.05 µl 

Thermoprime plus polymerase (Abgene, Surrey, UK), 1 µl of the corresponding buffer 

(750 mM Tris-HCl, pH 8.8, containing 200 mM (NH4)2SO4 and 0.1% v/v Tween 20), 0.6 

µl 25 mM of MgCl2, 0.5µl of dTTP’s (5mM) and made up to a total volume of 10 µl with 

ultrapure H2O in a 0.2 ml sterile PCR tube.  The mixture was incubated for 30 - 40 min at 

72 oC and then put on ice to await ligation with PCR product. 

One µl of the previously isolated PCR product (section 2.5.3) was added to a 

ligation mixture consisting of 1.25 µl TA-vector, 1 µl of T4 ligase (Promega, Madison, WI, 

USA), 1µl of 10X ligation buffer (10 mM HCl (pH 7.0), 50 mM KCl, 1 mM DTT, 0.1 mM 



Chapter 2  

 51

EDTA and 50 % glycerol) and the final volume brought to 10 µl with ultrapure H2O.  The 

ligation mixture was gently mixed and left at 14 oC overnight in order for the reaction to 

take place.  Ligation of the PCR product to the TA-vector was verified against known 

standards using gel electrophoresis. 

For each transformation, 2 µl of the ligation reaction was added to 50 µl of 

competent TOP10F’ E.coli freshly thawed on ice.  The tubes were mixed gently and then 

incubated on ice for 30 min before being heat shocked at 42 oC for precisely 40 s. The 

tubes were then incubated on ice for a further 2 min after which 250 µl of LB broth 

(appendix I) was added and the tubes shaken horizontally at 37 oC for 1 h at 225 rpm in a 

rotary shaking incubator (Gallenkamp, Loughbourgh, UK).  125 µl of the resultant cell 

suspension was spread onto a Petri dish containing LB agar/X-gal/IPTG/ampicillin 

(appendix I) The plates were inverted and placed in a 37 oC incubator for 48 h 

(Gallenkamp, Loughborough, UK).   

Recombinant (white) colonies were picked from plates and grown overnight in 3 ml 

LB broth containing 50 mg/ml ampicillin  (appendix) at 37 oC in a shaking incubator 

(Gallenkamp, Loughbourgh, UK) before being harvested and the plasmids extracted from 

the cells using the GFXTM miscroplasmid preparation kit (appendix).  The integrity of 

recombinant DNA was determined by adding 1 µl of a 1 in 50 dilution of plasmid to a 0.2 

ml microcentrifuge tube along with PCR reagents and appropriate primers at reaction 

conditions identical to that detailed in section 1.6.3.  The subsequent PCR product was then 

visualised and verified using gel electrophoresis.  The plasmid was linearised using an 

appropriate endonuclease determined using Restriction Mapper software.  One µl of 

endonuclase (type dependent on gene) was added to 31 µl of uncut plasmid DNA together 

with 4 µl of BSA and 4 µl of endonuclease-specific buffer and incubated at 37 oC for 2 h.  
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The digestion was deactivated by heating to 65 oC for 15 min. The cut plasmid was 

visualised once again using gel electrophoresis to verify linearity and to ensure that the 

plasmid had only been cut once.  The recombinant plasmid was then diluted to 1 x 109 

copies/µl and subsequently serially diluted to produce a standard curve of known copy 

number. 

2.5.5 Quantitative Real-Time Polymerase Chain Reaction Analysis 

Measurement of gene expression was carried out using quantitative real-time 

polymerase chain reaction (qPCR) on a Rotor-GeneTM 3000 (Corbett Research, Sydney, 

Australia).  Fifteen µl of a master mix containing 10 µl 10X SYBR-green (Qiagen, 

Crawley, UK), 3 µl of molecular grade water, 1µl (10 pmol) of each primer (forward and 

reverse) was added to a 0.2 ml Rotor-GeneTM tube together with 5 µl of an appropriately 

diluted cDNA sample.   Amplification of cDNA samples was carried out using the 

QuantiTect® SYBR Green PCR Kit (Qiagen, Crawley, UK) with the following conditions: 

15 min at 95 oC to activate the HotStarTaq DNA polymerase, followed by 45 cycles of 15 s 

at 95 oC, 15 s at 56 oC and 30 s at 72 oC, followed by product melting to check purity of 

PCR product. Thermal cycling and fluorescence detection were conducted using the Rotor-

Gene 3000 system (Corbett Research, Cambridge, UK).  Expression of genes was 

normalised and expressed relative to total RNA or selected flat-liner (housekeeping genes) 

as described in detail in the appropriate chapters.  
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CHAPTER 3. INFLUENCE OF DIETARY OIL CONTENT 
AND CLA ON GROWTH AND LIPID DEPOSITION IN 

ATLANTIC SALMON 

3.1 Introduction 

Atlantic salmon is an anadromous fish mainly found in the temperate and Arctic 

regions of the northern hemisphere.  The culture of Atlantic salmon has been practised in 

northern Europe, the North America and Chile since the latter half of the 20th century 

(FAO, 2004) and is presently the most intensively farmed fish in the western world, with 

production in 2004 reaching more than 1.2 million tonnes, estimated to be worth around 4 

billion US$ (FAO, 2007).  This boom in production has helped maintain market supply of 

Atlantic salmon in a climate where wild stocks have been steadily decreasing and, in some 

instances, decimated by over fishing, climatic changes and pollution.  Aside from the many 

environmental concerns voiced by opponents of the aquaculture industry, many believe that 

cultured Atlantic salmon does not provide the same nutritional quality as wild salmon.  

This is partly due to current dietary formulations, which have tended to see an upward 

trend in dietary lipid as the principal source of energy, to enhance protein sparing, improve 

feed conversion and minimise fish waste (Tocher, 2003).  The corollary of maintaining fish 

on high oil level diets is that despite beneficial increases in growth, potentially detrimental 

effects including deposition of excess lipid in tissues, specifically flesh in the case of 

salmon, can reduce nutritional quality (Sargent et al., 2002; Tocher, 2003).  As well as 

dietary lipid levels, lipid deposition can be related to a number of factors including size, 

season and disease (Sargent et al., 2002).  Consequently, it is important to gain a clearer 
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understanding of the physiological mechanisms that control energy metabolism, and 

determine lipid and fatty acid homeostasis in fish.   

As described previously, CLA is a bioactive fatty acid that has been shown to 

bestow several beneficial effects on lipid metabolism in mammals (DeLany and West, 

2000), particularly in relation to body composition (Wang and Jones, 2004).  Specifically, 

CLA decreased body fat and increased lean body mass in mice (Ohnuki et al., 2001; 

Terpstra et al., 2002), rats (Yamasaki et al., 2003) and pigs (Thiel-Cooper et al., 2001; 

Tischendorf et al., 2002).  Decreased body fat has also been observed in human studies 

(Riserus et al., 2001; Smedman and Vessby, 2001; Thom et al., 2001) although the effect 

was much less than that observed with mice (Terpstra, 2004).    CLA is also known to 

affect activity and gene expression of mammalian stearoyl CoA ∆9 desaturase (SCD) (Choi 

et al., 2001, 2002) and may also influence ∆6 and ∆5 desaturases (Chuang et al., 2001a; 

Eder et al., 2002) and fatty acid elongase (Chuang et al., 2001b).  Further studies have 

suggested that CLA may enhance growth and feed efficiency in young rodents although 

this has not been consistently observed (Pariza et al., 2001).   

At the initiation of this studentship, there were no reports in the literature on the 

effects of dietary CLA in salmonids. However, recently, some studies investigating the 

physiological and biochemical influences of dietary CLA on lipid and fatty acid 

metabolism in farmed salmonids have appeared in the literature.  A 12 week study feeding 

Atlantic salmon fry graded levels of CLA up to 2 % of the diet did not increase growth rate 

or influence body proximate composition (Berge et al., 2004).  However, fatty acid 

composition of the fish was strongly affected by dietary CLA such that levels of saturates 

including 14:0, 16:0 and 18:0 were increased while monoenes 16:1 and 18:1 decreased.  In 
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a similar trial with rainbow trout juveniles fed graded levels of CLA up to 2 % of the diet 

over a 12 week period, feed conversion, body composition and growth rates were not 

influenced by dietary treatment (Figueiredo-Silva et al., 2005).  Moreover, hepatic enzyme 

activity of various lipogenic enzymes including malic enzyme and fatty acid synthase were 

also shown to be unaffected in rainbow trout.  A subsequent study performed by the same 

workers using an analogous dosing regime concluded that growth performance, FCR, HSI 

and VSI were unaffected in rainbow trout juveniles fed CLA (Bandarra et al., 2006).  This 

study also found that total monoene levels were decreased while total saturate levels 

significantly increased.  In a very recent study, graded levels of CLA up to and including 1 

% dietary CLA in rainbow trout, reported increased 18:0 and decreased 18:1n-9 levels, but 

there was no influence growth performance, feed conversion, nutrient or energy utilisation 

or body composition (Valente et al., 2007a). Of equal importance was the implication in all 

the aforementioned trials that CLA can be incorporated into the diet without adversely 

impacting fish quality characteristics. 

These other trials studying the effects of dietary CLA in salmonids (although, as 

noted above, none were published at the initiation of the present study) generally used 

small, young fish (fry and juvenile) fed diets with correspondingly low lipid contents. 

However, it would appear obvious that to fully test the possible efficacy of CLA in diets 

for salmonids, fish consuming higher dietary oil levels and at a developmental stage where 

lipid deposition is more likely to occur should be investigated.  Only by matching 

developmental stage of the fish and dietary oil level could a possible protein-sparing effect 

of CLA in salmonids be determined. Therefore, the trial described in the next two chapters 
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was designed to study dietary CLA in salmon smolts in seawater consuming diets with 

much higher lipid contents.  

Therefore, the aim of the present trial was to determine the effects of CLA on lipid 

and fatty acid composition in Atlantic salmon smolts.  The overall objective being to test 

the hypotheses that CLA has beneficial effects in Atlantic salmon including growth 

enhancement, improved flesh quality through decreased adiposity and lipid deposition 

thereby minimising detrimental effects of feeding high fat diets, and increased nutritional 

quality through increased levels of beneficial fatty acids including n-3 HUFA and CLA 

itself.  A further specific aim of this trial was to determine if absolute content of CLA in 

the diet (as percentage of total diet) or the level of CLA relative to other fatty acids in the 

diets were more important in eliciting effects, and thus the diets were specifically 

formulated to test this.  A subsidiary aim of this trial was to determine the minimum period 

required to obtain the maximum amount of CLA deposition in the muscle of Atlantic 

salmon smolts.  In the trial described, salmon smolts were fed diets containing two levels 

of dietary lipid (FO at 17 and 34 %) supplemented with three levels of CLA (0, 1 and 2 % 

of diet) for 3 months and the effects on growth performance, liver and flesh lipid contents 

and fatty acid composition determined.   

3.2 Materials and Methods 

3.2.1 Experimental Fish 

Photoperiod manipulated Atlantic salmon (Salmo salar  L.) smolts (S1/2) were 

obtained from a commercial salmonid farm (Howietoun Fish Farm, Sauchieburn, Scotland) 

in late October 2003 and transported to the Machrihanish Marine Environmental Research 
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Laboratory, Machrihanish, Scotland.  The fish were maintained in stock tanks for 3 weeks 

at ambient temperature of 10 - 11 oC to acclimatise during which time the fish were fed 

standard salmon diet, before being randomly distributed between eighteen indoor, round, 

conical tanks of 1.5 m3 volume (1.72 m diameter).  The initial stocking density was 100 

fish of average fish weight 87.5 ± 1.6 g per tank (5.8 kg/m3).  Water temperature was 

maintained at 11 oC (± 1 oC) throughout the trial, with a light regime of 12L:12D.   

3.2.2 Experimental Diets 

Salmon were fed diets formulated in order to satisfy the nutritional requirements of 

salmonid fish (U.S National Research Council, 1993) and were manufactured by BioMar 

Ltd, Brande, Denmark.  Dietary formulations and proximate compositions are given in 

Table 3.1. 
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Table 3.1Formulations (percentage of dry ingredients) and proximate compositions 
(percentage of total diet) of experimental diets 
 

 
Results for proximate compositions are means ± SD (n=3). Micronutrients, incl. essential 
amino acids (methionine and lysine), vitamins, minerals and astaxanthin (Carophyll 
pink®), BioMar A/S, Brande, Denmark. H0, H1, H2, diets containing FO at 34 % and 
supplemented with 0 %, 1 % and 2 % CLA; L0, L1 and L2, diets containing FO at 17 % 
and supplemented with 0 %, 1 % and 2 % CLA. 

 

The trial had a 3 x 2 factorial design with CLA added at three concentrations to 

diets with two oil contents (low and high).  Thus diets were produced with 0, 1 and 2 % 

CLA replacing standard northern hemisphere FO in smolt feeds containing either 17 or 34 

% total lipid.  The diets were thus formulated to investigate whether effects of CLA were 

more dependent upon absolute content of CLA in the diet (as percentage of total diet) or 

the relative level of CLA to other fatty acids. Diets were formulated to be isonitrogenous 

and so protein content was constant between diets of different oil content (Table 3.1).  

Component 

Fishmeal 
Sunflower meal 
Corn Gluten 
Legume seeds 
Cereal grains 
Micronutrients 
FO 
CLA 

Moisture 8.0 ± 0.3 8.7 ± 0.1 8.9 ± 0.1 3.1 ± 0.1 4.2 ± 0.4 4.4 ± 0.1
Lipid 18.2 ± 0.3 17.4 ± 0.1 16.4 ± 0.5 33.2 ± 0.6 32.4 ± 1.2 32.6 ± 1.6
Protein 44.8 ± 0.1 44.8 ± 0.2 45.8 ± 0.5 47.0 ± 0.3 47.0 ± 0.3 47.0 ± 0.3
Ash 7.8 ± 0.1 7.8 ± 0.1 7.9 ± 0.1 8.2 ± 0.1 8.1 ± 0.0 8.0 ± 0.0

1.7 3.4

2 2
25.3 23.6

9 9
0 0

4 4
8 8

H1 H2

50 50

0 1.7 3.4

23
27
0

10 
3 
11 

010 10
3

9.3 7.6

5044 44
15 415
8 8

99 9
8

44 
15 
8 
9 

L0 L1 L2 H0
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Diets within the low or high oil groups were identical in formulation other than fatty acid 

composition with CLA (LUTA-CLATM 60, containing 60 % CLA methyl esters as a 50:50 

mixture of c9t11 and t10c12 isomers; BASF AG, Ludwigshafen, Germany) balanced by 

FO (capelin oil, Norsemeal Ltd., London, UK). The fatty acid compositions of the diets are 

presented in Table 3.2.  
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Table 3.2. Fatty acid composition (percentage of weight) of experimental diets containing 
CLA fed to Atlantic salmon 

14:0 5.6 ± 0.2 4.7 ± 0.1 4.3 ± 0.3 6.8 ± 0.3 6.0 ± 0.2 5.8 ± 0.1
16:0 19.6 ± 0.5 18.1 ± 0.7 18.2 ± 0.7 19.9 ± 0.2 19.2 ± 0.2 19.2 ± 0.3
18:0 4.5 ± 0.2 4.5 ± 0.1 5.0 ± 0.4 4.3 ± 0.0 4.4 ± 0.1 4.6 ± 0.1
Total saturated1 30.7 ± 1.0 28.6 ± 1.1 28.9 ± 1.4 31.9 ± 0.4 30.6 ± 0.7 31.0 ± 0.8

16:1n-72 6.7 ± 0.1 5.7 ± 0.2 5.3 ± 0.5 7.5 ± 0.1 6.9 ± 0.1 6.7 ± 0.1
18:1n-9 13.4 ± 0.2 15.1 ± 0.2 17.7 ± 0.6 12.0 ± 0.2 13.1 ± 0.1 14.2 ± 0.0
18:1n-7 2.9 ± 0.1 2.6 ± 0.0 2.5 ± 0.1 3.0 ± 0.1 2.9 ± 0.1 2.9 ± 0.2
20:1n-93 3.0 ± 0.1 2.9 ± 0.3 2.5 ± 0.1 3.2 ± 0.1 2.8 ± 0.0 2.9 ± 0.0
22:1n-114 3.4 ± 0.0 3.1 ± 0.0 2.4 ± 0.1 3.2 ± 0.0 2.9 ± 0.0 2.7 ± 0.0
24:1n-9 0.7 ± 0.1 0.7 ± 0.0 0.6 ± 0.0 0.8 ± 0.0 0.7 ± 0.0 0.7 ± 0.0
Total monoenes 30.1 ± 0.7 30.0 ± 0.7 31.0 ± 0.9 29.8 ± 0.6 29.3 ± 0.4 30.2 ± 0.5

18:2n-6 6.4 ± 0.2 6.6 ± 0.1 6.8 ± 0.2 3.1 ± 0.1 3.3 ± 0.0 3.2 ± 0.0
20:4n-6 0.9 ± 0.0 0.8 ± 0.0 0.7 ± 0.0 1.0 ± 0.1 0.9 ± 0.0 0.8 ± 0.0
CLA (9c,11t) 0.0 ± 0.0 2.9 ± 0.5 4.8 ± 1.6 0.0 ± 0.0 1.6 ± 0.2 2.9 ± 0.7
CLA (10t,12c) 0.0 ± 0.0 3.0 ± 0.4 4.6 ± 1.7 0.0 ± 0.0 1.7 ± 0.4 2.9 ± 0.8
Total n-6 PUFA5 8.4 ± 0.1 8.2 ± 0.1 8.2 ± 0.2 5.1 ± 0.1 4.2 ± 0.0 4.0 ± 0.0

18:3n-3 1.2 ± 0.0 1.1 ± 0.0 1.0 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 1.1 ± 0.0
18:4n-3 2.5 ± 0.1 2.1 ± 0.0 1.8 ± 0.0 2.7 ± 0.0 2.6 ± 0.0 2.3 ± 0.0
20:4n-3 0.7 ± 0.0 0.6 ± 0.0 0.5 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.7 ± 0.0
20:5n-3 11.8 ± 0.7 10.2 ± 0.2 8.4 ± 0.5 13.6 ± 0.1 13.0 ± 0.1 11.5 ± 0.1
22:5n-3 1.8 ± 0.1 1.6 ± 0.0 1.3 ± 0.1 2.0 ± 0.0 1.9 ± 0.0 1.7 ± 0.0
22:6n-3 12.7 ± 0.9 11.5 ± 0.5 9.5 ± 0.1 12.9 ± 0.0 12.4 ± 0.2 10.9 ± 0.1
Total n-3 PUFA6 30.8 ± 1.8 27.3 ± 0.8 22.6 ± 0.7 33.2 ± 0.3 31.8 ± 0.4 28.2 ± 0.2

H1 H2L0 L1 L2 H0

 
Values are means ± SD of 3 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at up 
to 0.6 %; 2contains n-9 isomer; 3 contains n-7 isomer; 4, contains n-9 isomer; 5, totals include 18:3n-
6, 20:2n-6 and 22:5n-6 present in some samples at up to 0.4 %; 6, contains 20:3n-3 present at up to 
0.2 %.  H0, H1 and H2, diets containing FO at 34 % and supplemented with 0, 1 and 2 % CLA; L0, 
L1 and L2, diets containing FO at 17 % and supplemented with 0, 1 and 2 % CLA. 
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3.2.3 Sampling and Analyses 

At the initiation and termination of the trial, all the fish in each tank were 

anaesthetised with benzocaine (50 mg/L), and bulk weighed.  At termination, 24 fish per 

dietary treatment (8/tank) were individually weighed and sampled for analyses, with 6 

whole fish (2/tank) frozen immediately on dry ice for whole body compositional 

(proximate) analyses as described in section 2.3.10. The remaining sampled fish were 

eviscerated and used for biometric determinations (hepato-, and viscero-somatic indices) 

(see section 2.2.1) and for tissue lipid analyses.  Flesh samples (Norwegian quality cut) and 

livers were taken from each fish, pooled in six samples of 3 fish each, and frozen 

immediately in liquid nitrogen (livers) or dry ice (flesh).  All samples were subsequently 

stored at –20 oC prior to analyses.  Six fish per treatment (2/tank) were also collected after 

1 and 2 months for tissue lipid analyses.  

3.2.4 Analyses and Transmethylation Procedure 

Total lipids of liver, muscle and diet were extracted and quantified as described in 

section 2.3.7.  Lipid class analysis was carried out as detailed in section 2.3.8.  

There has been debate as to which methylation procedure is ideal for producing 

FAME in lipid samples containing CLA.  It has been suggested that base-catalysed 

tranesterfication using sodium methoxide is favourable over acid catalysis since the former 

does not produce allylic methoxy artefacts or isomerisation of CLA, which has been 

evidenced in the latter (Krammer et al., 1997).  More recently, methylation with boron 

triflouride has been shown to efficiently methylate the free fatty acid form of CLA by 

completely supressing artificial isomerisation (Igarashi, et al., 2004).  However, it is known 

that the majority of lipid in tissue is esterified, either stored as TAG or as membrane PL, 
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and therefore samples must initially be saponified before methylation can take place with 

boron trifluoride, incurring more time in sample preparation.  This may become crucial 

particularly when high throughput analysis is required.  In addition, impurities or artefacts 

in gas chromatograms have been detected as a result of both sodium methoxide and boron 

triflouride-catalysed methylation of CLA (Park et al., 2001).  Indeed, it has been conceded 

that no single method or combination of methods could adequately prepare FAME for all 

lipid classes within a sample (Krammer et al., 1997).  In this study investigating only CLA 

(not TTA), acid-catalysed transesterification, essentially as routinely utilised in this 

laboratory was employed for preparing FAME from diets and tissue total lipid.  Thus, 

FAME were prepared from total lipid by incubating at 50 oC overnight in the presence of 2 

ml 1 % (v/v) H2SO4 in methanol together with 1 ml of toluene under nitrogen essentially as 

described by Christie (2003).  FAME were subsequently extracted, purified and quantified 

as described in section 2.3.8. The fatty acid compositions obtained for the experimental 

diets justifies the chosen methodology since the amount of CLA as a percentage of the total 

diet was accurately reflected in values of CLA obtained in the FAME as a percentage of 

total fatty acid.  It was also noteworthy that the data in Table 3.2 showed a 1:1 ratio of 

c9t11 and t10c12 CLA, concurring with the manufacturers formulation and thus suggesting 

that little to no isomersation had taken place. 

3.2.5 Statistical Analysis 

All data presented are as means ± SD (n value as stated). The effects of dietary 

CLA and oil content and any interaction thereof were determined by two-way analysis of 

variance (ANOVA) with Bonferroni post-tests to determine significance of differences 

(Prism 3, Graphpad Software, Inc., San Diego, USA).  Percentage data and data that were 
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identified as non-homogenous were subjected to arcsine transformation before analysis.  

Differences were regarded as significant when P < 0.05 (Zar, 1984). 

3.3 Results 

3.3.1 Diets 

There was no significant difference in the proximate composition of the 

experimental diets (Table 3.1).  Inclusion of CLA in the low oil diets resulted in levels of 

total CLA of 5.9 % and 9.5 % of total fatty acids at the 1 % and 2 % inclusion levels, 

respectively (Table 3.2).  The high oil diets reduced the amount of total CLA at the 1 % 

and 2 % inclusion levels, to 3.3 % and 5.8 % of total fatty acids, respectively. The levels of 

CLA in relative terms were identical in the L1 and H2 diets with an overall rank order for 

CLA content of L2 > L1 = H2 > H1 > L0/H0. 

3.3.2 Growth and Biometry 

There were no effects of diet on growth parameters, with no significant effects of 

CLA or oil content on final weights, specific growth rates (SGR) or feed efficiency as 

measured by feed conversion ratio (FCR) (Table 3.3).  Both the viscero-somatic (VSI) and 

hepato-somatic (HSI) indices were significantly increased in fish fed high fat diets, 

however dietary CLA had no effect on these parameters (Table 3.3).   
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Table 3.3 Growth and biometric parameters for Atlantic salmon fed the experimental diets for 3 months 

ANOVA

CLA Oil Interact

Initial weight (g)1 87.80 ± 1.50 87.4 ± 0.5 87.9 ± 1.5 85.5 ± 1.5 89.3 ± 0.9 86.9 ± 0.6 0.1301 0.4740 0.0506

Final weight (g)1 203.2 ± 7.10 199.7 ± 1.8 195.1 ± 12.3 196.1 ± 4.7 201.0 ± 10.1 199.5 ± 1.8 0.7631 0.8964 0.4108

SGR2 1.02 ± 0.10 1.01 ± 0.01 0.97 ± 0.05 1.01 ± 0.05 0.99 ± 0.05 1.01 ± 0.02 0.6236 0.8749 0.4712

FCR2 1.24 ± 0.10 1.26 ± 0.03 1.32 ± 0.13 1.27 ± 0.07 1.29 ± 0.10 1.28 ± 0.03 0.6547 0.8681 0.7100

VSI4 9.20 ± 0.61 9.20 ± 0.80 9.42 ± 0.43 10.87 ± 0.33 10.66 ± 0.52 10.63 ± 0.48 0.9356 0.0001 0.7722

HSI4 1.09 ± 0.09 1.12 ± 0.09 1.11 ± 0.06 1.13 ± 0.05 1.20 ± 0.03 1.2 ± 0.02 0.3543 0.0372 0.7742

H2L0 L1 L2 H0 H1

 

Data are presented as means ± SD (n=3). FCR= feed conversion ratio; HSI = hepato-somatic index; SGR = specific growth rate; VSI = 
viscero-somatic index; L0, L1 and L2, low lipid diets with 0 %, 1 % and 2 % CLA; H0, H1 and H2, high lipid diets with 0 %, 1 % and 2 % 
CLA. Significance (P values) of effects of CLA, oil content and their interaction were determined by two-way ANOVA as described in the 
Materials and methods. 
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3.3.3 Whole Body Proximate Compositions 

Whole body proximate composition was analysed at 1, 2 and 3 (end point) months 

post trial initiation.  Whole body proximate composition of the fish was unaffected by CLA 

content at both 1 and 2 % inclusion levels at all time points analysed.  Oil content 

significantly affected the proximate composition of the fish at all time points, with high oil 

diets significantly increasing whole body lipid levels and, as such, decreasing the protein, 

moisture and ash contents  (Tables 3.4 - 3.6) 

Table 3.4 Proximate composition of Atlantic salmon after 1 month of dietary treatment. 

Diet

L0 70.9 ± 1.5 61.1 ± 1.5 29.6 ± 1.6 7.3 ± 0.2

L1 71.2 ± 0.9 62.5 ± 1.4 29.8 ± 1.0 7.5 ± 0.4

L2 70.9 ± 1.1 60.1 ± 2.3 29.3 ± 1.8 7.6 ± 0.5

H0 69.6 ± 1.0 56.8 ± 1.7 33.8 ± 1.3 7.1 ± 0.2

H1 69.8 ± 1.2 56.3 ± 1.7 34.0 ± 2.3 7.1 ± 0.3

H2 69.0 ± 2.2 55.3 ± 3.9 34.3 ± 3.8 7.4 ± 0.6

ANOVA

CLA

Oil

Interact.

0.7931

0.0371

0.9231 0.5701 0.8733

0.0303<0.0001 <0.0001

Moisture Protein Lipid Ash

0.27700.1775 0.9748

0.8267

 

Values are means ± SD of 12 fish. Significance (P values) of effects of CLA, 
oil content and their interaction were determined by two-way ANOVA as 
described in the Materials and methods. H0, H1 and H2, diets containing FO at 
34 % and supplemented with 0 %, 1 % and 2 % CLA; L0, L1 and L2, diets 
containing FO at 17 % and supplemented with 0 %, 1 % and 2 % CLA. 

 



Chapter 3  

 66

Table 3.5 Proximate composition of whole Atlantic salmon after 2 months of 
dietary treatment  

Diet

L0 71.4 ± 1.3 61.3 ± 3.7 28.7 ± 2.7 7.4 ± 0.2

L1 71.2 ± 0.7 60.7 ± 3.7 29.4 ± 1.5 7.3 ± 0.3

L2 70.7 ± 0.5 59.7 ± 1.6 31.8 ± 1.5 7.4 ± 0.4

H0 69.4 ± 0.2 53.7 ± 1.1 36.2 ± 1.1 6.8 ± 0.6

H1 69.4 ± 0.8 54.7 ± 2.4 36.4 ± 1.6 7.2 ± 0.7

H2 69.1 ± 1.7 54.5 ± 1.0 35.7 ± 2.0 7.1 ± 0.9

ANOVA

CLA

Oil

Interact.

0.8646

<0.0001

0.3824 0.56350.9420 0.0430

0.0024 <0.0001

0.76000.6663 0.2178

0.0896

Moisture Protein Lipid Ash

 

Values are means ± SD of 12 fish. Significance (P values) of effects of 
CLA, oil content and their interaction were determined by two-way 
ANOVA as described in the Materials and methods. H0, H1 and H2, 
diets containing FO at 34 % and supplemented with 0 %, 1 % and 2 % 
CLA; L0, L1 and L2, diets containing FO at 17 % and supplemented 
with 0 %, 1 % and 2 % CLA. 
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Table 3.6 Proximate composition of whole Atlantic salmon after 3 months of 
dietary treatment (end of trial). 

Diet

L0 69.8 ± 1.1 61.2 ± 2.0 29.7 ± 3.1 7.3 ± 0.6 2.06 ± 0.20

L1 70.0 ± 0.6 62.1 ± 2.1 29.4 ± 1.9 7.3 ± 0.7 2.11 ± 0.16

L2 69.9 ± 1.1 61.5 ± 1.7 29.4 ± 2.7 7.2 ± 0.7 2.09 ± 0.17

H0 68.1 ± 0.9 54.9 ± 1.7 35.1 ± 2.1 6.4 ± 0.6 1.56 ± 0.15

H2 68.0 ± 1.3 54.0 ± 1.8 37.3 ± 2.2 6.7 ± 0.9 1.45 ± 0.16

H3 67.5 ± 0.7 53.4 ± 1.4 37.8 ± 1.3 5.9 ± 0.5 1.41 ± 0.11

ANOVA

CLA

Oil

Interact.

<0.0001

0.4674 0.1428 0.0589 0.2215 0.1118

<0.0001 <0.0001 <0.0001 <0.0001

0.5281 0.4150 0.1676 0.0799 0.4372

P:L ratioMoisture Protein Lipid Ash

 
Values are means ± SD of 12 fish. Significance (P values) of effects of CLA, oil content 
and their interaction were determined by two-way ANOVA as described in the Materials 
and methods. P:L, protein:lipid ratio; H0, H1 and H2, diets containing FO at 34 % and 
supplemented with 0 %, 1 % and 2 % CLA; L0, L1 and L2, diets containing FO at 17 % 
and supplemented with 0 %, 1 % and 2 % CLA. 

 

3.3.4 Lipid Contents and Class Compositions of Liver and Flesh 
 

Neither CLA nor dietary oil content influenced lipid class composition in liver (Table 3.7) 

or muscle (Table 3.8) after 1 month of dietary treatment.  However, total neutral lipid and, 

particularly, TAG levels, increased over time in both liver (Table 3.9) and muscle (Table 

3.10) in fish fed the high fat diets in comparison with fish fed the low fat diets.  These 

changes in TAG, and total neutral lipids reached statistical significance after 2 months of 
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dietary treatment (Table 3.9 & 3.10).  Similarly, after 3 months, liver and flesh (muscle) 

lipid contents were significantly increased in fish fed the diets containing the higher oil 

content (Tables 3.11 & 3.12).  The increased lipid contents in fish fed the high oil diets 

were reflected in increased proportions of TAG and total neutral lipids in both the liver 

(Table 3.11) and flesh (Table 3.12).  Dietary CLA also had an effect on the lipid content of 

liver and flesh with increasing CLA leading to increased lipid content (Table 3.11).  This 

effect was more pronounced in fish fed the high oil diets and was significant in the case of 

flesh although it was just short of statistical significance in the liver (Table 3.11).  The 

increased lipid content in the liver in response to dietary CLA was also reflected in 

increased proportions of TAG and total neutral lipids particularly in the high oil diets.  

Similarly, increased lipid contents in the flesh in response to dietary CLA were reflected in 

increased proportions of TAG and total neutral lipids (Table 3.12).  The effects of CLA and 

oil content on liver and flesh lipid contents and class compositions as described above were 

statistically significant except for TAG levels in the liver (Table 3.11).  
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Table 3.7 Lipid content (percentage of tissue wet weight) and class composition (percentage of total lipid) of liver of Atlantic 
salmon fed CLA for 1 month. 

Lipid Content 3.4 ± 0.4 3.4 ± 0.6 3.7 ± 0.1 3.8 ± 0.4 3.8 ± 0.4 4.3 ± 1.5

PC 27.0 ± 0.4 27.6 ± 1.3 27.2 ± 0.7 25.5 ± 1.2 23.9 ± 1.1 26.2 ± 2.2

PE 15.5 ± 0.3 16.2 ± 0.4 16.0 ± 0.6 16.4 ± 0.3 15.8 ± 1.0 16.0 ± 0.6

PS 3.7 ± 0.3 3.9 ± 0.4 3.8 ± 0.4 3.6 ± 0.3 3.9 ± 0.6 3.7 ± 0.2

PI 5.5 ± 0.3 5.7 ± 0.9 5.6 ± 0.8 5.8 ± 0.9 5.3 ± 0.3 6.0 ± 0.5

PG/CL 3.7 ± 0.0 3.9 ± 0.1 3.6 ± 0.1 3.3 ± 1.0 3.5 ± 0.2 3.2 ± 0.9

Sphingomyelin 3.9 ± 0.4 3.9 ± 0.5 4.3 ± 0.3 3.0 ± 0.5 4.0 ± 1.0 3.2 ± 0.3

Lyso-PC 1.8 ± 0.3 1.7 ± 0.4 1.9 ± 0.4 2.1 ± 0.3 2.4 ± 0.4 1.9 ± 0.0

Total Polar 61.2 ± 1.4 63.0 ± 2.5 62.4 ± 0.8 59.8 ± 1.4 58.8 ± 1.6 60.2 ± 3.8

Total Neutral 38.8 ± 1.4 37.0 ± 2.5 37.6 ± 0.8 40.2 ± 1.4 41.2 ± 1.6 39.8 ± 3.8

Cholesterol 17.1 ± 0.9 17.1 ± 0.3 16.6 ± 0.2 16.9 ± 0.6 17.7 ± 1.0 16.8 ± 2.1

Triacylglycerol 15.9 ± 1.9 14.4 ± 0.7 14.1 ± 0.3 17.9 ± 1.4 18.5 ± 1.3 16.1 ± 0.7

Free fatty acid 5.8 ± 1.3 5.6 ± 2.7 6.9 ± 0.9 5.4 ± 0.6 4.9 ± 1.2 7.0 ± 5.2

Steryl ester -tr tr - -tr tr tr tr

0.0529 0.0004 0.2444

0.4928 0.7852 0.9628

0.8158 0.0249 0.5284

0.5338 0.6953 0.8099

0.7334 0.0544 0.2271

0.8158 0.0249 0.5284

0.6484 0.1544 1.0000

0.3242 0.032 0.1751

0.5477 0.7214 0.9673

0.7454 0.7568 0.5465

0.4608 0.005 0.1935

0.9856 0.5575 0.1866

0.5546 0.1936 0.9621

CLA Oil Interact.
H1 H2 ANOVAL0 L1 L2 H0

 

Values are means ± SD of 6 samples. CL, cardiolipin; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; tr, trace < 0.5%. 



Chapter 3  

 70

Table 3.8 Lipid content (percentage of tissue wet weight) and class composition (percentage of total lipid) of flesh of Atlantic 
salmon fed CLA for 1 month. 

Lipid Content 3.5 ± 0.9 2.1 ± 0.9 3.8 ± 0.7 3.2 ± 1.3 2.8 ± 0.3 3.6 ± 1.1

PC 12.6 ± 2.6 14.3 ± 1.7 11.4 ± 2.3 12.3 ± 3.5 14.0 ± 1.7 12.3 ± 1.1

PE 8.8 ± 1.0 9.9 ± 1.7 7.9 ± 1.8 7.9 ± 2.0 9.3 ± 0.8 7.4 ± 1.3

PS 0.9 ± 0.2 1.2 ± 0.5 0.6 ± 0.2 0.7 ± 0.3 0.7 ± 0.1 0.6 ± 0.3

PI 2.5 ± 0.3 3.0 ± 0.5 2.2 ± 0.6 2.2 ± 0.8 2.3 ± 0.2 1.8 ± 0.5

PG/CL 2.2 ± 0.0 2.2 ± 0.2 2.0 ± 0.1 1.9 ± 0.5 2.1 ± 0.3 1.6 ± 0.3

Sphingomyelin 0.9 ± 0.3 1.2 ± 0.2 0.7 ± 0.2 0.6 ± 0.3 0.7 ± 0.1 0.6 ± 0.2

Lyso-PC 0.5 ± 0.2 1.0 ± 0.4 0.5 ± 0.2 0.6 ± 0.5 0.4 ± 0.0 0.4 ± 0.1

Total Polar 28.3 ± 4.3 32.8 ± 4.7 25.3 ± 5.2 26.1 ± 7.6 29.5 ± 2.4 24.7 ± 3.4

Total Neutral 71.7 ± 4.3 67.2 ± 4.7 74.7 ± 5.2 73.9 ± 7.6 70.5 ± 2.4 75.3 ± 3.4

Cholesterol 10.7 ± 1.0 11.6 ± 1.5 10.1 ± 0.8 9.8 ± 0.7 10.4 ± 0.3 9.2 ± 1.2

Triacylglycerol 55.1 ± 5.9 48.5 ± 8.8 58 ± 4.6 58 ± 7.8 54.1 ± 3.1 60.8 ± 6.6

Free fatty acid 5.9 ± 1.2 7.0 ± 2.6 6.7 ± 1.1 5.8 ± 0.7 6.0 ± 0.6 5.3 ± 2.3

0.0480

0.7692

0.1404 0.8642

0.2937 0.7778

0.1282 0.3938 0.8912

0.1014 0.0538 0.9555

0.3521 0.1674 0.1386

0.1282 0.3938 0.8912

0.1293 0.0687 0.6555

0.1069 0.0161 0.3459

0.1610 0.1185 0.3654

0.1389 0.0818 0.7909

0.2351 0.9275 0.8724

0.1145 0.3637 0.9715

0.0917 0.8806 0.5988

CLA Oil Interact.
H1 H2 ANOVAL0 L1 L2 H0

 

Values are means ± SD of 6 samples. CL, cardiolipin; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine.  
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Table 3.9 Lipid content (percentage of tissue wet weight) and class composition (percentage of total lipid) of liver of Atlantic 
salmon fed CLA for 2 months. 

Lipid Content 3.5 ± 0.3 3.6 ± 0.1 3.3 ± 0.3 3.3 ± 0.2 3.7 ± 0.3 3.7 ± 0.5

PC 26.8 ± 1.2 24.9 ± 2.4 24.9 ± 1.1 26.1 ± 0.6 23.4 ± 0.7 25.3 ± 0.2

PE 16.2 ± 0.7 16.0 ± 0.9 15.2 ± 0.7 16.5 ± 1.3 13.7 ± 0.0 16.0 ± 0.7

PS 3.7 ± 0.1 3.7 ± 0.7 3.9 ± 0.7 4.1 ± 0.3 2.9 ± 0.3 4.0 ± 0.3

PI 5.8 ± 0.5 5.8 ± 0.6 5.4 ± 2.0 6.0 ± 0.9 4.5 ± 0.7 5.4 ± 0.9

PG/CL 3.8 ± 0.6 3.6 ± 0.2 3.9 ± 1.8 4.3 ± 0.8 3.0 ± 0.3 3.8 ± 0.3

Sphingomyelin 3.8 ± 0.8 3.2 ± 0.9 4.2 ± 1.1 4.0 ± 1.0 2.6 ± 0.0 3.9 ± 0.5

Lyso-PC 1.3 ± 0.2 1.3 ± 0.4 1.5 ± 0.8 1.5 ± 0.3 1.6 ± 0.8 1.6 ± 0.2

Total Polar 61.5 ± 1.6 58.5 ± 4.7 58.8 ± 8.3 62.5 ± 4.2 51.7 ± 0.7 60.0 ± 2.3

Total Neutral 38.5 ± 1.6 41.5 ± 4.7 41.2 ± 8.3 37.5 ± 4.2 48.3 ± 0.7 40.0 ± 2.3

Cholesterol 17.6 ± 1.8 17.3 ± 3.0 16.8 ± 2.9 17.2 ± 2.0 16.4 ± 0.7 17.8 ± 1.6

Triacylglycerol 14.2 ± 0.8 13.4 ± 2.6 14.3 ± 1.3 14.5 ± 2.2 15.5 ± 2.0 15.3 ± 2.9

Free fatty acid 6.7 ± 0.8 10.7 ± 9.3 10.0 ± 4.2 5.8 ± 0.9 16.4 ± 3.4 6.8 ± 2.2

Steryl ester tr tr tr tr tr tr

0.0547 0.4755 0.2418

- - -

0.9270 0.2736 0.7596

0.0426 0.8061 0.2470

0.0547 0.4755 0.2418

0.8954 0.9230 0.7355

0.0597 0.5512 0.6944

0.8789 0.4287 0.9459

0.4798 0.4765 0.4367

0.3301 0.8724 0.5583

0.0136

0.0547 0.6517 0.1014

Oil Interact.

0.5044 0.2793

0.3268 0.4397

CLA

0.3966

0.0240

H1 ANOVA

0.0249 0.3174

H2L0 L2 H0L1

 

Values are means ± SD of 6 samples. CL, cardiolipin; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine. tr, trace < 0.5%. 
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Table 3.10 Lipid content (percentage of tissue wet weight) and class composition (percentage of total lipid) of flesh of Atlantic 
salmon fed CLA for 2 months 

Lipid Content 3.9 ± 0.2 4.5 ± 0.0 8.1 ± 1.9 5.2 ± 0.7 6.2 ± 0.7 7.3 ± 0.9

PC 12.0 ± 0.1 11.3 ± 0.0 8.9 ± 1.7 10.9 ± 1.8 10.0 ± 0.2 8.0 ± 0.1

PE 7.5 ± 0.2 6.5 ± 0.3 5.0 ± 1.3 6.3 ± 1.4 5.7 ± 0.1 5.0 ± 0.5

PS 0.6 ± 0.1 0.8 ± 0.0 0.5 ± 0.1 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2

PI 2.0 ± 0.3 1.8 ± 0.2 1.6 ± 0.7 2.0 ± 0.6 1.3 ± 0.2 1.5 ± 0.2

PG/CL 1.8 ± 0.1 0.9 ± 0.5 0.8 ± 0.4 1.0 ± 0.7 1.1 ± 0.2 1.1 ± 0.1

Sphingomyelin 0.4 ± 0.1 0.6 ± 0.2 0.4 ± 0.0 0.5 ± 0.1 0.3 ± 0.1 0.3 ± 0.1

Lyso-PC 0.6 ± 0.1 0.4 ± 0.2 0.3 ± 0.1 0.5 ± 0.1 0.3 ± 0.0 0.5 ± 0.1

Total Polar 24.9 ± 0.4 22.3 ± 0.3 17.5 ± 4.3 21.8 ± 4.5 19.3 ± 0.1 16.8 ± 0.7

Total Neutral 75.1 ± 0.4 77.7 ± 0.3 82.5 ± 4.3 78.2 ± 4.5 80.7 ± 0.1 83.2 ± 0.7

Cholesterol 3.4 ± 0.5 2.7 ± 0.9 3.1 ± 0.8 3.6 ± 0.5 2.1 ± 0.7 3.9 ± 0.6

Triacylglycerol 62.2 ± 0.5 65.0 ± 0.4 70.9 ± 3.8 66.0 ± 5.0 70.7 ± 0.7 71.5 ± 1.2

Free fatty acid 9.5 ± 0.4 10.0 ± 1.5 8.5 ± 0.6 8.6 ± 0.3 7.9 ± 0.1 7.8 ± 0.1

0.1104

0.002 0.0191 0.2771

0.0854 0.0026 0.2085

0.0043 0.0854 0.6663

0.0238 0.6861 0.2449

0.0282 1.0000 0.0687

0.0043 0.0854 0.6663

0.1447 0.6056 0.0647

0.2621 0.0911 0.0348

0.1878

0.1435 0.3327 0.5674

0.9438

0.0059 0.4589

0.0796

CLA Oil Interact.
ANOVA

0.0002 0.1134

0.0007 0.0404

0.2621 0.1902

H1 H2L0 L1 L2 H0

 

 
Values are means ± SD of 6 samples. CL, cardiolipin; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine. 
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Table 3.11 Lipid content (percentage of tissue wet weight) and class composition (percentage of total lipid) of liver of Atlantic 
salmon fed CLA for 3 months 
 

Lipid Content 3.3 ± 0.3 3.4 ± 0.1 3.5 ± 0.2 3.5 ± 0.2 3.6 ± 0.2 3.8 ± 0.2

PC 29.8 ± 0.9 28.2 ± 3.8 30.1 ± 2.4 28.2 ± 2.1 25.3 ± 2.2 24.7 ± 1.2

PE 17.1 ± 0.4 17.7 ± 1.0 17.5 ± 0.9 17.5 ± 0.9 15.0 ± 0.6 14.4 ± 0.9

PS 4.1 ± 0.5 4.1 ± 0.8 4.1 ± 0.8 3.6 ± 0.5 3.2 ± 0.2 3.2 ± 0.1

PI 5.8 ± 0.8 6.0 ± 0.7 5.7 ± 0.8 5.6 ± 0.4 5.4 ± 0.3 4.9 ± 0.6

PG/CL 4.7 ± 0.2 4.8 ± 0.4 4.5 ± 0.4 4.5 ± 0.2 3.9 ± 0.3 3.5 ± 0.3

Sphingomyelin 4.8 ± 0.8 4.7 ± 0.9 4.8 ± 0.8 4.2 ± 0.6 3.7 ± 0.3 3.8 ± 0.3

Lyso-PC 0.9 ± 0.6 0.7 ± 0.3 0.8 ± 0.2 0.9 ± 0.4 0.7 ± 0.2 0.7 ± 0.1

Total Polar 67.2 ± 3.9 66.2 ± 6.6 67.4 ± 5.8 64.5 ± 3.4 57.2 ± 3.2 55.3 ± 2.2

Total Neutral 32.8 ± 3.9 33.8 ± 6.6 32.6 ± 5.8 35.5 ± 3.4 42.8 ± 3.3 44.7 ± 2.2

Cholesterol 18.3 ± 0.9 18.2 ± 1.5 18.8 ± 0.3 18.0 ± 0.6 15.4 ± 1.8 15.1 ± 1.2

Triacylglycerol 12.3 ± 4.7 13.4 ± 8.5 11.9 ± 5.8 15.4 ± 3.8 25.7 ± 4.7 27.3 ± 3.8

Free fatty acid 2.2 ± 0.6 2.1 ± 0.5 1.9 ± 1.0 2.1 ± 1.2 1.7 ± 0.6 2.3 ± 0.7

Steryl ester - -

0.0341 <0.0001 0.0441

tr tr tr tr tr tr -

0.4793

CLA Oil Interact.

0.7264 0.9021

0.0154 <0.0001 0.0036

0.0212 <0.0001 0.0263

0.0341 <0.0001 0.0441

0.5350 0.0005 0.6972

0.3414 0.7717 0.9181

0.2160 0.0165 0.5017

0.0002 <0.0001 0.0069

0.0008 <0.0001 <0.0001

0.5971 0.0002 0.5971

0.0625 0.0002 0.1379

0.0636 0.0008 0.8762

L0 L1 L2 H0 H1 H2 ANOVA

 
Values are means ± SD of 6 samples pooled from 3 fish each. CL, cardiolipin; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; tr, trace, < 0.5%. 
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Table 3.12 Lipid content (percentage of tissue wet weight) and class composition (percentage of total lipid) of flesh of Atlantic 
salmon fed CLA for 3 months 

Lipid Content 3.1 ± 0.4 3.2 ± 0.5 3.2 ± 0.4 3.9 ± 0.8 4.5 ± 0.5 5.0 ± 0.2

PC 8.6 ± 1.0 8.2 ± 0.6 8.1 ± 1.0 8.0 ± 0.5 7.4 ± 0.5 7.3 ± 0.9

PE 6.9 ± 0.9 6.5 ± 0.9 6.0 ± 0.6 5.6 ± 0.7 5.3 ± 0.5 5.0 ± 0.5

PS 0.8 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.2

PI 3.4 ± 0.5 3.0 ± 0.5 2.7 ± 0.6 2.2 ± 0.3 2.0 ± 0.2 1.8 ± 0.2

PG/CL 1.4 ± 0.4 1.5 ± 0.5 1.4 ± 0.3 1.2 ± 0.2 1.1 ± 0.2 1.1 ± 0.1

Sphingomyelin 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.1 0.4 ± 0.1 0.4 ± 0.0 0.4 ± 0.1

Lyso-PC 2.6 ± 0.4 1.7 ± 0.4 1.6 ± 0.5 1.4 ± 0.4 1.1 ± 0.3 1.0 ± 0.1

Total Polar 24.3 ± 2.7 22.3 ± 2.4 20.9 ± 2.8 19.3 ± 1.7 17.6 ± 1.4 17.2 ± 1.7

Total Neutral 75.7 ± 2.7 77.7 ± 2.4 79.1 ± 2.8 80.7 ± 1.7 82.4 ± 1.4 82.8 ± 1.7

Cholesterol 9.3 ± 0.3 8.8 ± 0.5 8.7 ± 0.5 8.5 ± 0.7 8.4 ± 0.4 8.3 ± 0.3

Triacylglycerol 53.4 ± 3.0 56.4 ± 3.0 59.5 ± 3.9 62.0 ± 3.4 65.4 ± 2.5 66.0 ± 2.0

Free fatty acid 13.0 ± 1.3 12.5 ± 1.1 11.0 ± 1.1 10.2 ± 2.8 8.6 ± 0.8 8.5 ± 0.4

0.0012 <0.0001 0.5606

0.0148 <0.0001 0.4733

0.0139 <0.0001 0.7494

0.1131 0.0019 0.4941

0.0001 <0.0001 0.0907

0.0139 <0.0001 0.7494

0.9036 0.0075 0.7393

0.5852 0.0009 0.5852

0.7192 0.0072 0.1143

0.0107 <0.0001 0.6688

0.1493 0.0086 0.9368

0.0461 <0.0001 0.8687

0.0231 <0.0001 0.0676

CLA Oil Interact.
H1 H2 ANOVAL0 L1 L2 H0

 

Values are means ± SD of 6 samples pooled from 3 fish each. CL, cardiolipin; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine. 
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3.3.5 Fatty Acid Compositions of Liver and Flesh 
 

Similar to the lipid class data, the effects of diet on fatty acid compositions changed over time 

(see Tables 3.13 – 3.18). Therefore, the amount of CLA deposited in both liver and flesh of 

salmon increased with duration of feeding, and after 2 months, 22:6n-3 and total n-3 PUFA 

levels began to be significantly depressed in muscle particularly in fish fed 2 % dietary CLA 

incorporated into both low and high fat diets (Table 3.16).  The details of dietary effects on fatty 

acid compositions are described in relation to the data at the end of the trial, after the fish had 

been fed the diets for 3 months.  After 3 months, the fatty acid compositions of total lipid from 

liver (Table 3.17) and flesh (Table 3.18) reflected the fatty acid composition of the diets.  Dietary 

CLA resulted in the deposition of CLA in both tissues with the rank order for total CLA in both 

liver and flesh being L2 > H2 > L1 > H1 > L0/H0 (Tables 3.17 & 3.18).  Accumulation of CLA 

was 2-fold higher in the flesh, with total CLA in fish fed the L2 diet reaching 3.4 % in the liver 

(Table 3.17), and 6.9 % in the flesh (Table 3.18).  CLA deposition in the liver was not at the 

expense of any one particular fatty acid, but tended to be spread across several saturated and 

monounsaturated fatty acids (Table 3.17).  In contrast, in the flesh, CLA deposition appeared to 

be primarily at the expense of 20:5n-3 and 22:6n-3 rather than saturated and monounsaturated 

fatty acids (Table 3.18).  It was noteworthy that dietary CLA had no significant effect on the 

proportions of n-6 fatty acids 18:2n-6 or 20:4n-6 in either liver or flesh (Tables 3.17 & 3.18).  

Oil content also had an effect on tissue fatty acid compositions with most fatty acids being 

significantly affected, with fatty acids derived from the plant (meal) sources, such as 18:0, 18:1n-

9 and 18:2n-6, being reduced and generally all the other fatty acids being increased in liver and 
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flesh of fish fed the high oil diets (Tables 3.17 & 3.18). The statistical significance of dietary oil 

level and CLA is shown in Tables 3.19 – 3.21. 

 

Table 3.13 Fatty acid composition (percentage of weight) of total lipid from liver of Atlantic 
salmon fed CLA for 1 month. 

18:0 6.6 ± 0.9 7.2 ± 0.3 7.0 ± 0.8 6.5 ± 1.3 6.8 ± 0.5 6.6 ± 0.9
Total saturated1 30.0 ± 1.5 29.3 ± 1.2 28.0 ± 0.8 28.8 ± 1.4 28.8 ± 1.2 30.5 ± 0.4

18:1n-9 8.9 ± 0.4 8.9 ± 0.2 8.4 ± 0.5 9.4 ± 0.5 7.7 ± 0.1 8.6 ± 1.1
Total monoenes 16.5 ± 0.6 16.4 ± 1.4 14.6 ± 0.2 18.9 ± 1.8 15.4 ± 0.1 16.0 ± 0.1

CLA (9c,11t) 0.0 ± 0.0 0.4 ± 0.3 1.3 ± 0.3 0.0 ± 0.0 0.2 ± 0.2 0.3 ± 0.1
CLA (10t,12c) 0.0 ± 0.0 0.3 ± 0.3 1.2 ± 0.2 0.0 ± 0.0 0.3 ± 0.0 0.2 ± 0.1
Total n-6 PUFA2 7.1 ± 1.0 7.3 ± 0.5 7.9 ± 0.8 6.7 ± 0.7 6.5 ± 0.2 6.7 ± 0.5

20:5n-3 7.4 ± 1.2 7.0 ± 1.3 6.6 ± 0.3 8.4 ± 1.0 10.0 ± 0.4 6.6 ± 1.4
22:6n-3 35.7 ± 2.0 35.5 ± 2.7 36.4 ± 2.5 32.8 ± 1.0 34.4 ± 0.3 34.2 ± 0.1
Total n-3 PUFA3 46.4 ± 2.1 45.7 ± 1.9 46.4 ± 1.9 45.6 ± 0.8 48.8 ± 0.9 45.2 ± 3.7

H1 H2L0 L1 L2 H0

Values are means ± SD of 6 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at 
up to 0.4 % 2, totals include 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 and 22:5n-6 present in some 
samples at up to 0.6 % 3, contains 20:3n-3 present at up to 0.1 %.  H0, H1 and H2, diets 
containing FO at 34 % and supplemented with 0, 1 and 2 % CLA; L0, L1 and L2, diets 
containing FO at 17 % and supplemented with 0, 1 and 2 % CLA. 
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Table 3.14 Fatty acid composition (percentage of weight) of total lipid from muscle of Atlantic 
salmon fed CLA for1 month 

18:0 3.9 ± 0.4 4.0 ± 0.2 4.0 ± 0.3 3.9 ± 0.9 3.7 ± 0.2 3.8 ± 0.1
Total saturated1 25.3 ± 1.7 24.9 ± 1.5 24.5 ± 1.6 25.4 ± 3.7 24.7 ± 0.5 25.2 ± 0.2

18:1n-9 14.7 ± 0.9 14.2 ± 0.8 15.5 ± 0.8 14.3 ± 1.0 13.5 ± 1.1 14.6 ± 1.2
Total monoenes 37.9 ± 3.3 36.0 ± 1.7 38.7 ± 2.3 36.5 ± 3.7 35.3 ± 2.5 37.1 ± 3.8

CLA (9c,11t) 0.0 ± 0.0 0.5 ± 0.3 1.5 ± 0.3 0.0 ± 0.0 0.5 ± 0.1 1.0 ± 0.5
CLA (10t,12c) 0.0 ± 0.0 0.4 ± 0.2 1.3 ± 0.3 0.0 ± 0.0 0.4 ± 0.1 0.9 ± 0.4
Total n-6 PUFA2 5.7 ± 0.5 5.5 ± 0.4 5.9 ± 0.2 5.1 ± 0.5 5.0 ± 0.2 5.1 ± 0.2

20:5n-3 6.2 ± 0.9 6.5 ± 0.9 5.5 ± 0.1 6.8 ± 0.7 7.1 ± 0.5 6.4 ± 0.5
22:6n-3 18.8 ± 1.1 20.8 ± 3.3 16.8 ± 2.0 20.1 ± 0.1 20.8 ± 2.6 18.4 ± 2.9
Total n-3 PUFA3 31.1 ± 1.7 32.6 ± 3.7 28.1 ± 1.8 33.1 ± 0.6 34.2 ± 2.9 30.8 ± 3.2

H1 H2L0 L1 L2 H0

 

Values are means ± SD of 6 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at 
up to 0.4 % 2, totals include 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 and 22:5n-6 present in some 
samples at up to 0.6 % 3, contains 20:3n-3 present at up to 0.1 %.  H0, H1 and H2, diets 
containing FO at 34 % and supplemented with 0, 1 and 2% CLA; L0, L1 and L2, diets 
containing FO at 17 % and supplemented with 0, 1 and 2 % CLA. 
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Table 3.15 Fatty acid composition (percentage of weight) of total lipid from liver of Atlantic 
salmon fed CLA for 2 months 

18:0 6.9 ± 0.5 6.1 ± 1.3 8.7 ± 1.5 5.2 ± 0.6 6.0 ± 0.7 5.5 ± 1.0
Total saturated1 27.0 ± 0.5 27.1 ± 1.0 28.1 ± 1.1 27.9 ± 1.5 27.6 ± 0.5 27.1 ± 2.8

18:1n-9 9.9 ± 1.5 9.5 ± 1.7 8.8 ± 0.9 8.4 ± 0.3 8.5 ± 0.8 8.9 ± 2.1
Total monoenes 17.8 ± 1.9 18.8 ± 4.6 15.8 ± 2.2 16.2 ± 0.8 16.8 ± 2.4 17.8 ± 4.5

CLA (9c,11t) 0.0 ± 0.0 0.8 ± 0.3 1.6 ± 0.2 0.0 ± 0.0 0.6 ± 0.1 1.1 ± 0.3
CLA (10t,12c) 0.0 ± 0.0 0.5 ± 0.3 1.4 ± 0.2 0.0 ± 0.0 0.4 ± 0.1 0.8 ± 0.1
Total n-6 PUFA2 7.8 ± 0.3 7.0 ± 1.6 7.8 ± 0.4 6.2 ± 0.2 6.1 ± 0.2 6.3 ± 0.5

20:5n-3 9.1 ± 0.5 8.2 ± 0.9 7.5 ± 0.8 9.9 ± 0.6 9.8 ± 0.3 10.2 ± 0.9
22:6n-3 34.2 ± 2.0 33.6 ± 1.5 34.8 ± 2.5 35.5 ± 2.2 34.4 ± 2.9 32.2 ± 2.1
Total n-3 PUFA3 47.4 ± 2.3 45.8 ± 2.1 45.3 ± 2.5 49.5 ± 2.5 48.3 ± 2.4 46.9 ± 2.1

H1 H2L0 L1 L2 H0

 
Values are means ± SD of 6 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at 
up to 0.4 % 2, totals include 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 and 22:5n-6 present in some 
samples at up to 0.6 % 3, contains 20:3n-3 present at up to 0.1 %.  H0, H1 and H2, diets 
containing FO at 34 % and supplemented with 0, 1 and 2 % CLA; L0, L1 and L2, diets 
containing FO at 17 % and supplemented with 0, 1 and 2 % CLA.. 
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Table 3.16 Fatty acid composition (percentage of weight) of total lipid from muscle of Atlantic 
salmon fed CLA for 2 months 

18:0 4.2 ± 0.1 4.2 ± 0.3 5.0 ± 0.9 3.7 ± 0.3 4.0 ± 0.3 4.1 ± 0.2
Total saturated1 26.1 ± 0.6 24.5 ± 1.4 26.3 ± 1.2 25.0 ± 1.1 25.2 ± 0.9 25.9 ± 1.4

18:1n-9 15.3 ± 0.8 15.2 ± 1.0 16.7 ± 0.4 14.9 ± 1.0 14.8 ± 0.6 15.5 ± 1.3
Total monoenes 37.1 ± 1.7 37.3 ± 4.2 37.3 ± 5.0 38.1 ± 2.8 36.3 ± 1.8 37.8 ± 2.1

CLA (9c,11t) 0.0 ± 0.0 0.9 ± 0.3 2.9 ± 0.3 0.0 ± 0.0 0.7 ± 0.2 1.7 ± 0.1
CLA (10t,12c) 0.0 ± 0.0 0.8 ± 0.3 2.6 ± 0.2 0.0 ± 0.0 0.6 ± 0.2 1.6 ± 0.1
Total n-6 PUFA2 6.7 ± 0.3 6.1 ± 0.3 6.2 ± 0.9 5.1 ± 0.1 5.1 ± 0.2 5.1 ± 0.2

20:5n-3 6.8 ± 0.5 6.7 ± 0.8 5.4 ± 0.6 6.6 ± 0.7 7.0 ± 0.4 6.9 ± 1.3
22:6n-3 16.0 ± 1.9 17.5 ± 1.6 13.8 ± 1.1 18.2 ± 1.5 18.1 ± 1.0 14.2 ± 1.9
Total n-3 PUFA3 29.5 ± 1.6 30.5 ± 2.0 24.8 ± 1.0 31.6 ± 2.3 32.1 ± 1.1 27.8 ± 3.8

H1 H2L0 L1 L2 H0

 
Values are means ± SD of 6 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at 
up to 0.4 % 2, totals include 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 and 22:5n-6 present in some 
samples at up to 0.6 % 3, contains 20:3n-3 present at up to 0.1 %.  H0, H1 and H2, diets 
containing FO at 34 % and supplemented with 0, 1 and 2% CLA; L0, L1 and L2, diets 
containing FO at 17 % and supplemented with 0, 1 and 2 % CLA
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Table 3.17  Fatty acid composition (percentage of weight) of total lipid from liver of Atlantic 
salmon fed CLA for 3 months 

14:0 1.6 ± 0.1 1.5 ± 0.1 1.3 ± 0.2 2.3 ± 0.5 1.8 ± 0.2 1.9 ± 0.2
16:0 18.5 ± 1.3 17.8 ± 0.2 17.1 ± 0.9 19.4 ± 0.9 18.7 ± 0.9 18.4 ± 0.7
18:0 8.3 ± 1.0 8.8 ± 1.1 8.9 ± 0.8 6.3 ± 0.3 7.1 ± 0.4 7.4 ± 0.5
Total saturated1 29.0 ± 1.3 28.8 ± 1.3 27.8 ± 0.7 28.6 ± 1.1 28.2 ± 1.2 28.3 ± 1.2

16:1n-72 2.3 ± 0.1 2.2 ± 0.3 2.0 ± 0.2 3.2 ± 0.5 2.6 ± 0.3 2.6 ± 0.3
18:1n-9 9.6 ± 1.0 8.8 ± 0.4 9.4 ± 0.6 9.4 ± 1.0 8.2 ± 0.8 8.9 ± 0.8
18:1n-7 2.4 ± 0.1 2.3 ± 0.1 2.3 ± 0.1 2.6 ± 0.2 2.5 ± 0.2 2.5 ± 0.1
20:1n-93 1.8 ± 0.2 1.8 ± 0.1 1.6 ± 0.2 2.1 ± 0.4 1.6 ± 0.3 2.0 ± 0.2
22:1n-114 0.5 ± 0.1 0.4 ± 0.3 0.6 ± 0.2 1.0 ± 0.4 0.7 ± 0.2 8.0 ± 0.2
24:1n-9 1.1 ± 0.1 1.0 ± 0.2 0.8 ± 0.1 1.1 ± 0.2 0.9 ± 0.0 0.9 ± 0.1
Total monoenes 17.7 ± 0.5 16.7 ± 1.0 16.6 ± 1.4 19.3 ± 2.4 16.4 ± 1.0 17.6 ± 1.6

18:2n-6 2.8 ± 0.2 2.9 ± 0.2 3.0 ± 0.2 1.9 ± 0.2 1.7 ± 0.2 1.8 ± 0.1
20:4n-6 3.6 ± 0.4 3.7 ± 0.2 3.7 ± 0.2 3.5 ± 0.4 3.9 ± 0.3 3.8 ± 0.3
CLA (9c,11t) 0.0 ± 0.0 0.9 ± 0.2 1.8 ± 0.2 0.0 ± 0.0 0.6 ± 0.1 1.2 ± 0.2
CLA (10t,12c) 0.0 ± 0.0 0.7 ± 0.1 1.6 ± 0.2 0.0 ± 0.0 0.5 ± 0.1 1.0 ± 0.2
Total n-6 PUFA5 7.9 ± 0.4 8.3 ± 0.3 8.3 ± 0.4 6.5 ± 0.3 6.7 ± 0.3 6.7 ± 0.3

18:3n-3 0.4 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.0
18:4n-3 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.5 ± 0.2 0.3 ± 0.1 0.3 ± 0.1
20:4n-3 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.1
20:5n-3 8.4 ± 0.7 8.3 ± 0.6 7.9 ± 0.3 10.2 ± 0.6 10.6 ± 0.3 10.0 ± 0.5
22:5n-3 2.7 ± 0.2 2.5 ± 0.3 2.4 ± 0.1 3.0 ± 0.2 3.1 ± 0.2 2.8 ± 0.1
22:6n-3 33.0 ± 1.3 32.6 ± 0.8 32.5 ± 1.3 30.0 ± 2.3 31.9 ± 1.9 30.7 ± 0.1
Total n-3 PUFA6 45.4 ± 2.0 44.7 ± 0.9 43.9 ± 1.3 45.6 ± 2.5 47.6 ± 1.6 45.3 ± 0.3

H1 H2L0 L1 L2 H0

 
Values are means ± SD of 6 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at 
up to 0.4 %; 2, contains n-9 isomer; 3,contains n-7 isomer; 4, contains n-9 isomer; 5, totals include 
18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 and 22:5n-6 present in some samples at up to 0.6 %; 6, 
contains 20:3n-3 present at up to 0.1 %.  H0, H1 and H2, diets containing FO at 34 % and 
supplemented with 0, 1 and 2 % CLA; L0, L1 and L2, diets containing FO at 17 % and 
supplemented with 0, 1 and 2 % CLA. 
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Table 3.18 Fatty acid composition (percentage of weight) of total lipid from muscle of Atlantic 
salmon fed CLA for 3 months. 

14:0 3.8 ± 0.2 3.7 ± 0.6 3.3 ± 0.2 4.2 ± 0.3 4.3 ± 0.3 4.2 ± 0.2
16:0 18.4 ± 0.3 18.1 ± 1.4 16,7 ± 0.4 17.3 ± 0.6 17.5 ± 0.7 16.7 ± 0.5
18:0 5.2 ± 0.2 5.4 ± 0.5 5.3 ± 0.2 4.1 ± 0.2 4.4 ± 0.2 4.3 ± 0.1
Total saturated1 28.2 ± 0.5 28.1 ± 2.5 26.2 ± 0.7 26.3 ± 0.9 26.9 ± 1.1 25.9 ± 0.7

16:1n-72 5.2 ± 0.2 5.2 ± 0.3 4.7 ± 0.1 6.3 ± 0.2 6.2 ± 0.2 6.0 ± 0.2
18:1n-9 14.9 ± 0.4 15.6 ± 0.7 16.0 ± 0.4 14.2 ± 0.8 14.4 ± 0.4 15.0 ± 0.4
18:1n-7 3.3 ± 0.1 3.3 ± 0.2 3.0 ± 0.0 3.4 ± 0.1 3.4 ± 0.2 3.3 ± 0.1
20:1n-93 4.6 ± 0.4 4.8 ± 0.5 4.4 ± 0.2 4.8 ± 0.3 4.5 ± 0.4 4.8 ± 0.5
22:1n-114 3.9 ± 0.4 4.2 ± 0.4 3.8 ± 0.2 4.1 ± 0.3 3.9 ± 0.2 4.0 ± 0.3
24:1n-9 0.7 ± 0.2 0.7 ± 0.2 0.7 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.6 ± 0.1
Total monoenes 32.7 ± 1.5 34.0 ± 2.2 32.6 ± 0.8 33.7 ± 1.5 33.1 ± 1.3 33.6 ± 1.1

18:2n-6 5.2 ± 0.2 5.2 ± 0.2 4.9 ± 0.2 3.4 ± 0.1 3.3 ± 0.1 3.4 ± 0.0
20:4n-6 0.8 ± 0.1 0.7 ± 0.1 0.7 ± 0.0 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.2
CLA (9c,11t) 0.0 ± 0.0 1.9 ± 0.2 3.7 ± 0.4 0.0 ± 0.0 1.1 ± 0.1 2.2 ± 0.2
CLA (10t,12c) 0.0 ± 0.0 1.6 ± 0.2 3.2 ± 0.4 0.0 ± 0.0 1.0 ± 0.1 2.0 ± 0.2
Total n-6 PUFA5 7.2 ± 0.3 7.0 ± 0.7 6.7 ± 0.3 5.2 ± 0.3 5.2 ± 0.4 5.3 ± 0.3

18:3n-3 1.0 ± 0.0 0.9 ± 0.1 0.8 ± 0.0 1.1 ± 0.0 1.0 ± 0.1 1.0 ± 0.1
18:4n-3 1.4 ± 0.0 1.3 ± 0.1 1.2 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.6 ± 0.0
20:4n-3 1.1 ± 0.1 0.9 ± 0.1 0.9 ± 0.0 1.2 ± 0.1 1.2 ± 0.1 1.1 ± 0.0
20:5n-3 7.2 ± 0.3 6.1 ± 1.0 5.9 ± 0.1 8.5 ± 0.5 8.3 ± 0.4 7.6 ± 0.3
22:5n-3 0.8 ± 0.1 2.3 ± 0.4 2.4 ± 0.1 3.2 ± 0.2 3.1 ± 0.2 2.9 ± 0.1
22:6n-3 18.2 ± 1.4 15.5 ± 0.5 16.0 ± 1.3 18.6 ± 1.5 17.0 ± 1.2 16.6 ± 0.5
Total n-3 PUFA6 31.9 ± 1.8 27.4 ± 4.1 27.5 ± 1.2 34.8 ± 2.2 32.6 ± 1.6 31.0 ± 0.8

H1 H2L0 L1 L2 H0

 
Values are means ± SD of 6 samples. 1, contains 15:0, 20:0 and 22:0, present in some samples at 
up to 0.5 %; 2, contains n-9 isomer; 3,contains n-7 isomer; 4, contains n-9 isomer; 5, totals include 
18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 and 22:5n-6 present in some samples at up to 0.5 %; 6, 
contains 20:3n-3 present at up to 0.5 %.  H0, H1 and H2, diets containing FO at 34 % and 
supplemented with 0, 1 and 2 % CLA; L0, L1 and L2, diets containing FO at 17 % and 
supplemented with 0, 1 and 2 % CLA. 
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Table 3.19 Significance (P values) of effects of dietary conjugated linoleic acid (CLA) and oil 
content (Oil), and their interaction (Interact.) on tissue fatty acid compositions after feeding the 
diets for 1 month, as determined by two-way ANOVA. 

Liver Muscle

18:0
Total saturated

18:1n-9
Total monoenes

CLA (9c,11t)
CLA (10t,12c)
Total n-6 PUFA 

20:5n-3
22:6n-3
Total n-3 PUFA

0.2299 0.2421

Interact CLA

<0.0001 <0.0001 <0.0001 <0.0001

Oil InteractCLA Oil

0.6623 0.4662 0.9393 0.9743
0.0367 0.8593

0.4351 0.8354
0.8271 0.91710.8702 0.6307

0.0559 0.5437 0.0508 0.1466 0.1738 0.9062
0.0280 0.4350 0.3979 0.96320.0028 0.0633

0.0005 <0.0001 0.2162 0.2231

0.5070 0.0257 0.5966 0.5018 0.0029 0.7685

<0.0001 <0.0001

0.0217 0.0176 0.0715 0.1191
0.6805 0.0758

0.0442 0.9029
<0.0001 0.0020

0.4594 0.7191 0.1923 0.0541 0.1054 0.9311
0.5897 0.0286
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Table 3.20 Significance (P values) of effects of dietary conjugated linoleic acid (CLA) and oil 
content (Oil), and their interaction (Interact.) on tissue fatty acid compositions after feeding the 
diets for 2 months, as determined by two-way ANOVA. 

Liver Muscle

18:0
Total saturated

18:1n-9
Total monoenes

CLA (9c,11t)
CLA (10t,12c)
Total n-6 PUFA 

20:5n-3
22:6n-3
Total n-3 PUFA

Interact CLA Oil InteractCLA Oil

0.1546 0.0042 0.0603 0.0818
0.5133 0.2031

0.0229 0.4026
0.6274 0.41140.9566 0.8497

0.9300 0.2357 0.5942 0.1042 0.1417 0.6816
0.4500 0.8893 0.9136 0.85410.8237 0.7052

<0.0001 0.0265 0.1256 <0.0001
<0.0001 0.0087 0.0141 <0.0001

0.6721 0.4472

0.0003 0.0004
0.0004 0.0007

<0.0001 0.44720.4440 0.0021

0.2821 0.0002 0.1028 0.2930
0.5876 0.8773 0.2974 0.0025

0.9453 0.0038

0.1693 0.1900
0.1676 0.5568
0.0505 0.85480.2511 0.0835
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Table 3.21 Significance (P values) of the effects of dietary conjugated linoleic acid (CLA) and 
oil content (Oil), and their interaction (Interact.) on tissue fatty acid compositions after feeding 
the diets for 3 months, as determined by two-way ANOVA.  

Liver Muscle

14:0
16:0
18:0
Total saturated

16:1n-7
18:1n-9
18:1n-7
20:1n-9
22:1n-11
24:1n-9
Total monoenes

18:2n-6
20:4n-6
CLA (9c,11t)
CLA (10t,12c)
Total n-6 PUFA

18:3n-3
18:4n-3
20:4n-3
20:5n-3
22:5n-3
22:6n-3
Total n-3 PUFA

0.0561 <0.0001 0.7055 0.4984 <0.0001 0.2065

Oil InteractCLA Oil Interact CLA

0.0042 <0.0001 0.1530 0.1205
0.0224 0.0043 0.8450 0.0008

0.7143 0.0825

<0.0001 0.1950
0.0293 0.2091

<0.0001 0.8675
0.2904 0.6673 0.4691 0.0187 0.0112 0.3098
0.0238 <0.0001

0.0031 <0.0001 0.1530 <0.0001
0.8156 0.0008

<0.0001 0.0649
<0.0001 0.5323

0.1530 0.0002 1.0000 0.0010 0.0009 0.1304
0.0146 0.1128

0.0649 0.0561 0.0145 0.8284
0.1460 0.0004 0.3442 0.1296

0.1229 0.2394

0.4568 0.1022
0.0979 0.0061
1.0000 0.2394

0.0206 0.1747 0.3679 0.7342 0.4586 0.2031
<0.0001 1.0000

0.4345 <0.0001 0.0932 0.0649
0.4930 0.4810

<0.0001 0.0088
0.0935 0.4810

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
0.1315 0.5249

<0.0001 <0.0001<0.0001 <0.0001 <0.0001 <0.0001

0.0195 <0.0001 0.2394 <0.0001
0.0859 <0.0001

<0.0001 0.1530
<0.0001 0.2394

0.3798 <0.0001 0.3798 0.0003 <0.0001 0.0195
0.0859 0.0003

0.0851 <0.0001 0.5323 <0.0001
0.1785 <0.0001 0.1785 0.0006

0.3651 0.0018

<0.0001 0.1190
<0.0001 0.0712
0.1102 0.6440

0.1380 0.0214 0.2188 0.0002 <0.0001 0.4302
0.5863 0.0046
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3.4 Discussion 

The principal aim of this trial was to determine if dietary CLA had any important 

effects on lipid metabolism and growth parameters in Atlantic salmon.  Collectively there 

was little evidence from preceding studies that dietary CLA can influence proximate 

composition, growth, feed efficiency or biometry of salmonids (Berge et al, 2004; 

Figueiredo-Silva et al., 2005; Bandarra et al., 2006; Valente et al, 2007a).  This is in 

agreement with the results of the present study, which also show that dietary CLA, at 

levels up to 2 % of total diet, does not influence SGR, FCR, VSI and HSI.  However, 

dietary CLA was shown to significantly increase HSI in striped bass (Twibell et al., 

2000) and yellow perch (Twibell et al., 2001).  Although HSI was not influenced by 

dietary CLA in the present trial, it was increased in fish fed high dietary oil.  The 

increased HSI was associated with increased lipid and TAG content in the liver, whereas 

in the studies on yellow perch and tilapia, increased HSI was not associated with 

increased lipid content and, indeed, liver lipid content was reduced by CLA in striped 

bass (Twibell et al., 2001; Yasmin et al., 2004).  The effects of dietary CLA on lipid 

content and composition were more prevalent towards the end of the study, with 

significant increases in flesh TAG associated with significant increases in lipid content.  

These data are as expected of course, and are consistent with the changes in lipid content, 

composition and fatty acid composition in salmon fed CLA being gradual and 

progressive with time.  

Dietary CLA has been shown to have some beneficial effects on body 

composition in mammals, with decreased body fat and increased lean body mass having 

been shown in mice, rats and pigs (Ohnuki et al., 2001; Thiel-Cooper et al., 2001; 
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Terpstra et al., 2002; Tischendorf et al., 2002; Yamasaki et al., 2003).  CLA also 

decreased whole body TAG accumulation in hamsters (Bouthegourd et al., 2002) and 

reduced hepatic TAG levels in rats (Rahman et al., 2002).  In contrast, similar effects 

have rarely been observed in fish.  No significant effects of CLA on carcass lipid, intra-

peritoneal fat or liver lipid content were reported in catfish (Twibell and Wilson, 2003), 

or on tissue lipid contents in tilapia (Yasmin et al., 2004).  However, intra-peritoneal fat 

and liver lipid content were decreased by dietary CLA in striped bass (Twibell et al., 

2001).  Whole body proximate composition remained unchanged throughout the course 

of the trial, even when fed in combination with high fat diets, in line with previous 

studies on salmon and trout fed CLA (Berge et al., 2004; Figuredo-Silva et al., 2005; 

Valente et al., 2007a).  Thus, in this instance, high dietary oil level does not greatly 

enhance the effects of dietary CLA in Atlantic salmon as hypothesised.  Indeed, overall 

the data suggest that dietary CLA does not have any beneficial effects on growth 

performance or body composition in salmon smolts that can tolerate higher levels of lipid 

in their diet.  However, as expected dietary oil level significantly increased the amount of 

lipid in salmon as a percentage of total carcass composition consistent with higher dietary 

oil leading to higher deposition of fat in the tissues of fish in general (Sargent et al., 

2002; Tocher, 2003).   

In the present trial we also aimed to determine if absolute content of CLA in the 

diet or the level of CLA relative to other fatty acids in the diets were more important in 

eliciting effects, and the diets were specifically formulated to this end.  The appropriate 

formulations were largely achieved and the diets provided a graded amount of CLA 

relative to total fatty acids with diets L1 and H2 supplying around the same amount of 

CLA relative to other fatty acids, but at two levels of dietary inclusion, 1 % and 2 %.  The 
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few significant effects observed made it difficult to be conclusive on the comparative 

importance of absolute or relative amount of dietary CLA.  However, the effects of 

dietary CLA were generally more pronounced in salmon fed the high oil diets suggesting 

that oil content in the diet was important in determining some of the effects of CLA 

although, as alluded to above, probably not to a level that would be physiologically 

significant.  

Taking all these studies together, it is becoming increasingly appreciated that 

dietary CLA has few effects on lipid homeostasis in salmonids.  However, the effects are 

not consistent and may vary with species, dependant on the pattern of lipid metabolism 

which itself varies with species (Tocher, 2003).  In addition, patterns of lipid metabolism 

may also vary with developmental stage of the fish so this may also be important 

(Tocher, 2003).  Thus, as the salmon used in the present trial were smolts in seawater, 

this is arguably more relevant than the earlier published trial on salmon that used fry in 

freshwater (Berge et al., 2004).  However, ideally, even larger and older Atlantic salmon 

that are known to actively deposit lipid at a much greater rate would have been the 

preferred candidates for study in this instance.  It is possible that the results obtained may 

also be dependant upon other dietary factors such as CLA isomer mix, and duration of the 

feeding trial.  Levels of oil used in the trials investigating the effects of CLA in fish have 

varied between 5 % and 12 % of diet for all species other than salmon, or up to 24 % and 

34 % (the present trial) of the diet in salmon.  The diets have generally been based on FO 

although the exact type has varied, and two trials also used diets including a mix of FO 

and VOs such as corn and soybean oil (Twibell et al., 2000, 2001; Twibell and Wilson, 

2003; Berge et al., 2004; Yasmin et al., 2004).  A diet containing exclusively VO could 

possibly be interesting to investigate, to determine if CLA could have more pronounced 
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effects when the basal diet had such a substantial difference in dietary fatty acid 

composition that a diet rich in VO would have.  Although the influence of individual 

CLA isomer preparations as dietary supplements have yet to be investigated in fish, it can 

be surmised from studies in rodents that each isomer may have different metabolic effects 

in salmon and that c9t11 and t10c12 CLA may even have acted antagonistically (Brown 

et al., 2003a; Brandebourg and Hu, 2005).  Many of the previous trials in fish also failed 

to define the precise chemical from of the CLA (free fatty acid, methyl esters or TAG).  

Thus, the effects of dietary CLA on lipid metabolism in the present trial may have been 

masked by the type of CLA preparation used. 

In mammals, CLA is also known to decrease the activity and gene expression of 

SCD and may also suppress ∆5 and ∆6 desaturases, and elongase (Choi et al., 2001, 

2002; Chuang et al., 2001a,b; Eder et al., 2002).  Dietary CLA increased saturated fatty 

acids and decreased 18:1 and C18 PUFA in pig muscle and fat (Ramsay et al., 2001), 

indicating a suppression in SCD activity.  In chicken, dietary CLA decreased 22:6n-3 in 

all tissues (Yang et al., 2003) and increased saturates and decreased monoenes and PUFA 

in eggs (Szymczyk and Pisulewski, 2003).  The tissue fatty acid composition data in the 

present study indicated that dietary CLA might have some similar effects in salmon.  In 

support of the above findings, dietary CLA has also been reported to significantly alter 

the ratio of 18:0/18:1n-9 in tissues of related studies involving rainbow trout (see section 

6.3.4; Bandarra et al., 2006; Valente et al., 2007a), striped bass (Twibell et al., 2000), 

yellow perch (Twibell et al., 2001), salmon (Berge et al., 2004) and sea bass (Valente et 

al., 2007b).  Dietary CLA has had rather diverse effects on tissue fatty acid compositions 

in fish.  For example, lower 16:1n-7 was reported in striped bass, and lower monoenes 

were reported in liver and muscle of yellow perch and in tilapia tissues (Twibell et al., 
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2000, 2001; Yasmin et al., 2004).  In striped bass, CLA increased PUFA, including 

20:5n-3, 22:6n-3 and 18:2n-6, in liver, but decreased PUFA in muscle (Twibell et al., 

2000).  Total n-3 PUFA, especially 22:6n-3, were increased in salmon fry fed CLA 

(Berge et al., 2004), however 22:6n-3 was significantly decreased in muscle of rainbow 

trout fed up to 2 % CLA (Bandarra et al., 2006).  No effect on 22:6n-3 levels were 

reported in a similar trial by the same laboratory using larger sized trout (Valente et al., 

2007a).  In the present study, it was noteworthy that deposition of CLA in flesh was at 

the expense of n-3 HUFA whereas in liver it was at the expense of saturated and 

monounsaturated fatty acids.  Clearly, the benefits of CLA-fed fish would be greater if 

this was the other way around and CLA replaced saturated and monounsaturated fatty in 

the flesh.  One potential consequence of feeding dietary CLA to oily fish such as salmon, 

is that they can incorporate an appreciable quantity of the bioactive fatty acid in their 

flesh, thus potentially providing a source of CLA to the human diet.  In line with previous 

studies in salmonids, results indicate that CLA is preferentially incorporated into flesh 

tissue with levels reaching approximately 7 % of the two CLA isomers, c9t11 is retained 

in both liver and flesh somewhat more than t10c12 CLA.  This finding may have 

commercial impact if CLA is ever to be incorporated into mainstream aquafeeds 

considering the potential physiological differences each isomer elicits in other animal 

models.  This trial was unable to elucidate at which point maximal deposition of CLA 

was attained in flesh.  This was due to the fact that levels of this bioactive fatty acid 

continued to increase steadily in both liver and flesh during the entire duration of the trial.  

However, it is possible this time could be reduced if relatively larger and older fish, 

actively depositing lipid, were fed dietary CLA although this has to be balanced with the 

fact that it can take longer to effect changes in tissue fatty acid compositions in larger 
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animals.  Indeed, near market-sized rainbow trout incorporated a maximum CLA level of 

2.4 % of total fatty acids after only six weeks of a twelve week trial in fish diets 

containing 1 % CLA (Ramos et al., 2006).  

In summary, CLA had no effect on growth parameters, but there was a clear but 

gradual trend of increased total lipid and TAG contents in both liver and flesh in fish fed 

CLA, particularly in fish fed high oil diets.  CLA was incorporated into tissue lipids, with 

levels in flesh being 2-fold higher than in liver, but importantly, incorporation in flesh 

was at the expense of n-3 HUFA.  In conclusion however, the results of the present study 

generally do not support the hypothesis that dietary CLA elicits beneficial changes in 

Atlantic salmon smolts in terms of enhanced growth parameters or improved body 

composition and flesh quality through decreased adiposity or lipid deposition.  However, 

salmon fed CLA could be beneficial in the human diet through provision of CLA with 

minimal effect on n-3 HUFA levels.   
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CHAPTER 4. INFLUENCE OF DIETARY CLA ON LIPID 
METABOLISM AND IMMUNE FUNCTION IN 

ATLANTIC SALMON 

4.1 Introduction 

Evidence suggests that CLA could affect lipid accumulation both by decreasing 

synthesis and increasing oxidation in mammals (Pariza et al., 2001). Although the exact 

biochemical mechanism of action of CLA is yet to be elucidated, CLA has been proven 

to alter the gene expression of an array of transcription factors known to be pivotal in the 

control of lipid metabolism.  The most extensively studied of these with regard to studies 

involving CLA in mammals includes the family of nuclear transcription factors named 

peroxisome proliferator-activated receptors or PPARs.  As outlined previously, there are 

three main isoforms of PPAR in mammals named PPARα, PPARβ and PPARγ.  CLA 

isomers are ligands and activators of PPARα/PPARβ (Moya-Camarena; et al., 1999a,b) 

and PPARγ (Belury, 2002) that in mammals are, in turn, known to regulate the expression 

of genes of fatty acid oxidation and lipid deposition in liver/skeletal muscle 

(PPARα/PPARβ) and adipose tissue (PPARγ), respectively.  Generally, increased 

expression and activity of PPARα stimulates fatty acid oxidation through activation of a 

comprehensive set of target genes, including CPT-1 and ACO, primarily in liver 

(Desvergne et al., 2006).  Similarly, activation of PPARβ leads to increased fatty acid 

oxidation, however, principally in muscle (Tanaka et al., 2003).  Activation of PPARγ is 

known to enhance adipogenenis and steatosis in murine models (Desvergne et al., 2006) 

and deletion of this transcription factor results in reduced lipid distribution in muscle 
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(Norris et al., 2003).  However, to date only gross effects have been measured in fish 

administered dietary CLA, and the biochemical pathways have not been directly studied. 

The influence of PPARα is not restricted to effects on fatty acid catabolism given 

that this transcription factor is also implicated in the regulation of fatty acid desaturation.  

Indeed, it has been elucidated that PPARα can directly activate ∆6 desaturase gene 

transcription in rodents (Nakamura and Nara, 2004).  Moreover, PPARs may also be 

implicated in immunological function and have been shown to mediate the expression of 

various genes involved in proliferation of lymphocytes, macrophages, apoptosis and 

inflammation (O’Shea et al., 2003). In addition, other studies have also recently shown 

that CLA confers an anti-inflammatory response in human vascular smooth cells 

(Ringseis et al., 2006) and decreases production of pro-inflammatory products in 

macrophages (Yu et al., 2002), via a PPARγ-dependant mechanism.  

Accordingly, the overall objective was to test the hypothesis that CLA has 

beneficial effects on the biochemistry and physiology of Atlantic salmon through 

affecting lipid and fatty acid metabolism as well as immune function.  The specific aims 

of the present study were to determine the effects of CLA on some key pathways of fatty 

acid metabolism including fatty acid oxidation and HUFA synthesis via fatty acyl 

desaturation and elongation, and in addition, to determine the influence of dietary CLA 

on the innate immunological response of Atlantic salmon.  To this end, salmon smolts 

were fed diets containing two levels of FO (low, ~17 % and high, ~34 %) containing 

three levels of CLA (a 1:1 mixture of the two main isomers present in nature, c9t11 and 

t10c12 at 0, 1 and 2 % of diet) for 3 months.  The effects of dietary CLA on the 

expression of key genes of fatty acid oxidation and HUFA synthesis, and on the enzymic 

activities of the respective pathways were determined. In addition, the effect of CLA on 
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the expression of the potentially important transcription factors, PPARs, was determined 

in selected tissues. Finally, the influence of dietary CLA on some basic haematology and 

non-specific immune response parameters were measured.  

 

4.2 Materials and Methods 

4.2.1 Experimental Fish and Diets 

This experiment was an extension of the work described in Chapter 3.  

Photoperiod adapted Atlantic Salmon smolts (S1/2) were obtained from a commercial 

salmonid farm (Howietoun Fish Farm, Sauchieburn, Scotland) in late October 2003 and 

transported to the Machrihanish, Marine Environmental Research Laboratory, 

Machrihanish, Scotland.  General fish husbandry was followed as described in section 

3.2.2. The formulations and fatty acid compositions of the diets are also presented in 

section 3.2.2. 

4.2.2 Sampling and Analysis 

Sampling of the fish was carried out essentially as described in section 3.2.3.  In 

addition though, 0.5 g samples of liver, white and red muscle, intended for molecular 

analysis, were rapidly dissected from six fish (two per tank) and immediately frozen in 

liquid nitrogen prior to storage at -80 oC .  Samples of 1-2 g of liver, white and red 

muscle for biochemical analyses were also collected and immediately frozen in liquid 

nitrogen prior to storage at -80 oC.  Blood and head kidney was extracted from the 

remaining sampled fish prior to being assayed for basic haematology and non-specific 

immune response parameters as detailed in section 2.4. 
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For biochemical analyses (enzyme and pathway assays), homogenates of liver, 

red and white muscle, and liver microsomes were prepared as described in sections 2.3.1 

and 2.3.2. Peroxisomal β-oxidation capacity and CPT-1 activity were measured in 

homogenates of liver, red and white muscle as described in sections 2.3.3 and 2.3.4, 

respectively.  HUFA synthesis in liver microsomes was determined as described in detail 

in section 2.3.2.  

For gene expression studies, the PCR primers were designed according to the salmon 

cDNA sequences for ∆6 desaturase (accession no. AY458652), ∆5 desaturase (accession 

no: AF478472), CPT-1 and PPARα (M.J. Leaver, personal communication), PPARβ1 

(accession no: AJ416953) and PPARγ (accession no: AJ416951).  Primer sequences and 

PCR product sizes are given in Table 4.1.  

Table 4.1 Forward (sense) and reverse (antisense) primers used for QPCR. 

Gene PCR product length Forward primer Reverse primer

∆5 Desaturase 192 5’-GTGAATGGGGATCCATAGCA-3’ 5’-AAACGAACGGACAACCAGA-3’.

∆6 Desaturase 181 5'-CCCCAGACGTTTGTGTCAG-3’ 5’-CCTGGATTGTTGCTTTGGAT-3’

CPT-1 161 5'-GAGAGAGCTGCGACTGAAAC-3' 5'-GACAGCACCTCTTTGAGGAA-3'
PPARα 204 5'-ATCTTCCACTGCTGCCAGTGC-3' 5'-GATGAAGCCCGATCCGTAGGCCACCAGG-3'
PPARβ1 517 5'-TACCGCTGCCAGTGCACCACGGTG-3' 5'-TTCTGGACCAAGCTGGCGTTCTCA-3'
PPARγ 266 5'-TATCTCCCCTCTCTAGAGTA-3' 5'-AGGGCTTATCGTTTACTGAACCTTGATACACGC-3'

 

The linearised plasmid DNA containing the target sequence for each gene was 

quantified to generate a standard curve of known copy number as described in section 

2.5.4.  Amplification and quantification of cDNA samples and DNA standards was 

carried out by quantitative real-time PCR (Q-PCR) essentially as described in section 

2.5.5, with the modifications noted below.  Expression of target genes was normalised to 

total cDNA (i.e. tissue RNA) using Quant-iTTM High Sensitivity DNA Assay kit 
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containing PicoGreen reagent, (Molecular Probes, Rijinsburgerweg, The Netherlands) 

using a modified version of the manufacturers protocol as reported previously (Whelan et 

al., 2003).  Twelve µl of the total cDNA from each of the reverse transcribed tissue RNA 

samples was added to individual wells of a 96-well plate along with 200 µl of a reaction 

mix containing a 1:200 dilution of Quant-iTTM DNA HS reagent in Quant-iTTM DNA 

HS Buffer.  A lid was fixed and the plate vortexed for three bursts of 1 s before flicking 

the plate downward to force the liquid to the bottom of the wells.  The plate was wrapped 

in aluminium foil to prevent light degradation of the PicoGreen Reagent and left for 30 

mins at room temperature.  All reactions were carried out in duplicate.  The plate was 

read using a Wallac Victor2 1420 Multilabel Counter (PerkinElmerTM) using an 

absorbance spectrum for PicoGreen standard of 480 nm for excitation with measurement 

at 520 nm. A linear standard curve was drawn, plotting the average absorbance values 

obtained for M13 cDNA standard values against the standard DNA concentration.   

4.2.3 Statistical Analysis 

All data presented are as means ± SD (n value as stated).  Percentage data and 

data that were identified as non-homogenous were subjected to arcsine transformation 

before analysis.  The effects of dietary CLA and oil content and any interaction thereof 

was determined by two-way analysis of variance (ANOVA) with Bonferroni post-tests to 

determine significance of differences (Prism 3, Graphpad Software, Inc., San Diego, 

USA).  Differences were regarded as significant when P < 0.05 (Zar, 1984). 



Chapter 4  

 96

4.3 Results 

4.3.1 HUFA Synthesis, Peroxisomal β-oxidation Capacity and CPT-1 
Activity 

Microsomal HUFA synthesis, measured as the sum of desaturated and elongated 

products of radiolabelled precursor, 18:3n-3, is presented in Figure 4.1.  HUFA synthesis 

was significantly affected by both dietary oil and CLA content as determined by 2-way 

ANOVA (Table 4.2). However, there was significant interaction between the variables.  

Dietary CLA at the 2 % inclusion level fed in combination with the low oil diet increased 

total HUFA synthesis 3-fold compared to fish fed FO alone whereas CLA decreased 

HUFA synthesis at the high dietary oil level.  Supplementation with high dietary oil 

resulted in a significant decrease in HUFA synthesis.  

Figure 4.1 Effects of dietary oil content and conjugated linoleic acid (CLA) on highly 
unsaturated fatty acid (HUFA) synthesis in the liver microsomes.  
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(i.e. diet L0) = 1. 
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Table 4.2 Significance (P values) of effects of dietary conjugated linoeic acid (CLA) and 
oil content (Oil) and there interaction (Interact.) as determined by ANOVA. 

CLA Oil Interact.

Liver
HUFA synthesis activity < 0.0001 < 0.0001 < 0.0001
∆6 desaturase expression 0.0009 <0.0001 0.0156
∆5 desaturase expression 0.0031 0.0009 0.5247
β-oxidation activity 0.2757 0.0136 0.5943
CPT-1 activity 0.8506 0.5573 0.8676
CPT-1 expression 0.0027 0.001 0.0483
PPARα expression 0.0001 0.0347 0.1144
PPARβ expression 0.0004 0.0445 0.1649
PPARγ expression 0.0449 0.2061 0.237

Red muscle
β-oxidation activity 0.8133 0.3457 0.5257
CPT-1 activity 0.0355 0.1511 0.4857
CPT-1 expression 0.0022 0.7695 0.3469
PPARα expression 0.2603 0.0172 0.0034
PPARβ expression 0.1182 <0.0001 0.046

White muscle
β-oxidation activity 0.0795 0.1473 0.8623
CPT-1 activity 0.0075 0.0001 0.1409
CPT-1 expression 0.0077 0.7394 0.2716
PPARα expression 0.0292 0.0518 0.0836
PPARβ expression 0.0032 0.0006 0.0822

P Value

 
CPT-1. carnitine palmitoyltransferase-1, HUFA, highly unsaturated fatty acids; PPAR, 
peroxisome proliferator activated receptor; PUFA, polyunsaturated fatty acid. 
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Peroxisomal β-oxidation, estimated by measuring the recovery of radioactivity in 

acid-soluble products of radiolabelled palmitate, was not significantly changed in red or 

white muscle of fish by either dietary treatment, oil content or CLA (Table 4.2).  

However, there appeared to be a trend that indicated CLA may enhance peroxisomal β-

oxidation in white muscle tissue although the high variability made the observed 

incremental increase non-significant.  In contrast, hepatic peroxisomal β-oxidation was 

significantly reduced at the high dietary oil inclusion level however it was unaffected by 

CLA administration (Figure 4.2).   

Figure 4.2 Effects of dietary oil content and conjugated linoleic acid (CLA) on 
peroxisomal β-oxidation activities in tissue homogenates of red and white muscle, and 
liver. 
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Data are presented as means ± SD (n = 3) relative to diet L0 = 1. 
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The activity of CPT-1, a key enzyme of mitochondrial β-oxidation, was 

significantly increased in white muscle of salmon fed high oil diets (Figure. 4.3, Table 

4.2).   Conversely, dietary oil level did not influence CPT-1 activity in liver or red muscle 

of fish.  CLA significantly increased the CPT-1 activity of both red and white muscle, 

particularly when administered in combination with high dietary oil, however the 

observed incremental trend was not mirrored in liver.  Although not significant, there was 

a clear trend that fish administered CLA decreased hepatic CPT-1 activity when fed in 

conjunction with low fat diets (Figure 4.3). 

Figure 4.3. Effects of dietary oil content and conjugated linoleic acid (CLA) on carnitine 
palmitoyl acyltransferase-1 (CPT-1) activities in tissue homogenates of red and white 
muscle, and liver.  
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Data are presented as means ± SD (n = 3) relative to diet L0 = 1. 
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4.3.2 Tissue Expression of CPT-1, Fatty Acyl Desaturases  and PPARs 

Both dietary oil and CLA affected ∆5 and ∆6 gene expression (Figure. 4.4).  

Specifically, gene expression was significantly decreased in response to high dietary oil 

whereas dietary CLA significantly increased both dietary ∆5 and ∆6 desaturase transcript 

levels (Table 4.2).  Dietary CLA significantly increased the expression of CPT-1 in liver, 

red and white muscle (Figure 4.5; Table 4.2). CPT-1 expression was significantly 

increased in liver of fish fed high dietary oil, at least when fed in combination with CLA.  

In contrast, CPT-1 expression was not affected by dietary oil in either muscle tissue 

examined.   

Figure 4.4 Effects of dietary oil content and conjugated linoleic acid (CLA) on the 
expression of ∆6 and ∆5 fatty acid desaturase genes in liver.   
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Genes were determined by Q-PCR and normalised relative to total RNA, determined by 
fluorescent assay, as described in Materials and Methods.  Results are presented as means 
and SD (n = 3) relative to diet L0 = 1. 
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Figure 4.5 Effects of dietary oil content and conjugated linoleic acid (CLA) on the 
expression of carnitine palmitoyl transferase-I (CPT-I) in the liver, red and white muscle.  
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Genes were determined by Q-PCR and normalised relative to total RNA, determined by 
fluorescent assay, as described in Materials and Methods.  Results are presented as means 
and SD (n = 3) relative to diet L0 = 1. 

The expression of all PPAR subtypes was significantly affected by both dietary CLA and 

oil content (Table 4.2).  PPARα expression was increased by dietary CLA in liver and, to 

a lesser extent, white muscle (Figure 4.6).  In red muscle, there was a strong interaction 

between dietary CLA and oil content such that CLA increased expression at low oil 

contents, but the opposite at high dietary oil content.  High oil content may have induced 

increased expression of PPARα in red muscle although the interaction also made this 

difficult to interpret.  PPARβ expression in the muscle tissues was similar to that for 

PPARα in these tissues.  Thus the expression of PPARβ was increased by dietary CLA in 

white muscle whereas there was a significant interaction between CLA and dietary oil in 

red muscle, which made the effects of CLA difficult to interpret (Table 4.2).  However, 
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PPARβ expression was increased by high dietary oil, but dietary CLA decreased PPARβ 

expression in red muscle in fish fed high dietary oil (Figure 4.7). The expression of 

PPARβ in liver was greatest in fish fed 1 % CLA (Table 4.2, Figure 4.7).  Expression of 

PPARγ in liver was significantly increased by dietary CLA, but dietary oil content had no 

significant effect (Table 4.2, Figure 4.8). PPARγ expression in muscle tissues was too 

low to be reliably determined.  

Figure 4.6 Effects of dietary oil content and conjugated linoleic acid (CLA) on the 
expression of PPARα in the liver, red and white muscle. 
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Genes were determined by Q-PCR and normalised relative to total RNA, determined by 
fluorescent assay, as described in Materials and Methods.  Results are presented as means 
and SD (n = 3) relative to diet L0 = 1. 
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Figure 4.7 Effects of dietary oil content and conjugated linoleic acid (CLA) on the 
expression of PPARβ in the liver, red and white muscle. 
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Genes were determined by Q-PCR and normalised relative to total RNA, determined by 
fluorescent assay, as described in Materials and Methods.  Results are presented as means 
and SD (n = 3) relative to diet L0 = 1. 
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Figure 4.8 Effects of dietary oil content and conjugated linoleic acid (CLA) on the 
expression of PPARγ in the liver.  
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Genes were determined by Q-PCR and normalised relative to total RNA, determined by 
fluorescent assay, as described in Materials and Methods.  Results are presented as means 
and SD (n = 3) relative to diet L0 = 1. 

4.3.3 Basic Haematology and Selected Innate Immunological 
Measurements 

There were no significant differences in blood cell counts in Atlantic salmon fed 

CLA at either 1 or 2 % dietary inclusion levels compared with controls (Table 4.2). In 

contrast, red blood cell counts were significantly decreased in fish fed the high oil diets. 

However, haematocrit value was unaffected by either dietary treatment.  There was a 

tendency for the phagocytic ability of head kidney macrophages, as measured by the 

phagocytic index and ratio, to increase in fish fed dietary CLA, particularly when fed in 

combination with low oil diets however this trend was not significant (Table 4.3).  

Respiratory burst as measured by the reduction of NBT by head kidney macrophages of 

Atlantic salmon in the presence of PMA was not influenced by either CLA or dietary oil 
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level (Table 4.3).  Additionally, lysozyme activity was not altered in response to dietary 

treatment (Table 4.3).  

Table 4.3 Effects of dietary oil content and conjugated linoleic acid (CLA) on basic 
haematology and selected immunological parameters of Atlantic salmon.  

Diet

L0 1.00 ± 0.43 1.00 ± 0.19 62.9 ± 10.6 0.19 ± 0.09 11.43 ± 5.10 2.32 ± 1.01 1503.0 ± 378.4

L1 1.03 ± 0.25 1.07 ± 0.21 61.4 ± 4.7 0.23 ± 0.10 12.12 ± 2.45 2.22 ± 0.67 1456.2 ± 389.2

L2 1.13 ± 0.48 0.89 ± 0.19 61.6 ± 10.4 0.24 ± 0.08 12.70 ± 4.81 2.39 ± 0.15 1477.3 ± 409.9

H0 0.96 ± 0.31 1.24 ± 0.16 57.3 ± 10.6 0.18 ± 0.01 12.96 ± 4.21 2.92 ± 0.33 1402.3 ± 299.8

H1 0.98 ± 0.21 1.02 ± 0.25 57.5 ± 7.8 0.17 ± 0.03 14.11 ± 2.99 2.19 ± 1.10 1555.5 ± 329.0

H2 0.92 ± 0.23 1.15 ± 0.17 67.3 ± 9.0 0.19 ± 0.11 13.23 ± 2.52 2.52 ± 0.34 1493.0 ± 190.2

ANOVA

CLA

Oil

Interact. 0.7723

RB A610

(L0 =1) (L0 =1) (U/min/ml)

0.9286

0.96680.2992 0.3242

0.1225 0.7923 0.2727 0.7179 0.8929 0.5244

Lysozyme

0.4232 0.9412 0.3571 0.6539 0.8206 0.3543

(104 cells)

PR (%)RBC WBC PCV (%) PI

0.0298 0.3836 0.6822 0.14

 

RBC, red blood cell count (relative to L0 diet); WBC, white blood cell count (relative to 
L0 diet); PCV, packed cell volume; PI, phagocytic index; PR, phagocytic ratio; RB, 
respiratory burst. 
 

4.4 Discussion 

CLA has the capacity to exert both agonistic and antagonistic effects on a wide 

variety of lipid metabolic factors. These effects are entirely dependent upon the pattern of 

lipid metabolism (Tocher, 2003), which itself varies with species, tissue type, age, dietary 

factors such as lipid content and oil composition, CLA isomer composition and duration 

of supplementation. Thus, it is hard to define a specific biochemical mechanism of action.  

However, the view that CLA can affect lipid accumulation both by decreasing de novo 
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fatty acid synthesis and increasing oxidation is well established, at least in mammals.  For 

example, CLA has been shown to inhibit fatty acid synthetase activity in rat liver (Oku et 

al., 2003), and can also suppress TAG accumulation and can increase fatty acid oxidation 

in 3T3-L1 adipocytes (Evans et al., 2002). It is hypothesised that CLA exert such effects 

on lipid metabolism at the transcriptional level by altering gene expression of key 

regulatory proteins and enzymes mediated, in part, by PPARs.  However, it was unclear 

whether CLA have the ability to alter lipid metabolism in fish in a manner similar to that 

of mammalian models (Berge et al., 2004).   

In the present study, salmon fed CLA exhibited increased expression of ∆5 and 

∆6 fatty acyl desaturases in liver; particularly evident in the low oil diet, which displayed 

around a 2-fold increase in expression of ∆5 and ∆6 desaturase at 2 % inclusion of CLA 

relative to the control.  This was at least partly reflected in HUFA synthesis activity, 

which increased in fish fed 2 % CLA at the low dietary oil content.  Analogously, ∆5 and 

∆6 fatty acid desaturase expression was shown to increase in mice fed CLA (Takaheshi et 

al., 2002), while the amount of the HUFA, 20:5n-3 and 22:6n-3, increased in hybrid 

striped bass in response to dietary CLA (Twibell et al., 2000). One explanation may be 

that transcription factors equivalent to mammalian PPARα and sterol response element 

binding protein-1c (SREBP-1c, a transcription factor involved in regulating adipogenesis) 

are directly involved in regulating ∆6 and ∆5 fatty acyl desaturases in fish via a feedback 

mechanism.  A similar mechanism for the regulation of fatty acyl desaturase gene 

expression has been proposed in mammals whereby ∆6 desaturase gene expression is 

partly regulated by PPARα (Nakamura and Nara, 2004). Indeed, it has been shown that 

ligand activation of PPARα via peroxisome proliferators can result in up-regulation of ∆5 

and ∆6 desaturases, while high PUFA feeding down-regulated these genes in a SREBP-1-
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dependent mechanism (Nakamura and Nara, 2004).  In salmon liver, CLA feeding was 

associated with increases in ∆5 and ∆6 fatty acyl desaturase expression and HUFA 

synthesis in low oil treatments, which might be indicative of a role for ligand activation 

of PPARα by CLA.  In contrast, in high oil diets, ∆5 and ∆6 expression and HUFA 

synthesis was repressed, even in the presence of similar amounts of CLA, possibly 

indicating a role for SREBP-1 proteins.  Interestingly, CLA feeding also increased the 

levels of PPARα, providing some further support for this mechanism of regulation in 

salmon liver. As previously elucidated however, dietary CLA had no significant effect on 

either liver or flesh (muscle) fatty acid compositions in salmon (Chapter 3), thus it 

appears that the increased fatty acyl desaturase expression and HUFA synthesis activity 

does not have a major physiological consequence in terms of gross fatty acid 

compositions.  That alterations in desaturase gene expression and HUFA synthesis 

activity in liver can have relatively little effect on tissue fatty acid compositions has been 

demonstrated previously in several trials in which salmon have been fed VOs (Bell et al., 

2001, 2002). The data from the present trial also show a clear correlation between 

desaturase expression and HUFA synthesis activity, and dietary oil content, with diets 

containing high oil conferring significantly lower levels of desaturase expression and 

HUFA synthesis activity compared to low oil diets. In addition to effects on HUFA 

synthesis, it is fairly well established that there is a reduction in fatty acid synthesis 

(lipogenesis) as a result of high dietary oil levels, as has previously been demonstrated in 

Atlantic salmon and other fish species (Tocher, 2003). 

Beta-oxidation is the principal means of fatty acid catabolism in vertebrates and 

the basic mechanism of the pathway, and possibly regulation, appear to be highly 

conserved in mammals and fish (Nanton et al., 2003).  Unfortunately, in the present trial, 
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it was not possible to measure mitochondrial and hence total β-oxidation as this would 

require assay of fresh tissue and it was not possible to do radioactive work outwith the 

University laboratory.  Therefore assays had to be performed on frozen tissue samples.  

To estimate mitochondrial β-oxidation in these frozen samples, the activity of a key 

enzyme in mitochondrial β-oxidation, CPT-1, was measured.  However, peroxisomal β-

oxidation can still be measured in tissue samples previously frozen as the peroxisomal 

membranes are not damaged by freezing as the mitochondrial membranes are.  

Nevertheless, in the present trial, peroxisomal β-oxidation capacity was not significantly 

affected in red or white muscle tissue of fish fed dietary CLA.  In contrast, CLA  

significantly increased both CPT-1 expression and activity in these tissues.  It has been 

previously suggested that in rats, CLA can increase mitochondrial β-oxidation in a 

variety of tissues via an increase in CPT-1 activity (Rahman et al., 2001).  Mitochondria 

are the major site of β-oxidation in salmonid muscle and thus are more likely to influence 

total fatty acid catabolism in comparison to peroxisomal β-oxidation in this tissue 

(Frøyland et al., 2000).  Obviously, it would have been advantageous to have measured 

mitochondrial β-oxidation in order to offer a more unequivocal interpretation of these 

results; however the preliminary evidence suggests that CLA may enhance total fatty acid 

catabolism in muscle.  Although red muscle was the site of higher peroxisomal β-

oxidation activity in the present study, in terms of total activity, white muscle actually 

represents the site of the largest proportion of fatty acid oxidation in salmon due to the 

large size of the tissue (Frøyland et al., 2000). There are few studies in fish species to 

compare the present data with.  However, dietary lipid level did not alter β-oxidation 

activity in the muscle of haddock Melanogrammus aeglefinus L. fed graded levels of oil 

(Nanton et al., 2003).  In the present study, dietary oil content had no major effect on 
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peroxisomal β-oxidation activity or CPT-1 mRNA levels in either red or white muscle, or 

CPT-1 activity in red muscle, although CPT-1 activity was increased by dietary oil 

content in white muscle.    

Previous studies in rodents showed that CPT-1 mRNA level was elevated in liver 

in response to dietary CLA (Degrace et al., 2004). In the present study, and similar to 

results in muscle, CPT-1 gene expression was found to be up-regulated in salmon liver in 

response to dietary CLA supplementation, although this was not accompanied by 

increased CPT-1 activity.  Furthermore, CPT-1 expression was increased in salmon liver 

in fish fed the high oil diet, at least when fed in combination with CLA.  Consistent with 

this it appeared that in fish fed CLA, CPT-1 activity was also higher in fish fed the high 

oil diet compared with fish fed the low oil. Previously, it was shown that the in vivo rate 

of fatty acid oxidation was associated with in vitro CPT-I activity (Rasmussen and Wolfe, 

1999).  However, studies determining changes in energy metabolism in hamsters fed 

CLA found disparities between the activity of CPT-1 and lipid oxidation in the liver 

(Bouthegourd et al., 2002).  Pertinent to this lack of correlation between CPT-1 

expression and activity in liver is the fact that, with Atlantic salmon of similar age and 

size, catabolism of fatty acids in liver was reported to be principally due to peroxisomal, 

rather than mitochondrial, β-oxidation (Frøyland et al., 2000).  Consequently, CPT-1 may 

not have a prominent role as a regulatory element of fatty acid oxidation in salmon smolt 

liver, considering it is primarily involved in mitochondrial metabolism (Eaton et al., 

1996).  This may also be relevant in the present study as it provides a mechanism 

whereby changes in CPT-1 expression and/or activity could be unrelated to total β-

oxidation activity in salmon liver.  Clearly, it would have been desirable to have been 

able to measure mitochondrial β-oxidation, and also to have measured ACO activity, the 
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rate limiting enzyme of peroxisomal β-oxidation, in the present study.  However, the data 

that were obtained suggest that the major fatty acid oxidation pathway (peroxisomal) in 

salmon liver was generally unaffected by dietary CLA, and actually decreased by high 

dietary oil.  In comparison, graded levels of dietary lipid showed no significant 

differences in total β-oxidation activity in liver of haddock (Nanton et al., 2003). 

There is consolidating evidence that lipid homeostasis is, at least in part, 

modulated through the PPAR transcription factors in mammals.  Recent studies suggest 

that CLA could mediate this activation by acting as high-affinity ligands for a number of 

PPAR isotypes, particularly PPARα (Moya-Camarena et al., 1999b,c).  PPARα is 

intimately involved in the regulation of genes involved in mitochondrial fatty acid 

oxidative processes in mammals (Gulick et al., 1994), whereas PPARγ is primarily 

involved in lipid deposition via preadipocyte differentiation and lipogenesis (Gregoire et 

al., 1998).  Very recent work has elucidated that marine fish also share homologous gene 

sequences, with similar phylogenetic characteristics, to the mammalian PPAR 

counterparts, possibly also suggesting similar molecular roles (Boukouvala et al., 2004; 

Leaver et al., 2005, 2007). However, Atlantic salmon may possibly contain up to five 

PPAR genes, as opposed to three in mammals, and therefore the precise roles of piscine 

PPARs have not been conclusively defined (Andersen et al., 2000; Leaver et al., 2005).  

The effects of CLA on mammalian PPAR gene expression are ambiguous and 

seem to be dependant partly on species, partly on tissue type, and partly on CLA isomer. 

The majority of studies describe a decrease in PPARγ mRNA in isolated adipocytes, or in 

adipose tissue from mice treated with t10c12 CLA or a 1:1 mixture of the two 

predominant CLA isomers (Brown et al., 2003a; Granlund et al., 2003; Kang et al., 

2003). Conversely, CLA has also been reported to increase expression of PPARγ in liver 
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of mice, and in white adipose tissue in rats (Clement et al., 2002; Zhou et al., 2004).  

T10c12 CLA down-regulated PPARα in mice (Warren et al., 2003), however there was 

no change in PPARα expression in liver of hamsters fed diets containing t10c12 or c9t11 

CLA (Macarulla et al., 2005).  In the present study, there was a trend for PPARα 

expression to be increased by dietary CLA in liver, red and white muscle of fish fed the 

low oil diets. In addition, up-regulation of PPARα in response to dietary CLA was also 

observed in white muscle and liver in fish fed the high oil diets.  As mentioned above, 

activation of PPARα (via peroxisome proliferators) can induce β-oxidation through up-

regulation of key enzymes such as CPT-1 in mammals (Nakamura and Nara, 2004).  The 

data in the present trial suggest that PPARα may also be implicated in the action of CLA. 

In general CLA increased the levels of both CPT-1 mRNA and PPARα and, in some 

cases, PPARβ mRNA.  The exceptions to this were PPARα and PPARβ expression in 

red muscle from fish fed the high oil diets, which tended to decrease with dietary CLA 

inclusion and at high CLA inclusion liver PPARβ was decreased.  It has been shown in 

PPARα-knockout mice that the effects of CLA on body fat distribution and 

mitochondrial lipid catabolism genes are not mediated by PPARα, but that the 

peroxisomal β-oxidation gene ACO is mediated by a PPARα-dependent mechanism 

(Peters et al., 2001).  If this is true in fish then it is possible that effects on mitochondrial 

lipid catabolic genes such as CPT-1 could be mediated through PPARβ subtypes. 

However, PPARα expression exceeds that of PPARβ1 by an order of magnitude in 

muscle tissues suggesting PPARα would have the predominant regulatory role.  Of the 

tissues investigated in salmon, PPARγ expression was only detected in liver.  However, 

in agreement with work carried out on mice (Clement et al., 2002), PPARγ mRNA levels 

increased in liver of salmon fed CLA, and CLA has been reported to cause ‘fatty liver’ in 



Chapter 4  

 112

mice (Tsuboyama-Kasaoka et al., 2000; Clement et al., 2002).  However, fish PPARγ 

does not appear to share the same ligand activation profile as in mammals (Leaver et al., 

2005).  Fish PPARγ does not respond to fatty acids and has specific amino acid 

differences compared to the mammalian form which may explain the lack of activation, 

suggesting that is unlikely, despite increases in liver, that CLA would mediate its effects 

through this transcription factor.  Indeed, neither liver size nor lipid content was 

increased in salmon fed CLA (Chapter 3).   

The extent to which the effects of CLA on immunological status could be 

investigated in the present study was rather limited but the data obtained showed that 

CLA had very little effect on the few parameters measured.  Therefore, the data in the 

present study suggest that dietary CLA does not confer a non-humoral immunological 

response in Atlantic salmon, which is in agreement with similar studies in rainbow trout 

(Clarke, 2003; Marshall, 2003).    

In summary, gene expression and activity of various lipid metabolic factors were 

altered in response to graded levels of CLA and/or dietary oil content in Atlantic salmon 

smolts.  Specifically, some association was observed between dietary CLA, liver HUFA 

synthesis and desaturase gene expression, and liver PPARα expression although this 

varied with dietary oil content.  In addition, some association between dietary CLA, CPT-

1 expression and activity, and PPARα expression was observed in muscle tissues.  

However, the magnitude of the changes in fatty acid metabolism observed were not 

sufficient to bring about major changes in the whole body lipid and fatty acid 

composition of the fish (Chapter 3).  Additionally, dietary CLA does not appear to 

significantly influence the immunological response in Atlantic salmon.  In conclusion, 

this study has presented evidence that dietary CLA may have some effects on fatty acid 
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metabolism in Atlantic salmon, but that there is little evidence of a direct mechanism 

involving PPAR transcription factors. However, considering the importance of dietary 

lipid in aquaculture, further work is required to assess the potential of CLA as a dietary 

supplement, and the role of PPARs in the regulation of lipid metabolism in fish.  
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CHAPTER 5. INFLUENCE OF DIETARY CLA AND TTA 
IN ATLANTIC COD 

5.1 Introduction 

Aquaculture is the fastest growing animal-based agricultural food production 

sector, expanding at more than 9 % per year, and currently contributes over one third of 

all the fish in the human food basket (Tacon, 2003).  Farming of finfish in seawater is 

dominated by Atlantic salmon (Salmo salar L.), but other marine species are becoming 

increasingly important, including temperate species such as gilthead sea bream (Sparus 

aurata), European sea bass (Dicentrarchus labrax) and turbot (Psetta maximus) and, in 

colder waters, halibut (Hippoglossus hippoglossus). Recently, declining catches and high 

market prices have seen Atlantic cod (Gadus morhua L.) emerge as the most promising 

species for culture in the northern Atlantic area (Brown and Puvanendran, 2002; Brown 

et al., 2003b) with production expanding in Norway and Scotland.  A major factor 

influencing the commercial success of cod culture will be the development of diets and 

feeding strategies to maximise growth and feed conversion efficiencies (Morais et al., 

2001; Lall and Nanton, 2002; Hemre et al., 2003, 2004; Rosenlund et al., 2004). One 

major issue pertaining to this is that cod store lipid in the liver and, in early studies, 

farmed fish were reported to have enlarged livers and display a HSI of over 12 % 

compared to values of 2 – 6 % in wild fish (Jobling, 1988). In early feeding trials with 

captive cod, the HSI increased from 9.5 % to an average of 13 %, and liver fat increased 

from around 55 % to 67 – 70 % in cod fed various dietary oils (Lie et al., 1986). Further 

studies have consistently shown that farmed cod have high liver lipid levels that can 

exceed 70 % of wet weight, and have higher HSI and condition factor (K) than their wild 
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counterparts (Dos Santos et al., 1993; Shahidi and Dunajski, 1994; Grant et al., 1998; 

Gildberg, 2004). Dietary formulations in aquaculture have tended to exhibit an upward 

trend in lipid as this has successfully increased weight gains, but several studies have 

shown that a potential detrimental side-effect of high fat diets is the deposition of excess 

lipid in tissues (Sargent et al., 2002; Tocher, 2003). This may exacerbate the enlarged 

fatty liver problem in farmed cod and so it is important to gain a clearer understanding of 

the mechanisms determining lipid and fatty acid homeostasis and deposition.   

Excess lipid in cod liver is undesirable since in most cases it is not utilised as a 

food or supplement source in mainstream aquaculture.  Hence, lipid that is deposited in 

the liver of cod is in effect wasted energy that can be used for growth.  However, it is 

noteworthy that unlike salmon, there is no effect on edible muscle lipid content. It is 

therefore important to investigate the possibility of incorporating micronutrients, such as 

CLA and TTA, as additives in aquafeeds so that they may be able to counteract any of the 

abovementioned deleterious consequences.   

Although there are a number of studies detailing the effect of TTA in animal 

models (Berge et al., 2005) prior to the initiation of this study there were no documented 

reports of this bioactive fatty acid being assessed as a dietary supplement in the context 

of aquaculture nutrition.  However, recently four studies have been published, which 

largely investigated the effects of dietary TTA on Atlantic salmon lipid metabolism both 

in vitro and in vivo.  Specifically, the first study analysed the effects of dietary TTA on 

feed intake, growth, tissue fatty acid composition and β-oxidation (Moya-Falcon et al., 

2004). This study concluded that administration of TTA altered the fatty acid 

composition of several tissues and increased hepatic mitochondrial β-oxidation but also 

increased mortality and depressed the growth of the fish.  A subsequent study 
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investigated the effect of 0.75 mM TTA on TAG accumulation and secretion by salmon 

hepatocytes in culture (Vegusdal et al., 2005).  The results indicated that hepatocytes 

incubated with TTA secreted less TAG than when incubated with no fatty acid.  It was 

also suggested the TAG formation was retarded in response to dietary TTA inclusion.  A 

third paper investigated the influence of 0.8 mM TTA and temperature on the lipid 

metabolism of cultured Atlantic salmon hepatocytes (Moya-Falcon et al., 2006); 

concluding that ACO activity was not altered in response to TTA administration.  This 

study also elucidated the effect of feeding Atlantic salmon 0.6 % TTA on cellular uptake 

and oxidation of [1-14C]18:1n-9 in hepatocytes.  Although not significant, there was a 

higher production of oxaloacetate and malate in hepatocytes from TTA-fed fish, which 

was purportedly due to increased mitochondrial β-oxidation.  The fourth study examined 

the consequence of feeding dietary TTA to Atlantic salmon smolts, focussing specifically 

on lipid metabolism and gene expression of a number of enzymes implicated in lipid 

homeostasis in muscle and liver (Kleveland et al., 2006).  This study found that there was 

significantly higher mortality and lower growth rate in fish fed 0.6 % TTA compared 

with fish fed FO diets alone.  However, ACO mRNA level and enzyme activity were 

unaffected by dietary TTA suggesting that peroxisomal β-oxidation was not altered.  

Additionally, TTA increased the HSI whilst PPARα and ApoA1 transcripts were 

decreased in liver of salmon.  This study also reported that there were no significant 

effects on the fatty acid composition, lipid content or gene expression profiles of enzymes 

involved in lipid metabolism of muscle, implying that the liver is more responsive to the 

effects of dietary TTA.   

The aims of the present study were to determine the effects of CLA and TTA on 

growth performance, lipid content, composition and metabolism, and immunomodulation 
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in Atlantic cod. The overall objective being to test the hypotheses that CLA and TTA 

have beneficial effects in cod culture including decreased liver size and proportion 

through decreased lipid content, positive health benefits through improved immune 

status, and increased nutritional quality through effects on fatty acid compositions 

including accumulation of bioactive fatty acids, CLA and TTA, in flesh.  Juvenile cod 

were fed for three months on FM and FO diets of basically commercial formulation, but 

containing either 0.5 % or 1 % CLA, or 0.5 % TTA. The effects of the functional fatty 

acids on growth, feed efficiency, body proximate composition, liver weight and lipid 

composition, fatty acid compositions of flesh and liver, key enzymes of fatty acid 

oxidation, and some immune parameters were determined. 

5.2 Materials and Methods 

5.2.1 Experimental Fish 

The dietary trial was performed at Viking Fish Farms, Ardtoe Marine Laboratory, 

Ardnamurchan, Scotland, between October 2005 and January 2006.  Hatchery reared 

Atlantic cod of the 2004 year class were randomly distributed between twelve indoor, 

round tanks of 1.5 m3 volume (1.72 m diameter) supplied with filtered seawater.  The 

initial stocking density was 50 fish of average weight 127 ± 15 g per tank (5.8 kg/m3), 

with 25 fish per tank individually PIT tagged (Passive Induced Transponder, Fish Eagle, 

Gloucestershire, England) prior to stocking.  Water temperature was maintained at 12 oC 

(± 1 oC) throughout the trial, with a light regime of 12L:12D.   
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5.2.2 Experimental Diets 

Four experimental diets were fed to triplicate tanks for three months, with feeding 

supplied to appetite manually in one morning feed over a period of 1 h.  Waste feed 

pellets were collected and counted 1 h later.  The experimental diets were formulated in 

order to satisfy the nutritional requirements of marine fish (National Research Council, 

1993), and were formulated and manufactured by BioMar A/S, Brande, Denmark.  The 

dietary formulations are presented in Table 5.1.   

Table 5.1 Formulations (percentage of dry ingredients) and proximate compositions 
(percentage of total diet) of experimental diets. 

Fishmeal
Sunflower meal
Wheat gluten
Legume seeds
Micronutrients
Fish oil
CLA
TTA

Moisture 7.5 ± 0.1 ab 7.3 ± 0.3 b 8.0 ± 0.2 a 8.0 ± 0.2 a

Lipid 14.8 ± 0.3 15.4 ± 0.8 15.4 ± 0.7 15.4 ± 0.5
Protein 49.9 ± 0.4 50.2 ± 0.1 49.7 ± 0.4 49.5 ± 0.5
Ash 10.6 ± 0.0 ab 10.7 ± 0.1 a 10.5 ± 0.0 b 10.5 ± 0.0 b

FO CLA1 CLA2 TTA

0.0 0.0 0.0 0.5
0.0 0.8 1.7 0.0
8.8 8.0 7.1 8.3
0.4 0.4 0.4 0.4
17 17 17 17
5 5 5 5
17 17 17 17
53 53 53 53

 
Results for proximate compositions are means ± S.D. (n=3).  Micronutrients, includes 
essential amino acids (methionine and lysine), vitamins, minerals. FO, control diet 
containing fish oil alone, CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; 
TTA, diet supplemented with 0.5 % TTA. 
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Isonitrogenous diets were based on FM and standard Northern hemisphere FO 

with the latter being replaced partially by 0.5 and 1 % CLA, and 0.5 % TTA (as a 

percentage of the total diet).  Diets were identical in formulation other than fatty acid 

composition with CLA (LUTA-CLATM 60, containing 60 % CLA methyl esters as a 

50:50 mixture of c9t11 and t10c12 isomers; BASF AG, Ludwigshafen, Germany) and 

TTA (supplied by Dr Rolf Berge, Thia Medica A.S., Bergen, Norway) balanced by FO 

(capelin oil, Norsemeal Ltd, London, UK).  The fatty acid compositions of the diets are 

presented in Table 5.2.  
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Table 5.2 Fatty acid compositions (percentage of weight) of experimental diets 
containing CLA and TTA. 

14:0 7.2 ± 0.1 a 6.8 ± 0.2 b 6.2 ± 0.1 c 6.2 ± 0.0 c

15:0 0.6 ± 0.0 0.5 ± 0.0 b 0.5 ± 0.0 b 0.5 ± 0.0 b

16:0 19.7 ± 0.2 a 18.9 ± 0.1 b 18.2 ± 0.0 c 18.7 ± 0.1 b

18:0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 3.9 ± 0.0
Total saturated1 31.8 ± 0.3 a 30.5 ± 0.3 b 29.1 ± 0.1 c 29.3 ± 0.1 c

16:1n-7 7.8 ± 0.1 a 7.4 ± 0.1 b 7.0 ± 0.2 c 7.4 ± 0.0 b

18:1n-9 9.9 ± 0.1 c 10.8 ± 0.0 b 11.8 ± 0.2 a 9.8 ± 0.1 c

18:1n-7 3.2 ± 0.0 a 3.1 ± 0.1 a 2.8 ± 0.0 b 3.1 ± 0.0 a

20:1n-9 2.3 ± 0.0 2.2 ± 0.0 2.3 ± 0.2 2.3 ± 0.0
22:1n-11 3.2 ± 0.0 a 3.1 ± 0.0 ab 3.0 ± 0.0 b 3.1 ± 0.0 a

24:1n-9 0.6 ± 0.0 0.5 ± 0.1 0.5 ± 0.0 0.5 ± 0.0
Total monoenes2 27.3 ± 0.2 a 27.4 ± 0.2 a 27.6 ± 0.1 a 26.5 ± 0.0 b

CLA (9c,11t) 0.0 ± 0.0 c 1.8 ± 0.1 b 3.2 ± 0.2 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 1.7 ± 0.1 b 3.1 ± 0.2 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 2.8 ± 0.2 a

18:2n-6 5.7 ± 0.1 b 5.6 ± 0.0 b 5.9 ± 0.0 a 5.6 ± 0.1 b

20:4n-6 1.1 ± 0.0 a 1.0 ± 0.0 b 0.9 ± 0.0 b 1.1 ± 0.0 a

Total n-6 PUFA3 7.8 ± 0.0 a 7.6 ± 0.1 b 7.7 ± 0.1 ab 7.6 ± 0.1 b

18:3n-3 1.0 ± 0.0 a 1.0 ± 0.0 a 0.9 ± 0.0 b 1.1 ± 0.0 a

18:4n-3 2.5 ± 0.0 a 2.4 ± 0.0 b 2.2 ± 0.0 c 2.5 ± 0.0 a

20:4n-3 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0
20:5n-3 14.0 ± 0.0 a 13.2 ± 0.2 b 12.3 ± 0.1 c 14.2 ± 0.1 a

22:5n-3 1.9 ± 0.5 1.5 ± 0.0 1.4 ± 0.0 1.7 ± 0.0
22:6n-3 12.8 ± 0.0 b 12.3 ± 0.1 c 11.9 ± 0.1 d 13.4 ± 0.1 a

Total n-3 PUFA4 33.1 ± 0.5 b 31.1 ± 0.3 c 29.3 ± 0.2 d 33.9 ± 0.2 a

Total PUFA 40.9 ± 0.4 a 38.7 ± 0.3 b 37.0 ± 0.3 c 41.5 ± 0.3 a

n-3/n-6 4.2 ± 0.1 b 4.1 ± 0.0 b 3.8 ± 0.0 c 4.5 ± 0.0 a

FO CLA1 CLA2 TTA

 
Values are means ± S.D. (n=3). Superscript letters denote significant differences between 
the diets.  1, includes 20:0, present at up to 0.3 %. 2, includes 20:1n-7 present at up to 0.3 
%. 3, includes 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 present at up to 0.4 %. 4, includes 
20:3n-3, present up to 0.2 %.  
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5.2.3 Sampling and Analysis 

At the initiation of the trial, all fish were anaesthetised with Metomidate (50 

mg/L), identified by PIT tag if present, and individually weighed and fork length 

recorded.  At the end of the trial, 9 fish per tank (27 per dietary treatment) were killed by 

a blow to the cranium then sampled for compositional analyses, with 3 whole fish/tank 

frozen immediately at -20 oC for whole body proximate compositional (proximate) 

analysis.  Blood and head kidney for immunological studies were removed from the 

remaining fish as described in 2.4.1 and 2.4.5 respectively. The fish were then eviscerated 

and used for biometric determinations (hepato-, and viscero-somatic indices) and for 

tissue lipid analyses.  Flesh samples were excised from the epaxial myotomes anterior to 

the first dorsal fin ray (Flesh Quality Cut) and livers were taken from six fish, pooled in 

two samples of 3 fish each, and frozen immediately in liquid nitrogen (livers) or dry ice 

(flesh). Samples of 1-2 g of liver, white and red muscle for biochemical analyses were 

also collected and immediately frozen in liquid nitrogen.  Samples were subsequently 

stored at -80 oC prior to biochemical analysis. 

Blood cell counts and haematocrit measurements were carried out as described in 

sections 2.4.2 and 2.4.3 respectively.  Total lipids of liver, muscle and diet were extracted 

and quantified as described in section 2.3.7 and lipid class analysis was carried out as 

detailed in section 2.3.8.  The method previously employed to produce fatty acid methyl 

ester (FAME) in samples containing CLA described in section 3.2.3, was unsuccessful in 

quantitatively methylating TTA in this trial since degradation of TTA was observed upon 

GC analysis.  It is probable that the breakdown products formed using the 

abovementioned methylation procedure are in fact sulphoxide or sulphone derivatives, 

which are commonly formed during strong acidic hydrolytic conditions (Pavol Bohov, 
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Personal Communication).  A small experiment was conducted to deduce the optimal 

time and temperature at which TTA could successfully be methylated with little to no 

artefact formation.  It was also imperative that the experimental conditions facilitated 

complete methylation of all components including CLA and with little to no residual 

degradation of other fatty acids within the sample.  By varying the time (duration) and 

temperature of the methylation procedure, it was concluded that the optimal reaction 

conditions using acid-catalysed transesterification and facilitating the complete 

methylation of TTA, CLA and all other fatty acids were incubation at 80 oC for 3 h in the 

presence of 2 ml 1 % (v/v) H2SO4 in methanol together with 1 ml of toluene under a 

nitrogen atmosphere.  FAME were subsequently extracted, purified and quantified as 

described in section 2.3.9.  Charring of TLC plates after FAME purification allowed 

visualisation of any non-methylated total lipid.  Since, after 3 h of incubation, there were 

no bands corresponding to non-methylated total lipid on the TLC plates, it was deduced 

that all the fatty acids in the samples had been successfully methylated.  Indeed. the 

levels of CLA and TTA obtained in Table 5.2 expressed as a percentage of total dietary 

lipid show quantitative recovery of these bioactive fatty acids after using the above 

described methylation procedure.  Some key activities associated with fatty acid 

oxidation were determined in liver, white and red muscle.  Peroxisomal β-oxidation 

capacity was estimated as described in section 2.3.3. CPT-1 and ACO activities were 

determined as described in sections 2.3.4 and 2.3.5, respectively. 
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5.3 Results 

5.3.1 Dietary Formulation 

The control FO diet contained 41 % total PUFA, including 14 % 20:5n-3, 13 % 

22:6n-3 and almost 6 % 18:2n-6, 32 % total saturates, mainly 16:0, and 27 % total 

monoenes, mainly 18:1n-9 and 16:1n-7 (Table 5.2).  Inclusion of CLA in the diets 

resulted in levels of total CLA of 3.5 % and 6.3 % of total fatty acids at the 0.5 % and 1 

% dietary inclusion levels, respectively.  CLA inclusion resulted in lower levels of 14:0, 

16:0, 20:5n-3 and 22:6n-3, but 18:1n-9 and 18:2n-6 (the other main components of the 

CLA mixture) increased (Table 5.2).  Inclusion of 0.5 % TTA resulted in TTA at a level 

of 2.8 % of total fatty acids in the diet, together with lower levels of 14:0 and 18:0. 

5.3.2 Growth, Biometry and Whole Body Proximate Compositions 

Growth and biometry of Atlantic cod fed the different dietary treatments are 

presented in Table 5.3 below.  There were no significant differences in final weights, 

growth rates (SGR), or thermal growth coeffeficients in fish fed dietary CLA or TTA.  

There were statistically significant effects on VSI such that it decreased in fish fed 0.5% 

CLA however remained unchanged at the 1% inclusion level.  FCR levels increased as a 

result of 0.5% CLA administration but were unaffected in fish fed 1% CLA and 0.5% 

TTA.  HSI was significantly lower in fish fed TTA however was not affected in fish fed 

CLA.  
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Table 5.3 Growth and biometric parameters of Atlantic cod fed diets containing CLA and 
TTA. 

Initial weight (g)1 125 ± 14 b 130 ± 15 a 125 ± 15 b 127 ± 15 ab

Final weight (g)1 307 ± 50 305 ± 47 309 ± 57 303 ± 44
FCR2 0.80 ± 0.01 b 0.84 ± 0.02 a 0.80 ± 0.02 b 0.83 ± 0.00 ab

SGR2 1.03 ± 0.04 0.98 ± 0.05 1.04 ± 0.02 1.00 ± 0.02
TGC2 1.93 ± 0.08 1.84 ± 0.10 1.95 ± 0.04 1.87 ± 0.04
Gutted weight (%)3 81.5 ± 0.2 c 81.7 ± 0.3 bc 82.2 ± 0.4 a 81.8 ± 0.2 b

Condition factor (K)3 1.14 ± 0.04 a 1.12 ± 0.01 b 1.14 ± 0.03 a 1.12 ± 0.01 b

HSI3 11.0 ± 0.5 b 11.3 ± 0.1 a 10.9 ± 0.3 b 10.6 ± 0.1 c

VSI3 9.3 ± 1.2 a 8.0 ± 0.7 b 8.9 ± 0.2 a 8.8 ± 0.2 a

Mortality

FO CLA1 CLA2 TTA

1 2 1 4
 

Data are presented as means ± S.D, 1n = 146 - 150, 2n = 3, 3n = 27 
Condition factor (K) = (wet weight in g) x 100)/(length in mm3) x1000; FCR, feed 
converstion ratio, TGC, thermal growth coefficient = 100 x (final weight1/3 – initial 
weight1/3)/sum day degrees; HSI, hepato-somatic index; SGR, specific growth rate; VSI, 
viscero-somatic index; FO, control diet containing fish oil alone, CLA1 and CLA2, diets 
supplemented with 0.5 and 1 % CLA; TTA, diet supplemented with 0.5 % TTA.  

There were no significant differences in the whole body proximate composition 

(moisture, lipid, protein and ash) of the fish fed either CLA or TTA compared with fish 

fed FO alone as determined by 1-way ANOVA (Table 5.4) 
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Table 5.4 The whole body proximate composition of Atlantic cod fed diets containing 
CLA and TTA. 

Moisture 73.6 ± 0.6 73.3 ± 0.6 73.8 ± 0.6 73.9 ± 0.7

Protein 60.4 ± 1.4 59.7 ± 1.7 59.1 ± 1.7 60.6 ± 1.4

Lipid 26.2 ± 1.9 28.4 ± 2.2 27.9 ± 2.1 26.7 ± 1.8

Ash 9.6 ± 0.7 9.3 ± 0.5 9.5 ± 0.6 9.9 ± 0.4

FO CLA1 CLA2 TTA

 
Values are means ± SD of 9 fish. There were no significant differences between dietary 
treatment as determined by one-way ANOVA. FO, control diet containing fish oil alone, 
CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; TTA, diet supplemented 
with 0.5 % TTA.  
 

5.3.3 Lipid Contents and Class Compositions of Liver and Flesh 

Table 5.5 illustrates the lipid contents and class compositions of liver.  The lipid 

content of the livers, which varied between 50 and 55 % of the wet weight, was 

significantly decreased in response to 0.5 % CLA however was unaltered in fish treated 

with 1 % CLA or TTA.  Neutral lipid, comprising mainly of TAG, was the predominant 

lipid fraction in liver accounting for around 97 % of the total.  There was a trend that 

indicated that fish fed dietary CLA reduced their total neutral lipid and TAG content, 

however this only became significant at the 1 % dietary inclusion level.  Neither dietary 

CLA nor TTA altered the lipid content of cod flesh, which was constant at around 0.8 % 

of wet weight (Table 5.6).  Polar lipids, mainly PC and PE, predominated in flesh 

accounting for 57 to 61 % of total lipid, with neutral lipids accounting for 39 to 43 %. 

FFA and steryl esters were highest in fish fed 0.5 % CLA, whereas flesh TAG was 

slightly, but significantly, higher in fish fed TTA. 
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Table 5.5 Lipid content (percentage of weight) and lipid class compositions (percentage 
of total lipid) of liver of Atlantic cod fed CLA or TTA. 

Lipid content 53.8 ± 2.6 ab 50.0 ± 2.1 b 55.2 ± 2.0 a 55.2 ± 2.0 a

PC 1.5 ± 0.2 b 1.8 ± 0.1 ab 2.0 ± 0.4 a 1.5 ± 0.1 b

PE 1.3 ± 0.1 b 1.3 ± 0.2 b 1.7 ± 0.3 a 0.9 ± 0.3 c

Total polar 2.8 ± 0.3 b 3.1 ± 0.3 ab 3.7 ± 0.7 a 2.4 ± 0.3 b

Total neutral 97.2 ± 0.3 a 96.9 ± 0.3 ab 96.3 ± 0.7 b 97.6 ± 0.3 a

Cholesterol 4.4 ± 0.6 ab 4.9 ± 1.4 ab 5.4 ± 0.3 a 3.9 ± 0.6 b

Triacylglycerol 92.7 ± 0.8 a 92.0 ± 1.6 ab 90.9 ± 0.8 b 93.6 ± 0.8 a

Free Fatty Acid

Steryl ester

tr tr tr tr

tr tr tr tr

FO CLA2 TTACLA 1

 
Values are means ± SD of 6 samples each of tissue pooled from 3 fish. Superscript letters 
denote significant differences between dietary treatments as determined by ANOVA. PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; tr, trace < 0.5%; FO, control diet 
containing fish oil alone; CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; 
TTA, diet supplemented with 0.5 % TTA. 
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Table 5.6 Lipid content (percentage of weight) and lipid class compositions  
(percentage of total lipid) of flesh of Atlantic cod CLA or TTA. 

 

Lipid content 0.8 ± 0.0 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.0

PC 30.7 ± 1.8 a 27.9 ± 1.6 b 30.8 ± 1.5 a 28.7 ± 1.2 ab

PE 17.9 ± 1.2 a 15.6 ± 0.7 b 17.1 ± 0.6 a 17.6 ± 0.5 a

PS 2.5 ± 0.6 2.8 ± 0.4 2.7 ± 0.4 3.2 ± 0.5

PI 3.8 ± 0.6 4.1 ± 0.6 3.8 ± 0.7 4.3 ± 0.5

PG/CL 2.9 ± 0.7 b 2.8 ± 0.3 b 2.8 ± 0.4 b 3.7 ± 0.2 a

Sphingomyelin 1.5 ± 0.4 1.7 ± 0.3 1.6 ± 0.2 1.6 ± 0.6

Lyso-PC 1.8 ± 0.3 bc 2.2 ± 0.2 a 2.0 ± 0.2 ab 1.5 ± 0.2 c

Total polar 61.2 ± 2.1 a 57.2 ± 1.6 b 60.8 ± 1.2 a 60.5 ± 2.1 a

Total neutral 38.8 ± 2.1 b 42.8 ± 1.6 a 39.2 ± 1.3 b 39.5 ± 2.1 b

Cholesterol 16.1 ± 0.9 15.6 ± 0.3 15.2 ± 1.8 15.7 ± 0.4

Triacylglycerol 6.9 ± 1.2 b 6.3 ± 1.6 b 5.7 ± 1.1 b 9.2 ± 0.8 a

Free fatty acid 11.9 ± 1.2 b 15.1 ± 1.6 a 13.0 ± 1.7 ab 11.5 ± 1.4 b

Steryl ester 3.9 ± 0.4 b 5.9 ± 0.9 a 5.4 ± 0.4 a 3.2 ± 0.6 b

FO CLA 1 CLA2 TTA

 
Values are means ± S.D of 6 samples each of tissue pooled from 3 fish.  Superscript 
letters denote significant differences between dietary treatments as determined by 
ANOVA. CL, cardiolipin; PC, phosphatidylcholine; PE, phosphatidyletholamine; PG, 
phosphatidylglycerol; phosphatidylinositol; PS, phosphatidylserine; FO, control diet 
containing fish oil alone; CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; 
TTA, diet supplemented with 0.5 % TTA. 
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5.3.4 Fatty Acid Compositions of the Liver and Flesh 

Dietary CLA and TTA were both incorporated into tissue lipids, but it was 

noteworthy that CLA was deposited to a greater extent in liver lipids (Table 5.7), whereas 

TTA was deposited to a greater extent in flesh (Table 5.8). Thus, CLA accounted for 1.5 

and 2.9 % of total fatty acids in livers of fish fed 0.5 and 1 % CLA, respectively, whereas 

TTA accounted for 0.6 % of liver fatty acids in fish fed 0.5 % TTA (Table 5.7). In 

contrast, TTA accounted for 1.6 % of flesh fatty acids in TTA-fed fish, compared to 0.8 

and 1.9 % CLA in fish fed the lower and higher CLA, respectively (Table 5.8). Dietary 

CLA had no significant effect on the proportions n-3 or n-6 PUFA in either liver or flesh, 

but in fish fed TTA there were decreased percentages of monoenes, n-6 PUFA and 20:5n-

3, but an increased proportion of 22:6n-3 in the flesh (Tables 5.7 and 5.8). Dietary CLA 

resulted in increased percentages of 18:0 and decreased percentages of 18:1n-9 and total 

monoenes in both tissues, but especially liver. 
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Table 5.7 Fatty acid composition (percentage of weight) of total lipid  
from liver of Atlantic cod fed CLA or TTA. 

14:0 2.9 ± 0.3 b 3.4 ± 0.1 a 3.3 ± 0.2 a 2.8 ± 0.1 b

16:0 15.7 ± 0.5 a 15.6 ± 0.2 a 15.0 ± 0.7 ab 14.7 ± 0.6 b

18:0 5.6 ± 0.2 b 8.3 ± 0.5 a 8.7 ± 0.4 a 4.9 ± 0.2 c

Total saturated1 24.5 ± 0.7 b 27.7 ± 0.6 a 27.3 ± 1.0 22.6 ± 0.9 c

16:1n-7 6.6 ± 0.2 a 6.2 ± 0.1 b 5.9 ± 0.2 c 6.7 ± 0.2 a

18:1n-9 18.8 ± 0.6 a 15.7 ± 0.3 b 15.6 ± 0.3 b 19.6 ± 0.7 a

18:1n-7 5.3 ± 0.2 a 4.8 ± 0.2 b 4.8 ± 0.1 b 5.7 ± 0.4 a

20:1n-9 5.2 ± 0.1 5.1 ± 0.2 5.1 ± 0.3 5.1 ± 0.2

22:1n-11 3.3 ± 0.2 a 3.2 ± 0.1 ab 2.9 ± 0.3 b 3.3 ± 0.3 a

24:1n-9 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.0 0.4 ± 0.1

Total monoenes2 40.0 ± 1.1 a 35.6 ± 0.6 b 34.9 ± 0.5 b 41.0 ± 1.1 a

CLA (9c,11t) 0.0 ± 0.0 c 0.9 ± 0.2 b 1.6 ± 0.5 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.6 ± 0.1 b 1.3 ± 0.4 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 0.6 ± 0.1 a

18:2n-6 5.4 ± 0.1 5.5 ± 0.1 5.5 ± 0.0 5.5 ± 0.2

20:4n-6 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0

Total n-6 PUFA3 7.2 ± 0.2 7.2 ± 0.1 7.2 ± 0.0 7.0 ± 0.3

18:3n-3 1.0 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 1.0 ± 0.0

18:4n-3 2.0 ± 0.1 2.0 ± 0.1 1.9 ± 0.0 2.0 ± 0.1

20:4n-3 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0

20:5n-3 11.5 ± 0.6 11.2 ± 0.2 11.2 ± 0.3 11.7 ± 0.5

22:5n-3 1.5 ± 0.1 1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.1

22:6n-3 11.5 ± 0.8 11.6 ± 0.3 11.5 ± 0.4 11.8 ± 0.7

Total n-3 PUFA4 28.3 ± 1.6 28.0 ± 0.6 27.6 ± 0.8 28.8 ± 1.4

Total PUFA 35.5 ± 1.7 35.2 ± 0.6 34.8 ± 0.8 35.9 ± 1.6

n-3/n-6 3.9 ± 0.2 3.9 ± 0.1 3.8 ± 0.1 4.1 ± 0.1

FO CLA1 CLA2 TTA

 
Values are means ± SD of 6 samples each of tissue pooled from 3 fish. Superscript letters 
denote significant differences between dietary treatments as determined by ANOVA. 
1, includes 20:1n-7 present up to 0.3 %; 2, includes 20:2n-6, 20:3n-6 and 22:4n-6 present 
up to 0.3 %; 3, includes 20:3n-3 present up to 0.3 %; FO, control diet containing fish oil 
alone; CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; TTA, diet 
supplemented with 0.5 % TTA. 
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Table 5.8 Fatty acid composition (percentage of weight) of total lipid  
from flesh of Atlantic cod fed CLA or TTA. 

14:0 1.6 ± 0.2 a 1.3 ± 0.1 b 1.3 ± 0.1 b 1.0 ± 0.0 c

16:0 19.3 ± 0.8 ab 19.2 ± 0.8 ab 18.6 ± 0.5 b 20.1 ± 0.4 a

18:0 3.2 ± 0.1 b 4.0 ± 0.1 a 3.9 ± 0.2 a 3.4 ± 0.1 b

Total saturated1 24.4 ± 0.9 24.8 ± 0.8 24.2 ± 0.3 24.8 ± 0.5

16:1n-7 2.9 ± 0.3 a 2.6 ± 0.1 ab 2.4 ± 0.2 b 2.3 ± 0.2 b

18:1n-9 9.2 ± 0.1 a 8.8 ± 0.2 ab 8.5 ± 0.5 b 8.7 ± 0.4 ab

18:1n-7 2.9 ± 0.0 a 2.8 ± 0.1 ab 2.7 ± 0.1 b 2.7 ± 0.1 b

20:1n-9 1.0 ± 0.1 1.1 ± 0.2 1.0 ± 0.1 1.0 ± 0.2

22:1n-11 0.3 ± 0.0 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.0

24:1n-9 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.1 0.4 ± 0.1

Total monoenes2 16.7 ± 0.4 a 15.9 ± 0.3 ab 15.2 ± 0.8 b 15.4 ± 0.6 b

CLA (9c,11t) 0.0 ± 0.0 c 0.3 ± 0.1 b 0.7 ± 0.0 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.5 ± 0.1 b 1.2 ± 0.1 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 1.6 ± 0.3 a

18:2n-6 4.1 ± 0.1 4.0 ± 0.4 4.1 ± 0.3 3.9 ± 0.1

20:4n-6 1.9 ± 0.0 a 1.9 ± 0.1 a 1.9 ± 0.0 a 1.8 ± 0.0 b

22:5n-6 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

Total n-6 PUFA3 7.1 ± 0.2 a 7.2 ± 0.3 a 7.0 ± 0.2 a 6.5 ± 0.1 b

18:3n-3 0.6 ± 0.0 a 0.6 ± 0.1 a 0.6 ± 0.0 a 0.5 ± 0.0 b

18:4n-3 0.9 ± 0.0 a 0.8 ± 0.1 ab 0.8 ± 0.1 ab 0.7 ± 0.0 b

20:4n-3 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0

20:5n-3 18.6 ± 0.3 a 18.0 ± 0.9 a 18.2 ± 0.5 a 16.4 ± 0.2 b

22:5n-3 2.2 ± 0.0 a 2.2 ± 0.1 a 2.2 ± 0.0 a 2.1 ± 0.0 b

22:6n-3 28.6 ± 0.6 b 28.9 ± 0.8 b 29.4 ± 1.3 b 31.0 ± 0.7 a

Total n-3 PUFA4 51.7 ± 0.9 51.3 ± 0.5 51.7 ± 0.7 51.4 ± 0.8

Total PUFA 58.9 ± 0.9 58.5 ± 0.8 58.7 ± 0.5 58.3 ± 0.6

n-3/n-6 7.2 ± 0.2 b 7.1 ± 0.2 b 7.4 ± 0.3 b 7.8 ± 0.2 a

FO CLA1 CLA2 TTA

 
Values are means ± SD of 6 samples each of tissue pooled from 3 fish. Superscript letters 
denote significant differences between dietary treatments as determined by ANOVA. 
1, includes 20:1n-7 present up to 0.3 %; 2, includes 20:2n-6, 20:3n-6 and 22:4n-6 present 
up to 0.3 %; 3, includes 20:3n-3 present up to 0.3%; FO, control diet containing fish oil 
alone; CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; TTA, diet 
supplemented with 0.5 % TTA. 
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5.3.5 CPT-1 and ACO Activities, and Peroxisomal β-Oxidation Capacity 

There was a trend for CPT-I activity in liver to be increased by dietary CLA and 

TTA, although it was only significant in the case of TTA (Figure 5.1).  In red muscle, a 

dietary level of 1 % CLA resulted in increased CPT-1 activity, but 0.5 % dietary CLA or 

TTA had no effect.  In contrast, CPT-1 activity in white muscle was not affected by any 

dietary treatment.  ACO activity in liver was significantly increased by both dietary CLA 

and TTA (Figure 5.2).  Conversely, ACO activity in both red and white muscle was 

decreased by CLA and TTA, with the effects being significant for CLA in red muscle and 

TTA in white muscle.  In liver, there was a trend that indicated increased peroxisomal β-

oxidation in cod fed dietary CLA, however this increase was not statistically significant.  

Dietary TTA significantly increased the capacity for hepatic peroxisomal β-oxidation 

(Figure 5.3).  In muscle, the peroxisomal β-oxidation capacity of Atlantic cod was 

unaffected by either dietary CLA or TTA (Figure 5.3).  
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Figure 5.1 Effects of CLA or TTA on CPT-1 activity in tissue homogenates 
 of liver, red and white muscle of Atlantic cod. 
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Results are presented relative to the activity in fish fed FO for each tissue and are means 
± SD (n = 6). Different letters denote significant differences between dietary treatments 
within each tissue as determined by ANOVA. 

 
Figure 5.2 Effects of CLA or TTA on ACO activity in tissue homogenates of liver, red 
and white muscle of Atlantic cod.  
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Results are presented relative to the activity in fish fed FO for each tissue and are means 
± SD (n = 6). Different letters denote significant differences between dietary treatments 
within each tissue as determined by ANOVA.  
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Figure 5.3 Effects of CLA or TTA on peroxisomal β-oxidation capacity in tissue 
homogenates of liver, red and white muscle of Atlantic cod.  
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Results are presented relative to the activity in fish fed FO for each tissue and 
are means ± SD (n = 6).  Different letters denote significant differences 
between dietary treatments within each tissue as determined by ANOVA. 
 

5.3.6 Basic Haematology 

There were no statistically significant differences in the red or white blood cell 

counts of fish fed either dietary CLA or TTA compared to fish fed FO alone (Table 5.9).  

However, there was a clear trend suggesting decreased blood cell counts with both 

dietary CLA and TTA, but the high variation between samples made this trend non-

significant.  The PCV was reduced in response to dietary TTA and CLA, significantly so 

in the former. 
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Table 5.9 Effects of conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) 
on basic haematology of Atlantic cod. 

Diet

FO 1.00 ± 0.10 1.00 ± 0.80 30.6 ± 4.4 a

CLA1 0.76 ± 0.10 0.62 ± 0.29 25.7 ± 4.8 a

CLA2 0.81 ± 0.19 0.88 ± 0.43 24.8 ± 2.2 a

TTA 0.81 ± 0.27 0.80 ± 0.36 21.8 ± 4.2 b

(FO =1) (FO =1)

RBC WBC PCV (%)

 
RBC, red blood counts (relative to FO diet), WBC, white blood counts (relative to FO 
diet), PVC, packed cell volume. 

 

5.4 Discussion 

Atlantic cod deposit a larger proportion of lipid in liver compared to salmonids 

even when the former are fed a lower lipid level.  This is a problem to cod farmers since 

deposition of fat in the liver represents diet that is “going to waste” by being deposited in 

a portion of the fish not eaten by the consumer, at least, not in the UK.  Excessive fat 

deposition in liver may also lead to fatty liver syndrome and thus may affect the health of 

the fish.  In cod, the liver is the primary excess fat store that sequesters lipid which is not 

immediately utilised as energy.  Once lipid levels have reached a satisfactory level in cod 

flesh the remaining lipid is then directed to the liver. Thus, high fat diets rich in n-

3HUFA may not be utilised fully.  The biological implications of feeding animals dietary 

CLA and TTA have been discerned in both in vitro and in vivo work in mammalian 

models (Berge et al., 2002; Bhattacharya et al., 2006).  Less clear is the effect these 

bioactive fatty acids have on piscine species, particularly of marine origin, and the 

present study is the first to investigate TTA in a marine fish.  Some recent studies 
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involving CLA-supplemented rodents have elucidated that hepatic steatosis is decreased 

(Wang et al., 2005; Purushotham et al., 2007).  Reductions in liver TAG content after 

CLA supplementation have been verified in rats (Rahman et al, 2002).  In addition, the 

hypolipidaemic effect of TTA has been purported to be due in part, to decreased hepatic 

TAG formation (Willumsen et al., 1997; Berge et al., 1999).  Thus, the primary aim of 

the present trial was to test the hypothesis that dietary CLA or TTA could have beneficial 

effects on lipid metabolism in Atlantic cod, specifically that these bioactive fatty acids 

could lower liver lipid levels, and liver size.  The results clearly show that the hypothesis 

was not proved and that neither of these bioactive fatty acids had a major effect on liver 

lipid content or relative liver size as determined by HSI in cod.  It can be reasoned that, 

although there was a statistically significant decrease in HSI of cod fed TTA, this 

reduction was of relatively little physiological consequence considering the index was 

still over 10 % and there was no change in liver lipid content compared to fish fed FO 

alone.  Conversely, Atlantic salmon smolts fed TTA at 0.6 % of the diet showed a slight, 

but significant, increase in HSI in addition to a higher liver lipid content, although the 

latter was not significant (Moya-Falcon et al., 2004).  In the present trial, CLA inclusion 

did not effect HSI in the cod in agreement with other trials which showed that CLA at up 

to 1 % had no effect on HSI or liver lipid content in juvenile channel catfish (Twibell and 

Wilson, 2003), and HSI was unaffected by dietary CLA at up to 2 % in rainbow trout 

juveniles (Figueiredo-Silva et al., 2005). Conversely, increased HSI in response to 

feeding CLA had been previously reported in hybrid striped bass (Twibell et al., 2000), 

yellow perch (Twibell et al., 2001) and tilapia (Yasmin et al., 2004).  Perhaps 

surprisingly, liver lipid content was reduced by dietary CLA in striped bass and yellow 

perch despite increased HSI (Twibell et al., 2000, 2001).  In Atlantic salmon smolts there 
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were trends of increasing HSI and liver lipid in fish fed CLA at 1 and 2 % of the diet, 

although the data were not statistically significant (section 3.3.2).  Interestingly, liver 

TAG content was significantly decreased in cod fed 1 % CLA in the present trial, 

however it is unlikely that a reduction in TAG had any bearing on liver physiology 

considering there was no change in liver lipid level or HSI.   

As discussed in detail in section 1.4.2, dietary CLA can have beneficial effects on 

body composition by decreasing body fat and, in some cases, increasing lean body mass 

in mice, rats and pigs in particular.  It would seem that these effects have not been 

reciprocated in the present study as evidenced through the lack of influence on whole 

body proximate composition in cod fed dietary CLA compared with cod fed FO alone.  

However, whole body proximate composition was also unaffected by dietary CLA in 

salmon fry (Berge et al., 2004) and smolts (section 3.3.3), and rainbow trout juveniles 

(Figueiredo-Silva et al., 2005).  Similarly, dietary CLA had no effect on tissue lipid 

contents in tilapia (Yasmin et al., 2004) or carcass lipid and intraperitoneal fat in catfish 

(Twibell and Wilson, 2003).  Furthermore, VSI was unaffected by dietary CLA up to 2 % 

in both Atlantic salmon smolts (section 3.3.2) and rainbow trout (Figueiredo-Silva et al., 

2005).  However, intraperitoneal fat was decreased by dietary CLA in hybrid striped bass 

(Twibell et al., 2000) and, in the present trial, visceral fat may have been reduced in cod 

fed 0.5 % CLA as VSI was lower in this group along with a relatively higher HSI, which 

may suggest some redistribution of fat.  However, fat redistribution has not been apparent 

in other trials with fish.  The present trial is the first to record the effects of dietary TTA 

on fish whole body composition.  These data suggest that TTA does not beneficially 

influence body composition to any appreciable physiological extent.  However, dietary 

TTA had been shown to prevent high fat diet induced adiposity in rats (Madsen et al., 
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2002).  Interestingly, the levels of TAG within flesh significantly increased in cod fed 

TTA in the present trial.  It has been proposed that animals fed TTA may instigate a 

greater flux of TAG from serum to surrounding tissue thus providing additional fatty 

acids for catabolism and this may be the case in the cod (Berge et al., 2004).   

An additional objective of this study was to determine whether CLA or TTA 

could influence fatty acid oxidation.  Unfortunately, mitochondrial β-oxidation could not 

be analysed since assays using radioactive isotopes on fresh tissue were not possible at 

the commercial farm site.  Thus, freezing and thawing of the samples disrupted the 

mitochondrial membranes such that only peroxisomal β-oxidation capacity could be 

measured.  Nevertheless, it is noteworthy that fatty acid β-oxidation activity was recently 

measured in a related gadoid, haddock, and it was shown that peroxisomal β-oxidation 

predominates over mitochondrial β-oxidation in liver (Nanton et al., 2003). Similarly, 

fatty acid oxidation in Atlantic salmon liver is principally due to peroxisomal, rather than 

mitochondrial, β-oxidation (Frøyland et al., 2000).  In the present study, hepatic 

peroxisomal β-oxidation capacity was significantly elevated in cod fed dietary TTA.  

Furthermore, both CPT-1 and ACO activities were significantly increased as a result of 

TTA supplementation.  Taken together, these results strongly suggest that hepatic fatty 

acid oxidation is elevated in response to dietary TTA in Atlantic cod.  This does not 

correlate with previous studies of TTA in fish, which revealed that both ACO gene 

expression and activity in liver of salmon were unaffected (Kleveland et al., 2006; Moya-

Falcon et al., 2006).  Contrary to the abovementioned results, CPT-1 activity in cod liver 

was unaffected by dietary CLA, suggesting that mitochondrial β-oxidation would not be 

enhanced.  Perhaps surprisingly, an increase in ACO activity in liver of cod fed dietary 

CLA was not concomitant with elevated peroxisomal β-oxidation capacity.  This lack of 
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association between peroxisomal β-oxidation capacity and ACO activity was also 

observed in muscle of cod fed either CLA or TTA ergo it is difficult to interpret these 

results.  However, it can be assumed that both ACO activity and peroxisomal β-oxidation 

capacity are relatively inconsequential in gadoid muscle considering it is likely that fatty 

acid oxidation in the muscle predominantly occurs in mitochondria (Nanton et al., 2003).  

Previous studies have reported that dietary CLA can increase CPT-1 activity in a variety 

of murine tissues (Rahman et al., 2001; Degrace et al., 2004).  The CPT-1 activity in red 

muscle of cod fed 1 % CLA was significantly increased in the present study; indicative of 

an enhanced mitochondrial β-oxidation capacity.  However, it is known that red muscle 

comprises only a small proportion of total flesh, the remainder of which is composed 

mostly of white muscle.  Thus, red muscle may not influence lipid composition to any 

appreciable extent.  Indeed, these data seem to indicate that white muscle CPT-1 activity, 

peroxisomal β-oxidation, and almost certainly overall fatty acid oxidation is not 

significantly influenced by dietary CLA or TTA in cod muscle.  

A further aim of the present trial was to determine if dietary CLA or TTA had 

beneficial effects on fatty acid compositions in Atlantic cod.  This part of the study 

revealed a very interesting result with TTA accumulating in flesh to a greater extent than 

the equivalent dietary level of CLA and also to a greater extent than in liver. In contrast, 

CLA was incorporated to a greater extent in liver lipids compared to flesh. TAG 

predominates in liver of cod whereas polar lipids predominate in flesh, and so these data 

suggest that TTA may be deposited to a greater extent in PL and CLA to a greater extent 

in TAG.  In Atlantic salmon fed TTA, flesh fatty acid compositions were not reported 

but, of the tissues investigated, the highest incorporation was found in gills with 

approximately equal percentages, 0.8 % and 0.7 % of total fatty acids in PL and TAG, 
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respectively, in fish fed TTA at 0.6 % of total diet (Moya-Falcon et al., 2004).  

Furthermore, TTA in both heart and liver was only recovered in PL and not TAG.  

Consistent with the above, preferential uptake of TTA into PL was also evidenced in rat 

hepatocytes (Grav et al., 1994; Madsen et al., 1997).  Thus it appears that bioactive fatty 

acids similar to, and including, TTA could be efficiently accumulated in ‘lean” fish such 

as cod with low flesh oil contents.  It remains to be established whether fatty acid 

analogues such as TTA are feasible or, indeed, appropriate as supplements for the human 

diet (Berge et al., 2002).  However, CLA may be better delivered to humans via oily fish 

with the level accumulating in salmon and trout fed CLA at 2 % of diet by weight 

reaching 7 % of total fatty acids in flesh (dietary lipid 16 – 17 %), (section 3.3.5; 

Bandarra et al., 2006), or 4 % in flesh of salmon smolts (dietary lipid 34 %) (section 

3.3.5), and 7 % in whole salmon fry fed 2 % CLA (24 % dietary lipid) (Berge et al., 

2004). Similarly, striped bass with high flesh lipid (> 15 %) accumulated CLA to over 7 

% of total fatty acids in fish fed CLA at 1 % of diet, whereas the levels of CLA 

accumulated in yellow perch with only 3 % lipid in the flesh were much lower (Twibell 

et al., 2000, 2001). Consistent with the above, the incorporation of CLA into neutral 

lipids was around 10-fold higher than incorporation into polar lipids in both muscle and 

liver in tilapia (Yasmin et al., 2004). 

There is evidence to suggest that dietary CLA can suppress SCD activity and gene 

expression in mammals (Lee et al., 1998; Choi et al., 2001, 2002; Park et al., 2001; 

Smith et al., 2002; Shang et al., 2005).  In support of the above findings, dietary CLA has 

also been reported to increase the 18:0/18:1n-9 ratio; a proxy for the measurement of 

SCD activity, in liver and flesh of rainbow trout (section 6.3.4), striped bass (Twibell et 

al., 2000), yellow perch (Twibell et al., 2001), salmon (Berge et al., 2004; section 3.3.5) 
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and sea bass (Valente et al., 2007b).  Furthermore, dietary CLA increased the proportions 

of 18:0 and decreased percentages of 18:1 in liver, muscle and viscera of rainbow trout 

juveniles (Bandarra et al., 2006).  In the present study, increased proportions of 18:0 and 

decreased 18:1n-9 was observed in flesh and, especially, liver of cod fed CLA suggesting 

inhibition of ∆9 desaturation.  Purportedly, suppression of SCD may lead to a lower lipid 

droplet size in cells, which in turn could account in part for the anti-obesity effect 

exhibited in animals supplemented with CLA.  However, experiments utilising SCD-null 

mice have shown that this is not how CLA arbitrates its fat lowering effect (Kang et al., 

2004).  Conversely, the data in the present trial indicate that TTA appears to have had no 

effect on SCD activity in Atlantic cod.  Previously, dietary TTA was shown to have no 

major effects on 18:0/18:1n-9 levels in salmon liver, gill, heart (Moya-Falcon et al., 

2004) or flesh lipids (Kleveland et al., 2006). However, in vitro studies utilising hepatic 

murine cell lines have recorded increased SCD expression after administration of TTA 

(Madsen et al., 1997; Vaagenes et al., 1998).   

CLA suppresses PUFA desaturases and elongase in cell systems (Chuang et al., 

2001a,b; Eder et al., 2002), and CLA decreased C18 PUFA in pig muscle and fat (Ramsay 

et al., 2001), and 22:6n-3 in chicken tissues (Yang et al., 2003).  Additionally, there is 

some evidence to suggest that the influence of dietary CLA on n-3 PUFA distribution is 

tissue specific in fish.  For example, dietary CLA at up to 2 % inclusion was at the 

expense of 20:5n-3 and 22:6n-3 in flesh of salmon smolts and hybrid striped bass (section 

3.3.5; Twibell et al., 2000; Leaver et al., 2006) and whole body (comprising mainly of 

flesh) in salmon fry (Berge et al., 2004).  Similarly, 22:6n-3 levels were also depressed in 

muscle of juvenile rainbow trout fed 1 – 2 % CLA (Bandarra et al., 2005).  Conversely, 

20:5n-3 and 22:6n-3 levels have been shown to rise in liver of rainbow trout (section 
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6.3.4) and hybrid striped bass (Twibell et al., 2000) supplemented with CLA.  In the 

present study, CLA had no effect on PUFA levels in either liver or flesh of cod. This was 

perhaps not unexpected as the activity of the PUFA desaturation/elongation pathway is 

very low in cod (Bell et al., 2006).  In contrast, however, dietary TTA significantly 

increased the percentage of 22:6n-3, and decreased the proportions of 20:5n-3 and total n-

6 PUFA in flesh of cod in the present study, a phenomena also noted in Atlantic salmon 

liver after TTA supplementation (Moya-Falcon et al., 2004).  This could be a result of 

increased conversion of 20:5n-3 to 22:6n-3, but there is no evidence from previous 

studies to support TTA having an effect on fatty acid ∆5/∆6 desaturation or elongation 

(Berge et al., 2002). Therefore, it may be more likely due to specificity of β-oxidation, 

with 22:6n-3 being more resistant to oxidation than 20:5n-3 (Tocher, 2003).  Indeed, 

reduction of hepatic 20:5n-3 levels in rats fed dietary TTA has been suggested to be due 

to selectively increased β-oxidation of this n-3 HUFA (Frøyland et al., 1997). 

Although not consistently observed, some studies had suggested that CLA might 

enhance growth and feed efficiency in young rodents (Pariza et al., 2001).  Thus, a 

further aim of the present trial was to determine if dietary CLA or TTA had beneficial 

effects on growth parameters in Atlantic cod. However, neither CLA nor TTA had any 

effect on growth (SGR, TGC) or feed efficiency (FCR) in the present trial.  In recent 

studies on salmonids, no effects of dietary CLA on growth rates or FCR were observed in 

Atlantic salmon fry (Berge et al., 2004), or smolts (section 3.3.2), or in rainbow trout 

(Figueiredo-Silva et al., 2005) fed diets containing up to 2 % CLA. Similarly, no effects 

on weight gain or feed efficiency were noted in juvenile yellow perch or catfish fed diets 

containing up to 1 % CLA (Twibell et al., 2001; Twibell and Wilson, 2003), or in 

juvenile tilapia fed CLA at up to 5 % of diet (Yasmin et al., 2004). However, growth of 
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tilapia was inhibited by 10 % CLA, as was growth of carp and rockfish at both 5 and 10 

% CLA (Choi et al., 1999).  Therefore, the data are consistent in suggesting that dietary 

CLA does not have any beneficial effects on growth performance in a variety of fish 

species, and can inhibit growth at high inclusion levels.  In contrast, dietary TTA 

inhibited growth in salmon smolts as evidenced by decreased final weights, SGRs and 

TGCs, although FCR was unaffected (Moya-Falcon et al., 2004). 

An important result in the present study was that there were no mortalities in cod 

fed the TTA treatment. Previously, in addition to a reduction of growth (Moya-Falcon et 

al., 2004), TTA was also reported to cause an increase in mortality in salmon (Moya-

Falcon et al., 2004; Kleveland et al., 2006). Therefore, it was hoped that the present study 

would help to elucidate whether the observed rise in mortality in previous studies 

involving fish was due, in part, to a modulation of the innate immune response.  An 

attempt was made to measure the rate of phagocytosis from isolated head kidney 

macrophages (section 2.4.5).  Unfortunately the assay, which had to be completed 

entirely on-site at the commercial farm, did not work as the yeast failed to adhere to the 

slides, possibly due to the low ambient temperature in the laboratory in January.  

Moreover, lysozyme activity failed to produce a result using the methodology outlined in 

section 2.4.4, possibly for similar reasons.  Thus, only basic haematological parameters 

were able to be tested.  Nevertheless, the results proved interesting given that TTA 

decreased both red and white blood cell counts, and packed cell volume, significantly so 

in the latter.  This may have implications on fish health as it implies that TTA may act as 

an immunodepressor.  Obviously, a more thorough examiniation of the immunological 

aspects of dietary TTA with regards to Atlantic cod health is required before any 

conclusive judgment can be made.   
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In conclusion, the results of the present study only partially supported the 

hypotheses that were tested. CLA and TTA at the levels used had few beneficial effects 

in Atlantic cod and did not enhance growth parameters, or improve feed conversion or 

potential yield through decreased adiposity or liver lipid deposition.  However, nutritional 

quality could be enhanced, and cod fed CLA and/or TTA could be beneficial in the 

human diet, through provision of bioactive fatty acids with no detrimental effects on n-3 

PUFA levels.   
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CHAPTER 6. INFLUENCE OF DIETARY CLA AND TTA 
IN RAINBOW TROUT 

6.1 Introduction 

Rainbow trout are a fast growing, robust fish that can tolerate a wide variety of 

environmental conditions and can be easily weaned on to an artificial diet.  Hence, this 

species has been an ideal candidate for aquaculture.  Being intensively farmed since the 

latter half of the 20th century, culture of rainbow trout is expected to reach global 

production levels of circa 500,000 tonnes in the near future (FAO, 2007), making it one 

of the most intensively farmed diadromous fishes on the planet.  As of 2002, rainbow 

trout aquaculture was practised in 64 countries, with the majority of production output 

located in Europe, Japan and North America (FAO, 2007).  An integral part of the ethos 

of fish culture is the ability to be recognised as a consumer friendly alternative to wild 

fish.  Research and development over the past few decades has seen this ideal largely 

achieved, however more work is still required.  One of the most important facets of 

aquaculture research is the optimisation of feed formulations in order to improve both 

fish welfare and consumer satisfaction.   

As previously highlighted in section 1.3.1, high lipid levels are utilised in 

commercial aquaculture diets in order to offset relatively expensive protein as a source of 

energy.  In this way, protein can be ‘spared’ for synthesis of new tissue (Wilson, 1989; 

Bell, 1998).  Although high lipid diets provide an invaluable energy source, they may 

also promote excessive fat deposition in tissues particularly, in the case of rainbow trout, 

in the flesh, which can affect the overall market quality of the fish (Sargent et al., 2002).  

Furthermore, an increase in the production of farmed fish over the last decade, juxtaposed 
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with a decline in finite sources of FO has prompted research into alternative sustainable 

feed formulations, primarily examining the potential for plant-derived oil replacement 

(Sargent et al., 2002; Tacon, 2003).  However, it has been suggested that VO 

replacements may also impact on consumer welfare by reducing the amount of human 

health promoting n-3 HUFA found in oily fish such as rainbow trout (Tocher, 2003). The 

physiological and biochemical influences of potential dietary “functional fatty acids” are 

currently being assessed in an attempt to alleviate the deleterious consequences of 

feeding fish high lipid levels or alternative oil diets.  Two of these prospective 

“functional” dietary supplements are the bioactive fatty acids, CLA and TTA.   

Since the initiation of this project, only a handful of studies have been published 

detailing the influence of dietary CLA or TTA in salmonids, all of which focussed on 

relatively small sized fish (Moya-Falcon et al., 2004; Figueirdo-Silva et al., 2005; 

Kleveland et al., 2006; Leaver et al., 2006; Valente et al., 2007a).  What can generally be 

concluded from these studies was that no appreciable increase in growth or decrease in 

lipid deposition (attributes associated with both CLA or TTA supplementation in studies 

involving mammalian models) have been observed after dietary supplementation with 

these fatty acids in salmonids.  In a commercial context, one valuable result in studies 

involving dietary CLA or TTA supplementation in fish has been the deposition of these 

fatty acids in flesh, thus potentially providing a consumer friendly route through which 

provision of these bioactive fatty acids could be attained for humans.  However, it has yet 

to be determined whether feeding either dietary CLA or TTA to fish at such an early 

juncture in their life-cycle would be economically viable.  Furthermore, and most 

importantly, the effects of CLA or TTA on large rainbow trout, which are actively 

depositing lipid, have hitherto not been investigated and therefore it is unknown if these 
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bioactive fatty acids can influence growth or trout flesh lipid at an arguably more 

commercially important life-cycle stage.   

The present study aimed to test the hypothesis that feeding dietary CLA or TTA 

to rainbow trout of near market size and weight could increase growth, decrease lipid 

deposition, and enhance fatty acid composition via an increase in n-3 HUFA levels and 

provision of CLA or TTA in flesh lipid in particular.  Additionally, to examine the effects 

of CLA and TTA on lipid metabolism, in the expectation that one of the main 

biochemical modus operandi thought to be responsible for reductions in lipid deposition 

in similar studies investigating the effect of these fatty acids in mammals, namely an 

increase in fatty acid oxidation, would also be elicited in trout.  Currently, there is no 

evidence for the mechanism of the previously observed increased mortality in salmon 

supplemented with TTA (Moya-Falcon et al., 2004; Kleveland et al., 2006;), or any 

information about whether it is as a result of an immunomodulatory response.  Similarly, 

it is unclear whether dietary CLA can influence the immune response in rainbow trout of 

this size.  Thus, an ancillary objective of this study was to determine the effect of CLA or 

TTA on some key non-specific immune parameters. 

Thus, this study reports the influence of CLA and, for the first time, TTA, on 

growth and lipid composition and metabolism in large, near market-size rainbow trout 

grown in seawater.  Trout of almost 440 g were fed for eight weeks on FM and FO diets 

containing either 0.5 % or 1 % CLA, or 0.5 % TTA and growth, feed efficiency, tissue 

lipid content, class and fatty acid compositions determined, along with activities of 

HUFA synthesis and key enzymes of fatty acid oxidation, and the expression of 

associated genes.  A number of immune parameters including blood cell counts and 

lysozyme activity were also investigated. 
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6.2 Materials and Methods 

6.2.1 Experimental Fish and Husbandry 

The dietary trial was performed at BioMar ForsøgsStation, Hirtshals, Denmark, 

between March and May 2006.  Stock, unpigmented rainbow trout  (Skinnerup, 

Moeldrup, Denmark) acclimated to 20 ppt salinity, were randomly distributed between 

twelve indoor, round tanks of 1 m3 volume (1.72 m diameter).  The initial stocking 

density was 25 fish of average weight 437 ± 56 g (< 13 % CV) per tank (~10.5 kg/m3).  

Water temperature was maintained at 15.5 ± 0.2 oC throughout the trial, with a light 

regime of 14L:10D.  Four experimental diets were fed to triplicate tanks for 55 days, with 

the feeding regime based on restricted feeding at 100 % of BioMar recommended feeding 

tables.  The calculated feed ration was offered to the fish for 8 h each day using automatic 

individual belt feeding units.  In order to facilitate accurate calculations of feed intake 

and FCR, feed waste was collected daily via a lift-up system.  

6.2.2 Experimental Diets 

The experimental diets were formulated to satisfy the nutritional requirements of 

salmonid fish (National Research Council, 1993), and were formulated and manufactured 

by BioMar A/S, Brande, Denmark (Table 6.1).  
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Table 6.1 Formulations (percentage of dry ingredients) and proximate compositions 
(percentage of total diet) of experimental diets. 

Component

Fishmeal
Sunflower meal
Wheat Gluten
Legume seeds
Soya
Micronutrients
Fish Oil
CLA
TTA

Moisture 7.3 ± 0.2 7.5 ± 0.1 7.6 ± 0.1 7.5 ± 0.2
Lipid 27.7 ± 1.1 25.7 ± 0.5 24.8 ± 0.7 24.7 ± 1.9
Protein 43.5 ± 0.6 42.1 ± 0.2 42.6 ± 1.1 42.6 ± 0.6
Ash 8.4 ± 0.3 8.4 ± 0.0 8.4 ± 0.3 8.5 ± 0.1

FO CLA1 CLA2 TTA

41
10.7
10
14

10 10
1414 14

10

4141 41
10.7 10.710.7

4
0.4

0

44 4
0.4

0.8 1.7
22.5

0 0.0 0

0.40.4

0
0.5

21.7 20.8 22

 
Results for proximate compositions are means ± S.D. (n = 3).  FO, control diet containing 
fish oil alone; CLA1 and CLA2, diets supplemented with 0.5 and 1 % CLA; TTA, diet 
supplemented with 0.5 % TTA.  There were no significant differences in proximate 
compositions between the diets. Micronutrients, incudes essential amino acids 
(methionine and lysine), vitamins, minerals, and astaxanthin (LucantinØ Pink, BASF), 
Biomar A/S, Brande, Denmark 

Moisture, oil, protein and ash contents of diets were determined by standard 

methods (AOAC, 2000).  The isonitrogenous diets were based on FM and standard 

Northern hemisphere FO with CLA and TTA added to 0, 0.5 and 1 % (CLA), and 0.5 % 

(TTA) as percentages of total diet. Diets were identical in formulation other than fatty 

acid composition with CLA (LUTA-CLATM 60, containing 60 % CLA methyl esters as a 

50:50 mixture of c9t11 and t10c12 isomers; BASF AG, Ludwigshafen, Germany) and 

TTA (supplied by Dr Rolf Berge, Thia Medica A.S., Bergen, Norway) balanced by FO 

(capelin oil, Norsemeal Ltd., London, UK). The fatty acid compositions of the diets are 

presented in Table 6.2.  
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Table 6.2 Fatty acid compositions (percentage of weight) of experimental diets 
containing CLA and TTA. 

14:0 7.8 ± 0.2 7.7 ± 0.2 7.4 ± 0.2 7.9 ± 0.3
15:0 0.7 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.7 ± 0.0
16:0 20.2 ± 0.1 20.2 ± 0.3 19.6 ± 0.4 20.4 ± 0.5
18:0 4.2 ± 0.1 4.2 ± 0.1 4.2 ± 0.1 4.2 ± 0.1
Total saturated1 33.3 ± 0.3 33.1 ± 0.6 32.2 ± 0.8 35.5 ± 0.9

16:1n-7 8.3 ± 0.2 a 8.1 ± 0.0 a 7.8 ± 0.0 b 8.2 ± 0.1 a

18:1n-9 8.3 ± 0.0 c 8.8 ± 0.1 b 9.4 ± 0.0 a 8.1 ± 0.1 d

18:1n-7 3.2 ± 0.1 3.2 ± 0.0 3.1 ± 0.1 3.3 ± 0.0
20:1n-9 1.5 ± 0.0 1.4 ± 0.0 1.4 ± 0.0 1.4 ± 0.1
22:1n-11 1.7 ± 0.2 1.7 ± 0.1 1.7 ± 0.0 1.7 ± 0.1
24:1n-9 0.5 ± 0.1 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0
Total monoenes2 23.9 ± 0.4 23.9 ± 0.3 24.2 ± 0.1 23.5 ± 0.3

CLA (9c,11t) 0.0 ± 0.0 c 0.9 ± 0.1 b 2.0 ± 0.2 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.9 ± 0.1 b 2.0 ± 0.2 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 1.9 ± 0.1 a

18:2n-6 3.7 ± 0.1 3.6 ± 0.0 3.8 ± 0.0 3.6 ± 0.0
20:4n-6 1.3 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 1.2 ± 0.0
Total n-6 PUFA3 6.3 ± 0.2 6.0 ± 0.1 6.0 ± 0.0 5.8 ± 0.1

18:3n-3 1.1 ± 0.0 1.1 ± 0.0 1.0 ± 0.0 1.1 ± 0.0
18:4n-3 2.8 ± 0.0 2.6 ± 0.0 2.6 ± 0.0 2.7 ± 0.0
20:4n-3 0.9 ± 0.1 1.0 ± 0.3 0.7 ± 0.0 0.7 ± 0.0
20:5n-3 15.3 ± 0.3 a 14.9 ± 0.1 ab 14.4 ± 0.1 b 15.2 ± 0.2 a

22:5n-3 1.8 ± 0.0 1.7 ± 0.0 1.6 ± 0.0 1.7 ± 0.0
22:6n-3 14.2 ± 0.2 a 13.6 ± 0.2 bc 13.2 ± 0.2 c 13.8 ± 0.3 ab

Total n-3 PUFA4 36.4 ± 0.3 a 35.1 ± 0.1 b 33.7 ± 0.3 c 35.3 ± 0.5 b

Total PUFA 42.7 ± 0.3 a 41.1 ± 0.1 b 39.7 ± 0.3 c 41.1 ± 0.6 b

n-3/n-6 5.8 ± 0.2 bc 5.9 ± 0.1 ab 5.6 ± 0.0 c 6.1 ± 0.0 a

FO CLA1 CLA2 TTA

 
Values are ± S.D. (n = 3). Superscript letters denote significant differences between the 
diets as determined by ANOVA.  1, includes 20:0 present at up to 0.3 %; 2, includes 
20:1n-7 present at up to 0. 3%; 3, includes 18:3n-6, 20:2n-6, 20:3n-6 and 22:4n-6 present 
at up to 0.4 %; 4, includes 20:3n-3 present up to 0.2 %. 
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6.2.3 Sampling and Analysis 

At the initiation and termination of the trial, all the fish in each tank were 

anaesthetised with benzocaine (50 mg/L), and weighed individually.  At the end of the 

trial, 8 fish per tank (24 per dietary treatment) were sampled, eviscerated and biometric 

parameters (hepato-, and viscero-somatic indices) determined.  Before the samples were 

eviscerated and used for growth and biometric analyses, blood was removed from the fish 

as described in section 2.4.1.  Liver and flesh samples (Flesh Quality Cut) were taken 

from six fish per tank, pooled in two samples of 3 fish each, and frozen immediately in 

liquid nitrogen (livers) or dry ice (flesh). Samples of 0.5 g of liver and red and white 

muscle from the epaxial myotomes anterior to the first dorsal fin ray were rapidly 

dissected from the remaining six fish (two per tank) and immediately frozen in liquid 

nitrogen for molecular analyses. In addition, samples of 1 - 2 g of liver, white and red 

muscle for biochemical analyses were collected from the same fish and immediately 

frozen in liquid nitrogen.  All samples were subsequently stored at –80 oC prior to 

analyses 

Blood cell counts and haematocrit measurements were carried out as described in 

sections 2.4.2 and 2.4.3 respectively.  Lysozyme activity was measured as detailed in 

section 2.4.4.  Total lipids of liver, muscle and diet extracted and quantified as described 

in section 2.3.7 and lipid class analysis was carried out as detailed in section 2.3.8.  

Samples taken for biochemical analysis were used to estimate peroxisomal β-oxidation 

capacity (section 2.3.3).  CPT-1 and ACO activities were also determined as described in 

sections 2.3.4 and 2.3.5, respectively. 

Total RNA from liver, red and white muscles was isolated, DNase treated and 

reverse transcribed into cDNA as described previously in sections 2.5.1 and 2.5.2.  PCR 
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primers were designed according to the trout cDNA sequences for CPT-I (accession no. 

AF327058), fatty acyl ∆6 desaturase (accession no. AF301910) and fatty acyl elongase 

(accession no. AY605100) as outlined in Table 6.3.  Three reference genes, elongation 

factor-1α (EF1α), β-actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

were used to normalise the expression data. Primer sequences and PCR product sizes are 

given in Table 6.3.  

Table 6.3 Sequences of Primers and PCR product sizes. 

Gene Accession No. Primer Sequence Product size (bp)
CPT-I AF327058 Forward GCGCTATTCGACCAAAAAGA 133

Reverse CTAGTCGTGACCAGCCGTTT
Desaturase AF301910 Forward ACCTAGTGGCTCCTCTGGTC 119

Reverse CAGATCCCCTGACTTCTTCA
Elongase AY605100 Forward GAACAGCTTCATCCATGTCC 149

Reverse TGACTGCACATATCGTCTGG
Elongation factor 1α AF498320 Forward GAATTCTCCTCCCACAGGAT 119

Reverse ACGATGGGTTTTAATCAGCA
Actin AJ438158 Forward CAAGCAGGAGTACGACGAGT 110

Reverse CTGAAGTGGTAGTCGGGTGT
GAPDH AB066373 Forward GTCTCAGTGGTGGACCTGAC 149

Reverse GCCGTTGAAGTCTGAAGAGA
All genes are from rainbow trout. 
CPT-I, carnitine palmitoyltransferase-I; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.  

 

Quantitative real-time PCR was subsequently carried out essentially as described 

in section 2.5.5.  The suitability of all three reference genes was determined via pair-wise 

correlation analysis using the BestKeeper© software (Pfaffl et al., 2004).  Sample specific 

PCR efficiency (E) was determined using comparative quantitation analysis as part of the 

Rotor-Gene software.  This negates the need for a serial dilution curve of pooled template 
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cDNA and provides a more robust representation of the overall PCR efficiency.  The data 

were subjected to a pair-wise fixed reallocation randomization test© (10000 

randomisations) in order to determine significance between treatments as facilitated by 

Relative Expression Software Tool – Rotor-Gene (REST-RG© - version 3) (Pfaffl, et al., 

2002).  

6.2.4 Statistical Analysis 

All data are presented as means ± S.D (n value as stated). Percentage data and 

data which were identified as non-homogeneous (Bartlett’s test) were subjected to arcsine 

transformation before analysis.  Other than for gene expression (see above), the effects of 

dietary CLA and TTA were determined by one-way analysis of variance (ANOVA) with 

Tukey’s post-tests to determine significance of differences due to functional fatty acids. 

Differences were regarded as significant when P < 0.05 (Zar, 1999). 

6.3 Results 

6.3.1 Dietary Inclusions 

The control FO diet contained around 43 % total PUFA including 15 % 20:5n-3, 

14 % 22:6n-3 and almost 4 % 18:2n-6, 33 % total saturates, mainly 16:0, and 24 % total 

monoenes, mainly 18:1n-9 and 16:1n-7 (Table 6.2).  Inclusion of CLA in the diets 

resulted in levels of total CLA of 1.8 % and 4.0 % of total fatty acids at the 0.5 and 1 % 

inclusion levels, respectively, and inclusion of 0.5 % TTA resulted in TTA at a level of 

1.9 % of total fatty acids in the diet.  CLA and TTA inclusion resulted in lower levels of 

n-3 and total PUFA and increased levels of 18:1n-9.  In addition, inclusion of 1 % dietary 

CLA also decreased the proportions of 20:5n-3, 22:6n-3 and 16:1n-7.   
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6.3.2 Growth and Biometry 

There were no significant differences in final weight, growth rate (SGR), feed 

efficiency (FCR), gutted weight and condition factor in trout fed CLA or TTA compared 

to fish fed the control diet (Table 6.4).  Similarly, viscero- and hepato-somatic indices 

were unaffected by dietary treatment.  Pigmentation, measured using the Minolta light 

meter system, was also unaltered in response to dietary CLA or TTA treatment (Table 

6.4).   

Table 6.4 Growth and biometric parameters of rainbow trout fed diets containing CLA 
and TTA. 

Initial weight (g) 429 ± 17 437 ± 2 450 ± 8 433 ± 12

Final weight (g) 755 ± 46 760 ± 7 777 ± 15 762 ± 21

SGR 1.06 ± 0.07 1.08 ± 0.07 1.02 ± 0.02 1.05 ± 0.03

FCR 0.99 ± 0.06 0.95 ± 0.08 1.03 ± 0.02 0.98 ± 0.01

Gutted weight (%) 83.7 ± 0.8 84.3 ± 0.7 84.6 ± 0.7 83.3 ± 0.6

Condition factor (K) 1.58 ± 0.02 1.58 ± 0.02 1.62 ± 0.04 1.58 ± 0.03

HSI 1.4 ± 0.1 1.4 ± 0.1 1.3 ± 0.1 1.5 ± 0.1
VSI 17.0 ± 1.1 15.7 ± 0.7 15.4 ± 0.7 16.7 ± 0.6

Pigmentation 12.6 ± 0.4 12.8 ± 0.5 12.8 ± 0.3 12.6 ± 0.4

Mortality (n)

FO CLA1 CLA2 TTA

0 0 0 0

 
All data are means ± S.D. with triplicate tanks being experimental units (n=3).  There 
were no significant effects of dietary treatment as measured by ANOVA. Condition 
factor (K) = (wet weight in g) x 100)/(length in mm)3 x 1000; FCR, feed conversion ratio; 
TGC, thermal growth coefficient; HSI, hepato-somatic index; SGR, specific growth rate; 
VSI, viscero-somatic index.   
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6.3.3 Lipid Content and Class Composition 

The hepatic lipid content of trout was significantly decreased in response to 

dietary CLA, but was unaffected in fish fed dietary TTA (Table 6.5).  There were no 

significant effects on lipid class composition in either liver or flesh of trout fed CLA or 

TTA compared to FO alone. However, there was a trend indicating a decrease in total 

neutral lipids in liver of trout fed CLA.  In addition, flesh lipid content did not change in 

response to dietary treatment, as determined by 1-way ANOVA (Table 6.5). 

Table 6.5 Lipid content (percentage of weight) and polar/neutral lipid compositions 
(percentage of total lipid) of liver and flesh of rainbow trout fed CLA or TTA. 

Lipid class

Liver

Lipid content 4.5 ± 0.1 a 3.7 ± 0.3 c 3.9 ± 0.4 bc 4.3 ± 0.4 ab

Total polar 37.6 ± 2.0 40.2 ± 3.7 41.3 ± 3.0 42.3 ± 2.6

Total neutral 62.4 ± 2.0 59.8 ± 3.7 58.7 ± 3.0 57.7 ± 2.6

Flesh

Lipid content 7.2 ± 0.6 7.2 ± 0.3 7.7 ± 0.5 8.2 ± 1.0

Total polar 12.4 ± 3.3 12.3 ± 1.9 11.2 ± 0.9 9.5 ± 1.1

Total neutral 87.6 ± 3.3 87.7 ± 1.9 88.8 ± 0.9 90.5 ± 1.1

FO CLA2 TTACLA 1

  
Values are means ± S.D of 6 samples each of tissue pooled from 3 fish.  Superscript 
letters denote significant differences between dietary treatments as determined by 
ANOVA. 
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6.3.4 Tissue Fatty Acid Composition 

Dietary CLA and TTA were incorporated into both liver and flesh of rainbow 

trout with the bioactive fatty acids deposited at higher levels in flesh compared to liver 

(Tables 6.6 & 6.7).  The total levels of CLA deposited in liver were 0.6 and 1 % of the 

total fatty acids at inclusion levels of 0.5 % and 1 % of the diet, respectively, whilst 

accumulation of TTA reached 0.6 % of total fatty acids at 0.5% dry weight of the diet 

(Table 6.7).  In flesh, levels of total CLA accounted for 1.1 and 1.6 % of the total fatty 

acids in fish fed 0.5 and 1 %, respectively (Table 6.6).  The proportion of TTA as a 

percentage of total fatty acid reached 1.2 % in flesh of fish fed 0.5 % dietary TTA.  Both 

CLA and TTA significantly increased the proportions of hepatic n-3 PUFA, total PUFA 

and 20:4n-6 in liver (Table 6.7).  Both 20:5n-3 and 22:6n-3 tended to be higher in fish fed 

CLA or TTA, however this only reached statistical significance with 20:5n-3 in fish fed 1 

% CLA.  Total saturated fatty acids and 18:0 were increased by CLA whereas total 

monoenes, particularly 18:1n-9 and 16:1n-7, were reduced in livers of fish fed both CLA 

and TTA (Table 6.6).  Similarly in flesh, 18:0 was significantly increased and 18:1n-9 

decreased in fish fed dietary CLA in particular (Table 6.7).  It is noteworthy that in flesh, 

neither CLA nor TTA were deposited at the expense of n-3 HUFA. 
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Table 6.6 Fatty acid composition (percentage of weight) of total lipid  
from flesh of rainbow trout fed CLA or TTA. 

14:0 5.9 ± 0.4 5.6 ± 0.3 5.8 ± 0.2 5.9 ± 0.4

15:0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

16:0 19.1 ± 0.6 18.9 ± 0.4 18.9 ± 0.4 18.9 ± 0.4

18:0 4.4 ± 0.3 b 5.3 ± 0.2 a 5.0 ± 0.5 a 4.4 ± 0.1 b

Total saturated 30.0 ± 1.2 30.2 ± 0.7 30.2 ± 0.8 29.8 ± 0.7

16:1n-7 7.2 ± 0.4 6.8 ± 0.1 6.9 ± 0.2 7.0 ± 0.2

18:1n-9 13.4 ± 0.6 a 12.4 ± 0.4 b 12.7 ± 0.2 b 12.8 ± 0.6 ab

18:1n-7 3.5 ± 0.1 3.5 ± 0.1 3.4 ± 0.1 3.6 ± 0.1

20:1n-9 2.8 ± 0.3 ab 2.5 ± 0.3 b 3.1 ± 0.2 a 2.8 ± 0.3 ab

22:1n-11 2.5 ± 0.4 ab 2.2 ± 0.3 b 2.9 ± 0.2 a 2.4 ± 0.4 ab

24:1n-9 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.1

Total monoenes1 30.1 ± 0.5 a 28.1 ± 0.9 b 29.7 ± 0.5 a 29.3 ± 0.8 a

CLA (9c,11t) 0.0 ± 0.0 c 0.6 ± 0.1 b 0.9 ± 0.2 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.5 ± 0.1 b 0.7 ± 0.1 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 1.2 ± 0.1 a

18:2n-6 4.8 ± 0.8 5.5 ± 0.7 4.6 ± 0.3 5.4 ± 0.9

20:4n-6 0.9 ± 0.0 1.0 ± 0.0 0.9 ± 0.0 0.9 ± 0.0

Total n-6 PUFA2 6.7 ± 0.8 7.5 ± 0.7 6.4 ± 0.3 7.0 ± 0.9

18:3n-3 1.2 ± 0.2 1.2 ± 0.0 1.2 ± 0.1 1.3 ± 0.1

18:4n-3 1.5 ± 0.1 1.4 ± 0.1 1.6 ± 0.1 1.5 ± 0.1

20:4n-3 1.3 ± 0.1 1.3 ± 0.1 1.1 ± 0.2 1.4 ± 0.2

20:5n-3 8.7 ± 0.3 8.7 ± 0.2 8.4 ± 0.2 8.5 ± 0.2

22:5n-3 2.9 ± 0.1 2.9 ± 0.0 2.7 ± 0.1 3.0 ± 0.2

22:6n-3 17.3 ± 1.1 17.5 ± 0.4 16.8 ± 0.5 16.8 ± 0.6

Total n-3 PUFA3 33.2 ± 1.2 33.2 ± 0.3 32.0 ± 0.8 32.8 ± 0.7

Total PUFA 39.9 ± 1.1 a 40.7 ± 0.8 a 38.5 ± 0.5 b 39.7 ± 0.7 ab

n-3/n-6 5.0 ± 0.7 4.5 ± 0.4 5.0 ± 0.3 4.8 ± 0.6

FO CLA1 CLA2 TTA

 
Values are means ± SD of 6 samples each of tissue pooled from 3 fish. 
1, includes 20:1n-7 present up to 0.3 %; 2, includes 20:2n-6, 20:3n-6  
and 22:4n-6 present up to 0.3 %; 3, includes 20:3n-3 present up to 0.3 %. 
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Table 6.7 Fatty acid composition (percentage of weight) of total lipid  
from liver of rainbow trout fed CLA or TTA.  

14:0 2.0 ± 0.2 1.8 ± 0.2 1.8 ± 0.1 1.8 ± 0.1

16:0 13.1 ± 1.1 a 12.6 ± 1.0 a 12.2 ± 0.5 ab 10.8 ± 1.1 b

18:0 8.2 ± 0.3 d 13.4 ± 0.5 b 14.8 ± 0.5 a 9.6 ± 0.4 c

Total saturated1 23.7 ± 1.3 b 28.3 ± 1.1 a 29.3 ± 0.5 a 22.6 ± 1.4 b

16:1n-7 4.7 ± 0.4 a 2.8 ± 0.3 bc 2.6 ± 0.2 c 3.2 ± 0.3 b

18:1n-9 17.7 ± 2.0 a 10.8 ± 1.8 bc 9.0 ± 0.9 c 12.2 ± 1.6 b

18:1n-7 3.4 ± 0.1 a 2.7 ± 0.2 b 2.6 ± 0.1 b 3.5 ± 0.2 a

20:1n-9 2.3 ± 0.3 a 1.9 ± 0.3 b 1.5 ± 0.1 c 2.6 ± 0.2 a

24:1n-9 0.4 ± 0.0 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1

Total monoenes2 29.0 ± 2.2 a 19.1 ± 2.2 c 16.8 ± 1.2 c 22.5 ± 2.2 b

CLA (9c,11t) 0.0 ± 0.0 c 0.4 ± 0.1 b 0.7 ± 0.0 a 0.0 ± 0.0 c

CLA (10t,12c) 0.0 ± 0.0 c 0.2 ± 0.0 b 0.4 ± 0.0 a 0.0 ± 0.0 c

TTA 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 0.9 ± 0.1 a

18:2n-6 1.7 ± 0.1 ab 1.5 ± 0.1 c 1.6 ± 0.1 bc 1.8 ± 0.1 a

20:4n-6 2.2 ± 0.2 b 3.0 ± 0.4 a 2.9 ± 0.2 a 3.1 ± 0.4 a

22:4n-6 0.6 ± 0.0 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1

Total n-6 PUFA3 5.2 ± 0.4 b 6.0 ± 0.5 a 5.8 ± 0.3 ab 5.8 ± 0.3 ab

18:3n-3 0.5 ± 0.1 0.5 ± 0.0 0.5 ± 0.1 0.6 ± 0.0

20:4n-3 0.6 ± 0.1 b 0.6 ± 0.0 b 0.7 ± 0.1 b 0.9 ± 0.2 a

20:5n-3 9.4 ± 0.4 b 10.2 ± 0.7 ab 10.5 ± 0.5 a 9.6 ± 0.5 b

22:5n-3 3.7 ± 0.4 b 3.6 ± 0.4 b 3.6 ± 0.3 b 4.9 ± 0.7 a

22:6n-3 27.7 ± 1.2 31.0 ± 1.8 31.5 ± 1.6 31.8 ± 1.0

Total n-3 PUFA4 42.2 ± 1.8 b 46.1 ± 1.9 a 47.0 ± 1.4 a 48.2 ± 1.0 a

Total PUFA 47.3 ± 2.1 b 52.0 ± 1.9 a 52.9 ± 1.5 a 53.9 ± 1.1 a

n-3/n-6 8.2 ± 0.4 7.8 ± 0.7 8.1 ± 0.3 8.4 ± 0.5

FO CLA1 CLA2 TTA

 
Values are means ± S.D. of 6 samples each of tissue pooled from 3 fish. Superscript 
letters denote significant differences between dietary treatments as determined by 
ANOVA.1, includes 15:0 and 20:0 present is some samples at up to 0.2 %; 2, includes 
20:1n-7 and 22:1n-11 present in some samples at up to 0.3 %; 3, includes 20:2n-6 and 
20:3n-6 present in some samples at up to 0.4 %; 4, includes 18:4n-3 and 20:3n-3 present 
in some samples at up to 0.2 %. 
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6.3.5 Peroxisomal β-Oxidation Capacity, CPT-1 and ACO Activities 

Peroxisomal fatty acid β-oxidation capacity was not affected in fish fed CLA or 

TTA (Figure 6.1).  There was a trend that suggested an increase in metabolic flux of 

palmitate in muscle of fish fed CLA, however the deviation between samples made the 

pattern non-significant.  Dietary CLA had no effect on CPT-1 activity in any of the three 

tissues, liver, white and red muscle, relative to fish fed the control FO diet (Figure 6.2).  

In white muscle, CPT-1 activity was also unaffected by dietary TTA.  However, there 

was a significant increase in CPT-1 activity in liver and red muscle of trout fed the diet 

containing 0.5 % TTA.  ACO activity mirrored CPT-1 activity in all tissues of trout fed 

TTA such that liver and red muscle ACO activity significantly increased whereas white 

muscle ACO activity was unaffected (Figure 6.3).  There was a trend for dietary CLA to 

increase ACO in liver and red muscle, but this effect was only significant in red muscle 

in fish fed the higher level of CLA.  The overall flux through the HUFA synthesis 

pathway, as measured by summing all the desaturated products of 18:3n-3, was 

unaffected by dietary CLA or TTA (Figure. 6.4).  However, both 1 % CLA and 0.5 % 

TTA significantly increased the amount of radioactivity recovered in the hexaene fraction 

of the total radioactivity recovered from hepatic microsomes incubated with radiolabelled 

18:3n-3.  Conversely, the amount of radioactivity from labelled 18:3n-3 recovered in the 

pentaene fraction was significantly less in CLA-treated fish compared with controls. 



Chapter 6  

 159

Figure 6.1 Effects of CLA or TTA on peroxisomal β-oxidation capacity  
in tissue homogenates of liver, red and white muscle of rainbow trout.  
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Results are presented relative to the activity in fish fed FO for each tissue  
and are means ± SD (n = 6).  There were no statistically significant  
differences between dietary treatments within each tissue. 
 
Figure 6.2 Effects of CLA or TTA on CPT-1 activity in tissue  
homogenates of liver, red and white muscle of rainbow trout. 
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Results are presented relative to the activity in fish fed FO for each tissue and are means 
± SD (n = 6). Different letters denote significant differences between dietary treatments 
within each tissue. 
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Figure 6.3 Effects of CLA or TTA on ACO activity in tissue homogenates of liver, red 
and white muscle of rainbow trout 
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Results are presented relative to the activity in fish fed FO for each tissue and are means 
± SD (n = 6). Different letters denote significant differences between dietary treatments 
within each tissue.  

 
Figure 6.4 Effects of dietary oil content and conjugated linoleic acid (CLA) and 
tetradecylthioacetic acid on highly unsaturated fatty acid (HUFA) synthesis in the liver 
microsomes 
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Results are presented relative to the activity in fish fed FO for each tissue and are means 
± SD (n = 6). Different letters denote significant differences between dietary treatments 
within each tissue 
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6.3.6 Gene Expression of CPT-1in Liver, Red and White Muscles, and 
Fatty Acyl ∆6 Desaturase and PUFA Elongase in Liver 

Neither dietary CLA nor TTA had any significant effect on the gene expression of CPT-1 

in liver or red muscle compared to fish fed FO alone (Figure 6.5).  However, CPT-1 

expression was significantly increased in white muscle as a result of dietary CLA and 

TTA inclusion relative to fish fed FO alone.  The expression of fatty acyl ∆6 desaturase 

was significantly lower in fish fed CLA and TTA compared to fish fed FO alone, whereas 

the expression of PUFA elongase was increased by dietary CLA (Figure 6.6).   

 

Figure 6.5 Effects CLA or TTA on the expression of CPT-1 in the liver, red and white 
muscle of rainbow trout.  

0.0

0.5

1.0

1.5

2.0

Liver Red muscle White muscle

E
xp

re
ss

io
n 

R
at

io

FO
CLA1
CLA2
TTA

a a

a

b

 
Results are presented relative to the activity in fish fed FO and are means ± SD (n = 6). 
Different letters denote significant differences between dietary treatments. 
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Figure 6.6 Effects of CLA or TTA on the expression of fatty acyl ∆6 desaturase and 
elongase genes in liver of rainbow trout.  
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Results are presented relative to the activity in fish fed FO and are means ± SD (n = 6). 
Different letter denote significant differences between dietary treatments. 
 

6.3.7 Innate Immunological Response 

There was no significant difference in the packed cell volume (haematocrit) of 

rainbow trout fed CLA or TTA relative to fish fed the control (FO).  Likewise, there was 

no difference in red or white blood cell counts in rainbow trout fed either CLA or TTA 

compared with the control (Table 6.8). Furthermore, the serum lysozyme activity of fish 

was unaltered in response to either dietary CLA or TTA in rainbow trout. 
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Table 6.8 Effects of dietary oil content and conjugated linoleic acid (CLA) on basic 
haematology and selected immunological parameters of Atlantic salmon 

Diet

FO 1.00 ± 0.09 1.00 ± 0.49 62.2 ± 6.5 430.0 ± 62.2

CLA1 1.12 ± 0.21 0.95 ± 0.25 65.9 ± 6.3 439.7 ± 45.2

CLA2 1.15 ± 0.20 0.90 ± 0.26 63.2 ± 3.6 444.5 ± 49.9

TTA 1.04 ± 0.23 0.93 ± 0.29 64.8 ± 7.0 456.0 ± 34.8

RBC WBC PCV (%) Lysozyme

(FO =1) (FO =1) (U/min/ml)

 
RBC, red blood cell count (relative to FO diet); WBC, white blood cell count (relative to 
FO diet); PCV, packed cell volume. 

6.4 Discussion 

Considering the myriad of beneficial effects TTA, and particularly CLA have elicited in 

many different animal models and cell culture systems, the main focus of this study was 

to test the hypothesis that these bioactive fatty acids can have similar beneficial effects in 

trout culture, namely through enhanced growth and/or altered lipid deposition.  It was 

also proposed, as a result of feeding trout dietary CLA or TTA, that improved nutritional 

quality could be attained through incorporation of these bioactive fatty acids and 

additional n-3 HUFA levels in the flesh.  Thus, it was also important to analyse the 

capacity for CLA and TTA to accumulate in rainbow trout flesh as this fish may provide 

a vehicle through which these fatty acids could be delivered to the consumer.  An 

additional aim of this trial was, to determine the influence of both dietary TTA and CLA 

at a biochemical level by analysing the activity of key enzymes thought to be pivotal in 
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lipid metabolism, as well as give a preliminary insight into the immunological response 

of fish fed these bioactive fatty acids.   

  The results have shown that the hypotheses were only partly proved.  These fatty acids 

can be easily incorporated into the diet; the flesh accumulates CLA and TTA to a 

relatively greater extent than liver that shows lower percentages of these fatty acids 

which, when combined with the relatively high muscle lipid content, means the flesh of 

trout can deliver a reasonable dose of the bioactive fatty acids.  Specifically, this study 

indicates that both CLA and TTA were accumulated in rainbow trout flesh, with levels 

reaching 1.6 and 1.2 % of total fatty acids, respectively.  Obviously, there is potential for 

an increase in market value of the fish fed CLA or TTA as a result of this finding, if 

indeed these bioactive fatty acids prove to be indubitably beneficial for human health and 

can be included in the diets at a cost-effective level.  This is with particular reference to 

TTA, which has hitherto yet to achieve FDA approval.  Indeed, TTA is still largely 

untested in humans (Berge et al., 2002), although two recent studies suggest it may have 

lipid-lowering and anti-inflammatory effects (Aukrust et al, 2003; Fredriksen et al., 

2004).  As mentioned previously, the effects of CLA and TTA on trout are not without 

precedent, however the number of papers in the peer-reviewed literature on fish are very 

few compared to studies conducted using mammalian models.  Nevertheless, previous 

studies involving CLA supplementation in fish have indicated that this fatty acid can 

accumulate to a much higher level in fish tissues compared to the endogenous levels 

found in ruminant tissues.  For instance, muscle (flesh) CLA concentrations in fish fed 1 

% CLA have reached 8 % of total fatty acids in hybrid striped bass (Twibell et al., 2000), 

3.4 % in European sea bass (Valente et al., 2007b), 2.9 % in perch (Twibell et al., 2001) 

and 3.5 % in Atlantic salmon (section 3.3.5).  Recent studies investigating the influence 
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of dietary CLA on smaller rainbow trout have also indicated that muscle CLA 

concentration can reach 4 – 5 % of the total lipid content (Bandarra et al., 2006; Valente 

et al., 2007a).  Therefore, it is clear that the levels of CLA accumulated in the flesh in the 

present trial with large trout were lower than the levels obtained in previous studies 

involving smaller trout fed an equivalent CLA concentration.  This is entirely consistent 

with the notion that the kinetics of fatty acid composition changes will be more rapid in 

smaller fish.  Thus, it is likely that higher levels of dietary CLA and TTA could be 

accumulated in larger fish given a longer period of dietary supplementation.  In addition, 

there appeared to be degree of selectivity between the individual CLA isomers, such that 

the c9t11 was more effectively incorporated into the liver and flesh of trout; a finding 

also acknowledged in previous studies involving trout (Bandarra et al., 2007; Valente et 

al., 2007a) and other animals (Ostrowska et al., 2003; Degrace et al., 2004).  This may 

have implication on market quality considering the diverse physiological and biochemical 

effects attributed to each isomer.  For instance, it is now accepted that t10c12 CLA is 

responsible for the observed attenuation of fat deposition in rodents in particular (Pariza 

et al., 2001).  

Hitherto, the influence on dietary TTA on the fatty acid composition of rainbow trout had 

not been investigated.  However, in Atlantic salmon TTA accumulated in muscle 

averaging 0.5 % of total fatty acids at dietary inclusion levels of 0.6 % (Kleveland et al., 

2006).  In the present study using fish that are more representative of market size, trout 

fed TTA at a slightly lower dietary concentration were able to accumulate more TTA in 

muscle compared to Atlantic salmon in the previous trial, that were of a significantly 

smaller size.  Importantly, in trout, the accumulation of CLA and TTA did not 

significantly affect the levels of the n-3HUFA in flesh and therefore there was no effect 
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on flesh fatty acid compositions that could be considered detrimental or likely to 

compromise the established nutritional benefit of fish for the human consumer.  This is in 

line with previous studies that showed no detrimental effect on 20:5n-3 and 22:6n-3 

levels in muscle or whole body of salmon fed similar dietary inclusion levels of 0.6 % 

TTA and 1 % CLA, respectively (Berge et al., 2004; Kleveland et al., 2006).  On the 

contrary, liver n-3 PUFA levels significantly increased in this study in response to dietary 

TTA and CLA in addition to a trend indicating a rise in the proportion of 22:6n-3 in fish 

fed these bioactive fatty acids. A related increase in 22:6n-3 and 20:5n-3 levels was also 

observed in the liver of hybrid striped bass fed CLA (Twibell et al., 2000).  In the present 

study, the increase in hepatic n-3 PUFA and appreciable rise in 22:6n-3 level correlates 

with an increase in level of radioactivity recovered in the hexaene fraction of the HUFA 

synthesis assay.  It is noteworthy that only 10 % of the total radioactivity recovered was 

represented by the hexaene fraction and that the majority of this fraction could only 

contain 24:6n-3 since the reaction was carried out in microsomes whereas peroxisomes 

are required for conversion of 24:6n-3 to 22:6n-3 in trout (Buzzi et al., 1997).  However 

in the present study, total HUFA synthesis, as measured by the sum of all desaturated 

products recovered, was low in all dietary treatments, as expected in trout (Buzzi et al., 

1996), and fish in general (Tocher, 2003), fed essentially FO diets, and there was no 

effect of CLA and TTA on overall HUFA synthesis.  Thus, the effects of CLA and TTA 

were specifically to increase the proportion of the products of the pathway recovered as 

hexaenes rather than an increase in the overall activity of the HUFA synthesis pathway.  

Consistent with this, dietary CLA at inclusion levels up to 1 % had no effect on the 

HUFA synthesis pathway in salmon fed diets with similar oil content (section 4.3.1).  It is 

noteworthy that the hepatic 18:3n-3/20:5n-3 ratio, regarded as an indicator of ∆6 
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desaturase activity in fish, was not significantly effected by either TTA or CLA.  

However, in the present trial, ∆6 desaturase expression was significantly less in fish fed 

CLA and TTA relative to fish fed FO diets alone; a result which was not replicated in 

salmon fed an equivalent dietary level of CLA.  In contrast, as has been described 

previously, dietary CLA increased both ∆5 and ∆6 desaturase expression in salmon. 

Obviously, the discrepancy between HUFA synthesis and ∆6 desaturase expression in 

trout warrants further investigation, however, the general low level of HUFA synthesis, 

perhaps combined with an observed compensatory increase in PUFA elongase 

expression, may have mitigated the effect of decreased desaturase expression in this trial.  

Suppression of desaturase activity has been reported previously in studies investigating 

the effects of CLA in transformed yeast  (Chuang et al., 2001a) and t10c12 CLA in 

HepG2 cells (Eder et al., 2002).  In fact, a lack of a direct correlation between desaturase 

expression and activity has previously been observed in further studies involving yeast 

cell systems incubated with CLA (Chuang et al., 2004), and also between ∆6 desaturase 

fatty acid indices and expression in plasma from humans fed CLA (Thijssen et al., 2005).   

In the present study the ratio of 18:0/18:1n-9, a surrogate marker for stearoyl CoA 

desaturase (SCD) activity, was increased in response to dietary CLA in liver and, to a 

lesser extent, flesh lipids.  These data correlate well with studies previously in striped 

bass (Twibell et al., 2000), yellow perch (Twibell et al., 2001), salmon (Berge et al., 

2004; section 4), cod (section 5) and sea bass (Valente et al., 2007b).  In addition, dietary 

CLA increased the proportions of 18:0 and decreased percentages of 18:1 in liver, muscle 

and viscera of rainbow trout juveniles (Bandarra et al., 2006).  Suppression of SCD 

expression and/or activity has also been observed in rats (Wendel and Belury, 2006; 

Purushotham et al., 2007), mice (Lee et al., 1998; Viswanadha et al., 2006), pigs (Smith 
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et al., 2002), poultry (Shang et al., 2005) and mammalian cell lines (Choi et al., 2001, 

2002) in response to t10c12 CLA, c9t11 CLA or a combination thereof.  Conversely, the 

data in the present trial indicate that TTA may have only a moderate effect on SCD 

activity in trout.  The hepatic 18:0/18:1n-9 ratio or SCD index was only slightly altered 

and there was no effect on these indices in flesh of trout fed TTA.  Previously, dietary 

TTA was shown to have no major effects on 18:0/18:1n-9 levels in salmon liver, gill and 

heart (Moya-Falcon et al., 2004) or salmon flesh lipids (Kleveland et al., 2006), or cod 

liver or flesh lipids (section 5.3.4).  Similarly, TTA had no effect on 18:0/18:1n-9 levels 

in hepatocytes from salmon fed 0.6 % TTA or in hepatocytes incubated with 0.8 mM 

TTA (Moya-Falcon et al., 2006).  

As aforementioned, another primary objective of this study was to determine 

whether CLA or TTA could reduce the deleterious consequences of feeding fish high fat 

diets, which include increased lipid deposition in liver and flesh in particular.  It is widely 

accepted that dietary CLA can have a beneficial effect on body composition in mammals 

through decreased body fat mass and, in some instances, increased lean body mass, 

particularly in mice, rats and pigs (Wang and Jones, 2004).  Similarly, TTA has been 

shown to prevent high fat diet-induced adiposity in mammals (Madsen et al., 2002).  It is 

unlikely that any apparent change in SCD activity as speculated above, would lead to a 

reduction in body fat mass since studies carried out on SCD-null mice have shown that 

CLA does not effect body fat gain compared with wild type mice (Kang et al., 2004).  

Certainly, evidence provided in the present study generally supports earlier work 

performed in fish, which shows that neither dietary TTA nor CLA have any effect on 

piscine muscle lipid content, despite the fact the SCD indices were altered.  In the present 

trial, flesh lipid content was unaffected by dietary CLA or TTA.  In two previous trials on 
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salmonids, total lipid content of flesh in salmon and trout was not reduced by dietary 

CLA, although these trials used smaller animals compared to the present trial, around 87 

g for the salmon smolts and only 5 g for the trout (section 3.3.4; Bandarra et al., 2006).  

One caveat when studying juvenile fish is that they may not be at an optimum age to 

conclusively determine if CLA or TTA can have desirable effects on adiposity and lipid 

deposition.  This is because fish of a smaller size do not actively deposit lipid to the same 

extent as larger fish.  Hence, this investigation focused on trout which grew from over 

400 to around 800 g, and the trial was performed in seawater.   

Unfortunately, due to an on-site freezer malfunction while samples were awaiting 

transportation to Stirling, whole body proximate composition was not measured in the 

present trial.  However, it may be reasoned from previous work detailing the influence of 

dietary CLA on whole fish proximate composition that it is unlikely that any significant 

effects would have been observed.  Indeed, it has been consistently shown in previous 

trials that CLA had no significant effect on whole body proximate composition in fish 

(Twibell and Wilson, 2003; Berge et al., 2004; Figueirdo-Silva et al., 2005; Valente et 

al., 2007a).  Similarly, 0.5 % TTA had no effect on cod proximate composition as 

observed in the similar study discussed in the previous chapter.  In addition, there was no 

indication from any of the other biometric or tissue lipid analyses data that would suggest 

that reduction in overall body lipid content had occurred in trout fed CLA or TTA in the 

present study in trout.  Therefore, the inability of CLA and TTA to display any 

commercially important effects on lipid deposition in studies using smaller fish is also 

reflected in the present study, despite the use of larger fish.   

Despite the lack of alteration in flesh lipid levels, liver lipid was slightly lowered 

by dietary CLA in the present study, akin to results obtained previously in striped bass 
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(Twibell et al., 2000), yellow perch (Twibell et al., 2001) and 97 g trout (Valente et al., 

2007a).  Nevertheless, the decrease in liver lipid deposition as a consequence of CLA 

supplementation did not significantly influence the HSI and was therefore unlikely to 

represent a significant reduction in liver TAG content in the present study.  This is in 

contrast to studies that have shown that dietary CLA can increase HSI in hybrid striped 

sea bass (Twibell et al., 2000) and increase hepatic steatosis in mice (Park et al., 1997; 

DeLaney et al., 1999; Clement et al., 2002; Takahashi et al., 2002).  However, feeding 

CLA reduced liver TAG levels (Rahman et al., 2002) and decreased hepatic steatosis in 

Wistar rats (Purushotham et al., 2007).  Thus, it is plausible that the effects of CLA on 

liver physiology are species specific.   

In rodents, studies have suggested that CLA increased fatty acid oxidation via an 

increase in CPT-1 activity (Rahman et al., 2001; Degrace et al., 2004; Zabala et al., 

2006).  However, in the present trial with trout, neither CPT-1 nor ACO activities were 

increased in liver by dietary CLA, and hepatic CPT-1 expression was also unaffected by 

either bioactive fatty acid.  In concordance with this finding on ACO, peroxisomal β-

oxidation capacity was also unaffected by dietary CLA.  Collectively, these data suggest 

that the lipid lowering effect of CLA is unlikely to be due to an increase in hepatic fatty 

acid oxidation.  However, it is important to note that the effects of CLA on hepatic CPT-1 

activity are t10c12 isomer-dependent in hamsters (Macarulla et al., 2005) and mice 

(Degrace et al., 2004), and this may be the case in fish.  It would be interesting to 

investigate whether the two main biologically active CLA isomers reveal antagonistic 

effects on CPT-1 activity.  Certainly, it is clear from previous investigations that there is 

a lack of synergy between the c9t11 and t10c12 isomers in some cases (Brown et al., 

2003a; Brandebourg and Hu, 2005).  In contrast, TTA increased both CPT-I and ACO 
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activities in trout liver, but peroxisomal β-oxidation capacity remained unchanged 

compared with fish fed the control diet.  The increase in ACO and CPT-1 activities was 

not reflected in lower liver lipid, similar results to those obtained previously in cod 

(section 5.3).  The lack of association between tissue lipid levels and indicators of fatty 

acid oxidation was also observed in the trout muscle tissue since TTA increased CPT-1 

and ACO activities in red muscle and 1 % CLA increased red muscle ACO activity with 

no measurable effect on muscle lipid deposition.  However, it is known that red muscle 

comprises only a small proportion of total flesh, the remainder of which is composed 

mostly of white muscle.  Thus, red muscle lipid and fatty acid metabolism may not 

influence overall flesh lipid composition to an appreciable extent.  Although it is likely 

that mitochondrial β-oxidation is more prevalent than peroxisomal β-oxidation in 

salmonid muscle (Frøyland et al., 2000), peroxisomal β-oxidation capacity was 

unaffected by dietary CLA or TTA in white and red muscle.  This correlates with data 

which suggest that both CPT-1 and ACO activities were unaffected by CLA or TTA in 

white muscle.  Considering the lack of effect of the bioactive fatty acids on CPT-I 

activity, the increased CPT-I expression in white muscle of fish fed both CLA and TTA 

was a contradiction, but could perhaps be attributed to posttranslational modification.  In 

C57BL/6J mice, CPT-I activity was significantly more sensitive to malonyl-CoA 

inhibition in CLA-fed animals compared to controls (Degrace et al., 2004).  This has also 

been purported to be the case in hamsters supplemented with CLA (Bouthegourd et al., 

2002).  A similar mechanism could account for the lack of association between CPT-1 

expression and activity in the present trial, at least in fish fed CLA. 

CLA has been studied to a far greater extent than TTA and so more potential 

effects are known.  For instance, CLA may have effects on growth performance in 
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mammals as some studies have suggested that it can enhance growth and feed efficiency 

in young rodents (Pariza et al., 2001).  However, these effects on growth have not been 

replicated in previous trials on a variety of fish species (Twibell et al., 2001; Twibell and 

Wilson, 2003; Berge et al., 2004; Yasmin et al., 2004; Manning et al., 2006), including 

smaller rainbow trout (Figuierdo-Silva et al., 2005; Valente et al., 2007a).  The present 

trial with near market size fish also showed no effect of CLA or TTA on growth.  Final 

weight, SGRs and FCRs were all unaffected by both CLA and TTA. 

Previously, significantly depressed growth and increased mortality was reported 

in salmon smolts fed 0.6 % TTA (Moya-Falcon et al., 2004; Kleveland et al., 2006).  It 

was particularly noteworthy that in the present study, there was no detrimental effect on 

growth or mortality in trout fed 0.5 % TTA.  This was supported by the preliminary 

immunological analyses, which showed that TTA had no effect on blood cell number, 

packed cell volume or lysozyme activity.  Of course, further investigations are required to 

determine whether the adverse effects associated with TTA in earlier studies were a result 

of using smaller fish, higher doses, or different species of fish.  The ability of dietary 

CLA to modulate the innate immune response of juvenile rainbow trout has been 

documented previously (Clarke, 2003; Marshall, 2003).  However, both studies 

concluded that growth was not affected by CLA in juvenile trout fed up to 2 % dietary 

CLA compared with control diets.  Additionally, packed cell volume and blood cell count 

remained constant regardless of dietary treatment.  Serum lysozyme activity was also 

shown to be unaltered in response to dietary CLA and a number of other immunological 

parameters, including respiratory burst by head kidney macrophages, phagocytic ability 

of head kidney macrophages and specific antibody titres were also unaffected at levels up 

to 1 % dietary CLA (Marshall, 2003).  Thus, it may be surmised that CLA or TTA at 
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dietary concentrations equivalent to the present study, could be supplemented to rainbow 

trout at a commercial level without compromising the innate immune response of the 

fish.  However, it is not possible to draw any conclusive result on the immunomodulatory 

response in rainbow trout fed either CLA or TTA, as only a select number of 

immunological parameters have been investigated. 

In conclusion, the results of the present study only partly support the hypotheses 

tested.  Thus CLA and TTA did not beneficially alter the lipid content of the flesh in 

commercial size rainbow trout grown in seawater.  However, trout preferentially 

accumulated both CLA and TTA in the flesh compared to liver, with no detrimental 

effect on flesh n-3 HUFA levels.  Both CLA and TTA could also be successfully 

incorporated into the diet with no evident detrimental effect on fish health. Therefore, if 

CLA or TTA are proved to be beneficial in the human diet, trout may be a convenient and 

consumer-friendly source of these fatty acids, thus enhancing the nutritional quality 

through provision of n-3 HUFA and bioactive fatty acids. 
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CHAPTER 7. DISCUSSION, CONCLUSIONS AND 
FUTURE PERSPECTIVES 

7.1  General Discussion 

The overall objective of this research work was to determine the influence of 

dietary fatty acid nutraceuticals, namely conjugated linoleic acid (CLA) and 

tetradecylthioacetic acid (TTA) on growth performance, flesh quality, and a number of 

physiological and biochemical parameters in commercially important farmed finfish 

species.  The scientific rationale for this work was based on previous studies in mammals, 

which provided strong evidence in favour of CLA and/or TTA eliciting beneficial effects 

including growth enhancement, augmentation of immune function, and decreased lipid 

deposition in particular.  To this end, this project was designed to test the hypothesis that 

dietary CLA and TTA would elicit similar effects in finfish, the corollary of which could 

bring larger, leaner, healthier fish to market. 

The first trial aimed to determine the effects of dietary CLA and oil level on 

growth, biometry, lipid and fatty acid metabolism of Atlantic salmon smolts.  This trial 

also set out to elucidate a biochemical mechanism of action in salmon based on preceding 

cumulative evidence, which suggested that enhanced fatty acid oxidation was the primary 

mechanism for the reduction in body fat observed in rodents fed dietary CLA.  The 

experiment was designed to include different dietary oil inclusion levels in order to 

determine the relationship between dietary CLA and fat levels and whether they 

interacted to moderate the effects of CLA supplementation.  The results of this trial 

proved that dietary CLA, at the dose formulations used, did little to influence fish at a 

physiological level, irrespective of dietary oil level.  Arguably the most important finding 
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at this stage in the research work was that the levels of CLA deposited in salmon flesh 

were much higher than levels that could be obtained naturally from meat and dairy 

produce alone.  Ergo, it was ascertained that farmed Atlantic salmon could be used as a 

vehicle for the provision of this bioactive fatty acid, which in turn could lead to enhanced 

nutritional quality of the fish.  Of course, the assumption that dietary CLA is indeed 

beneficial to human health is an ideal yet to be irrefutably proven.   

The second part of this trial investigated mechanisms of action of CLA and 

established, for the first time in fish, the effects of dietary CLA on fatty acid β-oxidation, 

specifically peroxisomal β-oxidation capacity, CPT-1 gene expression and enzyme 

activity, and HUFA synthesis in tissues of Atlantic salmon.  Despite the lack of 

significant effects at a whole body level and gross physiological evidence, data from this 

part of the study revealed that dietary CLA significantly increased both CPT-1 activity 

and expression in muscle, and also HUFA synthesis activity in liver in conjunction with 

increased expression of ∆5 and ∆6 fatty acyl desaturase genes.  Thus, these data 

suggested that dietary CLA could enhance mitochondrial β-oxidation in muscle and may 

increase n-3 HUFA levels in liver.  Indeed, levels of 22:6n-3 and 20:5n-3 in liver were 

significantly increased in response to dietary CLA although this was not reflected in flesh 

fatty acid compositions.  Emerging evidence in studies involving mammals have 

implicated peroxisome proliferator-activated receptors (PPARs) in the regulation of lipid 

homeostasis (Desvergne et al., 2006) and suggested CLA can directly influence 

metabolism via interaction with these transcription factors (Moya-Camarena et al., 1999). 

Further to elucidating a possible biochemical modus operandi, the present research work 

aimed to investigate the effects of dietary CLA on PPAR transcript levels in muscle and 

liver of salmon.  The results showed that PPAR transcript levels were significantly 
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increased in response to dietary CLA.  However, recent evidence has proved that the 

effects on body fat distribution after CLA supplementation are not mediated by PPAR 

and that, unlike mammals, fish may have multiple forms of each PPAR isoform, some of 

which are not structurally homologous in comparison to their mammalian counterparts 

(Anderson et al., 2000: Leaver et al., 2005).  The limited understanding of the role PPAR 

play in fish lipid metabolism made it difficult to interpret these results.  However, based 

on recent evidence in mammalian studies (Desvergne et al., 2006), it is entirely 

reasonable to suggest that a rise in PPARα and PPARβ levels may have enhanced fatty 

acid oxidation as observed in this study. 

The second major dietary trial aimed to test the hypothesis that dietary CLA or 

TTA could decrease fat deposition in Atlantic cod, specifically in liver, which is the 

major site of lipid deposition in this species.  This entirely novel work concluded that 

neither dietary CLA nor TTA influenced growth or biometry or whole body proximate 

composition in Atlantic cod. At a biochemical level, the data obtained from the fatty acid 

oxidation studies provided evidence in favour of an increase in hepatic fatty acid 

oxidation specifically via increased ACO activity, which was concomitant with elevated 

peroxisomal β-oxidation capacity in cod fed both dietary CLA or TTA.  However, 

unfortunately, lipid content of the liver remained unchanged in cod fed dietary CLA and 

TTA. The trial also showed that both CLA and TTA could be deposited in the flesh of 

cod, which could ultimately result in a consumer friendly route for provision of these 

bioactive fatty acids to the human diet.  

At this stage of the project, it was theorised that juvenile fish of the size used thus 

far, may not be suitable candidates for analysis since smaller fish that are not actively 

depositing lipid may attenuate the many previously observed effects of feeding dietary 



Chapter 7  

 177

CLA or TTA found in other animal models.  In consequence, a third major dietary trial 

was conducted for the first time with larger, closer to market-size rainbow trout in order 

to determine the effects of CLA and TTA on lipid and fatty acid metabolism, 

immunomodulation, and parameters of the fatty acid oxidation pathway.  Unfortunately, 

the results again indicated that growth and biometry of these fish were not significantly 

altered in response to either dietary CLA or TTA.  However, lipid content in liver was 

significantly decreased by CLA and there was a trend for decreased VSI in trout fed 2 % 

CLA, whereas TTA had no such effects.  At a biochemical level, CLA increased CPT-I 

gene expression but not activity, whereas TTA increased the activity of both CPT-I and 

ACO, consistent with increased gene expression in the case of CPT-I, but increased ACO 

activity was not reflected in peroxisomal β-oxidation activity.  Lack of correlation 

between CPT-I expression and activity as observed with CLA may be related to increased 

sensitivity of CPT-I to malonyl-CoA inhibition in CLA-fed trout; an incongruity 

previously observed in rodent studies (Degrace et al., 2004).   

In line with previous studies (Chuang et al., 2001a; Eder et al., 2002), ∆6 

desaturase transcript levels were significantly lower in trout fed up to 1 % CLA compared 

with the control.  This is in contrast to the earlier trial with Atlantic salmon, which 

showed an increase in ∆6 desaturase gene expression in fish fed dietary CLA and was 

also consistent with previous work done in rodents (Takahashi et al., 2003). Whatever the 

cause for this difference in the effects of CLA on fatty acyl desaturase gene expression  

between the salmon and trout, it is apparent the mechanism of action of CLA (and TTA) 

is still unclear and warrants further investigation in both mammals and fish.  

Interestingly, one of the more consistent findings of this project was that dietary CLA 

increased 18:0 and decreased 18:1.  Based on these data, it can be surmised therefore that 



Chapter 7  

 178

SCD was inhibited in fish fed dietary CLA.  This particular finding correlated well with 

previous studies in fish fed dietary CLA (Twibell et al., 2000, 2001; Valente et al., 

2007a). 

Presently, the aquaculture industry relies heavily on vaccines and 

chemotherapeutants in the fight against disease.  The use of antibiotics and chemicals to 

treat disease outbreaks are no longer favoured largely due to environmental issues, which 

in turn fuel consumer anxieties that farmed fish are not a safe alternative to wild fish.  

Compounding this issue is that while vaccination is a useful tool in combating disease, 

not all diseases affecting the aquaculture industry can be controlled via vaccination.  

Thus, a subsidiary aim of this research was to examine the potential for dietary CLA to 

enhance the immune function in farmed fish.  Although this area was not extensively 

studied, the results indicated that CLA did not beneficially influence any of the 

parameters tested.   

In summary, this research work has established that CLA and TTA do not confer 

any physiologically significant beneficial alterations in overall body composition or 

growth of a number of farmed finfish species.  However, there are a number of 

methodological considerations, which may have had implication in the present work and 

that could be addressed in future work involving similar dietary trials in fish.  Aside from 

the issue regarding the use of juvenile fish as abovementioned, it is possible that the type 

of CLA preparation used in these experiments, and all other dietary trials with fish, may 

have influenced the results obtained.  This project, together with the majority of peer-

reviewed literature, have used mixtures of c9t11 and t10c12 CLA, usually around 1:1, in 

dietary trials involving fish.  In mammals, various in vitro and in vivo work has 

established that each of the two main CLA isomers confers different metabolic effects.  
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For instance, t10c12 CLA is now widely accepted as the isomer responsible for changes 

in body composition (Pariza et al., 2001).  Moreover, there is some evidence to suggest 

that both CLA isomers act antagonistically towards one another.  For example, in vitro 

studies using primary cultures of differentiating pre-adipocytes have shown that TAG 

content decreased when these cells were administered t10c12 CLA (Brown and 

McIntosh, 2003).  In contrast, TAG levels rose subsequent to c9t11 CLA administration 

in the same cells.  Similarly, c9t11 CLA tended to diminish the inhibitory effect of 

t10c12 CLA on glycerol-3-phosphate dehydrogenase activity in porcine adipocytes 

(Brandebourg and Hu, 2005).  It is not unreasonable to suggest that similar antagonistic 

effects could have prejudiced the outcome of the results in terms of the hypotheses tested.  

Recent studies have ascertained that the moiety of both CLA and TTA can have a 

profound effect on the metabolic influence of these fatty acids.  In COS-1 cells, the 

addition of a methyl group to the alpha position of CLA and TTA caused an increased 

activation of PPARα in comparison with non-methylated forms of these fatty acids 

(Larsen et al., 2005).  Additionally, methylated TTA increased peroxisomal, but not 

mitochondrial, β-oxidation in rats (Vaagenes et al., 1999).  Unfortunately, the majority of 

the papers detailing the effects of dietary CLA in fish have not specified whether CLA 

was supplied as either a methyl ester, or esterified in TAG and so it is impossible to 

compare these data in this regard.  However, the research work described in this thesis 

incorporated CLA into the diets in the form of methyl ester.  It is unclear whether 

structural modification of this type would influence the outcome of these data in the 

present research work involving fish.  Nevertheless, this issue should be considered in 

future investigations involving dietary trials incorporating methyl ester derivatives of 

CLA and/or TTA. 
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There were some technical difficulties that arose during the course of this work.  

Most of these difficulties were imposed by logistical limitations intrinsic to the design of 

the experimental phase of the research.  For example, it was impossible to perform assays 

involving radioactive isotopes on-site in Denmark and Ardtoe due to respective 

government legislation and licencing issues.  Thus tissues were required to be frozen 

prior to analysis at the laboratories in Stirling.  It was known that freeze/thawing of the 

samples disrupts the mitochondrial membranes and in doing so, prevented the analysis of 

total and mitochondrial β-oxidation capacity.  However, peroxisomal integrity is reputed 

to be maintained after freeze-thawing and so measurement of peroxisomal β-oxidation 

was theoretically possible.  To conclusively prove this, a pilot experiment was carried out 

at the laboratory in Stirling comparing β-oxidation capacity in fresh and frozen liver and 

muscle tissues in the presence or absence of potassium cyanide (KCN, data not shown).  

KCN inhibits mitochondrial β-oxidation by disrupting the electrochemical gradient 

between the membranes and so total β-oxidation is measured in absence of KCN and 

only peroxisomal β-oxidation activity is measured in the presence of KCN. This 

experiment elucidated that KCN-treated fresh tissue produced the same β-oxidation 

capacity as frozen tissue therefore it was concluded that peroxisomal β-oxidation could 

be accurately determined in these trials.  

The second major constraint was the lack of immunological data that was 

obtained during this project.  This was partly due to logistical constraints given that the 

necessary equipment to perform some of the assays was not available at the trial sites, 

and partly due to unforeseen experimental difficulties, which could not be rectified due to 

time constraints.  Thus, it was difficult to draw any comprehensive conclusions on the 

influence of both dietary CLA and TTA on immunomodulation in the fish.  However, as 
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aforementioned, overall the preliminary data obtained in this research did not suggest that 

there was any major or physiologically significant immunological benefit in feeding 

dietary CLA or TTA to farmed fish.   

In discussion of the constraints in the present study, the cost of replicated 

nutritional trials must be acknowledged and appreciated.  Costs are great and very often 

can be a limitation to dietary trials and compromises sometimes have to be considered.  

In the present study, all studies were fully replicated (triplicates) tank studies.  However, 

providing sufficient funding was available there are several ways in which dietary trials 

on bioactive fatty acids such as CLA and TTA could be improved. Therefore, prospective 

work should encompass trials that are carried out during late summer and that utilise 

larger fish.  Ideally, sea-caged Atlantic salmon of around 1 Kg, which are rapidly 

growing, increasing in weight and subsequently depositing more flesh lipid, should be 

used.  Similarly, it may be possible to better gauge the influence of dietary CLA and TTA 

in cod that are a minimum of 500 g initial weight.  In addition, hitherto, all dietary trials 

investigating the influence of CLA and TTA in fish have not exceeded 12 weeks (3 

months) in duration.  Thus, it would be interesting to carry out longer trials of a minimum 

of 6 months attaining finishing weights of around 2.5 - 3 Kg and 1 - 1.5 Kg for salmon 

and cod, respectively.  In addition to testing the bioactive fatty acids in fish of a much 

more appropriate physiological stage, it would also be possible to ascertain the deposition 

levels of CLA and TTA in the flesh of fish ready for harvest and give a clearer indication 

of the levels that can be supplied to consumers via fish flesh and also the time required to 

reach maximum deposition.   

Arguably another very important aim should be to determine the effects of 

feeding dietary CLA or TTA in combination with alternative, sustainable lipid sources, 
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i.e. diets containing VO.  As aforementioned in Chapter 1, aquafeeds will increasingly 

contain plant products. The aim of the current EU FP6 integrated project, Aquamax, is to 

reduce FM to under 50 % of current use (replaced with plant meals etc.) and reduce FO 

down to possibly zero (100 % replacement with VO) in diets for Atlantic salmon.  

Obviously, this will affect fish fatty acid composition and also may affect lipid 

homeostasis and deposition patterns.  Additionally, there are some perceived effects such 

as increased adiposity and free oil problems (oil leaking from flesh that can cause 

problems for processors such as smokers) associated with high marine product 

replacements.  Thus, it would be interesting to determine whether dietary CLA or TTA 

could mitigate some of these potential problems.  

The present research work has gone some way in bridging the gap between the 

extensive knowledge base with regards to the influence of dietary CLA in rodent and 

other mammalian models, and the relative lack of information from similar trials 

involving fish.  Other than the studies described in this thesis, virtually no mechanistic 

studies have been performed with CLA in fish. Nonetheless, it is clear that further work 

is required in order to gain a more comprehensive understanding of the effects of dietary 

CLA and TTA at biochemical and molecular level, and thus of their mechanisms of 

action in farmed fish. For salmon the recently completed BBSRC project “TRAITS” has 

produced a large, trait-targeted 17K feature cDNA microarray for salmon.  The traits 

targeted were lipid metabolism (alternative diets), protein metabolism (ration etc.), 

immune function and parr-smolt transformation. The TRAITS project has contributed to 

a relatively new field of research termed transcriptomics, which has provided for the first 

time, the possibility of determining changes in gene expression levels in salmon, at a 

global level, using so-called microarray technology.  The potential implication of this 
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work would allow examination of the effects of CLA or TTA on thousands of genes 

within many different metabolic pathways; the application of which would lead to a 

much clearer understanding of the mechanism of action of these bioactive fatty acids.  

Two key examples of this would be the uncoupling proteins (UCP) and the sterol 

response element-binding protein (SREBP) transcription factors. 

  Recent studies involving CLA-fed mammals have elucidated a number of 

potential factors that are likely to contribute to the overall biochemical mode of action.  

For instance, UCPs (particularly UCP-2 and UCP-3) are key regulators of energy 

expenditure and diet-induced thermogenesis in mammals and are ubiquitously expressed 

throughout the tissues of the body.  Both are known to be up-regulated in response to 

t10c12 CLA in ob/ob mice (Roche et al., 2002) whilst UCP-2 mRNA expression was 

increased in adipose and muscle tissue of rats fed c9t11 CLA (Ryder et al., 2001; Choi et 

al., 2004).  Another study noted that UCP-2 expression in brown adipose tissue was 

increased in AKR/J mice as a result of 1 % dietary CLA (West et al., 2000).  Moreover, 

UCP-2 expression in both brown adipose tissue and skeletal muscle tissue was 

significantly increased in ICR and C57BL/6J mice fed 2 % CLA (Takahashi et al., 2002). 

Feeding the CLA-producing bacteria Lactobacillus rhamnosus PL60 to C57BL/6J mice 

also resulted in increased UCP-2 mRNA expression in adipose tissue (Lee et al., 2006).  

It is therefore reasonable to suppose that CLA supplementation causes an up-regulation 

of UCP-2 expression that could contribute to an increase in energy expenditure. 

There is increasing evidence to suggest that a family of nuclear transcription 

factors, namely SREBPs, are also modulated by CLA both in vitro and in vivo.  

Collectively, SREBPs are involved in the transcriptional activation of more than 30 genes 

associated with cholesterol, fatty acid, TAG and PL synthesis.  One isoform, SREBP-1a, 
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has the ability to activate all SREBP-responsive genes (Desvergne et al., 2006)  SREBP-

1c on the other hand, is responsible for mediating the expression of genes involved in 

fatty acid synthesis while SREBP-2 controls cholesterol synthesis.  The majority of 

studies detailing the influence of dietary CLA on SREBP gene expression have shown 

that these transcription factors are significantly reduced as a result of supplementation.  

For instance, inhibition of proteolytic activation of SREBP-1 is thought to cause a 

suppression of milk fat synthesis in t10c12 CLA-fed dairy cows (Peterson et al., 2004).  

Recently, both SREBP-1a and SREBP-1c gene expression were down-regulated in 

adipose tissue of hamsters administered t10c12 CLA (Zabala et al., 2006).  In pigs, pre-

adipocyte proliferation and differentiation was inhibited in response to dietary t10c12 in a 

mechanism involving down-regulation of SREBP-1c gene expression (Brandebourg and 

Hu, 2005).  Conversely, dietary c9t11 CLA has been known to increase SREBP-1c 

mRNA expression in adipose tissue of ob/ob mice (Roche et al., 2002), suggesting that 

metabolic effects of CLA may be isomer dependant and in this case, antagonistic.  

Importantly, SREBP-1c and PPARγ interact with each other to execute pre-adipocyte 

differentiation  (Granlund et al., 2003).  It is likely that concomitant decreases in SREBP-

1c and PPARγ gene transcription observed in the abovementioned studies, are 

responsible for the overall reduction in transcriptional activation of lipogenic genes in 

animals administered t10c12 CLA.  It may be that SREBP plays a more important role in 

fish in comparison to PPAR.  However, the associated drop in transcript levels of 

SREBPs in other animals including pigs (Brandebourg and Hu, 2005) and hamsters 

(Zabala et al., 2006) was also associated with a drop in PPARγ levels, something not 

observed in the present study.  Clearly, more studies will be required to determine 

whether dietary CLA exerts its effects via a SREBP-dependant mechanism in fish.  In 
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addition, a more detailed evaluation of the effects of CLA and TTA on immune function 

is also required, particularly considering the potential for dietary TTA to cause increased 

mortality in Atlantic salmon (Kleveland et al., 2006).  

In conclusion, the present research work has provided new insights to the effects 

of dietary CLA and TTA on the physiology and biochemistry of some key species of 

farmed fish.  However, this novel research has also broached many ideas and hypotheses, 

which will require further elucidation in order to gain a more thorough understanding of 

the effects of both these bioactive fatty acids as dietary supplements in aquaculture. 

7.1 Summary of Results and Conclusions  

In summary, the results of this research work have indicated the following:- 

 

• There were no effects on growth performance as evidenced through measurement 

of final body weight, SGRs or TGC 

• There were no effects on feed efficiency as measured via FCR 

• There were few physiologically significant effects on fat levels of fish as 

evidenced by no major effects on carcass proximate compositions or tissue (flesh 

or liver) lipid levels 

• No evidence for any redistribution of body fat with no physiologically significant 

effects on HSI and VSI 

• Both CLA and TTA could be incorporated into fish flesh thus providing a vehicle 

through which these bioactive fatty acids can be delivered to the consumer. 

• There were a number of effects on fatty acid metabolism including CLA clearly 

inhibiting SCD (∆9) desaturase leading to increased 18:0 and decreased 18:1 in 
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cod and trout in particular, and possibly increased ∆6 and ∆5 desaturase 

expression and activity (at least in salmon) leading to increased hepatic n-3HUFA 

• There were some significant effects on gene expression of enzymes and 

transcription factors thought to be pivotal in modulating lipid and fatty acid 

metabolism however the data did not always correlate with activities.  Morover, 

the effects on gene transcription and biochemistry had little impact at the whole 

body level   

• Although not extensively studied, there were no indications that CLA (or TTA) 

had any major beneficial health effects as there were no effects on immune status, 

including basic haematology or some parameters of immune function 

• No detrimental effects of the bioactive fatty acids (as had been previously 

reported in other trials), were observed in the present trials. 

 

7.2 Future Perspectives 

Considering the range of effects that CLA, and to a lesser extent other bioactive 

fatty acids like TTA, have been shown to have in mammals, both in dietary trials and cell 

model systems, many of which could be potentially beneficial in aquaculture, it is 

disappointing that in the trials to date, there have been no substantial advantages of 

including these functional fatty acids in diets for farmed fish.  However, there are still 

some trials that could perhaps provide final definitive conclusions.  Points 1-3 below 

summarise the applied research that is still required to conclusively establish if CLA, or 

TTA, could have significant beneficial effects in fish farming.  Points 4 and 5 represent 
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the basic scientific research required to determine the mechanisms of action  

underpinning the actions of bioactive fatty acids like CLA. 

1. Larger fish. It is important that larger fish at more appropriate time in their 

life/growth cycle be investigated. For salmon this would require a seawater pen 

trial on fish of around 1 Kg  (probably around May-October), a stage when they 

will be growing rapidly, producing large increases in overall weight and actively 

depositing lipid in the flesh. Similarly, for cod a seawater pen trial using fish of 

around 0.5 Kg or more would be desirable – perhaps starting in pre-starved fish. 

2. Increased length of trial. The length of trials should be longer and would, ideally, 

be at least double the duration of the trials in the present study, with probably 

around 6 months as a minimum. Combined with the larger initial size of the fish, 

this would result in fish at the end of the trials being much closer to market size 

and weights, around 2.5-3 Kg for salmon and at least 1-1.5 Kg for cod.  

3. Alternative diets (i.e. VO replacement).  Diets for farmed fish will increasingly 

contain plant products. This will have consequences for FA compositions, of 

course, but also may affect lipid homeostasis and deposition patterns etc.  There 

are already reports of perceived effects such as increased adiposity and free oil 

problems associated with high marine product replacements. Clearly it is essential 

that a full investigation of the effects of bioactive fatty acids such as CLA and 

TTA should also include trials with these diets that although currently termed 

“alternative” will increasingly become the “standard”.  In terms of dietary 

formulation it is also worth considering the chemical form of the bioactive fatty 
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acid that is supplemented, and so a trial comparing, say, CLA added as methyl 

ester versus addition as TAG may be illuminating. 

4. Additional analysis. a) Total and mitochondrial β-oxidation. The pathways of 

fatty acid oxidation are crucial in these trials with CLA and TTA that have known 

effects on these pathways. In the present trial, legal and logistic problems limited 

the β-oxidation studies, and so the assays performed were a compromise to obtain 

the maximum information possible with frozen tissue samples. Similar problems 

would arise with the trials described above as they all have to be performed at 

Feed Trial Units that are, essentially, simply fish farms. However, innovative 

ways should be sought for measuring total and mitochondrial β-oxidation.  b) 

Transcriptomics.  For salmon the trait-targeted 17K feature cDNA microarray will 

be extremely useful for looking at the effects of bioactive fatty acids on global 

gene expression, investigating many pathways and areas of metabolism 

simultaneously.  

5. Individual isomers.  In the case of CLA, it is already known in studies with 

mammalian systems that specific isomers are responsible for eliciting different 

individual effects. Investigation of individual isomers has not been attempted with 

fish and cannot be done with dietary trials due to then cost of purified isomers. 

However, several potentially very useful fish cell lines are available including 

those from Atlantic salmon (AS) and rainbow trout (RTH, hepatic and RTG, 

gonad).  Although no cell line is available for cod, lines are available for other 

marine species including turbot (TF) and sea bream (SAF-1).  As well as studying 

individual isomers, cell line studies could be very useful for more detailed 
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analysis, both biochemical (enzyme assays) and molecular (gene expression) in 

studies designed to elucidate the mechanisms of action of these interesting 

bioactive or functional fatty acids. 
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APPENDIX I 

10 X TBE electrophersis buffer, per litre 

108g Tris (BioRad labs, Hercules, CA, U.S.A) 

55g Boric Acid (BioRad labs, Hercules, CA, U.S.A) 

8.3g EDTA (BDH) 

LB Medium 

25 g  LB Broth (MERCK) 

1 L Distilled H2O 

LB/Ampicillin/X-gal/IPTG plates 

25g LB Broth (MERCK) 

15 g Agar Bacteriological No. 1 (Oxoid, Hampshire, U.K.) 

1 mg X-gal (5-bromo-4-chloro-3-indoyl-β-galactopyranoside) 

0.8mg IPTG (isoproylthio-β-D-galactoside)
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APPENDIX II  

GFXTM Micro Plasmid Prep Kit (Amersham Biosciences) 

Components of Kit. 

Solution I: 100 mM Tris-HCl (pH 7.5), 10 mM EDTA, 400 µg/ml RNase I 

Solution II: 1 M NaOH, 5.3% (w/v) SDS (5.3X concentrated solution) 

Solution III Buffered solution containing acetate and chaotrope. 

Wash Buffer Tris-EDTA buffer in 80% ethanol. 

 

Cell Lysis 

• 1.5 ml of an overnight E. coli culture was transferred to a 1.5 ml 

microcentrifuge tube then centrifuged at full speed for 30 sec to pellet the 

cells. 

• As much supernatant as possible was removed by aspiration without 

disturbing the pellet. 

• An additional aliquot of culture (to give 2-3 ml total volume of culture) 

was added to the microcentrifuge tube, centrifuged at full speed for 30 sec 

and the supernatant removed by aspiration as described above. 

• The pellet was then resuspended in 300 µl solution I with vigorous 

vortexing 

• Three hundred µl of solution II was added to the microcentrafuge tube 

then mixed by inverting the tube 10-15 times. 
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• Six hundred µl of solution III was added and mixed by inverting the tube 

until a flocculent precipitate appeared with inverting continuing until the 

precipitate was evenly dispersed. 

• The microcentrifuge tube containing the flocculent precipitate was then 

centrifuged for 5 min at room temperature to pellet the cells. 

• One GFXTM column for each preparation was prepared by placing the 

column into a collection tube. 

 

DNA purification 

• Approximately half of the supernatant was transferred to the prepared 

GFXTM column, incubated for 1 min and centrifuged at full speed for 30 s. 

• The flow-through was discarded by emptying the collection tube and the 

remaining supernatant transferred to the same GFXTM column. 

• The GFX column was incubated for a further minute at room temperature 

before being centrifuged for 30 s at full speed. 

• The flow-through was once again discarded as above. 

• Four hundred µl of wash buffer was added to the column. The column was 

centrifuged at full speed for 30 s to remove the buffer and dry the matrix 

prior to elusion. 

• The GFX column was transferred to a clean microcentrifuge tube and 50 

to 75 µl of H2O added to the top of the glass fibre matrix in the GFX 

column. 

• The column was incubated at room temperature for 1 min before being 

centrifuged for 1 min to remove the purified plasmid DNA.



Appendeces  

 228

APPENDIX III – PUBLISHED PAPERS 

Kennedy, S. R., P. J. Campbell, A. Porter and D. R. Tocher. 2005. Influence of dietary 

conjugated linoleic acid (CLA) on lipid and fatty acid composition in liver and 

flesh of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. B. Biochem. 

Mol. Biol., 141, 168-178. 

 

Kennedy, S. R., M. J. Leaver, P. J. Campbell, X. Zheng, J. R. Dick and D. R. Tocher. 

2006. Influence of dietary oil content and conjugated linoleic acid (CLA) on lipid 

metabolism enzyme activities and gene expression in tissue of Atlantic salmon 

(Salmo salar L.). Lipids, 41, 423-436. 

 

Kennedy, S. R., R. Bickerdike, R. K. Berge, A. R. Porter and D. R. Tocher. 2007. 

Influence of conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) 

on growth, lipid composition and key enzymes of fatty acid oxidation in liver and 

muscle of Atlantic cod (Gadus morhua L.). Aquaculture, 264, 372-382. 

 

Kennedy, S. R., R. Bickerdike, R. K. Berge, J. R. Dick and D. R. Tocher. 2007. Influence 

of conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on growth, 

lipid composition, fatty acid metabolism and lipid gene expression of rainbow 

trout (Oncorhunchus mykiss L.). Aquaculture, Accepted Manuscript. 

 


