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Abstract

The problem of changing scale in models of a system is relevant in many

different fields. In this thesis we investigate the problem in models of biologi-

cal systems, particularly infectious disease spread and population dynamics.

We investigate this problem using the process algebra Weighted Synchronous

Calculus of Communicating Systems (WSCCS). In WSCCS we can describe

the different types of individual in a population and study the population

by placing many of these individuals in parallel. We present an algorithm

that allows us to rigorously derive mean field equations (MFE) describing

the average change in the population. The algorithm takes into account the

Markov chain semantics of WSCCS such that as the system being consid-

ered becomes larger, the approximation offered by the MFE tends towards

the mean of the Markov chain.

The traditional approach to developing population level equations of a

system involves making assumptions about the behaviour of the entire pop-

ulation. Our approach means that the population level dynamics explained

by the MFE are a direct consequence of the behaviour of individuals, which

is more readily observed and measured than the behaviour of the popula-

tion. In this way we develop MFE models of several different systems and

compare the equations obtained to the traditional mathematical models of

the system.
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Chapter 1

Introduction

The question of how best to model a system is relevant to many different

fields. For example in chemistry a reaction may be described in terms of

the overall concentrations of different chemicals in a well mixed solution or

in terms of the individual interactions between molecules, which contribute

to the change in concentrations. Similarly biological systems can be con-

sidered in terms of changes in the makeup of a population or in terms of

the individual behaviours and interactions between individuals, which are

fundamental to the way a population changes over time.

“Individual” and “population” have different meanings depending on the

specific system being modelled. We may have individual whole organisms

(insects, fish, mammals etc) in an ecological population with, for instance,

disease spread modelled in terms of the number of infected individuals in

the population or in terms of the interactions between individuals, which

contribute to the spread of the disease. Similarly we can have individual

cells in a tumour population that can be modelled in terms of the size of the

tumour as a whole or in terms of the interactions between individual cells,

which are fundamentally important to the growth of the tumour. Equations
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that describe a system at the level of the population are amenable to a

wide range of well established, algebraically tractable methods of analysis:

however it is at the level of individual behaviour that systems can most

easily be observed. Being able rigorously to relate population and individual

level behaviour would allow us to take advantage of the benefits of both

approaches.

In this thesis we address this problem of scaling from individuals to a

population using the example of models of disease spread. We do this by

investigating specific theoretical questions of how best to capture particular

features of disease transmission and population dynamics in individual-based

models. These individual-based models are then transformed into popula-

tion level models for further investigation.

1.1 Mathematical modelling of ecological systems:

population vs individual

1.1.1 Overview

Mathematical models of biological systems have been used for centuries to

offer insight into the factors that govern the behaviour of a system. As

far back as 1760 Bernoulli [13, 14] presented a model to study the effect

of inoculation on the spread of smallpox. The most common approach to

modelling disease spread uses ordinary differential equations (ODEs) (either

singularly or systems of coupled ODEs), which model a system in continuous

time [6, 52, 61, 91, 92] or difference equations (again either individually or

systems of coupled equations), which model a system in discrete time [4, 75].

Specific models of disease are discussed in more detail below, in Section 1.1.2.

Models such as these can be analysed using a wide range of algebraic
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techniques to study the system without the need to define values for the pa-

rameters in the model and also by simulating the model and producing the

time series for a given initial population and biologically relevant parameter

values. Although these models make some intrinsic assumptions about indi-

vidual behaviour they do not explicitly model the behaviour of individuals.

Specifically the interactions between individuals, which are fundamentally

important in biological systems, are not modelled explicitly. Instead ODE

models assume that individual behaviour translates predictably to popula-

tion behaviour, however a number of papers have shown that this is not the

case [19, 90]. ODE models describe changes in the number of individuals in

the population, or in different subpopulations, but do not include any spatial

information about systems. Since no spatial information is included these

ODE models are based on the assumption that the population is subject to

random mixing.

Another method of modelling biological systems is by the use of proba-

bilistic cellular automata [2, 76, 81, 90]. Cellular automata capture behav-

iour at the individual level (individual-based models) by describing rules of

behaviour for individuals and creating a population from many individuals.

These models are generally studied by performing simulations of the sys-

tem and only limited algebraic analysis is available through methods such

as pair approximation [50]. Cellular automata are inherently spatial with

the population defined on a grid that represents the spatial environment in

which the population exists.

1.1.2 SIR disease models

While Bernoulli’s smallpox model was the earliest disease model [13, 14],

the classical ODE model was developed by Kermack and McKendrick [52,
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53, 54]. This model of three coupled ODEs has two key features that are

still used in many models today: the term chosen to describe transmission

(discussed overleaf) and the subdivision of the population.

The population was divided into three distinct groups:

• Susceptibles - have never had the disease and may contract it after

exposure.

• Infecteds - have the disease and can pass it on to susceptibles.

• Recovereds - have previously had the disease and are assumed to be

immune to future infection.

Models that divide the population in this way are often referred to as SIR

models. The SIR classification is appropriate for many diseases, and is

widely used, but variations that have been used to model other diseases

include SIS - recovery does not confer immunity and individuals become

susceptible once more - and SIRS - conferred immunity lasts for a limited

period and recovered individuals can once more become susceptible [27, 33,

43, 56, 66, 95].

In many disease systems there is a time delay between susceptibles com-

ing into contact with an infected individual and becoming infected. This has

been modelled by adding an exposed group (E) to the models, and these are

known as SEIR models. As for SIR there are variations in which recovery

does not confer immunity - SEIS - and immunity lasts for a limited time -

SEIRS [3, 37, 72].

Transmission terms

The second feature introduced by Kermack and McKendrick [52] that is still

widely used is the term used to model transmission [6]. The term chosen to
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capture transmission was

βSI ,

with S and I being the numbers (or densities) of susceptible and infected

individuals respectively. This term comes from the Law of Mass Action [39]

from chemistry. In chemistry the underlying assumption is that the rate of

a reaction increases with the concentration of either reactant, and similarly

here the assumption is that the rate of contacts made by individuals increases

as the population size increases. For this reason transmission of this form

is often referred to as mass action transmission or more commonly density

dependent transmission. This transmission term is commonly used for many

wildlife and animal models and some human diseases.

Although density dependent transmission is still commonly used sev-

eral other transmission terms have been suggested. Most notably frequency

dependent transmission,

βSI

N
(1.1)

where β is different from the β in the density dependent term and N is the

total number (or density) of individuals in the population, has been used to

model certain types of disease. Frequency dependent transmission assumes

that an individual makes a fixed number of contacts regardless of the pop-

ulation density and is used most commonly to model human diseases and

vector borne diseases where contact saturation is assumed to have occurred

[30, 85]. Begon et al. [10] described biological derivations for both density

dependent and frequency dependent transmission, in particular suggesting

that numbers of individuals, rather than densities, should always be used

and therefore that density dependent transmission should more accurately
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be written as

βSI

A
,

where A is the area occupied by the population.

Several studies have suggested that βSI may not be the term that most

accurately describes transmission of disease systems where density depen-

dent transmission is expected. Turner et al. [90] developed individual-based

cellular automata models that displayed density dependent (contact with all

nearby individuals) and frequency dependent (contact with a fixed number of

individuals) transmission at the level of the individual. Fitting terms to the

numerical results from their models they found that, irrespective of the in-

dividual level behaviour, frequency dependent transmission most accurately

described the population level behaviour. This result was counterintuitive

since it was assumed that behaviour at the individual level would translate

to the same behaviour at the population level.

Other alternative transmission terms have also been suggested. Hochberg

[48] proposed the term

β(SpIq)SI,

where p and q are parameters that can be chosen to give a variety of non-

linear responses. Estimates of p and q for insect borne pathogens were

calculated by Fenton et al. [31]. Briggs and Godfray [20] also proposed a

transmission term,

[

kln

(

1 +
βI

k

)]

S,

where k is a scaling constant. Both Hochberg and Briggs and Godfray
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found that their transmission terms better fitted their experimental data

than βSI . Knell et al. [55] fitted both terms to their experimental data

and found they both provided a better fit than βSI: however it is difficult

to measure transmission in any populations other than insect systems. The

Hochberg and Briggs and Godfray models are more flexible than the more

common density dependent term, which explains why they can be made to

better fit experimental data.

Some studies have suggested transmission terms that seek to address the

density/frequency dependent dichotomy by capturing both forms of trans-

mission. Antonovics et al. [7] proposed the following term for contacts be-

tween susceptible and infected hosts:

Ne =
aTStIt

1 + aThNt

,

where a is the area searched by infecteds in time T , St and It are the numbers

of susceptibles and infecteds respectively, Nt = St+It, and Th is the duration

of each contact. Antonovics et al. demonstrated that for small Nt this term

behaves like density dependent transmission and as Nt becomes large Ne

asymptotically tends to a frequency dependent contact rate of T/Th.

Ryder et al. [80] proposed the following transmission term for diseases

that can be spread by both frequency dependent and density dependent

contacts:

v(c + mN)SI

N
.

For c = 0 this becomes the density dependent term cmSI and for m = 0 we

have the frequency dependent term vcSI/N . When c > 0 and m > 0 the

term will captures aspects of both density dependent and frequency depen-

dent transmission. This was proposed as being appropriate for diseases that
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can be spread by both sexual (typically modelled and frequency dependent)

and social (typically modelled as density dependent) contacts.

Which transmission term to use in different situations remains an open

question. As such this is an area that lends itself to the rigorous investigation

of the connection between behaviour at the individual and population levels.

Indirect Transmission

The models discussed so far all assume that the disease is transmitted by

direct contact between infected and susceptible individuals. However, it

is known that some infectious agents can persist in the environment for

significant periods and therefore direct contact between individuals is not

necessary. This persistence in the environment can be for differing periods

depending on the disease, with a disease such as Feline Panleucopenia Virus

surviving for up to a year outside of its host [15]. The common approach

to modelling indirect disease transmission [6] is to introduce an additional

equation to describe the quantity of infection present in the environment.

The infectious agent is transmitted from infected individuals to the environ-

ment and susceptible individuals pick up the infection from the environment.

This leads to a delay in the spread of the disease since there is a time cost

associated with transmission of the disease from the infected individual to

the environment, a time cost associated with the infectious agent persist-

ing in the environment and a further cost associated with the disease being

contracted by a susceptible individual. A challenge for our approach is to

be able to model indirect transmission.
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Superspreaders

A feature of disease transmission that is of growing interest is superspreaders

[51]. This is the idea that the majority of new infections are caused by a small

proportion of the infected individuals. There are two proposed mechanisms

by which superspreaders can be responsible for a greater proportion of new

infections:

• contact superspreader - superspreader individuals make more contacts

than other infected individuals and therefore have more opportunity

to pass on the disease

• infectiousness superspreader (supershedder) - superspreader individu-

als are more infectious than other infected individuals and susceptible

individuals are more likely to become infected after contact with a

superspreader

Lloyd-Smith et al. [60] studied data for epidemics for which contact trac-

ing information was available and concluded that superspreaders are a com-

mon feature of disease transmission. They found that most individuals do

not transmit the disease at all while a small proportion of infecteds pass the

disease on to many susceptibles. Matthews and Woolhouse [64] proposed

that the presence of superspreaders in a disease system could be expected

to increase the variability of the system.

Models of superspreader systems feature separate groups of infecteds

and superspreaders in the population [51]. Superspreaders either have an

increased rate of contact or susceptibles have a greater rate of becoming

infected if contact is with a superspreader [32, 94]. Since it is the behaviour

of individuals that differs, this is an ideal proving ground for our modelling

approach.
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1.1.3 Disease free population dynamics

The way in which population size changes is important within disease models

since it can affect the dynamics of the disease: however, the question of how

best to describe population dynamics has long been of interest in its own

right. The idea that populations cannot grow without bound has been of

interest to modellers for centuries. Malthus, in 1798, [62] proposed a simple

exponential growth model based on compound interest,

dN

dt
= rN ,

but noted that this was unrealistic, since when a population becomes very

large, access to resources will become restricted, restricting further growth

in the population. In the Malthusian growth model r is the growth rate of

the population: it is clear that for r > 0 the population will grow without

bound; r < 0 will lead to extinction; and r = 0 will give a stable population

size. This led Verhulst to propose the logistic growth model [91],

dN

dt
= rN

(

1 − N

K

)

,

where r is once again the growth rate and K is the carrying capacity of the

environment in which the population exists i.e. the maximum population

size (or density) that the environment can sustain. When N is small N/K

will be close to 0 and the logistic equation displays exponential growth,

similar to the Malthusian model. As N increases the quotient N/K → 1 so

that when N = K dN/dt = 0 and N is stable.

Gompertz [34] also proposed a model that sought to address the short-
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comings of the Malthusian model:

dN

dt
= rN ln

(

K

N

)

,

with r and K once again the growth rate and carrying capacity respectively.

This model displays similar behaviour to the logistic model, with the pop-

ulation growing rapidly when N is small and reaching a steady state when

N = K . The Gompertz model has been shown to be particularly effective

in modelling the growth of solid tumours [63].

The logistic model is the most commonly used model to describe popu-

lation dynamics but several other models have been proposed [40, 78]. For

example the Beverton-Holt model [16],

Nt+1 =
aNt

1 + bNt
,

is a discrete time model that was proposed to describe the dynamics of fish

populations. The Beverton-Holt model has been widely used to study fish

populations [71, 84] and was among the models for which Brännström and

Sumpter [19] developed derivations from their discrete site-based framework.

Despite the prevalence of the logistic model in the literature it is still

unclear which model is most appropriate to describe population dynamics in

different situations and therefore this is another area that can benefit from

a rigorous study of the connection between individual and population level

behaviour.

Models of population dynamics are not merely interesting in isolation.

For example in our field of interest, infectious disease spread, adding birth

and death of individuals to a model of disease spread can alter the dynamics

of the epidemic.
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1.2 Process algebra

Baeten [8] defines process algebra as “the study of the behaviour of parallel

or distributed systems by algebraic means”. Many different process alge-

bras, or process calculi, have been developed [44, 67, 69, 87] with different

features, which lead to differing approaches in modelling a system. Process

algebra traces its roots back to the development of Petri nets [74], which

was developed to study distributed computer systems.

Milner developed the Calculus of Communicating Systems (CCS) [67]

on which several other process algebras have been based, such as SCCS

(Synchronous CCS) [68], WSCCS (Weighted SCCS) [87], the π−calculus [70]

and PEPA (Performance Evaluation Process Algebra) [44]. Other non-CCS

based process calculi include CSP (Communicating Sequential Processes)

[47] and ACP (Algebra of Communicating Processes) [11].

Process algebras were originally developed to give formal semantics to

parallel programming languages. In addition process algebras have been

used to study a wide variety of systems; for instance hybrid systems [12],

asynchronous systems [28], cryptographic protocols [1], stochastic musical

systems [79], and biological systems [77]. There is much to be gained from

using process algebra to study systems. Not only does the act of specifica-

tion lead to deeper understanding of the system being described, through

clarification of assumptions and explicit definition of the actions being per-

formed and agent interaction, mathematical analysis can be carried out on

the specification since it has a formal semantics. For WSCCS this means

investigation of the underlying Markov chain, allowing the probabilities of

states occurring to be calculated. As well as Markov chain analysis [46] such

models can be studied by performing stochastic simulations [18].
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1.2.1 Process algebra & biology

Over the past 10 years process algebra has increasingly been used to model

a wide range of biological systems [24, 41, 73, 77, 82, 86]. The advantages of

process algebras are that they are fully formal (with mathematical seman-

tics), making them amenable to rigorous analysis, and the features they have

for describing systems, particularly for creating larger systems from smaller

identical components, are turning out to be useful in biological applications.

Regev et al. [77] developed the BioAmbients calculus, based on the π-

calculus, for modelling biomolecular systems. In this work the BioAmbients

calculus was used to model the hypothalamic system, which regulates body

weight, at the level of individual neurons.

PEPA [44] has been applied to biochemical systems. Calder et al. [23, 24]

used PEPA to model the effects of Raf Kinase Inhibitor Protein (RKIP) on

the Extracellular signal Regulated Kinase (ERK) pathway, which has been

shown to play an important role in tumour development.

WSCCS (Weighted Synchronous Calculus of Communicating Systems) [87]

has been used in particularly diverse biological applications, ranging from

insect behaviour [83, 86] through epidemiology [73] to genetics [41]. For

example Hatcher and Tofts [41] presented WSCCS models of sex selection

that incorporated genetic and environmental selection factors. Tofts [86]

developed models of social insect colonies.

Further work on social insect colonies was presented by Sumpter [83].

These models addressed different aspects of social insect behaviour from ac-

tivity synchronisation to a site based model of population dynamics in which

individuals competed for breeding sites. In addition Sumpter introduced a

simple model of population dynamics with food as a resource. Individuals

die probabilistically and compete for food, using prioritised communication,
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giving birth if they manage to eat. The competition for food makes birth

density dependent. This means that the mean population tends to a steady

state that is dependent on the quantity of food available and the probability

of death. Sumpter also presented a simple SIR model of disease spread. For

these models Sumpter used intuitive reasoning to derive mean field equations

(MFE), which describe the mean behaviour of the system at the population

level, and produced graphs to demonstrate that these closely approximated

the mean of many simulations of the model. The models involve multiple

distinct stages and one timestep in these MFE describe the mean behaviour

of the model over a complete iteration. For example in the population dy-

namics model the system contains some number of A1 agents that become

A2 before once again becoming A1 after two stages. During these two stages

agents have been removed (death) and added (birth) so that the number of

A1 agents is changed. The MFE describe the mean of this change so that

one timestep in the MFE represent two stages in the WSCCS model.

Norman and Shankland [73] developed SIR models in WSCCS for which

they derived MFE using the same intuitive reasoning method as Sumpter.

These models sought to improve the biological realism of Sumpter’s model

[83] and the most realistic models lead to MFE featuring the density depen-

dent transmission term

βStIt

Nt
.

In these models Norman and Shankland found that the decision to use pri-

oritised or non-prioritised communication did not affect the resulting MFE.

It is unclear whether this will always be true, or is a result of the specific

models considered, and as such this is an interesting point for further inves-

tigation.
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1.2.2 Deterministic equations from process algebra

In addition to the previous studies which derive MFE for WSCCS [73, 83]

equations have been derived which approximate the mean behaviour of sys-

tems described in other process algebras. Cardelli produces a continuous

time semantics in terms of ODEs from a subset of the π-calculus enriched

with transition rates (the Chemical Ground Form) [26]. The process algebra

is broadly similar to WSCCS, but has continuous rates instead of probabilis-

tic choice. The translation to ODEs is given directly, but the proof is via

translation to Chemical Reactions. A key observation is the translation

between stochastic rates in the (discrete state) process algebra to kinetic

rates in the (continuous state) ODEs multiplying by a factor related to the

number of molecules in the solution. This allows use of the law of mass

action, which applies only in the continuous setting. The work is motivated

by chemical reactions, but can be applied in other settings. In particular, a

related paper [25] contains the Kermack McKendrick SIR example [52], and

the well known Lotka-Volterra predator-prey example [61, 92].

There is also some similarity with the work of Brodo et al. [21], who

derive numeric rate information for π-calculus models. Their work is con-

cerned with performance analysis, and relies on information about network

topology, throughput, latency, protocol complexity; however, their systems

appear not to be composed of many copies of the same agent (and therefore

the rates do not take this into account).

Hillston [45], and Calder et al. [23] presented methods of deriving ODEs

from a subset of the continuous time process algebra PEPA which makes

use of a numerical vector form representation of the system. The methods

are broadly the same but use different terms in the resulting ODEs to cap-

ture communication. The methods were extended by Bradley et al. [17] to
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cover a greater range of potential PEPA models. The approach is applied

to internet worm attacks [17], which have previously been modelled using

SIR models similar to those used to describe infectious disease spread [59].

The form of communication used in these models does not allow communi-

cation directly between infected and susceptible computers, communication

is instead modelled over a network. The infection passes from infected PCs

to network channels and then from the network channels to susceptible PCs

which is realistic for a worm attack. These models therefore capture behav-

iour which is analogous to indirect disease spread [6]: however they would

not be suitable for modelling direct transmission as captured in existing

WSCCS [73, 83] and π-calculus [25] models.

1.2.3 WSCCS

Syntax of WSCCS

In WSCCS the basic components are actions and the agents that carry out

those actions. The actions are chosen by the modeller to represent activities

in the system. For example, infect, send, receive, throw dice, and so on.

Actions occur instantaneously and have no duration. Agents represent the

different components of a system which can perform the actions e.g. Infected,

Susceptible, Die, Gambler, Router. There is no measure of time in WSCCS

but there is temporal ordering and synchronisation of events. If we think of

the ticking of a universal clock, on each clock tick all agents must perform

an action, though they need not change state as a result. Clock ticks are

not necessarily evenly spaced in time and the wait between consecutive ticks

can vary from being instantaneous to happening over longer periods of time.

WSCCS is a probabilistic process algebra, meaning that the decision to

move from one state to another can be a probabilistic one. In Appendix A
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S1
def
= pc.

√
: P2 + (1 − pc).

√
: S2

I1
def
= pr.

√
: R2 + pa.

√
: T2 + (1 − pr − pa).

√
: I2

R1
def
= 1.

√
: R2

S2
def
= 1.

√
: S1

P2
def
= ω.infect : I1 + 1.

√
: S1

I2
def
= 1.

√
: I1

T2
def
= ω.infect : I1 + 1.

√
: I1

R2
def
= 1.

√
: R1

Population
def
= S1 × S1 × S1 × S1 × S1 × I1d{√}

Figure 1.1: Simple epidemic model of Sumpter [82]

we present the formal semantics of WSCCS (as defined in [87]) but here we

present an informal overview.

To illustrate the different definitions we consider a basic model of disease

spread by Sumpter [82], shown in Fig. 1.1. The behaviour captured in this

model is as follows: susceptible S1 agents either make themselves available

to be infected (by becoming P2 with probability pc) or not (becoming S2

with probability 1−pc); infected I1 agents make themselves available to pass

on the disease (becoming T2 with probability pa), recover from infection (be-

coming R2 with probability pr) or do neither (becoming I2 with probability

1 − pr − pa); recovered R1 agents all remain recovered (becoming R2). In

the second stage of the model the S2, I2 and R2 agents all have no choice

to make (becoming S1, I1 and R1 respectively) while the P2 and T2 agents

can be involved in transmission of the disease.P2 agents can either become
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infected (becoming I1 agents) or not (becoming susceptible S1 agents) while

the T2 agents all remain infected (becoming I1) irrespective of whether they

pass on the disease or not.

Model structure The models presented in this thesis follow the same

general structure used by Sumpter [82] and Norman and Shankland [73]. Ac-

tivity is separated into different stages (ticks), which happen consecutively,

and communication and probabilistic choice happen in different stages. For

instance Sumpter’s simple disease model [82] (Fig. 1.1) is a two stage model.

In the first stage the system consists of S1, I1 and R1 agents that make prob-

abilistic choices. In the second stage the system consists of S2, P2, I2, T2

and R2 agents with the numbers of each type of agent depending on the

probabilistic choices made in the first stage. The P2 and T2 agents com-

municate to model transmission of the disease and the S2, I2 and R2 agents

deterministically become S1, I1 and R1 respectively. After the two stages

the population once again consists of S1, I1 and R1 agents although the

numbers of each type of agent are different than before. The MFE describe

the mean change in the numbers of S1, I1 and R1 agents over the two stages,

so the timestep of the MFE covers two ticks in the WSCCS model. We refer

to the two ticks of the model as an iteration of the model. In general for

an n−stage model the MFE describe the average change in the numbers of

each type of agent present at the first stage over an iteration, which consists

of n stages.

A summary of the syntax is presented in Table 1.1. The operations of

WSCCS are:

18



Prefix a : P Simple agent: does action a
and becomes agent P
at the next stage.

Weighted choice w1.P1 + w2.P2 Behaves as P1 with probability
w1/(w1 + w2), or behaves as
P2 with probability
w2/(w1 + w2).

Parallel coordination P1 × P2 Agents in parallel execute
actions together at each stage.

Identity action
√

By default
√

occurs
without communication.

Restriction SystemdA Only actions in the set A are
allowed without communication.

Communication In general actions can only
output action act happen by communication i.e.
input action act if one agent does act another

can do act. Neither action can
happen independently.

Parallel actions Must communicate either with
same action actn several agents, or with

different actions act1#act2 agent performing parallel
actions.

Priority nωk ω: infinite weight. Different
levels of priority are allowed
with ωk+1 chosen in preference
to ωk.

Null agent 0 An agent which becomes 0 is
removed from the system.

Table 1.1: Summary of WSCCS syntax
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prefix This is the simplest form of agent: a : P where a is an action, and

P is an agent. This agent can carry out the action a and then behave

like agent P . Actions are as described above.

weighted choice The agent w1.P1 + w2.P2 offers a choice between the

agents P1 and P2. Assuming both agents are able to progress, the

branch chosen depends on the weights. Over a number of trials we

observe P1 being chosen with a probability w1/(w1+w2) and P2 being

chosen with a probability w2/(w1 + w2). For example the agents S1

and I1 in Fig. 1.1 make choices based solely on the associated weights.

For convenience these have been written as probabilities and we follow

this example for all agents in our models which are governed only

by weights (we refer to such agents as probabilistic agents). Weights

are generally positive natural numbers, but may also incorporate the

special weight ω which is greater than all natural numbers. This is

used in priority and we can have different levels of priority. When

different levels of priority are used the weight is written mωn, where n

is the priority and m is a weight used in determining between choices

of equal priority. Options with priority n + 1 will always be chosen in

preference to options with priority n

synchronous parallel coordination Obtaining more complex behaviour

requires the use of coordination. Simple agents using the operators

above may be combined with each other in parallel, e.g. P1 × P2.

Parallel agents operate in lock step; that is, if we imagine the tick-

ing of a universal clock controlling the occurrence of actions, then

all agents must execute some action together on the clock tick - but

not necessarily the same action. For example in Fig. 1.1 the agent
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Population is such a parallel agent which here represents the initial

state of the population (five S1 and one I1). Here we consider only

a small population (Sumpter [82], and Norman and Shankland [73]

who also considered this model, did not specify the initial state of the

population) since in the standard notation we must explicitly define

each component of such parallel agents. In Chapter 2 we define nota-

tion that allows us easily to define very large populations, or to assign

symbolic labels to the numbers of individuals.

Parallel agents can also be used either to describe individuals which

have two different types of behaviour or to model changing population

size i.e. birth.

communication Two agents in parallel may communicate when one car-

ries out an output action and the other carries out the matching input

action, e.g. infect and infect. Communication can be used to model

passing of information from one agent to another, or to coordinate

activity. Such communication is strictly two-way; that is, only two

agents may interact on this action. For example in Fig. 1.1 for some

of the agents P2 to be able to perform the input action infect an equal

number of T2 must perform the output action infect. Communication

with several agents simultaneously is achieved by multiple actions. For

example, infect3 is shorthand for three infect actions in parallel (alter-

natively written as infect#infect#infect) and hence the possibility to

synchronise with three other agents. The distinguished action
√

can

never communicate. Communication is enforced when the action is

hidden from the environment using restriction.
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restriction Without restriction, all agents may communicate with the en-

vironment as well as with each other. With restriction, we can force

two (or more) agents to communicate with each other on chosen ac-

tions. For example, given the agent (P1|P2)da where P1 and P2 can

carry out actions a, b, then P1 and P2 must cooperate on b actions,

but a actions are visible in the environment, and available to syn-

chronise with other agents. Actions are hidden by default and only

the actions which are explicitly allowed can happen independently. In

Fig. 1.1 only the action
√

is visible. All other actions are hidden (for

this model the infect input and output actions) and can only happen

by communication.

priority In a choice, the agent with infinite weight nωk will always be taken

in preference to the one with a natural number weight. This can be

used to force particular actions to occur (usually communications) if

possible, allowing the alternative choice only if there is no other agent

with which to communicate. There is a hierarchy of weights, with

ωk+1 > ωk. In Fig. 1.1 the agents P2 and T2 are both prioritised

to communicate on the infect action (P2 the input action and T2 the

output action) so that when there are sufficient T2 agents all of the

P2 must communicate and vice versa. This means that the number

of P2 agents which become infected I1 agents is either equal to the

number of T2 agents, if there are more P2 than T2, or all of the P2

become I1, if there are as many (or more) T2 as P2.

In all models presented in this thesis the system as a whole is described

by the system equation Population (or Popn), comprising multiple copies

of each kind of agent in parallel.
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Classification of Markov chains

In this section we comment on some of the types of Markov chains [38]

that can arise from the WSCCS models presented in this thesis. We do not

explicitly consider the Markov chains of our models although the algorithm

for deriving MFE, which is introduced in Chapter 3, takes account of the

Markov chain to calculate the mean behaviour of a model.

Models that do not feature birth and death, for example Sumpter’s basic

disease model [82] (Fig. 1.1) and the simple models presented in Chapter 3,

have finite Markov chains. In Chapter 4 we consider models that feature

birth and death of individuals and in subsequent chapters include this in

our disease models. These models have infinite Markov chains. Whether

the underlying Markov chain is finite or infinite does not affect our ability

to derive MFE to describe the mean behaviour of the model.

In general for the n−stage models (n > 1) in the following chapters all

states are periodic with period n, i.e. if the system is in state X it can only

return to X after multiples of n ticks. Since all of the states that agents can

take at each stage are different to the states they can be in at the previous

and subsequent stages these models are never aperiodic. One-stage models

are aperiodic since they can remain in the same state from one stage to the

next.

The only model in this thesis that leads to a Markov chain with an

absorbing state is a simple model in Chapter 2, included to demonstrate

the use of functional probabilities (Fig. 2.1). In general n−stage models

never feature absorbing states as all agents change state at each stage of the

model.

Our n−stage models models without birth and death can lead to Markov

chains that feature cycles. Consider, for example, Sumpter’s basic model
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(Fig. 1.1), if the disease dies out (i.e. all infecteds recover) the system will

consist of some numbers of S1 and R1 agents. Every two ticks the system

will consist of the same numbers of S1 and R1, and at the intermediate

stage the system will consist of some numbers of S2, P2 and R2 agents.

Models which feature birth and death will never feature cycles since it is

always possible for the total number of agents in the model to change over

n−stages.

The MFE which we derive for our system consider the mean behaviour

of a model over n − stages. This means it is possible that the MFE will

have a stable steady state, even though the Markov chain does not have an

absorbing state. This would indicate that the expected state of the system

tends to some state, X, even though the Markov chain will always be able

to evolve to other states.

1.3 Thesis outline

In this thesis we address the problem of changing scale in terms of models

of disease spread. In particular we address the following questions:

• How can we rigorously move from individual level to population level

descriptions of a system?

• What individual level behaviours lead to different equations for pop-

ulation growth?

• Can individual level behaviour be defined which leads to the traditional

density dependent transmission term?

• How can we capture indirect transmission in individual level models?

• What effect do superspreaders have on the variability of a system?
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In Chapter 2 we introduce additional WSCCS notation which allows

us simply to capture the kinds of density dependent behaviours which are

common in biological systems. This additional notation does not extend the

expressive capability of WSCCS but simplifies how we write such models.

We demonstrate how models which make use of density dependent behaviour

can be written using only the standard notation.

Chapter 3 addresses the question of changing scale from an individual-

based WSCCS model of a system to population level equations. An algo-

rithm is presented which formalises this process and its correctness is proved.

The use of the algorithm is demonstrated for a basic WSCCS model of dis-

ease spread.

In Chapter 4 we consider the question of how to capture realistic growth

in a population. This is crucial to be able to develop realistic disease models

since fluctuating population dynamics can have a bearing on the dynamics

of disease spread.

Chapter 5 considers different transmission terms which can arise from

WSCCS disease models. The density dependent term, βSI , is most com-

monly used in ODE models of disease spread but the existing WSCCS mod-

els have naturally led to the frequency dependent term βSI/N . We inves-

tigate whether it is possible to define individual level behaviour which leads

to equations featuring density dependent transmission.

Chapter 6 examines another aspect of disease transmission by consider-

ing models featuring indirect transmission. Many infectious micro-organisms

can survive independently in the environment and this can have an effect

on the spread of the disease.

In Chapter 7 we introduce superspreaders to our models. Studies have

suggested that superspreaders play a vital role in the spread of some diseases.
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We further study these models by performing simulations and comparing

the variability with superspreaders to that of standard models in which all

infected individuals are equally infectious.

In Chapter 8 we discuss the most important results of this thesis and

propose some areas for further work.
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Chapter 2

Non-canonical Notation

Some new WSCCS notation is introduced in this chapter to simplify the

process of writing complex models. Everything we introduce is defined in

terms of existing WSCCS constructs and macros can be defined that rewrite

models using only the standard notation. Firstly notation is presented that

aggregates many agents of the same type in parallel. This makes it simple

to write models that consist of a large number of agents of only a few types

and also models where the numbers of agents of each type is represented

symbolically. Secondly notation is introduced that allows parameters in a

model to be functionally dependent on the number of agents of a given type

present at a given time. Both of these new forms of notation are additions

to the rules for processes in the definition of the syntax in Section 1.2.3.

2.1 Aggregation Notation

The usual notation for writing down a number of WSCCS agents in parallel

involves explicitly writing each of the agents involved, even if there are
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many agents of the same type. For example 20 agents of type A in parallel

is written as

A×A×A×A×A×A×A×A×A×A×A×A×A×A×A×A×A×A×A×A .

We wish to consider systems consisting of much larger numbers of individ-

uals. By deriving MFE we can produce the time series of the mean of a

system consisting of hundreds or thousands of individuals and also perform

mathematical analysis on models where the numbers of individuals are not

defined, with symbolic labels used in place of numbers of individuals. To

aid us in writing large and symbolic models we define aggregated notation

for a parallel agent consisting of multiple copies of a single agent type.

Definition 1 The parallel agent A{a} consists of a instances of agent A.

By extension the agent A{a} ×B{b} × ...× N{n} consists of a instances of

the agent A, b instances of the agent B ... and n instances of the agent N ,

for example

X{2} × Y {3} × Z{2} def
= X × X × Y × Y × Y × Z × Z .

This aggregation fits within the standard WSCCS notation because the par-

allel operator (×) is associative and commutative [87].

Traditional methods of analysis for process algebra models, such as ex-

ploring the Markov chain or performing simulation, require the initial num-

bers of each type of agent to be known - and to be small for Markov chain

analysis - but the derivation of mean field equations for our models, de-

scribed in Chapter 3, is done independently of the precise numerical values

for the numbers of agents. For this reason all of the models presented in
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the thesis will have the initial state of the system given in symbolic terms

although numerical values may be assigned to the symbolic labels when

analysis other than deriving the MFE is performed.

2.2 Functional Parameters

Many biological systems display density dependent behaviours, for example

the infected individuals in disease systems may make more contacts as the

population density increases [10]. To be able to model such systems effi-

ciently we wish to be able to include functional parameters, which depend

on the numbers of agents of a certain type present in the system at a given

time. To facilitate this we introduce here a notation with which we can de-

fine functional parameters and also demonstrate how we can expand these

to give a model using only the standard WSCCS notation [87]. Functional

parameters do not extend the expressive capabilities of WSCCS since all

models that make use of functional parameters could be written without

them. However, what functional parameters do offer is a more concise and

intuitive way to describe complex behaviours. We define two distinct types

of functional parameter: functional probabilities for agents that evolve with-

out interaction; and functional parallel agents in which the integer n, used in

some parallel agent X{n}, depends on the numbers of some types of agents

in the system.

To utilise functional parameters we define a notation that represents the

number of agents of a given type currently present and we represent this

using b c .

Definition 2 bSc is “the number of S agents that are present at the current

stage”.
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The parameters that are functional and the functions representing them are

defined at the start of the model. The values of any constants required by

the function can also be defined using standard mathematical notation e.g.

p = 0.5 .

In the expanded form a single stage in the model is replaced with three

distinct stages. For example, if the agent Xi (which is present at the ith

stage in the model) is to be functionally dependent on the numbers of some

agents, it will be replaced by the agents Xia,Xib and several agents Xic n,

where n is the number of the agents counted, and each of which has the

functional parameter set accordingly. At the first of these stages a count

agent, Cntia, is used that interacts with all the agents we are interested in

counting and becomes an agent where the state name encodes the number

counted (Cntib 0, Cntib 1 etc). At the second stage the resulting agent

once again interacts with all of the agents that were counted, performing

the output action countn
n

. The agents that make use of the functional

parameter then evolve to a the relevant state, Xic n. This is similar to

value-passing CCS as defined by Milner [68] with the count agent passing a

parameter to other agents encoded in the name of the action performed.

In all other stages of the model the Cnt should be some agent that

progresses to the next stage without any interaction or choice. For example

Cnt1
def
= 1.

√
: Cnt2

is the count agent at the first stage of a model where there is no functional

parameter in the first or second stage (if there was a functional parameter

at the second stage of the model Cnt1 would evolve to Cnt2a, which would

perform the count action). Any agents in the model that are not counted
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for calculation of the functional parameter behave in a similar manner at

the additional stages when the functional parameter is calculated i.e. they

do nothing while the count occurs.

Adding two stages to the model does not affect the time represented by

an iteration of the model. In the biological system the density dependent

behaviour arises instantaneously and since the stages in the model need not

all be of the same duration the additional stages (for counting and value

passing) can be thought of as instantaneous. In more complex models it

may be the case that there are different functional parameters at different

stages of the model (this is true of some of the models presented in Chapter

5). To implement the expanded form of such a model all of the stages

featuring functional parameters would be expanded to three stages with

counting happening each time. It may be true that the number of agents

being counted will be the same each time but to make it possible to have a

rigorous general method for expanding the functional parameters counting

should be implemented each time.

Many of the models described in this thesis are for systems displaying

density dependent behaviour. By utilising the notation presented here we

can include density dependent properties simply, meaning that it is easy

to study the effect of the density dependence without having to consider its

implementation. In subsequent chapters models will be presented with func-

tional parameters without any consideration of the expanded form, which

would use only standard WSCCS notation.
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2.2.1 Functional Probabilities

Functional probabilities are defined at the start of the model thus

label
prob
= function .

Since the probability will always fall between 0 and some upper limit pL ≤ 1

the function should be written in the form p
prob
= min(max(0,F), pL) where F

is some function of the numbers of agents in the population. The probability

pL is the upper limit that the given probability can take. Probabilistic agents

are generally written in the form

I1
def
= pr.

√
: R2 + pa.

√
: T2 + (1 − pa − pr).

√
: I2 ,

which is a typical infected agent from the disease models of Norman and

Shankland [73]. In this example pr is the probability with which the

individual recovers, pa is the probability that it is able to make an infectious

contact and 1 − pr − pa is the probability it neither recovers nor is able to

make an infectious contact. If the probability pa is to be functional we re-

quire pL = 1−p r to ensure that 1−p a−p r ≥ 0. Changing the probability

pa depending on the population size does not impact on the probability p r,

although (1 − pa − pr) will change.

In WSCCS, weights can take any form and need not always be written as

probabilities. For agents that behave purely probabilistically it is more con-

venient to choose the weights as probabilities and when

using functional weights we have another reason to do so.

This I1 agent could instead be written as

I1
def
= w1.

√
: R2 + w2.

√
: T2 + w3.

√
: I2 ,
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where the weights w1, w2, w3 are not probabilities. In this case if we were to

make the weight w2 functional in terms of bI1c, in order that the likelihood

that an individual is able to make an infectious contact depends on the

number of infected individuals, we would also be altering the likelihood

than an individual will recover. This is because the probability of recovery

here is

p1 =
w1

w1 + w2 + w3

so that as w2 increases not only is an individual more likely to be able to

make an infectious contact but it is also less likely to recover. In our models

it would not be biologically realistic for one density dependent behaviour to

have an inverse effect in all other probabilistic choices. It would be possible

to write I1 in the form

I1
def
= w1.

√
: R2 + w2.

√
: T2 + (ws − w1 − w2).

√
: I2 ,

where ws is a fixed value for the sum of the three weights, meaning that the

probability of becoming T2 would not be affected by changing w1. However,

this is not an obvious way to write an agent, whereas if we are considering

probabilities it is necessary that the probabilities sum to 1. For these rea-

sons we always write agents that do not take part in communication using

probabilities. One of the probabilities takes the form

1 −
n−1
∑

i=1

pi

where n is the number of choices. The choice that arises from the probability

of this form should be the one that can be thought of as “do nothing”: for

example in the I1 agent considered above the choices can be thought of as
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p
prob
= min(max(0, p0 + k ∗ [N ]), 1)

X
def
= p.

√
: Y + (1 − p).

√
: X

Y
def
= 1.

√
: Y

Population
def
= X{5}d{√}

Figure 2.1: Very simple model: X becomes Y with functional probability p

“recover”, “attempt to pass on infection” and “do nothing”. In the mean

field case, for realistic parameter values, it should generally be true that

0 ≤ F ≤ pL so that the functional parameters can be included in the MFE

by substituting for p = F .

Example

Fig. 2.1 features a very simple model using functional probabilities with

agents of type X becoming Y with probability p, which is a function of the

number of X agents. A probability can be a function of the sum of the num-

bers of more than one type of agent if the sum changes. In this model there

are only two types of agents, with (bXc+ bY c) constant, therefore making p

a function of (bXc + bY c) would make p constant. The agents X have only

two options - become Y or remain X - so (1 − p) is a valid probability for

0 ≤ p ≤ 1 and we set pL = 1. Here a very small system is defined, consisting

of only five agents. However we will demonstrate the changes necessary for

larger systems and explain how the expanded description can be written for

any finite sized system.

Fig. 2.2 is an expansion of the functional rates macro used in Fig. 2.1. On

the first tick in the model priority is used to force the count agent, Cnta, to
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Cnta
def
= ω5.count

5
: Cntb5 + ω4.count

4
: Cntb4

+ω3.count
3

: Cntb3 + ω2.count
2

: Cntb2

+ ω.count
1

: Cntb1 + 1.
√

: Cntb0

Xa
def
= ω.count : Xb + 1.

√
: Xb

Y a
def
= 1.

√
: Y b

Cntb5
def
= ω.count5

5
: Cntc

Cntb4
def
= ω.count4

4
: Cntc

Cntb3
def
= ω.count3

3
: Cntc

Cntb2
def
= ω.count2

2
: Cntc

Cntb1
def
= ω.count1

1
: Cntc

Cntb0
def
= 1.

√
: Cntc

Xb
def
= ω5.count5 : Xc5 + ω4.count4 : Xc4

+ω3.count3 : Xc3 + ω2.count2 : Xc2

+ ω.count1 : Xc1 + 1.
√

: Xc5

Y b
def
= 1.

√
: Y c

Cntc
def
= 1.

√
: Cnta

Xc5
def
= p5.

√
: Y a + (1 − p5).

√
: Xa

Xc4
def
= p4.

√
: Y a + (1 − p4).

√
: Xa

Xc3
def
= p3.

√
: Y a + (1 − p3).

√
: Xa

Xc2
def
= p2.

√
: Y a + (1 − p2).

√
: Xa

Xc1
def
= p1.

√
: Y a + (1 − p1).

√
: Xa

Y c
def
= 1.

√
: Y a

Population
def
= Xa{5}d{√}

Figure 2.2: System described by Fig. 2.1 without using functional probability
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interact with as many Xa agents as possible, up to a maximum of five. Cnta

then becomes one of the CntbJ agents Cntb0, Cntb1, ...Cntb5 dependent on

the number of contacts made. At the second stage of the model the count

agent communicates with all of the Xb agents performing an action that

depends on the number of Xa agents communicated with at the previous

stage. Depending on the action performed the Xb agents become one of the

agents Xc1,Xc2, ...Xc5, which have the probability of becoming Y a, p, set

to one of the values p1, p2, ...p5. In this way p is calculated on each cycle of

the model depending on the number of Xa agents present on the first tick

of the cycle.

If we consider the function defined for p in Fig. 2.1

p
prob
= min(max(p0 + kbXc, 0), 1) ,

and we wish to have, for instance, p0 = 0.1 and k = 0.01 we would achieve

this in the expanded model by adding the following definitions to the start

of the model:

p1 = 0.11

p2 = 0.12

p3 = 0.13

p4 = 0.14

p5 = 0.15 ,

with the probabilities derived from the equation above. Consider now if the

system were expanded to six agents. Note that if an Xb agent is unable to

perform any of the count actions it becomes Xc5. This means that if there
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are six Xb agents five of them will perform count5 and become Xc5 while

the other will also become Xc5, performing
√

. However, if we have six X

agents we want them to have p = 0.16 by the function for p in Fig. 2.1. To

allow this we need to change the expanded model. Firstly we need to extend

the Cnta and Xb agents so that they are able to handle systems of six X

agents:

Cnta
def
= ω6.count

6
: Cntb6 + ω5.count

5
: Cntb5 +

ω4.count
4

: Cntb4 + ω3.count
3

: Cntb3 +

ω2.count
2

: Cntb2 + ω.count : Cntb1 + 1.
√

: Cntb0 ,

Xb
def
= ω6.count6 : Xc6 + ω5.count5 : Xc5 + ω4.count4 : Xc4 +

ω3.count3 : Xc3 + ω2.count2 : Xc2 + ω1.count1 : Xc1 +

1.
√

: Xc5 .

In addition we require agents Cntb6 and Xc6 that will be used when there

are six X agents, as well as defining the probability p6:

p6 = 0.16 ,

Cntb6
def
= ω.count6

6
: Cntc ,

Xc6
def
= p6.

√
: Y a + (1 − p6).

√
: Xa .

By extension of this approach we can extend the size of the system described

by the model so that we can consider systems of any fixed finite number of

agents. Considering a situation where the system can become very large

highlights the advantages of writing the model in terms of functional para-

meters. For instance it is not unusual for biological systems to consist of

thousands of individuals and if we were to extend the model in Fig. 2.2 to
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feature even 100 agents the Cnta and Xb agent definitions would each have

101 terms and there would have to be 100 different Xc agents and 101 dif-

ferent Cntb agents defined. In contrast using the functional parameters and

aggregation notation we can describe such a system with the model in Fig.

2.1, which features only two small agent definitions and the definition for

the functional probability p. In Chapter 3 we present a rigorous method for

deriving MFE and when doing this we use the compact form of the model.

2.2.2 Functional Parallel Agents

In a similar way to the functional selection of probabilities described in the

previous section, the number of agents of a given type in a parallel agent

can be made a function of the numbers of agents in the population. The

function is defined at the start of the file thus

label
int
= function .

Since the number of components in a parallel agent must always be an

integer, I, we make use of the function Round(x), which chooses the inte-

ger closest to x. In addition I must always be positive so if the function,

F , is inversely proportional to the number of the agents being counted we

need I
int
= max(Round(F ), 0). Further, to have a practical implementa-

tion of the model it may be necessary to have an upper limit, i.e. I
int
=

min(max(Round(F ), Im), 0). However, in theory we could continue adding

to the model at each iteration, while always having a finite system size.

38



I
int
= Round(I0 + K ∗ bX1c)

X1
def
= p.

√
: Y 2 + (1 − p).

√
: X2

Y 1
def
= 1.

√
: Y 2

X2
def
= Xh2 × Xc2{I}

Xh2
def
= ω.act : X1 + 1.

√
: X1

Xc2
def
= ω.act : 0 + 1.

√
: 0

Y 2
def
= ω.act : X1 + 1.

√
: Y 1

Population
def
= X1{5}d{√}

Figure 2.3: Two stage simple model: Y goes back to X after communication
with X

Example

The model in Fig. 2.3 is a two stage extension of the model from Fig. 2.1,

which makes use of parallel agents. In models of biological systems, such

parallel agents can be used to model a situation where a single individual

can interact with several other agents. For example, in a disease system

an infected individual may interact with, and potentially pass the disease

to, several susceptible individuals. If the overall population rises individuals

may be expected to make more contacts in a fixed time and this would be

captured in the model by making the parallel agent functional. The X1

agents here become Y 2 with fixed probability p. In the second stage of the

model the X2 agent is a parallel agent consisting of one Xh2 agent, which

will become X1 at the next tick, and I Xc2 agents, which can perform the

output action act. The number of Xc2 agents in each X2, I, is a function

of the number of X2 agents currently present. Again the function could

depend on the numbers of multiple types of agents but in this example we
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Cnt1
def
= 1.

√
: Cnt2a

X1
def
= p.

√
: Y 2a + (1 − p).

√
: X2a

Y 1
def
= 1.

√
: Y 2a

Cnt2a
def
= ω5.count

5
: Cnt2b5 + ω4.count

4
: Cnt2b4

ω3.count
3

: Cnt2b3 + ω2.count
2

: Cnt2b2

+ ω.count : Cnt2b1 + 1.
√

: Cnt2b0

X2a
def
= ω.count : X2b + 1.

√
: X2b

Y 2a
def
= 1.

√
: Y 2b

Cnt2b5
def
= ω.count5

5
: Cnt2c

Cnt2b4
def
= ω.count4

4
: Cnt2c

Cnt2b3
def
= ω.count3

3
: Cnt2c

Cnt2b2
def
= ω.count2

2
: Cnt2c

Cnt2b1
def
= ω.count1 : Cnt2c

Cnt2b0
def
= 1.

√
: Cnt2c

X2b
def
= ω5.count5 : X2c5 + ω4.count4 : X2c4

+ω3.count3 : X2c3 + ω2.count2 : X2c2

+ ω.count1 : X2c1 + 1.
√

: X2c5

Y 2b
def
= 1.

√
: Y 2c

Cnt2c
def
= 1.

√
: Cnt1

Y 2c
def
= ω.act : X1 + 1.

√
: Y 1

X2c5
def
= Xh2c × Xc2c{C5}

X2c4
def
= Xh2c × Xc2c{C4}

X2c3
def
= Xh2c × Xc2c{C3}

X2c2
def
= Xh2c × Xc2c{C2}

X2c1
def
= Xh2c × Xc2c{C1}

Xh2c
def
= ω.act : X1 + 1.

√
: X1

Xc2c
def
= ω.act : T + 1.

√
: T

Population
def
= X1{5}d{√}

Figure 2.4: System described by Fig. 2.3 without using functional parallel
agent
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have a fixed system size in terms of (bX2c + bY 2c), since no individuals

are added or removed from the system. The Xc2 agents are prioritised to

perform the act output action and if they communicate with a Y 2 agent it

will become X1 while if they communicate with an Xh2 it is unchanged by

communication.

Full implementation of this model without the functional parallel agent,

which can be seen in Fig. 2.4, once again makes use of a Cnt agent to

establish the size of the population and choose from several X2c agents.

In this case the counting phase comes after the initial probabilistic stages.

Depending on the values of the parameters I0 and K it is possible that

multiple X2c agents (X2c 0,X2c 1, ...,X2c 5) will feature the same number

of Xc2c agents. For example, I0 = 0 and K = 0.5, would mean that

C1 = C2 and C3 = C4.

2.2.3 General Implementation

The expanded form of a model that uses functional parameters follows the

same steps whether it is for a functional probability or functional parallel

agents. The difference between the two types of functional parameter comes

only in the restrictions that apply to the form of the function, and the form

that the agents featuring the functional parameter must take. The general

implementation of the expanded form follows the steps below. This general

implementation assumes that the agent names include an index (1,2...n) to

indicate at which stage of the model the agent is defined. If the ith stage

features a functional parameter it will be replaced by three stages, ia, ib, ic.

• An agent Cnti is added at each stage i. At stages that do not feature

functional parameters this agent deterministically moves on to the next

stage.
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• The stages that do feature functional parameters are replaced by three

separate stages.

1. – The count agent, Cntia is prioritised to perform as many

instances as possible of the count output action.

– The agents whose number is required by the functional pa-

rameter all perform the input action count.

– All other agents at the first additional stage deterministically

progress to the second additional stage.

2. – The Cntib agent performs n instances of the countn output

action, where n is the number of agents interacted with at

the previous stage.

– Each of the agents that were counted at the previous stage

can perform a number of input actions countj where the

upper limit of j is ≥ n .

– The agents that make use of the functional parameter evolve

to a state - e.g. Xicn - where the parameter is set to satisfy

the functional parameter for the value of n.

– The agents that were counted but do not feature the func-

tional parameter evolve to the same state irrespective of

which countj action is performed.

3. – The Cntic agent deterministically progresses to the next stage.

– There are a number of agents, Xicn, that represent the agents

with functional parameters.

– Agents of these types are all in the states where the parame-

ter satisfies the function.
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– All other agents are of the same form as in the functional

parameters form of the model.

• During each iteration of the model the following steps may be neces-

sary:

– Rewrite the agent definition of Cntia so that it can communicate

with all of the agents to be counted.

– Add a Cntibn agent where n is the number of agents contacted.

– Add an Xicn agent.

2.3 Summary

In this chapter some additional WSCCS notation has been defined that

allows us to simplify the process of writing more complex models. This no-

tation does not add to the expressive capabilities of WSCCS since all models

that make use of the new notation could be written using the standard nota-

tion. However using the functional parameters notation density dependent

behaviour can be captured in simple agent definitions, making it straightfor-

ward to define MFE for such models; and using the aggregation notation it

is realistic to define models of systems consisting of hundreds or thousands

of individuals. Throughout the remainder of the thesis the new notation

will be used without comment on how the models would be implemented

using only the standard notation.
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Chapter 3

Deriving Mean Field

Equations

Traditionally, process algebra models are studied either by exploring the

Markov chain or by performing Monte Carlo simulations of the system. Ex-

ploring the Markov chain involves calculating the entire state space, which

is computationally expensive, and for large systems is not possible. Prob-

abilistic workbench [88], the tool for WSCCS, can handle systems up to

500 components [89] but imposes restrictions on how these models can be

interpreted. More generally we can consider only small systems of up to

20 components. Individual simulations give only a single route through

the state space so that to calculate the average behaviour of the system it

is necessary to perform many simulations, which again is computationally

expensive.

Another method of studying process algebra models is to develop mod-

els that describe the system at two levels of abstraction, and to show that

the two descriptions are equivalent (for example using bisimulation). Al-

though we do not explicitly develop WSCCS models for the population
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level behaviour we take a similar approach by deriving mean field equations

(MFE) that describe the average behaviour of the system at the population

level. In Section 3.4.2 we make use of a limit theorem [58] to demonstrate

that MFE are equivalent to the mean of the Markov chain. MFE offer a

deterministic approximation to the mean behaviour of the model and are

amenable to a wide range of algebraic and numerical analyses. The MFE

are useful when we are interested in the average state of the system at each

step of time. If instead we are interested, for instance, on the average time

until completion of some system, or the likelihood of reaching a deadlock

state, the other analysis techniques are more useful.

The previous studies that have derived MFE from WSCCS models [73,

82] have made use of intuitive reasoning to establish equations to describe

the mean behaviour of the model. This was possible because those models

consisted of only a small number of types of agents, with the average behav-

iour being relatively easy to identify; however it is preferable to have formal

rules for deriving the MFE and also for larger, more complex models it is

not so easy to intuitively determine the mean behaviour of the system.

This chapter introduces an algorithm for deriving MFE for a WSCCS

description of a system, which will be used in subsequent chapters to ob-

tain MFE for the models presented. The algorithm can be thought of as

generating an alternative semantics for WSCCS allowing us to easily obtain

the mean behaviour of a model in a way that is consistent with the stan-

dard Markov chain semantics. Our work differs from that of Cardelli [26],

Brodo et al. [21] and Hillston [45] because of the nature of the process al-

gebra used (discrete vs continuous, probabilistic choice vs stochastic rates)

and the particular application area (epidemiology). The work was carried

out independently. Essentially, the problem tackled here is the difficulty of
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deriving transition rates from a calculus where choices are probabilistic (but

there is no rate information on transitions).

The question addressed with all of the models presented in this thesis

is “on average how many individuals of each type are present after each

iteration of the model?” However, WSCCS models can be written to answer

questions such as “what is the average time until completion?” or “what is

the probability of reaching a deadlock state?” and deriving MFE for such

models will not offer any insight into these questions.

The MFE that we obtain offer a way to circumvent the well known state

space explosion problem. A model with a small definition and a moderately

large number of agents (> 20 for WSCCS) leads to a Markov chain that is so

large analysis becomes impractical. This is a problem that affects not only

models of biological systems but any system that involves many instances

of a small number of types of agents. Our algorithm is therefore useful for

many computing science application areas where state space explosion is a

problem.

3.1 Model building

The model featured in Fig. 3.1 will be used to illustrate the use of the

algorithm. This model is based on the prioritised communication model of

Norman and Shankland [73], with the main difference being that the order

in which probabilistic choice and communication happen is reversed. To aid

understanding of the differences between these two models, which we discuss

in Section 3.3.5, we present flow diagrams which indicate the transitions that

each type of agent can make. The flow diagram for Fig. 3.1 can be found in

Fig. 3.2.
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S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= T1 × Trans

T1
def
= ω.infect : I2 + 1.

√
: I2

Trans
def
= ω.infect : 0 + 1.

√
: 0

R1
def
= ω.infect : R2 + 1.

√
: R2

S2
def
= 1.

√
: S1

SI2
def
= pi.

√
: I1 + (1 − pi).

√
: S1

I2
def
= pr.

√
: R1 + (1 − pr).

√
: I1

R2
def
= 1.

√
: R1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 3.1: Disease model with contact followed by probabilistic choice

Figure 3.2: Flow diagram for Fig. 3.1
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The first stage in Fig. 3.1 is the contact stage where the infected individ-

uals are represented by a parallel agent consisting of one T1 and one Trans

agent. The Trans agents are prioritised to perform the infect output action

and can do so by communicating with an S1, T1 or R1 agent. If an S1 agent

interacts with a Trans it will become the agent SI2, which subsequently

make a probabilistic choice to become infected or not. The T1 and R1

agents can also interact with the Trans agents but their future behaviour is

unaffected by doing so, since they always evolve to I2 and R2 respectively.

This is included to capture the situations where infecteds make contact with

other infecteds, which cannot become more infected, or recovereds, which

are immune to future infection. (In the flow diagram the transitions from

the Trans agent do not lead to any other agent. This represents transition

to the null agent 0.)

The second stage in this model features probabilistic choice. In addition

to the SI2 agents making the choice to become infected or not the I2 agents

also recover probabilistically. Defining the model with communication first,

followed by probabilistic choice, has the advantage that making an infectious

contact will not automatically lead to infection. In many disease systems

contact does not guarantee infection and this is captured in the model by

the probability pi: diseases where contact always leads to infection can be

modelled by setting pi = 1. For this reason all of the subsequent models

in this thesis will have the contact stage followed by a probabilistic stage,

where the susceptible individuals that have made contact with an infected

individual make a probabilistic choice to become infected.

In addition this model has all infected individuals able to pass on the dis-

ease in each iteration of the model, and, since communication is prioritised,

if they can make an infectious contact they will. In most disease systems
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infection leads an individual to make potentially infectious contacts: for ex-

ample a fox with rabies tends to roam outside of its normal territory and

become more aggressive, leading it to fight with other foxes and potentially

pass on the disease. It may still be desirable to have the mean number

of contacts that individuals make < 1. This could be achieved by having a

probabilistic stage before the contact stage, as well as the probabilistic stage

after contact, with infected individuals making a choice to make contact.

3.2 Restrictions

The algorithm presented here cannot be used to obtain mean field equations

for every WSCCS model that could possibly be written. Firstly the models

should be designed to investigate the numbers of individuals of each type

that are present after each iteration of the model.

Secondly the system being considered must be sufficiently large in terms

of the numbers of agents. It is a well known result that deterministic models

do not accurately capture the behaviour of small systems where stochastic

effects can have a great influence. Most importantly in disease systems it

is known that the initial number of infected individuals greatly affects the

convergence of deterministic equations to a discrete stochastic system [93].

In addition to these more obvious restrictions we also place some re-

strictions on the way that models must be written to be amenable to the

algorithm. These restrictions make it more straightforward to write a model

that describes a system and in turn reason about the mean behaviour of the

system. In Chapter 7 we consider models of superspreader systems that

do not fall within this framework. For these specific cases we are able to

derive equations by carefully considering the one step behaviour over the

communication stage, without extending the algorithm to include models
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featuring communication of forms not currently covered. Other models for

superspreaders are considered and we see that these lead to the same MFE,

which can be derived directly using our algorithm. Therefore at present we

can say that the restrictions have not proved limiting in terms of the systems

that we have been able to model.

1. The algorithm is constructed under the assumption that the model

takes the form P{p} × Q{q} × ... × Z{z}d{√} where the components

can be sequential or parallel processes, and may include priority. This

is a big restriction but it is sensible in terms of the kind of questions

that are addressed.

2. All weights associated with communication must be 1, and for single

actions, there should be only one alternative action to the communi-

cation action. A consequence of this is that probabilistic choice steps

must be separate from communication steps. Generally systems can

be reformulated to fit this restriction, therefore, it can be thought of

as a renormalisation step rather than a real restriction.

3. There should be at most one communicating action in each agent in

any stage. This does not hamper expressivity, since it is possible to put

two different communicating actions on different stages. An example

of the behaviour we do not allow is found in the agent

X1
def
= 1.actionA#actionB : Y 2 + 1.

√
: X2 ,

which must perform the actions actionA and actionB, which may

require communication with two separate agents, to become the agent
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Y 2 . This behaviour can instead be captured by agents on different

stages, for instance

X1
def
= 1.actionA : Y 1b + 1.

√
: X1b

X1b
def
= 1.

√
: X2

Y 1b
def
= 1.actionB : Y 2 + 1.

√
: X2 ,

which gives the same requirement for X1 to perform both actionA and

actionB to become Y 2, and become X2 otherwise. This alternative

formulation is amenable to the algorithm described here and MFE

can be derived for models including communication of this form. It is,

however, unclear if this requirement for individual agents to perform

two communicating actions to make one transition will be necessary

in describing any biological system.

4. Agents performing the input action perform only a single instance,

and may evolve to different states depending on whether it performs

the input action or the free action. This is a special case of restriction

3, where actionB = actionA, and can be handled in the same way.

5. Agents performing a single instance of the output action may evolve

to different states, depending on whether they communicate or not;

however, agents that perform multiple instances of the action must

evolve to the same state, regardless of whether they communicate or

not (and irrespective of how many instances of the action they per-

form). Biologically there seems to be little need to allow evolution

to different states depending on the number of instances of an action

performed.
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6. Processes should not include nested permission sets, i.e. all communi-

cation takes place between all processes (potentially), and not between

subgroups defined by restriction. The reason for this is that the restric-

tion operator cannot be distributed over parallelism. From a modelling

perspective, this appears to be a reasonable restriction, being equiv-

alent to assuming random mixing since all agents can (potentially)

communicate with all others. It would, however, be possible to de-

velop models that circumvent this restriction by renaming the action

being performed. For instance, agents XA and YA could communicate

on actionA while agents XB and YB communicate on actionB.

Restrictions 2, 4 and 5 make the definition of the general terms for chang-

ing agents defined in Section 3.3 simpler; however, it should be possible to

remove these restrictions in future work.

3.3 Mean Field Equations

In this section we look at how models evolve and present the algorithm

with which we derive MFE. Using the algorithm we derive equations that

describe the numbers of each type of agent in terms of the agents in the

population at the previous stage (one stage equations). These equations can

be algebraically manipulated to give the final MFE describing the behaviour

of the model over the several stages that make up an iteration of the model.

The MFE that are derived from our models will always be first order

difference equations, i.e. of the general form

Xt+1 = f(Xt) , (3.1)
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where X is the vector of the different agent types for which we are deriving

equations,

X =













S

I

R













for simple epidemic models. The fact that the MFE are first order is a

consequence of the Markovian nature of WSCCS, which means that the

future state of the system depends only on the current state of the system

and not on the previous states.

It is always possible to obtain higher order equations by substitution. In

the general case a second order difference equation can be constructed by

noting that (3.1) implies that

Xt+2 = f(Xt+1) ,

and substituting for Xt+1 to find

Xt+2 = f(Xt+1)

= f(f(Xt)) .

Such second order equations, however, ignore important information about

Xt+1, the state of the system after the intermediate timestep, and are likely

to be algebraically more complicated. In Chapter 6 we derive MFE for

which we can eliminate equations that describe the quantity of infection in

the environment. This leads to a system of second order difference equations,

Xt+1 = f(Xt,Xt−1) ,
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Figure 3.3: Two stage Markov chain for Fig. 3.1 with initial population of
S1{2} × I1 × R1 , pi = 0.5 , pr = 0.1

which describe the population. In that case the individual second order

equations are not significantly more complicated and the system of equa-

tions is less complicated since fewer equations are required to describe the

population.

For models featuring only probabilistic choice the derived equations will

be first order linear difference equations (i.e. each term in f is linear in one

of the components of X) and for models that feature communication they

will be non-linear.

The diagram in Fig. 3.3 illustrates, by a numeric example for a small

initial population of S1{2} × I1 × R1 = S1{2} × T1 × Trans × R1 , the

progress of the model in Fig. 3.1 over two stages. After the first stage the

system can either be in the state S2{2}× I2×R2 , with probability 0.5 , or

S2×SI2×I2×R2 , with probability 0.5 . From S2{2}×I2×R2 the system

can progress to S1{2} × I1×R1 , with probability 0.9 , or S1{2} ×R1{2} ,

with probability 0.1 . Alternatively, from S2×SI2×I2×R2 the system can

progress to S1{2} × I1 × R1 , with probability 0.45 , S1{2} × R1{2} , with

probability 0.45 , S1×I1{2}×R1 , with probability 0.05 , or S1×I1×R1{2} ,

with probability 0.05 . There are therefore 4 distinct states that the system

can enter after two stages - S1{2}×I1×R1 , S1{2}×R1{2} , S1×I1{2}×R1
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and S1×I1×R1{2} , with respective probabilities of reaching these states of

0.675 , 0.275 , 0.025 and 0.025 - with multiple routes by which the system can

reach some of these states. Taking into account the probabilities of entering

the different states after two stages we can calculate the mean population,

which consists of S1{1.95} × I1{0.75} × R1{1.3} .

The algorithm allows us to deduce this last fact based only on the syn-

tactical description of the model. No state space calculation is required.

For the example considered in Fig. 3.3, calculation of the state space is rela-

tively simple so that the advantage offered by the MFE is minimal: however

we are interested in studying much bigger systems, consisting of potentially

thousands of agents. In such cases calculating the mean behaviour from the

MFE does not involve any more work than for a small system. In contrast

computing the mean of the Markov chain requires calculation of the entire

state space, which is not possible for such large systems using the tool for

WSCCS [88]. The alternative method of calculating the mean is to perform

many simulations of the system and calculate the mean of those. Com-

pared to calculating the mean from the MFE performing sufficiently many

simulations to accurately find the mean (at least several hundred) is compu-

tationally expensive; therefore, MFE can be said to offer a straightforward

method of describing the mean of a system.

3.3.1 State transition table

The algorithm makes use of a state transition table that represents the mean

evolution of the system, and from which we can construct a one stage MFE

for each type of agent in the model. These one stage equations can be

manipulated by standard algebraic techniques to produce a single system of

MFE to describe the mean behaviour of the system over an iteration of the
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model.

The rows of the state transition table are the agent types in the model

and the actions that they can perform. For instance the agent

S1
def
= 1.infect : SI2 + 1.

√
: S2 ,

from Fig. 3.1, gives two rows labelled S1 infect and S1
√

. For agents that

always evolve to the same state and for parallel agents, whose contribution

to the model does not depend on performing actions, ∗ is used in place of

action names. This means that the agent

T1
def
= 1.infect : I2 + 1.

√
: I2

gives a row labelled T1 ∗ , since the T1 agents all evolve to I2.

The columns of the table are labelled with the names of the agent types

in the model and represent the state that the system evolves to, at time= t .

The content of the cell (Ax aj,Ai) is the expression AxajAinew, represent-

ing the number of agents of type Ax that perform the action aj and become

Ai. By summing the column for the agent Ai we obtain an equation for Ait,

the number of Ai agents at time t, in terms of the numbers of the agents

present in the population at time t − 1, and for some types of agent the

numbers present at time t. These one stage equations are then combined

and manipulated using standard algebraic techniques to give a system of

MFE for the behaviour of the agents of interest in the model.
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X Y

X
√

XtXnew XtYnew

Y
√

Y tYnew

Table 3.1: State transition table for Fig. 2.1

For example if we consider the simple model from Fig. 2.1, which consists

of the agents

X
def
= p.

√
: Y + (1 − p).

√
: X

Y
def
= 1.

√
: Y ,

the state transitions are given by Table 3.1. We then sum columns to give

the following generalised system of MFE for the model:

Xt = XtXnew ,

Yt = XtYnew + Y tYnew . (3.2)

No substitution is necessary for this model since it is a one stage model, i.e.

we are interested in the numbers of X and Y agents at any given time.

In order to use MFE to describe the evolution of the mean of the system

we need to express, for example, XtYnew and Y tYnew in terms of Xt−1 and

Yt−1, the numbers of X and Y agents at the previous timestep. In general

the form of these terms depends on the type of agent involved. In Section

3.3.2 we examine the form of the AxajAinew terms for the different types

of agents in our models.
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3.3.2 How agents evolve

There are three basic types of agent utilised in our models: probabilistic

agents, communicating agents and parallel agents. In this section we look

at the ways in which each of these types of agent evolve and how they

contribute to the MFE.

Probabilistic agents

Calculation of AxajAinew is straightforward for steps involving only proba-

bilistic choice. Probabilistic agents take the form

A0
def
= w1.a : A1 + w2.a : A2 + ...wm.a : Am ,

and proceed independently without communicating with any other agent.

(This assumes that a is a free action. In all of the models presented in this

thesis
√

is the only free action but any action could be defined as free and

the same principle applies.) We generally write the weights in such an agent

as probabilities, i.e.

∀i : 0 ≤ wi ≤ 1 and
m
∑

i=1

wi = 1 ,

to simplify the process of writing models and deriving MFE, although this

is not a restriction that is required to use the algorithm. When the weights

are not written in this form, the probability that A0 will become one of its

destination processes Ai is

pi =
wi

∑m
j=1 wj

.

The evolution of each agent of this type is independent of the evolution
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of the others and the evolution of a large number of these is governed by

the multinomial distribution. This is a generalisation of the binomial dis-

tribution, which is the probability distribution of the number of “successes”

from n independent Bernoulli (yes/no) trials with the same probability of

“success”. From the theory of multinomial distributions we know that the

mean number of A0 agents that become one of the agents Ai is

A0tAinew = piA0t−1 ,

where pi is the probability that A0 will become Ai. In terms of the algorithm,

this means that for each Ai the term piA0t−1 replaces A0tAinew in the

cell (A0 t, Ai) of the state transition table. If any of the probabilities is

functional the functional form should be used in the table, with, for example,

bA0c = A0t−1 .

Example We can now return to Table 3.1 since the model in Fig. 2.1

features only probabilistic agents. The Y agents remain as Y so that

Y tYnew = Yt−1 .

The X agents however make a probabilistic choice, either becoming Y with

probability p or becoming Y with probability (1 − p), which gives us

XtYnew = pXt−1 ,

XtXnew = (1 − p)Xt−1 .
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Substituting for Y tYnew,XtXnew and XtYnew in (3.2) gives the following

system of MFE for this model:

Xt = (1 − p)Xt−1 ,

Yt = pXt−1 + Yt−1 .

Parallel agents

Parallel agents take the form

A0
def
= A1{n1} × A2{n2} × ...Am{nm} .

This means that the agent A0 consists of n1 agents of type A1, n2 agents of

type A2 ... nm agents of type Am, which all behave independently of one

another. With such an agent the term niA0t is added to the cell (A0 ∗, Ai),

since the agent A0 is instantly replaced by each of the agents A1, A2...An.

For example the term added to the cell (A0 ∗, A1) will be n1A0t . For any

of the numbers of agents (n1, n2, ..., nm) that are functional the functional

form should be used in the table, with, for example, bA0c = A0t .

Communicating agents

For communicating agents, the mean number of agents that successfully

communicate, and evolve to a different state by communicating than if they

had not communicated, depends on the mix of agents available to perform

the input and output actions. We consider a general system with agents

S, T i and Wi. S is the agent for which the communicating proportion is

calculated, i.e. the Ax in the table row, or the state we are moving from.

T i are the agents that interact with S, e.g. the infecteds, or the agents
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who have the output action. Wi are the other agents that interact with T i.

These may be regarded as being in competition with the S since they may

absorb instances of the action. For example, in the SIR system of Fig. 3.1,

this is equivalent to communication between an infected and a recovered.

An opportunity to infect a susceptible has been missed.

To calculate mean behaviour of the system we must consider all possible

ways in which the system can evolve. The Operational Rules of WSCCS

(Table A.1) include the rule

E
w7−→ E′ F

v7−→ F ′

E × F
wv7−→ E′ × F ′

, (3.3)

which says that if agent E becomes E′ with weight w and agent F becomes

F ′ with weight v, then the parallel agent E×F becomes E′×F ′ with weight

wv. By extension the weight with which a population of agents makes

any transition is the product of the weights of the individual transitions

that occur. This means that, since all weights in agents that can perform

communication are 1, the weight with which any combination of actions can

occur will be 1. This is unaffected by priority, which merely constrains the

actions that are possible.

Different weights of population level changes come about because of

the condition (described in Section A.2) that processes are multi-related

by weight. This means that if a process (in this case the system process)

can evolve to the same state in more than one way, the cumulative weight

with which it makes the transition is the sum of all the weights with which

the transition can occur. Since all of the weights in our communicating

stages are 1 we must calculate the number of possible unordered choices
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of which agents communicate to make a given transition. Formally, the

binomial coefficient,
(

n

m

)

=
n!

m!(n − m)!
,

represents the number of unordered ways to choose m objects from a group

of n distinct objects. In cases where m lies outside of the range n ≥ m ≥ 0

the binomial coefficient is defined as

(

n

m

)

= 0 .

The generalised form of the binomial coefficient is the multinomial coefficient

(

n

k1, k2, ..., km

)

=
n!

k1!k2!...km!
,

which is the number of unordered ways of dividing n distinct objects into

m groups with ki the number of objects in the ith group. If ki < 0 for any

of the ki or if
∑

i ki > n the multinomial coefficient is defined as

(

n

k1, k2, ..., km

)

= 0 ,

and the particular form of the multinomial coefficient depends on the type

of communication being considered.

Given these definitions, there are four general cases covering all the types

of model for which we can currently derive terms for the number that com-

municate, arising from: prioritised or non-prioritised communication, and

single or multiple instances of the output action.

Prioritised, Single This is the form of communication used in Fig. 3.1.

We will look in detail at the number of the S1 agents that communicate for
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a small population size and then generalise this to find an expression for the

number of S1 agents that communicate. This is then further generalised to

give a general term for models featuring communication of this form.

The communicating agents in Fig. 3.1 are:

S1
def
= ω.infect : SI2 + 1.

√
: S2 ,

I1
def
= T1 × Trans ,

T1
def
= ω.infect : I2 + 1.

√
: I2 ,

T rans
def
= ω.infect : 0 + 1.

√
: 0 ,

R1
def
= ω.infect : R2 + 1.

√
: R2 .

Relating this to our generalised system, S1 are the S agents for which we

are interested in calculating the number that communicate; Trans are the

only T i, the agents that can communicate with S1; and T1 and R1 are the

Wi agents, which can also communicate with Trans.

Numerical example If we consider the specific situation where the

system is made up of two S1 agents, two I1 agents (giving two T1 and two

Trans to take part in the communication) and one R1 agent we can have

either none, one or two of the S1 agents communicating to become SI2.

The weight with which population level transitions occur will come from

the product of binomial coefficients

(

2

s

)(

2

t

)(

1

r

)(

2

x

)

,

where s, t, r and x are respectively the numbers of S1, T1, R1 and Trans

agents that must communicate for the transition to occur. The case where

none of the S1 communicate can come about in two different ways: both of
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the Trans communicate with a T1, meaning the R1 cannot communicate,

which happens with weight

(

2

0

)(

2

2

)(

1

0

)(

2

2

)

= 1 ;

or one of the Trans communicates with the R1 and the other Trans com-

municates with one of the T1, which happens with weight

(

2

0

)(

2

1

)(

1

1

)(

2

2

)

= 2 .

Similarly one S1 can communicate in two ways: one of the Trans agents

communicates with one of the S1 agents and the other communicates with

one of the T1 meaning that the R1 agent cannot communicate, which hap-

pens with weight
(

2

1

)(

2

1

)(

1

0

)(

2

2

)

= 4 ;

or the second Trans agent communicates with the R1 with neither of the

T1 communicating, which gives the weight

(

2

1

)(

2

0

)(

1

1

)(

2

2

)

= 2 .

Finally both of the S1 agents communicate, which means that none of the

T1 or R1 agents can communicate and this happens with the weight

(

2

2

)(

2

0

)(

1

0

)(

2

2

)

= 1 .
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The mean number of S1 agents that communicate is the weighted average

of the numbers communicating in these different options,

0 × (1 + 2) + 1 × (4 + 2) + 2 × 1

(1 + 2) + (4 + 2) + 1
=

4

5
.

Example of symbolic size In general the average number of success-

ful communications, e.g. new infections, will be

∑n
i=0 i × fi
∑n

i=0 fi
, (3.4)

where n is the maximum possible number of new infections and fi is the

combined weight with which i new infections will occur. We now generalise

to consider a population that consists of a S1 agents, b I1 agents (giving b

T1 and b Trans) and n − a − b R1 agents where n is the total number of

individuals in the population. For this model there will always be sufficiently

many agents for all of the Trans agents to communicate with, because for

each Trans there is a T1 and therefore we can discount the influence of the

number of Trans that communicate, since it will always lead to a factor of

(

b

b

)

= 1 .

This is the source of the term
(

2

2

)

when calculating the weight for each way in which the population can evolve

for the numerical example above. The mean number of S1 agents that

communicate is now given by

S1infectSI2new =

∑b
r=0(b − r)

(

a
b−r

)
∑r

k=0

(

b
r−k

)(

n−a−b
k

)

∑b
r=0

(

a
b−r

)
∑r

k=0

(

b
r−k

)(

n−a−b
k

)
, (3.5)
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which is the generalised form of equation (3.4) for this model. Here r is the

number of the Trans agents that communicate with the Wi agents (T1 or

R1) and k is the number of those that communicate with R1. We can see

that (b − r) is the number of Trans that communicate with S1 and

(

a

b − r

)

is the number of ways of choosing which of the a S1 agents communicate

for a particular population change to occur. Similarly

(

b

r − k

)

is the number of ways of choosing which of the T1 communicate and

(

n − a − b

k

)

is the number of ways of choosing which of the R1 communicate.

Equation (3.5) is algebraically intractable in this form but can be sim-

plified by several applications of Vandermonde’s convolution [35],

∑

k

(

j

m + k

)(

s

i − k

)

=

(

j + s

m + i

)

.

The term
r
∑

k=0

(

b

r − k

)(

n − a − b

k

)

,

which appears in the numerator and denominator of S1infectSI2new , can

be rewritten as
∑

k

(

b

r − k

)(

n − a − b

k

)

,
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since outside of the range r ≥ k ≥ 0 either of the binomial coefficients will

be 0. By applying Vandermonde’s convolution the term becomes

(

n − a

r

)

.

This leads to the denominator becoming

b
∑

r=0

(

a

b − r

)(

n − a

r

)

=
∑

r

(

a

b − r

)(

n − a

r

)

=

(

n

b

)

.

Similarly the numerator of (3.5) becomes

b
∑

r=0

(b − r)

(

a

b − r

)(

n − a

r

)

=
∑

r

(b − r)
a!

(b − r)!(a − (b − r))!

(

n − a

r

)

= a
∑

r

(a − 1)!

(b − r − 1)!(a − (b − r))!

(

n − a

r

)

= a
∑

r

(

a − 1

b − r − 1

)(

n − a

r

)

= a

(

n − 1

b − 1

)

.

It can now be seen that the average number of S1 agents that make contact

with a Trans agent is

S1infectSI2new =
a
(

n−1
b−1

)

(

n
b

)

=
a (n−1)!

(b−1)!(n−b)!

n!
b!(n−b)!

= a
(n − 1)!

(b − 1)!
× b!

n!

=
ab

n

=
S1t−1I1t−1

S1t−1 + I1t−1 + R1t−1
.
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This term applies in the case where we have four types of agents able to

communicate on the action: one whose future behaviour depends on whether

it performs the input action or not (S2), one that can perform the output

action (Trans), and two that can perform the input action thereby absorbing

an instance of the output action (I2 and R2). We generate a term for each

type of agent that has their future behaviour altered by communication: but

what happens if we vary the number of absorbing agents or the number of

agents performing the output action?

General term We further generalise this process to consider any model

that utilises prioritised communication with agents performing the output

action able to perform only one. The term that arises is

SajAinew =
∑

r (
∑

i Ti − r)
(

SP
i Ti−r

)
∑

k1

(

W1

k1

)
∑

k2

(

W2

k2

)

...
∑

km−1

(

Wm−1

km−1

)( Wm

r−
Pm−1

j=1 kj

)

∑

r

(

SP
i Ti−r

)
∑

k1

(

W1

k1

)
∑

k2

(

W2

k2

)

...
∑

km−1

(

Wm−1

km−1

)( Wm

r−
Pm−1

j=1 kj

)
,

where (Ti − r) is the number of the Ti agents that interact with S agents,

and hence the number of S that communicate, r is the number of Ti that

communicate with the Wj agents and m is the number of types of Wj agents.

This term can also be simplified using Vandermonde’s convolution to give

us

SajAinew =
S
∑

i T i

S +
∑

j Wj
.

This term is valid when S +
∑

j Wj ≥∑i T i. This is always true in Fig. 3.1

since the only T i are the Trans agents, which are matched in the parallel

I1 agent by a T1 agent and T1 is one of the Wj in this model. In a

model where this condition is not guaranteed the situation can arise where

∑

i T i > S+
∑

j Wj, which implies that all of the S and Wj will be contacted
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so the number of S agents that are contacted is St−1. This means that the

fully general form of the term is

SajAinew = min

(

S,
S
∑

i T i

S +
∑

j Wj

)

. (3.6)

Non-prioritised, Single For the case where non-prioritised communica-

tion is employed and agents can perform only one instance of the action

aj the general term arises in much the same way. The main difference is

that the agents performing the output action can choose not to communi-

cate even when there are sufficient agents available to perform the input

action to allow them all to do so. This means that when we are considering

binomial coefficients that contribute the weight of a particular population

change we must consider a binomial coefficient for each of the Ti agents in

the model. The general term that comes about is then

SajAinew =
∑

c

(

P
i Ti

c

)
∑

r (c − r)
(

S
c−r

)
∑

k1

(

W1

k1

)
∑

k2

(

W2

k2

)

...
∑

km−1

(

Wm−1

km−1

)( Wm

r−
Pm−1

j=1 kj

)

∑

c

(

P
i Ti

c

)
∑

r

(

S
c−r

)
∑

k1

(

W1

k1

)
∑

k2

(

W2

k2

)

...
∑

km−1

(

Wm−1

km−1

)( Wm

r−
Pm−1

j=1 kj

)
,

where c is the number of the Ti agents that communicate for a particular

transition to occur and all other terms have the same meaning as in the

prioritised case. Once again this term can be simplified by Vandermonde’s

convolution to give the tractable form

SajAinew =
S
∑

i T i

S +
∑

i T i +
∑

j Wj
. (3.7)

Similarities By considering (3.6) and (3.7) we can understand why

Norman and Shankland [73] found the same MFE for models with priori-

tised and non-prioritised communication. The only difference between these

69



models, other than the choice to use priority or not, comes in the form of

the agents that perform the output action. In their prioritised model the

agents that perform the output action come from a parallel agent featuring

an agent that can perform the input action. In the non-prioritised model,

the agent that performs the output action cannot explicitly perform the in-

put action. If in a general case we consider these agents separately to other

Wj agents performing the input action (say as Xi) we can rewrite (3.6) as

SajAinew = min

(

S,
S
∑

i T i

S +
∑

i Xi +
∑

j Wj

)

. (3.8)

Since the numbers of each Xi are the same as the numbers of the relevant

Ti

S
∑

i T i

S +
∑

i Xi +
∑

j Wj
≤ S ,

and we can rewrite (3.8) as

SajAinew =
S
∑

i T i

S +
∑

i Ti +
∑

j Wj
,

which is the same as 3.7, the general equation for non-prioritised commu-

nication. In subsequent chapters we will investigate whether these two ap-

proaches (prioritised communication with explicit input action versus non-

prioritised communication) always lead to the same MFE.

Parallel actions

The existing WSCCS models for which MFE have been derived [73, 82] all

feature agents that perform only single instances of the communicating ac-

tions. However, WSCCS does allow for agents to perform multiple instances

of an action and we want to be able to derive equations for such models.
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We place restrictions on how agents must be written for these forms of com-

munication, so that we can reason about the model and derive MFE. As

with communication where all agents can perform only a single instance of

the action, we require that all actions happen with weight 1. In addition,

we allow only the agents performing the output action to perform multiple

instances. Agents should perform only a single instance of the input action.

Also if an agent can perform n instances it should also be able to perform

n − 1 , n − 2 , ... 1 instances and also perform a free action so that it can

perform 0 instances. Finally agents performing multiple instances of an out-

put action must evolve to the same state irrespective of how many instances

of the action are performed.

Prioritised, Multiple If individuals can perform multiple instances of

the action then the general terms become more complex. Agents that can

perform multiple instances of an output action with prioritised communica-

tion should take the general form

A
def
= ωn.action

n
: B + ωn−1.action

n−1
: B + ... + ω.action : B + 1.

√
: B ,

so that A must perform n instances of action where possible, only perform-

ing fewer instances where there are insufficient agents to perform the input

action. Similarly to the single instance prioritised communication case, ei-

ther all of the agents performing the output action perform the maximum

number of contacts where there are sufficient numbers of agents that can

perform the input action with which they can communicate. Otherwise, all

of the agents that can perform the input action do so. This makes only a

small change to the transmission term for that case, introducing a factor ci
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where ci is the maximum number of instances of aj that T i can perform,

leading to

SajAinew =
∑

r (
∑

i ciTi − r)
(

SP
i ciTi−r

)
∑

k1

(

W1

k1

)
∑

k2

(

W2

k2

)

...
∑

km−1

(

Wm−1

km−1

)( Wm

r−
Pm−1

j=1 kj

)

∑

r

(

SP
i ciTi−r

)
∑

k1

(

W1
k1

)
∑

k2

(

W2
k2

)

...
∑

km−1

(

Wm−1

km−1

)( Wm

r−
Pm−1

j=1 kj

)
,

which can once again be simplified to give us

SajAinew =
S
∑

i ciT i

S +
∑

j Wj
.

When there are fewer agents available to perform the input action than

agents able to perform the output action, priority means that all of the

agents that can perform the input action do so. This means that all of the

S agents communicate and taking this into account the general term is

SajAinew = min
{

S,
S
∑

i ciT i

S +
∑

j Wj

}

. (3.9)

Non-prioritised, Multiple When non-prioritised communication is em-

ployed, the general term is even more complicated. We make use of the

Multinomial coefficient

T i!
∏ci

v=1 ni,v!(T i −∑ci

k=1 ni,k)!
,

for each of the Ti agents that perform the output action, where n(i,k) is the

number of T i agents performing k instances of aj at a particular time. The

binomial coefficients

(

S + (
∑w

l=1 Wl)− 1

(
∑p

m=1

∑tm
q=1 q × nm,q) − 1

)

and

(

S + (
∑w

l=1 Wl)
∑p

m=1

∑tm
q=1 q × nm,q

)
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come from the simplification of the product of the individual binomial coef-

ficients for the numbers of S and Wj that communicate. The overall general

term for this case is

SajAinew = S
f
((

∏p
i=1

T i!Qci
v=1 ni,v!(T i−

Pci
k=1 ni,k)!

)

( S+(
Pw

l=1 Wl)−1

(
Pp

m=1

Ptm
q=1 q×nm,q)−1

)

)

f
((

∏p
i=1

T i!Qci
v=1 ni,v!(T i−

Pci
k=1 ni,k)!

)

( S+
Pw

l=1 WlPp
m=1

Ptm
q=1 q×nm,q

)

) ,

(3.10)

where

f(X) =

Tp
∑

np,cp=0

Tp−np,cp
∑

np,cp−1=0

...

Tp−
Pcp

i=1 np,i
∑

np,1=0

T (p−1)
∑

np−1,cp−1=0

...

T1−
Pc1

j=1 n1,j
∑

n1,1=0

X ,

p is the number of types of agent that can perform aj and ci is the maximum

number of instances of aj that T i can perform. Due to the agents performing

the input action being able to make more than two choices we are left with

multinomial coefficients rather than only binomial coefficients. These cannot

be simplified in the same way and we are left with (3.10) as the general

term for this form of communication. If we do wish to use this form of

communication, the specific term will be simpler since the number of types

of agent is generally small.

The four cases given in (3.6), (3.7), (3.9) and (3.10) provide the general

cases to describe what proportion of the agents that can communicate do

so.
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3.3.3 Algorithm

Preliminaries

Processes can be serial or parallel. Given a serial process

A w1.a1 : A1 + w2.a2 : A2 + ... + wn.an : An

we make the following definitions

derivatives(A) = {w1.a1 : A1, w2.a2 : A2, ..., wn.an : An}

also denoted {D1,D2, ...,Dn}

sumw(0, n,A) = w1 + w2 + ... + wn

process(D) = process(w.a : A) = A

process(D1,D2, ...,Dn) = {A1, A2, ..., An}

action(D) = action(w.a : A) = a

weight(D) = weight(w.a : A) = w

Given a parallel processes

A A1{n1} × A2{n2} × ... × Am{nm}

we define

components(A) = {A1.n1, A2.n2, ..., Am.nm}

Finally, an action a is a communicating action if there is a restriction

set L and a /∈ L. A process is a communicating agent if it is one that can

perform a communicating action.
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Pseudo code

The pseudo code of the algorithm is presented in Fig. 3.4. The input that

must be given to the algorithm is: the agents of interest (those for which

the final MFE must be derived); the number of ticks in the WSCCS model

that represent a timestep in the MFE; and the WSCCS description of the

model.

3.3.4 Example (Fig. 3.1)

Applying the algorithm to Fig. 3.1 we must note that the agents for which

we wish to derive equations are S1, I1 and R1 and that one timestep in

the equations should represent two ticks. This means that the transition

table will lead to two sets of equations (one for each tick), which can be

algebraically manipulated to obtain the two stage MFE for the system. As

for most of our models the state transition table will be sparse since, for

example, the agents S1, I1, R1 never evolve to S1, I1, R1. For this reason

we present the non-empty sections of the full table in Tables 3.2 and 3.3.

We first consider the evolution of the S1, T1, T rans and R1 agents, which

evolve to S2, SI2, I2 and R2, represented in Table 3.2. The Trans ∗ row

is empty since the Trans agents do not evolve to any of the other agents

in the model, instead becoming the null agent 0. Table 3.3 represents the

evolution of the agents S2, SI2, I2, R2 and I1, which evolve to S1, I1, R1, T1

and Trans.

Following the construction of the state transition table, the next stage

in the algorithm is the construction of the AiajAjnew terms for the com-

municating agents, which evolve differently depending on whether they per-

form the action or not. For this model we only require one such term,

S1infectSI2new, which represents the number of S1 agents that interact
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Pseudo Code

1. /*Construct transition table*/
For each process Ai {

if serial(Ai) then {
if process(derivatives(Ai))={Aj} then

/*single derivative */
add entry( (Ai,*),Aj)=Ait−1

else
/*more than one derivative*/
For each derivative D = (wj .aj : Aj) {

if Ai is communicating process then
if action(D)∈ communicating then

add entry((Ai, aj),Aj)= AiajAjnew

else
add entry((Ai, aj), Aj) = Ait−1 − AiajAjnew

else{ /*simple probabilistic choice*/
pj = wj/sumw(0, nAi)
add entry((Ai, aj),Aj)=pj ∗ Ait−1 } } }

else /*process is parallel*/ {
For each component Aj{nj}

add entry((Ai,*),Aj)= njAit } }

2. /*Construct the change from communication*/
For each communicating action aj {

For each communicating agent{
construct AiajAjnew } }

3. /*Construct equations*/
For each Ak

For each action aj

For each Ai
MFE Ak := MFE Ak + lookup((Ai,aj),Ak)

/*Simplify equations*/
For each AgentOfInterest Ai

For each tick
replace Aj in MFE Ai by MFE Aj

Figure 3.4: Algorithm
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S2 SI2 I2 R2

S1 infect S1infectSI2new

S1
√

S1t−1 − S1infectSI2new

T1 * T1t−1

Trans *
R1 * R1t−1

Table 3.2: State transition table for S1, T1, T rans and R1 agents in Fig. 3.1

S1 I1 R1 T1 Trans

S2
√

S2t−1

SI2
√

(1 − pi)SI2t−1 piSI2t−1

I2
√

(1 − pr)I2t−1 prI2t−1

R2
√

R2t−1

I1 * I1t I1t

Table 3.3: State transition table for S2, SI2, I2, R2 and I1 agents in Fig.
3.1

and become SI2. We saw in Section 3.3.2 that this term is

S1infectSI2new =
S1t−1Transt−1

S1t−1 + T1t−1 + R1t−1
.

By summing the columns of Table 3.2 we find the following equations

for the evolution of S1, T1, T rans and R1:

S2t = S1t−1 − S1infectSI2new ,

SI2t = S1infectSI2new ,

I2t = T1t−1 ,

R2t = R1t−1 . (3.11)

Similarly from 3.3 we find equations for the evolution of S2, SI2, I2, R2 and
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I1:

S1t = S2t−1 + (1 − pi)SI2t−1 ,

I1t = piSI2t−1 + (1 − pr)I2t−1 ,

R1t = prI2t−1 + R2t−1 ,

T1t = I1t ,

T ranst = I1t . (3.12)

From these one stage equations we can substitute for T1 and Trans to give

S1infectSI2new =
S1t−1I1t−1

S1t−1 + I1t−1 + R1t−1
,

and

I2t = I1t−1 .

The final step in the algorithm is to create a system of MFE that de-

scribes the agents of interest over a full iteration of the model. This is done

by writing the equations for the agents of interest at time= t+n, where n is

the number of stages in the model, and substituting in the right hand side

of the equations with expressions in terms of the agents of interest. For our

example this involves writing equations for S1, I1 and R1 at time= t + 2:

S1t+2 = S2t+1 + (1 − pi)SI2t+1 ,

I1t+2 = piSI2t+1 + (1 − pr)I2t+1 ,

R1t+2 = prI2t+1 + R2t+1 .
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By now substituting for S2, SI2, I2 and R2 we get

S1t+2 = S1t − pi
S1tI1t

S1t + I1t + R1t

,

I1t+2 = pi
S1tI1t

S1t + I1t + R1t

+ (1 − pr)I1t ,

R1t+2 = prI1t + R1t .

To simplify these equations further we note that they represent an iteration

of the model, which, in terms of the MFE, we can think of as a single

timestep. Further we can drop the indices from the state names because we

are no longer interested in the fact that the S2, SI2, I2 and R2 agents ever

existed, giving us

St+1 = St −
piItSt

Nt
,

It+1 = (1 − pr)It +
piItSt

Nt
,

Rt+1 = Rt + prIt , (3.13)

where Nt = St + It + Rt is the total population size. These are the same

MFE derived by Norman and Shankland [73] for their models, with pa (the

probability that an infected individual is able to pass on the disease) replaced

by pi (the probability of becoming infected having made contact with an

infected individual). Recall that in the model of Norman and Shankland,

the choice to infect came first, then the contact stage (and infection was

guaranteed following contact). This leads us to ask: what is the effect on

the MFE of changing the order of stages in our models? We address this

question in Section 3.3.5.
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3.3.5 Order matters?

We may näıvely assume that merely changing the order of stages in a model

will lead to the same overall mean behaviour, and therefore the same MFE,

since all of the same actions happen in each iteration of the model. The

model in Fig. 3.5 is the prioritised model of Norman and Shankland [73],

with the corresponding flow diagram in Fig. 3.7. We consider the effect of

changing order in Fig. 3.5 by deriving MFE for the two stage behaviour of

S2, T2, T rans and R2. The MFE that are then derived from this model,

St+1 = St −
StTranst

St + It + Rt
,

It+1 = (1 − pr)It +
(1 − pr)StTranst

St + It + Rt
,

T ranst+1 = paIt +
paStTranst

St + It + Rt
,

Rt+1 = Rt + prIt +
prStTranst

St + It + Rt

, (3.14)

are quite different to the equations that Norman and Shankland found for

their model, (3.13), most notably because we now require four equations to

describe the system. This difference arises because by changing the order

in which the steps occur, we have also changed the underlying biological as-

sumptions of the model. The probabilistic choice for the infected individuals

to be able to pass on the infection happens in the second stage of the model,

which means the number of Trans agents that can spread the disease in the

current iteration of the model is set in the previous iteration. This leads to

a separate equation being required to describe the number of Trans agents

in the population. In addition the newly infected individuals, represented

by

StTranst

St + It + Rt

,
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S1
def
= 1.

√
: S2

I1
def
= pr.

√
: R2 + pa.

√
: T2 + (1 − pr − pa).

√
: I2

R1
def
= 1.

√
: R2

S2
def
= ω.infect : I1 + 1.

√
: S1

T2
def
= I2|Trans

I2
def
= ω.infect : I1 + 1.

√
: I1

Trans
def
= ω.infect : T + 1.

√
: T

R2
def
= ω.infect : R1 + 1.

√
: R1

Population
def
= S2{s} × I2{i} × R2{r}d{√}

Figure 3.5: Model of infectious disease spread: Fig. 5 from Norman and
Shankland [73]

S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= T1 × Trans

T1
def
= ω.infect : I2 + 1.

√
: I2

Trans
def
= ω.infect : 0 + 1.

√
: 0

R1
def
= ω.infect : R2 + 1.

√
: R2

S2
def
= 1.

√
: S1

SI2
def
= pi.

√
: I1 + (1 − pi).

√
: S1

I2
def
= pr.

√
: R1 + (1 − pr).

√
: I1

R2
def
= 1.

√
: R1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 3.6: Repetition of disease model from Fig. 3.1, included here to allow
comparison with Fig. 3.5
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Figure 3.7: Flow diagram for Fig. 3.5

Figure 3.8: Flow diagram for Fig. 3.6
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can recover immediately, leading to an extra factor of (1− pr) in the trans-

mission term as well as an extra term,

prStTranst

St + It + Rt
,

in the equation for Rt+1. The model in Fig. 3.1 (repeated here in Fig. 3.6,

along with the flow diagram in Fig. 3.8, to allow comparison with Fig. 3.5)

demonstrates that it is possible, at least in this case, to switch the order of

communication and choice while maintaining the same overall mean behav-

iour. However the equations that arise from the model in Fig. 3.5 illustrate

the importance of thinking carefully about the biological implications of any

changes made to the model.

3.4 Correctness

In this section we consider the correctness of this approach, first by investi-

gating how well the MFE fit to mean behaviour of the example model from

Fig. 3.1 and then by relating our approach to the conditions of the limit

theorems presented by Kurtz [58].

3.4.1 Accuracy of MFE

We have seen that the MFE are derived by considering the mean of all the

possible ways in which the system can evolve. We now consider how well

the MFE approximate the average behaviour of the system. This is done by

comparing the time series of the MFE (choosing parameter values and an

initial population) with the average of a large number of simulations. The

simulations were performed using the computational software package Math-

ematica [49]. For each stage of the model the simulation iterates through
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Figure 3.9: Infecteds (I) of Fig. 3.1 for pi = 0.08, pr = 0.02 and initial
population S1{990} × I1{10} × R1{0}: — MFE, Simulations — mean, ...
mean±SD, --- |mean−MFE|

each individual present and uses random numbers, along with the proba-

bilities, to determine how each agent will evolve. For the communication

stage we think of the agents performing the output action (Trans) as being

‘active’ and the agents that perform the input action (S1, T1, R1) as being

‘passive’. This means that the numbers of S1, T1 and R1 that communicate

is determined by the probabilistic choices of the Trans agents. In Fig. 3.9

the infected MFE is plotted along with the mean of 1000 simulations and the

mean ± one standard deviation. This graph was produced with pi = 0.08 ,

pr = 0.02 and an initial population of S1{990} × I1{10} × R1{0} . We can

see that the MFE is close to the mean of the simulations for the duration of

the epidemic and lies within the standard deviation. Fig. 3.9 also features

the absolute value of the difference between the MFE and the mean of the

simulations. This shows that the difference is small relative to the mean,

reaching a peak slightly before the peak of infection.
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To investigate the effect of varying the initial numbers of infecteds we

consider systems with the same total population size and parameter values

but with different initial numbers of infected individuals. In Fig. 3.10 we

consider an initial population featuring only one infected individual. In

this case we can see that the average of the simulations fits less well to

the MFE. This occurs because, with only one infected individual initially,

the probability of the disease dying out before it becomes established is

much greater than for the previous example. This means that many of

the simulations will be disease free by the time of the peak and therefore

the distribution of the number of infecteds in the individual simulations is

skewed. For this reason we use the median and quartiles to denote the

average and spread, rather that the mean and standard deviation. In this

case the MFE fit the average of the simulations less well because of the

significant proportion of simulations that are disease free.

In Fig. 3.11 we consider an initial population featuring 20 infected in-

dividuals. Here we can see that the MFE and the mean of the simulations

are indistinguishable for the majority of the epidemic and the MFE offer an

excellent approximation to the mean behaviour of the system. Although the

graphs in Figs. 3.9, 3.10 and 3.11 are produced for a single set of parameter

values, by investigating a wide range of parameters we find similar results,

which show that only for very small initial numbers of infected individuals

do the MFE not offer a good approximation to the mean behaviour of the

system.

We have demonstrated the accuracy of the MFE by choosing parameter

values and computing the time series of the MFE and simulations: however,

one of the advantages of MFE is that we can perform some analysis without

having to set values for the parameters. For example, we can calculate
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Figure 3.10: Infecteds (I) of Fig. 3.1 for pi = 0.08, pr = 0.02 and initial
population S1{999} × I1{1} × R1{0}: — MFE, Simulations — median, ...
upper and lower quartiles, --- |median−MFE|
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Figure 3.11: Infecteds (I) of Fig. 3.1 for pi = 0.08, pr = 0.02 and initial
population S1{980} × I1{20} × R1{0}: — MFE Simulations — mean, ...
mean±SD, --- |mean−MFE|
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expressions for the steady states of the system, in terms of the parameters

of the model. As an example we consider (3.13), the MFE for Fig. 3.1.

We find the steady states by setting St+1 = St = S∗, It+1 = It = I∗ and

Rt+1 = Rt = R∗ and solving for S∗, I∗ and R∗ . Doing this we find that

the steady state of (Fig. 3.13) is (S∗, 0, R∗), which is a steady state for any

values of S∗ and R∗ , including the special cases where S∗ = 0 and R∗ = 0 .

It is further possible to analyse the stability of the steady states for

small perturbations. For (3.13) we can rationalise about this without having

to perform the full analysis. For small perturbations in S∗ or R∗ a new

steady state will be reached, since any state where I = 0 is a steady state.

Perturbations in I will cause the system to evolve to a new steady state with

different values of S∗ and R∗ . The steady state (S∗, 0, R∗) can therefore be

thought of as stable since for any perturbation the system will evolve back

to (S∗, 0, R∗) although with the values of S∗ and R∗ changed. Alternatively

any particular steady state (with specific values for S∗ and R∗) is unstable

since small perturbations will cause the system to evolve to a new state.

For (3.13) the only steady state is the disease free state (S∗, 0, R∗) .

Steady states with I∗ 6= 0 can exist in two different situations: either by

recovered individuals losing immunity or by the population being of variable

size, either due to birth and death or migration. The former situation could

be added to the model in Fig. 3.1 by making the R2 agent

R2
def
= ps.

√
: S1 + (1 − ps).

√
: R1

where ps is the probability that a recovered loses immunity. The latter

situation is covered in Chapter 4, which introduces density dependent growth

to disease models. We have not explicitly included migration in any of our
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Figure 3.12: Relationship between MFE and Markov chain semantics

models; however, traditional mathematical models often feature single terms

to describe the increase (due to births and migration into the population)

and decrease (due to deaths and migration out of the population) in numbers

of individuals that are like the terms we find by considering birth and death.

In subsequent chapters we produce models that lead to MFE with non-trivial

steady states, with the numbers of individuals in each group a function of the

parameters of the model. Analysing the stability of such steady states would

allow us to comment, for instance, on whether a disease can be expected to

persist or die out over time. In this thesis we do not find and analyse these

steady states, such analysis will be performed in future work.

3.4.2 Proof of correctness

Our algorithm offers an alternative semantics for WSCCS, which allows

us to derive MFE directly from the WSCCS syntax (see Fig. 3.12). The

standard WSCCS semantics give us the Markov chain for the system. In

this section we are interested in rigorously relating the Markov chain and

MFE semantics to show that at the limit, where the system consists of

infinitely many agents, the mean of the Markov chain is equivalent to the

MFE, the dashed line in Fig. 3.12.
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Figure 3.13: Convergence of MFE and mean of Markov chain as number of
agents, n −→ ∞

Kurtz [58] presented limit theorems that relate the mean of a Markov

chain to ordinary differential equations. For discrete time Markov chains,

such as those that arise from WSCCS semantics, an intermediate stage de-

rives equations for the change in the state of the system in a single step

of time. By relating the conditions for the derivation of such terms to the

process undertaken in our algorithm we demonstrate that in the limit, where

a system consists of infinitely many agents, our mean field equations will be

infinitesimally close to the mean of the Markov chain (Fig. 3.13).

The conditions that Kurtz set out for the limit theorem are:

• Xn(k) is a sequence of discrete time Markov processes, with measur-

able state spaces, En , which is a subset of Bk, the Borel sets [57] in

R
k

• processes are rescaled from {0, 1, ..., n} to [0, 1] by dividing through by

n and letting n → ∞ [22] – for our purposes n is the initial number of

agents in the system

• the one step transition function is denoted by

µn(x,Γ) = P{Xn(k + 1) ∈ Γ|Xn(k) = x}
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i.e. µn(x,Γ) is the probability of moving from x to a point in the set

Γ in one timestep

• suppose there exist sequences of positive numbers αn and εn such that

lim
n→∞

αn = ∞ and lim
n→∞

εn = 0 ,

sup
n

sup
x∈En

αn

∫

En

|z − x|µn(x, dz) < ∞ (3.15)

and

lim
n→∞

sup
x∈En

αn

∫

|z−x|>εn

|z − x|µn(x, dz) = 0 . (3.16)

We now relate these conditions to our WSCCS models.

• The condition on the state space is true since all subsets of R
k are

Borel sets and the states of WSCCS models are in N
k ⊂ R

k where k

is the number of types of agents in the model.

• The transition function µn(x,Γ), which denotes the probability of mov-

ing from state x to some state in Γ, is the same as the transition

function of WSCCS.

• We think of z and x as being position vectors with a component rep-

resenting each type of agent in the system.

• The term |z−x| , which appears in both (3.15) and (3.16), is the mag-

nitude of the difference between the start state, x, and the destination

state, z. This means that |z − x| is the norm of the vector travelled in

one timestep.

• As n → ∞ the number of states that can be reached in one step

becomes very large. Since we scale the process by dividing by n the
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states z for which µ(x, z) is greatest will be close to x (such that

|z − x| is close to 0). For z where |z − x| is larger, the probability of

reaching z will be close to 0. This means that
∫

|z−x|>εn
|z−x|µn(x, dz)

is infinitesimal and at the limit (where n = ∞) αn = ∞ αn

∫

En
|z −

x|µn(x, dz) < ∞ is true and (3.15) is satisfied.

• Similarly for (3.16), as n → ∞ the proportion of [0, 1] that we are

considering increases - since εn → 0. At the limit the probability of

reaching any point other than x (such that |z − x| 6= 0) is 0 so that

(3.16) is satisfied.

Kurtz result then shows that for every δ > 0, t > 0

lim
n→∞

sup
x∈En

P

{

sup
k≤αnt

|Xn(k) − Xn(0) −
k
∑

l=0

1

αn

Fn(Xn(l))| > δ

where Xn(0) = x

}

= 0 , (3.17)

where Fn(x) = αn

∫

En
(z − x)µn(x, dz).

Since the equations that are derived by our algorithm are one stage

equations we note that applied to the behaviour of the process over only

one timestep (3.17) becomes

lim
n→∞

sup
x∈En

P

{

sup
k≤αnt

|Xn(1) − Xn(0) −
∫

En

(z − x)µn(x, dz)| > δ

where Xn(0) = x

}

= 0 . (3.18)

If we introduce a function G(x) =
∫

En
(z − x)µn(x, dz) , (3.18) means that

at the limit n → ∞ , the difference

Xn(1) − {Xn(0) + G(Xn(0))} ,
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is infinitesimal; therefore, we assume that

Xn(1) = Xn(0) + G(Xn(0)) .

Since we are dealing with Markov processes, which have no memory of pre-

vious states, we can generalise further to find

Xn(k + 1) = Xn(k) + G(Xn(k)) . (3.19)

The form of G(x) =
∫

En
(z−x)µn(x, dz) is equivalent to the way in which

we construct our MFE. We interpret the integral here as a summation. The

integral, across the entire state space, of the product of the change of state

and the probability of making that change, gives us the mean change of

state. By adding this to the previous state of the models, (3.19), we obtain

the MFE derived by our algorithm.

3.5 Summary

In this chapter we have presented an algorithm for deriving MFE from the

WSCCS description of a model. These equations are amenable to a wide

range of mathematical analyses that are used for traditional mathemati-

cal models of a system. A particular advantage of these MFE is that we

can easily consider very large systems as well as studying the system using

symbolic representation of the numbers of agents. For traditional process

algebra analyses - Monte Carlo simulation or studying the Markov chain -

studying very large models is computationally expensive.

Although previous studies derived MFE for WSCCS models [73, 82],

they did so by intuitive reasoning. We now have a rigorous approach to the
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derivation of MFE, which allows us to comment on the correctness of the

MFE. In addition our algorithm makes it possible to derive equations for

much bigger and more complex systems, provided they meet the conditions

necessary for using the algorithm, where the mean behaviour may not be so

obvious.

Throughout the following chapters we will make use of the algorithm,

and will present the MFE for the models being considered, without comment

on how this is done.
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Chapter 4

Density Dependent Growth

In this chapter we present WSCCS models of population dynamics and

compare the MFE that can be derived to the population level equations

traditionally used to describe population dynamics. To do this we must

capture births and deaths in our model and this is done by the same method

used by Sumpter [82]. Birth is modelled by having individuals become a

parallel agent, which includes one agent to represent the parent and one

agent to represent the offspring. Death is captured by allowing individuals

to become the null agent 0.

To capture realistic population growth, which has some upper limit de-

termined by the environment, we require density dependent behaviour, with

the likelihood of either giving birth or dying, dependent on the current size

of the population. In the models presented here we add density dependence

to both the birth and death rates in turn. Biologically there are many sys-

tems where the death rate will increase as the density increases. In this case

food and shelter become scarce and individuals become weaker and are more

likely to die. Alternatively this weakness may manifest itself as a reduced

fecundity and a reduction in the birth rates. Mathematically, population
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level models of disease spread put the density dependence into either the

birth term or the death term and in some models in both the birth and

death terms [33, 36, 42, 66]. If we are considering the dynamics of the entire

population then it does not matter where the density dependence comes;

however, when we add disease it does matter because we split the popula-

tion into sub-groups. In the literature density dependence often comes in

the birth terms in order to make the analysis easier.

Brännström and Sumpter [19] made use of a site-based framework to de-

velop derivations of several different single species population models. They

were able to derive several well known models (including the models pro-

posed by Beverton and Holt [16], Hassell [40] and Ricker [78]) but notably

not Verhulst’s logistic equation [91], which is the most commonly used equa-

tion to describe population dynamics [6, 33, 95]. In this chapter we develop

WSCCS models of population dynamics that introduce density dependence

in different ways and compare the resulting MFE to models from the liter-

ature.

Previous WSCCS models of disease spread [73, 82] ignored birth and

death of individuals. This is reasonable if we are considering a disease that

has a short lived epidemic in comparison to the time scale of population

growth or in a managed population like a farm. However, for many natural

populations we need to consider births and deaths. In WSCCS density

dependence can be introduced implicitly or by explicitly including agents

that represent resources for which the population competes. In Sections 4.1-

4.3 we present a number of models exploring different individual behaviour,

and ways of representing that behaviour, exploring the resultant changes in

overall population dynamics.

95



Rep
def
= N × N

N
def
= pd.

√
: 0 + pb.

√
: Rep + (1 − pd − pb).

√
: N

Population
def
= N{n}d{√}

Figure 4.1: Density dependence without food

4.1 Density dependence without resources

In the simplistic model given in Fig. 4.1 the N agents die with probability

pd, becoming the null agent 0, or give birth with probability pb, becoming

the agent Rep, which consists of two N agents in parallel. This model leads

to a single MFE,

Nt+1 = Nt(1 + pb − pd). (4.1)

With fixed probabilities pb and pd the average behaviour of this model would

be similar to that of the simple exponential growth model described by

Malthus [62], Nt+1 = λNt, with 0 ≤ λ ≤ 2 . With pb > pd the population

will become infinitely large; pb < pd will lead to the population dying out,

while pb = pd will lead to an equilibrium state for any initial population size,

N0 = n. This model does not capture the reality of population growth but

density dependent growth can be achieved by making use of the functional

probabilities described in Chapter 2.
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4.1.1 Density dependent birth

Density dependent birth can be added to the model in Fig. 4.1 by making

the probability of giving birth functional with pb inversely proportional to

bNc. This is achieved by adding

p b
prob
= min(max(0, p b0 − k ∗ bNc), pL) ,

where pb0 is the probability of birth in the absence of crowding and k is a

measure of the strength of the effect of crowding, 0 < k << 1.

In the MFE we can now substitute

pb = pb0 − kNt ,

and (4.1) then becomes

Nt+1 = Nt + (pb0 − kNt − pd)Nt

= Nt + (pb0 − pd)Nt

(

1 − kNt

pb0 − pd

)

= Nt + rNt

(

1 − Nt

K

)

, (4.2)

which is the discrete time version of Verhulst’s logistic equation [91] with

r = (pb0−pd) and carrying capacity K = (pb0 −pd)/k . The logistic equation

is the most commonly used equation for describing population dynamics and

is frequently included as a self limiting growth term in models of disease

spread. We can see in this case that r is limited by 0 ≤ r ≤ 1 .
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Towards chaos

The dynamics of the logistic equation have been well studied with a wide

range of dynamics available for different parameter values [65]. For values

of r > 1 oscillations begin to appear in the time series of the model with

increased period oscillations and eventually chaos developing as r increases.

In the equations derived from the WSCCS models such behaviour is never

possible because the form of r (pb0 − pd) involves subtracting a probability

from another probability, which means that r can never be greater than 1.

Chaos and cycles are widely observed in natural biological systems so it is

desirable to be able to obtain such behaviours from our model.

If we consider instead the model in Fig. 4.2 we will see that such be-

haviour is possible for this model. The only difference in this model is that

individuals can give birth to multiple offspring simultaneously, with b ≥ 1

being the symbolic representation of the number of offspring. This model

could be used to model a species that has an average litter size of b. This

model leads to the MFE

Nt+1 = Nt + (bpb0 − bkNt − pd)Nt

= Nt + rNt

(

1 − Nt

K

)

, (4.3)

which is once again the logistic equation, this time with r = bpb0 − pd and

K =
bpb0 − pd

bk
.

This means that oscillatory and chaotic behaviour is possible from this model

since for b ≥ 2 it is possible that r > 1 .
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pb
prob
= min(max(0, pb0 − k ∗ bNc), pL)

Rep
def
= N{b + 1}

N
def
= pd.

√
: 0 + pb.

√
: Rep + (1 − pd − pb).

√
: N

Population
def
= N{n}d{√}

Figure 4.2: Density dependence without food - birth rate = b

4.1.2 Density dependent death

Density dependent death can similarly be added to Fig. 4.2 by replacing

functional pb with functional pd directly proportional to N :

pd
prob
= min(max(0, pd0 + k ∗ bNc), pL) ,

where pd0 is the probability of death in the absence of crowding. This is

added to the MFE by substituting for

pd = pd0 + kNt ,

which gives us the MFE

Nt+1 = Nt + (bpb − (pd0 + kNt))Nt

= Nt + (bpb − pd0)Nt

(

1 − kNt

bpb − pd0

)

= Nt + rNt

(

1 − Nt

K

)

. (4.4)

This is once again the logistic equation, with r = (bpb − pd0) and

K =
bpb − pd0

k
.
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4.2 Food as an explicit resource

The models in Section 4.1 assumed that we understand how the size of

the population affects the growth of the population. The advantage of

individual-based modelling techniques is that we can avoid such popula-

tion level assumptions, with the population level behaviours arising from

the individual interactions. To achieve this in models of population dynam-

ics we use agents to represent a resource for which the individuals compete.

Access to the resource can be used to determine the likelihood of either birth

or death.

Sumpter [82] developed a mechanism for describing density dependent

growth in a population, which made use of food as an agent. Individuals

in the population compete for the available food resource, giving birth after

eating, and die probabilistically. Eating is a prioritised activity, so if an

individual can eat they must. This means that every member of the pop-

ulation will give birth at each step of time until the size of the population

is larger than the number of food agents, after which the number of births

will be equal to the number of food agents. By intuitive reasoning Sumpter

derived the following MFE for his model:

Nt+1 = (1 − pd)Nt + min[(1 − pd)Nt, f ] ,

where pd is the probability of death in any timestep and f is the number of

food agents. Sumpter found that this MFE has a stable steady state of

N∗ =
f

pd

,

when pd ≤ 0.5.
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In the models that follow we make use of this idea of food represented by

agents. It should be noted that any other finite resource that a population

requires and competes for (e.g. space) can be modelled in exactly the same

way.

4.2.1 Density dependent birth

Using prioritised communication between the food agents and the agents rep-

resenting members of the population forces all individuals to eat; however,

in a population it is likely that some individuals, while foraging, may fail to

find food that is present. By using non-prioritised communication between

food agents and the members of the population we allow individuals to fail

to eat even when food is present. This approach has the added effect of

eliminating the min term from the MFE, making them more amenable to

algebraic analysis.

The model given in Fig. 4.3 uses the same principles as Sumpter’s model

but features a non-prioritised eat action. This means that, even with suf-

ficient food for all individuals to eat, agents may not eat. As well as re-

moving priority this model also reverses the order of the communicative

and probabilistic stages. Here we have communication (eating) followed by

probabilistic choice while Sumpter’s model featured choice followed by com-

munication. We change order in this way to remain consistent with the

disease models presented in Fig. 3.1 and in subsequent chapters, which have

communication (transmission) followed by probabilistic choice.

The agents N1 and N2 represent the members of the population at the

different stages of the model. The N1 agents can eat and become the parallel

agent Rep, which consists of b + 1 N2 agents and represents giving birth to

b offspring. If they do not eat the N1 agents become a single N2 agent. In
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N1
def
= 1.eat : Rep + 1.

√
: N2

F1
def
= 1.eat : F2 + 1.

√
: F2

Rep
def
= N2{b + 1}

N2
def
= pd.

√
: 0 + (1 − pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= N1{n} × F1{f}d{√}

Figure 4.3: Density dependence on births with non-prioritised communica-
tion

the second stage of the model the N2 agents die or survive probabilistically.

The total number of food agents is constant therefore the F agents (F1, F2)

should be thought of as units of food that the environment can produce

in a time step rather than discrete portions of food that are consumed by

the population. The fact that the number of food agents remains constant

means that we do not have to derive an MFE for F1 and the number of

food agents can be represented by the constant f in the MFE for N1.

The model in Fig. 4.3 leads to the MFE

Nt+1 = (1 − pd)Nt +
(1 − pd)bfNt

f + Nt
. (4.5)

Here the term (1 − pd)Nt represents the mean proportion of the existing

population that survives the probabilistic death stage. The term bfNt/(f +

Nt) represents the mean number of new births with the factor (1 − pd)

representing the proportion of new births that survive the probabilistic death

stage, since offspring are able to probabilistically die immediately after birth.
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We find the steady state of this model by setting Nt+1 = Nt = N∗:

N∗ = (1 − pd)N
∗ +

(1 − pd)bfN∗

f + N∗
.

Solving for N∗ we get

N∗ =
(b − (b + 1)pd)f

pd

.

With b = 1 we have N∗ = (1−2pd)f/pd , and to ensure N∗ > 0 we require

1/2 > pd . The steady state N∗ is smaller than in Sumpter’s model (which

had N∗ = f/pd) if the same parameter values are used, since 1 − 2pd < 1 .

This is due to N1 agents being able to not eat even when there is food

available, which leads to fewer births on average and a smaller population

at equilibrium.

Timestep length

The fact that each individual gives birth in each iteration of the model if

they have access to the resource suggests that the timestep being captured

is long in relation to the time between producing offspring (which can be a

matter of days for some insects, several weeks for small mammals and more

than a year for some large mammals). In addition we should note that in

most ecological systems not all individuals can produce offspring (unless it

is reasonable to assume that almost all of the population is female). This

approach may, therefore, be useful in modelling asexual reproduction or

cellular mitosis but in general for ecological models it is not reasonable.

The model in Fig. 4.4 addresses these two factors by having individuals give

birth with probability pb if they eat.
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Rep
def
= N1{b + 1}

N1
def
= 1.eat : Nb2 + 1.

√
: N2

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pd.

√
: 0 + (1 − pd).

√
: N1

Nb2
def
= pb.

√
: Rep + pd.

√
: 0 + (1 − pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= N1{n} × F1{f}d{√}

Figure 4.4: Density dependence on births with probability of reproducing
after eating

The MFE derived from this model is

Nt+1 = (1 − pd)Nt +
bpbfNt

f + Nt
,

with resulting steady state

N∗ =
(bpb − pd)f

pd

.

Once again we must ensure that N∗ > 0, which means we require bpb > pd .

4.2.2 Density dependent death

A similar model can be developed featuring density dependent death. In

Fig. 4.5 the N1 agents can once again eat, becoming the agent N2, but

here if they do not eat they die, becoming the null agent 0. The N2 agents

then give birth probabilistically and to be realistic, N2 agents can also die

probabilistically. This means that in each step of time a proportion of the

population die, for instance, due to age and some die due to a lack of food.
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Rep
def
= N1{b + 1}

N1
def
= 1.eat : N2 + 1.

√
: 0

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pb.

√
: Rep + pd.

√
: 0 + (1 − pb − pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= N1{n} × F1{f}d{√}

Figure 4.5: Density dependence on deaths with non-prioritised communica-
tion

The MFE for this model is

Nt+1 = (1 + bpb − pd)
fNt

f + Nt

, (4.6)

where fNt/(f + Nt) represents the proportion of the population that eat

and therefore survive the competition for food, with the factor (1+ bpb−pd)

representing the increase in the population due to births and the decrease

due to probabilistic death. Equation (4.6) can be rearranged to give

Nt+1 =
aNt

1 + cNt

, (4.7)

where a = (1 + bpb − pd) and c = 1/f . Equation 4.7 is the Beverton-Holt

model [16], which was originally proposed as a model of salmon populations

displaying density dependent birth; however we have derived this equation

from a model that features density dependent death. Although this model

has previously been described it is not commonly used for describing density

dependent populations so it is interesting that this term has naturally arisen

from our WSCCS model that explicitly includes the population interacting
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with a resource.

If we set Nt+1 = Nt = N∗ in (4.6) and solve for N∗ we find that the

steady state of this model is

N∗ = (bpb − pd)f .

In this case to ensure the steady state is positive we require bpb > pd.

Comparison of dynamics of MFE for implicit and explicit compe-

tition models

The logistic and Beverton-Holt models offer different ways to capture density

dependent growth in a population, which leads us to ask the question: how

do the dynamics of the two models compare? In Fig. 4.6 we plot (4.4) and

(4.6) with the same values of pb = 0.2, b = 1 and with pd0 of (4.4) equal

to pd of (4.6) (pd = pd0 = 0.15). In addition the values of k = 0.00005 and

f = 20000 were chosen to give N∗ = 1000 for each model. We see that both

models offer similar dynamics with the curves diverging only slightly as they

approach the steady state. In Fig. 4.7 we produce graphs with b = 12 so

that r = (bpb − pd0) > 1 in the logistic model and oscillations are observed.

In this case both models share a larger steady state,

N∗ =
bpb − pd0

k
= (bpb − pd)f = 45000 ,

and reach the steady state more quickly since more births take place during

each timestep. The two curves remain close during the rapid growth phase

and as they approach the steady state the Beverton-Holt curve smoothly

settles to the steady state, while the logistic curve oscillates about the steady

state as expected.
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Figure 4.6: Logistic and Beverton-Holt models plotted with the same para-
meter values - b = 1 (— Logistic, — Beverton-Holt)
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Figure 4.7: Logistic and Beverton-Holt models plotted with the same para-
meter values - b = 12 (— Logistic — Beverton-Holt)
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4.3 Population dynamics and disease

While population dynamics are interesting in isolation they are also crucial

in developing realistic models of other aspects of a population. In this section

we present models of disease spread, based on the basic model proposed in

3.1, with the addition of population dynamics mechanisms from Sections 4.1

and 4.2. In all of these models we assume, for simplicity, that the disease

in question does not cause death in the host species. While it is reasonable

to say that for many disease systems the level of disease induced mortality

is negligible we may also wish to consider situations where the disease has

a significant effect on the population dynamics. Such systems could be

modelled by having a different probability of death, p dd ≥ p d , for the

infected agents. In the resulting equations this would merely lead to pdd

replacing pd in the equations for It+1 .

4.3.1 SIR models with explicit competition

Density dependent death

The model in Fig. 4.8 adds the population dynamics of Fig. 4.5 to the

model of infectious disease spread introduced in Fig. 3.1. The first stage in

the model is the eating stage in which S1, I1 and R1 all compete for food

and those that do not eat will die. The second stage is a contact stage in

which infected (Trans) agents come into contact with the population and

potentially pass the disease to susceptibles. The infected individuals are

represented by parallel agents, with the Trans agents passing on the disease

and the T2 agents able to be contacted by a Trans agent. Communication

is prioritised so that all Trans make contact. S2 that are contacted become

SI3, which make a probabilistic choice to become infected or not, while

108



RepS
def
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√
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= S1{s} × I1{i} × Food1{f}d{√}

Figure 4.8: Frequency dependent SIR model with density dependence in the
deaths
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T2 and R2 agents are not affected by contact since infected and recovered

individuals cannot become infected again. After the contact stage the Trans

agents all become the null 0 so that the infected individuals are once again

represented by a single agent. The final stage is the probabilistic stage

in which all individuals can give birth to b susceptible individuals, with

probability pb, or die, with probability pd. In addition the SI3 agents become

infected with probability pi and I3 agents can recover with probability pr.

The system of MFE derived from this model is

St+1 =
f

f + Nt

(

(1 − pd)St + bpbNt −
piStIt

Nt

)

,

It+1 =
f

f + Nt

(

(1 − pd − pr)It +
piStIt

Nt

)

,

Rt+1 =
f

f + Nt

(

(1 − pd)Rt + prIt

)

, (4.8)

where Nt = St+It+Rt, the total population size. These are the standard SIR

equations that have been found for WSCCS models [73] with an extra factor

of f/(f + Nt) on each equation, which is the proportion of the population

that successfully eats. This is unconventional since in traditional models

[6, 42] the transmission term (in this case (piStIt)/Nt) is not affected by

the density dependent birth or death term while here it is scaled by the

death due to competition term f/(f + Nt) . This is not affected by the

order in which the stages of the WSCCS model occur. For instance if the

eating stage were to come last, following the contact and probabilistic stages,

then the number of S agents that would become infected after the first two

stages would be paStIt/Nt, and the proportion of those that would survive

competition for resources would be f/f +Nt . Such a model would therefore

lead to the same system of equations (4.8) as for Fig. 4.8.

Once again we can say that the population dynamics in Fig. 4.8 come

110



directly from the competition for food rather than any assumptions that

have been imposed on the model. We can therefore say that the system

of equations (4.8) is a candidate for modelling population dynamics in dis-

ease systems with a constant resource, despite the differences to traditional

models.

Density dependent birth

Now instead of having density dependent death we return to density depen-

dent birth, see Fig. 4.9. The model given in Fig. 4.9 adds density dependence

in birth to an SIR model. In this model all of the individuals in the pop-

ulation compete for the food that is available and if they do eat they give

birth to b newborn individuals. These newborns do not make themselves

available to be infected immediately but become susceptible individuals at

the next step of time.

This model leads to the following system of MFE:

St+1 = (1 − pd)St +
bfNt

f + Nt

− piStIt

Nt

,

It+1 = (1 − pd − pr)It +
piStIt

Nt
,

Rt+1 = (1 − pd)Rt + prIt .

Alternatively, if we had designed the model with all individuals giving birth

to susceptible individuals, which immediately make themselves available to
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Figure 4.9: Frequency dependent SIR model with density dependence in the
births
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become infected and make the probabilistic choice to die, we would get a

quite different transmission term in our MFE:

St+1 = (1 − pd)St + (1 − pd)
bfNt

f + Nt
− piIt

Nt(1 + bf
f+Nt

)

(

St +
bfNt

f + Nt

)

,

It+1 = (1 − pd − pr)It +
piIt

Nt(1 + bf
f+Nt

)

(

St +
bfNt

f + Nt

)

,

Rt+1 = (1 − pd)Rt + prIt ,

featuring the term

piIt

Nt(1 + bf
f+Nt

)

(

St +
bfNt

f + Nt

)

.

Here the number of susceptible individuals with which the infecteds can

make contact includes the births from the current iteration of the model,

which introduces the factor

St +
bfNt

f + Nt
.

Similarly the total number of individuals that can be contacted by the in-

fecteds includes these births and the denominator in the transmission term

becomes

Nt

(

1 +
bf

f + Nt

)

.

The other change that arises in these equations is that the transmission

term includes a factor capturing the fact that individuals can be born and

die within a single iteration of the model leading to the term

(1 − pd)
bfNt

f + Nt
.
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This illustrates the importance of considering carefully the biological impli-

cations of choices within the model. In many cases it is reasonable to suggest

that newborn individuals will not be available to be infected immediately

and by capturing this in our model we derive simpler MFE.

4.3.2 SIR models with implicit competition

In the same way as for the models that make use of food as an agent we

can add infectious disease dynamics to the models involving mechanisms for

density dependence using functional probabilities outlined in Fig. 4.2.

Density dependent birth

Combining an SIR model with the density dependent birth model from Fig.

4.2 we get the model shown in Fig. 4.10. The first stage in the model features

probabilistic birth and death. In the second stage newborn individuals B2

are not able to be infected and will become susceptible S3 agents at the

next stage in the model.

Density dependent births is again achieved by defining pb = (pb0 − kNt)

and the model leads to the following system of MFE:

St+1 = (1 − pd)St −
pi(1 − pd)StIt

Nt
+ bpb0

(

1 − kNt

pb0

)

Nt ,

It+1 = (1 − pr)(1 − pd)It +
pi(1 − pd)StIt

Nt

,

Rt+1 = (1 − pd)Rt + pr(1 − pd)It . (4.9)

This is the typical sort of model we would write down directly, with each

equation featuring a factor for the probability of surviving (1 − pd), and a

logistic type growth term in the susceptibles equation.
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Figure 4.10: Frequency dependent SIR model with density dependent prob-
ability of giving birth
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Density dependent death

We can replace density dependent birth in Fig. 4.10 with density dependent

death by replacing the functional pb with functional pd:

p d
prob
= min(max(0, pd0 + k ∗ (bS1c + bI1c + bR1c)), 1) .

The MFE that arise from Fig. 4.10 with density dependent death are

St+1 = (1 − pd0 − kNt)St − pi(1 − pd0 − kNt)
StIt

Nt

+ bpbNt ,

It+1 = (1 − pd0 − kNt)(1 − pr)It + pi(1 − pd0 − kNt)
StIt

Nt

,

Rt+1 = (1 − pd0 − kNt)Rt + (1 − pd0 − kNt)prIt .

Mathematically these are more complex than for the density dependent birth

case because the transmission term is scaled by the factor (1 − pd0 − kNt)

rather than (1 − pd). In both cases these terms are introduced because the

individuals that die are not able to take part in transmission of the disease.

In the current model the term is more complex because the probability of

death is density dependent and therefore depends on the current population

size. This means that, for systems where density dependent death is prefer-

able, there is a trade off between the mathematical simplicity and increased

tractability offered by models featuring density dependent birth, and the

improved biological realism offered by considering density dependent death.

4.4 Summary

In this chapter we have introduced several different models that seek to cap-

ture realistic growth. The models in Figs. 4.1 and 4.2 make use of functional

probabilities to introduce density dependent behaviour into the population.
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From both of these models, for density dependent birth or density dependent

death, the resulting MFE is a discrete time version of the logistic growth

model.

The fact that we have achieved the logistic equation from these models

may seem to contradict the findings of Brännström and Sumpter [19] who

did not find the logistic equation for any of their models. It should be noted

that we are effectively choosing our probabilities using the same assumptions

that lead to the logistic equation in the traditional population level models

by making the probabilities linearly proportional to the population size;

however, Brännström and Sumpter did try to get the logistic equation and

couldn’t, so even though we have “forced it” it is still significant that we

can get it. Other methods of choosing these probabilities, such as non-

linear proportionality, would lead to different MFE. A major difference is

that Brännström and Sumpter’s site-based framework is inherently spatial

whereas the models presented here assume random mixing of the population.

Alternative models were presented that made use of agents to repre-

sent food as a resource for the population. These mechanistic models more

closely represent behaviour in a population with density dependence arising

naturally from competition for resources. In the case where density depen-

dent death is modelled we obtain the Beverton-Holt equation [16], which was

proposed to describe the dynamics of fish populations. By adding this form

of density dependence to a disease model we obtain the classical equations

to describe disease spread [52] with each equation scaled by a factor repre-

senting survival after competition. This makes the equations more complex

and less tractable algebraically. In traditional mathematical models this

problem is addressed by making birth rather than death density dependent.
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Although the models that explicitly capture competition for resources

have a greater degree of biological realism, it also introduces a greater degree

of mathematical complexity into the MFE. In subsequent chapters where

births and deaths are included we make use of the functional probability

method from Fig. 4.1 in order to simplify the equations and allow us to

focus on the aspect of the population in which we are most interested.
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Chapter 5

Modes of Transmission I:

Frequency Dependent vs

Density Dependent

Previous WSCCS models of disease spread [73] naturally lead to a frequency

dependent transmission term of the form,

βStIt

Nt
,

in the derived MFE whilst in traditional mathematical models the most

commonly used term is the density dependent term proposed by Kermack

and McKendrick [52]:

βSI .

Although frequency dependent transmission has been proposed as the more

appropriate term to use by some authors [42], and other terms have been

proposed [20, 48], the density dependent term is still the favoured option in

many cases.
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Turner et al. [90] developed cellular automata models that implemented

frequency dependent and density dependent transmission at the level of the

individual. Cellular automata do not have a rigorous method for deriv-

ing equations, such as the method described in Chapter 3 for WSCCS, so

the population level behaviour was found by fitting equations to the results

obtained from the cellular automata. They found, counterintuitively, that

irrespective of the individual-based behaviour implemented the frequency

dependent transmission term was found to most accurately describe behav-

iour at the population level. This seems to imply that whatever rules we have

at the individual level, we will always get frequency dependent transmission

at the population level.

In this chapter we investigate whether this is also true for WSCCS or

whether it is possible to develop WSCCS models that will lead to MFE

featuring density dependent transmission. This is done by incorporating

the assumptions that Begon et al. [10] used to produce derivations for the

density dependent term, namely that the number of contacts made by an

infected individual is directly proportional to the size of the population.

Our approach differs slightly from that of Begon et al. since they derive

transmission from a general term Scpv where S is the number of susceptible

individuals, c is the rate of contacts made by susceptibles, p is the probability

that contact is with an infected individual and v is the probability that

a susceptible becomes infected after contact with an infected individual.

This assumes that susceptible individuals are ‘active’ in seeking out contacts

and the individuals they contact are ‘passive’. In WSCCS it is natural to

write models such that infected individuals make contact and the rate of

transmission is governed by the probability that contact is with a susceptible,

as well as the probability that susceptibles become infected after contact.
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Models are presented here that make use of either prioritised or non-

prioritised communication to investigate the transmission terms that arise

in the MFE. We are particularly interested in whether describing density

dependent contact at the individual level leads to the expected density de-

pendent transmission term in the resulting MFE. All models in this chapter

make use of the logistic growth mechanism with density dependent birth

described in Section 4.1.1. For simplicity the number of births is one in

all of these models but we saw in Chapter 4 how we could use a symbolic

representation (b) for the number of births.

5.1 Frequency dependent transmission

Norman and Shankland [73] found the frequency dependent transmission

term

paStIt

Nt

arose naturally from their models. However it was pointed out that the

overall population size was constant, Nt = N , since births and deaths were

not included in the model, and therefore this term could be written as βStIt

with

β =
pa

N
.

In Chapter 4 (Fig. 4.10) we added a mechanism for self limiting growth

to a disease model. This gave MFE that once again feature a frequency

dependent transmission term, now with β = pi(1 − pd) but with Nt no

longer constant.

Norman and Shankland also found that the choice of prioritised or non-

prioritised communication need not affect the MFE derived from the system.

This is true again here and the model in Fig. 5.1 features non-prioritised
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Figure 5.1: SIR model with frequency dependent transmission and non-
prioritised communication
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communication yet leads to the same MFE (4.9) as Fig. 4.10, which made use

of prioritised communication. In Sec. 5.2 we will see that this is not always

true as models are presented differing only by the choice to use prioritised

communication or not, and can lead to very different MFE.

5.2 Density dependent transmission

To model density dependent transmission at the individual level the infected

individuals must be able to make multiple contacts within each iteration of

the model. This can be done in several ways to achieve a contact rate of

c: i) infected individuals are modelled by a parallel agent, which contains c

agents that can transmit the disease ii) infected individuals can perform up

to c instances of the infect action in parallel iii) and infected individuals can

make contact in c consecutive stages of the model. Here we consider each of

these approaches in turn. We may expect the three approaches to lead to

the same population level behaviour but we will see that this is not always

true.

5.2.1 Non-prioritised communication

Parallel agents

The model featured in Fig. 5.2 features a parallel infected agent, I1, consist-

ing of c transmitting agents, Trans, which all become the null agent 0, and

a single Ih1 agent that does not take part in a communicating action but

becomes the agent I2 at the next stage. The maximum number of contacts

that an infected agent can make, c, is a proportion of the total population
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Figure 5.2: Parallel infected agent with non-prioritised communication
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size, c = jNt. The model leads to the MFE,

St+1 = (1 − pd)St − pi(1 − pd)
jNtStIt

St + jNtIt + Rt

+ pb0

(

1 − kNt

pb0

)

Nt ,

It+1 = (1 − pd − pr)It + pi(1 − pd)
jNtStIt

St + jNtIt + Rt
,

Rt+1 = (1 − pd)Rt + prIt . (5.1)

The transmission term in this system of MFE cannot be simplified, other

than gathering constants to give

βNtStIt

St + jNtIt + Rt
,

with β = pi(1−pd)j , and therefore we do not obtain the traditional density

dependent transmission term.

Parallel actions

An alternative method to introduce density dependent contact would be to

use an infected agent with parallel actions,

I1b1.infect
c
: I2 + 1.infect

(c−1)
: I2... + 1.infect : I2 + 1.

√
: I2 .

The model in Fig. 5.3 implements this for c = 3 with I1b replacing I1, Ih1

and Trans in Fig. 5.2. This model leads to MFE of the same form as Fig.

5.1 with the exception of the transmission term, which becomes

piSt

∑It

n3=0

∑It−n3
n2=0

∑It−(n2+n3)
n1=0 M

( St+Rt−1P3
m=1(m×nm)−1

)

∑It

n3=0

∑It−n3
n2=0

∑It−(n2+n3)
n1=0 M

( St+RtP3
m=1(m×nm)

)

, (5.2)
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where M is the multinomial coefficient

M =
It!

(
∏3

k=1 nk!)(It −
∑3

l=1 nl)!
.

Using the general form of I1b given above, which can perform up to c

instances of the infect output action, the transmission term in the MFE is

generalised and becomes

piSt

∑It

nc=0

∑It−nc

nc−1=0 ...
∑It−

Pc
j=2 nj

n1=0 M
(

St+Rt−1Pc
m=1(m×nm)−1

)

∑It

nc=0

∑It−nc

nc−1=0 ...
∑It−

Pc
j=2 nj

n1=0 M
(

St+RtPc
m=1 m×nm

)

, (5.3)

where M is the multinomial coefficient

M =
It!

(
∏c

k=1 nk!)(It −
∑c

l=1 nl)!
.

This transmission term is algebraically intractable because it does not sim-

plify any further and, therefore, these MFE are not amenable to the usual

range of algebraic analysis. In Chapter 3 it was shown that any model fea-

turing non-prioritised communication that makes use of parallel actions will

lead to MFE with a term of this sort, based on the general term (3.10). In

addition to such MFE being intractable, calculating the time series will be

more computationally expensive than for the terms that arise from any of

the general terms for other types of communication, (3.6, 3.7, 3.9). We avoid

writing models that use communication of this form because the resulting

MFE do not offer the advantages that can generally be obtained using MFE

as a method of analysis.

The problems we have when using non-prioritised communication come

about because of the interpretation of the parameter c. To capture the

assumptions of Begon et al. we require that the number of contacts be
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Figure 5.3: Parallel infect action with non-prioritised communication
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directly proportional to the overall population size. However, using non-

prioritised communication, the agents do not necessarily make c contacts,

c is merely the maximum number of contacts that each infected individual

can make. The mean number of contacts made by infected individuals is a

function not only of the population size but also of the mix of different types

of agent in the population, so therefore we are not really capturing density

dependent contact. In addition, if we were to genuinely capture functional

behaviour that makes use of parallel actions (in the example considered here

c is fixed) we would have to extend the functional parameters notation by

defining functional parallel actions. Here we do not capture the desired

behaviour, in terms of contact rate, so there is no advantage to be gained by

defining functional parallel actions notation. To overcome this problem, in

Sec. 5.2.2 models are presented that make use of prioritised communication

so that agents must communicate where possible.

Consecutive contact actions

The third method that was proposed to implement multiple contacts was

consecutive contact stages. This would involve the contact stage being re-

placed by c stages, in each of which the infected agents can perform the

output action. Non-prioritised communication would once again result in

such a model not capturing the desired behaviour, with the mean contact

rate being dependent on the mix of the population as well as the value of c.

5.2.2 Prioritised communication

Parallel agents

The model in Fig. 5.4 differs from the model in Fig. 5.2 because all of

the communicating agents are prioritised so that they communicate where
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c
int
= min(Round(j ∗ (bS1c + bI1c + bR1c)), Cmax)

pb
prob
= pb0 − k(bS1c + bI1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepR
def
= R2 × B2

S2
def
= ω.infect : SI3 + 1.

√
: S3

I2
def
= T2 × Trans{c}

Trans
def
= ω.infect : 0 + 1.

√
: 0

T2
def
= ω.infect : I3 + 1.

√
: I3

R2
def
= ω.infect : R3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= pd.

√
: 0 + (1 − pd).

√
: S1

SI3
def
= pd.

√
: 0 + pi.

√
: I1 + (1 − pd − pi).

√
: S1

I3
def
= pd.

√
: 0 + pr.

√
: R1 + (1 − pd − pr).

√
: I1

R3
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B3
def
= 1.

√
: S1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 5.4: Parallel infected agent with prioritised communication
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possible. In addition, the infected I2 agent is a parallel agent that includes

a T2 agent, which can perform the infect input action, thereby explicitly

modelling the situation where an infected individual makes an infectious

contact with another infected individual. Once again the number of contacts

that infected individuals can make is a proportion of the population size,

c = jNt . This model leads to the following system of mean field equations:

St+1 = (1 − pd)St − min

(

piSt,
jpi(1 − pd)NtStIt

Nt

)

+ pb0

(

1 − kNt

pb0

)

Nt ,

It+1 = (1 − pd − pr)It + min

(

piSt,
jpi(1 − pd)NtStIt

Nt

)

,

Rt+1 = (1 − pd)Rt + prIt . (5.4)

The transmission term here can be simplified to

min (piSt, βStIt) ,

where β = jpi(1 − pd) . Here we have density dependent transmission ex-

cept where jNtIt ≥ Nt (jIt ≥ 1) , when all susceptible individuals will be

contacted at every time step. Whether jIt ≥ 1 will ever be true depends on

the chosen parameter values.

Parallel actions

As in the non-prioritised case it is also possible to write a model that utilises

parallel actions, rather than a parallel I2 agent, to allow infected individuals

to make c contacts. This is done by making use of a Trans agent of the

form

Transb
def
= ωc.infect

c
: I3+ωc−1.infect

c−1
: I3+ ...+ω.infect : I3+1.

√
: I3 .
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The model in Fig. 5.5 implements this for c = 3 and leads to the following

system of MFE:

St+1 = (1 − pd)St − min

(

piSt,
3StIt

Nt

)

+ pb0

(

1 − kNt

pb0

)

Nt ,

It+1 = (1 − pd − pr)It + min

(

piSt,
3StIt

Nt

)

,

Rt+1 = (1 − pd)Rt + prIt . (5.5)

If notation were defined to allow us to make the number of parallel

instances of the infect action functional, with c taking the same form as

in Fig. 5.4, this model would lead to (5.4), the MFE for the parallel agent

method. This is because the behaviours being captured are identical with

each infected individual making exactly c contacts when possible and all

agents are contacted when jIt ≥ 1 . Notation could be defined to do this

but at present there seems to be no advantage since the behaviour it would

capture can already be described using functional parallel agents.

Consecutive contact actions

In addition to the parallel action and parallel agent approach described

above it is possible to allow the infected individuals to make contact on

c consecutive contact stages before the probabilistic choice stage occurs.

The model in Figs. 5.6 and 5.7 implements this approach for the situation

where c = 3. The first stage of the model is a probabilistic stage, in which

births and deaths happen. In the subsequent three stages the Trans agents

(Trans2, T rans3, T rans4) perform the infect output action and after the

three stages become the null agent, 0. All of the types of agents that can

perform the infect input action (susceptible, infected and recovered) can

perform at most one instance of the action. The susceptible agents at each
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pb
prob
= pb0 − k(bS1c + bI1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepR
def
= R2 × B2

S2
def
= ω.infect : SI3 + 1.

√
: S3

Ib2
def
= T2 × Transb

Transb
def
= ω3.infect

3
: I3 + ω2.infect

2
: I3

+ω.infect : I3 + 1.
√

: I3

T2
def
= ω.infect : I3 + 1.

√
: I3

R2
def
= ω.infect : R3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= pd.

√
: 0 + (1 − pd).

√
: S1

SI3
def
= pd.

√
: 0 + pi.

√
: I1 + (1 − pd − pi).

√
: S1

I3
def
= pd.

√
: 0 + pr.

√
: R1 + (1 − pd − pr).

√
: I1

R3
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B3
def
= 1.

√
: S1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 5.5: Parallel infect action with prioritised communication
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pb
prob
= pb0 − k(bS1c + bI1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepR
def
= R2 × B2

S2
def
= ω.infect : SI3 + 1.

√
: S3

I2
def
= T2 × Trans2

Trans2
def
= ω.infect : Trans3 + 1.

√
: Trans3

T2
def
= ω.infect : Ic3 + 1.

√
: 03

R2
def
= ω.infect : Rc3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= ω.infect : SI4 + 1.

√
: S4

SI3
def
= 1.

√
: SI4

Ic3
def
= 1.

√
: Ic4

Trans3
def
= ω.infect : Trans4 + 1.

√
: Trans4

T3
def
= ω.infect : Ic4 + 1.

√
: 04

Rc3
def
= 1.

√
: Rc4

R3
def
= ω.infect : Rc4 + 1.

√
: R4

B3
def
= 1.

√
: B4

Figure 5.6: Prioritised contact on successive contacts. Part 1
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S4
def
= ω.infect : SI5 + 1.

√
: S5

SI4
def
= 1.

√
: SI5

Ic4
def
= 1.

√
: I5

Trans4
def
= ω.infect : 0 + 1.

√
: 0

T4
def
= ω.infect : I5 + 1.

√
: I5

Rc4
def
= 1.

√
: R5

R4
def
= ω.infect : R5 + 1.

√
: R5

B4
def
= 1.

√
: B5

S5
def
= pd.

√
: 0 + (1 − pd).

√
: S1

SI5
def
= pd.

√
: 0 + pi.

√
: I1 + (1 − pd − pi).

√
: S1

I5
def
= pd.

√
: 0 + pr.

√
: R1 + (1 − pd − pr).

√
: I1

R5
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B5
def
= 1.

√
: S1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 5.7: Prioritised contact on successive contacts. Part 2

of these stages (S2, S3 or S4) can perform the infect input action, however

if an agent communicates at the first or second stage it becomes an SI agent

(SI3 or SI4), which does not communicate at subsequent communicative

stages. At the final stage in the model any susceptible agent that has been

contacted by an infected agent will be an SI5, which makes the probabilistic

choice to become infected or not. In the case of the infected and recovered

agents, if they make contact at the first or second contact stage they re-

spectively become an Ic or Rc agent, which cannot communicate further in

the later stages of the model. In the final probabilistic stage the infected

and recovered agents are respectively I5 or R5, irrespective of whether they

have communicated at any of the three stages. Despite the fact that this
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model features more stages, and different agent behaviour at each stage, the

overall mean behaviour is the same as that of the model in Fig. 5.4 with the

constant contact rate c = 3 . The MFE for this model are therefore

St+1 = (1 − pd)St − min

(

piSt,
3piStIt

Nt

)

+ pb0

(

1 − kNt

pb0

)

Nt ,

It+1 = (1 − pd − pr)It + min

(

piSt,
3piStIt

Nt

)

,

Rt+1 = (1 − pd)Rt + prIt . (5.6)

By having the number of stages in which the infected individuals make

contact, and therefore the contact rate, a function that depends on the size

of the population this model would lead to the same MFE, (5.4), as the

parallel actions and parallel agents formulations. Again notation could be

defined to allow this but at present there seems to be no advantage since we

can already capture the desired behaviour with functional parallel agents.

5.3 Summary

In this Chapter we have presented several models that attempt to capture

the assumptions used by Begon et al. [10] in their derivation of the tra-

ditional density dependent transmission term βSI . Using non-prioritised

communication we found that density dependent transmission does not arise

because we cannot correctly capture the assumptions of Begon et al. Using

non-prioritised communication the average number of contacts made by each

infected individual is not set merely by the density dependent parameter c

but is also influenced by the mix of different agents in the population.

In contrast using prioritised communication we considered three dif-

ferent methods of implementing the contact rate c, which all lead to the
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transmission term min (piSt, βStIt) . The min term is a limitation of the

discrete time nature of WSCCS. In continuous time ODE models, with fixed

rates, the change in the population is continuously recalculated over infin-

itesimal steps of time, which prevents any of the groups in the population

becoming negative. Other than occasions where the min term takes effect

we have the traditional density dependent transmission term.

This result is in contrast to the results of Turner et al. [90] who found that

irrespective of whether frequency dependent or density dependent behaviour

was implemented at the individual level the frequency dependent term best

captured behaviour at the population level, by fitting equations to simulation

results. Turner et al. used cellular automata models that were inherently

spatial and naturally feature clustering of infection. The WSCCS models

presented here assume that the population is well mixed and do not allow

for clustering. This is a key difference between the models that explains why

different results were found.

Since we have three methods that lead to the traditional density depen-

dent term in the MFE it is clear that we cannot guarantee finding a unique

model that leads to a given system of MFE. The three approaches that

achieve density dependent transmission were found by trial and error and

the question of whether it is possible to obtain a WSCCS model that leads

to a given system of difference equations remains open. In this chapter we

have demonstrated that it is possible to define individual behaviour in our

models that leads to the transmission term βStIt . In addition Norman and

Shankland [73] found that the term βStIt/Nt came about from their mod-

els. Although these two common terms can be obtained from our individual

based modelling approach, it may not be possible to find WSCCS models

that lead to some of the other terms that have been proposed [20, 48].
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Chapter 6

Modes of Transmission II:

Direct vs Indirect

Many different methods of disease transmission have been identified though

no consensus exists about classification of these different methods. Here

we make use of a description published online by Mount Sinai Hospital,

Toronto [29], which defines the following six methods by which transmission

can occur:

• Direct contact: requires physical contact between susceptible and in-

fected individuals (includes sexual transmission).

• Fomite transmission: susceptible individual is infected by contact with

an infected touch-surface (fomite). Some organisms can survive on a

fomite for lengthy periods (e.g. Norwalk virus).

• Droplet contact: susceptible individuals can become infected by con-

tact with infected droplets that are produced when infected individ-

uals cough or sneeze. Droplets cannot persist in the environment

for long and therefore require close proximity between infected and
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susceptible individuals. Diseases that can be transmitted in this way

include measles and SARS.

• Airborne transmission: droplet nuclei (evaporated droplets) or infected

dust particles can remain suspended in air. Infection can persist in this

way for longer periods and can travel over greater distances. Diseases

that can be transmitted in this way include influenza, tuberculosis and

foot and mouth disease.

• Fecal-oral transmission: susceptible individuals come into contact with

infected fecal matter through consumption of contaminated food or

water. This can occur over large distances, for example by conta-

minated water supply. Usually associated with microorganisms that

infect the digestive system.

• Vector-borne transmission: susceptible individuals come into contact

with an infected vector (e.g. mosquitoes, ticks, rats). Vectors are mo-

bile so that transmission of this form can happen over large distances.

For the purposes of developing WSCCS models we consider all of these

modes of transmission to be represented by either direct or indirect trans-

mission, as outlined in Table 6.1. The models presented in the preceding

chapters all represent direct transmission since they require communication

directly between susceptible and infected individuals. In order to capture

the full range of disease behaviour it is necessary to be able to develop

models of indirect transmission.

The traditional ODE models of indirect spread [6, 9] make use of an

additional equation, which describes the amount of free living infection in

the environment. In this chapter we present WSCCS models that capture

indirect transmission by introducing agents to represent the environment.
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Direct Transmission Indirect Transmission

Direct contact Fomite transmission
Droplet contact Airborne transmission

Fecal-oral transmission
Vector-borne transmission

Table 6.1: Modes of transmission classified as direct or indirect

When an environment agent becomes infected it retains the infection and

can pass it on to susceptible individuals at a later time. This is similar to an

idea developed by Bradley et al. [17] to model the spread of internet worms

using PEPA. In that case agents represent computers and routers on the

network. Infected computers can pass the virus on to a router, which passes

the infection on to another computer. This introduces a delay in the spread

of the virus between computers since there is a time cost associated with

both the transmission to the router and transmission from the router on to

an uninfected computer.

Models have been developed that make use of a finite number of envi-

ronment agents, or allow for unlimited quantities of infected environment

agents. Since these models do not feature any density dependent behaviour

we consider a simplified situation that does not include any births or deaths.

This simplification is reasonable for many disease systems where the infec-

tion spreads rapidly through the population, so that the probability of any

individual giving birth or dying during the course of an epidemic is so low as

to make such events insignificant, and that have negligible levels of disease

induced mortality.
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6.1 Finite environment

In this section we consider models that feature a finite number of environ-

ment agents and are three stage models. At the first stage any infected

environment agents that exist contact the population, potentially passing

on the infection to susceptible individuals (this step uses prioritised com-

munication - this means that we are not implicitly modelling a situation

where an environment agent can contact another environment agent). The

second stage involves the infected individuals passing the infection on to the

environment (uses non-prioritised communication - this means that not all

of the environment will automatically become infected when there are suf-

ficiently many infected individuals) and the final tick involves probabilistic

choices. If the order of the two contact stages were reversed - transmission

from the population to the environment followed by transmission from the

environment to the population - the MFE would not reflect the time delay

that is inherent in traditional models of indirect transmission, although the

transmission terms in the MFE would be considerably more complicated.

We use frequency dependent transmission to avoid the added complexity

associated with density dependent transmission in WSCCS and so that we

focus on the effects of indirect transmission. If we wished to capture den-

sity dependent transmission we could implement this in the same way as in

Chapter 5, with the number of contacts made with the infected environment

agents proportional to the size of the population. We consider three models

that feature finite environment and differ in the way in which infection in the

environment decays: i) infection decays probabilistically ii) infection decays

after a fixed period, persisting for one iteration of the model iii) infection

decays after a fixed period, persisting for more than one iteration of the

model.
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6.1.1 Infection decays probabilistically

The model in Fig. 6.1 features environment agents that lose their infectivity

probabilistically. During the probabilistic stage the infected environment

agents (Ei3) become uninfected E1 agents with probability po, representing

infection decaying. The agents that became infected during the current

iteration of the model (Ei03) do not make the choice to become uninfected at

this stage and are all able to pass on the infection during the next iteration.

This model leads to the following system of five equations:

St+1 = St −
piEitSt

St + It + Rt
,

It+1 = (1 − pr)It +
piEitSt

St + It + Rt
,

Rt+1 = Rt + prIt ,

Et+1 = Et + poEit −
EtIt

Et + Eit + It
,

Eit+1 = (1 − po)Eit +
EtIt

Et + Eit + It
.

By noting that the total number of agents representing the environment

is fixed, Et + Eit = Et+1 + Eit+1 = C for some constant C, we can rewrite

the equations for the environment as

Eit+1 = (1 − po)Eit +
EtIt

C + It
,

Et+1 = C − Eit+1 .

This greatly simplifies the equation for Et but we would not achieve further

simplification by substituting for Eit in the equations for St and It since the

equation for Eit+1 is expressed in terms of Et and Eit .
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S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= ω.infect : I2 + 1.

√
: I2

R1
def
= ω.infect : R2 + 1.

√
: R2

E1
def
= 1.

√
: E2

Ei1
def
= ω.infect : Ei2 + 1.

√
: Ei2

S2
def
= 1.

√
: S3

I2
def
= 1.environ : I3 + 1.

√
: I3

R2
def
= 1.

√
: R3

SI2
def
= 1.

√
: SI3

E2
def
= 1.environ : Ei03 + E3

Ei2
def
= 1.environ : Ei3 + Ei3

S3
def
= 1.

√
: S1

I3
def
= pr.

√
: R1 + (1 − pr).

√
: I1

R3
def
= 1.

√
: R1

Ei3
def
= (1 − po).

√
: Ei1 + po.

√
: E1

Ei03
def
= 1.

√
: Ei1

E3
def
= 1.

√
: E1

SI3
def
= pi.

√
: I1 + (1 − pi).

√
: S1

Population
def
= S1{s} × I1{i} × R1{r} × E1{c}d{√}

Figure 6.1: Indirect transmission. Finite environment, infection decays
probabilistically.
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6.1.2 Infection persists in environment for fixed time

Infection persists for one iteration

The model in Fig. 6.2 features infected environment agents that only retain

their infectivity for one iteration. After the transmission stage, when the

disease can be passed on to the susceptible individuals, the infected Ei1

agents all become uninfected E2 agents, which can be infected by the in-

fected I2 agents. The model in Fig. 6.2 leads to the following system of five

equations:

St+1 = St −
piEitSt

St + It + Rt
,

It+1 = (1 − pr)It +
piEitSt

St + It + Rt

,

Rt+1 = Rt + prIt ,

Et+1 = Et + Eit −
(Et + Eit)It

Et + Eit + It
,

Eit+1 =
(Et + Eit)It

Et + Eit + It
. (6.1)

By once again noting that there are a fixed number of environment

agents, Et + Eit = Et+1 + Eit+1 = C, we can rewrite the equations for

Eit+1 and Et+1 as

Eit+1 =
C × It

C + It
,

Et+1 = C − Eit+1 .

We can now substitute for Eit ,

Eit =
C × It−1

C + It−1
,

in the equations for St+1 and It+1 and, since Eit is expressed merely in terms
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S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= ω.infect : I2 + 1.

√
: I2

R1
def
= ω.infect : R2 + 1.

√
: R2

E1
def
= 1.

√
: E2

Ei1
def
= ω.infect : E2 + 1.

√
: E2

S2
def
= 1.

√
: S3

SI2
def
= 1.

√
: SI3

I2
def
= 1.environ : I3 + 1.

√
: I3

R2
def
= 1.

√
: R3

E2
def
= 1.environ : Ei3 + 1.

√
: E3

S3
def
= 1.

√
: S1

I3
def
= pr.

√
: R1 + (1 − pr).

√
: I1

R3
def
= 1.

√
: R1

Ei3
def
= 1.

√
: Ei1

E3
def
= 1.

√
: E1

SI3
def
= pi.

√
: I1 + (1 − pi).

√
: S1

Population
def
= S1{s} × I1{i} × R1{r} × E1{e}d{√}

Figure 6.2: Indirect transmission. Finite environment, infection persists for
only one iteration.
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of C and It−1, represent the mean of the model by the following system of

three equations:

St+1 = St −
piC × It−1St

(C + It−1)(St + It + Rt)
,

It+1 = (1 − pr)It +
piC × It−1St

(C + It−1)(St + It + Rt)
,

Rt+1 = Rt + prIt . (6.2)

This means that, for this model, we can describe the population by a system

of three second order difference equations, if we are not interested in the

number of infected environment agents at any given time. However if we do

wish to know what proportion of the environment is infected at any given

time we must consider the system of five first order equations (6.1).

Another interesting question is what happens when we consider very

large C, suggesting that the environment is plentiful. Considering the lim-

iting case where C → ∞ gives

C × It−1

C + It−1
→ It−1 ,

and at the limit the transmission term in (6.2) becomes

piStIt−1

St + It + Rt

. (6.3)

This is the familiar frequency dependent transmission term with a delay

since the term depends not only on the state of the system at time t but

also on the number of infected agents at time (t − 1) . In Section 6.2 we

present models that explicitly feature unlimited environments and we will

compare the terms arising from those models to (6.3).
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Infection persists for two iterations

Rather than persisting for a single iteration we can consider the situation

where infection persists in the environment for more than one iteration. We

present a model in which infection persists for two iterations, Fig. 6.3, and

then generalise to find MFE for the general case where the infection persists

for n iterations, for some integer n.

After the contact phase of Fig. 6.3 the Ei1 infected environment agents

all become Eib2 agents, which can also be contacted by the infected agents

when the disease is passed on to the environment, and if an Eib2 agent does

come into contact with a I2 agent they become the infected environment

agent Ei3, which can pass on the infection for in the following two iterations.

In the next iteration these agents will be Eib1 agents, which can once again

pass the infection to the population, and at this stage lose the infection

becoming E2 uninfected environment agents.

This model leads to the following system of six equations to describe the

evolution of the model:

St+1 = St −
pi(Eit + Eibt)St

St + It + Rt

,

It+1 = (1 − pr)It +
pi(Eit + Eibt)St

St + It + Rt

,

Rt+1 = Rt + prIt ,

Et+1 = Et + Eibt −
(Et + Eibt)It

Et + Eit + Eibt + It

,

Eit+1 =
(Et + Eit + Eibt)It

Et + Eit + Eibt + It

,

Eibt+1 = Eit −
EitIt

Et + Eit + Eibt + It

. (6.4)
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S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= ω.infect : I2 + 1.

√
: I2

R1
def
= ω.infect : R2 + 1.

√
: R2

E1
def
= 1.

√
: E2

Ei1
def
= ω.infect : Eib2 + 1.

√
: Eib2

Eib1
def
= ω.infect : E2 + 1.

√
: E2

S2
def
= 1.

√
: S3

SI2
def
= 1.

√
: SI3

I2
def
= 1.environ : I3 + 1.

√
: I3

R2
def
= 1.

√
: R3

E2
def
= 1.environ : Ei3 + 1.

√
: E3

Eib2
def
= 1.environ : Ei3 + 1.

√
: Eib3

S3
def
= 1.

√
: S1

SI3
def
= pi.

√
: I1 + (1 − pi).

√
: S1

I3
def
= pr.

√
: R1 + (1 − pr).

√
: I1

R3
def
= 1.

√
: R1

E3
def
= 1.

√
: E1

Ei3
def
= 1.

√
: Ei1

Eib3
def
= 1.

√
: Eib1

Population
def
= S1{s} × I1{i} × R1{r} × E1{e}d{√}

Figure 6.3: Indirect transmission. Finite environment, infection persists for
only two iterations.
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We can note that the environment is once again constant, this time with

C = Et +Eit +Eibt . This means the equations for the environment can be

written as

Eit+1 =
C × It

C + It
,

Eibt+1 = Eit −
EitIt

C + It
,

Et+1 = C − Eit+1 − Eibt+1 .

Unlike the situation where the infection persists in the environment for one

iteration we cannot simplify the the equations by substituting for Eit and

Eibt in the equations for St+1 and It+1 and to study the population we

must consider the full system of six equations (6.4). However if we once

again consider what happens when C → ∞ we find

Eit+1 = It ,

Eibt+1 = Eit = It−1 ,

and we can substitute for Eit and Eibt in the equations for St+1 and It+1 .

This allows us to describe the population by a system of three third order

equations:

St+1 = St −
pi(It−1 + It−2)St

St + It + Rt
,

It+1 = (1 − pr)It +
pi(It−1 + It−2)St

St + It + Rt
,

Rt+1 = Rt + prIt . (6.5)

If the infection persists for more than two iterations the MFE would

become more complicated in two ways. In a general case, where the infection
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persists for n iterations, the transmission term would take the form

pi(Eiat + Eibt + Eict + ... + Eint)St

St + It + Rt

,

and there would be n + 1 equations that describe the environment. Again

considering C → ∞ the transmission term takes the form

pi(It−1 + It−2 + It−3 + ... + It−n)St

St + It + Rt
.

6.1.3 Summary of MFE

The terms associated with transmission of the infection from infected indi-

viduals to the environment take the form

EtIt

Et + Eit + It

. (6.6)

The It in the denominator of (6.6) suggests that the infected individuals,

as well as passing the infection to the environment, are also absorbing the

infectious contacts made by other infecteds. If we were to directly write

down equations to describe indirect transmission this term would instead

take the form

EtIt

Et + Eit
,

since we would expect the rate at which new infected portions of environ-

ment are created to depend on the number of infecteds (It), which spread

the infection, and the probability that a particular portion of environment

is uninfected Et/(Et + Eit).
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We could model this by making use of prioritised communication between

infected individuals and the environment, which would lead to terms of the

form

EtIt

Et + Eit
.

Such an approach, however, would mean that when there are sufficiently

many infected individuals in the population (It > C) all of the environment

would become infected and the term should correctly be written as

min

(

Et,
EtIt

Et + Eit

)

.

This is a consequence of the fact that we are considering a fixed quantity

of environment; however, it may be more realistic to consider an unlimited

environment since the area that contains the environment may be very small

such that the number of distinct portions of environment is so large as to

not be a limiting factor. In Section 6.2 we consider models for the situation

where there is no upper limit on the number of environment agents.

The other point about these equations that is unusual is the terms used

to describe transmission from the environment to the population. These

take the general form

βStEit
St + It + Rt

.

Mathematical models [6] more commonly assume density dependent trans-

mission between the environment and the population. We could implement

this in WSCCS using the mechanisms described in Chapter 5 but chose not

to do so here so that the focus of our models is the indirect transmission

and to ensure that this does not become confused by the greater complexity

required by density dependent transmission.
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6.2 Unlimited environment

In this section we present models in which the infected individuals proba-

bilistically spawn infected environment agents. The infected environment

agents can, in future iterations, pass the infection to susceptible individuals.

In this case, when a unit of environment is no longer infectious, it becomes

the null agent 0. This means that there is no artificial upper limit on the

number of infected environment agents that can be created. We would ex-

pect models developed in this way to lead to the same equations as those

derived for the fixed number of environment agents when we considered

C → ∞ .

Once again models were developed with the infection either decaying

probabilistically or persisting for a fixed period. In both of these models

it is no longer necessary to have a communication phase where infection of

the environment can occur so these are two stage models. At the first stage

communication occurs with the population potentially making contact with

the infected environment agents (again using prioritised communication)

while the second stage involves probabilistic choice, including the choice of

the infected individuals to produce an infected environment agent.

6.2.1 Infection decays probabilistically

The model in Fig. 6.4 has the environment agents probabilistically being

removed from the system. With probability po the infected environment

agent E2 becomes the null agent 0.
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IE
def
= I1 × E1

S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= ω.infect : I2 + 1.

√
: I2

R1
def
= ω.infect : R2 + 1.

√
: R2

E1
def
= ω.infect : E2 + 1.

√
: E2

S2
def
= 1.

√
: S1

I2
def
= pe.

√
: IE + pr.

√
: R1 + (1 − pe − pr).

√
: I1

R2
def
= 1.

√
: R1

SI2
def
= pi.

√
: I1 + (1 − pi).

√
: S1

E2
def
= (1 − po).

√
: E1 + po.

√
: 0

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 6.4: Indirect transmission. Unlimited environment, infection decays
probabilistically.

The system of MFE for this model is

St+1 = St −
piEtSt

St + It + Rt

,

It+1 = (1 − pr)It +
piEtSt

St + It + Rt

,

Rt+1 = Rt + prIt ,

Et+1 = (1 − po)Et + peIt .

These equations are simpler than the corresponding MFE for the case where

there is a fixed number of environment agents, since we have only one equa-

tion for the environment. Here there is no advantage in substituting for Et

in the equations for St+1 and It+1 since Et+1 is expressed in terms of Et.
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IE
def
= I1 × E1

S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= ω.infect : I2 + 1.

√
: I2

R1
def
= ω.infect : R2 + 1.

√
: R2

E1
def
= ω.infect : 0 + 1.

√
: 0

S2
def
= 1.

√
: S1

I2
def
= pe.

√
: IE + pr.

√
: R1 + (1 − pe − pr).

√
: I1

R2
def
= 1.

√
: R1

SI2
def
= pi.

√
: I1 + (1 − pi).

√
: S1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 6.5: Indirect transmission. Unlimited environment, infection persists
for only one iteration.

6.2.2 Infection persists in environment for fixed time

Infection persists for one iteration

Fig. 6.5 features a model with environment agents that become the null

agent after the transmission stage irrespective of whether they make contact

or not. The MFE for this model are

St+1 = St −
piEtSt

St + It + Rt
,

It+1 = (1 − pr)It +
piEtSt

St + It + Rt
,

Rt+1 = Rt + prIt ,

Et+1 = peIt .

Substituting for Et (Et = peIt−1) in the transmission term allows us to

represent the model by a system of three equations since we do not care

about the amount of infection in the environment, only the infection in the

153



population. This gives us

St+1 = St −
pipeIt−1St

St + It + Rt

,

It+1 = (1 − pr)It +
pipeIt−1St

St + It + Rt

,

Rt+1 = Rt + prIt .

These equations feature a transmission term,

pipeIt−1St

St + It + Rt
,

of the same form as (6.3), the transmission term that was obtained in Section

6.1.2 for the limit of the fixed number of environment agents, C → ∞ .

Infection persists for two iterations

The model in Fig. 6.6 has the infection persisting for two iterations. After

the contact phase the E1 infected environment agents all become Eb2 agents,

which then become Eb1 agents and can pass on the infection for a second

time before becoming the null agent 0.

This model leads to the following system of five equations:

St+1 = St −
pi(Et + Ebt)St

St + It + Rt

,

It+1 = (1 − pr)It +
pi(Et + Ebt)St

St + It + Rt

,

Rt+1 = Rt + prIt ,

Et+1 = peIt ,

Ebt+1 = Et = peIt−1 .

We can now substitute for Et and Ebt in the equations for St+1 and It+1.
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IE
def
= I1 × E1

S1
def
= ω.infect : SI2 + 1.

√
: S2

I1
def
= ω.infect : I2 + 1.

√
: I2

R1
def
= ω.infect : R2 + 1.

√
: R2

E1
def
= ω.infect : E2 + 1.

√
: E2

Eb1
def
= ω.infect : 0 + 1.

√
: 0

S2
def
= 1.

√
: S1

I2
def
= pe.

√
: IE + pr.

√
: R1 + (1 − pe − pr).

√
: I1

R2
def
= 1.

√
: R1

SI2
def
= pi.

√
: I1 + (1 − pi).

√
: S1

E2
def
= 1.

√
: Eb1

Population
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 6.6: Indirect transmission. Unlimited environment, infection persists
for only two iterations.
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This allows us to describe the model by a third order system of three equa-

tions, provided we are not interested in the number of infected environment

agents:

St+1 = St −
pipe(It−1 + It−2)St

St + It + Rt
,

It+1 = (1 − pr)It +
pipe(It−1 + It−2)St

St + It + Rt
,

Rt+1 = Rt + prIt .

The transmission term here,

pipe(It−1 + It−2)St

St + It + Rt

,

is once again of a similar form to (6.3). The main difference here is the

transmission term, which depends not only on It−1 but also on It−2 .

If similarly the infection persists in the environment for a fixed period

of more than two iterations the equations for the environment can be elim-

inated. If n is the number of iterations for which the infection persists the

transmission term would then take the form

pipe(It−1 + It−2 + ... + It−n)St

St + It + Rt

.

In addition if we were interested in the number of infected environment

agents at a given time we would have to consider n separate equations, each

of the form

Eit+1 = peIt−i ,

for 1 ≤ i ≤ n.

The MFE found here are of the same form as those found in Section
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6.1 when we considered the fixed number of environment agent C → ∞ :

however, here we have captured this behaviour explicitly rather than relying

on manipulation of the derived MFE.

6.3 Summary

In this chapter we have presented models for the indirect spread of disease,

making use of agents to represent portions of environment that can become

infected and pass the disease back to the population. Models were presented

that feature either a fixed number, or unlimited environment agents as well

as models where the infection decays in the environment in different ways.

From a biological realism perspective the models that have the infection

decaying probabilistically (Figs. 6.1 and 6.4) are preferable since all events

in the real world are fundamentally stochastic. For example infection in

the environment can decay more or less quickly depending on exposure to

sunlight or temperature. In addition the advantage of modelling in WSCCS

is that we capture the underlying behaviour of individuals from which the

population level behaviour emerges. However, for the purposes of performing

algebraic analysis on the MFE the more simple terms that come about from

the models in which infection persists for one iteration (Figs. 6.2 and 6.5) are

preferable. These models have the further advantage that the equations for

the environment can be eliminated and the mean behaviour of the population

can be described by only three equations.

Some diseases persist in the environment for only short periods of time,

particularly those that cannot survive in a dried state, e.g. measles [29],

and for these diseases the probability of the infection in the environment

decaying within the duration of an iteration of the model may be close to 1.

It would be a reasonable assumption to model these diseases as persisting
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in the environment for one iteration of the model. However, the models in

which the disease deterministically persists for two iterations of the model

(Figs. 6.3 and 6.6), or more than two iterations, are unrealistic since if we

expect all of the infection to decay after n iterations we would expect a

proportion to have decayed after n−1 iterations. Therefore we can say that

if a model is to be developed in which the infection persists for a fixed period

it should be for only one iteration of the model.

The other consideration about these models is whether we should have

a fixed or unlimited number of environment agents. It should be noted

that the area contaminated by an infected individual may be small with

an adjacent portion of environment remaining uncontaminated. For this

reason the number of units of environment will be very large and it will

be reasonable to assume that there is no limit on the quantity of infection

contained by the environment.
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Chapter 7

Superspreaders

Superspreaders have been identified as being important in the spread of

many diseases [60]. In such cases it has been observed that a small pro-

portion of the infected individuals are responsible for the majority of new

infections. Two mechanisms have been proposed to explain superspreaders

and this chapter presents models of each mechanism. In the following su-

perspreader models the infected portion of the population consists of two

distinct groups: standard infected individuals (I) and superspreaders (U).

The first mechanism that leads to superspreaders is increased infectious-

ness (also known as supershedders). If a susceptible individual is contacted

by a supershedder the probability of becoming infected (piu) is higher than

the probability of becoming infected having been contacted by an infected

individual (pi), i.e. piu = αpi for some constant α > 1. The second mecha-

nism that leads to superspreaders is an increased contact rate. For contact

superspreaders the contact rate (cu) is higher than the contact rate of the

infected individuals (ci), i.e. cu = αci.

Supershedders may arise because of a compromised immune system (mean-

ing, for instance, that more virus is present in their body so the quantity
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shed is greater) or because of some genetic predisposition that causes them

to shed a greater quantity of the disease. Contact superspreaders are more

gregarious or well travelled than the average and therefore make more con-

tacts than other individuals in the population.

7.1 Supershedders

To capture the behaviour of supershedders we must be able to differentiate

between whether a susceptible individual has been contacted by a super-

spreader or by a standard infected individual. To do this we have the infected

and superspreader individuals perform different actions (infect and infectU)

with the contacted susceptible individual making the choice to become in-

fected using the relevant probability depending on the action performed.

The standard infected and superspreader individuals have the same contact

rate: fixed at one here for simplicity. If necessary an increased contact rate

could be used, but it should be the same for the two groups if we are to

distinguish between supershedders and contact superspreaders. The models

in this section make use of the method for implementing births and deaths

from Fig. 4.1, which leads to a logistic growth term in the susceptibles equa-

tion (by choosing the probability of giving birth to be inversely proportional

to the population size, pb = pb0 − kNt). The other probabilities are as in

previous chapters i.e. pr - probability of recovery; pd - probability of death

due to natural causes; and pdd - probability of death due to the disease.

Transmission is frequency dependent, with infected individuals and super-

spreaders able to make one contact per time step, but existing methods

of implementing density dependent transmission could be introduced and

would change only the transmission term in the derived equations. The first

stage in the model involves probabilistic births with all individuals giving
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birth to a newborn individual, which will go on to become a susceptible

individual at the first stage of the next iteration of the model.

7.1.1 Single contact stage

Prioritised communication

The first model considered here, shown in Fig. 7.1, makes use of a different

form of communication than the models presented in previous chapters. To

distinguish between contact with standard infecteds and supershedders the

susceptible S2 agents must perform different actions when communicating

with Trans2 and TransU2 agents. To do this the S2 agents,

S2
def
= ω.infect : SI3 + ω.infectU : SU3 + 1.

√
: S3 ,

choose between two different communicating actions (infect and infectU), as

well as free action
√

. The S2 agent is prioritised to perform these actions

at the same priority level and with the same weight so the mean number

of S2 agents that perform each action depends only on the mix of different

agents in the population. In addition the T2 and R2 agents communicate

in the same way to model the situations where an infected or superspreader

individual makes contact with an individual that already has the disease, or

has previously had the disease and is now immune to further infection. At

the next stage the SI3 and SU3 agents (susceptibles that have been con-

tacted by standard infecteds and supershedders respectively) have different

probabilities of infection (pi and piu = αpi respectively).

Although the algorithm described in Chapter 3 does not cover commu-

nication of this form we can find generalised MFE, with labels SInew and

SUnew denoting the numbers of susceptibles that have communicated with
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pb
prob
= = pb0 − k ∗ (bS1c + [[I1c + bU1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

U1
def
= pb.

√
: RepU + (1 − pb).

√
: U2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepU
def
= U2 × B2

RepR
def
= R2 × B2

S2
def
= ω.infect : SI3 + ω.infectU : SU3 + 1.

√
: S3

I2
def
= T2 × Trans2

Trans2
def
= ω.infect : I3 + 1.

√
: I3

T2
def
= ω.infect : 0 + ω.infectU : 0 + 1.

√
: 0

U2
def
= T2 × TransU2

TransU2
def
= ω.infectU : U3 + 1.

√
: U3

R2
def
= ω.infect : R3 + ω.infectU : R3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= (1 − pd).

√
: S1 + pd.

√
: 0

SI3
def
= (pi ∗ (1 − ps)).

√
: I1 + (pi ∗ ps).

√
: U1

+(1 − pd − pi).
√

: S1 + pd.
√

: 0

SU3
def
= (piu ∗ (1 − ps)).

√
: I1 + (piu ∗ ps).

√
: U1

+(1 − pd − piu).
√

: S1 + pd.
√

: 0

I3
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: I1 + (pd + pdd).

√
: 0

U3
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: U1 + (pd + pdd).

√
: 0

R3
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B3
def
= 1.

√
: S1

Popn
def
= S1{s} × I1{i} × U1{u} × R1{r}d{√}

Figure 7.1: Supershedder model with density dependent probability of giving
birth - contact in one stage - prioritised communication
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standard infecteds and superspreaders respectively. The MFE found in this

way are

St+1 = (1 − pd)St − piSInew − αpiSUnew + Nt(pb0 − kNt) ,

It+1 = (1 − pd − pdd − pr)It + pi(1 − ps)SInew + αpi(1 − ps)SUnew ,

Ut+1 = (1 − pd − pdd − pr)Ut + pipsSInew + αpipsSUnew ,

Rt+1 = (1 − pd)Rt + pr(It + Ut) , (7.1)

where piu = αpi for some α > 1 .

Despite not being able to automatically obtain expressions for SInew and

SUnew it is possible to obtain such expressions by careful consideration of

the system. In doing this we make use of multinomial coefficients of the

form
(

X

Xinfect ,XinfectU ,Xt

)

=
X!

Xinfect !XinfectU !Xt!
,

where X is the number of agents of type X in the population and Xinfect ,

XinfectU and Xt are the numbers of the X agents that perform the actions

infect, infectU and
√

respectively. The weight associated with a particular

change in the population over this communicating stage is

(

S2

S2infect , S2infectU , S2t

)(

T2

T2infect , T2infectU , T2t

)(

R2

R2infect , R2infectU , R2t

)

.

Note we do not have to consider binomial coefficients for the number of the

Trans2 and TransU2 agents that communicate since there will always be
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sufficient S2, T2 and R2 for them all to communicate. By considering the

average of all the ways in which the population can evolve we get

SInew =
∑S2

a=0

∑S2−a
b=0 a

(

S2
a,b,S2−a−b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c,d,T2−c−d

)(

R2
I2−a−c,U2−b−d,R2−I2−U2+a+b+c+d

)

∑S2
a=0

∑S2−a
b=0

(

S2
a,b,S2−a−b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c,d,T2−c−d

)(

R2
I2−a−c,U2−b−d,R2−I2−U2+a+b+c+d

)

and

SUnew =
∑S2

a=0

∑S2−a
b=0 b

(

S2
a,b,S2−a−b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c,d,T2−c−d

)(

R2
I2−a−c,U2−b−d,R2−I2−U2+a+b+c+d

)

∑S2
a=0

∑S2−a
b=0

(

S2
a,b,S2−a−b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c,d,T2−c−d

)(

R2
I2−a−c,U2−b−d,R2−I2−U2+a+b+c+d

)
,

since Trans2 = I2 and TransU2 = U2 .

In this form these terms are intractable but they can be simplified to

give tractable terms. Firstly we note that these multinomial coefficients can

be rewritten as the product of two binomial coefficients, for instance

(

S2

a, b, S2 − a − b

)

=
S2!

a!b!(S2 − a − b)!

=
S2!(S2 − a)!

a!b!(S2 − a − b)!(S2 − a)!

=
S2!

a!(S2 − a)!
× (S2 − a)!

b!(S2 − a − b)!

=

(

S2

a

)(

S2 − a

b

)

.

Similarly we find

(

T2

c, d, T2 − c − d

)

=

(

T2

c

)(

T2 − c

d

)
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and

(

R2

I2 − a − c, U2 − b − d,R2 − I2 − U2 + a + b + c + d

)

=

(

R2

I2 − a − c

)(

R2 − I2 + a + c

U2 − b − d

)

.

Using these binomial coefficient representations SInew and SUnew become

SInew =
∑S2

a=0

∑S2−a
b=0 a

(

S2
a

)(

S2−a
b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c

)(

T2−c
d

)(

R2
I2−a−c

)(

R2−I2+a+c
U2−b−d

)

∑S2
a=0

∑S2−a
b=0

(

S2
a

)(

S2−a
b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c

)(

T2−c
d

)(

R2
I2−a−c

)(

R2−I2+a+c
U2−b−d

)

and

SUnew =
∑S2

a=0

∑S2−a
b=0 b

(

S2
a

)(

S2−a
b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c

)(

T2−c
d

)(

R2
I2−a−c

)(

R2−I2+a+c
U2−b−d

)

∑S2
a=0

∑S2−a
b=0

(

S2
a

)(

S2−a
b

)
∑I2−a

c=0

∑U2−b
d=0

(

T2
c

)(

T2−c
d

)(

R2
I2−a−c

)(

R2−I2+a+c
U2−b−d

)
.

Using Vandermonde’s convolution [35],

∑

k

(

j

m + k

)(

s

i − k

)

=

(

j + s

m + i

)

,

these terms become

SInew =
S2tI2t

N2t

and

SUnew =
S2tU2t

N2t

,

where N2t = S2t + I2t + U2t + R2t = S2t + T2t + R2t . By substituting for
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SInew and SUnew the MFE for this model, (7.1), become

St+1 = (1 − pd)St − pi
StIt

Nt

− αpi
StUt

Nt

+ Nt(pb0 − kNt) ,

It+1 = (1 − pd − pdd − pr)It + pi(1 − ps)
StIt

Nt

+ αpi(1 − ps)
StUt

Nt

,

Ut+1 = (1 − pd − pdd − pr)Ut + pips
StIt

Nt
+ αpips

StUt

Nt
,

Rt+1 = (1 − pd)Rt + pr(It + Ut) . (7.2)

To allow comparison to subsequent models, which have different forms of

communication, we consider the one stage behaviour of a small population

consisting of three S2, one I2 (consisting of one T2 and one Trans2), and

one U2 (consisting of one T2 and one TransU2) over the communicating

stage. Since this is the one stage behaviour over the communicating stage it

depends solely on the numbers of agents of different types present and not

on any of the probabilities in the model. We find that the mean numbers

of susceptibles that communicate in this case are SInew = 0.6 and SUnew =

0.6 . Note that the total mean number of susceptible individuals that make

contact with infected or superspreader individuals is SInew +SUnew = 0.6+

0.6 = 1.2, which is the same as we would have if we were considering a

standard SIR model (such as that described in Fig. 3.1) with a population

consisting three susceptible and two infected agents. Subsequent models

lead to different terms for the communication stage so we will carry out this

calculation to allow us to compare the models. Here we have the same mean

number of contacts as we would expect without superspreaders: however,

after the subsequent stage we would expect to find an increased number

of new infections, for the same value of pi . It would however be possible

to choose a different value of pi that would give the same overall mean

behaviour. For instance considering a superspreader with piu = αp i , ps
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will be the proportion of infected individuals that are superspreaders and it

would be possible to design a model without superspreaders with probability

of infection p′i = (1−ps)pi+αpips that would have the same mean behaviour.

Non-prioritised communication

Norman and Shankland [73] demonstrated that for their models the choice

of whether to use prioritised communication or not does not affect the mean

behaviour. In Chapter 5 we demonstrated that this is not always true and

here we investigate this question for models of the form of Fig. 7.1. The

model in Fig. 7.2 differs from Fig. 7.1 only by the decision to use non-

prioritised communication, with the S2 and R2 agents able to perform the

actions infect, infectU or
√

with equal weight. The mean numbers of these

agents that perform the respective actions once again depend on the mix of

different agents in the population. As in previous non-prioritised models we

do not use parallel infected agents since infectious agents have the option not

to communicate. In the models of Norman and Shankland this option not

to communicate has the same effect numerically as explicitly modelling the

situation where an infected individual communicates with another infected

individual in the prioritised communication case.

This model once more leads to the equations (7.1) and again we cannot

automatically derive expressions for SInew and SUnew . However, by once

again considering this specific model we can obtain expressions for the mean

numbers of S2 agents that communicate with I2 and U2 agents. For this

model we note that the weight with which any population change happens

is

(

S2

S2infect , S2infectU , S2t

)(

R2

R2infect , R2infectU , R2t

)(

I2

I2infect

)(

U2

U2infect

)

,
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pb
prob
= pb0 − k ∗ (bS1c + bI1c + bU1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

U1
def
= pb.

√
: RepU + (1 − pb).

√
: U2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepU
def
= U2 × B2

RepR
def
= R2 × B2

S2
def
= 1.infect : SI3 + 1.infectU : SU3 + 1.

√
: S3

I2
def
= 1.infect : I3 + 1.

√
: I3

U2
def
= 1.infectU : U3 + 1.

√
: U3

R2
def
= 1.infect : R3 + 1.infectU : R3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= (1 − pd).

√
: S1 + pd.

√
: 0

SI3
def
= (pi ∗ (1 − ps)).

√
: I1 + (pi ∗ ps).

√
: U1

+(1 − pd − pi).
√

: S1 + pd.
√

: 0

SU3
def
= (piu ∗ (1 − ps)).

√
: I1 + (piu ∗ ps).

√
: U1

+(1 − pd − piu).
√

: S1 + pd.
√

: 0

I3
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: I1 + (pd + pdd).

√
: 0

U3
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: U1 + (pd + pdd).

√
: 0

R3
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B3
def
= 1.

√
: S1

Popn
def
= S1{s} × I1{i} × U1{u} × R1{r}d{√}

Figure 7.2: Supershedder model with density dependent probability of giving
birth - contact in one stage - non-prioritised communication
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which considers the numbers of I2 and U2 that communicate, since they can

choose not to, as well as the numbers of S2 and R2 that perform the various

actions. The multinomial coefficients can once again be replaced by the

product of two binomial coefficients and the weight with which population

changes happen is

(

S2

S2infect

)(

S2 − S2infect
S2infectU

)(

R2

R2infect

)(

R2 − R2infect
S2infectU

)(

I2

I2infect

)(

U2

U2infect

)

.

By considering the mean of all possible outcomes for the system we find

SInew =

∑S2
a=0

∑S2−a
b=0 a

(

S2
a

)(

S2−a
b

)
∑I2

c=a

∑U2
d=b

(

I2
c

)(

U2
d

)(

R2
c−a

)(

R2−c+a
d−b

)

∑S2
a=0

∑S2−a
b=0

(

S2
a

)(

S2−a
b

)
∑I2

c=a

∑U2
d=b

(

I2
c

)(

U2
d

)(

R2
c−a

)(

R2−c+a
d−b

)

and

SUnew =

∑S2
a=0

∑S2−a
b=0 b

(

S2
a

)(

S2−a
b

)
∑I2

c=a

∑U2
d=b

(

I2
c

)(

U2
d

)(

R2
c−a

)(

R2−c+a
d−b

)

∑S2
a=0

∑S2−a
b=0

(

S2
a

)(

S2−a
b

)
∑I2

c=a

∑U2
d=b

(

I2
c

)(

U2
d

)(

R2
c−a

)(

R2−c+a
d−b

) .

The term
I2
∑

c=a

U2
∑

d=b

(

I2

c

)(

U2

d

)(

R2

c − a

)(

R2 − c + a

d − b

)

,

which appears in the numerator and denominator of both terms, can be

simplified to
I2
∑

c=a

(

I2

c

)(

R2

c − a

)(

R2 + U2 − c + a

R2 − c + a + b

)

by noting that

(

R2 − c + a

d − b

)

=

(

R2 − c + a

R2 − c + a − d + b

)

.
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This gives us the terms

SInew =

∑S2
a=0

∑S2−a
b=0 a

(

S2
a

)(

S2−a
b

)
∑I2

c=a

(

I2
c

)(

R2
c−a

)(

R2+U2−c+a
R2−c+a+b

)

∑S2
a=0

∑S2−a
b=0

(

S2
a

)(

S2−a
b

)
∑I2

c=a

(

I2
c

)(

R2
c−a

)(

R2+U2−c+a
R2−c+a+b

)

and

SUnew =

∑S2
a=0

∑S2−a
b=0 b

(

S2
a

)(

S2−a
b

)
∑I2

c=a

(

I2
c

)(

R2
c−a

)(

R2+U2−c+a
R2−c+a+b

)

∑S2
a=0

∑S2−a
b=0

(

S2
a

)(

S2−a
b

)
∑I2

c=a

(

I2
c

)(

R2
c−a

)(

R2+U2−c+a
R2−c+a+b

) ,

which cannot be simplified any further.

As for the previous model, we consider the mean one stage behaviour for

a population consisting of three S2, one I2 and one U2 and find the mean

numbers of S2 agents that communicate with I2 and U2 are SInew = 0.692

and SUnew = 0.692 . Here the total number of infectious contacts (either

with standard infecteds or superspreaders) is 1.384, which is more than we

find in a standard SIR model with three susceptible and two infected agents.

The point of the supershedders is that they are somehow more infectious

but here we also find that the model featuring supershedders leads to more

infectious contacts. This is not the behaviour that we wish to capture in

the model so that this form of communication is not suitable for describing

biological systems featuring superspreaders. This problem arises because of

the form of the S2 and R2 agents. In the models of Norman and Shankland

[73] the susceptible individuals were of the form

S2
def
= 1.infect : I1 + 1.

√
: S1 ,

which means that agents are weighted 1 to communicate and 1 to perform

the free action
√

. However, in Fig. 7.2 the agents are effectively weighted

2 to communicate (1 to perform infect and 1 to perform infectU) and 1 to
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perform the free action
√

. This makes the agents more likely to communi-

cate, although the mean numbers that do so are still dependent on the mix

of individuals present in the system.

Future work The models in Figs. 7.1 and 7.2 raise interesting questions

for future work, namely

• what would the general terms be for the mean outcome of communi-

cation of this sort and can they be simplified?

• what effect do weights other than 1 have on communication and what

would the general terms be if we did not impose the restriction on the

weights of communicating agents?

By answering these questions it would be possible to extend the scope of

the algorithm described in Chapter 3.

7.1.2 Consecutive contact stages

In Chapter 5 we demonstrated that it was possible to communicate on suc-

cessive stages and make the same mean number of contacts as we find by

communicating in parallel. Here we investigate the use of this form of com-

munication to implement a model of superspreaders with the standard in-

fected agents (I) communicating on the first stage and superspreaders com-

municating on the second stage. This choice of order does not affect the

overall mean number of contacts that are made. This form of communica-

tion is interesting because we can obtain MFE directly using our algorithm.

Prioritised communication

The model in Figs. 7.3 and 7.4 has contact by infected individuals and by

superspreaders occurring in different stages of the model. At the second
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pb
prob
= pb0 − k ∗ (bS1c + bI1c + bU1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

U1
def
= pb.

√
: RepU + (1 − pb).

√
: U2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepU
def
= U2 × B2

RepR
def
= R2 × B2

S2
def
= ω.infect : SI3 + 1.

√
: S3

I2
def
= T2 × Trans2

Trans2
def
= ω.infect : I3 + 1.

√
: I3

T2
def
= ω.infect : 0 + 1.

√
: 03

U2
def
= T2 × TransU2

TransU2
def
= 1.

√
: TransU3

R2
def
= ω.infect : R3c + 1.

√
: R3

B2
def
= 1.

√
: B3

Figure 7.3: Supershedder model with density dependent probability of giving
birth, Part 1
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S3
def
= ω.infectU : SU4 + 1.

√
: S4

SI3
def
= 1.

√
: SI4

I3
def
= 1.

√
: I4

TransU3
def
= ω.infectU : U4 + 1.

√
: U4

T3
def
= ω.infectU : 0 + 1.

√
: 0

R3
def
= ω.infectU : R4 + 1.

√
: R4

R3c
def
= 1.

√
: R4

B3
def
= 1.

√
: B4

S4
def
= (1 − pd).

√
: S1 + pd.

√
: 0

SI4
def
= (pi ∗ (1 − ps)).

√
: I1 + (pi ∗ ps).

√
: U1

+(1 − pd − pi).
√

: S1 + pd.
√

: 0

SU4
def
= (piu ∗ (1 − ps)).

√
: I1 + (piu ∗ ps).

√
: U1

+(1 − pd − piu).
√

: S1 + pd.
√

: 0

I4
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: I1 + (pd + pdd).

√
: 0

U4
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: U1 + (pd + pdd).

√
: 0

R4
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B4
def
= 1.

√
: S1

Popn
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 7.4: Supershedder model with density dependent probability of giving
birth, Part 2
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stage in the model susceptible, infected, superspreader and recovered indi-

viduals are able to be contacted by the infected individuals and at the third

stage those which have not already been contacted are able to be contacted

by the superspreaders.

The fourth stage in the model involves individuals making probabilistic

choices. Susceptible individuals that have not been contacted by an infected

individual or a superspreader, and recovered individuals, die (with proba-

bility pd) or survive (with probability 1 − pd). The susceptible individuals

that have been contacted by an infected individual die (with probability pd),

become infected (with probability pi(1−ps)), become a superspreader (with

probability pi×ps) or remain susceptible (with probability 1−pd−pi). Sim-

ilarly susceptible individuals that have been contacted by a superspreader

die (with probability pd), become infected (with probability piu(1 − ps)),

become a superspreader (with probability piu × ps) or remain susceptible

(with probability 1−pd−piu). Infected and superspreader individuals recover

(with probability pr), die (with probability pd+pdd, pdd being the probability

of dying due to the disease) or survive (with probability 1 − pd − pdd − pr).

The mean behaviour of this model is represented by the following system

of equations:

St+1 = (1 − pd)St −
St(piIt + αpiUt)

Nt
+ Nt(pb0 − kNt)

It+1 = (1 − pd − pdd − pr)It +
(1 − ps)St(piIt + αpiUt)

Nt
,

Ut+1 = (1 − pd − pdd − pr)Ut +
psSt(piIt + αpiUt)

St + It + Ut + Rt
,

Rt+1 = (1 − pd)Rt + pr(It + Ut). (7.3)

We can see that these equations take the same general form as (7.1), the

equations for Figs. 7.1 and 7.2, but here we have the following expressions
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for the numbers of susceptible individuals contacted,

SInew =
StIt

Nt

and SUnew =
StUt

Nt

,

which we can obtain because the form of communication used is covered by

the algorithm of Chapter 3.

To compare the behaviour of this model to the behaviour of the previous

models over the communication stages we once again consider the mean be-

haviour of a population consisting of three S2, one I2 and one U2. For the

model in Fig. 7.3 communication happens over two stages and the mean be-

haviour can be found using the following two systems of one stage equations,

which are produced by the algorithm while deriving (7.3):

T2t = I2t + U2t ,

SI3t+1 =
S2tI2t

S2t + T2t + R2t
,

S3t+1 = S2t −
S2tI2t

S2t + T2t + R2t
,

I3t+1 = I2t ,

T3t+1 = T2t −
T2tI2t

S2t + T2t + R2t
,

T ransU3t+1 = U2t ,

R3ct+1 =
R2tI2t

S2t + T2t + R2t
,

R3t+1 = R2t −
R2tI2t

S2t + T2t + R2t
,
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and

SU4t+1 =
S3tTransU3t

S3t + T3t + R3t

,

S4t+1 = S3t −
S3tTransU3t

S3t + T3t + R3t

,

SI4t+1 = SI3t ,

I4t+1 = I3t ,

U4t+1 = TransU3t ,

R4t+1 = R3t + R3ct .

Using these equations we find that the mean population after these two

stages consists of 1.8 S4, 0.6 SI4, 0.6 SU4, 1 I4 and 1 U4. This is the same

population that we found after the communication stage of Fig. 7.1 and

therefore we have the same number of susceptibles contacted as we would

for a standard SIR model.

Non-prioritised communication

The model in Figs. 7.5 and 7.6 replaces the prioritised communication in Fig.

7.3 and 7.4 with non-prioritised communication in the usual way. We once

again wish to investigate whether the choice of non-prioritised communication

176



pb
prob
= = pb0 − k ∗ (bS1c + bI1c + bU1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

U1
def
= pb.

√
: RepU + (1 − pb).

√
: U2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepU
def
= U2 × B2

RepR
def
= R2 × B2

S2
def
= 1.infect : SI3 + 1.

√
: S3

I2
def
= 1.infect : I3 + 1.

√
: I3

U2
def
= 1.

√
: U3

R2
def
= 1.infect : R3c + 1.

√
: R3

B2
def
= 1.

√
: B3

Figure 7.5: Supershedder model with density dependent probability of giving
birth - non-prioritised communication, Part1
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S3
def
= 1.infectU : SU4 + 1.

√
: S4

SI3
def
= 1.

√
: SI4

I3
def
= 1.

√
: I4

U3
def
= 1.infectU : U4 + 1.

√
: U4

R3
def
= 1.infectU : R4 + 1.

√
: R4

R3c
def
= 1.

√
: R4

B3
def
= 1.

√
: B4

S4
def
= (1 − pd).

√
: S1 + pd.

√
: 0

SI4
def
= (pi ∗ (1 − ps)).

√
: I1 + (pi ∗ ps).

√
: U1

+(1 − pd − pi).
√

: S1 + pd.
√

: 0

SU4
def
= (piu ∗ (1 − ps)).

√
: I1 + (piu ∗ ps).

√
: U1

+(1 − pd − piu).
√

: S1 + pd.
√

: 0

I4
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: I1 + (pd + pdd).

√
: 0

U4
def
= pr.

√
: R1 + (1 − pd − pdd − pr).

√
: U1 + (pd + pdd).

√
: 0

R4
def
= pd.

√
: 0 + (1 − pd).

√
: R1

B4
def
= 1.

√
: S1

Popn
def
= S1{s} × I1{i} × U1{u} × R1{r}d{√}

Figure 7.6: Supershedder model with density dependent probability of giving
birth - non-prioritised communication, Part 2
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affects the mean behaviour of the system, which is done by obtaining the

MFE:

St+1 = (1 − pd)St + Nt(pb0 − kNt) −

St

(

piIt

St + It + Rt
+

αpiUtRt

(St + Rt)2 + (St + It + Rt)Ut

)

It+1 = (1 − pd − pdd − pr)It +

(1 − ps)St

(

piIt

St + It + Rt
+

αpiUtRt

(St + Rt)2 + (St + It + Rt)Ut

)

,

Ut+1 = (1 − pd − pdd − pr)Ut +

psSt

(

piIt

St + It + Rt
+

αpiUtRt

(St + Rt)2 + (St + It + Rt)Ut

)

,

Rt+1 = (1 − pd)Rt + pr(It + Ut).

These differ from the MFE for the case where we used prioritised communi-

cation, (7.3), because we are once again not capturing the desired behaviour.

The agents that can perform the output actions miss an opportunity to pass

on the infection by performing
√

. For this model to have the same mean

behaviour as Fig. 7.3 we need the choice to do
√

to have the same effect as

communicating with a T2 or T3 in Fig. 7.3. However the I2 and U3 agents

should be able to interact with agents performing the output action on both

communicative stages. This is not possible without introducing the possibil-

ity that they can be responsible for absorbing two infectious contacts. For

example if U2 and I3 have the forms

U2
def
= 1.infect : U3 + 1.

√
: U3

I3
def
= 1.infect : I4 + 1.

√
: I4

the infected and superspreader individuals could explicitly communicate

with an agent performing an output action as well as failing to perform the
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output action, which in simple models [73] has the same numerical effect.

We again use the two sets of one stage equations to determine how a

small population behaves over the communication stages:

S3t+1 = S2t −
S2tI2t

S2t + I2t + R2t
,

SI3t+1 =
S2tI2t

S2t + I2t + R2t
,

I3t+1 = I2t ,

U3t+1 = U2t ,

R3ct+1 =
R2tI2t

S2t + I2t + R2t

,

R3t+1 = R2t −
R2tI2t

S2t + I2t + R2t

,

and

S4t+1 = S3t −
S3tU3t

S3t + U3t + R3t
,

SI4t+1 = SI3t ,

SU4t+1 =
S3tU3t

S3t + U3t + R3t

,

I4t+1 = I3t ,

U4t+1 = U3t ,

R4t+1 = R3t + R3ct .

Considering again a population consisting of three S2, one I2 and one U2 we

find that the mean population after communication consists of 1.5577 S4,

0.75 SI4, 0.6923 SU4, 1 I4 and 1 U4. This means that the total number

of communicative contacts (0.75 + 0.6923 = 1.4423) is greater than for any

of the previous models and furthermore the standard infecteds have made

more contacts on average than the superspreaders. This is not the desired
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behaviour, since there are equal numbers of I2 and U2 and they should be

equally likely to communicate. Also this behaviour would not be maintained

if the order of infected and superspreader contact was reversed. Changing

the order would lead to the numbers of SI4 and SU4 being switched.

7.1.3 Time series

We study the behaviour of the model from Fig. 7.3 by considering the time

series of the MFE, (7.3), and also the time series of the mean of 1000 sim-

ulations of the model. This was done for a wide range of parameter values

and in most cases the MFE fitted the mean of simulations well, as we have

found for other models. However for this superspreader model we found

that for some parameter values the two time series diverge and it is such

a case we consider here. The graph in Fig. 7.7 considers the total number

of infected individuals in the population (I + U) for an initial population

of S1{200} × I1{40} × U1{10} with ps = 0.2 , pi = 0.02 , α = 16 , pr =

0.02 , pd = 0.01 , pdd = 0.005 , pb0 = 0.2 and k = 0.0008 . These values of

ps and α mean that on average we expect 20% of the infected individuals

to be responsible for 80% of new infections, which has been proposed as the

proportions that arise in superspreader systems [60, 94]. We see in Fig. 7.7

that the MFE and the simulations match well during the initial peak of the

infection but over time the MFE settles to a steady state while the mean of

the simulations gradually tends towards extinction of the disease.

In Section 7.1.1 we discussed the idea that it is possible to choose a

different value of pi such that the mean behaviour of a system without

superspreaders will be the same as for the system with superspreaders. This

is done for Fig. 7.3 by setting α = 1 , so that the U agents have the same

behaviour as the I, and by setting pi = 0.08 (to satisfy 0.8 × 0.02 + 0.2 ×
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Figure 7.7: Total infecteds (I+U) with supershedders: — MFE; Simulations
— mean.
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Figure 7.8: Total infecteds (I + U) without supershedders, pi = 0.08: —
MFE; Simulations — mean.
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16 × 0.02 = 0.08) - all other parameter values are kept the same as for Fig.

7.7. This case is shown in Fig. 7.8 where we can see that the MFE have

the same time series but the simulations now closely match the MFE for

the entire duration being considered. This leads us to ask why the mean

of the simulations should have such different behaviour with superspreaders

present when the MFE have the same time series.

Matthews and Woolhouse [64] suggested that the presence of super-

spreaders could be expected to increase the variability of a system. We

investigate this for our system by considering, in Fig. 7.9, the two cases

(with or without superspreaders) in a single graph for a shorter period to

examine the variability before the means diverge significantly. For the su-

perspreader model we found that the distribution of our simulations was

skewed so we plot the median and quartiles for both models. We can see

that during the initial peak of infection the means remain close but at an

early stage there is a difference between the quartiles and by the end of the

period considered the model with superspreaders has significantly greater

inter-quartile range and the median is markedly diverging from the MFE.

If we consider a single simulation (Fig. 7.10) we find that the infection dies

out, with the time at which the infection dies out varying stochastically be-

tween separate runs of the simulation. This explains the stochastic fade-out

witnessed when we consider the mean of many simulations. Over time the

number of simulations where It +Ut = 0 increases so that the mean of many

simulations tends to 0. We do not find this behaviour in the case without

superspreaders as the smaller variability means that individual simulations

do not experience extinction of the disease.
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Figure 7.9: Total infection (I+U): — MFE; Simulations with supershedders
— median, ... upper and lower quartiles; Simulations without supershedders
— median, ... upper and lower quartiles.
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Figure 7.10: Total infecteds (I + U) with supershedders - single simulation:
— MFE; Simulation —.
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Figure 7.11: Total infecteds (I + U) without supershedders, pi = 0.02: —
MFE; Simulations — mean.

It should also be noted that for the probability of infection used in the

superspreader case (pi = 0.02) the disease cannot persist without a por-

tion of the infecteds being superspreaders that give a greater probability of

infection. This is demonstrated in Fig. 7.11, which uses pi = 0.02, α = 1 and

all other parameter values as before. In this case the disease dies without an

initial epidemic occurring and the mean of the simulations match the MFE

well over the entire period for which the disease survives.

7.2 Contact Superspreaders

The model in Fig. 7.12 features superspreaders that have a higher contact

rate than the standard infected individuals. Density dependence in the

population is introduced by the same mechanism as in the infectiousness

models of section 7.1. The increased contact rate for the superspreaders
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pb
prob
= pb0 − k ∗ (bS1c + bI1c + bU1c + bR1c)

S1
def
= pb.

√
: RepS + (1 − pb).

√
: S2

I1
def
= pb.

√
: RepI + (1 − pb).

√
: I2

U1
def
= pb.

√
: RepU + (1 − pb).

√
: U2

R1
def
= pb.

√
: RepR + (1 − pb).

√
: R2

RepS
def
= S2 × B2

RepI
def
= I2 × B2

RepU
def
= U2 × B2

RepR
def
= R2 × B2

S2
def
= ω.infect : SI3 + 1.

√
: S3

I2
def
= T2 × Trans{ci}

Trans
def
= ω.infect : 0 + 1.

√
: 0

T2
def
= ω.infect : I3 + 1.

√
: I3

U2
def
= TU2 × Trans{cu}

TU2
def
= ω.infect : U3 + 1.

√
: U3

R2
def
= ω.infect : R3 + 1.

√
: R3

B2
def
= 1.

√
: B3

S3
def
= (1 − pd).

√
: S1 + pd.

√
: 0

SI3
def
= (pi ∗ (1 − ps)).

√
: I1 + (pi ∗ ps).

√
: U1

+(1 − pi − pd).
√

: S1 + pd.
√

: 0

I3
def
= pr.

√
: R1 + (1 − pr − pd − pdd).

√
: I1 + (pd + pdd).

√
: 0

U3
def
= pr.

√
: R1 + (1 − pr − pd − pdd).

√
: U1 + (pd + pdd).

√
: 0

R3
def
= (1 − pd).

√
: R1 + pd.

√
: 0

B3
def
= 1.

√
: S1

Popn
def
= S1{s} × I1{i} × R1{r}d{√}

Figure 7.12: Contact superspreader model with density dependent proba-
bility of giving birth
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is achieved by having the superspreader parallel agent (U2) feature more

Trans agents (which can pass on the infection) than the infected parallel

agent (I2) i.e. cu = αci with α > 1.

The mean behaviour of this model is given by the following mean field

equations (which are derived directly by our algorithm):

St+1 = (1 − pd)St − min

[

piSt,
piSt(ciIt + αciUt)

Nt

]

+ Nt(pb0 − kNt),

It+1 = (1 − pd − pdd − pr)It + (1 − ps)min

[

piSt,
piSt(ciIt + αciUt)

Nt

]

,

Ut+1 = (1 − pd − pdd − pr)Ut + ps min

[

piSt,
piSt(ciIt + αciUt)

Nt

]

,

Rt+1 = (1 − pd)Rt + pr(It + Ut). (7.4)

This system of equations can be analysed by considering the two options

within the minimum term. This means that the behaviour of the model is

described by either

St+1 = (1 − pd)St − piSt ,

+ Nt(pb0 − kNt) ,

It+1 = (1 − pd − pdd − pr)It + (1 − ps)piSt ,

Ut+1 = (1 − pd − pdd − pr)Ut + pspiSt ,

Rt+1 = (1 − pd)Rt + pr(It + Ut) , (7.5)
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or

St+1 = (1 − pd)St −
piSt(ciIt + αciUt)

Nt

,

+ Nt(pb0 − kNt) ,

It+1 = (1 − pd − pdd − pr)It +
(1 − ps)piSt(ciIt + αciUt)

Nt
,

Ut+1 = (1 − pd − pdd − pr)Ut +
pspiSt(ciIt + αciUt)

Nt

,

Rt+1 = (1 − pd)Rt + pr(It + Ut) . (7.6)

We are most interested in (7.6) since this applies in general, with (7.5)

applying only when much of the population is already infected. With ci = 1

(7.6) is the same as the system of equations for the supershedder model

given in (7.3) and where ci > 1 we have (7.3) with pi rescaled by a factor of

ci. This means that for the contact superspreaders model we have the same

mean behaviour as for supershedders, except when a large proportion of the

population is already infected.

7.3 Summary

In this chapter we have presented several models of disease spread featuring

superspreaders. In Section 7.1 we considered models where contact with

a superspreader made the susceptible individuals more likely to go on to

become infected, than if contact was with a standard infected individual.

To do this, the superspreader and standard infected agents perform different

actions with the susceptible agents going into a different state depending on

the action performed, with differing probabilities of becoming infected. This

can be implemented in two ways in WSCCS: either the agents performing

the input actions can make the choice between two communicative actions
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in a single stage or contact with standard infecteds and superspreaders can

happen on consecutive stages.

We found that for both forms of contact non-prioritised communication

led to a greater mean number of contacts by the susceptibles than for a model

without superspreaders. This is not the behaviour we wish to capture, since

the superspreaders should only have the effect of making infection more

likely after contact than the standard infecteds.

For the consecutive contact, prioritised communication model we studied

the time series of the resulting MFE and also the time series arising from

the mean of many simulations of the model. We found that the variability of

the stochastic simulations is greater when superspreaders are present than

for a corresponding model with the same mean behaviour but no super-

spreaders. This agrees with result found by Mathews and Woolhouse [64]

who found that superspreaders had the effect of increasing the variability

in the outcomes of the system. For the particular parameter values being

considered we found that this increased variability had the effect of allowing

the mean infection in the simulations to die out. Meanwhile the MFE settle

to a steady state that features fixed numbers of standard infected and super-

spreader individuals. This is an example of a model for which the MFE do

not always offer a good approximation to the long term average behaviour

of the model, although the MFE are a very good approximation to the simu-

lations during the crucial early epidemic phase. The divergence of the MFE

from the mean of the simulations is caused by the increased variability in-

troduced by the superspreaders, although for many choices of the parameter

values the MFE still offer a good approximation to the mean of the system.

So far we have found the variability by calculating the standard deviation,

or quartiles, of a large number of simulations, which is computationally ex-
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pensive. A preferable approach, which could be addressed in future work,

would derive equations for the variability in the system directly from the

WSCCS syntax. This would allow us to see how variability changes with

key parameters such as α.

In Section 7.2 we presented a model for a system featuring contact su-

perspreaders. This behaviour was captured by having both types of infected

individual represented by parallel agents with the superspreaders including

more agents that perform the output action. The model led to MFE that

feature a min term but for cases where the majority of the population has

not been infected the MFE match those for the infectiousness superspreader

models.

In Section 7.1 we found that models featuring prioritised communica-

tion were able to capture the desired behaviour while those featuring non-

prioritised communication were not. This leads us to conclude that priori-

tised communication is preferable since it can more accurately model the

desired systems. We further found that the same mean population level

behaviour was found for prioritised models featuring either a single contact

stage (with agents able to choose between two input actions) or consecutive

contact stages (with different actions performed on different stages). The

consecutive contact model has the advantage that MFE can be derived di-

rectly using our algorithm while the single contact stage model offers a more

intuitive way of capturing the desired behaviour. At present there is a trade

off between the simplicity of deriving equations automatically and more in-

tuitively describing the system. This could be overcome by expanding the

algorithm to cover models that feature communication of the form used in

Figs. 7.1.
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Chapter 8

Conclusions & Future Work

8.1 Conclusions

In this thesis we have investigated the use of process algebra as a tool to

model and analyse the spread of infectious disease. We have presented an al-

gorithm to formalise the process of deriving MFE from process algebra mod-

els. This algorithm relates the behaviour of the population to the behaviour

of, and interaction between, the individuals that make up the population.

We went on to develop models to address specific biological questions and

using this algorithm we derived MFE that describe the average behaviour

of the system. The questions considered were:

• Changing scale - how can we rigorously move from individual level to

population level description of a system?

• Population growth - what individual level behaviours lead to different

equations?

• Density dependent transmission - can individual behaviour be defined

that leads to density dependent transmission MFE?
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• Indirect transmission - how can we capture indirect transmission in

individual level models?

• Superspreaders - what effect do superspreaders have on the variability

of a system?

8.1.1 Modelling disease in WSCCS

Suitability of WSCCS

WSCCS has previously been used to produce basic disease models [73, 82]

for which MFE could be obtained. The models presented here have sought

to introduce greater biological realism and are therefore more complicated

than the previous models. The attraction of individual-based modelling is

that populations can most easily be studied in terms of individual behav-

iour and interactions. In disease systems these individual interactions are

fundamentally important to the spread of the disease.

The main advantage of WSCCS is that we have a formal framework for

describing individual behaviour and a range of analytical techniques with

which to study the resulting populations, most notably by deriving MFE -

see below. The formal nature of WSCCS means that we can obtain equations

describing the population level behaviour and have confidence that they arise

from the defined individual level behaviour.

In the course of our work we have found several restrictions on how best

to describe disease systems in WSCCS. For instance Norman and Shank-

land found that the choice to use prioritised or non-prioritised communi-

cation did not affect the overall behaviour of their system, or the resulting

MFE. However, in Chapters 5 and 7 we found that this is not always true

and prioritised communication offers the most intuitive relationship between
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individual-level and population-level behaviour. This may seem undesirable,

since priority can be thought of as “forcing” disease transmission, however

many diseases force infected individuals to pass on the disease. For instance

a fox with rabies becomes aggressive and tends to fight, thereby potentially

transmitting the disease [5].

Another important factor that affects models is the order in which dif-

ferent behaviours happen. We may naively assume that changing the order

of the stages in the model will have no effect on the overall behaviour de-

scribed by the MFE since all of the same behaviour will happen within one

timestep of the MFE. However, in Chapter 3 we found that merely switching

the order of stages can have a significant effect on the MFE. This is because

switching the order changes the underlying biological assumptions of the

model. We must therefore consider carefully the biological implications of

the order in which we choose to present different behaviours in the model.

Advantages of MFE

By developing an algorithm to derive MFE rigorously from the WSCCS

description of the model we have addressed the state explosion problem of

process algebra. The MFE offer a simple way to produce the time series for

the mean behaviour of the system. Traditional process algebra techniques

- simulations or Markov chain analysis - are computationally expensive for

large systems or are restricted in the size of the system that can be investi-

gated.

In addition the MFE are analogous to the traditional mathematical equa-

tions used to model biological systems. A wide range of analyses are available

for these mathematical models and the MFE that arise from our algorithm

are amenable to these analyses. By developing mathematical models in this
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way we can be sure that the population level equations are a direct conse-

quence of the individual behaviour described in the WSCCS model. This is

in contrast to the traditional approach to developing mathematical models

in which assumptions are made about the population level behaviour, al-

though it is the individual level behaviour that can most easily be observed.

In general we have seen that the MFE offer a very good approximation to

the mean of the system but there are limitations. By relating our algorithm

to the proof offered by Kurtz [58] we see that we would expect the MFE

to match exactly the mean of the system in the limiting case where the

system being considered is infinitely large. In general the MFE offer a better

approximation as the size of the system increases but most important is the

number of infected individuals in the initial population. By increasing the

initial number of infected individuals, with a complementary reduction in

the number of susceptible individuals so that the overall population size is

unchanged, we find the MFE more closely match the mean behaviour of the

system, which matches the results of West and Thompson [93] who found

that changing the initial number of infected individuals had the greatest

effect on the convergence of their stochastic and deterministic models.

An important question related to the derivation of MFE is whether it is

possible to define WSCCS behaviour that will lead to desired MFE. This was

achieved in Chapters 4 and 5, however in Chapters 5 and 7 we found that

multiple models could be defined that lead to the same MFE. In addition

it is clear that WSCCS models cannot be defined that will lead directly to

equations featuring exponential or logarithmic terms [40, 78].
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8.1.2 Population growth

In Chapter 4 we developed models that sought to capture realistic popu-

lation dynamics, in which there is a limit on the size of the population.

Many different mathematical models of population dynamics exist and our

models led to two of these. For models including explicit competition for

resources, with separate agents representing food, the MFE that we found

was the Beverton-Holt model [16]. Although this model has previously been

proposed to describe population growth it is not widely used. One of the

disadvantages of the Beverton-Holt model is an increased mathematical com-

plexity, compared to the more commonly used logistic model [91], but the

fact that it has arisen from our simple models that capture competition

for resources suggests that it is a good candidate for describing population

dynamics.

Models where competition was implicitly included, with the probabilities

of either birth or death dependent on the population size, led to the logistic

model [91]. This is in contrast to the findings of Brännström and Sumpter

[19] who presented a site based individual level model of population dynam-

ics, making assumptions that led to several different mathematical models

but most notably they did not find the logistic model. While Brännström

and Sumpter’s range of assumptions were limited by the framework within

which their models were developed, in our models we were free to choose

density dependence of births or deaths to be in any form we wish. The

linear proportionality we implemented effectively incorporates the popula-

tion level assumptions on which the logistic equation is based, however it is

still interesting that we found the logistic equation since Brännström and

Sumpter tried, and failed, to do so.
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8.1.3 Disease transmission

Density dependent vs frequency dependent

The question of whether the density dependent transmission term

βSI

or the frequency dependent term

βSI

N

is most appropriate for capturing disease transmission has been of interest

[10]. The frequency dependent term most naturally arises from WSCCS

models but in Chapter 5 we showed that it was possible to describe indi-

vidual level behaviour that would lead to density dependent transmission.

This is in contrast to the results of Turner et al. [90] who found that what-

ever individual level behaviour was described it could best be approximated

at the population level by the density dependent transmission term. The

difference is likely to be due to the different treatment of spatial informa-

tion in the different models. Turner et al.’s cellular automata models were

inherently spatial, which led to clustering of infection, while our WSCCS

models assume a randomly mixed population. We are now in a position to

look at transmission of specific diseases and investigate what transmission

term should be used to describe them.

Indirect transmission

In Chapter 6 we developed models to capture indirect disease transmis-

sion that utilised separate WSCCS agents to represent the environment.
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Different models featured either an unlimited number of environment agents,

with infected agents probabilistically spawning infected environment, or a

fixed number of environment agents, which become infected by coming into

contact with infected individuals. Another variable in the model was the

way in which infection decays within the environment. If infection persists

for a fixed period of time then in the unlimited environment case the mean

of the system can be represented by equations only for the groups in the

population (S, I and R) with a delay in the transmission term. In all other

cases it was necessary to consider equations to describe the environment

as well as the population. In any environment containing a population the

infected portions of environment will be small compared to the environment

as a whole so it is reasonable to consider the quantity of environment that

can become infected to be unlimited.

8.1.4 Spatial information

All of the models considered in this thesis assume random mixing of in-

dividuals. In Chapters 4 and 5 we found differences between our results

and those of other individual-based modelling approaches [19, 90] that in-

corporate spatial information about individuals in the system. These other

studies found counterintuitive results at the population level while we are

able to describe individual behaviour that intuitively leads to desired popu-

lation level behaviour. The major difference with our models is that we have

removed spatial information although we could explicitly add space later.

8.1.5 Superspreader models

In Chapter 7 we presented models of systems featuring superspreaders.

These models led to MFE that were similar to the model proposed by
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Kemper [51] for a superspreader system. By performing simulations of the

system we found that, for some parameter values, the MFE did not offer a

good fit to the mean of the simulations: the MFE settle to a steady state

while the simulations show the system displaying stochastic fade out of the

disease. This was shown to be due to the increased variability introduced

to the system by the presence of superspreaders. This result was predicted

by Matthews and Woolhouse [64] who suggested that superspreaders could

be expected to increase the variability of the system.

8.2 Future work

In this section we mention some potential directions to extend the work

presented in this thesis.

8.2.1 Variability

Although we have demonstrated that MFE generally offer a very good ap-

proximation to the mean behaviour of the system, the average behaviour

they describe only tells us part of the story: the variability of the system,

and the range of possible outcomes, are also important. In Chapter 7 we

saw that the presence of superspreaders leads to greater variability in the

potential outcomes of the model. With large enough variability we saw that

this could affect the suitability of the MFE as an approximation to the mean

behaviour of the system. To calculate the standard deviation we must per-

form many simulations of the system, which is computationally expensive.

This detracts from the advantage offered by MFE since we must still perform

simulations of the system.

The underlying probabilistic rules of WSCCS would make it possible

to derive equations, in a similar way as for the MFE, which describe the
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standard deviation of the system over time. With such equations it would be

possible to comment on whether stochastic fade out may occur for particular

parameter values. For models that feature only probabilistic agents this is

straightforward, drawing on well known results for the binomial distribution

from probability theory: however, for models featuring communication it is

not so clear how these equations would look, with the corresponding results

for the hypergeometric distribution (which is the relevant distribution for

probabilistic events of the form of communication in WSCCS) resulting in

equations that do not match the standard deviation of the simulations.

8.2.2 ODEs from WSCCS

Although many discrete time difference equation models have been proposed

to describe biological systems it is more common to use ordinary differential

equations to model a system in continuous time. For this approach to be

attractive to mathematical biologists as a method for developing models it

would be advantageous if we could obtain ODEs. One way of obtaining

ODEs for our models would be by thinking of our MFE as the result of ap-

plying Euler’s method to a system of ODEs. This would mean, for instance,

that we could consider the system of MFE that arose from our initial exam-

ple model in Chapter 3, (3.13), to be the result of applying Euler’s method

to the following system of ODEs:

dS

dt
= −piSI

N
,

dI

dt
= −prI +

piSI

N
,

dR

dt
= prI .
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A preferable approach would derive ODEs directly from the WSCCS

description of the system. As mentioned in Chapter 3 the MFE arise from an

intermediate stage of Kurtz’s [58] derivation of ODEs for Markov processes.

It would therefore be possible to amend the algorithm presented in Chapter

3 so that we derive ODEs rather than discrete difference equations. By

deriving such equations we could more directly compare the equations that

arise from WSCCS models to existing mathematical models of biological

systems.

8.2.3 Spatial information

All of the models presented in the previous chapters are based on the idea

that the population is well mixed so that all individuals can interact with any

other. This assumption is used widely when developing models of biological

systems, however, in reality biological systems typically feature some sort of

spatial heterogeneity. By incorporating spatial information into our models

we could more realistically describe the behaviour of the system.

A natural first step to incorporating spatial heterogeneity to our mod-

els would be to consider a model of disease spread in metapopulations.

This could be done by describing a system consisting of several subpop-

ulations, each containing susceptibles, infecteds and recovereds (SA, IA, RA;

SB, IB , RB ;...;SX , IX , RX). Interaction would happen only within these sub-

populations (e.g. SA become infected by interacting with IA) and individuals

can migrate between subpopulations probabilistically (e.g. IA can become

IB with probability pmab
).
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8.2.4 Extending the scope of the algorithm

In Chapter 7 we presented models for which we could not use our algorithm

to derive MFE, although we did obtain MFE by carefully considering the

system. In this case the mean behaviour captured by these MFE is the same

as for another model for which we could obtain MFE using our algorithm,

so the restrictions of the algorithm do not limit the system that can be

described. Nevertheless we may wish in future to use features of WSCCS

that are not currently allowed by the algorithm. Further work on how we

capture the mean behaviour should make it possible to extend the algorithm

to allow it to be used with a wider range of WSCCS models than is currently

possible.
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Appendix A

WSCCS

In this Appendix we summarise the formal syntax and semantics of WSCCS.

The information given here is summarised from [88].

A.1 Syntax

A.1.1 Actions

Action names, a ∈ Act , are chosen from an arbitrary set and as such it

is useful to choose action names that are suggestive of the system being

described. The inverse of the action a (typically input) is a (typically output)

and the identity action is denoted by
√

. When actions must occur in parallel

we denote the multiplication by # such that a#a =
√

.

A.1.2 Relative frequency expressions (RFE)

RFE, e, are defined by the following syntax with x ranging over a set of

variable names and c ranging over a fixed field (e.g. N or R):

e ::= x|c|e + e|e × e .
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In these expressions we have commutative and associative multiplication

and addition, with multiplication distributing over addition.

A.1.3 Weights

The set of WSCCS weights W , denoted by wi, are of the form eωk , e = eω0 .

In such weights e is the relative frequency with which this choice should be

taken and k is the priority of this choice with ω an infinite object, ω >

e ∀ e . The following multiplication and addition rules apply with k ≥ k′:

eωk + fωk′

= eωk = fωk′

+ eωk ,

eωk + fωk = (e + f)ωk = fωk + eωk ,

eωk ∗ fωk′

= (ef)ωk+k′

= fωk′ ∗ eωk .

A.1.4 Grammar

The possible WSCCS expressions are given by the following BNF grammar:

E ::= X|a : E|Σ{wi.Ei|i ∈ I}|E × E|EdA|Θ(E)|E[S]|X def
= E .

Here X ∈ Var , a set of process variables; a ∈ Act , an action group; wi ∈ W ,

a set of weights; S is a set of renaming functions, S : Act → Act such that

S(
√

) =
√

and S(a) = S(a); action subsets A ⊆ Act with
√ ∈ A; and

arbitrary indexing sets I . The informal interpretation of the operators is

as follows

• 0 a process that cannot proceed, representing deadlock;

• X the process bound to the variable X ;

• a : E a process that can perform a becoming E ;
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• Σ{wi.Ei|i ∈ I} the weighted choice between processes Ei , the weight

of Ei being wi . Considering a large number of repeated experiments

of this process, we expect to see Ei chosen with relative frequency

wi/Σi∈Iwi . The binary plus operator can be used in place of the

indexed sum i.e. writing Σ{11.a : 0, 22.b : 0|i ∈ {1, 2}} as 1.a + 2.b ;

• E×F the synchronous parallel composition of E and F . At each stage

each process must perform an action with the composition performing

the composition of the individual actions;

• EdA a process that can only perform actions in the group A . This

operator is used to enforce communication on actions b /∈ A ;

• Θ(E) represents taking the prioritised parts of the process E only ;

• E[S] represents E relabelled by the function S;

• X
def
= E represents binding the process variable X to the expression

E .

A.2 Semantics

The semantics of WSCCS is transition based, defining the actions that a

process can perform and the weight with which a state can be reached. The

operational rules of WSCCS, presented in Table A.1, follow the informal

description of the operators given above. In particular note the two different

arrows that feature in the table:
a→ represents a transition, associated with

the action a ; and
w7−→ represents a transition associated with a weight w .We

may specify multiple ways to choose the same process with the same weight
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a:E
a

−→E
P

{wi.Ei|i∈I}
wi7−→Ei

E
a

−→E′ F
b

−→F ′

E×F
a#b
−→E′×F ′

E
w
7−→E′ F

v
7−→F ′

E×F
wv
7−→E′×F ′

E
a

−→E′ F
w

7−→F ′

E×F
w

7−→E×F ′

E
w
7−→E′ F

a
−→F ′

E×F
w

7−→E′×F

E
a

−→E′ a∈A

doesA(E)

E
w
7−→E′ doesA(E′)

doesA(E)

E
a

−→E′ a∈A

EdA
a

−→E′dA

E
w
7−→E′ doesA(E′)

EdA
w

7−→E′dA

E
a

−→E′

E[S]
S(a)
−→E′[S]

E
w
7−→E′

E[S]
w
7−→E′[S]

E
a

−→E′ X
def
= E

X
a

−→E′

E
w
7−→E′ X

def
= E

X
w

7−→E′

E
a

−→E′

Θ(E)
a

−→Θ(E′)

E
nωk

7−→E′@(k′>k).E
mωk′

7−→

Θ(E)
n

7−→Θ(E′)

Table A.1: Operational rules for WSCCS

and therefore the processes are multi-related by weight, e.g.

1.P + 1.P + 1.Q (A.1)

can evolve to P with cumulative weight 2, so we must retain both evolutions.

The auxiliary predicate doesA(E) , which denotes the ability of E to perform

A after zero or more probabilistic actions, is well defined since only finitely

branching choice expressions are allowed.

A.3 Equational rules

Table A.2 features equational rules that form a sound and complete equa-

tional system for WSCCS.
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(Σ1) Σi∈Iwi.Ei = Σj∈Jvj .Ej

{ there is a surjection f : I 7−→ J with
vj =

∑{wi|i ∈ I ∧ f(i) = j} ,
and for all i with f(i) = j then Ei = Ej .

(Exp1) a : E × b : F = ab : (E × F )

(Exp2) a : E × Σj∈Jvj.Fj = Σj∈Jvj.(a : E × Fj)

(Exp3) (Σi∈Iwi.Ei) × (Σj∈Jvj .Fj) = Σ(i,j)∈(I,J)viwj .(Ei × Fj)

(Res1) (a : E)dA =
{ a : (EdA) if a ∈ A

0 otherwise .

(Res2) (Σi∈Iwi.Ei)dA = Σj∈Jwj .(EjdA) where J = {i ∈ I|dA(Ei)}

(Θ1) Θ(a.E) = a.Θ(E)

(Θ2) Θ(Σi∈Iwi.Ei) = Σj∈JN (wj).Θ(Ej) where J = {i ∈ I|wi = eωmaxω({wi})}

(Ren) Σi∈Iwi.Ei = Σi∈Iewi.Ei where e is an EVF

Table A.2: Equational rules for WSCCS
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