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ELECTRON TRANSMISSION IN GASES

Abstract

This thesis is concerned with the measurement of

total electron-atom and electron-molecule collision

cross-sections and their inte~pretation, and the

observation of fine structure in the transmitted current

due to resonance processes.

The definitions of total cross-section and

related observable parameters are discussed. We then

review the methods that have been used to observe electron

transmission in gases and the cross-sections that have

been reported in the literature. The interpretation of

the features of the total cross-section function is

discussed In terms of theoretical models. We consider

classical mechanical models, wave mechanical models, and

correlations based upon the similarity of chemical

structures. Fine structure is considered in terms of

modern resonance theory.

From these considerations we outline the design

requirements of an electron transmission spectrometer.

A practicable design procedure using computer calculations

of electron optical parameters lis described. This is then used to
construct a spectrometer which w~ll operate in the electron

energy range 2-100 eV with a nearly constant background

current, and with an energy resolution of about 0.050 eVe

The operating characteristics of the apparatus

are described and an investigation of helium reported. We
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present total cross-section data for helium in the reglon

2-30 eV and compare them with published data. Our results,

the first total cross-sections recorded in a non-magnetic

electron spectrometer, deviate somewhat at higher energies

from previously published cross-sections.

We also record the resonances at 19.3 eV lTI

helium and 1.8-5.0 eV in nitrogen.
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1.

1.1 Introduction

Since the discovery of the electron at the end of the

nineteenth century, the study of the collision of electrons with

atomsand moleculeshas led to maJordevelopmentsin our

illlderstandingof the structure of these complexsystems of particles.

This thesis is concernedwith an investigation of one particular

experimental technique whichpermits an estimate to be madeof the

numberof electrons in an electron beam,of varying meanenergy,

which are not scattered by gas atomsor molecules as the beampasses

through the gas. This technique I have termed YlElectronTransmission

Spectrometry", but before considering the details of this technique

wewill first classify the various phenomenawhich can occur when

electrons are scattered by atomsor molecules in a gas.

The scattering of electrons by other particles lS

dependanton a "collisionl1 of someformhaving first occurred. The

concept of a collision betweenparticles of sub-atomic and atomic

dimensionswith their implied wave-particle dualities, mutually

exclusive certainties in position andmomentumand so on, is not as

simple as it mayat first seemin a mental "billiard ball" model.

A satisfactory but rather general definition, sufficient for our

present purposes, is: "Anelectron-atom or electron-molecule

collision can be said to have taken place if any physical change

can be detected in the system after the distance betweenthe electron

and the target particle has first decreased and then increased." Let
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2.

us consider these physical changes. The only physical change possible

for the incident electron is a change in kinetic energy. For energy

to be conserved this can only occur if the-target particle either

galns or loses energy in the collision. The target particle has

internal structure, so the physical changes possible for it are much

more varied. Onepossibility is that it can conserve its internal

energy and change only its kinetic energy. This is called an ELASTIC

COLLISION.The total fractional change in the kinetic energy of the

incident electron can be shownclassically to be 2m/M,wherem is the

mass of the electron and Mis the mass of the target. This fraction

is approximately 1x lQ-4 for a simple molecular target. For many

purposes, then, we can regard an electron scattered elastically as not

having lost kinetic energy in the collision but merely having changed

its direction of motion. Hencethe term "elastic". The other

possibility for the target particle 1S a change in internal energy.

For an atom, this reqUlres a transition from one electronic energy

state to another, whereas for a molecule electronic, vibrational and

rotational states are involved, and the numberof possible excitation

transitions is very muchincreased. If the target gains internal

energy wehave a COLLISIONOFTHEFIRSTKINDor INELASTICCOLLISION;

and if it gives up internal energy to the kinetic energy of the

incident electron wehave a COLLISIONOFTHESECONDKINDor SUPER-

ELASTICCOLLISION.The third kind of collision inVOlvinga change 1n

internal energy is an IONISINGCOLLISIONand here the target has a net

galn, or loss, of boundelectrons after the collision. If one

electron is gained, the maximumobserved, the target becomesa

NEGATIVEION,and if one or more electrons are lost it becomesa

POSITIVEION.

For any particular value of the incident electron kinetic

energy, each of these possible processes has a finite probability of
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occurrlng. Whichprocess weobserve at any particular energywill

dependupontheir relati ve probabilities. Theprobability of any

particular physical changewill thus be a function of the incident

electron kinetic energy.

Havingintroduced probabilities, our discussion of collision

can nowbecomequantitative. Wedefine the probability of scattering,

S, as the numberof electrons scattered (ie. having undergonea

collision as previously defined), per unit incident electron current,

per unit path length, per unit gas pressure at somespecified

temperature, per unit solid angle in the polar direction, e, with

respect to the original beam. This probability of scattering can be

further divided into: probability of elastic scattering, SE;

probability of inelastic scattering, Sl; probability of superelastic

scattering, S2; probability of ionising scattering, Sr. The

probability of inelastic scattering must be specified as the

probability of excitation to a particular energy state; and the

probability of ionisation must specify the nature of the ion. The

probability of collision, P , is related to the scattering probability,c

S, by t[he,:OllOWingequation:jrr
Pc = & SE·21f.sinS.de + 0 (Sl+S2+ S r)·21fSln ed e (1.1.1)

meaningof delta, 8, as a limit of integration will be considered

whenwehave completedthe definitions. Theprobability of excitation,

P , is related to the probability of scattering inelastically by:x

Px = ~;1.2n .sin a.da (1.1.2)

and the probability of ionisation, Pr' lS:
rr

PI = ~SI.2n'Sin a.da (1.1.3)

The lower limit of the first integral in equation (1.1.1) cannot be

zero as then the incident beamof electrons whichhave passed through
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the gas without collision would be included with those which have

collided and P , the probability of a collision, would be unity!c
Theoretically this difficulty lS rationallsed by the fact that as

the polar angle,e, approaches zero, so too does SEsine and so the

value of the integral can be extrapolated, as 8-+0, without including

the original beam.

The probability of a collision by an electron in a beam

travelling a distance, dx, in a gas at a pressure, p, is P .p.dx.c

Thus a current of electrons of initial strength, I, passing through

the layer, dx, lS decreased by dI, where,

dI = -loP .dx.c (1.1.4)

If we now integrate this expression over a finite distance x with

a finite change in electron current of (I - 1), where I is theo 0

initial current and I is the current after the beam has travelled

a distance x in the gas, we get an expresslon:

L;illIIJ = -pc·p·l" dx

which on integration gives,

In(III ) = -P .p.xo c

or,

I = I .exp(-P .p.x)o c

(1.1.5)

(1.1.6)

(1.1. 7)

The average distance that an electron travels in a gas before a

collision involving it occurs is called the mean free path, A., and lS

defined by:

p. A. = liP. c (1.1.8)

The -1 -1 2 -3 -1dimensions of Pc are [L] .[ p] or [L] .[ L] .[p~

le. area, per unit volume, per unit pressure. P can therefore bec

considered as the effective area for collision of all the atoms ill a

unit volume, at unit pressure. In equation (1.1. 7) the probability of
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collision occurs in exactly the same way that an absorption coefficient

occurs in the decrease in intensity of X-rays or of light in passing

through matter. One of the first investigators in this topic

P. Lenard (1903) called the coefficient, P , the "absorbing power" andc
many later investigators have used the terms absorption coefficient

or attenuation coefficient, where this coefficient, CI.,is defined by

the equation:

I = I .exp(-Cl..x)o

However, electrons are for the most part scattered, so true

(1.1.9)

absorption or attachment is a process seldom observed. To avoid this

Darrow, in 1932, suggested the term "likelihood of interception", in

place of absorption coefficient. (K.K. Darrow, 1932). In order to

discuss the probability of a particular atom undergoing collision,

the term "effective cross-section for collision" was used by many

European workers. The effective area or cross-section of a single

atom, Q, (from the german word for cross-section, Quersclmitt) can be

expressed as the probability of collision, divided by the nurriberof

gas particles per unit volume, per unit pressure (Loschmidt I S nurriber).

If the unit of pressure lS one Torr Cl mIn. Hg at 0 °C) and the unit of
3volume lS 1 em then,

Q = 0.281 x 10-16 P [em2]c (1.1.10)

(1.1.11)

The effective radius, r, of an atom with an effective cross-section

Q, is,
1 l 8r = (Q/TI)2 = 0.3(P )2 x 10 [em]c

but most authors use the cross-section rather than the effective radius

in their publications.

Comparison of this cross-section with the gas kinetic cross-

section, calculated from the mean radius of the atom or molecule

obtained from diffusion, or similar, experiments was very popular at

5.

collision occurs in exactly the same way that an absorption coefficient

occurs in the decrease in intensity of X-rays or of light in passing

through matter. One of the first investigators in this topic

P. Lenard (1903) called the coefficient, P , the "absorbing power" andc

many later investigators have used the terms absorption coefficient

or attenuation coefficient, where this coefficient, ci, is defined by

the equation:

I = I .exp(-ci.x)o (Ll.9)
However, electrons are for the most part scattered, so true

absorption or attachent is a process seldom observed. To avoid this

Darrow, in 1932, suggested the term "liKelihood of interception", in

place of absorption coefficient. (K. K. Darow, 1932). In order to

discuss the probability of a particular atom undergoing collision,

the term "effective cross-section for collision" was used by may

Eurpean worKers. The effective area or cross-section of a single

atom, Q, (from the genn word for cross-section, Querschnitt) can be

expressed as the probability of collision, divided by the numer of

gas particles per unit volume, per unit pres sure (Los chdt i s numer).

If the unit of pressure ls one Torr (1 mm. Hg at 0 °C) and the unit of

3
vol ume ls 1 cm then,

Q = 0.281 x 10-16 P (cm2)c (1. L. 10)

The effective radius, r, of an atom with an effective cross-section

Q, is, 1 L 8
r = (Q/n)2 = 0.3(P )2 X 10 (cm)c (Ll.ll)

but most authors use the cross-section rather than the effective radius

in their publications.

Comparison of this cross-section with the gas kinetic cross-

section, calculated from the mean radius of the atom or molecule

obtained from diffusion, or simlar, experiments was very popular at



6.

one time. One way in which this was done was to plot the ratio of the

probability of cOllision, P , to the reference probability, calculatedc

from gas kinetic considerations, PKT' versus the electron energy. Not

surprisingly, this ratio was very different from unity. A parameter,

which is very convenient in practice is the "target parameter!!, 1T,

where:

1T = nx = px/kT (1.1.12 )

and n, is the gas number density; p, the gas pressure; k, the Boltzman

constant and T, the absolute temperature.

Nowadays, only the term cross-section lS used. The TOTAL

CROSS-SECTION, QT ' is composed of the cross-sections for all

possible processes.

(1.1.13)

where Qo lS the cross-section for elastic scattering,

QN lS the inelastic cross-section for the inelastic

process N.

QI is the ionisation cross-section for the

ionising process I.

The concept of a differential cross-section lS found to be

very useful in the comparison of experimental results and theoretical

models. The DIFFERENTIAL CROSS-SECTION for a particular process lS the

cross-section for an electron being scattered into a solid angle d~

after undergoing this process. If e is the polar angle and (/),the

azimuthal angle, then d ~, the solid angle, is sin e.de.d(/).

Thus, any cross-section, Q, can be expressed in terms of its

Q =

differential cross-section, 0(8), as follows,
1T' 'lfr11a(e) .sin e.de .d0 (1.1.14)

In theory, we can design experiments to measure any of these cross-

sections such as the differential elastic cross-section, total
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inelastic cross-section and so on.

Our concern, in this thesis, ls the measurement of the

total cross-section, QT. In term of electron currents, as already

defined, we can write,

I = Io.exp(-n.QT.x) (1.1.15)
where n is the numer density of the gas.

We can now devise an experimental method to measure QT.

The basic requirements will be: a source of electrons; some system

to form these electrons into a beam of the required current density

and energy; a gas cell to contain the gas at the required pressure,

with an entrance aperture large enough to allow the electron beam to

enter but not large enough to let a significant proportion of the gas

escape, and an exit aperture large to allow the unscattered beam to

leave the cell but small enough to limt the escape of electrons

which have been scattered at small angles and which if allowed to

leave the cell would be mistaken for unscattered electrons; and an

electron collector to record the transmitted beam current. It must

be pointed out that electrons scattered inelastically at zero degrees

to the beam path will always be included with the unscattered electrons

in this type of experiment. The distance between the entrance and

exit apertures of the gas cell we will regard, at the moment, as the

path length, x, defined in equation (1. L. 15).

This defines, to a first order, what ls meant by "Electron

Transmission Spectrometry". An electron transmission spectrum is a

graph of the total cross-section (derived from equation 1.1.15) versus

the mean energy of the electron beam. As the beam energy is varied and

different scattering processes occur, such as elastic, inelastic,

superelastic and ionising collisions, the transmission of the gas will

decrease indicating an increase in scattering.
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Electron transmis s ion spectrometry is not the only

technique that can be used to measure total electron-atom

or electron-molecule collision cross-sections. We shall

treat these other techniques in detail later in this chapter.

At this stage, however, we must introduce another cross-

section which is closely related to the total cross-section,

and therefore useful for comparison purposes. This is the

MOMENTUM TRANSFER or DIFFUSION CROSS-SECTION. We stated

earlier, without proof, that the total fractional kinetic

energy change of an electron undergoing an elastic collision

was approximately 2m/M where. m, is the mass of the electron

and M, is the mass of the target particle. Using the same

classical model we find that the fractional kinetic energy

loss, per electron scattered through a polar angle 8, is

approximately 2m(1 - cos e)/M. Now, if P(e)sin e.de.dØ is

the probability that the electron is scattered into the solid

angle of g about the polar angle, e, the mean fractional kinetic

energy loss per collision will be~ irr
2(m/M) ~' ~ (1 - cos

If we compare this equation with

e ) . P ( e ) . sin e. de . dØ (1.1.16)

equation (1.1.14) we can

define the momentum transfer cross-section by this equation:

~ ~~
Qm = ~ ~ o(e).(1 - cos e).sin e.de.dØ

In this cros s section, forward scattering is weighted most

(1.1.17)

heavily. A similar cross-section is the viscosity cross-
section, Q ~ , but it is very seldom encountered in the

Q ~

It is defined by
. ~

2, ~,~sin3e .de

this equation:literature.

= (1.1.18)
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Here the scattering perpendicular to the beam path ls weighted

most heavily.

If the scattering is isotropic, ie. cr ( e) is not a
function of e, the total and momentum cross-sections become the

same, as follows:

from (1. 1.14) , 'if

= 0 1 sine.de.
'lrt

1 dØ
QT

= 47f.a (1.1.19)
from (1. 1. 17 ) ,

Qm

rt
= 0 1 (sine-sine.coselde

o l'lrr
dØ

o

(1.1020)= 47f.cr

If the scattering ls anisotropic, the total and

momentum transfer cross-sections are related by the

expression for the mean fractional energy loss per collision,

£lE lE :

(£lE/E) = (2m/M)(Qm/QT)

Cross-sections are expressed in units of ~~ 2

r- :: - 1 2 r; ,1 2~tom or molecul~ , or as multiples of 1Y ao ~mJ , where ao

is the radius of the first Bohr orbit of the hydrogen atom;

absorption coefficients in 2/::i-3r, :i-luni ts of Ccri I9IIJ LTorr. ;

r::i-lr;::-lL9Il LTorI) .and, probabilities of collis ion in units of
We have only made two assumptions in our discussion

so far, and these we can justify by cons idering a simple

classical model. We consider both the incident electron and

the target molecule to be impenetrable elastic spheres

("billiard balls"). This model is limited, but does represent

reasonably well the exponential short-range repulsion of a

low energy ("slow") electron and a spherically-symmetric

atom. To justify this statement Figure la. shows the
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potential function for smooth elastic spheres and Figure lb.

shows the Lennard-Jones potential which is accepted as a

reasonable approximation to the spherically-symmetric

potential function of an atom. We further assume that, in

a laboratory system of coordinates, we can regard the target

as stationary before collision with respect to the electron.

Some figures will justify this assumption. A ten electron'

8 -1volt electron has a speed of 1.9 x 10 cm. sec. , and the

root mean square velocity of the hydrogen molecule at room

. . 1 2 105 -1 . .temperature ls approximate y x cm. sec. ie. a ratio

of 103. A two dimensional representation of a collision in

this model is shown in Figure 2.

Let,

vl = incident electron velocity before collision.
v2 = incident electron velocity after collision.
V = velocity of the target after the collision.
me = mass of the electron.
M = mass of the target.
E = kinetic energy of the incident electron.

The fractional kinetic energy loss of the incident electron

lS,

(£lE/E) = (~ mevi - ~ mev2 2)/~ mevi 2

where E = ~ me v 1 2

(1.1.21)

In this model the target has no internal structure, so we can

rewrite equation (1.1.21) as,
(£lE/E) = ~ MV2/~ mev12 (1.1.22)

From the conversation of kinetic energy,

, 2
2 me vl

= ' 2 + -2' Mv2
2 mev2 (1.1.23)
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and from the conversation of linear momentum,

me v 1 = me v 2 co s e 1 + MV cos e 2 (1.1.24)

in the direction of the beam traj ectory, and

o = me v 2 sine 1 - MV sine 2 (1.1.25)

perpendicular to the direction of the beam traj ectory.

Sol ving for V, we get:

v = 2vi (me/m+M) cose 2 (1.1.26)
and so,

(£lE/E) = "4m M/(m +M)2) cos2e2e e (1.1.27)
The average fractional energy los s, (£lE/E) will be

given by,

(£lE/E) =

¡IT 2 2
o ((4meM)/(me+M) )cos e2.p(e2).de2

(1.1.28)
where P (e 2) . de 2 ls the probability that e 2 lies between e 2

and e2 + de20

From simple geometrical considerations,

p(e2).d(e2) =

Lin 2e2de2

(0 ~ e2 ~ n/2)

( n /2 -c e 2 ~. 7f)

(1.1.29)
Thus, ¡'f/i

(£lE/E) = ((4meoM)/(me + M)2) 0 cos2 e2.sin 2 e2.de2

l1t:i 3
= ~4me.M)/(me+M)2) -2 cos e2.d cose2

o

= ~2me.M/(me+M)2). (1.1030)

Considering the relative masses of an electron and a

molecule, we can let (me + M) ~ M and so,

( £l E / E) ~ 2. (me / M) (1.1. 31)
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As e 2 = (* / 2) - (e 1 / 2), then:

V "V (2 me/M) . vl. cose2, (1.1.32)
and,

(fiE/E) (ei):: (2me/M), (1 - cosei). (1.1.33)

Equations (1.1.31) and (1.1.33) justify our approximations.

It is worth noting that, in this model, backward scattering

(ei or e2 ~(TIl2)) has zero probability.

We shall firstly consider the techniques that have

been employed to observe the variations of total cross-

sections and, where appropriate, some related cross-sections.

Then review the total cross-sections that have been reported

in the literature and, finally, cons ider some of the simpler

theoretical models that are of use in interpreting the

cross-section functions.
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1.2 The Quanti tati ve Study of the Collis ions of Electrons

with Gases.

The first quantitative study of the interaction of

electrons with gases was that of Lenard, in 1903, who

measured the absorbing power of some gases and solids. The

gases which he studied were helium, argon, molecular hydrogen

and carbon dioxide. He concluded that the absorption at

higher incident electron velocities was proportional to the

gas density; and, as the velocity was reduced, the

absorption increased reaching a constant value at zero

velocity. This constant value was found to have good agree-

ment with that expected from gas kinetic cons iderations. He

also noted an absorption maximum at lower electron energies

(~ 80 eV) in argon. Earlier, in 1895, he suggested, from

the results of preliminary experiments, that the effective

cross-section for the collision of molecules with high

energy electrons (~ 100 eV) was proportional to the sum of the

cros s-sections of all the atoms in the molecule.

Lenard's apparatus is shown diagramatically in

figure 3. The electrons coming from a photocathode of zinc,

Z, are accelerated by a grid, Gl, and then drift through

field-free space to another grid, G2, at the same potential

as Gl. The aperture, A , permits some of the electrons to

pass through to the Faraday cup collector, C. The current

flowing from the cathode to the collector is measured by a
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galvanometer. If the total cathode current, i, and the

collected current, C, are recorded at a residual gas pressure,

Po' and then at a sample gas pressure of Pl' the probability

of collision, Pc' will be given by;

Pc = ((Pl - po)/x) .( logCijCo) - logCii/ci)) (1.2.1)

where x is the path length defined in the figure. From this

equation we can see that if the electron current to the

collector decreases then the observed probability of collision

will increase. The aperture, A, is considerably larger than

the beam diameter, so some electrons that have been

scattered will be collected with the unscattered electron

beam. This will add a collector resolution background to

the observed probability. Now, the electrons in a beam repel

each other causing the beam diameter to increase. This

phenomenon ls called 11 space charge spreading". In general,

the lower the mean energy of a beam (hence the lower the

electron velocity), the greater the amount of space charge

spreading. This could well account for the increase in
scattered current at low energies. This we will call an

electron optical background, for reasons which will be

discussed later. His interpretation of the higher energy

cross-sections, by summing the constituent atomic cross-

sections to give a molecular cross-section, was

coincidental. Later data does not support this inter-
pretation; but does show that above about 50 e V the cros s-
section is roughly proportional to the atomic or molecular

weight of the gas. It is not difficult to imagine that with

limi ted, inaccurate data this could be confused with Lenard' s

theory. The maximum in argon does exist, but it is doubted
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whether Lenard really observed this, as his value for the

energy of this feature is in error with accepted data, by

about seventy volts! Even the limited equipment available

for measuring voltage at that time could not account for

this dis crepancy.

I have dealt in detail with Lenard' s two papers

for two reasons. Firstly, they were the initial, pioneering

investigations in this topic and showed that the amount of

scattering depended upon the nature and pressure of the gas.

Secondly, Lenard' s apparatus can be regarded as the basic

practical electron transmission spectrometer, and the

interpretation of its failings can help us to develop des ign

criteria for improved versions.

Lenard's results were confirmed in 1905 by Becker

and in 1910 by Silbermann. Only six years later Akesson,

with an almost identical apparatus, observed a very much

different set of curves. (Akesson, 1916). The word "curve"

can be somewhat misleading, as all results produced before

second world war technology involved the plotting of

individual points and the curves being drawn by inter-

polation. Modern data either involves recording enough

data points to give a continuous line without interpolation,

or the use of a recorder to draw a continuous data line.

To emphasise this point, Lenard' s published curve for argon

ls based upon eight data points between zero and three

thousand volts. Akesson found that the probability of

collis ion did not increas e uniformly to a limit at low

veloci ties. He observed distinct maxima and minima in the

cross-section function. He achieved this by plotting the

ratio of collected current to total cathode current versus
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electron energy. If Akesson had recorded background spectra

in the absence of gas, he could have calculated the

probability of collis ion. He studied ~ethane, propylene,

carbon monoxide, carbon dioxide , nitrous oxide , nitrogen,

oxygen, air and water. In nearly all these gases, the

maxima observed have been confirmed by later experiments,

although the energy calibration has had to be changed. In

particular, the 3 eV maximum in nitrogen and the 7 eV

maximum in methan e have been confirmed and in these examples

the energy calibration was good. He also produced the first

evidence of a phenomenon which was to lp-ad to considerable

investigation at a later stage. This was the low energy

transparency to electrons of certain gases; in his words:

"the slower electrons were more penetrating than the faster".

H. F. Mayer at the Radiological Institute at Heidelberg

repeated these experiments and got results that agreed with

Lenard rather than Akesson (Mayer, 1921). The only basic

difference between Mayer' s apparatus and that of Lenard was

the introduction of a heated filament instead of a photo-

cathode.

A colleague of Mayer, Carl Ramsauer, who was

working in the same laboratory on the investigation of the

veloci ty distribution of photoelectrons emitted by a zinc
surface, decided to check Mayer' s results employing the

apparatus he had designed for his photoelectron studies

(Ramsauer, 1914). This apparatus consists of a photocathode

as a source of electrons; and a magnetic field which focusses

the electrons into two circular paths, where the beams are

collimated by a series of s li ts. The two beams then pass

through two scattering cells to be collected by two Faraday
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cups. He added gases (He, Ar, H2, N2 and air) to this system

and performed attenuation measurements. (Ramsauer, 1921a).

He only measured energies close to one electron volt. We

will take argon, as an example, to show the nature of his

results. He found the remarkably small values of P = 2.6c

for 0.75 eV electrons and P = 5.5 for 1.1 eV electrons.c

These results caused Mayer to check his results and this time

he confirmed the results of Ramsauer and Akesson. Mayer

also noted a maximum of P = 73 at 12 eV in argon. Thesec

results are substantially those accepted nowadays. The

extremely small probability of collision for electrons less

than one electron volt, which Rams auer found in argon (and

later in krypton and xenon) is known as the Rams auer effect.

The success of this experiment led Ramsauer to

devise an improved apparatus which was to become one of the

classic experiments in atomic physics. (Ramsauer, 1921b).

Wi th this apparatus, between 1921 and 1930, he measured the

total cross-sections of many atomic and simple molecular

systems. Several other researchers copied this des ign,

making only minor alterations. The main research schools

based on this technique were those of E. BrUche, a physical

chemist at Danzig, and of R.B. Brode at the University of

California. The iiterature shows that approximately 85% of

all presently available total cross-sections were measured

by this technique.

Ramsauer's first apparatus did not produce

electron beams of variable energy. Only two energies,

0.75 eV and 1.1 eV were possible. He decided that this had

to be changed to give beams of variable energy, and that two
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electron beams were unnecessary. The magnetic field,

perpendicular to the beam path, was kept as it provided

energy selection for the incident beam and the scattered

electrons. A diagram of the apparatus is shown in figure 4a.

Now, electrons moving at right angles to a constant

magnetic field describe a circle. If B is the magnetic

induction vector of the magnetic field, and ~ is the velocity

vector of the electrons; then, the force of déflection on the

electrons ls l, where:

F = -e. v /\ B (1.2.2)

The direction of the vector is shown in figure 4b. As the

electron moves, the force will remain constant but change in

direction. The force and velocity vectors must remain

mutually perpendicular to the magnetic field vector. Thus

the electron motion is circular with the force vector acting

radially and the velocity vector acting tangentially.

Figure 4c shows this result for electrons starting at the

same point but with different starting angles. It can be

shown (Pierce, 1954) that if V is the voltage of the

apparatus with respect to the cathode, the radius of the

circular trajectory is,

-6 lr = (3.37 x 10 ).V2/B ( metres) (1.2.3)

If we now consider the apparatus again we can see

how this principle is applied. The electrons leave the

photocathode, P , with different angles, are accelerated to

voltage V and then describe the circle defined in equation

(1.2.3), through the slits Sl to S5 with the beam being
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energy- selected by the width of the slits. This energy

selecting action is shown by noting that equation (1.2.3)

defines different circles for different initial electron

veloci ties and directions. The radius in Ramsauer' s

apparatus was 10 mm. and the s lit widths were 1 mm. The

beam then enters the 900 scattering chamber through slit S6

and leaves through S7 to be collected in the Faraday cup, A.

Electrons scattered elastically or inelastically will change

their velocity (either in magnitude or direction) and so

depart from the mean apparatus circle and therefore not reach

the collector. This gives reasonably good post-collision

angular resolution. I can find no detailed analysis of this

resolution in the literature.

The experimental procedure is as follows. The

whole apparatus is set at V volts, in a magnetic field of

B webers, and a sample gas introduced at a pressure Pl torr.

The current, ii' to the collector alone and the current,j l'
to the scattering cell and collector together are measured

with an electrometer. The scattering path length, x, lS
taken as the distance between S6 and S7' and is given by:

x = ~.TI.r (1.2.4)
where r is given by substituting for V and B in

(1.2.3). From equation (1.1.9);

11 =. -Pl. ci. xJ 1. e (1.2.5)

If we now repeat this experiment with the same

voltage and magnetic field and a different gas pres sure,

P2 torr, we get a similar exp~ession;

=. -p 2. ci . x12 J2.e (1.2.6)
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Subtracting (1.2.5) and (1.2.6);

(Pl - P2) = In(ji.i2/j2.ii)/a.x (1.2.7)

The total cross-section, QT' can now be calculated

from the attenuation coefficient,a;

-17 2
QT = a/n = 2.8 x 10 .a/p (cm) (1.2.8)

where n ls the gas number density and p is the

pressure.

The energy, E, of a monochromatic electron beam

moving in a circle of fixed radius, R, in a uniform magnetic

field, B, is given by,

2E = (B. e . R ) /2m (1.2.9)
So,

£lE:c (B.e)2.2R.£lR/2m (1.2.10)
and from these two equations,

£lE/E.c: 2" (£lR/R) (1.2.11)
where £lE is the energy spread (bas e full width) of

the beam, £lE/E is the energy resolution of the magnetic

selector and £lR is the slit width. For Ramsauer' s apparatus,

R = 10 mm. and £lR = 1 mm and so the energy resolution ls

approximately 20% ie. approximately 0.2 e V full width at

half maximum for a 2.0 eV beam. For sufficiently large

values of E, the energy spread, £lE, will become

independent of E as the value of £lE which slits will accept

will be larger than the energy spread leaving the cathode.

If, in equation (1.2.9) we substitute for R from equation

(1.2.3) we find that the energy of the electron beam is a

function of the applied voltage and the magnetic field.
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The Ramsauer type of experiment requires a lot of

work to get one point on the total cross-section versus

electron energy curve. One maj or drawback is that gas is

everywhere in the apparatus and this must mean that the

electron energy distribution from the cathode is a function

of gas pressure.

Brode adapted this apparatus des ign in order to

measure cross-sections for metal vapours. The Brode

apparatus uses no separate energy selector, instead the

scattering cage occupies 1800 of the electron trajectory and

so serves as the energy selector. (Brode, 1929). A diagram

of this apparatus is shown in figure 5. Electrons from the

thermionic filament, F, are accelerated to the cylinder, C,

and some of these electrons go through the slit Sc. The

electrons are then deflected by the magnetic field through

sli ts Sl to S 5' then into the collector B. The initial
current, 10, is as sumed to be proportional to the current

leaving the slit S c. If the constant òf proportionality is

k, then the equation for attenuation lS:

I = k I -Pc.x.p
. o. e (1.2.12)

where x is the path length; and, in this cas e

x = nr, where r ls the radius of curvature of the beam,

I is the collector current and p ls the gas pressure. We

can rewrite equation (1.2.12) as,

log (1/10) + log k = Pc.x.p (1.2.13)

So a plot of log (1/10) as a function of the path length, x,

times the pressure, p, will give a straight line of slope,

Pc. The pressure of the metal vapour can be varied by

changing the temperature of the apparatus. (Brode, 1930).
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The value of the cross-section in these experiments

ls influenced by the size of the defining apertures. This

effect was first investigated by Green (1930) who found no

variation but, later, Palmer (1931) showed that Green 's

results were unreliable. Figure 6 shows Palmer i s apparatus.

The distance between Sl and S2 is x, the path length. The

radius of the circular aperture, 82, ls a. The limiting

angle for a deflection along the axis is given by tan e= a/x.

If 10 is the current entering Sl' I is the current entering

S2 and £lI = 10-1, then at low pressures;

P~.x.p = £lI/Io (1.2.14)
where P' is the observed probability of collision.c

The number of electrons scattered to the collector is,
1r

£lI = 10 12TI. (x-a/taneLS.sine.de
Eit¡- x.Ei (1.2.15)

where S is the probability of scattering, defined

in the introduction, and (-xE.) is the contribution of1

positive ions formed in the gas and assumes that the number of

positive ions leaving the scattering chamber for the collector

is the same as the number of positive ions leaving the

collector for the scattering chamber. However, this will not

be true if there lS a retarding potential between collector

and chamber. It ls found that P ~ is a function of eo (which,
as is seen in figure 6 is proportional to the size of the

slit in S2). o 0He observed that as eo goes from 2 to 10

the probability of collis ion, as observed, is doubled.

A modern version of the "Ramsauer" apparatus ls

that of D. E. Golden at LockheQd Research Laboratories,

California. (Golden and Bandel, 1965a). The apparatus ls
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shown in figure 7. It has a high vacuum system, capable of

10-9 torr, after baking; is of all-metal construction and

metal surfaces seen by the electron beam are coated with

colloidal graphite to reduce the contact potential

pifferences experienced by the beam. (Parker and Warren,

1962) . The electrons, from an indirectly heated cathode,

at a potential negative with respect to earth, are

accelerated through a control grid to a slit Sl which, like

the rest of the apparatus, is at ground potential. The

electrons at slit Sl are focussed through 1800 to slit S3

as shown in figure 4c. Momentum selection is achieved by

siits Sl' S2 and S3. After leaving S3' the electrons pass

through a 900 scattering region and then into a collector.

The cathode and momentum selection region are differentially

pumped, and the gas is introduced to the scattering chamber

only. The gas pressure was measured to an accuracy of + 3%

with a Schulz-Phelps high pressure ion gauge (Schulz and

Phelps, 1957). The curFents to the scattering chamber and

electron collector were measured with vibrating-reed

electrometers and all voltages measured with a precision

differential d. c . voltmeter. The beam energy is controlled

by varying the grid to cathode bol tage, not the magnetic

field. This technique was discussed previous ly. Golden

estimated the full width at half maximum of his electron

energy distribution to be 3.5 % of the mean electron beam

energy. He also performed a rough calculation of the

geometric angular detection efficiency. The angular

resolution for forward scattering is 801 and 20 for backward

scattering. From these considerations, the best estimate
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of the probable error in the cross-section measurement

due to detection error is about +l~ for the energy

range studied.

All types of "Ramsauer" experiment suffer from

the following problems. Firstly, the electron energy

cannot be scanned. This means that cross section functions
have to be recorded point by point, so the apparatus

stabilities, in particular, cathode emission and electron

optics, have to be controlled for extended periods.

Secondly, the measurement of the electron energy leads to

difficulties as it requires a very uniform magnetic field,

and if retarding potential difference methods are used then,

the magnetic field introduces an uncertainty which has never

been analysed.

Golden carried out measurements down to Q.3 eV

but this energy was not low enough to investigate the low

energy structure in helium. To overcome this, a new version

of the apparatus has been constructed by the United Aircraft

Research Laboratories at Connecticut (Bullis et al, 1967).

This employs an electroformed collision chamber to eliminate

contact potential effects. It has been estimated that

contact potential differences of as much as 1.4 e V can exis t

in common experimental configurations. The influence of the

earth's magnetic field ls minimised using magnetic shielding

and Helmholtz coils. The resolution of the apparatus is

estimated to be 6 % and the beam can be controlled down to

0.09 eV. However no subsequent reports from this group have

been published.
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Two other designs from the early German school,

both by Martin Rusch of Tubingen are worth consideration.

The first was produced in 1925 and is shown in figure 8.

(Rusch, 1925).

Electrons from a hot filament, F, are emitted

radially, accelerated towards the sector, 8, then pass through

the narrow collimating shafts to the collecting plates, C.

No analysis has been performed on this apparatus but one can

instinctively see that the angular resolution, which will

depend upon the width and length of the radial shafts,

must be reasonably good. The method for recording the data

points was slightly different to the previous techniques

which have involved continuous changes in the gas pressure.

Wi th only residual gas present, the current to the collector,

C, is recorded for different accelerating vol tages (in fact,
o. 3 volts to 2. 0 volts in o. 1 volt intervals) then , with

sample gas present, this procedure is repeated. This gives

two curves which, when subtracted, and corrected for path

length and gas pressure produce the cross-section function.

To emphas ise the vacuum problems which all the worKers at

this time experienced, we point out that Rusch with a brass

apparatus worked with a residual gas background of 1.4xlO-3

-2torr and with gas sample pressures of between 1. OxlO torr
and 9xlO-3 torr. Despite the simplicity of the apparatus

and the lack of energy selection of the beam before collision,

Rus ch studied the low energy (~2. 0 e V) behaviour of argon,

krypton, neon and hydrogen. He repvoduced the Rams auer-

Townsend minima of argon and krypton well but the energy

calibration is out by O. 2 volt.
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The second apparatus is the longitudinal magnetic

field spectrometer. (Rusch, 1926). This is shown in figure 9.

Electrons leave a hot filament, F, pasB through a small

aperture, Al, and enter the monochromator. Unlike Ramsauer's

apparatus, the magnetic field vector and the electron

velocity vector, in this case, are parallel, not perpen-

dicular, so the electron motion is helical with the helix

axis going from Al to A2. The radius of the helix followed

by a particular electron will depend upon its velocity and

hence its energy. Thus energy selection can be achieved by

impeding the helical path of unwanted electrons. Rusch

inserted the ring, R, and the disc P to do this. Because the

monochromator and scattering cell are the same length Al and

A3 are focal points of the beam. The procedure ls similar to

that for the Ramsauer experiment. The currents to the

collector and to the collector and scattering chamber together

are recorded at different pres sures and the argument explained

in (1.2.5) through (1.2.8) is followed to give the cross-

section. The apparatus may be regarded as the forerunner

of the series of longitudinal magnetic field spectrometers

designed by Schulz at Yale in recent years, two of which we

now consider.

Figure 10 shows the Schulz transmission apparatus

(Schulz, 1964). The monochromator operates on the retarding

potential difference technique. The principle of this is as

follows. The energy of the electrons entering the gas cell

is defined by the voltage difference between the last

electrode in the monochromator and the cathode. Let this

voltage be V 1. If the electrodes intermediate between the

cathode and this electrode are at the voltage V 2' where
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V 2 ~ V l' then only electrons of energy greater than e (V 1 -V 2)

can reach the electrode at voltage V 1 to enter the scattering

champer with energy eVi. If Vl remains unchanged and the

unscattered electron beam 18 measured at the collector for

vol tages of V 2 and V 2-£l V on the intermediate electrodes, then

the difference between these currents represents the

transmis s ion of electrons coming from the filament with

energies between e(Vi-V2) and e(Vi-V2 +£lV), or an energy

spread of e.£lV. The voltage £lV can be applied as a square

wave a. c . voltage and the resultant modulated collector
current synchronously detected. A longitudinal magnetic field

is used to align the electrons. The electrodes are gòld

plated to minimise the contact potentials and the whole

apparatus is bakeable and operated under high vacuum conditions

of cleanliness. This apparatus has been used mainly for fine

structure studies with beam energies larger than 10 eV. One

problem that might exist with this type of apparatus is a

varying electron optical background at low energies. There

is no reference to this in the literature.

Figure 11 shows a later refinement of this technique

(Schulz and Sanche, 1971). Electrons from the filament, F,

are aligned by the magnetic field, B, then pass through a

trochoidal monochromat or , collision chamber and retarding

electrodes (which provide a potential barrier for scattered

electrons) until they reach the collectoro The trochoidal

monochromator operates as follows 0 As discussed in the Rusch

experiment, electrons with their velocity vectors parallel

to a magnetic field vector move in helices, the radius of

which depends upon the electron velocity. In the trochoidal

monochromator (Stamatovic and Schulz, 1968) electrons, aligned
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by the axial magnetic field, enter the monochromator

region off-centre. An electric field is applied at

right angles to the electron beam. . In this cross-field

region, the electron traj ectories describe a

trochoidal motion and the electrons are dispersed

according to their axial velocities and those electrons

which reach the centre of the tube are transmitted through

the axial exit hole of the monochromator. This system

-9can produce a beam of 5 x 10 amp with an energy spread

of 40 meV (full width at half-maximum) 0 Unlike the

conventional transmission experiment, which measures

directly the transmitted current, this technique is used

to measure the derivative of the transmitted current. A

sine-wave modulation voltage is applied between the

collision chamber and an insulated cylinder, M, inside the

collision chamber. The resulting modulation in the

transmitted current collected at C is measured in phase

with the modulating signal by a phase-sensitive detector.

By observing the deri vati ve of the transmitted current, it

ls possible to accurately define the energy of the fine

structure.
Sometimes, apparatus designed to measure

inelastic or differential cross-sections can be adapted

to measure the total cross section. An example of this

was reported by J. A. Simpson of the Electron Physics

Section, N. B. S. Washington (Simpson, 1963 ). A schematic

plan of this apparatus is shown in figure 12. The

monochromator and analyser are identical, and consist of

concentric spherical deflectors providing a point-to-point
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focus at 1800 deflection (Purcell, 1938). In the mode of

operation of interest to us, the monochromator and analyser

vol tages are held fixed and the scattering chamber voltage

is varied. In this mode, any electrons losing enough

energy to fall outside of the band of electrons passed by

the analyser are not transmitted; and, as the beam is

highly collimated, the transmitted current is reduced by

an amount proportional to the total scattering. This kind

of apparatus is very suitable for fine structure studies,

having an energy spread of about 35 meV. With this
apparatus Simpson studied the fine structure in helium and

neon. (Kuyatt, Simpson and Mielczarek, 1964). Several

other investigators have used similar techniques to study

fine structure in the total cross section. (Golden and

Nakano, 1966; Ehrhardt, Langhans and Linder, 1968; Boness

and Schulz, 1970; Imhof and Read, 1969; and, Hasted,

Boness and Larkin, 1968).

One problem that exists with this type of

apparatus is the electron optical background. We have

mentioned this effect before, but a more detailed

description is now required. When the energy of an electron

beam is varied, the electron current transmitted by the

monochromator and the scattering region, can vary. When

this happens it is necessary to record a background

spectrum of the transmitted beam without gas in the

scattering chamber, which is subtracted from the spectrum

recorded with gas present. This is only an acceptible

technique if it can be shown that firstly, the nature and

pressure of the gas do not influence the behaviour of the
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monochromator, cathode or electron lenses; and secondly,

no other changes occur in the performance of the

spectrometer between the running of a spectrum and the

running of a background spectrum. This effect is not so

important in fine structure studies, where the energy

range studied extends over only a few electron volts.

One way to overcome this problem, which is

particularly evident at low energy, is that employed by

Basted and Larkin. (Basted and Larkin, 1972). The design

of their spectrometer is shown in figure 13. The actual

spectrometer is described in detail in an earlier paper

(Hasted and Awan, 1969). Electrons from the hot

filament, F, pass through a pre-monochromator, Ml, then

through a 1270 monochromator, M2, and an electron lens,

Ll, into the scattering chamber, S. C. The analyser, A,

is set to pass only electrons which have not lost energy

in the scattering cell. The electrons passing through the

analyser are collected at the channel electron multiplier,

Ch. The current from the electron multiplier is
amplified by a floating picoammeter, PA, which gives an

analogue voltage output, proportional to the electron

current. The originality of this apparatus lies in the

control circuitry, the actual apparatus described being

similar to those cited earlier in this section.

The principle is that a background function ls

recorded on the computer, v169 This background is

adjusted so that the transmitted beam current is, to a

first approximation, not a function of the electron energy

and the necessary lens vol tages are stored in the computer
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memory. This adj usting can be performed by the computer.

To do this the analogue s ignal voltage is fed to an

analogue-digital converter, AID, which produces a coded

digital signal suitable for input to the computer. The

computer then outputs a signal, which is converted to

analogue vol tages by a digital-analogue converter, D/ A.

These vol tages are used to control the lens Ll, and the

incident beam energy to give this approximately uniform

background current. Having recorded this background, gas

is introduced to the system and the computer scans the

spectrometer vol tages in the manner recorded for the

background. This time, the analogue signal voltage is
converted to a voltage suitable for an X-Y pen recorder

by the two voltage/frequency converters, V /F. The signal

ls recorded on the Y-axis and the voltage difference

between the filament and the scattering cell on the X-axis.

This gives a direct plot of transmitted current versus

electron voltage. This is the most complex transmission

experiment in the literature so far.

We conclude our discussion of transmission

experiments with some details of a new apparatus designed

by Golden and Zecca (1971). Only one investigation

(Golden and Zecca, 1970), of the fine structure in

scattering by helium of electrons with energies between

19 eV and 20 eV, has been performed with this apparatus

but because of its characteristics it seems likely to be

worth reporting for its potential application to

transmission studies. A diagram of the apparatus is

shown in figure 14. The electron source is an oxide

coated cathode. This is inserted in a Pierce 67. SO
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electrode, P, which causes the electrons to leave the hole

in the anode plate, A, as a parallel beam. The image of

this anode hole, A, is focus sed by two lenses onto the

symmetry plane of electrode 3. This electrode is used as

a retarding electrode to perform a retarding potential

difference monochromation of the incident parallel beam.

The principles of this were discussed earlier, but in

this case there is no magnetic field. The extraction

optics is designed to give a beam of small cross-section

and angular divergence for a wide range of energies.

After passing through the scattering chamber, the

transmitted electrons are collected in a Faraday cup.

This is a commercial apparatus (Advanced Research

Instrument Systems, Inc., Austin, Texas) and full details

of its operation are not available. However, the

performance seems very suitable for transmission studies.

The operating range is 0-60 eV, the lower limit being

O.OS eV; and the best energy resolution is 0.008 eV. This

apparatus combines the energy range required to measure the

broad features of the total cross-section and the energy

resolution for fine structure studies.

We have considered all the major electron

transmission experiments reported in the literature. There

are, however, other techniques which are not based on the

transmission of an electron beam by a static gas target,

which can be used to measure total cross-sections. These

are the crossed beam techniques and the optical line

shift method.

The crossed beam technique employs an atomic

beam rather than a static gas target. The atomic or
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molecular beam and the energy resolved electron beam are

designed to intersect at right angles. We can subdivide

crossed beam techniques into three 'types according to which

of the post collision species we observe. The observation

of the scattered electrons is of wide application as many

types of cross-section can be measured. Total cross-
sections can be measured with this technique. (Brackmann,

1958). To do this, the scattered electrons are collected
over an angular range around 900 and, with a knowledge of

the angular distribution of the scattered electrons, an

estimate of the total cross-section can be made. The

second method depends on the observation of the atomic

beam attenuation. This is also called the atomic beam

recoil method. (Eisner, 1969; Bederson, 1962). The number

of collisions is determined by measuring the reduction in

intensity of the atomic beam as a result of recoil following

electron collisions. The third method observes the

unscattered beam and so, in some ways, is closely related

to transmission experiments. (Neynaber, 1961). In practice,

these experiments are often very complex and difficult to

perform. The advantage over transmission techniques is

that the geometry of the intersecting beams can be

accurately probed and therefore the resolution can be

calculated. In crossed beam techniques, the atom beam

is mechanically modulated ( usually with a rotating disc)

and the in-phase electron signal is detected. Only a

small fraction of the beam is scattered, as the gas

density in a beam is much less than that of a static gas

target, so there is usually a substantial noise signal
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even with synchronous detection. Crossed beam techniques

are the only direct method for measuring the total cross-

sections of unstable species, such as hydrogen , nitrogen,

and oxygen atoms. Measurements have also been made for

the alkali atoms, helium and argon. The only measurement

of a molecule is that of Bederson for the nitrogen

molecule. (Bederson, 1964). Absolute cross-sections can

be measured by this technique but these are problems

associated with the solution of "overlap" integrals

concerned with the interaction volume of the two beams.

Another technique for measuring the total

cross-section, which has not been applied quantitatively

yet, is the optical line shift or Fermi method. (Fermi,

1934). One mechanism responsible for the broadening and

displacement of spectral lines can be attributed directly

to low energy elastic electron scattering by ground state

atoms. Fermi found that when a highly excited atom, which

has a weakly bound orbiting electron, collides with a

ground state atom then the interaction can be considered

as an elastic collision between a quasi-free electron and

a ground state atom. If the electron is to remain in a

stationary state it must adj ust its orbit slightly. This

results in a small energy change of the excited state

which can be observed optically. In practice the excited

states have usually been produced in alkali vapours and

the perturbing system is a high concentration of a rare

gas. This technique should have application to the study

of unstable species, particularly below thermal energies.

At approximately the same time as Ramsauer was

developing the concepts and techniques of electron
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transmission spectrometry, J. S. Townsend in the Cavendish

Laboratory at Cambridge was investigating the related

problem of the behaviour of electrons in a gas under the

influence of applied electric and magnetic fields.
(Townsend and Bailey, 1921 ; 1922 ; 1923) . This work grew

out of the famous studies of J. J. Thomson on the free

electron, and was concerned with the passage of electrons

through gases under steady- state conditions. By steady-

state conditions we mean that the electrons make large

numbers of collisions with the gas particles. An

experiment performed under these conditions, where the

electron dens i ty is low enough for space charge effects to
be neglected, is called a "swarm" experiment. Given a

theory relating the cross-sections for the fundamental

processes to the macroscopically observable electron

transport properties of a gas, one can calculate back from

the laboratory observables, such as transport coefficients,

to the required cross-sections with the connecting link

being provided by the Boltzmann equation with appropriate

collision terms. The cross-section, in this type of

experiment, is the momentum-transfer cross-section. Swarm

experiments are performed with electrons of energies from

a few electron volts to thermal energies, with a lower

limit of about 0.001 eV. There are three types of swarm

experiment. These are d.c. swarms, microwave or a.c.

swarms and time-of-flight methods. These are compre-

hensively reviewed by Massey and Burhop (1969).

There are several recent review articles dealing

with d.c. swarm techniques. (Phelps, 1968; Crompton and
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Huxley, 1962; Crompton, 1969). The properties of the

swarm observed are the electron drift velocity along a

uniform magnetic field E, Wii , the ratio DJ. /ll, where D

is the diffusion coefficient perpendicular to the electric

field, E, and ll is the mobility C the ratio of the drift

veloci ty to E), and the ratio W.l /W 1I , where W 1. is the

electron drift velocity at right angles to crossed,

uniform electric and magnetic fields. Each of the

observables is related to the momentum transfer cross-

section, Qm' by a collision integral that contains both

Qm and fCV), the electron-velocity distribution function.

The distribution function is obtained from a solution of

the Bol tzmann equation, which itself depends upon Q .
m

When more than one type of interaction is involved, for

example with inelastic processes, the unfolding procedure

is complicated and need not be unique. The modern analysis

of swarm techniques requires computers and would not be

feasible otherwise. Before these were available one had

to assume that Qm varied slowly over the range of

velocities in the distribution function. For this reason

we can regard early data from swarm experiments as being

primarily of qualitative value.

The microwave technique was developed at M. I. T.

Radiation Laboratory by Brown and Phelps. C Brown,

Fundingsland and Phelps, 1951). An "afterglow" is the state

of a partly ionised system after the ionising agent is

removed. After a certain period of time, during which

metastable and short lifetime states can decay, this

afterglow plasma relaxes into a quiescent state in which



37.

the electrons are in equilibrium with the gas particles.

The charge density of the afterglow plasma then decays

because of various ion and electron collision processes.

If microwave radiation is passed through the afterglow at

this stage, the electron density and conductivity can be

measured as a function of time. Recent reviews of the

cross-sections determined by this method are those of

Brown (1959) and Golant (1961).

The third approach is that of time of flight

swarms. This ls a recent technique (Nakai, 1967) which

has not, as yet, been employed quanti tati vely. However

most of the experimental problems involved have been

solved as the technique has been known in nuclear physics

for some time. Simply, what happens is that an electron

pulse of known energy is introduced into a scattering

region. The arrival-time spectrum of the electrons is

recorded with and without gas. The difference in the two

spectra will be due to scattering out. An effective total

cross-section can be derived from these observations.

(Baldwin and Friedman, 1967).

Of all the techniques discussed in this section

only the Ramsauer type of experiment and recently the

crossed beam experiments have provided reliable total

cross-section data. Similarly most momentum transfer

cross-section data comes from d. c. swarms -- the more

recent of these experiments seems to be producing reliable

results -- with a little information coming from a. c.

swarms.
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1.3 The Observed Total Cross-Section Functions

In this section we review some of the published

total electron/atom and electron/molecule collision cross-

sections. We consider only atoms and molecules which are

stable in their electronic ground state, in the gas phase,

at laboratory temperatures and pressures; and electron

beams of mean energy les s than one hundred electron volts.

An observed total collision cross-section is a complex

function of the incident electron energy. To help in the

interpretation of this function we distinguish between the

comparatively gradual variations in cross-section observed

for changes in electron energy of a few electron volts,

which we call broad features, and the sharp variations in

cross-section that occur within less than one electron

volt, due to many-body resonance effects, called fine

structure. The broad features of all the atoms and

molecules discussed are shown in figure 15.

Helium.

The first studies on helium were all in 1921 at

Heidelberg. The first was that of Mayer using a Lenard-

type transmission tube (Mayer, 1921) but, as discussed in

the previous section, there was some doubt about these

results. Two points on the cross-section curve close to

1 eV were obtained by Ramsauer (1921a) using his early
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apparatus and later that year with the improved version

he recorded the total cross-section function from 1 eV to

40 eV. This had a maximum at about 3.5 eV and the cross-

section decreased slowly as the electron energy decreased.

(Ramsauer,1921b). Townsend and Bailey (1923), using an

electron swarm apparatus, observed the same broad low

energy maximum but positioned its energy slightly lower.

The general features of the curve were confirmed by the

later observations of Brode (1925), Brüche (1927a),

Ramsauer and Kollath (1929) and Normand (1930). The

Ramsauer and Kollath study was carried out at low energies

(below 1 eV) and suggested structure between O.~ and 0.9 eV.

Golden and Bandel (1965a) paid special attention to this

region when they performed the first transmission study on

helium for thirty years. However with their Ramsauer type

apparatus they could not continuously record the variation

of the total cross-section with electron energy in this

region. To overcome this Golden and Nakano (1966) employed

a transmission apparatus with a 1270 energy selector to

study energies below 3 eV. They found no evidence of

structure in this region and this is still the accepted

picture. O'Malley (1963) has suggested that the structure

seen in the earlier experiments was due to the presence of

N2 and O2 as impurities.

In 1963 Schulz reported the first observation of

a fine structure feature due to a resonance effect at 19.3

eV by observing the electrons scattered by helium at 720.

The same year Simpson observed the same feature in

transmission. (Simpson, 1963). This was later identified
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as the 2S, state of He-.(lS,2S2). Detailed studies were
2

then made by Simpson and Mielczarek (1964) using a

hemispherical monochromator and Schulz (1964) using a

transmission tube with retarding electrodes to

monochromate the electron beam. A very detailed transmission

study was made by Kuyatt, Simpson and Mielczarek (1965) who

found two resonances at 57. leV and 58.2 eV and several

other features between 19.3 eV and 24.6 eV, which is the

+onset of He. They observed no features at all below

- 2He (Sl) at 19.3 eV. The mahor excitations in this region
2

were the onsets for He (2 3S, 22p, 22D, 32S, 32P and an

n=4 state and an n=5 state). However in 1970, Golden and

Zecca, using the zero field retarding potential difference

spectrometer reported twenty four different structures

between 19 and 25 eV. In order to clarify the position, as

Golden and Zecca and Kuyatt et al had comparable electron

resolutions of about 50 meV, Sanche and Schulz (1972a) made

a detailed study of this region using their axial magnetic

field transmission tube discussed in the last section.

They were not able to find any new structures which had not

been reported by Kuyatt, Simpson and Mielczarek (1965).

No explanation for the extra features observed by Golden and

Zecca has yet been proposed. The two higher energy

resonances have been studied by Burrow and Schulz (1969) and

Golden and Zecca (1970) as well as Kuyatt et al who first

reported their existence. Here the agreement is better and

all three groups agree with the assignment by Fano and

Cooper (1965) that the feature at 57.1 eV is due to

He - (2p, 2S 2 2p) and the 58.2 eV resonance is due to

He - ( 2 D, 2 S, 2 P 2 ) ~
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Neon.

This was first studied by Ramsauer (1921b)

who recorded a cross-section that increased very

gradually from 1 eV to 40 eVe Rusch (1925), employing

the radial monochromator and collimator discussed

earlier, showed that below 1 eV the cross-section tended

towards zero as the energy fell. This low energy

behaviour was confirmed by Ramsauer and Kollath (1929).

Brüche (1927d) agreed with Ramsauer on the higher energy

cross-section function, but Normand (1930) reported a

minimum at4 eV and another at 15 eV. A very careful

study of the total cross-section from 0.37 to 20 eV was

performed by Salop and Nakano (1970) us ing the Golden

version of the Ramsauer apparatus. Their results agreed

well with those of Brüche above 2 eV and Ramsauer and

Kollath below 2 eV. They observed a smooth curve over

the whole region so it seems Normand' s results are in

error. A double resonance at 16.0 eV and 16.14 eV was

observed first by Simpson (1963) and later in more

detail by Kuyatt, Simpson and Mielczarek (1965). Schulz

(1964) observed the resonance but did not resolve it into

two features. Sanche and Schulz (197 2a) found twelve

features between 16 and 20 eV. They agreed with Kuyatt i s

d . +. f +h as Ne- (3p5, 4S2)esignaLion 0 L e resonances2 2P3/2 and Pl/2 states. More structure is evident in the
region 42-50 eV and seems to involve excitation of a

2 S electron.
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Argon, Krypton and Xenon.

Argon was first investigated in 1921 by Mayer and

then Ramsauer (1921a-1921b). Ramsauer found that below 1 eV

argon appeared to be almost transparent to electrons.

Townsend and Bailey (1922) showed that the cross-section in

fact went through a minimum. Ramsauer (1923) performed

the experiment again more carefully to try to pos i tion the
minimum on the energy scale. He also found that krypton and

xenon possessed this transparency. Townsend and Bailey

(1923) checked their results and several other workers joined

in the investigation. (Brode, 1925; Rusch, 1925; Rusch, 1926;

BrUch, 1927d; Beuthe, 1927; Ramsauer and Kollath, 1929; and

Normand, 1930). It was Ramsauer and Kollath who produced the

agreed value of 0.4 eV for the minimum. The effect was named

after Ramsauer and Townsend. Golden and Bandel (1966)

carefully investigated the region of the minimum. They

measured the cross section to be 0.125 ~2 at 0.285 eVe

Kuyatt, Simpson and Mielczarek (1965) found two resonances

about 0.5 eV below the first excited state of argon (11.7 eV5 -and 11.9 eV) due to the two 3p 4ß4p states of Ar .

Resonances as sociated with higher excited states of argon

in the region 13-14 eV have been found by Sanche and Schulz

(1972a). This work also showed structure between 24 and

32 eV due to excitation of states such as Ar( 383p64p and

383p63d) and Ar-(383p64S2). Krypton was found by Kuyatt

et al (1965) and Sanche and Schulz (1972a) to have structure

in the region 9.5 eV to 12 eV. The two intense peaks being

due to the 2P3/2 and 2Pl/2 states of Kr-(4p55S2). More

structure likely involving the Kr-(4S4p65S2) state is
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evident between 22 eV and 27 eV. Xenon shows similar

structure in the regions 8-12 eV and 18-20 eVe

Molecular Hydrogen.

The first reliable study was that of Akesson

(1916). This was followed by the investigations of H. F.

Mayer using an apparatus of the Lenard type. (Mayer, 1921;

Lenard, 1903). This data was shown to be unreliable by

Ramsauer (1921a) with his first apparatus. In the same

year, Townsend with his swarm technique showed that there

was maximum scattering at an energy of about 1.1 eV. The

cross-section falling rapidly either side of this feature.

(Townsend, 1921; Townsend and Bailey, 1923). Brode, with

his modified Ramsauer type of apparatus, confirmed that the

cross-section rose as it approached 1 eVe but could not

produce a beam with energy lower than this to confirm the

maximum. (Brode, 1925a). However, Rusch, with the

circular sector apparatus, confirmed this maximum in 1925

(Rusch, 1925). BrUche also observed the maximum with a

Lenard type of apparatus (BrUche, 1926) but a little later,

using a Ramsauer type of apparatus, he found that the

pos i tion of the maximum had shifted to about 3 e V. (BrUche,

192 7b) . The next investigations of hydrogen were not until

1930 when Ramsauer and Kollath presented results recorded at

energies below 1 eV, which seemed to confirm the observations

of Townsend and Rusch. None of the other experiments had

been performed at energies below 1 eV. (Ramsauer and

Kollath, 1930). C. E. Normand (1930) found that just below

1 eV the cross-section rose rapidly to infinity. At 3 eV

he observed a sharp peak, which agreed with BrUche' s
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observation, and between 4 and 6 eV he observed a region of

oscillations in the cross-section. These oscillations occur

in several of Normand' s spectra for different gases, but no

other investigator has observed them. The infinite cross-

section which he observes in hydrogen and all other gases

which he investigated at this energy, is caused by no

electrons entering the collector. Whether this ls due to

all the electrons being scattered out of the incident beam

or to some complex electron optical ba.ckground cannot be

decided from his results alone. On consideration of all

the available data on all the gases studied by Normand it

seems that below 6 eV his apparatus background function

dominates the observed cross section. His results must

therefore be regarded with some suspicion. To summarise

this early work on the broad features in the total cross-

section, the cross-section falls smoothly on either side

of a maximum somewhere between 2 and 4 eV. The absolute

value of the cross-section maximum varies by a factor of

two for different investigators. All the data of this

period is reported with a non-linear energy axis in units of

electron velocity. This leads to difficulties in accurately

defining the energy of a feature without having access to

the original data.

No more was done until 1965 when Golden

investigated H2 and D2 with an improved Ramsauer apparatus.

(Golden and Bandel, 1965). Simpson, Kuyatt and Mielczarek

(1964), in an experiment involving energy analysis of the

unscattered beam, had already observed fine structure

between 11.0 and 13.0 eV which consisted of a series of sharp
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scattering maxima (about eight were observed) decreasing

in amplitude as the energy increased. Golden and Nakano

(1966) searched for structure between 0.1 and 11.0 eV,

using a 1270 monochromator, but they found nothing.

Golden, Bandel and Salerno (1966), us ing the improved

Ramsauer type of apparatus, performed a detailed study of

the broad features of the total cross-section function.

This work has become the accepted broad feature spectrum

for molecular hydrogen. They agreed on the position of

the maximum with Brüche (192 7b) who had placed it at 3 e V .

The cross-section then falls smoothly from 3 eV to 0.1 eV

and falls more gradually from 3 eV to 15 eV. The data of

Normand (1930), Brode (1925a) and Brüche (1927b) remains

the only available data at incident energies greater than

15 eV. The disagreement between these results is very

marked. The fine structure in the region between 13.6 and

16.0 eV had been investigated by Ehrhardt, Weingartshofer

and Hermann (1970), with a differential scattering apparatus,

and they had designated this resonance series as being

vibrationãlly excited levels produced by the decay of the2 ' -¿g state of H 2. This was later observed in the

transmission mode by Golden (1971) using the zero magnetic

field R.P.D. transmission spectrometer which was discussed

in the previous section. Golden did not have the energy

resolution in this experiment to investigate further the

11 - 13 eV resonance series, which has been shown by

Simpson, Kuyatt and Mielczarek (1966), in a differential

study, to be two overlapping resonance series. Sanche and
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Schulz (19 72b) performed a very detailed analysis of the

11 - 16 eV region in H2 and D2. They list seven resonance

series or bands , although only six óf these are observable

in transmission.

Molecular Nitrogen.

This was first studied by Akesson (1916) and then

by Mayer (1921) . Neither of these studies produced

reliable quantitative results. Two points on the cross-

section curve were found by Ramsauer (l921a) with his first

apparatus. These were found to lie on the curve produced

by Townsend (1921) in a swarm experiment. This curve had a

broad maximum between 1 and 4 eV. Brode (1925a) observed

the cross-section down to 2 eV. He noted a small gradual

maximum around 18 - 20 eV and a sharp rise in the cross

section, starting about 5 eV, and increasing sharply as it

approached 2 eVe Brüche (1926), using his Lenard type

apparatus, placed the maximum at about 2.3 eV, with a

basewidth of approximately 2 eV. Ramsauer and Kollath

(1930) checked the cross-section below 1 eV and found,

in ~greement with Townsend, that the cross-section slowly

decreases as the electron energy approaches zero. Normand

(1930) confirmed these observations, but the oscillations

between 4 and 9 eV and the infinite cross-section at low

energy, mentioned in our discussion of hydrogen, once again

make us suspicious of his results. Fisk (1937), with an

apparatus of the Brode des ign, agreed with Brüche but

showed the sharp rise at low energy which Norm.and showed.

This seems to be a common problem with the Brode type of

apparatus as Normand, Brode and Fisk all observe this
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behaviour when they work at energies less than 1 eV. The

Ramsauer design does not show this. There are no later

measurements of the total cross-section covering this

range. Schulz (1964) set the maximum at 2.25 eV and showed

it was composed of several very large resonances with

widths about 0.25 eV. Heidemann, Kuyatt and Chamberlain

(1966), using Simpson's double 1800 spectrometer in a

transmission mode, observed this elastic resonance and

another at about 11. 5 eV with more structure just above it.

The low energy resonance is accepted as being due to the

decay of N; in the 27f g state, leading to vibrational

excitation. Golden and Nakano (1966) also observed this

structure with their 1270 monochromated transmission

experiment, and Boness and Hasted (1966) observed the 2.25

eV resonance and suggested that low energy fine structure

occurred below 1.8 eV. It is not, as yet, known whether

this structure is elastic, inelastic or direct vibrational

excitation of the electron ground state. It is interesting

to note that Ehrhardt and Willman (1967) do not find this

low energy structure in their differential scattering

studies. The 11.5 and 11.9 eV structures are suggested by

Mas sey (1969) to be caused by excitation of the Estate

and a resonance associated with another excited neutral

molecular state. Sanche and Schulz (197 2b) in a detailed

study show that structure is very evident between 7 eV

and 15 eV. They identify four bands which overlap to some

extent. Complete identification of all the resonance

proces ses occurring was not pos sible.
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Molecular Oxygen.

Brüche (1927c) was the first to measure the total

cross-section of oxygen, from 2 eV t~ nearly 100 eVe He

found that the cross-section slowly increases from 3 eV

to about 7 eV, then the slope increases sharply until 10 eVe

Above this energy the cross-section remains approximately

constant. Ramsauer and Kollath (1930), in a low energy

study below 1 eV, observed a minimum at about 0.3 eV, which

agrees with what was observed in an electron swarm

experiment by Brose (1925). This general shape was recently

confirmed by Salop and Nakano (1970) who also recorded

practically the same magnitudes of cross-section. Sunshine

et al. (1967) had earlier measured the total cross-section

us ing an atomic beam recoil technique, but although they

confirm the general shape of the curve the absolute values

of their cross-sections are, on average, about 25% higher

than those of Bruche and Salop. Boness and Hasted (1966)

Boness et al (1968), Hasted and Awan (1969) and Hasted and

Larkin (1972) have found structure below 1 eV, which they

suggest is caused by resonant scattering from the ground

2 TI state. Schulz andSanche (1971) using the magnetic
g

field transmis sion tube with trochoidal monochromator found

two sharp features at 8.02 and 8.25 e V. They suggest that

these resonance states indicate that at least one parent

electronic state of O2 exists in the region 8.3 - 9.0 eV.

A detailed study of the 8 - 13 eV region has been made by

Sanche and Schulz (197 2b) showing two resonance bands.

Unfortuantely they did not investigate the low energy

structure reported by Hasted.



49.

Carbon Monoxide.

The first transmission study of CO was that of

Brode (1925). He found that the total cross-section fell

rapidly from 2 e V to a minimum about 9 e V, ris ing to a

broad maximum at 18 eV. Skinker and vlli te (1923) had

already shown, in an electron swarm experiment, that the

cross-section increased rapidly from thermal energies to

1 eV with a distinct bump around 0.5 eVe Brliche (1927c)

found a sharp, very intense maximum at between 2.1 and

2.3 eV, very similar to the maximum which he had found in

nitrogen. Normand (1930) observed a very similar spectrum

with the usual background features, which we have already

commented on. Ramsauer and Kollath (1930) confirmed the

bump below 1 eV but did not measure any higher. The carbon

monoxide spectrum is thus remarkably like that of molecular

nitrogen. The 2.5 eV resonance is more intense in co.

Boness and Hasted (1966), Boness et al (1968) and Hasted

and Awan (1969) have observed fine structure in this

resonance but it has not been identified in transmission

yet. Schulz and Sanche (1971) observed fine structure due

. 1. .. f h 3 b 3 + Bl + Cl + -1-1to ine astic excitation 0 tea 7f, E, E,c ¿ s La Les

and a new resonance at 10.04 eV. They have since shown

that the 10.04 eV resonance is associated with the b3E+

1 +and B ¿ states of CO. (Sanche and Schulz, 197 2b) .

The Oxides of NitrOgen.

Three oxides of ni trogen-ni tric oxide, NO,

nitrous oxide, N 20, and nitrogen dioxide, N02. Skinker

and White (1923), us ing a Towns end swarm apparatus,

investigated both nitric oxide and nitrous oxide at
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energies from 2 eV to thermal energies. They found a

sharp maximum at about O. 8 e V in nitric oxide, and a

distinct minimum for nitrous oxide' at about the same

energy. BrUche (1927 c) extended this investigation from

2 eV to 40 eVe He found a broad maximum for N20, at just

over 2 eV, and a very broad maximum starting at 4 eV,

increasing until 25 eV and then gradually falling. Nitric

oxide has a similar maximum centred around 16 eV. The N20

data was confirmed by Brode (1933) and the low energy

minimum checked by Ramsauer and Kollath (1930). Extensive

studies on the fine structure of these molecules have

recently been carried out by Larkin and Hasted (1972) on

N20, N02 and NO, and by Sanche and Schulz (1972b) on NO.

These studies show that several of the broad features

consist of overlapping series of resonance peaks.

Other Inorganic Gases.

The only other inorganic gas which has been

investigated for fine structure is carbon dioxide. Larkin

and Hasted (1970) confirmed the nature of the low energy

elastic cross-section, which is essentially the same as the

total cross-section, that had been observed earlier by

Skinker (1922), BrUche (1927c), Ramsauer and Kollath (1930)

and Brode (l933). The broad features of several other gases

have also been investigated; Hydrogen chloride by BrUche

(1927a), ammonia and water by BrUche (1927b,1929a), hydrogen

cyanide by Schmeider (1930) and ch~ôrine by Fisk (1937).

Organic Gases.

No transmission studies of the fine structure in

organic gases have yet been made. Methane, CH4, was
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investigated by Brode (192S), then by Brüche (1927c) and

Ramsauer and Kollath (1930). The alkane series, up to

butane, was reported by Brüche (19 30a) then by Brode (1933).

Brüche (19 30b) made a very interesting study of the

isomers of butane. Schmeider (1930) studied pentane and

its isomers; the hydroxyl series C3H70H, C2HSOH, CH30H and

H20; the isomers of C2H60; the isoelectronic series

CH3F, CH30H, CH3NH2; and the isoelectronic pairs (CH3) 3NH,

(CH3) 3CH and (CH3) 3N, (CH3) 3CH. Holst and Hol tsmark

(1931) studied ethylene, acetylene and benzene; and the

chlorinated methane series CC14, CHC13, CH2C12 and CH3Cl.
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In the previous sections, we have defined the

total cross-section, discussed how it can be measured and

reviewed those cross-sections which have been measured.

In this section we consider how to interpret the total

cross-section function in terms of theoretical models.

The broad features of the function are the occurrence of

maxima and minima, in particular that low energy minimum

exhibited by certain atoms and molecules and known as the

Ramsauer-Townsend effect; the similarity in the cross-

section functions of chemically similar atoms and molecules

and the heavier rare gases; and the large cross-sections

for the alkali metals. We must also explain the occurrence

of fine structure due to resonance processes.

So far, no one theoretical model satis factorally
explains all of these phenomena. However several models are

available which account for particular cross-section

phenomena more or~: less satisfactorally. To systematise our

discussion we divide the models into th~ee classes:

classical mechanical models, wave mechanical models and

chemical models. Our definition of the word flmodel" is

any theoretical description of the electron-atom or

electron-molecule system which correctly preóicts an

observed feature in the cros s-section cu_'ve.
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Classical Models.

In the simplest classical mechanical model, we

represent both the electron and the target atom or

molecule by smooth, impenetrable elastic spheres of

appropriate relative mass. If the distance between the

particles is r, and the sum of the radii of the two

particles is D, then we can express the interaction

potential V (r) as,

VCr) =

l:
(r ;( D)

(r :: D) (1.4.1)

This is called the classical mean free path

model or "billiard ball" model. The detailed mathematical

analysis of this system was considered in the introductory

section. It was shown there that all directions of motion

after collision were equally probable ie. the scattering

was isotropic. Also, according to this model, the total

cross-section is not a function of the incident electron

energy, which contradicts the observed facts.

To improve upon this model we must introduce a

more realistic interaction potential. It is known that a

charged particle close to an atom or molecule causes it to

become polarised (ie. the centres of pos i ti ve and negative

charge do not coincide). Let us suppose, as a first

approximation, that when this occurs the charges are

distributed with spherical symmetry about their respective

centres. Thus the target particle will acquire an induced

dipole moment due to the proximity of the incident electron.

In reality, the charge distribution formed can cause



54.

~nduced quadrupole moments and octupole moments as well.

Now, by analogy with a parallel plate condenser, the

polarisation P, induced in a gas of 0âielectric constant K,

by an electric field of strength E is:

P = (K-l).E/4n (1.4.2)

and if N is the number density of the gas particles, the

induced dipole moment per atom or molecule is ~ where:

~ = PIN = (K-l) .E/47fN (1.4.3)

and let us assume that we can consider the electric field

of the electron as coulombic, except at small distances, so

that if r is the separation of the electron and the

target dipole then,

E = e/r2
and,

~ = (K-l).e/4nNr2 (1.4.4)
Now the force of attraction between a dipole and a

point charge is given by:

F = 2~.e.cosß/r3

where ß is the angle between the axis of the dipole

and the direction of the incident electron. Since the

dipole, in this case, is induced by the incident electron

the angle ß will always be zero. Thus,

2 5F = (K - 1) . e /2 n Nr ( I . 4 . 5 )

and the interaction potential for this model is:

VCr) = lCl
2 5

T (( K- 1 ) . e ) I ( 2 nNr ) ¥dr

= -CK-l).e2/8nNr4 (1.4.6)
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This is only an approximate expression as it

assumes that the field of the electron is constant over

the whole target molecule. The complete analysis of this

model for a molecule with a spherically symmetric electron

distribution shows that (1.4.6) represents only the first

term of a series solution, the next term being a constant

times r -6 and corresponding to the induced quadrupole of

the molecule. (Margenau, 1941).

These considerations suggest that a more suitable

interaction potential would be of the form:

VCr) = -c/rn (1.4.7)
where c is a positive constant and n is the mul tipole

index. The mathematical difficulty of the analysis of

this model depends upon the value chosen for n.

If n = 1, we have Coulomb or Rutherford scattering.

If e 1 is the scattering angle, as defined in figure 2,
then it can be shown that the classical differential

total cross-section for Coulomb scattering,aT(ei)' is

given by:

aT (ei) = C/v~ sin4(ei/2) (1.4.8)

This is an improvement on our previous model as

the cross-section ls now a function of the incident electron

energy or velocity, vo' However, because of the sin4(ei/2)

term in the denominator, when we integrate the differential

cross section to obtain the total cross section thus,
rr :i1'

QT = 11 °T( ei). d( ei). dØ (1. 4.9)

the first integral diverges to give an infinite value for
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QT' and for the momentum transfer cross-section also.

No matter how large an impact parameter we have, some

deflection will occur and so the sum of all contributions

to the integral must be infinite. This problem can be

overcome by using "shielded" Coulomb potentials in which

the range of the interaction is limited (ie. there ls a

maximum value for r in equation (1.4. 7) ) . The shielded

Coulomb potential is discussed by McDaniel (1964) and the

"exponentially screened" Coulomb potential was considered

by Everhart (1960). Neither of these approximations

improve the classical Coulomb model for low energy electron-

atom or electron-molecule collisions.

It can be show that if the interaction potential

between the colliding particles is of the form of

equation (1.4. 7) then the variation of the differential

scattering cross section with velocity is given classically

by;

a(e) ex V -4/no (1.4.10)

where v 0 is the incident particle velocity, e is the

polar scattering angle and n is the mul tipole index.

( Kennard, 1938).

If n = 4 in (1.4.7) we have a point charge-

induced dipole polarisation potential. From equation

(1.4.10) we see that this shows that the differential

scattering cross section varies inversely with the velocity.
The collision frequency, which is proportional to a(e).vo'

is thus independent of v 0 and for this reason the model is

sometimes called the cOnstant mean free time mOdeL. These

classical models are summarised in Table I.



Table I

1'ulti- Differential
Interaction polar cross section

Model potential Index dependence

Constant mean free VCr) =
00 (r ~a)

n = 00 a f(VO)
path model o (r )-a)

Coulomb Potential VCr) = -C/r n = 1 a a 1/\/ 4
model 0

Constant mean free VCr) 4
4 a a 1/VO= -C/r n =

time modeL. (point
charge-induced dipole)

point charge- VCr) 6
6 a a(l/V )2/3= -C/r n =

induced quadrpole 0

Table 11

Interaction Velocity dependence Multipole
of cross section Inde:K

2
-

dynamc scattering QTav

charge-charge
QTa(l/v)4 n=O

charge-dipole 2 n=lQTa(l/v)

charge-quadrupole QTa(l/v)4/3 n=2

Charge-octupole QTa(l/v) n=3
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In a model involving scattering by a centre of

force with infinite range, we cannot define the total

cross-section properly and so cannot calculate the velocity

dependance. However we can calculate a velocity

dependance for the momentum transfer cross-section because

the small angle contribution to the differential cross

section is suppvessed by the weighting factor (l-cose) in

the integral for Qm. However these models do not account

for any features in the cross-section curve.

It would appear, therefore, that the low energy

scattering of electrons by atoms or molecules is "non

classical", for we have failed to produce a model that will

explain the features of the total cross-section dependance

upon electron velocity. Modern monographs on atoIDiê

collision physics, such as Massey (1969), Massey and Burhop

(1969), Mott and Massey (1965), Massey (1956), Schiff (1955),

Burhop (1961) and Hasted (1972) all employ Heisenberg's

uncertainty principle to show why classical physics should,

in general, fail to give a satisfactory qualitative or

quantitative description of collision processes. This

principle applies to any pair of canonically conj ugate

variables in the scattering system. These are dynamical

variables, such as spatial position and linear momentum or

total energy and time, which satisfy a conj~gate pair of

Hamilton's "canonical equations of motion". The principle

states that the order of magnitude of the product of the

uncertainties in the knowledge of the two variables must be

at least as great as h/2n,where h is Planck's constant. For

example,
L\X.£iPX ~ h/27f (1. 4.11)



58.

IfAX , the uncertainty in the position of the colliding

electron, is to be no greater than the dimensions of the-8 '
target molecule, say (10 cm), then from the above

inequality, the resultant uncertainty in momentum, £lP ,x

corresponds to an uncertainty in velocity (£lV ~108 cmz

sec -1) which is roughly the velocity of a 3 eV electron.

This discussion does not prOve that classical mechanics

is no,t applicable to low energy problems. But combined

wIDth the fact that classical considerations could not

explain the Ramsauer-Townsend effect or indeed any other

total cross-section effect, whereas wave mechanics

successfully accounts for some of these phenomena, in the

general case if not the specific, we can see how this

system became regarded as "non-classical". In fact, the

success of wave mechanics in interpreting these phenomena,

notably the Ramsauer-Townsend effect, was regarded as the

key experimental evidence supporting the advent of the

wave theory.

Recently M. Gryzinski of the Institute for

Nuclear Research in Poland has proposed a diametrically

different classical approach to the problem of low energy

atomic scattering. Gryzinski assumes interaction to occur

through the time dependant periodically varying potential

field of the atom or molecule produced by the point

charge fields of the constituent electron as they classically

rotate about the nucleus. This system of charges, under

the action of Coulomb's law and Newtonian dynamics, exists

in a state of dynamic equilibrium. The nature of the

scattering undergone by a particular incident electron being
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determined by the actual value of the atomic or molecular

mul tipole moment at the point of closest approach. The

potential, ~' is a function of the impact parameter, r,

the polar and azimuthal scattering angles, e and ø , and

the time, to It can be expressed as a Fourier series

expansion of this form:

q?(r,e ,ø,t) = L L
k n

AnK (e ,ø) . exp (-i 0 wK 0 t) /rn

(1.4.12)

where Ank represents the component corresponding

to the frequency wk in the Fourier expansion of a mul tipole

moment of the nth order. (GryzinsKi, 1959; 1965a;1965b;

1965d; 1965e; 1971b).

To overcome the problem of defining the total

cross-section, Gryzinski proposes that a minimum value of

scattering angle exists and can be determined. This

minimum angle is determined by the nature of the apparatus.

He considers in particular the size and shape of the beam-

forming slits and the detector slits, but gives no practical

details of how to calculate ~his angle accurately. In the

experiments he cons idered, (thos e of Brüche, Normand, Brode

and Ramsauer which were discussed in section 1.2), the value

of the angle is of the order of several degrees. (Gryzinski

197mb) 0 Using classical small angle 
scattering theory

(Gryzinski, 1970h) he relates the scattering angle,e, the

collision parameter, D, and the electron velocity, v, thus:

n+l 2
tan e ex Anko exp (-wk. D/v) l(D . v ) (1.4.14)

The limiting value of this expression depends

upon the frequency, wk' of the target system. The

expressions for the total cross-section then take the form:
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QT ~ (l/v) 4/n+l for v ~ vl (1.4.15)

and,
2

QT ~ v for V .. vl (1.4.16)

where vl is a boundary velocity dependant on the

frequency wk'

Using these ideas, Gryzinski "interprets" the

published total cross section data. He divides the

observed curve into ranges defined by the velocity of the

incident electron. In his most recent article (19 71b) he

di vides the curve into three regions: a region of squared

60ulomb scattering (from about 0.1 to 1.0 eV); region of

exponential scattering (from about 1.0 to 100 eV); and a

region of quasi-Coulomb scattering. In his earlier work,

more regions were involved and, certainly for molecules,

it seems unlikely that the number of different kinds of

interaction can be reduced. The interactions possible,

as derived from expressions (1.4.15) and (1.4.16) are

listed in Table 2.

This approach does work with the observed curves.

For numerical agreement it is necessary to correct the

experimental values for the angular resolution of the

particular apparatus used. The Ramsauer-Townsend minimum

in argon is verified if we assume dynamic scattering to

occur from 0.5 eV to 10 eV and a quadrupole moment

interaction above that energy. Figure 16 shows the

agreement between experiment and theory. Xenon and

k~ypton calculatmons are similar to argon whereas helium

and neon show the quadrupole dominance over the whole

energy range. Thus for the rare gases, the dynamic
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quadrupole is the basic scattering interaction and the

agreement is good above 1 e V.

For molecules, recogni tioh of the dominant

dynamic mul tipole can provide information about the

electronic structure of the molecule. For example,

Gryzinski found that electron scattering from the hydrogen

molecule was best explained by assuming a dominant

dynamic quadrupole moment. The absence of any dipole

moment suggests that the electrons have motions symmetric

with respect to the molecular centre. The absence of a

permanent quadrupole suggests that the electron motion is

axially symmetric with respect to the internuclear axis.

Molecular nitrogen is explained with a dynamic dipole

region, and a dynamic octupole region at higher energy.

This nynamic charge-dipole interaction is found to be

characteristic of a 7f bond in a molecule. So ethylene and

acetylene both have dynamic dipole regions, whereas ethane

which has only a molecular bonds has not. The saturated

hydrocarbon series, of methane, ethane, propane and butane,

shows a very characteristic charge-octupole interaction.

The dynamic mul tipole model, then, is useful for the

molecular physicist interpreting scattering data; in

particular when looking at possible correlations between

chemically similar molecules and their cross sections.

However, whether this purely class ical model is a phys ically

realistic al ternati ve to the quantum theory models is still

a matter of some debate. (Gryzinski, 19 71a) .
In summary, the only classical model of any help

in interpreting the observed cross sections is the dynamic

mul tipole model. No class ical model can explain resonance

fine structure, however, as this obvious ly depends on quant-

ised energy levels.
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Wave Mechanical Models.

According to the classical models an electron,

of mass m and velocity v, which is directed towards a

centre of force will be deflected unless the force due to

the centre vanishes everywhere along the traj ectory. If

the electron is not deflected it will pass the centre at a

distance r, called the impact parameter. In treating this

problem quantum mechanically we can assign a probability

a (r), that a particle with an impact parameter between r

and r+dr will suffer an "observable" deflection. (Mott and

Massey, 1965; Massey and Burhop, 1969).

= 27f

l~l:~r) .r.dr. dolo 0~oo a (r) . r. dr (1.4.17)
o

most quantum mechanical formulations it lS

QT =

As in

convenient to rewrite this in terms of the angular

momentum, J, of the electron about the centre of force, so:
00

QT = (2./m2v2) lJ.ß(J).dJ (1.4.18)

where J = m.v.r and ß(J) is the probability that

an electron with angular momentum between J and J +dJ

suffers an "observable" deflection. Now the angular

momentum about a centre of force is quantised, so we can

write:
1

J =' rQ,(Q,+1)J2 :h (1.4.19)

where Q, is the angular momentum quantum number of the

electron. In accordance with the usual nomenclature,

if Q,=O we have an S wave electron ,Q,=l a p wave electron

and so on.
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The integral for the total cross -section will

now become an infinite series, thus:

00

QT = (nf\2/m2v2) ¿ (2R,+1)Y(R,)
$1=0

00

= (n/k2) ¿ (2R,+1)Y(R,) (1.4.20)
$1=0

where k = 2~ I À is the wave number of the incident

electron, and y(R,) = ß(J).

We now interpret the probability y ($I) . The

incoming electron may be considered as a plane de Broglie

wave of wavelength À= h/mv. After passing the centre of

force the electrons will have a spherical wave front .

(Faxen and Holtsmark, 1927). An analysis of this model in

detail for head on collis ions of zero angular momentum or

S wave electrons with a centre of force, shows that the

probabili ty Y (0), that these electrons undergo an
"observable" deflection is a function of the phase shift,

no, in the electron wave before and after collision. Now

it is impossible to count the electron waves, so a phase

change that is an integral multiple of 27f will not be

observable. So l(O) will be a periodic function of nO'

never be negative and will vanish when the phase change

vanishes. A function satisfying these three conditions is

y(O) = A . 2sin n6~ By analogy we let y(R,) = A sin2 nR,'

where n $I is the phase shift produced in R,-wave electrons.

A full quantum mechanical proof of this problem, involving
a solution of the Schrödinger equation for the electronl

target system to give the asymptotic wave functions before

and after collision, is given by Mott and Massey (1965)

and leads to the same final expression, viz:

00

QT = (A~ Ik2) ¿ (2~+1)
$1=0

. 2sin n $I (1.4.21)
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To evaluate A, we compare our partial wave model

cross_section with the classical constant mean free path

model cross-section. These cross-sections we would expect

to be identical when we consider the case of electron

scattering by a billiard ball of radius a. The classical

and quantum definitions of angular momentum, J, are:

,
J == -( !í ( J/ + in 2, It

= ID. v. r

The radius of the billiard ball, a, defines a limiting

impact parameter and hence angular momentum, J LIM'

where:

JLIM = m.v.a

For large values of J/ J,~ J/.tt and so,

J/ .c m.v.r/1t
and,

J/ 0 = m. v. a/'t\ = k. a

where J/o is the quantum number corresponding

to JLiM.

Now if J/ ~ J/O' we expect the phase n J/ to be

approximately zero as this corresponds to an impact

parameter greater than the radius of the ball. Thus,

sin2n J/ will be zero and the value of Q calculated from

(1.4.21) will be zero.

If J/ ~ J/O' we can rewrite (1.4.21)

11.0Q.~ A7f/k2 0 (2J/+1). sin2 n J/. dJ/

We expect n J/ to be large for scattering from a billiard

ball, and can replace sin2 nJ/ by its average value of ~,

in~ the form;

(1.4.22)
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Q~An/k2 (Ji2/2 +Ji)'JiO
o

and as Ji 0 = k'a'

Q~ A7f.k.a/k2(k.a/2+1) (1.4.23)

So, in the limit of high values of Ji, kal 2 ~ ~ 1 and we

can write:
2

QT = A. 7f . a 12 (1.4.24)

If we make A= 2, (1.4.24) corresponds to the classical

cros s section of 7f. a 2 for high incident energy electrons.
The more detailed treatment of this problem involves

solving the SchrBdinger equation for the system and gives

a value for the constant A of 4. The difference in value

being due to shadow diffraction of the electrons at small

scattering angles. (Mott and Massey, 1965). Thus, the

partial wave expansion of the total cross-section is now,

00

QT = (47f/k2) L (2Ji+l) sin2 nJi .dJi
Ji=O

and the momentum transfer cross-section in terms of

(1.4.25)

partial waves is,

00

Qm = (47f/k2) L (Ji+l) sin2(nJi-nJi+i)
Ji=O

(1.4.26)

Classically, the deviation produced by the

scattering potential will be small if the kinetic energy

of the electron is very much greater than the interaction

potential. Wave mechanically, the impact parameter

corresponding to the angular momentum, J, is r = J /m. v.

Thus, by analogy, we expect that sin 2 n Ji will be small for

values of Ji such that the interaction potential, V(J /mv)

instead of V(r), is very much less than the kinetic energy



66.

of the incident electron. We now consider how this small

phase shift condition arises. Let the interaction potential

be of the form;

VCr) = C/rn (1.4.27)
Then the condition for a small phase shift n 9- is that

C/rn ~~ T (1.4.28)

where T is the kinetic energy of the electron.

This requires that

r :::: (C/T)l/n (1.4.29)
and

r = J /mv

~ -( 9- ( 9- + 1) ) l It /mv

1

~ 9-1\/(2mT)2

So we can rewrite condition (1.4.29) wave mechanically

as,
9- :::: Cl/n Tl-l/n(2mJ1t 2)l (I.4.30)

Thus for interactions with n :: 2 all phases, except perhaps

the zero order one, tend to zero as the kinetic energy

tends to zero. It follows that the greater the value of T,

the incident electron kinetic energy, the larger the number

of significant phases in the series expansion of (1.4.25).

For very low kinetic energies only the zero order phase is

significant and the scattering cross section reduces to:

QT = (4 ~ /k 2) sin 2 n 0 ( I . 4 . 31)

This result is valid for exponential scattering potentials

also. Equation (1.4.31) expresses the first useful result

for this model. It provides an explanation for the

Ramsauer-Townsend minimum. We will consider this in detail

later.
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Any particular angular momentum will make only a

small scattering contribution if sin n ~is small. This

will be so, not just for n ~ ~ 0 but' also n ~ cL n'rr where n

is an integer. By definition, we choose the low velocity

limit of a phase to be n 7f rather than zero, and n is the
number of zero values introduced into the plane wave function

by the action of the scattering field on zero velocity

electrons. Thus n ~ is a steadily decreasing function of ~

for fixed electron velocity in a given scattering field.
If, with this convention, the phas e n ~ + n 7f as the velocity

tends to zero, then n bound energy levels exist, each of

angular momentum' tH~+l)ll.1t.

We can expres s (1.4.25) in an al ternati ve form.

QT = E
q~

= (47f/k2)(2~+1)sin2

(1.4.32)

where q~ n ~ is the ~ th order

partial cross-section. We showed that, for very slow

electrons, the only significant partial cross-section is the

zero order one. Thus:

QT = qo = (47f /k2) . 2sin no (1.4.33)

As the velocity tends to zero, the wave number k = mv/t

also tends to zero and nO tends to n~, where n is determined

by the strength of the scattering field as discussed above.

We will consider three cases to show how the Ramsauer-

Townsend minimum occurs.

Case I. Here we have a weak field in which n = O.

Figure 17 shows the variation of nO with k

and qo with k. Clearly no Ramsauer-Townsend

effect occurs in this case.
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Case 11. Here n = 1 and we have a stronger field.

This is similar to Case I and again no

Ramsauer-Townsend e'ffect occurs.

Case ILL. Here n = 1, again, the field is

stronger still, and qo returns to the

value 7f at a finite electron energy and

the variation of qo with k is typical

of the Ramsauer-Townsend effect. Similar

effects can arise for stronger fields with

n ~ i.
Whether we have a Case II condition with no

minimum or a Case 111 condition with a minimum depends upon

the scattering potential, at a particular energy, being of

just the right strength to introduce a whole number of

additional waves. One further condition for a true
Ramsauer-Townsend minimum is that at the zero of qo the

contributions to QT from higher order partial cross-sections

must be negligible. This discussion is based on Mott and

Massey (1965) and Holtsmark (1929). From this latter work

we show how an observed total cross-section can be built up

from theoretically calculated partial cross-sections. This

is shown for the case of argon in figure 18. The heavier

rare gases, krypton and xenon, also show a Ramsauer-

Townsend minimum. This is due to the quasi-periodic

behaviour of the zero order partial cross-section, qo' as

the atomic number of the scattering atom changes. Thus in

going from argon to krypton and krypton to xenon the

scattering field increases in strength just the correct

amount for a complete additional wavelength to be added
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within the range of the field. The partial cross-section,

qo does not alter but the zero order phase is increased by

7f. (Holtsmark, 1930).

The lighter rare gases, neon and helium, do not

show a Ramsauer-Townsend effect. This is explained, in

terms of the partial wave model, by Massey (1969). In the

change of scattering field as we go from argon to neon the

phase nO does not pass through a complete period. Massey

also points out that the molecule methane (CH4) gives a

mean scattering field which produces a phase nO differing

from argon by approximately 7f. It would seem that methane

is the fourth member of the anomalous transmission series,

preceding argon. We note that both methane and neon have

atomic number ten and thus similar scattering fields. It

would seem that neon corresponds to Case 11, above, and

methane to Case 111. Thus, in summary, the partial wave

model correctly predicts the Ramsauer-Townsend effect for

the heavier rare gases. The zero order phase, nO' tending

to 3~, 4n, 57f at low electron energies for argon, krypton

and xenon respectively. It also correctly predicts that

al though the phases, nO' of helium and neon tend to 7f and

27f at low electron energies these will be no cross-section

minimum as the variation of qo with k is not of the

correct form. The common cross-section maximum for argon,

krypton and xenon at about 13 eV is explained by n2 tending

to ~7f, 3/27f, 5/2n respectively. There is no such effect

for the lighter rare gases.

The large cross-sections of the alkali metals can

also be explained by partial wave theory. The atomic field
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of the alkali metals extends over greater distances than

the field of the rare gas atoms and so the first order

phase shifts are more important. The sharp maximum occurs

when ni tends to an odd multiple of n/2. (Mott and Massey,

1965) .

The similarity in the total cross-section function

of the chemically similar atoms is perhaps one of the most

s ignificant results of this model as it permits an

experimenter to predict qualitatively the cross-section

function for a previously unstudied system. The chemically

s imi lar triads are argon, krypton and xenon; s odi um,

potassium and caesium; and zinc, cadmium and mercury. To

show the generality of this model, Allis and Morse (1931)

proposed a schematic atomic field of the form:

VCr) =

r 2 0
) -Ze (l/r - l/r )

L 0

(r .: rO)

(r ;; rO)

(1.4.34)
and calculated the phases for different values of the

constants Z and rO. This is, in essence, a "shielded"

coulomb interaction. Theydefiinèd a quantity ß as:

i
ß = (ZrO/2aO)2 (1.4.35)

and showed that the partial cross-sections were quasi-

periodic in ß with a period of unity. Morse (1932)

carried out more advanced calculations with an exponentially

screened interaction.

This model can be used qualitatively with some

success ih considering the cross-section functions of

molecules. We will consider this in more detail when we

cons ider chemical models.
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To obtain a satisfactory theory for low energy

electron/molecule collis ions we must extend the partial

wave model. Atomic fields, to a first approximation, can

be considered as possessing spherical symmetry. For
molecules this is seldom possible, and even when it is, the

ignorance of molecular structure leads to problems. The

use of spheroidal coordinates permits solutions of the

Schrßdinger equation in terms of partial wave expansions

which, for certain axially symmetric fields, can be applied

to diatomic molecules.

We present, in outline, the theory of Stier (1932)

and Fisk (1936) so that we can consider the applicability

of this model.

The total angular momentum, J, about the centre

of scattering is no longer a constant of motion. Instead,

the component of angular momentum in the direction of the

diatomic internuclear axis is constant and quantised in

the us ual form m t were m = 0, 1, 2... . The incident wave

can now be resolved into partial waves for which m = 0,1,2...

and the total angular momentum in the united atom limit

is' t (.R+m) (.R+m+l) J l.K . For each of these partial waves a

phase shift,n.Rm' is produced by the scattering field. Thus:

QT = LL qm.R
m.R

(1.4.36)

where

qm.R
= jê27f/k2)sin2nm.R

l( 4n /k2) sin 2nm.R

(m=O)

(m1o)

As k tends to zero (ie. electron velocity tends to zero)

all the partial cross-sections tend to zero, except qoo

which tends to a finite value. Fisk (1936) extended the
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method of Allis and Morse (1931) for chemically similar

atoms to molecules. He defined ß in terms of Z and PO'

analogous to the ß of Allis and Mor~e in terms of Z and

rO. As in the atomic case the partial cross sections are
periodic with respect to ß. The method was applied to the

diatomic molecules hydrogen, nitrogen, oxygen and chlorine.

The agreement for N2 and O2 is good but H2 and C12 show

irregulari ties. The results for nitrogen along with the

experimental values of BrUche and the calculation of Stier

(1932) are shown in figure 18.

An approximate self consistent field for methane

has been obtained by averaging the proton distribution over

all orientations so as to obtain a spherically symmetric

field due to all the nuclei. (Buckingham, Mas sey and Tibbs,

1941). They calculated the phases for scattering of
electrons by this spherically symmetrical field, as

previously explained, and found that close similarity to

argon would be expected below 20 eV.

More recently Garrett (1972) has reviewed

theoretical approaches to very low energy electron

scattering by strongly polar molecules. He calculates values

of the momentum transfer cross-section for molecules with

permanent dipoles. This work and the work of

Takayanagi and Itikawa (1968) may well be extended to give

meaningful total cross-sections at higher energies for these

polar molecules which are not, at the moment, amenable to

a partial wa.ve analysis. The work of these two groups is

basically an extension of the work of Altshuler (1957) who

applied the Born approximation to the scattering of
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electrons by a stationary point dipole, with some success

at thermal electron energies. The Born approximations

are described in detail by Mott and Massey (1965).

Molecular hydrogen is the only molecule simple

enough for "ab initio" calculations of scattering based

on the theoretical structure of the molecule. Nagahara

(1954.) calculated the scattering by expanding the solution

of Schrödinger's equation for the system in terms of
spheroidal harmonics. Massey and Ridley (1956) included

electron exchange in a variational solution of the

Schrödinger equation. More recently Hara (1967) included

dipole dist~vtion of the molecule during impact. Only

Hara' s results have the same shape as the experimental

results, but even here the quanti tati ve argument is not

very good.

To conclude this section on wave mechanical

interpretations of the broad features of the total cross-

section, we consider the agreemenT between advanced

partial wave theory and modern experiment.

OffMalley (l96 3) applied effective range theory

to calculating the total cross-section for low energy

electron/helium and electron/argon scattering. He

considered the case where the scattering interaction

potential VCr) falls off faster than any power of r, at

large r. Then for all values of t,

k2~+1 cot n = -l/a + i k2r + higher order termst ~ 2 ~
(1.4.37)

where at and rt are constants known as the scattering

length and effective range respectively. It follows that
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Lim
k+O

2
Q = qo = IJnaO. (1.4.38)

where aO ls the scattering length for zero angular

momentum. (O'Malley, Spruch and Rosengerg, 1960;1961;

1962). 0' Malley writes the partial wave expansion of the

total cross-section as:

00

QT = 3. 517 ¿ (2 ~ + 1) sin 2 n ~ /k 2 ( I . 4. 39 )
~=O

where k2 = (2m/lt2).T and T(eV) = 13.6 (ka5), and

cailculates the phases in terms of effective range
expansions of the form:

tan nO/k = -A-O. 284ci ~ -0. 04902AciE ~n E + BE

and,

tan n~/k = 0.8518ciÝË/(2L+3)(2L+l)(2L-l)

where A is the scattering length, ci is the atomic

electric polarisabili ty and B is another constant.

O'Malley uses values of these constants derived from the

experimental data of Golden (1966) to calculate values of

the momentum cross section which he then compared with the

experimental electron swarm data of Frost and Phelps

(1964). The agreement is good. This technique may well

prove very useful in the future for relating momentum

transfer cross-sections and total cross-sections in the

very low energy region.
Resonance Fine Structure .

An electron/atom or electron/molecule resonance

may be defined as a temporary negative ion state capable

of decaying by electron emission. The lifetime of such a-5 -16state is usually between 10 seconds and 10 seconds.
If the lifetime, T, of the resonance is long compared
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with the time the projectile takes to traverse the target

then structure will be observed in the total cross-section

due to the severe distortion of the incident electron

wavefunction. Resonances are classified according to the

mechanism by which the electron is trapped. The most

fundamental di vis ion involves Type I resonances (or

closed channel or core excited or Feshbach or compound

state) and Type 11 resonances (open channel or one-body

or shape). (Massey and Burhop, 1969; Bardsley and Mandl,

1968).

Type I resonances occur at energies below that

of an excited atomic or molecular energy level, where one

or more bound or compound states can occur. These bound

states decay into lower energy states of the molecule and

a free electron. The bound state lifetimes are between

10-12 seconds and 10-14 seconds.

Type 11 resonances occur at energies slightly

higher than that of the atomic state. The interaction

between an electron and a target molecule is sometimes

repulsive at large separations passing through a maximum

in intermediate separations and becoming attractive at

closer distances. This maximum or barrier can trap an

electron which then has to tunnel through the barrier to

decay to the original state plus an electron . Excited

states, as well as the ground state, can produce shape

resonances.

A resonance can occur with energy corresponding

exactly to the state of the atom or molecule. This

unusual type of resonance, a mixture of type I and type 11,

is called a "virtual state" resonance. (Hasted, 1972).
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The quantum mechanical treatment of resonances

ls complex and requires a good knowledge of the molecular

wave functions of the states of the parent molecule and

the transient compound state. A resonant state,~ n' has
the same time dependance as a bound state, viz:

~ n ex e xp ( - i. W n . t / 1\ ) (1.4.40)

where Wn is, for a resonant state, a complex

energy,

Wn = En - ~.i.rn

This shows an exponential decay,

I ~ n I 2 ex exp (-r n t / 1t ) (1.4.41)

where r n is the width of the resonant state, and

.= ::/rh is the lifetime of the state. Herzenberg (1967)

showed that near a resonance the cross-section Q (E)a

for any final decay channel,a, consists of three terms;

Qa(E) = Qci (E) + Qci(E) + Q~ +(E)nr r inL
(1.4.42)

where E is the energy, Q is the non-resonant cross-nr
section (ex I ~nr 12), Qr is the resonance cross-section

(ex I ~r 12) and Qint is an interference term proportional

to the real part of the complex conj ugate I ~ ~'~~ 1nr r. The

maximum in cross-section observed in a transmission

experiment comes from Qr' while Q contributes a smoothnr
background. Under single collision conditions, the

transmitted current is 10 (1 -7f . QT). where 10 is the

incident electron current,7f is the target parameter which

we defined earlier, and QT is the total electron collision
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cross-section. At higher pressures, the current is 10

exp (-n QT) . The fine structure in the transmitted current

is thus enhanced at higher pressure's where nQT ,.,. 1. A

discussion of the interpretation of resonances in

experimental transmission functions is given by Hasted

(1972).

In molecules, a type I resonance may involve an

electron being temporarily bound to either a valence or

Rydberg excited state. A Rydberg state is a hydrogen-like

orbital of high principal quantum number. Calculations,

by Weiss and Krauss (1970), on the nature of the bind~ñg

force on the additional electron in a type I resonance

showed that only Rydberg excited states have a positive

electron affinity for a fixed internuclear separation in

the Franck-Condon region. Therefore, we can expect to find

sharp resonances slightly below the excitation thresholds

only for Rydberg excited states (ie. not for valence

excited states). The temporary negative-ion consists

of two Rydberg electrons trapped in the field of a posi tive-

ion core. This positive-ion is called the grandparent

state by Sanche and Schulz (197 2b) . The parent state is

a single Rydberg electron bound to the grandparent ionic

core.

Type I resonances have lifetimes which are long

compared to the vibrational period of a molecule and so

give rise to bands, each of which consists of a progression

of vibrational levels. In experimental observations

these progressions may overlap, which makes identification

difficult. Sometimes the progres s ion is cut off sharply
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at a certain vibrational level due to an alternative

channel of decay existing at that energy. Finally,

certain negative ion states are not seen at all in

transmission experiments because their natural width is

too large or because the Franck-Condon probabilities for

exci tation from the ground state are too small.

Chemical Models.

In this section we consider whether knowledge

of the chemical structure of molecules can be used to

correlate similarities in their total cross-section

functions. This is not a topic which has been cons idered

in any detail in the literature. The only work devoted

to this topic ls that of Schmieder-Oppau (19 3~).

We look first at relationships governed by

Grimm's hydride shifting rules. The hydride shifting rule

ls shown in figure 19. The rule is based on the idea that

if a hydrogen atom combines with another atom, e,g. a

carbon atom, the hydrogen nucleus will be deep inside the

electron shell of the new compound and its field strength

will be shielded towards the outside almost completely.

The new compound, the radical CH, wi th its five outer

valence shell electrons should behave very similarly to

any other atom with five outer shell electrons, such as

the nitrogen atom. In the same way one expects that CH2

would behave similarly to an oxygen atom, CH3 to a fluorine

atom and CH4 to a neon atom. The hydride shifting rule

shows a systematic change in atomic or pseudo-atomic

radius and certain other characteristics as one proceeds
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from CH3 to neon. The cross-sections of the pseudo rare

gases, a term introduced by BrUche, in the zero group of

the periodic table in figure 19 have already been

investigated in detail. Figure 15 of section 1.3 shows

very reasonable agreement for this correlation. The atoms

and pseudo-atoms mn groups IV-VII do not exist as stable

entities on their own and can be considered only in

molecular compounds.

Schmieder-Oppau (1930) presented a three

dimensional table, shown in figure 20, which shows all

possible stable molecular combinations of two atoms or

pseudo-atoms from gropps IV-VII. Again from figure 15,

we can compare some of these groupings. For example,

CH3F, CH30H, CH3NH 2 and CH3CH3 all show similar cross-

section variation above about 9 eV. The absolute

magnitudes of the cross sections are in the same ratio as

the dimensions derived from the hydride shifting rule. At

low incident energies we would not expect agreement as the

electron is moving slowly enough to experience small

variations in field. Another grouping which agrees well

is that of nitrogen, hydrogen cyanide and acetylene. Again,

above 9 e V the agreement is good but below this energy the

indi vidual peculiarities of the molecules are dominant.

The common maximum at about 2 eV would seem to agree with

the hydride rule, but the absolute magnitude of the HCN

curve should be between that of N 2 and C2H2. The very

intense interaction shown, which does not agree with the

hydride rule, is probably due to the dipole moment of HCN.

Schmieder-Oppau tried to correlate ~he variation of dipole
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moments with similarities in the cross-sections, but this

was unsuccessful. Consideration of the wave mechanical

models suggests that polarisabili ties and induced

mul tipoles are as important as permanent dipoles. The

application of the rules to the pseudo-group 0, NH, CH2

is shown by the curves for (CH3)20, ((CH3)2NH and

(CH3) 2CH2. Here the agreement above about 6 eV is

remarkable and the correct ratio of intensi ties 18 shown.

As these are larger molecules the change in size in fitting

in the radicals is smaller compared with the molecular

size than in the previous example and therefore the change

in cross-section with relationship is smaller. The last

hydride relationship we consider is that between

(CH3)3N and (CH3)3CH. The correlation here is similar to

the other groups considered. We note that at higher

energies (say above 25 eV) the molecular weight is

important. The cross-section being higher for the lowest

molecular weight compound in a group.

We next cons ider the influence of molecular

shape. By considering chemical isomers, molecules

containing the same atoms but differing in shape , it seems

that molecular shape has little or no effect upon the

total cross-section. It is only at low electron energies

that any difference at all is seen. Figure 15 shows the

following isomer cross-sections: C5H12 (n-pentane and

tetramethylmethane), C4HiO (butane and isobutane) and

C2H60 (dimethyl ether and ethanol). The C2H60 pair of

isomers show distinct differences below 4 eV and these are

likely due to dipole moment and polarisability effects.
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A final possible correlation has been suggested.

At low energies a radical, common to a group of molecules,

can produce similarities in the cross-section curves.

TheF.e is little evidence to support or qualify this.

However, from figure lS, we see that compounds containing

the hydroxyl radical (an electronegative grouping) such as

propanol (C3H70H), ethanol (C2HSOH), methanol (CH30H)

and water all show a distinct minimum at about 4. S eV.

Further investigation of this might prove rewarding.

Chemical models do not compete with class ical

mechanical models or wave mechanical models. In fact they

complement these detailed models and might prove useful in

choosing empirical interaction potentials and estimating

the cross-section curves of as yet unstudied compounds.



CHAPTER 11. ' THE DES"TmN OF AN ELECTRON TRANSMISSION

SPECTROMETER.



t;.0
"M
(I
W

"ri'
E
¡:i '
i:
r:,
~-

E4

~:
.0k..,c
~'

r~
r,:

CH
o
o
.rl
...:
-tJ
E
C!.iotI

.
i-
(\l

r,:
Ç!p
t.!Hf:

L j¡
i

I

\ I i
\ ll'¡! I '
\ - I: I
\ 11

\ 11

:'.__\'J;.¡l:
\1

11'1..
'i
\i

\d

V)

lJ Co~'

c.

,.

e:,lJ8()
GC

r-
l-~
("J
U

i

U) ~



82.

11.1 Electrn Transmission Spectrometry

A basic electron Transmission spectrometer consists of a

source of electrons C, an electron optical region E, a scattering

region S, and an electron collector A. The arangement of these

elements is shown schemtically in figur 21. The purose of the

electrn optical region is to focus the electrons from the source

into a well -defined beam of the required energy, intensity, diamter

and energy resolution.

Let ICs) and I(a) be the electron currents to the

scattering region and the anode or collector, respectively. The

sum of these two quantities is constant, if we neglect secondar

electrns produced by ionisation of the gas in the scattering region

or by secondar emission from metal surfaces. This constant current,

I, is the current entering the scattering cell.

I = ICs) + I(a) (11. l.l)

We define T( £) as a beam shape factor which describes the two-

diensional beam shape. T C £) is normised' to unity by integrating

over a reference plane, norm to the, beam direction, which for

convenience we take as the exit apertur of the scattering region.

Thus TC £)dS is the fraction of the full current passing through a

differential element of area dS, norml to the electron beam axs,

and,

1 T(£).dS = 1exit aperture

err.l. 2)

The beam form factor does not depend on any effects attributable to

the presence of scattering gas in the apparatus. It does depend upon
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the natur of the electron optical region, space-change effects,

cathode effects, metal surface effects and collector efficiency.

Thus

dIOCa) = dIO 1 TCEl.dS CII.1.3)
entrance aperture

where the differential curents refer to currets in the

energy range e: + e:+de:, and the zero subscripts refer to currents

measurd with no scattering gas present ie. backgrund curents.

When scattering gas is present the differential transmitted

curent, dICa)' is attenuated both by the scattering out of dIOCa) and

the scattering in of dIO(s). To allow for this we define the event

factor G Ce ,ø;li) as the fractional numer of electrons scattered from a

point in the interaction region, denoted by the generalised coordinate ll,

into the solid angle dQ C = sine. de . dØ) which are registered as scattering

events at the collector. The total transmitted differential current is

then,

dICa) = dIO. exp (-n.~Tce:).GCe,ø;ll).aTce,ø)dTdg) C1Ll.4 )

where n is the target gas numer density and the integration ls

performed over the entire scattering region where there are beam

electrons and any region outside this where the presence of gas can

cause attenuation of the beam. If we now allow for the electron

energy distribution of the beam, f C e: ), then,

dIOCa) = IO(a). f Cd . de: C1Ll.5)

and the total transmitted curent is obtaied by integration with respect

to energy, thus:

ICa) = 10 lfCd.f.exr -nJT(d.GCe,ø;~)aTCe,ø)dT.dgjJdE (I1.i.6)

This is the basic equation for an electron transmission spectrometer

relating the observable ICa)' to the desired parameter QT where

QT = J aTCe,ø)~ (ILL 7)
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Under the ideal conditions of a beam of infinitesimal diameter in

an apparatus with infinitesiml collimting slits then,G=l for

scattering out of IOCa) ,G=O for scattering in of IO(s)' T=l for

IOCa)' T=O for IOCs) and if this beam is monochromatic then f (d = 1.

In this case (11.1.6) reduces to the more famliar equation,

ICa) = IO(a) .exp( -n.QT.x). er1.l. 8)

This discussion is based on the analysis of scattering experiments by

Bederson and Kieffer (1971). For completeness we add here a point

which they omit. In most electron spectrometers the current, 10,

entering the scattering region is a function of the electrn energy.

This is due to the shape of the post-monochmator beam being altered

when the voltage of the electrde defining the electron energy in the

final stage of the electron optical region is varied. This can be

allowed for either by includig 10 within the energy integral in

(ILl.6) or, preferably, by defining 10 as the curent leaving the

electron monochrmator, before the energy defining optical stage. The

latter corrction involves redefining the integration limts in erLl. 3).

10 can also be a function of the gas pressure. Ths can be caused by

gas ,effects on the emtting power of the cathode, background gas effects

in the monochrmator and associated optics, surface effects due to

adsorbed gas and so on. One further source of errr, which canot be

corrcted for, is that aT Ce , Ø) which should be zero when e = 0, so that

only the unscattered electrns are included, includes electrons

scattered inelastically ate =0. This is not a very significant source of

errr. The "effective" total cross-section measured in any non-ideal

transmission experiment is thus,

QT = Cl/x) rTCd.GCe,ø;Jl).aTCe,ø)dT.ct (ILl.9)
If we assume that the total transmitted current in the

absence of gas IO(a)' is proportional to the total available curent
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in the absence of gas 10, then we can write C 11. 1. 8) in the form:

I(a) = k. 10 .exp( -n.x.QT). erL1.10)

where k is a constant. Therefore, taking natural logari thrs of

CIL l. 10) ,

In CIO/ICa)) = n.x.QT + k (I 1. 1. 11)

and from this result we see that a graph of In(IOIICa)) versus

n. x should be linear with a slope of QT. Ths is a necessary, but

not sufficient, condition for a meaningful transmission experiment.

A quanti tati ve treatment of the correction factors discussed

in this treatment is not possible. However we can try to miimse

their effect on the transmitted current when designing a transmission

spectrometer and one approach to this is discussed in the next section.

After consideration of the factors discussed in the first

chapter, it was decided to design and construct an electon transmission

spectroniter capable of measuring the total electron collision cross-

section, of atomic and molecular gases and observing any fine structure

in the transmitted curent. To do this, we require an electrn beam

with certai properties. The intensity of the beam must be as great

as possible, commensurate with any other properties we may require of

the beam. The lower limt of current will be decided by the electrn

detector and the upper limt by space charge limts in the electron

optical region. The energy of the beam will require to be variable

over a wide range say, from 1 eV to 100 eV. As the energy is varied

we will' try to ensure that the curent does not vary. The energy

resolution requied to observe fine structure ca be decided by

referring to literature of published resonance features. From this

it appears that a suitable full width at half maum CF.W.H.M.) of

the electron energy distribution curve is better than O.OS eV. We
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11.2 Electron Optics Design.

Principles of Electron Optics.

The term "electron opticsi! is used when dealing with the

behaviour of electrons that are under the influence of electric and

magnetic fields. This arises because may of the laws that govern the

behaviour of light rays are applicable to electrons. It is important

to note that electron optics is based on a wave-paricle analogy not

a wave-particle duality.

We consider firstly, the properties of electrons in uniform

electrostatic fields. Imgine an electron which moves in a region of

uniform potential øi. Its trajectory will be a straight line. If it

now passes across a plane boundar to a region of potential ø2, the

component of i ts velocity norml to the plane will alter, but that

parallel to the plane will not be affected. This situation is shown in

figure 22. Expressing electron speeds in term of potential,L l
(2e.Øi/m)2 .sin81 = (2e.Ø2/m)2.sine2and, 1

sinei/sine2 = (Ø/Øi)2

er1. 2 .1)

(11. 2.2)

This is the electron optical form of Snell' s law of refraction.

The squar root of the potential (or vol tage with respect to cathode in

a practical beam) can be regarded as the index of refraction. All the

established rules applying to refractive indices in optical systems

can be applied in electron optical systems, but electrons travel

faster the greater the voltage, whereas light waves travel slower the

higher the refractive index. One consequence of this difference is

that althoug all light rays travelling from one point to another take

the same time, electrons in the same situation do not.
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A lens is a device which can form the image of

an obj ect. Electron beams in axially symmetric electric

fields have this property and so constitute an electron

lens. We can think of any lens, optical or electron, as a

combination of three different regions of space: the

obj ect space, the lens space and the image space. In light

optics the obj ect and image spaces nearly always have the

same refractive index. This is not often so in electron

optics where the analagous property is electrostatic

potential. If we assume that the inclination of the

traj ectory of an electron beam with respect to the axis of

an electron optical system will always be small enough to

allow us to replace the sine of this angle by its tangent

or its arc, the analysis is greatly simplified. This is the

Gaussian or "first order" approximation, sometimes called

the paraxial ray approximation as the electron rays are

close to the axis, and involves letting sin e by approximated

bye, where e is the first term in the Taylor series

expansion of sin e, which converges rapidly.

Particles starting from points on a plane in

object space (all having the same energy) are focussed into

conjugate points on a plane in image space (the Gaussian

image plane) by the action of the lens space, if and only

if the particle traj ectories are paraxial. This leads to

astigmatic (correct point to conj ugate point) magnified

or diminished image. We can consider the action of a lens

conveniently by lfuoking at the electron traj ectories in

obj ect and image space only, regarding the lens space as a

"black box". The particular nature of the lens system need

not concern us at this stage.
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The theory of Gaussian imaging (Klemperer and

Barnett, 1971) shows that to uniquely define the properties

of a lens or lens combination we need to know three special

points on the axis in obj ect space and their conj ugate

points in image space. These are the two focal points, two

principal points and two nodal points. As a set, they form

the cardinal points of the lens. In fact, only two pairs

are independent and it is not usual to quote the nodal

points of a lens as they can be calculated from the other

cardinal points.
Figure 23 refers to any lens or combination of

lenses. The focal points (where the focal plane intersects

with the axis) are the image points of a beam of parallel

rays (ie. obj ects at infinity). The principal points are

the axial positions at which the planes of unit lateral

magnification intersect with the axis and the nodal points

are the axial posi tions of the planes of unit angular

magnification. The distance between the geometrical lens

centre and the focal point is called the mid-focal 
length ,

F. The distance between the principal point and the focal

point is called the fOcal length , f .
The terminology referring to "thick" and "thin"

lenses is different in light and electron optics. In light

optics a lens whose physical dimensions are small (ie. thin)

compared with the optical dimensions, such as focal length,

is called a thin lens and the principal and nodal points

are all coincident with the lens centre. Otherwise a lens

is thick. In this sense, all electron lenses are thick

lenses ie. they have distinct principal planes. Instead we
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introduce the terminology of a "weak" lens if the radial

height of a ray does not change appreciably within the lens

space, and "strong" lens if it does. Characteristically,

strong lenses have short focal lengths, obj ect and image

distances etc. Weak lenses do not.

In this work all cardinal parameters are ~egarded

as being posi ti ve numbers. The parameters referring to
obj ect space have the subscript 1, and those in image

space the subscript 2. This simple convention is the same

as that employed by Kuyatt and Simpson and by Read and his

collaborators. Spangenberg uses the same nomenclature but

introduces a gartesian sign convention whereby all parameters

in image space are positive and those in object space

negative. Heddle and EI-Kareh use the same sign

convention but a different nomenclature. The obj ect and

image focal lengths are tf 0' 5 I); the mid-focal lengths
are (-Zm ,Zm ) and the distances of the principal planeso I
from the lens centre are (-Z , Z ). The all posi ti vePO PI
sign convention has advantages in the preparation of lens

data for computer handling.

Electron rays can leave a point on the obj ect

at any angle in the forward direction. However, the lens

system limits the angular range of the rays which leave a

point on the obj ect plane and arrive at the conj ugate

point on the image plane. This bundle of rays is called a

pencil. The maximum angle of the pencil is characteris ed

by the pencil half-angl~, ep' which is shown in figure 24.

The pencil half-angle is not necessarily the same at the

image as at the obj ect. The central ray of the pencil makes
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an angle with the lens axis called the beam angle. The

magnitude of this angle will depend upon the distance of

the origin of the pencil from the axis. The maximum value

of the beam angle is for the central ray of the pencil of

rays connecting the extreme radial conj ugate points on

the obj ect and image planes and is called the beam half-
angle, e B' Ahother angular parameter, the angular
divergence, is sometimes required. The angular divergence ,

e, of any ray in the beam is the angle between that ray and

the axis and the term "angular divergence of the beam"

refers to the value for the extreme ray.

There are several types of electrostatic electron

lenses. These involve cylinders and/or apertures. A

basic lens can be formed by two cylinders, two apertures or

an aperture and a cylinder. The simplest lens of all is

a Calbick lens or a single aperture separating two regions

of different potential. In electron lenses the potential

of obj ect and image space is not usually the same. If the

image space voltage is greater than the obj ect space

voltage we say that the lens isacceTerOating and if not,

then it is decelerating .

Figure 25 shows the thick lens terminology for a

coaxial cylinder lens. This consists of two long thin

coaxial cylinders of the same diameter, D, separated by a

distance, g. The two cylinders are at potentials 01 and

ø2 (where the zero of potential is that at which the

electrons would have zero kinetic energy) and the

electrons are assu~ed to be travelling from the region at

øi to the region held at ø2. The principal planes are
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reversed on the low voltage side for all two element lenses.

Spangenberg and Field (1943) suggest this is not so for

two-aperture lenses with the aperture spacing equal to

the aperture diameter. The theory of Zworkykin et al.

(1945) shows this is impossible.

We define the lateral magnification of the lens,

M, as

M = r2/ri = Si/P = q/52 ( IT . 2. 3 )

and from this we can derive the analogue of the

Newtonian Lens equation:

51.72 = p.q ( TI . 2.4 )

If ei is the angular divergence (q.v) at the

obj ect and e 2 is the angular divergence at the image, then

tan e 2 / t an e 1 = P /52 = 5 1/ q (11.2.5)

For paraxial rays,

1

51/~2 = (01/02)2 (11.2.6)
and from the definition in (11.2.3),1 1

( 0 1 ) 2 . tan e 1 = M ( O2 ) 2 . tan e 2 (11.2.7)

This is a form of Helmhol tz and Lagrange' s law,

which we will discuss later. If the tangent function were

replaced by a sine function, this equation (11.2.7) would

be the Abbe-Helmhol tz sine law. For paraxial rays these

differences are trivial. For small angles, therefore;i i
(01)2.ei = M.(02)2.e2 (11.2.8)

If we define the angular magnification, m, as

then,
m = e2/ei

l
m.M = (01/02)2 ( 11 . 2 .9)
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The accurate differential form of Helmhol tz and

Lagrange's law can be shown to take the form (EI-Kareh

and EI-Kareh, 1970; Paszkowski, 1968):

Ei.dgi.dAi = E2.dg2.dA2 (11.2.10)

where E is the energy of the electron beam, d£L the

differential solid angle and dA the differential area

perpendicular to the direction of motion of the electron

beam. The subscripts 1 and 2 refer to any positions on

the beam path. In words, the law states that current in

the beam is conserved provided there is no energy dispersing

device between pos i tions 1 and 2. It is of advantage to

define a quantity to represent electron beam brightness,

current intensity or Richstrahlwert, R, where:

R = d I / dA . d.C (11.2.11)

and dI is the current through the area dA. Thus

combining the principle of conservation of current with

equation (11.2.10),

dI/Ei.dgi.dAi = DI/E2.dg2.dA2 (11.2.12)

or

Ri /Ei = R2/E2 (11.2.13)

So the ratio of Richstrahlwert to energy ls a

conserved quantity.

We cannot pas s unlimited current through a lens.

This is due to space charge effects from the mutual

repulsion of the electrons in a beam. It can be shown

(Pierce, 1954) that I , the maximum current that can bemax

passed through a tube of length x and diameter 2r is

given by:
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I = 38.5 x 10-6.V3/2.(2r/x)2max

-6 3/2 2= 3 8 . 5 x 10 . V . tan e (11.2.14)

where V is the kinetic energy of the electron beam

(in eV) and e is the beam divergence half-angle. The

current is measured in amperes.

The incoming rays to a lens system are often

defined by apertures. In fact, two apertures are necessary

to specify the limiting rays accepted by a lens. Figure 24

shows the definitions of windows and pupils in a lens. The

entrance window in obj ect space (the obj ect) becomes the

exi t window in image space. The entrace pupil becomes

the exit crossover. In terms of the characteristic beam

angles already defined, the beam half-angle eb and the

pencil half-angle ep are, by definition;

eb = rw/ZO

(11.2.15)
ep = rp/zO

where the separation of the window and pupil is ZO'

and their respective radii are r wand r p' The pencil

half-angle at the obj ect is equal to the beam half-angle

at the crossover, and the beam half-angle at the object is

the pencil half-angle at the crossover. These relationships

are very useful in design.

In a combination of several two-cylinder lenses,

if two real apertures are given as the entrance window and

pupil in the first obj ect space, then we can calculate the

exit (image) window and pupil for the first lens. Then use
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this exit window and pupil as the entrance window and

pupil for the second lens, and so on. With this knowledge,

the redundancy and lack of design control which results

from using more than two limiting apertures for a given

lens system can be avoided. (Kuyatt, unpublished).

Before considering the application of these

principles to lens design, we digress to consider one final

constraint in the design of electron beams. This is the
limit on the phase space of a beam imposed by Liouville' s

Theorem.

Phase Space restrictions 

There is no published treatment of the application

of phase space restrictions to electron lens design. A

general treatment of Liouville' s theorem in electron optics

has been presented by Klemperer (1953) and Pierce (1954).

Detailed treatments are available for heavy particle beams

in magnetic fields mostly in advanced nuclear technology

textbooks such as Banford (1966). The treatment presented

here is based on unpublished communications with

C.E. Kuyatt of N.B.S. Washington and F.H. Read of Manchester

Uni vers i ty .

A particle is completely specified if we know

where it is and where it is going. Therefore we require

to know the three cartesian coordinates x,y,z of the

particle moving in a three dimensional cartesian coordinate

system or configuration space. We also need to know the

three momentum coordinates mx ,my ,mz. All this information

can be represented by the position of a point in a six-

dimensional space with the coordinates x,y, z ,mx ,my ,mž
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known as phase space. This is not the only phase space.

In this six-dimensional phase space the motion of each

particle depends on its own phase space coordinates

alone, not on those of every other particle in the beam

as well. In a system which allows mutual electrostatic

repulsions between particles, we require a phase space of

dimens ionali ty 6N where Nis the number of particles in the

beam. The entire beam, in this case, ls represented by

one point in 6N-dimensional phase space. If we allowed

for spin dependent effects, we would require an even

higher dimensionali ty of phase space. Pierce (1954) has

pointed out that the uses of phase spaces of dimens ionali ty

greater than six are of doubtful utility in beam transport

problems.

A particle in a beam is represented by a point

in phase space which moves in a manner connected with the

motion of the particle in real or configuration space. A

beam of particles in represented by a group of points in

phase space. One for each particle in the beam. Thus,

for a beam,of finite dimensions the representative points

will lie within a six-dimensional hypervolume in phase

space.

We consider an infinitesimal volume element in

six-dimensional phase hyperspace dx,dy,dz,dPx,dpy,dpz.

Now the f face f of a volume element in N-dimensionàl

hyperspace will have a dimensionali ty of N-l and 2N faces.

We consider the flow of representative points across the

12 five dimensional f faces' of the infinitesimal six

dimensional volume element and it can be shown that the

di vergence of n, the number of points, is given by:

div n = O.
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In words, this is Liouville' s Theorem:

"Under the action of forces which can be

deri ved from a Hamiltonian, the motion of a group of

particles is such that the local dens i ty of the

representative points in the appropriate phase space

remains everywhere constant."

So if we can construct a Hamiltonian, as we can

for any conservative system, then we can apply this theorem.

Macroscopic external E and B fields are conservative but

interactions with radiation or targets are not conservative.

If the fields are time varying it is still possible to

construct a Hamiltonian. We also impose the conditions:

a). that there is no interaction between particles in the

beam (eg. space -charge) and b). that there are no inter-

actions dependant on spin, as either of these would involve

a higher dimensionali ty of phase space.

Liouville's Theorem states that the local dens i ty
of the particles in the hypervolume is constant under the

action of conservative forces. This means that the shape of

the hypervolume can change but not its volume. In fact,

beam transport optics consists of the manipulation of

phase space hypervolumes into shapes which represent the

desired particle beam. Liouville' s Theorem imposes a

restriction on what may be done without loss of current,

namely the conservation of the hypervolume.

If the three components of motion in configuration

space are mutually independent then in phase space the

motion ls confined to three planes (x,px)' (Y,Py) and

(z,p ) which can be treated separately and Liouville' sz
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Theorem states that the areas of regions containing the

representati ve points in each plane remain invariant
though their shape may change. This is in fact the case

for axially symmetric electric fields. Also, in regions

where the axial momentum of the beam remains constant,

such as obj ect space or image space, but not in the lens

itself, the electrostatic potential is constant and so the

axial momentum is constant. If the z axis is the lens

axis then in regions of constant potential, Pz is
invariant, and the axial position coordinate z has no

particular significance unless the beam possesses time

structure.
Now the angular divergences x' (=dx/dz) and

y' (=dy / dz) of a particle relative to the beam axis are
equal to the ratio of transverse to axial momentum. Since

axial momentum is constant we can replace Px,Py by dx/dz

and dy/dz, ie. by the angular divergences in the planes

xz and yz ~ As we have rotational symmetry, these planes

are equivalent. So, combining the above ideas we can use

one transverse phase plane with coordinates x and x',y and

y' or more usually Rand e. These two coordinates form

a phase space parallelogram called an (R, e) diagram.

(Kuyatt, unpublished.)

If the phase space parallelogram represents some

stage of an electron beam such as a real obj ect or its

cros sover, a real image or its cros sover, a virtual

entrance or exit window or pupil in a system, we can

define a new quantity: theerrittance of a beam, e:;

e: = area Of phase space occUpied bY the beam

'I
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If the (R,e) diagram represents some stage of

an optical system (as opposed to the electron beam) such

as a real aperture defining an obj ect, image, pupil, etc.,

then we can define a quantity for the system analogous

to the emittance of a beam. This is the acceptance of

the system,J\;

Jt = phase space area containing all the points

whose input displacement/divergence coordinates

are such that the particles they represent will

be transmitted by the device.

Ifk is less than e: then only that part of e:

falling wi thin.Ä will be transmitted. The shape of e: and Jl

is important, not just the area. The area we cannot control

beyond making sure that e: is less than ~ but the shape we

can controL This is called matching . (Banford, 1966).

Diagram 26a. shows a case where the beam is not

matched to the optical system, diagram 26b shows a case

where the emi ttance matches the acceptance of the system

but the shape of the phase space hypervolume forbids total

transmission and diagram æsc. shows a well matched system.

The full lines represent the parallelogram for the

acceptance of the system and the dotted lines represent the

parallelogram for the emi ttance of the beam.

Our main use of (R, e) diagrams is in studying

relations between windows and pupils in obj ect or image

space. If these are real we have an emi ttance

parallelogram and if virtual we have an acceptance

parallelogram.
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As an example we calculate the (R,e) diagrams

for a system comprising an image and crossover (ie. a

virtual exit window and pupil). (Figure 27 a) .
The area of the parallelogram does not change as

we pass along the system, showing Liouville' s Theorem in

practice, but the shape does. The edges of the
parallelogram represent the extremes of the system but all

rays in the system are represented within the parallelogram.

The extreme value of the radius is ~ ri and the

extreme values of the divergence angle e for the pencils

at ~ ri are + (eB + ep) and ~ (eB - ep). Thus the four

points of the parallelogram are:

( + ri' - e B - e p ), (+ ri' - e B + e p) , ( - ri' e B + e p) an d

(-ri,eB-ep) .

Note that the angle convention is that if the angle

made with the axis is greater than 900 then that angle is

negati ve. (In practice the lesser angle with the axis is

always chosen but if it does not slope in the direction

of the axis it ls negative). The (R, e) diagram for the

image is shown in figure 2 7b.

This is sufficient information for plotting the

parallelogram but it is interesting to plot the points

where the parallelogram would cut the axis. The R-axis

is cut at ~ rC. This is because on the R-axis, e=o and

for a ray to be transmitted by the system the maximum

radial height it can have when parallel (eB=O) is rC'

the pupil radius. The e-axis is cut where r=O, and here

the maximum transmission angle is ep.
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The diagram for position XA is shown in figure 27c.

Here the e coordinates remain the same and as we move along

the beam path the positive angle corners move to the right

and the negative to the left. The extreme r values lie

midway between rC and ri at, say, rX. The parallelogram

again cuts the axis at rC' as this is the maximum radius at

which transmission can still occur.

For the crossover the extremes are now ~rC and the

parallelogram cuts the R-axis at this point. (Figure 27 d) .

ElectrOn Lens Design.

A convenient way to describe an electron beam is

to specify it in terms of many infinitesimal pencils of

electron rays. In purely electrostatic focussing systems

an electron ray at any point along the beam is completely

defined by its radial displacement r, and the angle of

divergence e. Paraxial electron rays have small spatial

extent along the axis and negligible energy spread. For

such rays the displacement and divergence of a point in

obj ect space and the conj ugate point in image space can be

related by linear simultaneous equations, thus:

r2 2 aii.ri + a12.ei

(11.2.16)
e2 = a21.ri + a22.ei

where the subscripts 1 and ~ refer to obj ect and image

space, respectively. The coefficients aij are characteristic
of the focussing device, which can be a single lens or a

system of lenses.
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Equations (11.2.16) can be more conveniently

wri tten in the matrix form;

( r2 J = 8, (rie~ e 1 (11.2.17)

where ß is the (2x2) matrix,

Arv
= (aii

a21

a12 \

a22 )
(11.2.18)

We will call ß the Tens transfer matrix. For a series of

lenses the overall properties can be represented by a

systerrtransfer rratrix which is the matrix product of the
individual lens transfer matrices.

We consider initially the lens transfer matrix for

a beam in obj ect or image space. In this case, as we have

a region of uniform potential, the lens action is merely

that of linear displacement, not focussing. A linear

displacement llZ in a uniform field can be represented as

follows:

~- e-ri~r:
+- llZ --

Now,

e2 = ei.

(11.2.19)

r 2 - r 1 = II Z . tan

!. iiZ.ei

and
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We can rewrite these equations in the form of

equations (11.2.16), viz.,

r2 = ri + iiZ.ei

€)2 = 0 + 1. ei

which in matrix form gives the equation:

(::) = (~ A~) (::)
(11.2.20)

Wi th the knowledge of the free space transfer

matrix we can consider the focus sing properties of a thick

lens. As before, we split the lens into three sections.

The obj ect space, from the obj ect plane to the first

principal plane, which has a transfer matrixW i. The
lens space, from the first to the second principal plane,

which has a transfer matrix W 11 and the image space, from

the second principal plane to the image plane , with transfer

matrix ID 111. The terminology has already been des cribed

in figure 2 3. We have already derived the form of)!J I

and 1D 111"

1 (Xl -F 1) +

1h I =

0 1

and
1 (X2-F2)+

m =
111

0 1

(11.2.21)

( 11 . 2. 22 )

'În 11 must be such that the displacement r does not

vary, whereas the divergence e must change according to

the ratio of the focal lengths and the incoming displacement.
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1
(11. 2.23)

o

!! IT" =
-1/52

It can be shown to be a consequence of Liouville' s

theorem that the matrix determinant lA lof a transfer
.'T

matrix A must be unity for conservative systems such as

displacement in a uniform field. Thus 11l I = l1?ii I = 1.
This will prove a useful check in our design procedure.

The lens transfer matrix for a thick lens is obtained by

matrix multiplication.

ì7 = ?l 111" nYII. m- i~ (11. 2.24)

The order of multiplication is important as the

transfer matrix is an operator.

Thus combining equations (11.2.21) thru

(11.2.24) we get the lens transfer matrix for a thick lens.

1lrv =

-eX2-F 2

52

-(Xi-Ei) (X2-E2 )

5- 2

+ Sl

-1/£2 -(Xi-Ei)

5- 2

(11.2.25)

The meaning of this matrix can be expressed as:

linear magnification distance Out 

input angle

output angle angular magnification
input distance ,parallel ray

The details of this derivation are given by Halbach (1964)

in a treatment of matrix methods in Gaussian light optics.
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We can interpret the meaning of the trans fer

matrix by considering what happens when any of the matrix

elements disappear.

If we set aii = 0 in (11.2.18) then in (11.2.16)

we see that if ei = 0 ie. a parallel beam, then r2 = 0

independently of the value of ri. This is merely the

defini tion of a focal point. Similarly, if a22 = 0, then

for ri = 0 all e 2 = O. This is the definition of the other

focal point. If a21 = 0, then e 2 = a22. e 1 we have the

condi tion for a telescope focussed at infinity. Finally,

if aì2 = 0 then r2 = aii. ri. This is the imaging

condition.

The way in which we apply these relationships

to design problems is as follows.

1) . To calculate X2 (the image distance) for a

gi ven obj ect position at Xl' the lens cardinal

data being known. Here we set a12 = 0 and solve
for X2. Note that Xl does not need to be the

obj ect distance. It can be the axial pos i tion
of anything in obj ect space, such as an entrance

pupil, a limiting aperture, etc. Obviously, if

we should require to do so, we can specify an

image distance and calculate the corresponding

obj ect distance. The linear and lateral
magnifications of the lens are then found by

evaluating the matrix elements aii and a22

respect i vely.

2) . To calculate the radius of a beam at various

points in image space (X2) for a given obj ect
distance (Xl). Agaip. the lens cardinal data

is known.
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This problem is related to the discussion in

section 11.1. We showed there that if the electron

beam entering a scattering region was strongly

di vergent then part of it, 10 (s)' would never

reach the collector, even in the absence of gas.

If we could calculate the beam radius at every

point in the scattering region then we can design

to overcome this problem. The technique in this

case is to calculate aii for various values of

X2. Note in this case we are not solving

(11.2.16) for an imaging condition.

3. To calculate the image pos i tion (X2) where the

beam will have a desired radius. Once again we

assume that the object position (Xl) and the lens

cardinal data are known. This is similar to case

2. We let aii equal the quotient of the required

image radius and the obj ect radius, and solve the

resultant equation for X2. This is useful for

deciding where to place a limiting aperture in a

design problem. For example, sometimes it is

necessary to remove scattered electrons from a

beam by inserting an aperture exactly the size

of the beam in the beam path.

4. To calculate the divergency of a beam (e 2) at
a known position (X2) in image space. This

problem arises, for example, when designing the

input stages to an electron monochromator. The

details of this will be discussed at a later

stage , it is sufficient here to state the
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requirement that the electrons must enter the

monochromator as nearly parallel as is possible

(ie. e2+0). We insert the ~alue of X2 into the

matrix elements (a21,a22), along with the fixed

values of Xl and the cardinal parameters, and

evaluate the matrix elements. Substitution of
these in the second equation of (11.2.16) gives

the required value of e.

There are many other applications but these

examples were those that were found most useful in design

problems. It is useful to note that the determinant of

the lens trans fer matrix (11.2.25) is always f 1/ f2 '

the ratio of the focal lengths. This is a very useful

check when performing lengthy calculations by hand or

especially in the computer.

One of the most useful applications of the matrix

method is in dealing with systems of lenses. If we have

two lenses in the beam path we can, on paper, combine

them into one composite lens by multiplying the individual

transfer matrices together in the correct manner. However

if the two lenses are so close together that no image

is formed in that region which is the image space of the

first and the object space of the second lens then we can

still calculate the two transfer matrices) but in this

case the obj ect distance for the second lens will be zero.
Thus we can calculate obj ect and image space parameters

for the three element or einzel lens by treating it as a

combination of two simple two element lenses. An

example of this is shown in the present design.
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For completeness we give the transfer matrices

for two other systems of electron optical interest. The

first is the single aperture or Calbrick lens. This is

the limiting case of the thick lens when f 1 = f 2. If Ê 1

and £ 2 are the potentials at either side of the aperture

and the aperture is at a voltage V 0 then the lens transfer

matrix is,

1 0

A =
(11.2.26)"' -(£2 -£ 1)

1
4VO

and the transfer matrix for a region where the beam

is accelerated or decelerated lS,

1
2VO

( Æ- ~
£

A =,.
0 Vo-

Vl

(11.2.27)

Electrostatic lenses may be constructed with

electrodes of many shapes, but for the control of

electron beams of small angular divergence (say not

greater than 0.1 radians) conventional aperture or

cylinder lenses are adequate. The cylinder lens has

certain minor advantages over the aperture lens. These

are, firstly the ease of mechanical construction and of

optical coaxial alignment; secondly, the ability to contain
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stray electrons, because the gaps between the lens

elements are smaller and easier to shield; and thirdly,

less risk of perturbations when combining lenses because

the elements are not short compared to their diameters.

The matrix technique can be applied to coaxial

cylinder lenses if we know the focal parameters -rl'

f2,Fi,F2. These parameters are functioni of a) the gap

between the two cylinders, b). the diameters of the two

cylinders, which mayor may not be the same, and c). the

potentials of the two cylinders. These dependencies are

normally expressed by listing values of each particular

focal parameter for different values of the ratio of

cylinder potentiais,y, (where y is the ratio of image

potential to object potential) for a fixed value of the

ratio g/D, where g is the gap between the cylinders and D

is the diameter of both cylinders.

Electron lens design involves selecting a value

of the potential ratio y, obtaining values for the focal

parameters associated with this value of y, employing these

values of the focal parameters to evaluate the lens

transfer matrix for a particular obj ect distance (Xl )

and finally using the matrix to calculate the required

properties of the lens as discussed earlier. We then

assess whether this value of y gives a lens with the

required properties and if it does not, select a new value

of y and repeat the procedure until the answer is suitable.

If the value of y does correspond to a suitable lens our

problems may stiii not all be solved. For example, the

value of y may require that the electron energy in the

final image space is unsuitable for the requirements of a
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scattering experiment. Or, although the value of the

final image parameter of interest is suitable, one of

the other parameters may have an unsuitable value.

Here we can try several possible alternatives. We can

try a different lens diameter or lens gap, or alter the

length of the obj ect distance or the size of the obj ect.

If no suitable solution is found we can try and solve

the problem in stages by using a combination of lenses.

This is obvious ly a "trial and error" procedure

invol ving many repeti ti ve calculations with several

independently variable input parameters and with design

constraints applied on one or more of the output variables.

A system of this complexity which involves a large number

of repeti ti ve calculations is ideally suited for treatment
by computer methods. To give an idea of the amount of

human labour saved by employing a computer technique we

will take as an example the design of a simple two-

element aperture lens to provide an image of stated size

wi th an upper limit on the magnitude of the extreme pencil

angle. On paper the procedure was as follows.

1). The object distance was chosen arbitrarily and

the object radius and angular divergence were

fixed by earlier lenses in the system. The

potential of the image was also fixed so the

system variable became the obj ect space potential.

2). A set of graphs relating y andfi,f2,Fi,F2 were

consulted and the values of these parameters

for an arbitrary value of y were read off.
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3) . The lens trans fer matrix was calculated (a
time consuming proces s as units are involved)

and the matrix elements solved to give the

required parameters of M, the lateral

magnification, m, the angular magnification,

and the image position.

4) . From M and m the image radius and image

angular divergence were calculated.
5). These values were considered with regard to

the limits set upon them in step 1).

This procedure takes about 15 minutes. If

step 5) gi ves unsatis factory results we now have to vary

y or Xl. The possibilities are nearly unlimited. Sometimes

M would be suitable but m unsuitable or vice versa.

Selecting values of y or Xl at random it was very difficult

to get a clear picture of the dependence of m and M on

y and Xl' Before a suitable value of y was found, over

eight hours of calculation were involved and towards the

end arithmetic mistakes became more and more frequent.

Even then the answer was not perfect. The impression was

that if we could vary Xl s lightly and adj ust y accordingly

then the values of M and m might be even more suitable.

However this could have doubled the calculation time so

was not attempted. Some time later, when the computer

design technique was in use, we repeated the above

calculation . Although, there was now the capability to

include many more input and output parameters we. restricted

the exercise to the variables stated in step 1). The
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only work involved was typing an initial value of y, an

initial and final value of Xl and the values of obj ect

radius and divergence on a computer data card. After 12

seconds of computation we had listings of values of y

(in steps of 0.1 from 2 to 20) with the corresponding

values ~f X2, m ,M, ri' ei and ep for 20 values of Xl.

This involves 3,600 repetitions of steps 1-5. It was

simple to pick out the correct conditions from such

detailed lists. A similar study on paper would have taken

900 hrs, and this was one of the simplest lens design

problems.

These comments might suggest that lens design

without a computer ls impos sible, but this is not so.

What is impossible ls detailed design involving several

parameters. ,If one merely requires to image an obj ect at
some point the problem is not involved. However the

design of lenses to perfrom specific operations over a

specified range of y necessitates computer treatment.

Before a computer program or programs can be

written to accomplish design requirements werrequire to

store in the computer memory the relationship between y arid

the focal parameters f 1,f2,Fi,F2 for the particular two-

cylinder lens we are using. In the terminology of

computer programming this is called the data base.

Before considering how to store the data base in

the computer, we will consider the data sources. There

are only two sources of experimental data on two cylinder

coaxial lenses. (Spangenberg and Field, 19 ~2 ; 19 43 ;

Klemperer and Wright, 1939; Klemperer, 1953). Spangenberg
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considered lenses with g/D = 0.1, 0.5, 1.0 and Klemperer

only investigated the case of g/D = 0 ie. zero-gap

lenses. Kuyatt (1967) in unpublished works claims that

the accuracy of Spangenberg and Field's work is about

20%. In more recent theoretical work (Kuyatt, Natali,
DiChio and Uva, 19 72b) he revises this estimate to 10%.

It is very difficult for a designer to assess the absolute

accuracy of lens data. He cannot accurately measure the

position of focal points etc. or even of derived parameters

such as image position and magnification. The only

design assessment we can make is that using a certain data

set the lens behaves as predicted, whereas another data

set does not work so well. However comparison of

Spangenberg's data with recent theoretical data does seem

to confirm this error estimate. The difficulties involved

in making experimental measurements are fully reviewed by

Klemperer and Barnett (1971). The first theoretical

treamment was that of Epstein (1936) who used an electrolytic

tank to determine the potential distribution of a two

cylinder lens with g=O for y =4. Firestein and Vine (1963)

used a resistor network to find the potential distribution

of the lenses with g/D = 0 to g/D = 1.0 fory =3,6,11lS1.

Other theoretical work has been based upon solving the ray

trajectory equation for a calculated potential ( Bertram,

1940). The theoretical data sets which we considered for

use were those of Ramberg (1942), Goddard (l946), Verster

(1963), Grivet (1965), Bernard (1967), Paszkowski (196S),

EI-Kareh (1969,1970), Read (1969a,1971) ,Read, Adams and

Soto-Montiel (1971) and Kuyatt et al. (1972a,1912b,1972c).
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All of these present numerical focal values for selected

values of y between 1.5 and 80. Verster and Gri vet only

considered g/D=O lenses. EI-Kareh and Read, Adams and

Soto-Montiel (1971) studied g/D=O,O.l"O..S and 1.0. Kuyatt,

so far, has only considered g/D=O. 1. The most accurate

are those of Kuyatt and Read, which are of the order of

0.1% or better. For practical purposes we can consider

these two data sets as equivalent. One problem remained

however. These calculations were only performed for about

20 values of y between 1.5 and 50. A useful data base for

computer calculations would require about 500 values of y

in this region. The problem cannot be solved by graphical

interpolation as this would not preserve the accuracy of

the data. The best way would be to present the data as

a set of empirical equations representing the relationships

between y and the focal parameters. Grivet represented

his data in this way and Wei (1969) employed these

equations to provide a data base for some computer lens

designs. Gri vet's equations were not sui table for our

purpose as, apart from the limited accuracy, the range of

y is only 1.5 to 10. We decided therefore to try and

represent Read's data in the form of polynomial expansions.

We call this study, the parametrisation of lens data. Our

first attempt was a power series fit using a Chebychev

polynomial of the form,

f = aO + ai.y +
2a2 . y +. . . . . N+ aN.y ( IT . 2 . 28)

The maximum value of N was 20. This necessitates at

least N+2 known data points (ie. literature values ). f is a
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generalised focal parameter. Tñ6s was unsuccessful. We

then attempted several alternative polynomials, the most

successful of which was

cP.(y - 1)2 = ~ a..(y)i
. 0 11=

This expans ion can be tested by us ing certain of the

(11.2.29)

data points to calculate the coefficients in (11.2.29).

Then using the expansion we calculate the remaining data

points and compare these with the literature values. A

polynomial of degree 5 fitted the data of Read, Adam and

Soto-Montiel with a maximum error of 0.3% in the range 2- 20.

A similar polynomial, also of degree 5, fitted the same

data with a maximum error of 3% in the region y = 1.5 to

50. This accuracy is more than sufficient for our purposes.

Unknown to us Read was working on a similar parametrisation.

His results are very similar to ours. The difference

arises from the compiltational techniques used to evaluate

the coefficients. Our calculations were based on the use

of the subroutine CFIT, a standard Fortran I. C. L. 4100

software package. Table 111 lists our parametrisation

coefficients for use in equation (11.2.29).

Previous work in computer lens design ls very

difficult to assess. The only published work is that of

Heddle (1970) for three element lens properties. These

were calculated from the two element theoretical lens

properties of EI-Kareh (1969,1970). No details of the

computer programming technique or the data parametrisation

are available. For discussion purposes, figure 28 shows

the nomenclature that we employ for two element lenses,
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Table TIT

Parametrisation coefficients for the two cylinder lenses

with g/D = 0.1. This involves a polynomial of the

fifth degree (N=5) in equation (11.2.29).

Parameter Coefficients
fi/D aO = 1.1895

ai = 4.4226
a2 = 0.2063
a3 = -0.0012
a4 = 0.0
a5 = O. e

Fi/D aO = -0.8531
a.l = 5.2910
a2 = 0.7460
a3 = 0.0057
a4 = -0.0001
a5 = 0.0

f2/D aO = -1.7730
ai = 5.6908
a2 = 1.4319
a3 = 0.0069
a4 = 0.0
a5 = 0.0

F 2/D aO = -1.2605
ai = 6.2670
a2 = 0.4415
a3 = -0.0115
a4 = 0.0001
a5 = 0.0
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three element equal diameter lenses and three element

unequal diameter lenses. Heddle calculated from first

principles, the overall focal properties jl 1 * ,f2 *, F 1 *, F 2 *,

for various values of Yl(= O2/01) and Y2(= 03/02). The

only design variable he considered was the length of the

centre element, S. This limits the designer to fixed

values of y and S. Also he still has to use the focal

values to calculate the necessary object and image para-

meters to see if the lens is suitable. These 54 pages of

tables are therefore of limited des ign use. Useful tables

would give values of image space parameters for a variety

of obj ect space parameters for many different lenses. The

lens variables would be S, the length of the centre

element, g, the gap between elementsi and D, the lens

diameter. This would involve many thousands of pages of

tables. We decided to approach this problem another way.

A computer program capable of calculating these properties,

and some others we will mention later, would be written

and along with a data base of lens focal parameters for

a reasonable selection of two element lenses would be

stored in a computer. Then when a design problem was

encountered the chosen input parameters would be fed in and

the computer would generate tables of required output

variables and, if necessary, any graphs required.

Unpublished work along these lines had been performed by

Kuyatt and Simpson (1967). As a data base they used

Gri vet's empirical equations for the range y=l. 5 to 10

and Spangenberg' s experimental data for y= 10 to 20. They
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used a set of subroutines written to perform the following

calculations. FPROP regenerates lens focal parameters

from the data base for a two element lens for a given value

of y. LENS calculates the lens trans fer matrix for up to

20 lenses for 20 values of y. The output is the final

image position. IMAGE uses subroutine LENS to find the

value of y which will provide an image at a specified

distance for a given obj ect distance. They used another

subroutine, called FIELD to help with the design of

energy add lenses. These lenses are not involved in

transmission spectrometers, however. In an unpublished

report, Wëi (1969) adds two further subroutines RTHETA

and CURVIM. For a given distance in image space, RTHETA

calculates the radial displacements and divergences of

the limiting rays. CURVIM is merely a parameter plotting

routine. We have no knowledge of how these subroutines

operate in practice.

We have written two programs to perform a

similar series of calculations. Program LENSONE is for a

two-element lens and program LENSTWO is for a three-

element lens.

The inputs to program LENS ONE are Xl' the

obj ect distance, and D, the lens diameter. The lens we

used in all our designs was a two cylinder coaxial lens

with g/D = 0.1. Optional inputs were the object radius

ri' the obj ect pencil half-angle ep and the obj ect beam

half angle. The program then cycles y from 1. S to SO and

prints out, for each value of y, the image distance X2,

the angulår and lateral magnifications and if required, the
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the pencil and beam half-angles at the image. The

outputs are in inches, millimetres or in units of the

lens diameter. Internal routines convert the angles from

degrees to radians and radians to degrees. There are many

ways we can use this program. We can vary Xl and D

easily and the angles and object size by inserting

apertures of varying sizes in the beam path in object

space.

Program LENSTWO is similar. Here the inputs

are the same as for LENSONE, with two additions. These

are S, the length of the centre element, and Di and D2

the diameters of the two simple lenses comprising the

three element lenses. This increases the number of design

variables. The values of the lens transfer matrix elements

are also output here. These can be fed into a minor

program to perform calculations of the radial displacements

and angles in a beam at selected points in image space.

Certain checks are built into the program to

guard against arithmetic~errors. The imaging condition

is checked in two ways. Firstly we evaluate the image

radius from the lateral magnification and then, we

evaluate the same parameter by substitution of the matrix

elements into the simultaneous mapping equations (11.2.16).

Another check is to evaluate the determinant of the lens

earlier, and that f 11: / f 21: =

equalsr 1~,:/f2~': as discussed
i

(y)2 as shown in 11.2.6. One

matrix and verify that this

other point is worth noting. The pencil and beam half-

angles are calculated from the equations;
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and

(~)2 = a21.ri + a22.( ~)l

(t1)2 = a22.( tb)i

(11.2.30)

Several workers have published solutions of

the ray traj ectory equation for three element lenses.

These are of limited design use as the parameter S is

fixed. However, in certain cases they would provide a

useful data base. The most accurate of these are Read

(1969b,1970), Adams and Read (1972a,1972b) and Kuyatt,

Natali and DiChio (1972c).

This discussion has been based on the assumption

that our electron beam consists of paraxial rays only.

For a real electron beam, the failure of the paraxial

approximation, the finite energy spread, the large current

density and finite beam size often cause lens errors or

aberrations of the image. For a thick lens, the focal
length reduces as the radiãl displacement of an electron

beam increases (Spangenberg, 1948). This ls known as

posi ti ve spherical aberration and gives a spot focus

instèad of a point focus. One way to minimise this effect

is to approximate the paraxial ray conditions. The

fraction of the lens diameter used by the electron beam is

referred to as the filling factor (Kuyatt, 1967;Read, 1971).

The spreading of spots at filling factors of 1.00,0.75,

0.50 and 0.25 are 18%,12%,7% and 4%, respectively. It

has become regarded as good practice in lens des ign to

keep the filling factor smaller than 0.5. Many of the
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more recent calculations on lens focal parameters now

include values for aberration coefficients. Apart from

minimis ing the filling factors we have not taken account

of lens abe~rations as this data was not available at

the time of our design.
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I I . 3 The SpectrOrreter Design.

From our discussion in section 11.1 we can

now list the requirements for our spectrometer design.

1) Electron GUn . The purpose of the gun ls to

remove electrons from the thermionic cathode and

shape them into an electron beam of the required

size, angular divergence and energy for the

monochromator. By necessity the electrons will

have to be accelerated to a relatively high

energy to produce a reasonable beam current,

then decelerated before entering the

monochromator at as low an energy as possible.

The gun therefore consists of three separate

stages: _ An extraction stage for which we chose

a Pierce parallel plate diode, a decelerating

stage to reduce the beam energy and a matching

stage between the diode and the decelerator to

shape the beam as required. The decelerator

operates with a fixed deceleration voltage ratio

so the matching lens must allow us to vary the

energy of the gun.

2) TheeleetrOnrrOnOchrOmatOr. A hemispherical

electron analyser was chosen as the monochrom-

ator because its two-dimensional focussing

property was ideally suited to the axially

symmetric lenses which we had decided to use.
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The success of workers like Simpson and

Kuyatt (1967), Gibson and Dolder (1969), Comer

and Read (1971) and Foo, Brion and Hasted

( 1971) with this monochromat or encouraged us

to make this decision.

3). The beam-forming lenses. These lenses had to

provide a beam of the required energy whose

current was, as far as possible, not a function

of the beam energy.

4). The scattering celL This has been discussed

in section 11.1.

5). The collector. As we wished to measure the electron

current with an electrometer, rather than

counting equipment, the collector was a Faraday

cup.

The electrOn gUn.

A schematic diagram of the three-stage gun and

the nomenclature is shown in figure 29. The only design

parameter for us to choose in the space charge limited

diode is d, the cathode-anode spacing. The only criterion

to guide us is that the smaller d is, the les s the anode

voltage ls. Let us try d = 0.220" and see how this

effects the voltage and size of the beam at the end of

the electron gun. From considerations of monochromat or

operating characteristics, we find that a limited selection

of values of V 0' the monochromating potential, with only

one beam size, rO = 0.010" would be satisfactory.

Now electrons leaving a thermionic cathode

have a thermal energy distribution. An electron emitted
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parallel to the cathode surface will have a trajectory

of slope eA when it reaches the anode plane. This

slope is,
i

eA = (V K/V A) 2 (11.3.1)

where VK is the transverse kinetic energy of the

electron and V A is the anode vol tage with respect to the

cathode. The kinetic energy of an electron is

approximately 0.1 electron volts for an oxide cathode.

The space-charge limited current density, J, is given

by the Childe- Langmuir law,

J = a. Vl/2 /d2 (11. 3.2)

-6where a is a constant, 2.335 x 10 .

Thus the Richstrahlwert at the anode will be,

from equation (11.2.11)

-6 3/2 2 2RA = 2.335 x 10 .VA I(d .7f. eA) (11.3.3)

and from equation (11.3.1),

RA = 0.74 x 10-6.V¡/2/(d2.VK) (11. 3.4)

The Richstrahlwert at the end of the gun will

be,

RO = dIO/dA.d~ ( 11 . 3. 5 )

where these terms are as defined for (11.2.11).

Now Pierce (1954) showed that the maximum space.-charge

liIDi ted current pas sed by a tube at a voltage V 0 is,

I - k V3/2o - . 0 (11.3.6)

where k ls the microperveance, which in terms of

the angle of convergence of the beam at the end of the

gun, eO' is: -6 2k = 38.5 x 10 . a (11.3.7)
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from Kuyatt and Simpson (1967). Equation (11.3.5)

now becomes,

RO -6 2 3(2 2 2= (38.5xlO .eO.vO )/(7frO .7f80 )

= 3. 904XlO-6V~/2 frO 2 (11.3.8)

We showed in equations (11.2.11) through (11.2.13)

that the ratio of beam Richstrahlwert to beam energy ls

conserved along the beam, if there arecmo energy

dissipating devices in the path. Thus,

RO/VO = RA/VA (11.3.9)

So if we combine equations (11. 3.4) and (11. 3.8) and

rearrange we get V A as a function of V O.

V 3/2
A

-6 2 l -6 2= (3.904xlO .d .VK.V02)/(0.74xlO .rO)2 2 i= 5.275(d .VK/rO ).V02 (II.3.10)

In our suggested diode, d = 0.220" , VK = 0.1 eV

and rO = 0.010" , so a practical form of (11.3.10)

for our purposes is,

,."

VA = 40.023 V01/3 (11.3.11)

Table IV shows of values of V A for various values of

V O. Note that so long as the matching lenses and the

accelerator dio not affect the conservation of

Richstrahlwert then we do not need to know anything

about them at this stage. This table also shows values

for J A' the density, and lA 2anode current = (n.rA ).JA,

the anode current. The choice of rA = 0.012 is
¡ i

arbitrary. Kuyatt (1967) uses rA = 0.013 and although

our other dimensions are not the same as his we decided

to keep our anode hole close to his value, in case this

was found by experience.
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The final factor to be included in the design

of the space-charge limited diode is the analogue lens

action. The cathode plane acts as' a Calbick lens, which

we defined in section 11.2 , with the initial pupil on

the right of the cathode at infinity and the final or

exit window on the left of the cathode. The initial

and final windows are at the same place. This is shown

in figure 30. We choose the anode plane as the window

for the system. The value of f, the focal length

defined in the diagram, is a matter of debate at the

present time. Klemperer and Barnett (1971) reduce the

classical value of J = 3d, calculated from the Calbick

lens formula (11.2.26), to a value of f = 2. 7d empirically.

Coffey and Rowlands (1972) point out that the angular

di vergence of the beam, if this were the focal length,

would give a different value of V A from (11. 3.1) to that

expected by space-charge theory. In a calculation based

on a simple space-charge model, which does not allow for

the thermal emission velocities, they conclude that f is in

error by a factor of about three. We felt this was too

large a discrepancy and on checking the literature found

that Harting and Burrows (1970) operated their space

charge limited diode successfully on the assumptionf = 3d.

wi thout more experimental evidence we decided to work with

the accepted value of f = ~d. In figure 30, eB = 0
,

and ep = (VK/VA)2. Table IV shows values for e and
p

,
rC = 3d. ep as well. eB = rA/3d = 0.0182 radians.



Table iv

VO(v) VACv) J A (ii/in2) lA (ii) ep (rad) rc(in)

1.0 40.023v 1. 2214xl04 5. 521ii 0.0499 0.033
1. 5 45.78 v 1. 4940xl04 6.753 0.047 0.031
2.0 50. 389v 1. 7250xl04 7.797 0.045 0.030
2.5 54.311 4 8.726 0.043 0.0281. 9306xlO

3.0 57.713 2.1148xl04 9.559 0.0416 0.027
3.5 60.755 2.2842xl04 10.325 0.0406 0.027
4.0 63.517 4 11.037 0.0397 0.0262.4419xlO

6.0 72.722 2.9914xl04 13.521 0.0372 0.025
8.0 80.046 3.4545xl04 15.614 0.0354 0.023

10.0 86.2lLô 3.8612xl04 17.453 0.0339 0.022

,
rA = 0.012"; d = 0.220"; rO = 0.010"; eB = 0; eB = 0.0182 rad.
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The deceleration stage.

From consideration of the requirements of the

monochromat or we can decide on optimum values for some

parameters. The beam entering the monochromator from

the exit window of the decelerator should have a radius

ro = 0.010". The beam half-angle at the window should

be zero or approximately zero. The exit:window pencil

half-angle ep should be 0.070 radians. We arbitrarily

choose the voltage ratio for deceleration to be 10: 1 and

the magnification to be 1.5. This choice defines other

parameters in the system. For example, the entrance

window radius = (0.010/1.5) = 0.0065" , and from the

Helmhol tz Lagrange law, the entrance window pencil

half-angle) ep ,is;

(e ) ~
p Entrance

iM(VC/vO)2.(ep) .
Exmt

,,- 0.0331 radians.

This value agrees well with those in Table iV. We have

already decided to use a cylinder lens with g/D = 0.1.

Use of program LENSONE gave the following output.

f 1 = 0.799D

f 2
= 2.582D

Fi = 1. 616D

F 2 = 1. 179D

overall length (object-image) = 5.679D.

We can estimate the beam size at the lens centre, r, in

the following proj ection from the low voltage side,

r = 2 x image radius x 2 x (F2+Mf2)xDxCep)Exit

( 11 . 3.12 )
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where (F 2 + Mf2) is the image distance X2.

Substi tuting numerical values and dividing by D, we get
an expression for the fmlling factor riD.

riD = 0.3941 + 0.020/D (11.3.13)

We chose D = 0.209" , which gives a filling factor of

0.49. This is an acceptable value in the light of our

earlier discus sion of filling factors. Thus the overall

length of the lens is 1.187" and Xl = 0.599" and

X2 = 0.588".

We next considered the position and size of

a real entrance pupil. As we said in the previous section

the beam passing through a lens can be controlled by

ei ther a real window and pupil on the entrance side or

a real window and pupil on the exit or a combination of

these, as long as there is only one real window and one

real pupil in the system. Kuyatt and Simpson (1967)

suggested that it was preferable to have a virtual image

(ie . exit window) on the entrance plane of the
monochromator. For the reasons they gave, we also

decided to have the real pupil on the entrance side of

the decelerator lens. For zero exit beam angle the pupil

is placed at the entrance focal point ie. 0.246" on the

left of the lens centre. The size we estimate by

proj ecting the beam from the obj ect to the lens centre.

This gives r = 0.012".
P

To try and inhibit electrons scattered within

the gun entering the monochromator we placed another

aperture on the low voltage side. We placed this one

lens diameter from the lens centre and estimated the beam
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size by projection to be 0.073" in diameter. As this
aperture is wider than the beam it will not act as an

angle limi ter (ie. real exit pupil). Two real pupils in

a beam will lead either to vignetting or to one of the

apertures being redundant.

One final aperture has to be pos i tioned. This
is to correct for the "end effect" of the monochromator.

The radial field of the hemispheres will be perturbed at

either end if no steps are taken to correct for this.

Herzog (1935) calculated how to correct for this. We

employ his case A. This involves positioning an infinitely

thin s li t of aperture diameter 2b, at a point a units from
the end of the hemispheres. From mechanical considerations

we decided a should be 0.065". This is sum of the length

of our insulating spacer (0.040") and the thickness of our

aperture material (0.025"). From the graph given by Herzog

for d/k to be 0.32, where 2k is the hemisphere spacing,

b/k must be 0.34. The aperture diameter is thus 0.086".

The matching cOndenser lens.

The image radius for this lens is 0.006" (ie.

the obj ect radius of the decelerator lens) and the obj ect

radius is 0.012" (the exit window of the diode). Thus the

minimum magnification this lens can have is 0.54. The

consequences of a magnification less than this can be seen

by considering Liouville' s Theorem and the R-e diagram,

as discussed in section 11.2. The maximum magnification

can be treated as for the decelerator, and we find M
max

= 1.48 for Vo = 4 and Mmax = 2.42 for Vo = 1.5 by substituting (ep)

diode from table iv into, l.M = (VA/IO.VO)2.t(ep)d. d /(e )01 (11.3.14)max 10 e p
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where (e p) 0 is the pencil angle at the monochromator

entrance plane. Thus, again from the considerations of

section 11.2, the magnification of' the lens must lie

between 0.54 and 1.48.

We know therefore that, if the paraxial

approximation is valid, then

1

Mmax = - fr / f O. (y ) "2 (11.3.15)

where f i is the image focal length in units of the

diameter of the second lens Di and f 0 is the obj ect focal
length in units of DO. We used the computer to try varioua

possible vol tages. By trial and error we decided

M = 1.10, a safety choice, and Di/DO = 1.74. Themax

filling factor was calculated by proj ection as before, and

diD ~ 0.5 for DO = 0.120" and Di = 0.209". Another

factor influencing this rather arbitrary choice was that

the lens should be as short as possible. Program

LENSTWO was then used to calculate system lens transfer

matrices for various voltage patios, values of Xl' etc.
The principle is that Xl = 0 for the second lens and X2

of the first lens is S, the centre element length. Trial

and error gives an object distance of 0.332", a centre

element length of 0.300" and an image distance of 0.328".

An estimation of the size of the beam at the compound lens

centre suggested a diameter of O. ô6 5" for the aperture
pos it ioned here.

The operation of the gun is therefore as follows.

A value of V 0 is chosen from monochromat or considerations.

This defines V A' whose value can be obtained from table iV.
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The first stage of the decelerator is set at 10. Vo

and V CF (the condenser focus voltage) is optimised for

maximum transmis s ion by the spectrometer. There are two

suitable values of V CF for each set of gun vol tages.

These are the high and low voltage focus conditions, which

are discussed in detail later.

The monochromator.

The focussing of charged particle beams was

first worked out by Purcell (1938). He showed that for

electrons of the same energy passing through a given point

with a small angular divergence, a correctly tuned

spherical condenser will give an approximate re-focussing

of orbits after a revolution of m radians. Thus hemispheres

are used. Several theoretical treatments of the design

parameters are available (Simpson and Kuyatt, 1967;

Kuyatt, 1968; Rudd, 1972). Trajmar, Rice and Kupperman

(1968) worked out a derivation of the operating formula

which we reproduce in outline, as it is unpublished.

Figure 31 shows the nomenclature.

If 4? (R, e,0) is the potential at R, where

Ri ~ R ~ R2 and 0 ~ e ~ 7f. To produce the required 1 /R 2

electrostatic field, ~ must satis fy Laplace' s equation:

2
í1 ~ (R, e, 0) = 0 (11.3.16)

and solving for ~ ,

P (R) = (RiR2£l~/R2-Ri)' (l/R-l/RO) + ~O.

(11.3.17)

where Lì~ = ~(Ri' e,0) - ~(R2' e,0) and ÇpO =

~(RO' e,0). Now, for a= 0, in figure 31.

(-e.£l~)/(-e. !PO) = (R2/Ri-Ri/R2) (11.3.18)
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In terms of vol tages ,

(Vi-V2)/VO = (R2/Ri-Ri/R2) (11.3.19)

Thus,

( V 0 - V 1) = - J ~ (R) . dR

= (Vi-V2). (RiR2/R2-Ri). (l/RO-l/Ri)

(11.3.20)

So, from (11.3.19) and (11.3.20)

Vl = Vo (R2/Ri)(

V 2 = V 0 (Ri /R2) J

Thus Vl ~ V2, as we would expect and (VO-V2)~

(11.3.21)

(Vi-VO) in general. In our design we chose Ri = 0.875",

RO = 1.000" and R2 = 1.125".

The general energy analyser equation lS,

2 ,2x2/RO = -A. xi/RO + B.iiE/E - Ca - Dß
( 11 . 3. 22)

where iiE = E-EO' xi and x2 are radial displacements

from RO and a and ß are divergences in the perpendicular

input planes. For this particular analyser the constants

A,B,C,D have the values A = 1, B=2, C=2 and D=O. We

can write (11.3.22) in the form,

2
x2/RO = -xi/RO + 2.iiE/E -2a (11.3.23)

The first term in this equation shows that the input

plane is imaged with unit magnification onto the output

plane. The second term shows that there is linear energy

dispersion and the absence of a term linear in a shows

that there is first order angle focussing.

The energy resolution function is the transmission

of electrons as a function of energy. wi th entrance and
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and exit windows equal (real or virtual) and of width

W then:

W/RO ~ -W/RO + 2.iiE/E (11.3.24)

and the energy resolution is,

llEl/EO ~ (W/2RO) .EO + 0\2./2. (11.3.25)

and,
2

iiEbase ~ (a + W/RO).EO ( 11 . 3. 26)

These quantities are defined in figure 31. In our

system ri=r2=W; RO = 1.000" and so,

llEl/EO ~ 1.25% (11.3.27)

Thus for EO=l volt we expect a full width at half

maximum energy of 0.012 volts; EO=2 volts, bEl = 0.025;

EO=4 volts, llEl = 0.e50 volts and so on.

We can allow for the effect of the cathode

distribution on the transmitted current. If we as sume

a Maxwellian distribution at the cathode, viz;

dI = (47f. m. e /h 3) . exp( -e. 0 /kT) . exp (- E /kT) . E. dE (11.3.28)

where m and e are the mass and charge of the

electron, 0 is the work function of the cathode, h lS

Planck's constant, k is Bol tzmann' s constant and T is

the absolute temperature of the cathode. Now it can be

shown that, for this distribution,

Ekmax = kT and llE~ = 2.45 kT
2

From space charge theory,

I. ~ 38.5 x 10-6in
~ 0.19 x 10-6

V 3/2 2o · a
V 3/2o

(11.3.29)

where Iin is the current entering the monochromat or and

lout the output current is,
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I ~ (llE~ono / llE~) . I.out 2 2 in
~ 1.1 x 10-8. Vo 5/2

(11.3.30)

Bearn f Orrning lens e s .

A schematic diagram of the beam-forming lenses

ls shown in figure 32. The first lens, which we call the

fixed obj ect lens, focus ses the monochromator output

image onto the aperture A8. This obj ect position is fixed

for various values of the voltage V 2 by varying the focus

voltage, Vl. Trial and error computer design was used

here. We decided to use a diameter of 0.150" for the

cylinder lenses to keep the focal lengths as physically

short as possible. The centre element length was

selected as 3. D to give a wide range of positions for an
intermediate image to be formed. The obj ect aperture,
A8, is 0.020" in diameter. This choice was based on

assessments of the filling factors. If the lens diameter

is to be small then we must keep the beam small. The

aperture A 7 is chosen to correct the end effect in the

way we discus sed for the monochromator input.

The energy definition lens is designed to

produce a beam of as nearly parallel electrons as poss ible.

for a range of vol tages on V E. In this way we hoped to

ensure that the beam after leaving aperture A8 is not

impeded by the gas cell or collector apertures. We

start with a small obj ect at A8 of 0.020" diameter, then

form an obj ect at infinity by placing a real pupil

aperture at the focal point. This is aperture A9.

We could not optimise this design as there were

two mechanical constraints on the system. Firstly, due

to the size of the vacuum tank we were using, there was
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only about 3.50" available for the beam forming lenses.

Secondly, in case of mechanical misalignment, we had to

make certain lens elements long enough to incorporate

deflector plates to align the beam. It turned out in
practice, however, that deflector plates were not

required and that the system operated as required even

al though not optimised. We will discuss this in the next
chapter. In equation (11.1.10) we defined a quantity

kIO as proportional to the total beam current in the

absence of gas. We suggest that this parameter can be

monitored by collecting the current at A8. As discussed)

the beam size at A8 is always larger than A8, so the

current monitored here will be a reasonable measure of

changes in 10.

A basic diagram of the whole optical system ls

shown in figure 33.
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11.4 MiscellaneOus design details.

Mechanical detail s

In converting electron optical design

dimensions to suitable mechanical workshop drawings

several additional factors have to be allowed for.

Firstly we must ensure that the material from

which we construct our lens elements in no way influences

the behaviour of the electron beam. This could occur if
the lens element were magnetic to any significant degree

or if, due to contact potential effects, which we have

already discussed in section 1.2, any metal surface seen

by the beam does not have a uniform potential everywhere

on it. The problem of stray magnetic fields due to the

metal composition of the lenses was eliminated by

constructing them from a non-magnetic stainless steèl

(Firth-Vickers "Immaculate V"). The residual magnetism

of the metal was checked before and after machining, and

found to be less than one milligauss. This is not always

so, even with a commercial non-magnetic stainless steel,

and one vers ion of the apparatus had to be rej ected as

it was found to have local magnetic fields as intense as

several gauss. At all stages in the production of an

electron optical system from this material, it is

essential to check for local magnetic fields.

Parker and Warren (1962) investigated the

variation in contact potential across various surfaces.

They concluded that gold electroplated surfaces had the
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evacuate due to trapped gas volumes which can only be

pumped through the very small aperture holes. Our

present shielding system we find' to be a reasonable

compromise.

An ideal cylinder lens should consist of

thin-walled coaxial cylinders (Read, Adams and Soto-

Montiel, 1971). We approximated this by machining the

cylinder wall to a thickness of 0.050" within 0.100"

of any lens gap. We found that a wall thickness less

than this was both difficult to machine and susceptible

to damage during the assembly of the system. The

aperture holes were drilled rather than spark eroded.

We found by experience that, although spark eroding is

a very accurate technique , it was difficult to accurately

position the hole on the aperture plate. The aperture

holes were then knife-edged to reduce scattering at

the edges of the holes.

The lens elements were mounted on ceramic

rods (Steati te-Porcelain) . These were of very accurate
diameter (0.1562" + 0.0001 "t and controlled the

alignment of the optical systems. The insulators

between lens elements at different potentials were of

qu~ntz and were all the same thickness (0.040").

A workshop drawing of a cross-section of the

assembled optical system is shown in figure 34.

The electrical system.

The purpose of the electrical system is to

bias the lens electrodes at the chosen design potentials
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with respect to the cathode potential and to measure

any currents required. A circuit diagram of the system

is shown in figure 35.

In this circuit, PS represents ad. c. power

supply, P represents a potentiometer, R a resistor and

M a current-measuring device.

All the power supplies are commercial high

stability d.c. supplies with adjustable output voltages

which are not referred to mains earth within the supply

ie. floating outputs. PSl and PS2 are 01 tronix

Stabpac 30 (type MB120-0.25). These have output voltages

variable between 0 volts and 120 volts and voltage

stabili ties of 0.01%. The meaning of voltage stability

can differ for different commercial manufacturers. In

this case if the mains supply voltage varies by +10%

the output voltage varies by 0.01%. The maximum ripple

and noise is 0.5 mV r.m.s. PS3 and PS4 are Oltronix

Stabpac 3 (type MB30-0. 1). These have outputs of 0-30

volts, 0.01% stability and a maximum of 0.3 mV r.m.s.

noise and ripple.
The potentiometers, Pl, are all 100kg linear

potentiometers. Their high resistance value is chosen

to minimise the current drawn from the power supplies.

The resistors, Rl, are all 98kg and are used to protect

the power supplies against a short circuit in the event

of one of the lens elements becoming connected electrically

to the cathode. P2 is a motor driven potentiometer

(lOOkg) .
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The meter, Ml, is a milliammeter used to

moni tor the anode current. M2 is a laboratory built

electrometer used to monitor the current at aperture

A8, as discussed in section 11.3. M3 is a Kei thley 640

vibrating capacitor electrometer which records the

transmitted beam current. This is capable of reading

1.0 x 10-15 A. full scale with a 1012 g input resistor.

It is connected to the Faraday cup collector, F. C., in

the electron optical system.

The laboratory built electrometer, M2, was

adapted from the design of Garment and Ross (1971).. -11It measures electron currents in the range 10 -
10-5 A, has good long term drift properties and can be

operated up to 500 volts above mains earth potential.

We added clipping diodes at the input to the operational

amplifier in the circuit for extra protection of the

amplifier when the input vol tages are high. We also

found it essential to have the trim potentiometer of the

operational amplifier wired as an external control as it

is neces sary to adj ust this frequently.
The switch, SW1, allows us to operate with the

cathode either at the system earth potential or at a

voltage negative with respect to this earth. The ten-

turn potentiometers allow us to vary the voltage on the

lenses with reasonable sensitivity. The output vol tages

are those shown in figure 33. When more sensitivity in

selecting voltage is required as, for example , with

VD (+) and VD (-), the hemisphere potentials in the

monochromator, the subsidiary current involving the low
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voltage supply PS3 ls used. SW2 removes the anode

current meter from the circuit when it is not required.

By varying the setting of the potentiometer

PL and the output voltage of PS4 we can choose the

lower and upper limits for scanning the electron beam

energy, VE, with the motor driven potentiometer P2.

To record a transmission spectrum we can

ei ther connect VE to the x-axis and the analogue voltage
output of M3 to the y-axis of an x-y recorder or monitor

both these vol tages and the analogue voltage output of
M2 with a digital voltmeter connected to a data logging

system with punched paper tape output. The data tape

can then be processed in a computer.

We only have one earth point in the system.

This avoids some of the dangers associated with earth

loops, which can cause signal noise. This earth is a

laboratory noise-free earth and all metal parts of the

apparatus are connected to it and not to the mains

earth. All electrical connections are made with screened

leads with the outer braiding connected to this earth.

The cathode is an indirectly heated Philips

BPIA oxide coated cathode. The cathode heater power

supply is an Oltronix Stabpac 30 (type MB15-2).

The vacuum system.

A schematic diagram of the vacuum system is

shown in figure 36. Mercury pumps were chosen in

preference to oil pumps to avoid the risk of oil films

discussed earlier in this section. The system gives a
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base pres sure of 6 x 10-8 torr with a hot cathode

after baking. The liquid nitrogen trap is filled

automatically from a r,eservQår-dê~vari. The pumps are

protected by an interlocked system which switches the

pump3heaters off if the vacuum tank pressure, level of

liquid nitrogen in the trap or flow rate of the cooling

water register values outside preset limits. Like

the optical elements the vacuum tank is made of

immaculate V stainless steel.

Cancellation of the earth's magnetic field.

The earth's màgnetic field can deflect the

electron beam from its calculated path. It can be

calculated (Trajmar, Rice and Kupperman, 1968) that

the earth's magnetic field must be cancelled to better

-2than 1.3 x 10 gauss for a 1 eV electron to be

unaffected by it in the monochromator. A pair of thin

coaxial coils containing the same number of turns,

carrying the same current, having the same radius and

being separated by a distance equal to the radius, will

provide a nearly constant magnetic field vector directed

along their axis in a small region about their midpoint.

Three mutually perpendicular pairs of coils can be used

to cancel the three cartesian components of the earth's

magnetic vector.

In practice, we used a system of Helmhol tz

coils of square cross-section. (Alldred and Scollar,

1967) . We were able to camcel the earth's magnetic
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-3field to within + 5 x 10 gauss within a region

about 6 in. 3 inside the vacuum tanK.

In practice, however, we found it preferable

to tune the transmitted current to a maximum with the

Helmhol tz coils. This seems to be common practice

in electron spectrometry.



CHAPTER 111. THE OFERATION OF THE ELECTRON

TRANSMISSION SPECTROMETER.
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111.1 The OperationaTcharacteristics of the spectrometer.

The performance of the spectrometer matched the

design requirements, which we discussed in section 11.1.

The operating characteristics are both stable and

reproducible.

Beam currents.

The maximum beam current in the absence of gas

is 3 x 10-9 A. When gas is present, the transmitted currents

are between approximately 1 x 10-9 A and 1 x 10-11A. This

is well within the range of the electrometer amplifier

(cf. section 11.4). The background current is almost

constant over the whole operational energy range of 2 eV

to 100 eV. In some focussing conditions there is a slight

increase in current as the electron energy increases, but

this is only of the order of 10% at most and is linear with

energy. Thus our background current, 10 in section 11.1,

is almost constant and is structureless with a sharp onset

about 2 eV. The current below 2 eV rises very sharply

from a constant onset at zero volts. This is shown in

figure 37. It seems unlikely that quantitative work

below 2 eV impact energy will be possible with the present

system. However, our design specification did not require
this very low energy operation. Furthermore, this is

sufficiently low an energy to allow comparison of measured

total cross-sections with published momentum transfer

cross-sections in a number of species.



144.

Energy resOiution.

Our design also required that we operate with

an energy resolution of about 50 mèV in order to observe

fine structure in the transmitted current. In fact our

energy resolution (F. W. H. M.) at a nominal monochromating

energy of 4.0 eV is about 40 meV. This agrees well with

the theoretical estimate given in section II~ 3. This

resolution would be improved by operating at a lower

monochromat or potential, but transmitted currents are

then rather low.

Thus the spectrometer operates as required for

measuring the total cross-section for electron-gas atom

or molecule collisions and for resolving much of the fine

structure in the cross-section. Its performance compares

well with the only other apparatus employed for measuring

total cross-sections at the present time, which is that

of D.E. Golden (1966) and his collaborators. This was

discussed in detail in section 1.2. For fine structure

studies it is hoped to improve the sensitivity by

modulating the electron beam and observing the differentiated

transmi tted current, in the manner of Schulz and Sanche

(1971). This was also discussed in section I. 2. However

for the study of many molecular resonance processes, the

present performance is quite sufficient.

Opt imisingthe spectrorreter.

A beam current in the absence of gas can be

observed by setting all potentials to the values suggested

in 11. 3 and adj usting the potential of one of the
monochromator hemispheres for maximum transmission. The
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performance of the spectrometer can then be optimised

by tuning all potentials, except those of the monochromator

for maximum transmission. In practice three of these

potentials are more critical than the others. These are

the condenser focus voltage in the gun, V CF' the fixed

obj ect moous, VL, and the energy definition focus, V 3.

These are defined in figures 29, 32, 33. Figure 38 shows

the effect on the collected transmitted current of

varying the gun vol tages and monochromator vol tages .

Figure 39 is the corresponding diagram for the beam forming

output stage. The variation of VE obvious ly corresponds

to the background transmission function. The preferred

technique is to choose Vo and set +VD and -VD to the

calculated potentials. The first stage of the decèlerator

V C is then set to 10 V 0 and the anode to a suitable value,

chosen to give the required current. V CF is then tuned

for maximum transmission. Figure 38 shows two focussing

condi tions. We have found that the lower voltage condition

is quite satis factory. Then V2 is set at a suitable

voltage, usually between 6 and 10 volts. This is quite

arbitrary as VL and V3 will have focus sing conditions for

a wide range of values of V2. However 6V gives a very

good background function. ~his leaves VL and V3 to control

the background function. VL is set on its low voltage

maximum and V3 is positioned in the minimum between its

two low voltage maxima. The voltage of VE is then scanned

and the background function observed. Minor adj ustments

to V3 are required to sharpen the low energy onset. For
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any setting of Vo and V2 there will~e settings of VL

and V3 which will give the characteristic background

function of figure 37.

Having set the optical background we then admit

gas to the scattering cell, re~uning the. hemispher~ for

maximum transmission and record the transmitted current

as a function of energy at several gas pressures. The

current entering the cell 10, is monitored on the element

of potential V2, as discussed in 11.4. From the discussion

leading to equation (11.1.11) we know that a graph of

In(IO/I) versus n should be linear. Where I is the

transmi tted current and n the gas number dens i ty. If 10

ls constant then a graph of In( I) versus gas pressure will

be sufficient. These graphs are drawn for different

electron energies and checked to see if they are in fact

linear. If they are, then the total cross-section can be

found from the slope.

111.2 The transmissiOn spectrUm of helium.

Helium (99.995% minimum purity.B.OC.) was

studied in the energy range 2-30 eV in the manner

described in the previous chapter. Figure 40 shows X-Y

recorder tracings of the variation of transmitted current

with electron energy for various gas pressures. The

energy scale is set by using the helium resonance at 19. 3eV

as a calibration point. Figure 41 shows typical plots of

the logarithm of the current versus gas pressure for

different electron energies. At higher pressures ( 6

x 10-4 torr) the point lies off the line. This could be

due to multiple scattering effects. The pressures recorded
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here are not the gas cell pressures. They are the vacuum

tank pressures, which will be proportional to but

considerably less than the gas cell pressures. The

points for the pressure 3 x 10-4 torr in this series all

lie off the lines and so are regarded as being in error

due to some measurement fault. Figure 42 shows total

collision cross-sections calculated using data of the

type illustrated in figure 41 and normalised to a value of-16 2 .5.5 x 10 cm at 2 eV (Golden and Bandel, 1965a). ThiS

curve was compiled from data taken on severa.l different

occas ions and with the spectrometer tuned to different

background functions. Whilst the data are reasonably

consistent, normalisation at the low energy end gives

cross-sections significant~y higher than those of Golden

and Bandel at energies above about 10 eV. These discrepancies

are discussed more fully in p149-151. Clearly, helium

merits further investigation and this we will undertake

monitoring the pressure in the collision chamber using a

Baratron capacitance manometer. Figure 43 shows the 19.3

eV helium resonance in detail. Monochromator settings,

as noted on a digital voltmeter were, 6V (curve A), 4V

(curve B) and 3V(curve C). In the presence of helium,

contact potentials were about +1.8 e V, so that a.ctual
monochromating energies were about 1.8 eV lower than

stated above. Allowing for the Doppler broadening of

35 meV at room temperature, we estimate the apparatus

energy resolution to be about 40 meV in curve C. In

figure 43, 1 cm = 50 meV.
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I I I . 3 The transmissiOns pectrUmof nitrogen.

In order to assess the instrument behaviour

at low incident electron energies, we looked at electron

transmission through nitrogen. Figure 44, a recorder

trace of the transmission function in nitrogen, illustrates

clearly the well-known 2n g N2 resonance, starting at' about

1. 8 e V. This resonance appears on a maximum in the total
collision cross-section, which accounts for the shape of

the function of figure 44. The spacing between minima

(cross-section maxima) of figure 44 is 0.25eV. This

agrees with spacings obtained by other workers listed in

Massey (1969) p. 710.

I I I . 4CönclUsiOns

The preliminary tests described above indicate

that our transmission spectrometer performs in accordance

with design specifications. When a suitable gas pressure

measuring device is incorporated in the collision region,

it should be capable of providing electron-molecule

collision cross-sections in a wide range of gaseous

molecules. There is a clear need for this kind of data.
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Discussion of observed helium total cross-section

The origin of these differences must be some energy-dependent parameter

of the apparatuses. The energy-dependent design parameters are

angular resolution and incident unattenuated beam current, I as
o ,

defined in Section 11.1.

The angular resolution of a spectrometer with a static gas target is

a complex function of the apparatus geometry in the region of the

scattering cell, the detection efficiency of the electron collector

and the angular intensity distribution of scattered electrons at a

particular energy. This last factor gives us the energy dependence.

The angular resolution in the Golden apparatus is not isotropic as it

employed rectangular slits, whereas the apparatus described in this

thesis has circular symmetry and hence isotropic angular resolution.

The purely geometric factor in the angular resolution was discussed by

Golden and Bandel (l965) in terms of f( a), the fraction of all electrons

scattered to the angle e within the scattering region which are detected.

We find that the calculated values of this detection, f (8), are very

similar to those of Normand (1930) and Brode (1925), which are higher

than those of Golden and Bandel (1965) and Ramsauer and Kollath (1929),

particularly at small scattering angles. Thus it appears difficult

to correlate the differences with the angular resolutions.

The unattenuated beam current, I which is monitored in the present,
0,

experiment and was allowed for in the Ramsauer - Kollath analysis, as

described in section 1.2, is assumed constant in equation (4) of Golden

and Bandel (1965). They discuss several reasons why this assumption

is not necessarily valid under all conditions. However Golden and

Bandel comment that: "At lower energies it became increasingly

difficult to find a combination of accelerating and grid potentials
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that would satisfY this condition (ie that F was independent of
o

accelerating voltage) because the range of accelerating voltages over

which the Ramsauer signal remains independent of accelerating voltages

decreases with decreasing energy."

There are several apparatus factors which could influence the observed

total cross-sections. Two important apparatus factors which are energy

dependent are the production of secondary electrons in the scattering

regions and stray magnetic fields.

Golden does not report any precautions against the production of

secondary electrons and no retarding electrodes are included in his

apparatus to contain secondary electrons within the collector.
In our

design we have a suppression voltage of 50 volts between Faraday cup and

collector shield and 6 volts between collector shield and a retarding

electrode positioned between the gas cell and the collector.

Golden and Bandel (1965) report that some welding on their apparatus

was magnetic and that magnetic field measurements were not reproducible

to better than 2%. This obviously is a source of error at low energies

but as with the other parameters it is impossible to estimate the

magni tude of the error.

A theoretical analysis of phase-shifts in electron-helium scattering

in the range 3.1 to 19.1eV has been made by Bransden and McDowell (1969),

who considered the total cross-section experimental data of Golden and Bandel

(1965) and the differential elastic cross-section data of Ramsauer and

Kollath (1932) and Gibson and Dolder (1969). Comparing the total

collision cross-sections of McDowell, with those of Golden and the present

investigation, we find that the energy dependence of the total cross-section

is very similar for McDowell and the present work. The change in cross-

section between 3eV and 1geV is 50% in the present experiment, 57% for
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and 93% for Golden. Thus it would seem that the present results are

in better agreement with the phase-shift analysis than those of Golden.

The energy dependence of the discrepancy between the present results

and those of Golden depends on the energy at which the present results

are normalized.
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