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ELECTRON TRANSMISSION IN QASES
Abstract

This thesis is concerned with the measurement of
total electron-atom and electron-molecule collision
cross-sections and their interpretation, and the
observation of fine structure in the transmitted current
due to resonance processes.

The definitions of total cross-section and
related observable parameters are discussed. We then
review the methods that have been used to observe electron
transmission in gases and the cross-sections that have
been reported in the literature. The interpretation of
the features of the total cross-section function is
discussed in terms of theoretical models. We consider
classical mechanical models, wave mechanical models, and
correlations based upon the similarity of chemical
structures. Fine structure is considered in terms of
modern resonance theory.

From these considerations we outline the design
requirements of an electron transmission spectrometer.

A practicable design procedure using computer calculations
of electron optical parameters 'is described. This is then used to
construct a spectrometer which will operate in the electron
energy range 2-100 eV with a nearly constant background
current, and with an energy resolution of about 0.050 eV.

The operating characteristics of the apparatus

are described and an investigation of helium reported. We



present total cross-section data for helium in the region
2-30 eV and compare them with publiéhed data. Our results,
the first total cross-sections recorded in a non-magnetic
electron spectrometer, deviate somewhat at higher energies
from previously published cross-sections.

We also record the resonances at 19.3 eV in

helium and 1.8-5.0 eV in nitrogen.
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CHAPTER I. THE QUANTITATIVE STUDY OF ELECTRON

TRANSMISSION IN GASES.




I.1 Introduction

Since the discovery of the electron at the end of the
nineteenth century, the study of the collision of electrons with
atoms and molecules has led to major developments in our
understanding of the structure of these complex systems of particles.
This thesis is concerned with an investigation of one particular
experimental technique which permits an estimate to be made of the
number of electrons in an electron beam, of varying mean energy,
which are not scattered by gas atoms or molecules as the beam passes
through the gas. This technique I have termed "Electron Transmission
Spectrometry", but before considering the details of this technique
we will first classify the various phenomena which can occur when
electrons are scattered by atoms or molecules in a gas.

The scattering of electrons by other particles is
dependant on a "collision" of some form having first occurred. The
concept of a collision between particles of sub-atomic and atomic
dimensions with their implied wave-particle dualities, mutually
exclusive certainties in position and momentum and so on, is not as
simple as it may at first seem in a mental "billiard ball" model.

A satisfactory but rather general definition, sufficient for our
present purposes, is: '"An electron-atom or electron-molecule
collisioﬁ can be said to have taken place if any physical change

can be detected in the system after the distance between the electron

and the target particle has first decreased and then increased." Let



us consider these physical changes. The only physical change possible
for the incident electron is a change in kinetic energy. For energy
to be conserved this can only occur if the-target particle either
gains or loses energy in the collision. The target particle has
internal structure, so the physical changes possible for it are much
more varied. One possibility is that it can conserve its internal
energy and change only its kinetic energy. This is called an ELASTIC
COLLISION. The total fractional change in the kinetic energy of the
incident electron can be shown classically to be 2m/M, where m is the
mass of the electron and M is the mass of the target. This fraction
is approximately 1 x lQ_LP for a simple molecular target. For many
purposes, then, we can regard an electron scattered elastically as not
having lost kinetic energy in the collision but merely having changed
its direction of motion. Hence the term "elastic". The other
possibility for the target particle is a change in internal energy.
For an atom, this requires a transition from one electronic energy
state to another, whereas for a molecule electronic, vibrational and
rotational states are involved, and the number of possible excitation
transitions is very much increased. If the target gains internal
energy we have a COLLISION OF THE FIRST KIND or INELASTIC COLLISION;
and if it gives up internal energy to the kinetic energy of the
incident electron we have a COLLISION OF THE SECOND KIND or SUPER-
ELASTIC COLLISION. The third kind of collision involving a change in
internal energy is an IONISING COLLISION and here the target has a net
gain, or loss, of bound electrons after the collision. If one
electron is gained, the maximum observed, the target becomes a
NEGATIVE ION, and if one or more electrons are lost it becomes a
POSITIVE ION.

For any particular value of the incident electron kinetic

energy, each of these possible processes has a finite probability of



occurring. Which process we observe at any particular energy will
depend upon their relative probabilities. The probability of any
particular physical change will thus be a function of the incident
electron kinetic energy.

Having introduced probabilities, our discussion of collision
can now become quantitative. We define the probability of scattering,
S, as the number of electrons scattered (ie. having undergone a
collision as previously defined), per unit incident electron current,
per unit path length, per unit gas pressure at some specified
temperature, per unit solid angle in the polar direction, 6, with
respect to the original beam. This probability of scattering can be
further divided into: probability of elastic scattering, SE;
probability of inelastic scattering, Sl; probability of superelastic
scattering, 82; probability of ionising scattering, SI' The
probability of inelastic scattering must be specified as the
probability of excitation to a particular energy state; and the
probability of ionisation must specify the nature of the ion. The
probability of collision, P, is related to the scattering probability,

S, by the following equation:

Y T
PC = ‘/P SE.Zﬂ.81n p.de + U/\(Sl+82+SI).21r sin ed 6 (I.1.1)
S o

The meaning of delta, §, as a limit of integration will be considered
when we have completed the definitions. The probability of excitation,

Px’ is related to the probability of scattering inelastically by:

v
P = J/hS .21 .sin 6.d6 (I.1.2)
X 1
o
and the probability of ionisation, PI’ is:
o
P = U/FSI.Zn.Sln 6.de (I.1.3)
(o}

The lower limit of the first integral in equation (I.1.1l) cannot be

zero as then the incident beam of electrons which have passed through



the gas without collision would be included with those which have
collided and Pc’ the probability of a colliéion, would be unity!
Theoretically this difficulty is rationalised by the fact that as
the polar angle,8, approaches zero, so too does SEsine and so the
value of the integral can be extrapolated, as §+0, without including
the original beam.

The probability of a collision by an electron in a beam
travelling a distance, dx, in a gas at a pressure, p, is P .p.dx.

Thus a current of electrons of initial strength, I, passing through

the layer, dx, is decreased by dI, where,

dar = -I.PC.dx. (I.1.%)
If we now integrate this expression over a finite distance x with
a finite change in electron current of (IO - I), where I, is the
initial current and I is the current after the beam has travelled

a distance x in the gas, we get an expression:
T

X
/(dI/I) = =P .p. / dx (I.1.5)
To c °

which on integration gives,

In(I/I) = -P_.p.x (I.1.8)
or,
I-= Io.exp(-Pc.p.x) (I.1.7)

The average distance that an electron travels in a gas before a
collision involving it occurs is called the mean free path, A, and is
defined by:

P.A = l/Pc (I.1.8)

The dimensions of P are [L]_l.[p]-l or [LJQ.[lJ_g.[pg—l

ie. area, per unit volume, per unit pressure. P, can therefore be
considered as the effective area for collision of all the atoms in a

unit volume, at unit pressure. In equation (I.1.7) the probability of



collision occurs in exactly the same way that an absorption ccefficient
occurs in the decrease in intensity of X—rayé or of light in passing
through matter. One of the first investigators in this topic
P. lenard (1903) called the coefficient, P_, the "absorbing power'" and
many later investigators have used the terms absorption coefficient
or attenuation coefficient, where this coefficient, o, is defined by
the equation:

I-= Io.exp(—a.x) (I.1.9)
However, electrons are for the most part scattered, so true
absorption or attachment is a process seldom observed. To avoid this
Darrow, in 1932, suggested the term "likelihood of interception", in
place of absorption coefficient. (K.K. Darrow, 1932). In order to
discuss the probability of a particular atom undergoing collision,
the term "effective cross-section for collision'" was used by many
European workers. The effective area or cross-section of a single
atom, Q, (from the german word for cross-section, Querschnitt) can be
expressed as the probability of collision, divided by the number of
gas particles per unit volume, per unit pressure (Loschmidt's number).
If the unit of pressure is one Torr (1 mm. Hg at 0 °C) and the unit of
volume is 1 cm3 then,

Q=0.281x10° P [an’] (I.1.10)
The effective radius, r, of an atom with an effective cross-section
Q’ is’
1 1 8
r = (Q/m)? = O.B(PC)2 x 107 [ cm] (I.1.11)
but most authors use the cross-section rather than the effective radius
in their publications.
Comparison of this cross-section with the gas kinetic cross-

section, calculated from the mean radius of the atom or molecule

obtained from diffusion, or similar, experiments was very popular at



one time. One way in which this was done was to plot the ratio of the
probability of collision, P, to the referenée probability, calculated
from gas kinetic considerations, PKT’ versus the electron energy. Not
surprisingly, this ratio was very different from unity. A parameter,
which is very convenient in practice is the "target parameter', ,
where:

T = nx = px/kT (I.1.12)
and n, is the gas number density; p, the gas pressure; k, the Boltzman
constant and T, the absolute temperature.

Nowadays, only the term cross-section is used. The TOTAL
CROSS-SECTION, Qr » is composed of the cross-sections for all

possible processes.
N I

Qp = Q + NElQN +I§lQI (I.1.13)
where Qo is the cross-section for elastic scattering,
QN is the inelastic cross-section for the inelastic
process N.

Q is the ionisation cross-section for the

ionising process I.

The concept of a differential cross-section is found to be
very useful in the comparison of experimental results and theoretical
models. The DIFFERENTTAL CROSS-SECTION for a particular process is the
cross-section for an electron being scattered into a solid angle dQ
after undergoing this process. If 6 is the polar angle and @, the
azimuthal angle, then d Q, the solid angle, is sin 6.d6.d@.

Thus, any cross-section, Q, can be expressed in terms of its

differential cross-section, o(8), as follows,

SO 1
Q = f f 0(6).sin 6.d6.do (IT.1.18)
o Jo

In theory, we can design experiments to measure any of these cross-

sections such as the differential elastic cross-section, total



inelastic cross-section and so on.

Our concern, in this thesis, is the measurement of the
total cross-section, QT' In terms of elec%ron currents, as already
defined, we can.write,

I-= Io.exp(-n.QT.x) (I.1.15)
where n is the number density of the gas.

We can now devise an experimental method to measure QT.

The basic requirements will be: a source of electrons; some system
to form these electrons into a beam of the required current density
and energy; a gas cell to contain the gas at the required pressure,
with an entrance aperture large enough to allow the electron beam to
enter but not large enough to let a significant proportion of the gas
escape, and an exit aperture large to allow the unscattered beam to
leave the cell but small enough to limit the escape of electrons
which have been scattered at small angles and which if allowed to
leave the cell would be mistaken for unscattered electrons; and an
electron collector to record the transmitted beam current. It must
be pointed out that electrons scattered inelastically at zero degrees
to the beam path will always be included with the unscattered electrons
in this type of experiment. The distance between the entrance and
exit apertures of the gas cell we will regard, at the moment, as the
path length, x, defined in equation (I.1.15).

This defines, to a first order, what is meant by "Electron
Transmissioﬁ Spectrometry'". An electron transmission spectrum is a
graph of the total cross-section (derived from equation I.1.15) versus
the mean energy of the electron beam. As the beam energy is varied and
different scattering processes occur, such as elastic, inelastic,
superelastic and ionising collisions, the transmission of the gas will

decrease indicating an increase in scattering.



Electron transmission spectrometry is not the only
teéhnique that can be used to measure total electron-atom
or electron-molecule collision cross-sections. We shall
treat these other techniques in detail later in this chapter.
At this stage, however, we must introduce another cross-
section which is closely related to the total cross-section,
and therefore useful for comparison purposes. This is the
MOMENTUM TRANSFER or DIFFUSION CROSS-SECTION. We stated
earlier, without proof, that the total fractional kinetic
energy change of an electron undergoing an elastic collision
was approximately 2m/M where m, is the mass of the electron
and M, is the mass of the target particle. Using the same
classical model we find that the fractional kinetic energy
loss, per electron scattered through a polar angle 6, is
approximately 2m(l - cos 6)/M. Now, if P(8)sin 6.d6.d@ is
the probability that the electron is scattered into the solid
angle of @ about the polar angle,p, the mean fractional kinetic

energy loss per collision will be

g LI
2(m/M) J/\ (/p (1 -~ cos 0).P(6)esin 6.d6.dd (I.1.16)
Yo 0

If we compare this equation with equation (I.1l.1lW) we can

define the momentum transfer cross-section by this equation:

\ig 2T
Qm = d/ﬂ d/\ 0(8).(1 - cos 6).581in 6.dp.dD (I.1.17)
© o

In this cross section, forward scattering is weighted most
heavily. A similar cross~-section is the viscosity cross-
section, Qa,, but it is very seldom encountered in the

literature. It is defined by this equation:

v
Q@ = 2w d%;@sinBG.de (I.1.18)
)



Here the scattering perpendicular to the beam path is weighted
most heavily., |

If the scattering is isotropic, ie.c(8) is not a
function of 6, the total and momentum cross-sections become the

same, as follows:

from (I.1.14), v A’
Qp = © u/n sin6.de. u/ﬂ de
4] (¢
= Un.o (I.1.19)
Qm =0 u/p (sin6~-sin6.cos6)ds b//\ de
o 0
= Uy.o (I.1.20)

If the scattering is anisotropic, the total and
momentum transfer cross-sections are related by the
expression for the mean fractional energy loss per collision,

AE/E :
(AE/E) = (2m/M)(Qm/QT)

Cross—éectiohs are expressed in units of [?@]2
[étom or moleculé]_l, or as multiples offrag @nﬂQ, where ag
is the radius of the first Bohr orbit of the hydrogen atom;
absorption coefficients in units of [cm] 2 fom] 73 [Torr) -1,
and, probabilities of collision in units of [Eé]_l[iorﬂ _lo

We have only made two assumptions in our discussion
so far, and these we can justify by considering a simple
classical model. We consider both the incident electron and
the target molecule to be impenetrable elastic spheres
("billiard balls")., This model is limited, but does represent
reasonably well the exponential short-range repulsion of a
low energy ("slow") electron and a spherically-symmetric

atom, To Jjustify this statement Figure la. shows the
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potential function for smooth elastic spheres and Figure 1b.
shows the Lennard-Jones potential which is accepted as a
reasonable approximation to the spheriﬁally-symmetric
potential function of an atom. We further assume that, in
a laboratory system of coordinates, we can regard the target
as stationary before collision with respect to the electron.
Some figures will justify this assumption. A ten electron -
volt electron has a speed of 1.9 x 108 cm.sec._l, and the
root mean square velocity of the hydrogen molecule at room
temperature is approximately 2 x 10° cmosec:1 ie. a ratio

3

of 10", A two dimensional representation of a collision in

this model is shown in Figure 2.

Let,
vy ® incident electron velocity before collision.
v, = incident electron velocity after collision.
V. = velocity of the target after the collision.
m, = mass of the electron.
M = mass of the target.
E = kinetic energy of the incident electron.

The fractional kinetic energy loss of the incident electron

is,
= (1 2 1 2y /9 2
(AE/E) = (3 mevl - 3 IneV2 )/3 meVl (I.1.21)
where E = } mevl2

In this model the target has no internal structure, so we can

rewrite equation (I.1.21) as,
2

(AE/E) = 3 MV%/3 m_v, (I.1.22)
From the conversation of kinetic energy,
2 2 2
3 meVvy™ = 3 M Vs + 3 MV (I.1.23)
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and from the conversation of linear momentum,

m, vy = mV,cose; + MV cose , (I.1l.24)

in the direction of the beam trajectory, and

0 = mv, sing, - MV sine, (I.1.25)

perpendicular to the direction of the beam trajectory.
Solving for V, we get:
vV = 2vl(me/m+M)cose2 (I.1.26)
and so,

2

(AE/E) = «umeM/<me+M>2) cos2g (T.1.27)

2
The average fractional energy loss, (AE/E) will be

given by, 17

(FE/E) = f((umeM>/<me+M>2)c032
(o]

6,.P(6,).do,

(T.1.28)
where P(ez)ode2 is the probability that 0, lies between 6,
and 6, + dez.

From simple geometrical considerations,

sin 262d62 (0 < 8, n/2)

P(e,).d(e,) =

2 2
0 (n/2 < 8, < )
(T.1.29)
Thus,
™A
— 2 2 .
(AE/E) = «umeoM)/(me + M)7) \/P cos” g,.5in 2g,.dg,
o

2 R 3
«HmeoM)/(me+M) ) J{ -2 cos 62.d cos 6,

«2me.M/(me+M)2). (T.1.30)

Considering the relative masses of an electron and a

ad

molecule, we can let (me + M)~ M and so,

(AE/E) >~ 2. (m /M) (T.1.31)
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As 6, = (w/2) - (61/2), then:

V & (2 me/M) « Vie COSB,, (I.1.32)
and,

(AE/E) (el):i (2me/M)¢(l - cosel). (I.1,.33)

Equations (I.1.31) and (I.1.33) justify our approximations.
It is worth noting that, in this model, backward scattering

(6, or 6, >(n/2)) has zero probability,

We shall firstly consider the techniques that have
been employed to observe the variations of total Cross-
sections and, where appropriate, some related cross-sections.
Then review the total cross-sections that have been reported
in the literature and, finally, consider some of the simpler
theoretical models that are of use in interpreting the

cross=-section functions,
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I.2 The Quantitative Study of the Collisions of Electrons

with Gases.

The first quantitative study of the interaction of
electrons with gases was that of Lenard, in 1903, who
measured the absorbing power of some gases and solids. The
gases which he studied were helium, argon, molecular hydrogen
and carbon dioxide. He concluded that the absorption at
higher incident electron velocities was proportional to the
gas densityj; and, as the velocity was reduced, the
absorption increased reaching a constant value at zero
velocity. This constant value was found to have good agree-
ment with that expected from gas kinetic considerations. He
also noted an absorption maximum at lower electron energies
(< 80 eV) in argon. Earlier, in 1895, he suggested, from
the results of preliminary experiments, that the effective
cross-section for the collision of molecules with high
energy electrons (> 100 eV) was proportional to the sum of the
cross-sections of all the atoms in the molecule.

Lenard's apparatus is shown diagramatically in
figure 3. The electrons coming from a photocathode of zinc,
Z, are accelerated by a grid, Gl, and then drift through
field-free space to another grid, G2, at the same potential
as Gl. The aperture, A, permits some of the electrons to
pass through to the Faraday cup collector, C. The current

flowing from the cathode to the collector is measured by a
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galvanometer., If the total cathode current, i, and the
collected current, C, are recorded at a residual gas pressure,
P,» and then at a sample gas pressure of Py»> the probability

of collision, Pos will be given by,
P, = [(py - po)/x].[log(lJCO) - log(iy/cyd]  (I.2.1)

where x 1s the path length defined in the figure. From this
equation we can see that if the electron current to the
collector decreases then the observed probability of collision
will increase. The aperture, A, is considerably larger than
the beam diameter, so some electrons that have been

scattered will be collected with the unscattered electron
beam. This will add a collector resolution background to

the observed probability. Now, the electrons in a beam repel
each other causing the beam diameter to increase. This
phenomenon is called "space charge spreading". In general,
the lower the mean energy of a beam (hence the lower the
electron velocity), the greater the amount of space charge
spreading. This could well account for the increase in
scattered current at low energies. This we will call an
electron optical background, for reasons which will be
discussed later. His interpretation of the higher energy
cross-sections, by summing the constituent atomic cross-
sections to give a molecular cross-section, was

coincidental. Later data does not support this inter-
pretation; but does show that above about 50 eV the cross-
section is roughly proportionai to the atomic or molecular
weight of the gas. It is not difficult to imagine that with
limited, inaccurate data this could be confused with Lenard's

theory. The maximum in argon does exist, but it is doubted



15.

whether Lenard really observed this, as his value for the
energy of this feature is in error with éccepted data, by
about seventy volts! Even the 1imited-equipment available
for measuring voltage at that time could not account for
this discrepancy.

I have dealt in detail with Lenard's two papers
for two reasons. Firstly, they were the initial, pioneering
investigations in this topic and showed that the amount of
scattering depended upon the nature and pressure of the gas.
Secondly, Lenard's apparatus can be regarded as the basic
practical electron transmission spectrometer, and the
interpretation of its failings can help us to develop design
criteria for improved versions.

Lenard's results were confirmed in 1905 by Becker
and in 1910 by Silbermann. Only six years later Akesson,
with an almost identical apparatus, observed a very much
different set of curves. (Akesson, 1916). The word "curve"
can be somewhat misleading, as all results produced before
second world war technology involved the plotting of
individual points and the curves being drawn by inter-
polation. Modern data either involves recording enough
data points to give a continuous line without interpolation,
or the use of a recorder to draw a continuous data line.

To emphasise this point, Lenard's published curve for argon
is based upon eight data points between zero and three
thousand volts. Akesson found that the probability of
collision did not increase uniformly to a limit at low
velocities. He observed distinct maxima and minima in the
cross-section function. He achieved this by plotting the

ratio of collected current to total cathode current versus
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electron energy. If Akesson had recorded background spectra
in the absence of gas, he could have caiculated the
probability of collision. He studied methane, propylene,
carbon monoxide, carbon dioxide, nitrous oxide, nitrogen,
oxygen, air and water. In nearly all these gases, the
maxima observed have been confirmed by later experiments,
although the energy calibration has had to be changed. 1In
particular, the 3 eV maximum in nitrogen and the 7 eV
maximum in methan e have been confirmed and in these examples
the energy calibration was good. He also produced the first
evidence of a phenomenon which was to lead to considerable
investigation at a later stage. This was the low energy
transparency to electrons of certain gases; in his words:
"the slower electrons were more penetrating than the faster".
H.F. Mayer at the Radiological Institute at Heidelberg
repeated these experiments and got results that agreed with
Lenard rather than Akesson (Mayer, 1921). The only basic
difference between Mayer's apparatus and that of Lenard was
the introduction of a heated filament instead of a photo-
cathode.

A colleague of Mayer, Carl Ramsauer, who was
working in the same laboratory on the investigation of the
velocity distribution of photoelectrons emitted by a zinc
surface, decided to check Mayer's results employing the
apparatus he had designed for his photoelectron studies
(Ramsauver, 1914). This apparatus consists of a photocathode
as a source of electrons; and a magnetic field which focusses
the electrons into two circular paths, where the beams are
collimated by a series of slits. The two beams then pass

through two scattering cells to be collected by two Faraday
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cups. He added gases (He, Ar, H2, N2 and air) to this system
and performed attenuation measurements.‘(Ramsauer, 1921a).
He only measured energies close to one electron volt. We
will take argon, és an example, to show the nature of his
results. He found the remarkably small values of Pc = 2.6
for 0.75 eV electrons and PC = 5.5 for 1.1 eV electrons.
These results caused Mayer to check his results and this time
he confirmed the results of Ramsauer and Akesson. Mayer
also noted a maximum of P, = 73 at 12 eV in argon. These
results are substantially those accepted nowadays. The
extremely small probability of collision for electrons less
than one electron volt, which Ramsauer found in argon (and
later in krypton and xenon) is known as the Ramsauer effect.

The success of this experiment led Ramsauer to
devise an improved apparatus which was to become one:.of the
classic experiments in atomic physics. (Ramsauer, 1921b).
With this apparatus, between 1921 and 1930, he measured the
total cross-sections of many atomic and simple molecular
systems. Several other researchers copied this design,
making only minor alterations. The main research schools
based on this technique were those of E. Brliche, a physical
chemist at Danzig, and of R.B. Brode at the University of
California. The literature shows that approximately 85% of
all presently available total cross-sections were measured
by this technique.

Ramsauer's first apparatus did not produce
electron beams of variable energy. Only two energies,
0.75 eV and 1.1 eV were possible. He decided that this had

to be changed to give beams of variable energy, and that two
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electron beams were unnecessary. The magnetic field,
perpendicular to the beam path, was kept as it provided
energy selection for the incident beaﬁ and the scattered
electrons. A diagram of the apparatus is shown in figure La.
Now, electrons moving at right angles to a constant
magnetic field describe a circle. If B is the magnetic
induction vector of the magnetic field, and v is the velocity
vector of the electrons; then, the force of deflection on the

electrons is I, where:

F=-e.v A B (I.2.2)

The direction of the vector is shown in figure u4b. As the
electron moves, the force will remain constant but change in
direction. The force and velocity vectors must remain
mutually perpendicular to the magnetic field vector. Thus
the electron motion is circular with the force vector acting
radially and the velocity vector acting tangentially.

Figure U4c shows this result for electrons starting at the
same point but with different starting angles. It can be
shown (Pierce, 1954) that if V is the voltage of the
apparatus with respect to the cathode, the radius of the

circular trajectory is,

- 1
r = (3.37 x 107°%).V2/B  [metrves] (1.2.3)

If we now consider the apparatus again we can see
how this principle is applied. The electrons leave the
photocathode, P, with different angles, are accelerated to
voltage V and then describe the circle defined in equation

(I.2.3), through the slits S, to Sy with the beam being
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energy-selected by the width of the slits. This energy
selecting action is shown by noting that equation (I.2.3)
defines different circles for different initial electron
velocities and directions. The radius in Ramsauer's
apparatus was 10 mm. and the slit widths were 1 mm. The
beam then enters the 90° scattering chamber through slit Sg
and leaves through S7 to be collected in the Faraday cup, A.
Electrons scattered elastically or inelastically will change
their velocity (either in magnitude or direction) and so
depart from the mean apparatus circle and therefore not reach
the collector. This gives reasonably good post-collision
angular resolution. I can find no detailed analysis of this
resolution in the literature.

The experimental procedure is as follows. The
whole apparatus is set at V volts, in a magnetic field of
B webers, and a sample gas introduced at a pressure Py torr.
The current, il’ to the collector alone and the current,jl,
to the scattering cell and collector together are measured
with an electrometer. The scattering path length, x, is

taken as the distance between Sg and S,, and is given by:

X =3.m.p (I.2.4)
where r is given by substituting for V and B in

(I.2.3). From equation (I.1.9);

= jl.e'Pl'“'X (I.2.5)

11
If we now repeat this experiment with the same
voltage and magnetic field and a different gas pressure,

p, torr, we get a similar expression;

. - . —P O e X
i, = Jy.e 72 (I.2.6)
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Subtracting (I.2.5) and (I.2.6);
(Py = Py) = In(iy.i,/3,.4)/a.x (I.2.7)
The total cross-section, QT; can now be calculated

from the attenuation coefficient,a;

1

Qp = a/n = 2.8 x 107 .a/p [cm?] (1.2.8)

where n is the gas number density and p is the
pressure.

The energy, E, of a monochromatic electron beam
moving in a circle of fixed radius, R, in a uniform magnétic

field, B, is given by,

E = (B.e.R)’/2m (I.2.9)
So,
AE = (B.e)2.2R.AR/2m (I.2.10)
and from these two equations,
AE/E == 2.(AR/R) (I.2.11)
where AE is the energy spread (base full width) of
the beam, AE/E is the energy resolution of the magnetic
selector and AR is the slit width. For Ramsauer's apparatus,
R = 10 mm. and AR = 1 mm and so the energy resolution is
approximately 20% ie. approximately 0.2 eV full width at
half maximum for a 2.0 eV beam. For sufficiently large
values of E, the energy spread, AE, will become
independent of E as the value of AE which slits will accept
will be larger than the energy spread leaving the cathode.
If, in equation (I.2.9) we substitute for R from equation
(I.2.3) we find that the energy of the electron beam is a

function of the applied voltage and the magnetic field.
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The Ramsauer type of experiment requires a lot of
work to get one point on the total cross—section versus
electron energy curve. One major drawback is that gas is
everywhere in the apparatus and this must mean that the
electron energy distribution from the cathode is a function
of gas pressure.

Brode adapted this apparatus design in order to
measure cross-sections for metal vapours. The Brode
apparatus uses no separate energy selector, instead the
scattering cage occupies 180° of the electron trajectory and
so serves as the energy selector. (Brode, 1929). A diagram
of this apparatus is shown in figure 5. Electrons from the
thermionic filament, F, are accelerated to the cylinder, C,
and some of these electrons go through the slit Sc. The
electrons are then deflected by the magnetic field through
slits S to Sg, then into the collector B. The initial

current, I is assumed to be proportional to the current

o2
leaving the slit S,+ If the constant &f proportionality is
k, then the equation for attenuation is:
T = kI .eTe*P (I.2.12)
where x is the path lengths; and, in this case
x = mr, where r 1s the radius of curvature of the beam,

I is the collector current and p is the gas pressure. We

can rewrite equation (I.2.12) as,

log (I/IO) + log k = P_.x.p (I.2.13)

So a plot of log (I/IO) as a function of the path length, x,
times the pressure, p, will give a straight line of slope,
Pc. The pressure of the metal vapour can be varied by

changing the temperature of the apparatus. (Brode, 1930).



22,

The value of the cross=-section in these experiments
is influenced by the size of the definihg apertures. This
effect was first investigated by Green (1930) who found no
variation but, later, Palmer (1931) showed that Green's
results were unreliable., Figure 6 shows Palmer's apparatus.
The distance between Sy and 82 is x, the path length. The
radius of the circular aperture, SQ’ is a. The limiting
angle for a deflection along the axis is given by tan 6= a/x.
If I is the current entering Sq5 I is the current entering

82 and AT = IO-I, then at low pressures;

! -
Pl.x.p = AI/I (I.2.14)
where Pé is the observed probability of collision.

The number of electrons scattered to the collector is,

v
AL = Io ‘jp2w.(x-a/tane).8.sine.de
<
- X-Ei (:[02.15)

where S is the probability of scattering, defined

in the introduction, and (—in) is the contribution of
positive ions formed in the gas and assumes that the number of
positive ions-leaving the scattering chamber for the collector
is the same as the number of positive ions leaving the-
collector for the scattering chamber. However, this will not
be true if there is a retarding potential between collecfor
and chamber. It is found that Pé is a function of 8, (which,
as is seen in figure g is proportional to the size of the

slit in Sp,). He observed that as 6, goes from 2° to 10°
the probability of collision, as observed, is doubled.

o A modern version of the "Ramsauer" apparatus is

that of D.E. Golden at Lockhead Research Laboratories,

California. (Golden and Bandel, 1965a). The apparatus is



23.

shown in figure 7. It has a high vacuum system, capable of

-9 torr, after baking; is of all-metal construction and

10
metal surfaces seen by the electron beam are coated with
colloidal graphite to reduce the contact potential
differences experienced by the beam. (Parker and Warren,
1962). The electrons, from an indirectly heated cathode,
at a potential negative with respect to earth, are
accelerated through a control grid to a slit Sy which, like
the rest of the apparatus, is at ground potential. The
electrons at slit S1 are focussed through 180° to slit 83
as shown in figure Yc. Momentum selection is achieved by
slits S

S, and S,. After leaving S,, the electrons pass

1°
through a 90° scattering region and then into a collector.
The cathode and momentum selection region are differentially
pumped, and the gas is introduced to the scattering chamber
only. The gas pressure was measured to an accuracy of + 3%
with a Schulz-Phelps high pressure ion gauge (Schulz and
Phelps, 1957). The currents to the scattering chamber and
electron collector were measured with vibrating-reed
electrometers and all voltages measured with a precision
differential d.c. voltmeter. The beam energy is controlled
by varying the grid to cathode ¥oltage, not the magnetic
field. This technique was discussed previously. Golden
estimated the full width at half maximum of his electron
energy distribution to be 3.5% of the mean electron beam
energy. He also performed a rough calculation of the
geometric angular detection efficiency. The angular
resolution for forward scattering is 80,and 2° for backward

scattering. From these considerations, the best estimate
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of the probable error in the cross-section measurement
due to detection error is about +1% forlthe energy
range studied.

All types of "Ramsauer" experiment suffer from
the following problems. Firstly, the electron energy
cannot be scanned. This means that cross section functions
have to be recorded point by point, so the apparatus
stabilities, in particular, cathode emission and electron
optics, have to be controlled for extended periods.
Secondly, the measurement of the electron energy leads to
difficulties as it requires a very uniform magnetic field,
and if retarding potential difference methods are used then,
tﬁe magnetic field introduces an uncertainty which has never
been analysed.

Golden carried out measurements down to 0.3 eV
but this energy was not low enough to investigate the low
energy structure in helium. To overcome this, a new version
of the apparatus has been constructed by the United Aircraft
Research Laboratories at Connecticut (Bullis et al, 1967).
This employs an electroformed collision chamber to eliminate
contact potential effects. It has been estimated that
contact potential differences of as much as 1.4 eV can exist
in common experimental configurations. The influence of the
earth's magnetic field is minimised using magnetic shielding
and Helmholtz coils. The resolution of the apparatus is
estimated to be 6% and the beam can be controlled down to
0.09 eV. However no subsequent reports from this group have

been published.
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Two other designs from the early German school,
both by Martin Rusch of Tubingen are worth consideration.

The first was produced in 1925 and is shown in figure 8.
(Rusch, 1925).

Electrons from a hot filament, F, are emitted
radially, accelerated towards the sector, 8, then pass through
the narrow collimating shafts to the collecting plates, C.
No analysis has been performed on this apparatus but one can
instinctively see that the angular resolution, which will
depend upon the width and length of the radial shafts,
must be reasonably good. The method for recording the data
points was slightly different to the previous techniques
which have involved continuous changes in the gas pressure.
With only residual gas present, the current to the collector,
C, is recorded for different accelerating voltages (in fact,
0.3 volts to 2.0 volts in 0.1 volt intervals) then, with
sample gas present, this procedure is repeated. This gives
two curves which, when subtracted, and corrected for path
length and gas pressure produce the cross-section function.
To emphasise the vacuum problems which all the workers at
this time experienced, we point out that Rusch with a brass
apparatus worked with a residual gas background of l.'—LxlO-3
torr and with gas sample pressures of between J..OXJ.O_2 torr
and 9x10™3 torr. Despite the simplicity of the apparatus
and the lack of energy selection of the beam before collision,
Rusch studied the low energy (<2.0 eV) behaviour of argon,
krypton, neon and hydrogen. He reproduced the Ramsauer-
Townsend minima of argon and krypton well but the energy

calibration is out by 0.2 volt.
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The second apparatus is the longitudinal magnetic
field spectrometer. (Rusch, 1926). Thié is shown in figure 9.
Electrons leave a hot filament, F, pass through a small
aperture, Al, and enter the monochromator. Unlike Ramsauer's
apparatus, the magnetic field vector and the electron
velocity vector, in this case, are parallel, not perpen=-
dicular, so the electron motion is helical with the helix
axis going from Al to A2. The radius of the helix followed
by a particular electron will depend upon its velocity and
hence its energy. Thus energy selection can be achieved by
impeding the helical path of unwanted electrons. Rusch
inserted the ring, R, and the disc P to do this. Because the
monochromator and scattering cell are the same length Al and
A3 are focal points of the beam. The‘procedure is similar to
that for the Ramsauer experiment. The currents to the
collector and to the collector and scattering chamber together
are recorded at different pressures and the argument explained
in (I.2.5) through (I.2.8) is followed to give the cross-
section. The apparatus may be regarded as the forerunner
of the series of longitudinal magnetic field spectrometers
designed by Schulz at Yale in recent years, two of which we
now consider.

Figure 10 shows the Schulz transmission apparatus
(Schulz, 1864). The monochromator operates on the retarding
potential difference technique. The principle of this is as
follows. The energy of the electrons entering the gas cell
is defined by the voltage difference between the last
electrode in the monochromator and the cathode. Let this
voltage be Vl' If the electrodes intermediate between the

cathode and this electrode are at the voltage V2, where



27.

V2 < Vl’ then only electrons of energy greater than e(Vl-VZ)
can reach the electrode at voltage V1 té enter the scattering
chamber with energy eVl. If Vl remains unchanged and the
unscattered electron beam is measured at the collector for
voltages of V2 and V,~-AV on the intermediate electrodes, then
the difference between these currents represents the
transmission of electrons coming from the filament with
energies between e(Vl—Vz) and e(Vl-V2 +AV), or an energy
spread of e.AV. The voltage AV can be applied as a square
wave a.c. voltage and the resultant modulated collector
current synchronously detected. A longitudinal magnetic field
is used to align the electrons. The electrodes are goéld
plated to minimise the contact potentials and the whole
apparatus is bakeable and operated under high vacuum conditions
of cleanliness. This apparatus has been used mainly for fine
structure studies with beam energies larger than 10 eV. One
problem that might exist with this type of apparatus is a
varying electron optical background at low energies. There
is no reference to this in the literature.

Figure 11 shows a later refinement of this technique
(Schulz and Sanche, 1971). Electrons from the filament, F,
are aligned by the magnetic field, B, then pass through a
trochoidal monochromator, collision chamber and retarding
electrodes (which provide a potential barrier for scattered
electrons) until they reach the collector, The trochoidal
monochromator operates as follows. As discussed in the Rusch
experiment, electrons with their velocity vectors parallel
to a magnetic field vector move in helices, the radius of
which depends upon the electron velocity. 1In the trochoidal

monochromator (Stamatovic and Schulz, 1968) electrons, aligned
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by the axial magnetic field, enter the monochromator
region off-centre, An electric field is applied at
right angles to the electron beam., " In this cross-field
region, the electron trajectories describe a
trochoidal motion and the electrons are dispersed
according to their axial velocities and those electrons
which reach the centre of the tube are transmitted through
the axial exit hole of the monochromator. This system
can produce a beam of 5 x 10"9 amp with an energy spread
of 40 meV (full width at half-maximum)., Unlike the
conventional transmission experiment, which measures
directly the transmitted current, this technique is used
to measure the derivative of the transmitted current. A
~sine-wave modulation voltage is applied between the
collision chamber and an insulated cylinder, M, inside the
collision chamber. The resulting modulation in the
transmitted current collected at C is measured in phase
with the modulating signal by a phase-sensitive detector.
By observing the derivative of the transmitted current, it
is possible to accurately define the energy of the fine
structure.

Sometimes, apparatus designed to measure
inelastic or differential cross-sections can be adapted
to measure the total cross section. An example of this
was reported by J. A. Simpsoﬁ of the Electron Physics
Section, N.B.S. Washington (Simpson, 1963 ). A schematic
plan of this apparatus is shown in figure 12. The
monochromator and analyser are identical, and consist of

concentric spherical deflectors providing a point-to-point
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focus at 180° deflection (Purcell, 1938). In the mode of
operation of interest to us, the monochromator and analyser
voltages are held fixed and the scattering chamber voltage
is varied. In this mode, any electrons losing enough
energy to fall outside of the band of electrons passed by
the analyser are not transmitted; and, as the beam is
highly collimated, the transmitted current is reduced by
an amount proportional to the total scattering. This kind
of apparatus is very suitable for fine structure studies,
having an energy spread of about 35 meV. With this
apparatus Simpson studied the fine structure in helium and
neon. (Kuyatt, Simpson and Mielczarek, 1964). Several
other investigators have used similar techniques to study
fine structure in the total cross section. (Golden and
Nakano, 19663 Ehrhardt, Langhans and Linder, 1968; Boness
and Schulz, 1970; Imhof and Read, 1969; and, Hasted,
Boness and Larkin, 1968).

One problem that exists with this type of
apparatus is the electron optical background. We have
mentioned this effect before, but a more detailed
description is now required. When the energy of an electron
beam is varied, the electron current transmitted by the
monochromator and the scattering region, can vary. When
this happens it is necessary to record a background
spectrum of the transmitted beam without gas in the
scattering chamber, which is subtracted from the spectrum
recorded with gas present. This is only an acceptible
technique if it can be shown that firstly, the nature and

Pressure of the gas do not influence the behaviour of the
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monochromator, cathode or electron lenses; and secondly,
no other changes occur in the performance of the
spectrometer between the running of-a spectrum and the
running of a background spectrum. This effect is not so
important in fine structure studies, where the energy
range studied extends over only a few electron volts.

One way to overcome this problem, which is
particularly evident at low energy, is that employed by
Hasted and Larkin., (Hasted and Larkin, 1972). The design
of their spectrometer is shown in figure 13. The actual
gspectrometer is described in detail in an earlier paper
(Hasted and Awan, 1969). Electrons from the hot
filament, F, pass through a pre-monochromator, M1, then
through a 127° monochromator, M2, and an electron lens,
L1, into the scattering chamber, S.C. The analyser, A,
is set to pass only electrons which have not lost energy
in the scattefiﬁg cell. The electrons passing through the
analyser are collected at the channel electron multiplier,
Ch. The current from the electron multiplier is
amplified by a floating picoammeter, PA, which gives an
analogue voltage output, proportional to the electron
current. The originality of this apparatus lies in the
control circuitry, the actual apparatus described being
similar to those cited earlier in this section.

The principle is that a background function is
recorded on the computer, ﬂle9 This background is
adjusted so that the transmitted beam current is, to a
first approximation, not a function of the electron energy

and the necessary lens voltages are stored in the computer
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memory. This adjusting can be performed by the computer.
To do this the analogue signal voltage is fed to an
analogue-digital converter, A/D, which produces a coded
digital signal suitable for input to the computer. The
computer then outputs a signal, which 1s converted to
analogue voltages by a digital-analogue converter, D/A.
These voltages are used to control the lens L1, and the
incident beam energy to give this approximately uniform
background current. Having recorded this background, gas
is introduced to the system and the computer scans the
spectrometer voltages in the manner recorded for the
background. This time, the analogue signal voltage 1is
converted to a voltage suitable for an X-Y pen recorder
by the two voltage/frequency converters, V/F. The signal
is recorded on the Y=~axis and the voltage difference
between the filament and the scattering cell on the X-axis.
This gives a direct plot of transmitted current versus
electron voltage. This is the most complex transmission
experiment in the literature so far.

We conclude our discussion of transmission
experiments with some details of a new apparatus designed
by Golden and Zecca (1971). Only one investigation
(Golden and Zecca, 1970), of the fine structure in
scattering by helium of electrons with energies between
19 eV and 20 eV, has been performed with this apparatus
but because of its characteristics 1t seems likely to be
worth reporting for its potential application to
transmission studies., A diagram of the apparatus is
shown in figure 14, The electron source is an oxide

coated cathode. This is inserted in a Pierce 67.5°
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electrode, P, which causes the electrons to leave the hole
in the anode plate, A, as a parallel'beam. The image of
this anode hole, A, is focussed by two lenses onto the
symmetry plane of electrode 3. This electrode is used as
a retarding electrode to perform a retarding potential
difference monochromation of the incident parallel beam.
The principles of this were discussed earlier, but in

this case there is no magnetic field. The extraction
optics is designed to give a beam of small cross-section
and angular divergence for a wide range of energies.

After passing through the scattering chamber, the
transmitted electrons are collected in a Faraday cup.

This is a commercial apparatus (Advanced Research
Instrument Systems, Inc., Austin, Texas) and full details
of its operation are not available. However, the
performance seems very suitable for transmission studies.
The operating range is 0~60 eV, the lower limit being

0.05 eV; and the best energy resolution is 0.008 eV. This
apparatus combines the energy range required to measure the
broad features of the total cross-section and the energy
resolution for fine structure studies.

We have considered all the major electron
transmission experiments reported in the literature. There
are, however, other techniques which are not based on the
transmission of an electron beam by a static gas target,
which can be used to measure total cross-sections. These
are the crossed beam techniques and the optical line
shift method.

The crossed beam technique employs an atomic

beam rather than a static gas target. The atomic or
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molecular beam and the energy resolved electron beam are
designed to intersect at right angleé. We can subdivide
crossed beam techniques into three types according to which
of the post collision species we observe. The observation
of the scattered electrons is of wide application as many
types of cross-section can be measured. Total cross-
sections can be measured with this technique. (Brackmann,
1958). To do this, the scattered electrons are collected
over an angular range around 90° and, with a knowledge of
the angular distribution of the scattered electrons, an
estimate of the total cross-section can be made. The
second method depends on the observation of the atomic
beam attenuation. This is also called the atomic beam
recoil method. (Eisner, 1969; Bederson, 1962). The number
of collisions is determined by measuring the reduction in
intensity of the atomic beam as a result of recoil following
electron collisions. The third method observes the
unscattered beam and so, in some ways, is closely related
to transmission experiments. (Neynaber, 1961). In practice,
these experiments are often very complex and difficult to
perform. The advantage over transmission techniques is
that the geometry of the intersecting beams can be
accurately probed and therefore the resolution can be
calculated. In crossed beam techniques, the atom beam
is mechanically'modulated (usually with a rotating disc)
and the in-phase electron signal is detected. Only a
small fraction of the beam is scattered, as the gas

density in a beam is much less than that of a static gas

target, so there is usually a substantial noise signal
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even with synchronous detection. Crossed beam techniques
are the only direct method for measuring the total cross-
sections of unstable species, such'as hydrogen, nitrogen,
and oxygen atoms. Measurements have also been made for
the alkali atoms, helium and argon. The only measurement
of a molecule is that of Bederson for the nitrogen
molecule., (Bederson, 1964). Absolute cross-sections can
be measured by this technique but these are problems
associated with the solution of "overlap" integrals
concerned with the interaction volume of the two beams.
Another technique for measuring the total
cross-section, which has not been applied quantitatively
yet, is the optical line shift or Fermi method. (Fermi,
1934). One mechanism responsible for the broadening and
displacement of spectral lines can be attributed directly
to low energy elastic electron scattering by ground state
atoms. Fermi found that when a highly excited atom, which
has a weakly bound orbiting electron, collides with a
ground state atom then the interaction can be considered
as an elastic collision between a quasi-free electron and
a ground state atom. If the electron is to remain in a
stationary state it must adjust its orbit slightly. This
results in a small energy change of the excited state
which can be observed optically. In practice the excited
states have usually been produced in alkali vapours and
the perturbing system is a high concentration of a rare
gas. This technique should have application to the study
of unstable species, particularly below thermal energies.
At approximately the same time as Ramsauer was

developing the concepts and techniques of electron
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transmission spectrometry, J.S. Townsend in the Cavendish
Laboratory at Cambridge was investigaiing the related
problem of the behaviour of electrons in a gas under the
influence of applied electric and magnetic fields.
(Townsend and Bailey, 19213 19223 1923). This work grew
out of the famous studies of J.J. Thomson on the free
electron, and was concerned with the passage of electrons
through gases under steady-state conditions. By steady-
state conditions we mean that the electrons make large
numbers of collisions with the gas particles. An
experiment performed under these conditions, where the
electron density is low enough for space charge effects to
be neglected, is called a "swarm" experiment. Given a
theory relating the cross~-sections for the fundamental
processes to the macroscopically observable electron
transport properties of a gas, one can calculate back from
the laboratory observables, such as transport coefficients,
to the required cross-sections with the connecting link
being provided by the Boltzmann equation with appropriate
collision terms. The cross-section, in this type of
experiment, is the momentum-transfer cross-section. Swarm
experiments are performed with electrons of energies from
a few electron volts to thermal energies, with a lower
limit of about 0.001 eV. There are three types of swarm
experiment. These are d.c. swarms, microwave or a.c.
swarms and time-of-flight methods. These are compre-
hensively reviewed by Massey and Burhop (1969).

There are several recent review articles dealing

with d.c. swarm techniques. (Phelps, 1968; Crompton and
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Huxley, 19623 Crompton, 1969). The properties of the
swarm observed are the electron drift velocity along a
uniform magnetic field E, W , thevratio Di/u, where D
is the diffusion coefficient perpendicular to the electric
field, E, and p is the mobility (the ratio of the drift
velocity to E), and the ratio W /W) , where W, is the
electron drift velocity at right angles to crossed,
uniform electric and magnetic fields. Each of the
observables is related to the momentum transfer cross-
section, Qm’ by a collision integral that contains both
Qp and f(V), the electron-velocity distribution function.
The distribution function is obtained from a solution of
the Boltzmann equation, which itself depends upon Qm‘
When more than one type of interaction is involved, for
example with inelastic processes, the unfolding procedure
is complicated and need not be unigque. The modern analysis
of swarm techniques requires computers and would not be
feasible otherwise. Before these were available one had
to assume that Qm varied slowly over the range of
velocities in the distribution function. For this reason
we can regard early data from swarm experiments as being
primarily of qualitative value.

The microwave technique was developed at M.I.T.
Radiation Laboratory by Brown and Phelps. (Brown,
Fundingsland and Phelps, 1951). An "afterglow" is the state
of a partly ionised system after the ionising agent is
removed. After a certain period of time, during which
metastable and short lifetime states can decay, this

afterglow plasma relaxes into a quiescent state in which
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the electrons are in equilibrium with the gas particles.
The charge density of the afterglow plasma then decays
because of various ion and electron collision processes.
If microwave radiation is passed through the afterglow at
this stage, the electron density and conductivity can be
measured as a function of time. Recent reviews of the
cross-sections determined by this method are those of
Brown (1959) and Golant (1961).

The third approach is that of time of flight
swarms. This is a recent technique (Nakai, 1967) which
has not, as yet, been employed quantitatively. However
most of the experimental problems involved have been
solved as the technique has been known in nuclear physics
for some time. Simply, what happens is that an electron
pulse of known energy is introduced into a scattering
region. The arrival-time spectrum of the electrons is
recorded with and without gas. The difference in the two
spectra will be due to scattering out. An effective total
cross-section can be derived from these observations.
(Baldwin and Friedman, 1967).

O0f all the techniques discussed in this section
only the Ramsauer type of experiment and recéntly the
crossed beam experiments have provided reliable total
cross-section data. Similarly most momentum transfer
cross-section data comes from d.c. swarms — the more
recent of these experiments seems to be producing reliable
results — with a little information coming from a.c.

SwWarms.
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I.3 The Observed Total Cross-Section Functions

In this section we review some of the published
total electron/atom and electron/molecule collision cross=-
sections. We consider only atoms ahd molecules which are
stable in their electronic ground state, in the gas phase,
at laboratory temperatures and pressures; and electron
beams of mean energy less than one hundred electron volts.
An observed total collision cross-section is a complex
function of the incident electron energy. To help in the
interpretation of this function we distinguish between the
comparatively gradual variations in cross-section observed
for changes in electron energy of a few electron volts,
which we call broad features, and the sharp variations in
cross-section that occur within less than one electron
volt, due to many-body resonance effects, called fine
structure. The broad features of all the atoms and

molecules discussed are shown in figure 15.

Helium,

The first studies on helium were all in 1921 at
Heidelberg. The first was that of Mayer using a Lenard-
type transmission tube (Mayer, 1921) but, as discussed in
the previous section, there was some doubt about these
results. Two points on the cross-section curve close to‘

1 eV were obtained by Ramsauer (192la) using his early
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apparatus and later that year with the improved version
he recorded the total cross=-section function from 1 eV to
40 eV. This had a maximum at about 3.5 eV and the cross-
section decreased slowly as the electron energy decreased.
(Ramsauer, 1921b). Townsend and Bailey (1923), using an
electron swarm apparatus, observed the same broad low
energy maximum but positioned its energy slightly lower.
The general features of the curve were confirmed by the
later observations of Brode (1925), Brliche (1927a),
Ramsauer and Kollath (1929) and Normand (1930). The
Ramsauer and Kollath study was carried out at low energies
(below 1 eV),and suggested structure between 0.4 and 0.9 eV.
Golden and Bandel (1965a) paid special attention to this
region when they performed the first transmission study on
helium for thirty years. However with their Ramsauer type
apparatus they could not continuously record the variation
of the total cross-section with electron energy in this
region. To overcome this Golden and Nakano (1966) employed
a transmission apparatus with a 127° energy selector to
study energies below 3 eV, They found no evidence of
structure in this region and this is still the accepted
picture. O'Malley (1963) has suggested that the structure
seen in the earlier experiments was due to the presence of
N, and 0, as impurities.

In 1963 Schulz reported the first observation of
a fine structure feature due to a resonance effect at 19.3
eV by observing the electrons scattered by helium at 72°.
The same year Simpson observed the same feature in

transmission, (Simpson, 1963). This was later identified
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2

as the “S, state of He_.(lS,ZSQ). Detailed studies were

3
then made by Simpson and Mielczarek (1964) using a
hemispherical monochromator and Schulz (1964) using a
transmission tube with retarding electrodes to

monochromate the electron beam. A very detailed transmission
study was made by Kuyatt, Simpson and Mielczarek (1965) who
found two resonances at 57.1 eV and 58.2 eV and several

other features between 19.3 eV and 24.6 eV, which is the
onset of He'. They observed no features at all below
He_(QS%) at 19.3 eV. The mahor excitations in this region

835, 22p, 22D, 323, 3%p and an

were the onsets for He (2
thu state and an n=5 state). However in 1970, Golden and
Zecca, using the zero field retarding potential difference
spectrometer reported twenty fourrdifferent structures
between 19 and 25 eV. In order to clarify the position, as
Golden and Zecca and Kuyatt et al had comparable electron
resolutions of about 50 meV, Sanche and Stchulz (1972a) made
a detailed study of this region using their axial magnetic
field transmission tube discussed in the last section.

They were not able to find any new structures which had not
been reported by Kuyatt, Simpson and Mielczarek (1965).

No explanation for the extra features observed by Golden and
Zecca has yet been proposed. The two higher energy
resonances have been studied by Burrow and Schulz (1969) and
Golden and Zecca (1970) as well as Kuyatt et al who first
reported their existence. Here the agreement is better and
all three groups agree with the assignment by Fano and
Cooper (1965) that the feature at 57.1 eV is due to

2

He_(zP, 25" 2p) and the 58.2 eV resonance is due to

He” (%D, 28, 2p2).
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Neon.

This was first studied by‘Ramsauer (1921b)
who recorded a cross—section that increased very
gradually from 1 eV to 40 eV. Rusch (1925), employing
the radial monochromator and collimator discussed
earlier, showed that below 1 eV the cross-section tended
towards zero as the energy fell. This low energy
behaviour was confirmed by Ramsauer and Kollath (1929).
Brliche (1927d) agreed with Ramsauer on the higher energy
cross~section function, but Normand (1930) reported a
minimum at 4 eV and another at 15 eV. A very careful
study of the total cross-section from 0.37 to 20 eV was
performed by Salop and Nakano (1970) using the Golden
version of the Ramsauer apparatus. Their results agreed
well with those of Brliche above 2 eV and Ramsauer and
Kollath below 2 eV. They observed a smooth curve over
the whole region so it seems Normand's results are in
error. A double resonance at 16.0 eV and 16.14 eV was
observed first by Simpson (1963) and later in more
detail by Kuyatt, Simpson and Mieleczarek (1965). Schulz
(1964) observed the resonance but did not resolve it into
two features. Sanche and Schulz (1972a) found twelve
features between 16 and 20 eV. They agreed with Kuyatt's

designation of the resonances as Ne (3p5, HSQ)

2 2 . . . ]
P3/2 and Pl/2 states. More structure 1s evident in the

region 42-50 eV and seems to involve excitation of a

2S electron.
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Argon, Krypton and Xenon.

Argon was first investigated in 1921 by Mayer and
then Ramsauer (1921a-1921b). Ramsauer found that below 1 eV
argon appeared to be almost transparent to electrons.
Townsend and Bailey (1922) showed that the cross-section in
fact went through a minimum. Ramsauer (1923) performed
the experiment again more carefully to try to position the
minimum on the energy scale. He also found that krypton and
xenon possessed this transparency. Townsend and Bailey
(1923) checked their results and several other workers joined
in the investigation. (Brode, 1925; Rusch, 1925; Rusch, 1926;
Brlich, 1927d; Beuthe, 1927; Ramsauer and Kollath, 1929; and
Normand, 1930). It was Ramsauer and Kollath who produced the
agreed value of 0.4 eV for the minimum. The effect was named
after Ramsauer and Townsend. Golden and Bandel (1966)
carefully investigated the region of the minimum. They
measured the cross section to be 0.125 A% at 0.285 eV.
Kuyatt, Simpson and Mielczarek (1965) found two resonances
about 0.5 eV below the first excited state of argon (11.7 eV
and 11.9 eV) due to the two 3p5484p states of Ar .

Resonances associated with higher excited states of argon
in the region 13-14 eV have been found by Sanche and Schulz
(1972a). This work also showed structure between 24 and

32 eV due to excitation of states such as Ar(383p64p and

6

383p63d) and Ar (383p 482). Krypton was found by Kuyatt

et al (1965) and Sanche and Schulz (1972a) to have structure

in the region 9.5 eV to 12 eV. The two intense peaks being
2 2 - 5ca2

due to the P3/2 and P1/2 states of Kr (4p~5S°). More

6

structure likely involving the Kr (4Sup 582) state is
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evident between 22 &V and 27 eV. Xenon shows similar

structure in the regions 8-12 eV and 18-20 eV.

Molecular Hydrogen.

The first reliable study was that of Akesson
(1916). This was followed by the investigations of H.F.
Mayer using an apparatus of the Lenard type. (Mayer, 1921;
Lenard, 1903). This data was shown to be unreliable by
Ramsauer (1921a) with his first apparatus. In the same
year, Townsend with his swarm technique showed that there
was maximum scattering at an energy of about 1.1 eV. The
cross-section falling rapidly either side of this feature.
(Townsend, 1921; Townsend and Bailey, 1923). Brode, with
his modified Ramsauer type of apparatus, confirmed that the
cross-section rose as it approached 1 eV. but could not
produce a beam with energy lower than this to confirm the
maximum. (Brode, 1925a). However, Rusch, with the
circular sector apparatus, confirmed this maximum in 1925
(Rusch, 1925). Brliche also observed the maximum with a
Lenard type of apparatus (Brliche, 1926) but a little later,
using a Ramsauer type of apparatus, he found that the
position of the maximum had shifted to about 3 eV. (Brﬁche,
1927b). The next investigations of hydrogen were not until
1930 when Ramsauer and Kollath presented results recorded at
energies below 1 eV, which seemed to confirm the observations
of Townsend and Rusch. None of the other experiments had
been performed at energies below 1 eV. (Ramsauer and
Kollath, 1930). C. E. Normand (1930) found that just below
1 eV the cross-section rose rapidly to infinity. At 3 eV

he observed a sharp peak, which agreed with Brliche's
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observation, and between 4 and 6 eV he observed a region of
oscillations in the cross-section. These oscillations occur
in several of Normand's spectra for aifferent gases, but no
other investigator has observed them. The infinite cross-
section which he observes in hydrogen and all other gases
which he investigated at this energy, is caused by no
electrons entering the collector. Whether this is due to
all the electrons being scattered out of the incident beam
or to some complex electron optical background cannot be
decided from his results alone. On consideration of all

the available data on all the gases studied by Normand it
seems that below 6 eV his apparatus background function
dominates the observed cross section. His results must
therefore be regarded with some suspicion. To summarise
this early work on the broad features in the total cross-
section, the cross-section falls smoothly on either side

of a maximum somewhere between 2 and 4 eV. The absolute
value of the cross-section maximum varies by a factor of

two for different investigators. All the data of this
period is reported with a non~linear energy axis in units of
electron velocity. This leads to difficulties in accurately
defining the energy of a feature without having access to
the original data.

No more was done until 1965 when Golden
investigated H, and D, with an improved Ramsauer apparatus.
(Golden and Bandel, 1965). Simpson, Kuyatt and Mielczarek
(1964), in an experiment involving energy analysis of the

unscattered beam, had already observed fine structure

between 11.0 and 13.0 eV which consisted of a series of sharp
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scattering maxima (about eight were observed) decreasing
in amplitude as the energy increased.‘ Golden and Nakano
(1966) searched for structure between 0.1 and 11.0 eV,
using a 127° monochromator, but they found nothing.
Golden, Bandel and Salerno (1966), using the improved
Ramsauer type of apparatus, performed a detailed study of
the broad features of the total cross-section function.
This work has become the accepted broad feature spectrum
for molecular hydrogen. They agreed on the position of
the maximum with Brliche (1927b) who had placed it at 3 eV.
The cross-section then falls smoothly from 3 eV to 0.1 eV
and falls more gradually from 3 eV to 15 eV. The data of
Normand (1930), Brode (1925a) and Brliche (1927b) remains
the only available data at incident energies greater than
15 eV. The disagreement between these results is very
marked. The fine structure in the region between 13.6 and
16.0 eV had been investigated by Ehrhardt, Weingartshofer
and Hermann (1970), with a differential scattering apparatus,
and they had designated this resonance series as being
vibrationally excited levels produced by the decay of the
2

oe This was later observed in the

transmission mode by Golden (1971) using the zero magnetic

Zg state of H

field R.P.D. transmission spectrometer which was discussed
in the previous section. Golden did not have the energy
resolution in this experiment to investigate further the
11 -~ 13 eV resonance series, which has been shown by
Simpson, Kuyatt and Mieleczarek (1966), in a differential

study,to be two overlapping resonance series. Sanche and
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Schulz (1972b) performed a very detailed analysis of the
11 - 16 eV region in H, and D,. Theyllist seven resonance
series or bands, although only six of these are observable
in transmission.

Molecular Nitrogen.

This was first studied by Akesson (1916) and then
by Mayer (1921). Neither of these studies produced
reliable quantitative vesults. Two points on the cross-
section curve were found by Ramsauer (192la) with his first
apparatus. These were found to lie on the curve produced
by Townsend (1921) in a swarm experiment. This curve had a
broad maximum between 1 and 4 eV. Brode (1925a) observed
the cross-section down to 2 eV. He noted a small gradual
maximum around 18 - 20 eV and a sharp rise in the cross
section, starting about 5 eV, and increasing sharply as it
approached 2 eV. Brliche (1926), using his Lenard type
apparatus, placed the maximum at about 2.3 eV, with a
basewidth of approximately 2 eV. Ramsauer and Kollath
(1930) checked the cross-section below 1 eV and found,
in agreement with Townsend, that the cross-section slowly
decreases as the electron energy approaches zero. Normand
(1930) confirmed these observations, but the oscillations
between 4 and 9 eV and the infinite cross-section at low
energy, mentioned in our discussion of hydrogen, once again
make us suspicious of his results. TFisk (1937), with an
apparatus of the Brode design, agreed with Briliche but
showed the sharp rise at low energy which Normand showed.
This seems to be a common problem with the Brode type of

apparatus as Normand, Brode and Fisk all observe this
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behaviour when they work at energies less than 1 eV. The
Ramsauer design does not show this. There are no later
measurements of the total cross-section covering this
range. Schulz (1964) set the maximum at 2.25 eV and showed
it was composed of several very large resonances with
widths about 0.25 eV. Heidemann, Kuyatt and Chamberlain
(1966), using Simpson's double 180° spectrometer in a
transmission mode, observed this elastic resonance and
another at about 11.5 eV with more structure just above it.
The low energy resonance is accepted as being due to the
decay of N; in the Qng state, leading to vibrational
excitation. Golden and Nakano (1966) also observed this
structure with their 127° monochromated transmission
experiment, and Boness and Hasted (1966) observed the 2.25
eV resonance and suggested that low energy fine structure
occurred below 1.8 eV. It is not, as yet, known whether
this structure is elastic, inelastic or direct vibrational
excitation of the electron ground state. It is interesting
to note that Ehrhardt and Willman (1967) do not find this
low energy structure in their differential scattering
studies. The 11.5 and 11.9 eV structures are suggested by
Massey (1969) to be caused by excitation of the E state
and a resonance associated with another excited neutral
molecular state. Sanche and Schulz (1972B) in a detailed
study show that structure is very evident between 7 eV
and 15 eV. They identify four bands which overlap to some
extent. Complete identification of all the resonance

processes occurring was not possible.
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Molecular Oxygen.

Brliche (1927c¢) was the firsf to measure the total
cross-section of oxygen, from 2 eV to nearly 100 eV. He
found that the cross~section slowly increases from 3 eV
to about 7 eV, then the slope increases sharply until 10 eV.
Above this energy the cross-section remains approximately
constant. Ramsauer and Kollath (1930), in a low energy
study below 1 eV, observed a minimum at about 0.3 eV, which
agreaes with what was observed in an electron swarm
experiment by Brose (1925). This general shape was recently
confirmed by Salop and Nakano (1970) who also recorded
practically the same magnitudes of cross-section. Sunshine
et al. (1967) had earlier measured the total cross~-section
using an atomic beam recoil technique, but although they
confirm the general shape of the curve the absolute values
of their cross-sections are, on average, about 25% higher
than those of Bruche and Salop. Boness and Hasted (1966)
Boness et al (1968), Hasted and Awan (1969) and Hasted and
Larkin (1972) have found structure below 1 eV, which they
suggest is caused by resonant scattering from the ground
27% state. Schulz and Sanche (1971) using the magnetic
field transmission tube with trochoidal monochromator found
two sharp features at 8.02 and 8.25 e V. They suggest that
these resonance states indicate that at least one parent
electronic state of 0, exists in the region 8.3 - 9.0 eV.

A detailed study of the 8 - 13 eV region has been made by
Sanche and Schulz (1972b) showing two resonance bands.
Unfortuantely they did not investigate the low energy

structure reported by Hasted.
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Carbon Monoxide.

The first transmission study of CO was that of
Brode (1925). He found that the tétal cross-section fell
rapidly from 2 eV to a minimum about 9 eV, rising to é
broad maximum at 18 eV. Skinker and White (1923) had
already shown, in an electron swarm experiment, that the
cross-section increased rapidly from thermal energies to
1 eV with a distinet bump around 0.5 eV. Brliche (1927¢)
found a sharp, very intense maximum at between 2.1 and
2.3 eV, very similar to the maximum which he had found in
nitrogen. Normand (1930) observed a very similar spectrum
with the usual background features, which we have already
commented on. Ramsauer and Kollath (1930) confirmed the
bump below 1 eV but did not measure any higher. The carbon
monoxide spectrum is thus remarkably like that of molecular
nitrogen. The 2.5 eV resonance is more intense in CO.
Boness and Hasted (1966), Boness et al (1968) and Hasted
and Awan (1969) have observed fine structure in this
resonance but it has not been identified in transmission
yet. Schulz and Sanche (1971) observed fine structure due

3 3.+ 1.+ ‘lz+

to inelastic excitation of the a ™, b, B 2z ,C states

and 3 new resonance at 10.04 eV. They have since shown
that the 10.04 eV resonance is associated with the b32+

1

and Bz states of CO. (Sanche and Schulz, 1972b).

The Oxides of Nitrogen.

Three oxides of nitrogen-nitric oxide, NO,
nitrous oxide, NQO, and nitrogen dioxide, NOZ' Skinker
and White (1923), using a Townsend swarm apparatus,

investigated both nitric oxide and nitrous oxide at
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energies from 2 eV to thermal energies. They found a
sharp maximum at about 0.8 eV in nifric oxide, and a
distinct minimum for nitrous oxide at about the same
energy. Brliche (1927c) extended this investigation from

2 eV to 40 eV. He found a broad maximum for N,0, at just
over 2 eV, and a very broad maximum starting at 4 eV,
increasing until 25 eV and then gradually falling. Nitric
oxide has a similar maximum centred around 16 eV. The N,O
data was confirmed by Brode (1933) and the low energy
minimum checked by Ramsauer and Kollath (1930). Extensive
studies on the fine structure of these molecules have
recently been carried out by Larkin and Hasted (1972) on
NQO, NO2 and NO, and by Sanche and Schulz (1972b) on NO.
These studies show that several of the broad features
consist of overlapping series of resonance peaks.

Other Inorganic Gases.

The only other inorganic gas which has been
investigated for fine structure is carbon dioxide. Larkin
and Hasted (1970) confirmed the nature of the low energy
elastic cross-section, which is essentially the same as the
total cross-section, that had been observed earlier by
Skinker (1922), Brliche (1927c), Ramsauer and Kollath (1930)
and Brode (1933). The broad features of several other gases
have also been investigated; Hydrogen chloride by Brliche
(1927a), ammonia and water by Briiche (1927b,1929a), hydrogen
cyanide by Schmeider (1930) and chlérine by Fisk (1937).

Organic Gases.

No transmission studies of the fine structure in

organic gases have yet been made. Methane, CHH’ was
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investigated by Brode (1925), then by Brliche (1927c¢) and

Ramsauer and Kollath (1930). The alkane series, up to
butane, was reported by Brliche (1930a) then by Brode (1933).
Brliche (1930b) made a very interesting study of the

isomers of butane. Schmeider (1930) studied pentane and

its isomers; the hydroxyl series C.H OH, C OH and

377 2

HZO; the isomers of CZHGO; the isoelectronic series

HgOH, CH,
CH,F, CH3OH, CH3NH2; and the isoelectronic pairs (CHS)SNH,
(CH3)3CH and (CH3)3N, (CH3)3CH. Holst and Holtsmark
(1931) studied ethylene, acetylene and benzenej; and the

chlorinated methane series CClu, CHCls, CH2C12 and CH3C1.
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I.4 Theoretical models and the interpretation of the

total cross-section function.

In the previous sections, we have defined the
total cross-section, discussed how it can be measured and
reviewed those cross-sections which have been measured.

In this section we consider how to interpret the total
cross-section function in terms of theoretical models.

The broad features of the function are the occurrence of
maxima and minima, in particular that low energy minimum
exhibited by certain atoms and molecules and known as the
Ramsauer-Townsend effect; the similarity in the cross-
section functions of chemically similar atoms and molecules
and the heavier rare gases; and the large cross-—sections
for the alkali metals. We must also explain the occurrence
of fine structure due to resonance bProcesses.

So far, no one theoretical model satisfactorally
explains all of these phenomena. However several models are
available which account for particular cross-section
Phenomena more or’less satisfactorally. ' To systematise our
.discussion we divide the models into three classes:
classical mechanical models, wave mechanical models and
chemical models. Our definition of the word "model" is
any theoretical description of the electron-atom or
electron-molecule system which correctly predicts an

observed feature in the cross-section cu.ve.
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Classical Models.

In the simplest classical‘mechanical model, we
represent both the electron and the target atom or
molecule by smooth, impenetrable elastic spheres of
appropriate relative mass. If the distance between the
particles is r, and the sum of the radii of the +wo
particles is D, then we can express the interaction
potential V(r) as,

o (r < D)
Vir) =

0 (r > D) (I.4.1)

This is called the classical mean free path

model or "billiard ball" model. The detailed mathematical
analysis of this system was considered in fhe introductory
section. It was shown there that all directions of motion
after collision were equally probable ie. the scattering
was isotropic. Also, according to this model, the total
cross-section is not a function of the incident electron
energy, which contradicts the observed facts.

To improve upon this model we must introduce a
more realistic interaction potential. It is known that a
charged particle close to an atom or molecule causes it to
become polarised (ie. the centres of positive and negative
charge do not coincide). Let us suppose, as a first
approximation, that when this occurs the charges are
distributed with spherical symmetry about their respective
centres. Thus the target particle will acquire an induced
dipole moment due to the proximity of the incident electron.

In reality, the charge distribution formed can cause
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induced quadrupole moments and octupole moments as well.
Now, by analogy with a parallel plate condenser, the
polarisation P, induced in a gas of «dielectric constant K,

by an electric field of strength E is:

P = (K-1).E/4m (T.4.2)

and if N is the number density of the gas particles, the

induced dipole moment per atom or molecule is ﬁ where:
v = P/N = (K-1).E/u4nN (I.4.3)

and let us assume that we can comsider the electric field
of the electron as coulombic, except at small distances, so
that if r is the separation of the electron and the
target dipole then,
E = e/r
and,
p o= (K-1).e/UnNr? (T.u.4)
Now the force of attraction between a dipole and a
point charge is given by:
F = 2p.e.cose/r3
where B is the angle between the axis of the dipole
and the direction of the incident electron. Since the
dipole, in this case, is induced by the incident electron
the angle B will always be zero. Thus,

5

F = (K-1).e2/2qNp (T.4.5)

and the interaction potential for this model is:

V(r)

[S#)
- J/\((K—l).eQD/(ZnNPS);dr
Y

I

—(K-1).e2/8nNp (T.14.6)
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This is only an approximate expression as it
assumes that the field of the electron is constant over
the whole target molecule. The complete analysis of this
model for a molecule with a spherically symmetric electron
distribution shows that (I.4.6) represents only the first
term of a series solution, the next term being a constant
times r—6 and corresponding to the induced quadrupole of
the molecule. (Margenau, 1941).

These considerations suggest that a more suitable

interaction potential would be of the form:

V(r) = -c/p" (T.u.7)
where ¢ is a positive constant and n is the multipole

index. The mathematical difficulty of the analysis of
this model depends upon the value chosen for n.

If n = 1, we have Coulomb or Rutherford scattering.
If 64 is the scattering angle, as defined in figure 2,
then it can be shown that the classical differential
total cross-section for Coulomb scattering,cf(el), is

given by:
(6,) = C/v" sin"(e/2) (I.1.8)
or 201 o 1 e

This is an improvement on our previous model as
the cross-section is now a function of the incident electron
energy or velocity, v,. However, because of the sinu(el/Z)

term in the denominator, when we integrate the differential

cross section to obtain the total cross section thus,

nwooaw
Qp = u/\ J[GT(Gl).d(el).dQ (I.4.9)
© o

the first integral diverges to give an infinite value for
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QT’ and for the momentum transfer cross-section also.
No matter how large an impact parameter we have, some
deflection will occur and so the sﬁm of all contributions
to the integral must be infinite. This problem can be
overcome by using "shielded" Coulomb potentials in which
the range of the interaction is limited (ie. there is a
maximum value for r in equation (I.4.7)). The shielded
Coulomb potential is discussed by McDaniel (1964) and the
"exponentially screened" Coulomb potential was considered
by Everhart (1960). Neither of these approximations
improve the classical Coulomb model for low energy electron-
atom or electron-molecule collisions.

Tt can be show that if the interaction potential
between the colliding particles is of the form of
equation (I.4.7) then the variation of the differential
scattering cross section with velocity is given classically

by

-4 /n

0(8) « v (I.4.10)

o
where Vg is the incident particle velocity, 6 is the

polar scattering angle and n is the multipole index.
(Kennard, 1938).

Ifn==4 in (I.4,.7) we have a point charge—
induced dipole polarisation potential. From equation
(I.4.10) we see that this shows that the differential
scattering cross section varies inversely with the velocity.
The collision frequency, which is proportional to o(8).v,
is thus indépendent of v, and for this reason the model is

sometimes called the'bonStant mean free time model. These

classical models are summarised in Table T.



Table I

Multi- Differential
Interaction polar cross section
Model potential Index . dependence
_ = (r %a) -
Constant mean free Vir) = 0(p>a) N=° o f(VO)
path model
Coulomb Potential V(r) = -C/r n=1 oo l/Vbu
model
Constant mean free V(r) = —C/I*LL n=U o a 1/VO
time model. (point
charge-induced dipole)
point charge- V(r) = -c/r° n=2=6 o a(1/V0)2/3
induced quadrupole
Table IT
Interaction Velocity dependence Multipole
of cross section Index .

dynamic scattering QTocv2 -
charge-charge QTd(l/v)u n=0
charge-dipole QTd(l/v)2 n=1
charge-quadrupole Q.I,oc(l/v)w3 n=2

Charge-octupole

QTd(l/v) n=3
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In a model involving scattering by a centre of
force with infinite range, we cannot‘define the total
cross-section properly and so cannot calculate the velocity
dependance. However we can calculate a velocity
dependance for the momentum transfer cross-section because
the small angle contribution to the differential cross
section is suppressed by the weighting factor (l-cos6) in
the integral for Qm. However these models do not account
for any features in the cross-section curve.

It would appear, therefore, that the low energy
scattering of electrons by atoms or molecules is "non
classical", for we have failed to produce a model that will
explain the features of the total cross-section dependance
upon electron velocity. Modern monographs on atomié
collision physics, such as Massey (1969), Massey and Burhop
(1969), Mott and Massey (1965), Massey (1956), Schiff (1955),
Burhop (1961) and Hasted (1872) all employ Heisenberg's
uncertainty principle to show why classical physics should,
in general, fail to give a satisfactory qualitative or
quantitative description of collision processes. This
principle applies to any pair of canonically conjugate
variables in the scattering system. These are dynamical
variables, such as spatial position and linear momentum or
total energy and time, which satisfy a conquate pair of
Hamilton's "canonical equations of motion". The principle
states that the order of magnitude of the product of the
uncertainties in the knowledge of the two variables must be
at least as great as h/2n,where h is Planck's constant. For

example,
AX.APX ¥ h/2w (I.u.11)
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If &X, the uncertainty in the position of the colliding
electron, is to be no greater than tﬁe dimensions of the
target molecule, say ( lo_gcm), then from the above
inequality, the resultant uncertainty in momentum, AFP_,
corresponds to an uncertainty in velocity (AVZ &108 cm
sec_l) which is roughly the velocity of a 3 eV electron.
is not applicable to low energy problems. But combined
with the fact that classical considerations could not
explain the Ramsauer-Townsend effect or indeed any other
total cross-section effect, whereas wave mechanics
successfully accounts for some of these phenomena, in the
general case if not the specific, we can see how this
system became regarded as "non-classical". In fact, the
success of wave mechanics in interpreting these phenomena,
notably the Ramsauer-Townsend effect, was regarded as the
key experimental evidence supporting the advent of the
wave theory.

Recently M.Gryzinski of the Institute for
Nuclear Research in Poland has proposed a diametrically
different classical approach to the problem of low energy
atomic scattering. Gryzinski assumes interaction to occur
through the time dependant periodically varying potential
field of the atom or molecule produced by the point
charge fields of the constituent electron as theyclassically
rotate about the nucleus. This system of charges, under
the action of Coulomb's law and Newtonian dynamics, exists
in a state of dynamic equilibrium. The nature of the

scattering undergone by a particular incident electron being
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determined by the actual value of the atomic or molecular
multipole moment at the point of closest approach. The
potential, @, is a function of the impact parameter, r,
the polar and azimuthal scattering angles, 6 and ¢ , and
the time, t. It can be expressed as a Fourier series

expansion of this form:

P(r,0,8,t) = A (8,8).exp(-i.wy . t) /"

I X
k n
(T.4.12)
where Ank represents the component corresponding
to the frequency w in the Fourier expansion of a multipole
moment of the nth order. (Gryzinski, 19593 1965a3;1965b;
1965d; 1965e; 1971b).

To overcome the problem of defining the total
cross-section, Gryzinski proposes that a minimum value of
scattering angle exists and can be determined. This
minimum angle is determined by the nature of the apparatus.
He considers in particular the size and shape of the beam-
forming slits and the detector slits, but gives no practical
details of how to calculate this angle accurately. In the
experiments he considered, (those of Brliche, Normand, Brode
and Ramsauer which were discussed in section I.2), the value
of the angle is of the order of several degrees. (Gryzinski
1970b). Using classical small angle scattering theory

(Gryzinski, 1970a) he relates the scattering angle,0, the

collision parameter, D, and the electron velocity, v, thus:

n+l _2
tan 6 « A, .exp (—wk.D/v)/(D V) (T.4.14)
The limiting value of this expression depends
upon the frequency, w., of the target system. The

expressions for the total cross—section then take the form:
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for v > vy (T.u4.15)
and,

QT « v for v < Vl' (I.4.16)

where vq is a boundary velocity dependant on the

frequency Wy

Using these ideas, Gryzinski "interprets'" the
published total cross section data. He divides the
observed curve into ranges defined by the velocity of the
incident electron. In his most recent article (1971b) he
divides the curve into three regions: a region of squared
€oulomb scattering (from about 0.1 to 1.0 eV); region of
exponential scattering (from about 1.0 to 100 eV); and a
region of quasi-Coulomb scattering. In his earlier work,
more regions were involved and, certainly for molecules,
it seems unlikely that the number of different kinds of
interaction can be reduced. The interactions possible,
as derived from expressions (I.4.15) and (I.4.16) are
listed in Table 2.

This approach does work with the observed curves.
For numerical agreement it is necessary to correct the
experimental values for the angular resolution of the
particular apparatus used. The Ramsauer-Townsend minimum
in argon is verified if we assume dynamic scattering to
occur from 0.5 eV to 10 eV and a quadrupole moment
interaction above that energy. Figure 16 shows the
agreement between experiment and theory. Xenon and
kyrypton calculatidons are similar to argon whereas helium
and neon show the quadrupole dominance over the whole

energy range. Thus for the rare gases, the dynamic
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quadrupole is the basic scattering interaction and the
agreement is good above 1 eV.

For molecules, recognition of the dominant
dynamic multipole can provide information about the
electronic structure of the molecule. For example,
Gryzinski found that electron scattering from the hydrogen
molecule was best explained by assuming a dominant
dynamic quadrupole moment. The absence of any dipole
moment suggests that the electrons have motions symmetric
with respect to the molecular centre. The absence of a
permanent quadrupole suggests that the electron motion is
axially symmetric with respect to the internuclear axis.
Molecular nitrogen is explained with a dynamic dipole
region, and a dynamic octupole region at higher energy.
This dynamic charge-dipole interaction is found to be
characteristic of a m bond in a molecule. So ethylene and
acetylene both have dynamic dipole regions, whereas ethane
which has only ¢ molecular bonds hes not. The saturated
hydrocarbon series, of methane,ethane, propane and butane,
shows a very characteristic charge—octupole interaction.
The dynamic multipole model, then, is useful for the
molecular physicist interpreting scattering data; in
particular when looking at possible correlations between
chemically similar molecules and their cross sections.
However, whether this purely classical model is a physically
realistic alternative to the quantum theory models is still
a matter of some debate. (Gryzinski, 197la).

In summary, the only classical model of any help
in interpreting the observed cross sections is the dynamic
multipole model. No classical model can explain resonance

fine structure, however, as this obviously depends on quant-

ised energy levels.
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Wave Mechanical Models.

According to the classical models an electron,
of mass m and velocity v, which is directed towards a
centre of force will be deflected unless the force due to
the centre vanishes everywhere along the trajectory. I1f
the electron is not deflected it will pass the centre at a
distance r, called the impact parameter. In treating this
problem quantum mechanically we can assign a probability
a(r), that a particle with an impact parameter between r
and r+dr will suffer an "observable" deflection. (Mott and

Massey, 1965; Massey and Burhop, 1969).

W 2.7
Qp = L/\d/\a(r).r.dr.dé
00 .
= 27 Jﬁ a(r).r.dr (I.4%.17)

)
As in most quantum mechanical formulations it is

convenient to rewrite this in terms of the angular

momentum, J, of the electron about the centre of force, so:
o0

Qp = (2r/m”v?) \/FJ.B(J).dJ (T.4.18)
0

where J = m.v.r and g(J) is the probability that
an electron with angular momentum between J and J+dd
suffers an "observable" deflection. Now the angular
momentum about a centre of force is quantised, so we can
write:
J :’{z(z+1)}%,ﬁ (T.4.19)
where % is the angular momentum quantum number of the
electron. In accordance with the usual nomenclature,
if 2=0 we have an S wave electron, %=1 a p wave electron

and so on.
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The integral for the total cross-section will

now become an infinite series, thus:.

(B2 /m2%v2) 3 (2441)v(2)
2=0

Qp

o

(n/X2) § (2¢+1)7(2) (I.4.20)
2=0

where k = 2¢/Ax is the wave number of the incident

electron, and y(g) = g(J).

We now interpret the probability y(g). The
incoming electron may be considered as a plane de Broglie
wave of wavelength A= h/mv. After passing the centre of
force the electrons will have a spherical wavefront.
(Faxen and Holtsmark, 1927). An analysis of this model in
detail for head on collisions of zero angular momentum or
S wave electrons with a centre of force, shows that the
probability Y (o), that these electrons undergo an
"observable" deflection is a function of the phase shift,
ng» in the electron wave before and after collision. Now
it is impossible to count the electron waves, so a phase
change that is an integral multiple of 27 will not be
observable. So ¥(0) will be a periodic function of ng s
never be negative and will vanish when the phase change
vanishes. A function satisfying these three conditions is
y(0) = A sin? ng~ By analogy we let (&) = A sin? Ny o
where Ul is the phase shift produced in %-wave electrons.
A full quantum mechanical proof of this problem,involving
a solution of the Schr8dinger equation for the electron/
target system to give the asymptotic wave functions before
and after collision, is given by Mott and Massey (1965)

and leads to the same final expression, viz:

Qp = (Ar/k?) & (2¢+1) sin? q
220

) (I.4%.21)
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To evaluate A, we compare our partial wave model
cross—section with the classical constant mean free path
model cross-—section. These cross—sections we would expect
to be identical when we consider the case of electron
scattering by a billiard ball of radius a. The classical

and quantum definitions of angular momentum, J, are:

1
J ={§(e+1)}Z K
T M.V.D
The radius of the billiard ball, a, defines a limiting
impact parameter and hence angular momentum, JLIM’
where:

JLIM = m.v.a
For large values of g, J =~ g.K and so,

g =~ m.v.r/ K
and,
Lo = n.v.a/K = k.a
where 20 is the quantum number corresponding
to JLIM'
Now if g > 24> we expect the phase n, to be
approximately zero as this corresponds to an impact
parameter greater than the radius of the ball. Thus,
sinzn2 will be zero and the value of Q calculated from
(I.4.21) will be zero.
If ¢ < 9> We can rewrite (I.4.21) in the form;
2'CJ
Q.zAn%sz (28+1).5in” n,.ds (T.4.22)
[s]

We expect n, to be large for scattering from a billiard

ball, and can replace sin2 n, by its average value of 3%,

L
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Q = An/k2 [22/2 +z}g0
and as 20 = kh’

Q2 Ar.k.a/k2(k.a/2+1) (T.4.23)

So, in the 1limit of high values of %, ka/2 >> 1 and we
can write:

Qp = A.n.a’/2 (I.4.24)

If we make A=2, (I.bL.24) corresponds to the classical
cross section of n.az for high incident energy electrons.
The more detailed treatment of this problem involves
solving the Schr8dinger equation for the system and gives
a value for the constant A of 4. The difference in value
being due to shadow diffraction of the électrons at small
scattering angles. (Mott and Massey, 1965). Thus, the
partial wave expansion of the total cross-section is now,

Qp = (4n/k?) % (24+41) sin?
2=0

and the momentum transfer cross-section in terms of

n, .dg (I.4.25)

partial waves is,

Q, = (4r/k?) B () sin®(n,-n,,1)  (I.4.26)

Classically, the deviation produced by the
scattering potential will be small if the kinetic energy
of the electron is very much greater than the interaction
potential. Wave mechanically, the impact parameter
corresponding to the angular momentum, J, is r = J/m.v.
Thus, by analogy, we expect that sin2 nzwill be small for

values of £ such that the interaction potential, V(J/mv)

instead of V(r), is very much less than the kinetic energy
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of the incident electron. We now consider how this small
phase shift condition arises. Let the interaction potential
be of the form;

V(r) = c/v" (I.4.27)

Then the condition for a small phase shiftnz is that

C/rt << T (I.4.28)

where T is the kinetic energy of the electron.

This requires that

r >> (c/T)i/n

(I.4.29)
and
r = J/mv
202241032 R /my
= gk/(onT)?
So we can rewrite condition (I.4.29) wave mechanically

as,

2 >> ot/ opd=l/n, R 243 (T.4.30)

Thus for interactions with n > 2 all phases, except perhaps
the zero order one, tend to zero as the kinetic energy
tends to zero. It follows that the greater the value of T,
the incident electron kinetic energy, the larger the number
of significant phases in the series expansion of (I..4.25).
For very low kinetic energies only the zero order phase is
significant and the scattering cross section reduces to:

2

Qp = (47/k?) sin? 7 (I.4.31)

0

This result is valid for exponential scattering potentials
also. Equation (I.4.31) expresses the first useful result
for this model. It provides an explanation for the

Ramsauer-Townsend minimum. We will consider this in detail

later.



Variation of the: mero crder nartial. fofzl. crossssection.
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Any particular angular momentum will make only a
small scattering contribution if sin ﬁgis small. This
will be so, not just for n2 2£O but ‘also nlsianwhere n
is an integer. By definition, we choose the low velocity
limit of a phase to be nw rather than zero, and n is the
number of zero values introduced into the plane wave function
by the action of the scattering field on zero velocity
electrons. Thus n, is a steadily decreasing function of £
for fixed electron velocity in a given scattering field.
If, with this convention, the phase ng, * nm as the velocity
tends to zero, then n bound energy levels exist, each of
angular momentum'{z(2+l)}%.ﬁi.

We can express (I.4.25) in an alternative form.

0r = Iy (T.4.32)

(br/k2) (2041 )sin? is the 8th order

where dy ng
partial cross-section. We showed that, for very slow
electrons, the only significant partial cross—section is the

zero order one. Thus:

2

Qp = g = (41/k?) sin (I.4.33)

0
As the velocity tends to zero, the wave number k = mv/R
also tends to zero and Ny tends to nw, where n is determined
by the strength of the scattering field as discussed above.
We will consider three cases to show how the Ramsauer-
Townsend minimum occurs.

Case I. Here we have a weak field in which n = 0.

Figure 17 shows the variation of ng with k

and qy with k. Clearly no Ramsauer-Townsend

effect occurs in this case.
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Case IT . Here n = 1 and we have a stronger field.
This is similar to Case I and again no
Ramsauer-Townsend effect occurs.

Case ITII. Here n = 1, again, the field is
stronger still, and qp returns to the
value m at a finite electron energy and
the variation of qq with k is typical
of the Ramsauer-Townsend effect. Similar
effects can arise for stronger fields with
n > 1.

Whether we have a Case II condition with no
minimum or a Case III condition with a minimum depends upon
the scattering potential, at a particular energy, being of
just the right strength to introduce a whole number of
additional waves. One further condition for a true
Ramsauer-Townsend minimum is that at the zero of qy the
contributions to Qp from higher order partial cross—sections
must be negligible. This discussion is based on Mott and
Massey (1965) and Holtsmark (1929). From this latter work
we show how an observed total éross—section can be built up
from theoretically calculated partialvcross~sections. This
is shown for the case of argon in figure 18. The heavier
rare gases, krypton and xenon, also show a Ramsauer-
Townsend minimum. This is due to the quasi-periodic
behaviour of the zero order partial cross-section, qy> as
the atomic number of the scattering atom changes. Thus in
going from argon to krypton and krypton to xenon the
scattering field increases in strength just the correct

amount for a complete additional wavelength to be added
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within the range of the field. The partial cross-section,
qy does not alter but the zero order Phase is increased by
m. (Holtsmark, 1930).

| The lighter rare gases, neon and helium, do not
show a Ramsauer-Townsend effect. This is explained, in
terms of the partial wave model, by Massey (1969). In the
change of scattering field as we go from argon to neon the
phase g does not pass through a complete period. Massey
also points out that the molecule methane (CHH) gives a
mean scattering field which produces a phase o differing
from argon by approximately w. It would seem that methane
is the fourth member of the anomalous transmission series,
preceding argon. We note that both methane and neon have
atomic number ten and thus similar scattering fields. It
would seem that neon corresponds to Case II, above, and
methane to Case III. Thus, in summary, the partial wave
model correctly predicts the Ramsauer-Townsend effect for
the heavier rare gases. The zero order phase,no, tending
to 3wm,47m, 57 at low electron energies for argon, krypton
and xenon respectively. It also correctly predicts that
although the phases, URE of helium and neon tend to w and
2m at low electron energies these will be no cross-section
minimum as the variation of q, with k is not of the
correct form. The common cross-section maximum for argon,
krypton and xenon at about 13 eV is explained by Ny tending
to 3w, 3/2m, 5/2m respectively. There is no such effect

for the lighter rare gases.

The large cross-sections of the alkali metals can

also be explained by partial wave theory. The atomic field
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of the alkali metals extends over greater distances than
the field of the rare gas atoms and so the first order
phase shifts are more important. The sharp maximum occurs
when ny tends to an odd multiple of #/2. (Mott and Massey,
1965).

The similarity in the total cross-section function
of the chemically similar atoms is perhaps one of the most
significant results of this model as it permits an
experimenter to predict qualitatively the cross-section
function for a previously unstudied system. The chemically
similar triads are argon, krypton and xenon; sodium,
potassium and caesium; and zine, cadmium and mercury. To
show the generality of this model, Allis and Morse (1931)
proposed a schematic atomic field of the form:

ngez(l/r - l/ro) (r < ro)

V(r) =
z-O (r > v

(I.y4.34)
and calculated the phases for different values of the
constants Z and Ty This is, in essence, a "shielded"

coulomb interaction. They defined a quantity g as:

o}

B = (ZrO/ZaO) (I.4.35)

and showed that the partial cross-sections were quasi-
periodic in g with a period of unity. Morse (1932)
carried out more advanced calculations with an exponentially
screened interaction.
This model can be used qualitatively with some
success ih considering the cross-section functions of
molecules. We will consider this in more detail when we

consider chemical models.
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To obtain a satisfactory theory for low energy
electron/molecule collisions we must extend the partial
wave model. Atomic fields, to a first approximation, can
be considered as possessing spherical symmetry. For
molecules this is seldom possible, and even when it is, the
ignorance of molecular structure leads to problems. The
use of spheroidal coordinates permits solutions of the
Schr8dinger equation in terms of partial wave expansions
which, for certain axially symmetric fields, can be applied
to diatomic molecules.

We present, in outline, the theory of Stier (1932)
and Fisk (1936) so that we can consider the applicability
of this model.

The total angular momentum, J, about the centre
of scattering is no longer a constant of motion. Instead,
the component of angular momentum in the direction of the
diatomic internuclear axis is constant and quantised in
the usual form m R were m = 0, 1, 2... . The incident wave
can now be resolved into partial waves for which m = 0,1,2...
and the total angular momentum in the united atom limit
is'{(g+m)(£+m+l)}%;ﬁ. For each of these partial waves a

phase shift

SMym? is produced by the scattering field. Thus:
Qp = 23 q, (I.4.36)
me
where
(2n/k?)sin’n_ (n=0)
g =
2, .. 2
(4n/k*)sinn o (m#0)

As k tends to zero (ie. electron velocity tends to zero)
all the partial cross-sections tend to zero, except 200

which tends to a finite wvalue. Fisk (1936) extended the
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method of Allis and Morse (1931) for chemically similar
atoms to molecules. He defined B in terms of 7 and Po>
analogous to the g of Allis and Morse in terms of Z and

ry. As in the atomic case the partial cross sections are
periodic with respect to B. The method was applied to the
diatomic molecules hydrogen, nitrogen, oxygen and chlorine.
The agreement for N2 ana O2 is good but H2 and Cl2 show
irregularities. The results for nitrogen along with the
experimental values of Brliche and the calculation of Stier
(1932) are shown in figure 18,

An approximate self consistent field for methane
has been obtained by averaging the proton distribution over
all orientations so as to obtain a spherically symmetric
field due to all the nuclei. (Buckingham, Massey and Tibbs,
1941). They calculated the phases for scattering of
electrons by this spherically symmetrical field, as
previously explained, and found that close similarity to
argon would be expected below 20 eV.

More recently Garrett (1972) has reviewed
theoretical approaches to very low energy electron
scattering by strongly polar molecules. He calculates values
of the momentum transfer cross-section for molecules with
permanent dipoles. This work and the work of
Takayanagi and Itikawa (1968) may well be extended to give
meaningful total cross—sections at higher energies for these
polar molecules which are not, at the moment, amenable to
a partial wave analysis. The work of these two groups is
basically an extension of the work of Altshuler (1957) who

applied the Born approximation to the scattering of
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electrons by a stationary point dipole, with some success
at thermal electron energies. The Born approximations
are described in detail by Mott and Massey (1965).

Molecular hydrogen is the only molecule simple
enough for "ab initio" calculations of scattering based
on the theoretical structure of the molecule. Nagahara
(1954) calculated the scattering by expanding the solution
of Schr¥dinger's equation for the system in terms of
spheroidal harmonics. Massey and Ridley (1956) included
electron exchange in a variational solution of the
Schr8dinger equation. More recently Hara (1967) included
dipole distortion of the molecule during impact. Only
Hara's results have the same shape as the experimental
results, but even here the quantitative argument is not
very good.

To conclude this section on wave mechanical
interpretations of the broad features of the total cross-
section, we consider the agreement between advanced
partial wave theory and modern experiment.

O0'Malley (1963) applied effective range theory
to calculating the total cross-section for low energy
electron/helium and electron/argon scattering. He
considered the case where the scattering interaction
potential V(r) falls off faster than any power of r, at
large r. Then for all values of &,

k2;Q,+1 cot n, = _1/a2 + 2 k2r£ + higher order terms

(I.4.37)

where a, and r, o are constants known as the scattering

length and effective range respectively. It follows that
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Lim Q = q4 = kras. (T.u.38)
k>0 :
where ag is the scattering length for zero angular
momentum. (0'Malley, Spruch and Rosenberg, 1960;1961;
1962). O0'Malley writes the partial wave expansion of the

total cross-section as:

Qp = 3.517 T (22+41) sin2n2/k2 (T.4.39)
2=0
2

where k° = (2m/¢t2).T and T(eV) = 13.6 (kag), and
callculates the phases in terms of effective range
expénsions of the form:
tan ny/k = -A-0.2840 4E -0.04902AcE n E + BE

and,

tan n,/k 0.8518a VE/(2L+3)(2L+1)(2L-1)

where A is the scattering length, o is the atomic
electric polarisability and B is another constant.
O'Malley uses values of these constants derived from the
experimental data of Golden (1966) to calculate values of
the momentum cross section which he then compared with the
experimental electron swarm data of Frost and Phelps
(1964). The agreement is good. This technique may well
prove very useful in the future for relating momentum
transfer cross-sections and total cross-sections in the
very low energy region.

Resonance TFine

An electron/atom or electron/molecule resonance
may be defined as a temporary negative ion state capable
of decaying by electron emission. The lifetime of such a
state is usually between 10"'5 seconds and 10_16 seconds.

If the lifetime, 1, of the resonance is long compared
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with the time the projectile takes to traverse the target
then structure will be observed in the total cross-section
due to the severe distortion of the incident electron
wavefunction. Resonances are classified according to the
mechanism by which the electron is trapped. The most
fundamental division involves Type I resonances (or

closed channel or core excited or Feshbach or compound
state) and Type II resonances (open channel or one-~body

or shape). (Massey and Burhop, 1969; Bardsley and Mandl,
1968).

Type I resonances occur at energies below that
of an excited atomic or molecular energy level, where one
or more bound or compound states can occur. These bound
states decay into lower energy states of the molecule and
a free electron. The bound state lifetimes are between

-12 1 Seconds.

10 seconds and 10~

Type II resonances occur at energies slightly
higher than that of the atomic state. The interaction
between an electron and a target molecule is sometimes
repulsive at large separations passing through a maximum
in intermediate separations and becoming attractive at
closer distances. This maximum or barrier can trap an
electron which then has to tunnel through the barrier to
decay to the original state plus an electron. Excited
states, as well as the ground state, can produce shape
resonances.

A resonance can occur with energy corresponding

exactly to the state of the atom or molecule. This

unusual type of resonance, a mixture of type I and type II,

is called a "virtual state" resonance. (Hasted, 1972).
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The quantum mechanical treatment of resonances

is complex and requires a good knowledge of the molecular
wave functions of the states of the parent molecule and
the transient compound state. A resonant state,wn, has

the same time dependance as a bound state, viz:
v, = exp(-i.W_ .t/ R) (I.4.40)

where W:rl is, for a resonant state, a complex

energy,

W, = En - Z.1i.T

This shows an exponential decay,
lv_|? « expC-r_t/f) (I.4.41)

where T is the width of the resonant state, and
T=#t/rh is the lifetime of the state. Herzenberg (1967)
showed that near a resonance the cross-section Qu(E)

for any final decay channel,d, consists of three terms;

o - o 6] o,
Q*(E) = Q¥ (E) + Q(E) + QF ,(E)

(T.4.42)

where E is the energy, Qnr is the non-resonant cross-
. 2 . ' .
section (mlwnrl ), Q, is the resonance cross-section

(m|¢r|2) and Q._, is an interference term proportional

int
to the real part of the complex conjugate [wnr*¢r|. The
maximum in cross-section observed in a transmission
experiment comes from Q, while QUp contributes a smooth
background. Under single collision conditions, the
transmitted current is Io(l—w.QT). where I, is the

incident electron current,r is the target parameter which

we defined earlier, and QT is the total electron collision
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cross-section. At higher pressures, the current is Iy
exp (-nQT). The fine structure in the transmitted current
is thus enhanced at higher pressures where mQp >> 1. A
discussion of the interpretation of resonances in
experimental transmission functions is given by Hasted
(1972).

In molecules, a type I resonance may involve an
electron being temporarily bound to either a valence or
Rydberg excited state. A Rydberg state is a hydrogen-like
orbital of high principal quantum number. Calculations,
by Weiss and Krauss (1970), on the nature of the binding
force on the additional electron in a type I resonance
showed that only Rydberg excited states have a positive
electron affinity for a fixed internuclear separation in
the Franck-Condon region. Therefore, we can expect to find
sharp resonances slightly below the excitation thresholds
only for Rydberg excited states (ie. not for valence
excited states). The temporary negative-ion consisgts
of two Rydberg electrons trapped in the field of a positive-
ion core. This positive-ion is called the grandparent
state by Sanche and Schulz (1972b). The parent state 1is
a single Rydberg electron bound to the grandparent ionic
core.

Type I resonances have lifetimes which are long
compared to the vibrational period of a molecule and so
give rise to bands, each of which consists of a progression
of vibrational levels. In experimental observations
these progressions may overlap, which makes identification

difficult. Sometimes the progression is cut off sharply



T

i
¢

"

© = M
I LT ek sw
o3 X OO
~ o = J_L .,“ui
2 o~ HE YR
oy i un%, . i o
W.,E. NU b X : ,ﬁ b Y
Fid- ot .. L
e ] [
| /. S .
e e ~ oo A
i ) i + -~ o D
fry (] = ja jag an]
0 By g =
{ ¥ i i}
I ey P fry S fry ()
TR W jaRy ~ ot i
2 [ o] « ey
A  / >

TI

v

-

I

e
i
=

50 e

b
[ 4




78.

at a certain vibrational level due to an alternative
channel of decay existing at that enérgy. Finally,
certain negative ion states are not seen at all in
transmission experiments because their natural width is
too large or because the Franck-Condon probabilities for

excitation from the ground state are too small.

Chemical Models.

In this section we consider whether knowledge
of the chemical structure of molecules can be used to
correlate similarities in their total cross-section
functions. This is not a topic which has been considered
in any detail in the literature. The only work devoted
to this topic is that of Schmieder-Oppau (1930).

We look first at relationships governed by
Grimm's hydride shifting rules. The hydride shifting rule
is shown in figure 19. The rule is based on the idea that
if a hydrogen atom combines with another atom, e,g. a
carbon atom, tﬁe hydrogen nucleus will be deep inside the
electron shell of the new compound and its field strength
will be shielded towards the outside almost completely.
The new compound, the radical CH, with its five outer
valence shell electrons should behave very similarly to
any other atom with five outer shell electrons, such as
the nitrogen atom. In the same way one expects that CH2
would behave similarly to an oxygen atom, CHy to a fluorine
atom and CH, to a neon atom. The hydride shifting rule
shows a systematic change in atomic or pseudo-atomic

radius and certain other characteristics as one proceeds
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from CH3 to neon. The cross-sections of the pseudo rare
gases, a term introduced by Brliche, in the zero group of
the periodic table in figure 19 have already been/
investigated in detail. TFigure 15 of section I.3 shows
very reasonable agreement for this correlation. The atoms
and pseudo-atoms &n groups IV-VII do not exist as stable
entities on their own and can be considered only in
molecular compounds.

Schmieder-Oppau (1930) presented a three
dimensional table, shown in figure 20, which shows all
possible stable molecular combinations of two atoms or
pseudo-atoms from groups IV-VII. Again from figure 15,
we can compare some of these groupings. For example,
CH,F, CH,0H, CH3NH2 and CH,CH, all show gsimilar cross-
section variation above about 9 eV. The absolute
magnitudes of the cross sections are in the same ratio as
the dimensions derived from the hydride shifting rule. At
low incident energies we would not expect agreement as the
electron is moving slowly enough to experience small
variations in field. Another grouping which agrees well
is that of nitrogen, hydrogen cyanide and acetylene. Again,
above 9 eV the agfeement is good but below this energy the
individual peculiarities of the molecules are dominant.
The common maximum at about 2 eV would seem to agree with
the hydride rule, but the absolute magnitude of the HCN
curve should be between that of N2 and CZHZ' The very
intense interaction shown, which does not agree with the
hydride rule, is probably due to the dipole moment of HCN.

Schmieder-Oppau tried to correlate the variation of dipole
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moments with similarities in the cross-sections, but this
was unsuccessful. Consideration of the wave mechanical
models suggests that polarisabilities and induced
multipoles are as important as permanent dipoles. The
application of the rules to the pseudo-group O, NH, CH2

is shown by the curves for (CH3)2O, ((CH3)2NH and
(CH3)2CH2. Here the agreement above about 6 eV is
remarkable and the correct ratio of intensities is shown.
As these are larger molecules the change in size in fitting
in the radicals is smaller compared with the molecular
size than in the previous example and therefore the change
in cross-section with relationship is smaller. The last
hydride relationship we consider is that between

(CH3)3N and (CH,),CH. The correlation here is similar to
the other groups considered. We note thatAat higher
energies (say above 25 eV) the molecular weight is
important. The cross-section being higher for the lowest
molecular weight compound in a group.

We next consider the influence of molecular
shape. By considering chemical isomers, molecules
containing the same atoms but differing in shape, it seems
that molecular shape has little or no effect upon the
total cross-section. It is only at low electron energies
that any difference at all is seen. Figure 15 shows the
following isomer cross-sections: C.H (n-pentane and

5712

tetramethylmethane), Cquo (butane and isobutane) and

CZHGO (dimethyl ether and ethanol). The C,HgO pair of

isomers show distinct differences below 4 eV and these are

likely due to dipole moment and polarisability effects.
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A final possible correlation has been suggested.
At low energies a radical, common to a group of molecules,
can produce similarities in the cross-section curves.
Thete is little evidence to support or qualify this;
However, from figure 15, we see that compounds containing
the hydroxyl radical (an electronegative grouping) such as
propanol (03H7OH), ethanol (CZHSOH)’ methanol (CH30H)
and water all show a distinct minimum at about 4.5 eV.
Further investigation of this might prove rewarding.

Chemical models do not compete with classical
mechanical models or wave mechanical models. In fact they
complement these detailed models and might prove useful in
choosing empirical interaction potentials and estimating

the cross-section curves of as yet unstudied compounds.



CHAPTER II. ' THE DESIGN OF AN ELECTRON TRANSMISSION

- SPECTROMETER.
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IT.1 Electron Transmission Spectrometry

A basic electron transmission spectrometer consists of a
source of electrons C, an electron optical region E, a scattering
region S, and an electron collector A. The arrangement of these
elements is shown schematically in figure 21. The purpose of the
electron optical region is to focus the electrons from the source
into a well-defined beam of the required energy, intensity, diameter
and energy resolution.

Let I(S) and I(a) be the electron currents to the
scattering region and the anode or collector, respectively. The
sum of these two quantities is constant, if we neglect secondary
electrons produced by ionisatiqn of the gas in the scattering region
or by secondary emission from metal surfaces. This constant current,

I, is the current entering the scattering cell.

I-= I(S) + I(a) (IT.1.1)

We define T(e) as a beam shape factor which describes the two-
dimensional beam shépe. T(e) is normalised to unity by integrating
over a reference plane, normal to the beam direction, which for
convenience we take as the exit aperture of the scattering region.
Thus T(e)dS is the fraction of the full current passing through a

differential element of area dS, normal to the electron beam axis,

k/r T(e).dS = 1 (IT.1.2)
exit aperture

The beam form factor does not depend on any effects attributable to

and,

the presence of scattering gas in the apparatus. It does depend upon
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the nature of the electron optical region, space-change effects,

cathode effects, metal surface effects and collector efficiency.

Thus

dIO(a) = dIO J/\T(a).dS (IT.1.3)

entrance aperture

where the differential currents refer to currents in the
energy range € + e+de, and the zero subscripts refer to currents
measured with no scattering gas present ie. background currents.

When scattering gas is present the differential transmitted
current, dI(a)’ is attenuated both by the scattering out of dIO(a) and
the scattering in of dIO(s)' To allow for this we define the event
factor G (e,@;ﬁ) as the fractional number of electrons scattered from a
point in the interaction region, denoted by the generalised coordinate u,
into the solid angle d@(= sine.d6.d@) which are registered as scattering
events at the collector. The total transmitted differential current is
then,

df 5y = 4. exp [—n.fT(e).G(e,Q);ﬁ).oT(e,@)d-rdsz] (TT.1.4)

where n is the target gas number density and the integration is
performed over the entire scattering region where there are beam
electrons and any region outside this where the presence of gas can
cause attenuation of the beam. If we now allow for the electron

energy distribution of the beam, f (¢), then,

dr Incay: F(e).de (II.1.5)

oa) -
and the total transmitted current is obtained by integration with respect
to energy, thus:

Iy = Io fﬂs)'.{exp[ -nfT(e>.e(e-,@;ﬁ)cTceM)dT.dQ] }E  (II.1.6)

(a
This is the basic equation for an electron transmission spectrometer

relating the observable I(a)’ to the desired parameter QT where

Qp = qu(e-,(Z))dsz (I1.1.7)
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Under the ideal conditions of a beam of infinitesimal diameter in

an apparatus with infinitesimal collimating slits then, G=1 for
scattering out of IO(a)"G=O for scattering in of IO(S)’ T=1 for
To(qy> T=0 for I,y and if this beam is monochromatic then f (e) = 1.
In this case (II.1.6) reduces to the more familiar equation,

I(a) = Io(a).exp(-n.QT.x). (I1.1.8)

This discussion is based on the analysis of scattering experiments by
Bederson and Kieffer (1971). For completeness we add here a point
which they omit. In most electron spectrometers the current, IO’
entering the scattering region is a function of the electron energy.
This is due to the shape of the post-monochromator beam being altered
when the voltage of the electrode defining the electron energy in the
final stage of the electron optical region is varied. This can be

allowed for either by including I, within the energy integral in

0

(IT1.1.6) or, preferably, by defining I, as the current leaving the

0
electron monochromator before the energy defining optical stage. The
latter correction involves redefining the integration limits in (II.1.3).
IO can also be a.functionvof the gas pressure. This can‘be caused by
gas effects on the emitting power of the cathode, background gas effects
in the monochromator and associated optics, surface effects due to
adsorbed gas and so on. One further source of error, which cannot be
corrected for, is that cT(e,Q) which should be zero when 8= 0, so that
only the unscattered electrons are included, includes electrons
scattered inelastically at 6=0. This is not a very significant source of
error. The "effective" total cross-section measured in any non-ideal
transmission experiment is thus,
Qp = (1/%) [ T(e).6(8,031) .0p,(0,,8)dr .0 (I1.1.9)
If we assume that the total transmitted current in the

absence of gas IO(a)’ is proportional to the total available current
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in the absence of gas IO’ then we can write (IT.1.8) in the form:
I(a) = k.IO.exp(-n.x.QT). ' (IT.1.10)

where k is a constant. Therefore, taking natural logarithms of
(I1.1.10),

In(IO/I(a)) = n.x.Qp + k (I1.1.11L)

and from this result we see that a graph of 1n(IO/I(a)) versus
n.x should be linear with a slope of QT. This is a necessary, but
not sufficient, condition for a meaningful transmission experiment.

A quantitative treatment of the correction factors discussed
in this treatment is not possible. However we can try to minimise
their effect on the transmitted current when designing a transmission
spectrometer and one approach to this is discussed in the next section.

After consideration of the factors discussed in the first
chapter, it was decided to design and construct an electron transmission
spectrometer capable of measuring the total electron collision cross-
section of atomic and molecular gases and observing any fine structure
in the transmitted current. To do this, we require an electron beam
with certain properties.. The intensity of the beam must be as great
as possible, commensurate with any other properties we may require of
the beam. The lower limit of current will be decided by the electron
. detector and the upper limit by space charge limits in the electron
optical region. The energy of the beam will require to be variable
over a wide range say, from 1 eV to 100 eV. As the energy is varied
we will try to ensure that the current does not vary. The energy
resolution required to observe fine structure can be decided by
referring to literature of published resonance features. From this
it appears that a suitable full width at half maximum (F.W.H.M.) of

- the electron energy distribution curve is better than 0.05 eV. We
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also require that the beam diameter is as small as possible so that the
entrance and exit apertures can be made smail to reduce escape of
gas from the scattering region and the scattering in and out
discussed above.

Electron beam design or "electron optics" is in the process
of transition from empirical rules based upon experience to mathematical
design based upon theoretical models. From the relatively few published
details on this topic we will present a simple design procedure which
we have found to be practicable( We start by considering the basic
phenomeﬁa of electron optics which are relevant to this problem, then
consider the design of electron lenses to produce beams with desired

properties.
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II.2 Electron Optics Design.

Principles of Electron Optics.

The term "electron optics" is used when dealing with the
behaviour of electrons that are under the influence of electric and
magnetic fields. This arises because many of the laws that govern the
behaviour of light rays are applicable to electrons. It is important
to note that electron optics is based on a wave-particle analogy not
a wave-particle duality.

We consider firstly, the properties of electrons in uniform
electrostatic fields. Imagine an electron which moves in a region of
wniform potential @l. Its trajectory will be a straight line. If it
now passes across a plane boundary to a region of potential @2, the
component of its velocity normal to the plane will alter, but that
parallel to the plane will not be affected. This situation is shown in
figure 22. Expressing electron speeds in terms of potential,

(2e.0,/m)* .sing] = (2e.0,/m)%.sino, (TT.2.1)

and, 1
. o 2 - . 2
81nel/81n62 = (®2/®l) (IT.2.2)

This is the electron optical form of Snell's law of refraction.
The square root of the potential (or voitage with respect to cathode in
a practical beam) can be regarded as the index of refraction. All the
established rules applying to refractive indices in optical systems
,Aéah be applied in electron optical systems, but electrons travel
faster the greater the voltage, whereas light waves travel slower the
higher the refractive index. One consequence of this difference is
that although all light rays travelling from one point to another take

the same time, electrons in the same situation do not.
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A lens is a device which can form the image of
an object. Electron beams in axially symmetric electric
fields have this property and so céhstitute an electron
lens. We can think of any lens, optical or electron, as a
combination of three different regions of space: the
object space, the lens space and the image space. 1In light
optics the object and image spaces nearly always have the
same refractive index. This is not often so in electron
optics where the analagous property is electrostatic
potential. If we assume that the inclination of the
trajectory of an electron beam with respect to the axis of
an electron'optical system will always be small enough to
allow us to replace the sine of this angle by its tangent
or its arc, the analysis is greatly simplified. This is the
Gaussian or "first order" approximation, sometimes called
the paraxial ray approximation as the electron rays are
close to the axis, and involves letting sin 6 by approximated
by 6, where 6 is the first term in the Taylor series
expansion of sin 6, which converges rapidly.

Particles starting from points on a plane in
object space (all having the same energy) are focussed into
conjugate points on a plane in image space (the Gaussian
image plane) by the action of the lens space, if and only
if the particle trajectories are paraxial. This leads to
a stigmatic (correct point to conjugate point) magnified
or diminished image. We can consider the action of a lens
conveniently by laoking at the electron trajectories in
object and image space only, regarding the lens space as a
"black box". The particular nature of the lens system need

not concern us at this stage.
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The theory of Gaussian imaging (Klemperer and
Barnett, 1971) shows that to uniquely define the properties
of a lens or lens combination we neéd to know three special
points on the axis in object space and their conjugate
points in image space. These are the two focal points, two
principal points and two nodal points. As a set, they form
the cardinal points of the lens. In fact, only two pairs
are independent and it is not usual to quote the nodal
points of a lens as they can be calculated from the other
cardinal points.

Figure 23 refers to any lens or combination of

lenses. The focal points (where the focal plane intersects

with the axis) are the image points of a beam of parallel

rays (ie. objects at infinity). The principal points are

the axial positions at which the planes of unit lateral

magnification intersect with the axis and the nodal points

are the axial positions of the planes of unit angular
magnification. The distance between the geometrical lens

centre and the focal point is called the mid-focal length,

F. The distance between the principal point and the focal

point is called the focal length, f .

The terminology referring to "thick" and "thin"
lenses is different in light and electron optics. In light
optics a lens whose physical dimensions are small (ie. thin)
compared with the optical dimensions, such as focal length,
is called a thin lens and the principal and nodal points
aré all coincident with the lens centre. Otherwise a lens
is thick. In this sense, all electron lenses are thick

lenses ie. they have distinct principal planes. Instead we
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introduce the terminology of a "weak" lens if the radial
height of a ray does not change appreciably within the lens
space, and "strong" lens if it does; Characteristically,
strong 1ensés have short focal lengths, object and image
distances etc. Weak lenses do not.

In this work all cardinal parameters are regarded
as being positive numbers. The parameters referring to
object space have the subscript 1, and those in image
space the subscript 2. This simple convention is the same
as that employed by Kuyatt and Simpson and by Read and his
collaborators. Spangenberg uses the same nomenclature but
introduces a gartesian sign convention whereby all parameters
in image space are positive and those in object space
negative. Heddle and El-Kareh use the same sign
convention but a different nomenclature. The object and
image focal lengths are 6§O, SI); the mid-focal lengths
are (-Zm ,Zm ) and the distances of the principal planes

0 I

from the lens centre are (-7 ). The all positive

Py’ “Pr
sign convention has advantages in the preparation of lens
data for computer handling.

Electron rays can leave a point on the obﬁect
at any angle in the forward direction. However, the lens
system limits the angular range of the rays which leave a
point on the object plane and arrive at the conjugate
point on the image plane. This bundle of rays is called a
pencil. The maximum angle of the pencil is characterised

by the pencil half-angle, 6_, which is shown in figure 2u.

p
The pencil half-angle is not necessarily the same at the

image as at the object. The central ray of the pencil makes
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an angle with the lens axis called the beam angle; The
magnitude of this angle will depend ﬁpon the distance of
the origin of the pencil from the axis. The maximum value
of the beam angle is for the central ray of the pencil of
rays connecting the extreme radial conjugate points on

the object and image planes and is called the beam half-
angle, g Another angular parameter, the angular

divergence, is sometimes required. The angular divergence,

6, of any ray in the beam is the angle between that ray and
the axis and the term "angular divergence of the beam"
refers to the value for the extreme ray.

There are several types of electrostatic electron
lenses. These involve cylinders and/or apertures. A
basic lens can be formed by two cylinders, two apertures or
an aperture and a cylinder. The simplest lens of all is
a Calbick lens or a single aperture separating two regions
of different potential. 1In electron lenses the potential
of object and image space is not usually the same. If the

image space voltage is greater than the object space

Figure 25 shows the thick lens terminology for a
coaxial cylinder lens. This consists of two long thin
coaxial cylinders of the same diameter, D, separated by a
distance, g. The two cylinders are at potentials @1 and
2, (where the zero of potential is that at which the
electrons would have zero kinetic energy) and the
electrons are assumed to be travelling from the region at

@1 to the region held at @2. The principal planes are
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reversed on the low voltage side for all two element lenses.
Spangenberg and Field (1943) suggest this is not so for
two-aperture lenses with the aperture spacing equal to
the aperture diameter. The theory of Zworkykin et al.
(1945) shows this is impossible.

We define the lateral magnification of the lens,
M, as

M= r,/ry =5,/ =/, (IT.2.3)

and from this we can derive the analogue of the

Newtonian Lens equation:
§1.§2 = p.q (I1.2.4)

If o is the angular divergence (q.v) at the

object and 8, is the angular divergence at the image, then
tan ez/tan 6, = p/§2 =;51/q (IT.2.5)

For paraxial rays,

N

$1/S, = (B,/0,) (I1.2.6)

and from the definition in (II.2.3),

(0)%.tan o, = M(8,)%.tan 6, (T1.2.7)

This is a form of Helmholtz and Lagrange's law,
which we will discuss later. If the tangent function were
replaced by a sine function, this equation (II.2.7) would
be the Abbe-Helmholtz sine law. For paraxial rays these

differences are trivial. Tor small angles, therefore;

1
(B)%.0; = M.(8,) (II.2.8)

If we define the angular magnification, m, as
m= 6,/6
then, 271
1
- 2
m.M = (@l/ﬁz) (I1.2.9)
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The accurate differential form of Helmholtz and
Lagrange's law can be shown to take the form (El-Kareh

and El-Kareh, 1970; Paszkowski, 1968):

El.dﬂl.dA = Ez.dﬂz.dA2 (IT.2.10)

1
where E is the energy of the electron beam, dfthe

differential solid angle and dA the differential area

perpendicular to the direction of motion of the electron

beam. The subscripts 1 and 2 refer to any positions on

the beam path. In words, the law states that current in

the beam 1s conserved provided there is no energy dispersing

device between positions 1 and 2. It is of advantage to

define a quantity to represent electron beam brightness,

current intensity or Richstrahlwert, R, where:
R = dI/dA.da (IT.2.11)

and dI is the current through the area dA. Thus
combining the principle of conservation of current with

equation (II.2.10),

dI/El.dQl.dA = DI/Ez.dQ .dA (IT.2.12)

1 2 2
or

Rl/El = R2/E2 (IT.2.13)

So the ratio of Richstrahlwert to energy is a
conserved quantity.
We cannot pass unlimited current through a lens.
This is due to space charge effects from the mutual
repulsion of the electrons in a beam. It can be shown
(Pierce, 1954) that Imax’ the maximum current that can be
passed through a tube of length x and diameter 2r is

given by:
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38.5 x 10°8.v%/

—
"

2 2
max .(2r/x)

3/2 2

6 .v3/? tan?s (TT.2.1Y4)

38.5 x 10

where V is the kinetic energy of the electron beam
(in eV) and 6 is the beam divergence half-angle. The
current is measured in amperes.

The incoming rays to a lens system are often
defined by apertures. In fact, two apertures are necessary
to specify the limiting rays accepted by a lens. Figure 24
shows the definitions of windows and pupils in a lens. The
entrance window in object space (the object) becomes the
exit window in image space. The entrace pupil becomes
the exit crossover. In terms of the characteristic beam
angles already defined, the beam half-angle IS and the

pencil half-angle ¢_ are, by definition;

P
by, = rW/ZO
(I1.2.15)
ep = rp/ZO

where the separation of the window and pupil is Zgs
and their respective radii are r,, and Ty The pencil
half-angle at the object is equal to the beam half-angle
at the crossover, and the beam half-angle at the object is
the pencil half-angle at the crossover. These relationships
are very useful in design.

In a combination of several two-cylinder lenses,

if two real apertures are given as the entrance window and

pupil in the first object space, then we can calculate the

exit (image) window and pupil for the first lens. Then use
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this exit window and pupil as the entrance window and
pupil for the second lens, and so on. With this knowledge,
the redundancy and lack of design eontrol which results
from using more than two limiting apertures for a given
lens system can be avoided. (Kuyatt, unpublished).

Before considering the application of these
principles to lens design, we digress to consider one final
constraint in the design of electron beams. This is the
limit on the phase space of a beam imposed by Liouville's

Theorem.

There is no published treatment of the application
of phase space restrictions to electron lens design. A
general treatment of Liouville's theorem in electron optics
has been presented by Klemperer (1953) and Pierce (1954).
Detailed treatments are available for heavy particle beams
in magnetic fields mostly in advanced nuclear technology
textbooks such as Banford (1966). The treatment presented
here is based on unpublished communications with
C.E. Kuyatt of N.B.S. Washington and F.H. Read of Manchester
University.

A particle is completely specified if we know
where it is and where it is going. Therefore we require
to know the three cartesian coordinates x,y,z of the
particle moving in a three dimensional cartesian coordinate
system or configuration space. We also need to know the
three momentum coordinates mk,my,mZ. All this information
can be represented by the position of a point in a six-

dimensional space with the coordinates x,y,z,m%,my,m2
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known as phase space. This is not the only phase space.
In this six-dimensional phase space the motion of each
particle depends on 1its own phase sface coordinates

alone, not on those of every other particle in the beam

as well. In a system which allows mutual electrostatic
repulsions between particles, we require a phase space of
dimensionality 6N where N is the number of particles in the
beam. The entire beam, in this case, is represented by
one point in 6N-dimensional phase space. If we allowed
for spin dependent effects, we would require an even
higher dimensionality of phase space. Pierce (1954) has
pointed out that the uses of phase gpaces of dimensionality
greater than six are of doubtful utility in beam transport
problems.

A particle in a beam is represented by a point
in phase space which moves in a manner connected with the
motion of the particle in real or configuration space. A
beam of particles in represented by a group of points in
phase space. One for each particle in the beam. Thus,
for a beam,of finite dimensions the representative points
will lie within a six-dimensional hypervolume in phase
space.

We consider an infinitesimal volume element in
six-dimensional phase hyperspace dx,dy,dz,dpx,dpy,dpz.
Now the 'face' of a volume element in N-dimensional
hyperspace will have a dimensionality of N-1 and 2N faces.
We consider the flow of representative points across the
12 five dimensional 'faces' of the infinitesimal six
dimensional volume element and it can be shown that the

divergence of n, the number of points, is given by:

div n = 0.
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In words, this is Liouville's Theorem:

"Under the action of forces which can be
derived from a Hamiltonian, the motion of a group of
particles is such that the local density of the
representative points in the appropriate phase space
remains everywhere constant."

So if we can construct a Hamiltonian, as we can
for any conservative system, then we can apply this theorem.
Macroscopic external E and B fields are conservative but
interactions with radiation or targets are not conservative.
If the fields are time varying it is still possible to
construct a Hamiltonian. We also impose the conditions:

a). that there is no interaction between particles in the
beam (eg. space-charge) and b). that there are no inter-
actions dependant on spin, as either of these would involve
a higher dimensionality of phase space.

Liouville's Theorem states that the local density
of the particles in the hypervolume is constant under the
action of conservative forces. This means that the shape of
the hypervolume can change but not its volume. In fact,
beam transport optics consists of the manipulation of
phase space hypervolumes into shapes which represent the
desired particle beam. Liouville's Theorem imposes a
restriction on what may be done without loss of current,
namely the conservation of the hypervolume.

If the three components of motion in configuration
space are mutually independent then in phase space the
motion is confined to three planes (x,px), (y,py) and

(z,pZ) which can be treated separately and Liouville's
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Theorem states that the areas of regions containing the
representative points in each plane remain invariant
though their shape may change. This is in fact the case
for axially symmetric electric fields. Also, in regions
where the axial momentum of the beam remains constant,
such as object space or image space, but not in the lens
itself, the electrostatic potential is constant and so the
axial momentum is constant. If the z axis is the lens
axis then in regions of constant potential, D, is
invariant, and the axial position coordinate z has no
particular significance unless the beam possesses time
structure.

Now the angular divergences x'(=dx/dz) and
y'(=dy/dz) of a particle relative to the beam axis are
equal to the ratio of transverse to axial momentum. Since

axial momentum is constant we can replace P, sD, by dx/dz

y
and dy/dzs ie. by the angular divergences in the planes

xz and yz. As we have rotational symmetry, these planes
are equivalent. So, combining the above ideas we can use
one transverse phase plane with coordinates x and x',y and
y' or more usually R and ¢. These two coordinates form

a phase space parallelogram called an (R,g) diagram.
(Kuyatt, unpublished.)

If the phase space parallelogram represents some
stage of an electron beam such as a real object or its
crossover, a real image or its crossover, a virtual
entrance or exit window or pupil in a system, we can

define a new quantity: the emittance of a beam,e;

e = area of phase space occupied by the beam

™
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If the (R,8) diagram represents some stage of
an optical system (as opposed to the electron beam) such
as a real aperture defining an object, image, pupil, etc.,
then we can define a quantity for the system analogous

to the emittance of a beam. This is the acceptance of

the system,ﬁ‘;

K = phase space area containing all the points
whose input displacement/divergence coordinates
are such that the particles they represent will

be transmitted by the device.

If A is less than ¢ then only that part of e
falling within & will be transmitted. The shape of ¢ and M
is important, not just the area. The area we cannot control
beyond making sure that e is less than & but the shape we
can control. This is called matching. (Banford, 1966).

Diagram 26a. shows a case where the beam is not
matched to the optical system, diagram 26b shows a case
where the emittance matches the acceptance of the system
but the shape of the phase space hypervolume forbids total
transmission and diagram 26c. shows a well matched system.
The full lines represent the parallelogram for the
acceptance of the system and the dotted lines represent the
parallelogram for the emittance of the beam.

Our main use of (R,8) diagrams is in studying
relations between windows and pupils in object or image
space. If these are real we have an emittance

parallelogram and if virtual we have an acceptance

parallelogram.
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As an example we calculate the (R,8) diagrams
for a system comprising an image and‘crossover (ie. a
virtual exit window and pupil). (Figure 27a).

The area of the parallelogram does not change as
we pass along the system, showing Liouville's Theorem in
practice, but the shape does. The edges of the
parallelogram represent the extremes of the system but all
rays in the system are represented within the parallelogram.

The extreme value of the radius is'i r- and the

T
extreme values of the divergence angle 8 for the pencils

at # vy are + (6p + 0p) and + (65 = 65). Thus the four

P

points of the parallelogram are:
(+rI,-eB—eP), (+rI,—eB+eP),(—rI,eB+eP) and

).

(—rI,eB-eP

Note that the angle convention is that if the angle
made with the axis is greater than 90° then that angle 1is
negative. (In practice the lesser angle with the axis is
always chosen but if it does not slope in the direction
of the axis it is negative). The (R,6) diagram for the
image 1s shown in figure 27b.

This is sufficient information for plotting the
parallelogram but it is interesting to plot the points
where the parallelogram would cut the axis. The R-axis
is cut at + ro- This is because on the R-axis, 6=0 and
for a ray to be transmitted by the system the maximum
radial height it can have when parallel (6B=O) is res
the pupil radius. The @-axis is cut where r=0, and here

the maximum transmission angle is Ope
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The diagram for position XA.iS shown in figure 27c.
Here the ¢ coordinates remain the same and as we move along
the beam path the positive angle cmfwr51mne to the right
and the negative to the left. The extreme r values lie
midway between o and rr at, say, Ty The parallelogram
again cuts the axis at ro, as this is the maximum radius at
which transmission can still occur.

For the crossover the extremes are now Juk a7 and the

parallelogram cuts the R-axis at this point. (Figure 27d4d).

Electron Lens Design.

A convenient way to describe an electron beam is
to specify it in terms of many infinitesimal pencils of
electron rays. In purely electrostatic focussing systems
an electron ray at any point along the beam is completely
defined by its radial displacement r, and the angle of
divergence 6. Paraxial electron rays have small spatial
extent along the axis and negligible energy spread. For
such rays the displacement and divergence of a point in
object space and the conjugate point in image space can be

related by linear simultaneous equations, thus:

r2 = all'rl + a12.91
(IT.2.16)
0

+ 85,46

a 22°%1

2 21°F1

where the subscripts 1 and 2 refer to object and image
space, respectively. The coefficients a;s are characteristic
of the focussing device, which can be a single lens or a

system of lenses.
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Equations (II.2.16) can be more conveniently

written in the matrix form;

= H ‘ (IT.2.17)

where ﬂ is the (2x2) matrix,

a1y 12
A = (I1.2.18)

491 22

a

We will call fi the lens transfer matrix. For a series of

lenses the overall properties can be represented by a

individual lens transfer matrices.

We consider initially the lens transfer matrix for
a beam in object or image space. In this case, as we have
a region of uniform potential, the lens action is merely
that of linear displacement, not focussing. A linear
displacement AZ in a uniform field can be represented as

follows:

Now,
T, =Py = AZ.tan el
= AZ-Gl
(IT.2.19)
and
62 = 61.
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We can rewrite these equations in the form of

equations (II1.2.16), viz.,

&)
]

5 ry + AZ.el

1.9

®
N
1
O
-+

1

which in matrix form gives the equation:

T, 1 AZ rl

(II.2.20)
0, 0 1 . 6,

With the knowledge of the free space transfer
matrix we can consider the focussing properties of a thick
lens. As before, we split the lens into three sections.

The object space, from the object plane to the first
principal plane, which has a transfer matrix ﬂ?I' The

lens space, from the first to the second principal plane,
which has a transfer matrix ﬂ}II and the image space, from
the second principal plane to the image plane, with transfer
matrix ZDIII' The terminology has already been described

in figure 2 3. We have already derived the form inEI

and'/LnIII.
1 (X,=F)+ §
m. - 1ol (II.2.21)
-
0 1
and

1 (Xo=F )+ %

: _ 2742 2

M 117 = (I1.2.22)
0 1

'ﬁn T Must be such that the displacement r does not
vary, whereas the divergence 6 must change according to

the ratio of the focal lengths and the incoming displacement.
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’ _ (IT.2.23)
15, 5175,

It can be shown to be a consequence of Liouville's
theorem that the matrix determinant [ﬁlof a transfer
matrix A must be unity for conservative systems such as
displacement in a uniform field. Thus [Jfl] = Mp! = 1.
This will prove a useful check in our design procedure.
The lens transfer matrix for a thick lens is obtained by
matrix multiplication.

m = Moyppe Wy Ny (II.2.24)

a4

The order of multiplication is important as the
transfer matrix is an operator.
Thus combining equations (II.2.21) thru

(IT.2.24) we get the lens transfer matrix for a thick lens.

- (XZ'-'FQ = X:L.—.Fl.),(.)(2.—."]:".2 ) X
1
5 s,

&

—l(gz

(IT.2.25)

The meaning of this matrix can be expressed as:

linear magnification " distance out

input angle

output angle angular magnification

input distance,parallel ray
The details of this derivation are given by Halbach (1964)

in a treatment of matrix methods in Gaussian light optics.
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We can interpret the meaning of the transfer
matrix by considering what happens when any of the matrix
elements disappear.

If we set a;; = 0 in (IT1.2.18) then in (IT.2.16)
we see that if 6, = 0 ie. a parallel beam, then r, = O

2
independently of the value of ry. This is merely the

definition of a focal point. Similarly, if 8yy = 0, then
for ry = 0 all 62 = 0. This is the definition of the other
focal point. If ay7 = 0, then 6, = a,,.6, we have the

condition for a telescope focussed at infinity. Finally,
if a3, = 0 then r, = ajq.ry. This is the imaging
condition.
The way in which we apply these relationships
to design problems is as follows.
1). To calculate X, (the image distance) for a
given object position at X;» the lens cardinal
data being known. Here we set aqy = 0 and solve
for X,. Note that Xy does not need to be the
object distance. It can be the axial position
of anything in object space, such as an entrance
pupil, a limiting aperture, etc. Obviously, if
we should require to do so, we can specify an
image distance and calculate the corresponding
object distance. The linear and lateral
magnifications of the lens are then found by
evaluating the matrix elements a;; and a,,
respectively.
2). To calculate the radius of a beam at various
points in image space (Xz) for a given object
distance (Xl). Again the lens cardinal data

is known.
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This problem is related to the discussion in
section II.1. We showed there that if the electron
beam entering a scattering region was strongly
divergent then part of it, IO(s)’ would never
reach the collector, even in the absence of gas.

If we could calculate the beam radius at every
point in the scattering region then we can design
to overcome this problem. The technique in this
case is to calculate a1 for various values of

X

o- Note in this case we are not solving

(IT.2.16) for an imaging condition.

To calculate the image position (X2) where the
beam will have a desired radius. Once again we
assume that the object position (Xl) and the lens
cardinal data are known. This is similar to case
2., We let aiq equal the quotient of the required
image radius and the object radius, and solve the
resultant equation for X This is useful for
deciding where to place a limiting aperture in a
design problem. For example, sometimes it is
necessary to remove scattered electrons from a
beam by inserting an aperture exactly the size

of the beam in the beam path.

To calculate the divergency of a beam (62) at

a known position (Xz) in image space. This
problem arises, for example, when designing the
input stages to an electron monochromator. The
details of this will be discussed at a later

stage, it is sufficient here to state the
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requirement that the electrons must enter the
monochromator as nearly parallel as is possible

(ie. 0,+>0). We insert the value of X, into the

2

matrix elements (a ), along with the fixed

212922
values of Xl and the cardinal parameters, and
evaluate the matrix elements. Substitution of

these in the second equation of (II.2.16) gives

the required value of 6.

There are many other applications but these
examples were those that were found most useful in design
problems. It is useful to note that the determinant of
the lens transfer matrix (IT.2.25) is always F.l/FQ’
the ratio of the focal lengths. This is a very useful
check when performing lengthy calculations by hand or
especially in the computer.

One of the most useful applications of the matrix
method is in dealing with systems of lenses. If we have
two lenses in the beam path we can, on paper, combine
them into one composite lens by multiplying the individual
transfer matrices together in the correct manner. However
if the two lenses are so close together that no image
is formed in that region which is the image space of the
first and the object space of the second lens then we can
still calculate the two transfer matrices)but in this
case the object distance for the second lens will be zero.
Thus we can calculate object and image space parameters
for the three element or einzel lens by treating it as a
combination of two simple two element lenses. An

example of this is shown in the present design.
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For completeness we give the transfer matrices
for two other systems of electron optical interest. The
first is the single aperture or Célbrick lens. This is
the limiting case of the thick lens when €l = 92. If ¢4
and e, are the potentials at either side of the aperture
and the aperture is at a voltage VO then the lens transfer

matrix is,

(II.2.26)

and the transfer matrix for a region where the beam

is accelerated or decelerated is,

(IT.2.27)

Electrostatic lenses may be constructed with
electrodes of many shapes, but for the control of
electron beams of small angular divergence (say not
greater than 0.1 radians) conventional aperture or
cylinder lenses are adequate. The cylinder lens has
certain minor advantages over the aperture lens. These
are, firstly the ease of mechanical construction and of

optical coaxial alignment; secondly, the ability to contain
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stray electrons, because the gaps between the lens
elements are smaller and easier to éhield; and thirdly,
less risk of perturbations when combining lenses because
the elements are not short compared to their diameters.
The matrix technique can be applied to coaxial
cylinder lenses if we know the focal parameters -{E,

Fi1sF,. These parameters are functions of a) the gap

2°? l;
between the two cylinders, b). the diameters of the two
cylinders, which may or may not be the same, and c). the
potentials of the two cylinders. These dependencies are
normally expressed by listing values of each particular
focal parameter for different values of the ratio of
cylinder potentials,y, (where y is the ratio of image
potential to object potential) for a fixed value of the
ratio g/D, where g is the gap between the cylinders and D
is the diameter of both cylinders.

Electron lens design involves selecting a value
of the potential ratio y, obtaining values for the focal
Parameters associated with this value of y, employing these
values of the focal parameters to evaluate the lens
transfer matrix for a particular object distance (Xl )
and finally using the matrix to calculate the required
properties of the lens as discussed earlier. We then
assess whether this value of y gives a lens with the
required properties and if it does not, select a new value
of y and repeat the procedure until the answer is suitable.
If the value of y does correspond to a suitable lens our
problems may still not all be solved. For example, the
value of y may require that the electron energy in the

final image space is unsuitable for the requirements of a
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scattering experiment. Or, although the value of the
final image parameter of interest is suitable, one of
the other parameters may have an uﬁsuitable value,
Here we can try several possible alternatives. We can
try a different lens diameter or lens gap, or alter the
length of the object distance or the size of the object.
If no suitable solution is found we can try and solve
the problem in stages by using a combination of lenses.
This is obviously a "trial and error" procedure
involving many repetitive calculations with several
independently variable input parameters and with design
constraints applied on one or more of the output variables.
A system of this complexity which involves a large number
of repetitive calculations is ideally suited for treatment
by computer methods. To give an idea of the amount of
human labour saved by employing a computer technique we
will take as an example the design of a simple two-
element aperture lens to provide an image of stated size
with an upper limit on the magnitude of the extreme pencil
angle. On paper the procedure was as follows.

1). The object distance was chosen arbitrarily and
the object radius and angular divergence were
fixed by earlier lenses in the system. The
potential of the image was also fixed so the

system variable became the object space potential.

2). A set of graphs relating vy and-Fl,Pz,Fl,Fz were
consulted and the values of these parameters

for an arbitrary value of y were read off.
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3). The lens transfer matrix was calculated (a
time consuming process as units are involved)
and the matrix elements solved to give the
required parameters of M, the lateral
magnification, m, the angular magnification,

and the image position.

4), TFrom M and m the image radius and image
angular divergence were calculated.
5). These values were considered with regard to

the limits set upon them in step 1).

This procedure takes about 15 minutes. If
step 5) gives unsatisfactory results we now have to vary
y or X;. The possibilities are nearly unlimited. Sometimes
M would be suitable but m unsuitable or vice versa,
Selecting values of y or X; at random it was very difficult
to get a clear picture of the dependence of m and M on
vy and Xq. Before a suitable value of y was found, over
eight hours of calculation were involved and towards the
end arithmetic mistakes became more and more frequent.
Even then the answer was not perfect. The impression was
that if we could vary X4 slightly and adjust y accordingly
then the values of M and m might be even more suitable.
However this could have doubled the calculation time so
was not attempted. Some time later, when the computer
design technique was in use, we repeated the above
calculation. Although, there was now the capability to
include many more input and output parameters we. restricted

the exercise to the variables stated in step 1). The
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only work involved was typing an initial value of vy, an
initial and final value of Xl and the values of object
radius and divergence on a computef data card. After 12
seconds of computation we had listings of values of vy
(in steps of 0.1 from 2 to 20) with the corresponding
values of X

m,M, r and ep for 20 values of Xq.

2° 1° °1
This involves 3,600 repetitions of steps 1-5. It was
simple to pick out the correct conditions from such
detailed lists. A similar study on paper would have taken
900 hrs, and this was one of the simplest lens design
problems.
These comments might suggest that lens design

without a computer is impossible, but this is not so.
What is impossible is detailed design involving several
parameters. If one merely requires to image an object at
some point the problem is not involved. However the
design of lenses to perfrom specific operations over a
specified range of y necessitates computer treatment.

| Before a computer program or programs can be
written to accomplish design requirements werrequire to
store in the computer memory the relationship between y and

the focal parameters-?l,fé,Fl,F for the particular two-

2
cylinder lens we are using. In the terminology of
computer programming this is called the data base.

Before considering how to store the data base in
the computer, we will consider the data sources. There
are only two sources of experimental data on two cylinder

coaxial lenses. (Spangenberg and Field, 1942319433

Klemperer and Wright, 19393;Klemperer, 1953). Spangenberg
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considered lenses with g/D = 0.1, 0.5, 1.0 and Klemperer
only investigated the case of .g/D = 0 ie. zero-gap

lenses. Kuyatt (1967) in unpublished works claims that
the accuracy of Spangenberg and Field's work is about

20%. In more recent theoretical work (Kuyatt, Natali,
DiChio and Uva, 1972b) he revises this estimate to 10%.

It is very difficult for a designer to assess the absolute
accuracy of lens data. He cannot accurately measure the
position of focal points etc. or even of derived parameters
such as image position and magnification. The only

design assessment we can make is that using a certain data
set the lens behaves as predicted, whereas another data
set does not work so well. However comparison of
Spangenberg's data with recent théoretical data does seem
to confirm this error estimate. The difficulties involved
in making experimental measurements are fully reviewed by
Klemperer and Barnett (1971). The first theoretical
treatment was that of Epstein (1936) who used an electrolytic
tank to determine the potential distribution of a two
cylinder lens with g=0 fory =#. Firestein and Vine (1963)
used a resistor network to find the potential distribution
of the lenses with g/D = 0 to g/D = 1.0 fory =3,6,11351.
Other theoretical work has been based upon solving the ray
trajectory equation for a calculated potential (Bertram,
1940). The theoretical data sets which we considered for
use were those of Ramberg (1942), Goddard (1946), Verster
(1963), Grivet (1965), Bernard (1967), Paszkowski (1968),
El-Kareh (1969,1970), Read (1969a,1971),Read, Adams and

Soto-Montiel (1971) and Kuyatt et al. (1972a,1972b,1972c).
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All of these present numerical focal values for selected
values of y between 1.5 and 50 . Verster and Grivet only
considered g/D=0 lenses. El-Kareh and Read, Adams and
Soto-Montiel (1971) studied g/D=0,0.1,0.5 and 1.0. Kuyatt,
so far, has only considered g/D=0.1. The most accurate
are those of Kuyatt and Read, which are of the order of
0.1% or better. TFor practical purposes we can consider
these two data sets as equivalent. One problem remained
however. These calculations were only performed for about
20 values of y between 1.5 and 50. A useful data base for
computer calculations would require about 500 values of y
in this region. The problem cannot be solved by graphical
interpolation as this would not preserve the accuracy of
the data. The best way would be to present the data as

a set of empirical equations representing the relationships
between y and the focal parameters. Grivet represented
his data in this way and Wei (1969) employed these
equations to provide a data base for some computer lens
designs. Grivet's equations were not suitable for our
purpose as, apart from the limited accuracy, the range of
Yy is only 1.5 to 10. We decided therefore to try and
represent Read's data in the form of polynomial expansions.
We call this study, the parametrisation of lens data. Our
first attempt was a power series fit using a Chebychev
polynomial of the form,

2 N
fz ao + alo'Y + a2.'Y T eeees T aN-'Y (II.2.28)

The maximum value of N was 20. This necessitates at

least N+2 known data points (ie. literature values), £ is a
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generalised focal parameter. This was unsuccessful. We
then attempted several alternative polynomials, the most

successful of which was

Fov-12= Vap? (T1.2.29)
i-0

This expansion can be tested by using certain of the
data points to calculate the coefficients in (II.2.29).
Then using the expansion we calculate the remaining data
points and compare these with the literature values. A
polynomial of degree 5 fitted the data of Read, Adam and
Soto-Montiel with a maximum error of 0.3% in the range 2-20.
A similar polynomial, also of degree 5, fitted the same
data with a maximum error of 3% in the region y = 1.5 to
50. This accuracy is more than sufficient for our purposes.
Unknown to us Read was working on a similar parametrisation.
His resuits are very similar to ours. The difference
arises from the computational techniques used to evaluate
the coefficients. Our calculations were based on the use
of the subroutine CFIT, a standard Fortran I.C.L. 4100
software package. Table III lists our parametrisation
coefficients for use in equation (II.2.29).

Previous work in computer lens design is very
difficult to assess. The only published work is that of
Heddle (1970) for three element lens properties. These
were calculated from the two element theoretical lens
properties of El-Kareh (1969,1970). No details of the
computer programming technique or the data parametrisation
are available. For discussion purposes, figure 28 shows

the nomenclature that we employ for two element lenses,



Table TIT

Parametrisation coefficients for the two cylinder lenses
with g/D = 0.1. This involves a polynomial of the

fifth degree (N=5) in equation (II.2.29).

Parameter " Coefficients
fl/D ag = 1.1895
a; = L 4226
a, = 0.2063
a, = -0.0012
au = 0.0
ag = 0.0
Fl/D ag = ~0.8531
a; = 5.2910
a, = 0.7460
ay = 0.0057
a, = ~-0.0001
ag = 0.0
fz/D ag = -1.7730
a| = 5.6908
a, = 1.4319
ay = 0.00689
ay = 0.0
ag = 0.0
FZ/D aq = -1.2605
ay = 6.2670
a, = 0.h4415
a3’= -0.0115
a, = 0.0001
ag = 0.0
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three element equal diameter lenses and three element
unequal diameter lenses. Heddle calculated from first
principles, the overall focal propértieSJfl*,j}*,Fl*,FQ*,
for various values of yl(= @2/@1) and vy, (= ®3/®2). The
only design variable he considered was the length of the
centre element, S. This limits the designer to fixed
values of y and S. Also he still has to use the focal
values to calculate the necessary object and image para-
meters to see if the lens is suitable. These 54 pages of
tables are therefore of limited design use. Useful tables
would give values of image space parameters for a variety
of object space parameters for many different lenses. The
lens variables would be S, the length of the centre
element, g, the gap between elements, and D, the lens
diameter. This would involve many thousands of pages of
tables. We decided to approach this problem another way.
A computer program capable of calculating these properties,
and some others we will mention later, would be written
and along with a data base of lens focal parameters for

a reasonable selection of two element lenses would be
stored in a computer. Then when a design problem was
encountered the chosen input parameters would be fed in and
the computer would generate tables of required output
variables and, if necessary, any graphs required.
Unpublished work along these lines had been performed by
Kuyatt and Simpson (1967). As a data base they used
Grivet's empirical equations for the range y=1.5 to 10

and Spangenberg's experimental data for y=10 to 20. They
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used a set of subroutines written to perform the following
calculations. FPROP regenerates leﬁs focal parameters
from the data base for a two element lens for a given value
of y. LENS calculates the lens transfer matrix for up to
20 lenses for 20 values of y. The output is the final
image position. IMAGE uses subroutine LENS to find the
value of vy which will provide an image at a specified
distance for a given object distance. They used another
subroutine, called FIELD to help with the design of
energy add lenses. These lenses are not involved in
transmission spectrometers, however. In an unpublished
report, Wi (1969) adds two further subroutines RTHETA
and CURVIM. For a given distance in image space, RTHETA
calculates the radial displacements and divergences of
the limiting rays. CURVIM is merely a parameter plotting
routine. We have no knowledge of how these subroutines
operate in practice.
We have written two programs to perform a

similar series of calculations. Program LENSONE is for a
two-element lens and program LENSTWO is for a three-
element lens.

| The inputs to program LENSONE are X;, the
object distance, and D, the lens diameter. The lens we
used in all our designs was a two cylinder coaxial lens
with g/D = 0.1l. Optional inputs were the object radius
Ty the object pencil half-angle ep and the object beam
half angle. The program then cycles y from 1.5 to 50 and
prints out, for each value of y, the image distance Xos

the angular and lateral magnifications and if required, the
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the pencil and beam half-angles at the imagé. The
outputs are in inches, millimetres or in units of the
lens diameter. Internal routines éonvert the angles from
degrees to radians and radians to degrees. There are many
ways we can use this program. We can vary Xl and D
easily and the angles and object size by inserting
apertures of varying sizes in the beam path in object
space.
Program LENSTWO is similar. Here the inputs
are the same as for LENSONE, with two additions. These
are S, the length of the centre element, and D1 and D2
the diameters of the two simple lenses comprising the
three element lenses. This increases the number of design
variables. The values of the lens transfer matrix elements
are also output here. These can be fed into a minor
program to perform calculations of the radial displacements
and angles in a beam at selected points in image space.
Certain checks are built into the progrém to
guard against arithmetic-errors. The imaging condition
is checked in two ways. Firstly we evaluate the image
radius from the lateral magnification and then, we
evaluate the same parameter by substitution of the matrix
elements into the simultaneous mapping equations (II.2.16).
Another check is to evaluate the determinant of the lens
matrix and verify that this equals{\l*/fé* as discussed
earlier, and thatlfl*[fz* = (y)% as shown in II.2.6. One
other point is worth noting. The pencil and beam half-

angles are calculated from the equations;
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( %QQ = d,qerq * a22.(ep)1
and (IT.2.30)
Cegly = app-(8); |

Several workers have published solutions of
the ray trajectory equation for three element lenses.
These are of limited design use as the parameter S is
fixed. However, in certain cases they would provide a
useful data base. The most accurate of these are Read
(1969b,1970), Adams and Read (1972a,1972b) and Kuyatt,
Natali and DiChio (1972c).

This discussion has been based on the assumption
that our electron beam consists of paraxial rays only.
For a real electron beam, the failure of the paraxial
approximation, the finite energy spread, the large current
density and finite beam size often cause lens errors or
aberrations of the image. TFor a thick lens, the focal
length reduces as the radial displacement of an electron
beam increases (Spangenberg, 1948). This is known as
positive spherical aberration and gives a spot focus
instead of a point focus. One way to minimise this effect
is to approximate the paraxial ray conditions. The
fraction of the lens diameter used by the electron beam is
referred to as the filling factor (Kuyatt, 1967;Read, 1971).
The spreading of spots at filling factors of 1.00,0.75,
0.50 and 0.25 are 18%,12%,7% and 4%, respectively. It
has become regarded as good practice in lens design to

keep the filling factor smaller than 0.5. Many of the
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more recent calculations on lens focal parameters now
include values for aberration coefficients. Apart from
minimising the filling factors we have not taken account
of lens aberrations as this data was not available at

the time of our design.
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Trom our discussion in section II.1 we can

now list the requirements for our spectrometer design.

1

2)

Electron Gun. The purpose of the gun is to

remove electrons from the thermionic cathode and
shape them into an electron beam of the required
size, angular divergence and energy for the
monochromator. By necessity the electrons will
have to be accelerated to a relatively high
energy to produce a reasonable beam current,
then decelerated before entering the
monochromator at as low an energy as possible.
The gun therefore consists of three separate
stages:- An extraction stage for which we chose
a Pierce parallel plate diode, a decelerating
stage to reduce the beam energy and a matching
stage between the diode and the decelerator to
shape the beam as required. The decelerator
operates with a fixed deceleration voltage ratio
so the matching lens must allow us to vary the
energy of the gun.

The electron monochromator. A hemispherical

electron analyser was chosen as the monochrom~
ator because its two-dimensional focussing
property was ideally sulted to the axially

symmetric lenses which we had decided to use.
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The success of workers like Simpson and

Kuyatt (1967), Gibson and Dolder (1969), Comer
and Read (1971) and Foo, Brion and Hasted
(1971) with this monochromator encouraged us
to make this decision.

3). The beam-forming lenses. These lenses had to

provide a beam of the required energy whose
current was, as far as possible, not a function
of the beam energy.

L), The scattering cell. This has been discussed

in section II.1.

5). The collector. As we wished to measure the electron

current with an electrometer, rather than
counting equipment, the collector was a Faraday

CUp.

A schematic diagram of the three-stage gun and
the nomenclature is shown in figure 29. The only design
parameter for us to choose in the space charge limited
diode is d, the cathode-anode spacing. The only criterion
to guide us is that the smaller 4 is, the less the anode
voltage is. Let us try d = 0.220" and see how this
effects the voltage and size of the beam at the end of
the electron gun. From considerations of monochromator
operating characteristics, we find that a limited selection
of values of Vg the monochromating potential, with only
one beam size, ry = 0.010" would be satisfactory.

Now electrons leaving a thermionic cathode

have a thermal energy distribution. An electron emitted
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parallel to the cathode surface will have a trajectory
of slope 0 when it reaches the anode plane. This

slope is,

[V

0p = (VK/VA) (IT.3.1)

where VK is the transverse kinetic energy of the
electron and N is the anode voltage with respect to the
cathode. The kinetic energy of an electron is
approximately 0.1 electron volts for an oxide cathode.

The space-charge limited current density, J, is given

by the Childe-Langmuir law,

3/2

2
A /d (IT.3.2)

J = (xov

where o is a constant, 2.335 x 10—6.

Thus the Richstrahlwert at the anode will be,

from equation (II.2.11)

_ -6 3/2,,.2 2
and from equation (II.3.1),
) -6 ,5/2,,.2
RA = 0,74 x 10 .VA /(d 'VK) (IT.3.4)

The Richstrahlwert at the end of the gun will
be,

RO = dIO/dA.dQ (IT.3.5)

where these terms are as defined for (II.2.11).

Now Pierce (1954) showed that the maximum space-charge

limited current passed by a tube at a voltage VO is,
- 3/2
IO = k.VO (IT.3.86)

where k is the microperveance, which in terms of
the angle of convergence of the beam at the end of the

gun, 6,, iS: -
0 k = 38.5 x 10 .42 (I1.3.7)
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from Kuyatt and Simpson (1967). Equation (II.3.5)

now becomes,

) -6 2 .3/2 9 2
RO = (38.5x10 .eO.VO )/(ﬁro T8 )
- 3.9®4x10—6vg/2/r02 (1T.3.8)

We showed in equations (II.2.11) through (II.2.13)
that the ratio of beam Richstrahlwert to beam energy is
conserved along the beam, if there arerno energy

dissipating devices in the path. Thus,
RO/VO = RA/VA (IT.3.9)

So if we combine equations (II.3.4) and (II.3.8) and
rearrange we get V, as a function of Vg

3/2
A

6 .2

(3.90ux10"%.4%.v 6. p 2

v %)/(O.7ux10- vy

v K*'0

2 2 3
5.275(d .VK/I’O ).VO (I1.3.10)

In our suggested diode, d = 0.220" , Vie = 0.1 eV
and ry = 0.010" , so a practical form of (II.3.10)

for our purposes is,

, 1/3 (T1
V, = 40.023 Vg (IT.3.11)

Table IV shows of values of VA for various values of

\ Note that so long as the matching lenses and the

0
accelerator do not affect the conservation of
Richstrahlwert then we do not need to know anything
about them at this stage. This table also shows values
for J,, the anode current density, and I, = (w.rAz).JA,
the anode current. The choice of ry = 0.012 is
arbitrary. Kuyatt (1967) uses rp = 0.013" and although
our other dimensions are not the same as his we decided

to keep our anode hole close to his value, in case this

was found by experience.
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The final factor to be included in the design
of the space-charge limited diode is the analogue lens
action. The cathode plane acts as a Calbick lens, which
we defined in section II.2, with the initial pupil on
the right of the cathode at infinity and the final or
exit window on the left of the cathode. The initial
and final windows are at the same place. This is shown
in figure 30. We choose the anode plane as the window
for the system. The value ofgf, the focal length
defined in the diagram, is a matter of debate at the
present time. Klemperer and Barnett (1971) reduce the
classical value of j?= 3d, calculated from the Calbick
lens formula (IT1.2.26), to a value of j7= 2.7d empirically.
Coffey and Rowlands (1972) point out that the angular
divergence of the beam, if this were the focal length,
would give a different value of V, from (II.3.1) to that
expected by space-charge theory. In a calculation based
on a simple space-charge model, which does not allow for
the thermal emission velocities, they conclude that 4 is in
error by a factor of about three. We felt this was too
large a discrepancy and on checking the literature found
that Harting and Burrows (1970) operated their space
charge limited diode successfully on the assumption{ = 3d.
Without more experimental evidence we decided to work with
the accepted value of f'= 8d. In figure 30, 8. = O

B

,
- z
and ep =z (VK/VA) . Table IV shows values for ep and

1
re = 3d.eP as well. eB = rA/Sd = 0,0182 radians.



Table IV

Vo) V() Tua/inY) TG e rad) (i)
1.0 40.023v 1.2214}(10u 5.521ﬁA 0.0u99 0.033
1.5 45.78 v 1.49'40}(10u 6.753 0.0u47 0.031
2.0 50.389v l.7250x10q 7.797 0.0u5 0.030
2.5 54.311 ]_.9306}(10’4 8.726 0.043 0.028
3.0 57.713 2.1148x10" 9.559 0.0416 0.027
3.5 60.755 2.2842}(10q 10.325 0.0u06 0.027
4.0 63.517 2.4419x104 11.037 0.0397 0.026
6.0 72.722 2.9914X10u 13.521 0.0372 0.025
8.0 80.046 3.4545x10™ 15.614 0.0354 0.023
10.0 86.210 3.8612X104 17.453 0.0339 0.022
. 1
vy = 0.012"y d = 0.220"; ry = 0.010"; eB = O3 eB = 0.0182 rad.
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From consideration of the requirements of the
monochromator we can decide on optimum values for some
parameters. The beam entering the monochromator from
the exit window of the decelerator should have a radius
ry = 0.010". The beam half-angle at the window should
be zero or approximately zero. The exit'window pencil
half-angle eP should be 0.070 radians. We arbitrarily
choose the voltage ratio for deceleration to be 10:1 and
the magnification to be 1.5. This choice defines other
parameters in the system. For example, the entrance
window radius = (0.010/1.5) = 0.0065" , and from the

Helmholtz Lagrange law, the entrance window pencil

half-angleaep7is;

Nj-s

Co.)) ~ MV/VIZ ()

§) 0
p Entrance P pxit

~ 0.0331 radians.

This value agrees well with those in Table IV. We have
already decided to use a cylinder lens with g/D = 0.1.

Use of program LENSONE gave the following output.

§, = 0.799D
§o = 2.582D
Fy = 1.616D
F, = 1.179D

overall length (object-image) = 5.679D,

We can estimate the beam size at the lens centre, v, in
the following projection from the low voltage side,

r = 2 x image radius x 2 x (F§+M§2)XDX(GP)Exit

(I7.3.12)
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where (F, + Mfé) is the image distance X,.
Substituting numerical values and dividing by D, we get

an expression for the filling factor r/D.
r/D = 0.3941 + 0.020/D (IT.3.13)

We chose D = 0.209" , which gives a filling factor of
0.49. This is an acceptable value in the light of our
earlier discussion of filling factors. Thus the overall
length of the lens isg 1.187" and Xy = 0.599" and
X2 = 0.588",

We next considered the position and size of
a real entrance pupil. As we said in the previous section
the beam passing through a lens can be controlled by
either a real window and pupil on the entrance side or
a real window and pupil on the exit or a combination of
these, as long as there is only one real window and one
real pupil in the system. Kuyatt and Simpson (1967)
suggested that it was preferable to have a virtual image
(ie. exit window) on the entrance plane of the
monochromator. For the reasons they gave, we also
decided to have the real pupil on the entrance side of
the decelerator lens. For zero exit beam angle the pupil
is placed at the entrance focal point ie. 0.2u6" on the
left of the lens centre. The size we estimate by
projecting the beam from the object to the lens centre.
This gives Pp = 0.012".

To try and inhibit electrons scattered within
the gun entering the monochromator we placed another
aperture on the low voltage side. We placed this one

lens diameter from the lens centre and estimated the beam
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size by projection to be 0.073" in diameter. As this
aperture is wider than the beam it will not act as an
angle limiter (ie. real exit pupilj. Two real pupils in
a beam will lead either to vignetting or to one of the
apertures being redundant.

One final aperture has to be positioned. This
is to coprrect for the "end effect" of the monochromator.
The radial field of the hemispheres will be perturbed at
either end if no steps are taken to correct for this.
Herzog (1935) calculated how to correct for this. We
employ his case A. This involves positioning an infinitely
thin slit of aperture diameter 2b, at a point a units from
the end of the hemispheres. From mechanical considerations
we decided a should be 0.065". This is sum of the length
of our insulating spacer (0.040") and the thickness of our
aperture material (0.025"). From the graph given by Herzog
for d/k to be 0.32, where 2k is the hemisphere spacing,

b/k must be 0.34. The aperture diameter is thus 0.086".

" The matching condenser lens.

The image radius for this lens is 0.006" (ie.
the object radius of the decelerator lens) and the object
radius is 0.012" (the exit window of the diode). Thus the
minimum magnification this lens can have is 0.54. The
consequences of a magnification less than this can be seen
by considering Liouville's Theorem and the R-p diagram,
as discussed in section II.2. The maximum magnification

can be treated as for the decelerator, and we fhxiMﬁax

= 1,48 for VO = 4 and Mﬁax = 2,42 for VO = 1.5 by substituting (ep)

diode from table IV into,

1.
Mmax = (VA/lO.VO)Z.{(OP) /(ep)o} (IT.3.14)

diode
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where (ep)o is the pencil angle at the monochromator
entrance plane. Thus, again from the considerations of
section II.2, the magnification of the lens must lie
between O.54 and 1.U48.
We know therefore that, if the paraxial

approximation is wvalid, then
1
= - 2
Miax = ~Fr/for ) (IT.3.15)

wherefI is the image focal length in units of the

diameter of the second lens D and:fo is the object focal

T
length in units of Dy. We used the computer to try varioug
possible voltages. By trial and error we decided

MmaX = 1.10, a safety choice, and DI/DO = 1.74. The
filling factor was calculated by projection as before, and

d/D ~ 0.5 for D, = 0.120" and D. = 0.209". Another

0 I
factor influencing this rather arbitrary choice was that
the lens should be as short as possible. Program
LENSTWO was then used to calculate system lens transfer
matrices for various voltage ratios, values of Xy, etec.
The principle is that Xy = O for the second lens and X,
of the first lens is S, the centre element length. Trial
and error gives an object distance of 0.332", a centre
element length of 0.300" and an image distance of 0.328".
An estimation of the size of the beam at the compound lens
centre suggested a diameter of 0.065" for the aperture
positioned here.

The operation of the gun is therefore as follows.

A value of V. is chosen from monochromator considerations.

0

This defines VA’ whose value can be obtained from table IV.
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The first stage of the decelerator is set at ILO,VO
and VCF (the condenser focus voltagé) is optimised for
maximum transmission by the spectrometer. There are two
suitable values of VCF for each set of gun voltages.

These are the high and low voltage focus conditions, which

are discussed in detail later.

The monochromator.

The focussing of charged particle beams was
first worked out by Purcell (1938). He showed that for
electrons of the same energy passing through a given point
with a small angular divergence, a correctly tuned
spherical condenser will give an approximate re-focussing
of orbits after a revolution of g radians. Thus hemispheres
are used. Several theoretical treatments of the design
parameters are available (Simpson and Kuyatt, 1967;
Kuyatt, 19683 Rudd, 1972). Trajmar, Rice and Kupperman
(1968) worked out a derivation of the operating formula
which we reproduce in outline, as it is unpublished.
Figure 31 shows the nomenclature.

If @ (R, 06,0) is the potential at R, where
Ri¢ R <Ry, and 0 ¢ 6 ¢ m To produce the required l/R2

electrostatic field, @:must satisfy Laplace's equation:

2 3
v § (R,0,0) = 0 (I1.3.16)
and solving for @ ’
d (®) = (RyR,88/R,~R)).(1/R-1/Ry) + B

(II1.3.17)
where A@= @(Rl, 0,0) - @(RQ, 8,0) and @O =
@(RO, 0,0). Now, for o= 0, in figure 31.

(-e.8)/(-e. §) = (Ry/Ry-Ry/Ry) (I1.3.18)
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In terms of voltages,

(Vl_VZ)/VO = (RQ/Rl_Rl/RZ) (IT.3.19)

- [Ew.a

(Vl-vz)c(R1R2/R2_R1)-(1/RO—1/R1)

Thus,

(Vy=Vq)

(IT.3.20)

So, from (II.3.19) and (II.3.20)

\Y

R (RZ/R1§2
) VO(Rl/RZ)J

Thus V; > V,, as we would expect and (V,-V,)#

(IT1.3.21)
\Y

(Vl—VO) in general. In our design we chose Rl'z 0.875",

R, = 1.000" and R, = 1,125",

2

The general energy analyser equation is,

0

2 2

x,/Ry = =A.x; /Ry + B.AE/E - Ca” - Dg

(IT.3.22)

where AE = E-E,, x; and x, are radial displacements
from Ry and o and g are divergences in the perpendicular
input planes. For this particular analyser the constants
A,B,C,D have the values A = 1, B=2, C=2 and D=0. We
can write (II.3.22) in the form,

x,/Ry = =x1/Rgy + 2.AE/E ~242 (II1.3.23)
The first term in this equation shows that the input
plane is imaged with unit magnification onto the output
plane. The second term shows that there is linear energy
dispersion and the absence of a term linear in o shows
that there is first order angle focussing.
The energy resolution function is the transmission

of electrons as a function of energy. With entrance and
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and exit windows equal (real or virtual) and of width
W then:
W/Ry = -W/Ry + 2.AE/E (II.3.24)

and the energy resolution is,

2
AE%/EO ~ (W/zRO).EO+<x/z (I1.3.25)

and,

2

AE = (g~ + W/RO).EO (IT.3.26)

base
These quantities are defined in figure 31. 1In our

system rl=r2=w; R, = 1.000" and so,

0
2
Thus for Ey=1 volt we expect a full width at half

maximum energy of 0,012 volts; EO=2 volts, AE, = 0.025;
2
EO=4 volts, AE, = 0.650 volts and so on.
2
We can allow for the effect of the cathode

distribution on the transmitted current. If we assume

a Maxwellian distribution at the cathode, viz;
dT = (4q.me/h°).exp(-e.B/KT).exp(~E/KT).E.dE  (II.3.28)

where m and e are the mass and charge of the
electron, @ is the work function of the cathode, h is
Planck's constant, k is Boltzmann's constant and T is
the absolute temperature of the cathode. Now it can be
shown that, for this distribution,

EX = XT and AEX = 2.45 kT
2

From space charge theory,

3/2 2
o ¢
3/2
0

where T. is the current entering the monochromator and

T. 6

in (IT.3.29)

R

38,5 x 10 ° V

6

« 0,19 x 10 ° V

Iout the output current is,
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T . = (AETOTO saKy 1, (IT.3.30)
2 z in

out
1.1 x 1078, V05/2 .

R

Beam forming lenses.

A schematic diagram of the beam-forming lenses
is shown in figure 32, The first lens, which we call the
fixed object lens, focusses the monochromator output
image onto the aperture A8. This object position is fixed
for various values of the voltage V, by varying the focus
voltage, Vl' Trial and error computer design was used
here, We decided to use a diameter of 0.150" for the
cylinder lenses to keep the focal lengths as physically
short as possible. The centre element length was
selected as 3.D to give a wide range of positions for an
intermediate image to be formed. The object aperture,

A8, is 0.020" in diameter. This choice was based on
assessments of the filling factors. If the lensdiameter
is to be small then we must keep the beam small. The
aperture A7 is chosen to correct the end effect in the
way we‘discussed for the monochromator input.

The energy definition lens is designed to
produce a beam of as nearly parallel electrons as possible.

for a range of voltages on V In this way we hoped to

E*
ensure that the beam after leaving aperture A8 is not
impeded by the gas cell or collector apertures. We
start with a small object at A8 of 0.020" diameter, then
form an object at infinity by placing a real pupil
aperture at the focal point. This is aperture A9.

We could not optimise this design as there were

two mechanical constraints on the system. Firstly, due

to the size of the vacuum tank we were using, there was
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only about 3.50" available for the beam forming lenses.
Secondly, in case of mechanical misalignment, we had to
make certain lens elements long enbugh to incorporate
deflector plates to align the beam. It turned out in
practice, however, that deflector plates were not
required and that the system operated as required even
although not optimised. We will discuss this in the next
chapter. In equation (II.1.10) we defined a quantity
kI as proportional to the total beam current in the
absence of gas. We suggest that this parameter can be
monitored by collecting the current at A8. As discussed)
the beam size at A8 is always larger than A8, so the
current monitored here will be a reasonable measure of
changes in IO.

A basic diagram of the whole optical system is

shown in figure 33.



135.

ITI.4 Miscellaneous design details.

In converting electron optical design
dimensions to suitable mechanical workshop drawings
several additional factors have to be allowed for.

Firstly we must ensure that the material from
which we construct our lens elements in no way influences
the behaviour of the electron beam. This could occur if
the lens element were magnetic to any significant degree
or if, due to contact potential effects, which we have
already discussed in section I.2, any metal surface seen
by the beam does not have a uniform potential everywhere
on it. The problem of stray magnetic fields due to the
metal composition of the lenses was eliminated by
constructing them from a non-magnetic stainless steel
(Firth-Vickers "Immaculate V"). The residual magnetism
of the metal was checked before and after machining, and
found to be less than one milligauss. This is not always
so, even with a commercial non-magnetic stainless steel,
and one version of the apparatus had to be rejected as
it was found to have local magnetic fields as intense as
several gauss. At all stages in the production of an
electron optical syétem from this material, it is
essential to check for local magneticvfields.

Parker and Warrén (1962) investigated the
variation in contact potential across various surfaces.

They concluded that gold electroplated surfaces had the
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least contact potential differences of all the surfaces
they investigated. In fact, gold évaporation produces
an even better surface. We atteﬁpted to gold electro-
plate all our optical elements. It was found that we
could only electroplate pieces of immaculate V stainless
steel that had never been under vacuum. So instead of
gold plating, we deposited colloidal graphite from an
alcoholic suspension on all metal surfaces seen by the
beam. (A commercial preparation called DAG 580 was
used.) We limited the application strictly to surfaces
seen by the beam as graphite could adsorb the residual
gases in the vacuum system and cause excessive
degassing when evacuating the system. We found this
simple treatment quite satisfactory.

It is also essential to work under conditions
of extreme cleanliness both during assembly and in the
vacuum system. TFilms of organic solvents, grease or
pump oil on a lens surface can become charged by the
electron beam and then distort the beam path.

The second factor which we must consider is
the control of stray electrons. These can arise either
by electrons leaving the beam path due to scattering
by a lens aperture or by secondary electron emission
when the beam hits a metal surface. To control this
we shielded the electron collector carefully and
positioned shields at every gap between the lens
cylinders. However, complete shielding of scattered

electrons can lead to the system becoming difficult to
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evacuate due to trapped gas volumes which can only be
pumped through the very small aperfure holes. Our
present shielding system we find to be a reasonable
compromise.

An ideal cylinder lens should consist of
thin-walled coaxial cylinders (Read, Adams and Soto-
Montiel, 1971). We approximated this by machining the
cylinder wall to a thickness of 0.050" within 0.100"
of any lens gap. We found that a wall thickness less
than this was both difficult to machine and susceptible
to damage during the assembly of the system. The
aperture holes were drilled rather than spark eroded.
We found by experience that, although spark eroding is
a very accurate technique, it was difficult to accurately
position the hole on the aperture plate. The aperture
holes were then knife-edged to reduce scattering at
the edges of the holes.

The lens elements were mounted on ceramic
rods (Steatite-Porcelain). These were of very accurate
diameter (0.1562" + 0.0001") and controlled the
alignment of the optical systems. The insulators
between lens elements at different potentials were of
quartz and were all the same thickness (0.040").

A workshop drawing of a cross-section of the

assembled optical system is shown in figure 3u.

The electrical system.

The purpose of the electrical system is to

bias the lens electrodes at the chosen design potentials
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with respect to the cathode potential and to measure
any currents required. A circuit diagram of the system
is shown in figure 35.

In this circuit, PS represents a d.c. power
supply, P represents a potentiometer, R a resistor and
M a current-measuring device.

All the power supplies are commercial high
stability d.c. supplies with adjustable output voltages
which are not referred to mains earth within the supply
ie. floating outputs. PS1 and PS2 are Oltronix
Stabpac 30 (type MB120-0.25). These have output voltages
variable between O volts and 120 volts and voltage
stabilities of 0.01%. The meaning of voltage stability
can differ for different commercial manufacturers. In
this case if fhe mains supply voltage varies by +10%
the output voltage wvaries by 0.01%. The maximum ripple
and noise is 0.5 mV r.m.s. PS3 and PS4 are Oltronix
Stabpac 3 (type MB30-0.1). These have outputs of 0-30
volts, 0.01% stability and a maximum of 0.3 mV r.m.s.
noise and ripple.

The potentiometers, P1, are all 100k linear
potentiometers. Their high resistance value is chosen
to minimise the current drawn from the power supplies.
The resistors, Rl, are all 98ke and are used to protect
the power supplies against a short circuit in the event
of one of the lens elements becoming connected electrically
to the cathode. P2 is a motor driven potentiometer

(100kQ) .
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The meter, M1, is a milliammeter used to
monitor the anode current. M2 is a laboratory built
electrometer used to monitor the current at aperture
A8, as discussed in section II.3. M3 is a Keithley 640
vibrating capacitor electrometer which records the
transmitted beam current. This is capable of reading

1.0 x 107%° 12

A. full scale with a 10 Q input resistor.
It is connected to the Faraday cup collector, F.C., in
the electron optical system.

The laboratory built electrometer, M2, was
adapted from the design of Garment and Ross (1971).
It measures electron currents in the range lO—ll -
10_5 A, has good long term drift properties and can be
operated up to 500 volts above mains earth potential.
We added clipping diodes at the input to the operational
amplifier in the circuit for extra protection of the
amplifier when the input voltages are high. We also
found it essential to have the trim potentiometer of the
operational amplifier wired as an external control as it
is necessary to adjust this frequently.

The switch, SWl, allows us to operate with the
cathode either at the system earth potential or at a
voltage negative with respect to this earth. The ten-
turn potentiometers allow us to vary the voltage on the
lenses with reasonable sensitivity. The output voltages
are those shown in figure 33. When more sensitivity in
selecting voltage is required as, for example, with

VD(+) and VD(-), the hemisphere potentials in the

monochromator, the subsidiary current involving the low
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voltage supply PS3 is used. SW2 removes the anode
current meter from the circuit when it is not required.

By varying the setting of the potentiometer
Pl and the output voltage of PSL we can choose the
lower and upper limits for scanning the electron beam
energy, VE, with the motor driven potentiometer P2.

To record a transmission spectrum we can
either connect VE to the x-axis and the analogue voltage
output of M3 to the y-axis of an x-y recorder or monitor
both these voltages and the analogue voltage output of
M2 with a digital voltmeter connected to a data logging
system with punched paper tape output. The data tape
can then be processed in a computer.

We only have one earth point in the system.
This avoids some of the dangers associated with earth
loops, which can cause signal noise. This earth is a
laboratory noise~free earth and all metal parts of the
apparatus are connected to it and not to the mains
earth. All electrical connections are made with screened
leads with the outer braiding connected to this earth.

The cathode is an indirectly heated Philips
BP1A oxide coated cathode. The cathode heater power
supply is an Oltronix Stabpac 30 (type MB1l5-2).

The vacuum system.

A schematic diagram of the vacuum system 1is
shown in figure 36. Mercury pumps were chosen in
preference to oil pumps to avoid the risk of oil films

discussed earlier in this section. The system gives a
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base pressure of 6 x 107 ° torr with a hot cathode

after baking. The liquid nitrogen trap is filled
automatically from a peserygirydg@ar. The pumps are
protected by an interlocked system which switches the
pump-heaters off if the vacuum tank pressure, level of
liquid nitrogen in the trap or flow rate of the cooling
water register values outside preset limits. Like

the optical elements the vacuum tank is made of

immaculate V stainless steel.

Cancellation of the earth's magnetic field.

The earth's magnetic field can deflect the
.electron beam from its calculated path. It can be
calculated (Trajmar, Rice and Kupperman, 1968) that
the earth's magnetic field must be cancelled to better
than 1.3 x 1072 gauss for a 1 eV electron to be
unaffected by it in the monochromator. A pair of thin
coaxial coils containing the same number of turns,
carrying the same current, having the same radius and
being separated by a distance equal to the radius, will
provide a nearly constant magnetic field vector directed
along their axis in a small region about their midpoint.
Three mutually perpendicular pairs of coils can be used
to cancel the three cartesian components of the earth's
magnetic vector.

In practice, we used a system of Helmholtz
coils of square cross-section. (Alldred and Scollar,

1967). We were able to cahcel the earth's magnetic
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field to within + 5 x lO_3 gauss within a region
about 6 in.3 inside the vacuum tank.

In practice, however, we found it preferable
to tune the transmitted current to a maximum with the
Helmholtz coils. This seems to be common practice

in electron spectrometry.



CHAPTER IIT. ' THE OPERATION OF THE ELECTRON

TRANSMISSTON SPECTROMETER.




| ‘(5970 )ADUANY MOMLOW1E
bT g% BT 1T o7 b1 &) L 9 & w8 n_ o b & ¢t 9
i

m, .

T T 1 1 ¥ 1 L ¥ ¥ ] 1 T ¥ T 1 i ¥

exirnor A P

Bt g sy

.ﬁmmuvsz& PUROITH O

TLY qunnrd .




14 3.

The performance of the spectrometer matched the
design requirements, which we discussed in section II.1.
The operating characteristics are both stable and

reproducible.

Beam currents.

The maximum beam current in the absence of gas

9

is 3 x 10 YA. When gas is present, the transmitted currents

9 11p.  This

are between approximately 1 x 10 A and 1 x 10~
is well within the range of the electrometer amplifier

(cf. section II.4). The background current is almost
constant over the whole operational energy range of 2 eV

to 100 eV. 1In some focussing conditions there is a slight
increase in current as the electron energy increases, but
this is only of the order of 10% at most and is linear with
energy. Thus our background current, IO in section II.1,
is almost constant and is structureless with a sharp onset
about 2 eV. The current below 2 eV rises very sharply

from a constant onset at zero volts. This is shown in
figure 37. It seems unlikely that quantitative work

below 2 eV impact energy will be possible with the present
system. However, our design specification did not require
this very low energy operation. Furthermore, this is
sufficiently low an energy to allow comparison of measured

total cross-sections with published momentum transfer

cross-sections in a number of species.
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Our design also required that we operate with
an energy resolution of about 50 méV in order to observe
fine structure in the transmitted current. In fact our
energy resolution (F.W.H.M.) at a nominal monochromating
energy of 4.0 eV is about 40 meV. This agrees well with
the theoretical estimate given in section II¢3. This
resolution would be improved by operating at a lower
monochromator potential, but transmitted currents are
then rather low.

Thus the spectrometer operates as required for
measuring the total cross-section for electron-gas atom
or molecule collisions and for resolving much of the fine
structure in the cross-section. Its performance compares
well with the only other apparatus employed for measuring
total cross-sections at the present time, which is that
of D.E. Golden (1966) and his collaborators. This was
discussed in detail in section I.2. For fine structure
studies it is hoped to improve the sensitivity by
modulating the electron beam and observing the differentiated
transmitted current, in the manner of Schulz and Sanche
(1971). This was also discussed in section I.2. However
for the study of many molecular resonance processes, the

Present performance is quite sufficient.

Optimising the spectrometer.

A beam current in the absence of gas can be
observed by setting all potentials to the values suggested
in IT.3 and adjusting the potential of one of the

monochromator hemispheres for maximum transmission. The
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COLLECTED CURRENT

FIGURE 39,  Beam Forming Electrode 'I‘ransmi‘ssion Functions.
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performance of the spectrometer can then be optimised

by tuning all potentials, except those of the monochromator
for maximum transmission. In practice three of these
potentials are more critical than the others. These are
the condenser focus voltage in the gun, Vops the fixéd
object f6ous, V1, and the energy definition focus, Vs
These are defined in figures 29, 32, 33. Figure 38 shows
the effect on the collected transmitted current of

varying the gun voltages and monochromator voltages.

Figure 39 is the corresponding diagram for the beam forming
output stage. The variation of Ve obviously corresponds

to the background transmission function. The preferred
technique is to choose Vs and set +VD and -VD to the
calculated potentials. The first stage of the decélerator
VC is then set to 10 VO and the anode to a suitable value,
chosen to give the required current. Vor is then tuned

for maximum transmission. Figure 38 shows two focussing
conditions. We have found that the lower voltage condition
is quite satisfactory. Then V2 is set at a suitable
voltage, usually between 6 and 10 volts. This is quite
arbitrary as V1 and V3 will have focussing conditions for

a wide range of values of V2. However 6V gives a very

good background function. This leaves V1 and V3 to control
the background function. V1 is set on its low voltage
maximum and V3 is positioned in the minimum between its

two low voltage maxima. The voltage of Vg is then scanned

and the background function observed. Minor adjustments

to V3 are required to sharpen the low energy onset. TFor
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any setting of Vo and V, there will. be settings of V1
and V3 which will give the characteristic background
function of figure 37.

Having set the optical background we then admit
gas to the scattering cell, retuningthe hemispheres for
maximum transmission and record the transmitted current
as a function of energy at several gas pressures. The
current entering the cell Ig> is monitored on the element
of potential V2, as discussed in II.4. From the discussion
leading to equation (II.1.11) we know that a graph of
ln(IO/I) versus n should be linear. Where I is the
transmitted current and n the gas number density. If I
is constant then a graph of 1n(I) versus gas pressure will
be sufficient. These graphs are drawn for different
electron energies and checked to see if they are in fact
linear. If they are, then the total cross-section can be

found from the slope.

III.2 The transmission spectrum of helium.

Helium (99.995% minimum purity.B.0C.) was
studied in the energy range 2-30 eV in the manner

described in the previous chapter. Figure 40 shows X-Y

recorder tracings of the variation of transmitted current
with electron energy for various gas pressures. The

energy scale is set by using the helium resonance at 19.3eV
as a calibration point. Figure 41 shows typical plots of
the logarithm of the current versus gas pressure for
different electron energies. At higher pressures ( 6

-4

x 10 torr) the point lies off the line. This could be

due to multiple scattering effects. The pressures recorded
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here are not the gas cell pressures. They are the vacuum
tank pressures, which will be proportional to but
considerably less than the gas cell pressures. The

4 torr in this series all

points for the pressure 3 x 10~
lie off the lines and so are regarded as being in error
due to some measurement fault. Figure 42 shows total
collision cross-sections calculated using data of the
type illustrated in figure 41 and normalised to a value of
5.5 x 10" 1% om? at 2 eV (Golden and Bandel, 1965a). This
curve was compiled from data taken on several different
occasions and with the spectrometer tuned to different
background functions. Whilst the data are reasonably
consistent, normalisation at the low energy end gives
cross-sections significantly higher than those of Golden
and Bandel at energies above about 10 eV. These discrepancies
are discussed more fuily in p149-151, Clearly, helium
merits further investigation and this we will undertake
monitoring the pressure in the collision chamber using a
Baratron capacitance manometer. Figure 43 shows the 19.3
eV helium resonance in detail. Monochromator settings,
as noted on a digital voltmeter were, 6V (curve A), 4V
(curve B) and 3V(curve C). In the presence of helium,
contact potentials were about +1.8 eV, so that actual
monochromating energies were about 1.8 eV lower than
stated above. Allowing for the Doppler broadening of
35 meV at room temperature, we estimate the apparatus

energy resolution to be about 40 meV in curve C. In

figure 43, 1 cm = 50 meV.
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ITIT.3 The transmission spectrum of n

In order to assess the instrument behaviour
at low incident electron energies, we looked at electron
transmission through nitrogen. Figure 44, a recorder
trace of the transmission function in nitrogen, illustrates
clearly the well~known ng N2_ resonance, starting at-about
1.8 eV. This resonance appears on a maximum in the total
collision cross-section, which accounts for the shape of
the function of figure u4l4. The spacing between minima
(cross-section maxima) of figure 44 is 0.25eV. This

agrees with spacings obtained by other workers listed in

Massey (1969) p. 710.

IIT.4 " Conclusions

The preliminary tests described above indicate
that our transmission spectrometer performs in accordance
with design specifications. When a suitable gas pressure
measuring device is incorporated in the collision region,
it should be capable of providing electron-molecule
collision cross-sections in a wide range of gaseous

molecules. There is a clear need for this kind of data.
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Discussion of observed helium total cross-section o

The origin of these differences must be some energy—dependent parameter
of the apparatuses. The energy-dependent design parameters are
angular resolution and incident unattenuated beam current, Io as

s
defined in Section II.L1.
The angular resolution of a spectrometer with a static gas target is
a complex function of the apparatus geometry in the region of the
scattering cell, the detection efficiency of the electron collector
and the angular intensity distribution of scattered electrons at a
particular energy. This last factor gives us the energy dependence.
The angular resolution in the Golden apparatus is not isotropic as it
employed rectangular slits, whereas the apparatus described in this
thesis has circular symmetry and hence isotropic angular resolution.

The purely geometric factor in the angular resolution was discussed by

Golden and Bandel (1965) in terms of f(e), the fraction of all electrons

scattered to the angle 6 within the scattering region which are detected

We find that the calculated values of this detection, f (8), are very
similar to those of Normand'(l930) and Brode (1925), which are higher
than those of Golden and Bandel (1965) and Ramsauer and Kollath (1929),
particularly at small scattering angles. Thus it appears difficult

to correlate the differences with the angular resolutions.

The unattenuated beam current, Io, which is monitored in the present,
experiment and was allowed for in the Ramsauer - Kollath analysis, as
described in section I.2, is assumed constant in equation (L) of Golden
and Bandel (1965). They discuss several reasons why this assumption
is not necessarily valid under all conditions. However Golden and

Bandel comment that: "At lower energies it became increasingly

difficult to find a combination of accelerating and grid potentials
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that would satisfy this condition (ie that Fo was independent of
accelerating voltage) because the range of accelerating voltages over
which the Ramsauer signal remains independent of accelerating voltages
decreases with decreasing energy."

There are several apparatus factors which could influence the observed
total cross-sections. Two important apparstus factors which are energy
dependent are the production of secondary electrons in the scattering
regions and stray magnetic fields.

Golden does not report any precautions against the production of

secondary electrons and no retarding electrodes sre included in his
apparatus to contain secondary electrons within the collector. In our
design we have a suppression voltage of 50 volts between Faraday cup and
collector shield and 6 volts between collector shield and a retarding
electrode positioned between the gas cell and the collector,

Golden and Bandel (1965) report that some welding on their apparatus

was magnetic and that magnetic field measurements were not reproducible

to better than 2%. This obviously is a source of error at low energies
but as with the other parameters it is impossible to estimate the
magniﬁude of the error.

A theoretical analysis of phase-shifts in electron~helium scattering

in the range 3.1 to 19.1eV has been made by Bransden and McDowell (1969),
who considered the total cross-section experimental data of Golden and Bandel
(1965) and the differential elastic cross—section data of Ramsauer and
Kollath (1932) and Gibson and Dolder (1969), Comparing the total
cqllision cross—sections of McDowell, with those of Golden and the present
investigation, we find that the energy dependence of the total cross-section
is very similar for McDowell and the present work. The change in cross-

section between 3¢V and 19eV is 50% in the present experiment, 5T7% for McDowel
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and 93% for Golden. Thus it would seem that the present results are
in better agreement with the phase-shift analysis than those of Golden.
The energy dependence of the discrepancy between the present results
and those of Golden depends on the energy at which the present results

are normelized,
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