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Abstract 
 

In this thesis we use computational neural network models to examine the dynamics and 

functionality of the CA3 region of the mammalian hippocampus. The emphasis of the project is to 

investigate how the dynamic control structures provided by inhibitory circuitry and cellular 

modification may effect the CA3 region during the recall of previously stored information. The 

CA3 region is commonly thought to work as a recurrent auto-associative neural network due to the 

neurophysiological characteristics found, such as, recurrent collaterals, strong and sparse synapses 

from external inputs and plasticity between coactive cells. Associative memory models have been 

developed using various configurations of mathematical artificial neural networks which were first 

developed over 40 years ago. Within these models we can store information via changes in the 

strength of connections between simplified model neurons (two-state). These memories can be 

recalled when a cue (noisy or partial) is instantiated upon the net. The type of information they can 

store is quite limited due to restrictions caused by the simplicity of the hard-limiting nodes which 

are commonly associated with a binary activation threshold. We build a much more biologically 

plausible model with complex spiking cell models and with realistic synaptic properties between 

cells. This model is based upon some of the many details we now know of the neuronal circuitry of 

the CA3 region. We implemented the model in computer software using Neuron and Matlab and 

tested it by running simulations of storage and recall in the network. By building this model we 

gain new insights into how different types of neurons, and the complex circuits they form, actually 

work. 

 

The mammalian brain consists of complex resistive-capacative electrical circuitry which is formed 

by the interconnection of large numbers of neurons. A principal cell type is the pyramidal cell 

within the cortex, which is the main information processor in our neural networks. Pyramidal cells 

are surrounded by diverse populations of interneurons which have proportionally smaller numbers 

compared to the pyramidal cells and these form connections with pyramidal cells and other 

inhibitory cells. By building detailed computational models of recurrent neural circuitry we explore 

how these microcircuits of interneurons control the flow of information through pyramidal cells 

and regulate the efficacy of the network. We also explore the effect of cellular modification due to 
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neuronal activity and the effect of incorporating spatially dependent connectivity on the network 

during recall of previously stored information. 

 

In particular we implement a spiking neural network proposed by Sommer and Wennekers (2001). 

We consider methods for improving associative memory recall using methods inspired by the work 

by Graham and Willshaw (1995) where they apply mathematical transforms to an artificial neural 

network to improve the recall quality within the network. The networks tested contain either 100 or 

1000 pyramidal cells with 10% connectivity applied and a partial cue instantiated, and with a 

global pseudo-inhibition.We investigate three methods. Firstly, applying localised disynaptic 

inhibition which will proportionalise the excitatory post synaptic potentials and provide a fast 

acting reversal potential which should help to reduce the variability in signal propagation between 

cells and provide further inhibition to help synchronise the network activity. Secondly, 

implementing a persistent sodium channel to the cell body which will act to non-linearise the 

activation threshold where after a given membrane potential the amplitude of the excitatory 

postsynaptic potential (EPSP) is boosted to push cells which receive slightly more excitation (most 

likely high units) over the firing threshold. Finally, implementing spatial characteristics of the 

dendritic tree will allow a greater probability of a modified synapse existing after 10% random 

connectivity has been applied throughout the network. We apply spatial characteristics by scaling 

the conductance weights of excitatory synapses which simulate the loss in potential in synapses 

found in the outer dendritic regions due to increased resistance.  

 

To further increase the biological plausibility of the network we remove the pseudo-inhibition and 

apply realistic basket cell models with differing configurations for a global inhibitory circuit. The 

networks are configured with; 1 single basket cell providing feedback inhibition, 10% basket cells 

providing feedback inhibition where 10 pyramidal cells connect to each basket cell and finally, 

100% basket cells providing feedback inhibition. These networks are compared and contrasted for 

efficacy on recall quality and the effect on the network behaviour. We have found promising results 

from applying biologically plausible recall strategies and network configurations which suggests 

the role of inhibition and cellular dynamics are pivotal in learning and memory. 
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Chapter 1 
 

 

1. Introduction 
 

This thesis is concerned with the CA3 region of the Hippocampus, its functionality and its 

application as an autoassociative memory. The inspiration for this work stems from the 

neurophysiolgical findings of unique recurrent connections between pyramidal cells within the 

CA3 region by Treves and Rolls (1994) and de Almeida (2007). These observations led to a 

number of hypotheses concerning the possible function and potential use of associative memory 

networks with these unique recurrent connections. This thesis has two main aims. The first is to 

provide a deeper understanding of the neurophysiological principles which are found in the CA3 

during the recall of a stored memory. The second is to illustrate the importance of inhibition during 

the recall phase, which includes synchronising excitatory activity through global feedback 

inhibition. 

 

1.1 Background 
 

An associative memory is a system which stores mappings from specific input representations to 

specific output representations. For example, a system that associates two patterns is one that, when 

presented with only one of these patterns later, the other can be reliably recalled. Kohonen (1984) 

draws a parallel between associative memory and an adaptive filter function where the filter can be 

viewed as taking an ordered set of input signals, and transforming them into another set of signals; 

the output of the filter. It is the notion of adaptation, allowing its internal structure to be altered by 

the signals which are transmitted, which introduces the concept of memory to the system. 
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Within this thesis we use a particular type of the associative memory concept, auto-associative 

memory, which is ubiquitous in neural network (connectionist) literature. An auto-associative 

memory reproduces its input pattern as output. Hence it associates patterns with themselves. Most 

implementations of associative memory are realised as connectionist networks. Hopfield's 

collective computation network (Hopfield, 1982) introduced auto-associative memory models 

using simple two-state nodes. This will be discussed in more detail in Chapter 2.  

 

Area CA3 of the mammalian hippocampus has been conceptualised as an auto-associator network 

that performs pattern storage and retrieval. There have been many models which have elaborated 

on this which will be discussed in detail in Chapter 2. An auto-associator has three basic 

requirements; a high degree of internal recurrency among principal cells; strong and sparse 

synapses from external afferents, which could function as forcing synapses; and plasticity at the 

synapses between coactive cells. These requirements sufficiently allow functions of pattern storage 

and retrieval where the hippocampal area CA3 has shown to satisfy all of these requirements. The 

principal neurons of the CA3, known as pyramidal cells, are unique in the brain for their high 

degree of internal recurrency where each pyramidal cell may receive contact from over 4% of other 

pyramidal cells in its proximity. This is a high enough contact probability to allow auto-association 

(Rolls, 1989).  In addition to these recurrent collaterals and sparse entorhinal afferents, CA3 

pyramidal cells receive a small number of inputs from the mossy fibers originating from granule 

cells in the dentate gyrus. It is estimated that while each CA3 pyramidal cell in the rat may receive 

12,000 synapses from recurrent collaterals and 4000 synapses from the entorhinal afferents, only 

50 mossy fiber synapses are received. Lastly, plasticity in the form of long-term potentiation has 

been demonstrated at the synapses of recurrent collaterals.  

 

Artificial neural network models contain simplified neuron models which generally have two 

states. Synaptic modification or pattern storage within these networks is a simple process using 

vector multiplication and clipping the weights given their value. A single pattern of a given length 

will include a given number of active nodes (denoted as a 1) where inactive nodes (denoted as a 0) 
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make up the rest of the pattern. The construction of the artificial neural network of auto-associative 

memory is obtained by multiplying this input vector by its transpose. To add more patterns we do 

the same and then sum the elements of the matrices clipping values greater than 0 to 1 where 

pattern overlap occurs. The recall process is carried out by instantiating a vector upon the network 

by multiplying the matrix by the input vector (which may be a partial cue). The output is a summed 

vector and the threshold is a set value which clips the output values where a 1 is given if the 

threshold is met or exceeded and, hence a 0, if it is not.  

 

Within our biological neural network model we instantiate this weight matrix upon a 

(provisionally) fully connected network of realistic spiking pyramidal cell models where each one 

will signify an active synapse with some conductance weight between pyramidal cells. The recall 

process is carried out by applying a somatic current to cells within the pattern (this can be a partial 

cue) which will drive the cells and activate a spiking sequence which will induce activity within the 

network. The threshold in this type of network is different in contrast to the artificial network 

where the threshold of a pyramidal cell’s firing is set by the intrinsic threshold of the pyramidal cell 

itself and the inhibition received within the network. The intrinsic threshold of a pyramidal cell is 

mainly set by the sodium channel density and the membrane resistance. These factors will be 

discussed in more detail throughout the thesis.  

 

 

1.2 Thesis Structure 
 

In Chapter 2, we begin the thesis by discussing the artificial, biologically based computational and 

neurophysiological studies which led to this work. A number of interpretations of this data are 

made and some of the implications of these hypotheses are investigated. From an analysis of the 

hypotheses and studies, two main studies are used, with a biologically plausible implementation of 

a model of the CA3 region of the Hippocampus and an investigation of improvement in recall 

quality using artificial neural networks chosen to investigate the possibility of improving recall 

quality within this thesis. A definition of the methods for improving recall and the network 

configuration are given with an illustration of their behaviour shown.  
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In Chapter 3 we test realistic multi-compartment cells models and ask what benefit these complex 

models will have over artificial nodes and what effect these models will have upon our network 

configuration. It is desirable to gain an understanding of the main factors of the cellular dynamics 

which could affect the network operation during the recall phase in order that we might make 

predictions about their general behaviour within the net. We also aim to develop an understanding 

so we can determine an optimal setup to be used when constructing spiking neural networks of 

associative memory. The studies performed within this chapter do not cover all aspects affecting 

the cell model operation but replicate the operation and compliment other work already performed 

upon these particular cell models.  

In Chapter 4 we investigate the operation of the spiking neural network defined in Chapter 2. This 

model is an abstraction of the CA3 region of the hippocampus containing realistic pyramidal cell 

models, global inhibition and realistic AMPA and GABA-A synapses where one of the key 

hypotheses put forward from the neurophysiological data discussed in Chapter 2 is that the CA3 

operates as a recurrent autoassociative memory. This is related to the observation from 

experimentation of the interconnectivity between pyramidal cells in this region. A replication of the 

model discussed in Chapter 2 is shown and the full operation of the network is investigated under 

varying conditions with the final investigation containing all the biologically plausible features we 

wish to test during the recall phase. 

In Chapter 5 we investigate the effect of the implementations of methods to improve recall in an 

autoassociative memory using the hypotheses discussed in chapter 2 by extending the model 

studied in Chapter 4. Through the analysis of the recall quality with reference to the results in 

Chapter 4, we investigate the behaviour of the applied methods for improving recall to further 

understand the complexities found in a biologically plausible implementation of an associative 

memory model. Additions to the standard network model are suggested with illustration of their 

operation given and compared to the results from Chapter 4 showing that it is possible to improve 

the quality of recall in a realistic spiking neural network using neurophysiologically based 

implementations.  
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In Chapter 6,  we study the effect of introducing biologically realistic models of inhibitory 

interneurons known as Basket Cells. These will be implemented as a method of global inhibition 

where four configurations are considered. We replace the global feedback inhibitory synaptic action 

used in the networks investigated in Chapter 4 and 5 with the cell model tested in Chapter 3. 

Modifications to the network models are suggested with explanation of their operation given and 

compared to the results from Chapter 4 and 5 showing the effect of different configurations of 

global inhibition upon the network operation and recall quality in spiking neural networks.  

 

In Chapter 7, we investigate the capacity of artificial neural networks of associative memory 

against the standard spiking neural network models applied in chapter 4. The capacity will be tested 

using the average recall quality over all patterns stored in two different sizes of net. The results of 

the networks tested over 1 iteration and 5 iterations will be compared showing the effect of using 

biological implementations of the network (BNN) against the binary based artificial neural 

networks (ANNs). 

 
In Chapter 8, the conclusions drawn from the work in this thesis are summarised. There are many 

areas within the field that this thesis could have considered in greater detail and a short discussion 

of where it would have been useful to extend some of the lines of this work is also given. 

 

1.3 Contribution to knowledge 
 
The underlying goal of the project from which this thesis topic emerged was to try to bring the 

work of modelling autoassociative Artificial Neural Networks of associative memory closer to the 

neurophysiological complexity found in the real mammalian hippocampus. Literature abounds with 

neuronal network models which contain varying biological complexities but can be further 

extended. By implementing realistic spiking neural network models of associative memory we aim 

to show that by introducing features found in nature we can improve our knowledge of the 

mechanisms used during recall in the CA3 region of the hippocampus and to help us further 

understand the role of inhibition within these networks.  
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There are two main contributions to knowledge from this thesis. The first concerns the 

improvement of recall in a recurrent spiking neural network. We show that applying a localised 

inhibitory network improves the recall quality and fine tunes the operability of the network through 

increasing the frequency of activity, moreover, by applying a method of signal amplification within 

the excitatory cells we show that recall can be improved and the network synchronicity is increased 

and finally, by applying spatial characteristics to the dendrite and applying scaling to layered 

synapses increases the quality of recall within the network. These are important to know as they 

allow us to further understand the complexities within cellular models and networks which can be 

further explored to help us develop superior models for learning and recall used for many 

applications within and out-with the field of computational neuroscience. 

 

The second contribution is the discovery of the importance of the configuration of global inhibition 

using complex cellular models of basket cells. Our results show that the operation of the network 

during recall is heavily affected by the configuration of the global inhibitory network. We have 

found that the models with the highest and lowest variability operate better than the most biological 

configuration in terms of pool numbers. This is important as it suggests that the connectivity of 

global inhibitory cells within the CA3 region of the hippocampus have to be considered with more 

complexity to fully understand their functional role during the recall process.   
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Chapter 2 

 
2 Biologically realistic models of associative memory: a review 
 

2.1 Artificial neural networks 

An artificial neural network (ANN) is an information processing paradigm that is inspired 

by the way biological nervous systems, such as the brain, process information. The key 

element of this paradigm is the novel structure of the information processing system. It is 

composed of a large number of highly interconnected processing elements (neurones/units) 

working in unison to solve specific problems. An ANN is configured for a specific 

application, such as pattern recognition, through some learning process. The application of 

artificial neural networks in the context of the mammalian hippocampus can be closely 

attributed with associative memory (McNaughton and Morris 1987, Rolls 1989, Treves and 

Rolls 1994). 

2.2 ANN models of associative memory (AM) 

Associative memory refers to a memory organisation in which the memory is accessed by 

its content (as opposed to an explicit address). Thus, reference clues are “associated” with 

actual memory contents until a desirable match (or set of matches) is found. Associative 

memory stands as the most likely model for cognitive memories. The linked information is 

fast, direct and labyrinthian in the sense that the memory map is many-to-many and 

homomorphic. 

Associative memory can be auto- or hetero-associative. The difference between auto- and 

hetero-associative memories lies in the retrieved pattern. Auto-associative memory consists 

of a single layer of cells with reciprocal connections (fig. 2.1). The network associates a 
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starting state vector, for example, x(0) with a fundamental memory, after convergence. The 

memory is a vector with as many components as the starting vector. A typical model of 

associative memory is composed of a one layer feedback loop where a cue would be passed 

into the network and the output would be fed back into the network via a general update 

rule (De Wilde, 1997). Example of use; an auto-associative memory retrieves the same 

pattern Y given an input pattern X. Therefore the patterns Y = X referring to a neural 

network memory that maps inputs onto themselves (Lytton, 2002). The main difference, in 

terms of network dynamics, between auto-associative memory and hetero-associative 

memory is that a hetero-associative network, principally, has two layers with feedforward 

connections from the input layer to the output layer. Example of use; A hetero-associative 

memory retrieves the stored pattern Y given an input pattern X. This could be referring to a 

memory system that maps one thing to another, for example, names onto faces (Lytton, 

2002). 

2.2.1 Hopfield Net 
 
Hopfield, J. J. (1982) introduced auto-associative memory in the form of a model network 

containing McCulloch and Pitts (1943), two state (-1, not firing or a 1 firing,) processing 

devices/neurons. The model has similarities to the perceptron, however, the neural 

connections in a perceptron are in a forward direction (for example:  A -> B -> C -> D). The 

dynamics of the Hopfield model is different from that of the linear associator (hetero-

associative) model in that it computes its output recursively in time until the system 

becomes stable. The connection weight matrix is symmetric, wij = wji, with i rows and j 

columns. The units contained in the Hopfield model act as both input and output units. A 

single pattern is stored by the linear algebraic function Wk = Xk
T
Yk where Yk = Xk, Wk is the 

weight matrix and k is the pattern number. 
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Fig 2.1 Schematic diagram showing a recurrent auto-associative neural network as proposed by 
Hopfield, J.J. (1982) 

 

Let a Hopfield Net have N units and a weight matrix, W. Consider a pattern vector 

),....,( 1 nvvv , where }1,1{iv  and i = (1,...., n). Let the value of each component be 

chosen at random with equal probability; then 5.0][  nFEk ki , where kF is the 

pattern coding for pattern number k. 

The HN Learning Rule is: 

jiijij vvww   

where  is a scaling constant, often inversely proportional to N. 

Let the state of the net be represented by vector s where ),........,( 1 Nsss . Then the 

Update Rule is: 
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Where f is the thresholding activation function: 
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Let ii  ,0  where   is the threshold. The N weighted sums are often said to comprise 

the “local field”, h(s) . h(s) is the local field for units in state s. In the case that hi=0, the 

correct update is ii ss  . 

View the update dynamics as over iterations t. Units are said to be stable when their current 

sign matches that of the local field (then )()1( tsts ii  ). Units are chosen at random to 
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be updated, until each is stable, ŝ . Thus relaxation is a non-deterministic process with fixed 

end-points.  

Provided weights are symmetrical (which they will be with this update rule hence, wij = wji)  

and there are no self-connecting weights (wii = 0), there exists a Lyapunov function 

associated with the update dynamics, that defines a quantity often termed the energy, E, of a 

state. The utility of this quantity was first recognised by Hopfield (1982): 


 


N

i

N

j

jiij sswsE
1 12

1
)(  

 

 
Under these constraints, the quantity E can be shown never to increase: each update will 

either lower the energy, or leave it unchanged. 

 
In energy terms, the stored patterns of a net correspond to local minima of an energy 

"landscape" in N-dimensional space. The relaxation of a net is then viewed as a trajectory 

through this space, from the point representing the starting state, to the nearest minimum, 

which corresponds to a final, stable state. 

 
The stored patterns are often called attractors because of this "basin of attraction" for nearby 

starting states. However, not all patterns learnt are stored and they are rarely the only 

attractors in the net. This is because the linear superposition of patterns in training also 

creates spurious attractors. A net stabilising in a spurious attractor would not correspond to 

retrieval of any learnt pattern. 

 
The quality of retrieval can again be measured by the Hamming distance index, H, between 

the vectors ŝ  and target pattern v. There is an alternative measure of retrieval quality that is 

common in the literature. This is the overlap (or inner product), m(x, y) defined as: 

i

N

i

i yx
N

yxm 



1

1
),(  

The net output overlap is then ),ˆ( vsmmo  . Perfect retrieval then gives 1om , whilst 
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the case of 1om corresponds to the stable state being the inverse of the target pattern.  

If patterns are orthogonal, they can be superposed without any interaction or creation of 

spurious attractors. In practice, the “pseudo-orthogonality” of random patterns will be 

approximately respected when the number of patterns trained, R, is small compared to N. 

As R grows, the likelihood of “cross-talk” between the patterns increases. This extra noise 

soon causes instability of learnt patterns, which eventually determines the capacity of the 

net.  

The loading of the net,  , is simply the ratio of the number of the patterns trained, R, 

against the net size N: 

N

R
  

There is a critical capacity, c , beyond which good retrieval of patterns suddenly becomes 

unlikely (Amit et al 1985). Theoretical and numerical results give 138.0c , beyond 

which om drops from about 0.97 to 0.35. 

The performance of the Hopfield Net are shown in Fig 2.2 where N=512, 0.1 and the 

expected maximum number of patterns reliably retrieved is approximately 71. Fig 2.2 

shows clearly the catastrophic failure of the Hopfield Network, since by R = 120, the net 

has ceased to function as an associative memory.  
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Fig 2.2 is a plot of the number of patterns with 97.0om )7( OH against the number of 

patterns trained, R. (Henson, 1993). H0 is the Output Hamming Distance  

 

 

2.2.2 Willshaw Net 
 

 
The Willshaw method (Willshaw et al., (1969)) is a model of hetero-associative memory 

where the model consists of two layers of binary units. Units in the input layer make 

unidirectional connections with layers in the output layer, with no recurrent connections 



13 

 

within each layer. Pattern pairs are stored in the net by a process of synaptic enhancement. 

A previously stored output pattern may be recalled by presenting its associated input pattern 

on the input layer and applying a threshold of activation to each output unit, whilst 

considering the threshold as a dendritic sum in binary units to a set firing threshold. The 

Willshaw network model recalls patterns by updating nodes from an entire output 

synchronously. The Willshaw network is one of the simplest models of associative memory 

(Willshaw, Buneman & Longuet-Higgins, 1969) which encapsulates important 

characteristics of associative memory, such as, its local Hebbian learning rule, bounded, 

positive values for activity and synpatic efficacy, (or connectivity). The distinctive 

similarities to other networks of associative memory (Hopfield, 1982) are that it 

catastrophically decreases in efficacy as the storage capacity is exceeded which is a main 

differential between the Willshaw net from natural associative networks.  

Let a Willshaw Network contain NI input units and NO output units. The weight matrix W 

then has OI NN  elements, with a weight wij = 1 corresponding to a triggered switch. 

Consider input and output pattern vectors v
(I) and v

(O), where }1,0{, )()( O

i

I

i vv . To learn 

this new pattern pair, the Willshaw Net learning rule is: 

)( )()( I

j

O

iijij vvwgw   

Where the learning function g is: 

   

Let the input unit activities be represented by vector a
(I) and output unit activities by a(O). 

Then the updating rule is then: 





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j

I
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O

i awfa
1

)()( )(  

Where the activation function f is a non-linear thresholding function: 
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As apparent, the threshold,  , is common to all output units. 

Let the number of components of value 1 in pattern k be Mk; the ratio 
k

k

k
N

M
F  is referred 

to as the pattern coding. For simplicity, let Mk be constant for all input patterns at MI (where 

MI is the number of 1 components in input patterns), and for all output patterns at MO 

(where MO is the number of 1 components in output patterns). Then, from consideration of 

the learning rule, IM  is the relevant threshold setting (Henson, 1993). 

The quality of retrieval can be measured by the hamming distance index. Willshaw et al. 

(1969) derive conditions for efficient us of the Willshaw Network under heteroassociation, 

by attempting to keep the number of spurious errors in retrieved patterns small. 

Consider the learning of R random pattern pairs. The probability that a particular switch, 

wij, has been triggered at some time during the training of these patterns, p, is: 

)exp(1)1(1 RFFFFp OI

R

OI   

given small values of FI and FO, i.e. sparse pattern coding. Rearranging this equation allows 

an expression for R: 

)1ln( p
MM

NN
R

OI

OI   

The probability p is sometimes also viewed as the loading density of a net. Note that as p 

increases and tends towards 1 the Willshaw Network fails as a memory device. 

Given that pattern pairs are randomly chosen with a constant M I and MO, the expected 

number of spurious errors is IM

OO pMN )(  . Now a limit of good performance can be set 

by the condition: 

1IM

O pN  

The information efficiency of a net,  , can be defined as: 

OI

N

M

NN

CR O

O
)(log 2

  
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Finally, we can determine the capacity of the net by maximising  which gives maximum 

information efficiency (of ln2) in the large NO limit at p = pc = 0.5 (where pc is the capacity-

optimal loading density) and MI = log2(NO), i.e. very sparse coding. When NI is 

approximately equal to NO = N: 

























2

)log( N

N
ORc

 

 

The performance of the Willshaw Net is shown in Figs (2.3, 2.4 and 2.5) under the 

parameters NI=NO=512 and MI=MO=9, and operating under hetero-association, which has a 

theoretical maximum capacity Rc (where Rc is the number of patterns trained for p = pc) is 

approximately equal to 2243.  
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Fig 2.3 shows the average hamming distance for pattern pairs 1 to R, plotted against R. (Henson, 

1993) 

 

R is the number of pattern pairs trained and 0H is the average hamming distance. When 

0H =1, it can be seen that R is approximately equal to 2100. The discrepancy between 2100 

and 2243 is due to large N approximations and the unit usage assumption made in 

calculating Rc.  
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Fig 2.4 shows the loading density, p, as a function of R where NI = NO = 512 and MI = MO = 9. 

(Henson, 1993) 

 

In fig 2.4, R is approximately equal to 2243 when p = 0.5 As more pattern pairs are trained 

beyond this point, p asymptotically approaches 1 (when all switches in the net are 

triggered). 
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Fig 2.5 Top: shows a plot of the number of patterns with the hamming distance  10 H , S, against 

R. Bottom: shows a plot of S/R against R. (Henson, 1993) 
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S corresponds to the number of output patterns reliably retrieved and in figure 2.5 it is 

shown that the catastrophic failure characteristic of the Willshaw Net under excess loading 

causes the net to cease to function as an associative memory.  

Henson and Willshaw (1995) analyse physiologically plausible methodology to preempt the 

catastrophic failure of the network. They develop the stability of the network whilst 

assuming biologically inspired network and cellular characteristics under learning and 

recall conditions such as synaptic decay, synaptic aging and synaptic depression. The local 

Hebbian learning rule, bounded, positive values for activity and synaptic efficacy, parallel 

update, and optimal information efficiency under sparse coding (or sparse connectivity) are 

appealing characteristics of the Willshaw Network from the neurophysiological perspective. 

However, as mentioned earlier, unlike natural associative memories, it fails catastrophically 

in the face of continuous learning. This failure can be prevented by introducing mechanisms 

by which a synapse can return to its unpotentiated state, ensuring a network reaches a 

stable, asymptotic loading below one. Three physiologically plausible mechanisms, 

mentioned above, of synaptic change were analysed, optimised and simulated by Henson 

and Willshaw (1995). All of the methods used  require information about parameters such 

as the number of cells, N, and the firing ratio, F, for optimal performance. If such 

information is precise, greatest short-term capacities (for sparse, random activity patterns) 

are possible under synaptic ageing. With common postsynaptic thresholds, synaptic decay 

or depression produce capacities at least a factor of the number of active cells, M, smaller. 

However, when the firing ratio increases from the sparse coding limit, or presynaptic 

activity patterns are correlated over time, synaptic depression emerges as a more effective 

mechanism. 

Below I introduce methods for improving recall in a hetero-associative artificial neural 

network to show the possible requirement for using a complex biological model in place of 

a hard-limiting binary node. 

Graham and Willshaw (1995) introduce biological features to an artificial neural network to 

assess methods of improving the recall from an associative memory. The network 
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configuration is similar to a standard fully connected artificial neural network of associative 

memory which uses binary nodes but employs a variable connectivity which tends to a 

biologically realistic number of interconnections between nodes. Using noisy cues along 

with reduced connectivity will greatly reduce the efficacy of the network’s ability to recall 

using the standard winners-take-all approach. Methods to improve recall under these 

conditions have been shown, Buckingham and Willshaw (1993). However, these methods 

are mathematically complex and inconceivable as a method with context to physiological 

constraints and abilities of biological neurons in the brain. Graham and Willshaw (1995) 

use a method which can be viewed as a more realistic implementation. This involves 

reducing the variations in the dendritic sums, the weighted sum of the inputs a cell receives, 

which are caused by partial connectivity and noisy cues. They achieved an improvement 

using two variations, which they named normalised and transformed winners-take-all: 

 

2.2.2.1 Basic Winners-Take-All 

On presentation of a cue, output units are chosen to be active by applying a threshold to a 

measurement of the input cue made by each output unit. The simplest such measurement is 

the dendritic sum, and the simplest thresholding strategy is to select the output units with 

dendritic sums greater than the threshold value to be active. The threshold value can be 

raised or lowered until the required number of output units are active.  

Discriminating between high and low output units on the basis of their dendritic sums relies 

on the fact that high units will tend to have higher dendritic sums than low units, since a 

high unit will be connected on average to more active inputs via modified synapses than 

will a low unit. For a given input activity and unit usage, the means of the dendritic sum 

distributions for low and high units are 

],[rad l    ][radh          where ld and hd  are the means of the dendritic 

sum distributions for low and high units respectively, a is the input activity, ][r  is the 

probability that a synapse was modified during pattern storage for a unit with unit usage r 
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and ][r  is the probability that an arbitrarily selected active unit input is on a modified 

synapse. 

In this case, since ][][ rr   for 
As 1  (where s is probability that a particular active 

input in the cue pattern is spurious), the high unit is likely to have a dendritic sum that is 

greater than the low unit. However, across all the output units there is variation in the input 

activity (for partially connected nets) that each unit receives and in unit usage. Hence, there 

is additional variation in the dendritic sums, as well as that due to whether a unit should be 

high or low. As shown in Graham and Willshaw (1994), the mean of the dendritic sums for 

low units with high input activity and unit usage may well be very similar to the mean of 

high units with low input activity and unit usage. This can result in considerable overlap 

between the values of the dendritic sums of high and low units, making discrimination of 

high units purely on the basis of the dendritic sums very inaccurate. If the variations in the 

dendritic sums due to input activity and unit usage can be eliminated, then a thresholding 

strategy, such as WTA, will be improved when discriminating between high and low units.  

 

2.2.2.2 Normalised Winners-Take-All Strategy 

Reducing variations within high units, that should be active, and low units, that should not 

be active, due to input activity. The sum of all activity impinging on an output unit, whether 

via a modified synapse or not, can improve recall within the net. Since all dendritic sums lie 

between 0 and some input activity, by applying the transform  

add /             (where a is the input activity and d are all dendritic sums) 

we can  proportionalise the dendritic sum by the input activity which gives a value between 

0 and 1 for all units and this value is independent of the input activity and hence improves 

the separation between the dendritic sums of the high and low units. 
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2.2.2.3 Transformed Winners-Take-All Strategy 

Reducing variations due to unit usage, the number of times an output unit is active during 

the storage of a set of pattern pairs, can improve recall within the network.  

For outputs with a given unit usage, the new transformed distributions have means 

][rdl  ,  ][rdh   

Which are both functions of the unit usage, r. By applying a transformation that will make 

the mean of the low units independent of the unit usage, r, then the variations due to unit 

usage will have been reduced.  Hence; 

r

Ar )1(1][    

This gives the transformation 

rr addd /1/1* )/1(1)1(1   

This transformation in combination with the WTA threshold will reduce variations due to 

unit usage. 

 

2.3 Associative Memory and the Hippocampus  
 
The theory of associative memory using artificial neural networks has been likened to 

biological memory in the brain. The method of auto-associative memory has been 

compared to the CA3 region of the hippocampus. The hippocampus has been shown to play 

an important role in memory and, specifically, the CA3 region has a network structure that 

is similar to autoassociative networks. The architecture of the CA3 is such that the axons of 

the pyramidal cells branch extensively and then form synaptic connections back on the 

dendrites of other CA3 pyramidal cells. These recurrent collaterals are one of the requisites 

of an autoassociative net (Gibson and Robinson, 1994 (see fig 2.1)).  In contrast, 

heteroassociative memory has been compared to the perforant path input onto the dentate 

gyrus cells in the hippocampus (McNaughton and Morris, 1987 (see Figure 2.6)). Inputs 

reach the hippocampus through the perforant path, which makes synapses with the dendrites 

of the dentate granule cells and also with the apical dendrites of the CA3 pyramidal cells 
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(see Figure 2.6B).  

 

 
Fig 2.6  Diagram detailing the areas, connections and pathways to and from the Hippocampus and 

different parts within it. (Rolls,  2010) 

 
 
Although the Hopfield and the Willshaw Nets contained attributes and characteristics that 

are inspired by biologically plausible configurations of neural networks they omit key 

biological features. The nodes contained within these networks are non-linear thresholding 

units. The networks were not tested with realistic partial connectivity. Other biological 

characteristics include complex dynamics, such as inhibition, synaptic delay, and temporal 

characteristics of the cell properties are also not included within the Willshaw and Hopfield 

networks. 

 
Research into fields such as understanding face recognition where humans are able to 

distinguish between many features have been rigorously explored. The human face has 

many similarities among a population which can be considered overlap. Distinctive 

similarities between autoassociative networks, pattern recognition and the brain’s capability 

to recall features in faces have been shown (Hancock et al. 1995). Rolls (1989 and 1990) 

has considered the ways in which information is represented, processed, and stored in 

neuronal networks in primates as shown by recordings from single neurons. Rolls (1989) 
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studied the damage to certain regions of the temporal lobe which produces anterograde 

amnesia by considering the neural networks in the hippocampus, the computations they 

may perform and, and how these computations may be important in the long term storage of 

information in the brain. He considers functions in the hippocampus and the 

backprojections in the cerebral cortex. The theories are at the level of neuronal networks, 

and are based partly on evidence on the fine architecture of the networks, on the rules of 

synaptic modifiability incorporated, and on the systems level connections and neuronal 

activity. Through the connected stages of the taste system of primates, neurons become 

more finely tuned to individual tastes (Rolls, 1989), yet neurons which respond to only one 

taste are rare. In the temporal lobe visual areas, which receive visual information after 

several prior stages of cortical processing, some neurons are found which are quite selective 

in that they respond to faces. However, even these neurons do not respond to the face of 

only one individual, but instead information about the individual is present across an 

ensemble (Quian Quiroga, 2008). It is suggested that ensemble encoding is used because 

this allows the emergent properties of completion, generalisation, and graceful degradation 

to be generated in pattern association and autoassociation matrix memory neuronal 

networks. It is suggested that nevertheless the representation is sparse, that is each pattern is 

represented by the firing of relatively small numbers of relatively finely tuned neurons, so 

that the patterns can be relatively orthogonal to each other, in order to minimise interference 

in the memory between the patterns and in order to increase the number of patterns which 

can be stored or associated. Given that the majority of neurons recorded in the cerebral 

cortex and hippocampal cortex of primates have positive responses, that is, the response 

consists of an increase of firing rate from a low or zero spontaneous firing rate, the activity 

patterns for different inputs can only be relatively orthogonal to each other if the 

representation is sparse. The hippocampal CA3 stage has recurrent collaterals which have 

Hebbian modifiability and a 4.3% contact probability which increases the biological 

plausibility of the model. This network functional architecture suggests that it acts as an 

auto-associative memory. It is suggested this is the basis of episodic memories, which are 
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formed in the CA3 cells. Arbitrary association memories can be formed here because there 

is one auto-association matrix and because the hippocampus receives information from 

many cerebral cortical association areas. The dentate granule cells from the sparse 

representation required for the CA3 auto-association effect, and the CA1 cells prepare the 

memory for return to the cerebral cortex. It is suggested by Rolls (1989) that in the cerebral 

cortex, as well as in the hippocampus, competitive learning occurs in neuronal networks in 

order to build the finely tuned ensemble encoded representations required for association 

and autoassociation memories in brain areas such as the amygdala and hippocampus to 

operate. It is suggested that the backprojections to the cerebral cortex from the 

hippocampus and amygdala, and between adjacent areas of the cerebral cortex, are used to 

influence the storage of information in the cerebral cortex, as well as for recall, attention, 

and dynamic and top-down processing. Rolls (1989) aims to consider how information is 

represented across populations of neurons in two sensory systems in the primate brain, the 

advantages of the representations found, and how these representations are built and 

memories are stored by neuronal networks. He concludes that theories of how the 

hippocampus functions and of the functions of backprojections in the neocortex are at the 

level of neuronal networks, and are based partly on evidence of fine architecture of the nets, 

on the rules of synaptic modifiability incorporated, and on systems level connections.  

 
 

2.4 Capacity and Retrieval  

Architectural changes by Billard and Hayes showed an improvement as an associative 

memory. Billard and Hayes (1999) use a dynamical recurrent associative memory 

architecture (specifically a time-delay recurrent neural network) using Hebbian update 

rules. This allows learning of spatio-temporal regularities and the time-series in discrete 

sequences of inputs whilst encountering an important amount of noise which adds to the 

biological plausibility of network operation. The basis for this model is the Willshaw net 

where they have a fully-connected net whose weights are updated following a basic 



26 

 

Hebbian rule. As described before the Willshaw net works poorly with noisy data because 

the net has no way to distinguish nodes that have been activated mistakenly by noisy data 

from the correct nodes. Billard and Hayes have a construction of a robust net as their 

standard and to improve its performance, they defined an update rule for the connection 

parameter so that an exact record of the connection usage of the frequency of correlated 

activation of any two units, is kept. They call this a confidence factor. A statistical-type of 

network was developed whose functioning was a mixture of the classical Hebbian network 

and the Willshaw network. Their extension adds recurrent connections to each of the nodes 

of the network, in order to make correlations between delayed and simultaneous 

occurrences of different input patterns. The resulting model is a simplified architecture of a 

recurrent neural network model, as compared with a RNN using back-propagation and with 

hidden layers). The DRAMA architecture has several characteristics in common with 

associative memory models, such as Hebbian networks, as it uses a similar training 

algorithm and a similar winner-takes-all retrieval algorithm. Similarly to Hebbian networks 

which use binary encoding for the patterns, the capacity of the DRAMA model decreases 

when trained with patterns whose encoding overlaps, that is, patterns which have common 

units active. Billard and Hayes compared the DRAMA model to the Willshaw net, and 

showed a graceful decrease of network capacity in the face of noisy data compared to the 

Willshaw net and it retains 90% of the maximal capacity with up to 90% of noise, which is 

an improvement compared with the Willshaw network which decreases to 10% of the 

maximal capacity in the face of at minimum 40% of noise (Graham and Willshaw, 1997). 

The property of DRAMA to introduce explicitly the time into one of the connection 

parameters is what distinguishes it most significantly from other models of associative 

memory. The time delay in the DRAMA network between each pattern occurrence is not 

fixed and thus there is an intrinsic relationship with the real time pattern occurrence (In 

comparison, associative memory models that can learn sequences of patterns where the time 

delay between each pattern occurrence is fixed and is equal to one processing cycle has no 

intrinsic relationship with real time pattern occurrence. That is, the patterns of the series are 
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presented sequentially to the net without delay, and are retrieved in a similar way).  

 

Similarly, Rolls and Treves (1990) consider simple formal models of associative memory 

with different neurophysiological constraints to investigate associative memory and 

whether sparse coding of information can enhance the storage capacity. They find that it is 

conceivable that the coding of information that has to be processed by associative memory 

networks in the brain is designed to optimise a number of different and sometimes 

conflicting measures of performance. What they show is that under general conditions 

sparse codings enhance the storage capacity of these systems, as defined in terms of a 

discrete number of memorised associations. The biological relevance of the performance 

measure adopted, and the way it might depend on the coding of information, has been 

substantiated by considering specific sensory systems and the functions they may 

implement in primates.  

Palm and Sommer (1996) investigate associative storage and retrieval of binary random 

patterns in various neural net models with one-step threshold-detection retrieval and local 

learning rules. For different hetero-association and auto-association memory tasks, 

specified by the properties of the pattern sets to be stored and upper bounds on the retrieval 

errors, they compare the performance of various models of finite as well as asymptotically 

infinite size. In infinite models, they consider the case of asymptotically sparse patterns, 

where the mean activity in a pattern diminishes, and study two asymptotic fidelity 

requirements; constant error probabilities and vanishing error probabilities. A signal-to-

noise ratio analysis is carried out for single retrieval steps where performance calculations 

are comparatively straightforward and easy.  Under this premise they propose and evaluate 

information capacities and bits per synapse which also encompasses the property of fault 

tolerance. For auto-association they compare one-step and fixed-point retrieval that is 

analysed by methods of statistical mechanics. The found that one-step retrieval achieves the 

same asymptotic capacity values as fixed-point retrieval. 

The development and improvement of classical networks with increasing complexity in 
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relation to the knowledge gained through physiology has shown an interesting divergence in 

the development of neural network models.  

 
Wennekers and Palm (1997) discuss the relation of theory and experiment in neuroscience 

exemplified by the assumptions often made in models of coherent activation in the cortex. 

Examples of this include basic feature-coding oscillators, phase-coding and global binding 

of whole objects. They declare the importance of a synchronised population-burst where 

spikes of feature-coding cells are temporally clustered by recurrent associative processes. In 

each bursting sequence a single stimulus is processed. This synchronisation is restricted to 

cortical sites which physically interact.  

Gibson and Robinson (1994) investigate a theory for the dynamics of sparse associative 

memory that has been applied to the CA3 pyramidal recurrent network in the hippocampus. 

The CA3 region is modelled as a network of pyramidal neurons randomly connected 

through their recurrent collaterals. The network consists of n excitatory (E) neurons 

(corresponding to the CA3 pyramidal cells) and n* inhibitory (I) neurons (e.g. basket cells). 

The connections between these neurons are specified by a connectivity matrix W, where Wij 

= 1 if neuron j sends a collateral to neuron i and Wij = 0 otherwise. The Wij are taken to be 

independent random variables with P(Wij = 1) = cij where the values of the cij depend on the 

types of neurons being connected and on their relative spatial location. 

The memories are stored on the E neurons only. They are denoted by 

},...,1,0:{ mpp  where 
p is a vector of length n, whose ith element is 0 or 1 according 

to whether the ith neuron is inactive or active respectively, and the elements are randomly 

and independently chosen with aP p

i  )1( , where a is the activity. During a learning 

phase, these m+1 patterns are applied from an external source to the excitatory neurons in 

the net. This learning phase gives a Hebbian modification of the strength, Jij, of a synaptic 

connection from E neuron j to E neuron i, such that Jij = JEE if for any of the m+1 patterns 

the ith and jth neurons are simultaneously active; otherwise Jij = 0. The total connection 

strengths between the neurons are then contained in the matrix with elements JijWij.  
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 The network is shown to retrieve memories under specific conditions involving the setting 

of the membrane potential of the pyramidal neurons by inhibitory interneurons.  Certain 

levels of overlap between the input and the memory to be retrieved must also be satisfied 

for almost complete retrieval.  

The probabilistic selection of the smallest unit of energy at the recurrent collateral synapses 

can improve recall.  

The associative net model of heteroassociative memory with binary-valued synapses has 

been extended to include experimental data indicating that in the hippocampus (Graham 

and Willshaw, 1999), one form of synaptic modification is a change in probability of 

synaptic transmission. Pattern pairs are stored in the net by a Hebbian learning rule that 

changes the probability of transmission at synapses where the presynaptic and postsynaptic 

units are simultaneously active from a low, base value to a high modified value. Numerical 

calculations of the expected recall response of this stochastic associative net have been used 

to assess the performance for different values of the base and modified probabilities. If 

there is a penalty incurred with generating the difference between these probabilities, then a 

difference of about 0.4 can be considered optimal. This corresponds to the magnitude of 

change seen experimentally. Performance can be enhanced by using multiple cue 

presentations during recall. They introduced synaptic transmission probabilities to the 

associative network model of heteroassociative memory to develop a stochastic network. In 

this network configuration, the weight of a synaptic connection specifies the probability 

with which the binary activity of an input unit is transmitted to the output unit. This is 

different from most other neural net models in which input unit activity is multiplied by the 

connection weight to provide the final input signal to an output unit. However, probabilistic 

transmission accords with neurobiology, and experimental evidence suggests that one form 

of long term potentiation in the hippocampus involves only a change in the probability of 

transmission (Bolshakov & Siegelbaum (1995); Stevens & Wang (1994)). The associative 

net uses a clipped Hebbian learning rule that stores patterns via a step increase in the 

synaptic weight, or probability of transmission. We are concerned with the effect on 
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associative memory performance of different values of the probability of transmission 

before and after learning. They show that with probabilistic transmission, the associative net 

still functions as an associative memory but necessarily with impaired performance 

compared to the standard model with deterministic synapses.  The performance may 

approach that of a standard model if the network is only partially connected or input cues 

are presented many times. Hence, depending on the relative penalties, there is a balance 

between the size of the probability difference used in learning and the number of cue 

presentations used during pattern recall to achieve the most efficient stochastic net.  

Gardner-Medwin (1989) describe algorithms and simulations for storage, consolidation and 

recall of patterns that have been presented only once to a network. They show that the 

double modifiability improves the short-term performance significantly and becomes 

almost independent of the long-term experience. The high quality of short-term recall 

allows consolidation to take place, with benefits from the selection and optimisation of long 

term memories to take account of relations between stored patterns. Long-term capacity is 

greater than short-term capacity, with little or no deficit compared with that obtained with 

singly modifiable synapses. Long-term recall requires special, simply implemented, 

procedures for increasing the temporary weights of the synapses being used to initiate 

recall. A consolidation algorithm is described for improving long-term recall when there is 

overlap between patterns. Confusional errors are reduced by strengthening the associations 

between non-overlapping elements in the patterns, in a two-stage process that has several of 

the characteristics of sleep.  

2.5 Introducing biological features 

Graham and Willshaw (1995) investigate improving recall in certain biologically inspired 

conditions from an associate memory using the Willshaw model of an associative net which 

consists of two layers of binary units. This is done by calculating the output pattern 

retrieved from a partially connected associative net presented with noisy input cues. The 

catastrophic decrease in network capability to recall patterns under these conditions has 
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been shown to be reduced by Henson and Willshaw (1995) by addressing dynamic learning 

strategies as discussed earlier. A focus on the recall of patterns by comparing standard 

winners-take-all strategies against optimised algorithms which address input activity, which 

is the amount of excitation each cell could receive, and unit usage, which is the number of 

times an output unit is active during the storage of a number of pattern pairs, has shown 

improved results with neurophysiological plausibility. The thresholding activities in the 

simulations rely on a neuron having an exact measurement of the activity impinging on it or 

that the input activity for an output neuron comes via the cells’ synapses, both modified and 

unmodified, with the input neurons. NMDA and non-NMDA channels found on Pyramidal 

cells in the hippocampus are an example of this. The non-NMDA channels provide the 

normal postsynaptic response, which is a non-voltage sensitive, fast EPSP. The NMDA 

channels are only activated under strong depolarisation of the postsynaptic terminal and 

provide a much slower EPSP (Henson and Willshaw, 1995). The NMDA channels are only 

activated under strong depolarisation of the postsynaptic terminal and provide a much 

slower EPSP. These synapses exhibit long-term potentiation, in which activation of the 

NMDA channels by strong presynaptic activity results in a long-lasting enhancement of the 

postsynaptic response.  

Kropff and Treves (2007) examine a small and biologically plausible modification of a 

Hebbian learning rule (associating to each neuron a plasticity threshold that reflects its 

popularity) which enables their network to handle correlations. They study the stability 

properties of the resulting memories (in terms of their resistance to damage of neurons or 

synapses), finding a novel property of autoassociative networks: not all networks are 

equally robust, and the most informative are also most sensitive to damage. They show how 

a modified version of the standard Hebbian plasticity rule enables an autoassociative 

network to store and retrieve correlated memories, and how a side effect of the need to use 

this modified learning rule is the emergence of substantial variability in the resistance of 

individual memories to damage, which, as they discuss, could explain the prevailing trends 

of category specific memory impairments observed in patients. Several experimental 
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studies investigating semantic memory from the perspective of feature representation 

suggest that the representation of concepts in the human brain present non-trivial 

correlations (Vinson and Vigliocco, 2002; Garard et al, 2001), presumably reflecting to 

some extent non trivial statistical properties of objects in the real world or in the way we 

perceive them. It has not yet been proposed, however, how a plausible memory network 

could reliably store such representations; while attempts to model the storage of feature 

norms (experimentally obtained prototypes mimicking concept representations) with 

attractor networks have had success only using small sets of memories (McRae et al., 1997; 

Cree et al., 1999; Cree et al., 2006). They propose here a way in which a purely Hebbian 

autoassociative memory could store and retrieve sets of correlated representations of any 

size, using a number of connections per neuron C that increases proportionally with k, the 

number of patterns. Results show that correlated representations can be stored at a cost: 

memories lose homogeneity, some remaining robust and others becoming weak in an 

inverse relation to the information they convey. These side effects should be observed in 

any associative memory system that is understood to store correlated patterns directly, and 

absent if information is first equalized through pattern orthogonalisation.  

It is conceivable that cumulative neural changes could take place as a result of cell activity 

during pattern storage, leading to an altered cell response during pattern recall that is a 

function of unit usage. This could be interpreted as a cell having a higher firing threshold 

the greater the unit usage. As an extension, the recall mechanism under partially connected 

and heavily populated networks have been tested not to check for recall improvement but 

for capacity. Numerical calculations have been used to assess the performance of the three 

winners-take-all approaches outlined earlier as recall strategies with two of these designed 

to improve recall under biologically realistic conditions, (Graham and Willshaw, 1997). The 

network used is a feedforward network of hetero-associative memory where there are two 

layers, an input layer and an output layer. Units in the input layer make unidirectional 

connections with units in the output layer. There are no recurrent connections within each 

layer. Pairs of binary patterns are stored in the net using a simple Hebbian learning rule i.e. 
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in biology, a process of synaptic enhancement. Recall of a stored output pattern can be 

achieved by presenting the output patterns associated cue/input pattern on the input layer 

and applying an applicable threshold of activation to each output unit. Although the model 

is abstract and no realistically modelled cells are used, binary nodes and applying linear 

algebraic functions in this method can be compared to biological conclusions found by 

McNaughton and Morris (1987) in the form of the perforant path input onto the dentate 

gyrus. McNaughton and Morris (1987), illustrate the functional significance of long-term 

enhancement which can only be achieved when its properties are considered in relation to 

both the formal structure of the hippocampal network in which it occurs, and to the type of 

information processed by this system.  

 

McNaughton and Morris (1987) make a relation between their proposed correlation matrix 

formalism with the actual nervous system by using several aspects of hippocampal anatomy 

and physiology which correspond to their theory. Although the dynamics of activity within 

the hippocampal circuitry are not fully understood, conceptual implementations, such as 

their method of heteroassociative memory which fits the suggestion that cortical inputs 

project via the perforant path onto a considerably expanded number of cells (granule cells 

of the dentate gyrus) within transverse strips along the longitudal axis. The perforant path 

has two distinct fibre systems, the medial pathway and the lateral pathway, both have inputs 

projected mainly from the entorhinal cortex where the medial pathway terminates closer to 

the granule cell bodies.   

 
 

2.6  Spiking models of Associative Memory 

 
Gerstner and van Hemmen (1992) extend this principle of introducing further biological 

plausibility by investigating the effect of introducing a complex spiking model neuron 

rather than the simple artificial based Hopfield net. Initially they introduce refactoriness and 

noise into a simple threshold model of neuronal spiking. These spike trains reproduce the 
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distribution of interspike intervals and gain functions found in real neurons. As an extension 

they construct a large associative memory system. The spike/signal transmission is 

described by a synaptic kernel which includes axonal delays, Hebbian synaptic efficacies 

and a realistic postsynaptic response. Gerstner and van Hemmen (1992) show that in an 

oscillatory retrieval state the spiking noise and the internal time constraints of the neurons 

become important and determine the behaviour of the system. Hopfield-like neural 

networks are capable of performing Boolean factor analysis of signals of high dimension 

and complexity Frolov et al (2006). Factor analysis is a procedure which maps original 

signals into the space of factors. This ability is based on the fact that, due to the 

correlational Hebbian rule, factors become attractors of the network dynamics.  

 
The use of complex spiking neurons in large nets has shown similar characteristics to those 

found in the brain. Introducing further complexity in the form of multiple cell types with 

differing characteristics similar to actual neural structure has also shown important results. 

Frolov et al (2006) found adding one inhibitory neuron to the principal Hopfield network 

allows for suppression of two global spurious attractors that dominate the network 

dynamics when signals of a learning set have large complexity. This modification of 

network architecture allows also to avoid the reduction of sizes of attraction basins around 

factors which is observed in the network of common architecture. In the paper they show 

that it allows to avoid worsening of network properties in response to complexity increase.  

 

Lengyel and Dayan (2005) use well-founded Bayesian probabilistic autoassociative recall 

to derive biologically reasonable neuronal dynamics in recurrently coupled networks, 

together with appropriate values for parameters such as the membrane time constant and 

inhibition to show realistic neural activity compared to canonical computational models. 

They initially use a standard Hebbian learning rule which involves activity patterns that are 

coded by graded firing rates. In correlation they then use a spike timing dependent learning 

rule and involve patterns which are coded by the phase of spike times, relative to a coherent 
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local field potential oscillation. These methods may help to develop a more complete 

understanding of how neural dynamics may support autoassociation.  

 
 

2.7 Associative Memory in biologically realistic models 

2.7a Overview 

As described earlier there has been much study into associative memory and biologically 

based networks where network associative memories are commonly compared to models of 

associative memory in the brain. However, simplification of the models investigated runs 

concurrent with a lack of full biological understanding and level of computational power 

needed to run large complex simulations. Memory in the brain, as a function, is still 

contested when considering the complex architecture and dynamics associated with the 

operation of different cell types contained in known associated regions such as the 

hippocampus. 

 
Many of the difficulties found in exploring the theory of associative memory in the brain, 

are to understand the key aspects of operation: 

 
1. What information is being processed? 

 
2. How is the information coded in the spatio-temporal structure of neural activity? 

 
3. What computational operations are performed by these networks? 
 

 

2.7b Biological Complexities – network structural overview 

As described earlier, a basic ANN model can be extended using a logical progression from 

simple McCulloch and Pitts, two-state nodes to models containing a population of spiking 

neurons. These networks have only a few biologically realistic characteristics found in the 

mammalian brain. The abstract models are usually fully connected and in earlier models 

neglect the effect of inhibitory interneurons or inhibition within the network. These models 

of associative memory have been used to deeper understand the functions of cortical 
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structures, (Hopfield, (1984),  Kohonen (1972, 1988),  McNaughton and Morris (1987)) and 

Treves and Rolls (1991) where they investigate threshold-linear units, which approximate 

the real firing behaviour of pyramidal neurons in a simplified form, in an analytical study of 

large autoassociative neural networks. The networks used extend previous results on 

threshold-linear networks to a much larger class of model, by considering various changes 

in complexity such as different connectivities (including full feedback, highly diluted and 

multilayer feedforward architectures), adjusted versions of Hebbian learning rules, and 

different distributions of firing rates (including realistic, continuous distributions of rates). 

This allowed an evaluation of the main factors which may affect, in real cortical networks, 

the capacity for storage and retrieval of discrete firing patterns. They also show that auto 

associative memory models based on cooperative parallel processing, can function, and 

function efficiently and also when freed of some of the unrealistic features associated with 

these models. This shows that biological graded response networks can store and retrieve 

non-binary patterns, even patterns with exponentially scarce fast-firing neurons.  

 

2.7c Biological complexities – Inhibition overview 

The CA3 undergoes gamma frequency periodic inhibition that prevents a persistent attractor 

state. This argues against the analogy to Hopfield nets, in which an attractor state can be 

used for working memory. However, de Almeida et al. (2007) show that such periodic 

inhibition allows one cycle of recurrent excitatory activity and that it is sufficient for 

memory retrieval. Thus, gamma oscillations are compatible with long term autoassociative 

memory function for CA3. A second goal of their work was to evaluate previous methods 

for estimating the memory capacity of CA3. They conclude that the physiological and 

anatomical findings of CA3a are consistent with an autoassociative function.  

Barkai et al (1994) analyse a realistic simulation of associative memory based on the rat 

piriform cortex which contained realistic inhibitory circuits provided by two types of 

inhibitory cells, where there were 240 pyramidal cells and 58 of each type of inhibitory cell. 



37 

 

The cellular models were complex compartmental models with experimentally derived 

transmission delays along the axons. The network contained both feedback and feedforward 

inhibition. They highlight that a detailed biophysical simulation of cortical function has 

advantages over more abstract neural network models because it allows the examination of 

how specific physiological parameters of cortical networks influence cortical function 

(Wilson and Bower 1989, 1992). Barkai et al (1994) use their complex model to analyse 

how neuromodulatory agents influence cortical associative memory function. 

 

2.7d Biological Complexities – Sommer and Wennekers 
  
All these models are logical extensions of artificial  neural  network models. With the 

complexity of the hippocampus and the theory of associative memory the basic paradigms 

which ignore such complications as cell population, cell structure/dynamics, spatio-

temporal parameters, network connectivity, network structure (such as cell types), 

frequency of activity, spiking/bursting properties and pattern storage can all be explored by 

modifying existing theories. 

 
Sommer and Wennekers (2001) investigated associative memory using a pool of connected 

cells, biologically realistic and well tested, using a structured connectivity matrix with a 

means of global inhibition via synaptic responses activated by excitatory cell activity. The 

questions raised were examined using the network and two separate types of external input. 

Notably, using static direct current injection the addressed memory becomes an attractor of 

the network dynamics, phase-locked rhythmic activity of the neurons in the addressed 

pattern at the gamma-frequency range.  

 
Biological reliability of an associative neural network was intended through the use of two-

compartmental bursting neurons, instead of single compartment simple integrate and fire 

neurons, and reduced connectivity, to fit with neurophysiological data, with the functional 

role of the inhibition as a means of network activity synchronization. With the structure of 
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the network relatively simplistic for a small group of principal cells and the simple 

interpretation of the inhibitory feedback loops the functionality of associative memory 

could still be hypothesised. Comparable to research on simple artificial neural nets, 

Sommer and Wennekers studied the range of high memory capacity, robustness of efficient 

retrieval with varied memory load, the excitation/inhibition parameters and the background 

activity. Other biologically based networks in the field explore principles less comparable to 

optimally tuned formal associative memory (Jensen and Lisman, 1996; Jensen, Idiart and 

Lisman, 1996; Menschik and Finkel, 1998).  

 

Sommer and Wennekers (2001) used the two-compartment neuron model of Pinsky and 

Rinzel (1994), see chapter 3, section 3.1 for exact dynamic equations and parameter 

settings. Compared to integrate-and-fire neurons, the Pinsky-Rinzel model shows a richer 

dynamic behaviour in that neuronal activity, such as spiking, bursting or chaotic 

combinations of these behaviours, is determined by the value of the coupling parameter 

between the soma and the dendrite. Using a Hebbian synaptic modification in a structured 

connectivity matrix Sommer and Wennekers (2001) store a set of patterns in a network 

containing 100 Pinsky Rinzel pyramidal cells. In their model, the synaptic transmission 

efficacy is formed in a Hebbian learning phase preceding retrieval trials (Willshaw et al., 

1969). See chapter 4, section 4.1 for explicit details of network characteristics. Inhibition in 

the network is not constant and they assume that it is roughly proportional to the 

instantaneous ensemble averaged firing activity of the principal cells. Inhibition will then 

act as a threshold control that moderates the activity level in the network and keeps the 

activity from unphysiological states. 
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2.7.1 Complex Cell Models 

Network configurations have been made more complex by introducing many characteristics 

of global network features in biology but the complexity of individual signal processing 

units have many features which could be assessed as having highly important properties 

locally. Graham (2001) investigates computational simulations of a hippopcampal 

pyramidal cell which is used to estimate the effects of synaptic and spatio-temporal noise on 

such a cell's ability to accurately calculate the weighted sum of its inputs, presented in the 

form of transient patterns of activity. Comparison is made between the pattern recognition 

capability of the cell in the presence of this noise and that of a noise-free processing node in 

an artificial neural network model of a heteroassociative memory. Characteristics of these 

networks show that spatio-temporal noise due to the spatial distribution of synaptic input 

and quantal variance at each synapse reduce the accuracy of signal integration and with that 

the ability to recall patterns in the cell. Graham (2001) shows that asynchrony in action 

potential (signal) arrival at different synapses can improve signal integration. It is common 

to assume the passive-resistive properties of dendrites as merely a channel of excitatory 

postsynaptic potential's to the main cell body component but it has been shown that signal 

amplification by voltage-dependent conductances in the dendrites, provided by synaptic 

NMDA receptors, and sodium and calcium ion channels, also improves integration and 

pattern recognition. While the biological sources of noise are significant when few patterns 

are stored in the associative memory of which the cell is a part, when large numbers of 

patterns are stored, noise from the other stored patterns come to dominate the pattern 

recognition process. Under these conditions Graham (2001) found that the pattern 

recognition performance of the pyramidal cell is within a factor of two of that of the 

processing node in the artificial neural network version. It follows that despite many 

sources of noise, a pyramidal cell can quickly recognise transiently presented patterns of 

input. This supports the hypothesis that networks of pyramidal cells can operate as 

associative memory devices and recall stored patterns at gamma frequency. Cortical 
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pyramidal cells commonly show adaptation of firing frequency in response to sustained 

current injection (Agmon and Connors 1992; Connors and Gutnick 1990). It can also be 

assumed that estimates of the memory capacity of biological networks can reasonably be 

based on the capacity of artificial models using simple computing units (Barkai and 

Hasselmo, 1994). Spatio-temporal distribution of input signals and variation in signal 

arriving times act to distort the linear summation of inputs by the neuron. Increases in peak 

synaptic conductances with distance and boosting of distal inputs by voltage-dependent 

conductances act to reduce these spatial variations. Preferential amplification of large 

signals by voltage-dependent conductances also aids discrimination of such signals from 

weaker inputs. The cell's ability to act as a pattern recognition device is sufficient that a 

network of cortical pyramidal cells can function as an associative memory when Hebbian 

learning is used to store patterns by altering connection weights.  

 
The rules of synaptic integration in pyramidal cells remain obscure, in part due to 

conflicting interpretation of existing experimental data. Poirazi et al., (2003) developed a 

CA1 pyramidal cell model calibrated with a broad spectrum of in vitro data. Using 

simultaneous dendritic and somatic recordings and combining results for two different 

response measures (peak versus mean EPSP), two different stimulus formats (single shock 

versus 50Hz trains), and two different spatial integration conditions (within versus between 

branch summation), they found that the cell's subthreshold responses to paired inputs are 

best described as a sum of nonlinear subunit responses, where the subunits correspond to 

different dendritic branches. 

Poirazi et al. (2003) discuss the functional implication, or the information processing 

functions of a pyramidal neuron, which is the principal cell type in cortical tissue. 

Pyramidal cell dendrites contain a large number and a variety of voltage-dependent 

channels distributed non-uniformly throughout the dendritic tree, which heavily influence 

the cells integrative behaviour. It is also suggested elemental synaptic conductances may 

vary as a function of the location on the dendrite (Magee and Cook, 2000). Poirazi et al 
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(2003) hypothesise that the long, thin, unbranched, synapse-rich terminal dendrites may act 

like classical neuron-like summing units, each with its own quasi-independent subunit 

nonlinearity. The cell body for its part, fed either directly by the basal dendrites or by the 

main trunk which acts as a high-efficiency conduit from the apical dendrites, sums together 

the dendritic subunit outflows to determine the cell’s overall response.  

 
Both the excitability of a neuron's membrane, driven by active ion channels, and dendritic 

morphology contribute to neuronal firing dynamics, but the relative importance and 

interactions between these features remain poorly understood. Recent modelling studies 

have shown that different combinations of active conductances can evoke similar firing 

patterns, but have neglected how morphology might contribute to homeostasis. Weaver and 

Wearne (2008) parameterise the morphology of a cylindrical dendrite and they introduce a 

novel application of mathematical sensitivity analysis that quantifies how dendritic length, 

diameter, and surface area influence neuronal firing, and compare these effects directly 

against those active parameters. The neurons used exhibit and likely contribute to a simple 

model of working memory, which maintains a brief mental representation of a recent event 

necessary for future task performance, and is one function thought to exploit the 

computational capacity of dendrites. Persistent neural activity, a hallmark of working 

memory, has been observed throughout the brain. They introduce sensitivity landscapes, 

defined by local sensitivity analyses of firing rate and gain to each parameter, performed 

globally across the parameter state. Principal directions over which sensitivity to all 

parameters varied most revealed intrinsic currents that most controlled model output. 

Weaver and Wearne (2008) found domains where different groups of parameters had the 

highest sensitivities, suggesting that interactions within each group shaped firing behaviours 

within each specific domain. Although this study is not directly associated with associative 

memory, the study of morphologic and active membrane parameters with emphasis on 

neuronal firing are important features found within the Hippocampal circuitry.  
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2.7.2 Learning Rules  

2.7.2a STDP 

Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of 

connections between neurons in the brain (Markram et al., 1997). The process adjusts the 

connection strengths based on the relative timing of a particular neuron’s output and input 

action potentials.  

A common feature of associative memory models is the use of a clipped Hebbian learning 

rule. Learning and plasticity in terms of activity and rhythmic oscillations has been shown 

to occur physiologically but is often assumed in abstractions of neural network 

configurations. Sato and Yamaguchi (2003) investigate the role of spike time dependant 

plasticity and phase precession which has associated the contribution of phase precession to 

episodic memory. Memory storage in the behavioural timescale varies in timescale of the 

temporal sequence. During the learning stage, an input sequence is introduced into the input 

layer, where the individual units in the ECII layer are activated to give a temporal pattern. 

The temporal pattern is transmitted into the CA3 layer, where connection weights evolve 

according to the temporal pattern and the learning rule. The resulting connection weights 

after learning in the CA3 layer are expected to store the temporal sequence of input. It is 

known that the postsynaptic activation within the time delay of a after presynaptic 

activation results in long term potentiation (LTP). It has also been shown that long term 

depression (LTD) has a time window with reverse time delay. Although these timescales for 

STDPs are smaller than the period of the theta cycle, either of the two STDPs for LTP and 

LTD will be considered by Sato and Yamaguchi (2003) by using the delta function. The 

time evolution of the connection aij is formulated in a modified Hebbian rule with STDP, 

where the time evolution of aij is described by 

ijjijairajiaija atptptpTtpCTtptpCa  )}()({)}()()()({ , with 

)))((cos()( 3 tPtp CA

ii  , where a  is the time constant of aij, Ca, and Cr are positive 
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constants. Cr denotes the ratio of LTD to LTP. The first and second terms on the right-hand 

side represent the time-dependent LTP and LTD, respectively. The third term represents the 

decay of aij. Thus concluding that encoding by phase precession is appropriate for memory 

storage of the temporal sequence on the behavioural timescale.  

 

Similarly, Izikevich (2006) showed that a minimal spiking network that can polychronize 

i.e.  exhibit reproducible time-locked but not synchronous firing patterns with millisecond 

precision, as in synfire chains. Their network consists of cortical spiking neurons with 

axonal conduction delays and spike time dependent plasticity. The network exhibits sleep 

like oscillations, gamma rhythms and conversion of firing rates to spike timings. Due to 

interplay between the delays and spike time dependent plasticity, the spiking neurons 

spontaneously self-organise into groups and generate patterns with coexisting polychronous 

activity. For plasticity in the network, synaptic connections among neurons have fixed 

conduction delays, which are random integers between 1 ms and 20 ms. Excitatory synaptic 

weights evolve according to the STDP rule. 
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Fig 2.7: STDP rule: The weight of synaptic connection from pre- to postsynaptic neuron is increased 

if the postneuron fired after the presynaptic spike, that is, the interspike interval t > 0. The magnitude 

of change decreases as 



/t
eA . Reverse order results in a decrease of the synaptic weight with 

magnitude 



/t
eA . 

 

The magnitude of change of synaptic weight between a pre- and a postsynaptic neuron 

depends on the timing of spikes: if the presynaptic spike arrives at the postsynaptic neuron 

before the postsynaptic neuron fires – for example, it causes the firing – the synapse is 

potentiated. Its weight is increased according to the positive part of the STDP curve in Fig 

2.7 but does not allow growth beyond a cut-off value, which is a parameter in the model. In 

the simulation, they use the value 10 mV, which means that two presynaptic spikes are 

enough to fire a given postsynaptic cell. If the presynaptic spike arrives at the post synaptic 

neuron after it fired, that is, it brings the news late, the synapse is depressed. Its weight is 

decreased according to the negative part of the STDP curve. Thus, what matters is not the 

timing of spiking per se but the exact timing of the arrival of presynaptic spikes to 

postsynaptic targets (Markram et al., 1997).  

 



45 

 

Investigation of the network shows that the number of coexisting polychronous groups far 

exceeds the number of neurons in the network, resulting in a large increase in memory 

capacity of the system. Given these findings they speculate the significance of polychrony 

to the theory of neuronal group selection, cognitive neural computations, binding and 

gamma rhythm. Furthermore, extension in terms of biological plausibility which 

contextualises the theory on plasticity or pattern storage in networks of associative memory 

have shown further complexities where zero-lag synchronous oscillations have been 

confirmed several times in biological experiments as well as successfully reproduced and 

simulated by theoreticians (Hebb, 1949; Durstewitz et al. 2000; Palm, 1982; Markert, 

2008).  

Hauser et al. (2010) analyse how synaptic changes develop through spike time dependent 

plasticity in a neural network and which physiological parameters have a qualitative 

influence on the synaptic strengths in long-term behaviour. They use the standard additive 

STDP function )( tW   (Morrison et al. 2008) and using a pre-synaptic event, they 

distinguish between a Nearest-Neighbour (which is paired with the both nearest post-

synaptic ones in time) and an All-to-All interaction (all possible interactions). They 

analytically calculate these synaptic changes based on a simplified scheme which enables 

them to make conclusions about local and global connectivity patterns with the ability to 

produce zero-lag synchronous oscillations. It is found that a reset of potentiation strength 

occurs at every multiple of the oscillation frequency. So a consequent sharp transition 

constraint of the delay-specific strengthening arises together with the oscillation frequency. 

To overcome this problem with regard to local assemblies, i.e. small delays, Hauser et al 

(2010) derived upper and lower bounds for spike time dependent plasticity parameter 

relationships.  

They tested these inequalities with several parameter settings from experimental 

measurements with a 50 Hz pairing frequency and were unable to accurately find a 

conclusive satisfying setting. As a consequence it appears that pair-based additive spike 
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time dependent plasticity does not permit the persistence of local assemblies and strongly 

controls delay-specific strengthening of synapses of global assemblies.  Similarly, Hauser et 

al. (2009) implement a model of leaky-integrate-and fire neurons with conductance-based 

synapses. Neurons are structurally coupled in terms of an ideal cell assembly. Synaptic 

changes occur through parameterised spike timing-dependent plasticity rules which allows 

them to investigate the question whether cell assemblies can survive or even be 

strengthened by such common learning rules. 

  

2.7.2b Hebbian 

The Lisman (1999) model is concerned primarily with storing spatial patterns of spikes as 

reverberating activity that repeats in the same gamma window patterns of each theta 

rhythm. This model was later extended to provide for synaptic storage of these patterns and 

autoassociative recall. Although it is an elegant representation of working memory, the 

Lisman model is comprised of non-physiological cells defined by algebraic approximations 

to the appropriate differential equations, thereby removing much of the complexity of actual 

cells. The effect of cholinergic modulation on associative memory function was studied in a 

computational model based on the physiology and anatomic structure of piriform cortex 

Hasselmo et al (1992). In the model distributed input patterns representing odors were 

stored in the model with the use of a synaptic modification rule dependent on pre- and 

postsynaptic activity (i.e. Hebbian). Associative recall of these patterns was tested by 

presenting the model with degraded versions of the learned patterns and testing whether 

these degraded patterns evoked the same network response as the full learned input pattern. 

Storage was evaluated with the use of a performance measure designed to reflect how well 

degraded input patterns could be recognised as a particular learned input pattern. When 

memory function was evaluated with a selective cholinergic suppression of intrinsic fiber 

synaptic transmission during learning, associative memory performance was greatly 

enhanced. Cholinergic suppression during learning prevents previously stored patterns from 
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interfering with the storage of new patterns. When memory function was evaluated with a 

cholinergic mediated enhancement in cell excitability during learning, the speed of learning 

increased, but so did the decay in performance due to interference during learning. When 

suppression of intrinsic fiber synaptic transmission was coupled with an increase in cell 

excitability, the best memory performance was obtained. These results provide a possible 

theoretical framework for linking the neuropharmacological effects of acetylcholine to 

behavioral evidence for a role of acetylcholine in memory function. This could help 

describe how memory deficits might arise from cholinergic dysfunction in diseases such as 

Alzheimer's.  

 

Okatan and Grossberg (2000) investigate whether Hebbian pairing in cortical pyramidal 

neurons potentiate or depress the transmission of a subsequent presynaptic spike train at 

steady-state depending on whether the spike train is of low frequency or high frequency, 

respectively (Markram and Tsodyks,  1996). The frequency above which pairing induced a 

significant decrease in steady-state synaptic efficacy was as low as 20 Hz and this value 

depends on synaptic properties such as probability of release and time constant of recovery 

from short-term synaptic depression. These characteristics of cortical synapses have not yet 

been fully explained by neural models, notably the decreased steady-state synaptic efficacy 

at high presynaptic firing rates. They suggest that this decrease in synaptic efficacy in 

cortical synapses was not observed at steady-state, but rather during a transition period 

preceding it whose duration is frequency-dependent. It is shown that the time taken to reach 

steady-state may be frequency-dependent, and may take considerably longer to occur at 

high than low frequencies. As a result, the pairing induced decrease in synaptic efficacy at 

high presynaptic firing rates helps to localise the firing of spike trains. This effect may 

speed up the time scale in response to high frequency bursts of spikes, and may contribute 

to rapid synchronisation of spike firing across cortical cells that are bound together by 

associatively learned connections.  
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2.7.3 Synchrony and Oscillations 

Experimental evidence suggest that synchronous neural oscillations reveal much about the 

origin and nature of cognitive processes such as memory, attention and consciousness 

where memory processes are most closely related to theta and gamma rhythms, (Ward, 

2003). 

 
Although theta oscillations are apparent in lower animals such as rats, they are seldom seen 

directly in EEG recordings from humans and it has been difficult to understand what the 

classically-observed increases in theta power meant (Kahana et al., 2001). However, 

intracranial EEG (iEEG) recordings made from epileptic patients have revealed strong theta 

oscillations from many areas of the human brain (Kahana et al., 1999; Caplan et al., 2001). 

In these experiments, periods in which theta oscillations were apparent were more frequent 

when patients were navigating through a virtual maze by memory alone, relative to when 

they were guided through the maze by arrow cues. The theta periods were longer the longer 

the maze. Theta did not covary, however, with the time taken to make decisions at choice 

points; instead gamma oscillations were more prevalent the longer the decision time. Thus, 

theta oscillations are more closely linked to encoding and retrieval in memory than they are 

to other cognitive processes.  

 

Gamma oscillations also play a prevalent role in memory. iEEG recordings from epileptic 

patients memorising words reveal that during successful memory formation, the rhinal 

cortex is first coupled to the hippocampus via 40 Hz gamma oscillations and then 

decoupled from it (Fell et al, 2001). Gamma oscillations have been suggested to be a 

general mechanism for accomplishing such transient coupling of functional brain areas 

based on evidence of gamma band coherence across the brain during associative learning 

(Miltner et al, 1999). Moreover, during successful recollection, as opposed to merely 

experiencing a feeling of familiarity, there is greater gamma-band functional connectivity 

between frontal and parietal cortex along with more spectral power in both theta and 
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gamma bands (Burgess and Ali, 2002). In this study, gamma-band activity was observed to 

be modulated at the theta rate. This suggests that interactions of gamma and theta activity 

might be involved in memory function. 

 

Barkai et al. (1994) describe a biophysical network simulation designed to explore the 

possible associative memory function of the piriform cortex. The piriform cortex shows 

anatomic and physiological characteristics with a general resemblance to the structure and 

function of associative memory models. Although their model shows the basic 

characteristics of associative memory function, the dynamics of the network differ from the 

more abstract models of associative memory function. In linear associative memory models, 

recall dynamics consist of a single step matrix multiplication. In attractor networks, recall 

dynamics involve a long-term settling of activity, usually with asynchronous stochastic 

update of units. The associative memory function of the biophysical simulation depends 

strongly on the relative timing of the excitatory and inhibitory influences within the 

network. In the model, effective recall function was obtained when excitatory activity 

elicited by afferent input was followed by a stage of strong GABAA inhibition. Thus the net 

had cyclical dynamics dependent on inhibitory influences. 

 
Yoshida et al (2002) investigate stochastic resonance in a hippocampal network model. The 

hippocampal model consists of two layers, CA3 and CA1. Pyramidal cells in CA3 are 

connected to pyramidal cells in CA1 through Schaffer collateral synapses. The CA3 

network causes spontaneous irregular activity, while the CA1 network does not. The 

activity of CA3 causes membrane potential fluctuations in CA1 pyramidal cells. The CA1 

network also receives a subthreshold signal through the perforant path. The subthreshold 

perforant path signals can fire CA1 pyramidal cells in cooperation with the membrane 

potential fluctuations that work as noise. The firing of the CA1 network shows typical 

features of stochastic resonance. When the frequency of the perforant path signal is in the 

gamma range, stochastic resonance that takes place in the present model shows distinctive 
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features. 50 Hz firing of CA1 pyramidal cells is modulated by the membrane potential 

fluctuations, resulting in bursts. Such burst firing in the CA1 network, which resembles the 

firing patterns observed in the real CA1, improves performance of subthreshold signal 

detection in CA1. Moreover, memory embedded at Schaffer collateral synapses can be 

recalled by means of stochastic resonance. When Schaffer collateral synapses in subregions 

of CA1 are augmented three-fold as a memory pattern, pyramidal cells in the subregions 

respond to the subthreshold perforant path signal due to stochastic resonance, while 

pyramidal cells in the rest of CA1 do not fire.  

 
As discussed earlier, it has been proposed that rhythmic coupling indicates exchange of 

information (Jensen, 2001).  Recent results on hippocampal place cells of the rat provide 

new insight where it has been shown that information about space is encoded by the firing 

of place cells with respect to the phase of an ongoing theta rhythm. This principle is termed 

phase coding and suggests that upcoming locations (predicted by the hippocampus) are 

encoded by cells firing late in the theta cycle, whereas current location is encoded by early 

firing at the theta phase. A  network reading the hippocampal output must inevitably also 

receive an oscillatory theta input in order to decipher the phase coded firing patterns. By 

changing only the phase of the theta input to the decoder, qualitatively different information 

is transferred.  The theta phase determines whether representations of current or upcoming 

locations are read by the decoder. Information transfer is blocked if the theta inputs to the 

two networks are in anti-phase. The proposed mechanism provides a computational 

principle for information transfer between oscillatory networks and might generalise to 

brain networks beyond the hippocampal region. Jensen (2001) proposes a simple, but 

biophysically plausible, mechanism for information transfer between rhythmically coupled 

networks. The mechanism was tested on a model for the CA3 region of the hippocampus, 

which can produce phase coded spatial information by repeated read out of spatio-temporal 

firing patterns. A network receiving the hippocampal firing pattern, but not the theta input, 

would only be able to decipher the firing rates and extract less detailed information. Hence, 
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the rhythmic coupling is computationally advantageous since it allows transfer and 

decoding of phase coded representations.  

 
 
Although signalling between neurons is central to the functioning of the brain, Tsodyks and 

Markram (1996) study how the code used in signalling depends on the properties of 

synaptic transmission. Theoretical analysis combined with patch clamp recordings from 

pairs of neocortical pyramidal neurons revealed that the rate of synaptic depression, which 

depends on the probability of neurotransmitter release, dictates the extent to which firing 

rate and temporal coherence of action potentials within a presynaptic population are 

signalled to the postsynaptic neuron. The postsynaptic response primarily reflects rates of 

firing when depression is slow and temporal coherence when depression is fast.  A wide 

range of rates of synaptic depression between different pairs of pyramidal neurons was 

found, suggesting that the relative contribution of rate and temporal signals varies along a 

continuum. We conclude that by setting the rate of synaptic depression, release probability 

is an important factor in determining the neural code.  

 
 

2.7.4 Network configuration 

Biologically inspired networks, such as the networks used in Jensen et al. (1996) which 

investigated networks that integrate models of Short-Term Memory and Long-Term 

Memory whilst comparing data from brain regions involved in memory function, look at 

more complex dynamical issues than in Sommer and Wennekers (2001). Jensen et al. 

(1996) comprise existing theory of the function of memory in the brain by applying a 

multiplexed Short–Term Memory buffer that can actively maintain about seven memories, 

which is comparable to short term memory in humans, where a memory is encoded by a 

subset (in the integrated Short-term and Long-term net) of principal cells that fire 

synchronously in a particular gamma subcycle. It has been shown that recordings from 

brain regions involved in memory function has shown dual oscillations in which each cycle 
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of a low frequency theta oscillation is subdivided into about 7 subcycles by high frequency 

gamma oscillations (Jensen et al 1996). It has been proposed (Lisman and Idiart 1995) that 

such networks are a multiple complex short term memory buffer that can actively maintain 

about 7 memories, a capability of human short term memory. A memory is encoded by a 

subset of principal neurons that fire synchronously in a particular gamma subcycle. This 

firing is maintained by a complex membrane process intrinsic to each cell. Jensen et al 

(1996) extends this model by incorporating recurrent connections with modifiable synapses 

to store long-term memory. The repetition provided by short term memory gradually 

modifies synapses in a physiologically realistic way. Since different memories are active in 

seperate gamma subcycles, the formation of autoassociative long term memory requires that 

synaptic modifications depend on NMDA channels having a time constant of deactivation 

that is of the same order as the duration of a gamma subcycle. Many types of NMDA 

channels have longer time-constraints, as for instance those found in the hippocampus, but 

both fast and slow NMDA channels are found within cortex. The short term memory for 

novel items must depend on activity-dependent changes intrinsic to neurons rather than 

recurrent connections which do not have the required selectivity. Because these intrinsic 

mechanisms are not error correcting the short term memory will become slowly corrupted 

by noise. This effectively will limit the accuracy with which long term memory can become 

encoded after a single presentation. Accurate encoding of items in long term memory can be 

achieved by multiple presentations. This is provided that different memory items are 

presented in a varied and interleaved order. The results of this configuration indicate that a 

limited memory capacity short term memory model can be integrated in the same network 

with a high capacity long term memory model. Hence they have extended  the existing 

short term memory model by incorporating recurrent connections, as in the auto-associative 

memory used in Sommer and Wennekers (2001), with modifiable synapses to store long 

term memory and the repetition provided by short term memory modifies synapses over 

time in a set of known physiological procedures.  
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Modifiable synaptic connections can give good memory performance in associative and 

pattern classification tasks. Advantages have been shown in auto-associative memory tasks 

if connections can be modified in independent ways (Graham and Willshaw, 1995), given 

by temporary and independent weights. The modifications occur with different time courses 

and conditions which can correspond to short-term and long-term memory.  

 
 Sommer and Wennekers (2001) applied stored patterns in a network of spiking cells from a 

binary weight matrix assuming long term potentiation and long term depression and were 

concerned with investigating the properties of recall and therefore only looking at synaptic 

transmission. In extension Jensen and Lisman (1996) and Jensen et al (1996) examine the 

role of slow NMDA channels in networks that multiplex different memories in different 

gamma subcycles of a low frequency theta oscillation. The NMDA channels are in the 

synapses of recurrent collaterals and regulate synaptic modification in accordance with 

known physiological properties. It has been shown that slow NMDA channels have a time-

constant that spans several gamma cycles and thus synaptic connections will form between 

cells that represent different memories. This enables neural structures that have slow 

NMDA channels to store heteroassociative sequence information in long-term memory. 

Recall of this stored sequence information can be initiated by presentation of initial 

elements of the sequence. The remaining sequence is then recalled at a rate of 1 memory 

every gamma cycle. A new role for the NMDA channel suggested by their finding is that 

recall at gamma frequency works well if slow NMDA channels provide the dominant 

component of the excitatory postsynaptic potential at the synapses of recurrent collaterals, 

hence, the slow onset of these channels and their long duration allows the firing of one 

memory during one gamma cycle to trigger the next memory during the subsequent gamma 

cycle. An interesting feature of the readout mechanism is that the activation of a given 

memory is due to cumulative input from multiple previous memories in the stored 

sequence, not just the previous one. The network thus stores sequence information in a 

doubly redundant way where activation of a memory depends on the strength of synaptic 
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inputs from multiple cells of multiple previous memories. Cumulative learning also 

provides a solution to the disambiguation problem that occurs when different sequences 

have a region of overlap and has been found in psychophysical literature. Finally using an 

autoassociative network coupled to a heteroassociative network allows the storage of 

episodic memories. The autoassociative network captures the sequence in a short term 

memory and provides the accurate, time-compressed repetition required to drive synaptic 

modification in the heteroassociative network. This model incorporates many aspects of 

neurophysiology and is a mechanistically highly detailed model which shows how known 

brain properties, including network oscillations, recurrent collaterals, AMPA channels, 

NMDA channel sub types, the after-depolarisation, ADP, and the after-hyperpolarisation, 

AHP, can act together to accomplish memory storage and recall. Furthermore, Hippocampal 

recordings show that different place cells fire at different phases during the same theta 

oscillation, probably at the peak of different gamma cycles. As a rat moves through the 

place field of a given cell, the phase of firing during the theta cycle advances progressively, 

Jensen and Lisman (1996).  

 
Burst firing is a prominent feature of cortical pyramidal cells and is thought to have 

significant functional roles in reliable signalling and synaptic plasticity (Kepecs and Wang, 

2000). Investigation by modelling have successfully explained possible biophysical 

mechanisms underlying the complex bursting found in pyramidal cells. Using Pinsky-

Rinzel CA3 reduced pyramidal cell-type models using the fast and slow variable analysis 

method Kepecs and Wang (2000) show that complex bursting is an instance of square wave 

bursting, where the dendritic slow potassium conductance is the single slow variable. The 

coupling parameters between the two compartments change the topological class of 

bursting thereby altering the firing patterns of the neuron. These results explain the diverse 

set of firing patterns seen with different configurations of the apical dendrites. Extrapolating 

to network conditions, brief bursts of high-frequency action potentials represent a common 

firing mode of pyramidal cells and Kepecs et al. (2002) find there are indications that they 
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represent a neural code. They investigate whether there are particular spatial and temporal 

features of neuronal inputs that trigger bursts. Recent work on pyramidal cells indicates that 

bursts can be initiated by a specific spatial arrangement of inputs in which there is 

coincident proximal and distal dendritic excitation (Larkum et al. 1999). Using a model of 

bursting neurons to investigate whether there are special temporal features of inputs that 

trigger bursts, Kepecs et al. (2002) find that when a model pyramidal neuron receives wave 

cycle or random varying inputs, bursts occur preferentially on the positive slope of the input 

signal. Furthermore, they find that the number of spikes occurring per burst can signal the 

magnitude of the slope in a graded manner and the possibility that neurons use a burst 

duration code which could be useful for rapid information transmission.  

 
Sommer and Wennekers (2001) and Jensen et al (1996) both have modeled known 

theoretical principles of associative memory in networks of spiking neurons. In particular, 

Jensen et al (1996), where a model of storage through a known process is replicated 

extending the model of recall investigated in Sommer and Wennekers (2001). Neurons are 

very complex with many dendritic and axonal branches that are commonly reduced to test 

the theory of associative memory where assumption that a single cell can be modeled in a 

simple “black-box” approach. Information procession in biological networks occurs 

through interactions between discrete spatially distributed processing elements-neurons, 

Lubenov (2003). The biophysical study of neurons suggests that the basic computation 

neurons implemented consists of integrate and fire steps. In the integration step the neuron 

weighs and sums its inputs and if the result exceeds a fixed threshold, it generates or fires, a 

discrete unitary output event called an action potential or spike. In this simplified 

framework the nature of the computation is determined by the structure of the weights 

through which individual elements communicate. The modification of the connection 

weight matrix as a function of experience is believed to be the physical basis for learning 

and memory. Recent evidence suggests that the rules for weight modification are 

determined by the timing of the input and output spikes, a discovery that launched the field 



56 

 

of spike timing dependent plasticity. Another line of research has shown that the excitability 

of individual elements is modulated by various oscillatory modes of different spatio-

temporal structure. 

 
Similarly, biologically realistic cell connectivity in many columnar associative memories 

can be connected together as a method of investigation into associative memory functions 

using attractor network models of areas such as the hippocampus and cortical columns.  

Fransen and Lansner (1998) investigated small groups of cells within columns as the rate-

coding sub units of the cortex. In the model they use six-compartment pyramidal cells with 

Hodgkin and Huxley type equations and with three compartment inhibitory interneurons. 

Fransen and Lansner (1998) used a model with a higher total quantity of cells than the 

networks described before. There is a total of 750 cells distributed throughout the network 

where there are 50 columns. Each column holds 12 pyramidal cells and 3 inhibitory 

interneurons. Within a column the pyramidal cells are connected densely and the inhibitory 

interneurons in a single column only contact the local pyramidal cells. The structure within 

a single column can be directly compared to, with a reduced population of cells, the 

network used in Sommer and Wennekers where the connectivity was symmetric and dense 

with, in principle, the same functionality. The main difference between the attractor model 

of associative memory with connected columns is the inclusion of excitatory long range 

connections. Inter-columnar connectivity is from pyramidal cells in one column (the 

sending column) to pyramidal cells in another column (the receiving column) and the 

disynaptic inhibitory drive in each column is controlled by the activity from pyramidal cells 

in the sending column to the inhibitory interneurons in the receiving column. This inter-

columnar connectivity gives a contrast in standard symmetrically and densely connected 

networks of associative memory using spiking neurons, where in this model the 

connectivity is varied through long range connections between populations of cells where 

connectivity is sparse and asymmetric. Also within these columnar populations of cells the 

connections are symmetric and have a dense connectivity between cells.  
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Although operation of an artificial neural network can be compared to the anatomical 

characteristics of the hippocampus, networks of associative memory using binary modules 

can possibly be improved in terms of biologically inspired networks of associative memory. 

Lansner and Fransen, (1992) have developed a highly simplified network model of cortical 

associative memory, based on Hebb's theory of cell assemblies. The network is comprised 

of realistically modeled pyramidal-type cells and inhibitory fast-spiking interneurons and its 

connectivity is adopted from a trained recurrent artificial neural network. After-activity, 

pattern completion and competition between cell assemblies is readily produced. Their 

results support the biological feasibility of Hebb's cell assembly theory. They demonstrate 

that Hebbian cell assembly related activity can be robustly produced under some reasonable 

assumptions. One important prerequisite is that the model of the excitatory neurons used is 

provided with properties of cortical pyramidal cells rather than motor neurons. The former 

typically shows low firing threshold, a depolarising after potential and a small and late after 

hyperpolarisation in comparison to the latter ones. Having the bursting property of a 

multicompartment cell can also be used to extend the model when looking at the precision 

of activity where Kepecs and Lisman (2003) show that the timing of bursts is more precise 

than the timing of single spikes.  

 
Investigating the architecture of biological networks associated with the theory of 

associative memory is often very abstract when trying to investigate principles such as 

recall and basic pattern storage in terms of network dynamics, as discussed earlier. It is 

argued that complicated cellular structures (Large multi-compartmental models) add more 

biological plausibility to a model, but also bring inherent complications through increased 

parameters and parameter ranges. Menschik and Finkel (1998) proposed an attractor 

associative memory as a model for the CA3 region in the hippocampus. In their model, 

memories are expressed by synchronized gamma activity persisting over a theta cycle. By 

developing this model Menschik and Finkel (1998) investigate the role of Alzheimer's 
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disease on physiologically realistic models with further complexity to both cellular, network 

and network configuration including cell numbers with context to inhibitory networks. 

Alzheimer's disease is a progressive neurodegenerative disorder of cognitive function 

whose cellular pathology and molecular etiology have been increasingly explored through 

thorough physiological investigation over several years. Despite the substantial knowledge 

base collected, the disease remains poorly understood due to a lack of understanding of how 

memories are stored and recalled in the brain. They describe a preliminary attempt at 

constructing a detailed model of these basic neural mechanisms with a focus, in particular, 

on the natural dynamics of neuronal activity in the CA3 region of the hippocampus and the 

modulation and control of these dynamics by subcortical cholinergic and GABAergic input 

to the hippocampus. Menschik and Finkel (1998) use sufficient cellular and subcellular 

detail to study the effect of Alzheimer's disease on the functional behaviour of the 

underlying neural circuitry. The network is based on the 66 compartment hippocampal 

pyramidal cell model of Traub and their 51 compartment interneuron connected with 

realistic AMPA, NMDA and GABAA mediated synapses. It has been shown that models 

with these characteristics are capable of synchronisation in the gamma frequency range 

(Traub et al., 1991). They demonstrate that the synchronisation mechanism can implement 

an attractor-based autoassociative memory where a new input pattern arrives at the 

beginning of each theta cycle, and the pattern of activity across the network converges, over 

several gamma cycles, to a stable attractor that represents the stored memory. In their 

model, cholinergic depreciation, one of the hallmarks of Alzheimer's Disease, leads to a 

slowing of the gamma frequency which reduces the number of “cycles” available to reach 

an attractor state. They suggest that this may be one mechanism underlying the memory 

loss and cognitive slowing seen in Alzheimer's Disease. This model is inspired by Buzsaki's 

'two-stage' memory model (Buzsaki, 1989) and his suggested role for interneurons (Buzsaki 

and Chrobak, 1995), and also has similarities to Lisman and Idiart (1995) in its reliance on 

theta and gamma rhythms.  

Implementing associative memory function in biologically realistic networks raises 
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difficulties not dealt with in previous associative memory models (Hasselmo, 1993). In 

particular, during learning of overlapping input patterns, recall of previously stored patterns 

can interfere with the learning of new patterns. Most associative memory models avoid this 

difficult by ignoring the effect of previously modified connections during learning, thereby 

clamping activity to the patterns to be learned. Hasselmo (1993) proposes that the effects of, 

the neurotransmitter, acetylcholine in cortical structures may provide a neurophysiological 

mechanism for this clamping. Brain slice experiments have shown that acetylcholine 

selectively suppresses excitatory intrinsic fiber synaptic transmission within the olfactory 

cortex, while leaving excitatory afferent input unaffected. In a computational model of 

olfactory cortex, this selective suppression, applied during learning, prevents interference 

from previously stored patterns during the learning of new patterns. Analysis of these 

models shows that the amount of suppression necessary to prevent interference depends on 

cortical parameters such as inhibition and the threshold of synaptic modification, as well as 

input parameters such as the amount of overlap between the patterns being stored. 

 

2.7.5 Phase Precession Models 
 
Hippocampal pyramidal cells in rats are selectively activated at specified locations in an 

environment (O'Keefe and Dostrovsky, 1971). Different cells are active in different places, 

therefore providing a faithful representation of the environment in which every spatial 

location is mapped to a particular population state of activity of place cells (Wilson and 

McNaughton, 1993). Tsodyks (1999) describes a theory of the hippocampus, according to 

which the map results from the cooperative dynamics of the network, in which the strength 

of synaptic interaction between the neurons depends on the distance between their place cell 

fields. This synaptic structure guarantees that the network possesses a quasicontinuous set 

of stable states that are localised in the space of neuronal variables reflecting their synaptic 

interactions, rather than their physical location in the hippocampus. As a consequence of the 

stable states, the network can exhibit place selective activity even without relying on input 

from external sensory cues. Jensen and Lisman (1996) investigate whether a recently 
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developed model of hippocampal and cortical memory function can explain this phase 

advance and other properties of place cells. According to their physiologically based model, 

the CA3 network stores information about the sequence of places traversed during learning. 

They show that phase advance can be understood if it is assumed that the hippocampus is in 

a recall mode that operates when the animal is already familiar with a path. In this mode, 

sensory information about the current position triggers recall of memories in the path at a 

rate of one memory per gamma cycle. Although these models are clearly more complex 

than the one used in Sommer and Wennekers and is based on known biological principles 

and looking at investigating the dynamics of memory in the brain the network dynamics, 

such as connectivity and network structure can still arguably be improved. 

 
Cells throughout the rodent hippocampal system show place-specific patterns of firing 

called place fields, creating a coarse-coded representation of location. The dependencies of 

this place code or cognitive map on sensory cues have been investigated extensively, and 

several computational models have been developed to explain them. However, place 

representations also exhibit strong dependence on spatial and behavioural context, and 

identical sensory environments can produce very different place codes in different 

situations. Several recent studies have proposed models for the computational basis of this 

phenomenon, but it is still not completely understood. Doboli et al. (2000) present a very 

simple connectionist model for producing context-dependent place representations in the 

hippocampus. Doboli et al. (2000) propose that context dependence arises in the dentate 

gyrus-hilus system, which functions as a dynamic selector, disposing a small group of 

granule and pyramidal cells to fire in response to afferent stimulus while depressing the 

rest. It is hypothesised that this system has latent attractor dynamics which are unmasked by 

the afferent input and channel system activity into subpopulations of cells in the DG, CA3 

and other hippocampal regions as observed experimentally. Their model shows that a 

minimally structured hippocampus like system can robustly produce context-dependent 

place codes with realistic attributes. The primary result of their model is that the inclusion 
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of a simple structured recurrent module in the hippocampal complex is sufficient to produce 

long-term, stable and reliable context dependence in CA3 place fields. However, an 

unstructured recurrent module is insufficient for this purpose.   

 

2.8  Summary 

 
2.8.1  Overview  
 
The study of neural networks has progressed from simple abstract models of binary units 

with limited reference to neurophysiological properties. The development of the Hopfield 

and Willshaw nets have led to the extensive study of their operations with extension to node 

properties, network configurations, learning rules and more explicit physiological properties 

such as spatial characteristics, ionic channels and temporal synchronous activity from 

inhibition. 

 

Reviewing the study of associative memory has shown several areas which will be 

investigated in this thesis: 

 

 Understanding the role of local inhibitory networks on the recall of stored patterns. 

 

 What is the effect of synaptic plasticity and the adaptation of cellular modification 

to filter out unwanted noise during recall.  

 

 What is the role of complex biologically plausible inhibitory network 

configurations on network activity during recall. 

 

 Does the spatial characteristics of dendrites after learning reduce unwanted noise 

during recall. 
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2.8.2 Thesis Overview 

This thesis will consider different associative memory network architectures involving 

biologically realistic models of excitatory and inhibitory cells, with the aim of improving 

and assessing the memory recall performance. Our initial network will be based upon the 

work proposed by Sommer and Wennekers (2001) with methods for improving recall 

inspired by Graham and Willshaw (1995) (see section 2.2.2) and further extensions which 

are presented in chapter 4. Before introducing these networks we will detail the cell models 

used and examine their properties.  

 

2.8.2.1 Biological Implementation 

Although the networks investigated show distinctive biological characteristics in 

architecture, there are many different aspects which could be modified towards a more 

complex biological model. The use of multi-compartment complex spiking excitatory 

neurons in place of threshold logic units would give more realistic firing properties. 

Inhibition either by synaptic action or by a full cellular model would add more complexity 

with a solid comparison with neurophysiology. Such networks have been investigated 

(Sommer and Wennekers, 2001) and will be explained in detail in the next chapter. Using 

this model and the findings for improving recall by Graham and Willshaw (1995) we will 

develop biologically realistic implementations to improve recall in this spiking neural 

network.  

 

An interpretation of the Normalised method in terms of neurophysiology would suggest a 

use of inhibition to proportionalise the input activity into the cell. Using a localised 

inhibitory network, or disynaptic inhibition to marginally reduce the excitatory post-

synaptic potential will reduce variations caused by missing or unmodified excitatory 

synapses. Similarly, unit usage has a biological implementation where the cell has a higher 

firing threshold the greater the unit usage. Hence, the average excitation a pyramidal cell 
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receives during recall increases the more patterns the pyramidal cell belongs to during 

storage. Excitatory synapses can then be scaled in proportion to the number of modified 

synapses to compensate. Another interpretation would be to apply a method which seeks to 

boost signals near threshold. This presumes that cells in a pattern will receive slightly more 

excitation than cells out-with a pattern. These methods will be explained in chapter 5. 
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Chapter 3 
 
3. Spiking Neural Network model of Associative Memory 
 
In this chapter we will explore the operation of the model pyramidal cells and the model 

basket cells used in various network configurations throughout the thesis. We will replicate 

the model of the Pinsky-Rinzel two-compartment pyramidal cell as a single cell model and 

test the operation of the cell when interconnected in a small pool. Similarly with the basket 

cell model proposed in Santhakumar et al (2005). In this Chapter we will specify all 

parameters and equations used in each of the cell models and introduce the model synapses 

which will be used. 

 
3.1 Cell Models 
 
For our networks, we chose the Pinsky-Rinzel two compartment model of a CA3 pyramidal 

neuron to use as the principal computing unit. This cell is a reduced model of Traub's 16 

compartment CA3 pyramidal cell and has been well tested in the field including Pinsky and 

Rinzel (1994) and Sommer and Wennekers (2001). The cell model is simple enough to use 

in large network configurations but it also has inherent complex properties found in a real 

cell, with simple spiking, bursting and some variation. For inhibition we use the 5 

compartment Basket Cell Model of Santhakumar et al (2005) which contains sodium and 

fast delayed rectifier potassium channels in the soma and proximal dendritic compartments 

with passive properties in all other dendritic sections.  All simulations were run in 

NEURON (Carnevale, and Hines, 2005). 
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3.1.1 CA3 Pyramidal Cell Model 
 
The Pinsky-Rinzel two compartment, eight variable, reduced model of a CA3 pyramidal 

cell (see Fig 3.1)  has soma-like and dendrite-like compartments, which are coupled 

electrotonically using the inductive parameter, cg , which represents the strength of 

coupling and the parameter pm, the percentage of total membrane area in the soma-like 

compartment.  

 

 
The soma-like compartment has similar characteristics to the Hodgkin-Huxley single 

compartment model (Hodgkin, and Huxley, 1952) where the soma has segregated fast 

currents (Potassium, DRKI −  and Sodium, NaI ) for sodium spiking. These similarities can be 

shown (Fig 3.2) by exciting the soma with a steady supply current and decoupling the 

dendrite by setting cg  to approximately zero thus inducing a spike train with distinctive 

and noticeably similar characteristics of the Hodgkin-Huxley model of action potential 

generation. The dendrite-like compartment contains three voltage-dependent calcium and 

calcium modulated potassium currents. The inward current Ica is carried by calcium and its 

activation is fast. There are two types of potassium currents. The Ca-activated potassium 

current IK-C is proportional to a fast activation variable multiplied by a saturating function. 

The current IK-AHP has a slow activation which is calcium dependent. During an active 

dendritic voltage spike the calcium uptake may be fast, 5ms, where calcium decays with a 

time constant of 13ms.  
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Fig 3.1  Schematic diagram of the Pinsky-Rinzel two-compartment model of a Pyramidal Cell 
showing ionic currents, coupling and voltage parameters. Redrawn from Pinsky and Rinzel (1994). 
 
 
Compared to simple integrate-and-fire neurons, the two-compartment cell gives a variety of 

modes due to the dynamics between the soma and the dendrite such as spiking, bursting or 

joined spiking/bursting sequences (see Fig 3.9).  

 
The current balance equations for the two compartments (soma: s and dendrite: d) are 
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The two compartments are connected by a coupling conductance, cg , and have relative 

surface areas specified by mp . 

The active ionic currents in the soma are 
 
NaI  - inward sodium current 

DRKI −  - outward delayed-rectifier potassium current 

 
In the dendrite the active currents are 
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CaI  - inward current carried by calcium and its activation, s , is fast. 

CKI −  - calcium-activated potassium current proportional to a fast activation variable, c , 

times a saturating function, )(Caχ . 

AHPKI −  - has a slow activation variable qwhich is calcium dependent. 
 

There is also a synaptic current, synI , which is a constant injected current. The active ionic 

currents are given by the following equations: 
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The kinetic equation for each of the gating variables h , n , s , c and q  takes the form 
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The argument U equals sV  when nhy ,= ; dV  when csy ,= ; and Ca when qy = . The 

steady state and time constant for each gating variable are derived from functions yα , yβ , 

where )/( yyyy βαα +=∞ and )/(1 yyy βατ += . These functions for each gating 
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(Pinsky and Rinzel, 1994) 

The sodium current activates instantaneously ))(( sVmm ∞≡ . 

These equations are supplemented by an equation for +2Ca handling in the dendritic 

compartment, 

 

CaI
dt
dCa

Ca 075.013.0 −−=    ………… 3.25 

 
All other parameter values for these equations are listed in Table 3.1 
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Table 3.1   Parameter values CA3 pyramidal cell model 
Mechanism CA3 Pyramidal 
Cell 

Leak conductance( Lg )( 2/ cmmS ) 0.1 
Sodium ( Nag )( 2/ cmmS ) 30 

Delayed Rectifier K+ ( DRKg − )( 2/ cmmS ) 15 
Calcium( Cag )( 2/ cmmS ) 10 

Ca-activated potassium ( CKg − )( 2/ cmmS ) 15 

Potassium afterhyperpolarization ( AHPKg − )( 2/ cmmS ) 0.8 
NMDAg ( 2/ cmmS ) 0.0 

AMPAg ( 2/ cmmS ) 0.0 
)(mVVNa  120 
)(mVVCa  140 
)(mVVK  - 15 
)(mVVL  0 
)(mVVSyn  60 
)/( 2cmAI s µ  - 0.5 
)/( 2cmAId µ  0.0 
)/( 2cmmSgc  2.1 

)/( sdm areaareap  0.5 

)/( 2cmFCm µ  3 
 
These parameter values and equations shown earlier are taken from Pinsky and Rinzel (1994). 
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Fig 3.2 top Voltage trace of the Somatic and Dendritic compartments decoupled. The coupling 
constant, gc = 0 and a current injection of 0.00075 nA is injected into the soma. Fig 3.2 bottom 
Voltage trace of the Somatic and Dendritic compartments coupled. The coupling constant, gc = 1 and 
a current injection of 0.00075 nA is injected into the soma. 3 bursting sequences are shown. 
 
 
A distinctive characteristic of the Pinsky-Rinzel two-compartment neuron is the effect of 

the interactions between the soma and the dendrite mediated by the parameters of the 

intermediate coupling. Given a range of parameters the interaction of currents between 
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compartments creates a bursting effect which spans over a time of approximately 12 - 14 

ms (Fig 3.3).  

 

 
 
 
Fig 3.3   Voltage trace of a single neuron with no external input. The voltage trace shows the output 

of the Somatic compartment and the Dendritic compartment. cg  = 2.1 
2/ cmmS . Burst is initiated 

by somatic action potential which triggers subthreshold dendritic calcium spike. This is followed by 
a full calcium spike in the dendrite leading to somatic burst pattern. Dendritic spike, and hence burst, 
is terminated by IK-C current which turns on when the calcium level reaches appreciable levels. 
 
The bursting effect is dependent on the electrotonic coupling and can only occur for an 

intermediate value of the conductive parameter cg . If cg  is very small (i.e. near zero) the 

simulation will produce results which appear to ‘decouple’ the soma and dendrite and 

produce spike trains similar to the Hodgkin-Huxley output described earlier in the soma. 

The Nag  and Kg parameters, m, n, and h show the distinctive characteristics of  those used 

in the Hodgkin Huxley model (see Fig 3.4).  
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Fig 3.4   Contains a trace of the Sodium conductance parameters m and h and the Potassium 
conductance parameter n over a single spiking sequence. This is taken from a spike when the 
coupling constant gc = 0 and there is a current injection of 0.75 nA. 
 
The dendrite output when cg  is low, over 1500 ms, is a large calcium-mediated single 

spike which slowly depolarises, due to the slow calcium currents in the dendrite (Fig 3.2 

bottom). If cg  is large the simulation will produce results that suggest the cell 

compartments have combined to create the behaviour of a single isopotential cell which has 

an output of sodium spikes which replace the bursts produced by the cell (see Fig 3.2 top). 

    
 
The electrotonic interaction between the proximal soma and distal dendrite involves 

significant coupling current that flows back and forth, alternately providing depolarizing or 

hyperpolarizing current to each compartment. The result is a complex depolarizing event 

with duration about twice that of an isolated dendritic spike. The burst sequence is initiated 

by a somatic sodium spike, (Fig 3.3). 

 
This is due to the sodium current, NaI , being activated at lower voltages than the calcium 

induced current, CaI , and is inherent to the cell properties. The current spread from this 

leading sodium action potential depolarizes the dendrite through the coupling. Once the 

initial sodium spike has reached its peak, the soma repolarizes partially. This causes dV to 

fall below the threshold for calcium spike generation which in turn delays the full dendritic 
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spike. During repolarization, significant coupling current flows from the dendrite into the 

soma which initiates a second somatic spike, (Fig 3.5a). 

 
The second somatic spike stops the coupling current flowing from the dendrite (Fig 3.5a). 

Therefore, allowing the dendrite to undergo a full-mediated voltage spike with 

accompanying rapid increase in Ca. The delay can be observed with the small decrease in 

gradient of Ca and IK-C (See Figures 3.5b, and 3.6). Thus the peak of dV  is delayed until 

about halfway into the bursting event. The dendritic spike has a broad ‘area’ which 

provides a prolonged depolarization which drives the soma activity. The electrotonic 

current flowing into the soma is so large that the sodium spike generator is over driven. 

With such strong stimulation the soma would tend, with damped high frequency spiking, 

toward steady depolarization of 30mV or more (Pinsky and Rinzel, 1994).  

 
The dendritic calcium spike, and the burst, is terminated by CKI − . CKI − is a calcium 

dependent current and is ‘coupled’ with ICa during the initial depolarization and will 

effectively terminate the calcium spike when Ca has reached a certain level. During  the 

dendritic voltages falling phase the coupling current continues to depolarize the soma with 

a smaller current, thus, releasing the soma from overdrive and allowing a final partial 

sodium spike, and a slight prolongation to the burst event.  
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Fig 3.5  a) Voltage trace of a single bursting sequence showing the output of the Soma and Dendrite 
created spontaneously due to the intrinsic cell dynamics. b) Contains a trace of the Sodium 
conductance parameters m and h, Potassium conductance parameter n and the Calcium conductance 
parameters the same bursting sequence as used in a. c) Trace of the slow variable q over 500 ms.  
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The dendritic current CKI −  has a reasonably fast voltage activation and it is also 

proportional to the saturating function χ (Ca). Thus, calcium spike duration is primarily 

determined by the amount of time Ca takes to build up. Fig 3.6 shows the ionic channels 

(Calcium and Potassium) displayed in an I vs t graph similar to Fig 3.5b. Furthermore, the 

duration between spikes is determined by the slow variables q and Ca mediating the 

outward currents AHPKI −  and CKI − . For low stimulation (i.e. input current sI ), both of 

these currents must decrease before a somatic action potential can be initiated, this is shown 

in Fig 3.7 on the left hand side where sI = 0 and  the gap between spikes is determined by 

the duration of q decreasing as in proportion of time Ca decreases quickly. However for 

high values of sI  (i.e. sI  = 0.03nA) only CKI −  need decrease so the duration of Ca 

decaying is sufficient to allow a spike as can be shown on the bottom of Fig 3.7 where q 

never decreases but when Ca decreases spiking occurs. 

 
 
 

 
Fig 3.6 Trace showing the slow variable Ca over a spontaneous bursting sequence with identical 
parameters to that shown in fig 3.5b. 
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Fig. 3.7    Trace of the dendritic variables Ca and q, activation of IK-AHP. Top: Shows Ca and q of a PC with no input. 
Rise in Ca corresponds with bursting shown in Fig 3.3 and 3.8. Bottom shows effect on Ca and q with a steady 
somatic input current.  
 
At sI  = 0 there are still occurrences of bursting due to the interaction of currents between 

the soma and the dendrite via the coupling. In order to gain a stable resting potential the 

soma requires a slight hyperpolarizing current.  Where sI = -0.00175 nA there is a stable 

resting potential at just below -65 mV.  
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Fig 3.8    Voltage trace of the Soma and Dendrite of a single coupled cell over 1500 ms. The bursting 
sequence occurs twice and is spontaneous, due to transients, with a coupling constant of 0.5. To gain 
a clearer view of the trace of the soma and the dendrite in the above figure, see Fig 3.3. 
 
 
3.1.2 Two Connected Pyramidal Cells. 
 
Above, we have tested the Pinsky-Rinzel two-compartment model under a range of 

conditions. To understand the effect of network conditions we have coupled two pyramidal 

cells in a feedforward condition to simulate the effect of synaptic modification when 

applying a learnt pattern to the NEURON based model by creating a modified synapse from 

one cell to the other. We use original parameters expressed in (Pinsky and Rinzel, 1994) 

used in a well tested and supplied model in the NEURON ModelDB. The purpose of this 

test is to further understand the transmission of activity from one pyramidal cell to another 

under a variety of conditions. 

3.1.2.1 Decoupled (Soma and Dendrite) 
 
The two compartment cell produces a single sodium spike when the coupling is low and 

decoupling the compartments under simplistic network conditions will help to understand 

the difference between the EPSP's produced by single spikes and those produced by the 

bursting in the coupled models. ‘Decoupling’ the soma and the dendrite compartments of 

each cell, where the Cell 1 soma is attached to the dendrite of Cell 2 via a synapse, gives 

similar results to a single decoupled cell. Cell 1 with a steady input, sI , shows a Hodgkin 

and Huxley style spike train with the single dendritic spike caused by the parameters and 



 
 

78 

settings of the currents in the dendrite (as discussed earlier). The synapse from soma (Cell 

1) to the dendrite (Cell 2) gives expected characteristics in the dendritic compartment. The 

spike train in the soma of Cell 1, causes a spike train in the dendrite of Cell 2 with slower 

calcium spikes, compared to the sodium spikes shown in the soma, due to the Ca parameter 

having to have fallen before another spike can be initiated (explained earlier). Since the 

compartments of each cell are decoupled the soma in Cell 2 gives an output similar to that 

of Cell 1 with a larger timescale between action potentials as there is no supply current in 

the soma of Cell 2. (See Fig 3.9) 

 

 
Fig 3.9   a and b: Voltage trace of the soma(a) and dendritic(b) compartments of a cell with a 
decoupled dendrite and a current injection into the soma. The dendritic spike shown in (b) is 
autonomous firing caused by the transients. c and d: Voltage trace of the dendritic(d) and somatic(c) 
compartments of a cell connected to another cell receiving EPSP’s from a constant spike train to the 
dendrite. The current injection in both cases is 0.00075 nA/cm2. 
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3.1.2.2  Intermediate coupling of Somatic and Dendritic 
compartments with constant current injection 
 
The cells are connected from the soma in the first cell to the dendrite of the second cell. The 

stimulation, Is, is a constant current, 0.00075 nA/cm2 inserted into the soma of cell 1. The 

synapse between the two cells is dependent on the voltage in the soma of cell 1. The 

threshold of the cell is -20 mV and this voltage must be reached in order for an action 

potential to have occurred. There is a connection delay of 1 ms thus accounting for realistic 

distance or variable conductance (found in neurophysiology) between the cells and the 

connection weight strength at the synapse is 0.5 2/ cmmS . 

 

The synaptic actions used in the network will be an excitatory AMPA synapse. Using the 

ExpSyn function in NEURON which can be given by the following equations; 

27.3.............

26.3.).........(
)(

τ
t
r

weg

vvgi
−

=

−=
 

 

The parameters above are given as, τ , decay time constant, vr,  reversal potential, i, 

synaptic current, g, synaptic conductance, v , synaptic potential, w, weight and t is the time. 

The weight is specified by the weight field of a NetCon object (Carnevale and Hines, 2005). 

ExpSyn is a synapse with discontinuous change in conductance at an event followed by an 

exponential decay with time constant tau.  

 

 
 
 
 
 

 

 

*For the following data, we will investigate the second burst (denoted in Fig 3.10 as **). The first 

and last spikes are automatically generated and are independent of Is.  
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Fig 3.10   Trace showing the voltage in the somatic and dendritic compartments of a cell with a 
somatic current injection of 0.00075 nA and a coupling constant of 0.5. The simulation shows 3 
bursting sequences over a 1500ms simulation. 
 
A cell with no current injection or synaptic connection will burst twice over a time scale of 

1500 ms as a result of the interaction of currents between the somatic and dendritic 

compartments. Vs and Vd will continually rise until a threshold is met thus initiating a burst. 

Cell 1 has a constant injection of current in the soma causing an increased rise in Vs and Vd 

inducing an extra burst within a 1500 ms region. Cell 2 also has 3 bursts which can be 

directly attributed to the action potentials reached in the somatic region of Cell 1 (see Fig 

3.11). 

 

 
  
Fig 3.11 Trace showing top: a voltage trace of a Pyramidal Cell and bottom: the synaptic activity 
when the membrane potential threshold has been reached. The synaptic activity can be shown to 
occur when the somatic spikes are over a given threshold as marked by the arrows. Threshold of the 
synapse is -20mV. 
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In Cell 2, the burst is led by a dendritic calcium spike. This is caused by the connection 

between the soma of Cell 1 and the dendrite of Cell 2. The full calcium spike occurs earlier 

in Cell 2 than in Cell 1, which is caused by the EPSP’s caused by the bursting sequence in 

Cell 1 passing current into the dendrite. Therefore the initial somatic spike does not 

depolarise and allow a second smaller spike, as in Cell 1, as the current from the dendrite 

passed through the coupling to the soma is so large that the sodium spike generator 

becomes over-driven (see Fig 3.12).  

 
The sharp initial rise of Vd in Cell 2 has a short depolarization before completing the full 

calcium spike. This is the effect of the action potential in the soma in Cell 1 which has a 

large depolarizing effect on Vd in Cell 2. The ‘high’ weight characteristic causes this large 

fast depolarization in Vd. The full dendritic spike is then completed without being further 

affected by the synaptic input. The bottom of Fig 3.13 shows the single cell dendritic ionic 

current channels shown in Fig 3.5. The slight dip in gradient of the curve at approximately 

240 – 242ms, shows where coupling current is drawn from the dendrite to allow a second 

partial sodium spike in the soma (See top Fig 3.12). The large increase caused by the 

weight variable does not show the ‘dip’ in gradient to allow a secondary partial sodium 

spike as the increase in Vd is so large it initiates the full calcium spike in the dendrite. It can 

be shown by reducing the weight characteristic that the initial increase in Vd is smaller and 

the soma draws coupling current from the dendrite before a full dendritic spike can be 

completed (See top of Fig 3.14).  

 
The sharp decrease in Vd is caused by the second smaller somatic spike in Cell 1. The 

synapse gets an action potential which has an initial reaction with a setting of 0 mV. (i.e. if 

the potential in the dendrite is below 0 mV, the potential will be driven in a positive 

direction and if above 0 mV, it will be driven in a negative direction).  

 
The timescale of the burst in cell 1 is approximately 12 – 14 ms where cell 2 has a burst of 

approximately 16-18 ms. The elongated burst in cell 2 is caused by Ca (see Fig 3.12 and 
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3.13). The value of Ca determines the length of the burst as CKI − , which terminates the 

burst, is calcium dependant.  

 
 

 
 
Fig 3.12   Trace showing top: voltage trace in the Somatic and Dendritic compartments of a cell 1 
during a bursting sequence and bottom: voltage trace in the Somatic and Dendritic compartments of 
a cell 2 which receives EPSP’s from cell 1. The AMPA synapse used has a delay of 1ms and a 
conductance of 0.5.  

 
Fig 3.13   Trace showing the slow variable Ca in cell 1 and shows the increase of Ca in cell 2. This 
can be directly related to the bursting sequences shown in Fig 3.12 where the EPSP’s from cell 1 
have increased the level of calcium in cell 2. 
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Overview of findings of two connected PC’s; 
 

• In cell 1, the Vs and Vd continually rise until reaching a threshold and therefore 

creating a ‘burst’. This is a direct reaction to sI . In cell2, Vs and Vd do not rise as 

much as in cell 1 as there is no sustained input current. 

• In cell 2, the burst is led by a dendritic spike, caused by the synapse being 

connected soma-dendrite.  

• The initial somatic spike in cell 2 is larger. (Possibly due to the initial surge in Ca 

and drawing current through the coupling conductance.) 

• Because of the full calcium spike occurring earlier, the initial somatic spike does 

not depolarise and cause a secondary smaller spike. Also, with the calcium spike 

occurring earlier the elongated depolarization causes a large input of current from 

the dendrite to pass to the soma via the coupling, thus causing the sodium spike 

generator to become over driven earlier than had been shown in a single cell. 
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3.2 Basket Cell Model 
 

 
Fig 3.14   Schematic diagram of a Basket Cell model used in our network detailing the 
compartmental structure of the model, (Santhakumar et al., 2005). 
 
 
The Basket cell model (BC) is a five-compartment cell (Santhakumar et al., 2005) 

comprised of a soma (length = 20 mµ , diameter = 4 mµ ), two apical dendritic 

compartments (length = 75 mµ , diameter reduces outwards from the cell body through sub-

compartments Prox. Dendrite-Distal Dendrite) and two basal dendritic compartments 

(length = 50 mµ , diameter reduces outwards from the cell body through sub-compartments 

Prox. Dendrite-Distal Dendrite). The reduction in diameter simulates the increase in 

resistance of the outer regions of the dendrite where a current injection of a larger value 

would be required to activate the cell’s firing properties in the soma. Details of the active 

membrane properties are given below. The basket cell contains sodium and fast delayed 

rectifier potassium channels in the cell body (soma) and proximal dendritic compartments. 

Passive properties only were given to all other dendritic compartments. The basket cell 

model has been well tested (Santhakumar, V. et al. 2005, Cutsuridis, V et al. 2008a) with 
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cellular dynamics accurately portraying the actions of a basket cell found in the 

hippocampus. The cell has fast spiking properties, and leaky/passive properties in the outer 

dendritic compartments. 

Active properties of the Basket Cell are given by the following current balance equation: 

 

synCAHPCaNCaLAfastDRKNaLextm IIIIIIIIII
dt
dVC −−−−−−−−−= − , ……3.28 

 
Where mC , is  the membrane capacitance, V is the membrane potential, LI  is the leak 

current, NaI  is the sodium current, fastDRKI ,−  is the delayed rectifier +K  current, AI  is the 

A-type +K  current, CaLI  is the L-type +2Ca current, CaNI  is the N-type +2Ca  current, 

AHPI  is the +2Ca -dependent +K (SK) current, CI is the +2Ca  and voltage-dependent 

+K (BK) current and synI  is the synaptic current. The conductance and reversal potential 

values of all ionic currents are listed in Table 3.2. 

 
Table 3.2   Passive parameters and active ionic conductances of channels for all 

compartments of the basket cell model. 
Mechanism Basket 
cell 

mC  (
2/ cmFµ ) 1.4 

aR ( cmΩ ) 100 
Leak conductance ( 2/ cmS ) 0.00018 
Sodium ( 2/ cmS ) 0.2 
Delayed Rectifier +K ( 2/ cmS ) 0.013 
A-type +K ( 2/ cmS ) 0.00015 
L-type +2Ca ( 2/ cmS ) 0.005 
N-type +2Ca ( 2/ cmS ) 0.0008 

+2Ca -dependent +K ( 2/ cmS ) 0.000002 
+2Ca -and voltage-dependent +K ( 2/ cmS ) 0.0002 

Time constant for decay of intracellular +2Ca (ms)  10 
Steady-state intracellular +2Ca  concentration ( )Mµ   -5.e-6 

)(mVENa   55 
)(mVEK     -90 
)(mVECa  130 
)(mVEL  -60 

0
2 ][ +Ca ( )Mµ    2 
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The sodium current and its kinetics are described by 
 

)(3
NaNaNa EVhmgI −=                                                                         ……… 3.29 

mm
dt
dm

mm βα −−= )1( , )1(
)25(3.0
5/)25( −−−

−−
= Vm e

V
α , )1(

)53(3.0
5/)53( −−

−
= Vm e

V
β  …….. 3.30 

hh
dt
dh

hh βα −−= )1( , 20/)3(

23.0
−

= Vh e
α , )1(

33.3
10/)5.55( −−+

= Vh e
β        ………... 3.31 

 

The fast delayed rectifier +K  current, fastDRKI ,− , is given by 
 

)(4,, KffastDRKfastDRK EVngI −= −−                                                       ………… 3.32 

fnfn
f nn
dt
dn

ff
βα −−= )1(                                                                ………… 3.33 

)1(
)47(07.0

6/)47( −−−

−−
= Vn e

V
f

α                                                                         ………… 3.34 

4/)22(264.0 −= V
n e
f

β                                                                            …………. 3.35 
 
The N-type +2Ca  current, CaNI , is given by 
 

)(2
CaCaNCaN EVdcgI −=                                                                 ………….. 3.36 

cc
dt
dc

cc βα −−= )1( , )1(
)88.19(19.0

10/)88.19( −

−
=

−Vc e
V

α , 
73.20/046.0 V

c e−=β  ……….. 3.37 

dd
dt
dd

dd βα −−= )1( , 
4.48/4106.1 V

d e−−⋅=α , )1(
1

10/)39( Vd e −+
=β  ……..3.38 

 
The +2Ca -dependent +K (SK) current, AHPI , is described by 
 

)(2
KAHPAHP EVdqgI −=                                                               …………… 3.39 

qq
dt
dq

qq βα −−= )1( , 5.4/)48.28])([log12( 2
10

00246.0
−+⋅ +=

Caq
e

α , 35/)4.60])([log12( 2
10

006.0
+⋅ +=

Caq
e

β   

………………………………………………………………………………….. 3.40 

∑
+++ −

−=
LNT

i
Ca

i CaCa
IB

dt
Cad

,,

0
222 ][][][

τ                                  …………... 3.41 

 
Where B = Ad/102.5 6−⋅ in units of mol for shell of surface area A and thickness d 

(0.2 )mµ , and τ =10ms was the calcium removal rate. 0
2 ][ +Ca  = 5 ( )Mµ was the resting 

calcium concentration. 
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The +2Ca  and voltage-dependent +K (BK) current, cI , is 
 

)( KcC EvogI −=                                                                            ………….. 3.42 
 
Where o is the activation variable (Migliore et al. J Neurophysiol. 73:1157-1168, 1995). 

The A-type +K  current, AI , is described by 

 
)( KAA EVabgI −=                                                                       ……………. 3.43 

aa
dt
da

aa βα −−= )1( , )1(
)1.13(02.0

10/1.13 −

−
=

−Va e
V

α , )1(
)1.40(0175.0

10/1.40 −

−
=

−Va e
V

β  …... 3.44 

bb
dt
db

bb βα −−= )1( , 
18/130016.0 V

b e −−=α , )1(
05.0

10/1.10 Vb e −+
=β ………... 3.45 

 
The L-type +2Ca current, CaLI , is described by 
 

kTFV

kTFVi

CaLCaL e

e
Ca
Ca

VsgI /2

/2

0
2

2

2

1
][
][

1

−

−

⋅⋅⋅=
+

+

∞

                                    ……………. 3.46 

Where CaLg is the maximal conductance, ∞s is the steady-state activation variable, F is 

Faraday’s constant, T is the temperature, k is the Boltzmann’s constant, 0
2 ][ +Ca is the 

equilibrium calcium concentration and iCa ][ 2+
 is described above. The activation variable, 

∞s , is then 

 

ss

ss
βα

α
+

=∞ , 1
)5.81(69.15

10/5.81( −

+−
=

+−Vs e
V

α , 
86.10/29.0 V

s e−⋅=β    …………… 3.47 
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3.2.1 Current Injection into the Basket Cell Soma 
 

  
 
Fig 3.15   Voltage trace of the soma of the basket cell given a tonic stimulation for 100ms at 
increasing levels of current injection. The tonic stimulation is started after a 50ms delay which is to 
allow the transients to reach a resting point. 
 
The Basket Cell was given a tonic stimulus into the somatic region at various currents for 

100 ms (Fig 3.15). Firstly, the cell was tested at rest. The cells properties do not allow the 

cell to fire without stimulus and gives a resting potential at about -65mV. The cell was then 

tested by injecting the soma with a tonic stimulus of 0.1 nA. The result was a single spike 

occurring after the cell body potential had risen to threshold. Increasing the current 

injection to 0.2 nA shows spike train activity. Lastly, with a current injection of 0.5 nA the 

action potentials within the spike train occur at a much faster frequency. The frequency of 

action potentials has a non linear relationship with the current injection in the soma (Fig 

3.16). 
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Frequency vs. Current Injection in the Soma

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Current Injection (nA)

Fr
eq

ue
nc

y 
(H

z)

 
 

Fig 3.16 Frequency of action potentials in a single Basket Cell against increasing levels of current 
injection from a tonic stimulation. 
 
Testing the cell with a current injection into the soma at 0.1 nA for 100ms showed a 

noticeable delay when the action potential propagates down the apical and basal dendritic 

trees. In the 1st and nearest compartment to the soma, the spike from the cell body can be 

recorded with a very small time difference from that recorded in the somatic region. 

Recording in the second compartment shows a larger time difference and this time gap then 

increases substantially in the third compartment. Due to the resistance and length of the 

dendritic tree the 4th and furthest away apical dendritic compartment records no action 

potential and only a slight rise in the potential within this sub-compartment. However, in 

the 4th compartment in the basal dendrite there is a smaller action potential at a later time 

step (see Fig 3.17 and 3.18).  
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3.2.2  Current injection into the Dendrites 
 

 
  
Fig 3.17  Voltage trace of the soma of the basket cell given a tonic stimulation into the apical 
dendrite for 100ms at 0.1nA. 
 
 

 
 

Fig 3.18  Voltage trace of the soma of the basket cell given a tonic stimulation into the Basal dendrite 
for 100ms at 0.1nA. 
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With a current injection into the soma for 100 ms after a delay of 50 ms (which allows the 

transients to reach a resting point) at 0.5 nA,  Fig 3.19 shows a spike train with a frequency 

over 100 Hz and the fast spiking properties of the inhibitory interneuron. The enlarged plot 

shows clearly the propagation of the action potential from the soma into each section of the 

apical dendrite. The pattern is expected due to the dynamics of the cell with the cell body 

being the only compartment capable of creating an action potential. The reduction in 

membrane potential as the spike propagates can clearly be seen which is attributed to the 

increase in resistance in the mid and distal range dendrites. (Similar results were found in 

the basal dendrites.) 

 

 
 
Fig 3.19 Voltage trace of the soma and apical dendrites with a current injection into the soma of 
0.5nA with an expanded single spike from the spike train. 
 
 
Current injection of 0.3 nA into the soma of the BC (see fig 3.20) shows a clear difference 

in the timing of the initial action potential. Current injection of 0.3 nA into the apical 

dendrite outer compartment (see Fig 3.21) shows expected results from the cellular 

dynamics described earlier. The BC with the current injection in the dendrite produces an 

action potential almost 2 ms later. This can be attributed to the passive, leaky dendrite and 
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the timing of propagation through the branch into the soma. In the first second and third 

compartments the action potential propagation from the soma delivers similar results in 

both cases.  

 

 
 
Fig 3.20   Voltage trace of a single spike in the soma and apical dendrites with a current injection 
into the soma of 0.3nA 
 
 

 
 
Fig 3.21  Voltage trace of a single spike in the soma and apical dendrites with a current injection into 
the outer compartment of the apical dendrite of 0.3nA 
 
 
AMPA and GABA Synapse Models 
 
In the network models to follow in this thesis, neurons are connected by AMPA- and 

GABA-A-type synapses. Excitatory AMPA synapses onto pyramidal cells and basket cells 

have a conductance with instantaneous rise time and an exponential decay with time 
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constant 0.1 ms, a current reversal potential of 5 mV and a synaptic delay of 0.33 ms. The 

GABA-A synapses from the basket cells onto the pyramidal cells have a conductance with 

a dual exponential waveform with rise time of 1 ms and decay time of 7 ms, a current 

reversal potential of -75 mV and a synaptic delay of 2 ms. The maximum conductance for 

each synaptic pathway for the different network configurations is given in Table 3.3. 

 
Table 3.3   Maximum synaptic conductances ( Sµ ) in CA3 models 

Model   PC-PC AMPA    PC-BC AMPA   
 GABA-A 
Pseudo inhibition  0.0154  – 
 0.00017 
1 basket cell  0.014  0.05  0.01 
100 basket cells  0.014  0.18  0.003 
 
 
3.3 Summary 
 
Pyramidal cells are burst firing cells that usually fire at slow rates with the Pinsky-Rinzel 

cell showing burst firing at a frequency of less than 8 Hz for somatic input and a 

significantly higher periodic bursting from dendritic input (Pinsky and Rinzel, 1994). We 

replicated the operation of the Pinsky-Rinzel cell and by applying a strong input we were 

able to obtain very fast desynchronised spiking/bursting behaviour from the cell. An 

interesting characteristic of the PC was the interplay between the soma and the dendrite via 

the coupling. The value of the coupling could have a great effect on the operation of the 

cell. Lower coupling values would have similar properties to a single compartment spiking 

cell in the soma. Large values would allow the two-compartments to become more 

cohesive. Although in the networks used the parameter values for the coupling are identical 

in all pyramidal cells within the pool, these findings show that metabolic adaptations in 

cells can play a large role on the firing properties of cells.  

 

Thorough examination of the Basket Cell by replicating the results in (Santhakumar et al., 

2005) allows a better understanding of the dynamics of the cell in the context of a neural 

network. The fast spiking characteristics of the basket cell (Skinner and Saraga, 2010), 
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shown earlier in this chapter, will play an important role in producing high frequency 

operation of the CA3 pyramidal cell models. Inhibitory interneurons (BC’s) that innervate 

the perisomatic domain of principal neurons (Freund and Buzsaki, 1996) have a powerful 

influence on their post-synaptic target cells, controlling the electrical activity of the 

principal neuron ensemble. Used in a feedback system, like in our networks, an excitatory 

input discharges the principal cells, whose excitatory output is fed back to the inhibitory 

cell through axon collaterals (Andersen et al., 1964). The interneuron then may discharge 

and inhibit a group of pyramidal cells, including those that initially activated the 

interneuron. With that, the interneurons discharge at high frequencies during epochs of 

gamma activity, action potential firing frequency between 40 – 100 Hz, with individual 

spikes time-locked to oscillations of the field potential, which will be shown later. The 

gamma rhythm is intrinsic to the hippocampal formation but modulated by the slower theta 

waves, (Bragin et al., 1995a). There is ample evidence to support the importance of 

interneurons in the generation of gamma oscillation, most notably; identified basket cells 

discharge phase locked to both gamma and theta frequencies (Ylinen et al. 1995b). In 

contrast with the slow theta rhythm, gamma oscillation is generated by the intrinsic 

hippocampal network because it survives damage to the septum or removal of all 

subcortical inputs (Buzsaki et al., 1987). 

3.4 Associated Problems 

Creating the mixed network configuration in NEURON (Carnevale and Hines, 2005) had a 

number of small technical problems to be solved. The inclusion of the basket cell within the 

population of pyramidal cells had unexpected and undesirable affects, due to the initial 

parameter for temperature, upon the operation of either cell which caused severe problems 

due to the, now known, intricacy in parameter values. The introduction of the BC had 

several conflicting issues with the existing PC which were easy to solve, such as ionic 

channel names and parameter names which were easily identified and amended. However, 
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the Basket Cell would have to be reconfigured to account for a temperature declaration in 

the code which was far more difficult to identify.  

 

The pyramidal cells intrinsic properties are very complex and the temperature at which the 

cell worked optimally had varying effects upon either cell. The pyramidal cell has the 

variable celsius = 37 which is very specific to the dynamics of the model. Similarly, the 

Basket Cell had a temperature set at the default celsius = 6.3. If celsius was declared at 37 

the Basket Cell did not operate as expected and produced no solutions for the membrane 

potential over the simulation. If the temperature variable was set at 6.3 degrees Celsius the 

bursting sequence in the pyramidal cell was altered. This standard bursting response was 

replaced by an elongated spike with a very large peak potential.  

 

Replacing the variable celsius in the basket cell with the variable celsiusa and making the 

corresponding changes throughout the code used for the differing ionic channels in the cell 

would then allow the basket cell to operate as desired and also allow the pyramidal cell to 

keep its bursting properties. 

 



 

 

96 

 

 

 

 

Chapter 4 
 

4. Basic Associative Memory: Spiking Neural Network Model 
 
Sommer and Wennekers (2001) develop and investigate a model of a network of cortical 

neurons on the basis of biophysically well constrained and tested two-compartmental 

neurons (Pinsky and Rinzel, 1994) to study associative memory. They connect a group of 

cells by a structured connectivity matrix where the weights are set by simple Hebbian 

coincidence learning using a set of random spatially sparse patterns. They study the 

neuronal activity processes following tonic and phasic stimulation of external inputs. With 

tonic stimulation the addressed memory is an attractor of the network dynamics. 

 
The network also includes realistic synaptic transmission characteristics, such as synaptic 

time constants, reversal potentials and other properties of AMPA and GABAA synapses. 

All cells received a further constant inhibitory current into the somatic region. This was 

supplied by a synaptic action to all cells where an action potential in a pyramidal cell will 

evoke not only an EPSP on a target cell but an IPSP on all cells. If the soma of a single 

neuron was stimulated by a brief excitatory current, the network responded with 

synchronised population bursting in the gamma range that persisted for 400 ms. 

 
Model parameters of the network that were tested include 100 pyramidal cells with a mean 

density of synaptic contacts of 10% (randomly selected) between cells, which is 

biologically plausible in terms of network connectivity.  Synaptic transmission efficacy is 

set up in a Hebbian learning phase preceding the retrieval trials. The learning is modelled 

using a clipped synaptic modification rule, Willshaw (1969), driven by a set of Boolean 
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activity patterns presented to the network. These patterns are random and overlapping. Each 

memory pattern contains 10 active neurons out of 100. 

 
Although Sommer and Wennekers (2001) investigated different configurations of the 

network, we used this simple model as an initial network which incorporated key 

characteristics of the Hopfield net with biologically realistic additions which provides a 

foundation for implementing our methods for recall improvement. We started by replicating 

this network as a basis for further investigation; results concerning recall improvement are 

shown in the next chapter.   

 

4.1 Network Architectures 
 
In the Standard Winner-Takes-All method, the connectivity matrix is determined both by 

the physical connectivity between cells and the learnt connection weights during pattern 

storage. Pattern recall proceeds by only those pyramidal cells (PC) that receive the greatest 

excitatory input (dendritic sum) becoming active. For a network with full physical 

connectivity and not too many patterns stored, this should result in accurate recall of a 

stored pattern when starting from an initial partial pattern cue (Graham and Willshaw, 

1995). An interesting problem is how well the network can recall a pattern when there is 

partial connectivity or corruption due to noise (possibly by overlap in pattern storage). In 

this network of spiking neurons, the standard winner-takes-all (WTA) method recalls a 

pattern where the threshold of a PC’s firing is set by the intrinsic threshold of the PC itself 

and the pseudo-global inhibition. The intrinsic threshold of a real PC is largely determined 

by membrane resistance and sodium channel density.  
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Fig 4.1  Schematic diagram of a biological autoassociative network with global inhibition (shown as 

the unit IN but is applied as a synaptic action described earlier). 
 

 
The principal excitatory cells of the CA3 region are pyramidal cells. These cells are driven 

by inputs from the dentate gyrus and entorhinal cortex, and many have sufficient recurrent 

connectivity to act as an autoassociative memory (de Almeida et al., 2007; Treves and 

Rolls, 1994). We construct a recurrent neural network model consisting of a large number 

of pyramidal cells and, later, a smaller number of inhibitory neurons (putative basket cells). 

Connectivity between pyramidal cells is determined by a connectivity matrix derived from 

storing patterns using Hebbian learning. Inhibitory synaptic conductance weights are tuned 

to achieve accurate recall of a stored pattern when a few of the pyramidal cells belonging to 

a particular stored pattern are given tonic stimulation to make them active and thus act as a 

recall cue. Later in chapter 6 we will extend the model of Sommer and Wennekers (2000, 

2001) in which a number of explicit, spiking interneurons will provide inhibition (Hunter et 

al., 2008a, b, 2009).  

 
 
The initial network contains 100 pyramidal cells, whose interconnectivity is determined by 

a random pattern of physical connections plus the setting of connection weights as 
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determined by Hebbian learning of stored activity patterns. To represent our learnt binary 

weights, all AMPA synapses are given the same maximum conductance value. A fully 

connected pyramidal cell network involves an individual pyramidal cell connecting to every 

other pyramidal cell, but not to itself, giving nn 2
 physical connections, where n is the 

number of pyramidal cells in the network. Full connectivity is not biologically realistic, but 

serves as a control case for examining the effects of missing connections on memory 

performance. In CA3, recurrent connections between pyramidal cells are numerous, but still 

sparse, with a single pyramidal cell receiving connections on average from around 10% of 

other pyramidal cells (Ishizuka et al., 1990; Li et al., 1994). In the model network, partial 

connectivity is achieved by random deletion of possible connections, without any 

topographical considerations of relative pyramidal cell spatial positions. This is a 

reasonable first approximation to connectivity within a subpart of CA3 (de Almeida et al., 

2007; Ishizuka et al., 1990; Li et al., 1994). 

 
The network of Sommer and Wennekers (2000, 2001) used “pseudo-inhibition”, in which 

each pyramidal cell also provided an inhibitory connection onto all other pyramidal cells, so 

that each pyramidal cell received inhibition in proportion to the amount of pyramidal cell 

activity. Explicit interneurons were not modelled. In chapter 5 we use pseudo-inhibition to 

explore modified recall strategies and then in chapter 6 we apply explicit inhibitory 

circuitry which is included in three configurations (Hunter et al., 2009). More detail about 

these configurations is in chapter 6. 

 
To test recall in these networks, 50 random patterns, each consisting of 10 active pyramidal 

cells, were stored in the network using the Hebbian learning procedure described above. 

Then 5 pyramidal cells from a given pattern were stimulated using a constant current 

injection to cause them to fire and act as a recall cue. Network activity was monitored over 

a period of time to see if the remaining pyramidal cells of the stored pattern, or other 
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pyramidal cells became active through the recurrent connections from the cued pyramidal 

cells. 

 
As mentioned earlier, the initial network configuration contains 100 two-compartment 

pyramidal cells all connected to nn 2
 which removes all possible connections which 

connects a cell to itself. The weights of these connections are all set to 0 at initialisation and 

the matrix calculated using the method shown earlier (for 100 binary units in a vector 

pattern) is used to modify these weights.  

 

The physical weights in the network of realistic cells have some value of conductance. The 

value of this conductance is uniform throughout the network and is based upon the weight 

matrix. Imposing the weight matrix into the set of real cells will confirm some conductance 

applied to possible connections between cells. Before imposing the matrix into the network 

it is important to set the diagonal (from x(0, 0) to x(99, 99) where both elements i and j will 

be equal) to 0. For example see Fig 4.2 (This is for 0 to 9 cells); 

 

 
 
Fig 4.2  Shows a binary weight matrix constructed from vector multiplication where all diagonals are 

set to 0. This removes all recurrent connections 
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Now by applying this to the network will give; 

 

 
 
Fig 4.3  Schematic diagram of a small biological associative memory showing synaptic 

modifications found in Fig 4.2 after all non modified recurrent connections are removed.  
 

 
Where the cells from left to right are cells 0 to 9 respectively. The excitatory connections 

are in correspondence with the 1’s in the matrix i.e. x(1, 5) equals a modified conductance 

weight from the soma of cell 1 to the dendrite of cell 5 and so on.  We will show how we 

stored multiple patterns in part 4.2. 

 
Tuning the weights of the gAMPA synapses can be achieved by testing the intrinsic threshold 

of the cell set by the membrane resistance and sodium channel density with pattern storage 

and inhibitory weights assumed. A scaling technique can be used from smaller networks. 

The net containing 1000 cells with 100 and 200 stored patterns has the excitatory synapses 

set at GAMPA = 0.002 
2/cmS . 
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4.2 Storage and Recall Theory 
 
As stated earlier, rather than considering the biological requirements for pattern storage via 

induction of long-term potentiation (LTP), patterns are stored in the networks by generating 

a weight matrix using a clipped Hebbian learning rule. Thus an entry of 1 at index (i,j) 

indicates that the pyramidal cells i and j, where i connects to j, were both active in the same 

pattern during storage. An example weight matrix that results from the storage of two 

patterns in an autoassociative network is illustrated in fig. 4.4 

 

 
 
Fig 4.4  Weight matrix from the autoassociative storage of two patterns via clipped Hebbian 

learning. The individual weight matrices from the individual storage of the patterns are simply 

obtained as the outer product of the pattern within itself. The combined weight matrix is obtained by 

summing the individual matrices and then clipping entries to be 0 or 1. 

 
 

In an artificial neural network implementation with binary computing units, recall of a 

previously stored pattern proceeds by multiplying a cue pattern (full, partial or noisy 

version of a stored pattern) with the weight matrix to give the weighted sum of the inputs to 

each cell in the network. Recall then involves thresholding these weighted sums to create an 
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output pattern that contains 1’s for all those cells that are receiving the highest input sums. 

This output pattern will equal the stored cue pattern if recall is error-free. To give an 

example, we use the weight matrix in which the two patterns shown in fig 4.4 have been 

stored. The first of these patterns is used as the recall cue. The input column vector (cue 

pattern 1) is multiplied with the weight matrix to give the output row vector which is the 

weighted input sums to each of the 10 cells in the network (Fig 4.5) 

 

 
 
Fig 4.5   Pattern recall strategy. The cue pattern is multiplied with the weight matrix to give a vector 

of weighted input sums. This vector is thresholded to give the recalled binary vector. With the 

noiseless cue illustrated here, a suitable threshold is simply the number of active units in the cue 

pattern. 
 

 
This vector is [3 0 1 1 3 0 0 3 0 0]. It is easily seen that the highest sums (3) are all to the 

cells that belong to the stored cue pattern. Some other cells get a lower input of 1, since the 

two stored patterns overlap with each other. Recall proceeds by applying an activity 

threshold, and in this case a threshold of 3 is appropriate. The final output activity vector is 

determined by making active (vector entry 1) all those cells whose input sum is greater than 

or equal to the threshold (3), else the vector entry is 0. The new output vector after the 

threshold setting is applied is [1 0 0 0 1 0 0 1 0 0], which is identical to the input vector. 

Therefore the pattern has been successfully recalled. For more details on choosing the 

threshold please see chapter 7, section 7.1.1. 
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4.2a  Network properties during recall 
 
When applying a recall procedure to the realistic network we must make a few complicated 

changes to the procedure described earlier. Applying an input/partial cue to the network 

will require a number of neurophysiological characteristics to be acknowledged. In order to 

create a partial cue the cells within a pattern must be selected and, say, 5 of the 10 were 

chosen. Applying a DC input current to these cells will create a rise in the membrane 

potential of these cells eventually creating an action potential.  

Within a given time window, the cells which have a current injection fire an action potential 

and then induce a number of excitatory post synaptic potentials (EPSPs) which should in 

turn allow other cells within the pattern to fire based on the EPSPs with appropriated 

weighted conductances created from the action potentials in the cue.   
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Fig 4.6 The abstract example above of 5 cells shows the number of modified synapses in a network 

with n
2
-n based on the basic example shown earlier. The figure bottom correlates with the actions 

happening in the network. The input cue is full and shows an output which is correct with a given 

Threshold of two. So the input cue can be mimicked on the abstract network showing 5 cells with 

active modified synapses., in cells 1, 5 and 7. The EPSPs are the small signals shown which show a 

small rise in membrane potential. If one of these action potentials can be considered a 1 then the 

summation of two given the time delay for propagation should result in an action potential in the 
cell.  
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Fig 4.7 left:  Shows the summation of two EPSPs reaching the intrinsic threshold of a PC which 

gives an action potential/burst sequence.  

 

Fig 4.7 right: Shows a raster plot over 500 ms from a network with 100 PCs and 50 stored patterns. 

The circled group of action potentials highlights the driven cells (i.e. pattern cue) and any other cell 

firing after this is considered the cells which are recalled. The recalled cells can be shown between 

the two vertical lines which represent the time window in which quality of pattern recall is 

calculated. 
 

 
More challenging scenarios are when a noisy or partial cue is applied to the network, or 

when the network is only partially connected (that is, not all neurons are connected to all 

other neurons, which is typical in biological neural nets). Then the appropriate threshold on 

the input sums is not so easily chosen. One rule is to choose a threshold that will guarantee 

the expected number of cells are active in the output pattern (this does not, however 

guarantee that they are the correct cells!) 
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In the scenario of spiking neurons, this thresholding process involves the intrinsic action 

potential generation threshold of a neuron and its modulation by such factors as inhibition. 

Weighted input sums are now the summation of EPSPs of differing amplitude generated by 

action potentials from active input neurons arriving at roughly the same time at different 

excitatory synapses. If the summed EPSPs, which may be inhibited, cause the membrane 

potential of the axon initial segment to reach threshold, then the cell fires an action potential 

and is deemed to be active. The models that follow explore this process in detail for 

partially connected autoassociative networks of spiking neurons. 

 

4.2.1 Pattern Recall 
 
Recall proceeds from a cue activity pattern across neurons that is a partial or noisy version 

of a previously stored pattern. A suitable firing threshold on each neuron that receives input 

from already active neurons ensures that neural activity evolves towards the stored pattern. 

This may happen with only one or two updates of each neuron’s activity. Accurate recall is 

obtainable provided not too many patterns have been stored, otherwise recall is poor, or 

even impossible. In these networks, cells are simplified compartmental models with 

complex ion channel dynamics.  The IN cell represents the global feedback pseudo-

inhibition mediated by activity from spiking pyramidal cells driving basket cells that 

mediate perisomatic inhibition onto the same population of pyramidal cells.  
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Fig 4.8   Schematic diagram of a biologically plausible implementation of an autoassociative 

memory using two compartment Pyramidal Cell models with a global inhibitory network. 

 

 
The introduction of pseudo-inhibition acting as a global inhibitory circuit, which provides 

inhibition to the whole network of pyramidal cells rather than local inhibition which are 

dependent on localised synaptic modification, synchronises the activity to more regular 

intervals than the desynchronised behaviour observed in a network with diminished 

inhibitory capability. The inhibitory network synchronises activity which approaches the 

gamma frequency range which is required for working memory function (Lewis, D. A. et 

al., 2005). Now the stored pattern is approximately recalled. As shown below with in Fig 

4.9 top showing a network without a global inhibitory network and Fig 4.9 bottom showing 

the introduction of inhibition which synchronises the network into more uniform banks of 

excitation. 
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Fig 4.9 top: Scatter plot showing cells firing over 1500ms and no global inhibition in the network. 

bottom: Scatter plot showing cells firing over 1500ms with global inhibition. The input cue 

contained 5 out of 10 active units.  
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4.2.2 Quality of Recall  
 
Recall from the network was tested by applying a tonic stimulation to 50% of the active 

pyramidal cells in the stored pattern as an initial input cue using current injection to the 

dendrite with a strength ranging between 0.00075 and 0.0075nA/cm2 initially. Successful 

recall would result in the remaining 50% of active pyramidal cells in the pattern becoming 

active, but no other cells. 

 
Quality of recall was measured by examining pyramidal cell spiking activity in a 16ms 

sliding time window (corresponding to a gamma (40 to 100Hz) cycle) during a 1500ms 

recall period. In each time window, recall quality is calculated as the cosine of the angle 

between the recalled pattern and desired stored pattern: 
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where C is the recall quality, B is the recalled output vector, 
*B  is the desired output, N is 

the number of cells, B  is the mean output activity (0.1) and B  is the mean activity of the 

recalled pattern.  

 
The required output vector is the selected memory pattern stored in the structured 

connectivity matrix. The actual output vector, B, is determined by the action potentials from 

any cell occurring within a given 16ms time window: If a cell spikes within the time 

window it is given an entry of 1 in B, otherwise its entry is 0. This time window was 

selected on the basis of spiking frequency during recall, so that at most a single spike from 

a cell would occur in the window, and lies within the gamma frequency range. 

 

 

 

 



 

 

111 

4.3 Results 

 

4.3.1 Standard Winner-Takes-All Pseudo-Inhibition 

 
4.3.1.1 Initial Testing – Activation of the Soma 
 
The network was tested using a current injection into the soma region of the input cue cells 

with no global or local inhibitory feedback loops. Applying a low tonic stimulation into five 

out of ten units contained in a pattern with a value of 0.00075 nA/cm2, we tested the effect 

on a network which was fully connected with excitatory AMPA weights of 0.00279 S  

with one stored pattern. All experiments, unless stated, have a low hyperpolarizing current 

injected into the soma of all pyramidal cells without depolarizing currents which keep the 

pyramidal cell model at rest, -65mV, as the Pinsky-Rinzel cell model properties allow the 

cell to fire without external input.  

 

Fig 4.10 shows a scatter plot of spiking activity in a network containing 100 cells, 1 stored pattern 

and no global or local inhibition applied. The cell was injected in the soma where Is = 0.00075 

nA/cm
2
. The AMPA synapses were set at 0.00279 S . The input cue contained 5 out of 10 active 

units which are marked with arrows. 
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The network produced an expected 100% quality of recall with in phase recall where each 

cell fired at three separate times over 1500ms (Fig 4.10). Increasing the number of stored 

patterns to 50 and using a weight conductance of 0.00279 S  has shown a double bursting 

effect in the voltage trace of a cell within a pattern (fig 4.12). This is due to the increased 

number of modified synapses present in the network. When a pattern is instantiated, the 

number of excitatory post-synaptic potentials will be greater in a network with 50 stored 

patterns against a network with 1 stored pattern due to overlap.  

 

If N units are interconnected, each unit receives connections from ZN randomly selected 

units where 10  Z  (Z is the connectivity in the network). All units are binary (0 or 1). 

The activity of a unit is transmitted to a given unit to which it is connected via a modifiable 

synapse. Binary patterns are stored in the net using a simple Hebbian learning rule. Each 

pattern contains M active units (M << N).  

The mean input and output unit activity,   are 

N

M
  ……………………………………………………………………………. 4.2 

The expected fraction of modified synapses for a given number of stored patterns can easily 

be approximated. Once a number of patterns have been stored in the network, a proportion 

of the synapses will have been modified. The probability that a synapse was modified 

during pattern storage for a unit with unit usage r is  

rr )1(1][    ……………………………………………………………….. 4.3 

Where r is defined as the average number of times an output unit is active during the 

storage of R pattern pairs.  
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Probability of a Synapse Being Modified 
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Fig 4.11 A plot showing the probability of a synapse being modified as the number of patterns stored 

is increased. 

 

Noticeably, no pattern recall has taken place as the number of cells firing at each bank of 

excitatory activity increases to all cells. The double-spiking effect found can be attributed to 

the time delay and increased dendritic sum after cell activation causing a large second spike 

at the end of the burst as shown below in Fig 4.12. 

 

In the following simulations, the number of stored patterns is 50. We chose to test the 

network with 50 stored patterns based upon capacity testing shown in Chapter 7. For a fully 

connected network with a full pattern instantiated, it is found that perfect recall diminishes 

at some point between 40 and 50 stored patterns. Hence, we test the network in this state to 

see if we can improve the recall capability and hence increase the capacity of the network 

with biologically plausible characteristics. 
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Fig 4.12 Top: Scatter plot showing cells firing over 1500ms. The double banks of excitation are 

caused by a second large spike produced by EPSPs from other cells see Fig 5.2 Bottom. The network 

contains 50 stored patterns, Is = 0.00075 nA/cm
2
 and the AMPA synapses were set at 

0.00279 S and no inhibition. The input cue contained 5 out of 10 active units. 
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Increasing the weight conductance at the excitatory synapse to extreme values i.e. 0.1 S  

gives desynchronised banks of excitation similar to epileptiform behaviour over 1500ms. 

This behaviour is caused by overdriving the cells (Fig 4.13).  

 

Fig 4.13 Shows cells firing over 1500 ms. The network contains 50 stored patterns, Is = 0.1 nA/cm
2
 

and the AMPA synapses were set at 0.00279 S and no inhibition was applied. The input cue 

contained 5 out of 10 active units. 
 

Pinsky and Rinzel (1994) show that for low somatic input the firing rate can be measured 

between 0.3 and 4hz. Figure 4.14 shows an average recall pattern of approximately 2Hz for 

a low current injection of 0.00075 nA/cm2 in a network with global inhibition where each 

inhibitory synapse has a conductance weight of 0.00017 S . The experiment has 50 stored 

patterns and is a fully connected network with a partial pattern cue of 5 out of 10 cells. As 

shown the pattern recall is not improved per iteration. Due to the inhibition the timing of the 

spikes is noticeably different. All three banks of action potentials/spiking shown occur 
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sooner. This can be attributed to the global inhibitory network resetting the cells faster than 

when there is no inhibition (see Fig 4.14). 
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Fig 4.14  Scatter plot showing a network with 100 neurons over 1500ms with a global inhibitory 

circuit. We applied a low current injection of 0.00075 nA/cm
2
 with global inhibition with weights of 

0.00017 S . The input cue contained 5 out of 10 active units. 
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Increasing the inhibition to 0.001 S  shows an improvement in recall by reducing the 

dendritic sum and also producing a slightly faster frequency of 2.5Hz during the recall 

process. The influence of increasing the global inhibition increases the frequency of firing 

in the network by resetting the membrane potentials of the pyramidal cells, and thus their 

intrinsic properties, which allows the cells to spike/burst more frequently. Increasing the 

global inhibition also reduces the number of spurious nodes firing depending on the ratio 

between excitation and inhibition (See 4.16). Increasing the somatic drive to 0.0075 nA/cm2 

under similar network condition creates desynchronised banks of action potentials (Fig 

4.15). 

 

Fig 4.15 shows a scatter plot with the same network parameters as in 4.14 with an increased current 

injection of 0.0075nA/cm
2
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Fig 4.16  Scatter plot showing a network with 100 neurons over 1500ms with a global inhibitory 

circuit with a stronger inhibitory conductance weighting of 0.001 S . The network parameters are 

the same as in Fig 4.14. 
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4.3.1.2 Initial Testing – Activation of the Dendrite 
 
In the following experiments we use the same basic network as mentioned earlier with a 

range of minor variations. We tested a range of excitatory weight conductances from 

0.00279 to 0.009 S  where all cells are fully connected and there is no global or local 

inhibition within this network. As a partial input cue, five cells receive a current injection 

into the dendrite and all hyperpolarizing currents are relaxed.  

 
This gives a desynchronised output which appears dependent on the spiking of the 5 

neurons with dendritic current injection where Pinsky/Rinzel found that current injection 

into the dendrite increased the frequency of cell firing through very low frequency (VLF), 

to low frequency (LF), to constant spiking. Current injection into the dendrite shows an 

increase in the frequency of the cell firing compared to the results found with current 

injection in the soma (see fig 4.14). Figures 4.17a and 4.17b show that the banks of spiking 

become further apart over time and show no means of recovery in terms of the recall of a 

pattern. The recall of any pattern tends to 0 when excitatory weights are increased. 

Increasing the weights shows no real difference except the double banks at higher 

conductances due to an increased number of EPSPs. 
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Fig 4.17a Scatter plot showing a network with 100 neurons over 1500ms with no global inhibitory 

circuit. gAMPA= 0.00279 S with 50 stored patterns. 
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Fig 4.17b Scatter plot showing a network with 100 neurons over 1500ms with no global inhibition 

and with increased excitatory conductance weights. gAMPA= 0.009 S with 50 stored patterns. 
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4.3.1.3 Initial testing with inhibition 
 
We tested a fully connected network containing 1 stored pattern with global inhibition. 

Each excitatory synapse has a weight conductance of 0.00279 S  and each inhibitory 

synapse has a weight conductance of 0.00017 S . For a partial cue, 5 cells are stimulated 

externally in the dendrite with a constant current injection of 0.0075 nA/cm2. The results 

show an expected 100% full recovery as there is no noise i.e. pattern overlap or reduced 

connectivity. The banks of excitation show recall at the gamma-frequency rate which is 

required for working memory. The effect of inhibition and hence the inhibitory synapses 

appear to create a rhythm which is more prominent than with no inhibition. The inhibition 

also regulates the cell activity where the semi-chaotic spiking behaviour shown earlier is 

replaced with a prominent elongated spike/burst (See Fig. 4.18). 
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Fig 4.18  Top: Scatter plot of cells firing over 1500ms with one stored pattern and an instantiated 

pattern cue of 5 out of 10 cells activated in the dendrite with a tonic stimulation  Bottom: Voltage 

trace of a single cell firing in the network. Tonic current injection of 0.0075 nA/cm
2
, gAMPA = 

0.00279 S and gGABA-A = 0.00017 S  
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Fig 4.19a and 4.19b show the results of a simulation on a network with 50 stored patterns. 

The network is fully connected with global inhibition. Each excitatory synapse has a weight 

conductance of 0.00279 S  and each inhibitory synapse has a weight conductance of 

0.0001 S . 5 cells from a pattern of 10 are stimulated externally with a constant current 

injection of 0.0075 nA/cm2. The results show a very high recall quality of 89% with most of 

the banks of excitation above 95% with 50 patterns stored in the network, see fig 4.19b. In 

comparison with the results found in Fig 4.14, the ability of the network here to recall cells 

that belong in the pattern is far superior due to an optimised inhibitory network. The recall 

quality in Fig 4.14 was negligible given that all cells fired in each bank of excitatory 

behaviour. The large reduction can be attributed mainly to the initial iteration which is 

absent of inhibition. There is a small degree of overlap which can be shown as a loss of 

quality in pattern recovery below. The recall process shows the same spurious node 

appearing at different iterations between the correct full pattern. This suggests that two or 

more of the randomly stored patterns must share many of the same cells so that the pattern 

gets confused depending on the level of excitation each cell receives on each iteration of 

activity. The first recall process contains a large number of the cells before the network 

reaches a steady state as the initial spiking sequence is absent of inhibition where this is a 

common characteristic of the recall process in similar network configurations containing 

global inhibition. Another defining characteristic of these networks is that the required 

pattern is recalled within the gamma-frequency range. 
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Fig 4.19a   Scatter plot of cells firing over time in a fully connected network with 50 stored patterns. 

The network contains global inhibition. gAMPA = 0.00279 S , gGABA-A = 0.0001 S . Partial input 

cue of 5 cells from 10 are stimulated externally with a constant current injection of 0.0075 nA/cm
2
. 
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Fig 4.19b  Scatter plot showing the recall quality over time using the network used in Fig 4.19a. The 

bars show the recall quality with a minimum of 0 and a maximum of 1. The plot shows that the recall 

is very high with most iterations being 0.95 or above. 

 

4.3.1.4 Partial Connectivity 
 
Fig 4.20 contains the results of a simulation on a network with 1 stored pattern. The 

network is partially connected to 10 % with fully connected pseudo-global inhibition. Each 

excitatory synapse has a weight conductance of 0.003 S  and each inhibitory synapse has a 

weight conductance of 0.002 S . 5 cells from a pattern of 10 are stimulated externally with 

a constant current injection of 0.0075 nA/cm2. The increase in inhibition and excitation are 

in response to the noise created with the lack of connections and the smaller number of 

synapses. The randomly selected 10% connectivity includes all possible connections within 

the connectivity matrix and thus shows that the network still contains 39 out of a possible 

90 excitatory synapses.  
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Fig 4.20 Scatter plot showing cells firing over 1500ms in a network containing 1 pattern with 10% 

connectivity and fully connected pseudo-global inhibition. gAMPA = 0.003 S , gGABA-A = 0.002 S . 

Partial cue of 5 cells from 10 with a constant current injection of 0.0075 nA/cm
2
. 

 

 
The recall of the network was tested with a connectivity of 10% over 1500 ms with only 

one pattern stored. The noise variation from the 10% connectivity within the network was 

negligible given an increase in excitatory synaptic weights. Applying 10% connectivity to a 

network containing 50 stored patterns contained more interesting results as a consequence 

of large amounts of noise due to overlap and biologically plausible connectivity. Fig 4.21c 

shows that pattern recall is relatively poor given the large amount of variability between 

high and low units (See Fig 4.22e) during the standard WTA recall method with a recall 

quality of 61%. The network is operating within the gamma frequency range but the recall 

quality appears to oscillate after 500 ms. 
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Fig 4.21a: Voltage trace showing the firing of a high node (top) and a low node (bottom). This 

should be compared too Fig. 5.2a in Chapter 5. 
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Fig 4.21b: Scatter plot of cells firing over 1500ms. 
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Fig 4.21c: Trace of the recall quality over 1500ms.  The network used contained 50 stored patterns 

with 10% connectivity with a partial cue of 5 cells. Is=0.0075nA/cm
2
, gAMPA=0.015 S and gGABA= 

0.00017 S . The bold lines are not empirically calculated but show visually the range of the mean 

recall for each iteration. The dashed line represents a baseline, this is the mean of the standard 

network with pseudo inhibition which equals 0.41. 
 
 

The WTA recall response can be calculated using expressions for the probability 

distributions of the dendritic sums of low and high unit output responses. The probability 

that the basic dendritic sum of a low or high unit’s output should have a particular value x is 

given by; 
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Where ][r  and ][r  are the probabilities that an arbitrarily selected active input is on a 

connection with weight 1. For a low unit, 

 
rr )1(1][    ………………………………………………………………….... 4.6 

 
For a high unit a good approximation for   is 

rsrsgr )1(1][]1[    ………………………………………………… 4.7 

 
Where g and s are the probabilities that a particular active input in the cue pattern belongs 

to the stored pattern or is a spurious unit, respectively (g + s = 1) (Graham and Willshaw, 

1995; Buckingham and Willshaw, 1993). 
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The effect of storing more patterns with a very low connectivity of 10% within the network 

and a partial pattern cue, it can be shown that the separation between high and low units 

increases Fig (a – d) as the number of stored patterns increases, and then the separation 

decreases as the number of stored patterns are increased further in the network (see Fig 

4.22e). The probability for high units is greater where the number of stored patterns is 

around 40. 
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Fig 4.22a Probability distribution of dendritic sums for low and high ouput units due to cues 

containing 50% noise in a small associative net with 10% connectivity in which 10 patterns have 

been stored. 
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Fig 4.22b Probability distribution of dendritic sums for low and high ouput units due to cues 

containing 50% noise in a small associative net with 10% connectivity in which 20 patterns have 

been stored. 
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Fig 4.22c Probability distribution of dendritic sums for low and high ouput units due to cues 
containing 50% noise in a small associative net with 10% connectivity in which 30 patterns have 

been stored. 
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Fig 4.22d Probability distribution of dendritic sums for low and high ouput units due to cues 

containing 50% noise in a small associative net with 10% connectivity in which 40 patterns have 

been stored. 
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Fig 4.22e Probability distribution of dendritic sums for low and high ouput units due to cues 
containing 50% noise in a small associative net with 10% connectivity in which 50 stored patterns 

have been stored.  

 

See Appendix 1 for a list of all compared network parameters. 
 

 

4.3 Summary 
 

In this chapter we have replicated the network by Sommer and Wennekers (2001) using 100 

pyramidal cells and pseudo-inhibition. We have tested the network under various conditions 

to better understand the dynamics of the effect of global inhibition, pattern storage and 

partial connectivity on the recall capability. As stressed in the summary in Chapter 3 and 

throughout Chapter 4, the role of inhibition clearly organises the activity of the network into 

synchronous moderate to high frequency banks of excitation which allows the network to 

recall a pattern from an instantiated input cue. Although the degradation in quality is clear 

due to the constraints from partial connectivity, high probability of pattern overlap and 

partial input cue, the improvement over the initial networks with no inhibition is clear. This 

network gives a solid basis for us to explore methods of improving recall quality in similar 

networks in Chapter 5.  
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Chapter 5 

 
5. Variations on the Winners-take-all Recall Strategy 
 
The construction of the basic network with a global inhibitory network feeding back onto a 

pool of pyramidal cells allows us to simulate the recall operation of the CA3 region of the 

hippocampus after pattern storage has been instantiated. In this chapter we will discuss the 

results of simulations on the network using the normalised, amplified and parallelised WTA 

recall strategies, which were developed based upon the work by Graham and Willshaw 

(1995). These proposed recall strategies will allow us to investigate the recall performance 

of a spiking neural network under various configurations and variations to the architecture 

and the cellular dynamics. These configurations allow us to employ different recall 

strategies based upon biologically plausible phenomena found in the brain. 

 

5.1 Normalised WTA 
 
Partial connectivity complicates recall as a neuron cannot distinguish between missing 

physical connections, and connections that have not been modified during storage (and 

consequently have a weight of 0 and so cannot contribute to the cell’s dendritic sum). This 

adds to the variance of dendritic sums across the network. The dendritic sums of cells that 

belong to a pattern and should be active (high cells) and the sums of cells that should be 

silent (low cells) may overlap, leading to errors in recall. The overlap between the dendritic 

sums of high cells and low cells can be reduced by using a normalised winners-take-all 

approach (Graham and Willshaw, 1995). The normalised WTA uses the fact that all 
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dendritic sums lie between within a range from 0 to some maximal level of input activity, 

which equates with the number of physical connections onto a cell that are active, 

irrespective of the learnt synaptic weight. Thus this input activity is the amount of 

excitation each cell could receive, whereas the dendritic sum is the amount of excitation the 

cell actually receives. Graham and Willshaw (1995) found that by normalising a cell’s 

dendritic sum by its input activity, giving an input value between 0 and 1, reduces the 

error/overlap during recall. This technique is not transferable to a network of realistic 

pyramidal cells in a direct form but by using a method of localized inhibition proportional 

to the excitation a cell could receive, the range of EPSPs and thus the dendritic sums 

produced, are better separated between high and low cells.  

 
The local inhibition is implemented by having inhibitory connections between pyramidal 

cells corresponding to all possible modified excitatory connections in a partially connected 

net (see Fig 5.1). Thus the local inhibition inhibits a PC in proportion to the excitation it 

could receive. This inhibition could be considered as part of a disynaptic inhibitory drive 

with a fast acting GABAA type synapse (Fransen and Lasner, 1998). The actual model 

implements a form of synaptic circuitry that allows two pyramidal cells to rapidly inhibit 

one another (Rolls and Kesner, 2006). There is experimental data which implies that 

glutamatergic synapses from pyramidal cells directly excite presynaptic GABAergic 

terminals, which then inhibit pyramidal cell somata (Connors and Cruickshank, 2007). 

Although fast GABAA mediated events through localised basket cells can have the same 

effect. Such connections have very fast kinetics, short synaptic delays and are very robust. 

Basket cells are endowed with ionic conductances and specific glutamate receptors to 

enable very fast forward activation.  
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Fig. 5.1  Schematic diagram of a biological autoassociative network showing partial connectivity and 

local inhibitory synapses. 

 
We initially tested the normalised WTA method on the same network used in the standard 

WTA method with 100 pyramidal cells fully connected and a fully connected global 

inhibition. The network contained 50 stored patterns which has shown a reduction in recall 

capability. The recall phase of the network using the normalised WTA showed an increase 

in overall recall quality with more iterations showing 100%. Noticeably, the frequency 

during recall was increased into a more prominent gamma-frequency range (Fig 5.2).   

 

 
The effect of the local inhibitory network on cells can be shown more clearly in Fig 4.18c 

and Fig 5.2c where we test the same network with 50 stored patterns. The spike trains 

shown in Fig 4.18a are of a cell that is considered a high unit (within the pattern, top) and a 

low unit (not within the pattern, below). Noise due to pattern overlap is shown as although 

the high unit fires regularly during the recall phase, the low unit also fires regularly. In 

correlation, Fig 5.2a shows spike trains of a high unit (top) and a low unit (bottom), where 

the high unit is shown to fire more frequently and the low unit is shown to fire only once 

when the network was absent of inhibition. The normalised method shows further 

synchrony of the network and the overall quality is improved, with the variability in pattern 

recall being reduced significantly. Statistical analysis is shown in Table 5.1 on page 150. 
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Fig 5.2a: Voltage trace showing the firing of a high node (top) and a low node (bottom). 
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Fig 5.2b: Scatter plot of cells firing over 1500ms.  
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Fig 5.2c  

 

Fig 5.2c: Trace of the recall quality over 1500ms.   

 

The network used contained 50 stored patterns with 10% connectivity with a partial cue of 5 cells. 

Is=0.0075nA/cm
2
, gAMPA=0.015 S , gGABA= 0.00017 S and gGABA(l) = 0.00725 S . The bold lines 

are not empirically calculated but show visually the range of the mean recall for each iteration. The 

dashed line represents a baseline, this is the mean of the standard network with pseudo inhibition 

which equals 0.41. 

 

 

5.2 Transformed WTA 
 
We use a direct implementation of the method used by Graham and Willshaw (1995) for 

removing variations due to unit usage. Unit usage is the number of times an output unit is 

active during the storage of pattern pairs as stated earlier. The average excitation a unit 

receives during recall increases the more patterns the unit belongs to during storage thus 

increasing the variation between high and low units. Graham and Willshaw (1995) found 

for output units with a given unit usage, the variations/overlap due to unit usage can be 

reduced such that the mean of a dendritic sum is a function of the unit usage and that a 

suitable transform can remove this dependence on unit usage (See chapter 2, section 

2.2.2.3). Applying this method to a network of spiking/bursting cells can be directly 

implemented using the properties of synaptic modification and cell conductance. 

Counting the number of times a unit was used by stored patterns using the weight matrix 

gave us an approximation of the unit usage. These values of unit usage were stored based 

upon how many modified excitatory synapses were connected to that cell and essentially we 

normalised against low units with high unit usage rather than individual high units. Trying 
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to recall a pattern by eliminating spurious units by unit usage would directly assume that 

high units would most likely be used and belong to most patterns (i.e. have the greatest 

number of synapses to that cell) and thus would be more likely to achieve an action 

potential. Testing to obtain an approximate minimum conductance to induce an action 

potential gives us an initial conductance that would allow one excitatory synapse to create 

an action potential. Using the value of modified synapses attached to each cell to create a 

fraction of this minimum conductance value should give optimal conductance at each cell 

and reduce the variation between high and low units during pattern recall.  

Initial results show the number of iterations of excitation and overall frequency is below 

and approaching the gamma frequency range due to the absence of local inhibition (Fig 5.3a 

and Fig 5.3b). The transformed WTA method shows a reduction in the overall quality of 

pattern recall (Fig 5.3b). Spurious units due to overlap and usage within patterns are present 

throughout the process due to the value of unit usage and thus fraction of the total weight 

conductance being approximately identical to those units which are present in the pattern. 

The mean pattern recall quality over 1500ms is approximately 59%. The mean pattern 

recall quality under 500ms is, approximately 59%. This shows no improvement over the 

standard WTA method with a slight decrease in mean average quality of pattern recall for 

less than 500ms. Since this direct implementation of the Transformed WTA method found 

in Graham and Willshaw (1995) did not improve the recall capability, we applied another 

method which we call the Amplified WTA method (see Section 5.3). Although the 

Transformed WTA method was able to create a uniform input to the cell through scaling the 

conductance weighing at each synapse, this however did not remove the noise and thus 

activity given by low units and merely optimised the input activity within context of the 

cells activation threshold. 
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Fig 5.3a  
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Fig 5.3b     

 
Fig 5.3a: Scatter plot showing action potentials from cells over 1500ms. Fig 5.3b: Plot showing 

quality over 1500ms. Both 5.3a and b have parameters gAMPA= 0.06 S , gGABAA=0.00017 S . 

 
 

5.3 Amplified WTA 
 
Similarly to section 5.2 we want to reduce the noise in the recall process arising from the 

number of stored patterns each cell belongs to (unit usage). Since the transformed WTA 

method was ineffectual, an alternative method to increase separation between the dendritic 

sums of low and high cells was tested. Graham (2001) used a method of signal (EPSP) 

amplification to help discriminate between low and high cells and therefore improve pattern 

recognition. The summation of EPSPs accumulate linearly where each EPSP is 

approximately the same value as the conductance weighting at all excitatory synapses are 

the same. We want to create a non-linear increase in this summation so that cells, after 

reaching a certain membrane potential, increase the summed amplitude of EPSPs. This has 

the presumption that cells in a pattern (high cells) will receive slightly more excitation than 

cells out-with a pattern (low cells). Adding a persistent sodium channel to the soma with a 

low voltage activation range and appropriate maximum conductance should amplify the 

signal (summed EPSPs). Testing on a single cell shows a non-linear increase in dendritic 

summation above a given threshold. We call this the amplified WTA method when 

incorporated into the network model. 
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Fig 5.4a The graph shows the difference in potential between the Amplified and Standard WTA 
method when a varying number of EPSP’s are induced. The plot shows that after a given threshold 

between 4 to 5 synapses, the summation of the EPSP’s are increased showing a non-linear increase. 
 

 
 

Fig 5.4b  1  Schematic diagram of the Pinsky-Rinzel two-compartment model of a Pyramidal Cell 

showing ionic currents, coupling and voltage parameters with an addition of the Persistent Sodium 

channel (INaP) in the Soma. 
 

 
We test a network with 50 stored patterns with 10% connectivity using the amplified WTA 

method. Fig 5.5a and 5.5b shows that the application of the persistent sodium channel helps 
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increase the network firing rate into the gamma-frequency rate in comparison to the 

standard WTA. The recall quality is increased to 50% from the standard WTA (39%) with 

the recall quality within the banks of excitation being mostly at a higher percentage with a 

reduced trend in confusion between patterns. There are outliers which can be attributed to 

the synaptic time delays of the excitatory and inhibitory synapses.   

 
Fig 5.5a 
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Fig 5.5b 
 

Fig 5.5a: Scatter plot showing cells firing over 1500ms. Fig 5.4b: Plot showing quality over 1500ms. 

Both 5.20a and b have parameters gAMPA=0.008 S , gpNa=0.000165 S with an activation threshold 

of -60mV. 

 

 

5.4 Results  
 

Extensive testing with various network configurations was carried out to examine the recall 

performance of the new WTA strategies compared to the standard WTA. Results can be 

found on the next page. 
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5.4.1 100 PC’s 

 

 
Fig 5.6 Recall quality over time in a 10% partially connected network when recalling a single pattern 

using (top) standard WTA, (middle) normalised WTA and (bottom) amplified WTA. Throughout, Id 

= 0.0075 nA and gGABA = 0.00017 μS. (top) gAMPA = 0.0154 μS; (middle) gAMPA = 0.0154 μS, gGABA(l) 

= 0.00748 μS; (bottom) gAMPA = 0.008 μS, gpNa = 0.000165 μS. The horizontal lines are qualitative 

indicators of the main spread of recall performance in each case. 

 
Table 5.1 shows that the distribution of the mean recall quality for each pattern is normal. A 
full list of results are shown in appendix 2. 
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With the standard WTA method the mean pattern recall quality is approximately 61% (Fig 

5.6top). Using the normalised WTA (Fig 5.6middle) the addition of localised inhibition 

improves the mean pattern recall quality to approximately 64%. A significant improvement 

can also be measured using the amplified WTA which gives a mean pattern recall quality of 

over approximately 65%. The low percentage of recall quality for each method suggests 

confusion from inherent noise due to overlap in patterns during the storage procedure and 

partial physical connectivity. The standard WTA approach (Fig 5.6 top) shows an 

oscillation between high and low values of recall and a wide variation in the quality of 

pattern recall over time. The normalised WTA (Fig 5.6 middle) has a faster rate of cell 

spiking due to the localised inhibitory circuit. Also, the variation in recall quality is greatly 

reduced, with a range of 60% to 80% (excluding some outliers), compared to the standard 

WTA at approximately 40% to 80%. Similarly, the amplified WTA approach (Fig 

5.6bottom) shows less variation in quality of recall per iteration with a range of 60% to 80% 

and fewer outliers. Outliers can be attributed to increased iterations from the extra 

inhibition in the normalised WTA method and the increased likeliness of an AP due to the 

persistent Na channel in the amplified WTA. The mean quality over all patterns shows a 

statistically significant (Table 5.1) increase when using the normalised and amplified 

methods compared to the standard WTA method using a 1 tailed, paired T-Test for both 

cases. 
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Fig 5.7. (top) Mean recall quality of each of the 50 stored patterns over a 1500ms trial, and (bottom) 

mean and error bars showing the 95% confidence interval of recall quality averaged over all stored 

patterns, for the three recall methods. All patterns recall values are the mean of 5 variations of 

instantiated input cues. 

 
 
 



 

 

150 

The quality of recall varies across the 50 stored patterns due to the noise from pattern 

overlap and partial connectivity (Fig 5.7 top). The distribution of the mean recall for the 

standard, normalised and amplified methods are normal as can be shown in table 5.1 and in 

appendix 2. The mean quality over all stored patterns shows a statistically significant 

increase when using the Normalised and Amplified methods compared to the Standard 

WTA method (Fig 5.7 bottom) which is verified using the paired T-Test shown in table 5.1. 

 

 

100 Pyramidal Cells (Pseudo-Inhibition) 

  Standard Normalised Amplified 

Mean 0.41 0.55 0.53 

Median 0.4 0.55 0.52 

Min 0.31 0.43 0.44 

Max 0.51 0.66 0.64 

Standard 
Deviation 

0.053 0.052 0.047 

95% CI 0.015 0.014 0.013 

H0:  μs = μn/a       (where μs/n/a is the mean of the standard, normalised and 

amplified WTA methods)  

H1:  μs < μn/a 

  Standard vs 
Normalised 

Standard vs 
Amplified 

Normalised vs 
Amplified 

Paired T-Test 
(1 Tailed) 

2.51E-29 3.76E-28 3.30E-07 

Table 5.1 Mean Recall Quality results over all patterns in networks containing 100 pyramidal cells 
and 50 stored patterns with 10% connectivity for Standard, Normalised and Amplified recall 

strategies. 5 configurations of the input cue for each pattern were tested and the mean was used for 

each pattern. Shown below is the results of one-tailed paired T-Tests testing the null hypothesis that 

that there is no change in means between standard, normalised and amplified. 

 

 

5.4.2 1000 PC’s 
 
Using a 1000 cell model the overall quality of recall is improved due to the increase in size 

of the weight matrix. We tested the network using 100 and 200 stored patterns, due to the 

initial signs of degradation in pattern recall and the critical capacity being at some point 

between (see chapter 2 and 7), comparing the standard, normalised and amplified WTA 

method.  
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Fig 5.8 Mean Recall Quality for all patterns in a 1000 cell network containing 200 stored patterns 

with pseudo-inhibition with 10% connectivity with error bars showing 95% Confidence Interval.  

 

1000 Pyramidal Cells (Pseudo-Inhibition) (200 stored patterns) 

  Standard Normalised Amplified 

Mean 0.59 0.66 0.63 

Median 0.61 0.66 0.64 

Min 0.53 0.63 0.58 

Max 0.63 0.68 0.66 

Standard 
Deviation 

0.034 0.017 0.023 

95% CI 0.021 0.011 0.014 

H0:  μs = μn/a       (where μs/n/a is the mean of the standard, normalised and 

amplified WTA methods)  

H1:  μs < μn/a 

  Standard vs 
Normalised 

Standard vs 
Amplified 

Normalised vs 
Amplified 

Paired T-Test 
(1 Tailed) 

2.2E-6 0.0004 0.0007 

Table 5.2 Mean Recall Quality results over all patterns in networks containing 1000 pyramidal cells 

and 200 stored patterns with 10% connectivity for Standard, Normalised and Amplified recall 

strategies. Shown below is the results of one-tailed paired T-Tests testing the null hypothesis that that 

there is no change in means between standard, normalised and amplified. 

 

 

The selection of a network with 200 and 100 stored patterns is because this is the point that 

initial degradation in recall efficacy occurs (see Fig. 7.2b). Simulations on the 1000 node 

network with 200 stored patterns showed distinctive increases using the normalised and 

amplified method over the standard method. With a 59% average for the standard method, 
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the increase of 66% for the Normalised and 63% for the amplified were verified using the 

standard deviation, 95% confidence intervals and a paired t-test.  

 

 
Fig 5.9 Mean Recall Quality for all patterns in a 1000 cell network containing 100 stored patterns 

with pseudo-inhibition with 10% connectivity with error bars showing 95% Confidence Interval.  
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Fig. 5.10 Percentage of correctly recalled units against spurious units using the Standard, Normalised 

and Amplified WTA recall strategies.  
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1000 Pyramidal Cells (Pseudo-Inhibition) (100 stored patterns) 

  Standard Normalised Amplified 

Mean 0.63 0.65 0.64 

Median 0.63 0.65 0.64 

Min 0.61 0.64 0.62 

Max 0.64 0.67 0.66 

Standard 
Deviation 

0.0076 0.0077 0.011 

95% CI 0.0047 0.0048 0.0069 

H0:  μs = μn/a       (where μs/n/a is the mean of the standard, normalised and 

amplified WTA methods)  

H1:  μs < μn/a 

  Standard vs 
Normalised 

Standard vs 
Amplified 

Normalised vs 
Amplified 

Paired T-Test 
(1 Tailed) 

5.5E-6 0.00058 0.00093 

Table 5.3 Mean Recall Quality results over all patterns in networks containing 1000 pyramidal cells 

and 100 stored patterns with 10% connectivity for Standard, Normalised and Amplified recall 

strategies. Shown below is the results of one-tailed paired T-Tests testing the null hypothesis that that 

there is no change in means between standard, normalised and amplified. 

 
The network containing 100 stored patterns showed an increase in recall but less prominent  

compared to the networks containing 100 PCs and 50 stored patterns and 1000 PCs and 200 

stored patterns due to the reduced variation from overlap. The increase was verified using a 

paired t-test on the data. Fig 5.10 shows the clear reduction in the number of spurious nodes 

during the recall phase. The network also showed an increase in frequency by introducing 

the localised inhibition and the persistent Sodium channel.  

 

5.5 Parallelised WTA 
 
Our new normalised and amplified WTA recall methods address certain problems with 

pattern recall in a biologically plausible way. However, fundamental problems caused by 

the network structure still exist. Due to the random 10% connectivity based upon roughly 

physical synaptic connections in the CA3 region of the Hippocampus, a synapse that may 

have existed that is removed means that relevant excitation between cells within a given 

pattern, or patterns is completely lost. Pyramidal cells can connect to each other up to 4 
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times (Hellwig, 2000) given their long dendritic compartments. Our pyramidal cell model 

has limited spatial properties due to inherent properties of the single dendritic compartment, 

where the length and volume of the dendrite would play a significant role in signal 

propagation.  

 
To replicate the spatial aspects found in biologically realistic cells, we created a single 

weight matrix. We then created 3 separate networks. These were comprised of 2 weight 

matrices, 3 weight matrices and 4 weight matrices, where each weight matrix had a random 

10% connectivity. This allows an increased probability that two cells that are part of the 

same stored pattern will have at least one connection between them. The number of possible 

combinations for selecting 10% connectivity from a network of 100 nodes can be given by; 

 

)!100010000(!1000

!10000


 

 
However, these possible connections may not be populated with active synapses. With an 

increase in the number of layers, a single synapse has up to 4 times as much chance of 

being selected than in the single layer network.  

 
By creating up to 4 weight matrices and carrying out random 10% connectivity on each and 

applying these connections, we must scale the weight conductances, as it is impossible for 

the same synapse to happen more than once on the same layer. Hence each layer will 

correspond to a simulated spatial point on a dendrite, if a synapse exists in layer 1, it will 

have a stronger weight conductance as it is close to the soma, with less resistance, than a 

synapse in layer 4 which is in the tuft of the dendrite. Hence we mimic the spatial 

characteristics of the apical dendritic tree of a pyramidal cell. 
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Fig 5.11 Schematic diagram showing 4 layers of the weight matrix (left) applied to cells (right) 

(application of the Standard WTA model) 

 

 
Fig 5.12 Schematic diagram showing 4 layers of the weight matrix (left) applied to cells (right) 

(application of the Normalised WTA model) 
 

 

 
In the normalised configuration, the disynaptic inhibition is applied similarly to the method 

in the one layer system. The local inhibition is applied to all modified synapses before 10% 

random connectivity is applied to the weight matrix. 

 
The networks tested contained 1000 neurons with 100 stored patterns on a 2 layered, 3 

layered and 4 layered connectivity matrix. Each initial weight matrix has the same patterns 

stored but the conductance weighting of the excitatory synapses are scaled on each layer. 
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5.5.1 2 Layers 
 
Simulations were run on a 1000 node network with two synaptic layers simulating a close 

proximal synaptic bouton and a scaled conductance on the second synapse which simulated 

a synapse in a slightly more distal region. We tested a standard WTA against a normalised 

WTA method where the increase in pattern recall was approximately 10%.   

The parameters used in the networks below are; 

Standard ( S ): gAMPA(1) = 0.0015  gAMPA(2) = 0.0011  gGABA = 0.008   

Normalised ( S ): gAMPA(1) =0.0015   gAMPA(2) = 0.0011  gGABA = 0.008  gGABA(l1) = 0.0001 

gGABA(l2) = 0.00009 

 
Fig 5.13a Quality recall results for two layered network using the Standard WTA method. 

 
Fig 5.13b Quality recall results for two layered network using the Normalised WTA method. 
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Fig 5.13c Mean Recall Quality for a Network with 100 stored patterns and two synaptic layers with 

error bars showing 95% Confidence Interval. 
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Fig 5.13d  Percentage of cells firing which are inside the pattern against those which are not. 

 
The level of increase in network efficacy between the normalised (65%) and standard 

(55%) approach using 2 layers can be shown given the large increase in the number of 

correctly recalled nodes over the 1500ms simulation. The introduction of the normalised 

method increased the synchrony of the network. 

 

5.5.2 3 Layers 
 
Simulations were run on a 1000 node network with three synaptic layers simulating a close 

proximal synaptic bouton and two scaled conductance weighting on the second and third 

synapse which simulated a synapse in increasingly distal regions. We tested a standard 

WTA against a normalised WTA method where the increase in pattern recall was 

approximately 11%.  

The parameters used in the networks below are; 

Standard ( S ): gAMPA(1) = 0.0016  gAMPA(2) = 0.0008  gAMPA(3) = 0.0004    gGABA = 0.008   

Normalised ( S ): gAMPA(1) =0.0016   gAMPA(2) = 0.0008  gAMPA(3) = 0.0004    gGABA = 0.008  

gGABA(l1) = 0.0001 gGABA(l2) = 0.00006  gGABA(l3) = 0.00003 

 

 
Fig 5.14a Quality recall results for three layered network using the Standard WTA method. 

 



 

 

159 

Fig 5.14b Quality recall results for three layered network using the Normalised WTA method. 
 

 
Fig 5.14c Mean Recall Quality for a Network with 100 stored patterns and three synaptic layers with 

error bars showing 95% Confidence Interval. 
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Fig 5.14d  Percentage of cells firing which are inside the pattern against those which are not. 

 
The level of increase in network efficacy between the normalised and standard approach 

using 3 layers can be shown given the large increase in the number of correctly recalled 

nodes over the 1500ms simulation. The introduction of the normalised method increased the 

synchrony of the network. 

 

5.5.3 4 Layers 
 
Simulations were run on a 1000 node network with four synaptic layers simulating a close 

proximal synaptic bouton and three scaled conductance weighting on the second, third and 

fourth synapse which simulated a synapse in increasingly distal regions. We tested a 

standard WTA against a normalised WTA method where the increase in pattern recall was 

approximately 11%.  
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The parameters used in the networks below are; 

Standard ( S ): gAMPA(1) = 0.0016  gAMPA(2) = 0.0006  gAMPA(3) = 0.0004  gAMPA(4) = 0.0002  

gGABA = 0.008   

Normalised ( S ): gAMPA(1) =0.0016   gAMPA(2) = 0.0006  gAMPA(3) = 0.0004  gAMPA(4) = 0.0002  

gGABA = 0.008  gGABA(l1) = 0.0001 gGABA(l2) = 0.00005  gGABA(l3) = 0.00003  gGABA(l4) = 0.00003 
 

 
Fig 5.15a Quality recall results for four layered network using the Standard WTA method. 

 

 
Fig 5.15b Quality recall results for four layered network using the Normalised WTA method. 
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Fig 5.15c Mean Recall Quality for a Network with 100 stored patterns and four synaptic layers with 

error bars showing 95% Confidence Interval. 

 

 
Fig 5.15d  Percentage of cells firing which are inside the pattern against those which are not. 
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The level of increase in network efficacy between the normalised and standard approach 

using 4 layers can be shown given the large increase in the number of correctly recalled 

nodes over the 1500ms simulation. The introduction of the normalised method increased the 

synchrony of the network. 

 

5.5.4  Overview 
 
Using the parallelised WTA method increases the probability of a high unit receiving some 

signal after the randomisation of the 10% connectivity as each layer receives a different 

random selection. Within the initial 400 ms the networks with multiple layers gained 

consistently higher quality of recall than was attainable in the single layer networks with 

most initial iterations being at 70% or above. 

Mean Recall Quality 

Connectivity WTA method Average Standard Deviation CI 95% 

1 Layer 
Standard 0.629 0.008 0.005 

Normalised 0.652 0.008 0.005 

2 Layers 
Standard 0.548 0.028 0.017 

Normalised 0.646 0.033 0.02 

3 Layers 
Standard 0.509 0.025 0.015 

Normalised 0.629 0.025 0.015 

4 Layers 
Standard 0.532 0.024 0.015 

Normalised 0.645 0.022 0.014 

Table 5.4a Mean Recall Quality results over all patterns for all layer configurations. 

 
 Standard Normalised 

Layer 1 vs Layer 2 2.7E-06 0.32 
Layer 1 vs Layer 3 4.6E-08 0.014 
Layer 1 vs Layer 4 2.5E-07 0.20 

Layer 2 vs Layer 3  1.6E-05 0.0057 
Layer 2 vs Layer 4 0.024 0.41 
Layer 3 vs Layer 4 0.0072 0.0023 

Table 5.4b Paired T-Test, 1-tailed between subsequent layers, the output is a P-value where alpha is 
0.05. 

 
 2 Layers 3 Layers 4 Layers 

Standard vs 
Normalised 

2.9E-08 3.6E-07   9.6E-09 

Table 5.4c Paired T-Test, 1-tailed between Standard and Normalised for Parallel networks with 2, 3 

and 4 Layers, the output is a P-value where alpha is 0.05. 

 
 
There is a consistent increase between the Normalised and Standard WTA methods over all 

multiple layers (Table 5.4c). Although the standard method in the single layer had higher 
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quality recall overall, this can be attributed to fine tuning. The large increase in quality 

between the multiple layer networks is significantly higher than the single layer network. 

Layers 3 and 4 appear to make little difference in the quality of recall (Table 5.4b). These 

synapses have perhaps been scaled too low to make a large effect on the network and 

require further study. The amplified network was not tested due to time constraints due to 

the complex tuning factors associated with the persistent sodium channel. We would expect 

the results to show a significant increase compared to the standard WTA as the likeliness of 

a high unit still being present in one of the 4 layers is increased. 

 

5.6 Summary 

 
In this chapter we have shown our methods for improving recall in a network of spiking 

neurons using biologically plausible implementations of the methods used by Graham and 

Willshaw (1995) and by implementing a spatial characteristic to the connectivity between 

cells. Our experiments demonstrate that methods of improving recall in a network of 

spiking neurons show significant correlations to the results found in artificial neural 

networks of associative memory (Graham and Willshaw, 1995).  

 

 
We have shown, as verified experimentally (Cobb et al., 1995), that a method of global 

inhibition is required for synchronous pyramidal cell activity in the gamma frequency 

range. Our model also suggests that for pattern recall, a method of local inhibition (GABA-

ergic interneurons) may further synchronize the activity between pyramidal cells and also 

improve the recall of a pattern. Evidence obtained experimentally shows that a reduction in 

GABA synthesis in a subpopulation of inhibitory GABA-ergic neurons results in a 

diminished capacity for the gamma-frequency synchronized neuronal activity (Lewis et al., 

2005). We apply a specifically structured inhibition in which the negative affect of one PC 

on another is generated by a disynaptic pathway involving an interposed inhibitory cell and 

thus by using the interneuron-bypass pathway, a single pyramidal cell triggers an unusually 

fast and powerful cascade of local inhibition which proportionalises the excitation a cell 



 

 

165 

will receive and resets the cell to provide the potential for faster operation (Connors and 

Cruickshank, 2007).  

 
Adding a persistent Na channel to the cell to amplify large EPSPs also improved the quality 

of pattern recall over standard but not normalised approach.  This result suggests that the 

membrane properties of pyramidal cells may be able to reduce noise in patterns of synaptic 

input. The added persistent Na channel confirms the methods explored in (Graham, 2001), 

where it was found that voltage-gated ion channels act to boost synaptic input and thus 

improve recall in a model of associative memory. 

We have shown that the addition of spatial characteristics of the apical dendrite can 

increase the quality of recall from the network. In the initial networks, the connectivity 

from one cell to another could only have one synapse. If this synapse was lost during 

random allocation for 10% connectivity this would have a significant impact on the 

operability of the network during the recall phase. Pyramidal cells have been shown to 

connect to other pyramidal cells in close proximity of up to 3 or 4 times (Hellwig, 2000). 

Spatial characteristics have been implemented by scaling (approximately) to simulate 

distance on the apical dendritic tree. This has allowed a high node a greater probability of 

still being active within the pattern recall phase.   
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Chapter 6 
 
6. Variations Using Basket Cells 
 
Our new recall strategies presented in Chapter 5 increase recall performance in a network of 

spiking neurons, while retaining biological plausibility. The synaptic operation which 

provides the global inhibition is biologically implausible although having a 

neurophysiologically based time delay parameter value. However, the inhibition provided 

by the processing of EPSPs provided by the Pyramidal Cell network would usually be 

undertaken by a network of Basket Cells. Within network models containing 100 and 1000 

pyramidal cells, we add different numbers of explicit interneurons using realistic models of 

basket cells which will be used to provide the global inhibition. These interneurons are 

driven by the activity of pyramidal cells and feedback inhibition onto them. The three 

configurations are: 

1.     A single inhibitory interneuron (basket cell) is driven by all pyramidal cells and 

feeds back inhibition to all pyramidal cells equally. 

2. 10 basket cells are driven by 100 pyramidal cells which feedback inhibition on all 

pyramidal cells. 

3. The network contains 100 basket cells, each of which is driven by a single 

pyramidal cell, but all of which feedback inhibition to all pyramidal cells. 

 
The first configuration using explicit basket cells provides inhibition that is relatively 

constant, provided that sufficient pyramidal cells are active to cause the basket cell to spike. 

The basket cell spiking rate is only a moderate function of pyramidal cell activity. In the 
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third configuration using explicit basket cells, the amount of inhibition projected to each 

pyramidal cell is a strong function of the current pyramidal cell activity level across the 

network. This should be the closest to the “pseudo-inhibition” of Sommer and Wennekers 

(2000, 2001). The purpose of these configurations is to determine whether it is necessary 

for inhibition to accurately reflect pyramidal cell activity levels for accurate pattern recall. 

We will test the networks using the standard, normalised and amplified WTA recall 

strategies.  

 
Fig 6.1 (a)Schematic diagram showing all available Pyramidal Cells connecting to a single Basket 

Cell. The single Basket Cell then feeds back an inhibitory synapse to all Pyramidal Cells. (b) Sets of 

10 Pyramidal Cells connecting to each Basket Cell. Each basket cell then feeds back an inhibitory 

synapse to all pyramidal cells. (c) Each Pyramidal Cell connecting to an individual Basket Cell, with 

a reciprocal inhibitory feedback loop to all PCs. 



 

 

168 

6.1 100 PC Models 

 
6.1.1 100 Pyramidal Cells with 1 Basket Cell 
 
Each Pyramidal Cell connects to a single Basket Cell which provides feedback inhibition 

based on the level of excitation provided by the PCs. This inhibition will actively reset the 

membrane potential of each pyramidal cell. The connectivity of the basket cell to the 

Pyramidal Cell is all to all (fig. 6.1a)). The use of a single Basket Cell is biologically 

implausible, however, the single BC will reduce the variation in inhibitory activity in 

comparison to the all-to-all pseudo inhibition. 

 

The results with a network containing a single BC for recall of a single pattern show an 

improvement in the quality of recall using the NWTA and AWTA method over the 1500ms 

simulation time. The Standard WTA method produced an average quality of 36% compared 

to the Normalised and Amplified WTA methods, which produced an average quality of 

recall of 44% and 47%, respectively (fig. 6.3). The quality of recall again varies across the 

50 stored patterns and the mean quality over all stored patterns shows a statistically 

significant (Table 6.1) increase when using the Normalised and Amplified methods 

compared to the Standard WTA method (fig. 6.3). 
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Fig. 6.2 Network contains 1 BC. Recall quality over time in a 10% partially connected network when 

recalling a single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified WTA. 

Throughout, Id = 0.0075 nA and GGABA(g) = 0.01 μS. (a) GAMPA = 0.014 μS, GAMPA(pc−bc) = 

0.05 μS; (b) GAMPA = 0.014 μS, GGABA(l) = 0.0025 μS, GAMPA(pc−bc) = 0.05 μS; (c) GAMPA 
= 0.006 μS, GpNa = 0.0003 μS , GAMPA(pc−bc) = 0.05 μS. 
 

The standard WTA method for a single pattern recall shows degradation in pattern recall 

after 200ms, however the normalised WTA method reaches a fixed attractor state with 

significant improvement after 400ms. The amplified WTA method shows a significant 
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improvement, compared to the standard WTA method, throughout and oscillates between 

relatively high percentage recall. Fig 6.2. 

 

 

 
 
Fig. 6.3 Network contains 1 BC. (a) Mean recall quality of each of the 50 stored patterns over a 1500 

ms trial, and (b) mean and 95% CI of recall quality averaged over all stored patterns, for the three 

recall methods. All patterns recall values are the mean of 5 variations of instantiated input cues. 
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6.1.2 100 Pyramidal Cells with 10 Basket Cells 
 
The network will contain an inhibitory system where each set of 10 Pyramidal Cells out of 

a possible 100 PCs connect to a single basket cell which will act as feedback inhibition to 

reset the membrane potential of each pyramidal cell. The selectivity for the feedforward 

excitatory connection of the Pyramidal Cells to each Basket Cell is taken as a linear 

selection which is not pattern specific. For example, PCs 1 to 10 will be connected to BC 1 

and so on. Each of the 10 basket cells connects to every pyramidal cell giving 1000 

inhibitory connections (fig. 6.1b). This ratio of the population of inhibitory cells to 

pyramidal cells is similar to that found in physiology (Amaral and Lavenex, 2007). 

Although the network configuration is more complex and biologically plausible than the 

single cell model, based upon the realistic proportion of Basket Cells per population of 

Pyramidal Cells, the configuration of the BC's within the network are not. The BC network 

has connectivity from and to Pyramidal Cells but within the Hippocampus, 

interconnectivity between Basket Cells are evident. Also, since the connectivity of the 

inhibitory synapses is absent of pattern specific learning, the inhibition will be expected to 

work disjointly.  

With 10 BCs, the results over a single pattern are similar to those found in the 1 BC and 

pseudo-inhibitory networks in section 5 and discussed earlier. With the Standard WTA 

method producing an average quality of 42% compared to the Normalised and Amplified 

WTA methods, which produce an average quality of recall of 47% and 47%, respectively 

(fig. 6.6). 

The distribution of connectivity over the 10 Basket Cells providing global inhibition to the 

network produced interesting characteristics throughout the simulation. The stored cue 

pattern and the degree of pattern overlap in the network determined the recurrent activity of 

a particular BC. As the excitation in the network increased, based upon the pattern overlap, 

then inhibition provided from a basket cell not permanently associated with the pattern is 

activated to reduce activity in the network (fig. 6.5). A delicate balance between excitation 
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and inhibition must be maintained to prevent runaway excitation (Nelson and Turrigiano, 

1998).  The mean quality over all stored patterns again shows a statistically significant 

(95% confidence interval) increase when using the Normalised and Amplified methods, 

compared to the Standard WTA method (fig. 6.6). 
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Fig. 6.4. Network contains 10 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified 

WTA. Throughout, Id = 0.0075 nA and GGABA(g) = 0.005 μS. (a) GAMPA = 0.0084 μS, 

GAMPA(pc−bc) = 0.11 μS; (b) GAMPA = 0.0084 μS, GGABA(l) = 0.0015 μS, GAMPA(pc−bc) = 

0.11 μS; (c) GAMPA = 0.0029 μS, GpNa = 0.000396 μS , GAMPA(pc−bc) = 0.11 μS. 
 

 
Fig. 6.5. Activity of Basket Cells for the (a) standard WTA and (b) normalised WTA methods in a 

network configuration containing 10 Basket Cells. BCs 0 and 3 fire prominently in both cases. BC 4 

occurs 3 times in the Standard WTA approach and slightly more during the Normalised WTA 

approach. 

 
With the 10 Basket Cells working independently the disjointed activity is clear in the results 

for the normalised method where we add pattern specific localised inhibition. As there are 

only 10 possible basket cells which can be activated in the network, only a few Basket Cells 

will fire due to the variation in activity in the network. Since the feedback inhibition was 

proportionalised due to the increase in the number of inhibitory cells, the amount of 

inhibition in the network will vary depending on the spatial arrangement of the pattern 

stored. Although the Normalised method has a higher recall average than the Standard 

method the recall process shows that the network struggles to reach a fixed attractor state 

Fig 6.4b). The activation of the Basket Cells in Fig 6.5a) and Fig 6.5b) shows a variation 

between which cells fire and which are inactive. Interconnectivity between basket cells 

would reduce this variability and hence the variation in basket cell operation.  
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Fig. 6.6. Network contains 10 BCs. (a) Mean recall quality of each of the 50 stored patterns over a 

1500 ms trial, and (b) mean and 95% CI of recall quality averaged over all stored patterns, for the 

three recall methods. All patterns recall values are the mean of 5 variations of instantiated input cues. 
 

 

6.1.3 100 Pyramidal Cells with 100 Basket Cells 
 
With 1 PC providing feedforward excitation to 1 BC this configuration is similar to the 

networks containing the pseudo-inhibition. The network is tuned such that the relative 

excitation of pyramidal cells will induce activity in the basket cells. The variability of the 

excitation received at each pyramidal cell and also the weight of the excitatory synapses 
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onto the basket cells creates a sensitive state in which it is not guaranteed that every action 

potential recorded in an excitatory cell will create a mirrored response in the relative basket 

cell. The connectivity of the BCs is all to all onto the pyramidal cells (fig. 6.1c). 

 

With 100 BCs, for a single pattern the Standard WTA method produced an average quality 

of 48%, compared to the Normalised and Amplified WTA methods producing an average 

quality of recall of 51% and 57%, respectively (fig. 6.8b). The Amplified WTA, in this 

case, is highly variable during the simulation. Mean quality over all the stored patterns still 

shows a statistically significant increase with the Normalised and Amplified methods 

(Table 6.1). 
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Fig. 6.7. Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) Standard WTA, (b) Normalised WTA and (c) Amplified 

WTA. Throughout, Id = 0.0075 nA and GGABA(g) = 0.003 μS. (a) GAMPA = 0.0082 μS, 

GAMPA(pc−bc) = 0.18 μS; (b) GAMPA = 0.0082 μS, GGABA(l) = 0.001 μS, GAMPA(pc−bc) = 

0.18 μS; (c) GAMPA = 0.0024 μS, GpNa = 0.000396 μS , GAMPA(pc−bc) = 0.18 μS. 
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Fig. 6.8. Network contains 100 BCs. (a) Mean recall quality of each of the 50 stored patterns over a 

1500 ms trial, and (b) mean and 95% CI of recall quality averaged over all stored patterns, for the 

three recall methods. All patterns recall values are the mean of 5 variations of instantiated input cues 
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6.2 Overview 
 

Mean Recall Quality 

Configuration WTA Method Mean Standard Dev. 95% CI Median Min Max 

100PCs vs 1BC 

Standard 0.36 0.05 0.01 0.36 0.26 0.46 

Normalised 0.44 0.07 0.02 0.44 0.29 0.59 

Amplified 0.47 0.06 0.02 0.47 0.36 0.57 

100PCs vs 10BCs 

Standard 0.42 0.07 0.02 0.42 0.28 0.57 

Normalised 0.47 0.06 0.02 0.47 0.36 0.60 

Amplified 0.47 0.07 0.02 0.48 0.34 0.62 

100PCs vs 100BCs 

Standard 0.48 0.06 0.02 0.48 0.36 0.58 

Normalised 0.51 0.05 0.01 0.51 0.40 0.61 

Amplified 0.57 0.05 0.01 0.57 0.48 0.68 

H0:  μs = μn/a       (where μs/n/a is the mean of the standard, normalised and amplified WTA 

methods)  

H1:  μs < μn/a  

Ttest (1 tailed) 
Standard vs 
Normalised Standard vs Amplified 

Normalised vs 
Amplified 

1 BC 7.10E-17 3.40E-28 0.0013 

10 BC's 1.20E-19 4.30E-14 0.46 

100 BC's 6.90E-17 6.70E-33 3.00E-28 
 

Table 6.1  Mean recall quality over all stored patterns for the different network configurations and 

different WTA recall methods. Also shown is the results of one tailed paired T-Tests for all 

configurations. 

 
Inhibitory microcircuits can play a variety of roles within autoassociative memory spiking 

neural networks. As shown experimentally (Cobb, 1995; Mann et al., 2005), global 

feedback inhibition acts to synchronize principal cell activity to regular firing within the 

gamma frequency range (30-100Hz). Reduction in GABA synthesis in a subpopulation of 

inhibitory GABA-ergic neurons results in a diminished capacity for the gamma-frequency 

synchronized neuronal activity (Lewis et al., 2005). Such network activity is seen in our 

model and other similar models (Fransen and Lansner, 1998; Jensen et al.,1996, Menschik 

and Finkel, 1998; Sommer and Wennekers, 2001; Wennekers et al., 1995). These models 

also show that, within the context of associative memory, such global inhibition provides a 

simple thresholding of PC activity that can lead to pattern recall. We show that this 

thresholding is robust to the exact number of inhibitory interneurons, but that different 

configurations do provide varying recall performance.  
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The highest improvement in recall is achieved with 100% basket cells, suggesting their 

sampling of pyramidal cell activity provides a good measure of the required PC firing 

threshold. Recall appeared poor in the network containing 1 BC due to the low percentage 

in recall quality, however, this can be attributed to tuning. The percentage increase in this 

network using the Normalised and Amplified methods were consistent with the other 

configurations. The variation found in mean recall over all patterns for the net with 10BC 

was higher due to the inconsistent activation of the inhibitory interneurons. This is shown in 

experimental evidence which suggests that electrically coupled interneurons (possibly via 

gap junctions) work collectively (Bartos et al., 2001).  

 

6.3 1000 PC models 

 

6.3.1 1000 Pyramidal Cells vs. 1 Basket Cell 
 
Similarly to the 100 PC network, we test the Standard, Normalised and Amplified WTA 

methods on a network containing 1 single Basket Cell with all-to-all connectivity from BC 

to PC with 100 and 200 stored patterns Fig. 6.1a.   

 
 
Similarly to the 100 PC network, each Pyramidal Cell connects to a single Basket Cell 

which provides feedback inhibition based on the level of excitation provided by the PCs. 

This inhibition will actively reset the membrane potential of each pyramidal cell. The 

connectivity of the basket cell to the Pyramidal Cell is all to all (fig. 6.1a). The network was 

tested on a network with 200 and 100 stored patterns. 

 

The results with a network containing a single BC for recall of a single pattern show an 

improvement in the quality of recall using the NWTA and AWTA method over the 1500ms 

simulation time. In the 200 stored pattern network the Standard WTA method recalled the 

pattern with a recall quality of 52%, the Normalised WTA AT 59% and the Amplified 

WTA with 56%. Similarly, in the 100 stored pattern network, the Standard WTA method 
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produced an average quality of 57% compared to the Normalised and Amplified WTA 

methods, which produced an average quality of recall of 62% and 62%, respectively (fig. 

6.9 and 6.10). The quality of recall again varies across the 100 stored patterns and the mean 

quality over all stored patterns shows a statistically significant (paired T-Test) increase 

when using the Normalised and Amplified methods compared to the Standard WTA 

method (Table 6.2). 

 

 
Fig 6.9 Mean Recall Quality for a Network containing 200 stored patterns with 1 BC showing 95% 

CI error bars. 
 

 
Fig 6.10 Mean Recall Quality for a Network containing 100 stored patterns with 1 BC showing 95% 

CI bars. See Table (6.2) 
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The overall mean quality is improved between the normalised and standard WTA methods 

as before. The increase in quality can be shown in Fig 6.11. The percentage of spurious 

nodes recalled in the network is significantly reduced over all patterns stored in the 100 

pattern network with a significant increase shown particularly using the Normalised WTA 

method.  

 

 
Fig 6.11 Fraction of high nodes against the number of spurious nodes over all patterns in a net with 

100 cells. 

 

6.3.2 1000 Pyramidal Cells vs. 100 Basket Cells 
 
The network will contain an inhibitory system where each set of 10 Pyramidal Cells out of 

a possible 1000 PCs connect to a single basket cell which will act as feedback inhibition to 

reset the membrane potential of each pyramidal cell. The selectivity for the feedforward 

excitatory connection of the Pyramidal Cells to each Basket Cell is taken as a linear 

selection which is not pattern specific. For example, PCs 1 to 10 will be connected to BC 1 

and so on. Each of the 100 basket cells connects to every pyramidal cell giving 1000 

inhibitory connections (fig. 6.1b). Although the network configuration is more complex and 

biologically plausible than the single cell model based upon the Basket Cell population 

numbers in context to the Pyramidal Cells, the configuration of the BC's within the network 

are not. The BC network has connectivity from and to Pyramidal Cells but within the 
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Hippocampus, interconnectivity between Basket Cells are evident. Also, since the 

connectivity of the inhibitory synapses is absent of pattern specific learning, the inhibition 

will be expected to work in a disjointed fashion.  

 

With 100 BCs, the results over a single pattern show consistent disjoint behaviour as with 

the equivalent 100 PC model, with the Standard WTA method producing an average quality 

of 56% compared to the Normalised and Amplified WTA methods, which produce an 

average quality of recall of 59% and 59%, respectively for the network with 100 stored 

patterns with 34%, 41% and 33% for the Standard, Normalised and Amplified WTA 

methods respectively for the network with 200 stored patterns (fig. 6.12 and 6.13). The 

variability in the recall with 100 patterns can be shown in the standard deviation bars 

(which show the variance in performance) in fig 6.13. With the only significant increase 

being shown using the Normalised WTA method in the network with 200 stored patterns, 

there is also a reduction using the Amplified WTA method.  

 

 
Fig 6.12 Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified 

WTA. Throughout, Id = 0.0075 nA and GGABA(g) = 0.005 μS. (a) GAMPA = 0.0084 μS, 

GAMPA(pc−bc) = 0.11 μS; (b) GAMPA = 0.0084 μS, GGABA(l) = 0.0015 μS, GAMPA(pc−bc) = 

0.11 μS; (c) GAMPA = 0.0029 μS, GpNa = 0.000396 μS , GAMPA(pc−bc) = 0.11 μS. 
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Fig 6.13  Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified 

WTA. Throughout, Id = 0.0075 nA and GGABA(g) = 0.005 μS. (a) GAMPA = 0.0084 μS, 

GAMPA(pc−bc) = 0.11 μS; (b) GAMPA = 0.0084 μS, GGABA(l) = 0.0015 μS, GAMPA(pc−bc) = 

0.11 μS; (c) GAMPA = 0.0029 μS, GpNa = 0.000396 μS , GAMPA(pc−bc) = 0.11 μS. 
 

 
 

 
 

Fig 6.14 Fraction of high nodes against the number of spurious nodes over all patterns for a net with 

100 BC’s. 

 

Although there is a significant increase in the mean of both the normalised and amplified 

methods for the 100 stored pattern network, this increase is quite small compared to other 
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network configurations (Table 6.2). It can be shown that the quantity of spurious nodes is 

reduced but only minimally.   

6.3.3 1000 Pyramidal Cells  vs 100 Basket Cells Innervate 
 

Using a similar configuration as above we introduce a network with 100 Basket Cells 

which are spatially organised with a feedforward excitation from Pyramidal Cells and 

feedback inhibition all-to-all onto Pyramidal Cells. Each Basket Cell will also innervate 

each other which should regulate the activity of Basket Cells and reduce the variation 

shown in the network where the Basket Cells were independent (Fig 6.17). 

 

Fig 6.15 Plot showing the firing of 100 Basket cells innervating each other in a network of 1000 
Pyramidal cells over 1500 ms 
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Fig 6.16 Plot showing the firing of 100 Basket cells not innervating each other in a network of 1000 

Pyramidal cells over 1500 ms 

 

 
In this network configuration, it was found that by innervating the Basket Cells with each 

other reduced the activity and thus the number of Basket Cells firing during the recall 

process. With no connectivity between basket cells, the inhibitory cells fire in regulated 

spiking/small bursts which are already regulated by the cyclic activity of the excitatory 

cells. The innervated basket cells reduced the variability in the activity and thus began to 

work more like an individual basket cell. However, this was still dependent on the amount 

of excitation from the pyramidal cell network.  
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Fig 6.17 Schematic of a network containing 10 Pyramidal Cells feeding excitation onto Basket Cells 

with inhibitory synapses between Basket Cells. 

 

 

The innervate configuration with 100 stored patterns has mean recall qualities of 56% for 

the Standard WTA method, 59% for the Normalised WTA method and 63% for the 

Amplifed WTA method. For 200 stored patterns, 37%, 41% and 37% for the Standard, 

Normalised and Amplified WTA methods (Fig 6.18 and 6.19). Although the mean results 

for the Normalised and Amplified methods in the net containing 100 stored patterns and the 

Normalised methods in the net containing 200 stored patterns showed increases, the 

variability in the results meant that the significant increases in recall quality (Table 6.2) 

were only minimal compared to other configurations. The differences in mean can be 
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shown in Fig 6.20 where the reduction in spurious nodes in a network with 100 stored 

patterns is follows the increase in the mean. This may be due to the spatial placing of the 

Basket Cells rather than pattern specific connectivity.  

 
Fig 6.18  Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified 

WTA. Throughout, Id = 0.0075 nA, GGABA(g) = 0.002 μS and GGABA(BC - BC) = 0.01 μS. (a) 

GAMPA = 0.0013 μS, GAMPA(pc−bc) = 0.072 μS; (b) GAMPA = 0.0013 μS, GGABA(l) = 0.0002 

μS, GAMPA(pc−bc) = 0.072 μS; (c) GAMPA = 0.0008 μS, GpNa = 0.00017 μS , GAMPA(pc−bc) = 

0.072 μS. 

 

 
Fig 6.19  Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified 

WTA. Throughout, Id = 0.0075 nA, GGABA(g) = 0.002 μS and GGABA(BC - BC) = 0.01 μS. (a) 
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GAMPA = 0.0013 μS, GAMPA(pc−bc) = 0.072 μS; (b) GAMPA = 0.0013 μS, GGABA(l) = 0.0002 

μS, GAMPA(pc−bc) = 0.072 μS; (c) GAMPA = 0.0008 μS, GpNa = 0.00017 μS , GAMPA(pc−bc) = 

0.072 μS. 

 

 
Fig 6.20 Fraction of high nodes against the number of spurious nodes over all patterns for a net with 

100 BC innervated. 

 

6.3.4 1000 Pyramidal Cells vs. 1000 Basket Cells 
 
Similarly with the 100 PC to 100 BC network with 1 PC providing feedforward excitation 

to 1 BC this configuration is similar to the networks containing the pseudo-inhibition. The 

network is tuned such that the relative excitation of pyramidal cells will induce activity in 

the basket cells and that a sufficient dendritic sum can clear the threshold for BC operation 

and so this network is different from the activation function of the synapse from the pseudo-

inhibitory model. This should reduce variability in the network. Hence, the variability of the 

excitation received at each pyramidal cell and also the weight of the excitatory synapses 

onto the basket cells creates a sensitive state in which it is not guaranteed that every action 

potential recorded in an excitatory cell will create a mirrored response in the relative basket 

cell. The connectivity of the BCs is all to all onto the pyramidal cells (fig. 6.1c). 

With 1000 BCs and 200 stored patterns, for a single pattern recalled the Standard WTA 

method produced an average quality of 47%, compared to the Normalised method 
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producing an average quality of recall of 62% (fig. 6.21). For 100 Stored patterns in the 

network, using that Standard WTA method has an average recall of 58% and the 

Normalised has a mean of 64%. Mean quality over all the stored patterns shows a 

statistically significant increase (Table 6.2 Paired T-Test), with the Normalised WTA 

method over the Standard Method (fig. 6.22).  

 
Fig 6.21 Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) Standard WTA, (b) Normalised WTA and (c) Amplified 
WTA. Throughout, Id = 0.0075 nA and GGABA(g) = 0.003 μS. (a) GAMPA = 0.0082 μS, 

GAMPA(pc−bc) = 0.18 μS; (b) GAMPA = 0.0082 μS, GGABA(l) = 0.001 μS, GAMPA(pc−bc) = 

0.18 μS; (c) GAMPA = 0.0024 μS, GpNa= 0.000396 μS , GAMPA(pc−bc) = 0.18 μS.  
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Fig 6.22 Network contains 100 BCs. Recall quality over time in a 10% partially connected network 

when recalling a single pattern using (a) Standard WTA, (b) Normalised WTA and (c) Amplified 

WTA. Throughout, Id = 0.0075 nA and GGABA(g) = 0.003 μS. (a) GAMPA = 0.0082 μS, 

GAMPA(pc−bc) = 0.18 μS; (b) GAMPA = 0.0082 μS, GGABA(l) = 0.001 μS, GAMPA(pc−bc) = 

0.18 μS; (c) GAMPA = 0.0024 μS, GpNa= 0.000396 μS , GAMPA(pc−bc) = 0.18 μS.  
 

 
The overall mean quality is improved using the normalised and amplified methods against 

the standard WTA methods for each network configuration.  
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6.4 Summary 

 
Mean Recall Quality 

Configuration WTA Method Mean 
Standard 

Dev. 95% CI Median Min Max 

1000PCs vs 1BC 

Standard 0.57 0.027 0.017 0.56 0.53 0.62 

Normalised 0.62 0.023 0.014 0.62 0.58 0.65 

Amplified 0.62 0.02 0.012 0.62 0.58 0.65 

1000PCs vs 100BCs 

Standard 0.56 0.082 0.051 0.56 0.46 0.66 

Normalised 0.59 0.074 0.046 0.57 0.49 0.68 

Amplified 0.59 0.074 0.046 0.61 0.5 0.66 

1000PCs vs 100BCs 
Innervate 

Standard 0.56 0.082 0.051 0.56 0.46 0.66 

Normalised 0.59 0.074 0.046 0.57 0.49 0.68 

Amplified 0.63 0.062 0.039 0.64 0.49 0.69 

1000PCs vs 
1000BCs 

Standard 0.58 0.023 0.014 0.58 0.55 0.61 

Normalised 0.64 0.0054 0.0034 0.64 0.63 0.65 

Amplified 0.59 0.011 0.0069 0.59 0.57 0.6 

H0:  μs = μn/a       (where μs/n/a is the mean of the standard, normalised and amplified WTA 

methods)  

H1:  μs < μn/a  

Ttest (1 tailed) 
Standard vs 
Normalised 

Standard vs 
Amplified 

Normalised vs 
Amplified 

1 BC 2.20E-06 3.00E-06 0.091 

100 BC's 0.011 2.40E-03 0.44 

100 BC's Innervate 0.011 0.026 0.12 

1000 BC's 5.70E-06 0.075 2.20E-07 

 
Table 6.2  Mean recall quality over all stored patterns for the different network configurations and 

different WTA recall methods. Also shown is the results of one tailed paired T-Tests for all 

configurations. 
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Fig 6.23a Mean Recall for all network configurations using 3 recall strategies. 

 

 
Fig 6.23b Mean Recall for all network configurations using 3 recall strategies with 95% CI bars. 
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Fig 6.24a  Mean Recall of all network configurations using 3 recall strategies. 

 
Fig 6.24b  Mean Recall of all network configurations using 3 recall strategies with 95% CI bars. 
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In all networks the normalised and amplified methods increased the frequency of firing 

which was found in earlier results. The introduction of explicit inhibitory interneurons in 

place of the synaptic action used in chapter 5 had some interesting results. All 

configurations of the inhibitory circuits showed an increase in the mean quality when using 

the Normalised and Amplified WTA recall methods (fig 6.23 and 6.24), however, the 

configurations using the 10% basket cells showed only a minimal increase over both 

methods. This result was consistent with the findings from the networks using 100 

Pyramidal Cells found earlier in the chapter. Although a network containing 10% Basket 

Cells has the most biologically plausible configuration in terms of cell population and 

proportion, our method for instantiating the population of Basket Cells within the network 

was ineffective. The spatial ordering of the cell was selected by choosing a 10% block of 

the Pyramidal Cell population in sequential ascending order. The inhibition was therefore 

not pattern specific and did not work cohesively with the distributed excitation created by 

the pyramidal cells. Using a single Basket Cell for global inhibition allowed the excitation 

to become fully synchronised as there was an absence of variation in the timing of the 

inhibitory post synaptic potentials caused by synaptic delay and signal propagation. The 

100% Basket Cell worked similarly to the pseudo-inhibitory network configuration. Since 

each basket cell would fire with excitation from a single pyramidal cell, the inhibition was 

fully connected so there were no spatial anomalies similar to the 10% Basket Cell network, 

where the BCs were connected irrespective of pattern storage, or partial connectivity. In 

both the 100% and single Basket Cell models the increases in recall quality using the 

Normalised and Amplified strategies were significant (Fig 6.23b).  The use of multiple 

Basket Cells should allow for superior pattern recognition compared to the single basket 

cell as the amount of inhibition will be less rigid and will distribute the required inhibition 

for the network at that time. A single basket cell can produce only a standard conductance 

weight of inhibition in response to any significant amount of excitation (which is relative to 

the tuning) of synaptic conductance weights in terms of thresholding of the cells and the 
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dendritic sum produced by the weighting of the EPSPs. Multiple cells should create 

inhibitory levels relative to the excitation in the network, thus producing a graded 

inhibition. The 100% models were optimal in operation due to the lack of variation in the 

activity they received. This was also shown in the pseudo inhibitory networks in chapter 5.  
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Chapter 7 

 
7. Capacity 
 
This chapter will investigate the capacity of artificial neural networks of associative 

memory against spiking neural networks. The capacity will be tested using the average 

recall quality over all patterns stored in a given size of net. The comparison will be made 

over 1 iteration (absent of inhibition in the spiking network) and over 5 iterations.  

The models used will apply a standard WTA method with an instantiated full pattern cue. 

The artificial neural network contained hard-limiting binary nodes against the complex 

spiking cell models used in the spiking neural network. The net was constructed by 

randomly selecting patterns (using the same seed) containing 10% active nodes in two 

networks with a pool of nodes of 100 and 1000. The net of 100 nodes would contain a 

different number of stored patterns which would be investigated (1, 10, 25, 40, 50, 60, 75, 

100 and 150). Similarly the network with 1000 nodes would have a differing number of 

stored patterns which would be investigated (1, 50, 75, 100, 200, 300, 400, 500). For more 

specific details about pattern storage, see Chapter 4. The finalised artificial neural networks 

were used as weight matrices to create the biological spiking neural networks which would 

provide a fair comparison. All networks were fully connected.  

 

7.1 Artificial Neural Network 

The artificial neural network models are constructed using the method outlined in Chapter 

4, section 4.1, where, in the case of the 100 node network, we take a vector with 10 

randomly selected active nodes (denoted as a 1 for active and 0 for inactive) from 100 
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possible  nodes and multiply this vector by the same vector’s transpose. The network 

created by this multiplication has a 100-by-100 connectivity matrix. The diagonal 

connections (i.e. Row 1, Column 1. Row 2, Column 2. and so on) are set to zero as these 

recurrent connections are not used in auto-associative memory models. In the scenario of 

storing multiple patterns, the same method is used with the summation of all 100-by-100 

matrices. Each value greater than 1 is set to one with a 0 for all nodes less than 1. This is 

known as a clipped Hebbian learning rule. 

The methodology used to recall from the network in the context of capacity, we use a fully 

connected network with a full pattern cue instantiated upon the network. This is achieved 

by setting the pattern cue as a stored vector and multiplying this matrix by the column 

vector, as shown in chapter 4, Fig 4.6. The solution is a row vector where some 

thresholding takes place (See 7.1.1). The capacity of a network is measured by storing 

different numbers of patterns in each network and measuring recall quality (See chapter 4, 

section 4.2.2) when a given stored pattern is used as the recall cue. A good measure for the 

capacity of the network is discussed in section 7.3. 

 

7.1.1 Thresholding 

A good choice for the threshold,  , is given by the point of intersection of the signal and 

noise distributions (see 7.1a). This is optimal in the sense that, for one output unit, if the 

threshold increases or decreases beyond this point, the combined probability of an error, 

omission or spurious, must increase. This is not exact as there are more units in danger of 

emitting spurious errors than omission errors. The simulation shown within this section has 

unique conditions where there is no noise within the input pattern due to network 

connectivity. This will result in the distribution of high units collapsing from a normal 

distribution to a single point (see Fig 7.1b). This creates the condition where all high units 

will have a dendritic sum which is equal to the number of active units within a pattern 

minus 1, since a cell cannot connect to itself.  



198 

 

 

 

Fig 7.1a shows the signal-to-noise ratio, showing the probability of the weighted sum against the 

weighted sum. 

 

 

Fig 7.1b shows the signal-to-noise ratio, showing the probability of the weighted sum against the 

weighted sum with a single point for the probability of a high unit being activated for a noise-free 

cue to a fully connected network and the normal distribution of representing the probability of a 

spurious node being activated. This diagram is a schematic, where the maximum point for the 
uniform distribution should be higher than the mean of the normal distribution and it should have a 

maximum point of 1. 
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We calculate the threshold by testing the output of the network after a full (noise-free) 

pattern is instantiated upon a fully connected network. The output vector will produce 

varying values of dendritic sums. We use the maximum dendritic sum in the output vector 

as the basis for our threshold for each net. In Fig. 7.1b we show that taking the maximum 

dendritic sum as the threshold is optimal as the distribution of the probability of a high node 

being activated is reduced to a single point. Since this is the case, the point of intersection 

between the distributions shown is fixed which is in contrast to recall upon networks which 

contain noise shown in fig 7.1a where the threshold is dependent on the number of modified 

synapses after pattern storage which will increase (probabilistically) with the more patterns 

stored.    

 

7.2 Biological Neural Network  

All biological nets were configured such that 1 BC would be used as the method for global 

inhibition and to operate using the standard WTA approach. Making a comparison between 

values of both is reasonably difficult so the mean quality measure over 1 iteration for each 

pattern stored is used on both the Artificial and Biological net. The cue for the Artificial and 

Biological nets containing 100 nodes were to instantiate the full 10 out of the possible 10 

active nodes on the network. Similarly with the net containing 1000 nodes where 100 out of 

the possible 100 active nodes were used. Synaptic weights were equal for all the variations 

of patterns stored on each net. Since the cues instantiated on the network were 100%, any 

decrease in capacity is due to the number of extraneous spurious nodes and thus no other 

factors are affecting recall.  

In the BNN, an iteration is a bank of excitatory behaviour in a number of pyramidal cells in 

a bounded period of time from when the instantiated cue cells fire over a range of 14-16ms 

(which is dependent on the amount of excitation and inhibition in the network). Due to the 

dynamics of the BNN, the system is run over small time steps, in contrary the dynamics of 
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the ANN are absent of time, where an iteration is the output of an instantiated vector 

pattern. 

7.2.1 Thresholding 

Thresholding in the biological network was slightly different from that in the artificial 

neural network where the conductance weighting of the AMPA synapses was adjusted 

given the output. Achieving optimality was difficult and determining the value of the 

conductance weighting at each synapse was found largely through a good initial guess from 

earlier results with changes via iteration to find the best fit.  

 

7.3 Results 

The mean recall quality on 1 iteration for 100 nodes (fig 7.2a) shows a marked 

improvement in the artificial net compared to the biological net. The recall quality in the 

artificial net stays near 100% up to 60 patterns stored before gradual degradation to around 

40% at 150 patterns stored. The biological net shows signs of degradation of quality after 

40 patterns stored with the recall being measured near 0% at 150 patterns stored. This 

experiment allows us to gain a measure for the possible capacity of our network. 

 
The mean recall on 1 iteration for 1000 nodes (fig 7.2b) shows a contrary response to the 

net containing 100 nodes. Although the signs of quality degradation happen at the same 

number of patterns (200 stored patterns), the extent is markedly less in the biological net 

than in the artificial with an approximately 10% higher quality of recall available at 500 

stored patterns. (see figs 7.2a and 7.2b) 

 
Capacity testing over many iterations showed that the biological network was able to 

recover due to the dynamics of the biological net and the role of inhibition. The global 

inhibition reset the dendritic sum of all units in the biological net and with synaptic weight 

modification allowed a degree of tuning to take place where the value of the dendritic sum 
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of all nodes outside the pattern in the absence of noise through diminished connectivity 

were set to be below threshold. 
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Fig 7.2a 

 

Mean Recall on 1 iteration for 1000 nodes
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Fig 7.2b 

 
Fig 7.2a Mean recall over all stored patterns (varying from 1 to 150 patterns) on 1 iteration for 100 

nodes/pyramidal cells for the artificial and biological nets. Fig 7.2b Mean recall over all stored 

patterns (varying from 1 to 500 patterns) on 1 iteration for 1000 nodes/pyramidal cells for the 

artificial and biological nets.  
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The network of 100 and 1000 nodes has a probabilistically equal amount for the number of 

stored synaptic weights compared to the total number of unmodified synaptic weights (Fig 

7.9). The degradation in the biological neural network containing 100 nodes being more 

catastrophic as the number of patterns stored is increased in relation to the 1000 node 

network is perhaps due to the tuning of the AMPA synapses. 

 
Fig 7.3 Mean recall over all stored patterns (varying from 1 to 150 patterns) on 5 iterations for 100 

nodes/pyramidal cells for the artificial network. 
 

 
Fig 7.4 Mean recall over all stored patterns (varying from 1 to 150 patterns) on 5 iterations for 100 

nodes/pyramidal cells for the biological network. 
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The memory capacity of the networks were tested over 5 iterations. The results show that 

the artificial network starts off well but begins to degrade in quality at about 60 stored 

patterns. The first iteration where the number of patterns stored was over 60 were relatively 

high, however the degradation in quality over successive iterations were catastrophic. 

Interestingly the biological network, after 50 stored patterns, recovered fully over 

successive iterations. This may highlight the importance of biologically realistic inhibition.  

Similarly for the network containing 1000 nodes, the artificial net failed catastrophically 

after 200 patterns over 5 iterations and the biological network recovered fully.  

 
Fig 7.5 Mean recall over all stored patterns (varying from 1 to 500 patterns) on 5 iterations for 1000 

nodes/pyramidal cells for the artificial network. 
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Fig 7.6 Mean recall over all stored patterns (varying from 1 to 500 patterns) on 5 iterations for 1000 

nodes/pyramidal cells for the artificial network. 

 
 

 
Fig 7.7 Mean Recall of the network containing 100 nodes over 5 iterations 
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Fig 7.8 Mean Recall of the network containing 1000 nodes over 5 iterations 

 
The results for capacity in our biological configuration had some interesting behaviour. The 

improvement in capacity in the biological network for 1000 neurons over 1 iteration  are the 

most interesting as the network is absent of inhibition at this point. This is possibly due to 

the effect of the hard-limit activation function in the artificial function against the complex 

spiking dynamics of the pyramidal cell models. The non-linear activation function and 

variable synaptic weights allow tuning.  The recovery shown in the biological network over 

5 iterations at high levels of capacity show the importance of biological inhibition resetting 

the excitation of all low units in the network and can also be attributed to the increased 

variability in tuning compared to the rigid artificial network. 
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Fig 7.9 shows the probability that a synapse was modified during pattern storage for a unit with a 
given unit usage for a net with 100 nodes. 

 

7.4 Summary 
 
In a biologically realistic neural network of spiking neurons, it is difficult to analyse the 

capacity of the network in terms of an artificial net for comparison. We tested both artificial 

and biological networks with the same method using quality of recall as a measure for the 

capacity of the network. Both nets were fully connected with a full pattern instantiated upon 

the network. 

 
The network containing 100 nodes shows that at some point after 10 stored patterns the 

network cannot reliably recall all patterns stored and similarly in a network containing 1000 

nodes the network fails to reliably recall all patterns stored.  

 
The 100 node network shows that the artificial net has superior capacity to the biological 

net over 1 iteration. In contrast, the larger network of 1000 nodes shows that the biological 

net has a superior capacity to the artificial net. These findings can be attributed to the tuning 

of the synapses within the biological network as at the first iteration the network is absent 

of inhibition, therefore similar results should be found.  
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We tested the networks over 5 iterations, where the spiking net will have an inhibitory 

circuit. It is clear that the role of inhibition is very important in the operation of recall in the 

brain and our results show that the catastrophic failure of the artificial network, which is 

absent of inhibition, is not found in the biological net which maintains an average recall 

quality of above 80% in both cases. The role of inhibition to remove noise can be shown 

clearly in figures 7.3 and 7.5 against figures 7.2 and 7.4 respectively. The results show a 

similar degradation of all networks on the first iteration with full recall in the subsequent 

iterations.  It has been shown that immediate recurrent inhibition is essential for providing 

sensitivity to cues while preventing spurious recall and the delayed inhibition in our 

network is known to reset hippocampal activity in experimental findings (Read et al., 

1992). 

 

We did not test all network configurations shown throughout the thesis. Based on the 

evidence of the effect of the single basket cell as providing adequate global inhibition (See 

section 6) we opted to use this network as a basis for all network configurations. The reason 

for not applying and testing the capacity of all the network configurations was due to time 

constraints on the project. 
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Chapter 8 

 
8 Conclusions 
 

This thesis has been concerned with the operation of associative memory models of neural 

networks, in particular, the efficacy of the network during recall under biologically complex 

restraints and conditions. These have included extending simple models of spiking neural 

networks with biologically plausible modifications to network configurations, ionic 

channels and synthesising spatial characteristics.  The following chapter reviews the 

conclusions which have been taken from the studies shown within this thesis and discusses 

possible directions for further work and investigation. 

 

8.1 Summary of Results 
 
In chapter 2, the artificial, biologically based and neurophysiological evidence which led to 

the work within this thesis was reviewed. As a result of the studies by Graham and 

Willshaw (1995) and Henson and Willshaw (1995) it was shown that there was sufficient 

evidence to suggest that biologically based auto-associative models of neural networks 

could show improved recall capability under neurophysiologically realistic conditions. 

Furthermore, extensions to artificial neural networks containing hard-limiting nodes by the 

introduction of complex biologically plausible cells has shown to introduce interesting 

dynamic behaviour including biologically realistic inhibition, intracellular parameters and 

complex firing properties  (Sommer and Wennekers, 2001; Gerstner and van Hemmen, 

1992; Frolov et al., 2006; Graham, 2001; de Almeida et al., 2007). It is concluded that the 

introduction of biologically realistic features such as multi-compartmental cell models into 
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a variety of network configurations and purposes, such as, modification of cell properties, 

local and global inhibitory circuits can replicate some of the active features within the CA3 

region of the hippocampus as an auto-associative memory. 

 

8.1.1 The evidence for introducing complex spiking cell models 
 
In chapter 3, we investigated the cell models to be used within the network model of the 

CA3 and the mode of operation under various conditions to better understand the complex 

dynamic features of the cell models under a variety of conditions. The first study in this 

chapter we investigated the two compartment pyramidal cell model proposed by Pinsky and 

Rinzel (1994). Our initial investigations tested the operation of a single cell with a focus on 

replicating the results found by Pinsky and Rinzel. The main finding from this initial study 

was that we were able to replicate the firing properties of the cell both in terms of frequency 

and the spiking/bursting or complex mix between the two with particular reference to the 

effect of dendritic current injection maintaining a higher firing frequency than in the 

somatic region.  

 

From the results of the study, it was concluded that this cell would be used in our networks 

as the principal cell type given that they were complex enough to exhibit realistic properties 

yet simple enough to use in large networks. The cells had also been well tested (Pinsky and 

Rinzel, 1994; Sommer and Wennekers, 2001) within network where as we focussed 

particularly upon the network configuration proposed by Sommer and Wennekers. The 

interplay between compartments and thus the elongated spike/bursting sequence would 

provide biological plausibility to the network with complex interplay between 

compartments providing possible additional information and features throughout a full 

cycle of operation over 1500ms. 

 
In the second study of this chapter we tested the pyramidal cells under interconnected 

conditions to develop an understanding of the effect of signal transmission, synaptic delays 
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and dendritic summation within the cells under easily tested conditions. The main 

conclusion of this investigation was understanding the effect of signal propagation from 

pre-cell soma to post-cell dendrite and grasping the timing of signal transmission with 

respect to neurophysiological properties.  

 
 
The final study of this chapter showed the investigation of a basket cell model proposed by 

Santhakumar et al. (2005). Although the initial operation of the network would contain a 

pseudo-inhibition, a better understanding of a realistic spiking cell model would provide 

relevant information for increasing the biological plausibility of the net. The principal 

conclusions from this study were the role of signal propagation from the dendrites into the 

cell body which would then be fed back onto pyramidal cells. The operation of a basket cell 

shows fast spiking characteristics which are integral to producing the high gamma 

frequency synchronised spiking found in the CA3 region of the Hippocampus. The decision 

to use this model was because it was well tested under network conditions (Santhakumar et 

al., 2005, Cutsuridis et al., 2008a).   

 

8.1.2 Simple Spiking Neural Network Model 
 
In chapter 4 we considered the implementation of an auto-associative spiking neural 

network connected via a symmetrical weight matrix constructed using a clipped hebbian 

learning rule. In the first study of this chapter we tested the dynamics of a network 

containing 100 pyramidal cells under recall conditions with a pattern cue of 5 active cells 

out of 10 possible within a pattern which are given a tonic current injection into the soma 

and then the dendrite. The principal conclusion of this study is to show the effect of 

excitatory inputs into different areas of the pyramidal cells under network conditions and 

the effect of a global inhibitory network on a group of spiking pyramidal cells. We 

concluded that a current injection into the dendritic region of the pyramidal cells within the 

cue provided an increased frequency of firing. 
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The second study in chapter 4 is concerned with the application of a global inhibitory 

network and its effect upon the recall performance and overall spiking activity of the 

pyramidal cells within the network. The application of a global inhibitory network 

containing a single or many stored patterns clearly organises the activity of the net into 

synchronised banks of excitation approaching the gamma-frequency range. For a network 

containing 50 stored patterns which is fully connected and a partial cue of 5 out of 10 active 

cells applied will provide a negligible recall quality performance with no inhibition. The 

application of a strong inhibition organises the activity in synchronised banks and filters 

spurious nodes to provide a recall quality which contains few errors.  

 

The final study of chapter 4 was to consider the network’s operation with global inhibition 

containing partial connectivity. The introduction of partial connectivity into the network 

was tested when one pattern was stored. This would allow us to understand the scaling of 

the synapses to achieve the desired activity within the net. With the effect of 50 patterns 

stored and full connectivity showing degradation in recall, the effect of partial recall at 10% 

with 50 stored patterns showed a significant decrease in the quality of recall. In chapter 5 

we show methods we have used to improve the quality of recall in a network with 50 stored 

patterns, 10% connectivity and a partial cue. 

 

8.1.3 Implementing Recall Strategies 
 
From the results of chapter 4 we concluded that a network with global inhibition could 

operate near the gamma-frequency range and that a network which contained 50 stored 

patterns and 10% partial connectivity would give poor results during recall with the large 

amount of noise present within the net. In chapter 5 we investigate methods for improving 

the quality of recall by reducing the variability between high and low units. The first study 

in chapter 5 would investigate the role of local inhibition within the network. Applying a 

localised disynaptic inhibition which proportionalises the excitation a pyramidal cell 

receives should reduce variability. It was concluded that the introduction of local inhibition 
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improved the recall quality within the networks tested. Although it is clear that the fast 

acting localised inhibition reduces the excitation a cell receives as intended, the overall 

operation of the network’s spiking properties were also affected. The localised inhibition 

also allowed the network to operate within the gamma frequency range. 

 

The next study in chapter 5 investigated the nonlinearisation of the dendritic sum with a 

view to increasing EPSP’s at a given threshold where high units should receive 

proportionally more excitation.  The biologically plausible implementation of a persistent 

sodium channel into the somatic region to amplify large EPSPs would show an 

improvement in recall in all tested networks. Cellular modification within pyramidal cells 

has been shown to be capable of reducing noise from synaptic input. Furthermore, the 

implementation of a persistent sodium channel increased the frequency of firing within the 

network into the gamma frequency range. 

The final study in chapter 5 investigates the implementation of spatial characteristics of the 

dendritic region of a pyramidal cell. Synaptic weight matrices were constructed with 

separate random functions for allocating 10% connectivity were applied. These synapses 

were then scaled to simulate spatial characteristics which would consider the weakening of 

excitatory post-synaptic potentials due to increased resistance and the distance the signal 

would have to propagate based upon the relative position on the dendrite. The conclusion of 

this investigation was that addition of the spatial characteristics within the apical dendrite 

did increase the quality of recall from the networks tested. This was due to the increase in 

probability of a synapse existing which is relative to a stored pattern, this has been shown to 

occur in nature where a pyramidal cell has been shown to connect to another cell up to 4 

times (Hellwig, 2000). We tested a different number of layers from 1 to 4 which would 

allow a minimum of 1 and maximum of 4 synapses existing between cells within a stored 

pattern. The application of a local inhibition within this method has also shown to further 

increase the quality in recall and synchronise the spiking activity of the network.  
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8.1.4 Using Basket Cells 
 
In chapter 4 and chapter 5 our results show that global inhibition is required for 

synchronous spiking activity and recall capability in spiking neural networks of associative 

memory where more than 1 pattern are stored. Our implementation of a fully connected 

pseudo-inhibition can be made more biologically plausible by replacing the synaptic action 

with realistic spiking models of basket cells.  

 

In chapter 6 we investigated the effect of differing configurations of basket cells 

interconnected with pools of pyramidal cells. Our first study implemented a single basket 

cell where each pyramidal cell applied feed-forward connections to it with recurrent 

inhibition back to all inhibitory cells. We found that the introduction of a single basket cell 

regulated the spiking activity of the network, where introducing the normalised and 

amplified WTA methods showed correlations between the findings in chapter 5.  

 

The second study within chapter 6 investigated networks of pyramidal cells connected to 

10% of the basket cells. Each basket cell has feedforward connections from 10 pyramidal 

cells with recurrent connections back to all pyramidal cells. The connections to each basket 

cell are spatially organised rather than by pattern specific connectivity. The basket cells in 

this initial study are not interconnected. The conclusion of this study was that the lack of 

pattern specific connectivity from pyramidal cell to basket cell and the increase in 

variability showed that there was no significant increase in pattern recall quality between 

the standard, normalised and amplified WTA methods. The third study within chapter 6 

would apply a similar method with 10% basket cell methods but would apply 

interconnectivity between the basket cells which should unify the activity. The principal 

conclusion of this study was that the variability caused by the lack of pattern specific 

connectivity between pyramidal cells and basket cells could not be reduced by the 

interconnectivity between basket cells. The results showed that there was no significant 
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increase in pattern recall quality between the standard, normalised and amplified wta 

methods and implies that the inhibition found in biologically realistic networks will be 

pattern specific.  

 

The final study in chapter 6 investigated the implementation of 100% basket cells. This 

method should be as close to the activity of the pseudo-inhibition compared to the other 

configurations within this chapter. The results show significant increases in the normalised 

and amplified wta methods against the standard wta method. We found that multiple basket 

cells should give inhibition relative to the amount of excitation within the network and with 

a fully connected inhibitory circuit the network is not dependent on pattern specific 

inhibitory connections between pyramidal cells.   

 

8.1.5 Capacity of a spiking neural network 
 
In chapter 7 we compare the capacity of an artificial and biological network between two 

pool sizes of pyramidal cells with differing numbers of stored patterns. The initial study in 

this chapter was comparing the capacity between artificial neural networks (ANN’s) and 

biological neural networks (BNN’s) containing 100 nodes and 1000 nodes. The conclusion 

of this study was that both the artificial and biological networks began to decay at similar 

number of patterns stored within each size of network. This study showed the biological 

network working absent of inhibition and also showed that as the pool of nodes increased 

the capability of the net to recall patterns increased in the biological networks against the 

artificial nets. The final study in this chapter was concerned with investigating the capacity 

between ANN’s and BNN’s of 100 and 1000 node networks over 5 iterations. The 

difference would be the introduction of global inhibition within the biological neural 

network. It was concluded that the introduction of global inhibition in both the 100 and 

1000 node biological based nets showed a full recovery on the second and subsequent 

iterations. Thus the role of global inhibition has shown to provide excellent noise reduction 

within a network which is fully connected and has an instantiated full pattern cue in 
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comparison to the catastrophic failure shown within the artificial neural networks which use 

rigid binary nodes. 

 

8.2 Further work 
 

There are many areas where the work contained within this thesis could be extended for 

further study. This section will propose some of these possible extensions and will indicate 

where they may improve the network operation, and hence, recall capability using 

biologically plausible implementations.  Within chapter 3 we investigated the 

implementation of two dynamic biologically realistic multi-compartment cell models. The 

two-compartment pyramidal cell model could be extended to incorporate a more realistic 

apical dendrite which would allow realistic responses to signal propagation which could 

consider spatial connectivity of AMPA synapses between pyramidal cells. In chapter 5, we 

synthesise this spatial consideration with the parallelised winner-takes all method but the 

variability in signal propagation in a real pyramidal cell has been ignored by scaling 

synapses. Graham (2001) investigates the ability of a cell to filter noise using an 890 

compartmental model of a CA1 pyramidal cell. Graham (2001) has found that despite 

spatio-temporal dispersion of input signals, quantal variance and variation in signal arrival 

times distorting the summation of inputs that a single cell is capable of filtering the noise.  

 

This thesis is concerned with the improvement of recall quality by implementing 

biologically plausible methods. The introduction of synaptic modification, or learning, 

during the recall process through STDP would introduce a neurophysiological feature 

which could improve pattern recall. It has been shown that STDP can help neurons become 

more selective for temporal coincidences (Abbott & Nelson, 2000; Song, Miller, & Abbott, 

2000). Our model assumes learning and depression before recall simulations are tested and 

during operation it is assumed that learning is a separate function which is not affected 

during the recall phase. Applying STDP or some form of signal modification would also 
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introduce a structured non-uniformity in AMPA synapses. Our network over-simplifies the 

connections between cells by generalising the synaptic weights as being identical.  

In chapter 6 we investigate the role of explicit inhibitory interneurons to replace our global 

inhibition. With the network containing 10 interconnected basket cells, the number of 

basket cells for pyramidal cells is closest to biological plausibility. The configuration 

between cells, however, meant that the global inhibition caused a large amount of noise and 

poor network operation. Some considerations to improve this configuration would be to 

apply a pattern specific learning algorithm to the inhibitory synapses, in which we should 

apply an external input. The all-to-all feedback inhibition can then be optimised to contain a 

biologically realistic number of synapses. It has been shown by Bartos et al. (2007), through 

experimental and computational analysis in the hippocampus and the neocortex, that 

synapses among interneurons are highly specialised. Furthermore they suggest that synaptic 

specialisation turns interneuron networks into robust gamma frequency oscillators. 

 

In chapter 5, we discuss methods for improving the recall operation of the network. The 

introduction of a localised disynaptic inhibition as a synaptic action rather than from a cell 

could be adjusted to incorporate more complex and biologically plausible implementations. 

The introduction of other cell types within the CA3 region, such as axo-axonic or 

bistratified cells, which have differing operational features could provide realistic inhibition 

and will increase the biological plausibility of the network. Cutsiridis et al. (2010) propose 

functional roles for different classes of inhibitory interneurons in encoding and retrieval of 

information in the Hippocampus. 

 

Moreover, the application of the amplified method shown in Chapter 5 applies a persistent 

sodium channel to the soma to amplify EPSPs after a given threshold has been surpassed. 

Active sodium and calcium channels in dendrites have been shown to amplify large-

amplitude EPSPs in many neuronal types (De Schutter and Bower, 1994; Gillessen and 

Alzheimer, 1997; Lipowsky et al, 1996; Magee and Johnston, 1995). These signal 
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amplifications can be a consequence of spatial considerations (such that signals from the 

distal regions are not lost) and within our model we can only synthesise this as our 

pyramidal cell model has a small single compartment dendrite. Hence, applying a more 

complex pyramidal cell with realistic amplification with voltage-activated ion channels 

within the dendrite would increase the biological plausibility of the network.   
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Appendix 1 

 
 

 
 
Table A1 – Key parameter values used in networks throughout the thesis 
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Appendix 2 

 
The following results are taken from experiments where 5 different configurations of the 
input pattern are used. The statistical analysis displayed below is taken from the mean of 

these 5 configurations. 
 
100 Pyramidal Cells (Pseudo) 

 

 Standard Normalised Amplified 

Mean 0.41 0.55 0.53 

Median 0.40 0.55 0.52 

Min 0.31 0.43 0.44 

Max 0.51 0.66 0.64 

Standard Deviation 0.053 0.052 0.047 

95% CI 0.015 0.014 0.013 

Table. A2.1  

 

 
Fig. A2.1 Bar chart showing the frequency of the mean recall quality within given 

intervals. 
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Fig. A2.2 Bar chart showing the frequency of the mean recall quality within given 

intervals. 

 

 
Fig. A2.3 Bar chart showing the frequency of the mean recall quality within given 

intervals. 
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100 Pyramidal Cells (1 BC) 

 

 Standard Normalised Amplified 

Mean 0.36 0.44 0.47 

Median 0.36 0.44 0.47 

Min 0.26 0.29 0.36 

Max 0.46 0.59 0.57 

Standard Deviation 0.05 0.067 0.057 

95% CI 0.014 0.018 0.016 

Table. A2.2 

 

 
Fig. A2.4 Bar chart showing the frequency of the mean recall quality within given 

intervals. 

 

 
Fig. A2.5 Bar chart showing the frequency of the mean recall quality within given 

intervals. 
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Fig. A2.6 Bar chart showing the frequency of the mean recall quality within given 

intervals. 

 

100 Pyramidal Cells (10 BCs) 

 

 Standard Normalised Amplified 

Mean 0.42 0.47 0.47 

Median 0.42 0.47 0.48 

Min 0.28 0.36 0.34 

Max 0.57 0.60 0.62 

Standard Deviation 0.066 0.062 0.069 

95% CI 0.018 0.017 0.019 

Table. A2.3 

 

 
Fig. A2.7 Bar chart showing the frequency of the mean recall quality within given 

intervals. 
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Fig. A2.8 Bar chart showing the frequency of the mean recall quality within given 

intervals. 

 

 
Fig. A2.9 Bar chart showing the frequency of the mean recall quality within given 

intervals. 
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100 Pyramidal Cells (100 BCs) 

 

 Standard Normalised Amplified 

Mean 0.48 0.51 0.57 

Median 0.48 0.51 0.57 

Min 0.36 0.40 0.48 

Max 0.58 0.61 0.68 

Standard Deviation 0.057 0.051 0.045 

95% CI 0.016 0.014 0.013 

Table. A2.4 

 

 
Fig. A2.10 Bar chart showing the frequency of the mean recall quality within given 

intervals. 
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Fig. A2.11 Bar chart showing the frequency of the mean recall quality within given 

intervals. 

 

 
Fig. A2.12 Bar chart showing the frequency of the mean recall quality within given 

intervals. 

 

 


