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Abstract

This paper uses the multivariate unobserved components model with phase shifts to analyse
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1 Introduction

The severity of the recent financial crisis and the following deep recession has revived interest

in the links between asset prices, credit market conditions and economic activity. Economic

theory and empirical evidence suggest that developments in financial markets affect the aggregate

demand through consumption wealth effects, investment balance sheet effects, and their impact

on business confidence. During the boom period, higher credit availability boosts asset prices by

expanding liquidity, and the private sector accumulates high levels of debt on the expectation of

further rises in asset prices, whilst assets serve as collateral (see e.g. Bordo and Jeanne, 2002).

When asset prices fall, the decline in the value of the collateral induces consumers to cut back

expenditure and firms to reduce investment spending, leading to additional reductions in asset

prices, bank lending and economic output.1

A number of recent empirical studies identify strong linkages between financial cycles and

business cycles. These studies typically proceed in two steps: firstly, by utilising univariate tech-

niques, such as the Hodrick-Prescott (HP) filter or the Harding and Pagan (2002) algorithm, to

identify cyclical fluctuations in asset prices, credit and output; and subsequently by either em-

ploying correlation/regression analysis to examine the links between these cyclical components

(see e.g. Claessens et al. 2011), or by adopting an event study approach (see e.g. Mendoza and

Terrones (2008)).2 This approach, however, does not appropriately account for the endogenous

nature of cycles in asset prices, credit and output. Another strand of the literature has utilised

VAR analysis in order to deal with endogeneity (see e.g. Assenmacher-Wesche and Gerlach,

2010; Goodhart and Hofmann, 2008).

The novelty of this paper consists in the implementation of a multivariate unobserved com-

ponents model containing the phase shift mechanism used by Runstler (2004) and Koopman

and Azevedo (2008) to investigate feedback effects among monetary policy, credit conditions,

asset valuations and real economic activity in the United States (US). Our approach allows us

to simultaneously decompose the relevant series into trends and cyclical components at different

frequencies (business and longer-term cycles) and accounts for the possibility of common trends

and cycles. Therefore, compared with VAR based studies our approach additionally identifies

links between cyclical fluctuations in the raw (non-differenced) data at different frequencies and

can reveal leading and lagging relationships.3 Furthermore, in relation to previous studies that

1See e.g. Bernanke and Gertler (1989) for a theoretical model with financial frictions which exhibits crucial
interactions between asset prices, credit and economic activity.

2Having identify credit booms episodes, Mendoza and Terrones (2008) construct seven-year event windows
around them to examine the behaviour of macroeconomic and financial indicators.

3This addresses the issue discussed by Engle (1974) that the economic variables interact differently across the
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examine the links between financial cycles and business cycles, we employ a multivariate struc-

tural time-series model that can avoid the potential distortions caused by the use of the HP

(see e.g. Harvey and Jaeger, 1993, Cogley and Nason, 1995) and bandpass filters (see e.g. Mur-

ray, 2003). Finally, estimated model parameters can provide a more coherent and systematic

measure of cyclical correlations.

The paper is structured as follows. Section 2 presents the model. Section 3 describes the

dataset and empirical results. Section 4 concludes.

2 Econometric framework

Our basic model allows us to decompose Yt = [yt, rt, hpt, spt, ct]
′ to vectors of trends (µt), cyclical

components, which include short-cycles (ψ1t) and long-cycles (ψ2t), and irregular components

(εt) such that:

Yt = µt + ψ1t + ψ2t + εt, εt v NID(0,Σε) (1)

where yt, rt, hpt, spt, ct denote measures of real output, short-term interest rates, real house

prices, real stock prices and credit, respectively.

The trend component intends to filter out low-frequency dynamics from the data and is

modelled as multivariate random walk process:

µt = µt−1 + β + ηt, ηt v NID(0,Ση). (2)

The consideration of both short-cycles and long-cycles is consistent with Lucas and Koopman

(2005), and provides the best fit for our dataset. These cyclical components are modelled using

the first-order trigonometric cycle specification introduced by Harvey and Jaeger (1993):

 ψit

ψ∗it

 = φi

 cos (λi) IN sin (λi) IN

− sin (λi) IN cos (λi) IN

 ψit−1

ψ∗it−1

+

 κit

κ∗it

 , (3)

V ar

 κit

κ∗it

 =

 Σiκ 0

0 Σiκ

 ,
where i = 1, 2 and N = 5. Both κit and κ∗it are serially and mutually uncorrelated. The

parameters 0 ≤ φi < 1 and λi denote the damping factor and cycle frequency, respectively. The

frequency spectrum.
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duration of the cycle is equal to 2π/λi

In order to account for the possibility of leading/lagging relationships between the cyclical

components of the different economic and financial variables contained in our system, we include

a phase shift mechanism (see also Runstler, 2004; Koopman and Azevedo, 2008) in Eq. (1):

Yt = µt + diag {cos (λ1ξ)}ψ1t + diag {sin (λ1ξ)}ψ∗1t

+diag {cos (λ2ζ)}ψ2t + diag {sin (λ2ζ)}ψ∗2t + εt, (4)

where ξ and ζ are (5× 1) vectors:

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5] , (5)

ζ = [ζ1, ζ2, ζ3, ζ4, ζ5] ,

The elements in ξ and ζ measure the phase shifts between short-cycles and long-cycles,

respectively. In order to provide a clear interpretation of the leading and lagging relationships

between cyclical components in the five time-series, we restrict the first elements, ξ1 and ζ1, to

zero. As real GDP is the first variable in the Yt vector, the short and long output cycles are

used as the reference for the phase shifts of the remaining cycles in ψ1t and ψ2t. The phase shift

between the two short (long) cycles, j and k, is calculated as ξj − ξk (ζj − ζk) for j, k = 1, ..., 5,

with a positive value indicating that cycle k leads cycle j, and vise versa, while a zero value

implies that cycles are concurrent.

Cycles are related through their disturbances (κit) as implied by the variance-covariance

matrix Σiκ which can be expressed using the Choleski decomposition:

Σiκ = AiκDiκA
′
iκ.

If Σiκ has full rank, all cycles have their own unique source of variance but may be still correlated

with each other via the off-diagonal elements. However, if the rank of Σiκ is less than full, common

cyclical components exist. In this case, Aiκ is a (5× riκ) lower unity triangular matrix and Diκ

is a (rik × riκ) diagonal matrix, where riκ < 5. This rank-related principle also applies to the

trend and irregular components.
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Finally, the autocovariance function subject to phase shifts for ψit is defined as:

Γ (s) = φ
|s|
1

(
1− φ21

)−1
Σiκ � cos(Λs),Λs = λ(s11′ + 1ξ′ij − ξij1′),

s = 0, 1, 2..., (6)

where 1 is a vector (1, ...1)′.

We adopt the Bayesian approach to estimate the model parameters and the unobserved com-

ponents. By combining the prior distribution with the likelihood function evaluated using the

Kalman filter, we obtain the posterior distribution of parameters.4 A random walk Metropolis-

Hastings algorithm is used to generate a million draws from the posterior distribution. To ensure

convergence, we discard the first 400,000 draws and take every 50th draw from the last 600,000

draws.5

3 Data and empirical results

Quarterly data on the real GDP (yt), the federal funds rate (rt), real house prices (hpt), real

stock prices (spt) and total credit (ct; sum of business, consumer and real estate loans) were

collected for the US over the period 1965Q1-2010Q3.6

Our results support the presence of common cyclical components at both short-run and

longer-run frequencies, while the evidence in favor of common trend components is not partic-

ularly strong.7 Table 1 reports estimates of the common cycle model with phase shifts. Specif-

ically, the preferred specification contains three short common cycles and four long common

cycles, thereby indicating that the cyclical components are more correlated in the shorter-run.

The duration of the cycles is estimated to around 6 and 15 years for the short-run and the

longer-run components, respectively. Therefore, the former (short-run cycle) corresponds to

the business cycle frequency. The posterior means and standard deviations of the phase shifts

provide stronger indication that cycles are not concurrent in the business cycle frequency, as

opposed to the longer-run. Specifically, focusing on the business cycle frequency results, we find

that output cycles lead those in interest rates and credit, by around four quarters, thereby sug-

gesting that developments in the real economy influence the future path of both the price and

4We set the variance of the proposal distribution equal to the scaled inverse Hessian obtained from the numerical
maximisation. The scaling parameter is chosen to ensure an acceptance rate of 25%-40%. The prior distribution
for the parameters is available upon request.

5Geweke convergence diagnostics for the model parameters are available upon request.
6Our data source is the FRED database (http://research.stlouisfed.org/fred2/). Nominal asset prices and

credit were converted into real terms using the consumer price index.
7Marginal log-likelihood values are available upon request.
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quantity of credit. Stock price cycles tend to lead output cycles by around two quarters but the

evidence is statistically weak. Finally, house price and output cycles appear to be concordant.

Tables 2 and 3 show the cross-correlations of the variables’ cyclical components at the busi-

ness cycle and longer-run frequency, respectively, implied by Eq. (6). The magnitude of the

cross-sectional correlations shown in Tables 2 and 3 is consistent with the phase-shift evidence

in Table 1. For instance, as shown in Table 3, in the longer run all correlations are maximized

(in absolute value) at t = 0 in line with the findings that the phase-shifts between longer cycles

are statistically insignificant from zero.

We find that the longer-run output cycle is positively correlated with asset prices, while the

longer-run cyclical component of interest rates is negatively correlated with that of both output

and asset prices at all leads and lags. These findings are in line with the present value approach

to asset pricing. At the business cycle frequency, we find that output and asset price cycles

lead the interest rate cycle in a pro-cyclical fashion, while their lagged values are negatively

correlated with the interest rate cycle. This suggests that a rise in output and asset prices

tends to be followed by higher interest rates, while rising interest rates will negatively impact

both output and asset prices. In addition, the house price (stock price) cycle appears to be

more strongly related to output cycles in the business cycle (longer-run) frequency, potentially

indicating that in the longer-run, other fundamentals, such as supply side factors, may also be

important for property market developments. Furthermore, the correlation between stock and

house price cyclical components is positive and much stronger in the business cycle frequency.

In the longer-run, the relationship between asset prices and credit cycles is positive both

at leads and lags. This evidence is consistent with the role of assets as collateral, whereby a

rise in asset prices leads to higher credit, and with (positive) liquidity effects on asset prices

from higher credit availability. At the business-cycle frequency, asset price cycles lead the credit

cycle; however, lagged asset price cycles are negatively related to the credit cycle, suggesting

that a rise in credit leads to lower asset prices via higher interest rates. Specifically, while in

the longer-run credit and interest rate cycles are negatively related, in line with credit demand

arguments, the business cycle frequency correlation is positive which may suggest that monetary

policy tightens when credit booms.

Figures 1 and 2 plot the cyclical components of the variables at the business cycle and long-

run frequency, respectively. In Figure 1 we can see that cyclical downturns in output at the

business cycle frequency closely match the NBER recession periods. We can also observe that

output cycles lead interest rates and credit cycles. Moreover, at the business cycle frequency,
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stock market upturns and downturns are much more severe than those in output, while house

price and credit fluctuations are more aligned with the output cycle. On the other hand, as we

can see in Figure 2, since the mid-1980s longer-run house price and credit booms and busts are

more pronounced in comparison with output fluctuations. This suggests that credit and house

prices have become more volatile during the period of financial liberalisation.

4 Conclusions

This paper uses the multivariate unobserved components model with phase shifts to analyse

the interaction among interest rates, output, asset prices and credit in the US. We find that

in the longer run the cyclical components of these variables are concurrent and asset prices are

consistent with the underlying fundamentals in line with the present value approach to asset

valuation. At the business cycle frequency, output and asset prices tend to lead interest rate

and credit in a pro-cyclical fashion.
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Table 1: Phase-shifts and cycles

Business Cycle Longer Cycle

Prior ξj Posterior ξj Prior ζj Posterior ζj
mean st.dev. mean st.dev. mean st.dev. mean st.dev.

rt 0.00 2.50 -4.050 0.912 0.00 2.50 0.653 2.446
spt 0.00 2.50 1.888 1.248 0.00 2.50 0.917 2.321
hpt 0.00 2.50 0.121 0.936 0.00 2.50 -0.360 2.374
ct 0.00 2.50 -4.052 0.918 0.00 2.50 -0.568 2.382

Prior φ1 Posterior φ1 Prior φ2 Posterior φ2

0.50 0.20 0.962 0.012 0.50 0.20 0.983 0.006
Prior λ1 Posterior λ1 Prior λ2 Posterior λ2

0.314 0.10 0.256 0.022 0.157 0.10 0.100 0.012

Notes: Phase shifts are measured in quarters.

Table 2: Cross-correlation for business cycles

s -6 -4 -3 -2 -1 0 1 2 3 4 6

ψy
1t+s,ψ

r
1t 0.636 0.783 0.784 0.732 0.624 0.465 0.241 0.019 -0.189 -0.368 -0.610

ψy
1t+s,ψ

sp
1t -0.283 0.045 0.230 0.415 0.586 0.730 0.773 0.763 0.704 0.605 0.324

ψy
1t+s,ψ

hp
1t 0.003 0.400 0.589 0.751 0.875 0.947 0.889 0.778 0.625 0.443 0.049

ψy
1t+s,ψ

c
1t 0.621 0.764 0.766 0.714 0.609 0.454 0.235 0.018 -0.185 -0.360 -0.596

ψr
1t+s,ψ

sp
1t -0.625 -0.560 -0.463 -0.326 -0.155 0.040 0.230 0.390 0.514 0.596 0.627

ψr
1t+s,ψ

hp
1t -0.673 -0.422 -0.231 -0.008 0.233 0.477 0.655 0.777 0.841 0.846 0.699

ψr
1t+s,ψ

c
1t 0.018 0.292 0.419 0.528 0.609 0.655 0.609 0.528 0.419 0.291 0.018

ψsp
1t+s,ψ

hp
1t 0.321 0.624 0.733 0.800 0.817 0.779 0.632 0.457 0.265 0.070 -0.278

ψsp
1t+s,ψ

c
1t 0.458 0.436 0.376 0.285 0.168 0.029 -0.114 -0.239 -0.339 -0.410 -0.457

ψhp
1t+s,ψ

c
1t 0.498 0.603 0.599 0.553 0.466 0.339 0.165 -0.006 -0.165 -0.300 -0.480

Notes: s denotes the number of leads (s < 0) and lags (s > 0) in quarters of the first variable with respect
to the second variable in the first column. Bold indicates the highest correlation (in absolute value).

Table 3: Cross-correlation for long cycles

s -12 -8 -6 -4 -1 0 1 4 6 8 12

ψy
2t+s,ψ

r
2t -0.181 -0.418 -0.525 -0.617 -0.717 -0.738 -0.727 -0.652 -0.574 -0.479 -0.254

ψy
2t+s,ψ

sp
2t 0.186 0.454 0.576 0.683 0.800 0.826 0.815 0.738 0.654 0.549 0.301

ψy
2t+s,ψ

hp
2t 0.109 0.212 0.257 0.294 0.331 0.337 0.328 0.285 0.245 0.197 0.090

ψy
2t+s,ψ

c
2t 0.241 0.459 0.552 0.628 0.702 0.713 0.694 0.599 0.511 0.408 0.180

ψr
2t+s,ψ

sp
2t -0.155 -0.334 -0.413 -0.481 -0.551 -0.565 -0.554 -0.492 -0.429 -0.353 -0.178

ψr
2t+s,ψ

hp
2t -0.076 -0.138 -0.164 -0.184 -0.203 -0.205 -0.199 -0.169 -0.142 -0.112 -0.045

ψr
2t+s,ψ

c
2t -0.196 -0.345 -0.407 -0.456 -0.499 -0.504 -0.487 -0.411 -0.344 -0.267 -0.102

ψsp
2t+s,ψ

hp
2t 0.129 0.226 0.266 0.298 0.325 0.328 0.317 0.267 0.223 0.173 0.065

ψsp
2t+s,ψ

c
2t 0.355 0.609 0.713 0.794 0.862 0.868 0.837 0.700 0.580 0.446 0.158

ψhp
2t+s,ψ

c
2t 0.227 0.454 0.553 0.635 0.717 0.732 0.714 0.624 0.537 0.435 0.204

Notes: See Table 2 Notes.
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Figure 1: Business cycle components

Notes: Shaded areas correspond to NBER recession periods.

Figure 2: Long-term cycle components
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