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Abstract 
 

Dual-process models propose that two processes support recognition memory; 

familiarity, a general sense that something has been previously encountered; and 

recollection, the retrieval of details concerning the context in which a previous 

encounter occurred. Event-related potential (ERP) studies of recognition memory have 

identified a set of old/new effects that are thought to reflect these processes: the 300-

500ms bilateral-frontal effect, thought to reflect familiarity and the 500-800ms left-

parietal effect, thought to reflect recollection. Whilst the exact functional role of these 

effects remains unclear, they are widely viewed as reliable indices of retrieval. The ERP 

literature reviewed in this thesis suggests that the characteristics of these recognition 

effects vary with task specific details and individual participant differences, suggesting 

that the recognition effects purported to index retrieval may be conditional on both task 

and participant. This thesis examined the influence of individual differences on 

behavioural measures of recognition and the neural correlates of recognition memory, 

focusing on factors of stimulus material, task performance and participant genotype.  

Clear evidence of stimulus differences were found, with pictures eliciting more 

anteriorly distributed effects than words, and a late onsetting frontopolar old/new effect 

that was unique for voices. Furthermore, the pattern of ERP activity associated with 

successful recognition of faces appeared to vary as a function of general face 

recognition ability, with participants poorer at remembering faces exhibiting a 300-

500ms old/new effect not present for those good at remembering faces. The data also 

suggested that activity over right-frontal electrodes, evident in some previous studies, 

may be participant specific and could reflect additional retrieval support processes. 
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Contrary to expectations, behavioural task performance was not found to significantly 

modulate the ‘typical’ recognition memory effects. However, a number of genetic 

polymorphisms were found to significantly influence both behavioural scores and the 

pattern of ERP activity associated with recognition memory. These results therefore 

suggest that inherent participant differences influence the neural correlates of 

recognition memory, in a way that variations in task performance do not.  

Overall, the results from this thesis therefore suggest that the ‘typical’ bilateral-frontal 

and left-parietal effects thought to index retrieval are not universal. Furthermore the 

results suggest that the specific processes engaged during retrieval (as indexed by 

variations in ERP activity) may be dependent on specific task requirements, stimulus 

material and the genetic makeup of the individual.



 - v -   

Table of Contents 
 

Declaration.................................................................................................................... i 

Acknowledgements ...................................................................................................... ii 

Abstract....................................................................................................................... iii 

Table of Contents ......................................................................................................... v 

 
Chapter 1  Episodic Memory ..................................................................................... 1 

1.1 Organisation of memory .................................................................................. 2 

1.2 Episodic memory ............................................................................................. 4 

1.2.1 Studying episodic memory ......................................................................... 5 

1.3 Recognition memory........................................................................................ 6 

1.3.1 Theoretical accounts of recognition memory .............................................. 7 

1.3.2 Measuring recollection and familiarity ..................................................... 10 

1.3.3 Anatomical basis of episodic memory ...................................................... 16 

1.4 Summary ....................................................................................................... 20 

 
Chapter 2  ERPs and Recognition Memory.............................................................. 23 

2.1 Event-related potentials.................................................................................. 23 

2.2 ERP investigations of recognition memory..................................................... 27 

2.2.1 Pre-retrieval processes.............................................................................. 28 

2.2.2 Retrieval success processes ...................................................................... 37 

2.2.3 Post-retrieval processes ............................................................................ 54 

2.3 Conclusion..................................................................................................... 57 

 
Chapter 3  Individual Differences and Episodic Memory ......................................... 60 

3.1 Sex differences .............................................................................................. 61 

3.2 Genetic differences ........................................................................................ 63 

3.2.1 Introduction to genetics ............................................................................ 63 

3.2.2 SNPs and memory.................................................................................... 67 

3.3 Conclusion..................................................................................................... 84 

3.4 Thesis aims .................................................................................................... 88 

3.4.1 Summary of research aims........................................................................ 91 

 



 Table of Contents 

- vi - 

Chapter 4  General Methods .................................................................................... 93 

4.1 Study Participants .......................................................................................... 93 

4.2 Overall procedure .......................................................................................... 94 

4.3 Background details questionnaire................................................................... 95 

4.4 Stimulus materials.......................................................................................... 96 

4.4.1 Pictures: ................................................................................................... 96 

4.4.2 Faces:....................................................................................................... 97 

4.4.3 Words: ..................................................................................................... 98 

4.4.4 Audio stimuli: .......................................................................................... 99 

4.5 Experimental tasks........................................................................................100 

4.5.1 Single item recognition memory tasks: ....................................................100 

4.5.2 Source Judgment task:.............................................................................102 

4.5.3 Counterbalancing ....................................................................................104 

4.6 Data processing and analysis.........................................................................104 

4.6.1 Behavioural data .....................................................................................104 

4.6.2 EEG recording: .......................................................................................105 

4.6.3 ERP processing: ......................................................................................108 

4.6.4 ERP analysis ...........................................................................................113 

4.7 DNA collection and processing.....................................................................115 

4.8 Mental health and personality assessment. ....................................................116 

4.9 Psychometric/Neuropsychological tests.........................................................117 

4.10 Overview of general methods......................................................................118 

 
Chapter 5  Single Item Recognition Memory ..........................................................119 

5.1 Introduction ..................................................................................................119 

5.2 Methods........................................................................................................123 

5.3 Results ..........................................................................................................124 

5.3.1 Word old/new recognition task:...............................................................124 

5.3.2 Picture old/new recognition task:.............................................................128 

5.3.3 Face old/new recognition task: ................................................................135 

5.3.4 Voice old/new recognition task: ..............................................................140 

5.3.5 Old/new recognition task material specificity: .........................................147 

5.4 General Discussion .......................................................................................159 

 



 Table of Contents 

- vii - 

Chapter 6  Source Memory for Faces and Verbal Phrases .......................................164 

6.1 Introduction ..................................................................................................164 

6.2 Methods........................................................................................................166 

6.3 Results ..........................................................................................................167 

6.3.1 Source memory task: ...............................................................................167 

6.3.2 Single-item and source old/new recognition memory effects for faces: ....178 

6.3.3 Participant specific old/new ERP effects for faces? .................................188 

6.4 General Discussion .......................................................................................195 

 
Chapter 7  Performance Analysis: Words and Pictures............................................198 

7.1 Introduction ..................................................................................................199 

7.2 Methods........................................................................................................202 

7.3 Results ..........................................................................................................203 

7.3.1 High versus low performance groups: Words ..........................................203 

7.3.2 Full sample correlation analysis...............................................................213 

7.3.3 Left-parietal effect polarity and performance...........................................229 

7.4 General Discussion .......................................................................................242 

 
Chapter 8  Genetic Analysis: Words and Pictures ...................................................246 

8.1 Introduction ..................................................................................................247 

8.2 Methods........................................................................................................254 

8.2.1 Genotyping .............................................................................................254 

8.2.2 Sample ....................................................................................................257 

8.2.3 Analysis ..................................................................................................259 

8.3 Results ..........................................................................................................260 

8.3.1 Words .....................................................................................................260 

8.3.2 Pictures ...................................................................................................276 

8.4 General Discussion .......................................................................................289 



 Table of Contents 

- viii - 

 
Chapter 9  General Discussion ................................................................................297 

9.1 Summary of results .......................................................................................297 

9.1.1 Do the neural correlates of episodic memory vary with stimulus material, 

and what drives material specificity effects?............................................297 

9.1.2 What factors cause face recognition effects to vary?................................299 

9.1.3 Are the bilateral-frontal and left-parietal old/new effects good predictors of 

memory ability? ......................................................................................300 

9.1.4 Is recognition memory sensitive to genetic variation?..............................301 

9.2 Theoretical implications................................................................................301 

9.2.1 The role of parietal activity in episodic memory ......................................302 

9.2.2 The role of individual differences in episodic memory ............................310 

9.2.3 Future directions .....................................................................................313 

9.3 Conclusion....................................................................................................315 

 
References.................................................................................................................316 



- 1 - 

Chapter 1   

Episodic Memory 
 

Memory is a fundamental part of our everyday lives. The ability to remember is not 

only a reminder of who we are and what we have done, but provides us with a reference 

that shapes our future actions, thoughts and beliefs. Memory is described as 

constituting three main stages, encoding (the learning of new material), storage (the 

maintenance of this material for future reference), and retrieval (the recovery of material 

from storage). Successful memory relies not just on being able to retrieve information 

but being able to encode information when it is acquired, in a fashion that makes it 

suitable both for storage and accessible for retrieval. Memory does not serve a single 

function and can be divided into several different ‘types’, each having its own distinct 

characteristics. This chapter will begin with a brief discussion of these different ‘types’ 

of memory, describing current thinking on how memory is organised, and characterising 

the systems and sub-systems that constitute ‘memory’. 

Whilst each ‘type’ of memory is important, episodic memory is perhaps most involved 

in shaping us as individuals. Our different experiences, and the ability to remember 

these experiences, are a large part of what distinguishes each of us from everybody else. 

In addition, being able to recognise our friends and family, what we do and don’t enjoy, 

and even where we left our keys the night before, are all fundamental to our functioning 

in society. It is for these reasons that this thesis focuses on episodic memory.  

Consequently, the present chapter will introduce episodic memory in detail, discussing 

the methods used to investigate this type of memory, before focusing on one particular 

test of episodic memory – recognition memory. An overview of current theories relating 
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to the processes involved in recognition memory will be given, with particular emphasis 

on the anatomical basis of these processes. 

1.1  Organisation of memory 

Memory can be divided into a series of memory systems and sub-systems that, whilst 

often considered separately, overlap (Figure 1.1). The division of memory in this way is 

clearly a vast oversimplification of the processes that are occurring when we remember. 

However, for the purposes of this thesis the separation of memory, as outlined in Figure 

1.1, provides an indication of the type of information and memory process being 

considered. The first main division comes from multi-store models of memory, such as 

the Atkinson-Shiffrin model (as cited in Groome, 2004), in which memory is divided 

into long-term memory (LTM) and short-term memory (STM). LTM refers to 

information that has been previously experienced and has been stored at an unconscious 

level to be retrieved at a later stage, whereas STM relates to information recently 

received that is being consciously attended to. 

Evidence to support the existence of separate LTM and STM comes from brain-injured 

patients who appear to have impairment of one system whilst the other seems to be 

intact. The fact that the disorder can occur either way round (with STM impaired and 

LTM spared, or LTM impaired and STM spared) is a double dissociation and provides 

strong support for the existence of two separate systems (for examples see Scoville & 

Milner, 1957; Wickelgren, 1968; Warrington & Shallice, 1969).  

Within the LTM fraction a further dissociation separates conscious from unconscious 

memories. Conscious memories are often termed explicit or declarative memories, and 

refer to intentional memories where specific information is recollected. Unconscious 

memories, also known as implicit (or procedural/perceptual memories) refer to the 
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unintentional retrieval of information such as that necessary to perform a task 

(procedural memory), or improved perception of a word or object due to prior exposure 

(perceptual memory). Evidence for the existence of unconscious memories comes from 

tasks such as word-stem completion where participants are primed with a list of words 

before being asked to complete a series of word fragments (only some of which can be 

completed with the previously presented words). Findings suggest that participants are 

more able to complete fragmented words when they relate to the previously presented 

list, even for words that participants fail to recognise as having been previously 

presented (Groome, 2004).  

Implicit and explicit memories are also influenced differently by factors such as divided 

attention and retention interval. Divided attention affects the retention of explicit but not 

implicit memory (Parkin, Reid, & Russo, 1990). Similarly, explicit memory appears to 

be more sensitive to retention interval than implicit memory, with participant’s ability to 

complete recognition tasks more degraded over time than their ability to complete word 

fragment tasks (Tulving, Schacter & Stark, 1982). Amnesiac patients provide further 

evidence to support the existence of separate systems with some patients exhibiting 

impaired explicit memory and intact implicit memory. This is demonstrated through 

patient’s gradual improvement on tasks such as mirror drawing, despite having no 

memory of having ever completed the task (Milner, 1962, cited in Squire, 2009).  

Explicit memories can be further divided into semantic memories (memory for general 

facts) and episodic memories (memory for specific experiences or events). For example, 

neuroimaging data supports the existence of different sub-systems of explicit memory 

by showing different areas of brain activation for the retrieval of different types of 

information. Using positron emission tomography (PET) Wiggs, Weisberg and Martin 
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(1999) found that retrieval of semantic information activated bilateral regions of the 

temporal and frontal lobes, compared to retrieval of episodic information which 

activated the medial parietal cortex, retrosplenial cortex, thalamus and cerebellum. The 

findings from these studies clearly suggest that there is not just one type of explicit 

memory; also that the neural systems involved differ depending on the type of 

information being remembered and intended future use of the information. 

 

Figure 1.1 Schematic illustration of memory systems. 

1.2  Episodic memory 

As described above, episodic memory is considered to support memory for experiences 

and events. Henke (2010) suggests that a key feature of episodic memory is that the 

components of episodic memories are separable and consequently flexible. That is, 

episodic memories can be represented as whole events, or via the individual elements 

that constitute an event (which are stored independently). The independent storage of 

these individual components allows for flexibility in the way episodic memories are 

retrieved, with different retrieval cues triggering reactivation of different elements of 

the memory, allowing retrieval of a particular episode to occur in a variety of situations.  
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Memory of an evening out could, for example, be retrieved in terms of the restaurant 

visited, which people were there, the food eaten; retrieval of one of these components 

may trigger the retrieval of the others. Furthermore, these different components of 

memory allow selective retrieval, whereby the whole event does not need to be 

retrieved. Retrieving details of what was eaten may be important if one subsequently 

feels unwell, but who else was present and the name of the restaurant may not be 

important in this situation. However, if one is trying to determine whether that particular 

restaurant is the cause of the sickness, remembering who else was there and the name of 

the restaurant may be beneficial and all three elements may be retrieved. As this 

example hopefully makes clear, episodic memories are not simply a straight record of 

experiences and events, but are a series of individual elements relating to an episode 

that can be retrieved independently or simultaneously, in a variety of situations. 

1.2.1  Studying episodic memory 

To investigate episodic memory, experiments typically employ a study-test paradigm in 

which participants are presented with a series of ‘to be remembered’ stimuli, which they 

are later tested on. Investigations into episodic memory tend to look at the encoding and 

retrieval stages of memory, to try and understand memory processes, with the storage 

stage being more difficult to monitor. Methods of investigating encoding typically 

involve manipulation of the type of information being encoded, the conditions under 

which the information is encoded, and the strategies used by participants during this 

stage. Whilst holding retrieval conditions constant, comparisons of retrieval success 

across the different encoding manipulations enable encoding processes to be 

investigated. Whilst encoding is clearly an important memory stage the focus of the 

current thesis is on retrieval. 
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Retrieval is generally investigated using either tests of recall or recognition. Recall tasks 

involve participants reproducing material previously presented to them and may either 

involve free recall, where participants are not provided with any information to guide 

their response; or cued recall, where information that might prompt a response is 

presented, such as the first word of a pair. By contrast, tests of recognition involve 

presenting participants with material and asking them to indicate if they have been 

presented with this information previously, typically using a two choice yes/no 

judgement. Both types of retrieval test can be presented immediately after the studied 

information has been presented (immediate recall/recognition) or after a period of time 

has elapsed (delayed recall/recognition). For a detailed review of encoding and retrieval 

manipulations used in episodic memory experiments see Yonelinas (2002). 

1.3  Recognition memory 

Recognition memory tasks assess participants’ ability to determine if a stimulus (such 

as an object, person, or place) has been previously encountered. Participants are 

presented with a mixture of previously studied (old) items and similar lure (new) items 

that haven’t previously been presented, and asked to distinguish between them. There 

are two main competing accounts as to how recognition memory works, which are 

broadly classified as single process and dual process theories. Within each of these 

frameworks there are many alternative theories (e.g., differences in the way that the 

processes are characterised, or how they are related). A complete characterisation of the 

different theories is beyond the scope of this thesis, however the next section will 

briefly consider three differing accounts of recognition memory, which highlight current 

debate regarding the mechanisms involved in recognition memory. 
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1.3.1  Theoretical accounts of recognition memory 

1.3.1.1  Dual process theories: 

In general, dual process theory suggests that recognition memory involves two separate 

memory processes, or types of memory1: familiarity and recollection. Familiarity is 

considered to be a general sense that an item has previously been encountered and 

involves the assessment of the similarities between an item and information stored in 

memory about previous items. Recollection involves the recovery of details about a 

previous encounter with an item, such as contextual information about the event in 

which the item was previously encountered, or additional information relating to the 

item. The distinction between these two processes is perhaps best illustrated by the 

common experience of seeing a person and finding them familiar but not being able to 

recollect whom the person is or where they are from (Mandler, 1980). 

The summary of dual process theory described above does not represent one dual 

process theory but it accurately describes the essence of dual process theory. Each 

individual dual process theory suggests a contribution of both recollection and 

familiarity to recognition memory, however they differ in the details of how these 

processes interact and operate. For example, the Atkinson and Juola (1974 cited in 

Yonelinas, 2002) model suggests that familiarity is the primary process engaged during 

recognition, in which items exceeding a set memory strength criterion are considered 

‘old’ and those below a set lower criterion ‘new’. The Atkinson and Juola model 

                                                
1 As evident from the title, ‘dual-process theory’ defines familiarity and recollection as processes, 
however this characterisation is perhaps misleading, suggesting that familiarity and recollection are 
‘individual’ isolated processes, rather than distinct ‘memory processes’. As memory processes familiarity 
and recollection are comprised of a number of processes related to other cognitive functions such as 
attention and perception, and are perhaps best thought of as different types of memory. It is therefore 
important to note that discussion of familiarity and recollection as processes in this thesis refers 
specifically to them as ‘memory processes’ rather than being singular isolated processes that do not 
incorporate other cognitive functions. 
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suggest that recollection is only engaged when the elicited activation of an item is 

between these two criteria, and additional information is required to make a memory 

decision. In contrast, the Mandler (1980) model suggests that familiarity and 

recollection are independent processes acting in parallel, with either process potentially 

leading to a recognition decision. 

The Jacoby and Dallas (1981) model also suggests that familiarity and recollection are 

independent processes that operate in parallel. In this case however, familiarity is 

described as an automatic process based on the assessment of perceptual fluency of an 

item, whereas recollection is considered a more controlled process. Similarly, the 

Yonelinas (1994) model again supports the idea of two independent processes, but adds 

an additional mechanistic distinction. Whilst familiarity is based on the assessment of 

continuous memory strength, in which all items have some degree of familiarity and 

those recently encountered will be more familiar than those not studied, recollection is 

suggested to be a thresholded process. In contrast to familiarity, not all items elicit a 

degree of recollection; that is recollection involves the retrieval of qualitative 

information about an item or event and in some instances the amount of retrieved 

qualitative information is not sufficient to discriminate previously studied items or 

events from those not encountered previously.  

In general, therefore, dual process theories suggest that two processes (recollection and 

familiarity) contribute to recognition memory and that these processes support 

recognition independently. Furthermore familiarity is generally considered to be a faster 

process than recollection and is thought to reflect memory strength, whereas 

recollection is a slower more controlled process involved in the recovery of additional 
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information about the item or event (for a more detailed review of dual process models 

see Yonelinas, 2002). 

1.3.1.2  Single process theories: 

In comparison to dual process theories, single process theories suggest that recognition 

memory is supported by a single assessment of memory strength, which varies along a 

continuum resulting in different phenomenological experiences. The simplest form of 

single process models characterises memory in terms of signal detection theory (Banks, 

1970; Wixted, 2007). In this view, recognition decisions are based on an assessment of 

the memory strength evoked by a stimulus in relation to a set decision criterion. Items 

evoking a strong signal are classified as ‘old’ and items with a weak signal are classified 

as ‘new’. Memory errors occur when an unstudied item induces a strong memory signal 

(false alarms) and when previously studied items evoke a weak signal (misses). 

Changes in decision criterion (the level of memory strength required to make an ‘old’ 

decision) will alter the distribution of responses, with a more conservative criterion (a 

greater degree of memory strength required to respond ‘old’) increasing the number of 

miss items and reducing the number of false alarms; whereas a more liberal criterion 

(lower memory strength) will have the opposite effect, with greater false alarms and 

fewer misses.  

A second form of single process model can be characterised as a blend between dual-

process and ‘purer’ single process theories. According to Wixted (2007) familiarity and 

recollection both exist, but an additive combination of the two produces a single 

memory strength variable that forms the basis for recognition memory decisions. This 

model assumes (in contrast to Yonelinas) that recollection is a continuous process in 

which information can be recollected to differing degrees. If both familiarity and 
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recollection are continuous processes the additive combination of these two continuous 

signals may lead to a single memory strength signal on which recognition decisions are 

based. If the two processes can be combined into a single strength signal, then some of 

the evidence that supports a dual process model over a single process (such as 

explaining patterns of Receiver Operating Characteristic curves, Yonelinas 1994) could 

also support a single process model, indicating that familiarity and recollection are not 

necessarily independent processes (Wixted, 2007).  

1.3.1.3  Theoretical account summary: 

In summary, whilst it is generally accepted that recognition memory can involve both 

experiences of familiarity and recollection, there is currently a firm division in the 

literature as to whether recognition is supported by a single process (e.g., as described 

by Banks, 1970 & Wixted, 2007), by separate familiarity and recollection processes (as 

indicated by dual process models (e.g., Yonelinas, Aly, Wang & Koen, 2010), or if two 

processes exist and are combined to support recognition (as suggested by the memory 

strength single process models, e.g., Wixted, 2007). Given the extent of research 

investigating recognition memory it is clear that the differences of opinion in the field 

are unlikely to be easily resolved. Whilst it is important to place the current thesis in this 

context, the dual process view is dominant within episodic memory research. Consistent 

with this, the work presented in this thesis is based on a dual-process perspective and 

the next sections will therefore consider methods of measuring the two recognition 

processes, as well as the anatomical basis of recognition memory. 

1.3.2  Measuring recollection and familiarity 

The basic old/new recognition memory paradigm, described in section 1.2.1  does not 

allow the contribution of recollection and/or familiarity to a successful recognition 
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decision to be directly assessed2. Thus to evaluate the relative contributions of the two 

processes to recognition memory, a number of paradigms have been designed that either 

aim to isolate one of the two processes (task dissociation methods), or allow estimates 

of the contribution of the different processes to be made (process estimation methods). 

An example of a task dissociation method is the comparison of item and source 

recognition. In a typical source recognition task, participants are shown a series of study 

words presented in different locations on the screen. At test, participants are initially 

presented with a word and asked to indicate if the word is ‘old’ or ‘new’. ‘Old’ 

responses are followed by a second question asking participants to indicate the location 

of the word presentation. Dual process theory suggests that only recollection involves 

the retrieval of contextual information about a previous encounter with an item/event. 

Source recognition paradigms that ask participants to report this additional information 

are therefore able to assess recollection by comparing trials in which participants were 

successfully able to recall or identify the additional information, with those that weren’t. 

Whilst task dissociation methods such as the comparison of item recognition with and 

without correct retrieval of source information are widely used in the literature to 

separate the two processes, particularly in combination with imaging methods such as 

event-related potentials (ERPs; see Chapter 2), one criticism of such methods is that the 

process estimates are imprecise. In particular, incorrect source judgements do not 

necessarily indicate a decision based solely on familiarity because participants may 

recollect other information related to the previous encounter, information not asked for 

during test. Furthermore, it may be wrongly inferred that a decision was made on the 

basis of recollection because source memory was correctly identified, when the decision 
                                                
2 Dobbins et al (2000) have suggested that false alarm responses (in which ‘new’ items are incorrectly 
classified as ‘old’) provide some insight into familiarity, although Gallo (2004) suggests that false alarm 
responses can also occur as a result of recollection. 
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was actually based on associative familiarity, in which an assessment of how familiar 

the item feels with each source directs the source judgement decision. Pairing each item 

with a unique second item that participants are asked to recall following identification 

of the first item as ‘old’, can reduce the contribution of associative familiarity, with 

successful recall of the second item from the pairing suggesting recollection based 

retrieval. Whilst the paired-associate memory paradigm negates the issue of associative 

familiarity, the first problem remains: that of underestimating the contribution of 

recollection due to unmeasured retrieval of details other than the associated secondary 

item. 

A modification of the item/source recognition comparison is the process dissociation 

paradigm (Jacoby, 1991). The process dissociation procedure involves the completion 

of two recognition memory tasks under slightly different conditions. For example, if 

words are presented on either the left of the screen or on the right, participants may be 

asked in one condition to indicate all previously studied words as ‘old’ (inclusion 

condition), whereas in a second condition participants may be asked to only report 

words presented on the left side of the screen as ‘old’ (exclusion condition). The 

assumption in the process dissociation procedure is that recognition responses in the 

inclusion condition can be based on either familiarity or recollection. By contrast, in the 

exclusion condition participants need to engage recollection to successfully complete 

the task, as all previously seen words will elicit the same feeling of familiarity. As for 

the item/source paradigm discussed above however, the process dissociation paradigm 

can also be criticised for characterising recollection engagement as the ability to retrieve 

a specific type of information. Items in the exclusion task may still evoke recollection 

even when participants incorrectly categorise the item as ‘new’ because they are 

recognised on the basis of different contextual information. 
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Another method used to gain estimates of recollection and familiarity is the 

‘Remember/Know’ (R/K) procedure, initially proposed by Tulving (1985). The R/K 

procedure asks a participant to make a subjective judgement about a memory decision 

they have made, in which they indicate if they actually ‘remember’ a previous 

encounter with an item, or if they simply ‘know’ that it had previously occurred. 

Tulving suggests that the ‘remember’ responses provide an estimate of the engagement 

of recollection. One benefit of using subjective judgements is that recollection 

responses are not restricted to retrieval of specific information, as is the case for the 

previous two methods. The R/K procedure does, however, have an alternative problem: 

difficulty isolating the contribution of familiarity. 

Whilst ‘remember’ responses in the R/K paradigm are thought to reflect recollection, 

the use of ‘know’ responses to infer familiarity (Gardiner, 1988) has been criticised 

because of the forced choice nature of the task. In practice, participants are limited to 

only two responses, either that the item is recollected or that it is not (as opposed to the 

item being familiar), resulting in a marked under-estimation of the contribution of 

familiarity. Yonelinas and Jacoby (1995) suggest that R/K data be rescaled to account 

for items that are both recollected and familiar, and will consequently have received a 

‘remember’ response. They propose that the proportion of ‘know’ responses be divided 

by the opportunity to make a ‘know’ response (1-R), to correct the estimations of the 

proportion of familiar items. This calculation: F=K/(1-R), is known as the Independence 

Remember/Know procedure (IRK procedure).  

 Another problem with the forced choice nature of the task is that when participants are 

unsure if they have seen the item before they may have guessed whether the item was 

‘old’ or ‘new’. Such guess responses would necessarily influence R/K process 
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estimates, particularly in terms of the ‘know’ responses often interpreted as reflecting 

familiarity. A third response option, a ‘guess’ response, can also be included in the R/K 

procedure (Gardiner, Ramponi & Richardson-Klavehn, 1998) to filter out trials in which 

participants were guessing. 

An alternative method used to gain accurate estimates of familiarity is the modified R/K 

procedure (Montaldi, Spence, Roberts & Mayes, 2006). A criticism of the original R/K 

procedure is that participants are trained to indicate if they recognise stimuli because 

they recollect information, or if the stimuli are familiar but no information is 

recollected. That is, the emphasis is on recollection and participants will respond 

‘know’ on the basis of unsuccessful recall, rather than on the basis of the item feeling 

familiar. The modified R/K runs familiarity and recollection conditions separately in 

two different procedures. In the familiarity only procedure, participants are instructed to 

focus on familiarity judgements and to report recollection if it occurs, but they are 

instructed not to actively try to recollect. In the recollection only procedure, participants 

are instructed to actively try to recollect and indicate if they successfully recollect 

information and ‘recall-to-accept’ – report that the item has been previously 

encountered on the basis of recollected information, or recollected and ‘recall-to-reject’ 

– information was recalled and was judged not to have been previously studied (Mayes, 

Montaldi & Migo, 2007). More accurate estimates of familiarity and recollection can be 

obtained by emphasising the different processes in the two procedures, allowing a more 

accurate examination of neural activity associated with each process. However, because 

the two processes are measured separately, the modified R/K procedure does not allow 

estimates of how the two processes contribute to performance on a single task, the basis 

of a single memory decision, or how the processes interact. 
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Another criticism of the R/K procedure is that, in practice, participants use the response 

options as a confidence indicator, with ‘remember’ responses reflecting high confidence 

decisions, and ‘know’ responses as low confidence decisions (Yonelinas, 2002). For 

example, Wixted (2010) suggests that R/K judgements may not be dissociating 

recollection and familiarity but reflect differing degrees of memory strength, with 

participants setting separate response criteria for R and K responses. 

The final process estimation method considered here is the use of confidence 

judgments. In a confidence task participants are asked to rate how confident they are in 

each recognition decision (e.g., using a 5-point rating scale). It is assumed that memory 

responses based on recollection will be accompanied by a higher confidence rating 

compared to familiarity based decisions. Confidence judgements can be used in 

conjunction with hit and false alarm rates to generate Receiver Operating Characteristic 

(ROC) curves that can, in turn, be used to estimate the contributions of recollection and 

familiarity to recognition memory (for a discussion of the use of confidence judgements 

to plot ROC curves see Yonelinas & Parks, 2007). Whilst ROC curves can be used to 

gain estimates of familiarity and recollection, the results are not straightforward with the 

outcome dependent on the confidence scale used and the assumptions of the model used 

to extract estimates (see Wixted, 2007 for examples). That is, the theoretical 

interpretation of the same ROC data can differ depending on the model used. 

In sum, there are several different methods that can be employed to try and separate the 

contributions of familiarity and recollection to recognition memory. Each method has 

its own benefits and flaws; even with the many available methods it remains difficult to 

obtain definite estimates of the two processes. In many respects the complexity of the 

human mind and memory systems mean that obtaining process purity (i.e., successfully 
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isolating one of these processes) is very unlikely. Tulving (2002) emphasises the 

importance of understanding that episodic memory is a hypothetical memory system 

and that whilst tasks may be designed with the intention of investigating a particular 

system they will engage other systems in the process of task completion. That is, 

Tulving highlights that episodic memory is not just one type of retrieved information or 

one type of experience, but a combination of components from more than one system. 

In this regard, it is not possible to completely isolate one process from another as they 

are inherently intertwined by the contributions made by other systems when they are 

engaged. However, whilst it may not be possible to completely isolate familiarity and 

recollection, the methods described above each provide valuable estimates of the two 

processes that can be used to aid our understanding of episodic memory. 

1.3.3  Anatomical basis of episodic memory 

The preceding sections highlight the key position that dual process theories play in 

accounting for episodic memory, a perspective that has been developed within the 

cognitive behavioural literature. In a recent seminal review Yonelinas (2002) 

extensively reviews evidence for dual process theories, of which a substantial amount 

comes from patient data, neuroimaging studies, and animal brain lesion studies. These 

different types of data all support the theory of two independent recognition memory 

processes by demonstrating anatomical differences between them. This section briefly 

reviews the anatomical basis of episodic memory with a particular focus on the role of 

the medial temporal lobe (MTL) in recognition memory, highlighting evidence to 

indicate that recollection and familiarity are independent processes that are anatomically 

dissociable. 
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The MTLs were initially highlighted as being important for episodic memory by the 

case of patient HM, who suffered anterograde amnesia following surgery to remove 

large sections of MTL regions. The surgery involved the bilateral removal of most of 

the hippocampus, uncus and amygdala, and the resulting amnesia in HM (and in other 

similar patients) led Scoville and Milner (1957) to surmise that the hippocampal 

complex was important for normal memory functioning. More recent animal lesion 

work has suggested that it is not only the hippocampus that is important for memory, in 

particular the perirhinal cortex is considered critical. Brown and Aggleton (2001) 

review a series of animal lesion, immediate early gene and neuronal recording studies 

that use rats and monkeys, concluding that the hippocampus plays an important role in 

memories involving associative or spatial information, and the perirhinal cortex is 

important for object based information. In terms of the processes supporting 

performance on recognition memory tests, these results suggest that the hippocampus is 

important for recollection and the perirhinal cortex for familiarity. 

Neuroimaging studies of healthy human participants have also found dissociable 

patterns of neural activity associated with recollection and familiarity. In an early study, 

for example, Henson, Rugg, Shallice, Josephs and Dolan (1999) measured 

haemodynamic response using functional magnetic resonance imaging (fMRI) whilst 

participants completed a word recognition task in which they had to indicate if they 

‘remember’ the word, ‘know’ the word, or if the word was ‘new’. In comparison to K 

judgments, R judgements showed greater responses in the anterior left prefrontal, left 

parietal and posterior cingulated brain regions at retrieval. As discussed in section 1.3.2 

‘remember’ responses are thought to reflect recollection engagement and ‘know’ 

responses recognition without recollection. The study by Henson and colleagues 

indicates that recognition with and without recollection are reflected by different brain 
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activation patterns. In a similar R/K experiment, Eldridge, Knowlton, Furmanski, 

Bookheimer and Engel (2000) also report different patterns of fMRI activity across 

remember and know judgements, with R judgements showing greater MR signal in the 

left hippocampal region than K judgments. The studies by Henson et al. (1999) and 

Eldrige et al. (2000) provide two examples from the large amount of fMRI research that 

suggests different patterns of activity for successful recognition memory with and 

without recollection, substantiating the theory that recognition memory is supported by 

more than one independent process3. 

Further supporting evidence of hippocampal involvement in episodic memory comes 

from neuropsychological evidence, such as the patient study presented by Vargha-

Khadem et al. (1997). Vargha-Khadem and colleagues discuss three brain injured 

patients who all suffered very early onset bilateral hippocampal pathology and episodic 

memory amnesia. In addition, on tests of recognition memory the patient group were 

found to perform significantly poorer on voice-face and object-place associative 

recognition compared to controls. No group differences were found for one-trial 

recognition for lists of words, non-words, familiar faces, unfamiliar faces, word pairs, 

non-word pairs, familiar face pairs, unfamiliar face pairs; nor multi-trial associative 

recognition of non-word pairs or face pairs. The presence of impairment on the voice-

face and object-place tasks and not on the other associative tasks suggest that 

hippocampal damage does not simply impair all types of associative recognition, but 

results in a more specific impairment of cross-domain associative recognition. A similar 

case is also presented by Mayes et al. (2004) who found impaired associative 

recognition for different types of information (i.e. face-voice), but not for associations 

                                                
3 In addition to fMRI studies, a large number of ERP studies provide evidence to support dual-process 
theory and will be discussed in Chapter 2. 
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of the same type of information (i.e. face-face), in a patient with selective hippocampal 

damage. 

The results from both Vargha-Khadem et al. (1997) and Mayes et al. (2004) suggest that 

not all associative memory is driven by the hippocampus, but that hippocampal 

engagement is only necessary when the types of information to be remembered differ 

(e.g., in modality). The neuroanatomical evidence has also inspired a number of more 

detailed theories that attempt to account for the different patterns of findings across 

MTL regions. For example, one influential suggestion by Mayes, Montaldi and Migo 

(2007) is the domain dichotomy framework, a functional/anatomical account of 

difference in associative retrieval. It is theorised that within-domain items share 

characteristics that make them more likely to activate the same sets of neurons (or 

neurons within a close proximity) in the perirhinal cortex, compared to between-domain 

associations. Between-domain associative items have less overlapping characteristics 

and therefore will be represented by more distal regions. Mayes and colleagues suggest 

that representations will occur in the perirhinal cortex for within-domain items in much 

the same way that the individual features of a single item converge - binding together 

common features. In contrast, each item in a between-domain association is represented 

separately during binding, a process thought to involve the hippocampus. The 

differences in the way features and associations are bound lend themselves to different 

engagement of recognition processes, with common feature binding more applicable to 

familiarity and separate representations of an item to recollection (although for 

behavioural evidence against this view see Harlow, MacKenzie & Donaldson, 2010). 

Whilst there are many studies suggesting that recollection and familiarity engage 

different anatomical regions, as in the behavioural literature not all researchers accept 
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the dual process view of episodic memory. For example, a recent article by Wixted and 

Squire (2011) suggests that fMRI studies typically confound the two processes with 

differences in memory strength. A number of studies are reported (such as Wais, Squire 

& Wixted, 2010), suggesting that when memory strength is controlled, recollection and 

familiarity are both supported by the hippocampus, which encodes multi-attribute 

stimuli (although see Diana & Ranganath, 2011; and Montaldi & Mayes, 2011, for 

strong arguments against this view). 

Nonetheless, even those arguing for a single hippocampal account of episodic memory 

appear to accept that distinctions must be drawn between recollection and familiarity, 

either at a purely phenomenological level, or via the involvement of additional cortical 

regions. For example, neuropsychological evidence suggests that in addition to the 

MTLs, the frontal cortex is involved in episodic memory with patients suffering frontal 

lobe damage exhibiting episodic memory deficits in tasks of recall and recognition (for 

a review see Wheeler, Struss & Tulving, 1995). The frontal lobes are thought to be 

involved in episodic memory by the mediation of MTL processes through executive 

functions such as working memory, planning and strategy use. Whilst discussion of the 

role of the frontal lobes in episodic memory is beyond the scope of the current review, 

the frontal lobe literature has been extensively reviewed elsewhere (Fletcher & Henson, 

2001). 

1.4  Summary 

Memory is a complex system made up of multiple interacting components. The current 

thesis focuses on episodic memory, a subcomponent of declarative and long-term 

memory, often studied using tests of recognition. There are many theories as to the 

mechanisms involved in recognition memory but the main competing theories can 
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generally be divided into two groups: dual-process models in which recognition 

memory is supported by two independent processes, recollection and familiarity; and 

single-process models in which recognition is thought to be based on one process, such 

as a variable memory strength signal, with different phenomenological experiences 

resulting from where along the continuum the memory signal falls. 

Several different paradigms have been employed to investigate recognition memory 

processes, including comparisons of item and associative/source memory, 

inclusion/exclusion tasks, R/K/G tasks, and confidence judgments. Each method has its 

strengths and weaknesses and there does not currently appear to be a single ideal 

method with which to accurately estimate the contribution of recollection and 

familiarity to recognition, nor to entirely isolate either process. The final section of this 

chapter briefly discussed evidence to indicate anatomical dissociations between 

recollection and familiarity, particularly in the MTL. Current research suggests the 

hippocampus supports recollection, particularly for between-domain associations, and 

the perirhinal cortex supports familiarity, particularly for item and within-domain 

associations. Even within the neuropsychological literature however the picture is not 

straightforward with many other regions of the brain playing a role. For example, the 

frontal lobes have been strongly implicated in episodic memory and are thought to 

mediate MTL processes through executive functions. 

Whilst the current chapter only provides a very brief overview of memory and 

recognition, the aim is to have provided the necessary background information to place 

this thesis in context. The principles on which the current work is based are taken from 

dual process theory and the importance of MTL structures in episodic memory. The 

next couple of chapters will discuss in greater detail the background to the current 
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thesis, looking at the different processes involved in successful recognition memory 

retrieval, presenting evidence from ERP studies of dissociable recognition processes 

(Chapter 2). This will be followed by a discussion of how individual differences 

influence memory performance and the associated neural activity (Chapter 3). An 

outline of the full thesis aims will be presented at the end of Chapter 3. 
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Chapter 2   

ERPs and Recognition Memory 
 

The previous chapter introduced episodic memory, outlining current thinking 

concerning the conceptualisation, organisation, and understanding of memory, with 

particular attention paid to dual-process theory and recognition memory. The current 

chapter expands on this introduction, discussing ERP evidence of dissociable cognitive 

operations involved at the retrieval stage of memory, looking at the processes engaged 

during retrieval attempt, retrieval success and post-retrieval monitoring. Whilst 

descriptions of the technical procedures involved in recording, processing and analysing 

ERPs will be given in the General Methods (Chapter 4), the current chapter will start 

with a basic introduction to the underlying theory of ERPs and how they compare to 

other neuroimaging methods, before discussing the sorts of inferences that can be made 

from ERPs and the use of ERPs to investigate recognition memory. 

2.1  Event-related potentials 

An ERP is the electrophysiological activity produced by the brain, in relation to a 

particular event or stimulus. In order to measure the electrophysiological activity from 

the brain, voltage changes between an active electrode and the ground electrode are 

recorded and changes in this voltage are plotted over time (the electroencephalography 

recording - EEG). The electrical activity relating to a specific event, such as a stimulus 

presentation, is embedded in the EEG and is extracted by dividing the EEG into epochs, 

time-locked to the event of interest and averaging together many trials of this event to 

remove background noise. Noise relating to individual participant variation is then 

minimised by creating grand-averages in which ERPs from each participant are 
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averaged together, enabling activity related to the event of interest that is present across 

participants, to be examined.  

In comparison to other experimental measures, such as behavioural measures and other 

types of neuroimaging, ERPs are a particularly useful tool for investigating cognitive 

operations because they provide a continuous measure of processing from the point at 

which a target or stimulus is presented, through until the participant makes a response, 

or further if post-response activity is of interest. ERPs can also be used to look at 

activity relating to the processing of stimuli where no behavioural response is required. 

Whilst this later point may also be true for other types of neuroimaging, such as 

haemodynamic measures (i.e. PET or fMRI); the key advantage of ERPs is the 

instantaneous and continuous nature of the signal, providing ERPs with an excellent 

temporal resolution of around a millisecond (ms). Due to the slow nature of the 

haemodynamic response other neuroimaging tools such as PET and fMRI cannot match 

the temporal resolution of ERPs, with such haemodynamic measures having a temporal 

resolution of several seconds. Conversely, the spatial resolution of ERPs is 

comparatively poor, with haemodynamic measures having a spatial resolution of around 

a millimetre. As will become clear in the next section, there are many different neuronal 

configurations that could give rise to the ERP patterns exhibited, making it very 

difficult to localise the source of the ERP generator, resulting in poor spatial resolution. 

Therefore, whilst ERPs allow accurate temporal characteristics of task processes to be 

observed, the spatial characteristics observed from ERPs are less valuable in terms of 

understanding the underlying cognition associated with a particular event. 

Voltages recorded at the scalp are mostly postsynaptic potentials (as opposed to action 

potentials), which are caused by the release of neurotransmitters by the presynaptic 
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neuron that bind to the receptors on the postsynaptic terminal. The binding of these 

neurotransmitters causes the opening/closing of ion channels in the postsynaptic neuron, 

resulting in ions entering/exiting from the cell, which in turn changes the potential 

across the cell membrane. The negativity/positivity at the dendrites and the counterpart 

positivity/negativity at the cell body form a small dipole, generating the signal recorded 

by the electrodes. However, the signal generated by the dipole of a single neuron is not 

detectable by scalp electrodes and it is the capacity for postsynaptic potentials to 

summate which allows these voltage changes to be recorded at the scalp. Postsynaptic 

potential summation can occur when a cell receives two or more inputs in close 

proximity, whether this is spatial proximity from two closely positioned synapses, or 

temporal proximity where two inputs occur in quick succession. Importantly, these 

inputs need to be synchronous (i.e. either all excitatory or all inhibitory potentials) if 

they are to summate, asynchronously activated neurons (i.e. if the cell receives both an 

excitatory and an inhibitory potential) will simply cancel each other out, resulting in no 

voltage being recorded (Luck, 2005). 

As discussed above, in order for the signal to be detectable at the scalp thousands of 

synchronously active neurons are required, in addition to which the neurons need to 

have a similar orientation with the dipoles spatially aligned. Furthermore, as described 

for input synchronicity, neurons which are randomly oriented in relation to each other 

may cancel out since the positivity at the dendrites of one neuron may be next to the 

negativity of the cell body of another neuron, resulting in no voltage being recorded as 

the net dipole moment of the neurons is equal to zero, known as a ‘closed field’ (Kutus 

& Dale, 1997). Therefore for scalp electrodes to be able to successfully record 

postsynaptic potentials thousands of neurons need to be active with similar synaptic 



 ERPs and Recognition Memory 

- 26 - 

inputs and similar orientations in order for these potentials to summate and produce a 

voltage strong enough to be detected at the scalp. 

With these conditions in mind it is important to recognise that the recordings taken from 

scalp electrodes are also dependent on how the dipole generating the signal is positioned 

and orientated. A key consideration that follows is that in terms of investigating 

cognitive processes, a lack of visible ERP differences between conditions does not 

necessarily reflect an absence of differences in how the brain is processing the 

conditions, but could instead be that any processing differences are being generated by a 

population of neurons in a closed field and are therefore not detected by scalp 

electrodes. Furthermore, the numerous different dipole configurations, coupled with the 

differing shape and levels of resistance of each element of the head, such as differences 

in skull thickness, make it impossible to say which population of neurons are 

responsible for the voltage distribution evident at the scalp. That is, ERPs that are being 

generated by one part of the brain may appear as increased voltages at electrodes placed 

at completely different locations, making it difficult to interpret ERP results with 

respect to the underlying structure of the brain and how cognitive functions may map on 

to this. 

As well as providing a useful tool to investigate the neural basis of cognitive processes, 

there has been increasing interest in the use of ERPs as biomarkers to predict and 

monitor disease progression and treatment effectiveness. In the last decade a number of 

studies have proposed the use of ERPs as biomarkers for a range of diseases, including 

mild cognitive impairment (Olichney et al., 2002), Alzheimer’s disease (Olichney et al., 

2006), psychosis (Bramon et al., 2008), and Schizophrenia (Luck et al., 2011); reporting 

abnormal presentation of an ERP component, such as the absence or reduction in the 



 ERPs and Recognition Memory 

- 27 - 

magnitude of an expected effect, as indicators of impairment in neural functioning. By 

measuring the electrical signal produced during neurotransmission, ERPs may provide a 

more direct measure of changes in the underlying biology than is evident from clinical 

symptoms and compared to other neuroimaging methods is relatively cheap. Whilst 

ERPs have the potential to be effective biomarkers a recent article by Luck et al. (2011) 

highlight four key issues that need to be addressed before ERPs can be validated and 

widely used as disease biomarkers; 1) specific ERP components need to be identified 

that can be linked to transmitter-receptor systems; 2) individual differences need to be 

reliably measured and components predictive of behaviours and possible treatment 

response; 3) animal homologues to the ERP components should be identified to 

facilitate drug development; 4) standards to assess the quality of data collected for 

clinical purposes should be developed. Although the focus of Luck’s article is on the 

use of ERP biomarkers for Schizophrenia, the same points are applicable for their use in 

relation to other diseases.  

2.2  ERP investigations of recognition memory 

ERPs can provide information about cognitive processes that cannot be gained from 

behavioural measures or haemodynamic imaging and have readily been used to 

investigate episodic memory. As discussed in Chapter 1, episodic memory can be 

broken down into many constituent parts and whilst there is a wealth of research 

looking at the encoding of episodic memories, the focus of this thesis and consequently 

this chapter, is episodic memory retrieval. With this in mind the aim of this section is to 

provide a review of the key ERP components of retrieval, looking at pre-retrieval 

processes, retrieval success and post-retrieval processes. 
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2.2.1  Pre-retrieval processes 

The first step in memory retrieval is the initiation of a retrieval attempt. In order to 

successfully retrieve an episodic memory there must be an interaction between the 

retrieval cue (whether an internally generated prompt or an external environmental 

prompt) and previously encoded memory representations. The degree to which the 

retrieval cue reactivates the processes engaged at the time of encoding is thought to 

influence the level of retrieval success (Tulving, 1983). The likelihood of attaining such 

a successful interaction is thought to vary in relation to three key processes. Firstly, the 

cognitive state in which these retrieval cues are approached - known as the retrieval 

mode; retrieval orientation - the ability to adjust the type of cue processing to match the 

retrieval goal; and finally the engagement of processing resources when making a 

retrieval attempt, or retrieval effort (Rugg & Wilding, 2000). 

2.2.1.1  Retrieval mode: 

Retrieval mode is a cognitive state entered into when trying to retrieve episodic memory 

that ensures retrieval cues are processed as memory probes (Tulving 1983). Studies 

investigating the neural activity associated with different retrieval modes compare 

neural activity when participants are completing one type of memory task, i.e. a 

semantic task, with the activity during another, i.e. an episodic task.  Düzel et al. (1999 

& 2001) conducted an experiment in which participants were given a series of study-test 

blocks with some test blocks requiring them to make old/new judgments (the episodic 

memory task), and other blocks requiring them to make living/non-living judgements 

(the semantic memory task). Participants were cued at the start of each block as to 

which task was required for the forthcoming block. Analysis of the ERP data showed a 

sustained increase in positivity for the episodic task compared to the semantic task over 
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right-frontopolar electrodes, a difference maintained throughout the retrieval episode. 

This finding of increased activity over right-frontal scalp sites for the episodic task was 

supported by additional PET data showing increased blood flow in the right-frontal 

lobes during the episodic memory task, which was not present during the semantic task. 

The authors conclude that these differences in neural activity between the two tasks 

indicate retrieval mode, with the right-prefrontal region mediating a neurocognitive set 

for episodic memory retrieval, a finding supported by similar functional neuroimaging 

data reported by Lepage et al. (2000).  

Additional supporting evidence for a right frontal correlate of episodic retrieval mode 

comes from studies looking at trial-by-trial cues, where the judgment prompt is given at 

the start of each trial, rather than at the beginning of a block. Both Morcom and Rugg 

(2002), and Herron and Wilding (2004) reported right-frontal positivities for episodic 

tasks compared to semantic tasks (onsetting at 500ms after cue presentation and 

sustained until the presentation of the test item in Morcom & Rugg, 2002; and onsetting 

at 800-1900ms after cue presentation in Herron & Wilding, 2004). However, Morcom 

and Rugg (2002) note that this difference between the two types of task is only evident 

on trials that follow one of the same cue type. To exclude the possibility that this delay 

in the onset of task differences was not caused by a preparatory time constraint at the 

start of the trial, Herron and Wilding (2006) increased the time between the cue 

presentation and the word from 2000ms to 4000ms. The results showed that task 

differences were still only apparent on secondary same cue trials despite the increase in 

delay, indicating that retrieval mode processes are only engaged following completion 

of at least one episodic retrieval trial. 
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In addition to the finding that some prior retrieval is needed to engage retrieval mode, 

Herron and Wilding (2006) show that for trials in which retrieval mode was 

successfully implemented, a partial increase in accuracy, limited to context judgments 

and reduced reaction times, was evident; supporting the hypothesis that the degree to 

which pre-retrieval processes are engaged influences resulting retrieval success. The 

restriction of accuracy improvement to trials with correct context judgments is 

consistent with the view of Morcom and Rugg (2002), who proposed that successful 

adoption of retrieval mode is only beneficial to recollection based trials. Importantly 

however, the authors note with caution that the occurrence of the +1 phenomena (that is 

the presence of differences in neural activity between tasks only on successive trials of 

the same type) suggests that the presence of retrieval mode is not necessary for 

successful retrieval and therefore cannot be a pre-requisite. 

In sum, episodic retrieval mode has been associated with activity over right-frontal 

regions and is a process sustained throughout the retrieval period. Furthermore this 

difference in activity does not appear to be specific to a particular type of episodic 

memory task; however, it is only present when preceded by trials of the same type, 

suggesting that whilst beneficial it is not necessary for successful retrieval to take place. 

2.2.1.2  Retrieval orientation: 

The second pre-retrieval process is retrieval orientation, which establishes the specific 

type of processing applied to a retrieval cue, and is often investigated by contrasting 

neural activity associated with memory searches for different kinds of information from 

the same type of retrieval cue. Such experiments typically compare activity from ‘new’ 

items in the different conditions to reduce the risk of confounding results with retrieval 

success (Rugg & Wilding, 2000).  



 ERPs and Recognition Memory 

- 31 - 

Ranganath and Paller (1999), compared specific and general retrieval in which 

participants had to differentiate between same, perceptually similar, and ‘new’ items. 

The specific task required participants to respond ‘old’ only to items that were the same 

as those presented during study, and in the general task to respond ‘old’ to any items 

presented in the study phase regardless of any modifications, i.e. to same and 

perceptually similar items. ERPs to both types of ‘old’ items and, of particular interest 

here, to ‘new’ items presented in the specific retrieval task were found to be more 

positive going than items presented in the general retrieval task; a difference greatest 

over left-frontal electrodes between 500-1200ms. Similar left-frontal activity was also 

found by Rugg, Allen and Birch (2000), with more positive going ERPs for ‘new’ 

words presented in a block of shallowly studied words than in a block containing deeply 

studied words, during a yes/no recognition test. These studies suggest that differential 

engagement of retrieval strategies are reflected by differences in activity over left-

frontal electrodes. 

Robb and Rugg (2002) found more widespread effects when manipulating retrieval 

orientation by varying the type of material presented at study (blocks of words or 

pictures) to see if the same type of retrieval cue (words) was processed differently 

depending on the type of information encoded. ERPs to ‘new’ words from the word 

encoded block showed more positive going activity than ‘new’ words from the picture 

encoded block between approximately 300-1800ms across midline electrodes at frontal, 

central and parietal locations. A similar finding is also reported by Herron and Rugg 

(2003), who mixed pictures and words together during study (in contrast to the blocked 

approached used by Robb & Rugg, 2002), and asked participants to respond ‘old’ to 

either words or to pictures at test, depending on which modality was specified as target 

stimuli. In addition to replicating the findings of Robb and Rugg (2000), the findings 
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from Herron and Rugg (2003) show that retrieval orientation effects are exhibited when 

both task-relevant and task-irrelevant items are encoded at the same time. Whilst it 

appears that a retrieval cue can be processed differently depending on the type of 

information being retrieved and that this difference is reflected in the ERPs, early 

studies have been criticised (Rugg & Wilding, 2000) for comparing conditions that vary 

in task difficulty, which means the contributions of retrieval effort4 and retrieval 

orientation cannot be disentangled. 

In order to investigate the relationship between task difficulty and retrieval orientation 

effects Dzulkifli, Sharpe and Wilding (2004) compared unstudied items in two retrieval 

conditions (phonologically encoded versus semantically encoded) across high and low 

relative difficulty groups. The findings indicate that retrieval orientation effects (a 

difference between 300-1400ms that was greatest across anterior electrodes) were only 

evident for the high relative difficulty group, suggesting that retrieval orientation effects 

are only exhibited when comparative tasks vary in difficulty. However, this finding is in 

contrast to that of Robb and Rugg (2000), who found that retrieval orientation effects 

did not vary as a function of task difficulty, showing that effects relating to task 

difficulty were limited to a time-window (0-300ms) prior to the onset of orientation 

effects; and to Hornberger, Morcom and Rugg (2004) who found retrieval orientation 

effects despite no significant difference in behavioural performance. The cause of the 

discrepancy between these studies may relate to differences in the type of difficulty 

comparisons conducted, with Robb and Rugg (2000) and Hornberger, Morcom and 

Rugg (2004) conducting within-participant comparisons, whereas Dzulkifli, Sharpe and 

Wilding (2004) employed a between-participant comparison. As is the case with other 

retrieval effects, it is currently not clear what role individual differences play in the 
                                                
4 Retrieval effort is the engagement of processing resources during retrieval attempt and is discussed in 
greater detail in the next section. 
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ability to adopt different retrieval orientations or how these are reflected in the ERPs. 

The differences evident across studies may therefore be caused by between-participant 

factors that mask or accentuate the presentation of retrieval orientation effects in 

different studies. 

Following on from the studies by Robb and Rugg (2002), and Herron and Rugg (2003), 

Hornberger, Morcom and Rugg (2004) extended the paradigm to determine if the 

retrieval orientation effects observed in the earlier studies were dependant on the 

similarity of the retrieval cue to the information being retrieved. These earlier studies 

demonstrated ERP differences for ‘new’ words, when trying to recover information 

relating to previously presented pictures compared to information relating to previously 

presented words. One criticism of this approach is that it is not possible to separate out 

the contribution of the differing types of material being retrieved, from variance in the 

similarity between the retrieval cue and retrieval information. Hornberger, Morcom and 

Rugg (2004) therefore included an additional picture retrieval cue condition to 

investigate the importance of retrieval cue similarity. The findings replicated the earlier 

studies, showing more positive going ERPs for words than pictures when using a word 

retrieval cue (a difference onsetting around 300ms, which is widely distributed with a 

diffuse maximum over central electrodes) but also revealed that the ERP pattern is 

reversed when the cue is a picture (with more positive ERPs for pictures than words). 

These results suggest that the similarity between the cue and information being sought 

is important, rather than the type of material per se. The authors suggest that the ERP 

effect reflects the different processing required to maximise the overlap between the cue 

and retrieved information for the different types of material. 
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The results of studies looking at retrieval orientation effects therefore suggest that there 

is a difference in neural activity when preparing to retrieve different types of episodic 

information. When investigating these effects with a single type of material (i.e. words) 

and varying conditions through the types of judgment made at study, or the 

inclusion/exclusion of similar stimuli at test, the retrieval orientation effects appear to 

have an anterior distribution, which in some studies appears to have a left hemispheric 

bias. In other studies, where comparisons are made on the basis of differing types of 

study material (i.e. words versus pictures), the distribution of retrieval orientation 

effects appears to be more widespread, in some cases with a central maximum. It is not 

clear whether these are real distributional differences or simply the impression given as 

a result of differences in how the data is presented across studies. It is unlikely that 

these distributional differences are simply material specificity effects since the studies 

using a single type of material include both words (Rugg, Allan & Birch, 2000; 

Dzulkifli, Sharpe & Wilding, 2004) and pictures (Ranganath & Paller, 1999), although 

it is interesting to note these differences in terms of possible material specificity 

differences evident during retrieval success (see below). Despite possible distributional 

differences, in all cases the retrieval orientation effect appears to be fairly sustained 

throughout the retrieval period, onsetting as early as 300ms and lasting up until 1800ms 

in some studies.  

One of the problems in investigating retrieval orientation effects is separating out the 

contributions of retrieval orientation and variation in task difficulty, which may 

influence retrieval effort. The relationship between these two processes is a complex 

one and there are conflicting results in the literature as to how task difficulty affects 

retrieval orientation effects. With this in mind, the next section discusses retrieval effort 
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in more detail, outlining studies that have tried to investigate retrieval effort, often in 

conjunction with retrieval orientation. 

2.2.1.3  Retrieval effort: 

The final pre-retrieval process discussed in this chapter is retrieval effort, the 

engagement of processing resources when attempting to retrieve information. There are 

less ERP studies investigating retrieval effort than are apparent for other pre-retrieval 

processes and consequently the current understanding of retrieval effort is much more 

limited. Whilst studies described above, such as Ranganath and Paller (1999), and 

Rugg, Allan and Birch (2000), discuss their findings in relation to retrieval effort these 

results are thought to be confounded by retrieval orientation, with neither process being 

varied systematically, making it difficult to draw any conclusions from these studies 

about retrieval effort per se (Dzulkifli, Sharpe & Wilding, 2004).  

The study by Robb and Rugg (2002), discussed above in relation to retrieval 

orientation, also investigated retrieval effort by varying task difficulty, using both study 

list length and study-test delay. They reported a small early onsetting (i.e. 0-300ms) 

ERP difference with more positive going ‘new’ waveforms for the easy compared to the 

hard condition at frontal electrodes and more positivity for the hard condition compared 

to the easy condition at central and parietal electrodes. However, the authors expressed 

caution in interpreting their data, stating that the ERP effects relating to task difficulty 

were of “modest statistical significance” (Robb & Rugg, 2002: p.588) and required 

replication before functional interpretations could be made. To date, however, the 

results have not been replicated; between participant comparison looking at high and 

low relative difficulty groups by Dzulkifli, Sharpe and Wilding (2004) found no reliable 

‘new’ test word differences in the 0-300ms period. 
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In sum, therefore, current studies provide us with little insight into the neural activity 

associated specifically with retrieval effort, with the few studies that have looked at 

retrieval effort finding it difficult to tease apart this process from other pre-retrieval 

processes. Nonetheless, on the basis of the studies described above, there is evidence to 

suggest that retrieval effort, or some such task difficulty related process, does interact 

with other pre-retrieval processes. 

2.2.1.4  Pre-retrieval processes summary: 

The above sections discuss work investigating three key pre-retrieval processes that are 

thought to aid episodic memory retrieval. The first process was retrieval mode, the 

cognitive state in which a retrieval cue is approached. In comparison to semantic 

retrieval ERPs for episodic retrieval were found to be greater over right-frontal 

electrodes, a difference maintained throughout the retrieval period. The second process 

was retrieval orientation, which relates to the way a retrieval cue is processed depending 

on the overall goal of the retrieval attempt. The ERP effects for retrieval orientation 

were more complex than for retrieval mode, with studies often comparing tasks that 

varied in task difficulty leading to possible confounds with retrieval effort. Overall 

differences in retrieval orientation appeared to be reflected by differences over anterior 

electrodes, although in some cases these effects appeared to be more widespread and 

were sustained between approximately 300-1800ms. The final pre-retrieval process 

examined was retrieval effort and as per retrieval orientation the findings were often 

entwined with other pre-retrieval processes, making it difficult to make any strong 

claims regarding the neural activity associated with variation in retrieval effort. There 

was some evidence of an anteriorly distributed difference, but the size of this effect was 
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modest and has not been replicated; there is, however, evidence to suggest an 

interaction between retrieval effort and retrieval orientation. 

2.2.2  Retrieval success processes 

As described above, where there is an overlap between retrieval cue and previously 

encoded information successful memory retrieval may occur. Whilst not always 

attainable, successful memory retrieval is the desired outcome of a retrieval attempt. 

Chapter 1 discussed theories relating to the processes involved in this interaction 

between retrieval cue and memory representations, with dual process models the most 

widely accepted view. Within this framework it is thought that recognition is dependent 

on the processes of familiarity and recollection and this section will briefly discuss the 

pursuit of neural correlates of these two core retrieval processes.  

Investigations of recollection and familiarity processes are typically conducted using 

study-test paradigms in which participants are presented with a series of stimuli to be 

remembered and are subsequently tested by presenting a mixture of previously studied 

(‘old’) items and previously unstudied (‘new’) items. Participants indicate during the 

test phase whether or not each item was previously presented, discriminating between 

‘old’ and ‘new’ stimuli. ERPs to correctly identified ‘old’ items (Hits) are contrasted 

with ERPs to correctly identified ‘new’ items (Correct Rejections, CRs), with the 

difference between these two types of trial providing an indication of the neural activity 

associated with successful memory retrieval. As evident from the review of pre-retrieval 

processes, and as discussed by Rugg and Henson (2002), functional interpretation of 

ERP differences should be made with caution as processes other than those of interest 

will contribute to the resulting product. With this in mind the studies discussed in this 



 ERPs and Recognition Memory 

- 38 - 

next section will consider evidence for the existence of neural correlates of two core 

retrieval processes, recollection and familiarity. 

2.2.2.1  Recollection: 

The first chapter reported that recollection is considered to be the process by which 

details about previous encounters with an item are recovered. It is not simply the 

retrieval of information indicating a previous encounter but also information relating to 

the context of that encounter. ERP studies have shown what is believed to be a distinct 

neural signature of recollection termed the ‘parietal’ or ‘left-parietal’ old/new effect 

(Figure 2.1), in which there is a temporary positive increase in amplitude for ‘old’ items 

compared to ‘new’ items; maximal over parietal electrodes, typically with a left sided 

distribution, onsetting around 400-500ms post stimulus and lasting until approximately 

800ms (Rugg et al., 1998; see Rugg, 1995; Allan, Wilding & Rugg, 1998 or Curran, 

Tepe & Piatt, 2006 for a review).  

 

Figure 2.1 ERP waveform of the putative correlate of 
recollection – the left-parietal old/new ERP effect. The 

waveforms on the left are shown for ‘old’ items incorrectly 
identified as ‘new’, Hits to shallowly encoded items and hits to 

deeply encoded items, at a left-parietal electrode. The 
waveforms show a divergence of deep hits from the other two 

conditions between approximately 500-800ms. The topographic 
map on the right shows the left-parietal distribution of the 

difference between deep hits and shallow hits (figure adapted 
from Rugg & Yonelinas, 2003). 
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Evidence that the left-parietal effect is a neural correlate of recollection comes from 

attempts to modulate the size of the effect by manipulating recollection, such as with a 

depth of processing paradigm, or by assessing the contribution of recollection to 

retrieval using paradigms like the remember/know procedure. As discussed in Chapter 

1, the remember/know paradigm is often used as a behavioural indicator of the degree to 

which responses are based on recollection or familiarity. Whilst the subjective 

introspection required in making these judgements make it in some ways a crude 

measure of familiarity and recollection, it provides a useful tool for investigating the 

neural contributions to these processes. Using word stimuli, both Smith (1993) and 

Düzel et al. (1997) found that the parietal old/new effect was modulated by participants’ 

subjective reports of ‘remembering’ and ‘knowing’, with ‘remember’ responses 

exhibiting a larger old/new effect than ‘know’ responses over parietal electrodes. 

Furthermore using picture stimuli with a modified remember/know paradigm, in which 

the remember judgement was divided into two separate judgements, ‘R1’ and ‘R2’5, 

Vilberg, Mossavi and Rugg (2006) found that the magnitude of the left-parietal effect 

varied with regards to the amount of recollected information; that is ‘R2’ trials were 

more positive going than ‘R1’ trials, both of which were greater than ‘new’ trials, over 

left-parietal electrodes. These studies suggest that the size of the left-parietal effect is 

modulated by reports of ‘remembering’ and ‘knowing’, with ‘remember’ responses 

exhibiting a larger left-parietal effect than ‘know’ judgments.  

As previously discussed one of the core functional differences between recollection and 

familiarity is that recollection involves the recovery of details about previous encounters 

                                                
5 The modified remember/know paradigm used by Vilberg, Mossavi and Rugg (2006) enabled 
participants to make one of four judgments during the test phase, ‘new’ for items not presented in the 
study phase, ‘know’ when the item was very familiar, but no details about it could be recollected, 
‘Remember 1’ (R1) for partial retrieval of a study episode where details of the study episode could be 
recollected but not the associated picture, and ‘Remember 2’ (R2) for trials where sufficient details about 
the episode could be retrieved to enable the picture paired with the test picture to be identified. 
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with an item. A series of studies in the later 1990’s, predominately by Wilding et al. 

(Wilding, Doyle & Rugg, 1995; Wilding & Rugg, 1996; Trott, Friedman & Walter, 

1997; Wilding, 2000), used a source memory paradigm in which memory for study 

context was tested alongside recognition memory. During a source memory task 

participants are presented with a series of study items presented in one of two formats, 

such as auditorily presenting words in either a male and female voice. During the test 

phase participants are then presented with words visually and asked to make an old/new 

judgment; if an ‘old’ response is made participants are then asked to indicate if the word 

was presented in a male or female voice at study. The idea behind such source memory 

paradigms is that they attempt to directly assess memory for study context, allowing 

trials to be separated into those with and without retrieval of study context, reflecting 

retrieval success with and without recollection.  

Studies that have used source memory paradigms to investigate the ERP correlates of 

recognition memory have found that parietal old/new effects for correct recognition 

with accurate source judgments were larger than for correct recognition judgments 

made without accurate source memory (Wilding, Doyle & Rugg, 1995; Wilding & 

Rugg, 1996; Trott, Friedman & Walter, 1997). The modulation of the parietal old/new 

effect by successful study context retrieval provides strong support for the notion that it 

reflects the process of recollection. It is important to note however, that the paradigm 

has been criticised for its failure to take into account recollection based on factors other 

than those being explicitly tested by the paradigm (Wilding, 2000). Trials in which 

information regarding study context is retrieved but not directly tested by the paradigm, 

such as noting during study that the word is in the title of a book currently being read, 

(rather than the gender of the speakers voice) are therefore misclassified as recognition 

without correct source retrieval. This misclassification of trials could be distorting our 
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understanding of how recollection works, and how recognition processes affect the left-

parietal effect.   

Wilding (2000) looked to see if the magnitude of the left-parietal effect varied in 

relation to the number of correct source judgments made. Participants were presented 

with a series of words spoken in either a male or a female voice at study and were asked 

to make either an active/passive or a pleasant/unpleasant judgment about each word. 

During the test phase words were visually presented and participants made an old/new 

judgment to each word and were then asked to make a task judgment (action/liking) and 

a voice judgement (male/female). The findings showed that parietal old/new ERP effect 

magnitude varied with the number of correct source judgments made, with ERPs for 

trials in which two correct source judgements were made showing larger old/new 

effects then trials where only one correct source judgment was made. These findings 

suggest that the parietal old/new effect is modulated, not only by recognition trials 

where recollection occurred, but also by the amount of information that is recollected.    

Additional evidence to suggest that the parietal old/new effect is modulated by the 

amount of information recollected comes from a study by Vilberg and Rugg (2009), in 

which the amount of recollected information was manipulated by varying study 

presentation times. Increased study duration is known to increase recollection estimates 

(see Yonelinas, 2002, for a discussion) and using presentation times of 1 and 6 seconds 

Vilberg and Rugg manipulated the proportion of responses based on recollection (as 

indicated by remember/know judgments), and the amount of information recollected, 

(as measured by post-test recall). Comparing ERPs for correct ‘remember’ responses to 

correct ‘new’ responses across the two study presentation times, indicated that the size 

of the left-parietal old/new effect was modulated by study duration, with items 
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presented for 6 seconds showing a greater left-parietal effect than items presented for 1 

second. Since more information about the study episode was recalled from items 

presented for 6 seconds the authors suggest that the left-parietal effect is modulated by 

the amount of information recollected, consistent with the findings of Wilding (2000).  

Whilst the study by Vilberg and Rugg (2009) suggests that differences in study duration 

changed the degree to which recollection was engaged and subsequently modulated the 

magnitude of the left-parietal effect, the authors noted that increased study duration also 

increases the proportion of familiarity responses made (see Yonelinas, 2002). Therefore, 

whilst increased study duration lead to an increase in the amount of information about 

each study episode recalled post-test, and therefore the amount of recollection, the 

contributions of familiarity to recognition would also have increased between 1 and 6 

seconds suggesting that this is not a pure measure of an increase in recollection. Despite 

the possible confound of familiarity, this study still provides evidence to support the 

conclusion that the left-parietal effect not only indexes recollection, but also that it is 

modulated by the amount of information recollected. 

In an attempt to isolate the neural activity relating to recollection, Curan (2000) 

presented participants with a series of pluralizable concrete nouns at study, half being 

presented in the singular and half in the plural form. At test participants made old/new 

style judgments to studied, similar (switched plurality), and ‘new’ words; a task 

requiring recollection in order to discriminate between studied and similar words, which 

would elicit similar levels of familiarity. The parietal effect was found to be larger for 

correctly identified studied words than for similar words that were incorrectly classified 

as previously studied (false alarms), suggesting that it is modulated by the process of 

recollection. The parietal effect has also been shown to be sensitive to associative 
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recognition memory, with word pairs rearranged at test exhibiting a smaller left-parietal 

effect than words presented in the same pairings as at study (Donaldson & Rugg, 1998); 

and to depth of processing manipulations, with ERPs to deeply studied words differing 

from both shallowly studied and ‘new’ words from 500ms post-stimulus (Rugg et al., 

1998, see data presented in Figure 2.1).  

In sum, these studies show that remember/know judgments, retrieval of source 

information, the quantity of remembered information, ‘old’ judgement accuracy, 

associative memory, and depth of processing all modulate the parietal old/new effect. 

Collectively these findings provide strong evidence to suggest that the parietal old/new 

effect reflects activity relating to the process of recollection and that this effect is often 

maximal over the left hemisphere. Whilst these studies provide evidence to suggest that 

the left-parietal effect does reflect recollection, they do not directly provide support for 

the view that recollection and familiarity are dissociable processes. Factors that are 

thought to reflect familiarity, or recognition without recollection, such as ‘know’ 

responses, have thus far been discussed in relation to a reduction in the size of the left-

parietal effect. This in itself is not evidence of a dissociable recollection process, but 

could simply reflect a reduced left-parietal effect for recognition in the absence of 

recollection. In order to demonstrate that familiarity and recollection are dissociable a 

qualitative difference (i.e. in scalp distribution) between the two processes is needed. 

2.2.2.2  Familiarity: 

In contrast to recollection, familiarity is thought to be a fast automatic process in which 

the similarities between the item and information stored in memory about previous 

items are assessed; it is a general sense that an item has been previously encountered. 

Identification of the neural activity associated with familiarity has been more elusive 
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than for recollection, with a large proportion of the evidence based on deductive 

reasoning rather than exploration through direct process manipulation. That is to say 

that generally familiarity is less sensitive to retrieval manipulations than recollection; 

inferences about the neural correlates of familiarity are often made when a retrieval 

effect is found to be insensitive to manipulations of recollection, returning to the idea 

that retrieval can occur with or without recollection and that successful retrieval without 

recollection is based on familiarity. 

The first indication that familiarity and recollection may exhibit different patterns of 

neural activity came from a study by Düzel, Yonelinas, Mangun, Heinze and Tulving 

(1997) who found different ERP effects for ‘remembered’ words and words associated 

with a ‘know’ response, when compared with CRs, with a widespread bilateral-frontal 

and left-temporoparietal difference between 600-1000ms for ‘remember’ responses, and 

a bilateral temporoparietal positivity between 300-600ms, followed by a frontocentral 

negativity for ‘know’ responses. An early (300-500ms) old/new effect in which ‘old’ 

items were more positive going than CRs was also found by Rugg et al. (1998); 

however in contrast to the effect reported by Düzel et al., the old/new effect had a 

frontal maximum. Furthermore, this frontal effect was found to be insensitive to a depth 

of processing manipulation, in contrast to a later parietal effect modulation, leading the 

authors to suggest that the early frontal effect reflected familiarity based retrieval 

(Figure 2.2). 
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Figure 2.2 ERP waveform of the putative correlate of 
familiarity – the frontal old/new ERP effect. The waveforms on 
the left are shown for items incorrectly identified as ‘new’, hits 
to shallowly encoded items and hits to deeply encoded items, at 
a right frontal electrode. The waveform shows the divergence of 
deep and shallow hits from ‘new’ items between approximately 
300-500ms. The topographic map on the right shows the frontal 
distribution of the difference between shallow hits and shallow 
misses/’new' items (figure adapted from Rugg and Yonelinas, 

2003). 

Support for the hypothesis that the 300-500ms frontal old/new effect indexes familiarity 

comes from work comparing ‘studied’ items with similar ‘lures’ and ‘new’ items. Using 

words differing in plurality as similar lures, Curran (2000) found that the early frontal 

effect (sometimes referred to as the FN400 because of its similarity to the N400 effect 

observed for incongruous stimuli; for a review of the N400 effect see Kutas & 

Federmeier, 2011) did not differ between correctly recognised studied words and falsely 

identified similar words, in contrast to the later parietal recollection effect. Curran 

(2000) proposed that recollection was needed to discriminate studied from similar 

words (a difference evident in the parietal old/new effect), but that both classes of word 

would be more familiar than ‘new’ words, resulting in the similar ERP effects for 

studied and falsely recognised lures over frontal electrodes. Similarly, Nessler, 

Mecklinger, and Penny (2001) found that a 300-500ms fronto-medial old/new effect did 

not differ between true recognition and false recognition of conceptually similar lures, 

but when attention at encoding was directed towards item specific information, the early 

frontal effect for false recognition was no longer evident. Nessler et al. (2001) suggest 
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that the conceptual similarity of stimuli enhances the feeling of familiarity for similar 

lures in a way that item specific information does not. Using the same type of 

old/similar/new paradigm, Curran and Cleary (2003) showed that this pattern of activity 

is not restricted to words, with similar frontal activity evident for studied pictures and 

mirror-reversed similar lures, both of which differed from ‘new’ pictures. 

The studies discussed in the previous paragraph included stimuli that were selected or 

generated for their similarity to studied words, however the 300-500ms frontal effect 

has also been found for false recognition of stimuli without directly manipulating 

similarity (Wolk et al., 2006). In addition Wolk and colleagues showed that the frontal 

effect between ‘know’ and CRs was maintained over both short (~39 minute) and long 

(~24 hour) study-test delays, consistent with the hypothesis that the effect reflects 

familiarity rather than short-term memory. The frontal effect has also been shown to be 

graded by the degree of familiarity, with confident ‘old’ responses more positive going 

than unconfident ‘old’, unconfident ‘new’ and confident ‘new’ responses (Woodruff, 

Hayama & Rugg, 2006). In this study the magnitude of the frontal effect was 

comparable for recollection and confident ‘old’ (most familiar) responses. 

One of the few studies that have attempted to directly manipulate familiarity was 

conducted by Azimian-Faridani and Wilding (2006). The response criterion used to 

make a decision was manipulated by changing the emphasis of when to use the ‘old’ 

and ‘new’ response, either informing participants to respond ‘old’ only when confident 

that the stimulus was ‘old’ (a conservative bias), or respond ‘new’ only when confident 

of an items ‘new’ status (a liberal bias). Azimian-Faridani and Wilding (2006) proposed 

that the level of familiarity required to make an ‘old’ decision would vary depending on 

the response criterion used.  That is, the level of familiarity accepted as indicating that 
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the item is ‘old’ would be lower in the liberal bias condition than the conservative bias 

condition. In accordance with the hypothesis that the frontal old/new effect reflects 

familiarity, the magnitude of the effect varied with changes in response criterion, with 

trials engaging a conservative bias (where the sense of familiarity would be strongest) 

showing more positive going ERPs than trials engaging a liberal bias over mid-frontal 

electrodes.  

Therefore, overall, the studies presented in this section suggest that an early frontal 

old/new effect between 300-500ms (Figure 2.2), sometimes referred to as the ‘mid-

frontal’ or ‘bilateral-frontal’ effect, reflects familiarity. However, there is another line of 

argument suggesting that this effect actually reflects the differential processing of an 

item because of previous encounters with the item, reflecting processes supporting 

conceptual priming, rather than processes relating to active retrieval per se. 

2.2.2.3  Conceptual priming: 

Conceptual priming relates to the unconscious differential processing of an item 

because of prior experience with it, particularly in terms of access to semantic 

information associated with the item. It has been argued that the duplication or overlap 

of items between study and test in a standard recognition memory paradigm induces 

conceptual priming, with ‘old’ items being treated differently from ‘new’ items at test 

because of repeated access to semantic information relating to the item, rather than 

simply from an explicit memory of having previously experienced the event (Paller, 

Voss & Boehm, 2007). 

Yovel and Paller (2004) highlighted the potential relationship between the 300-500ms 

bilateral-frontal old/new effect and conceptual priming when discussing the absence of 

such an effect in their familiarity contrast during a face recognition task (see material 
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specificity section below for more details). They suggested that nonverbal stimuli such 

as faces do not contain the same level of semantic information as verbal stimuli such as 

words, and therefore tasks using nonverbal stimuli do not engage conceptual priming 

and subsequently do not exhibit the early bilateral-frontal effect typically associated 

with familiarity. In line with this argument, Voss and Paller demonstrate across a series 

of studies that the bilateral-frontal old/new effect is present in conditions where 

conceptual information about an item is available, but is not exhibited in conditions 

with no conceptual information. These studies have included primed compared to 

unprimed famous faces (Voss & Paller, 2006), showing greater positivity over frontal 

electrodes between 300-500ms for famous faces primed with correct biographical 

information than unprimed famous faces in which incorrect biographical information 

was given; uncommon English words varying in the degree of meaningfulness (Voss, 

Lucas & Paller, 2010) where the bilateral-frontal effect was only present for words that 

elicited meaningful associations; kaleidoscope images (Voss & Paller, 2009) in which 

no bilateral-frontal effect was evident for the familiarity contrast, and the exhibited ERP 

effects for recollection and familiarity between 300-500ms did not differ; and 

minimalist geometric shapes/squiggles (Voss, Schendan & Paller, 2010) where 

bilateral-frontal effects were only evident for shapes rated as highly meaningful and not 

for shapes given low meaning ratings. 

It is important to note that the conceptual priming distinction is not simply a linguistic 

versus pictorial one as bilateral-frontal old/new effects have been reported for pictures 

(Curran & Clearly, 2003), but the distinction is between stimuli where semantic 

information can and cannot be accessed (i.e. a squiggle versus a photograph of an 

object). Whilst there is some evidence to suggest that the bilateral-frontal effect does 

relate to conceptual priming, Curran (1999) reports a bilateral-frontal old/new effect 
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between 300-500ms for recognition of pseudo-words, and Groh-Bordin, Zimmer and 

Ecker (2006) show an early bilateral-frontal effect for nonsense figures; both of these 

results are difficult for a conceptual priming account. In addition, Groh-Bordin et al. 

(2006) demonstrated that the bilateral-frontal effect was modulated by perceptual 

manipulations, a finding that is clearly incongruous with the conceptual priming 

hypothesis.  

An additional study designed to investigate the familiarity and conceptual priming 

hypotheses was conducted by de Chastelaine, Friedman, Cycowicz and Horton (2009), 

who used unfamiliar and unnameable symbols learnt over a series of 4 study-test 

blocks. It was hypothesised that familiarity with the stimuli would increase across the 

blocks, as stimuli were repeated, and that the magnitude of the recognition memory 

effects would therefore also increase. Whilst an increase in effect magnitude across 

blocks was evident for the 500-700ms parietal effect, this was not the case for the 300-

500ms frontal effect, suggesting that the frontal effect does not reflect familiarity. To 

test the conceptual priming hypothesis a stimulus naming task was included, in which 

participants were asked if they had named the symbol or if it reminded them of another 

object. It was hypothesised that if the frontal effect reflected conceptual priming then 

there would be a greater effect for repeated items that had been conceptually processed, 

as indicated by the naming task. Contrary to the conceptual priming hypothesis, 

however, symbols that were conceptually processed did not exhibit a greater frontal 

old/new effect than nonconceptually processed symbols, suggesting that the 300-500ms 

effect neither reflects familiarity nor conceptual priming. The authors instead suggest 

that it may reflect control processes that are engaged when the memory trace is weak. 
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Consequently, whilst the conceptual priming hypothesis has its merits and highlights 

fundamental problems with the association between familiarity and the bilateral-frontal 

effect, it is not itself without complications. Therefore, at present, the functional 

significance of the bilateral-frontal old/new effect remains unclear. It is, however, 

generally believed to reflect familiarity processes to which conceptual and perceptual 

information both contribute (Groh-Bordin et al., 2006). 

2.2.2.4  Material specificity:  

The majority of evidence for the neural correlates of familiarity and recollection 

discussed above come from studies that have used word stimuli. These studies suggest 

that recollection is characterised by more positive going ERP activity for correctly 

identified ‘old’ items compared to correctly identified ‘new’ items, a difference 

maximal over parietal electrodes between approximately 500-800ms, typically showing 

a left hemispheric distribution. Activity thought to relate to familiarity is an earlier 

(300-500ms) old/new effect that has a maximal distribution over bilateral-frontal 

electrodes. Recently several studies have investigated these old/new recognition 

memory effects using different stimulus materials and have found variation in the 

distribution of these recognition memory effects with different stimuli types. 

There is emerging evidence to suggest that pictorial stimuli may exhibit more anterior 

going recollection effects than verbal stimuli.  Studies that have investigated recognition 

memory for pictures of objects have shown old/new ERP differences that resemble the 

parietal old/new effect described for words (Curran & Cleary, 2003; Duarte, Ranganath, 

Winward, Hayward & Knight, 2004; Galli & Otten, 2011; Schloerscheidt & Rugg, 

1997, 2004; Vilberg, Moosavi & Rugg, 2006; Vilberg & Rugg, 2009). However, some 

of these studies have shown additional or overlapping frontal activity that was 
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associated with recollection (Cycowicz, Friedman & Snodgrass, 2001; Duarte et al., 

2004; Schloerscheidt & Rugg, 1997). Furthermore, in a study that directly compared 

words and pictures, Galli and Otten  (2011) reported more anteriorly extending parietal 

effects for pictures of objects (compared to words). 

In addition to the evidence suggesting more anteriorly distributed effects for pictures of 

objects, ERP studies looking at recognition memory for pictures of faces6 have shown 

similar results. Curran and Hancock (2007), MacKenzie and Donaldson (2007), and 

Yick and Wilding (2008), have all shown a parietal old/new ERP effect associated with 

recollection of faces on-setting around 500ms; and, as evident in studies using pictures 

of objects, an additional or overlapping old/new difference over frontal electrodes has 

also been reported by MacKenzie and Donaldson (2007), and Yick and Wilding (2008). 

It is evident, although not discussed, in data presented by Curran and Hancock (2007). 

In a similar fashion to data reported by Yick and Wilding (2008), Galli and Otten 

(2011) reported the posterior old/new effect for faces as extending more anteriorly than 

is evident for word recognition. In addition, MacKenzie and Donaldson (2009) showed 

that correctly identified ‘old’ faces reported as ‘remembered’ (as opposed to ‘familiar’) 

showed frontally distributed old/new effects, 500-700ms after stimulus onset, not 

present for ‘remembered’ names that had been paired with these faces at study. Neural 

activity consistent with the parietal old/new effect was evident for ‘remembered’ names 

in the 500-700ms time window, an effect not apparent in the ‘remembered’ faces 

condition. These results therefore suggest that recollection of faces is associated with a 

frontal distributed ERP effect that is not present for words. 

                                                
6 It is important to note here that in the context of this thesis ‘recognition of faces’ refers to recognition of 
pictures that are of faces, rather than recognition of faces per se. That is the ‘face recognition’ tasks 
require participants to say if the picture presented at test is new or if it was presented at study. This is in 
contrast to recognition of a face in which participants may be presented with different pictures of a 
person’s face at study and test (such as photographs taken from different angles or at different times), and 
are asked to indicate if they have seen this person before. 
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In relation to familiarity effects for faces the evidence is a little more confusing. Yovel 

and Paller (2004) report no familiarity effects for faces between 300-500ms, but show a 

bilateral-parietal old/new effect between 500-700ms which is smaller in amplitude and 

shorter in duration for the familiarity contrast compared to the recollection contrast. 

This evidence is further supported by MacKenzie and Donaldson (2007) who also 

report no significant differences between the familiarity and recollection contrasts in the 

300-500ms time window, but report posterior old/new effects in the familiarity 

condition. In contrast to these findings, Curran and Hancock (2007) report a bilateral-

frontal old/new effect between 200-500ms that did not differ between familiarity and 

recollection contrasts. Galli and Otten (2011) report more anteriorly distributed effects 

for faces, and pictures of objects, compared to words, in the 300-500ms time window 

for their recollection contrast (as indexed by correct source judgments), but 

unfortunately do not report effects for a familiarity contrast. 

Therefore the findings from these studies suggest that recognition memory effects for 

different types of stimuli may differ both quantitatively and qualitatively. The current 

evidence suggests that recollection related effects are more anterior going for pictorial 

stimuli than for verbal stimuli, with some studies suggesting an additional frontal 

component for pictorial stimuli that is not present for verbal stimuli. At present it is not 

clear what is driving these stimulus differences. One theory is that these ERP 

differences relate to the perceptual complexity of these different stimulus types. With 

the exception of two studies (Curran & Cleary, 2003; Cycowicz et al., 2001), all of the 

studies described above looking at pictures have used photographs of objects and faces, 

which are perceptually more complex than words (Galli & Otten, 2011). The two other 

pictorial studies used line drawings, with Cycowicz et al. (2001) reporting data 

consistent with the theory that pictorial stimuli results in frontal recollection related 
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activity, whilst Curran and Cleary (2003) show data consistent with the parietal old/new 

recollection effect seen for words.  

The apparent differences between pictorial and verbal stimuli may also be driven by the 

differences in relation to spatial information, in that pictures of objects and faces both 

contain spatial information and configuration information not present for verbal stimuli 

such as words (Yick & Wilding, 2008). Furthermore these different stimulus types also 

vary in task difficulty, which may cause differences in ERP effect magnitude and 

distribution, although typically performance is better for pictures of objects than words, 

and performance for words is better than faces, suggesting that these performance 

differences are unlikely to be causing the apparent pictorial/verbal differences that are 

evident. Further investigation of recognition memory effects for different stimulus 

materials is therefore necessary in order to understand what is driving these different 

patterns of neural activity between stimulus types and examination of performance 

differences are needed to fully understand the interaction between the two factors. 

2.2.2.5  Retrieval success processes summary: 

Previous literature suggests there are distinct neural correlates of recollection and 

familiarity, with recollection typically associated with a 500-800ms left-parietal 

old/new effect and familiarity with a 300-500ms bilateral-frontal old/new effect. There 

is some contention in the literature as to whether the early bilateral-frontal effect 

actually reflects conceptual priming rather than familiarity, or if it reflects neither of 

these, and in fact relates to broader control processes engaged when the memory trace is 

weak. Furthermore there is evidence to suggest material specificity, with more 

anteriorly distributed effects evident for pictorial compared to verbal stimuli, and in 

some cases additional frontal effects, suggesting that details relating to the type of 
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information being retrieved are important in understanding the neural correlates of 

retrieval success processes. 

2.2.3  Post-retrieval processes 

After information has successfully been retrieved there may be a requirement to further 

evaluate or monitor this information, depending on the intended purpose of the retrieval. 

For example, the relevance of the retrieved information may need to be evaluated if the 

source of the information needs to be reported. An old/new ERP effect over right-

frontal electrodes has been associated with post-retrieval processes and has been shown 

to onset as early as 400ms (Wilding & Rugg, 1996) or as late as 1300ms (Donaldson & 

Rugg, 1999).  

One of the first discussions of the right-frontal old/new effect was by Wilding and Rugg 

(1996) who showed a sustained old/new effect, in which hits were more positive than 

CRs between 400-1400ms, an effect modulated by source judgement accuracy. Given 

the sensitivity of the effect to the retrieval of source information it was hypothesised 

that the effect was related to the explicit requirement to retrieve contextual information. 

However, subsequently there has been evidence of a right-frontal effect in old/new 

recognition tasks in which the retrieval of contextual information was not an explicit 

requirement (Allan & Rugg, 1997; Donaldson & Rugg, 1998; Rugg, Allan & Birch, 

2000). In a subsequent study Wilding and Rugg (1997) further demonstrated that not 

only was explicit contextual retrieval unnecessary for the exhibition of the right-frontal 

old/new effect, but that successful retrieval was not a requirement. When comparing 

correctly identified non-targets and ‘new’ items, Wilding and Rugg (1997) found no 

evidence of a right-frontal effect, despite the presence of a left-parietal effect that was 

indicative of the engagement of retrieval processes. The absence of a right-frontal effect 
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in the presence of a left-parietal effect prompted the hypothesis that whilst the right-

frontal effect may be related to recollection processes, it was not necessary and may 

reflect more controlled strategic processing of retrieved information.  

In support of a strategic processing hypothesis the right-frontal effect has been shown to 

be insensitive to the accuracy of source judgements (Senkfor & Van Petten, 1998), and 

to be larger for shallowly encoded items than to deeply encoded items, a finding in 

direct contrast to the pattern of activity seen for the left-parietal effect (Rugg, Allan & 

Birch, 2000). Whilst the modulation direction of the right-frontal effect appears initially 

surprising, Rugg, Allan and Birch (2000) suggest that the larger effect for shallowly 

processed items reflects greater engagement of evaluative processes when information 

pertaining to previous encounters with an item is particularly poor, such as shallowly 

encoded items. This hypothesis stems from fMRI research conducted by Henson, Rugg, 

Shallice, Josephs, and Dolan (1999) showing greater prefrontal activation for items 

accompanied by ‘know’ responses compared to ‘remember’ responses, which was 

hypothesised to reflect variation in the quality of retrieved information associated with 

the two subjective judgments. 

An additional study looking at the quality of retrieved information was conducted by 

Kuo and Van Petten (2006), which further investigated the idea of greater prefrontal 

cortex engagement during retrieval of poorly encoded associations, using objects and 

colours. When attention at study was directed only to the object, i.e. attention was not 

drawn to the colour of the object during the study judgement, and hence information 

relating to the object/colour association was weak, retrieval of object/colour 

associations exhibited a right-frontal effect. By contrast, however, when the study task 

involved making a judgment about the object/colour association, no right-frontal 
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retrieval effect was evident. In a subsequent study Kuo & Van Petten (2008) 

demonstrated that these differences in the right-frontal effect did not simply reflect 

general differences in task difficulty, showing that a perceptual manipulation of task 

difficulty did not modulate the magnitude of the right-frontal effect, therefore 

suggesting that the cause of task difficulty variation was important. In addition, Cruse 

and Wilding (2009) found that the magnitude of the right-frontal effect was positively 

correlated with the proportion of low confidence judgments made, which are theorised 

to reflect the quality of retrieved information.  These findings further support the 

hypothesis that the right-frontal effect reflects the engagement of processes related to 

retrieval monitoring and evaluation when the quality of information retrieved is poor. 

Whilst all the studies discussed above relate to episodic memory, Hayama, Johnson and 

Rugg (2008) showed that the right-frontal effect is not only present for episodic 

retrieval, but also for semantic retrieval. In addition, they demonstrated that the class of 

item is not necessarily the important factor in the production of a right-frontal effect; 

rather, the requirement to make an additional judgement is key. Hayama et al. (2008) 

found that ‘old’ images were more positive going than ‘new’ items over right frontal 

electrodes when participants were required to make a semantic judgment about 

previously seen items. However, when the additional judgment was required on unseen 

images, the ERPs to ‘new’ images were more positive going than ‘old’ images. This 

result suggests that the right-frontal effect is not specific to episodic memory, nor 

previously encountered stimuli, but reflects more general information monitoring 

processes. 

The studies discussed above therefore suggest that, particularly in cases where retrieved 

information is of poorer quality, additional post-retrieval processes are engaged to 
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evaluate and monitor the retrieved information. These post-retrieval processes appear to 

be reflected by an old/new ERP effect in which stimuli requiring additional monitoring 

(which can be ‘old’ or ‘new’ stimuli depending on the task), is more positive going than 

its counterpart over right-frontal electrodes, an effect onsetting as early as 400ms and 

sustained over time. Whilst the focus of this thesis is on episodic memory, it is 

important to note that the right-frontal effect is not confined to episodic memory, with 

evidence indicating the presence of this effect during the retrieval of semantic 

information. 

2.3  Conclusion 

ERPs provide a continuous measure of processing, with excellent temporal resolution, 

making them a useful tool for investigating cognitive processes such as those involved 

in episodic retrieval. However, due to the many different neural configurations and 

differing conductivity of different parts of the head, the spatial resolution of ERP data is 

relatively weak compared to other neuroimaging methods. Despite this limited spatial 

resolution ERPs can be used to help understand the neural activity associated with 

different cognitive processes and there has been recent interest in using ERPs as 

biomarkers of diseases that produce cognitive decline. 

This chapter summarised key ERP components associated with episodic memory 

retrieval, looking at pre-retrieval, retrieval success and post-retrieval processes. In 

general pre-retrieval processes were associated with activity over anterior electrodes 

with retrieval mode exhibiting a right hemispheric bias. The evidence for specific 

retrieval orientation and retrieval effort effects was less compelling, with studies 

struggling to separate out the two processes. However, both processes were shown to 
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exhibit anterior effects, with some studies indicating a left hemispheric bias in relation 

to retrieval orientation. 

The evidence for dissociable retrieval success effects is more convincing, showing a 

left-parietal old/new effect between 500-800ms associated with recollection, and a 

bilateral-frontal old/new effect between 300-500ms for familiarity. There is, however, 

some debate in the literature as to whether the bilateral-frontal effect genuinely reflects 

familiarity or if it actually reflects conceptual priming. At present it is not clear which, 

if either, interpretation is correct, although the familiarity hypothesis appears to be more 

widely accepted. Much of the early evidence for distinct neural correlates of 

recollection and familiarity comes from studies using word stimuli; recent studies 

suggest there may be material specific retrieval effects, with pictorial stimuli exhibiting 

more anteriorly distributed parietal effects than verbal stimuli, and faces exhibiting 

additional frontal differences. Finally, activity over right-frontal electrodes is thought to 

reflect post-retrieval processes relating to the monitoring of retrieved information, 

although this effect does not specifically relate to episodic memory, with evidence of an 

equivalent effect for semantically retrieved information.  

Whilst a vast amount has been learnt about recognition memory processes from ERPs, it 

is evident from this review that the processes involved in episodic retrieval, and the 

associated ERP effects, are not yet fully understood. As discussed at the beginning of 

the chapter, ERPs have the potential to be useful disease biomarkers, including those 

relating to memory disorders. Some studies (Olichney et al., 2002; Olichney et al., 

2006) have already identified ERP components relating to episodic memory as 

potentially useful biomarkers for memory disorders, including a word repetition effect 

(the Late Positive Component/P600) that resembles the left-parietal recollection effect 
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discussed above. However, before these retrieval effects can be successfully 

implemented as biomarkers, a greater understanding of the variation evident in these 

effects is needed, including task differences, such as stimulus materials; and individual 

participant differences, such as strategy use or genetic makeup. Overall this chapter 

outlines the current understanding of episodic retrieval effects and provides the base 

from which the research in this thesis aims to explore such individual differences in 

episodic memory. 
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Chapter 3   

Individual Differences and Episodic Memory  
 

Chapter 2 summarised the literature on ERPs and recognition memory retrieval effects, 

identifying neural activity involved in three key stages: retrieval attempt, retrieval 

success and post-retrieval monitoring. In general, when trying to isolate activity relating 

to a particular cognitive operation, ERP activity is averaged across participants who 

meet predetermined criteria relating to factors such as handedness, sex, neurological 

health, etc., and these findings are then generalised to the wider population. However, 

whilst it is important to include such control factors in the design, to understand 

underlying cognitive processes, this approach raises the question as to whether the ERP 

effects identified in this way are reflective of the activity and processes engaged by all 

individuals?  

The current chapter discusses evidence of individual differences in episodic memory, 

considering the influence of biological variations on memory ability and neural activity 

associated with memory encoding and retrieval. Whilst there is a considerable literature 

on the influence of ageing on memory (for a review see Friedman, 2000), this chapter 

will focus on less transient factors, looking at the more stable variables of sex and 

genetic polymorphisms. Following discussion of sex differences in memory, a brief 

introduction to genetics will be given before reviewing the literature relating to memory 

and four different genetic polymorphisms: APOE, BDNF, COMT, and KIBRA. The 

chapter will conclude with a consideration of the overall thesis aims, discussing the 

motives for the current project, and outlining the empirical work that will be presented. 
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3.1  Sex differences 

Several studies have reported behavioural differences in episodic memory as a function 

of sex, with females performing better than males on a variety of episodic memory 

tasks, including recall and recognition of words, faces, pictures, and stories (Guillem & 

Mograss, 2005; Herlitz, Airaksinen & Nordström, 1999; Herlitz, Nilsson & Bäckman, 

1997; Herlitz & Yonker, 2002; Maitland, Herlitz, Nyberg, Bäckman & Nilsson, 2004; 

Ragland, Coleman, Gur, Glahn & Gur, 2000). By contrast, a number of imaging studies 

have failed to find significant behavioural differences between sexes (Ino, Nakai, 

Azuma, Kimura & Fukuyama, 2010; Nyberg, Habib & Herlitz, 2000; Taylor, Smith & 

Iron, 1990), although in each case these studies nonetheless found differences relating 

to the neural activity underlying memory. 

In particular, there is evidence of sex differences in episodic memory ERP effects. For 

example, Taylor, Smith and Iron (1990) reported larger hit amplitudes for females than 

males, around 300ms and 550ms, over anterior electrodes in a nonverbal recurring 

figures task (including geometric and curvilinear abstract figures), around 300ms, 

550ms and 750ms, over posterior electrodes in a verbal recurring task (stimuli included 

words, pronounceable nonwords and 3-digit numbers). In contrast, males showed the 

reverse pattern, exhibiting larger hit amplitudes anteriorly for verbal stimuli (around 

approximately 300ms), and posteriorly for figures (also around approximately 300ms). 

Direct comparison of the old/new difference activity across the sexes in the figures task 

revealed more anteriorly distributed effects for females and posteriorly distributed 

effects for males (around approximately 400ms and 550ms). Whilst there was evidence 

of ERP differences between males and females in this study, behavioural performance 
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in these tasks did not differ, suggesting differential engagement of memory processes 

by males and females in reaching the same outcome. 

In support of the findings of Taylor, Smith and Iron (1990), Guillem and Mograss 

(2005) also found ERP sex differences over anterior locations in a recognition memory 

for faces task. Females exhibited a larger old/new effect than males over anterior 

electrodes, starting at approximately 400ms and continuing until 500ms, with the data 

showing a similar trend until approximately 700ms. The findings from both Taylor, 

Smith and Iron (1990), and Guillem and Mograss (2005), suggest that for pictorial 

stimuli, females exhibit more anterior ERP activity than males, a difference that 

Guillem and Mograss (2005) suggest may reflect different retrieval strategies. Females 

were hypothesised to process intrinsic contextual attributes more than males, and 

consequently form more distinct representations of each stimulus. This richer 

representation would therefore allow better discrimination between ‘old’ and ‘new’ 

items, resulting in the different behavioural outcomes between males and females 

evident in studies, including the study by Guillem and Mograss (2005). 

The studies discussed above provide convincing evidence for sex differences in memory 

retrieval, showing both behavioural and ERP differences. In particular females appear to 

perform better than males on episodic memory tasks, hypothesised to stem from 

differential engagement of strategic processes. In addition to ERP differences several 

other neuroimaging studies have found sex differences in neural activity associated with 

memory, including PET (Nyberg, Habib & Herlitz, 2000; Ragland et al., 2000) and 

fMRI (Ino et al., 2010) studies, highlighting the possibility of functional differences 

between males and females. The interactions between sex, ERP effects and stimulus 

materials further highlight the importance of understanding the influence individual 
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differences have on memory, including the need to characterise the processes engaged 

and associated changes in neural activity. 

3.2  Genetic differences 

Adoption and twin studies have shown that many human characteristics are highly 

heritable, including cognitive abilities. A twin study by McClearn, et al. (1997) 

estimates the heritability of memory performance to be as high as 52%, with 38% of 

memory performance variance estimated to be related to non-shared environment, and 

0% to shared environment (assuming a measure reliability rate of 90%). The focus in 

cognitive genetic research is now beginning to move away from twin studies, to 

association and candidate gene work, in which attempts to identify specific genes and 

genetic polymorphisms that influence specific cognitive abilities and cognitive diseases 

are being made. In a similar way to which animal models are used to try and understand 

the biological underpinnings of cognitive operations, genetic analysis provides a direct 

insight into the biological foundations of individuals, and may allow a greater 

understanding of the biological contribution to cognitive abilities.  

3.2.1  Introduction to genetics 

Each human cell contains a set of instructions that indicates their function and activity 

in the form of chromosomes, organised structures of deoxyribonucleic acid (DNA). 

Humans have 23 different chromosomes in each cell, with two copies of each kind (one 

maternal and one paternal) making a total of 46 chromosomes. DNA is made up of a 

series of alkali bases, or nucleotides, of which there are four types: adenine (A), 

thymine (T), guanine (G) and cytosine (C). The DNA molecule is made of two twisted 

strands of nucleotides joined together by hydrogen bonds. The pairing of these 

nucleotides (also known as base pairing) is very specific, with A only binding with T, 
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and C only with G. The sequence of these nucleotides provides a template for making 

proteins. Three nucleotides (a codon) create a template for an amino acid, and a series 

of codons creates a chain of amino acids, which fold into the specific 3-D structure of 

the proteins coded for by the amino acid sequence. The specific sequences of 

nucleotides that code for proteins are referred to as genes, and the structure of a protein, 

and hence its function, is defined by the sequence of amino acids, as per the instructions 

encoded in the gene. Only approximately 2% of human DNA is thought to make up 

protein coding genes (Pennisi, 2007), but in general the role of the remaining ‘non-

coding DNA’ is currently unclear. 

It is estimated that the human genome contains between 20,000 and 25,000 protein-

coding genes with the number of nucleotides currently estimated to be upwards of 

2,850,000,000 (International Human Genome Sequencing Consortium, 2004). The 

DNA sequence of all humans is 99.9% the same; however, that small 0.1% difference 

goes some way towards accounting for the variations that exist between individuals. 

There are two main types of genetic mutation that occur, point mutations and 

chromosome mutations. Chromosome mutations tend to be large-scale mutations 

affecting large areas of the chromosome, and include deletion, duplication, inversion, 

insertion and translocation mutations (see Figure 3.1a). By contrast, point mutations are 

much smaller, in some cases involving only a single nucleotide. There are three main 

types of point mutation; insertion, where a nucleotide is added; deletion, where a 

nucleotide is lost; and substitution, where a nucleotide base is replaced by another (see 

Figure 3.1b). The existence of more than one possible sequence variation at a specified 

location, and the fact that these mutations only occur on one nucleotide, is referred to as 

a single nucleotide polymorphism (SNP). The number of SNPs that have been identified 

in the human genome is approximatley 1.4 million (Kruglyak & Nickerson, 2001), 
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however these SNPs may not all be functional. This means that although different 

sequence variations may occur, the different polymorphisms may not all have 

significant consequences for the protein. It is not yet clear what proportion of SNPs are 

functional however, nor how many of these will affect cognition. Nonetheless, given the 

importance of proteins in the brain, it is clear that polymorphisms that do affect the 

behaviour and expression of proteins may also affect cognitive processing. 

At an individual level an organism’s genotype is the combination of allelic variations 

and mutations that it possesses, the genetic makeup of the organism. The observable 

characteristics such as morphology, behaviour and development are referred to as the 

organism’s phenotype. The phenotype can be affected by both genetic and 

environmental factors, and research is beginning to be undertaken to try and understand 

the separate contributions of these factors to different phenotypes. The phenotype of 

interest in this thesis is episodic memory capability, and in an attempt to begin to 

understand the role of genetics in episodic memory, research investigating four SNPs 

(APOE, BDNF, COMT and KIBRA) will be considered. These SNPs are not, of course, 

the only possible candidates - with estimates of 1.4 million SNPs in the human genome 

there are no doubt many more which may affect episodic memory. The choice of these 

SNPs is driven by their having been the focus of recent research, with evidence for their 

involvement in memory and memory disorders. Below a brief review is provided of 

existing evidence for each SNPs contribution to memory. 
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Figure adapted from NIH genome website 
(www.genome.gov/glossary.cfm) 
 

a) Types of chromosome 
mutation 

b) Types of point 
mutation 

 

 
 
  

 

Figure 3.1 Schematic diagram illustrating types of chromosome and point mutations. The size of the 
mutated DNA section can range from a single nucleotide base to a whole chromosome. (a) Types of 
chromosome mutation; deletion (the loss of a section of DNA from the chromosome), duplication (a 

reproduction of a piece of DNA is added to the chromosome) inversion (the reversal of a DNA segment 
in the chromosome) insertion (the addition of extra DNA into the chromosome) and translocation (the 

removal of a section of DNA from one chromosome and the attachment of this segment to another 
chromosome). (b) Types of point mutation; substitution (the replacement of one nucleotide with 

another), insertion (addition of a nucleotide) and deletion (loss of a nucleotide). The substitution 
mutation will only affect one codon, however, both the insertion and deletion mutations will also affect 

all the codons after the point of mutation. 
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3.2.2  SNPs and memory 

Apolipoprotein E (APOE) 

One of the most studied SNPs in relation to memory is APOE. APOE is an 

apolipoprotein typically known for its role in lipid metabolism (Tsai, Hong, Yu & Chen, 

2004) and is thought to play a part in many different metabolic functions in the brain 

(Strittmatter & Roses, 1995). The APOE gene, located on the long arm (q) of 

chromosome 19, is polymorphic with three main alleles, !2, !3 & !4. These alleles 

differ from each other by two single nucleotide substitutions, one at position 112 and 

one at position 158 (Figure 3.2). These substitutions result in an amino acid change 

from arginine to cysteine at position 158 in the !2 variation, and from cysteine to 

arginine at position 112 in the !4 variation (Weisgraber, Rall & Mahley, 1981). The 

proportion of people with each genotype in Caucasian populations is approximately 2% 

C/C, 26% C/T, 71% T/T for the APOE rs429358 SNP, at position 112 (dbSNP 

ss76884559) and 89% C/C, 10% C/T, 1% T/T for the APOE rs7412 SNP, at position 

158 (dbSNP ss107936539, www.ncbi.nlm.nih.gov/projects/SNP). The !3 variant is the 

most common, and therefore considered the ‘wild type’ isoform, accounting for 

approximately 78% of all chromosomes, the !4 variant represents approximately 15% 

and the !2 variant approximately 7% (Strittmatter & Roses, 1995). Whilst the !3 allele 

is considered normal, the !2 and !4 alleles are considered dysfunctional and have been 

associated with several disorders including Alzheimer’s Disease (AD). 

AD is the most common form of dementia (Lahiri, Sambamurti & Bennett, 2004). It is a 

debilitating neurological disorder characterised by extracellular amyloid plaques, 

intracellular neurofibrillary tangles, leading to neuronal dysfunction and ultimately 

death. AD results in progressive loss of cognitive function with one of the earliest signs 
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being difficulty in retrieving  episodic memories (Lahiri, Sambamurti & Bennett, 2004; 

Driscoll, McDaniel & Guynn, 2005). Research suggests that possession of an !4 allele 

increases the likelihood of an individual developing Alzheimer’s, with those from 

Caucasian populations homozygous for the !4 variant having an odds ratio (OR) for 

developing AD of 12-15, and those heterozygous for the !4 allele with an OR of 1-3. 

The increased risk of Alzheimer’s is of course relative to the !3/!3 reference group, 

which are assumed to have an OR of 1 (Farrer et al., 1997). In addition there is some 

suggestion that the !2 allele can actually reduce the risk of AD (Corder et al., 1994), 

with an OR of 0.6-1 for !2/!2 and !2/!3 carriers, and OR 1-3 for !2/!4 carriers (Farrer 

et al., 1997).  

Although variations in the APOE allele have been clearly linked to changes in 

Alzheimer’s risk the underlying cause of the link between APOE SNP and AD remains 

unclear. Savitz, Solms and Ramesar (2006) summarise the main theories. The essence 

of these theories relates to the efficiency/inefficiency of the !4 isoform to bind to "-

amyloid peptides and microtubule-associated protein tau (Map#), as well as the 

deficiency and inhibitory effect of the !4 isoform on neuronal repair. AD is not the 

focus of this thesis, and therefore details of these theories will not be discussed here. 

However, given the link between AD and memory the question of how APOE SNPs 

affect episodic memory in healthy populations arises. 
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Figure 3.2 a) Indicates the SNP variants for APOE. The change in nucleotide (indicated by the 
bold letter) at each position is listed with the corresponding allele label. b) Indicates the 
possible genotypes for APOE. Although there are nine different allele combinations the 
heritage (maternal/paternal) of these alleles is irrelevant for the current discussion and 

therefore people will have one of six genotypes, !2/!2, !2/!3, !2/!4, !3/!3, !3/!4, or !4/!4. 

The role of APOE !4 in the predisposition of AD has led to an increased interest in 

healthy !4 carriers, with a particular focus on the effect of the APOE !4 allele on 

cognition in the normal aging. Small et al. (2000) report similar levels of performance 

across several tests of cognition, including episodic memory, in both !4 and non-!4 

carriers aged 60-84 years, suggesting that the !4 allele is not related to cognitive 

functioning in normal aging. Similar findings are also reported by Jorm et al. (2007) 

who tested three different age groups (20-24, 40-44 and 60-64 years) and found no 

overall interaction between APOE genotype and episodic memory performance. 

In contrast, a study by Wilson et al. (2002b) found that the rate of decline in all forms of 

cognition was associated with the APOE !4 allele in participants aged over 65. 

Moreover, the effect on episodic memory was more pronounced compared to other 

types of cognition, with the rate of decline (as measured by the amount a composite 

score of episodic memory performance changed over time) three times faster for !4 

carriers compared to non-carriers. The composite score was calculated from a series of 

episodic tasks including word list memory; recall and recognition; immediate and 
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delayed recall of the East Boston Story, and Story A from Weschler Memory Scale -

Revised (WMS-R) logical memory. These findings are supported by Nilsson et al. 

(2006) who found a significant decrease in episodic memory performance, again 

defined by a composite score (see Table 3.1), for !4 carriers aged 70-85 compared to 

non-carriers in the same age group. Furthermore, Nilsson et al. (2006) reported that the 

APOE !4 effect was more pronounced in tests of episodic recall compared to tests of 

recognition. 

An interesting twist in the story also comes from Nilsson et al. (2006) who found that 

the composite episodic memory score of participants aged 55-65 years was superior for 

participants with one !4 allele. That is, participants with a !3/!4 genotype exhibited 

better episodic memory performance than those with a !3/!3 genotype. However, those 

homozygous for the !4 allele in this age group still showed the poorest performance on 

the episodic memory test. Nilsson et al. (2006) also report a similar, although less 

pronounced, pattern for the 35-50 year age group. This later study therefore suggests 

that possession of one !4 allele can have a positive effect on memory, whilst having two 

!4 alleles is detrimental to memory. 

At this point, based on studies focusing on episodic memory, there appears to be 

evidence suggesting that a) the APOE !4 allele does not effect episodic memory across 

any age range - from 20 to 84 years (Small et al., 2000; Jorm et al, 2007); b) that it can 

increase the rate of episodic memory decline after the age of 65 (Wilson et al., 2002b); 

and c) that it can decrease episodic memory decline over the age of 70 (70-85 years), 

but prior to that age only possession of two !4 alleles results in negative performance, 

whereas carriers of a single !4 allele perform better (Nilsson et al., 2006). Therefore, the 
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findings presented so far provide a confusing picture as to the role of APOE !4 in 

memory in healthy participants.  

More broadly, Savitz, Solms and Ramesar (2006) examined 45 studies investigating 

APOE and cognitive function. Despite finding that elderly and middle-aged non-

demented individuals with a !4 allele performed more poorly on neuropsychological 

tests than those with no !4 allele, Savitz and colleagues (2006) concluded that this 

decrease in performance, is likely to be the result of !4 carrying individuals being in the 

initial stages of AD. Consistent with this view the existence of preclinical episodic 

memory deficits in individuals several years before an AD diagnosis is made (Bäckman, 

Small & Fratiglioni, 2001) is a recognised problem when testing older populations. 

Thus, whilst it is clear that there is a relationship between the !4 variant and AD, this 

association is not yet well understood, making it difficult to assess the relationship 

between the !4 allele and normal cognitive aging. 

Due to the link with AD there has been a tendency in previous research to group people 

into two categories, !4 and non-!4 carriers, with little research on the effect of the !2 

and !3 alleles. However, Wilson, Bienias, Berry-Kravis, Evans and Bennett (2002a) 

found that decline in episodic memory performance over an 8 year period (i.e. a change 

in composite score over time), was reduced for participants aged over 65 years with at 

least one !2 allele compared to those homozygous for the !3 allele. Like those of 

Wilson et al (2006) these findings suggest that the !2 allele may protect against episodic 

memory decline. Participants with at least one !4 allele on the other hand showed 

greater episodic memory decline compared to the reference group (!3/!3). Again, 

however, despite the apparent protection against episodic memory decline, the potential 
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role of the !2 allele in reducing the risk of AD in later life (Corder et al., 1994), makes it 

difficult to draw any firm conclusions about the role of APOE !2 in normal aging. 

Finally, it is important to recognise that the link between APOE and AD means that in 

research investigating the effect of APOE genotype on episodic memory, there has been 

a tendency to focus on aging populations. However, a study by Mondadori et al. (2006) 

with a young population (mean age 22.8 years) produced some fascinating findings. 

Mondadori et al. (2006) found that for young participants the !4 allele is advantageous, 

with !4 carriers performing better at delayed recall for words than !2 and !3 carriers. In 

addition, over successive learning trials, for both single faces and face-profession 

associations, !4 carriers showed decreased neural activity (measured using fMRI), 

whereas !2 and !3 carriers showed increased activity, despite being matched on 

performance level. These genotype differences were evident in bilateral hippocampus, 

left orbital gyrus, and left posterior middle temporal cortex in the face-profession 

association task, and in the left hippocampus and middle frontal gyrus in the single-item 

face task. Therefore, better retrieval performance (correctly remembered associations 

and correctly remember faces) was associated with a decrease in activity over learning 

trials for !3/!4 genotypes, but an increase in activity for !3/!2 genotypes. Furthermore, 

during retrieval, !3/!4 genotypes showed reduced neural activity compared to !3/!2 

genotypes - despite being equated for performance. Specifically, !3/!4 carriers 

exhibited a smaller increase in activity over the right hippocampus and left fusiform 

gyrus for associations (comparing activity for the association and single-item tasks) 

than !2/!3 carriers, and a smaller increase over the right middle and superior frontal 

gyri, and right precuneus in the single-item task compared to baseline. Mondadori, et al. 

(2006) therefore suggest that, for young individuals, !4 carriers have better episodic 

memory, and a more economic use of memory-related neural resources. 
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As for other populations, however, the results from studies of young populations are not 

consistent. For example, in a group of young adults (aged 20-35years) Filippin et al. 

(2009) report greater hippocampal activation for !4 carriers compared to homozygous 

!3 carriers during encoding of pictures, a difference that could not be explained by 

differences in recognition memory performance. Consistent with this, Dennis et al. 

(2010) found greater activation of bilateral MTLs for !4 carriers compared to non-!4 

carriers during picture encoding, despite matched performance on a 24 hour delayed 

recognition task of representative words. In this study, however, !4 carriers were also 

found to have reduced functional connectivity in MTL regions compared to non-!4 

carriers. The confusing picture emerging from fMRI data is highlighted in a review by 

Tractenberg, Filippini and MacKay (in press) looking at BOLD response and APOE !4 

genotype – notably the authors reveal discrepancies in the literature regarding both the 

directionality and location of the change in activity between genotypes. 

In sum, research into the effect of APOE and episodic memory strongly indicates a link 

between APOE and AD, with !4 carriers more predisposed to AD than !3 carriers, and 

with a reduced risk for carriers of the !2 allele. The relationship between APOE 

genotype and normal cognition is less clear. The !2 and !4 alleles again appear to have 

opposing effects in relation to both neuronal activity in the young, and also rate of 

cognitive decline in the elderly. It is difficult, particularly with the older populations, to 

disentangle the effect of APOE genotype on normal cognition, and its influence on AD. 

At this point, it is really only possible to conclude that there is an interaction between 

APOE genotype, episodic memory, age and AD, but despite recent research efforts the 

details of this interaction are not yet clear. 



 

 

 

Research Population Measures Tasks 

Bäckman, et al. 
(2001) 

Swedish 
75 yrs + 

- Number of words recalled. 
- Discrimination index for recognition (hits -false alarms). 
 

Word recall and recognition 

Dennis et al. 
(2010) 

Young adults 
!4+: 21.8 yrs ± 3 
!4-: 20.8 yrs ± 3 
 

- Animacy decision accuracy and reaction time. 
- Subsequent item memory hit rate and false alarm rate. 

- Animacy decision at encoding.  
- 24hr delayed recognition memory task, with confidence 6 point judgements.  
- Pictures presented at study followed by representative words at test. 

Filippini et al. 
(2009) 
 

UK 
20-35 yrs 
 

- % of correct responses (global performance, familiar items, 
distractors). 

- Resting state activity (fMRI). 
- Encoding related activity (fMRI). 
 

Single-item recognition of pictures ~50 minutes after encoding. 
 

Jorm et al. (2007) Australian 
20-24 yrs 
40-44 yrs 
60-64 yrs 
 

- Number of words recalled. - California Verbal Learning Test: Immediate and delayed recall of nouns. 

Mondadori et al. 
(2007) 
 

Large sample: 
22.8 yrs ± 4 
 

Small sample: 
22.3 yrs ± 3 
 

Large sample: 
- Number of words recalled. 
 

Small sample (fMRI): 
- Encoding related activity. 
- Retrieval related activity. 
- Number of remember  (hits - false alarms) and know (hits - 

false alarms) responses. 
- Number of remembered associations. 
 

Large sample: 
- Immediate and delayed free recall of words. 
 

Small sample (fMRI): 
- Single face recognition and remember/know judgements. 
- Face-profession association including face recognition and profession cued recall by category 

selection (academic or workman). 
 

Nilsson et al. 
(2006) 

Swedish 
Middle age  
(35-50 yrs) 
Young-old 
(55-65 yrs) 
Old-old  
(70-85yrs) 

Composite score. - Immediate free recall of words, and short sentences with and without enacting at encoding; cued 
recall of short sentences.  

- Free-choice recognition of faces and nouns from short sentences; forced-choice recognition of 
names. 

- Source recall of sentences (enacted/non-enacted). 
- Memory for activities. 
- Prospective memory with and without cueing. 
 

Small et al. (2000) USA 
60-84 yrs 

- Number of words recalled. 
- Discrimination index for recognition (hits - false alarms). 
 

- Hopkins Verbal learning Test: Immediate recall, delayed free recall, cued recall, recognition. 
 

Wilson et al. 
(2002a) 
Wilson et al. 
(2002b) 

USA 
65 yrs +  

Composite score. 
 

-Word list memory. 
- Recall and recognition from the Consortium to Establish a Registry for Alzheimer Disease 

neuropsychological battery. 
- Immediate and delayed recall of East Boston Story, and Story A from logical memory (WMS-R). 

Table 3.1 Summary of measures used to assess episodic memory function in relation to APOE. Table lists details of the populations tested, measures reported and tasks 
used for each study described above.
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Brain-derived neurotrophic factor (BDNF) 

A second SNP investigated in relation to episodic memory is a variation in the genetic 

sequence for Brain-Derived Neurotrophic Factor. BDNF is a protein involved in the 

regulation of cell survival, multiplication and synaptic growth in the central nervous 

system. BDNF is also important in the modulation of synaptic changes including 

hippocampal Long-Term Potentiation – LTP (Poo, 2001), a process important in 

learning and memory. The gene for BDNF has been located on the short arm (p) of 

chromosome 11, and a SNP has been identified at codon 66 of the DNA sequence. The 

SNP (val66met) is a valine (G) to methionine (A) amino acid substitution caused by a 

nucleotide change from guanine to adenine on the 196th nucleotide base of the sequence. 

The proportion of people with each BDNF genotype in Caucasian populations is 

approximately 3% A/A, 34% A/G, 64% G/G (dbSNP ss12586728, 

www.ncbi.nlm.nih.gov/projects/SNP), with G/G the ‘wild’ type isoform. 

The valine to methionine SNP does not directly affect the mature BDNF protein, but 

affects the precursor peptide of BDNF (pro-BDNF), an inactive form that is activated 

by a type of post-transcriptional modification. The SNP has been shown to alter the 

intracellular distribution and packaging of pro-BDNF, which in turn can affect the 

secretion of the mature BDNF peptide (Egan et al., 2003).  

Research has also shown that the val66met SNP can affect the morphology of the brain. 

Compared to homozygous val carriers, carriers of the met allele show a) a reduction in 

hippocampal formation volume (Pezawas et al., 2004; Szeszko et al., 2005; Bueller et 

al., 2006; although Richter-Schmidinger et al., 2011, found no difference in 

hippocampal volume between genotypes); b) a decrease in the volume of grey matter in 
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the cerebral neocortex - predominantly in the lateral convexity of the prefrontal cortex 

(Pezawas et al., 2004), the left uncus, right inferior parietal lobule, inferior temporal 

cortex, left occipital lobe (Eker et al., 2005), left parahippocampal gyrus, and bilateral 

heads of the caudate nucleus (Nemoto et al., 2006); and c) an increase in grey matter 

volume in the right inferior frontal gyrus and left temporal gyrus (Eker, et al., 2005). 

Furthermore, a significant interaction between aged related volume reduction and 

genotype has also been found with age related reduction in the volume of the 

Dorsolateral prefrontal cortex (DLPFC) greater for met carriers than homozygous val 

carriers (Nemoto et al., 2006). 

In relation to memory performance Egan et al. (2003) found met carriers had poorer 

performance on episodic memory tasks than homozygous val carriers, when tested on 

the WMS-R delayed and immediate recall of two stories. In addition, Egan and 

colleagues showed that met carriers exhibited abnormal hippocampal activation, with 

increased caudal hippocampus activation bilaterally for met carriers compared to the 

more typical decreased activation shown in val homozygotes, when completing a 

working memory task. Interestingly, however, there was an absence of an association 

between BDNF genotype and behavioural performance on working memory and 

semantic memory tasks in the study by Egan et al. (2003), although Richter-

Schmidinger et al. (2011) found met carriers performed significantly poorer than non-

met carriers on a working memory task.  

In relation to hippocampal functioning in episodic memory, Hariri et al. (2003) found 

that met carriers (compared to val/val genotypes) exhibited diminished hippocampal 

engagement, during both encoding and retrieval in a recognition task of novel, complex 

scenes. Furthermore, Hariri and colleagues found reduced recognition accuracy for met 
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carriers, supporting the findings of Egan et al. (2003). This finding of episodic memory 

impairment in met carriers is further supported by research conducted by Dempster et 

al. (2005) and Goldberg et al. (2008), although in contrast to Hariri et al. (2003), 

Goldberg et al. (2008) found that this impairment was limited to ‘Hit’ responses finding 

no impairment in CRs. In addition, Goldberg and colleagues also found that neither 

levels of encoding nor retrieval delay interacted with BDNF genotype, both of which 

would be expected if BDNF impacts core episodic memory processes. Nonetheless 

research clearly indicates an association between episodic memory and BDNF genotype 

in normal populations, with met carriers exhibiting poorer performance than val 

homozygotes. 

In contrast to the findings in healthy participants, research into the effect of the BDNF 

val66met SNP on AD has lead to conflicting findings. For example, Ventriglia et al. 

(2002) found an increased risk of developing AD for homozygous val carriers 

(independent of APOE genotype). By contrast, other research investigating the BDNF 

val66met SNP as a susceptibility factor has found no difference between AD and 

controls in terms of allele frequencies or genotypes (Combarros, Infante, Llorca & 

Berciano, 2004; Nacmias et al., 2004; Akatsu et al., 2006).  

A second BDNF SNP (C270T), a cytosine (C) to thymine (T) nucleotide substitution at 

position 270, has also been investigated in relation to AD. Research suggests that 

carriers of the T allele have a higher risk of developing AD then C allele carriers 

(Riemenschneider et al., 2002; Kunugi et al., 2001). There is, however, inconsistency 

with regards to time of disease onset, with research by Riemenschneider et al. (2002) 

suggesting BDNF C270T is a particular risk factor for early onset AD, and Kunuigi et 

al. (2001) finding no susceptibility for early onset AD, but a higher risk for late onset 
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AD. Therefore, whilst a clear conclusion about the role of BDNF polymorphisms on 

AD is not yet possible, it is apparent that BDNF genotype may play a role.  

The BDNF SNP raises key issues that must be taken into account when assessing gene 

studies. As with all research into the effects of SNPs it is not possible to identify one 

SNP and test it in isolation. Effects that are identified with particular SNPs may in fact 

be the result of another SNP nearby, which may or may not have been identified. With 

this in mind, it is necessary to exercise caution with regard to the effect of these BDNF 

polymorphisms on susceptibility to AD. The differences in research results may suggest 

that the variation found between homozygous val carriers and met allele carriers by 

Ventriglia et al. (2002) is actually a function of the C270T SNP that occurs further 

along the DNA sequence, or vice versa. Thus, at this stage in the investigation of these 

effects it is not possible to say, with any certainty, the effect of BDNF SNPs on AD. 

Nonetheless, in sum, it is apparent from the research reviewed above that BDNF 

val66met SNP does have an effect on episodic memory and the functioning of the 

hippocampus. Met carriers were found to exhibit poorer performance on episodic 

memory tasks, and overall show diminished hippocampal engagement and reduced 

hippocampal volume compared to val homozygotes. The effect of the SNP on AD is 

less conclusive, but there is a clear suggestion within the literature that both val66met 

and C270T BDNF SNPs may influence the development of AD in some way. 

Catechol-O-methyltransferase (COMT) 

COMT is an enzyme involved in the degradation of neurotransmitters such as 

dopamine, epinephrine and norepinephrine. The gene for COMT has been located on 

the long arm of chromosome 22, and a SNP has been identified at codon 158 of the 

genetic sequence. This SNP (val158met) is a valine (G) to methionine (A) amino acid 
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substitution. The COMT val158met SNP affects the activity level of the enzyme in the 

brain with approximately 40% more COMT activity associated with the val allele 

compared to the met allele in the DLPFC. This suggests that val allele carriers will 

catabolize dopamine faster than met allele carriers, and therefore reduce the amount of 

dopamine signalling in the DLPFC (Chen et al., 2004). The proportion of people with 

each COMT genotype in Caucasian populations is approximately 25% A/A, 46% A/G, 

29% G/G (dbSNP ss76883807, www.ncbi.nlm.nih.gov/projects/SNP). 

In relation to episodic memory de Frias et al. (2004) found that homozygous met 

carriers performed better than val carriers on tests of episodic recall. In this case a 

composite score of episodic recall was calculated from tests of free recall, cued recall 

and source recall of verbs and nouns; from sentence learning both with and without 

enactment; word recall with and without a concurrent card sorting task at study or test; 

memory for activities; and prospective memory. By contrast, no difference between 

genotypes was observed for tests of recognition (a composite score of episodic 

recognition calculated from tests of face, name and noun recognition). As for other 

SNPs, however, results are variable. For example, Schott et al. (2006) did not find a 

performance difference between genotypes on a word recall task, nor did they find an 

association with levels of processing. However, when comparing the fMRI results of val 

carriers and met homozygotes Schott and colleagues observed increased activation of 

the left fusiform gyrus and right-prefrontal cortex during deep versus shallow 

processing. The met homozygotes on the other hand showed increased activation of the 

posterior cingulate. In addition, during encoding, Schott et al. (2006) noted that val 

homozygotes exhibited stronger functional connectivity between the prefrontal cortex 

and the hippocampus.  
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In addition to the findings of de Frais et al. (2004) and Schott et al. (2006), Bertolino et 

al. (2006) found that recognition performance for novel complex scenes was better for 

met carriers than homozygous val carriers, in terms of number of correct responses. As 

for APOE and BDNF therefore, the findings with regards to the association between 

COMT val158met and episodic memory performance are inconclusive, with evidence for 

and against an effect with both memory recall and memory recognition. By contrast 

there is greater correspondence in relation to neural activity. Supporting the findings of 

Schott et al. (2006), Bertolino et al. (2006) also reports reduced hippocampal and 

ventral lateral prefrontal cortex (VLPFC) functional coupling for met carriers. In 

addition for val homozygotes, Bertolino and colleagues found increased activation of 

the VLPFC during encoding and retrieval, again supporting the findings of Schott et al. 

(2006), and also reduced neuronal activity in the hippocampal formation in both these 

memory stages. 

Taken together current COMT findings suggest that the val allele results in increased 

activation of the prefrontal cortex. Given the increase in catabolism of neurotransmitters 

in val carriers this increase in activation may be necessary to reach the same level of 

postsynaptic stimulation as the met variant. The research also suggests that carrying two 

val alleles reduces the functional connection between the hippocampal formation and 

the prefrontal cortex at encoding, and reduces hippocampal activity during both 

encoding and retrieval. By contrast, however, the findings with regard to the effect of 

the val158met SNP on behavioural memory performance remains inconclusive, although 

the results do provide some evidence for a possible association between performance 

and genotype. 
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Kidney and brain expressed protein (KIBRA) 

KIBRA, also known as WWC1 (WW domain-containing protein 1), is a signal 

transducer, which interacts with protein kinase C (PKC), specifically with the PKC zeta 

isoform (Büther, Plaas, Barnekow & Kremerskpthen, 2004). Protein kinases are 

enzymes involved in the phosphorylation of proteins in the cAMP pathway (discussed 

in Chapter 8) and consequently in LTP. Therefore, in association with PKC, KIBRA is 

potentially important in synaptic plasticity and memory formation. The gene for KIBRA 

has been located on the long arm of chromosome 5, and a SNP has been identified in 

which a thymine (T) nucleotide is substituted for a cytosine (C) nucleotide in the ninth 

intron7 of the gene. The proportion of people with each KIBRA genotype in Caucasian 

populations is approximately 47% C/C, 43% C/T, 11% T/T (dbSNP ss11699008, 

www.ncbi.nlm.nih.gov/projects/SNP). 

A study by Papassotiropoulos et al. (2006) highlighted the functional importance of 

KIBRA in memory, showing 24% better free recall performance for T allele carriers 

compared to non-T carriers, when recalling words from a 30 word list, after a 5 minute 

delay. This initial sample included 341 Swiss participants aged 18-48 years, and the 

findings were validated by a second sample of 256 American participants aged 20-81 

years, which again showed better performance for T allele carriers, this time on the 

Buschke’s Selective Reminding Test and Rey Auditory Verbal Learning Test (AVLT). 

In a follow-up fMRI study Papassotiropoulos et al. (2006) matched T carriers and non-T 

carriers for performance on the 5 minute delayed recall task, and found increased 

                                                
7 An intron is a section of DNA sequence that does not code for the amino acids used to make proteins. A 
gene is made up of intersecting introns and exons, which are nucleotide sequences that code for amino 
acids and consequently sections of the final proteins. Whilst introns are considered ‘non-coding’ sections 
of DNA, they may still be functional, potentially influencing the expression of the ‘host’ gene (Cooper, 
2010). 
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activation of the MTL, frontal cortex, medial frontal gyrus and parietal cortex for non-T 

carriers compared to T carriers during face-profession associative retrieval. 

Papassotiropoulos et al. (2006) suggest that the increased activation of retrieval related 

brain regions for non-T carriers is necessary for non-T carriers to achieve the same level 

of performance as T carriers. No differences in neural activity between genotypes were 

found during encoding however, suggesting that the genotypic differences are specific 

to retrieval related processes.  

In a large behavioural study of 2230 participants Kauppi, Nilsson, Adolfsson, Eriksson 

and Nyberg (2011) found increased memory performance for T-carriers compared to 

non-T carriers in an immediate free recall task for words, replicating the findings of 

Papassotiropoulos et al. (2006). However, in contrast to Papassotiropoulos et al. (2006), 

Kauppi et al. (2011) found increased hippocampal activity for T carriers compared to 

non-T carries during a face-name associative memory task (n=83); a difference that 

remained after matching the two genotype groups for age, sex and performance (n=64). 

Kauppi et al. (2011) conclude that better memory performance is mediated by increased 

hippocampal activation for T-carriers, in contrast to the hippocampal compensation 

theory suggested by Papassotiropoulos et al. (2006); in which increased hippocampal 

activity is needed in non-T carriers to reach the same level of performance as T-carriers. 

The behavioural findings of Papassotiropoulos et al. (2006) have also been replicated by 

Schaper, Kolsch, Popp, Wagner and Jessen (2008) who found T carriers performed 

better than C carriers in tests of both recall and recognition, in a sample of 64 

participants, and in a larger sample of 383 participants by Preuschhof, Heekeren, Li, 

Sander, Lindenberger and Bäckman (2010). Preuschhof et al. (2010) further 

demonstrated that the effects of KIBRA genotype change with the associative demands 
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of the task, with T carriers showing greater performance benefits when required to 

remember words as pairs rather than as two single items. Furthermore, Preuschhof et al. 

(2010) found an interaction with a second SNP, CLSTN2 (rs6439886), in which 

KIBRA T allele carriers who also carried a CLSTN2 C allele, performed better than 

other genotype combinations (i.e. C/C-T/T, T-T/T, C/C-C), highlighting the importance 

not only of KIBRA in memory performance, but that the interaction of SNPs are 

important. 

Whilst the studies by Schaper et al. (2008), Preuschhof et al. (2010), and Kauppi et al. 

(2011) provide support for the findings of Papassotiropoulos et al. (2006), that the T 

KIBRA allele is beneficial to memory performance, a number of other studies find no 

such association. Need et al. (2008) found no association between KIBRA genotype and 

memory performance in two large European cohorts, looking at the Verbal Recognition 

Memory test from the CANTAB battery (n=319), and the AVLT (n=365), as per the 

Papassotiropoulos et al. (2006) study. Similarly, neither Burgess et al. (2011), with a 

sample of 2842 participants nor Wersching et al. (2011), with a sample of 545 

participants, found an association between KIBRA genotype and performance on the 

AVLT. However, a study by Bates et al. (2009) only found an association between 

AVLT delayed memory scores and KIBRA after controlling for initial learning rates, 

suggesting that KIBRA may be associated with processes relating to forgetting rather 

than learning (as indicated by the fMRI study reported by Papassotiropoulos et al., 

2006), and that genotypic differences in the studies of Need et al. (2008), Burgess et al. 

(2011), and Wersching et al. (2011) could be masked by differences in the degree to 

which information was initially learnt. 
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In relation to pathology, the KIBRA SNP has been shown to be associated with lower 

glucose metabolism in the posterior cingulate and precuneus brain regions for 

cognitively healthy, middle-aged, non-T allele carriers, and also with increased risk of 

late onsetting AD (Corneveaux et al., 2010). An additional large sample study (n=2571) 

by Burgess et al. (2011) supports the association between KIBRA genotype and AD, 

with the T allele again having a protective effect for late onsetting AD. The results in 

the Burgess et al. (2011) are strongest for African-American participants, with only a 

trend evident for Caucasian participants, suggesting a rather modest association between 

KIBRA and AD. A meta-analysis of over 8000 participants also suggests that the 

KIBRA T allele may be a protective factor against late onsetting AD, although again the 

statistical analysis suggests a modest association (Burgess et al., 2011). 

Overall the general trend in studies finding associations between KIBRA and episodic 

memory indicate that the T allele boosts memory performance and can act as a 

protective factor against late onsetting AD. However, as with the other SNPs discussed, 

for every study showing an association between SNP and memory performance, there is 

another finding no association. The absence of an association in some studies may 

reflect greater differences in genetic makeup across samples, as indicated by the SNP-

AD effect differences evident between African-American and Caucasian participants in 

the Burgess et al. (2011) study. However, in contrast to the other SNPs, the direction of 

the KIBRA- memory association is largely consistent across studies, with T carriers 

performing better than non-T carriers. 

3.3  Conclusion 

This chapter has discussed some of the biological differences that have been shown to 

influence memory, both in terms of performance differences and the neural activity 
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associated with memory encoding and retrieval, finding significant differences as a 

function of sex and genetic polymorphism. These individual differences highlight the 

importance of understanding factors that are formative in the outcomes of memory 

tasks, behaviourally and in the results from neuroimaging techniques, before employing 

these sensitive measures as biomarkers of disease.  

In relation to the genetic research current work is trying to understand each SNP in 

isolation. When considering and evaluating these findings, it is important to consider 

the role of potential interactions between different SNPs. Interactions between genes are 

clearly an important factor in the resulting phenotype of an organism, and have been 

shown to influence memory performance (Preuschhof et al., 2010). Despite the 

importance of these interactions however, there is not currently an economically viable 

way in which detailed investigations of the impact of numerous SNPs on cognitive 

functions can be conducted. Whilst the figures relating to the population density of 

different combinations of genes is not currently available, we know that for the KIBRA 

SNP the proportion of each genotype in Caucasian populations is approximately 47% 

C/C, 43% C/T, 11% T/T (dbSNP ss11699008, www.ncbi.nlm.nih.gov/projects/SNP) 

and for the BDNF SNP 3% A/A, 34% A/G, 64% G/G (dbSNP ss12586728). Given that 

the proportion of the population with the rare BDNF SNP is only 3% it is currently 

difficult to investigate the met/met (A/A) genotype in isolation, if this is combined with 

the three KIBRA variants, where the rare variation has a population frequency of 11%, 

the number of participants needed for a successful study are substantial. Assuming that 

the probability of carrying the rare BDNF genotype is unrelated to the probability of 

carrying the rare KIBRA genotype (data relating to the probability of carrying 

combinations of genes are currently not available), then 0.03 (probability of rare BDNF 

genotype A/A) x 0.11 (probability of rare KIBRA genotype T/T), the probability of 
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carrying BDNF A/A and KIBRA T/T = 0.0033. Therefore, in theory, to have a sample 

of 33 participants with BDNF A/A and KIBRA T/T genotype, 10,000 people would 

need to be screened. 

Studies such as Preuschhof et al. (2010) that investigate the interactions of at least two 

SNPs (although not necessarily all genotypes of these SNPs) in large samples of several 

hundred participants are beginning to emerge. It is important to acknowledge however 

that the effects of genes on episodic memory are unlikely to be limited to the interaction 

between two genes anymore than they are one. In practice the number of participants 

needed to investigate all such genetic interactions would clearly make it impractical to 

carry out such research. Even if completed, the number of variations that exist would 

make the findings so detailed and specific that the conclusions that could be drawn from 

the study would be severely limited and difficult to generalise to the population in any 

way. Therefore, as with much of science, researchers must compromise between the 

level of detail that is useful, and that which is not. Whilst the interactions between genes 

are ultimatley important it is first necessary to investigate which specific genetic 

variations are involved in episodic memory before investigating the different 

combinations of genes that are likely to have the largest combined impact. Investigating 

SNPs in isolation is therefore the immediate aim of genetics research. Nonetheless, 

because our understanding of how genes interact with each other and with memory 

remains limited, it is important to continually be aware of potential interactions and 

consider the impact they may be having. 

It is clear from the research reviewed above that there are associations between SNPs 

and episodic memory, but the details of these associations remain somewhat 

ambiguous. Whilst it is necessary to investigate the effects of single genetic variations 
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in order to further understand the biological and functional mechanisms that underlie 

memory, it is imperative that the bigger picture, involving the interactions of thousands 

of genes at numerous levels, is not forgotten. Additional factors such as ethnic group 

and environmental factors will also affect the interactions between genes and cognition, 

with each case described above really indicating a trend or predisposition.  

The inconsistencies evident in the literature discussed above may relate to a number of 

different factors that resulted in a failure to replicate. These include differences in 

sample size, and consequently statistical power; ethnicity of the studied population, 

with different genetic polymorphisms known to exist in different ethnic groups (known 

as ancestry informative markers), which may interact with the candidate gene and 

therefore show different results across studies; geographic location of the studied 

population, differing geographic locations will vary in the environmental pressures 

exerted; similarly special populations, such as studies of nuns and priests, will have 

differing environmental influences to a more general, varied population.  

There is no hard and fast rule stating that possession of a particular SNP will result in a 

particular outcome, and identical genotypes do not need to result in identical 

phenotypes. The relationship between genotype and phenotype is nicely illustrated by 

Mitchell’s (2007) interpretation of Waddington’s (1957, as cited in Mitchell, 2007) 

epigenetic landscape, in which he describes an organism as a ball moving through a 

landscape of valleys, the shape of which is determined by an individual’s genotype. The 

valleys in this analogy represent different phenotypic states. Given the same landscape 

(or genotype) two runs of the ball (A and B) will not necessarily follow the same path, 

and therefore may end up in different valleys (with different phenotypes). The 

differences in paths taken may be the result of chance events or environmental effects 
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which influence the direction taken (Figure 3.3). Phenotypic variations caused in this 

manner cannot be investigated through genetics, but what genetic analysis can provide 

is a landscape that suggests the possible paths that may be taken. 

 
Figure 3.3 Schematic illustration of Waddington’s Epigenetic Landscape (1957, as cited in Mitchell, 

2007). This diagram represents the relationship between genotype and phenotype. The ball represents the 
organism rolling around a landscape (the genotype). Despite the identical landscapes in parts A and B 
the path the ball takes in each image differs. This demonstrates how differing phenotypes can manifest 

despite identical genotypes, as is the case in monozygotic twins. 

3.4  Thesis aims 

It is well known that memory ability differs between individuals with the majority, if 

not all, studies showing variability in task performance, response times and decision 

bias between participants. Furthermore evidence presented in the current and previous 

chapters suggest ERP recognition memory effects vary with task specific details, such 

as stimulus material (Galli & Otten, 2011; Mackenzie & Donaldson, 2007, 2009; Yick 

& Wilding, 2008), and individual differences, such as participant sex (Taylor, Smith & 

Iron, 1990; Guillem & Mograss, 2005). Taken together these findings suggest that the 

bilateral-frontal and left-parietal old/new effects typically associated with recognition 

memory processes may only occur under specific conditions, in relation to the task 

completed and the individual completing the task. Furthermore, more broadly, there is 

evidence to suggest differences in memory performance and neural activity as a 
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function of genotype, with several SNPs revealing significant behavioural and fMRI 

differences, as discussed above. 

As discussed in Chapter 2, in ERP research grand average waveforms are made to 

reduce the influence of individual participant variation on the activity of interest. Whilst 

averaging is an important step towards universally understanding the neural activity 

relating to an event of interest, the question arises as to whether the final pattern of 

activity seen in grand averages accurately reflects the true pattern of activity exhibited 

by individuals. The issue of individual differences is of particular significance in 

understanding the development and progression of memory disorders. There has been a 

recent surge in interest in using ERPs as a biomarker of disease, to monitor disease 

progression and treatment outcome. Clearly, however, to use ERPs as a tool to 

understand disease progression it is firstly important to understand how ERP effects 

vary in healthy participants, and whether or not the selected ERP component is 

predictive of behavioural outcome. Despite evidence of task and individual differences 

in relation to ERP recognition memory components, some studies have already 

suggested using episodic memory ERP components, such as word repetition effects 

(Olichney et al., 2002; Olichney et al., 2006), as a biomarker of memory disorders. 

Therefore, a key question for researchers understanding memory processes and the 

associated ERP effects, is in what way do memory performance and ERP effects differ 

between individuals, and perhaps more importantly, why do they vary?  

The focus of this thesis will be on episodic retrieval success, looking in particular at the 

ERP effects associated with familiarity and recollection. As outlined in Chapter 2, of 

the ERP retrieval effects, success effects are the best characterised and most robust 

memory effects, making them ideal for studying individual differences in episodic 
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memory. Material specific recognition effects will be investigated in relation to four 

different stimulus materials (words, pictures, faces and voices) using a simple old/new 

recognition task. The intention is to add to the current material specificity literature by 

including a homogenous verbal condition (voices) to match the homogenous pictorial 

stimuli (faces), further investigating the idea that faces are in some way special, or 

whether it is the homogeneity of the stimuli that is important. Therefore comparisons in 

this thesis will be made between two types of verbal stimuli, one heterogenous (words) 

and one homogenous (voices), and two types of pictorial stimuli, one heterogenous 

(pictures) and one homogenous (faces). 

In relation to recognition memory for faces, there are clearly discrepancies in the 

literature as to the associated ERP correlates (Donaldson & Curran, 2007). One of the 

aims of this thesis is therefore to further investigate face recognition memory effects; 

through the single-item recognition for faces task, and using a source memory task for 

faces and verbal phrase pairs. Analysis of ERP recognition effects for faces will be 

made contrasting face recognition effects a) with and without successful retrieval of 

source information, b) with and without additional source retrieval task demands, and c) 

in participants considered good at remembering faces, as indexed by the single-item 

recognition for faces task, with those who struggled with the task. Through such 

analyses it is hoped that a better understanding can be gained of the reasons behind the 

discrepancies within the literature. 

In addition to task related differences, this thesis also aims to investigate individual 

differences, examining the relationship between behavioural performance and ERP 

old/new recognition effects. A crucial criterion in using an ERP correlate as a disease 

biomarker is that the ERP effect is predictive of the behavioural outcome, and is 
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therefore an index of the process being monitored. ERP studies of recognition memory 

have identified a set of old/new effects that are thought to reflect the processes of 

familiarity (the 300-500ms bilateral-frontal effect) and recollection (the 500-800ms left-

parietal effect). Whilst the exact functional role of these effects remains unclear, they 

are widely viewed as reliable indexes of retrieval, with previous evidence suggesting 

that variation in the magnitude of the left-parietal effect reflects changes in the amount 

or quality of information retrieved during source memory tests (Chapter 2). It is 

therefore expected that these old/new effects will be good predictors of memory 

performance, and reliable across tasks, predictions that will be tested in this thesis. 

Finally, as discussed in the current chapter, there is evidence indicating genetic 

differences in both memory performance and neural activity associated with memory. 

To date however, there does not appear to be any published studies examining genetic 

variation in relation to ERP episodic memory effects. Thus, a further aim of this thesis 

is to investigate a number of candidate SNPs in relation to both behavioural and ERP 

measures, to see if the ERP correlates of recognition memory are modulated by an 

individual’s genetic makeup. Through such analyses a greater understanding of the 

influence of biological variables on these measures of recognition memory will be 

gained, and the reliability of these ERP effects at the individual level will be tested. 

3.4.1  Summary of research aims 

Overall this thesis aims to investigate individual differences in episodic memory, 

looking at behavioural and ERP measures in an attempt to gain a greater understanding 

of how episodic memory differs as a function of stimulus material, task performance, 

and genetic polymorphisms. The research aims to address four main questions: 
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1. Do the neural correlates of episodic memory vary with stimulus material, and 

what drives material specificity effects? (Chapter 5) 

a) Are differences in the pattern of ERP activity across stimulus materials 

driven by stimulus type (i.e. verbal versus pictorial)? 

b) Are differences in the pattern of ERP activity across stimulus materials 

driven by stimulus homogeneity (i.e. faces versus pictures)? 

2. What factors cause face recognition effects to vary? (Chapter 6) 

a) Are the ERP correlates of face recognition memory sensitive to successful 

source retrieval in a face-verbal phrase pairs task? 

b) Do the ERP correlates of face recognition vary in relation to task demands 

(i.e. item v. source)? 

3. Are the bilateral-frontal and left-parietal old/new effects good predictors of 

memory ability?  (Chapter 7) 

a) Does behavioural performance modulate the bilateral-frontal effect? 

b) Does behavioural performance modulate the left-parietal effect? 

4. Is recognition memory sensitive to genetic variation? (Chapter 8) 

a) Do behavioural measures of recognition vary with genotype? 

b) Do the ERP correlates of recognition memory vary across genotype? 
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Chapter 4   

General Methods 
 

This chapter describes the methods used in this thesis providing details concerning 

participants, stimulus materials, procedures, data processing, and analyses used. The 

aim of the thesis is to investigate individual differences in episodic memory, looking at 

the influence that a variety of different individually varying factors have on behavioural 

and electrophysiological measures of episodic memory. All participants completed the 

same series of experiments, referred to as the ‘study’, providing a wealth of information 

about each participant, and allowing the influence of several key factors (relating to 

variation in experimental, biological and cognitive function) to be investigated. Whilst 

this chapter describes the fundamental methodological aspects of the study, specific 

details regarding participant inclusion and analyses at the level of each factor under 

investigation are included in the relevant experimental chapters. 

4.1  Study Participants 

The Department of Psychology’s Ethics Committee at the University of Stirling gave 

ethical approval for the study, and participants were recruited from the University of 

Stirling. One hundred and twenty nine participants took part in the study and all 

reported being aged between 17-35 years, right-handed, native English speakers, with 

normal (or corrected to normal) vision, with no history of colour blindness, hearing 

difficulties, dyslexia, neurological problems, brain injury, CNS infection, drug or 

alcohol abuse, and had not or were not currently receiving treatment for a psychological 

illness. Participants were reimbursed for their participation at a rate of £5 per hour. 
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Those participants on undergraduate psychology courses were given the option of 

receiving two credits for the first hour of each session (instead of the £5 reimbursement) 

to satisfy requirements on these courses. Informed consent from all participants was 

obtained prior to participation in each part of the study, and participants were fully 

debriefed at the end of the last session.  

4.2  Overall procedure 

A brief overview of the experimental procedure is given here to provide an idea of the 

overall structure and time-line of testing sessions before going on to discuss each 

section in more detail. The experiment consisted of three main stages, an initial 

screening, an ERP experimental session, and a psychometric/neuropsychological 

assessment session. Firstly participants were emailed a background details questionnaire 

to obtain some descriptive information about them (e.g., age and gender), and were re-

sent the exclusion criteria to provide an extra check as to their suitability to participate 

in the study. Participants subsequently visited the lab on two occasions that were 

typically within seven days of each other, with an average of 4 days (s.d. 3 days). In the 

first session participants were fitted with an EEG cap and completed a series of single-

item recognition memory tasks (using faces, pictures, words and voices) and a source 

judgment memory task looking at memory for face-verbal phrase pairs. After 

completion of the memory tasks and the termination of the EEG recording a DNA 

sample was collected from each participant. In addition, participants then completed 

two questionnaires: the Psychiatric Diagnostic Screening Questionnaire: PDSQ 

(Zimmerman, 2002) and the Eysenck Personality Questionnaire – Revised edition: 

EPQ-R (Eysenck & Eysenck, 1991). 
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The second session comprised a variety of psychometric and neuropsychological test 

batteries including the Wechsler Memory Scale third edition (UK): WMS-IIIUK  

(Wechsler, 1998), Wechsler Abbreviated Scale of Intelligence: WASI (Wechsler, 1999) 

and seven tasks from the Cambridge Neuropsychological Test Automated Battery - 

eclipse version 3: CANTABeclipse (Cambridge Cognition Ltd, 2006). Additional brief 

PDSQ follow-up questions were asked if analysis of the questionnaire indicated a 

follow-up was required (see Figure 4.1 for an overview of the procedure). 

Figure 4.1 Procedure overview. 

4.3  Background details questionnaire 

Prior to the first experimental session participants were asked to complete a background 

details questionnaire. This questionnaire provided information about participants 

Procedure Overview 
 

• Participants sign up for study and are allocated a participant number. 
 
• Participants are asked to complete a background details questionnaire prior to experimental 

sessions. 
 

• Session 1  
o Background details questionnaire verified. 
o Single-item recognition memory tasks (including recognition for faces, pictures, 

words and voices) completed. 
o Source judgment memory task (face + verbal phrase pairs) completed. 
o DNA sample collected. 
o PDSQ completed. 
o EPQ –R completed. 
 

• Session 2 
o WMS-IIIUK completed. 
o WASI completed. 
o CANTABeclipse completed: 

! MOT 
! IED 
! RVP 
! SOC 
! SRM 
! SSP – Forwards 
! SSP – Backwards 
! SWM. 

o Brief PDSQ follow-up if required. 
 



 General Methods 

- 96 - 

relating to age, sex, handedness, native English speaker status, ethnicity of self and 

parents, and familial history of AD. Participants were also asked to indicate any factors 

they thought may influence the EEG recording and to list any current use of 

medications. As well as providing basic demographic data about participants, this 

information allowed the participants’ suitability to take part in the study to be checked. 

The questionnaire confirmed eligibility to take part and no participants were rejected on 

the basis of the questionnaire.  

4.4  Stimulus materials 

Five different categories of stimuli were used in the experimental tasks; the single-item 

recognition tasks included face, picture, word and voice stimuli types (illustrated below 

in Figure 4.2), and the source-judgment task used face and verbal phrase stimuli 

(illustrated below in Figure 4.3). Details relating to the acquisition and preparation of 

each stimuli category will now be discussed. 

4.4.1  Pictures: 

Picture stimuli consisted of 108 pictures taken from the International Affective Picture 

System (IAPS, National Institute of Mental Health Center for the Study of Emotion and 

Attention, 1999), consisting of photographs of a variety of subjects including animals, 

people, sport, landscapes and inanimate objects. Pictures were selected from the IAPS 

set based on valence and arousal scores, and were hand-filtered to remove unsuitable 

images, either in terms of content (i.e. an image of the twin-towers where arousal 

ratings are likely to have changed since the release of the stimuli set), or due to 

variations in presentation styles (i.e. presence of black borders surrounding the picture). 

Eight pictures were randomly selected for use during practice trials and the remaining 

100 in experimental trials. The images selected for use in experimental trials had a mean 



 General Methods 

- 97 - 

valence rating of 6.95 (s.d. 0.70) and a mean arousal rating of 4.62 (s.d. 1.00). The 100 

pictures were sorted by valence and then arousal before alternately assigning pictures to 

one of two lists, to be used as studied and unstudied pictures. List A had a mean valence 

rating of 6.37 (s.d. 0.42) and a mean arousal rating of 4.44 (s.d. 0.99). List B had a 

mean valence rating of 7.52 (s.d. 0.36) and a mean arousal rating of 4.81 (s.d. 0.98).  

The presentation of each list as studied or unstudied was counterbalanced across 

participants. 

4.4.2  Faces: 

Six hundred and seventy six photographs of faces, of which 341 were female, were 

taken from a series of smaller stimuli sets used by the Department of Psychology at the 

University of Stirling. Face photographs were hand-filtered, selecting Caucasian 

individuals who did not have any distinguishing features such as jewellery, glasses or 

facial hair. An average image of each stimuli set was made using Psychomorph 

software (Tiddeman, Burt & Perrett, 2001), and all images were eye aligned using this 

set average. Images were also morphed 25% towards the colour of the set average 

image to reduce significant differences in the brightness of images. Using individual 

facial templates (which mark the features of each individual face) images were masked 

to conceal background, hair and ears, creating an image of a face devoid of heavily 

distinguishing features on a black background. Images were resized to ensure that each 

picture was the same size (although some variation in the size of the face on the 

background remained, the overall size of the picture was kept constant).  

Three hundred and forty of the original set were used in the study, with 108 randomly 

allocated to the single-item recognition memory task and 232 to the source judgment 

task. The stimuli used in each task were kept consistent across participants. As 
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described with other stimuli sets eight of the 108 face images in the single-item task 

were used during practice trials and 100 in the experimental trials. The 100 

experimental face image set was sorted by file name, set and gender and then divided 

into groups by alternately assigning images to one of two lists, to be used as studied and 

unstudied images. A similar method was used to divide the 232 face images in the 

source judgment task into studied and unstudied lists, as well as into blocks. An equal 

number of male and female face images were used in studied and unstudied lists across 

both tasks. The presentation of the studied and unstudied lists was counterbalanced 

across participants 

4.4.3  Words: 

Three hundred, six-letter words with a K�cera-Francis written frequency of 10-20 per 

million were randomly selected from the MRC Psycholinguistic database (Coltheart, 

1981). Words with a K�cera-Francis written frequency (K�cera & Francis, 1967) of 

more than 13 per million were then removed leaving a list of 148 six-letter words with a 

K�cera-Francis written frequency of 10-13 per million. This list was subsequently 

hand-filtered to remove unsuitable words such as identifiers (i.e. EIGHTY, ANDREW), 

emotive or arousing words (i.e. NIGGER, BREAST), and visually similar words (i.e. 

MORTAR when MORTAL was present). Forty words were removed during hand 

filtering leaving 108 words, of which eight were to be used during practice trials and 

100 in the experimental trials. The 100 experimental word set was alphabetised and then 

divided by alternately assigning words to one of two lists, to be used as studied and 

unstudied words. These two word lists, consisting of only six-letter words, were 

matched for frequency (mean K�cera-Francis written frequency for list A = 11.16, for 

list B = 11.24) and their presentation was counterbalanced across participants. 
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4.4.4  Audio stimuli: 

Audio files were recorded using an Olympus WS-320M digital voice recorder and Sony 

microphone. Six hundred and sixty volunteers were recorded reading aloud five 

everyday greetings (‘Hello’, ‘Good morning’, ‘How are you’, ‘Pleased to meet you’ & 

‘Thanks’) to create a pool of previously unheard voices. Volunteers were members of 

the public most of whom were visiting either University of Edinburgh Students Union 

or Glasgow Science Centre at the time of recording. A variety of ages (range 15-77 

years) and nationalities were recorded with 351 of the volunteers being female. 

Recordings were cropped using Praat software (Boersma & Weenink, 2008) to remove 

noise artefacts (such as breaths, pauses, clicks, etc) and delays at the start and end of 

recordings. The audio files were then processed using Wavosaur audio editor software 

(Wavosaur: www.wavosaur.com). Files were converted from stereo files to mono files 

using 50% from both the left and right channels. Bit depth was converted to 16 bits per 

sample and files were re-sampled at a rate of 22050 samples a second.  A simple DC 

remover filter was run on all files to compensate for DC offsets that may have occurred. 

Finally, files were normalised to 0 decibel (dB) and auto-trimmed at -50dB. 

One hundred and eight recordings of the ‘Pleased to meet you’ phrase, half female, 

were chosen for use in the single item recognition memory task for voices. A sub-set of 

the original stimuli set was selected in which all files were recorded in the same location 

(Glasgow Science Centre). The average length of a recording was 801ms (s.d. 69ms). 

These auditory files were hand-filtered to select the 108 clearest recordings from native 

English speakers, who had an age range of 17-68 years with a mean of 39.5 years. Eight 

of these voices were used for the practice trials with the remaining 100 used in the 

experimental trials. As with face stimuli, voice stimuli were organised by file name and 
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gender and were alternately assigned to one of two lists, to be used as studied and 

unstudied voices. These two voice lists were matched for recording time (mean for list 

A = 799ms, s.d. 68ms; for list B = 804ms, s.d. 70ms) and their presentation was 

counterbalanced across participants. 

For the source judgment task verbal phrase stimuli were recordings of ‘Hello’ and 

‘Thanks’ from one male and one female volunteer that had not been used in the single 

item recognition memory for voices task. The recordings selected were considered to be 

clear recordings from native English speakers that were rated by 12 participants as 

moderate on a scale of low to high distinctiveness. 

4.5  Experimental tasks 

All experimental tasks were run using E-prime software (version 1.1, Psychology 

Software Tools Inc: www.pstnet.com). Visual stimuli were presented on a 15” flat 

screen computer monitor positioned on top of a desk approximately one meter away 

from participants. Auditory stimuli were presented using loud speakers at a volume that 

participants were comfortable with. Participants responded using a PST Serial Response 

Box positioned on the desk in front of them.   

4.5.1  Single item recognition memory tasks: 

Participants completed four single item recognition memory tasks, each following the 

same procedure, which looked at recognition memory for pictures, faces, words and 

voices (Figure 4.2). Participants were instructed that they were going to be presented 

with stimuli that they should focus on and to try to remember for a later recognition 

memory test. Fifty items were presented during the study phase for 1000ms each, 

preceded by a fixation cross that was presented for 2000ms. In an attempt to ensure 
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participants were not relying on working memory, a one minute break between study 

and test was included, in which participants were instructed to relax and rest their eyes. 

During the test phase participants were presented with 100 stimuli to which they had to 

indicate using a five key button box if they had been presented with the stimuli in the 

previous phase (old) or not (new). Participants selected one button, either ‘1’ or ‘5’, to 

indicate an ‘old’ item and the other to indicate a ‘new’ item, the relationship between 

response and button press was counterbalanced across participants. Stimuli were 

presented for 1000ms each during the test phase and were followed by an infinite blank 

screen. Participants could respond either during the presentation of the stimuli or when 

the blank screen was displayed. When a response was made the trial ended and the next 

trial began. Participants were instructed to respond as quickly and accurately as they 

could, making their response as soon as they had made a decision. A fixation cross, 

presented for 2000ms, preceded each item and indicated the start of a new trial.  

Stimuli were divided into two lists as detailed above. Presentation of stimuli within 

these lists was randomised, with studied and unstudied lists counterbalanced across 

participants. All stimuli were presented in the centre of the screen against a black 

background. Based on a viewing distance of approximately 100cm picture stimuli 

subtended a vertical visual angle of approximately 5.1˚ and a horizontal visual angle of 

approximately 6.4˚.  Face stimuli subtended a vertical visual angle of approximately 

10.9˚ and a horizontal visual angle of approximately 9.1˚. Word stimuli were presented 

in white, bold, 18 point Courier New font. During presentation of the voice stimuli a 

blank screen was presented. In an attempt to reduce EOG artefact a white fixation cross 

(+) was used between trials in all tasks to encourage participants to fixate their gaze in 

the centre of the screen. The order in which the four tasks were completed was 

counterbalanced across participants. 
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Figure 4.2. Schematic illustration (not to scale) of the four stimuli types – pictures, faces, 

words and voices. 

4.5.2  Source Judgment task: 

After completing four single item recognition memory tasks participants completed a 

source judgment task involving face-verbal phrase pairs. This task was presented in 

eight short study/test blocks of 14 study pairs and 28 test pairs (the size of these blocks 

was determined by a series of pilot studies). Participants were presented with a picture 

of a face, accompanied by a verbal phrase of either “Hello” or “Thanks”. Faces were 

presented for 1000ms and were preceded by a fixation cross presented for 2000ms. 

Participants were instructed to focus on each face as it was presented and to try and 

remember which phrase was paired with the face. In an attempt to ensure participants 

were not relying on working memory, a one minute break between study and test was 

included. During the break participants were instructed to relax and rest their eyes.  
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Figure 4.3. Schematic illustration of the source judgment task. 

After the break participants were presented with the test phase during which 28 faces 

were shown and participants were asked to make old/new judgements, as per the single 

item recognition memory tasks. Faces were shown for 1000ms each and were followed 

by a blank screen that was present as long as required for the participant to respond. 

Participants were able to respond either whilst the face was being presented or during 

the blank screen that followed. Once a response was made the experiment moved on to 

either the next trial if a ‘new’ response was made, essentially terminating the trial, or to 

a fixation cross followed by a question mark (?) if an ‘old’ response was made. The 

question mark was a signal for participants to indicate with a button press if the phrase 

was ‘Hello’, ‘Thanks’, or that they did not know, and remained on the screen until 

participants responded. The buttons used to represent ‘Hello’ and ‘Thanks’ were 1 and 

5, counterbalanced across participants. Button 3 always represented a ‘don’t know’ 

response (see Figure 4.3 for an illustrative summary of the source judgment task). 
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4.5.3  Counterbalancing 

As discussed in the proceeding sections the order of single item task presentation, the 

use of ‘old’ and ‘new’ lists, the allocation of old/new response keys and hello/thanks 

response keys were all counterbalanced across subjects. There are 192 possible 

combinations of these factors meaning that it was not possible to fully counterbalance 

all these factors with the sample size collected. Fully counterbalancing the old/new list, 

old/new response key and hello/thanks response key (the response factors) resulted in 

eight possible variations, with an additional 24 task order variations. Counterbalancing 

was therefore split into blocks of 24 with all possible task order variations randomised 

and then combined with three counterbalanced sets of response factors, the arrangement 

of which were also randomised. This counterbalancing process was then repeated for 

each block of 24 until there were enough trials for the number of participants tested. 

4.6  Data processing and analysis 

An initial analysis of data for each memory task was conducted looking at the overall 

behavioural and ERP effects for each task, across all participants. Data from each 

participant was then divided into a series of groups based on their individual 

characteristics (i.e. gender, performance, SNP variant, etc) for comparison. The method 

of allocation to each group will be discussed in the respective chapters. 

4.6.1  Behavioural data 

Accuracy (relating to the proportion of hit and false alarm responses made) and 

response times are reported in each empirical chapter for each comparison group and 

task. Behavioural and ERP data was filtered for markedly quick or slow response times, 
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excluding trials below 300ms and above two times the overall mean response time for 

each condition. Furthermore estimates of discrimination accuracy were calculated using 

a two-high threshold model (Snodgrass & Corwin, 1988). The discrimination index (Pr 

= pHit - pFA) was used to correct scores for guesses, and the bias index (Br = pFA/[1-

Pr]) was used to estimate the probability of guessing ‘old’ when uncertain. Although Pr 

and Br are standard measures they are inherently vulnerable; in cases where participants 

make no errors in their recognition judgments Pr would be equal to 1, resulting in the 

division of the proportion of false alarms by 0 in the calculation of Br. To correct for 

this mathematical impossibility Snodgrass and Corwin (1988) suggest adjusting all hit 

and false alarm rates before calculating Pr and Br so that the hit rate equals (number of 

hits +0.5)/(the number of old stimuli +1), and false alarm rate equals (number of false 

alarms +0.5)/(the number of new stimuli +1). All Pr and Br values reported in this 

thesis are adjusted in this manner to take into account the possibility of a 0% false alarm 

rate. Specific analyses of the behavioural data for each characteristic analyzed will be 

described in individual empirical chapters. 

4.6.2  EEG recording: 

As discussed in Chapter 2, the EEG signal is a recording of changes in voltage produced 

by the brain, plotted over time. Voltage actually reflects the potential for electrical 

current to move between one place and another; consequently, to record this potential, it 

is necessary to have at least two electrodes, the active electrode and the ground. Whilst 

the voltage being generated by the brain can be recorded with these two electrodes, any 

environmental electrical activity being picked up by the ground will also be recorded. 

To eliminate this ground noise an additional reference electrode is used, and the ground 

voltage is subtracted from both the active electrode and the reference electrode, which 
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are then compared ([Active-Ground] - [Reference-Ground]). This difference, which is 

essentially the difference between active and reference electrodes, provides a measure 

of electrical activity from the scalp free from background electrical noise being picked 

up by the ground circuit (Luck, 2005). 

Using the principles described above additional active electrodes can be placed at 

different locations on the scalp to simultaneously record activity from multiple 

locations. In doing so the distribution of voltage across the scalp can be characterised 

(see Chapter 2 for a discussion about the types of inferences that can be made from 

EEG and ERPs). The most common system for electrode placement is the 10/20 system 

(Jaspers, 1958) in which the location of an electrode is specified in relation to its 

proximity to a particular region of the brain (frontal pole, frontal, central, parietal, 

occipital, temporal), and the distance it is positioned from the midline (Z), the line 

running between the nasion and the inion. Electrodes on the left of the midline are 

labelled with odd numbers, and electrodes on the right with even numbers. The 

reference electrode should be positioned at a relatively neutral site that does not bias 

one hemisphere over the other. Whilst a variety of sites could and have been used to 

position the reference electrode the most common locations are the ear lobes or 

mastoids (the bony protrusion just behind the ear). To ensure the reference electrode is 

not biased towards one hemisphere, two electrodes are used, one on either ear lobe or 

mastoid, and the average of these two electrodes is calculated and re-referenced offline. 

In this study scalp voltages were collected using 62 silver/silver chloride electrodes 

mounted in an elastic cap (QuickCap, Neuromedical Supplies: www.neuroscan.com) in 

accordance with an extended version of Jaspers (1958) international 10/20 system (FP1, 

FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, 
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FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, 

CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, 

PO6, PO8, CB1, O1, OZ, O2, CB2) shown in Figure 4.4 below. Eye movements and 

blinks were monitored using electrodes placed above and below the left eye (Vertical 

EOG) and on the outer canthi of each eye (Horizontal EOG). All electrodes were 

referenced during recording to an additional electrode (REF) positioned in between the 

CZ and CPZ electrodes, and two additional electrodes were placed on the mastoids (M1 

& M2), which were used to re-reference the data offline to represent linked mastoid 

recording, as described below. The ground electrode was positioned on the midline 

between electrodes AF3 and AF4. 

Prior to recording conductive gel was used to form an electrical connection between the 

electrode and the scalp, and because electricity follows the path of least resistance 

impedances between them were kept low. This was achieved by removing the outer 

layer of dead skin cells with the wooden end of a small cotton-tipped swab until the 

impedances at each electrode were below 5k!. An impedance check was carried out 

half way through the study, before the start of the source judgment task, to ensure a 

good connection was sustained throughout the experiment. 

Due to the very small voltages detected at the scalp the recording needs to be amplified, 

and to enable storage and processing the signal must be converted from analogue to a 

digital signal. According to the Nyquist Theorem it is possible to convert the voltage 

fluctuations into numerical representations without losing information, as long as the 

digitisation rate is at least twice as high as the highest frequency being digitised, and the 

original signal contains frequencies twice as high as the digitisation rate. Violations of 

this rule can cause high frequencies to appear as low frequency components in the 
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digitized waveforms, a phenomenon known as aliasing. To try and prevent such aliasing 

a low-pass filter is used to attenuate high frequencies that are more than half the 

digitisation rate (see Luck, 2005, or Handy, 2005, for a greater discussion of filtering 

and the Nyquist Theorem).  

Filtering can also be used to reduce the noise present in the data. High frequency noise 

such as those caused by muscle movements (in the region of 100Hz) or electrical 

appliance noise (50Hz) can be filtered using the low-pass filter that helps to prevent 

aliasing. An additional high-pass filter can also be used to address low frequency noise, 

such as that caused by sweating and impedance drift (in the region of 0.01Hz). The 

current study used a SynAmps2 amplifier and Neuroscan 4.3 software (Neuromedical 

Supplies) for recording. Data was digitised at a rate of 250Hz, sampling at 4ms/point, 

and a band-pass filter of 0.1-40Hz was used to attenuate both high and low frequencies. 

Signals were amplified with a gain of 2010. 

4.6.3  ERP processing: 

The previous section discussed filtering methods used during EEG acquisition to try and 

reduce noise contamination in the EEG signal. Some of the main causes of noise include 

muscle activity, skin potentials, repositioning of electrodes and ocular artefacts. Whilst 

using the band-pass filter and trying to minimise participant movements are successful 

strategies for reducing EEG artefacts they are by no means foolproof. A series of 

additional steps are therefore typically taken during processing to try to minimise noise 

contamination including visually inspecting data after recording to identify and reject 

particularly noisy or saturated segments. 
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Ocular artefacts, caused by blinking and eye movements, are a main source of EEG 

contamination and are most evident at frontal electrodes. An important way to minimise 

eye movements is to encourage participants to focus on the centre of the screen with the 

use of fixation crosses, and screen centred stimuli. Furthermore, demonstrating the 

effects of eye movements on the EEG signal to participants before recording further 

emphasises the importance of minimising eye movements. All paradigms used in the 

current study included fixation crosses and screen centred stimuli to reduce eye 

movements, and participants were shown EEG noise properties before recording began.  

Despite attempting to reduce artefacts, the recorded EEG nonetheless contains some 

remaining noise. The effects of blink artefacts can be reduced through a variety of 

methods. One possibility is to include specific blink steps in the experiment where 

participants are asked to refrain from blinking during critical periods and encouraged to 

blink at set times, allowing blink artefacts to be easily identified and excluded from the 

data. However, creating ‘structured blinking’ in this way can add additional artefacts to 

the data, for example increased muscle tension around the eyes caused by the 

suppression of blinks, and increased cognitive demand as a function of executing a 

simultaneous blink monitoring task. Discarding trials containing blinks, or eye 

movements, in this way could vastly reduce the number of artefact free trials, and those 

remaining maybe misrepresentative of the complete data set.  

Another approach is to correct ocular artefacts. There is a relationship between the 

recorded electrooculogram (EOG) and EEG that can be used to predict the degree to 

which the EEG is distorted by the EOG, or ocular artefacts. The assumption is that the 

voltage recorded at a specific scalp electrode is EEG activity plus a proportion of the 

voltage generated by the eyes, as measured by the eye electrodes. The proportion of 
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EOG contributing to each scalp electrode can be calculated, using linear regression 

techniques, and then subtracted from the recording at each scalp electrode. Whilst this 

correction allows for the retention of more trials than other methods, it is limited in that 

just as the scalp electrodes can record ocular activity, the eye electrodes can record 

brain activity that is subsequently subtracted from the scalp electrode recordings. 

Despite its limitations it is this last method that was deemed most appropriate for the 

current study, which used the ocular artefact reduction procedure in Neuroscan Edit 

software (version 4.3). 

Probably the best method for eliminating background noise from data is to average 

together many trials of the same condition. In most cases the EEG noise makes it too 

difficult to see the activity relating to a single trial event, so trials that replicate the same 

experimental conditions are averaged together to reveal the event-related activity. The 

first stage in this process is to epoch the data around a specific event, such as a stimulus 

presentation, and then to align (i.e. time-lock) these epochs based on this common 

event. By averaging together a series of trials the background noise in the EEG (which 

is assumed to be unsystematic) will be averaged out, leaving only the ERP activity. 

Although the basic principle of averaging is straight forward, in practice it is not quite 

this simple – as is discussed below.  

There are two main complications with averaging. First it is assumed that background 

noise is irregular, and occurs on every trial. Whilst there are likely to be many cases of 

irregular background noise it is also possible that noise may become more prominent at 

certain times, for example during particularly tedious parts of the experiment, towards 

the end of the experiment when participants become tired and uncomfortable, or during 

periods where there is a sudden change in temperature. These changes in circumstance 
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mean that the chance of artefacts, from for example eye movements, muscle activity or 

sweating, are not random and may be more prominent in one condition than another. 

Intermixing conditions where possible can reduce the likelihood of condition-biased 

noise occurring by equating the chance of such artefacts being present in all conditions. 

A second assumption is that the EEG signal will be the same for every single trial of a 

condition, and that only noise varies. Unfortunately, in practice, this is not likely to be 

the case as trials vary from each other in terms of both signal amplitude and latency. 

Whilst variation in amplitude is not a substantial problem, as the averaged ERP will 

simply reflect the average amplitude, inter-trial variations in terms of latency can be 

much more problematic. If there are large latency variations between trials the average 

waveform will not only appear to have a broad temporal distribution, but it will also 

exhibit a smaller peak amplitude compared to waveforms that are much more closely 

aligned in time. There are two ways to counter this amplitude reduction; firstly by 

comparing area amplitude rather than peak amplitude, this measure will be equivalent 

for both the averaged ERP and the average of all the individual trials; and secondly by 

increasing the number of trials contributing to the average signal and thereby enhancing 

the signal-to-noise ratio.   

Averaging trials from individual subjects to make a grand average waveform, in 

addition to averaging individual participant trials, can help to reduce the impact of 

subject specific variations that might confound the results. Typically a trial number 

criterion is also set to ensure a good signal-to-noise ratio, excluding participants with an 

insufficient number of trials from final averages. In doing so the quality of data 

contributing to the grand averages is known to be of a certain standard. All analyses 

presented in this thesis have a criterion of at least 16 good trials per condition, and 
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participants with less than 16 trials in any of the relevant comparison conditions were 

excluded from that analysis. 

In the lead up to making averages, the EEG data in the current study was averaged time-

locked to stimulus onset over epochs of -100ms to +2000ms.  Additional filters were 

applied to detect artefacts due to drift, caused by changes in impedance (typically 

resulting from repositioning of electrodes because of participant movement) or 

decreases in skin impedance as a result of sweating. Trials where drift was greater than 

±75"V on any electrode were detected and excluded, as were trials where the signal 

exceeded ±100"V. As discussed in the previous section data was re-referenced off-line 

to re-create a linked mastoid recording. In addition each trial was baseline corrected by 

subtracting the amplitude from a “neutral” baseline period from the entire epoch, to 

ensure that all trials had the same starting amplitude. A pre-stimulus period of -100 to 

0ms was used for baseline correction as it was assumed that activity in this period 

would not be specific to the trial condition. Finally, data was smoothed using a rolling 

average, over successive 5 point smoothing window. 

Averages were made for each participant using responses to ‘old’ items correctly 

identified as ‘old’ (Hits) and ‘new’ items correctly identified as ‘new’ (CRs) Trials 

exceeding the upper and lower reaction time limits were excluded from these averages. 

Individual participant ERP waveforms were then averaged together to produce grand-

average ERPs for each condition in each task. In addition to splitting the data into hit 

and CR response groups, hit responses were further broken down into Hit/Correct and 

Hit/Incorrect groups in the source judgement task. Hit/Correct responses are trials 

where participants correctly identified the face as ‘old’ during the initial judgement, and 

also identified the correct phrase that accompanied the face during the study phase. 
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Trials in which the participants correctly identified the face as ‘old’ but failed to 

correctly identify the associated phrase (i.e. either responded incorrectly or made a 

‘don’t know’ response) were classified as Hit/Incorrect responses. 

4.6.4  ERP analysis 

The general aim of most ERP experiments is to gain some understanding about the 

neural activity associated with a specific cognitive function. The average waveform 

generated by a single condition represents all the processes engaged during this 

condition, making it impossible to isolate the activity relating to a specific cognitive 

process of interest. Consequently ERP experiments typically make comparisons of 

matched conditions that do and do not engage the specific process of interest to provide 

insight into the associated neural activity that is revealed by the method of subtraction 

(see Chapter 2 for a detailed discussion of the inferences that can be made from ERPs).  

In broad terms successful memory retrieval was the process of interest in the current 

study, and ERPs for correctly remembered stimuli were compared to correctly identified 

‘new’ stimuli to determine if the amplitudes of each condition were significantly 

different, providing a clear operational definition of successful retrieval from memory. 

Single-item contrasts were made between hit and CR ERPs, with an additional 

Hit/Correct, Hit/Incorrect and CR comparison for the source judgment task. The initial 

analysis focused on the 300-500ms and 500-800ms time periods, typically identified as 

capturing the neural correlates associated with familiarity and recollection. The mean 

amplitude recorded during each of these time-windows for the different electrodes and 

conditions were calculated and analysed using a repeated measures ANOVA. Initial 

analyses were conducted using the factors of condition (Hits/CRs), location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right), and 
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electrode site (inferior/medial/superior) to determine if there was a difference between 

the two conditions, and whether any such differences varied across the scalp. This 

initial ANOVA was run on data from electrodes F1, F2, F3, F4, F5, F6, FC1, FC2, 

FC3, FC4, FC5, FC6, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, P1, 

P2, P3, P4, P5, and P6 (as shown in Figure 4.4). The layout of the electrodes in the cap 

mean that the co-variance between each electrode is not homogenous, with electrodes 

adjacent to each other sharing greater co-variance compared to those further away, 

breaking the sphericity assumption of the ANOVA.  Where necessary ANOVA results 

were therefore corrected for non-sphericity using the Greenhouse-Geisser correction and 

corrected degrees of freedom are reported. 

The initial ANOVA described above assesses differences in amplitude between 

conditions and whether any differences vary across the scalp. However, differences 

evident across the scalp in this initial analysis may be caused by differences in generator 

strength rather than by differences in the distribution of underlying generators. If the 

difference is caused by a single generator then the change in generator strength between 

conditions results in a multiplicative effect across electrode sites, for example if the 

generator strength in condition A is twice that in condition B, the voltage recorded at 

electrode sites in condition A will be double those recorded in condition B. 

In order to determine if different generators, rather than differences in generator 

strength, cause the different scalp distribution, McCarthy and Wood (1985) suggest that 

the data is normalised (or rescaled) so that differences in amplitude across conditions 

are removed. Data are rescaled using the max/min method in which the smallest 

(minimum) amplitude in the condition is subtracted from the original value for that 

electrode, and this new figure is divided by the difference between the largest 
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(maximum) and smallest values [i.e. Rescaled value = (original value – minimum value) 

/ (maximum value – minimum value)]. By rescaling the data in this way the values at 

each electrode will range between 0 and 1, and amplitude differences between the two 

conditions will no longer be distorted by the multiplicative effect, indicating that 

significant condition by location/hemisphere/site interactions are not caused by the 

difference in generator strength between conditions, but reflect activation from different 

generators (although see Urbach and Kutas, 2002 for a discussion of the effectiveness of 

this method). Significant condition by location/hemisphere/site interactions are 

therefore followed up with a second ANOVA, using the same factors as in the initial 

analysis, conducted on data rescaled in accordance with the max/min method. 

 

Figure 4.4. Layout of the scalp electrodes. 
Coloured electrodes represent those used in the 
initial ANOVA. Horizontally from left to right 

electrodes on the left are electrode numbers 5, 3, 
1, and on the right are numbers 2, 4, 6. 

4.7  DNA collection and processing 

Following termination of the EEG recording DNA samples were collected from each 

participant in the form of saliva samples using Oragene OG-100 DNA collection vials 

(DNA Genotek Inc: www.dnagenotek.com). In accordance with Oragene guidelines 

samples were stored at room temperature for approximately one year, and were sent to 

the Welcome Trust Clinical Research Facility, Edinburgh (WTRCF Edinburgh: 
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www.wtcrf.ed.ac.uk) for processing. DNA was extracted from the saliva using Oragene 

Purifier OG-L2P-5 and quantified using Picogreen dye. SNP genotyping was conducted 

using an Applied Biosystems 7900HT Fast Real-Time PCR system, with Taqman SNP 

assays rs6265, rs17070145, rs7412, rs429358, rs4680, rs263249, rs8074995, rs3730386 

(Applied Biosystems: www.appliedbiosystems.com). 

4.8  Mental health and personality assessment. 

Participants completed the PDSQ (Zimmerman, 2002), a brief self-report questionnaire 

used to screen for DSM-IV Axis I disorders, to ensure participants were not suffering 

from undiagnosed mental health problems that may influence the outcome of the study.  

Participants who scored above the cut-off point on the following subscales (Major 

Depressive Disorder/Suicidality, Bulimia/Binge-Eating Disorder, Obsessive-

Compulsive Disorder, Panic Disorder, Psychosis, Agoraphobia, Social Phobia, Alcohol 

Abuse/Dependence, Drug Abuse/Dependence, and Generalised Anxiety Disorder) were 

asked some brief follow-up questions to supplement the initial PDSQ questionnaire. If 

responses indicated that the individual may be affected by one of these conditions or 

(any other equivalent indication was given at any point during the study) participants 

data was excluded from any investigations in to biological variations; this exclusion 

criteria was intended to remove possible confounds with neurotransmitter or hormone 

levels. Participants scoring above threshold on the Post Traumatic Stress Disorder 

subscale were automatically excluded from biological variation analysis as no follow-up 

on this subscale was conducted. Finally, at the end of the first session, participants 

completed the EPQ-R (Eysenck & Eysenck, 1991) providing measures of nine 

personality traits: Psychoticism, Extraversion, Neuroticism/Emotionality, Lie, 

Addiction, Criminality, Impulsiveness, Venturesomeness, and Empathy. 
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4.9  Psychometric/Neuropsychological tests 

Participants completed three psychometric/neuropsychological test batteries in the 

second session, WMS-IIIUK (Wechsler, 1998), WASI (Wechsler, 1999) and 

CANTABeclipse (Cambridge Cognition Ltd, 2006). The WMS-IIIUK  (Wechsler, 1998) 

is a tool used to measure specific memory functions with a focus on immediate, delayed 

and working memory, using tests of both recognition and recall across both auditory 

and visual modalities. Participants completed the six primary subtests (Logical Memory 

I & II, Verbal Paired Associates I & II, Letter-Number Sequencing, Faces I & II, Family 

Pictures I & II, and Spatial Span) and two additional optional subtests (Digit Span and 

Visual Reproduction I & II). The second test battery was the WASI (Wechsler, 1999), a 

four-subtest assessment (tests of Vocabulary, Block Design, Similarities, and Matrix 

Reasoning) that generates Verbal, Performance and Full Scale IQ scores allowing 

estimates of verbal, non-verbal, and general cognitive functioning to be made. 

Finally, the CANTABeclipse (Cambridge Cognition Ltd, 2006) is a computerised 

battery of non-linguistic tasks designed to target a series of cognitive functions. 

Participants completed six tasks from the CANTABeclipse (Intra-Extra Dimensional 

Set Shift [IED], Rapid Visual Information Processing [RVP], Stockings of Cambridge 

[SOC], Spatial Recognition Memory [SRM], forwards and backwards Spatial Span 

[SS], Spatial Working Memory [SWM]) providing an assessment of attention, executive 

function and visual memory. All instructions for the administered tasks were taken from 

the manuals provided with each test battery. 
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4.10  Overview of general methods 

One hundred and twenty nine participants completed two experimental sessions lasting 

approximately four hours each. Participants completed a series of ERP memory tasks, 

psychometric and neuropsychological tests, and provided a sample of DNA in the form 

of saliva. Data from all participants were collated and subsequently divided into groups 

to analyse various factors that were hypothesised to influence memory performance and 

the neural activity associated with recognition memory. Details pertaining to the 

division and analysis of data with regards to specific factors will be discussed in the 

relevant empirical chapters. Due to the large number of possible varying factors that 

were investigated the data was re-pooled after each analysis of an individual 

characteristic. This re-pooling means that data from a participant could be re-sampled 

multiple times in the analyses of several different characteristics and interpretation of 

the data and any findings should bear this in mind. Where possible some characteristics 

(e.g. behavioural performance) were controlled for, and any instances where factors 

have been controlled will be highlighted in the relevant empirical chapters. 
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Chapter 5   

Single Item Recognition Memory 
 

This chapter presents the overall behavioural and ERP results from the four single item 

recognition memory tasks completed in session one (described in Chapter 4). The 

purpose of this chapter is to understand both the behavioural and ERP effects produced 

by the tasks, before looking at the impact various individual differences have on these 

outcomes in subsequent chapters. A brief summary of the ERP findings from 

recognition memory studies presented in Chapter 2 will be given, leading to an outline 

of the current hypotheses. The chapter will then go on to discuss the criteria used to 

select the contributing data and present the findings from each single item recognition 

memory task (words, pictures, faces, and voices), as well as an analysis of material 

specificity effects. Finally, the findings will be considered in relation to previous 

literature. 

5.1  Introduction 

As outlined in Chapter 2, studies investigating recognition memory using ERPs have 

shown a series of old/new effects that are thought to reflect underlying recognition 

memory processes. Whilst there is some variability in the findings reported, it is 

generally accepted that studies using words have identified a set of successful 

recognition memory old/new effects including putative correlates of familiarity (the 

300-500ms bilateral-frontal effect) and recollection (the 500-800ms left-parietal effect). 

There is also increasing evidence to suggest material specific differences in the neural 

correlates of recognition, with pictorial stimuli (i.e. line drawings and photographs of 

objects, scenes and faces) generally exhibiting more anteriorly distributed effects than 
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verbal stimuli (i.e. words). More specifically, studies using pictorial stimuli have shown 

the parietal recollection differences seen for words, but the overall topography of this 

old/new effect extends more anteriorly then is typically seen for word stimuli (Yick & 

Wilding, 2008; Galli & Otten, 2011).  

In addition to the parietal old/new differences discussed above, several studies have 

reported additional frontal differences associated with recognition memory for faces 

(MacKenzie & Donaldson, 2007, 2009; Yick & Wilding, 2008; and evident, although 

not discussed, in the data presented by Curran & Hancock, 2007). This additional 

frontal old/new effect is maximal between approximately 500-700ms (although there is 

evidence to suggest an onset as early as 300ms, see Yick &Wilding, 2008), and is 

present on trials where correct associated information is reported, but not on trials 

where no associated information is reported (MacKenzie & Donaldson, 2007), 

suggesting that it may reflect recollection processes. Whilst at first glance this late 

frontal effect may resemble an early onsetting late right frontal effect, associated with 

post-retrieval monitoring (Wilding & Rugg, 1996), MacKenzie & Donaldson (2007) 

consider this additional frontal effect for faces to be independent, firstly because of the 

differing topographies of the two effects, and secondly because the face frontal effect is 

modulated by the type of information recollected (i.e. retrieval of associated names 

results in a larger effect than retrieval of other details), which is not the case for the late 

right frontal effect. 

In relation to familiarity effects for faces Yovel and Paller (2004), and MacKenzie and 

Donaldson (2007) report posterior effects for their familiarity contrast, whilst a 

bilateral-frontal familiarity effect, consistent with findings from word studies, has been 

reported by Curran and Hancock (2007). The distributional differences of the familiarity 
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effects observed in these studies may relate to the heterogeneity of stimuli, with Yovel 

and Paller (2004), and MacKenzie and Donaldson (2007) both using stimuli that were 

more homogenous in appearance than Curran and Hancock (2007). These differences in 

stimulus heterogeneity may influence the degree to which familiarity and/or recollection 

is used as a basis for discerning if the face is ‘old’ or ‘new’, resulting in different 

distributions across studies (Donaldson & Curran, 2007). These studies clearly show 

material specific differences in the ERP effects associated with successful recognition 

memory, however the parameters of the material specificity remains unclear (e.g. in 

terms of the exact stimuli variations resulting in such differences). 

The current study employed four single item recognition memory tasks, looking at 

memory for verbal stimuli (visually presented words and auditorily presented voices) 

and pictorial stimuli (pictures and faces - both presented in a photographic format). 

These four tasks were selected to allow for a comparison across stimuli types, providing 

two tasks rich in semantic content, with a high degree of heterogeneity between stimuli, 

one verbal (words) and one pictorial (pictures), and two tasks semantically 

impoverished, with a low degree of heterogeneity between stimuli, one verbal (voices) 

and one pictorial (faces). 

It is hypothesised that, for words, the results from this study will be consistent with the 

wider literature, showing an early bilateral-frontal old/new effect, followed by a later 

left lateralised parietal old/new effect. For the picture stimuli it is expected that there 

will also be an early bilateral-frontal old/new effect followed by a later parietal effect, 

although it is hypothesised that this parietal effect will be more anterior than the word 

equivalent. The stimuli used in the face task overlap with those presented in MacKenzie 

and Donaldson (2007, 2009) and the current study is therefore predicted to replicate 
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their findings, showing early frontal and parietal old/new differences, and a later 

parietally distributed old/new effect, with an additional anterior old/new effect in the 

500-800ms time-window, as discussed above (not to be confused with the late right 

frontal effect associated with post-retrieval monitoring discussed in Chapter 2). 

Despite the existence of a substantial number of studies investigating successful 

recognition memory none have employed recognition of voices. ERP studies using 

voice stimuli have restricted their use to a single male and female voice in a source 

judgement task, presenting words auditorily in either voice and instructing participants 

to remember both word and presenter gender (Wilding & Rugg, 1996; Senkfor & Van 

Petten, 1998). A recent study using fMRI by Stevens (2004) looked at short-term 

memory for voices, however, comparing neural activity for voices, words and tones 

using a two-back task8. Stevens (2004) found distinct patterns of neural activity for 

voices (greater effects in the left-temporal, right-frontal and right-medial parietal areas) 

compared to words (effects in left-frontal and bilateral-parietal areas), suggesting 

differences between voice and word stimuli in relation to short-term working memory. 

Whilst this study does not look at longer-term recognition memory for voices and it 

only used six voices (three male and three female), it does suggest that there may be 

differences in the neural processes involved in voice and word recognition. It is 

therefore hypothesised that the ERP correlates for voice recognition will be distinct 

from those for word recognition, however it is not obvious from previous literature how 

these correlates will differ. 

Analysis of the data from the current study will initially focus on each of the four single 

item tasks individually, starting with words followed by pictures, faces and voices. A 
                                                
8 The two-back task employed by Stevens (2004) involved participants indicating if a presented stimulus 
matched the stimulus presented two trials previously, i.e. was it the same voice, or in the word condition 
the same word, as presented before. 
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more detailed investigation into material specificity effects will then be conducted with 

an overall comparison of the different stimulus materials. Before presenting these 

results a brief overview of the inclusion criteria and analysis strategy will be given in 

the following methods section. 

5.2  Methods 

All details pertaining to participant recruitment, experimental procedures, and EEG 

procedures are reported in the General Methods (Chapter 4). A performance criterion of 

Pr # 0.2 was set per condition, with participants with a Pr < 0.2 excluded from the 

analysis, this ensured participants scored at least 20% above chance, and were therefore 

likely to be basing decisions on some degree of memory retrieval rather than simply 

making guess responses. Initial examination of the data included ‘all participants’ who 

met these criteria for each task separately (Words n=122, Pictures n=128, Faces n=52, 

Voices n=29), followed by an analysis of possible material specificity effects conducted 

with participants who met the inclusion criterion across all four single item tasks 

(n=18). 

Behavioural results for average recognition response rates (rounded to the nearest 

integer), discrimination measures, and response times (rounded to the nearest integer) 

are reported for each comparison group and task, with standard deviation scores given 

in brackets. Preliminary ERP analysis for each single item task follows the procedure 

outlined in the General Methods (Chapter 4). Details of any subsidiary analysis 

conducted are provided alongside the associated results, with only the highest level 

interaction reported for these subsidiary analyses.  



 Single Item Recognition Memory 

- 124 - 

5.3  Results 

5.3.1  Word old/new recognition task: 

5.3.1.1  Behavioural results 

Participants were successfully able to complete the word task with an average hit rate of 

73% (s.d.12%), and a false alarm rate of 18% (s.d.11%). Mean discrimination accuracy 

(Pr = 0.54, s.d. 0.17) was above chance level [t(121)=34.53, p<0.001], and overall 

participants exhibited a conservative decision bias with a mean Br of 0.39 (s.d. 0.16). 

Mean response times for hits were 823ms (s.d. 138ms), and 898ms (s.d. 157ms) for 

CRs.  

5.3.1.2  ERP results 

Figure 5.1 shows grand-average ERPs for word hit and CR responses at representative 

electrode sites across frontal, central and parietal locations; the largest old/new 

difference appears to be over left-parietal sites. The distribution of the old/new 

difference for the 300-500ms and 500-800ms time-window is illustrated in Figure 5.2, 

showing that the difference is centrally distributed in the 300-500ms time-window 

followed by a left-parietal distribution in the 500-800ms window. 
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Figure 5.1 Grand average ERP waveforms for the recognition memory for words 
task, at representative frontal, central and parietal electrode sites, for hit and CR 

responses. Waveforms generated from ‘all participants’ who met the inclusion 
criteria (n=122). The vertical scale indicates electrode amplitude, measured in 

microvolts, whilst the horizontal scale indicates change in time, measured in 
milliseconds. 

 

 
Figure 5.2 Topographic maps showing the 

distribution of the old/new differences for the word 
recognition task, Two latency regions are shown, 
300-500ms and 500-800ms, along with scale bars 
to show the size of the old/new difference. Maps 

show the subtraction of the grand average ERP for 
CRs from grand average ERP for hits. 

Analysis from 300-500ms:  

The ERP data were analysed using ANOVA, with factors of condition (Hits/CRs), 

location (frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right), 

and electrode site (inferior/medial/superior) as outlined in Chapter 4. Analysis of the 

300-500ms time-window with a global ANOVA revealed a main effect of condition 
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[F(1,121)=42.27, p<0.001], indicating that hit responses exhibit significantly more 

positive going activity than CRs. A significant condition by site interaction was also 

found [F(1,127)=32.37, p<0.001], indicating old/new effect magnitude was larger at 

superior electrode sites. As is evident from the topographic map, the early effect seen 

for words is broadly distributed, bilaterally across the scalp, with a central rather than 

frontal maximum. Visual inspection revealed the old/new difference to be maximal at 

electrode CPZ in the 300-500ms time-window, with a t-test confirming that the 

difference between conditions at this electrode was significant [t(121)=6.87, p<0.001].  

Analysis from 500-800ms:  

Analysis of the 500-800ms time-window revealed a significant main effect of condition 

[F(1,121)=42.55, p<0.001],  and a significant interaction between condition, location 

and hemisphere [F(1,160)=6.87,  p=0.005] reflecting the presence of positivity for hits 

that is larger over left than right hemisphere electrodes at posterior locations, but 

bilaterally distributed over frontal and central locations. There was also a significant 

condition by site interaction [F(22,129)=21.86, p<0.001], indicating that the old/new 

effect was largest at more superior electrode sites; and a condition by location by site 

interaction [F(2,266)=6.69, p=0.001] indicates that this is only the case at central 

locations. Finally a significant four-way (condition, location, hemisphere, site) 

interaction was found [F(3,395)=10.16, p<0.001], reflecting the fact that the old/new 

effect is maximal over the left hemisphere at centroparietal and parietal electrodes (and 

largest at medial sites) whereas at frontal and central locations the old/new effect is 

bilaterally distributed (and maximal at superior sites). Visual inspection of the data 

showed that the size of the old/new effect was maximal at electrode P3 in the 500-
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800ms time-window, with a t-test confirming that the difference between conditions at 

this electrode was significant [t(121)=7.7, p<0.001]. 

Analysis comparing the old/new effects in the two time-windows revealed a significant 

time by location by hemisphere by site interaction [F(3,316)=9.45, p<0.001]. As the 

preceding analyses show, this reflects the change from a central maximum to a left-

parietal old/new effect. Importantly, follow-up topographic analysis using data rescaled 

to take account of overall differences in amplitude between the two conditions 

(McCarthy and Wood, 1985), also revealed a significant four-way interaction between 

time, location, hemisphere and site [F(3,324)=7.63, p<0.001], suggesting that the 

topographically distinct effects in the 300-500ms and 500-800ms time-windows are a 

reflection of distributional rather than just magnitude differences. 

5.3.1.3  Discussion 

The present experiment required participants to complete a simple old/new recognition 

task for words.  The behavioural results show that participants were successfully able to 

complete the task and overall exhibited a conservative bias, indicating a tendency to 

respond ‘new’ if unsure. Response times indicate that on average participants were 

slightly quicker to make correct ‘old’ judgements than correct ‘new’ judgements. 

ERPs for hit and CR responses were contrasted in two time-windows (300-500ms and 

500-800ms) that are thought to best capture the ERP neural correlates of familiarity and 

recollection. The ERP waveforms (Figure 5.1) and topographic maps (Figure 5.2) show 

clear old/new differences for successful recognition memory of words in these time-

windows. Statistical analysis revealed significant differences in the 300-500ms time-

window with hits exhibiting more positive activity than CRs, a difference greater over 

superior electrode sites. However, this old/new effect was found to be maximal at 
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electrode CPZ rather than bilateral-frontal electrodes suggesting relatively weak 

evidence for a contribution of familiarity to retrieval. By contrast, data from the 500-

800ms time-window revealed clear evidence of a left-parietal old/new difference, 

maximal at electrode P3. Importantly, comparisons of the two time-windows revealed a 

statistically significant change in distribution, from a widespread bilateral effect 

initially, to the left-parietal effect becoming prominent in the later time window.  

The early old/new effect is less frontally distributed then is often reported in the 

literature, which may be due to temporal overlap with the onset of the left-parietal 

old/new effect evident in the later time-window. Alternatively, the more widespread 

effect may reflect less engagement of familiarity than is typically seen in recognition 

tasks, and a heavier reliance on recollection. Unfortunately, estimates of familiarity and 

recollection cannot be made with the current paradigm, making it difficult to assess the 

contributions of either process. However, overall these results generally replicate the 

findings reported in the literature for word stimuli, which show an early ~300-500ms 

bilateral-frontal effect, followed by a later ~400-800ms left-parietal effect (for a review 

see Rugg & Curran, 2007). 

5.3.2  Picture old/new recognition task: 

5.3.2.1  Behavioural results 

Performance on the picture task was better than for words, with a mean hit rate of 83% 

(s.d.12%), and a false alarm rate of 7% (s.d. 6%). Mean discrimination accuracy (Pr = 

0.76, s.d. 0.15) was above chance level [t(127)=59.33, p<0.001], and participants again 

showed an overall conservative decision bias (Br = 0.26, s.d. 0.18) indicating a 

tendency for participants to respond ‘new’ if they were unsure. Mean response times 
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were slightly quicker for the picture task than the word task with a mean hit response 

time of 802ms (s.d. 136ms), and a mean of 852ms (s.d. 146ms) for CRs.  

5.3.2.2  ERP results 

Figure 5.3 shows grand-average ERPs for picture hit and CR responses. A divergence 

between conditions is evident across all electrodes starting at approximately 300ms, 

with hits becoming more positive going than CRs, tailing off between approximately 

700ms and 1000ms (depending on electrode site). The distribution of this old/new 

difference can be seen from the topographic maps presented in Figure 5.4, which shows 

an early anterior distribution, followed by a more centrally distributed difference. 

 
Figure 5.3 Grand average ERP waveforms for the recognition memory for 

pictures task (n=128). Data shown as in Figure 5.1. 

 

Figure 5.4 Topographic maps showing the 
distribution of the old/new difference for the picture 

recognition task. Data shown as in Figure 5.2.  
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Analysis from 300-500ms:  

A main effect of condition [F(1,127)=106.94, p<0.001] was found between 300-500ms, 

illustrating that hits were more positive going than CRs. A significant condition by 

location interaction [F(1,149)=12.7, p<0.001] indicates that the old/new difference was 

greatest at anterior sites; a condition by hemisphere interaction [F(1,127)=4.52, 

p=0.036] shows that the difference was largest over the left hemisphere; and a 

condition, location, hemisphere interaction [F(2,206)=8.91, p=0.001] indicates that the 

difference in the size of the old/new effect between hemispheres became larger the more 

posterior the location. A condition by site interaction [F(1,140)=69.75, p<0.001] was 

also evident, showing that the old/new effect was largest at superior sites; and a 

condition, hemisphere, site interaction [F(1,156)=5.41, p=0.016] indicates that there 

was greater variability in the magnitude of the effect across sites in the right hemisphere 

than across sites in the left hemisphere. Finally, there was also a significant interaction 

between condition, location, hemisphere and site [F(4,481)=3.59, p=0.008]. The 4-way 

interaction indicates that hemispheric differences in old/new effect magnitude were only 

evident over more posterior locations, but in addition, whilst a relatively symmetrical 

hemispheric distribution is found over frontal locations (where effect size is maximal at 

superior sites and becomes smaller at inferior sites) over posterior locations the degree 

of asymmetry varies as a function of site (with the magnitude of the old/new difference 

much more uniform across left hemisphere sites than right hemisphere sites). 

Subsidiary analyses of the data with a three-way ANOVA looking at factors of 

condition, hemisphere and site at each of the five electrode locations (frontal, 

frontocentral, central, centroparietal and parietal) support the interpretation of the four-

way interaction. Significant condition by site interactions were found for both the 
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frontal [F(1,142)=49.08, p<0.001] and frontocentral [F(1,145)=46.04, p=<0.001] 

locations, indicating that the difference between hits and CRs was largest over superior 

sites, and that there was no significant hemispheric differences at these locations. 

Significant condition by hemisphere by site interactions were then found for central 

[F(2,195)=4.89, p=0.015], centroparietal [F(1,166)=10.6, p<0.001] and parietal 

locations [F(1,157)=8.69, p=0.002], indicating hemispheric differences in the size of the 

old/new effect (where the effect was biggest over the left hemisphere), and that whilst 

the effect was still greatest at superior sites the effect distribution over left hemisphere 

sites were more uniform than over right hemisphere sites. Finally, visual inspection of 

data revealed that the old/new effect in the 300-500ms time-window was maximal at 

electrode FCZ and a paired-samples t-test showed that the difference between hits and 

CRs at this electrode was significant [t(127)=10.22, p<0.001]. 

Analysis from 500-800ms:  

A main effect of condition [F(1,127)=95.72, p<0.001] was also evident in the 500-

800ms time-window, again showing that, overall, hits were more positive going than 

CRs. A significant condition by location interaction [F(1,153)=4.29, p=0.033] indicates 

that the size of the old/new effect was largest at the central electrodes; and a significant 

condition by location by hemisphere interaction [F(1,165)=8.06, p=0.002] indicates 

hemispheric differences in the size of the old/new effect at different locations, with the 

old/new effect largest over the right hemisphere at frontal electrodes, but becoming 

progressively larger over the left hemisphere the more posterior the electrode. The 

global ANOVA further revealed a significant condition by site interaction 

[F(1,138)=31.86, p<0.001], indicating a larger old/new effect over superior electrodes; a 

significant condition by location by site interaction [F(2,262)=9.14, p<0.001] shows that 
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old/new effect magnitude is largest at superior sites, with greatest variation between 

sites at central locations; and a significant condition by hemisphere by site interaction 

[F(1,173)=5.47, p=0.012] shows that the size of the old/new effect is greater at superior 

sites, with more variation between sites over the right hemisphere. Finally a significant 

interaction between condition, location, hemisphere and site [F(3,368)=7.74, p<0.001] 

reveals a bilateral distribution over anterior locations with greater hemispheric 

asymmetry over posterior locations, where the effect was greatest at medial sites in the 

left hemisphere. 

A subsidiary three-way ANOVA was conducted looking at factors of condition, 

hemisphere and site at each of the five electrode locations (frontal, frontocentral, 

central, centroparietal and parietal). Significant condition by site interactions were 

found for both frontal [F(1,145)=12.61, 0<0.001] and frontocentral [F(1,141)=28.72, 

p<0.001] locations, indicating that the old/new effect was greater at superior sites over 

anterior locations. As in the 300-500ms time-window significant condition by 

hemisphere by site interactions were found for central [F(2,211)=5.27, p=0.009], 

centroparietal [F(1,174)=11.19, p<0.001], and parietal [F(1, 150)=17.39, p<0.001] 

locations. As described above the old/new effect size at posterior locations is maximal 

at medial sites in the left hemisphere and is much more uniform in distribution across 

sites than in the right hemisphere. The old/new difference over the right hemisphere is 

maximal at superior sites and more graded than over the left hemisphere, becoming 

smaller towards inferior sites. In the 500-800ms time-window visual inspection 

indicated that the old/new effect was maximal at electrode CZ. A t-test confirmed that 

the difference between conditions at this electrode was significant [t(127)=10.3, 

p<0.001]. 
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As can be seen in Figure 5.4 the analyses described above demonstrate that there are 

significant old/new differences for picture recognition in both 300-500ms and 500-

800ms time-windows for the ‘all participants’ group. An additional four-way ANOVA 

including factors of time (300-500ms/500-800ms), location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 

(inferior/medial/superior) was conducted on old/new difference scores to see if the 

effects found in the two time-windows were different from each other. A significant 

time by location by hemisphere by site interaction [F(3, 313)=3.70, p=0.018] was 

found, indicating that across the two time-windows the distribution of the old/new 

effects differed.  

The analysis comparing effects in the two time-windows was repeated using rescaled 

data, revealing a significant four-way time by location by hemisphere by site interaction 

[F(3,313)=3.77, p=0.017], confirming that the old/new effects found in each of these 

time-windows were topographically distinct. As the preceding analysis demonstrates, 

over the majority of locations the old/new effect size is largest in the 500-800ms time-

window, with the exception of the frontal location where the effect is largest in the 300-

500ms window reflecting the presence of an early bilateral-frontal old/new effect. 

Moreover, whilst the pattern of activity appears fairly consistent across the two 

hemispheres between 300-500ms, there is a clear asymmetry over posterior locations in 

the 500-800ms time-window consistent with the emergence of a left-parietal old/new 

effect. Whilst a left-parietal old/new effect may be present during the later time 

window, the distribution of the effect is more anteriorly focused than would be expected 

for a left-parietal effect. However, the analyses clearly support the traditional view that 

two temporally and topographically dissociable old/new effects are elicited by 

recognition memory for pictures. 
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5.3.2.3  Discussion 

As with the previous task participants completed a simple old/new recognition task, this 

time looking at successful recognition memory for pictures. The behavioural results 

again indicated that participants were able to perform the task well, with high hit rates 

and low false alarm rates resulting in high discrimination accuracy scores. Overall hit 

responses were made quicker than CR responses, and as per the word task decision bias 

scores indicated a conservative bias. 

Statistical analysis of the ERPs indicated an early bilateral-frontal old/new effect 

followed by a more posterior old/new effect that had a clear left hemisphere 

distribution. The early 300-500ms effect was maximal at FCZ, and the 500-800ms 

effect at CZ. Topographic comparisons of the two time-windows revealed that overall 

old/new effect magnitude was greater in the later time-window, except at frontal 

electrodes where the effect was largest in the 300-500ms window. In addition the 

old/new effect was more bilateral in the early time-window with much greater 

asymmetry across locations between 500-800ms. 

Previous literature suggested that old/new ERP differences for pictures exhibit an early 

bilateral-frontal old/new effect between approximately 300-500ms and a later parietal 

old/new effect in the 500-800ms time-window (Curran & Cleary, 2003; Duarte, 

Ranganath, Winward, Hayward & Knight, 2004; Galli & Otten, 2011; Schloerscheidt & 

Rugg, 1997, 2004; Vilberg, Moosavi & Rugg, 2006; Vilberg & Rugg, 2009). The early 

bilateral-frontal old/new difference in the 300-500ms time-window in the current study 

is consistent with this literature. In addition, statistical analysis confirms that the current 

findings in the 500-800ms time-window are also consistent, with a more posterior left 

hemispheric old/new difference. Although the topographic maps shown in Figure 5.4 
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indicate a centrally distributed old/new difference, with the statistical maxima at 

electrode CZ in the 500-800ms time-window, this central maximum appears visually 

very similar to the anteriorly extended parietal effect reported by Galli and Otten 

(2011). 

In sum, the results from the current study indicate that successful recognition memory 

for pictures results in an early bilateral-frontal old/new effect in the 300-500ms time-

window followed by a more posterior old/new effect with a left hemispheric bias in the 

500-800ms time-window. Overall the results are consistent with previous findings, 

although the old/new effects in the 500-800ms time-window in the current study appear 

to have a more anterior distribution than is typically reported. 

5.3.3  Face old/new recognition task: 

5.3.3.1  Behavioural results 

The mean hit rate for the face task was 61% (s.d. 9%), with a comparatively high false 

alarm rate of 33% (s.d. 8%). Mean discrimination accuracy (Pr = 0.28, s.d. 0.07) was 

above chance level [t(51)=29.30, p<0.001], with participants showing an overall neutral 

decision bias (Br = 0.46, s.d. 0.10). In comparison to the word and picture tasks 

participants took considerably longer to make their response, with a mean hit response 

time of 1015ms (s.d. 191ms), and a mean of 1105ms (s.d. 240ms) for CRs. These 

extended response times reflect the poorer performance seen for faces indicating that 

participants found this task more difficult than the words and pictures. 

5.3.3.2  ERP results 

Hit and CR ERP waveforms from the face task are shown in Figure 5.5. The differences 

between hit and CR responses are much smaller than in the previous picture task, 
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however, starting around 500ms hits are slightly more positive going than CR 

responses. This divergence is evident until approximately 800ms, when CR responses 

appear more positive going than hits, especially over parietal electrodes. The 

distribution of the old/new difference can be seen in the topographic maps shown in 

Figure 5.6. There appears to be little old/new difference in the 300-500ms time-window, 

but a left parietally distributed old/new effect between 500-800ms.  

 

Figure 5.5 Grand average ERP waveforms for the recognition memory for faces 
task (n=52). Data shown as in Figure 5.1. 

 

 
Figure 5.6 Topographic maps showing the distribution 
of the old/new difference for the face recognition task. 

Data shown as in Figure 5.2. 
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Analysis from 300-500ms & 500-800ms:  

No significant differences between hit and CR responses were found from 300-500ms. 

By contrast from 500-800ms there was a significant interaction between condition, 

location, hemisphere and site [F(3,174)=2.6, p=0.046]. Subsidiary analysis was 

conducted to break down the four-way interaction, with an ANOVA performed on 

factors of condition, hemisphere and site, at each location. No significant effects were 

found for the frontal, frontocentral, central, or centroparietal locations. However, the 

parietal location revealed significant interactions between condition and hemisphere 

[F(1,51)=4.34, p=0.42] and condition, hemisphere and site [F(1,62)=4.38, p=0.033]. 

These interactions indicate that over parietal electrodes a positive going old/new effect 

is present, an effect which is larger over the left than right hemisphere, increasing in 

size at more lateral electrodes. Consistent with this, visual inspection of the data 

indicated that the maximal old/new effect for the 500-800ms time-window was 

electrode CP5, with a t-test showing that the difference between conditions at this 

electrode was significant [t(51)=2.04, p=0.047]. 

5.3.3.3  Discussion 

The present task investigated successful recognition memory for faces. Performance on 

this task was much poorer than in either the word or picture task with low hit rates and 

high false alarm rates resulting in low discrimination accuracy, and considerably longer 

response times than were seen in the previously reported tasks. Decision bias was also 

higher than for the word and picture tasks, indicating participants exhibited a neutral 

bias in which they were equally likely to respond ‘old’ as ‘new’ if unsure. There was a 

large reduction in the number of participants who met the inclusion criteria for the faces 
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task, with less than half the participants from the word and picture tasks meeting 

criteria, reflecting the difficult nature of this task.  

As per the previously reported tasks, ERP activity for correctly recognised ‘old’ and 

‘new’ faces were analysed in the 300-500ms and 500-800ms time-windows. The 

differences between hit and CR responses for face stimuli are much smaller than was 

evident for the word and picture stimuli. Statistical analysis of the data did not show any 

significant differences between the two conditions in the 300-500ms time-window, 

however in the 500-800ms time-window there was a significant left hemispheric 

difference over the parietal location with hits more positive going than CRs, a 

difference maximal at inferior sites. 

Previous literature on face recognition memory has suggested a parietal old/new effect 

on-setting at approximately 500ms (Curran & Hancock, 2007; MacKenzie & 

Donaldson, 2007; Yick & Wilding, 2008), with some studies reporting an additional 

overlapping frontally distributed ERP effect (MacKenzie & Donaldson, 2007; Yick & 

Wilding, 2008). The left parietal old/new effect seen in the 500-800ms time-window in 

the current study is consistent with previous findings, although there was no statistical 

evidence to suggest an additional frontal effect. Visual inspection of the topographic 

maps (Figure 5.6) does however indicate a spread of activity from the left parietal 

electrodes over to frontal electrodes between 500-800ms.  

The absence of significant anteriorly distributed old/new differences in the 500-800ms 

time-window that have been reported by some studies, may relate to the poor 

performance on this task. Discrimination accuracy scores for the current study were 

lower than those reported in previous studies, most likely a result of the larger study/test 

block used in the current study compared to previous studies. MacKenzie and 
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Donaldson (2009) report a frontally distributed effect for faces, not evident for names, 

in their recollection contrast. If the additional frontal effect relates in someway to the 

process of recollection, than the absence of this additional frontal effect in the current 

study, coupled with the poor performance, suggests that participants were basing their 

responses predominately on familiarity. However, the presence of a significant left-

parietal old/new effect in this time-window, which is typically thought to reflect 

recollection, would suggest otherwise.  

The absence of a significant old/new effect in the 300-500ms time-window is also 

interesting to note. Typically (in particular relating to word stimuli) a bilateral-frontal 

old/new difference is evident in the 300-500ms time-window and is thought to reflect 

familiarity. The current study shows no statistical evidence of a bilateral-frontal old/new 

effect, nor any visual evidence to suggest the presence of a statistically weak bilateral-

frontal old/new effect (as was the case for the single item words). Previous face 

recognition memory studies present a mixture of results, with some studies reporting 

old/new differences in the 300-500ms time-window (Curran & Hancock, 2007; Galli & 

Otten, 2011; MacKenzie & Donaldson, 2007; Yick & Wilding, 2008), and others 

showing no early effects in some conditions (Yovel & Paller, 2004). Yovel and Paller 

(2004) report a frontally distributed old/new difference between 300-500ms for the 

recollection contrast but not for the familiarity contrast9, suggesting that for faces the 

earlier frontal old/new effect relates to recollection. If the early frontal old/new effect 

for faces relates to recollection this may explain the absence of early old/new 

differences in the current study, assuming (based on poor discrimination accuracy) that 

participants are predominately basing their responses on familiarity. Unfortunately, as 

                                                
9 Yovel and Paller (2004) report no early frontal old/new ERP differences in their familiarity contrast, but 
a frontally distributed old/new effect for their recollection condition. However, they also report no 
topographic difference between the familiarity and recollection contrasts in the 300-500ms time-window.  
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per the word and picture tasks, the current paradigm does not allow estimates of the 

contribution of familiarity and recollection processes to be made, making it difficult to 

interpret these differences. 

5.3.4  Voice old/new recognition task: 

5.3.4.1  Behavioural results 

The voice old/new recognition task was a particularly difficult task, which participants 

clearly struggled with; as a result only 29 participants met the inclusion criteria. The 

mean hit rate for the voice task was 64% (s.d. 8%), with a false alarm rate of 38% (s.d. 

8%). The mean discrimination accuracy score was 0.25 (s.d. 0.05) which, although the 

lowest score from the four tasks, was above chance level [t(28)=25.53, p<0.001]. 

Participants had a mean decision bias score of 0.51 (s.d. 0.10) indicating an overall 

neutral bias. Finally, response times were considerably longer than in the other three 

tasks, with a mean hit response time of 1398ms (s.d. 209ms), and a mean of 1506ms 

(s.d. 271ms) for CRs. 

5.3.4.2  ERP results 

Representative hit and CR grand average ERPs for the voice recognition task are 

presented in Figure 5.7. There appears to be little difference between hits and CRs at 

these electrodes, however hit responses look slightly more positive than CRs between 

approximately 600-1200ms at the P3 electrode, and onsetting at approximately 900ms 

until the end of the epoch at the FZ electrode. Topographic maps in Figure 5.8 show the 

distribution of the old/new differences. Whilst the differences between hits and CRs is 

very small in the 300-500ms time-window there appears to be some difference over 

frontopolar electrodes, and an additional difference over parieto-occipital electrodes, 
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neither of which could be seen in the representative electrodes selected in Figure 5.7. 

Similarly in the 500-800ms time-window the topographic maps suggest slightly 

stronger old/new differences over frontopolar electrodes, and again over parieto-

occipital electrodes. 

Figure 5.7 Grand average ERP waveforms for the recognition memory for 
voices task (n=29). Data shown as in Figure 5.1. 

 

 
Figure 5.8 Topographic maps showing the 

distribution of the old/new difference for the voice 
recognition task. Data shown as in Figure 5.2.  

Analysis from 300-500 & 500-800ms:  

No significant differences were found in either the 300-500ms or 500-800ms time-

windows when analysed using a global ANOVA. This outcome suggests that there is 

minimal difference in the ERP activity between hit and CR responses in the traditional 

time-windows. 
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Additional analysis: 

As described above, the topographic maps in Figure 5.8 suggest that the old/new 

differences are strongest over frontopolar and parieto-occipital electrodes. Figure 5.9 

shows the ERP waveforms over representative frontopolar electrodes and Figure 5.10 

shows parieto-occipital electrodes, the time-window has been extended to 2000ms in 

both figures to best capture the effect evident over frontopolar electrodes. The 

frontopolar electrodes show that hits are slightly more positive going than CRs between 

approximately 1000-1800ms. Parieto-occipital electrodes also show that hit responses 

are slightly more positive going than CRs, but with an earlier onsetting divergence from 

approximately 300ms until approximately 900ms. Topographic maps showing the 

distribution effects in the additional 300-900ms and 1000-1800ms time-windows are 

presented in Figure 5.11. 

 
Figure 5.9 Grand average ERP waveforms for the old/new recognition memory task for voices at 

frontopolar electrodes (n=29).  
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Figure 5.10 Grand average ERP waveforms for the old/new recognition memory task for voices at 

representative parieto-occipital electrodes (n=27). 

 

 
Figure 5.11 Topographic maps showing the 
distribution of the old/new difference for the 

voice recognition task. Two latency regions are 
shown, 300-900ms and 1000-1800ms. Data 

shown as in Figure 5.2 (n=29). 

Analysis from 300-900ms:  

As described above visual inspection of the data indicates that the old/new differences 

are maximal at the parieto-occipital electrodes between approximately 300-900ms, 

suggesting that the global ANOVA is inadequate for capturing condition differences 

that may exist. A more focused analysis was therefore conducted targetting the parieto-

occipital electrodes in the 300-900ms time-window. An ANOVA with factors of 

condition (Hits/CRs), location (frontal/parietooccipital), hemisphere (left/right) and 

electrode site (inferior/medial/superior) was run on electrodes F3, F4, F5, F6, F7, F8, 

PO3, PO4, PO5, PO6, PO7 and PO8 in the 300-900ms time-window. Due to bridging of 

parieto-occipital electrodes two participants were excluded from additional analyses that 
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included these electrodes. Despite the impression given by Figure 5.10 no significant 

results were found with this re-analysis in the 300-900ms time-window. 

Analysis from 1000-1800ms:  

Visual inspection of the data also indicates that in the 1000-1800ms time-window the 

old/new difference appears maximal over the frontopolar electrodes. Re-analysis of the 

data over a 1000-1800ms time-window was conducted using an ANOVA with factors 

of condition (Hit/CR), location (frontopolar/parietal) and electrode site (left 

superior/midline/right superior). Electrodes FP1, FPZ, FP2, P1, PZ and P2 were 

included in the analysis. The results revealed a significant condition by location 

interaction [F(1,28)=4.39, p=0.045] indicating that hits were more positive going than 

CRs over frontopolar electrodes, with the reverse pattern evident over parietal 

electrodes, in the 1000-1800ms time-window. 

5.3.4.3  Discussion 

The behavioural results for the voice task were poor, with low hit rates and high false 

alarm rates resulting in low discrimination accuracy scores. Decision bias scores 

indicated participants had a neutral response bias for this task; participants were just as 

likely to respond ‘old’ as ‘new’ if they were unsure. Response times were the longest of 

the four recognition tasks, but follow a similar pattern, with CR responses taking longer 

than hit responses. The number of participants who met the inclusion criteria for this 

task was very small, with 100 participants excluded from the analyses, reflecting the 

difficult nature of the task. 

ERP analysis of the old/new recognition task for voices initially focussed on the 300-

500ms and 500-800ms time-windows, as in previous tasks. However, the global 
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ANOVA revealed no significant differences between hits and CRs in either time-

window. Nonetheless visual inspection of the data indicated the presence of some small 

differences between conditions that were located out-with the electrode sites included in 

the global ANOVA, and that did not appear to fit the pre-determined time-windows. A 

more focused analysis was therefore conducted to investigate these effects, comparing 

conditions across the frontal and parieto-occipital locations in the 300-900ms time-

window and the frontopolar and parietal locations in the 1000-1800ms time-window.  

Targeted statistical analysis of the 300-900ms time-window did not reveal any 

significant differences. However, between 1000-1800ms a significant old/new 

difference was found that was largest over frontopolar electrodes. Therefore, whilst 

small, there are significant differences in the neural activity for successful recognition 

memory of voices. 

Previous literature relating to recognition memory for voices appears limited, with 

studies restricting their use to recognition of voice gender in source retrieval tasks. As 

noted earlier, however, an fMRI study by Stevens (2004) looked at short-term memory 

for voices and words, finding differences in neural activity for each stimulus type. The 

lack of previous studies on recognition memory for voices limited the predictions that 

could be made about the pattern of ERP effects that would be seen. Arguably, therefore, 

the best platform for investigating recognition memory effects for voices was to look at 

the effects seen for other stimulus materials. Looking at the 300-500ms and 500-800ms 

time-windows used in the previous analysis failed to find any significant old/new 

differences. The topographic maps for both the 300-500ms and 500-800ms time-

windows (Figure 5.8) did indicate the presence of small old/new differences over frontal 

and parietal electrodes, in which hits were more positive going than CRs, however 
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equally there was evidence of CRs being more positive going than hits over right central 

electrodes. 

The focused analysis did reveal statistically significant old/new differences between 

1000-1800ms, although the effects were small. Despite consistency in the paradigm 

designs across the four single-item recognition tasks, the nature of voice recognition 

task is inherently different from the other three tasks. With auditory stimuli it is not 

possible to present all the information at the same time, with it taking approximately 

800ms for the whole voice recording to be presented in the current study, during which 

time participants need to continuously process the information. Similarly it is not 

possible for participants to go back and review a particular part of the stimulus as is 

possible, within the 1000ms presentation time, with visual stimuli. Clearly, this 

difference in presentation style may alter the typical patterns of ERP activity associated 

with recognition memory since all stimulus information was not available at the point of 

stimulus onset, and may explain the prolonged time-windows needed to capture the 

old/new effects that were present.  

Looking more broadly at the ERP literature, longer response times and prolonged neural 

responses are not unusual for auditory stimuli. For example, Kayser, Fong, Tenke and 

Bruder (2003) reported longer response times and longer peak latencies for the P3 

component with auditorily presented words compared to visually presented words, 

despite there being no statistical difference in task performance accuracy. Interestingly, 

in contrast to the typical ERP old/new recognition effects seen for words and pictures, 

the old/new effect for voices seen in the current study appears to be a late onsetting 
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frontopolar old/new effect10. Whilst late post-retrieval processes (onsetting around 

900ms) found in recognition memory studies for words are frontally distributed, these 

effects tend to have a right hemispheric distribution, whereas the late frontal old/new 

effect seen in the current study for voices appears to have more of a central distribution, 

suggesting that it should not be interpreted as a classic “late right frontal” post retrieval 

ERP effect. 

In summary, performance in the voice recognition memory task was poor and old/new 

effects were small making it difficult to draw strong conclusions about the functional 

significance of the ERP effects of successful voice recognition. Regardless, the results 

do suggest a unique set of old/new effects are elicited by recognition memory of voices.  

5.3.5  Old/new recognition task material specificity: 

The aim of the current section is to look at possible material specificity effects by 

comparing the old/new ERP effects from each single item recognition task. The results 

presented above have included all participants who met the inclusion criteria for each 

stimulus type.  However, in order to directly compare the four tasks, the material 

specificity analysis will only include participants who met the inclusion criteria for the 

tasks being compared. An initial ‘all category performers’ analysis will be conducted 

with the 18 participants who met criteria for all four tasks, followed by a more focussed 

comparison of the word and picture stimuli with all 122 participants who met the 

criteria for these tasks. Analysis will focus on the traditional 300-500ms and 500-800ms 

time-windows described at the beginning of this chapter. 

                                                
10 Visual inspection of the ERPs for words, pictures and faces in the 1000-1800ms time-window do not 
show similar patterns of activity to that seen for voices. Words and pictures show a reversal in polarity, 
from approximately 1200ms, with CRs more positive going than Hits, and little difference can be seen 
between conditions for faces. This suggests that the late onsetting frontopolar difference seen in the 
current study is unique to voices. 



 Single Item Recognition Memory 

- 148 - 

5.3.5.1  Analysis of all four single item tasks: 

Behavioural results: 

Table 5.1 shows the behavioural results for the four single items tasks for the ‘all 

category performers’ group. Recognition performance (as indexed by Pr) varies 

between stimulus types, and as can be clearly seen in Figure 5.12, performance was 

highest for the picture task and lowest for the voice task. A repeated measures ANOVA 

confirmed that performance differed between stimulus materials [Greenhouse-Geisser 

corrected F(1,28) = 86.48, p<0.001], and paired samples t-tests revealed significant 

differences between each stimulus type (pictures-faces [t(17)=16.57, p<0.001], pictures-

words [t(17)=3.53, p=0.003], pictures-voices [t(17)=17.51, p<0.001], face-words 

[t(17)=-6.99, p<0.001], faces-voices [t(17)=2.27, p=0.037], words-voices [t(17)=7.82, 

p<0.001]). 

Participants also showed varying degrees of decision bias between different stimulus 

types. Overall participants exhibited a conservative – neutral response bias in all tasks, 

however a repeated measures ANOVA indicated that there were significant differences 

in bias scores between stimulus materials [Greenhouse-Geisser corrected F(2,25) = 

9.48, p=0.001] (Figure 5.12). Follow-up paired samples t-tests revealed that a 

significant difference in bias scores was evident between all stimulus types (pictures-

faces [t(17)=-3.07, p=0.007], pictures-words [t(17)=-2.83, p=0.012], pictures-voices 

[t(17)=-3.71, p=0.002], faces-voices [t(17)=-2.74, p=0.014], words-voices [t(17)=-2.93, 

p=.009]), with the exception of face and word stimuli which was not significantly 

different [t(17)=0.96, p=0.35]. 
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All 
category 

performers  
(n=18) 

Hit rate 
(%) 

False alarm 
rate (%) Pr Br Hit RT 

(ms) 
CR RT 

(ms) 

Words 77 (14) 16 (10) 0.60 (0.20) 0.42 (0.15) 846 (140) 921 (155) 

Pictures 86 (15) 5 (3) 0.81 (0.14) 0.29 (0.25) 801 (173) 842 (181) 

Faces 62 (9) 32 (6) 0.29 (0.08) 0.46 (0.08) 1013 (183) 1079 (219) 

Voices 65 (10) 40 (9) 0.25 (0.06) 0.53 (0.11) 1411 (228) 1544 (288) 

Table 5.1 Behavioural results for the participants who met inclusion criteria in all four old/new 
recognition types (words, pictures, faces and voices). Table shows mean hit and false alarm rates in 

percentages, mean discrimination accuracy, mean decision bias, and mean response times for hit and CR 
responses in milliseconds. Standard deviations for each measure are given in brackets. 

 
Figure 5.12 Discrimination accuracy (Pr) and decision bias (Br) 
scores across stimuli types (words, pictures, faces and voices) for 

participants who met inclusion for all four single item old/new 
recognition tasks. Data shows that the tasks varied in difficulty, with 

participants performing better on the picture and word tasks 
compared to the face and voice tasks. Overall participants showed a 

conservative-neutral decision bias in all four tasks, although the 
degree of bias varies between stimulus types. 

Response times for both hits and CRs also vary in relation to stimulus material, 

revealing a pattern consistent with task performance. As discrimination accuracy 

increases, response times for both response categories decreases, with pictures showing 

the quickest response times, followed by words, faces and voices. In all tasks hit 

responses were quicker than CRs. 
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ERP results: 

Topographic maps showing the distribution of old/new effects for the ‘all category 

performers’ across stimulus type are presented in Figure 5.13. Statistical analysis of 

these four stimulus types for the ‘all category performers’ found significant old/new 

differences for words11, which showed that hits were more positive going than CRs, a 

difference largest over the frontal and central locations in the earlier time-window, and 

that were greater at superior and medial electrode sites in both time-windows; and 

pictures12, suggesting a widely distributed old/new effect with hits more positive going 

than CRs, a difference maximal over superior electrode sites that did not differ across 

time-windows. No significant effects were found for either faces or voices for the ‘all 

category performers’. 

Given the absence of significant old/new effects for the face and voice tasks, for this 

analysis group, these stimuli were not included in the material specificity analysis. A 

comparison was therefore made of the old/new effects for picture and word stimuli. 

Data was rescaled to take account of overall amplitude differences between the two 

tasks (McCarthy and Wood, 1985) and then analysed using a repeated measures 

ANOVA, with factors of stimuli (pictures/words), location 

                                                
11 Analysis of the word data for the all category performers group revealed a main effect of condition 
[F(1,17)=12.26, p=0.003], a significant condition by site interaction [F(1,18)=21.39, p<0.001], and a 
significant condition, location, site interaction [F(2,38)=3.28, p=0.044] in the 300-500ms time-window. 
Analysis of the 500-800ms time-window again revealed a main effect of condition [F(1,17)=24.82, 
p<0.001], and a significant condition by site interaction [F(1,18)=5.61, p=0.029]. Due to the absence of 
location interactions in the 500-800ms time-window no follow-up analyses contrasting effects in the two 
time-windows were conducted. 
 
12 Analysis of picture data for the ‘all category performers’ in the 300-500ms time-window revealed a 
main effect of condition [F(1,17)=60.44, p<0.001], and a significant condition by site interaction 
[F(1,20)=25.3, p<0.001]. The 500-800ms time-window revealed a main effect of condition 
[F(1,17)=28.35, p<0.001], a condition by site interaction [F(1,19)=9.96, p=0.004], and a significant 
condition, location, site interaction [F(3,42)=3.27, p=0.038]. Analysis of the old/new difference across 
time-windows did not reveal any significant effects. The absence of significant effects suggests that there 
were no reliable change in magnitude or distribution across time-windows.  
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(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 

(inferior/medial/superior). No significant differences between stimulus types were 

found in either the 300-500ms or the 500-800ms.  

 
Figure 5.13 Topographic maps showing the distribution of the old/new 

differences across each of the four stimulus types (words, pictures, faces 
and voices). Two latency regions are shown, 300-500ms and 500-800ms, 

along with scale bars to show the size of the old/new difference. Maps 
show the subtraction of the grand average ERP for CRs from the grand 

average ERP for hits, generated from the 18 participants who met 
inclusion criteria in all four old/new recognition tasks. 

The ‘all category performers’ group consisted of all 18 participants who met the 

inclusion criteria for all four old/new recognition tasks. Whilst old/new effects were 

found in this group for both the picture and word task, stronger effects were identified 

in the analysis of all participants from the individual task analysis. Since the face and 

voice tasks were excluded from the material specificity analysis re-examination of the 
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data identified 122 participants who met the inclusion criteria for both the pictures and 

words tasks. With this considerable difference in statistical power, a re-analysis of the 

material specificity effects was conducted.  

5.3.5.2  Word and picture material specificity analysis: 

Behavioural results: 

The behavioural results for 122 participants who met the inclusion criteria in both the 

word and picture tasks are presented in Table 5.2. Recognition performance (as indexed 

by Pr) was clearly better for pictures than words, a paired samples t-tests revealed that 

the difference between the two tasks was significant [t(121)=-13.69, p<0.001]. 

Participants exhibited a conservative decision bias in both tasks, although they were 

significantly more conservative for the picture stimuli than for words [t(121)=8.54, 

P<0.001]. As with the previous sets of analyses hit responses were made quicker than 

CRs for both groups, and as would be expected from the performance figures overall 

participants were slightly quicker in the picture task than in the word task. 

Words & 
Pictures  
(n=122) 

Hit rate 
(%) 

False alarm 
rate (%) Pr Br Hit RT 

(ms) 
CR RT 

(ms) 

Words 73 (12) 18 (11) 0.54 (0.17) 0.39 (0.16) 823 (138) 898 (157) 

Pictures 83 (12) 6 (6) 0.77 (0.15) 0.26 (0.18) 800 (137) 850 (145) 

Table 5.2 Behavioural results for the participants who met inclusion criteria in both the word and picture 
tasks. Data shown as in Table 5.1. 

The same subset of participants used in the initial word analysis is also used here, and 

the majority of participants from the initial picture analysis are also included. The 

behavioural data for the picture task presented here reflects that presented in the earlier 

discussion of picture effects. 
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ERP results: 

Figure 5.14 shows the ERP difference waveforms for the picture and word tasks; the 

positive going old/new difference for the picture task is clearly larger compared to the 

word task between approximately 400-700ms, particularly over the frontal electrodes. 

The distribution of the old/new effects for each stimulus type (words are shown in the 

top row, and pictures in the middle row), as well as the difference in distribution 

between the material types (bottom row), can be found in Figure 5.15. These 

topographic maps suggest a more anteriorly distributed effect for the picture task in 

comparison to the word task, a pattern that is apparent across both time-windows. 

 
Figure 5.14 Grand average ERP difference waveforms (Hits-CRs) at representative frontal, central 
and parietal electrode sites, for the picture and word recognition tasks. Waveforms generated from 

‘all participants’ who met the inclusion criteria for both tasks (n=122). 
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Figure 5.15 Topographic maps showing the distribution of the old/new 

differences across word and picture tasks for all 122 participants who met 
the inclusion criteria both recognition tasks. Maps in the top two rows 
show the subtraction of the grand average ERP for CRs from the grand 

average ERP for hits, for words and pictures. The maps in the bottom row 
represent the difference between the picture and word tasks, which were 
generated by the subtraction of the word difference waveform from the 

picture difference waveform.  Two latency regions are shown, 300-500ms 
and 500-800ms, along with scale bars to show the size of the difference.  

Statistical analysis comparing the two types of stimuli was conducted on rescaled data 

as per the ‘all category performers’ analysis. The 300-500ms time-window revealed a 

significant stimulus by location interaction [F(1,145)=7.26, p=0.005] indicating that 

over more anterior locations the old/new effect was larger for the picture task than the 

word task, a pattern that reversed over more posterior locations. This cross-over of 

effect magnitude across locations can clearly be seen in Figure 5.16a. Additionally a 

significant stimulus by hemisphere by site interaction was found [F(1,140)=4.65, 

p=0.028], indicating that the difference in the old/new effect is greatest at superior 

electrodes over the left hemisphere, with an overall equal distribution across sites over 

the right. In the 500-800ms time-window a significant stimulus by location interaction 
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was also found [F(1,143)=3.97, p=0.041], indicating that the picture task exhibited a 

larger old/new effect than words and that, as per the earlier time-window, the difference 

in effect magnitude was progressively larger the more anterior the location, with words 

exhibiting a slightly larger effect over parietal electrodes (Figure 5.16b). 

 
Figure 5.16 Plots showing average old/new effect magnitude (data rescaled to control for overall 
magnitude differences) for both picture and word stimuli across locations (frontal, frontocentral, 

central, centroparietal and parietal) for the 300-500ms (a) and 500-800ms (b) time-windows (n=122). 
Significant stimuli by location interactions were found for both time-windows indicating distributional 

differences in the old/new effect across stimuli types. 

5.3.5.3  Discussion 

The purpose of this last results section was to investigate material specificity in relation 

to ERP recognition memory effects. Eighteen participants met the inclusion criteria for 

all four single-item recognition tasks. The behavioural results showed significant 

differences between tasks in performance, decision bias, and response times, with 

participants clearly finding the picture task easiest, with higher discrimination accuracy 

and quicker response times then the other tasks. The word task showed the next highest 

performance scores, followed by the face task, and finally the voice task.  
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It was also evident from the behavioural data that variation in decision bias across 

stimulus material was related to task difficulty, with bias scores increasing (i.e. 

becoming more neutral in nature) the lower the mean discrimination accuracy of a task 

(see Figure 5.12). This change in decision bias may represent a shift in response 

strategy based on task difficulty, with participants responding more liberally on tasks 

which they are struggling with. If participants feel confident in their ability to complete 

the task their criteria for selecting an item as being previously presented, and 

responding ‘old’ is much more stringent than on a task where they are less confident. 

Furthermore, if participants find a task particularly difficult, such as the voice task, then 

a neutral bias will allow for a much more equal distribution of responses than a 

conservative or liberal bias. Interestingly in the current study, overall, participants 

tended to exhibit either a conservative or neutral bias with a minority showing a liberal 

bias, although as indicated by the average bias scores, the number of participants with a 

liberal bias did increase with task difficulty.  

ERP analysis was limited to the picture and word tasks due to the absence of significant 

old/new differences for the face and voice ‘all category performers groups’. 

Unfortunately, however, no significant differences between picture and word effects 

were found in either the 300-500ms or 500-800ms time-windows when comparing the 

‘all category performers’. This finding stands in stark contrast to previous literature, 

which suggests that there are material specific effects, with pictorial stimuli exhibiting 

more anterior effects than words, particularly in the 500-800ms time-window. 

Moreover, visual inspection of the data suggested that there may be differences in the 

ERP effects of pictures and words, the failure to find any statistical effects was therefore 

surprising. It was hypothesised that this lack of significance differences between words 
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and pictures may be due to low statistical power in the ‘all category performers’ sample, 

with analysis restricted to only 18 participants. 

Analysis of all 122 participants who met the inclusion criteria for the picture and word 

tasks was therefore conducted. Significant differences were found in the distribution of 

old/new effects across stimuli type, with pictures showing larger anterior effects than 

words and words showing larger posterior effects than pictures. This pattern of a 

stronger frontal distribution was evident in both time-windows. These results strongly 

suggest that there are significant differences in the distribution of the ERP old/new 

effects exhibited by successful recognition memory for pictures and words, and are 

consistent with previous literature suggesting that pictures exhibit more anterior ERP 

old/new effects than words (Galli & Otten, 2011). 

Galli and Otten (2011) hypothesise that pictorial stimuli exhibit more anterior ERP 

effects than verbal stimuli due to the reinstatement of encoding activity, with pictures 

requiring greater perceptual analysis than words. Galli and Otten (2011) argue that the 

degree of perceptual analysis could explain discrepancies in the literature relating to line 

drawings and photographs, with photographs requiring more perceptual analysis. In 

accordance with this perceptual complexity argument Kayser et al. (2003) found 

different scalp topographies with ERP old/new effects for auditorily and visually 

presented words, with auditory words exhibiting old/new effects that were largest at 

posterior locations, and visual words at frontocentral locations. 

A second hypothesis is that the different ERP effect distributions seen in the current 

study may also be related to the variation in decision bias across tasks discussed above. 

Controlling for task accuracy Windmann, Urbach and Kutas (2002) compared 

recognition memory ERP effects for verb stimuli, in participants with a high (liberal) 
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and low (conservative) bias, showing that participants with a low bias exhibited an 

old/new effect over frontal sites between 300-500ms that was absent for those with a 

high bias. No significant group differences were found between 500-700ms. Windmann 

et al. (2002) suggest these differences across frontal sites reflect the criterion setting 

functions of the prefrontal cortex, which they argue is used to maintain a description of 

the information being sought during memory retrieval and to inhibit memory traces that 

do not match. The different bias groups are therefore thought to vary in terms of what is 

consider relevant/irrelevant to the task, with low bias groups endorsing information 

signalling newness over information suggesting that the item is familiar, therefore 

facilitating participants in making ‘new’ responses and inhibiting ‘old’ responses. In 

comparison participants with a high bias have less inhibitory control increasing the 

likelihood that they will respond ‘old’, and engaging the prefrontal cortex less than the 

low bias group.  

The distributional differences seen in the current study, particularly in the early time-

window, may reflect a relaxation of inhibitory control by participants on tasks which are 

more difficult, perhaps in an attempt to even out the number of ‘old’ and ‘new’ 

responses being made. The findings of Windmann et al. (2002) suggest we should see 

greater old/new effects over anterior sites between 300-500ms for tasks where 

participants exhibit an overall lower/more conservative bias. In the current study 

participants were most conservative on the picture task, followed by words, faces and 

voices. There is clear evidence that the ERP effects for the picture task are more 

anterior in distribution than the word task, and the absence of significant old/new effects 

in the 300-500ms time-window for either the faces or voices may reflect the neutral bias 

exhibited by participants during these tasks.  
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It is not possible to discern from this study which, if either, hypothesis is correct. The 

four tasks presented in this chapter differ from each other not only with regard to the 

stimulus material, but also in relation to task performance, and response bias. The 

paradigm was kept identical across all four types of stimulus for control, to ensure that 

any differences evident across stimuli were not a function of paradigm differences, but 

related to the stimuli. However, the downside of a controlled paradigm design is that 

performance differed across the tasks, as the inherent properties of the each type of 

stimulus changed the difficulty of the task. It is possible that a combination of task 

performance and response bias contributes to the variations in ERP effects seen, and 

more detailed analysis of the influence of performance and decision bias on ERP effects 

is needed to unpack this. 

5.4  General Discussion 

The current chapter examined single-item recognition memory for pictures, faces, 

words, and voices, with the principal aim of understanding the behavioural and ERP 

effects produced by these tasks, before going on in later chapters to look at the impact 

of various individual differences on recognition memory. In addition a material 

specificity analysis was conducted, to see how differences in stimulus type influenced 

behaviour and ERP effects. There was some evidence of old/new ERP differences in all 

four tasks. Particularly strong evidence for an ERP effect for pictures was found, with 

successful recognition memory exhibiting an early bilateral-frontal old/new effect 

between 300-500ms, followed by a more posterior left hemispheric old/new effect in the 

500-800ms time-window, albeit with clear evidence for continued activity over frontal 

sites during the later time-window. There was also strong evidence for ERP neural 

correlates of successful recognition memory for words, with an early bilateral old/new 
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difference that was more anterior in distribution than the later 500-800ms left parietal 

old/new difference. Overall, therefore, ERP effects observed for pictures and words 

appear to be consistent with the findings reported in the literature. Importantly the 

material specificity analysis suggested that the ERP effects for the two stimulus types 

are topographically dissociable in both the 300-500ms and 500-800ms time-windows, 

with pictures exhibiting more anteriorly distributed effects then words, adding weight to 

the conclusions of Galli and Otten (2011). 

The results from the faces and voices tasks do suggest that there are ERP old/new 

differences, however the size of these effects make it difficult to draw strong 

conclusions. The faces data in particular indicated the presence of an old/new difference 

over left parietal electrodes in the 500-800ms time-window, consistent with previous 

studies. However, whilst visually there are differences between the ERPs for ‘old’ and 

‘new’ responses over frontal electrodes, statistically these differences were not robust, 

making it difficult to draw conclusions with regards to additional frontal activity for 

faces that has been reported in some studies. The different distributions of face 

recognition effects evident across studies may indicate strategic differences. Further 

investigations of face effects with a face-verbal phrase source task, will be discussed in 

Chapter 6, allowing the contributions of familiarity and recollection to be assessed.  

The ERP data for the voices task also showed evidence of old/new ERP differences, 

however these did not fit with the pre-selected time-windows or electrode array. The 

lack of previous studies looking at old/new recognition memory for voices makes it 

difficult to interpret the data definitively, with no clear platform from which to base the 

analysis. In particular, the different nature of the voice task compared to the other three 

tasks, with a slow release of information over 800ms rather than instantly presenting all 
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the information, further complicates the analysis strategy and interpretation. 

Nonetheless, in all other respects the voices task was identical procedurally to the other 

single item tasks, rendering the ERP contrasts valid as an operational definition of 

episodic retrieval. Given this, the fact that the data from the current study did indicate a 

later frontopolar old/new effect between 1000-1800ms (although visual inspection of 

the data suggest that this anterior effect may onset as early as 300ms), an effect not 

present in the other tasks, provides strong evidence of material specific differences. The 

absence of early bilateral-frontal and later left-parietal old/new effects, typically seen in 

recognition memory studies, suggests that material specific differences are not limited 

to a change in the expression of these typical effects, as seen for pictures (Galli & Otten, 

2011), nor to the presence of old/new effects that are ‘additional’ to the typical effects, 

as appears to be the case for face stimuli (MacKenzie & Donaldson, 2007, 2009; Yick 

& Wilding, 2008). At least for voices, the current data suggest that successful 

recognition memory can occur in the absence of these typical ERP effects, and instead 

exhibit a sustained old/new difference over frontopolar electrodes. 

The most apparent difference between the tasks that exhibit strong ERP effects (pictures 

and words), and those showing weaker ERP effects (faces and voices) is the difference 

in performance. Behaviourally the picture and word tasks show higher hit rates, lower 

false alarm rates, higher discrimination accuracy, and shorter response times than the 

face and voice tasks. Whilst participants performed above chance in all groups, in all 

four tasks, the differences observed between stimuli types suggests that performance 

may be an important factor in determining the pattern of ERP correlates. Critically, 

changes in decision bias may be indicative of differences in response strategy, which 

may influence the observed ERP effects. Exactly what these different strategies are, and 

how they differentially support recognition memory remains an open question. 
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The interpretation of the functional significance of the distributional differences evident 

across stimuli is limited by the lack of independent estimates of recollection and 

familiarity. One possibility is that the differences in both performance and distribution 

reflect variable reliance on these two processes. However, the unique effects found for 

voice recognition, which resemble neither the bilateral-frontal familiarity effect nor the 

left-parietal recollection effect, are hard to reconcile with the idea that material specific 

differences simply reflect differing contributions of recollection and familiarity, and 

therefore provides strong evidence for material specificity. 

A number of different methods that allow independent estimates of familiarity and 

recollection to be made were discussed in Chapter 1, however each method changes the 

nature of the task, and the way they are completed. Asking participants to rate how 

confident they are in a response, or to subjectively evaluate their retrieval (R/K 

paradigms), imposes criteria on the old/new judgment that may change the way they 

respond. Source tasks provide stronger estimates of recollection and familiarity than 

confidence or R/K judgments, but include additional stimuli. The single-item 

recognition paradigm was designed to provide a series of short tasks that would allow 

the evaluation of basic stimulus differences (in the style of Yick & Wilding, 2008), that 

were not confounded by a secondary task or additional stimuli. Participants also 

completed a separate source memory task, which allows estimates of familiarity and 

recollection to be made with regards to face recognition that will be discussed in 

Chapter 6.  

In sum, across the four tasks there do appear to be material specific effects, with a 

unique late onsetting frontopolar old/new effect for voices, as well as clear evidence of 

material specific effects for pictures and words. The results also highlight the possible 
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importance of performance measures in investigating the functional significance of 

material specific effects, and the need for further investigation of the influence of 

behavioural performance and decision bias on the neural correlates of recognition 

memory. To further understand how task performance influences ERP old/new 

recognition effects, analysis of performance differences in the word and picture tasks 

will be presented in Chapter 7. 
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Chapter 6   

Source Memory for Faces and Verbal Phrases  
 

6.1  Introduction 

The previous chapter looked at the neural correlates of single item recognition memory, 

identifying an early (300-500ms) bilateral-frontal old/new effect and a later (500-

800ms) left parietal old/new effect for pictures and words, with evidence of the later 

left-parietal effect also evident for faces. These ERP effects are consistent with the 

putative neural correlates of familiarity and recollection reported in the literature. The 

single item recognition memory paradigms employed in the previous chapter are, of 

course, necessarily limited by the absence of a behavioural measure that allows the 

contribution of familiarity and recollection processes to be estimated. Therefore, whilst 

we find ERP effects that reflect those of familiarity and recollection, it is not possible to 

independently ascertain the degree to which the two processes generate these effects.  

A key component of understanding the influences of individual differences on 

recognition memory is to understand how these variances may influence the 

contribution of familiarity and recollection, and the associated ERPs. Therefore an 

additional recognition memory task that allowed familiarity and recollection estimates 

to be made was also included in the study. As discussed in Chapter 1 there are several 

methods that can be used to obtain estimates of familiarity and recollection, and the 

current study employed a source memory task. Participants were required to remember 

a face and a simultaneously present verbal phrase of either “hello” or “thanks”. It was 

hypothesised that trials in which participants were able to correctly identify the face as 

‘old’ and remember the associated phrase - Hit/Correct responses (HC), would be 



 Source Memory for Faces and Verbal Phrases 

- 165 - 

recollection-based judgements whereas trials in which the phrase could not be 

remembered – Hit/Incorrect responses (HI), were more likely to based on the process of 

familiarity13.  

As discussed in the previous chapter there is some discrepancy in the literature with 

regards to recognition memory ERP effects for faces, particularly with regards to the 

familiarity-based recognition. Curran and Hancock (2007) report a bilateral-frontal 

old/new effect between 300-500ms, resembling the effect typically seen for word 

stimuli, an effect that is present irrespective of whether specific details relating to the 

episode are recollected, whereas Yovell and Paller (2004) and MacKenzie and 

Donaldson (2007) both report posterior familiarity effects. In relation to recollection-

based recognition Curran and Hancock (2007), MacKenzie and Donaldson (2007 & 

2009), and Galli and Otten (2011) all report a posterior old/new effect between 500-

700ms, with additional overlapping frontally distributed activity reported by MacKenzie 

and Donaldson (2007 & 2009).  

Whilst conflicting results are presented in the literature, it is expected that the current 

study will show effects reflecting the findings from MacKenzie and Donaldson (2007) 

due to the many similarities between the two tasks. Both tasks present participants with 

a photograph of a face with masked hair and ears, in both tasks the face is accompanied 

by auditorally presented information, and furthermore, there is an overlap in the 

stimulus set used. It is therefore hypothesised that the current study will show a 

posterior old/new effect for HI responses and a later onsetting postieror old/new effect 

accompanied by an overlapping anterior effect for HC responses. 

                                                
13 Although it is expected that there will be greater involvement of recollection in HC trials than in HI 
trials, this is not to say that HI trials will be solely reliant on familiarity processes, simply that 
recollection will be involved to a lesser extent. 
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6.2  Methods 

Details concerning participant recruitment, as well as experimental and EEG 

procedures, are reported in the General Methods (Chapter 4). As per the single item 

recognition memory tasks participants were excluded from analysis if they had fewer 

than 16 good ERP trials per condition, or if they had an old/new face recognition 

performance of Pr <0.2. Fifty-four participants met the inclusion criteria for the source 

memory task and were therefore included in the initial analysis.  

As detailed in the General Methods the source memory task comprised a series of “face-

verbal phrase” pairs during study, followed by a two step retrieval task in which 

participants first had to make an old/new recognition judgment to a presented face, and 

then, for faces classified as ‘old’, to indicate if the face was presented with the phrase 

‘hello’, ‘thanks’ or that they did not know the phrase. Use of the ‘Don’t Know’ 

response during the second part of the retrieval task was inconsistent across participants, 

with some making ‘Don’t Know’ responses and others (n=23) not. The highest 

utilisation of the ‘Don’t Know’ response by a participant was 24% of source trials, 

however of the 31 participants who used the ‘Don’t Know’ response only 8 participants 

used this option on more than 10% of source trials. Due to the overall minimal and 

inconsistent use of the ‘Don’t Know’ response, these trials were collapsed with ‘Source 

miss’ trials in to a ‘Source Incorrect’ condition for behavioural and ERP analysis. ERP 

analysis was therefore conducted on three conditions, CRs (faces correctly identified as 

new), HC (correctly identified ‘old’ faces with correct identification of the paired 

phrase), and HI responses (correctly identified ‘old’ faces without correct identification 

of the phrase); contrasting HC and CRs, HI and CRs, and HC and HI responses. 
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In addition to average recognition response rates, discrimination measures and response 

times, source accuracy is also reported in the behavioural results, with standard 

deviations given in brackets. ERP analysis follows the procedure outlined in the General 

Methods (Chapter 4) with any additional subsidiary analysis described alongside the 

results in the relevant section. 

6.3  Results 

6.3.1  Source memory task: 

6.3.1.1  Behavioural results 

Participants were able to successfully complete the initial old/new recognition memory 

task with a mean hit rate of 64% (s.d. 11%), and a false alarm rate of 29% (s.d. 12%). 

Mean discrimination accuracy (Pr = 0.34, s.d. 0.10) was above chance (zero) 

[t(53)=24.44, p<0.001], and participants showed an overall neutral decision bias, 

indicating participants were equally likely to respond ‘old’ as ‘new’ when unsure (Br = 

0.45, s.d. 0.15). Mean response times for hits were 1191ms (s.d. 292ms), and 1157ms 

(s.d. 284ms) for CRs. Correct identification of the paired phrase on hit trials (HC 

responses) was above chance (50%) [t(53)=10.87, p<0.001], with an average score of 

58% (s.d. 6%). 

6.3.1.2  ERP results 

Figure 6.1 shows the grand-average ERP waveforms for HC, HI and CR responses from 

representative electrodes at frontal, central and parietal locations. There is a clear 

divergence of HC and HI waveforms from CRs, starting at approximately 400ms and 

lasting until approximately 800ms, with hit responses more positive going than CRs. 

There is no evidence of a difference between hit responses (HC and HI responses) over 
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posterior electrodes, however, there does appear to be a small divergence over frontal 

electrodes between approximately 600-1000ms, with HC responses more positive going 

than HI responses.  

 
Figure 6.1 The grand average ERP waveforms for the source memory task, at representative 

frontal, central and parietal electrode sites, for HC, HI and CR responses. Waveforms generated 
from ‘all participants’ who met the inclusion criteria (n=54). The vertical scale indicates electrode 
amplitude, measured in microvolts, whilst the horizontal scale indicates change in time, measured 

in milliseconds. 

As per the single-item task preliminary analysis of the ERP data from the source 

judgement task focused on the 300-500ms and 500-800ms time-windows identified in 

the literature. The distribution of the difference in activity between the three conditions 

is shown in Figure 6.2, across both the 300-500ms and 500-800ms time-windows. The 

topographic maps suggest a widespread bilateral difference between HC and CR 

responses, maximal along midline electrodes (top row of Figure 6.2), in the early 300-

500ms time-window, becoming more right lateralised at frontal locations and left 

lateralised at parietal locations, in the 500-800ms time-window. The difference in 
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activity between HI and CRs (middle row of Figure 6.2) shows a bilateral distribution 

over parietal locations in the 300-500ms time-window, becoming stronger between 500-

800ms. In addition, the maps suggest a weaker right-frontal difference between 500-

800ms, that is not present in the previous time-window. Finally, the topographic maps 

in the bottom row of Figure 6.2 show the difference between HC and HI responses. 

Whilst the difference between the two hit categories appears to be relatively small, HC 

responses are clearly more positive than HI responses over frontal electrodes, an effect 

which becomes stronger between 500-800ms. 

 
Figure 6.2 Topographic maps showing the distribution of the old/new 

difference for the source memory task, across all 54 participants who met 
the inclusion criteria. Two latency regions are shown, 300-500ms and 500-

800ms, along with scale bars to show the size of the old/new difference.  
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Hit/Correct vs Correct Rejection: 

Analysis from 300-500ms:  

ERP data was analysed using ANOVA, with factors of condition (HC/CRs), location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right), and 

electrode site (inferior/medial/superior) as outlined in Chapter 4. Analysis of the 300-

500ms time-window showed a main effect of condition [F(1,53)=5.1, p=0.028], 

showing that overall HC responses were more positive going than CRs. A significant 

condition by site interaction [F(1,61)=7.07, p=0.008] indicates that the old/new 

difference was greatest at superior electrode sites, suggesting a widespread old/new 

effect across midline electrodes. Visual inspection of the data revealed that the 

difference between HC and CR responses in the 300-500ms time-window was maximal 

at electrode FZ, and a paired-samples t-test showed that the difference between 

conditions at this electrode was significant [t(53)=2.14, p=0.037].  

Analysis from 500-800ms:  

In the 500-800ms time-window a significant main effect of condition [F(1,53)=16.53, 

p<0.001] and a significant condition by site interaction [F(1,59)=4.74, p=0.03] were 

found, indicating that HC responses were more positive going than CRs, a difference 

largest over superior electrode sites. In addition, there was a significant condition by 

location by hemisphere by site interaction [F(3,165),=5.06, p=0.002]. 

Subsidiary analysis was conducted to further understand the four-way interaction, using 

ANOVA that included factors of condition, hemisphere and site at each of the five 

locations (frontal, frontocentral, central, centroparietal and parietal). A significant main 

effect of condition was found at the frontal location [F(1,53)=12.07, p=0.001], and 
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significant condition by site interactions were found at frontocentral [F(1,61)=4.39, 

p=0.035] and central [F(1,60)=5.92, p=0.015] locations, reflecting the presence of 

positivity for HC responses that is largest over superior electrodes, at central and 

anterior locations. By contrast, at centroparietal electrodes there was a main effect of 

condition [F(1,53)=16.73, p<0.001], with a marginally significant condition by 

hemisphere by site interaction at the parietal location [F(1,66)=3.66, p=0.051], 

indicating that the old/new effect is larger in the left hemisphere (where the distribution 

across sites is constant) than in the right hemisphere (where the difference is greatest at 

superior electrode sites). Visual inspection of the data revealed that overall the maximal 

old/new difference between 500-800ms was at electrode F4, a difference significant at 

this electrode [t(53)=3.86, p<0.001]. 

Comparison of the 300-500ms and 500-800ms time-windows:  

The above analyses indicate significant differences between HC and CR responses in 

both the 300-500ms and 500-800ms time-windows. Additional analysis comparing 

effects across time-windows was conducted on differences scores (HC-CR), using 

ANOVA with factors of time (300-500ms/500-800ms), location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 

(inferior/medial/superior). The ANOVA identified a significant time by location by 

hemisphere by site interaction [F(3,161)=5.79, p=0.001], reflecting the change from a 

widespread bilateral old/new effect between 300-500ms to a more focused left-parietal 

effect in 500-800ms time-window. Importantly, follow-up topographic analysis using 

rescaled data also revealed a significant interaction between time, location, hemisphere 

and site [F(4,184)=2.73, p=0.037], suggesting that the distinct effects seen in the two 

time-windows are different in distribution and not just magnitude.  
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Hit/Incorrect vs Correct Rejection: 

Analysis from 300-500ms:  

Analysis of the HI and CR responses in the 300-500ms time-window revealed a main 

effect of condition [F(1,53)=4.25, p=0.044], indicating a widespread old/new effect in 

which HI responses were more positive going than CRs. Visual inspection of the data 

indicated that the difference was maximal at electrode CPZ, and a paired-samples t-test 

found this difference to be significant [t(53)=2.69, p=0.01].  

Analysis from 500-800ms:  

Analysis of the 500-800ms time-window revealed a main effect of condition 

[F(1,53)=10.35, p=0.002], indicating that HI responses were more positive going than 

CRs, along with a significant condition by location by hemisphere by site interaction 

[F(4,183)=3.45, p=0.013]. As shown in the central row of Figure 6.2, the distribution of 

the old/new effect is widespread, with a posterior maximum. However, subsidiary 

analysis of the data at each location using ANOVA (including factors of condition, 

hemisphere and site) revealed a significant condition by hemisphere by site interaction 

[F(1,74)=3.8, p=0.041] at the frontal location. This interaction indicates that the old/new 

difference was greatest in the right hemisphere over more lateral sites, with asymmetry 

across the hemispheres most evident at inferior sites. Main effects of condition were 

evident at frontocentral [F(1,53)=5.89, p=0.019], central [F(1,53)=9.07, p=0.004], 

centroparietal [F(1,53)=13.18, p<0.001], and parietal [F(1,53)=15.38, p<0.001] 

locations, indicating that overall HI responses were more positive going than CRs. 

Visual inspection of the data showed that the maximal difference between conditions in 

the 500-800ms time-window was at electrode CP2, a difference that was significant at 

this electrode [t(53)=3.91, p<0.001]. These results therefore indicate that whilst the 
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old/new effect is greatest at posterior locations, there is a weaker right frontal effect 

evident between 500-800ms.  

Comparison of the 300-500ms and 500-800ms time-windows:  

Analysis of the HI and CR data revealed significant old/new ERP effects in both the 

300-500ms and 500-800ms time-windows. Additional analysis comparing the ERP 

effects across the two time-windows was conducted on difference scores (HI-CR) using 

ANOVA, (looking at factors of time, location, hemisphere and site) revealing a 

significant interaction between all four factors [F(4,185), 7.8, p=0.001]. As is evident 

from the preceding analyses, this interaction reflects the presence of a right frontal 

effect between 500-800ms that was not present between 300-500ms. Repeating the 

analysis on rescaled data also revealed an interaction between all four factors 

[F(3,178)=4.56, p=0.003] showing that the ERP effects across time-windows are 

topographically distinct, and that the differences are not simply a result of overall 

magnitude variation.  

Hit/Correct vs Hit/Incorrect: 

Analysis from 300-500 & 500-800ms:  

Analysis of the difference between HC and HI responses did not reveal any significant 

effects in either the 300-500ms or 500-800ms time-windows. The absence of 

statistically significant differences suggests that the divergence between conditions 
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visible in Figure 6.1 and the bottom row of Figure 6.2 were not statistically reliable, 

suggesting variability across participants.14 

6.3.1.3  Discussion 

Behavioural performance on the old/new recognition task is consistent with the 

performance seen in the single-item recognition memory for faces task, presented in the 

previous chapter, with participants able to successfully identify previously presented 

faces. Although participants generally found the source task difficult, approximately 

half the study sample (n=54) met the task inclusion criteria and overall correct 

identification of the paired phrase was above chance level. Comparisons of the ERPs for 

HC, HI and CR responses were made in both the 300-500ms and 500-800ms time-

windows.  

Statistical analysis of HC and CR responses revealed a widespread bilateral old/new 

effect between 300-500ms, with a more focused frontocentral/central bilateral 

difference in the 500-800ms time-window, alongside a left lateralised parietal effect 

which was not present in the earlier window. Comparing HI responses and CRs 

revealed an overall significant difference between the two conditions between 300-

500ms, although no interactions with location, hemisphere or site were found. This 

widespread old/new difference continued into the later time-window, with the 

development of a large asymmetry between anterior and posterior locations across the 

left hemisphere, with the old/new effect greatest at posterior locations. There was also 

evidence of a right frontal old/new effect between 500-800ms that was not present in 

the 300-500ms time-window.  

                                                
14 Additional analysis using the global ANOVA comparing HC and HI responses in the 600-1000ms 
time-window, identified as best capturing the difference between HC and HI responses from visual 
inspection of the waveforms presented in Figure 6.1, also failed to find significant differences between 
the two conditions. 
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Whilst no significant differences were found directly between the two types of hit 

response, the relationship between each type of hit response and CRs was subtly 

different. HC responses appeared to show a more left lateralised posterior effect than 

was evident in the HI response comparison, which in turn exhibited a more right 

lateralised old/new difference over frontal sites than was evident in the HC comparison.  

The widespread bilateral old/new effect between 300-500ms seen in the ‘recollection’ 

contrast resembles the bilateral-frontal old/new familiarity effect reported by Curran 

and Hancock (2007). The presence of a familiarity effect in the ‘recollection’ contrast is 

not in itself unusual or unexpected, however the overall weaker, or at least more poorly 

characterised effect, seen in the ‘familiarity’ contrast is more curious. Considering the 

pattern of activity evident in terms of the location of maximal old/new difference, the 

frontally maximal ‘recollection’ effect and more centrally maximal ‘familiarity’ effect 

is perhaps more reflective of the activity seen in MacKenzie and Donaldson (2007). 

However, despite apparent differences in the distribution of the old/new effects in the 

two hit conditions, it should be noted that direct comparison of the HC and HI responses 

were not significantly different, in either the current study or in the rescaled name/no 

specifics topographic comparisons of MacKenzie and Donaldson (2007). 

In relation to the later time-window previous studies looking at old/new recognition 

memory for faces have identified a parietally distributed old/new effect, between 

approximately 500-700ms (Curran & Hancock, 2007, MacKenzie & Donaldson, 2007; 

Yick & Wilding, 2008), similar to that seen for words. In addition some studies have 

reported overlapping frontally distributed activity (MacKenzie & Donaldson, 2007 & 

2009; Yick & Wilding, 2008), thought to reflect recollection processes, and 

posteriorally distributed effects associated with familiarity (Yovel & Paller, 2004; 
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MacKenzie & Donaldson, 2007). The data presented here is consistent with the 

literature in terms of the presence of a left-parietal effect between 500-800ms, and there 

is also some evidence to suggest some additional overlapping anteriorly distributed 

activity similar to that seen in MacKenzie and Donaldson (2007 & 2009).  

In contrast to MacKenzie and Donaldson (2007 & 2009), however, here the anterior 

activity is evident in both the recollection (HC) and familiarity (HI) contrasts. The 

inconsistency in the pattern of the late anterior activity with that shown in MacKenzie 

and Donaldson (2007 & 2009) may of course be caused by the capturing of recollection 

related activity in the familiarity contrast. In the current study participants found the 

source task difficult, and may have recollected other details about the faces that were 

not measured. Whilst the presence of anteriorly distributed activity in the ‘familiarity’ 

contrast between 500-800ms is perhaps surprising, the widespread posterior activity 

evident in this contrast is consistent with the findings of Yovel and Paller (2004) and 

MacKenzie and Donaldson (2007).  

The current study therefore indicates that recognition memory for faces is associated 

with a late onsetting left-parietal old/new effect and, although weak, goes someway to 

support the idea of some additional anterior activity. One theory put forward to account 

for the inconsistency in the distribution of the ERP effects presented in the literature, 

concerns the heterogeneity of the stimuli (Donaldson & Curran, 2007); the stimuli used 

by Yoval and Paller  (2004) and MacKenzie and Donaldson (2007) were more 

homogenous than those used by Curran and Hancock (2007). The stimuli used in the 

current study closely resembled those used by MacKenzie and Donaldson (2007) which 

would be consistent with the idea that the differences seen between studies relates to 

specific aspects of the stimuli.  
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Although the preceding account is reasonable, one serious challenge to this view exists. 

In the previous chapter results were presented for a single-item recognition memory for 

faces task, which used the same style of facial stimuli used in the current source 

memory task (photographs of Caucasian faces, with hair and ears masked). Whilst a 

left-parietal old/new difference was found between 500-800ms, there was no evidence 

of any overlapping anterior activity, suggesting that the use of these stimuli per se does 

not fully explain the pattern of effects. There could be several reasons for this difference 

in effect distributions, primarily that the single-item task did not require participants to 

make any associations with other material. Assuming that in the source memory task 

participants were recollecting in the HI contrast and that the overlapping anterior 

activity does relate to recollection, as indicated in the previous literature, then it may be 

that participants were more reliant on familiarity processes to complete the single-item 

task, explaining the absence of activity believed to reflect recollection. The use of a 

large study-test block in the single-item memory task, which was more than four times 

the size of a block in the source memory task, would support the hypothesis that 

participants were more reliant on familiarity15. 

In addition to the various procedural differences that exist between the two tasks, 

another potentially important difference is the selection of participants included in the 

analyses, a variation that is equally applicable to the previous literature, raising the 

question of whether the presence/absence of overlapping anterior activity is participant 

specific. Of the 54 participants analysed in the current source memory task 27 were also 

                                                
15 Whilst investigating the effect of list length and recognition mirror effects Cary and Reder (2003) show 
that participants make less recollection-based responses (as indicated by the proportion of ‘remember’ 
Hits) and more familiarity-based responses (‘know’ Hits) for words in longer lists than those in shorter 
lists. Cary and Reder (2003) suggest that if participants are aware of the proportion of ‘old’ and ‘new’ 
items they will try to produce corresponding numbers of ‘old’ and ‘new’ responses. Subsequently if the 
number of recollection-based responses is reduced (i.e. through manipulation of task difficulty such as 
increasing the number of items to be remembered) participants will lower their familiarity criterion to 
achieve more ‘old’ responses. 
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included in the analysis of the single-item memory task. Therefore, to investigate the 

possible effects of the choice of participant an additional set of analyses was conducted 

comparing the old/new effects from the two tasks in the same sub-set of 27 participants. 

HC and HI responses from the source memory task were collapsed together to form ‘Hit 

responses’16 to make the comparisons equivalent across tasks. Therefore, comparisons 

of hits and CRs will be made for both the single-item and source memory tasks. 

6.3.2  Single-item and source old/new recognition memory effects for faces: 

6.3.2.1  Behavioural results 

The behavioural results for the 27 participants who met the inclusion criteria in both the 

single-item recognition memory for faces task (Chapter 5) and the source memory task 

for face and verbal phrase pairs are presented in Table 6.1. Recognition memory for 

faces (as indexed by Pr) was better for source memory than single item memory [t(26)= 

-5.21, p<0.001], but in both tasks participants exhibited a neutral decision bias. 

Participants made more hit responses in the source memory task, than in the single-item 

task [t(26)= -3.46, p=0.002], but there were no significant differences between tasks in 

the number of false alarms. In relation to responses times participants were significantly 

quicker at hit responses than CR responses in the single-item task [t(26)= -4.75, 
                                                
16 As expected collapsing the two types of Hit response did not significantly change the distribution of the 
ERP effects between 500-800ms, with analysis of the full sample showing a widespread old/new 
difference across posterior sites, and right lateralised at frontal sites. Statistical analysis revealed a 
significant main effect of condition [F(1,53)=16.46, p<0.001] and a condition by site interaction 
[F(1,59)=4.11, p=0.043], indicating that Hits were more positive than CRs, a difference largest at superior 
sites. Finally there was a significant condition by location by hemisphere by site interaction 
[F(3,162)=5.28, p=0.002], which when broken down with a 3-way ANOVA at each location revealed a 
significant condition by hemisphere by site interaction [F(1,74)=4.17, p=0.032] at the frontal location, 
indicating that the old/new difference was largest in the right hemisphere where the difference was 
uniform across sites, and greatest at superior sites in the left hemisphere; there was a main effect of 
condition [F(1,53)=11.14, p=0.002] at the frontocentral location, indicating a widespread old/new 
difference in which Hits were more positive than CRs; a condition by site interaction at both central 
[F(1,60)=5.35, p=0.021] and centroparietal [F(1,60)=4.56, p=0.032] locations indicating a bilateral 
old/new effect at these locations with the difference greatest at superior sites; and a main effect of 
condition [F(1,53)=20.35, p<0.001] at the parietal location, again indicating a widespread effect in which 
Hits were more positive than CRs. 
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p<0.001], but there was no significant difference in response times between hits and 

CRs in the source memory task [t(26)=1.78, p=0.087]. Overall participants responded 

quicker in the single item task than in the source task, a difference that was significant 

for both hits [t(26)=-5.52, p<0.001] and CRs [t(26)=-2.2, p=0.037]. Finally, in the 

source memory task participants identified the correct paired phrase on 59% (s.d. 7%) 

of trials, which was above chance level (50%) [t(26)=7.31, P<0.001]. 

 
 Single-item 
and source 

task 
participants 

(n=27) 

Hit rate 
(%) 

False 
Alarm rate 

(%) 
Pr Br Hit RT 

(ms) 
CR RT 

(ms) 

Single-item 
face 

recognition 
63 (8) 33 (8) 0.29 

(0.08) 0.47 (0.10) 1039 (217) 1132 (246) 

Source 
memory task 

face 
recognition 

70 (9) 30 (11) 0.40 
(0.10) 0.49 (0.13) 1274 (282) 1226 (254) 

Table 6.1 Behavioural results for the participants who met inclusion criteria in both the single item 
face recognition task and the source memory task. Table shows mean hit and false alarm rates in 

percentages, mean discrimination accuracy, mean decision bias, and mean response times for hit and 
CR responses in milliseconds. Standard deviations for each measure are given in brackets. 

6.3.2.2  ERP results 

Single-item recognition for faces (Hits vs CRs): 

Figure 6.3 shows grand-average ERPs for hit and CR responses, from the single-item 

recognition memory for faces task. The largest difference between conditions appears to 

be over left central electrodes between approximately 400-800ms, with hits more 

positive than CRs. The distribution of the old/new difference for the 300-500ms and 

500-800ms time-window can be seen with the topographic maps presented in Figure 

6.4. The old/new difference between 300-500ms  appears to be minimal, but between 

500-800ms there is a left hemispherically distributed old/new effect.  
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Figure 6.3 The grand average ERP waveforms for the single-item recognition memory for faces 
task. Waveforms are generated from a subset of participants who are also included in the source 

memory task analysis (n=27). Data as shown in Figure 6.1. 

 

 

Figure 6.4 Topographic maps showing the distribution 
of the old/new difference for the face recognition task. 

Data shown as in Figure 6.2. 

Analysis from 300-500 & 500-800ms:  

Consistent with the initial single-item recognition memory for faces analysis presented 

in Chapter 5, no significant difference between conditions was found in the 300-500ms 

time-window. By contrast, between 500-800ms there was a significant condition by 

hemisphere [F(1,26)=4.62, p=0.041] interaction, indicating that hits were more positive 

than CRs, a difference largest over the left hemisphere. There was also a significant 
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condition by location by hemisphere by site [F(3,75)=3.3, p=0.027] interaction. 

Subsidiary analysis to break down the four-way interaction (consisting of ANOVA 

performed on factors of condition, hemisphere and site at each location) found no 

significant differences at frontal, frontocentral or central locations. However, significant 

condition by hemisphere, and condition by hemisphere by site interactions were found 

at centroparietal [F(1,26)=7.18, p=0.013; F(1,29)=6.62, p=0.013] and parietal 

[F(1,26)=9.7, p=0.004; F(1,30)=10.91, p=0.002] locations. These interactions indicate 

that over left centroparietal and parietal electrodes a positive going old/new effect is 

present, which is largest at more lateral electrodes. Visual inspection of the data showed 

that the difference between conditions was largest at electrode CP5, however a paired 

samples t-test revealed that this difference was not significant [t(26)=1.99, p=0.08]. 

Statistically, therefore, findings are consistent with the full sample results presented in 

Chapter 5, indicating a left-parietal old/new effect for successful single-item face 

recognition memory. 

Source memory recognition for faces (Hits vs CRs): 

Hit and CR ERPs for the old/new recognition judgment of the source memory task are 

shown in  Figure 6.5. The waveforms show a clear divergence between conditions, with 

hits more positive going than CR from approximately 400ms until approximately 

700ms over most electrodes, and maintained until approximately 800ms over left-

parietal electrodes. The distribution of the old/new difference can be seen in the 

topographic maps shown in Figure 6.6. Between 300-500ms the old/new difference 

appears to be maximally distributed at posterior midline electrodes, a distribution that 

becomes more left lateralised in the 500-800ms time-window. In addition there appears 
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to be an anteriorly distributed old/new difference across both time-windows, over 

frontopolar electrodes, although this difference appears to be small. 

 

 Figure 6.5 The grand average ERP waveforms for the source memory task. Waveforms are 
generated from a subset of participants who are also included in the single-item face recognition 

memory task analysis (n=27). Data as shown in Figure 6.1. 

 

 

Figure 6.6 Topographic maps showing the distribution 
of the old/new difference for the source memory task. 

Data shown as in Figure 6.2. 

Analysis from 300-500 & 500-800ms:  

No significant differences between hit and CR responses were found from 300-500ms. 

By contrast, from 500-800ms a significant main effect of condition [F(1,26)=5.21, p= 



 Source Memory for Faces and Verbal Phrases 

- 183 - 

0.031], and a significant interaction between condition, location, hemisphere and site 

[F(3,75)=3.82, p=0.014] were found. Subsidiary analysis showed no significant 

differences at frontal, frontocentral or central locations, but revealed a significant main 

effect of condition at centroparietal [F(1,26)=7.13, p=0.013] and parietal locations 

[F(1,26)=10.12, p=0.004], indicating that hit responses were more positive going than 

CRs at these locations. A marginally non-significant interaction between condition, 

hemisphere and site was also found at the parietal location [F(1,30)=3.79, p=0.056], 

indicating that although not significant, the old/new difference was largest over left 

lateral electrodes. These findings indicate that the old/new difference between 500-

800ms is largest over parietal electrodes and exhibit a left hemispheric bias. Consistent 

with these findings, visual inspection of the data showed the old/new difference to be 

greatest at electrode P5, a difference that was significant [t(26)=3.61, p=0.001]. 

Comparison of single-item and source memory ERP effects: 

Significant parietal old/new ERP effects were found for both tasks between 500-800ms, 

with neither task exhibiting significant differences in the earlier time-window. The 

old/new effect for the single-item task appears to be slightly more left lateralised than in 

the source memory task, and visual comparison of the topographic maps for the two 

tasks (Figure 6.4 and Figure 6.6) suggest that the difference in the single-item task may 

be larger over left frontal electrodes. 

Analysis from 500-800ms:  

Statistical comparison of the two tasks was conducted on rescaled data, to take into 

account overall amplitude differences between the two tasks (McCarthy & Wood, 

1985), using ANOVA with factors of task (single-item faces/source memory), location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 
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(inferior/medial/superior). A significant task by location [F(1,35)=3.92, p=0.004] 

interaction was found, indicating that over anterior locations the old/new effect was 

larger in the single-item task than the source memory task, and in contrast, over parietal 

locations the source memory task exhibited the larger effect. This change in effect 

magnitude across locations can clearly be seen in Figure 6.7a. In addition a significant 

task by hemisphere [F(1,26)=4.8, p=0.038] interaction was found, indicating that the 

distribution of the old/new difference for the single-item task was more left lateralised 

across the entire scalp than in the source memory task, where the overall difference 

between hemispheres was minimal (Figure 6.7b).  

6.3.2.3  Discussion 

There are many possible reasons why old/new recognition performance (as index by Pr) 

was better in the source memory task than in the single-item task, many of which can’t 

be directly examined in the current data. For example, variation in block sizes may 

contribute to performance differences, with larger blocks in the single-item task 

requiring participants to remember more items per block than in the source task. 

Equated block sizes in the two tasks may bring about similar levels of performance. The 

differences in behavioural performance may also be the result of practice effects, with 

participants completing the single-item task first. However, it seems unlikely that the 

better performance in the source memory task can be explained solely by the differences 

in task order, particularly because post hoc analysis reveals that performance in the first 

half of the source memory task (Pr = 0.38, s.d. 0.11) was not significantly better than 

performance in the second half (Pr = 0.36, s.d. 0.11)  [F(1,26)=1.05, p=0.315].  
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Figure 6.7 Plots showing average old/new effect magnitude (data rescaled to control for overall 
magnitude differences) between 500-800ms for both the single item recognition memory for faces 

task and the source memory task across a) locations (frontal, frontocentral, central, centroparietal 
and parietal), and b) hemispheres (left, right). Significant task by location, and task by hemisphere 
interactions were found in the 500-800ms time-window indicating distributional differences in the 

old/new effect across tasks. 

One other factor that may have contributed to this performance difference is the 

additional associated information in the source task that was not available in the single-

item task. A close look at the break down of responses indicates that the proportion of 

false alarms was consistent across the two tasks, with the key difference in performance 

relating to the increased number of hits in the source memory task. One hypothesis is 

that in the source memory task the associated phrase information may have provided 

more opportunity for recollection-based decisions to be made, leading to more hit 

responses. Participants exhibited an overall neutral decision bias in both tasks, however, 

indicating an equal likelihood of responding ‘old’ as ‘new’ if unsure, suggesting a 

similar response strategy was used in both tasks. Nonetheless, overall response times 

were longer in the source memory task, a difference that may reflect additional 

evaluation of knowledge concerning the associated information. 
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Statistical analysis of the ERP data found no significant difference between hits and 

CRs in the 300-500ms time-window in either task. Whilst this finding is consistent with 

the results from the full sample single-item recognition memory for faces analysis 

(Chapter 5), a significant widespread midline old/new effect was found between 300-

500ms in the full sample analysis of the source memory task. The absence of a 

statistically significant old/new difference between 300-500ms in the source memory 

task may be caused by the reduction in the number of participants analysed, and hence a 

decrease in the statistical power of the analysis.  Alternatively, whilst no significant 

differences between hit response type were found in the source memory task, as 

discussed in Section 6.3.1.3 , the point of maximal old/new difference suggests that the 

pattern of activity in the early time-window may be subtly different between hit 

response types in relation to CRs. The distribution of the old/new effect appears more 

anterior in the recollection contrast than in the familiarity contrast, which exhibits a 

more central distribution. Although very small, if these distributional differences 

between hit response types are real but statistically weak, collapsing across hit 

responses may mask possible effects by reducing the overall amplitude of activity 

associated with hit responses and consequently the size of the old/new difference, 

explaining the absence of statistically significant differences in the earlier time-window 

in both tasks. 

Between 500-800ms both tasks showed a clear posterior old/new effect, with a clear left 

hemispheric laterality in the single-item task, and a left hemispheric bias in the source 

memory task, suggesting that asking participants to remember specific associated 

information does not in itself change the ERP recognition memory effects. However, 

whilst a left-parietal old/new effect is evident in both tasks, the magnitude of the 

old/new difference is larger in the source memory task, and comparison of the old/new 
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effect distribution, correcting for these magnitude differences, suggests that the overall 

distribution of activity is not the same. Comparisons indicated a clear hemispheric 

difference between 500-800ms, with the old/new effect in the single item task 

exhibiting an unmistakable left hemispheric laterality, whereas overall there was 

minimal hemispheric difference between conditions in the source memory task. 

Furthermore, disparity in the distribution of the old/new effect across locations was 

evident, with a more anterior old/new effect apparent in the single-item task, and a more 

posterior old/new effect in the source memory task; a pattern of activity this is highly 

reminiscent of the difference in activity seen between word and picture stimuli 

presented in the previous chapter (see Figure 5.16). 

More broadly, in theoretical terms, the distributional differences evident between word 

and picture stimuli have been hypothesised to relate to the reinstatement of encoding 

activity, with greater perceptual processing required for pictorial than verbal stimuli, 

reflected in more anterior old/new effects (Galli & Otten, 2011). In the current study the 

same face stimuli were used in both the single-item and source memory tasks, with both 

stimulus sets made to the same specifications; however the key difference between the 

tasks was the introduction of a verbal phrase accompanying the face at study in the 

source memory task. Whilst the perceptual processing of the face stimuli is likely to 

have been consistent across the two tasks, the additional verbal information in the 

source task may be responsible for the more posterior distribution, as can be seen for 

words. However, although the distributional differences between the two face tasks 

follow a similar pattern to the differences evident between word and picture stimuli, it is 

not possible to ascertain in the current study whether these variations have a common 

basis or if they are indeed the same. 
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A key aim in the comparison of the ERP effects from the two tasks was to see if the 

anterior old/new difference between 500-800ms that overlaps with the more typical left-

parietal old/new effect was specific to source memory tasks, or if the difference was 

participant specific. Analysis of the data found no significant right frontal old/new 

effects in either task, suggesting that the absence of the 500-800ms anterior old/new 

effect in the original single-item analysis may not be a function of task. The reduction in 

the number of participants included in the subsidiary analysis, and hence the reduction 

in statistical power, coupled with the fact that the effect in the full sample source 

memory task analysis was small, does not allow strong conclusions concerning this 

anterior effect to be made. It is therefore not possible to conclude that the effect was 

completely absent in this sub-sample of participants, simply that statistical analysis of 

the old/new difference did not reveal significant differences over right-frontal electrodes 

in either task. 

6.3.3  Participant specific old/new ERP effects for faces? 

Comparison of effects across two tasks with the same participants did not reveal 

significant differences over right-frontal electrodes, leading back to the question of 

whether or not the anterior old/new effect between 500-800ms is participant specific. 

Having looked at old/new differences in the sub-group of participants who were also 

included in the single-item analysis, and not finding significant anterior effects in the 

500-800ms time-window, analysis of the remaining 27 participants was conducted to 

see if these participants are driving the pattern of effects evident in the full-sample 

analysis. 
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6.3.3.1  Behavioural results 

Table 6.2 shows the behavioural data for the two source memory sub-groups, restating 

the results for the participants who were included in both the single item and source 

memory analysis described above (Both Tasks group), and presenting those from the 

remaining 27 participants who met the inclusion criteria on the source memory task, but 

did not meet the criteria on the single-item task (Source Memory Only group). Figure 

6.8 illustrates the relationship between performance on the single-item and source 

memory tasks across groups. Memory performance (as indexed by Pr) was better for 

the participants included in both analyses than the source memory only group 

[t(52)=4.51, p<0.001], a difference caused by variations in hit rate, with participants 

included in both tasks making significantly more hit responses [t(52)=4.22, p<0.001]. 

The false alarm rate was consistent across groups. Whilst, overall, participants in the 

Both Tasks group were slower at hit and CR responses compared to participants in the 

Source Memory Only group, this difference was only significant for hit responses 

[t(52)=2.18, p=0.034], possibly reflecting the better performance. 

 
Figure 6.8 Scatterplot depicting the relationship between memory 

performance (Pr) on the single item and source memory tasks for the 
Both Tasks and Source Memory Only groups. 
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Overall, participants included in both tasks exhibited a neutral responses bias, whereas 

the Source Memory Only group were significantly more conservative in their bias 

[t(52)=2.03, p=0.047], although in comparison to the picture and word tasks presented 

in the previous chapter both groups show a fairly neutral response bias. Performance on 

the source judgment task was consistent across the two groups, however, with 

participants included in both task analyses scoring an average of 59% (s.d. 7%) correct, 

and the additional participants scoring an average of 57% (s.d. 4%). Participants in both 

groups were above chance level (50%) [t(26)=7.21, p<0.001; t(26)=9.05, p<0.001]. 

Source 
memory 

subgroups 

Hit rate 
(%) 

False 
Alarm rate 

(%) 
Pr Br Hit RT 

(ms) 
CR RT 

(ms) 

Both Tasks 
group 70 (9) 30 (11) 0.40 (0.10) 0.49 (0.13) 1274 (282) 1226 (254) 

Source 
Memory 

Only group 
58 (11) 29 (12) 0.29 (0.07) 0.41 (0.16) 1107 (282) 1140 (314) 

Table 6.2 Behavioural results for participants who met inclusion criteria in both face recognition tasks, 
and those who were only included in the source memory task analysis. Data shown as in Table 6.1.  

6.3.3.2  ERP results 

The Source Memory Only group (Hits vs CRs): 

Hit and CR waveforms for the Source Memory Only group are shown in Figure 6.9. 

There is a clear divergence between conditions, starting at approximately 400ms, in 

which hits are more positive going than CRs, a difference lasting until approximately 

800ms over parietal electrodes, and evident until approximately 1100ms over frontal 

electrodes. The distribution of the old/new difference can be seen in the topographic 

maps presented in Figure 6.10, which shows the old/new difference is widespread along 

midline electrodes between 300-500ms, becoming more right-frontal in distribution 

between 500-800ms.  
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Analysis from 300-500 & 500-800ms:  

Interactions between condition and site were found between 300-500ms [F(1,29)=9.65, 

p=0.003), and between 500-800ms [F(1,28)=4.52, p=0.040], indicating a widespread 

bilateral effect in which hits were more positive going than CRs, a difference greatest at 

superior sites in both time-windows. A main effect of condition was also found between 

500-800ms [F(1,26)=11.81, p=0.002]. Visual inspection of the data showed the old/new 

difference was largest at electrode CPZ between 300-500ms and FC2 between 500-

800ms, the difference between conditions at both these electrodes was found to be 

statistically significant [t(26)=2.73, p=0.011; t(26)=3.89, p=0.001]. 

 

Figure 6.9 ERPs for the source memory task. Waveforms are generated from the subset of 
participants only included in the source memory task analysis (n=27). Shown as in Figure 6.1. 
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Figure 6.10 Topographic maps showing the source 

memory old/new difference distribution. Data is taken 
from participants who were only included in the source 
memory task analysis, and is shown as in Figure 6.2. 

Comparison of ERP effects across the two source memory groups: 

Analysis from 500-800ms:  

Statistical comparison of the two source memory groups was conducted on rescaled 

data, using ANOVA with the between-subjects factor of group (Both Tasks 

group/Source Memory Only group), and within-subject factors of location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 

(inferior/medial/superior). No significant interactions with group were found, indicating 

that the apparent differences seen when comparing topographic maps from the two 

groups (Figure 6.6 & Figure 6.10) were statistically weak. However, whilst these 

differences in effect distribution may not be strong enough to reach statistical 

significance, the variations between subgroups that can be seen when comparing Figure 

6.6 and Figure 6.10 remain interesting given their correspondence with the 

discrepancies seen in the literature. 

6.3.3.3  Discussion 

In comparison to the Both Tasks group, the performance (as indexed by Pr) of the 

Source Memory Only group was poor. This result is perhaps not surprising since 

participants included in the analysis of both tasks could reasonably be assumed to have 

a better memory for faces than the additional participants, who did not meet the 
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inclusion criteria on the single-item task. Interestingly, however, the performance 

difference between the two groups appears to be in relation to the proportion of hit 

responses made, with the number of false alarms consistent between groups. A smaller 

number of hit responses for the additional participants suggest a more conservative 

approach, in which ‘old’ responses were made only when confident in the decision, a 

hypothesis supported by the lower response bias (Br) score. Whilst performance on the 

old/new recognition task differed between groups, performance on the source task did 

not, suggesting an equivalent proportion of recollection-based trials in each group. 

The topographic maps suggest that there are distributional differences between the two 

source memory groups in the 500-800ms time-window, with one group showing a left-

parietal effect consistent with the typical recognition memory effects seen for words, 

and the other showing a more right lateralised central old/new effect resembling the 

effect reported by MacKenzie and Donaldson (2007). As the comparison of effects in 

Figure 6.11 illustrates, the distributions of Mackenzie and Donaldson (2007) and the 

Source Memory Only group are remarkably similar, and appear to differ in distribution 

from the Both Tasks group effect. Despite appearances, analysis revealed that the 

differences between the Both Tasks group and the Source Memory Only group in the 

current study were not statistically robust. However, examining the location of maximal 

old/new effect in each group highlights the differences that can be seen in the 

topographic maps, with the effect maximal at a left parietal electrode (P5) for 

participants in the Both Tasks group, whereas the maximal difference was at a right 

frontocentral electrode (FC2) in the Source Memory Only group. Therefore whilst 

direct comparison of the old/new effects from the two groups did not show statistically 

significant distributional differences, it is none the less worth noting the disparity in 

location of maximal old/new effect and the pattern of activity shown in the topographic 
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maps, which clearly map onto the competing arguments in the literature. Whilst it is not 

possible to draw strong conclusions from this data, it does suggest that a more 

systematic analysis of individual differences within face recognition memory is needed 

to assess the contribution of such variations to the competing theories.  

Aside from the discussion of the 500-800ms anterior old/new effect, one of the most 

interesting results from the analysis of the Source Memory Only group is the presence 

of a widespread bilateral old/new effect between 300-500ms. No significant differences 

were found between 300-500ms in the initial sub-group for either the single-item or 

source memory tasks. The presence of an early effect is consistent with the findings 

from the full sample analysis; in particular the location of maximal old/new difference 

matches the location from the HI contrast, suggesting that participants in the Source 

Memory Only group were driving the early effect. As outlined above, taking into 

account the centroparietal maxima, this early old/new effect resembles the more 

centrally distributed ‘familiarity’ effect outlined by MacKenzie and Donaldson (2007). 

Given the old/new performance differences between the two source memory groups, 

and the fact that the participants also in the single-item analysis can be considered more 

skilled at remembering faces, it is not unreasonable to assume that the additional 

participants were more reliant on familiarity processes. It is therefore perhaps not 

surprising that there is a stronger effect, which resembles that of familiarity, for this 

group. 



 Source Memory for Faces and Verbal Phrases 

- 195 - 

 

Figure 6.11 Topographic maps showing the distribution of old/new differences for faces from 
MacKenzie and Donaldson (2009) and the current study. The left map shows the distribution of 

recollection (correctly recognised ‘old’ items classified by participants as ‘remembered’) old/new 
effects for faces from MacKenzie and Donaldson (2007, figure adapted from MacKenzie and 

Donaldson, 2007). The centre map shows old/new effect distribution for the Source Memory Only 
group from the current study (as presented in Figure 6.10), and the right map shows old/new effect 

distribution for the Both Tasks group from the current study (as presented in Figure 6.6). 

6.4  General Discussion 

Successful old/new recognition of faces in the source memory task revealed an early 

bilateral old/new effect widely distributed across midline electrodes between 300-

500ms and a later left-parietal old/new effect with overlapping frontal/central activity 

between 500-800ms. Whilst the principle aim of the additional source memory task was 

to gain estimates of familiarity and recollection to better understand the old/new ERP 

effects (through comparisons of hit responses with and without correct source retrieval), 

no statistically significant differences were found between the two types of hit response. 

The absence of ERP modulations by HC and HI responses that are apparent in the 

literature (Yovel & Paller, 2004; Curran & Hancock, 2007; MacKenzie & Donaldson, 

2007 & 2009) may reflect the difficulty of the source task, with participants using 

factors other than the associated verbal phrase to make recollection-based decisions. 

While it is difficult to draw firm conclusions about the contributions of familiarity and 

recollection to ERP effects for faces, it is interesting to note that in comparison to the 

old/new ERP effects found for the single-item faces task (Chapter 5), the early 

widespread bilateral effect and the later anterior effect were specific to the source 
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memory task. There were several key differences between the single-item and source 

memory tasks that might account for the discrepancies evident in the timing and 

distribution of the ERP effects. The reduced block sizes may have led to the increase in 

old/new recognition memory performance in the source task, resulting in more 

prominent ERP effects than observed in the single-item task. Equally, the introduction 

of the associated information may have provided more opportunity for participants to 

make recollection-based memory decisions, increasing the likelihood of statistically 

significant recollection ERP effects. Finally, and perhaps most importantly, another 

important difference between the two tasks was the participants contributing to the 

analysis. One possible explanation for the variations in ERP effects between the two 

tasks is that recognition memory ERP effects are not the same for all participants, 

and/or that participants are using different processes to complete the task. 

Analysis of the data from participants who contributed to both tasks indicated that this 

group did not exhibit an early bilateral old/new effect in either task, nor was there 

strong evidence of the later anterior effect seen in the source memory task. These 

findings suggest that, for face recognition, the widespread 300-500ms bilateral old/new 

effect and the 500-800ms anterior effect found in the source memory task are 

participant specific.  

Follow-up analysis of the additional 27 participants who contributed to the initial full 

sample source memory task analysis did show a widespread bilateral old/new effect 

between 300-500ms, suggesting that the absence of this effect in the group of 

participants analysed in both tasks was not simply caused by a reduction in power (i.e. 

resulting from fewer participants). Furthermore, visual inspection of the ERP effects 

between 500-800ms for the Source Memory Only group showed a clear right 
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frontocentral old/new effect, consistent with the recollection effect found by MacKenzie 

and Donaldson (2007). Statistical analysis characterises this difference as a more 

widespread bilateral old/new effect; however, this effect was not statistically different 

from the Both Tasks group effect, which had a left-parietal distribution.  

In sum, whilst the ERP effects between 500-800ms were not significantly different 

between the two source memory groups, the variation in distributions evident in the 

topographic maps, and the effect differences found in the 300-500ms time-window, 

strongly suggest that there were participant differences in the ERP effects associated 

with successful recognition memory of faces. Furthermore, the data presented above 

suggest that the discrepancies seen in the face recognition memory literature (Yovel & 

Paller, 2004; Curren & Hancock, 2007; MacKenzie & Donaldson, 2007 & 2009; 

Donaldson & Curran, 2007) may relate to differences in individual participants, rather 

than to differences in task procedure or stimuli. One possibility is that the distributional 

differences evident between participants reflect strategic differences in the way 

participants completed the task. However, no manipulation of task strategy was 

included in the experiments, suggesting that the observed variations in ERP effect 

distribution are driven by inherent participant differences resulting in differing strategy 

use, or alternatively that the neural correlates of the same strategy differ across 

participants. 
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Chapter 7   

Performance Analysis: Words and Pictures  
 

The previous two chapters discussed the ERP correlates of episodic memory, looking at 

single item recognition and the retrieval of source information. In these analyses 

important disparities in performance were evident, with differences apparent between 

stimuli, tasks, and participants, which constrained the conclusions that could be drawn 

about differences in effect distribution evident between tasks.  

Variation in task performance is not in itself unexpected of course, nor is it necessarily 

undesirable; indeed it can act as a comparatively simple indicator of changes in 

cognitive functioning. Equally, whilst variations in performance between individuals are 

normal, such differences can be potentially informative in terms of the conclusions that 

can be drawn about the processes involved in memory retrieval (and the associated 

neural correlates), particularly if behavioural performance differs across studies, groups 

or tasks that are being compared. Furthermore given the significance of memory in 

everyday functioning it is important to understand the reasons why healthy participants 

score differently from each other when completing the same task, and the potential 

consequences of differing strategies (such as a more liberal or conservative response 

bias). In particular, one key issue is whether differences in behavioural performance 

modulate the traditional retrieval effects or generate topographically distinct effects. In 

essence the question is whether individuals are engaging the same processes when they 

complete these tasks, and if so what is causing the variation in task performance. 

As a result of the large variation in performance scores evident in the single-item 

recognition memory for words and pictures, these tasks will be the focus of 
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investigations into the impact of performance differences in the current chapter. By 

contrast, due to the comparatively poor performance and limited range of performance 

scores, data from the source memory task will not be included in the performance 

analysis. This chapter will first look at the ERP effects exhibited by groups of high and 

low performers on the word task, before examining the relationship between ERP effect 

magnitude and behavioural performance for both words and pictures. Finally, 

behavioural data from groups of participants exhibiting distinct ERP effects on the word 

task will be analysed to investigate the hypothesis that ERP correlates may be used as 

biomarkers of cognitive performance. 

7.1  Introduction 

The overall results for the word and picture recognition memory tasks were presented in 

Chapter 5, showing an early 300-500ms widespread bilateral old/new effect and a later 

500-800ms left-parietal old/new effect, with the effects for pictures more anterior in 

distribution than words. As discussed in Chapter 5 these results are broadly consistent 

with previous literature, revealing putative correlates of familiarity and recollection. To 

reiterate, as discussed in Chapter 1, familiarity is a general sense that an item has been 

previously encountered, whereas recollection involves the recovery of details relating to 

a previous encounter. These two processes are considered to be independent from each 

other and are believed by dual process theorists to be the core processes that contribute 

to successful memory retrieval.  

One important route toward understanding differences in performance across task, 

individuals and stimuli is to first clarify the relationship between the ERP correlates of 

retrieval and task performance. Here we focus on the most widely studied effect – the 

left-parietal effect, which is widely believed to provide an index of recollection. The 
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magnitude of the left-parietal effect has been shown to modulate with the amount of 

information recollected (Vilberg, Moosavi, & Rugg, 2006; Vilberg & Rugg, 2009), the 

number of correct source judgments made (Wilding & Rugg, 1996; Wilding, 2000), and 

the number of repeated study-test blocks (Johnson Jr, Kreiter, Russo & Zhu, 1998). 

Taken together, these data appear to be consistent with the idea that increases in 

recollection directly reflect (i.e. correlate with) increases in the magnitude of the left-

parietal effect.  

Not all published studies support this view however, for example, using a recognition 

task with ‘old’, ‘new' and recombined word pairs Van Petten, Luka, Rubin and Ryan 

(2002) showed that ERP amplitude over posterior electrodes between 300-600ms was 

graded simply by the degree of stimulus ‘oldness’, with ‘old’ word pairs more positive 

than recombined pairs, which in turn were more positive than ‘new’pairs. Importantly 

Van Petten and colleagues found that, across participants, the posterior effect was not 

sensitive to performance differences in distinguishing recombined pairs from 

‘new’pairs. In particular, no significant difference was found in the magnitude of 

old/recombined effects between good and bad recombined pair identifiers, or between 

recombined/new effects. By contrast, a bilateral prefrontal old/new difference between 

700-1000ms was modulated by accuracy on recombined trials. 

In contrast to the findings of Van Petten et al. (2002), however, other authors have 

claimed a direct link between performance differences across participants and the size 

of the left-parietal effect. For example, Curran and Cleary (2003) found that the size of 

the left-parietal old/new effect seen for pictures was modulated by recollection, but only 

when participants were good at distinguishing ‘old’ from similar lures. Good performers 

showed a significant studied/new ERP difference, but no significant difference between 



 Performance Analysis: Words and Pictures 

- 201 - 

similar and new conditions. Poor performers, by contrast, showed no significant ERP 

differences between studied and similar items, but significant differences when 

comparing either studied or similar conditions to new items. Overall therefore, Curran 

and Cleary (2003) found no performance differences in the studied/new ERP 

comparison, consistent with the fact that both performance groups were equally good at 

distinguishing studied images from new images. More importantly, they did find 

differences in the studied/similar ERP comparison consistent with the key behavioural 

difference between groups – differences in the discrimination of studied and similar 

images, a task thought to require recollection processes for completion. 

Overall, therefore, these studies provide some degree of support for the claim that the 

left-parietal old/new effect is modulated by the amount of information retrieved about 

each episode (i.e. the degree of engagement of recollection processes). Following on 

from this there is a general assumption that recognition performance is positively 

correlated with recollection (Johnson Jr et al., 1998), in that the more an individual 

engages recollection processes the better they will perform on a recognition task. In 

support of this hypothesis Olichney, Van Petten, Paller, Salmon, Iragui and Kutas 

(2000) found a significant correlation between the amplitude of the posterior late 

positive component (LPC) repetition effect (in which previously presented items show 

more positive going activity than items presented on fewer occasions, an effect which 

exhibits a left hemispheric distribution) with word recall accuracy in subsequent 

memory tests for both an amnesic patient group and a control group. Collapsing across 

these groups also resulted in a positive correlation with recognition memory 

performance. Similarly Finnigan, Humphreys, Dennis and Geffen (2002) showed that 

the LPC is sensitive to recognition decision accuracy, with mean amplitude at electrode 

P3 between 500-800ms larger for correct responses (Hits and CRs) than incorrect 
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responses (Misses and false alarms), but not to memory strength (i.e. words presented 

once versus words presented three times). The LPC repetition effect has been linked to 

the successful recollection of previously presented stimuli (Finnigan et al., 2002), and 

closely resembles the left-parietal old/new effect discussed above. 

In sum, given the general characterisation of the left-parietal effect, and the evidence 

described above, the literature makes clear predictions about the pattern of ERP effect 

that should occur when variability in performance is examined. First, we expect that the 

magnitude of the left-parietal old/new effect will be modulated by a participant’s 

performance on the task, with good performers showing a larger effect than poor 

performers. Second, we expect that there will be a positive correlation between old/new 

effect magnitude at left-parietal electrodes and performance. Importantly, because of the 

number of participants in the initial study, here we are able to examine the predictions 

with considerably greater power than has ever been possible. Furthermore, the large 

database of participants also allows comparisons to be made whilst controlling for other 

variables (such as differences in response bias) that could potentially have influenced 

the outcome of previous small group comparisons. 

7.2  Methods 

The main focus of the performance analysis is the single item recognition memory for 

words task, and all 122 participants who met the inclusion criteria for the word task 

(Chapter 5) were included. Initial analysis considers a subset of the sample, selecting 

groups of high and low performers on the basis of discrimination accuracy (Pr) scores. 

Participants with Pr # 0.65 were assigned to the high performing group and those with 

Pr $ 0.55 (but greater than Pr = 0.2) to the low performing group; participants scoring 

outwith these parameters were not included in the group analysis. The performance 
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groups were then matched for mean and standard deviation decision bias (Br) scores, as 

well as keeping mean hit and CR response times as consistent as possible, selecting 24 

high and 24 low performers. All other aspects of the methods are as described in the 

General Methods (Chapter 4), with details of any additional analysis given alongside the 

relevant results section. 

7.3  Results 

7.3.1  High versus low performance groups: Words 

7.3.1.1  Behavioural Results 

The behavioural results for the high and low performing groups are presented in Table 

7.1. As expected the two groups were significantly different in discrimination accuracy 

[t(46)=-15.31, p<0.001], but did not differ in decision bias (with both groups showing a 

conservative bias) nor in response times for either hits or CRs. 

Performance 
Group  

Hit rate 
(%) 

False 
alarm rate 

(%) 
Pr  Br Hit RT 

(ms) 
CR RT 

(ms) 

High  
(n=24) 42 (4) 3 (2) 0.79 (0.09) 0.36 (0.15) 822 (176) 895 (181) 

Low 
(n=24) 30 (5) 10 (5) 0.40 (0.09) 0.36 (0.14) 853 (174) 916 (194) 

Table 7.1 Behavioural results for the high performance and low performance groups. Table shows 
mean hit and false alarm rates in percentages, mean discrimination accuracy, mean decision bias, 
and mean response times for hit and CR responses in milliseconds. Standard deviations for each 

measure are given in brackets. 

7.3.1.2  ERP Results 

High performers: 

Figure 7.1 shows grand average ERPs for hit and CR responses at representative frontal, 

central and parietal locations for the high performers group. A divergence between 

conditions is evident across all electrodes, with hits more positive going than CRs, from 
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approximately 400ms until 700ms over parietal electrodes and continuing until 

approximately 1000ms over frontal electrodes. Whilst evident across all electrodes, the 

difference between conditions appears maximal over left hemisphere electrodes. The 

distribution of this old/new difference is evident from the topographic maps shown in 

Figure 7.2, which clearly show the left hemispheric distribution of the effect in both the 

300-500ms and 500-800ms time-windows.  

 

Figure 7.1 Grand average ERP waveforms for high performers on the recognition memory for 
words task, at representative frontal, central and parietal electrode sites (n=24). The vertical scale 
indicates electrode amplitude, measured in microvolts, whilst the horizontal scale indicates change 

in time, measured in milliseconds. 
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Figure 7.2 Topographic maps showing the 

distribution of the old/new differences for high 
performers. Two latency regions are shown, 300-

500ms and 500-800ms, along with scale bars to show 
the size of the old/new difference. Maps show the 

subtraction of the grand average ERP for CRs from 
the grand average ERP for hits. 

 

Analysis from 300-500ms: 

Analysis of the ERP data was conducted using ANOVA, with factors of condition 

(Hits/CRs), location (frontal/frontocentral/central/centroparietal/parietal), hemisphere 

(left/right), and electrode site (inferior/medial/superior) as outlined in Chapter 4. 

Analysis of the 300-500ms time-window revealed a significant main effect of condition 

[F(1,23)=18.67, p<0.001], along with significant condition by hemisphere, condition by 

site, and condition by location by hemisphere interactions [F(1,23)=5.66, p=0.026; 

F(1,24)= 15.24, p=0.001; F(2,43)=3.75, p=0.034]. As Figure 7.2 shows, the old/new 

difference was largest over the left hemisphere showing a uniform spread across 

locations, whereas in the right hemisphere the old/new difference was larger at the 

frontal location. Visual inspection of the data revealed that the old/new difference was 

greatest at electrode C1 between 300-500ms; a t-test confirmed that the difference 

between conditions was significant at this electrode [t(23)=4.52, p<0.001]. 

Analysis from 500-800ms: 

A significant main effect of condition [F(1,23)=20.13, p<0.001], and significant 

interactions between condition and hemisphere [F(1,23)=8.22, p=0.009]; condition and 
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site [F(1,24)=6.4, p=0.018]; condition, location and site [F(3,62)=3.41, p=0.027]; and 

condition, hemisphere and site [F(1,25)=8.88, p=0.032], were found in the 500-800ms 

time-window. These results indicate that overall hits were more positive than CRs, with 

a greater difference over left hemisphere electrodes. The left hemisphere old/new effect 

was evenly distributed across sites, with superior electrodes showing the greatest 

difference over the right hemisphere. At superior and medial sites the difference was 

greatest at central and centroparietal locations, with a more uniform distribution across 

locations at inferior sites. Visual inspection of the data indicated that the difference was 

maximal at electrode C3, and a paired-samples t-test found this difference to be 

significant [t(23)=5.33, p<0.001]. 

In contrast to the analysis of all participants presented in Chapter 5, comparison of the 

old/new effects across time windows for the high performers revealed no significant 

difference, suggesting that the old/new effects seen in the 300-500ms and 500-800ms 

time-windows do not differ. 

Low performers: 

Hit and CR ERPs for low performers on the word recognition task are shown in Figure 

7.3. As for the high performers, there is a clear difference between hits and CRs across 

all electrodes between approximately 400-800ms. The topographic maps shown in 

Figure 7.4 reveal that the effect has a widespread distribution, and indicate that the 

old/new difference is largest in the 500-800ms time-window. The maximal old/new 

difference for low performers appears to be over midline and superior electrodes at the 

frontocentral location in both time-windows. 
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Figure 7.3 Grand average ERP waveforms for low performers on the recognition memory for words 
task (n=24). Data shown as in Figure 7.1. 

 

 
Figure 7.4 Topographic maps showing the distribution 
of the old/new difference for the low performers. Data 

shown as in Figure 7.2. 

 

Analysis from 300-500ms and 500-800ms: 

No significant differences between hit and CRs responses were found in the 300-500ms 

time-window for low performers. By contrast in the 500-800ms time-window a 

significant main effect of condition [F(1,23)=6.12, p=0.021] was found, along with 

significant interactions between condition, location and hemisphere [F(1,26)=9.13, 

p=0.004], and condition, location, hemisphere and site [F(3,59)=6.43, p=0.001]. Taken 
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together these results indicate that hits were more positive than CRs, a difference 

greatest over posterior locations across the left hemisphere and anterior locations in the 

right. Across frontocentral and central locations the old/new difference was larger at 

superior than inferior sites for both hemispheres. However, at centroparietal and parietal 

locations the distribution differed between hemispheres, appearing more uniform across 

sites in the left hemisphere and larger at superior than inferior sites in the right. Visual 

inspection of the data revealed the old/new difference to be maximal at electrode FC2 in 

the 500-800ms, a difference that was significant [t(23)=2.69, p=0.013]. 

Comparison of performance groups: 

Figure 7.5 shows the ERP difference waveforms for the high and low performers, 

revealing a clear divergence between performance groups over left hemisphere 

electrodes that is not present over right hemisphere electrodes, with the high performers 

showing a larger old/new difference than low performers. The divergence between 

groups appears to onset as early as approximately 200ms and last until approximately 

900ms, and is particularly evident over electrode C3. The difference in old/new effect 

distribution between groups is shown in the topographic maps presented in Figure 7.6, 

showing a left-central distribution in the 300-500ms time-window followed by a 

slightly more anterior frontocentral distribution in the 500-800ms window. As indicated 

by the difference waveforms this left-frontocentral distribution difference between 

groups is not confined to the typical 300-500ms and 500-800ms old/new effect time-

windows, but is present between approximately 200-900ms. 
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Figure 7.5 Grand average ERP difference waveforms (Hits-CRs) at representative frontal, central 
and parietal electrode sites, for high and low performers during word recognition. 

 

 

Figure 7.6 Topographic maps showing the difference in old/new effect 
distribution between high and low performers on the word recognition 

task. Maps were generated by the subtraction of the low performers 
difference waveform from the high performers difference waveform. Three 
latency regions are shown, 300-500ms, 500-800ms and 200-900ms, along 

with a scale bar to show the size of the difference. 

Analysis from 300-500ms and 500-800ms: 

In the analysis described above high performers exhibited an early, 300-500ms old/new 

effect that was widespread across the left hemisphere. In the same time-window no 

significant difference between conditions was found for low performers. Both groups 
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showed a significant old/new difference over left-parietal electrodes between 500-

800ms, consistent with the ‘all participants’ analysis presented in Chapter 5. Given the 

absence of a significant old/new difference in the 300-500ms time-window for the low 

performers, statistical analysis comparing the two groups focused on the 500-800ms 

time-window. Analysis was conducted using ANOVA with between subjects factor of 

group (high Pr /low Pr ), and within-subject factors of location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 

(inferior/medial/superior). Analysis revealed no significant interactions between 

performance group and factors of location, hemisphere or site, suggesting that the 

magnitude of the old/new effects did not differ across groups. Furthermore analysis on 

data rescaled in line with McCarthy and Wood, (1985), also revealed no significant 

interactions with performance group suggesting that the 500-800ms old/new effects in 

the two groups did not differ in distribution, suggesting that the neural generators in 

each group where the same. 

Analysis from 200-900ms: 

Analysis of the high performance group showed no significant differences between 300-

500ms and 500-800ms indicating that the ERP effects exhibited by the high performers 

may be the same in both time-windows. The sustained nature of the effect is also 

evident in the group comparison topographic maps (Figure 7.6) which show a left-

frontocentral difference across both 300-500ms and 500-800ms time-windows, a 

difference that the ERPs show as lasting from 200-900ms.  However, statistical analysis 

of the 200-900ms time-window revealed no significant interactions with performance 

group suggesting that the magnitude of the effect did not differ between groups. 

Furthermore analysis with rescaled data also showed no significant difference between 
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groups for this extended time-window, suggesting that the effects between 200-900ms 

did not differ in distribution. A marginally non-significant interaction [F(1,57)=3.39, 

p=0.062] between hemisphere, location and performance group was however evident, 

indicating that the difference in the 200-900ms time-window may be real but that 

between the two selected groups the difference was not reliable enough to reach 

statistical significance. A more targeted analysis following the same hemisphere and 

site structure as used previously, but confining the comparison of location to 

frontocentral and parietal electrodes, again failed to reach significance [F(1,46)=3.79, 

p=0.058], although the result was also marginally non-significant highlighting the 200-

900ms time-window as a potentially important time-window and one to include in 

further performance investigations.  

7.3.1.3  Discussion of performance groups 

The high and low performing groups were composed of participants that differed in 

performance (Pr ), but were matched for response bias and response times for both hits 

and CRs. The high performers exhibited a widespread left hemisphere old/new 

difference, with hits more positive than CRs, which did not differ across the two time-

windows. The low performers showed no significant effects in the 300-500ms time-

window, but exhibited a typical left-parietal old/new effect in the 500-800ms time-

window, alongside an additional right frontal old/new effect. This right frontal activity 

could reflect an early on-setting ‘late right frontal effect’ that is thought to reflect post-

retrieval processes (Wilding & Rugg, 1996). Most importantly, statistical comparison of 

the effects for the high and low performers did not find any significant differences 

between the two groups in the 500-800ms time-window. Visual inspection of the data 

did indicate a left frontocentral difference between groups, a sustained effect present 
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between 200-900ms, however this difference also failed to reach statistical significance. 

Whilst the left frontocentral difference was not statistically robust, marginally non-

significant interactions between performance group, location and hemisphere on 

rescaled data highlight this area and time-window as potential areas of interest for 

further investigation. 

Overall there were two striking outcomes from the group analysis, firstly the lack of 

significant differences by group in the 500-800ms time-window, and secondly the 

absence of a topographically distinct early old/new effect for high performers and 

complete absence of an early effect for low performers.  It was expected that differences 

in Pr would be reflected by differences in the magnitude of the left-parietal effect; a 

hypothesis based on the assumption that the left-parietal effect indexes recollection and 

has been shown to modulate with the amount of information retrieved. On this basis it 

was therefore anticipated that better recognition performance would be associated with 

recollection of more information17, and consequently with a larger magnitude of the 

left-parietal effect. The absence of significant differences between the performance 

groups suggests that these assumptions may be incorrect.  

The absence of topographic differences across time-windows in the high Pr group that 

had been previously noted in the all participant analysis (Chapter 5), and the absence of 

an early old/new difference for the low performers, indicates possible individual 

differences in the ERPs for the word task that may relate to performance. The absence 

of the early effect for the low performers is particularly puzzling as one hypothesis 

would be that low performers are more reliant on the process of familiarity, and 

                                                
17 Analysis of two supplementary behavioural studies looking at R/K/G responses and source accuracy in 
relation to recognition performance, suggests that the assumption that recognition performance would 
positively correlate with recollection was not unfounded. Section 7.3.2.4  will discuss these results in 
more detail. 
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therefore old/new effects relating to ‘familiarity’ would be expected, in contrast to high 

performers who would be expected to be more successful at utilising the process of 

recollection. The absence of the early effect in the low performers is therefore important 

in ruling out this possibility. The absence of a relationship between performance and the 

left-parietal effect cannot therefore be explained away with recourse to differential 

reliance on familiarity in the low performers. 

The results of these analyses were clearly unexpected; the failure to find statistically 

significant differences between performance groups in the 500-800ms time-window is 

particularly surprising. Additional analysis looking at the full sample of participants was 

therefore conducted to see if the expected differences were in someway masked by the 

grouping process, and to further investigate potential individual differences in the ERP 

correlates of recognition memory that may be related to performance. 

7.3.2  Full sample correlation analysis 

With the apparent differences in ERP effects between the all participants, high 

performing and low performing groups in mind, further analyses were conducted to 

examine effect magnitude and performance in all participants who met the inclusion 

criteria. Comparisons were made of performance and old/new effect magnitude for the 

early 300-500ms bilateral effect and the typical 500-800ms left-parietal effect evident in 

Chapter 5. It was hypothesised that the magnitude of the left-parietal effect would 

correlate with performance - again, based on the assumption that the left-parietal effect 

reflects the process of recollection and should therefore modulate with the amount of 

information retrieved. However, given that the analysis of high and low performing 

groups presented above showed no evidence that the left-parietal effect differed 

according to group, but did point towards a 200-900ms effect over left frontocentral 
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electrodes, comparisons of performance and old/new effect magnitude over left 

frontocentral electrodes in the 200-900ms time-window were also conducted. In 

addition data from both the word and picture tasks were analysed to see if the 

relationship between ERP effects and performance were task dependent. 

7.3.2.1  Word ERP effects and performance 

Behavioural Results: 

The behavioural results for the 122 participants who met the inclusion criteria for the 

word task are as presented in Chapter 5, in Table 5.2. Overall participants had a mean 

Pr of 0.54 (s.d. 0.17), and exhibited a conservative response bias (Br = 0.39, s.d. 0.16). 

The average response times for hit responses were 823ms (s.d. 138ms) and 898ms (s.d. 

157ms) for CRs. 

Performance and ERP effect correlations: 

Correlations were performed on discrimination accuracy (Pr ) scores and a) the 

magnitude of the bilateral-frontal effect, as indexed by the old/new difference between 

300-500ms averaged across electrodes F1, FZ and F2 (Figure 7.7a); b) the left-parietal 

effect, indexed by the old/new difference between 500-800ms averaged across 

electrodes P5, P3 and P1 (Figure 7.7b); and c) the old/new difference between 200-

900ms over left frontocentral electrodes (old/new difference averaged across electrodes 

FC5, FC3 and FC1) identified in the performance group analysis as a region and time-

window of interest (Figure 7.7c). Data was averaged across electrodes to improve 

signal-to-noise ratio, with 3 electrodes selected in each case to ensure equivalent power 

in all comparisons. 
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a) 

  

b) 

 

c)  

 

Figure 7.7 Scatterplots depicting the relationship between Pr and ERP old/new effect 
magnitude for a) the 300-500ms bilateral-frontal putative correlate of familiairty, b) 
the 500-800ms left-parietal putative recollection correlate, and c) the 200-900ms left 

frontocentral performance effect, evident in the performance group analysis. 
Correlations were performed on Hit-CR data, measured in microvolts, collapsed 

across electrodes a) F1, FZ, F2, b) P5, P3, P1, and c) FC5, FC3, FC1. A significant 
correlation was only found for the 200-900ms left frontocentral effect. 
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The correlations between Pr and the magnitude of the 300-500ms bilateral-frontal 

effect, and with the magnitude of the 500-800ms left-parietal effect were not significant. 

However, a significant correlation was found between Pr and the 200-900ms left 

frontocentral old/new effect identified in the performance group analysis [r=0.228, 

p=0.012]. Whilst the ERPs (Figure 7.5) indicate that this left frontocentral performance 

difference is a relatively long lasting effect between 200-900ms, this difference appears 

maximal between 500-800ms (Figure 7.6) and a stronger correlation [r=0.234, p=0.010] 

between Pr and old/new effect magnitude over left frontocentral electrodes is evident 

between 500-800ms (Figure 7.8) than in the 200-900ms time-window. 

 
Figure 7.8 Scatterplot depicting the relationship between Pr and ERP old/new effect 
magnitude over left frontocentral electrodes (FC5, FC3, FC1), between 500-800ms. 

7.3.2.2  Picture ERP effects and performance 

Behavioural Results: 

The behavioural data for the 122 participants who met the inclusion on both the picture 

and word tasks are presented in Chapter 5, in Table 5.2. Participants had a mean 

discrimination accuracy (Pr) of 0.77 (s.d. 0.15), and exhibited an overall conservative 

decision bias (Br = 0.26, s.d. 0.18). Average response time for hits was 800ms (s.d. 

137ms), and 850ms (s.d. 145ms) for CRs. 
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Performance and ERP effect correlations: 

Correlations examining the relationship between picture old/new effect magnitude and 

Pr were performed as per the word data, looking at a) the 300-500ms bilateral-frontal 

effect (Figure 7.9a), b) 500-800ms left-parietal effect (Figure 7.9b), c) the 200-900ms 

left frontocentral effect (Figure 7.9c), and d) the 500-800ms left frontocentral effect 

(Figure 7.10). There was no significant correlation between Pr and the 300-500ms 

bilateral-frontal effect, however significant correlations were found between Pr and the 

500-800ms left-parietal effect [r=0.216, p=0.017] and the 200-900ms left frontocentral 

effect [r=0.215, p=0.017]. As for the word task the strongest correlation was between Pr 

and old/new effect magnitude over left frontocentral electrodes between 500-800ms 

[r=0.312, p<0.001]. 
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a) 

 

b) 

 
c) 

 

Figure 7.9 Scatterplots depicting the relationship between picture Pr and picture ERP 
old/new effect magnitude for a) the 300-500ms bilateral-frontal effect, b) the 500-

800ms left-parietal effect, and c) the 200-900ms left frontocentral performance effect. 
Correlations were performed as per the word task (Figure 7.7). 
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Figure 7.10 Scatterplot depicting the relationship between picture Pr and picture ERP 
old/new effect magnitude over left frontocentral electrodes (FC5, FC3, FC1), between 

500-800ms. 

7.3.2.3  Comparison of words and pictures 

Across participant comparisons can be problematic, for example differences in the 

neural generator depth across participants may affect the magnitude of the ERP effect 

and therefore suppress potential correlations between effect magnitude and 

performance. An analysis directly comparing magnitude of the left-parietal old/new 

effect for words with the left-parietal effect for pictures was therefore conducted to see 

if effect magnitude correlated across tasks. Whilst analysis in Chapter 5 suggests that 

there are different ERP effects for words and pictures, a left-parietal old/new effect was 

present for both stimuli. A comparison of behavioural performance on both tasks was 

therefore conducted to see if performance on one task was indicative of performance on 

the other task. 

No significant correlation was found when comparing the magnitude of the 500-800ms 

left-parietal old/new effect in the word task with the magnitude of the 500-800ms left-

parietal old/new effect in the picture task (Figure 7.11). By contrast, however, 

comparison of behavioural performance (Pr) on the two tasks did reveal a significant 

correlation [r=0.337, p<0.001] (Figure 7.12). 
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Figure 7.11 Scatterplot depicting the relationship between the magnitude of the 500-800ms 

left-parietal old/new effect generated in the word task, to that generated by the picture task. A 
correlation was performed on Hit-CR data, measured in microvolts, collapsed across 

electrodes P5, P3 and P1. No significant correlation was found. 

 

 
Figure 7.12 Scatterplot depicting the relationship between performance (as 

indexed by Pr) on the word task and performance on the picture task. A 
significant positive correlation was found, indicating that in general 

participants who performed well on one task also performed well on the other. 

7.3.2.4  Discussion of correlation analysis 

‘Typical’ recognition effects and performance: 

Correlational analysis performed on the word data replicated the findings from the 

performance group analysis, showing no significant correlation between Pr and the 

magnitude of the 300-500ms bilateral-frontal or 500-800ms left-parietal effect. There 
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was, however, a significant positive correlation between Pr and the 200-900ms left 

frontocentral old/new effect, with the strongest correlation over left frontocentral 

electrodes in the 500-800ms time-window. Analysis of the picture data also showed no 

significant correlation between Pr and the early bilateral-frontal effect, but in contrast to 

the word analysis a significant positive correlation with the left-parietal effect was 

found. The strength of the correlation for the left-parietal effect and the 200-900ms left 

frontocentral effect was equal in the picture task, but as per the word task, the strongest 

correlation was over left-frontocentral electrodes between 500-800ms. 

The absence of a significant correlation between behavioural task performance and the 

typical old/new recognition effects mirror those found in the group performance 

analysis, and suggest that behavioural performance cannot be inferred from the 

magnitude of these typical recognition effects on a between participant basis. It was 

hypothesised that performance would correlate with the putative neural correlate of 

recollection, on the assumption that recollection is positively correlated with 

recognition. Given this assumption one possible explanation for the absence of a 

significant correlation between performance and the left-parietal effect is that, in the 

current task, changes in overall recognition performance were not reflected by changes 

in recollection. If the proportion of trials in which recollection occurs is consistent 

across participants, irrespective of overall task performance, then no significant 

correlation with left-parietal effect magnitude would be expected. 

Whilst no independent estimates of recollection were taken in the current study an 

additional follow-up behavioural experiment was conducted, with a new cohort of 59 

participants. The procedure involved the same recognition word task as in the ERP 

study, but with the inclusion of a remember/know/guess response at the end of each 
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trial. The results indicated that participants were able to complete the task with a Pr of 

0.51 (s.d. 0.03), and revealed a significant positive correlation between the proportion of 

‘remember’ responses and recognition performance [r=0.436, p=0.001]. Furthermore, 

the data indicated that on average participants predominately engaged recollection 

processes to complete the task, with participants on average giving ‘remember’ 

responses on 58% of trials, responding ‘know’ on 32% of trials and ‘Guess’ on 10% of 

trials. In addition, a second follow-up behavioural experiment was carried out in which 

65 participants were asked to remember words and the colour they were presented in. 

This experiment revealed a significant positive correlation between accuracy of source 

judgment and old/new recognition performance [r=0.688, p<0.001]18. Taken together 

therefore these results strongly suggest that the assumption that recognition is positively 

correlated with recollection is not in itself inaccurate, and indicates that participants in 

the current ERP study are likely to be utilising recollection to perform the task. 

The presence of significant correlations between performance and old/new effect size in 

other locations suggests that the lack of correlation with the typical ERP effects cannot 

be explained by poor statistical power. Indeed, one notable feature of the data is that 

both performance and ERP measures exhibited a good degree of variability across 

participants. On this basis alone, the data would appear to be well able to reveal a 

correlation if one were present. Furthermore the fact that there was a significant 

correlation in the picture task, albeit overshadowed by a stronger correlation at another 

location in the same time-window, makes it very difficult to argue that the sample size 

was insufficient to reveal a significant correlation between these two factors.  

                                                
18 Average decision accuracy scores on the word source task were 0.70 (s.d. 0.02), with an average 
proportion of 0.67 (s.d. 0.01) correct source judgments made. 
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Whilst it was hypothesised that performance differences would be reflected in the ERP 

effects, previous studies have shown that this is not necessarily the case. For example, 

using data from 24 participants, Yick and Wilding (2008) correlated the magnitude of a 

frontal old/new recognition ERP effect for faces with discrimination accuracy and failed 

to find a significant correlation. Furthermore, as discussed in the introduction, Van 

Petten et al. (2002) found that the posterior ERP effects between 300-600ms for the 

old/recombined contrast and for the recombined/new contrast were not modulated by an 

individual’s ability to identify recombined word pairs, but by the degree of oldness of 

the stimuli. 

Further evidence against a link between the left-parietal magnitude and performance 

comes from a study by Curran, Schacter, Johnson and Spinks (2001). They compared 

participants who were good at discriminating ‘old’ words from semantically related new 

‘lure’ words, with those who were poor at this discrimination, under conditions in 

which both groups were equally able to distinguish ‘lure’ words from semantically 

unrelated ‘new’ words. Analysis of parietal old/new effects between 400-800ms showed 

a significant difference between correctly identified ‘old’ and falsely recognised lure 

conditions over posterior/superior electrodes, with ERPs to ‘old’ words more positive 

going than those to lure words. Although there was no significant interaction with 

performance group, analysis of the two groups separately indicated that the 

posterior/superior old/lure effect was only statistically significant for the poor 

performers. Good performers, by contrast, exhibited a late right frontal effect between 

1000-1500ms that was not present for poor performers. To account for the unexpected 

pattern of effects the authors argued that good performers use evaluative processes to 

facilitate recognition of ‘old’ items where the retrieved information is relatively low 

quality, and therefore show a smaller average parietal old/lure effect than poor 
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performers who only respond to items with high quality information, and consequently 

show a large old/lure effect. The standard parietal old/new effect was evident for both 

groups, although no comparison of effect by group was reported. 

In a similar study to Curran et al. (2001), Curran and Cleary (2003) looked at 

performance differences in discriminating ‘old’ pictures from mirror-reversed ‘similar’ 

pictures. No significant interactions were found between group and the parietal Hit/CR 

effect (measured between 400-800ms), however a significant interaction between group 

and the magnitude of the hits/‘similar false alarms’ difference over parietal electrodes 

was found, with a significant effect for good but not for poor performers. In this study, 

however, poor performers did show a significant false alarm (similar)/CR (new) 

difference that was not evident for good performers. As should be clear, these findings 

are in direct contrast to the findings from Curran et al’s. (2001) study of word 

recognition. 

Left frontocentral effect and performance: 

Returning to the current ERP findings, the left frontocentral old/new effect is in itself a 

surprising result. The importance of activity across these electrodes in relation to 

recognition performance was first highlighted in the performance group analysis, and 

this effect was then shown to significantly correlate with performance in the full sample 

analysis. Although the ERPs from the group analysis indicated that a sustained old/new 

effect was present over left frontocentral electrodes between 200-900ms, the strongest 

correlation was found between 500-800ms, the typical left-parietal effect time window. 

The stronger left frontocentral correlation in the 500-800ms time-window suggests that 

the lack of correlation with the left-parietal effect is not a direction function of the time-

window (e.g. the number of available data points). Furthermore the overlap in timing 
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between the left frontocentral performance effect and the left-parietal recollection effect 

suggests that old/new activity over left frontocentral electrodes may have been 

previously overlooked as a by-product of activity that is maximal at left-parietal 

electrodes. Activity over left frontocentral electrodes is not typically considered an ERP 

correlate of successful recognition memory, however there is evidence of a left-frontal 

retrieval effect when comparing ‘new’ items from retrieval sets with differing task 

demands, which are broadly interpreted as reflecting differences in “retrieval effort” 

(see Chapter 2).  

As discussed in Chapter 2, Ranganath and Paller (1999) showed that between 500-

1200ms ‘new’ items from a specific retrieval block (in which participants had to 

discriminate identical ‘old’ items from similar ‘old’ and ‘new’ items) were more 

positive over left-frontal electrodes than ‘new’ items from a more general retrieval 

block (where participants discriminated identical and similar items from ‘new’ items). 

Similarly, Rugg, Allan and Birch (2000) found that between 200-1400ms ‘new’ items 

from a shallowly encoded test block were more positive than a deeply encoded test 

block - again over left-frontal electrodes. Ranganath and Paller (1999) suggest that this 

frontal activity reflects the differential engagement of strategic retrieval processes in the 

two test conditions, with the specific retrieval condition requiring greater engagement of 

working memory than the general condition. Rugg et al. (2000), by contrast, suggest 

that the left-frontal effect reflects differences in response criteria, as evident by 

differences in decision bias scores (Br) in the two retrieval conditions. 

Whilst both these studies report this left-frontal effect as a difference across ‘new’ 

items, this is not to say that the difference is restricted to ‘new’ items. Retrieval success 

effects may mask such pre-retrieval processing effects and, as discussed in Chapter 2, 
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comparisons of ‘new’ items are recommended to reduce the risk of retrieval success 

confounds (Rugg & Wilding, 2000). Both Ranganath and Paller (1999) and Rugg et al. 

(2000) show a more positive going effect in the more difficult of the two tasks. In the 

current study high performers show a larger old/new effect than poor performers over 

left-frontocentral electrodes, a difference that appears to onset as early as 200ms and is 

sustained until 900ms. The onset of this difference is consistent with the effect onset 

reported by Rugg et al. (2000), although the current effect appears to be shorter in 

duration. In broad terms, therefore, if the left-frontocentral old/new effect in the current 

study reflects activity of the same generators as those active for ‘new’ items by 

Ranganath and Paller (1999) and Rugg et al. (2000), then the current data suggest that 

the differences in performance reflect differences in ‘retrieval effort’. 

More specifically, however, the present findings are difficult to reconcile with the 

detailed explanations provided by Ranganath and Paller (1999) and Rugg et al. (2000). 

First, in the current study the decision bias scores between high and low performers 

were not significantly different, and a partial correlation controlling for Br did not 

change the relationship between Pr and the magnitude of the old/new effect over left-

frontocentral electrodes between 200-900ms [r=0.232, p=0.010]. These results suggest 

that the left-frontocentral performance difference in the current study cannot be 

accounted for in terms of differences in decision bias, as suggested by Rugg et al. 

(2000). Second, in relation to the suggestion from Ranganath and Paller (1999) that the 

effect reflects differences in working memory demands, correlations between scores 

(strategy, number of total errors, and number of between errors) on the Spatial Working 

Memory task from the CANTAB with Pr and effect magnitude over Left frontocentral 

electrodes between 200-900ms on the word recognition task, all failed to reach 

significance. These results suggest that the left-frontocentral effect for words in the 
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current study is not significantly related to overall working memory performance, as 

index by measures from a Spatial Working Memory task. However, whilst this finding 

suggests that the left-frontocentral effect on the word task is not significantly related to 

an individual’s general working memory ability, it does not provide any direct insight 

into the engagement of working memory by individuals when completing the word 

recognition task. 

Word and picture task consistency: 

In addition to the comparisons of behavioural performance and ERP effect magnitude, 

analyses comparing individual behavioural performance on the word and picture tasks 

were conducted. These data revealed a significant positive correlation, showing that 

participants scoring highly on one task also scored highly on the other. However, whilst 

behavioural performance correlated, there was no significant correlation between left-

parietal effect magnitude in the two tasks. The absence of a correlation in the size of 

effect for word and picture tasks is important because it demonstrates that the 

magnitude of ERP old/new effects is not particularly dependent on inherent individual 

differences per se. To be clear, the absence of a correlation across task (within 

participant) rules out the possibility that differences in the size of the left-parietal effect 

reflect nothing more than anatomical differences across participants. For example, if the 

generators of the effect were deeper in one participant than another, this could have 

introduced variability in the size of the left-parietal effect that would have masked any 

variability related to memory performance. Overall, therefore, data from the current 

experiment suggests that the size of the left-parietal effect does vary as a function of 

task related processes.  
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How then might task related differences be exhibited? As noted above behavioural 

performance on average was different for the two stimuli, however, the significant 

correlation in performance scores across the two tasks suggests that the absence of a 

significant ERP effect correlation cannot simply be explained by the overall 

performance differences in the two tasks. Another possibility is that participants are 

relying on different recognition processes when completing the task with words 

compared to pictures. If the degree to which recollection processes are engaged 

modulates the magnitude of the left-parietal effect, inconsistency in the engagement of 

recollection in these tasks across participants would give a null result when comparing 

effect magnitudes.  

As discussed previously no independent measure of recollection and familiarity was 

taken with these tasks, however a supplementary behavioural study was conducted 

which employed the same tasks with an additional R/K/G judgement after each ‘old’ 

response. This study compared word, picture and face recognition in 27 participants, 

revealing significant differences in Pr scores across the three tasks [F(2,51)=136.81, 

p<0.001], consistent with the results presented in Chapter 5, but no significant 

differences in the proportion of ‘Remember’ responses made across tasks 

[F(1,38)=2.37, p=0.1]. Furthermore, direct comparison of word and picture data from 

this supplementary study revealed significant positive correlations between Pr on both 

tasks [r=0.396, p=0.041], and between the proportions of ‘Remember’ responses made 

on both tasks [r=0.581, p=0.001]. Overall these results suggest that the level of 

engagement of recollection processes across the picture and word tasks did not 

significantly differ, and that the proportion of ‘Remember’ responses on one task was 

related to the proportion on the other. These results therefore suggest that the absence of 

a significant correlation between the magnitude of the left-parietal effect on the word 
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and picture tasks are not the result of differential engagement of recollection across 

tasks, nor inconsistency in the way participants engaged recollection in the two tasks. 

However, the relationship between the magnitude of ERP old/new effects and 

behavioural performance needs to be examined in tasks that directly measure familiarity 

and recollection, to fully understand this relationship and the influence of the different 

memory processes. 

In sum, the data from the current study and subsidiary behavioural studies show that an 

individual’s behaviour on one recognition task is related to their behaviour on other 

recognition tasks. Nonetheless, despite the behavioural correlations, the magnitude of 

the left-parietal old/new ERP effect across tasks was not significantly correlated. Taken 

at face value therefore, the findings from these within participant comparisons indicate 

that the left-parietal old/new ERP effect cannot safely be used as a global indicator of 

memory performance. In the following section this conclusion is investigated further 

using a stronger, more stringent, test. 

7.3.3  Left-parietal effect polarity and performance 

Contrary to expectations the performance group analysis of data from the word 

recognition task and the correlation analysis of the word data, and to some extent the 

picture data, suggest that left-parietal effect magnitude is not modulated by behavioural 

performance, as indexed by discrimination accuracy (Pr). As outlined above this 

outcome is surprising given the assumption that the left-parietal effect is a neural 

correlate of recollection, and that the number of trials in which recollection occurs 

increases with higher recognition performance. To further test the findings from the 

current chapter two groups of participants were selected, based on both the magnitude 
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and polarity of the left-parietal old/new effect in the word task, and analysis of 

behavioural performance in these two groups was then conducted. 

In the foregoing analysis a virtual left-parietal electrode was created by averaging mean 

amplitude, between 500-800ms, at electrodes P5, P3 and P1. Looking at the data from 

all 122 participants who met the inclusion criteria on the word task, 32 participants 

exhibited a ‘negative going’ old/new effect at this left-parietal electrode, in which CR 

responses were more positive going than hits; the reverse of that considered to be a 

typical left-parietal effect. A second group of 32 participants were selected who 

exhibited a more typical ‘positive effect’, in which hit responses are more positive 

going than CRs, matching for the size of the old/new difference.  

7.3.3.1  Positive versus negative left-parietal effect groups: Words 

ERP Results: 

The mean amplitude of the left-parietal effect for the ‘positive effect’ group was 1.42"V 

(s.d. 0.97"V), with a mean amplitude of -1.32"V (s.d. 1.03"V) for the ‘negative group’ 

(Figure 7.13). As would be expected, the ERPs for the positive group (Figure 7.14) 

resemble the pattern of activity seen in the whole sample analysis (Chapter 5), with hits 

becoming more positive going than CRs over parietal sites from approximately 400-

800ms. Topographic maps (Figure 7.15) show that the distribution of this old/new 

difference is fairly widespread between 300-500ms, becoming more focused between 

500-800ms with a clear left hemispheric distribution over parietal locations and a more 

right hemispheric distribution over frontal locations.  
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Figure 7.13 Plot showing the average 
magnitude of the left-parietal effect (as 

indexed by the Hit-CR difference between 
500-800ms averaged over electrode P5, P3, 
& P1) for the ‘matched positive’ group and 

the ‘negative effect’ group. 

Also as expected, the ERPs for the negative group (Figure 7.16) are markedly different 

from both the positive group and the whole sample analysis. For this group minimal 

differences can be seen between conditions until approximately 600ms when CRs 

become more positive going than hits, a difference that is sustained until the end of the 

epoch over parietal sites, and until approximately 900ms over frontal electrodes. The 

absence of an old/new difference in the early time-window can be clearly seen from the 

topographic maps presented in (Figure 7.17). Nonetheless, the topographic map clearly 

shows a parietal distribution of the negative going old/new difference in the 500-800ms 

time-window.  

Interestingly the difference between the positive and negative group over left-parietal 

electrodes appears to be limited to a time-window between 400-1100ms (Figure 7.18), 

showing a comparable pattern of hit and CR activity outwith this time-window.  
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Figure 7.14 Grand average ERP waveforms for the ‘positive LP’ group, in which hits are more 
positive going than CRs over left-parietal electrodes on the recognition memory for words task 

(n=32). Data shown as in Figure 7.1. 

 

Figure 7.15 Topographic maps showing the 
distribution of the old/new difference for the ‘positive 

LP’ group. Data shown as in Figure 7.2. 
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Figure 7.16 Grand average ERP waveforms for the ‘negative LP’ group, in which CRs are more 
positive going than hits over left-parietal electrodes on the recognition memory for words task 

(n=32). Data shown as in Figure 7.1. 

 

 
Figure 7.17 Topographic maps showing the 

distribution of the old/new difference for the ‘negative 
LP’ group. Data shown as in Figure 7.2. 
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Figure 7.18 Grand average ERP waveforms at electrode P3 showing the overlap between ‘positive’ and 
‘negative’ groups for hit and CR responses. The ERPs for hits and CRs appear consistent across positive 
and negative groups at the beginning of the epoch and at the end, with the key difference between the two 

groups evident from approximately 400ms until approximately 1200ms. The vertical scale indicates 
electrode amplitude, measured in microvolts, whilst the horizontal scale indicates change in time, 

measured in milliseconds. 

Analysis from 300-500ms: 

Statistical analysis of the ERP data for the ‘positive group’ only revealed a significant 

main effect of condition [F(1,31)=7.92, p=0.008], indicating that hits were more 

positive going than CRs. No significant differences between conditions were found 

between 300-500ms for the ‘negative group’. 

Analysis from 500-800ms: 

Analysis of the ERP data between 500-800ms for the ‘positive group’ revealed a 

significant main effect of condition [F(1,31)=19.69, p<0.001], and significant 

interactions between condition, location and hemisphere [F(4,39)=3.97, p=0.045], and 

condition, location, hemisphere and site [F(3,96)=3.53, p=0.017]. These results indicate 

that, overall, hits were more positive going than CRs, but that this difference was 

greater over parietal electrodes in the left hemisphere and frontal electrodes in the right 

hemisphere. A breakdown of the 4-way interaction revealed main effects of condition at 

all locations (frontal, frontocentral, central, centroparietal and parietal), significant 

condition by site interactions at frontocentral [F(1,35)=7.77, p=0.007] and central 
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[F(1,36)=6.62, p=0.011] locations, showing that the old/new difference was greatest at 

superior sites. No significant interactions with hemisphere were found in the subsidiary 

ANOVA. 

Analysis of the ‘negative group’ also revealed a significant main effect of condition 

[F(1,31)=11.58, p=0.002], showing in this case that CRs were more positive going than 

hits. A significant condition by site interaction [F(1,34)=4.35, p=0.042] indicates that 

the old/new difference was largest at superior sites, however a significant condition by 

hemisphere by site interaction [F(2,48)=4.65, p=0.021] indicates a more uniform effect 

distribution across sites in the left than right hemisphere. Analysis of the negative group 

did not reveal an anterior/posterior difference, despite the impression provided by 

Figure 7.17. 

Given the statistical differences in the pattern of effects found for positive and negative 

groups an additional comparison was made across groups. This topographic analysis 

was designed to show if there was any evidence that the effects reflect underlying 

differences in the generators of the activity. Direct comparison of the old/new effects 

between the two groups (using data rescaled in line with the max/min method of 

McCarthy and Wood, 1985), only revealed a significant group by site interaction 

[F(1,67)=7.84, p=0.006]. This effect simply reflects the differences in polarity between 

the two groups, with the magnitude of the old/new difference for the Positive group 

becoming larger from inferior to superior electrodes and the negative group becoming 

smaller (Figure 7.19). The absence of interactions involving hemisphere and/or location 

indicates that there is no significant difference in the underlying distribution of the 

positive and negative going effects. 
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Figure 7.19 Plot showing average old/new effect 
magnitude (data rescaled inline with McCarthy & 

Wood, 1985) for the positive and negative left-parietal 
effect groups across electrode site (superior, medial 
and inferior sites) for the 500-800ms time-window. A 

significant group by site interaction was found 
reflecting the polarity difference of the two groups at 

superior sites.  

Behavioural Results: 

The behavioural results for the positive and negative effect groups are presented in 

Table 7.2. Statistical comparison of the behavioural scores revealed no significant 

differences between groups on hit rate, false alarm rate, Pr, Br, hit response time nor 

CR response time. Statistically, the behavioural results for the two groups are the same. 

ERP 
Group  

Hit rate 
(%) 

False 
alarm rate 

(%) 
Pr  Br Hit RT 

(ms) 
CR RT 

(ms) 

Positive  
(n=32) 70 (12) 21 (11) 0.50 (0.17) 0.38 (0.18) 843 (129) 914 (146) 

Negative 
(n=32) 71 (11) 19 (11) 0.52 (0.17) 0.38 (0.13) 828 (158) 894 (181) 

Table 7.2 Behavioural results for participants with a ‘positive going’ left-parietal effect (Hits>CRs), and 
those with a ‘negative going’ left-parietal effect (CRs > Hits). Data as shown in Table 7.1. 
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7.3.3.2  Typical ‘positive’ left-parietal effect participants 

In addition to the left-parietal old/new effect, for the magnitude matched positive group 

the analysis above revealed an additional right-frontal old/new effect in the 500-800ms 

time-window, which may reflect an early on-setting late right frontal effect (thought to 

reflect post-retrieval processing, see Wilding & Rugg, 1996). There was no evidence of 

a 500-800ms right-frontal old/new effect in the full sample analysis presented in 

Chapter 5, so an additional analysis of the remaining 58 participants from the full 

sample analysis, (who also show a typical positive going left-parietal effect) was 

conducted to compare the behavioural results of the three groups: the Negative left-

parietal effect group, the ‘Matched’ Positive left-parietal effect group, and the ‘Typical’ 

left-parietal group. 

ERP Results: 

The ERPs for the ‘typical’ Positive group (Figure 7.20) reflect the left-parietal old/new 

effect shown in Chapter 5, with hits more positive than CRs over parietal electrodes. In 

contrast to the Matched Positive group, the topographic maps (Figure 7.21) indicate that 

the old/new difference is maximal over left-parietal electrodes, and with no indication 

of an additional right-frontal effect in the 500-800ms time-window. 

Analysis from 300-500ms: 

Statistical analysis of the ‘typical’ Positive group in the 300-500ms time-window 

revealed a significant main effect of condition [F(1,57)=54.56, p<0.001], and a 

significant condition by site interaction [F(1,61)=62.28, p<0.001]. These results indicate 

that hits were significantly more positive going than CRs and that this difference was 

greatest at superior electrodes. 
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Analysis from 500-800ms: 

Analysis of the 500-800ms time-window revealed a significant main effect of condition 

[F(1,57)=102.16, p<0.001], as well as a number of significant interactions: condition by 

location [F(1,66)=5.74, p=0.015], condition by hemisphere [F(1,57)=8.65, p=.0.005], 

condition by location by hemisphere [F(1,73)=6.32, p=0.009], condition by site 

[F(1,61)=48.25, p<0.001], condition by location by site [F(2,119)=8.12, p<0.001], 

condition by hemisphere by site [F(1,67)=6.37, p=0.010], and condition by location by 

hemisphere by site [F(3,172)=7.49, p<0.001]. These interactions show that hits were 

more positive going than CRs, a difference that was greatest over left-parietal 

electrodes, where the difference between conditions was uniform across electrode sites, 

compared to a superior site bias in the right hemisphere. 

 

Figure 7.20 Grand average ERP waveforms for the ‘Typical’ Positive LP group, in which hits are 
more positive going than CRs over left-parietal electrodes on the recognition memory for words 

task (n=58). Data shown as in Figure 7.1. 
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Figure 7.21 Topographic maps showing the 
distribution of the old/new difference for the ‘Typical’ 

Positive LP group. Data shown as in Figure 7.2. 

Behavioural Results: 

The behavioural results for the typical Positive participants are presented in Table 7.3, 

along with the behavioural data for the Matched Positive and Negative groups, as 

presented in Table 7.2. A one-way ANOVA comparing the behavioural scores between 

groups revealed no significant differences in hit rate, false alarm rate, Pr, Br, hit 

response time nor CR response time, indicating that there is no statistical difference in 

performance between groups. 

ERP Group  Hit rate 
(%) 

False 
alarm rate 

(%) 
Pr  Br Hit RT 

(ms) 
CR RT 

(ms) 

‘Typical’ 
Positive  
(n=58) 

75 (12) 17 (11) 0.57 (0.17) 0.39 (0.17) 820 (133) 890 (151) 

‘Matched’ 
Positive  
(n=32) 

70 (12) 21 (11) 0.50 (0.17) 0.38 (0.18) 843 (129) 914 (146) 

Negative 
(n=32) 71 (11) 19 (11) 0.52 (0.17) 0.38 (0.13) 828 (158) 894 (181) 

Table 7.3 Behavioural results for the remaining participants alongside those for the amplitude mirrored 
‘positive’ group, and the ‘negative’ group. Data as shown in Table 7.1. 

7.3.3.3  Effect polarity across tasks 

As discussed in section 7.3.2.3  there was no significant correlation between the 

magnitude of the left-parietal old/new effect in the word task and in the picture task. 

One possible explanation for the absence of a correlation is that the old/new effects for 

words and pictures differ, as indicated in Chapter 5. However, whilst there is no 
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evidence that the magnitude of the ERP effects correlate across tasks, it could be 

hypothesised that the polarity of these effects would be consistent, based on the working 

assumption that those participants showing a ‘negative effect’ are inherently different 

from those with the more common ‘positive effect’. By this account participants who 

show a ‘positive effect’ will always show a ‘positive effect’, and those exhibiting a 

‘negative effect’ always exhibit a ‘negative effect’. 

Close examination of the ERP data provides little support for this account however. As 

is illustrated in Figure 7.22, the data showed that overall 42% of participants (i.e. of the 

122 usable in both the word and picture tasks) exhibited a ‘negative’ effect (CR>Hits) 

in at least one of these tasks, with only 8% of the full sample exhibiting a ‘negative’ 

effect in both tasks. Moreover the data clearly shows that participants who exhibit a 

‘negative’ left-parietal effect in the word task do not necessarily exhibit a ‘negative’ 

effect in the picture task (and vice versa), suggesting that participants with ‘negative’ 

going effects are not inherently different. Nonetheless, the data do show that 

approximately one quarter of the sample in the word task exhibited a ‘negative’ effect, 

with a similar number in the picture task (26% for the word task, and 24% for the 

picture task), indicating that the occurrence of such anomalous effects are perhaps more 

common than would be expected given the assumptions about the left-parietal old/new 

effect in the literature. 
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Figure 7.22 Scatterplot depicting the relationship between the magnitude of the 500-800ms left-
parietal old/new effect in the word and picture tasks, as presented in Figure 7.11. It is clear from 

the scatterplot that not all participants exhibit a ‘positive going’ old/new effect, in which activity for 
hits is greater than activity for CRs (as depicted in green). Approximately 42% of participants show 

a ‘negative going’ left-parietal effect in either the word or picture task. Furthermore exhibiting a 
‘negative effect’ in one task does not necessarily mean that individuals will exhibit a ‘negative 

effect’ in the other (depicted by the pink and orange points); only 8% of all participants exhibit a 
‘negative effect’ in both tasks (shown in navy). 

7.3.3.4  Discussion of effect polarity and performance 

Dividing the data into groups based on the magnitude and polarity of the ‘left-parietal 

effect’, and comparing those exhibiting a ‘negative’ effect, a magnitude mirrored 

‘positive’ effect and a ‘typical’ effect, revealed no significant differences in behavioural 

measures of performance accuracy, decision bias or response time in the word 

recognition task. Furthermore, inspection of data from both the word and picture tasks 

revealed that a larger proportion of participants than would have been expected 

exhibited a ‘negative left-parietal effect’ in at least one of the two tasks, but only a small 

proportion of participants exhibited a ‘negative’ effect in both tasks.  

The finding that directionality of the old/new difference over left-parietal electrodes 

between 500-800ms is not reflected in decision accuracy scores (or any of the other 

behavioural measures taken) is in stark contrast to the expectations that were outlined at 

the beginning of the chapter. Nonetheless, the findings are consistent with the picture 
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that has developed throughout the current chapter. These analyses suggest that whilst 

the magnitude of the left-parietal effect may provide an index of recollection, across 

participants it is not a good predictor of overall memory performance, with equivalent 

behavioural outcomes appearing to reflect the engagement of different underlying 

neural systems and strategies. Furthermore the lack of a significant correlation between 

left-parietal effect magnitude in the word and picture tasks, and the evidence indicating 

that there is not a consistent pattern of old/new directionality across tasks, suggests that 

individual participants may engage different strategies when trying to remember 

different stimuli. 

7.4  General Discussion 

Initial analysis compared the ERP effects of two groups of participants selected to 

represent high and low performers, an analysis of performance and old/new effect 

magnitude was then conducted on the whole sample, and finally an analysis of 

behaviour between three groups selected for left-parietal old/new effect magnitude and 

distribution was conducted. There were three main outcomes from these investigations: 

firstly, the magnitude of the left-parietal old/new effect was not modulated by 

behavioural performance; secondly, performance did modulate activity over left 

frontocentral electrodes between 200-900ms; and thirdly, left-parietal effect magnitude 

did not correlate across tasks. Supplementary experiments confirm that estimates of 

recollection and performance accuracy do correlate, on both a source memory and an 

R/K/G task, suggesting that the lack of left-parietal effect modulation was not caused by 

limited variation in the level of engagement of recollection.  

A summary of the current understanding of the relationship between these ERP effects 

and performance is presented in Figure 7.23, which includes a significant correlation in 
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the magnitude of the 200-900ms left frontocentral old/new effect and the 500-800ms 

left-parietal old/new effect for both words [r=0.559, p<0.001] and pictures [r=0.292, 

p=0.001]. A significant correlation between effect magnitudes within a task is perhaps 

to be expected given that current analytical methods do not allow specific effects to be 

spatially isolated. That is, the signal generated by one population of neurons will not 

only be recorded by one cluster of electrodes but will be recorded by all electrodes, 

allbeit differing in signal strength. Therefore activity generated by several populations 

of neurons will overlap in terms of the signal recorded at each electrode, making it 

difficult to identify spatially distinct effects that occur in the same time-window. Given 

the properties of the ERP data, the signal recorded at one electrode will be intrinsically 

proportional to the signal recorded at another electrode. 

The variation in performance scores evident across participants suggests that people are 

doing something different from each other when completing the same task. It is not 

clear whether these differences are principally manifested at the encoding stage or 

retrieval stage of the task, nor whether they reflect differences in strategy, attention, or 

engagement of recognition processes. The absence of a significant modulation of the 

500-800ms left-parietal effect by performance suggests that this difference may be 

unrelated to the processes of recollection; furthermore the absence of a significant 300-

500ms bilateral-frontal difference also suggests that the performance differences are not 

related to variation in the engagement of familiarity. Variation in the magnitude of the 

200-900ms left frontocentral effect suggests that perhaps differences in ‘retrieval effort’ 

processes may relate to performance differences. However, the limited influence of 

decision bias (in both the group and the individual analysis) suggests that the left 

frontocentral effect is not related to differences in response criterion (as suggested by 

Rugg et al., 2000). Nor does the difference appear to relate to differences in working 
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memory ability, as measured by the Spatial Working Memory test from the CANTAB 

(as suggested by Ranganath and Paller, 1999). 

 

Figure 7.23 Summary of current findings and understanding of the relationship 
between the left-parietal old/new effect, the sustained left frontocentral effect, 

behavioural recognition performance and estimates of recollection. Black 
arrows represent putative significant relationships, with the red arrow 

representing an unsubstantiated relationship. The source of each element of 
information is given in italics.  

Finally the lack of significant behavioural differences (in relation to performance 

accuracy, decision bias, proportion of hits and false alarms, and response times for hits 

and CRs) in groups of participants with distinct ERP effects (in terms of polarity and 

distribution) leads to the disconcerting conclusion that perhaps ERP effects cannot be 

used to infer recognition performance across individuals. Furthermore, the lack of a 

significant correlation between left-parietal effect magnitude in the word and picture 

tasks, when a significant correlation for performance on the two tasks was found, 

suggests that ERP effect magnitude (at least for the left-parietal effect and left 

frontocentral effect19), cannot even be used to infer recognition performance across 

tasks for the same individual. Therefore whilst these ERP effects may provide a good 

                                                
19 Comparison of the magnitude of the left frontocentral old/new effect between 200-900ms in the word 
and picture task did not result in a significant correlation [r=0.094, p=0.302]. 
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indicator of memory processes such as recollection and familiarity, as clearly 

demonstrated in the literature, the data presented here strongly suggests that ERP 

old/new effects cannot be used as a biomarker of memory performance either across 

individuals or within an individual across tasks. 
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Chapter 8   

Genetic Analysis: Words and Pictures 
 

The previous chapter discussed the relationship between recognition memory 

performance and ERP old/new effects, finding that the magnitude of the typical left-

parietal old/new effect did not correlate with recognition memory performance. 

Furthermore analysis of three groups showing different topographic distributions in the 

word task were found to have the same behavioural scores in relation to performance 

accuracy, decision bias and response times. These findings raise the question of what is 

driving these distributional differences, given that the distributional differences do not 

relate directly to behaviour?  

It is widely accepted that individual differences influence electrophysiological 

measures, with ERP research typically controlling the study population to make the 

sample as homogenous as possible. For example, it is common practice to only include 

right-handed individuals in the study (to reduce confounds of brain laterality) and to 

report both the number of males and females in the study and the age of participants (to 

make the composition of the sample clear). The contribution of individual differences to 

neural activity are therefore acknowledged in ERP research, although there are many 

individual differences that are yet to be understood. 

ERPs are essentially a measure of a biological response to a set of stimuli, and as 

outlined in Chapter 3 biological variations such as sex have been found to contribute to 

ERP measures of episodic memory. Furthermore, there is strong evidence to suggest 

that genetic makeup can influence both behavioural outcome and brain activity in 

relation to memory, although there do not appear to be any studies looking at genetic 
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polymorphisms and ERP correlates of episodic memory20. Having examined the neural 

correlates of recognition memory from a behavioural angle in the previous chapter, the 

current chapter will examine these neural correlates, and behavioural measures, from a 

biological angle, focusing on a number of Single Nucleotide Polymorphisms (SNPs) 

that have been shown to influence memory retrieval (Chapter 3).  

A summary of the main literature findings presented in Chapter 3, in relation to APOE, 

BDNF, COMT and KIBRA, will firstly be given, as well as a discussion of the findings 

expected in the current study. Three additional SNPs (ADCY8, PRKACG and PRKCA) 

will then be introduced, and the expected outcomes discussed. The results from the 

analysis of these genetic polymorphisms will be presented for both the word and picture 

recognition tasks, concluding with a discussion of the findings: what the findings 

suggest, how previous findings may be interpreted in light of the current results, and the 

implications for future investigations of the ERP neural correlates of recognition 

memory. 

8.1  Introduction 

Chapter 3 outlined the literature on APOE, BDNF, KIBRA and COMT genetic 

polymorphisms, in relation to both healthy memory and memory disorders. A study by 

de Quervain and Papassotiropoulos (2006) also identified additional genes as being 

highly associated with episodic memory and MTL activation, including ADYC8, 

PRKACG and PRKCA. These seven genes will be the focus of the current chapter, 

                                                
20 Whilst there don’t appear to be any studies looking at genetic polymorphisms and ERP correlates of 
recognition memory, a number of studies have shown associations between ERP effects and genes, 
particularly in relation to the P300/P3 component relating to rare target identification or novelty 
detection. These include the DRD2 SNP (Noble, Berman, Ozkargoz & Ritchie, 1994; Hill et al., 1998), 
the CNRI polymorphisms (Johnson et al., 1997), and ABCB1 (rs1128503), ABCB1 (rs1045642), 
ADRA2A (rs1800545), ADRA2A (rs521674), APOE (rs7412), APOE (rs429358), MDH1 (rs2278718), 
PIK3C3 (rs3813065), PRK3C3 (rs4121817), TH (rs6578993), TH (rs3842726) polymorphisms (Liu et 
al., 2009). 
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investigating the relationship between the different polymorphisms and the ERP effects 

identified in Chapter 5. Details of the specific polymorphisms relating to SNP reference 

numbers, assay identifiers, and SNP locations are presented in Table 8.1. As with the 

performance analysis chapter (Chapter 7) the focus of the genetic analysis will be on the 

word and picture recognition tasks, due to the large number of participants successfully 

able to complete the task and the wide range of performance scores. Below each of the 

candidate SNPs is introduced, briefly highlighting their potential role in memory, and 

predictions that can be formed on the basis of current findings. 

As discussed in Chapter 3 polymorphisms of the APOE gene have been strongly linked 

to Alzheimer’s Disease, with carriers of the !4 allele more predisposed to the disease 

than !3 and !2 carriers. There is also evidence suggesting that the !2 allele may act as a 

protective factor against episodic memory decline and Alzheimer’s Disease. In relation 

to cognitively healthy participants the literature provides contradictory evidence in 

terms of the effect of the APOE !4 allele on brain activity, as measured using fMRI. 

Some studies find increases in activity for !4 carriers compared to non-!4 carriers, 

whilst others show no difference and some a decrease in activity. In addition to the 

directionality of the change in activity across !4 carriers and non-carriers, the location 

of these activity changes also vary across studies (see Trachtenberg, Filippini & 

Mackay, in press, for a review). Furthermore, few studies compare !2 and !3 carriers 

with the majority of studies restricting analysis to !4 carriers and non-!4 carriers, 

making it difficult to formulate solid predictions regarding the differences in the pattern 

of ERP activity for APOE genotypes, particularly for !2 carriers. However, previous 

research does clearly suggest that in young adults APOE !4 carriers will perform better 

on memory tasks than !2 or !3 carriers, and consequently it is expected that there will 

be evidence of some ERP differences between genotypes. One hypothesis being that 
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old/new effect magnitude over left frontocentral electrodes will be greater for !4 

carriers to reflect performance differences, as indicated in Chapter 7. 

The second gene discussed in Chapter 3 relates to a polymorphism of the BDNF gene, 

which affects the precursor peptide of the BDNF protein. BDNF is important in the 

modulation of synaptic changes and is involved in hippocampal long-term potentiation. 

As discussed in Chapter 3, the BDNF polymorphism has been shown to affect episodic 

memory and hippocampal functioning with met or ‘A’ allele carriers having poorer 

memory performance, diminished hippocampal engagement, and reduced hippocampal 

formation volume compared to val or ‘G’ allele carriers. It is therefore expected that in 

the current study task performance will be poorer for A allele carriers than G carriers, as 

evident in previous literature. In addition, due to the involvement of the hippocampus in 

recollection, it is also hypothesised that the magnitude of the left-parietal old/new effect 

will be reduced for A allele carriers compared to G allele carriers, on the assumption 

that the magnitude of the left-parietal effect reflects engagement of recollection, a 

process believed to be dependent on the hippocampus (for a discussion of the role of 

MTL structures in recognition memory see Voss & Paller, 2010). 

The third polymorphism, COMT, results in changes in the level of COMT enzyme in 

the brain with val or ‘G’ allele carriers exhibiting greater COMT activity and 

subsequently catabolizing neurotransmitters such as dopamine faster than met or ‘A’ 

allele carriers. Genotypic performance differences have been found in relation to 

episodic recall, and in some studies recognition, with better performance for A allele 

carriers. However, other studies show no performance differences, but do show 

increased activation of the prefrontal cortex during encoding and retrieval for G allele 

carriers, and reduced hippocampal activity. Behavioural performance differences are 
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therefore also expected in the current study, with A carriers predicted to perform better 

than G carriers. In relation to the ERP effects, one hypothesis is that G allele carriers 

may show a reduction in the magnitude of the left-parietal effect, reflecting a reduction 

in hippocampal engagement, although the likely influence of genotype on ERP effects 

are unclear. 

The final gene discussed in Chapter 3 is KIBRA, or WCCI. As with the other genes 

discussed, the literature on the KIBRA polymorphism is contradictory, with several 

studies reporting an association between the polymorphism and episodic memory, and 

others not able to replicate this finding. In general, studies in which an association has 

been found, show better memory performance for T allele carriers compared to C 

carriers. In addition an fMRI study found increased activation of the frontal cortex, 

medial frontal gyrus and parietal cortex for C/C carriers compared to T carriers with 

matched behavioural performance, indicating greater activation of these regions by C/C 

carriers to achieve the same level of performance (Papassotiropoulos et al., 2006). 

Therefore, behaviourally, it is hypothesised that in the current study T carriers will 

perform better than C/C carriers. The influence of KIBRA genotype on ERP activity is 

however unclear, as there are few neuroimaging studies looking at the influence of 

KIBRA on memory related activity. On the basis of the fMRI data available 

(Papassotiropoulos et al., 2006) it is not possible to infer how the ERP effects may 

change. However, since differences in brain activity were found in the study by 

Papassotiropoulos et al. (2006), it is hypothesised that the ERP effects will differ in 

some way. 

Another SNP that may be important for memory is ADCY8 (de Quervain & 

Papassotiropoulos, 2006). Adenylate cyclase type 8 is an enzyme, coded for by the 
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ADCY8 gene, which is involved in the cyclic-adenosine monophosphate (cAMP) 

pathway. The ADCY enzyme catalyses cAMP from adenosine triphosphate (ATP), 

activating cAMP-dependent protein kinase A (PKA), an enzyme that enhances 

neurotransmitter release through the phosphorylation of potassium channels. Potassium 

channel phosphorylation decreases the potassium current, prolonging the action 

potential and increasing the influx of ions such as calcium, triggering the release of 

neurotransmitters, initiating a postsynaptic potential (Kandel, 2000). Calcium 

stimulated ADCY has been shown to be essential for late phase long-term potentiation 

(L-LTP) and long-term memory (LTM). ADCY types 1 and 8 are the only types of 

adenylate cyclases known to be stimulated by calcium (Wong et al., 1999), suggesting 

that ADCY8 genetic polymorphisms may be important for memory.  

The exact affect of the ADCY8 SNP (rs263249) on ADCY8 is currently unclear, 

however a study by de Quervain and Papassotiropoulos (2006) identified seven SNPs 

(GRIN2A, GRIN2B, GRM3, ADCY8, PRKACG, CAMK2G and PRKCA) associated 

with episodic memory performance, including ADCY8 SNP rs263249, which showed 

the greatest contribution to the genetic cluster. An ‘Individual Memory-Related Genetic 

Score’ (IMAGS) was calculated based on the number of memory associated genetic 

variations each participant had, weighted by each SNPs effect size. A follow-up fMRI 

study with 32 new (performance matched) participants revealed a significant positive 

correlation between IMAGS and brain activation in the MTLs during learning of face-

profession associations. This study suggests that the ADCY8 SNP may influence 

episodic memory performance and encoding brain activity, however the directionality 

of these differences in relation to individual ADCY8 genotypes is not reported. In 

contrast, a study by Jablensky et al. (2011) looking at normal memory in 172 control 

participants and memory impairment in 336 participants with schizophrenia, failed to 
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find significant differences in memory performance across ADCY8 genotype for either 

sample. It is therefore difficult to make predictions about the directionality of either 

behavioural or ERP effects across ADCY8 genotypes, on the basis of previous 

literature. Nonetheless, the study by de Quervain and Papassotiropoulos (2006) does 

clearly suggest potential variation in memory and brain activity as a function of the 

ADCY8 SNP.  

In addition to the ADCY8 SNP, de Quervain and Papassotiropoulos (2006) also 

identified the PRKACG SNP (rs3730386) as being highly associated with memory 

performance. The PRKACG gene codes for the enzyme cAMP-dependent protein 

kinase catalytic subunit gamma, an isoform of catalytic PKA (cPKA). cPKA has been 

found to be expressed in the hippocampus (Liu, Tang, Liu & Tang, 2010), although 

specific information relating to expression of the gamma isoform in the brain is not 

currently available. As discussed above, PKA plays an important part in the cAMP 

pathway and L-LTP, and has also been associated with the regulation of beta amyloid 

secretion. Silencing of the PRKACG gene increases the levels of amyloid precursor 

protein, which degrades to beta amyloid - the main component of amyloid plaques 

(Adachi, Kano, Saido & Murate, 2009), suggesting a possible role in AD. 

In relation to memory performance the PRKACG SNP has been associated with delayed 

(20 minutes) free recall in patients with schizophrenia who show cognitive deficits, with 

homozygous C carriers performing better than G allele carriers. No such association 

was found for controls (Jablensky et al., 2011). The study by de Quervain and 

Papassotiropoulos (2006) suggests that this SNP may play an important role in episodic 

memory in healthy populations, and whilst no effect of PRKACG genotype was found 
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for controls in the Jablensky et al. (2011) study, the findings from the patient group 

suggests that C allele carriers would perform better than G carriers21. 

The final SNP identified by de Quervain and Papassotiropoulos (2006) that will be 

included in the current study is PRKCA (rs8074995). Protein Kinase C alpha (PRKCA) 

is an enzyme involved in cell signalling that is activated by calcium. PKC is thought to 

be important in learning and memory through its role in synaptic plasticity (see Nogues, 

1997, for a discussion of the role of PKC in memory). Jablensky et al. (2011) found 

significant associations between PRKCA genotype and immediate recall in controls and 

patients with schizophrenia who showed evidence of cognitive decline. Interestingly, 

however, the two groups showed opposite patterns of effect, with homozygous G 

carriers performing better than homozygous A carriers for controls, and the reverse for 

the patients group, with homozygous A carriers performing better than homozygous G 

carriers. Based on the data from the control participants in the Jablensky et al. (2011) 

study it is expected that in the current study G allele carriers will perform better than A 

carriers. With evidence associating ADCY8, PRKACG and PRKCA polymorphisms 

with memory performance, it is also hypothesised that there will be genotypic ERP 

differences, however the specific details of these ERP differences (in relation to 

direction and distribution) are not clear from previous literature. 

In sum, comparisons of behavioural and ERP memory effects will be made for the 

words and picture tasks, across genetic polymorphisms of APOE, BDNF, COMT, 

KIBRA, ADCY8, PRKACG and PRKCA. Details relating to the genotyping process 

and the genetic composition of the study sample will be presented in the following 

                                                
21 The absence of a significant genotype effect for controls, and for immediate recall in patients with 
schizophrenia, may reflect the insensitivity of the task to identify genotypic differences in the control 
sample, with only the most difficult part of the task, in participants who show some cognitive deficit, 
revealing genotypic differences. 
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methods section. Analysis of the word and picture data will then be presented, and the 

chapter will conclude with a discussion of the results in relation to the current ERP 

memory literature. 

8.2  Methods 

8.2.1  Genotyping 

As discussed in the General Methods (Chapter 4) DNA was collected in the form of 

saliva samples using Oragene OG-100 DNA collection vials (DNA Genotek Inc: 

www.dnagenotek.com), which were processed at the Welcome Trust Clinical Research 

Facility, Edinburgh (WTRCF Edinburgh: www.wtcrf.ed.ac.uk), genotyping eight SNPs, 

outlined in Table 8.1, with Applied Biosystems Taqman SNP assays. The overall 

success of the genotyping process is given in Table 8.2, showing a high call rate and 

low false call rate. The observed genotypic frequencies were as follows: ADCY8 A/G = 

0.53, A/A = 0.12, G/G = 0.24, undetermined = 0.01; APOE_1 C/T = 0.26, C/C = 0.71, 

T/T = 0, undetermined = 0.02; APOE_2 C/T = 0.24, C/C = 0.04, T/T = 0.72, 

undetermined = 0; BDNF A/G = 0.33, A/A = 0.01, G/G = 0.6622, undetermined = 0.01; 

COMT A/G = 0.50, A/A = 0.30, G/G = 0.20, undetermined = 0; PRKACG C/G = 0.34, 

C/C = 0.62, G/G = 0.0322, undetermined = 0.01, PRKCA A/G = 0.26, A/A = 0.04, G/G 

= 0.67, undetermined = 0.02; KIBRA C/T = 0.45, C/C = 0.43, T/T = 0.08, undetermined 

= 0.05. The study sample reflected the genotype distributions expected in a normal 

population for ADCY8, APOE_2, COMT, PRKACG, PRKCA and KIBRA genotypes, 

however the distribution of the observed genotypes for APOE-1 and BDNF were not in 

                                                
22 Genotypes for BDNF and PRKACG are presented as reverse strands, with the remaining SNPs 
presented as forward strands, consistent with the format presented by NCBI 
(www.ncbi.nlm.nih.gov/projects/SNP). 
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Hardy-Weinberg equilibrium, suggesting that the genotype distribution in the current 

study differs from those expected in the normal population (Table 8.2). 

In addition to looking at the individual SNPs outlined above, analysis of a combination 

of APOE_1 and APOE_2 will also be conducted. As discussed in Chapter 3, the APOE 

gene is polymorphic with three main alleles (!2, !3 and !4), differing in composition by 

the combination of APOE_1 (rs7412) and APOE_2 (rs429358) alleles. The observed 

genotype frequencies for APOE were as follows: !2/!2 = 0, !2/!3 = 0.22, !3/!3 = 0.50, 

!3/!4 = 0.18, !4/!4 = 0.04, undetermined = 0.07. Due to the low numbers of 

homozygous !4 carriers and absence of homozygous !2 carriers it was decided to 

collapse the homozygous !4 carriers into a group with the !3/!4 carriers, thereby 

focusing analysis on three main groups !2 carriers (!2/!3), homozygous !3 carriers 

(!3/!3), and !4 carriers (!3/!4 + !4/!4) with a frequency of 0.22, 0.50 and 0.22 

respectively. 



 

 

Table 8.1 Candidate genes investigated in the current chapter. Abbreviated gene names are given along side dbSNP reference number 
(www.ncbi.nlm.nih.gov/projects/SNP), Applied Biosystems assay identifier (www.appliedbiosystems.com), and the location of each SNP. 

 

Gene ADCY8 APOE_1 APOE_2 BDNF COMT PRKACG PRKCA WWC1 
(KIBRA) 

Total 
number of 

samples 
129 129 129 129 129 129 129 129 

Call rate 99.2% 97.7% 100.0% 99.2% 100.0% 99.2% 97.7% 95.3% 

Number of 
control 
samples 

63 63 63 63 63 63 63 63 

False call 
rate 1.6% 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 4.8% 

Hardy-
Weinberg 

equilibrium 

!2 =1.72, 
p=0.19 

!2 =3.06, 
p=0.08 

!2 =1.32, 
p=0.25 

!2 =2.98, 
p=0.08 

!2 =0, 
p=0.98 

!2 =0.49, 
p=0.48 

!2 =0.51, 
p=0.47 

!2 =0.97, 
p=0.32 

Table 8.2 Results of the genotyping process for each gene. Table shows the number of samples tested, the success rate, the number of control samples tested, the 
false call rate, and the Hardy-Weinberg equilibrium for each gene.

Gene ADCY8 APOE_1 APOE_2 BDNF COMT PRKACG PRKCA WWC1 
(KIBRA) 

dbSNP rs263249 rs7412 rs429358 rs6265 rs4680 rs3730386 rs8074995 rs17070145 

ABI Assay 
ID C_1548078 C_904973 C_3084793 C_11592758 C_25746809 C_1463138 C_11612258 C_33286269 

SNP 
location 8q24.22a 19q13.32a 19q13.32a 11p14.1d 22q11.21-

q11.23 9q21.11a 17q24.2a 5q35.1a 
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8.2.2  Sample 

The same inclusion criteria used in previous chapters was applied to the current 

analysis, including a performance criterion of Pr ! 0.2 on both the word and picture 

tasks.  In addition, as outlined in the General Methods chapter, participants identified as 

potentially being affected by any of the conditions included in the PDSQ, were also 

excluded from the analysis. Therefore, 84 participants met the inclusion criteria and 

were included in the genetic analysis. The number of participants with each genotype 

and the associated frequency is presented in Table 8.3, along with a breakdown of sex, 

ethnicity and familial history of Alzheimer’s Disease  (AD) for each genotype. 

Comparisons of sex and familial history of AD across genotypes included in the 

analysis was conducted to determine if the basic composition of each genotype group 

differed (Table 8.4). Due to the small sample sizes in some of the conditions Fisher’s 

Exact probability is reported, indicating a relationship between sex and PRKACG 

genotype, with a larger proportion of the C/T sample constituting males than the 

homozygous C sample.  Similarly a relationship between sex and PRKCA was also 

found with more males in the A/G group than the homozygous G group. No significant 

relationship between genotype and familial history of AD were found for any SNPs. 
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Descriptives Genotype No. of 
participants 

No. of 
Males 

Ethnicity: 
White Ethnicity: Other 

Familial 
history 
of AD. 

A/G 40 (0.48) 12 (0.30) 39 (0.98) White-Asian:1 5 (0.13) 

A/A 11 (0.13) 6 (0.55) 10 (0.91) White-Asian:1 2 (0.18) ADCY8 

G/G 32 (0.38) 11 (0.34) 31 (0.97) White-Black 
African:1 6 (0.19) 

C/T 23 (0.27) 6 (0.26) 21 (0.91) 
White-Asian =1 

White-Black 
African:1 

2 (0.09) 

C/C 59  (0.70) 22 (0.37) 58 (0.98) White-Asian: 1 10 (0.17) 
APOE_1 

T/T 0 (0) 0 (0) 0 (0) 0 0 (0) 

C/T 21 (0.25) 6 (0.29) 21 (1) 0 3 (0.14) 

C/C 3 (0.04) 2 (0.67) 3 (1) 0 1 (0.33) 
APOE_2 

T/T 60 (0.71) 21 (0.35) 57 (0.95) 
White-Asian: 2 

White-Black 
African: 1 

9 (0.15) 

A/G 28 (0.33) 9 (0.32) 25 (0.89) 
White-Asian: 2 

White-Black 
African: 1 

4 (0.14) 

A/A 1 (0.01) 1 (1) 1 (1) 0 1 (1) 
BDNF 

G/G 55 (0.65) 19 (0.35) 55 (1) 0 8 (0.15) 

A/G 42 (0.50) 16  
(0.38) 41 (0.98) White-Asian: 1 6 (0.14) 

A/A 23 (0.27) 6 (0.26) 22 (0.96) White-Asian: 1 4 (0.17) COMT 

G/G 19 (0.23) 7 (0.37) 18 (0.95) White-Black 
African: 1 3 (0.16) 

C/G 24 (0.29) 14 (0.58) 23 (0.96) White-Asian: 1 3 (0.13) 

C/C 58 (0.69) 14 (0.24) 56 (0.97) 
White-Asian: 1 

White-Black 
African: 1 

8 (0.14) PRKACG 

G/G 2 (0.02) 1 (0.50) 2 (1) 0 2 (1) 

A/G 20 (0.24) 11 (0.55) 19 (0.95) White-Asian: 1 2 (0.10) 

A/A 4 (0.05) 1 (0.25) 3 (0.75) White-Asian: 1 1 (0.25) PRKCA 

G/G 58 (0.69) 15 (0.26) 57 (0.98) White-Black 
African: 1 9 (0.16) 

C/T 38 (0.45) 14 (0.37) 35 (0.92) 
White-Asian: 2 

White-Black 
African: 1 

8 (0.21) 

C/C 35 (0.42) 9 (0.26) 35 (1) 0 4 (0.11) 
WWC1 

(KIBRA) 

T/T 7 (0.08) 3 (0.43) 7 (1) 0 0 (0) 

!2 carriers 19 (0.23) 5 (0.26) 17 (0.89) 
White-Asian: 1 

White-Black 
African: 1 

2 (0.11) 

!3/!3 41 (0.49) 16 (0.39) 40 (0.98) White-Asian: 1 7 (0.17) 
APOE 

!4 carriers 18 (0.21) 6 (0.33) 18 (0.33) 0 3 (0.17) 
Table 8.3 Descriptive information of study sample. Table shows the number of participants with each 

genotype, and a breakdown by sex, ethnicity and familial history of Alzheimer’s Disease  (AD). 
Frequencies are presented in brackets. 
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Words Genotype Sex 
% Male 

Familial history of AD 
% Yes 

ADCY8 A/G v. G/G 30:34, p=0.801 13:19, p=0.522 

APOE_1 C/T v. C/C 26:37, p=0.440 9:17, p=0.494 

APOE_2 C/T v. T/T 29:35, p=0.789 14:15, p=1.000 

BDNF A/G v. G/G 32: 35, p=1.000 14:15, p=1.000 

A/A v. A/G 26:38, p=0.416 17:14, p=0.733 

A/A v. G/G 26:37, p=0.516 17:16, p=1.000 COMT 

A/G v. G/G 38:37, p=1.000 14:16, p=1.000 

PRKACG C/G v. C/C 58:24, p=0.005 13:14, p=1.00 

PRKCA A/G v. G/G 55:26, p=0.027 10:16, p=0.719 

WWC1 (KIBRA) C/T v. C/C 37:26, p=0.327 21:11, p=0.350 

!2 carriers v. 
!3/!3 

26:39, p=0.395 11:17, p=0.407 

!2 carriers v. !4 
carriers 

26:33, p=0.728 11:17, p=0.660 APOE 

!3/!3 v. !4 
carriers 

39:33, p=0.775 17:17, p=1.000 

Table 8.4 Genotypes analysed for each genetic polymorphism, and comparisons of the 
proportion of males and the proportion of participants with a familial history of Alzheimer’s 

Disease across genotypes. Percentages are presented as phenotype ratios, and Fisher’s 
Exact probability is reported for each polymorphism. 

8.2.3  Analysis 

Analysis of ADCY8, APOE_1, APOE_2, BDNF, PRKACG, PRKCA and KIBRA 

genetic polymorphisms were conducted on the two most common variants, with an 

insufficient number of participants exhibiting the rarest variants to be included in the 

analysis. All three polymorphisms for COMT were analysed, and as discussed above 

analysis of the APOE haplotype focused on three main groups, !2 carriers, homozygous 

!3 carriers, and !4 carriers (analysed genotypes are listed in Table 8.4). The number of 

participants contributing to the different genotype groups ranged from 18-60, with an 

average of 36 participants (s.d. 15). 

Comparisons of behavioural measures across genotypes were made using independent t-

tests, looking at discrimination accuracy, response bias, percentage of hit and false 
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alarm responses, and hit and CR response times. ERP comparisons of old/new effects 

(Hits-CRs) across genotypes in the 300-500ms and 500-800ms time-windows were 

conducted using within participant factors of location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right), and 

electrode site (inferior/medial/superior), and a between participant factor of genotype 

(i.e. ADCY8 A/G v. ADCY8 G/G). 

8.3  Results 

8.3.1  Words 

8.3.1.1  Behavioural Results 

The behavioural results for each genotype are presented in Table 8.5. All groups 

performed above chance, as indexed by mean discrimination accuracy (Pr) scores 

(Table 8.6). Independent samples t-tests revealed no significant differences in 

discrimination accuracy scores between genotypes for most genes, with the exception of 

KIBRA [t(71)=-2.15, p=0.035], which showed significantly higher Pr for homozygous 

C allele carriers (Pr = 0.58) than C/T carriers (Pr=0.50). Similarly response bias scores 

generally did not differ between genotypes, with the exception of COMT where a one-

way ANOVA revealed a significant difference between the three genotypes for response 

bias [F(2,81)=4.18, p=0.019]. Additional analysis of COMT genotypes revealed 

significant differences between homozygous A carriers and A/G carriers [t(63)=2.74, 

p=0.008], and between homozygous A and homozygous G carriers [t(40)=-2.22, 

p=0.032], reflecting the more conservative bias for the homozygous A carriers than 

either of the other genotypes. No significant response bias differences between A/G and 

G were found. Overall, all groups exhibited a conservative response bias. 
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Words Genotype 
Hit 
rate 
(%) 

False 
alarm 

rate (%) 
Pr  Br Hit RT 

(ms) 
CR RT 

(ms) 

A/G 76 (12) 17 (13) 0.57 (0.19) 0.41 (0.18) 798 (121) 882 (151) 
ADCY8 

G/G 70 (9) 18 (9) 0.52 (0.14) 0.37 (0.13) 833 (138) 893 (144) 

C/T 73 (8) 21 (11) 0.51 (0.11) 0.43 (0.15) 811 (129) 885 (136) 
APOE_1 

C/C 72 (13) 16 (11) 0.55 (0.18) 0.37 (0.17) 827 (141) 893 (153) 

C/T 72 (14) 22 (11) 0.49 (0.19) 0.44 (0.14) 831 (170) 905 (194) 
APOE_2 

T/T 73 (11) 16 (11) 0.55 (0.16) 0.37 (0.17) 822 (130) 890 (138) 

A/G 72 (13) 19 (12) 0.52 (0.17) 0.41 (0.17) 829 (126) 902 (122) 
BDNF 

G/G 73 (11) 17 (11) 0.54 (0.17) 0.38 (0.16) 824 (146) 899 (169) 

A/G 75 (11) 20 (12) 0.54 (0.17) 0.42 (0.17) 821 (149) 901 (172) 

A/A 67 (11) 15 (9) 0.51 (0.15) 0.31 (0.15) 822 (112) 902 (140) COMT 

G/G 74 (13) 17 (10) 0.56 (0.19) 0.41 (0.14) 838 (146) 887 (132) 

C/G 74 (12) 17 (12) 0.55 (0.18) 0.39 (0.15) 805 (122) 858 (96) 
PRKACG 

C/C 72 (11) 18 (11) 0.53 (0.16) 0.38 (0.17) 835 (146) 918 (171) 

A/G 73 (11) 18 (13) 0.54 (0.18) 0.38 (0.17) 851 (202) 907 (203) 
PRKCA 

G/G 72 (11) 18 (11) 0.53 (0.16) 0.38 (0.16) 811 (109) 891 (136) 

C/T 71 (11) 20 (11) 0.50 (0.15) 0.40 (0.16) 804 (141) 882 (162) WWC1 
(KIBRA) C/C 74 (11) 15 (10) 0.58 (0.15) 0.36 (0.17) 819 (118) 888 (126) 

!2 carriers 72 (8) 20 (11) 0.51 (0.11) 0.41 (0.15) 823 (130) 891 (123) 

!3/!3 73 (12) 15 (11) 0.57 (0.17) 0.35 (0.17) 821 (132) 889 (146) APOE 

!4 carriers 72 (15) 19 (12) 0.52 (0.20) 0.39 (0.15) 839 (164) 903 (171) 
Table 8.5 Behavioural results from the word recognition task for each genotype. Table shows mean hit 

and false alarm rates in percentages, mean discrimination accuracy, mean decision bias, and mean 
response times for hit and CR responses in milliseconds. Standard deviations for each measure are given 

in brackets. Significant differences between genotypes are highlighted in yellow. 

Significant differences in hit rate were also observed between COMT homozygous A 

carriers and A/G carriers [t(63)=2.57, p=0.012], reflecting the higher hit rate for A/G 

carriers. Similarly a significant difference in hit rate was found for ADCY8 [t(70)=2.25, 

p=0.028] with A/G carriers obtaining a higher hit rate than homozygous G carriers. 

Finally, ANOVA revealed a significant difference in false alarm rate between APOE 

genotypes [F(3,80)=2.95, p=0.037], however examination of the differences between 

each genotypic group revealed no significant differences (!2 v. !3 [t(58)=1.65, 

p=0.104], !2 v. !4 [t(35)=0.381, p=0.705], !3 v. !4 [t(57)=-1.139, p=0.259]), suggesting 
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that the differences between each group were not great enough to reach significance at 

this level. No significant differences in reaction times for either hits or CRs were found 

for any genetic polymorphism. 

 
Words Genotype Pr > 0 

A/G t(39)=19.11, p<0.001 ADCY8 
G/G t(31)=20.47, p<0.001 

C/T t(22)=21.56, p<0.001 APOE_1 
C/C t(58)=23.43, p<0.001 

C/T t(20)=11.97, p<0.001 APOE_2 
T/T t(59)=27.21, p<0.001 

A/G t(27)=16.05, p<0.001 BDNF 
G/G t(54)=24.22, p<0.001 

A/G t(41)=20.49, p<0.001 
A/A t(22)=16.93, p<0.001 COMT 
G/G t(18)=13.02, p<0.001 

C/G t(23)=15.04, p<0.001 PRKACG 
C/C t(57)=24.46, p<0.001 

A/G t(19)=13.46, p<0.001 PRKCA 
G/G t(57)=25.84, p<0.001 

C/T t(37)=21.3, p<0.001 WWC1 (KIBRA) 
C/C t(34)=22.58, p<0.001 

!2 carriers t(18)=20.69, p<0.001 
!3/!3 t(40)=20.97, p<0.001 APOE 

!4 carriers t(17)=11.05, p<0.001 
Table 8.6 Analysis confirming that all groups had mean 

discrimination accuracy scores above chance for the word task. 

8.3.1.2  ERP Results 

Analysis from 300-500ms: 

Statistical analysis comparing the ERP old/new difference in the 300-500ms time-

window across genotypes revealed significant main effects of genotype for the APOE_1 

SNP [F(1,80)=7.6, p=0.007] with the old/new effect for C/C carriers larger than C/T 

carriers; and for the combined APOE polymorphisms [F(2,75)=5.76, p=0.005] where 

the size of the old/new effect for !2 carriers was smaller than both the homozygous !3 
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carriers [F(1,58)=8.97, p=0.004], and the !4 carriers [F(1,35)=11, p=0.002]. No 

significant interactions with location, hemisphere or site were found for APOE SNPs in 

the 300-500ms time-window, suggesting that whilst the magnitude of the old/effect 

differed by APOE genotype, the distribution did not (Figure 8.1 and Figure 8.2). 

Significant genotype interactions in the 300-500ms time-window were found for COMT 

and for PRKACG. A significant genotype by hemisphere interaction [F(1,59)=4.08, 

p=0.048] was found for COMT when comparing A/G to homozygous G carriers, with 

the difference between the two genotypes greatest over the right hemisphere. This right 

hemispheric difference reflects the left hemispheric distribution of the old/new effect for 

homozygous G carriers, compared to the more bilateral distribution for A/G carriers 

(Figure 8.3). No significant differences were found when comparing COMT 

homozygous A carriers to either A/G or homozygous G carriers (Figure 8.4). A 

significant PRKACG genotype by location by site interaction was also found in the 

300-500ms time-window [F(2,187)=3.27, p=0.033], reflecting the more posterior 

distribution for homozygous C carriers compared to C/G carriers, a difference greatest 

at superior electrode sites (Figure 8.5 and Figure 8.6). No significant genotypic ERP 

differences were found for SNPs ADCY8, PRKCA, APOE_2, BDNF, or KIBRA.  

Follow-up topographic analysis of COMT and PRKACG genotypes was conducted on 

data rescaled in line with McCarthy and Wood (1985), using ANOVA with between 

subjects factor of genotype and within subject factors of location 

(frontal/frontocentral/central/centroparietal/parietal), hemisphere (left/right) and site 

(inferior/medial/superior). A significant genotype by hemisphere interaction was found 

for the COMT A/G v. G/G comparison [F(1,59)=4.18, p=0.045], and a significant 

genotype by location by site interaction was found for the PRKACG SNP 
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[F(2,190)=4.45, p=0.009], suggesting that the differences outlined above are not just 

magnitude differences, but differences in the distribution of the old/new effects, 

providing evidence of underlying differences in the neural systems supporting memory. 

 
Figure 8.1 Topographic maps showing the distribution of the word old/new differences for APOE !2, 
!3/!3 and !4 carriers in the 300-500ms time-window, along with scale bars to show the size of the 
old/new difference. Maps show the subtraction of the grand average ERP for CRs from the grand 

average ERP for hits. Genotype difference maps are also given showing the difference in old/new effect 
distribution between APOE !2 and !3/!3 genotypes, and between !2 and !4 genotypes. 

 
Figure 8.2 Grand average ERP word difference waveforms (Hits-CRs) for APOE !2 (n=19), !3/!3 
(n=41) and !4 carriers (n=18), at representative frontal, central and parietal electrode sites. The 
vertical scale indicates electrode amplitude, measured in microvolts, whilst the horizontal scale 

indicates change in time, measured in milliseconds.  
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Figure 8.3 a) Plot showing average old/new effect magnitude for COMT A/G and G/G 

carriers across hemisphere for the 300-500ms time-window. b) Topographic maps showing 
the distribution of the word old/new differences for COMT A/G and G/G carriers in the 300-

500ms time-window, and the difference between genotypes (COMT A/G old/new effect – 
COMT G/G old/new effect). Data as shown in Figure 8.1. 

 
Figure 8.4 Grand average word difference waveforms (Hits-CRs) for COMT homozygous A carriers 

(n=23), A/G carriers (n=42) and homozygous G carriers (n=19). Data as shown in Figure 8.2. 
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Figure 8.5 Topographic maps showing the distribution of the word old/new differences 

for PRKACG C/G and C/C carriers in the 300-500ms time-window. A genotype difference 
map is also given showing the difference in old/new effect distribution between PRKACG 

C/G and homozygous C genotypes. Data as shown in Figure 8.1. 

 
Figure 8.6 Grand average ERP word difference waveforms (Hits-CRs) for PRKACG C/G carriers 

(n=24) and homozygous C carriers (n=58). Data as shown in Figure 8.2. 

Analysis from 500-800ms: 

Statistical analysis of the 500-800ms time-window revealed a significant main effect of 

genotype for the APOE gene [(2,75)=3.7, p=0.029], with the magnitude of the old/new 
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effect significantly smaller for !2 carriers compared to homozygous !3 carriers 

[F(1,58)=6.68, p=0.011]. As with the 300-500ms time-window no significant 

interactions with location, hemisphere or site were found for the APOE polymorphisms, 

suggesting that genotype differences were limited to differences in magnitude and not 

distribution (Figure 8.7 and Figure 8.2). No main effects of genotype were found for the 

other SNPs. 

 
Figure 8.7 Topographic maps showing the distribution of the word old/new differences for APOE !2, 

!3/!3 and !4 carriers between 500-800ms. A genotype difference map showing the difference in old/new 
effect distribution between APOE !2 and !4 genotypes is also given. Data as shown in Figure 8.1. ERP 

waveforms are shown in Figure 8.2. 

A significant interaction between PRKACG genotype, location and site was found in 

the 500-800ms time-window [F(2,192)=3.44, p=0.026], reflecting a greater old/new 

effect for homozygous C carriers over posterior electrodes than evident for  C/G 

carriers, a difference greatest at superior electrodes (Figure 8.8). In addition, there was a 

significant interaction between PRKCA genotype and location [F(1,89)=6.10, p=0.012], 

with A/G carriers exhibiting a more anteriorly distributed old/new effect than 

homozygous G carriers (Figure 8.9 and Figure 8.10). No significant genotypic ERP 

differences were found for SNPs ADCY8, APOE_1, APOE_2, BDNF, KIBRA or 

COMT. 
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Figure 8.8 Topographic maps showing the distribution of the word old/new differences 

for PRKACG C/G and C/C carriers in the 500-800ms time-window. A genotype difference 
map is also given showing the difference in old/new effect distribution between PRKACG 

C/G and homozygous C genotypes. Data as shown in Figure 8.1. ERP waveforms are 
shown in Figure 8.6. 

Follow-up genotype comparisons using rescaled data indicated that the topographically 

distinct effects seen for the different PRKACG genotypes and for the PRKCA 

genotypes do reflect distributional differences and are not simply magnitude 

differences, with a PRKACG genotype by location by site interaction [F(2,197)=3.8, 

p=0.017] and a PRKCA genotype by location interaction [F(1,89)=5.72, p=0.015]. 

 

 
Figure 8.9 Topographic maps showing the distribution of the word old/new differences 

for PRKCA A/G and G/G carriers in the 500-800ms time-window. A genotype difference 
map is also given showing the difference in old/new effect distribution between PRKCA 

A/G and homozygous G genotypes. Data as shown in Figure 8.1. 
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Figure 8.10 Grand average ERP word difference waveforms (Hits-CRs) for PRKCA A/G carriers 

(n=20) and homozygous G carriers (n=58). Data as shown in Figure 8.2. 

8.3.1.3  Discussion of genetic differences on word recognition effects 

Analysis of word old/new ERP recognition memory effects across genotype was 

conducted, looking at eight different SNPs, six located in separate genes (ADCY8, 

BDNF, COMT, PRKACG, PRKCA and KIBRA) and two located in the same gene 

(APOE_1 and APOE_2). APOE_1 and APOE_2 were also analysed as a haplotype 

(APOE). Significant behavioural and ERP differences across genotypes were found, 

with KIBRA genotype significantly influencing discrimination accuracy (Pr), where 

homozygous C carriers performed better than C/T carriers. The direction of this 

difference is in contrast to the findings from previous literature, presented in Chapter 3, 

and the hypothesis outlined in the introduction, in which T allele carriers were expected 

to perform better than C carriers.  
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The reason for this pattern reversal is unclear, but may be related to changes in specific 

task detail across studies, with the majority of studies finding episodic memory 

associations with KIBRA genotype using recall tasks. However, Schaper et al. (2008) 

did find that T carriers performed better than C carriers on tests of recognition. The 

variation across studies could also be related to population differences, although the 

participants in the current sample were largely Caucasian with European ancestry, as 

were the majority of participants in previous studies. Another important difference 

between the current study and those presented in Chapter 3 is sample size, with the 

current sample much smaller than those in the literature who report significant 

behavioural differences. Typically larger sample sizes are needed to see robust 

behavioural effects than ERP differences, and the absence of ERP modulations for 

KIBRA could be interpreted as evidence that the behavioural difference is a false 

positive.  

Alternatively, a study by Papassotiropoulos et al. (2006) reported differences in fMRI 

bold signal between T carriers and non-carriers for matched behavioural performance, 

suggesting differing neural activation across genotypes. Whilst it is difficult to make 

inferences about the influence of genotype on ERP effects based on fMRI data, it can be 

hypothesised that differences in neural activity, inferred from changes in BOLD signal,  

will also be evident in the pattern of ERP activity. Therefore the absence of ERP 

modulations between the two genotypes may be indicative of changes in the typical 

pattern of discrimination accuracy scores, if studies in which T carriers perform better 

than non-carriers show differences in ERP old/new effect magnitude, or differing effect 

distributions. 
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Significant differences in hit rate were found for ADCY8 genotype with A/G carriers 

exhibiting a higher hit rate than homozygous G carriers. The overall performance 

accuracy, as indexed by Pr, did not differ, and no significant ERP differences were 

found. However, the differing hit rate between genotypes supports the findings of de 

Quervain and Papassotiropoulos (2006), who identified the SNP as being important for 

memory. The role of ADCY8 in the c-AMP pathway, suggests that the differences in hit 

rate may be related to differences in the catabolism of adenosine triphosphate and 

consequently neuronal signalling, although no ERP differences were found, and the 

functional effect of the ADCY8 SNP on ADCY8 is unclear. Nonetheless, the results 

from the current study do indicate a potential role of ADCY8 in episodic memory. 

APOE genotype was found to influence the overall magnitude of the old/new effect 

with !2 carriers exhibiting a smaller effect than both !3/!3 and !4 carriers in the 300-

500ms time-window23 and smaller than !3/!3 carriers in the 500-800ms time-window. 

Although it was hypothesised that !4 carriers would perform better than !2 or 

homozygous !3 carriers, no differences in behavioural scores as a function of APOE 

genotype were found. The different ERP effect magnitudes for !2 carriers compared to 

!3/!3 and !4 carriers may indicate that !2 carriers have greater neural efficiency than 

!3/!3 and !4 carriers, and therefore exhibit smaller old/new effects than the other 

genotypes. Mondadori et al. (2006) found that the !4 isoform was more advantageous in 

young participants, and on the basis of fMRI data, suggest !4 carriers show better neural 

efficiency. However, as discussed by Tractenberg et al. (in press), the literature on the 

effect of APOE genotype on memory related neural activity in young participants is 

inconsistent. 
                                                
23 A significant difference was also found for APOE_1 with homozygous C carriers exhibiting a larger 
old/new effect than C/T carriers. Typically, and as is the case in this study, carriers of a T allele at the 
APOE_1 SNP will typically have an APOE !2 genotype, and the APOE_1 results will therefore not be 
considered separately, but will be discussed as APOE !2 genotypes. 
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ERP differences were also found for PRKACG genotype, with homozygous C carriers 

exhibiting a greater old/new difference over posterior electrodes than C/G carriers, 

between 300-500ms and 500-800ms. Figure 8.5 suggests the distribution of the old/new 

effect in the 300-500ms time-window for homozygous C carriers is more posterior than 

the effect reported in Chapter 5, and that typically seen in the literature. The distribution 

of the effect for C/G carriers closely resembles the bilateral-frontal effect reported in the 

literature. The ERPs presented in Figure 8.6, however indicate that the difference over 

anterior electrodes between the two groups is minimal suggesting that the posterior 

maxima evident for homozygous C carriers reflects additional activity, not evident for 

C/G carriers. The larger parietal old/new effect for homozygous C carriers in the 500-

800ms time-window further suggests that the additional posterior activity in the 300-

500ms time-window may represent an earlier onsetting parietal old/new effect for 

homozygous C carriers than C/G carriers. 

Whilst the ERP differences seen for PRKACG are statistically robust, suggesting a gene 

specific change in the neural basis of retrieval, it is important to consider a potential 

alternative source of the finding. Namely, that the more posterior activity for 

homozygous C carriers may be confounded by differences in the sex composition of the 

two genotype groups, with a significantly greater proportion of the C/G sample being 

male than the homozygous C group (Table 8.4). As discussed in Chapter 3 females have 

been shown to exhibit larger old/new effects than males over anterior electrodes during 

nonverbal memory tasks, and over posterior electrodes in verbal memory tasks, 

differences onsetting as early as 300ms (Taylor, Smith & Iron, 1990). With the 

proportion of female participants making up the homozygous C group greater than the 

C/G group, the posterior genotype differences seen in the current study may reflect the 

sex differences reported for verbal memory tasks in the literature. 
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Significant genotypic ERP differences were also found for PRKCA, with A/G carriers 

exhibiting more anterior old/new effects than homozygous G carriers between 500-

800ms. The ERPs in Figure 8.10 indicate that the magnitude of the old/new effect at 

parietal electrodes was similar in both genotypes, suggesting that A/G carriers exhibit 

additional frontal activity not present for the homozygous G group. Akin to the 

PRKACG SNP, a significant relationship between sex and PRKCA genotype was found 

in the current study (Table 8.4), with the A/G group having a larger proportion of males 

then the homozygous G group. Whilst sex may be a confounding factor for PRKACG 

the evidence that sex differences are driving the distributional differences seen between 

PRKCA genotypes is less convincing. As discussed above, in verbal memory tasks sex 

differences appear to be greatest over posterior electrodes. By contrast, the genotypic 

differences evident in the current study appear to be over anterior electrodes with 

minimal difference between the two genotypes over posterior electrodes, suggesting that 

differences in sex composition are not causing the genotype ERP differences. 

The enzyme PRKCA is thought to be in involved in cell signalling, but the functional 

effect of the A to G polymorphism is not currently clear, making interpretation of the 

distributional differences seen in the current study difficult. Additional anterior activity 

may reflect differences in retrieval monitoring strategies, with A allele carriers showing 

greater engagement of retrieval monitoring than homozygous G carriers. Whilst no 

difference in behavioural performance was found in the current study, a retrieval 

monitoring hypothesis would fit previous results shown in the literature, with healthy 

homozygous A carriers performing better than homozygous G carriers on recall tasks. 

Greater engagement of monitoring processes by homozygous A carriers would aid in 

the completion of memory tasks, and the absence of behavioural differences in the 
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current study may reflect the easier nature of recognition tasks compared to recall tasks, 

making recognition tasks less sensitive to potential group differences. 

The final SNP exhibiting genotypic effects in the word recognition task was COMT. 

Old/new effect magnitude for COMT G/G carriers was smaller than for A/G carriers, 

and Figure 8.4 suggests that the amplitude of the old/new effect for G/G carriers was 

also smaller than for A/A carriers (although this difference was not significantly 

different). The smaller magnitude for G/G carriers may reflect the greater 

neurotransmitter catabolism of homozygous G carriers, with greater catabolism 

reducing the level of neurotransmitter in the DLPFC available to bind at the 

postsynaptic terminal, reducing the number of ion channels opening/closing.  The fewer 

ion channels available the smaller the number of ions entering/exciting the cell, and 

consequently the size of the postsynaptic potential is reduced. A smaller postsynaptic 

potential reduces the likelihood that an action potential will be triggered resulting in a 

reduction in the number and frequency of neurons firing. Ultimately the reduction in the 

amount of available neurotransmitter, as a result of increased catabolism, may have 

reduced the voltage recorded at the scalp for homozygous G allele carriers.  

The old/new effect for G/G carriers was largest over the left hemisphere between 300-

500ms, whereas A/G carriers exhibited a right hemisphere bias, as illustrated in Figure 

8.3a. The topographic map in Figure 8.3b showing the difference between the two 

genotypes clearly indicates the hemispheric differences, and further indicates that A/G 

carriers may have additional right-frontal lateral old/new differences not evident for 

G/G carriers. Catabolism differences have been indicated to occur in the DLPFC so it is 

not surprising that the ERP difference is present over frontal electrodes. The distribution 

of the difference between the two groups is reminiscent of the right-frontal old/new 
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effect associated with post-retrieval monitoring (Wilding and Rugg, 1996), which has 

been shown to onset as early as 400ms. It may be that A/G carriers are beginning to 

exhibit signs of post-retrieval monitoring that G/G carriers do not, because of the 

reduced levels of DLPFC neurotransmitter for G/G carriers. Furthermore, the 

behavioural difference between these two genotypes typically seen in the literature (in 

which A carriers perform better than G carriers) may reflect strategy differences related 

to retrieval monitoring processes. 

Behaviourally response bias was affected by COMT genotype, with homozygous A 

carriers more conservative than either A/G or homozygous G carriers. These response 

bias differences may also reflect differences in dopamine availability, with G allele 

carriers catabolizing dopamine faster and therefore exhibiting less dopamine signalling 

than homozygous A carriers, in the DLPFC. During normal ageing the dopaminergic 

system shows evidence of decline, with a reduction in the number of D2 dopamine 

receptors in the brain (for a review see Li, Lindenberger & Sikström, 2001). 

Recognition memory response bias has also been shown to change with age, with older 

participants exhibiting a more liberal bias than younger participants, and in this older 

cohort, participants became more liberal with increasing age (Huh, Kramer, Gazzaley & 

Delis, 2006). In addition a study by Morcom et al. (2010) showed that both young and 

old participants given Sulpiride, a D2-like antagonist, exhibited a less conservative 

response bias in a recognition memory test for words, than participants given either a 

placebo, or Bromocriptine, a D2-like agonist. These studies therefore suggest that 

dopamine is an important factor in response bias, with a reduction in dopamine 

associated with a less conservative, or more liberal response bias. Furthermore, Miller, 

Handy, Cutler, Inati and Wolford (2001), showed that activity in the DLPFC was 

associated with changes in response criteria during a recognition memory task. 
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Therefore, the differences in response bias across COMT genotype, seen in the current 

study, may be caused by reduced dopamine signalling in the DLPFC in G allele carriers 

(Chen et al., 2004), resulting in a less conservative response bias compared to 

homozygous A carriers. 

The findings from the word task clearly indicate that genetic polymorphisms can 

influence the ERP correlates of word recognition memory. Whilst it is not possible to 

fully explain all the ERP variations evident across genotypes, the different distributions 

evident in the topographic maps (across genes and genotypes) highlight the variability 

that exists in the ERP effects of word recognition memory. The next section will look at 

the influence of genotype on the picture old/new recognition memory effects. 

8.3.2  Pictures 

8.3.2.1  Behavioural Results 

The behavioural results for the picture task, split by genotype, are presented in Table 

8.7. As with the word task all groups had a mean discrimination accuracy score 

significantly above chance (Table 8.8), with no significant differences in Pr between 

genotypes for any gene. Overall mean response bias scores were conservative, and 

generally did not differ between genotypes. As per the word task, significant differences 

in response bias were evident for COMT [F(2,81)=5.8, p=0.004], with homozygous A 

carriers exhibiting a more conservative bias than both A/G carriers [t(61),=-3.74, 

p<0.001], and homozygous G carriers [t(40)=-2.42, p=0.02]. No significant difference 

in response bias was found between A/G and homozygous G carriers. Significant 

differences in false alarm rates were also found between COMT homozygous A carriers 

and A/G carriers [t(55)=-3.93, p<0.001], with a higher false alarm rate evident for A/G 
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carriers. No significant genotypic differences were found for hit rate, hit response times 

or CR response times across any of the genes. 

Pictures Genotype 
Hit 
rate 
(%) 

False 
alarm 

rate (%) 
Pr  Br Hit RT 

(ms) 
CR RT 

(ms) 

A/G 83 (14) 4 (6) 0.77 (0.16) 0.27 (0.19) 774 (122) 823 (124) 
ADCY8 

G/G 87 (8) 3 (3) 0.82 (0.09) 0.23 (0.15) 795 (124) 832 (127) 

C/T 85 (9) 3 (4) 0.80 (0.09) 0.24 (0.18) 780 (133) 818 (129) 
APOE_1 

C/C 83 (13) 4 (6) 0.77 (0.16) 0.25 (0.17) 795 (119) 835 (123) 

C/T 85 (10) 6 (7) 0.78 (0.15) 0.28 (0.16) 801 (127) 867 (127) 
APOE_2 

T/T 83 (13) 3 (4) 0.78 (0.14) 0.23 (0.18) 789 (124) 821 (127) 

A/G 85 (12) 4 (5) 0.78 (0.14) 0.27 (0.18) 783 (100) 834 (98) 
BDNF 

G/G 83 (13) 3 (5) 0.78 (0.14) 0.23 (0.17) 800 (133) 836 (140) 

A/G 84 (13) 5 (6) 0.77 (0.15) 0.29 (0.19) 789 (128) 851 (134) 

A/A 81 (11) 1 (2) 0.78 (0.10) 0.15 (0.12) 778 (98) 796 (92) COMT 

G/G 86 (13) 3 (6) 0.81 (0.16) 0.25 (0.15) 818 (137) 846 (141) 

C/G 86 (13) 3 (4) 0.81 (0.14) 0.25 (0.18) 786 (103) 813 (104) 
PRKACG 

C/C 82 (12) 4 (5) 0.76 (0.14) 0.24 (0.17) 800 (130) 846 (136) 

A/G 83 (11) 5 (7) 0.76 (0.16) 0.24 (0.16) 816 (162) 851 (143) 
PRKCA 

G/G 84 (13) 3 (4) 0.79 (0.14) 0.24 (0.17) 785 (111) 828 (123) 

C/T 86 (9) 4 (6) 0.80 (0.12) 0.25 (0.17) 766 (101) 816 (107) WWC1 
(KIBRA) C/C 82 (15) 4 (5) 0.76 (0.16) 0.25 (0.19) 802 (127) 831 (124) 

!2 carriers 85 (9) 3 (4) 0.80 (0.09) 0.22 (0.19) 790 (140) 810 (137) 

!3/!3 82 (14) 3 (4) 0.77 (0.16) 0.24 (0.18) 788 (118) 826 (124) APOE 

!4 carriers 85 (12) 5 (8) 0.78 (0.16) 0.27 (0.17) 810 (122) 855 (122) 
Table 8.7 Behavioural results from the picture task for each genotype. Data as shown in Table 8.5. 
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Pictures Genotype Pr > 0 

A/G t(39)=31.1, p<0.001 
ADCY8 

G/G t(31)=52, p<0.001 

C/T t(22)=42.64, p<0.001 
APOE_1 

C/C t(58)=38.02, p<0.001 

C/T t(20)=24.26, p<0.001 
APOE_2 

T/T t(59)=43.9, p<0.001 

A/G t(27)=29.58, p<0.001 
BDNF 

G/G t(54)=41, p<0.001 

A/G t(41)=33.78, p<0.001 

A/A t(22)=36.63, p<0.001 COMT 

G/G t(18)=21.81, p<0.001 

C/G t(23)=29.22, p<0.001 
PRKACG 

C/C t(57)=41.37, p<0.001 

A/G t(19)=21.99, p<0.001 
PRKCA 

G/G t(57)=43.56, p<0.001 

C/T t(37)=40.41, p<0.001 
WWC1 (KIBRA) 

C/C t(34)=28.27, p<0.001 

!2 carriers t(18)=40.2, p<0.001 

!3/!3 t(40)=31.69, p<0.001 APOE 

!4 carriers t(17)=20.44, p<0.001 
Table 8.8 Results from analysis confirming that all groups had 
mean discrimination accuracy scores that were above chance 

for the picture task. 

8.3.2.2  ERP Results 

Analysis from 300-500ms: 

Statistical analysis of the old/new effects for picture recognition in the 300-500ms time-

window revealed a significant main effect of genotype for the COMT SNP 

[F(2,81)=3.35, p=0.04] with the old/new effect for A/G carriers larger than homozygous 

A carriers [F(1,63)=7.97, p=0.006]. No significant differences were found between 

homozygous G carriers and either homozygous A or A/G carriers (Figure 8.11 and 

Figure 8.12). A significant interaction between APOE genotype, location and site was 
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also found [F(2,61)= 3.46, p=0.043] with !4 carriers exhibiting a larger old/new effect 

than !2 carriers over frontal locations, a difference greatest at superior electrodes 

(Figure 8.13 and Figure 8.14). 

 
Figure 8.11 Topographic maps showing the distribution of the picture old/new differences for COMT 
A/A, A/G and G/G carriers in the 300-500ms time-window. A genotype difference map showing the 

difference in old/new effect distribution between COMT A/G and A/A genotypes is also given. Data as 
shown in Figure 8.1. 

 
Figure 8.12 Grand average ERP picture difference waveforms (Hits-CRs) for COMT 

homozygous A carriers (n=23), A/G carriers (n=42) and homozygous G carriers (n=19). 
Data as shown in Figure 8.2. 
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Figure 8.13 Topographic maps showing the distribution of the picture old/new differences for APOE !2, 
!3/!3 and !4 carriers between 300-500ms. A Genotype difference map showing the difference in old/new 

effect distribution between APOE !2 and !4 genotypes is also shown. Data as shown in Figure 8.1. 

 
Figure 8.14 Grand average ERP picture difference waveforms (Hits-CRs) for APOE !2 (n=19), 

!3/!3 (n=41) and !4 carriers (n=18). Data as shown in Figure 8.2. 

Significant genotype by hemisphere [F(1,70)=9.8, p=0.003], and genotype by 

hemisphere by site [F(1,87)=7.8, p=0.004], interactions were found for the ADCY8 

SNP, with A/G carriers exhibiting a left hemisphere bias, and G/G carriers a right 

hemisphere bias (Figure 8.15 and Figure 8.16). A significant interaction between 

PRKCA genotype, location and site was also found [F(2,135)=3.25, p=0.047], in which 

homozygous G carriers exhibited a more posterior going effect than A/G carriers, a 
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difference maximal at superior electrodes (Figure 8.17 and Figure 8.18). No significant 

genotypic ERP differences were found for SNPs PRKACG, APOE_1, APOE_2, BDNF, 

or KIBRA. 

 
Figure 8.15 Topographic maps showing the distribution of the picture old/new differences 
for ADCY8 A/G and G/G carriers in the 300-500ms time-window. A genotype difference 

map is also presented showing the difference in old/new effect distribution between 
ADCY8 A/G and homozygous G genotypes. Data as shown in Figure 8.1. 

 

 
Figure 8.16 Grand average ERP picture difference waveforms (Hits-CRs) for ADCY8 A/G (n=40) and 

homozygous G carriers (n=32). Data as shown in Figure 8.2. 
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Figure 8.17 Topographic maps showing the distribution of the picture old/new 

differences for PRKCA A/G and G/G carriers in the 300-500ms time-window. A genotype 
difference map is also given showing the difference in old/new effect distribution between 

PRKCA A/G and homozygous G genotypes. Data as shown in Figure 8.1. 

 

 
Figure 8.18 Grand average ERP picture difference waveforms (Hits-CRs) for PRKCA A/G carriers 

(n=20) and homozygous G carriers (n=58). Data as shown in Figure 8.2. 

Follow-up topographic analysis using rescaled data revealed significant interactions 

between ADCY8 genotype and hemisphere [F(1,70)=9.29, p=0.003], and ADCY8 

genotype, hemisphere and site [F(1,89)=3.38, p=0.005], suggesting the topographically 

distinct effects identified above, are a reflection of distribution rather than magnitude 

differences. However, analysis of APOE (!2 v. !4) and PRKCA (A/G v. G/G) genes all 
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revealed marginally non-significant genotypic effects when analysing rescaled data: a 

APOE genotype by location by site interaction [F(2,63)=3.08, p=0.059], and a PRKCA 

genotype by location by site interaction [F(2,135)=2.97, p=0.061]. The sample size of 

the rarer COMT genotype, both genotypes for the APOE gene, and the rarer genotype 

for PRKCA SNP were small (COMT A/A n=23, APOE !2 n=19, APOE !4 n=18, 

PRKCA A/G n=20), and the marginally non-significant topographic analyses suggest 

that these groups may not have the statistical power necessary for the distributional 

differences apparent in Figure 8.11, Figure 8.13 and Figure 8.17 to be statistically 

significant. Additional analysis with a larger sample is therefore needed to fully 

evaluate the topographic differences for these SNPs. 

Analysis from 500-800ms: 

Statistical analysis of the 500-800ms time-window also revealed a significant main 

effect of genotype for the COMT polymorphisms [F(2,81)=5.67, p=0.005], with the 

A/G carriers again exhibiting a larger old/new effect than homozygous A carriers 

[F(1,63)=11.97, p=0.001]. Significant COMT genotype (A/A v. A/G) and site 

[F(1,69)=4.33, p=0.038], and genotype, hemisphere and site [F(1,87)=3.66, p=0.045] 

interactions were also found, reflecting the larger old/new effect for A/G carriers, a 

difference greatest uniformly over the right hemisphere, and over superior electrodes in 

the left hemisphere. As per the 300-500ms time-window no significant differences 

between homozygous G and homozygous A carriers, or A/G carriers were found 

(Figure 8.19 and Figure 8.12). 
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Figure 8.19 Topographic maps showing the distribution of the picture old/new differences for COMT 
A/A, A/G and G/G carriers in the 500-800ms time-window. A genotype difference map showing the 

difference in old/new effect distribution between COMT A/G and A/A genotypes is also given. Data as 
shown in Figure 8.1. ERP waveforms are shown in Figure 8.12. 

There was a significant APOE genotype (!2 v. !4) by location interaction between 500-

800ms [F(1,46)=3.95, p=0.042], with !2 carriers exhibiting a more posterior old/new 

effect than !4 carriers (Figure 8.20 and Figure 8.14). Significant interactions with 

ADCY8 genotype were also found, with genotype by hemisphere [F(1,70)=5.35, 

p=0.024], and genotype by hemisphere by site [F(1,94)=4.30, p=0.030] interactions, 

reflecting the left hemisphere distribution of the old/new effect for A/G carriers and the 

right hemisphere distribution for the homozygous G group. The differences in effect 

distribution were uniform across electrode sites in the right hemisphere, with 

homozygous G carriers exhibiting a larger old/new effect, but in the left hemisphere the 

greatest effect was at superior electrodes for homozygous G carriers, with a more 

widespread distribution for A/G carriers (Figure 8.21 and Figure 8.16). 

 
Figure 8.20 Topographic maps showing the distribution of the picture old/new differences for APOE !2, 
!3/!3 and !4 carriers between 500-800ms. A Genotype difference map showing the difference in old/new 
effect distribution between APOE !2 and !4 genotypes is also given. Data as shown in Figure 8.1. ERP 

waveforms are shown in Figure 8.14. 
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Figure 8.21 Topographic maps showing the distribution of the picture old/new differences 
for ADCY8 A/G and G/G carriers in the 500-800ms time-window. A genotype difference 

map is also given showing the difference in old/new effect distribution between ADCY8 A/G 
and homozygous G genotypes. Data as shown in Figure 8.1. ERP waveforms are shown in 

Figure 8.16. 

Finally, a significant PRKCA genotype by location by site interaction was found 

[F(2,162)=3.92, p=0.020], in which homozygous G carriers exhibited a more posterior 

old/new effect that A/G carriers, a difference greatest at inferior electrodes at anterior 

locations, and superior electrodes at posterior locations (Figure 8.22 and Figure 8.18). 

No significant genotypic ERP differences were found for SNPs PRKACG, APOE_1, 

APOE_2, BDNF, or KIBRA. 

 
Figure 8.22 Topographic maps showing the distribution of the picture old/new 

differences for PRKCA A/G and G/G carriers in the 500-800ms time-window. A genotype 
difference map is also given showing the difference in old/new effect distribution between 
PRKCA A/G and homozygous G genotypes. Data as shown in Figure 8.1. ERP waveforms 

are shown in Figure 8.18. 

Follow-up topographic analysis using rescaled data on SNPs COMT (A/A v. A/G), 

ADCY8 (A/G v. G/G), PRKCA (A/G v. G/G), and combined polymorphisms APOE (!2 

v. !4) in the 500-800ms time-window were conducted. Significant genotype by 

hemisphere [F(1,70)=5.37, p=0.023] and genotype by hemisphere by site [F(1,94)=4.42, 
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p=0.027] interactions were found for SNP ADCY8, suggesting the hemispheric 

differences observed across the two genotypes are distributional, rather than reflecting 

magnitude differences. Furthermore, a significant COMT genotype by hemisphere by 

site interaction was found [F(1,87)=4.98, p=0.018], indicating that the hemispheric 

differences were unlikely to be caused by magnitude differences across the two groups. 

As per the 300-500ms time-window, both the APOE genotype by location interaction 

[F(1,46)=3.67, p=0.051], and the PRKCA genotype by location by site interaction 

[F(2,163)=2.69, p=0.067], observed in the initial analysis were marginally non-

significant when analysed with rescaled data. The sample sizes of these genotypes again 

suggest that analysis of these SNPs with larger sample sizes needs to be conducted to 

fully understand the topographic differences evident in Figure 8.20 and Figure 8.22. 

8.3.2.3  Discussion of genetic differences on picture recognition effects 

Analysis of the picture data revealed significant genotype effects for COMT, APOE, 

PRKCA and ADCY8. Consistent with the findings from the word task, a significant 

response bias difference across COMT genotype was found in the picture task, with 

homozygous A carriers more conservative than either A/G or homozygous G carriers, a 

difference that may reflect the level of dopamine signalling in the DLPFC, as discussed 

above. Significant COMT ERP differences were also found for the picture task, with 

A/G carriers exhibiting greater old/new effect magnitudes in both the 300-500ms and 

500-800ms time-windows than homozygous A carriers, a difference greatest over the 

right hemisphere in the later time-window.  

The right hemispheric distribution of the COMT difference between genotypes is 

consistent with the findings from the word task, however whereas the difference in the 

word task was between A/G and homozygous G carriers the difference in the picture 
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task is between A/G and homozygous A carriers. In both the word and picture tasks 

A/G carriers exhibited greater old/new effects than either homozygous A or G carriers, 

suggesting that the dopamine hypothesis may not be sufficient to explain the differences 

in ERP effect magnitude or distribution in either task. However, these results do suggest 

that A/G carriers exhibit additional right hemispheric old/new differences compared to 

both homozygous groups, a difference which may reflect differences in retrieval 

monitoring processes. 

 The ERP old/new effects for pictures were also modulated by APOE genotype, with !4 

carriers showing a greater old/new effect than !2 carriers over frontal electrodes, in both 

the 300-500ms and 500-800ms time-windows, and !2 carriers showing a larger old/new 

effect than !4 carriers in the 500-800ms time-window over posterior electrodes, a 

difference the ERPs indicate onsets around 700ms. Topographic analysis using rescaled 

data resulted in marginally non-significant interactions, indicating distributional 

difference trends. The difference pattern over frontal electrodes is consistent with the 

pattern evident for words, with !2 carriers exhibiting a smaller effect magnitude than !4 

carriers, a difference which the absence of behavioural differences suggests may be 

reflective of greater neural efficiency (as discussed above). The different pattern of 

activity over parietal electrodes, evident at electrode P3 in Figure 8.14 from 

approximately 700ms, appears to reflect differing durations of the left-parietal old/new 

effect, with !2 carriers exhibiting a shorter left-parietal effect than !4 carriers. The 

functional significance of these genotypic ERP differences is currently not clear. 

It is however, interesting to note that the 500-800ms old/new effect in Figure 8.20 for !4 

carriers is a close resemblance to the picture old/new recognition effect reported in 

Chapter 5, which showed that pictures evoked more anteriorly distributed left-parietal 
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effects than words. In contrast, the 500-800ms old/new effect for the !2 carriers is a 

closer resemblance to the left-parietal effect seen for word recognition. These individual 

differences may help to explain some of the discrepancies reported in the literature with 

regards to the distribution of ERP effects for pictorial stimuli (i.e. face stimuli, as 

discussed by Donaldson and Curran, 2007),with different study samples potentially 

being made up with different proportions of APOE genotypes.  

Marginally non-significant rescaled interactions were also found for PRKCA, in which 

homozygous G carriers showed a trend towards more parietally distributed old/new 

effects than A/G carriers in both the 300-500ms and 500-800ms time-windows. 

Analysis of PRKCA differences identified for words showed additional frontal activity 

for A/G carriers, whilst effect magnitude over parietal electrodes did not differ. In 

contrast to the word task, the ERPs for the picture task in Figure 8.18 show limited 

differences in effect magnitude over frontal electrodes across genotype, but show 

homozygous G/G carriers exhibiting greater old/new effects than A/G carriers over 

parietal electrodes, suggesting an interaction between task and PRKCA genotype.  

As discussed in relation to the word task, the proportion of males with an A/G genotype 

was significantly greater than the proportion with a homozygous G genotype. However, 

the literature discussed in Chapter 3 suggests that sex differences in nonverbal tasks are 

evident over anterior electrodes, rather than posterior electrodes as is the case for the 

PRKCA SNP, suggesting that the distributional differences observed are not caused by 

sex differences. However, sex differences for verbal tasks are evident over posterior 

electrodes, and the pictorial stimuli used in the current study were nameable pictures, 

and therefore may be reflective of the verbal tasks used by Taylor, Smith and Iron 

(1990) to investigate sex differences. Although the differences evident for the word task 
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don’t appear to reflect sex differences, additional analysis of the picture data, matching 

the proportion of males and females in each genotype group, needs to be conducted 

before firm conclusions about the influence of PRKCA genotypes can be made. 

Finally the ERP old/new effects for pictures were also modulated by ADCY8 genotype, 

with A/G carriers exhibiting old/new effects with a left hemispheric distribution, and 

homozygous G carriers a right hemispheric distribution in both the 300-500ms and 500-

800ms time-windows. Inspection of the ERPs in Figure 8.16 indicates that the 

magnitude of the old/new effect in the left hemisphere doesn’t differ across genotype, 

with the main difference being driven by a larger effect for homozygous G carriers in 

the right hemisphere. The differing distributions of the old/new effects across genotypes 

may reflect differing engagement of strategic processes, such as greater engagement of 

retrieval monitoring processes by homozygous G carriers, reflected in the additional 

right hemispheric activity. 

8.4  General Discussion 

A summary of the main chapter hypotheses and findings are presented in Table 8.9, 

finding significant differences in behavioural and ERP measures of word and picture 

recognition for several genes. Behavioural measures were included in the analysis, 

however, in comparison to the behavioural studies reported in the literature, the sample 

size in the current study is small. This small sample size leads to concerns regarding the 

statistical power of any behavioural analysis conducted with the current sample and the 

reliablility of any conclusions that are drawn from these data in relation to the 

replication of previous studies. Any conclusions about the impact of genotype on 

behavioural outcome in the current study are therefore made tentatively.  



 Genetic Analysis: Words and Pictures 

- 290 - 

A more central aim of this chapter was to investigate the role of genetic differences on 

the ERP correlates of recognition memory identified in Chapter 5. This focus was 

driven by the findings from Chapter 7, in which performance was not found to 

significantly correlate with the magnitude of typical recognition memory old/new 

effects, and distributional differences were not mirrored by behavioural differences. 

Whilst previous literature has examined the consequences of differing genotypes on 

behavioural measures of cognition, relatively few studies have looked at the relationship 

between electrophysiological correlates and genotype. The sample sizes of each 

genotype group in the current study reflect those typically reported in the literature for 

ERP memory studies, as well as reflecting the sample sizes reported by the few studies 

looking at genetic polymorphisms and ERPs (Noble et al., 1994; Johnson et al., 1997; 

Hill et al., 1998; Liu et al., 2009), and those looking at individual differences and ERP 

correlates of memory (Taylor, Smith & Iron, 1990; Guillem & Mograss, 2005). The 

similarlities in the size of the samples used in the current study and in the previous 

literature suggest that the current sample is sufficient to provide adequate statistical 

power to detect significant differences in the ERP effects between genotype groups. 
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Gene Hypotheses Words Pictures 
APOE - !4 carriers perform better 

behaviourally than !2 & 
!3/!3 carriers. 
- Greater old/new effect 
over left frontocentral 
electrodes for !4 carriers. 

- 300-500ms !2 carriers 
reduced effect magnitude 
compared to !3/3 and !4. 

 - 500-800ms !2 carriers 
reduced effect magnitude 
compared to !3/3 carriers. 

 

- 300-500ms !2 carriers 
reduced effect 
magnitude compared to 
!4 carriers over frontal 
electrodes. 

 - 500-800ms !2 carriers 
more posterior 
distribution than !4. 

 BDNF - G/G carriers perform 
better behaviourally than 
A/G carriers. 
- A/G carriers would 
exhibit a smaller left-
parietal effect than G/G. 

- No differences in 
behavioural or ERP 
measures were found across 
genotypes. 

- No differences in 
behavioural or ERP 
measures were found 
across genotypes. 

COMT 
 

- A carriers perform better 
behaviourally than G 
carriers. 
- G carriers would exhibit a 
smaller left-parietal effect 
than A carriers. 

- A/A carriers more 
conservative response bias 
than A/G or G/G carriers. 
- 300-500ms G/G carriers 
more left hemispheric 
distribution, A/G more 
bilateral, leading to right 
hemispheric difference. 

- A/A carriers more 
conservative response bias 
than A/G or G/G carriers. 
- 300-500ms A/G carriers 
show greater effect 
magnitude than A/A. 
- 500-800ms A/G greater 
than A/A carriers over 
right hemisphere. 

KIBRA - C/T carriers perform 
better behaviourally than 
C/C carriers. 
- ERP effects expected to 
differ, but detailed 
hypotheses were not made. 

- C/C carriers performed 
better than C/T carriers. 
- No differences in ERP 
effects were found across 
genotypes. 

- No differences in 
behavioural or ERP 
measures were found 
across genotypes. 

ADCY8 
 

- Differences in both 
behaviour and ERP effects 
were expected, but detailed 
hypotheses were not made. 

- A/G carriers had a higher 
hit rate than G/G carriers. 
- No differences in ERP 
effects were found across 
genotypes. 

- 300-500ms A/G carriers 
exhibited more left and 
G/G more right 
hemispheric distributions. 
- 500-800ms A/G carriers 
exhibited more left and 
G/G more right 
hemispheric distributions. 

PRKACG - C/C carriers were 
expected to be better than 
C/G carriers. 
- ERP effects expected to 
differ, but detailed 
hypotheses were not made. 

- 300-500ms C/C carriers 
more posterior distribution 
than C/G carriers who show 
a more anterior distribution. 
- 500-800ms C/C carriers 
more posterior distribution 
than C/G carriers.   

- No differences in 
behavioural or ERP 
measures were found 
across genotypes. 

PRKCA - G/G carriers were 
expected to be better than 
A/G carriers. 
- ERP effects expected to 
differ, but detailed 
hypotheses were not made. 

-500-800ms A/G carriers 
more anterior distribution 
than G/G carriers. 

-300-500ms G/G carriers 
more posterior 
distribution than A/G 
carriers. 

-500-800ms G/G carriers 
more posterior 
distribution than A/G. 

 Table 8.9 Summary of the main hypotheses, word and picture results for each gene. 
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The results of the genetic analysis reveal several behavioural and ERP differences, that 

whilst in many cases are difficult to interpret functionally, clearly indicate the potential 

role that genetic polymorphisms play in relation to behavioural and ERP measures of 

episodic memory. Perhaps more importantly the results highlight the role of individual 

differences in memory, in terms of both behavioural outcome and the associated neural 

correlates. A quick glance at the ERP and topographic figures in this chapter show the 

level of variance that exists in the ERP effects generated by participants completing the 

same simple old/new recognition task. It is not possible to tell from the current study in 

what way the genotypic differences evident reflect differences in strategic retrieval 

processing, however it is clear that genotypic differences exist, and that ERPs are 

sensitive enough to detect neural activity differences at the genetic level. 

The investigation of specific genetic polymorphisms in relation to cognition, 

neuroimaging, and particularly ERPs is in its infancy. There are many factors with 

regards to the understanding of specific genetic polymorphisms, which can make 

interpretation of the results difficult, and may cause inconsistency across studies. 

Firstly, whilst many of the target SNPs have been identified as potentially important for 

a particular cognitive process through genome wide association studies, it is often not 

clear if the specific SNP identified is the functional SNP, or if it is indirectly associated 

with the process. Target SNPs are often tag SNPs, which are representative SNPs that 

are highly associated (have a high linkage disequilibrium) with polymorphisms at other 

loci. Genetic SNPs that are positioned close together tend to be inherited together, and 

therefore people with the same variant at one SNP (the tag SNP) are also likely to have 

the same variants as each other at other SNPs. Therefore whilst initial analysis may 

indicate that a SNP is associated with differences in a particular cognitive process, the 

functional SNP which drives these cognitive differences may actually be at a different 
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location, where the variant is always the same for a given allele at the tag SNP. 

Furthermore, the functional SNP may be a polymorphism that is yet to be discovered. 

A second factor that may cause inconsistencies between the findings from the current 

study and those in the literature, as well as producing inconsistencies within the 

literature, is gene-gene associations. Whilst studies may be investigating one specific 

SNP the proportion of participants with other genetic variants that are not being 

reported will vary across samples. It is highly unlikely that one SNP will be solely 

responsible for a particular cognitive process and it is likely that there will be an 

interaction between different SNPs24. There is evidence of this type of gene-gene 

interaction influencing memory, with Presuschhof et al. (2010) finding an interaction 

between KIBRA and CLSTN2, showing better memory performance for KIBRA T and 

CLSTRN2 C carriers compared to other genotypes including KIBRA T and CLSTRN2 

T/T carriers. Therefore, whilst studies may be reporting the effects of one SNP, there 

may be other SNPs that differ across the study samples that are also influencing the 

process of interest, resulting in inconsistencies across studies. 

A third factor that may lead to inconsistencies across studies is gene-environment 

interactions. As discussed in Chapter 3, McClearn et al. (1997) estimated heritability of 

memory performance to be 52%, however genes alone do not determine human 

behaviour, and they also estimated 38% of memory variability to be related to non-

shared environment. Animal models of memory have also highlighted the importance of 

environment, with studies showing that enriched stimulating environments can enhance 

learning and memory function (for a review see Van Praag, Kempermann & Gage, 

2000).  Furthermore, environmental factors have been shown to influence proteins thought 
                                                
24 For example, process differences are observed across genotypes A and B of SNP1, a second SNP 
(SNP2) does not show a genotype difference on its own, but in combination with SNP1, shows genotypic 
effects, with genotype 1A/2A showing process differences from genotype 1A/2B. 
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to be modulated by specific SNPs. For example, Ickes et al. (2000) showed that rats in an 

enriched environment showed increased levels of BDNF (thought to be influenced by the 

BDNF val66met SNP) in the cerebral cortex, hippocampal formation, basal forebrain and 

hindbrain compared to age matched rats in isolated conditions. Environmental factors 

therefore also play a key part in memory function and will differ not just between study 

samples, but the environmental variability within study samples will also differ across 

studies (i.e. a sample of university students will most likely be more homogenous than a 

sample composed of members of the public). 

Literature discrepancies are not specific to genetic studies, and as discussed in Chapters 

2 and 3 there are often inconsistencies in the literature with regards to the ERP effects 

observed for specific tasks or conditions. One such example is the material specificity 

debate discussed in Chapter 2, in which some studies report old/new effects for pictures 

resembling those seen for words, whilst others suggest additional overlapping frontal 

activity (there is currently also a similar debate for recognition memory for faces). The 

top row of Figure 8.23 shows some examples from the literature of picture recognition 

memory effects, each showing contrasts thought to reflect recollection processes. The 

topographic map from Vilberg and Rugg (2009) shows a typical left-parietal effect akin 

to those reported for words, Curran and Cleary (2003) show a more widespread parietal 

effect, and Durate et al. (2004) show a parietal effect with overlapping frontal activity. 

The bottom row of Figure 8.23 shows the APOE old/new effects in the recollection 

time-window (500-800ms) presented in the current chapter. All participants 

contributing to these three different APOE maps completed the same task and the three 

groups did not differ behaviourally. However, these groups appear to show differing 

effect distributions, with statistical analysis showing significant differences between 
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APOE !2 and !4 carriers, and a marginally non-significant difference with rescaled data 

(p=0.051), indicating likely distributional differences across genotype. Comparisons of 

the top and bottom rows of Figure 8.23 suggest that the discrepancies evident in the 

ERP literature may not simply be a reflection of task differences, but may reflect 

individual differences in the study samples. 

 

Figure 8.23 Topographic maps showing picture recognition memory effects from the literature and 
current study, highlighting the variation in effect distribution seen. Detailed discussion of the three 

literature studies is given in Chapter 2. The map from Vilberg & Rugg (2009) represents the difference 
between remembered hits seen for 6 seconds and CRs from 500-800ms; the map from Curran & 
Cleary (2003) represents activity between hits to studied items and false alarms to similar lures 
between 642-683ms; and the map from Durate et al. (2004) represents the difference between 

remembered hits and know hits between 600-800ms. Whilst each study differs slightly in the contrast 
and timing reported, each is thought reflect activity associated with recollection responses. The maps 

from the current study represent the old/new recognition effects for pictures between 500-800ms 
across different APOE genotypes, and are as presented in Figure 8.20. 

The results from the genetic analysis reported in this chapter highlight not only the 

potential role of genetic differences in episodic memory and the ERP correlates of 

recognition memory, but also the role of individual differences more generally. In order 

to better understand the relationship between behavioural and ERP effects found in 

different studies it would be beneficial for future research to report the genotype 

composition of the study sample, in much the same way sex and age is currently 

reported. Whilst it is clearly unfeasible to report the full genotype of samples, there are 



 Genetic Analysis: Words and Pictures 

- 296 - 

a few SNPs emerging that appear to be consistently associated with episodic memory 

and could be reported, such as those discussed in Chapter 3. Research into AD has 

already adopted this practice with a large proportion of studies now reporting the APOE 

genotype composition of the sample, because of the strong association between APOE 

!4 genotype and AD. In addition, this chapter also highlights the need for greater 

understanding of the influence of individual differences on the ERP correlates of 

recognition memory, before these ERP correlates can be used as biomarkers of disease. 
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Chapter 9   

General Discussion 
 

The final chapter presents a brief overview of the main findings from this thesis, 

summarising the results from Chapters 5-8 and discussing these findings in relation to 

the research aims outlined in Section 3.4.1. The theoretical implications of these results 

will then be discussed in the context of the wider literature, focusing on the role of the 

parietal cortex in episodic memory and the role of individual differences. Finally, 

questions that have arisen as a result of the research in this thesis will be considered in 

relation to future research directions. 

9.1  Summary of results 

The aim of this thesis was to investigate individual differences in episodic memory, to 

gain a greater understanding of episodic memory, how it differs between people and 

why. The following sections summarise the key findings from the current study, 

considering the results in relation to the main research questions outlined in Chapter 3. 

9.1.1  Do the neural correlates of episodic memory vary with stimulus material, and 

what drives material specificity effects?  

Examination of single item old/new recognition ERP effects across different stimuli 

(Chapter 5) revealed an early (300-500ms) widespread bilateral effect for words that 

was more anteriorly distributed than the later (500-800ms) left lateralised posterior 

effect. A 300-500ms bilateral-frontal effect and a 500-800ms left-parietal effect were 

also found for pictures. Despite the similarity in the characterisation of the effects in the 

two tasks, direct comparison revealed topographically dissociable effects in both time-
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windows, with pictures exhibiting a more anteriorly distributed effect than words. In 

contrast to the word and picture tasks, no significant old/new effect was found for faces 

between 300-500ms, however a left-parietal effect was found between 500-800ms. The 

final stimulus material examined in Chapter 5 was recognition memory for voices, 

revealing no sign of the ERP effects seen for the other classes of stimuli, despite 

examining participants with good memory for voices (Pr ! 0.2). However, a late 

onsetting (1000-1800ms) old/new effect was found for voices over frontopolar 

electrodes.  

The first key research question asked whether the neural correlates of recognition 

memory varied with stimulus material. The current findings as well as recent studies in 

the literature, clearly suggest that this is the case (Yick & Wilding, 2008; Galli & Otten, 

2011). The current study included an additional stimulus material (voices) not included 

in previous studies, allowing a comparison of the neural correlates of stimuli differing 

in terms of modality: verbal (words and voices) and pictorial (pictures and faces); and 

homogeneity: heterogeneous (words and pictures) and homogenous (voices and faces). 

Whilst direct comparison of all four stimuli was not possible (due to the few 

participants who could successfully complete all four tasks) the results do suggest that 

the differences evident between stimuli are not simply a function of either stimulus 

modality (a) or stimulus homogeneity (b). In relation to stimulus modality, the ERP 

effects characterised for pictures and faces were different, as were the effects 

characterised for words and voices, suggesting that the differing distributions are not 

modality specific. Furthermore, faces and voices also showed dissociable effects, with 

faces exhibiting a parietally distributed effect, and voices a late onsetting frontopolar 

effect, suggesting that for faces and voices, the similarities in the level of homogeneity 

in these stimulus sets were not driving material specificity effects. 
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9.1.2  What factors cause face recognition effects to vary? 

The literature presents conflicting results as to the ERP correlates of face recognition, 

particularly in terms of familiarity-based recognition (Curran & Hancock, 2007; 

MacKenzie & Donaldson, 2007; Yovel & Paller, 2004). Initial examination of ERP 

effects for faces was conducted in Chapter 5, however, the paradigm did not allow 

independent estimates of familiarity and recollection to be made. Chapter 6 further 

examined recognition memory for faces with a face-verbal phrase source task, allowing 

comparison of successful face recognition with and without successful recollection of 

the paired verbal phrase. In contrast to the single item recognition task, the source task 

revealed a significant widespread bilateral old/new effect in the 300-500ms time-

window, followed by a left-parietal effect between 500-800ms, with evidence of 

additional overlapping frontocentral activity.  

Comparisons of the ERP effects between trials with and without correct source retrieval 

revealed no significant differences, indicating that in the current task, successful source 

retrieval did not modulate the ERP correlates of face recognition (a). The distribution of 

the face old/new effects found in the single item and source tasks clearly differed. 

However, follow-up comparisons of the two tasks suggested that the differences might 

reflect individual differences in the two samples, rather than task related differences (b). 

Participants who successfully completed both the single item and source tasks showed 

the same 500-800ms parietal effect in the two tasks and the same absence of a 

significant effect between 300-500ms. Participants who were excluded from the single 

item task (for poor performance) and were only included in the source task, showed an 

early bilateral effect followed by a later parietal effect and exhibited a right-frontal 

maxima in the 500-800ms time-window. These results suggested that the differing 
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patterns of ERP activity evident in the literature might be participant specific, with 

those inherently poorer at face recognition exhibiting an early bilateral effect, not 

present for participants showing greater face recognition ability. 

9.1.3  Are the bilateral-frontal and left-parietal old/new effects good predictors of 

memory ability? 

Analysis of performance differences in Chapter 7, through both comparisons of high 

and low performers on the word task, and through correlations of the magnitude of the 

bilateral-frontal effect (a) and the left-parietal effect (b), revealed that neither effect was 

modulated by task performance. These results suggest that the different distributions for 

face recognition evident between groups in Chapter 6, are not simply caused by 

differences in task performance. A significant correlation between left-parietal effect 

magnitude and performance was found in the picture task, however a stronger 

correlation was found with old/new effect magnitude over left frontocentral electrodes 

between 500-800ms. The left-frontocentral correlation was also evident for the word 

task. The timing of the effect was not restricted to the 500-800ms time-window, but was 

sustained between 200-900ms. Chapter 7 also showed the surprising finding that whilst 

behavioural performance correlated across the picture and word tasks, the magnitude of 

the left-parietal effect did not, suggesting the magnitude of the left-parietal effect is not 

an individual inherent characteristic (although comparisons of effect magnitude across 

tasks employing the same type of stimuli are necessary to confirm this). Therefore, 

overall, the results from Chapter 7 suggest that the left-parietal old/new effect does not 

provide a reliable index of memory performance, either between individuals on the 

same task, or within individuals across tasks. 
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9.1.4  Is recognition memory sensitive to genetic variation? 

The final data chapter, Chapter 8, examined the influence of genotype in the word and 

picture tasks, revealing a number of significant genotypic differences on both 

behavioural measures (a) and ERP recognition memory effects (b). Polymorphism of 

APOE, COMT, and PRKCA appear to be particularly influential on the pattern of ERP 

activity exhibited in both the picture and word tasks. Interestingly, analysis of two 

relatively high profile memory SNPs, BDNF and KIBRA, failed to find significant 

genotypic differences in either behavioural measures or ERP effects. These results show 

that genetic differences in neural activity are detectable with ERPs and highlight the 

potential use of ERPs as a tool to understand genetic differences in relation to cognition. 

Whilst any conclusions drawn about the role of the different SNPs on episodic memory 

are made tentatively, the findings highlight the degree of variation in old/new ERP 

recognition effects across participants and may explain some of the discrepancies in 

effect distribution that have been reported in the literature.  

9.2  Theoretical implications 

The literature reviewed in Chapters 2 and 3 suggests that the bilateral-frontal and left-

parietal old/new ERP effects, typically associated with recognition memory processes, 

may only occur under specific conditions, relating to task and participant. The data 

presented in this thesis further highlights the conditional nature of the two recognition 

effects, showing distributional differences as a result of stimulus material (Chapter 5), 

and participant genotype (Chapter 8). Interestingly, contrary to expectations, neither the 

bilateral-frontal effect for words nor pictures, nor the left-parietal effect for words, were 

sensitive to variations in behavioural performance. However, activity over left-

frontocentral electrodes between 200-900ms was found to be sensitive to behavioural 
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performance in both the word and picture tasks (Chapter 7). From these results, two key 

themes emerged: firstly, the results question the role of parietal activity in episodic 

memory retrieval, and secondly the results suggest that individual differences play an 

important role in the pattern of brain regions engaged during recognition memory. The 

next section will consider these themes in more detail, before discussing possible future 

research. 

9.2.1  The role of parietal activity in episodic memory 

One of the most interesting findings in this thesis was the failure to find a significant 

correlation between the magnitude of the left-parietal old/new effect and recognition 

performance (as indexed by Pr) in the word task, despite a comparatively large number 

of participants and large variability in performance scores. As discussed in Chapter 7 it 

was hypothesised that if the left-parietal effect is a correlate of recollection, as is 

suggested in the literature, then an increase in recognition performance, and presumably 

an increase in recollection, would be reflected by an increase in the magnitude of the 

left-parietal effect. Analysis of behavioural data from subsidiary experiments confirmed 

significant correlations between Pr and both source accuracy and proportion of 

‘remember’ responses, suggesting that the assumption of a positive correlation between 

performance and recollection was not unfounded. Hence, if recollection increases with 

recognition accuracy but left-parietal effect magnitude does not, what do changes in 

left-parietal effect magnitude reflect? Furthermore, the absence of behavioural 

differences between participants with a typical (hits greater than CRs) left-parietal effect 

and those with a ‘reverse’ left-parietal effect (CRs greater than hits) raises questions 

regarding the functional role of parietal activity in episodic memory. 
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The parietal cortex has been implicated in episodic memory retrieval through a number 

of neuroimaging studies, with ERP studies showing that the left-parietal effect tracks 

the presence of recollection in R/K and source memory tasks (as discussed in Chapter 

2). Event-related fMRI studies have also shown greater activation of the parietal cortex 

for correctly recognised ‘old’ items compared to ‘new’ items (for reviews see Wagner, 

Shannon, Kahn & Buckner, 2005; Cabeza, Ciaramelli, Olson & Moscovitch, 2008; 

Vilberg & Rugg, 2008). However, the late onsetting frontopolar old/new effects in the 

recognition for voices tasks (Chapter 5) suggests that successful retrieval can occur in 

healthy participants without either the bilateral-frontal or left-parietal effects typically 

associated with recognition memory and, more generally, without parietal activity. 

In contrast to the findings of neuroimaging studies, patients with parietal lobe damage 

do not typically show amnesia and, studies have shown that recognition memory 

performance does not differ between controls and patients with left parietal lesions and 

patients with right parietal lesions (Simons, Peers, Hwang, Ally, Fletcher & Budson, 

2008; Ally, Simons, McKeever, Peers & Budson, 2008), or patients with bilateral 

parietal lesions (Simons, Peers, Mazuz, Berryhill & Olson, 2010). Similarly, Rossi et al. 

(2006) found repetitive transcranial magnetic stimulation (rTMS) of the parietal cortex 

in healthy participants (at sites P3 and P4 from the 10-20 international EEG system), 

did not significantly disrupt episodic encoding or retrieval of visual scenes, suggesting 

that the parietal cortex is not directly involved in successful episodic memory retrieval 

(although see Vilberg & Rugg, 2008, for an alternative interpretation of the results from 

Rossi et al., 2006).  

Berryhill, Phuong, Picasso, Cabeza and Olson (2007) suggest that whilst patients do not 

typically show signs of amnesia, more subtle episodic memory deficits may be 
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occurring. Berryhill and colleagues conducted detailed assessment of the 

autobiographical memories of two patients suffering bilateral parietal lobe damage, 

finding that patients performed as well as the control group when asked specific pointed 

questions, but showed impoverished memories during free recall that lacked the same 

level of detail shown by the control group. These results suggest that memory in 

patients with parietal lobe damage remains intact, but that they lack the internal retrieval 

cues necessary to produce rich, detailed memories during free recall. Similarly, 

Davidson et al. (2008) found reduced richness of autobiographical memories in patients 

with parietal cortex damage and, a reduced number of ‘remember’ responses in a paired 

definition-word memory task, compared to the control group. However, despite the 

reduction in the number of ‘remember’ responses made in this task, patients were 

conversely not impaired on source memory accuracy (whether the words were presented 

visually or auditorily). Finally, Simons et al. (2010) found that patients with bilateral 

parietal lobe damage showed reduced confidence in their ability to recollect source 

information, despite performing as well as matched control participants. These findings 

therefore suggest that whilst patients with parietal lobe damage do not suffer from 

amnesia they do show some evidence of episodic memory impairment, particularly in 

relation to subjective measures of memory phenomena.  

In light of the evidence presented above, Simons et al. (2010) suggest that the 

involvement of the parietal lobe in episodic memory relates to the ‘subjective’ 

experience of episodic memory, rather than the ‘objective’ recollection of details. These 

studies of patients with parietal lobe damage show that memory impairment is not 

related to task performance, but show evidence of disruption in the ‘richness’ of the 

experience of retrieving. In addition, consistent with the idea that the parietal lobe 

contributes to the ‘subjective’ experience of episodic memory, Wheeler and Buckner 
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(2003) found increased activation of the left parietal cortex for ‘new’ items incorrectly 

characterised as ‘old’ (false alarms) compared to correctly identified ‘new’ items (CRs). 

The results of Wheeler and Buckner suggest that parietal activity is sensitive to the 

perceived ‘oldness’ of stimuli, rather than simply to genuinely ‘old’ stimuli, supporting 

the hypothesis that parietal activity reflects the ‘subjective’ experience of memory. 

If the task performance data from Chapter 7 is reconsidered in terms of the ‘subjective’ 

experience account of parietal activity, then the lack of correlation between the left-

parietal effect and task performance is no longer surprising, because task success does 

not provide information about the retrieval ‘experience’. Similarly, from this 

perspective, the ERP differences between the typical left-parietal and the ‘reverse’ left-

parietal groups could be interpreted as reflecting differences in the way the two groups 

‘experience’ recollection.  

In relation to the voice task the lack of parietal activity may indicate that participants 

did not ‘experience’ recollection, despite being able to successfully complete the task, 

in a way similar to the patients with parietal lobe damage. The reduced ‘subjective 

experience’ for voices may be the result of the homogeneity of the stimuli and task 

difficulty that reduced the opportunity to make each trial a unique distinguishable 

experience. Similarly, the face task could also be argued to be less conducive to a rich 

‘subjective’ experience than the word task (in which each word represents a distinct 

object or place), reflected by the smaller left-parietal effect magnitude for faces. 

Therefore whilst it was initially concluded that the material specificity effects evident in 

the literature, and in Chapter 5, were not the result of stimulus homogeneity, if 

considered specifically in relation to the left-parietal effect (rather than to the global 

pattern of ERP activity), then stimulus homogeneity may play an important part in the 
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‘subjective experience’ of an event and consequently the magnitude of the left-parietal 

effect (particularly for voices, faces and words).  

In relation to pictures, Chapter 5 clearly indicates a more anteriorly distributed effect 

compared to words, which may go against the ‘subjective’ experience argument, on the 

basis of stimuli richness. Whilst the picture stimuli are the richest stimuli presented in 

the current study, there are a number of possibilities that may explain the more anterior 

distribution of the old/new effect in the 500-800ms time-window. Firstly, the old/new 

effect for pictures between 500-800ms is a posterior effect with overlapping anterior 

activity. The anterior activity may reflect an additional process engaged during picture 

recognition not seen for words. It is not currently possible to dissociate different 

processes occurring at the same time using ERPs, making it difficult to gain an accurate 

estimate of the magnitude of the left-parietal effect in isolation. Secondly, whilst the 

pictures are visually rich, they may not stimulate internally rich memories of the event 

in which they were encountered, because the inherent richness of the stimuli themselves 

is sufficient to complete the recognition task. Therefore, whilst at first glance the results 

from the picture stimuli may argue against the hypothesis that the left-parietal effect 

reflects the ‘subjective’ experience of episodic recollection, further consideration of the 

stimuli in terms of the internal experience, does not sufficiently argue against it. 

In addition to the ‘subjective experience’ account, two other prominent theories of 

parietal memory activity require consideration – the episodic buffer account (Vilberg & 

Rugg, 2008) and the attention to internal representations account (Wagner, 2005). 

Before discussing these two alternative accounts in more detail, it is first important to 

draw a distinction between two areas of the parietal cortex, which are divided by the 

intra-parietal sulcus (IPS) – the dorsal/superior parietal cortex (DPC) and the 
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ventral/inferior parietal cortex (VPC). In relation to dual-process models of recognition 

memory, the DPC has been associated with familiarity and the VPC with recollection 

(e.g., see Berryhill et al., 2007). 

9.2.1.1  Episodic buffer model 

The episodic buffer, described by Baddley (2000), acts as an interface between working 

memory and long-term memory that is controlled by the central executive, temporarily 

storing and integrating information from a variety of systems into an episodic 

representation. Vilberg and Rugg (2008) suggest that activation of the VPC reflects the 

involvement of the episodic buffer, which in combination with other regions, supports 

the episodic representation of information. In this respect, if the episodic buffer links 

working memory and long-term memory and, the left-parietal effect reflects recollection 

and consequently VPC activity, it could be argued that changes in the magnitude of the 

left-parietal effect would correlate with working memory capacity. That is to say that 

the ability to hold the content of episodic memory in mind, in the episodic buffer, would 

be reflected by VPC activity and consequently the magnitude of the left-parietal effect.  

The data presented in this thesis provides little direct support for this view: analysis of 

the magnitude of the left-parietal effect with SWM scores from the CANTAB failed to 

find significant differences between left-parietal effect magnitude in the word tasks and 

SWM measures of strategy (r=0.126, p=0.167), total errors (r=0.088, p=0.336), and 

between stage errors (r=0.085, p=0.355). However, whilst this suggests that general 

working memory capacity does not correlate with left-parietal effect magnitude, this is 

not to say that differential engagement of working memory during task completion 

would not modulate the magnitude of the ERP effect. The lack of correlation between 

the size of the left-parietal effect across different recognition tasks (as presented in 
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Chapter 7), suggests that magnitude of the effect varies with the specific engagement of 

cognitive processes during the task, rather than reflecting cognitive abilities such as 

working memory in general. Therefore analysis of left-parietal effect magnitude and 

engagement of working memory would need to be conducted on the same task to fully 

evaluate the episodic buffer model. 

9.2.1.2  Attention to memory model 

The final model considered in this chapter is the attention to memory (AtoM) model, an 

extension of the attention to internal representations account – the suggestion that 

parietal regions are involved in the direction and maintenance of attention to internal 

mnemonic representations (Wagner et al., 2005). The AtoM model shares the same 

basic principles as the attention to internal representations account, but extends the 

account by drawing a distinction between the role of the DPC and VPC. According to 

the AtoM model the DPC is involved with the intentional allocation of attention relating 

to the internal goals of the individual – top-down attention, whereas the VPC is 

associated with reflexive attention, captured by retrieved information – bottom-up 

attention (Cabeza et al., 2008). Therefore, the DPC maintains the retrieval goals and 

modulates MTL activity, whereas the VPC signals a need for attention, detecting 

relevant information from the MTL. In relation to the patients with parietal damage 

presented by Berryhill et al. (2007), the AtoM model suggests that deficits in the free 

recall of detailed information are due to damage to the VPC, resulting in problems with 

the detection of information recovered from memory. 

If the left-parietal effect is sensitive to changes in recollection and VPC activity reflects 

recollection, the AtoM model would suggest that the magnitude of the left-parietal 

old/new effect reflects variation in bottom-up attention. Participants exhibiting the 
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largest old/new effects would therefore attend to the contents of retrieval better than 

those with smaller effects. Whilst the AtoM model suggests the parietal regions 

essentially support episodic retrieval through the allocation of attentional resources, it is 

not clear how the model would account for participants who exhibit ‘reverse’ parietal 

effects in the word and picture tasks, nor the absence of parietal activity in the voices 

task.  

One possibility is that participants showing reverse effects are allocating attention to the 

identification of ‘new’ items more than ‘old’ items, resulting in more positive going 

ERPs for CRs than hits over parietal electrodes. That is, perhaps variation in left-

parietal effect magnitude reflects not only the degree to which an individual is attending 

to the contents of retrieval but also the degree to which attention is focused on deciding 

if the information is ‘old’, or deciding if the information ‘new’. However, if the left-

parietal effect did reflect such differences in decision criteria (i.e. differences in whether 

‘old’ or ‘new’ items are considered the target), it would be expected that decision bias 

(Br) would correlate with effect magnitude. Analysis of the word and picture data from 

the current study showed that this was not the case for the word task (r=0.032, 

p=0.725), although a significant correlation between left-parietal effect magnitude and 

Br was found for the picture task (r=0.214, p=0.018). Furthermore, in an fMRI study 

Shannon and Buckner (2004) found that hit responses showed significantly greater 

activity than CRs over inferior parietal lobule complex and precuneus complex 

irrespective of whether participants made responses to both ‘old’ and ‘new’ items, ‘old’ 

items only, or ‘new’ items only. If parietal cortex activity reflected the allocation of 

attention to a specific category of items, it would be expected that CRs would elicit 

greater activity than hits when participants were instructed to only respond to ‘new’ 

items. The results from Shannon and Buckner therefore suggest that the ‘reverse’ left-
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parietal effect in the current study does not reflect the allocation of attention to ‘new’ 

items instead of ‘old’ items. 

In conclusion, the data presented in this thesis questions the role of the left-parietal 

effect in episodic memory and, by extension the parietal cortex, notwithstanding 

concerns about source localisation of ERP data. The results have been discussed in 

relation to a number of theories regarding the function of the parietal cortex in episodic 

memory, including theories of ‘subjective’ experience, episodic buffer and attention. 

The inherent problem of spatial resolution in ERPs makes it difficult to interpret the 

pattern of ERP activity in relation to patient models and anatomical models that separate 

the DPC and VPC. A number of assumptions regarding the overlap between ERPs and 

other neuroimaging methods (such as fMRI), and also the relationship between the left-

parietal effect and recollection, have to be made to assess the current results in terms of 

these theories. The data from the current thesis cannot be fully explained through any of 

the three models discussed, leaving the question of the functional role of parietal 

activity in episodic memory open. 

9.2.2  The role of individual differences in episodic memory 

The second central theme in the thesis is the important role that individual differences 

play in episodic memory, particularly in terms of the ERP correlates of recognition 

memory. As discussed in Chapter 2, investigations of memory processes typically 

average together the data from many participants to reduce the contribution of noise to 

the ERP signal of interest. Whilst this is an essential step in the pursuit of greater 

understanding of the neural activity associated with particular cognitive processes, the 

averaging step may remove individual variations that could be informative in 

understanding how memory processes work and how they fail. Importantly, the data 
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presented in this thesis shows clear evidence of individual differences in the ERP 

activity associated with recognition memory.  

Chapter 6 revealed distributional differences in two groups of participants in the face-

verbal phrase source task, with participants who were in general poorer at face 

recognition showing an early 300-500ms old/new effect not present for participants who 

were better at face recognition (as indexed by successful completion of the single item 

for faces task). In the ERP old/new effect literature the 300-500ms time-window is 

typically associated with familiarity, however the findings in the literature relating to 

the ERP correlates of face recognition are inconsistent, especially with regards to the 

correlates associated with familiarity. Curran and Hancock (2007) report a bilateral-

frontal effect, whereas Mackenzie and Donaldson (2007) report a posterior effect. The 

data from the current thesis indicates that not all participants exhibit an early old/new 

effect and, those that do show poorer performance. The results from the current study 

therefore suggest that the 300-500ms old/new affect for faces may be an additional 

support process, which is not necessary for successful retrieval but may be engaged to 

assist in recognition if ability is poor. Therefore, the data are not consistent with either 

side of the current face recognition debate, reflecting the complexity of the issue, but 

suggests that further examination of individual differences are necessary to understand 

these discrepancies. 

Clear evidence of individual differences was also apparent in Chapter 8, in which 

genotype appeared to have a significant effect on a number of behavioural measures and 

revealed topographically distinct effects across genotypes. Whilst on average the pattern 

of ERP activity in the word and picture tasks are consistent with those reported in the 

literature (Chapter 5), dividing participants into groups based on different characterising 
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features (such as genotype) indicates that the ‘typical’ bilateral-frontal and left-parietal 

effects are not the definitive pattern of ERP recognition activity. These results confirm 

that potentially important individual variations are typically being overlooked and 

ignored. 

In addition, dividing participants into groups based on characterising features of 

exhibited ERP effects, such as left-parietal effect magnitude (Chapter 7), revealed that 

distinct patterns of ERP activity in the word task did not reflect distinct patterns of 

behavioural scores. These results strongly suggest that participants may be engaging 

different processes in order to achieve the same outcome. In addition, the processes 

engaged by an individual may vary depending on the task being completed, as indicated 

by the lack of correlation between effect magnitude in the word and picture tasks. Taken 

together the findings from this thesis suggest that the specific processes engaged during 

retrieval (as indexed by variations in ERP activity) may depend on the specific 

requirements of the task, the type of stimuli being retrieved, the genetic makeup of the 

individual, as well other individual factors evident in the literature, but not directly 

addressed in this thesis (e.g., age and sex). 

In conclusion, individual differences should not be overlooked and may provide 

valuable insight into memory processes. Looking at healthy ‘outliers’ can help to assess 

the validity of a theory and may be beneficial in identifying occasions where consistent 

results may actually reflect a moderating factor, rather than a modulation of the process 

of interest. That is, in much the same way that it is currently difficult to tell if a 

particular SNP is an active polymorphism (or if it is simply a co-varying SNP, or a SNP 

downstream from a functionally active polymorphism). Looking at outliers may provide 
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insight into whether a particular ERP effect is functionally associated with the cognitive 

process of interest, or it is a co-varying or down-stream effect. 

9.2.3  Future directions 

The research presented in this thesis suggests that individual differences influence the 

ERP activity associated with recognition memory. As discussed in Chapter 2 ERPs have 

the potential to be used as biomarkers to predict and monitor disease progression and 

treatment effectiveness. However, before ERPs can be implemented as disease 

biomarkers reliable effects that accurately reflect behaviour need to be found. ERP word 

repetition effects have already been proposed as biomarkers for memory disorders 

(Olichney et al., 2002; Olichney et al., 2006), however the data presented in this thesis 

suggests that memory related ERP effects are subject to variation based on individual 

differences such as genotype. In addition the left-parietal old/new effect does not reflect 

behavioural changes and appears inconsistent across tasks, making it currently 

unsuitable for use as a biomarker. In order for recognition memory ERP effects to be 

successfully used as biomarkers serious consideration needs to be undertaken of: a) the 

specific process the biomarker aims to track; b) the development of a series of 

standardised tasks that produce consistency both within individuals across several 

assessments and, between participants tracking behavioural measures; and c) 

modulating factors (i.e. genotype). Although these conditions may be met, Luck (2005) 

suggests that between participant variability in EEG may be largely influenced by 

individual differences in the folding pattern of the cortex, which questions the overall 

suitability of ERPs as biomarkers. 

The results from this thesis also suggest that genotype may affect the pattern of 

recognition memory activity. Whilst replication of these results are needed, further 
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investigation of the significant SNPs should be undertaken to understand specifically 

what is driving the topographic differences – whether they reflect different strategic 

processes, or if they are different manifestations of the same process. The occurrence of 

topographically distinct effects for different genotypes suggests that future research 

investigating memory processes should report the genotypes of each research sample, 

on a number of SNPs (including APOE, COMT, PRKCA), in a similar manner to the 

way age and sex are currently routinely reported, to help understand discrepancies in the 

literature and assist replication. 

Further investigations into participants exhibiting ‘reverse’ left-parietal effects should 

also be conducted to try to understand what causes these atypical patterns, and how 

these might relate to current theories of familiarity and recollection. These ‘reverse’ 

effects do not appear to be participant specific, as this pattern of activity was not 

consistent across tasks, suggesting that it may reflect strategic differences in the way the 

task is completed. In the current study effect comparisons were made across two 

procedurally identical tasks that differed in the stimuli used and were shown in Chapter 

5 to exhibit overall different patterns of neural activity. Comparisons are therefore 

needed of effects from two tasks that use the same stimuli, to see if the inconsistency 

across the word and picture tasks relate to differences in stimuli, rather than participant 

specific differences. The same type of task (e.g., a simple old/new word recognition 

task), completed on more than one occasion, would indicate whether ERP effects are 

stable within individuals over time. Comparisons of differing tasks with the same 

stimulus material (e.g., a simple old/new word recognition task and a word-colour 

source memory task) would indicate whether ERP effects could be generalised across 

tasks; that is, if the effects from one type of task can be used to predict the effects on a 

second differing task. 
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Finally, the word and picture tasks used in the current study to investigate individual 

differences and episodic memory do not provide estimates of familiarity and 

recollection, and therefore limit the conclusions that can be drawn about the relationship 

between memory performance and the ‘typical’ ERP old/new effects. The results 

presented here demonstrate substantial differences in the magnitude of these old/new 

effects across participants, and additional research is needed to further examine the 

relationship between these effects, memory performance, and the contribution of 

familiarity and recollection to successful retrieval. More specifically, additional 

research is needed to understand the relationship between left-parietal effect magnitude 

and recollection; that is, to determine if effect magnitude variation reflects differences 

in the amount of information recollected or in the strength of recollection. 

9.3  Conclusion 

The aim of this thesis was to investigate individual differences and episodic memory to 

gain a greater understanding of how episodic memory differs as a function of stimulus 

material, performance and individual features such as genetic polymorphisms. Using a 

recognition memory task to investigate the ERP correlates of episodic memory, the 

findings from the current thesis question the function of parietal activity in episodic 

memory and the reliability of ERP effects as an index of recognition memory. In 

addition, this thesis highlights the importance of considering individual differences 

when investigating memory processes and suggests that the processes engaged during 

episodic retrieval (at least as indexed by ERP old/new effects) may differ as a function 

of stimuli, general recognition ability, and genetic makeup. In sum, individual 

differences matter.



 

 - 316 - 

References 
 

Adachi, A., Kano, F., Saido, T. C., & Murata, M. (2009). Visual screening and analysis 

for kinase-regulated membrane trafficking pathways that are involved in 

extensive beta-amyloid secretion. Genes to Cells, 14, 355–369. 

Akatsu, H., Yamagata, H. D., Kawamata, J., Kamino, K., Takeda, M., Yamamoto, T., 

… Kosaka, K. (2006). Variations in the BDNF gene in autopsy-confirmed 

Alzheimer's disease and dementia with Lewy bodies in Japan. Dementia and 

Geriatric Cognitive Disorders, 22, 216–222. 

Allan, K., & Rugg, M. D. (1997). An event-related potential study of explicit memory 

on tests of cued recall and recognition. Neuropsychologia. 35, 387-397. 

Allan, K., Wilding, E. L., & Rugg, M. D. (1998). Electrophysiological evidence for 

dissociable processes contributing to recollection. Acta Psychologica, 98, 231–

252. 

Ally, B. A., Simons, J. S., McKeever, J. D., Peers, P. V., & Budson, A. E. (2008). 

Parietal contributions to recollection: Electrophysiological evidence from aging 

and patients with parietal lesions. Neuropsychologia, 46, 1800-1812. 

Azimian-Faridani, N., & Wilding, E. L. (2006). The influence of criterion shifts on 

electrophysiological correlates of recognition memory. Journal of Cognitive 

Neuroscience, 18, 1075–1086. 

Bäckman, L., Small, B. J., & Fratiglioni, L. (2001). Stability of the preclinical episodic 

memory deficit in Alzheimer's disease. Brain, 124, 96–102. 



 References 

- 317 - 

Baddeley, A. (2000). The episodic buffer: A new component of working memory? 

Trends in Cognitive Sciences, 4, 417–423. 

Banks, W. P. (1970). Signal detection theory and human memory. Psychological 

Bulletin, 64, 81-99. 

Bates, T. C., Price, J. F., Harris, S. E., Marioni, R. E., Fowkes, F. G. R., Stewart, M. C., 

…Deary, I. J. (2009). Association of KIBRA and memory. Neuroscience 

Letters, 458, 140–143. 

Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R, & Olson, I. R. (2007). Parietal lobe 

and episodic memory: Bilateral damage causes impaired free recall of 

autobiographical memory. The Journal of Neuroscience, 27, 14415–14423. 

Bertolino, A., Rubino, V., Sambataro, F., Blasi, G., Latorre, V., Fazio, L., …Scarabino, 

T. (2006). Prefrontal-hippocampal coupling during memory processing is 

modulated by COMT val158met genotype. Biological Psychiatry, 60, 1250–

1258.  

Boersma, P. & Weenink, D. (2008). Praat: doing phonetics by computer [Computer 

program]. Version 5.0.08, retrieved 15th February 2008 from 

http://www.praat.org/  

Bramon, E., Shaikh, M., Broome, M., Lappin, J., Bergé, D., Day, F.,  … McGuire, P. 

(2008). Abnormal P300 in people with high risk of developing psychosis. 

NeuroImage, 41, 553–560. 



 References 

- 318 - 

Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of 

the perirhinal cortex and hippocampus. Nature Reviews Neuroscience, 2, 51-

61. 

Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J.-K. 

(2006). BDNF Val66Met allele is associated with reduced hippocampal volume 

in healthy subjects. Biological Psychiatry, 59, 812–815.  

Burgess, J. D., Pedraza, O., Graff-Radford, N. R., Hirpa, M., Zou, F., Miles, R., 

…Ertekin-Taner, N. (2011). Association of common KIBRA variants with 

episodic memory and AD risk. Neurobiology of Aging, 32, 557.e1-557.e9. 

Büther, K., Plaas, C., Barnekow, A., & Kremerskothen, J. (2004). KIBRA is a novel 

substrate for protein kinase Czeta. Biochemical and Biophysical Research 

Communications, 317, 703–707. 

Cabeza, R., Ciaramelli, E., Olson, I. R, & Moscovitch, M. (2008). The parietal cortex 

and episodic memory: An attentional account. Nature Reviews Neuroscience, 

9, 613–625. 

Cambridge Cognition Ltd. (2006). Cambridge Neuropsychological Test Automated 

Battery - eclipse version 3 (CANTABeclipse). Cambridge, UK: Cambridge 

Cognition Ltd. 

Cary, M., & Reder, L. M. (2003). A dual-process account of list-length and strength-

based mirror effects in recognition. Journal of Memory and Language, 49, 231-

248. 



 References 

- 319 - 

Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., 

…Weinberger, D. R. (2004). Functional analysis of genetic variation in 

catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme 

activity in postmortem human brain. American Journal of Human Genetics, 75, 

807–821. 

Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of 

Experimental Psychology, 33A, 497-505. 

Combarros, O., Infante, J., Llorca, J., & Berciano, J. E. (2004). Polymorphism at codon 

66 of the brain-derived neurotrophic factor gene is not associated with aporadic 

Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 18, 55–58. 

Cooper, D. N. (2010). Functional intronic polymorphisms: Buried treasure awaiting 

discovery within our genes. Human Genomics, 4, 284–288. 

Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., 

Gaskell, P. C., …Pericak-Vance, M. A. (1994). Protective effect of 

apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature 

Genetics, 7, 180–184.  

Corneveaux, J. J., Liang, W. S., Reiman, E. M., Webster, J. A., Myers, A. J., Zismann, 

V. L., …Huentelman, M. J. (2010). Evidence for an association between 

KIBRA and late-onset Alzheimer's disease. Neurobiology of Aging, 31, 901–

909.  

Cruse, D., & Wilding, E. L. (2009). Prefrontal cortex contributions to episodic retrieval 

monitoring and evaluation. Neuropsychologia, 47, 2779–2789. 



 References 

- 320 - 

Curran, T. (1999). The electrophysiology of incidental and intentional retrieval: ERP 

old/new effects in lexical decision and recognition memory. Neuropsychologia, 

37, 771–785. 

Curran, T. (2000). Brain potentials of recollection and familiarity. Memory and 

Cognition, 28, 923–938. 

Curran, T., & Cleary, A. M. (2003). Using ERPs to dissociate recollection from 

familiarity in picture recognition. Cognitive Brain Research, 15, 191–205. 

Curran, T., & Hancock, J. (2007). The FN400 indexes familiarity-based recognition of 

faces. NeuroImage, 36, 464–471. 

Curran, T., Schacter, D. L., Johnson, M. K., & Spinks, R. (2001). Brain potentials 

reflect behavioural differences in true and false recognition. Journal of 

Cognitive Neuroscience, 13, 201-216. 

Curran, T., Tepe, K. L., & Piatt, C. (2006). ERP explorations of dual processes in 

recognition memory. In Zimmer, H. D., Mecklinger, A. & Lindenberger, U. 

(Eds.). Binding in human memory: A neurocognitive approach. (pp. 467–492). 

Oxford: Oxford University Press. 

Cycowicz, Y. M., Friedman, D., & Snodgrass, J. G. (2001). Remembering the color of 

objects: an ERP investigation of source memory. Cerebral Cortex, 11, 322–

334. 

Davidson, P. S. R., Anaki, D., Ciaramelli, E., Cohn, M., Kim, A. S. N., Murphy, K. J., 

… Levine, B. (2008). Does lateral parietal cortex support episodic memory? 

Evidence from focal lesion patients. Neuropsychologia, 46, 1743–1755. 



 References 

- 321 - 

de Chastelaine, M., Friedman, D., Cycowicz, Y. M., & Horton, C. (2009). Effects of 

multiple study-test repetition on the neural correlates of recognition memory: 

ERPs dissociate remembering and knowing. Psychophysiology, 46, 86-99. 

de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, 

L.-G. (2004). COMT gene polymorphism is associated with declarative 

memory in adulthood and old age. Behavior Genetics, 34, 533–539.  

de Quervain, D. J.-F., & Papassotiropoulos, A. (2006). Identification of a genetic cluster 

influencing memory performance and hippocampal activity in humans. 

Proceedings of the National Academy of Sciences of the United States of 

America, 103, 4270–4274. 

Dempster, E., Toulopoulou, T., Mcdonald, C., Bramon, E., Walshe, M., Filbey, F., 

…Collier, D. A. (2005). Association between BDNF val66 met genotype and 

episodic memory. American Journal of Medical Genetics Part B: 

Neuropsychiatric Genetics, 134B, 73–75. 

Dennis, N. A., Browndyke, J. N., Stokes, J., Need, A., Burke, J. R., Welsh-Bohmer, K. 

A., & Cabeza, R. (2010). Temporal lobe functional activity and connectivity in 

young adult APOE !4 carriers.  Alzheimer’s & Dementia, 6, 303–311. 

Diana, R. A., & Ranganath, C. (2011). Recollection, familiarity and memory strength: 

Confusion about confounds. Trends in Cognitive Sciences, 15, 337-338. 

Dobbins, I. G., Khoe, W., Yonelinas, A.P., & Kroll, N. E. (2000). Predicting individual 

false alarm rates and signal detection theory: A role for remembering. Memory 

and Cognition, 28, 1347-1356. 



 References 

- 322 - 

Donaldson, D. I., & Curran, T. (2007). Letter to the Editor. NeuroImage, 36, 488-489. 

Donaldson, D. I., & Rugg, M. D. (1998). Recognition memory for new associations: 

Electrophysiological evidence for the role of recollection. Neuropsychologia, 

36, 377–395. 

Donaldson, D. I., & Rugg, M. D. (1999). Event-related potential studies of associative 

recognition and recall: Electrophysiological evidence for context dependent 

retrieval processes. Cognitive Brain Research, 8, 1–16. 

Driscoll, I., McDaniel, M. A., & Guynn, M. J. (2005). Apolipoprotein E and prospective 

memory in normally aging adults. Neuropsychology, 19, 28–34. 

Duarte, A., Ranganath, C., Winward, L., Hayward, D., & Knight, R. T. (2004). 

Dissociable neural correlates for familiarity and recollection during the 

encoding and retrieval of pictures. Cognitive Brain Research, 18, 255–272. 

Düzel, E., Cabeza, R., Picton, T. W., Yonelinas, A. P., Scheich, H., Heinze, H. J., & 

Tulving, E. (1999). Task-related and item-related brain processes of memory 

retrieval. Proceedings of the National Academy of Sciences, 96, 1794-1799. 

Düzel, E., Picton, T. W., Cabeza, R., Yonelinas, A. P., Scheich, H., Heinze, H. J., & 

Tulving, E. (2001). Comparative electrophysiological and haemodynamic 

measures of neural activation during memory-retrieval. Human Brain 

Mapping, 13, 104–123. 



 References 

- 323 - 

Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J., & Tulving, E. (1997). Event-

related brain potential correlates of two states of conscious awareness in 

memory. Proceedings of the National Academy of Sciences of the United States 

of America, 94, 5973–5978. 

Dzulkifli, M. A., Sharpe, H. L., & Wilding, E. L. (2004). Separating item-related 

electrophysiological indices of retrieval effort and retrieval orientation. Brain 

and Cognition, 55, 433-443. 

Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, 

A., …Weinberger, D. R. (2003). The BDNF val66met polymorphism affects 

activity-dependent secretion of BDNF and human memory and hippocampal 

function. Cell, 112, 257–269. 

Eker, C., Kitis, O., Ozan, E., Okur, H., Eker, O. D., Ersoy, M. A., …Gonul, A. S. 

(2005). BDNF gene Val66met polymorphism associated grey matter changes 

in human brain. Bulletin of Clinical Psychopharmacology, 15, 104–111. 

Eldridge, L., Knowlton, B., Furmanski, C., Bookheimer, S., & Engel, S. (2000). 

Remembering episodes: A selective role for the hippocampus during retrieval. 

Nature Neuroscience, 3, 1149-1152. 

Eysenck, H.J., & Eysenck, S.B.J. (1991). Eysenck Personality Questionnaire - Revised 

(EPQ-R). London, UK: Hodder & Stoughton. 



 References 

- 324 - 

Farrer, L.H., Cupples, A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., …Van 

Duijn, C. M. (1997). Effects of age, sex, and ethnicity on the association 

between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. 

Journal of the American Medical Association, 278, 1349-1356.  

Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. 

M., …MacKay, C. E. (2009). Distinct patterns of brain activity in young 

carriers of the APOE-!4 allele. Proceedings of the National Academy of 

Sciences of the United States of America, 106, 7209–7214.  

Finnigan, S., Humphreys, M. S., Dennis, S., & Geffen, G. (2002). ERP ‘old/new’ 

effects: Memory strength and decisional factor(s). Neuropsychologia, 40, 

2288-2304. 

Fletcher, P. C., & Henson, R. N. A., (2001). Frontal lobes and human memory: Insights 

from functional neuroimaging. Brain, 124, 849-881. 

Friedman, D. (2000). Event-related brain potential investigations of memory and aging. 

Biological Psychology, 54, 175–206. 

Galli, G., & Otten, L. J. (2011). Material-specific neural correlates of recollection: 

Objects, words, and faces. Journal of Cognitive Neuroscience, 23, 1405-1418. 

Gallo, D. A., Weiss, J. A., & Schacter, D. L. (2004). Reducing false recognition with 

criterial recollection tests: Distinctiveness heuristic versus criterion shifts. 

Journal of Memory and Language, 51, 473-493. 

Gardiner, J. M. (1988). Functional aspects of recollective experience. Memory and 

Cognition, 16, 309-313. 



 References 

- 325 - 

Gardiner, J. M., Ramponi, C., & Richardson-Klavehn, A. (1998). Experiences of 

remembering, knowing, and guessing. Consciousness and Cognition, 7, 1-26.  

Goldberg, T., Iudicello, J., Russo, C., Elvevåg, B., Straub, R., Egan, M., & Weinberger, 

D. (2008). BDNF Val66Met polymorphism significantly affects d' in verbal 

recognition memory at short and long delays. Biological Psychology, 77, 20-

24. 

Groh-Bordin, C., Zimmer, H. D., & Ecker, U. K. H. (2006). Has the butcher on the bus 

dyed his hair? When color changes modulate ERP correlates of familiarity and 

recollection. NeuroImage, 32, 1879–1890. 

Groome, D. (2004). An introduction to cognitive psychology processes and disorders. 

Hove: Psychology Press. 

Guillem, F., & Mograss, M. (2005). Gender differences in memory processing: 

Evidence from event-related potentials to faces. Brain and Cognition, 57, 84–

92. 

Handy, T.C. (2005). Event-related potentials: A methods handbook. Cambridge, 

Massachusetts, USA: The MIT Press. 

Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. 

F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met 

polymorphism affects human memory-related hippocampal activity and 

predicts memory performance. The Journal of Neuroscience, 23, 6690–6694. 



 References 

- 326 - 

Harlow, I. M., MacKenzie, G., & Donaldson, D. I. (2010). Familiarity for associations? 

A test of the domain dichotomy theory. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 36, 1381-1388. 

Hayama, H. R., Johnson, J. D., & Rugg, M. D. (2008). The relationship between the 

right frontal old/new ERP effect and post-retrieval monitoring: Specific or non-

specific? Neuropsychologia, 46, 1211–1223. 

Henke, K. (2010). A model for memory systems based on processing modes rather than 

consciousness. Nature Reviews Neuroscience, 11, 523-532. 

Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O., & Dolan, R. J. (1999). 

Recollection and familiarity in recognition memory: An event-related 

functional magnetic resonance imaging study. The Journal of Neuroscience, 

19, 3962–3972. 

Herlitz, A., Airaksinen, E., & Nordström, E. (1999). Sex differences in episodic 

memory: The impact of verbal and visuospatial ability. Neuropsychology, 13, 

590-597. 

Herlitz, A., Nilsson, L., & Bäckman, L. (1997). Gender differences in episodic memory. 

Memory and Cognition, 25, 801–811. 

Herlitz, A., & Yonker, J. (2002). Sex differences in episodic memory: The influence of 

intelligence. Journal of Clinical and Experimental Neuropsychology, 24, 107–

114. 

Herron, J. E., & Rugg, M. D. (2003). Retrieval orientation and the control of 

recollection. Journal of Cognitive Neuroscience, 15, 843-854. 



 References 

- 327 - 

Herron, J. E., & Wilding, E. L. (2004). An electrophysiological dissociation of retrieval 

mode and retrieval orientation. NeuroImage, 22, 1554–1562. 

Herron, J. E.,  & Wilding, E. L. (2006). Brain and behavioral indices of retrieval mode. 

NeuroImage, 32, 863-870. 

Hill, S. Y., Locke, J., Zezza, N., Kaplan, B., Neiswanger, K., Steinhauer, S. R., …Xu, J. 

(1998). Genetic association between reduced P300 amplitude and the DRD2 

dopamine receptor A1 allele in children at high risk for alcoholism. Biological 

Psychiatry, 43, 40–51. 

Hornberger, M., Morcom, A. M., & Rugg, M. D. (2004). Neural correlates of retrieval 

orientation: Effects of study-test similarity. Journal of Cognitive Neuroscience, 

16, 1196-1210. 

Huh, T. J., Kramer, J. H., Gazzaley, A., & Delis, D. C. (2006). Response bias and aging 

on a recognition memory task. Journal of the International 

Neuropsychological Society, 12, 1–7. 

Ickes, B. R., Pham, T. M., Sanders, L. A., Albeck, D. S., Mohammed, A. H., & 

Granholm, A.-C. (2000). Long-term environmental enrichment leads to 

regional increases in neurotrophin levels in rat brain. Experimental Neurology, 

164, 45–52. 

Ino, T., Nakai, R., Azuma, T., Kimura, T., & Fukuyama, H. (2010). Gender differences 

in brain activation during encoding and recognition of male and female faces. 

Brain Imaging and Behavior, 4, 55–67. 



 References 

- 328 - 

International Human Genome Sequencing Consortium (2004). Finishing the 

euchromatic sequence of the human genome. Nature, 431, 931-945. 

Jablensky, A., Morar, B., Wiltshire, S., Carter, K., Dragovic, M., Badcock, J. C., 

…Kalaydjieva, L. (2011). Polymorphisms associated with normal memory 

variation also affect memory impairment in schizophrenia. Genes, Brain and 

Behavior, 10, 410–417. 

Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from 

intentional uses of memory. Journal of Memory and Language, 30, 513-541. 

Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical 

memory and perceptual learning. Journal of Experimental Psychology: 

General, 110, 306-340. 

Johnson Jr, R., Kreiter, K., Russo, B., & Zhu, J. (1998). A spatio-temporal analysis of 

recognition-related event-related brain potentials. International Journal of 

Psychophysiology, 29, 83-104. 

Johnson, J. P., Muhleman, D., MacMurray, J., Gade, R., Verde, R., Ask, M., & 

Comings, D. E. (1997). Association between the cannabinoid receptor gene 

(CNR1) and the P300 event-related potential. Molecular Psychiatry, 2, 169–

171. 

Jorm, A. F., Mather, K. A., Butterworth, P., Anstey, K. J., Christensen, H., & Easteal, S. 

(2007). APOE genotype and cognitive functioning in a large age-stratified 

population sample. Neuropsychology, 21, 1–8. 



 References 

- 329 - 

Kandel, E.R., Schwartz, J.H., & Jessell, T.M. (2000). Principles of neural science (4th 

ed.). New York, NY: McGraw-Hill. 

Kauppi, K., Nilsson, L.-G., Adolfsson, R., Eriksson, E., & Nyberg, L. (2011). KIBRA 

polymorphism is related to enhanced memory and elevated hippocampal 

processing. The Journal of Neuroscience, 31, 14218-14222. 

Kayser, J., Fong, R., Tenke, C. E., & Bruder, G. E. (2003). Event-related brain 

potentials during auditory and visual word recognition memory tasks. 

Cognitive Brain Research, 16, 11-25. 

Kruglyak, L. & Nickerson, D. A. (2001). Variation is the spice of life. Nature Genetics, 

27, 234-236. 

Kucera, H. & Francis, W.N. (1967). Computational analysis of present-day American 

English. Providence, USA: Brown University Press. 

Kunugi, H., Ueki, A., Otsuka, M., Isse, K., Hirasawa, H., Kato, N.,…Namko, S. (2001). 

A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene 

associated with late-onset Alzheimer's disease. Molecular Psychiatry, 6, 83–

86. 

Kuo, T. Y., & Van Petten, C. (2006). Prefrontal engagement during source memory 

retrieval depends on the prior encoding task. Journal of Cognitive 

Neuroscience, 18, 1133-1146. 

Kuo, T. Y., & Van Petten, C. (2008). Perceptual difficulty in source memory encoding 

and retrieval: Prefrontal versus parietal electrical brain activity. 

Neuropsychologia, 46, 2243–2257. 



 References 

- 330 - 

Kutas, M., & Dale, A. (1997). Electrical and magnetic readings of mental functions. In 

M. D. Rugg (Ed.). Cognitive neuroscience (pp. 197-242). Hove: Psychology 

Press. 

Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in 

the N400 component of the event-related brain potential (ERP). Annual Review 

of Psychology, 62, 621–647. 

Lahiri, D. K., Sambamurti, K., & Bennett, D. A. (2004). Apolipoprotein gene and its 

interaction with the environmentally driven risk factors: Molecular, genetic and 

epidemiological studies of Alzheimer's disease. Neurobiology of Aging, 25, 

651–660. 

Lepage, M., Ghaffar, O., Nyberg, L., & Tulving, E. (2000). Prefrontal cortex and 

episodic memory retrieval mode. Proceedings of the National Academy of 

Sciences of the United States of America, 97, 506-511. 

Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From 

neuromodulation to representation. Trends in Cognitive Sciences, 5, 479–486. 

Liu, J., Kiehl, K. A., Pearlson, G., Perrone-Bizzozero, N. I., Eichele, T., & Calhoun, V. 

D. (2009). Genetic determinants of target and novelty-related event-related 

potentials in the auditory oddball response. NeuroImage, 46, 809–816.  

Liu, J. X., Tang, Y. C., Liu, Y., & Tang, F. R. (2010). Status epilepticus alters 

hippocampal PKAbeta and PKAgamma expression in mice. Seizure, 19, 414–

420. 



 References 

- 331 - 

Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, 

MA: The MIT Press. 

Luck, S. J., Mathalon, D. H., O'Donnell, B. F., Hämäläinen, M. S., Spencer, K. M., 

Javitt, D. C., & Uhlhaas, P. J. (2011). A roadmap for the development and 

validation of event-related potential biomarkers in schizophrenia research. 

Biological Psychiatry, 70, 28–34. 

MacKenzie, G., & Donaldson, D. I. (2007). Dissociating recollection from familiarity: 

Electrophysiological evidence that familiarity for faces is associated with a 

posterior old/new effect. NeuroImage, 36, 454–463. 

MacKenzie, G., & Donaldson, D. I. (2009). Examining the neural basis of episodic 

memory: ERP evidence that faces are recollected differently from names. 

Neuropsychologia, 47, 2756–2765. 

Maitland, S., Herlitz, A., Nyberg, L., Bäckman, L., & Nilsson, L. (2004). Selective sex 

differences in declarative memory. Memory and Cognition, 32, 1160–1169. 

Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological 

Review, 87, 252-271. 

Mayes, A. R., Holdstock, J., Isaac, C., Montaldi, D., Grigor, J., Gummer, A., 

…Norman, K. A. (2004). Associative recognition in a patient with selective 

hippocampal lesions and relatively normal item recognition. Hippocampus, 14, 

763-784. 

Mayes, A. R., Montaldi, D., & Migo, E. (2007). Associative memory and the medial 

temporal lobes. Trends in Cognitive Sciences, 11, 126-135. 



 References 

- 332 - 

McCarthy, G., & Wood, C. C. (1985). Scalp distributions of event-related potentials: 

An ambiguity associated with analysis of variance models. 

Electroencephalography and Clinical Neurophysiology, 62, 203-208. 

McClearn, G. E., Johannsson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A., & 

Plomin, R. (1997). Substantial genetic influence on cognitive abilities in twins 

80 or more years old. Science, 276, 1560–1563. 

Miller, M. B., Handy, T. C., Cutler, J., Inati, S., & Wolford, G. L. (2001). Brain 

activations associated with shifts in response criterion on a recognition test. 

Canadian Journal of Experimental Psychology, 55, 162–173. 

Mitchell, K. J. (2007). The genetics of brain wiring: From molecule to mind. Public 

Library of Science: Biology, 5, 0690-0691. 

Mondadori, C. R. A., de Quervain, D. J.-F., Buchmann, A., Mustovic, H., Wollmer, M. 

A., Schmidt, C. F., …Henke, K. (2006). Better memory and neural efficiency 

in young apolipoprotein E !4 carriers. Cerebral Cortex, 17, 1934–1947. 

Montaldi, D., & Mayes, A. R. (2011). Familiarity, recollection and medial temporal 

lobe function: An unresolved issue. Trends in Cognitive Sciences, 15, 339-340. 

Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. (2006). The neural system that 

mediates familiarity memory. Hippocampus, 16, 504-520. 

Morcom, A. M., Bullmore, E. T., Huppert, F. A., Lennox, B., Praseedom, A., 

Linnington, H., & Fletcher, P. C. (2010). Memory encoding and dopamine in 

the aging brain: A psychopharmacological neuroimaging study. Cerebral 

Cortex, 20, 743–75. 



 References 

- 333 - 

Morcom, A. M., & Rugg, M. D. (2002). Getting ready to remember: The neural 

correlates of task set during recognition memory. NeuroReport, 13, 149-152. 

Nacmias, B., Piccini, C., Bagnoli, S., Tedde, A., Cellini, E., Bracco, L., & Sorbi, S. 

(2004). Brain-derived neurotrophic factor, apolipoprotein E genetic variants 

and cognitive performance in Alzhimer's disease. Neuroscience Letters, 367, 

379–383. 

National Institute of Mental Health Center for the Study of Emotion and Attention. 

(1999). International Affective Picture System (IAPS). Florida, USA: National 

Institute of Mental Health Center for the Study of Emotion and Attention. 

Need, A. C., Attix, D. K., McEvoy, J. M., Cirulli, E. T., Linney, K. N., Wagoner, A. P., 

…Goldstein, D. B. (2008). Failure to replicate effect of KIBRA on human 

memory in two large cohorts of European origin. American Journal of Medical 

Genetics Part B: Neuropsychiatric Genetics, 147B, 667–668. 

Nemoto, K., Ohnishi, T., Mori, T., Moriguchi, Y., Hashimoto, R., Asada, T., & Kunugi, 

H. (2006). The Val66Met polymorphism of the brain-derived neurotrophic 

factor gene affects age-related brain morphology. Neuroscience Letters, 397, 

25–29. 

Nessler, D., Mecklinger, A., & Penney, T. B. (2001). Event related brain potentials and 

illusory memories: The effects of differential encoding. Cognitive Brain 

Research, 10, 283–301. 



 References 

- 334 - 

Nilsson, L.-G., Adolfsson, R., Bäckman, L., Cruts, M., Nyberg, L., Small, B. J., & Van 

Broeckoven, C. (2006). The influence of apoe status on episodic and semantic 

memory: Data from a population-based study. Neuropsychology, 20, 645–657.  

Noble, E. P., Berman, S. M., Ozkaragoz, T. Z., & Ritchie, T. (1994). Prolonged P300 

latency in children with the D2 dopamine receptor A1 allele. American Journal 

of Human Genetics, 54, 658–668. 

Noguès, X. (1997). Protein kinase C, learning and memory: A circular determinism 

between physiology and behaviour. Progress in NeuroPsychopharmacology & 

Biological Psychiatry, 21, 507–529. 

Nyberg, L., Habib, R., & Herlitz, A. (2000). Brain activation during episodic memory 

retrieval: Sex differences. Acta Psychologica, 105, 181–194. 

Olichney, J. M., Iragui, V. J., Salmon, D. P., Riggins, B. R., Morris, S. K., & Kutas, M. 

(2006). Absent event-related potential (ERP) word repetition effects in mild 

Alzheimer's disease. Clinical Neurophysiology, 117, 1319–1330. 

Olichney, J. M., Morris, S. K., Ochoa, C., Salmon, D. P., Thal, L. J., Kutas, M., & 

Iragui, V. J. (2002). Abnormal verbal event related potentials in mild cognitive 

impairment and incipient Alzheimer's disease. Journal of Neurology, 

Neurosurgery, and Psychiatry, 73, 377–384. 

Olichney, J. M., Van Petten, C., Paller, K. A., Salmon, D. P., Iragui, V.J., & Kutas, M. 

(2000). Word repetition in amnesia: Electrophysiological measures of impaired 

and spared memory. Brain, 123, 1948-1963. 



 References 

- 335 - 

Paller, K. A., Voss, J. L., & Boehm, S. G. (2007). Validating neural correlates of 

familiarity. Trends in Cognitive Sciences, 11, 243–250. 

Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., 

Pearson, J. V., …de Quervain, D. J.-F. (2006). Common KIBRA alleles are 

associated with human memory performance. Science, 314, 475–478.  

Parkin, A. J., Reid, T. K., & Russo, R. (1990). On the differential nature of implicit and 

explicit memory. Memory and Cognition, 18, 507-514. 

Pennisi, E. (2007). Breakthrough of the year: Human genetic variation. Science, 318, 

1842–1843. 

Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, 

R. E., …Weinberger, D. R. (2004). The brain-derived neurotrophic factor 

val66met polymorphism and variation in human cortical morphology. The 

Journal of Neuroscience, 24, 10099–10102.  

Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nature Reviews 

Neuroscience, 2, 24–32. 

Preuschhof, C., Heekeren, H. R., Li, S.-C., Sander, T., Lindenberger, U., & Bäckman, 

L. (2010). KIBRA and CLSTN2 polymorphisms exert interactive effects on 

human episodic memory. Neuropsychologia, 48, 402–408.  

Ragland, J., Coleman, A., Gur, RC, Glahn, D., & Gur, RE. (2000). Sex differences in 

brain-behavior relationships between verbal episodic memory and resting 

regional cerebral blood flow. Neuropsychologia, 38, 451–461. 



 References 

- 336 - 

Ranganath, C., & Paller, K. A. (1999). Frontal brain potentials during recognition are 

modulated by requirements to retrieve perceptual detail. Neuron, 22, 605-613. 

Richter-Schmidinger, T., Alexopoulos, P., Horn, M., Maus, S., Reichel, M., Rhein, C., 

…Kornhuber, J. (2011). Influence of brain-derived neurotrophic-factor and 

apolipoprotein E genetic variants on hippocampal volume and memory 

performance in healthy young adults. Journal of Neural Transmission, 118, 

249–257. 

Riemenschneider, M., Schwarz, S., Wagenpfeil, S., Diehl, J., Müller, U., Förstl, H., & 

Kurz, A. (2002). A polymorphism of the brain-derived neurotrophic factor 

(BDNF) is associated with Alzheimer’s disease in patients lacking the 

Apolipoprotein E "4 allele. Molecular Psychiatry, 7, 782–785. 

Robb, W. G. K., & Rugg, M. D. (2002). Electrophysiological dissociation of retrieval 

orientation and retrieval effort. Psychonomic Bulletin & Review, 9, 583-589. 

Rossi, S., Pasqualetti, P., Zito, G., Vecchio, F., Cappa, S. F., Miniussi, C., … Rossini, 

P.M. (2006). Prefrontal and parietal cortex in human episodic memory: An 

interference study by repetitive transcranial magnetic stimulation. The 

European Journal of Neuroscience, 23, 793–800. 

Rugg, M. D. (1995). ERP studies of memory. In M. D. Rugg & M. G. H. Coles (Eds.). 

Electrophysiology of mind: Event-related brain potentials and cognition. (pp. 

132-170). Oxford: Oxford University Press. 

Rugg, M. D., Allan, K., & Birch, C. S. (2000). Electrophysiological evidence for the 

modulation of retrieval orientation by depth of study processing. Journal of 

Cognitive Neuroscience, 12, 664-678. 



 References 

- 337 - 

Rugg, M.D., & Curran, T. (2007). Event-related potentials and recognition memory. 

Trends in Cognitive Sciences, 11, 251-257. 

Rugg, M. D., & Henson, R. N. A. (2002). Episodic memory retrieval: An (event-

related) functional neuroimaging perspective. In A. Parker, E. L. Wilding & T. 

J. Bussey (Eds.). The cognitive neuroscience of memory: Encoding and 

retrieval. (pp. 3-37). Hove: Psychology Press. 

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. 

(1998). Dissociation of the neural correlates of implicit and explicit memory. 

Nature, 392, 595–598. 

Rugg, M. D., & Wilding, E. L. (2000). Retrieval processing and episodic memory. 

Trends in Cognitive Sciences, 4, 108–115. 

Rugg, M. D., & Yonelinas, A. P. (2003). Human recognition memory: A cognitive 

neuroscience perspective. Trends in Cognitive Sciences, 7, 313–319. 

Savitz, J., Solms, M., & Ramesar, R. (2006). Apolipoprotein E variants and cognition in 

healthy individuals: A critical opinion. Brain Research Reviews, 51, 125–135. 

Schaper, K., Kolsch, H., Popp, J., Wagner, M., & Jessen, F. (2008). KIBRA gene 

variants are associated with episodic memory in healthy elderly. Neurobiology 

of Aging, 29, 1123–1125. 

Schloerscheidt, A. M., & Rugg, M. D. (1997). Recognition memory for words and 

pictures: An event-related potential study. NeuroReport, 8, 3281-3285. 



 References 

- 338 - 

Schloerscheidt, A. M., & Rugg, M. D. (2004). The impact of change in stimulus format 

on the electrophysiological indices of recognition. Neuropsychologia, 42, 451-

466. 

Schott, B. H., Seidenbecher, C. I., Fenker, D. B., Lauer, C. J., Bunzeck, N., Bernstein, 

H.-G., …Düzel, E. (2006). The dopaminergic midbrain participates in human 

episodic memory formation: Evidence from genetic imaging. The Journal of 

Neuroscience, 26, 1407–1417. 

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral 

hippocampal lesions. Journal of neurology, neurosurgery, and psychiatry, 20, 

11-21. 

Senkfor, A. J., & Van Petten, C. (1998). Who said what? An event-related potential 

investigation of source and item memory. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 24, 1005–1025. 

Shannon, B. J., & Buckner, R. L. (2004). Functional-anatomic correlates of memory 

retrieval that suggest nontraditional processing roles for multiple distinct 

regions within posterior parietal cortex. The Journal of Neuroscience, 24, 

10084-10092. 

Simons, J. S., Peers, P. V., Hwang, D. H., Ally, B. A., Fletcher, P. C., & Budson, A. E. 

(2008). Is the parietal lobe necessary for recollection in humans? 

Neuropsychologia, 46, 1185–1191. 



 References 

- 339 - 

Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E., & Olson, I. R. (2010). 

Dissociation between memory accuracy and memory confidence following 

bilateral parietal lesions. Cerebral Cortex, 20, 479–485. 

Small, B.J., Graves, A. B., McEvoy, C. L., Crawford, F. C., Mullan, M., & Mortimer, J. 

A. (2000). Is APOE -!4 a risk factor for cognitive impairment in normal aging? 

Neurology, 54, 2082-2088. 

Smith, M. E. (1993). Neurophysiological manifestations of recollective experience 

during recognition memory judgements. Journal of Cognitive Neuroscience, 5, 

1-13.  

Snodgrass, J.G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: 

Applications to dementia and amnesia. Journal of Experimental Psychology: 

General, 117, 34-50. 

Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuron, 61, 6-9. 

Stevens, A. A. (2004). Dissociating the cortical basis of memory for voices, words and 

tones. Cognitive Brain Research, 18, 162-171. 

Strittmatter, W. J., & Roses, A. D. (1995). Apolipoprotein E and Alzheimer disease. 

Proceedings of the National Academy of Sciences of the United States of 

America, 92, 4725–4727. 

Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., 

…Malhotra, A. K. (2005). Brain-derived neurotrophic factor Val66met 

polymorphism and volume of the hippocampal formation. Molecular 

Psychiatry, 10, 631–636. 



 References 

- 340 - 

Taylor, M., Smith, M., & Iron, K. (1990). Event-related potential evidence of sex 

differences in verbal and nonverbal memory tasks. Neuropsychologia, 28, 691–

705. 

Tiddeman, B., Burt, D.M., & Perrett, D. (2001). Computer graphics in facial perception 

research. IEEE Computer Graphics and Applications, 21, 42-50. 

Trachtenberg, A. J., Filippini, N., & Mackay, C. E. (in press). The effects of APOE-!4 

on the BOLD response. Neurobiology of Aging.  

Trott, C. T., Friedman, D., Ritter, W., & Fabiani, M. (1997). Item and source memory: 

Differential age effects revealed by event-related potentials. NeuroReport, 8, 

3373–3378. 

Tsai, S.-J., Hong, C.-J., Yu, Y. W.-Y., & Chen, T.-J. (2004). Association study of a 

brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and 

personality trait and intelligence in healthy young females. 

Neuropsychobiology, 49, 13–16.  

Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University Press. 

Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26, 1-12. 

Tulving, E., Schacter, D. L., & Stark, H. A. (1982). Priming effects in word fragment 

completion are independent of recognition memory. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 8, 336-342. 



 References 

- 341 - 

Van Petten, C., Luka, B. J., Rubin, S. R., & Ryan, J. P. (2002). Frontal brain activity 

predicts individual performance in an associative memory exclusion test. 

Cerebral Cortex, 12, 1180-1192. 

Van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of 

environmental enrichment. Nature Reviews Neuroscience, 1, 191–198. 

Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., 

& Mishkin, M. (1997). Differential effects of early hippocampal pathology on 

episodic and semantic memory. Science, 277, 376-380. 

Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., 

& Gennarelli, M. (2002). Association between the BDNF 196 A/G 

polymorphism and sporadic Alzheimer's disease. Molecular Psychiatry, 7, 

136–137. 

Vilberg, K. L., Moosavi, R. F., & Rugg, M. D. (2006). The relationship between 

electrophysiological correlates of recollection and amount of information 

retrieved. Brain Research, 1122, 161–170. 

Vilberg, K. L., & Rugg, M. D. (2008). Memory retrieval and the parietal cortex: A 

review of evidence from a dual-process perspective. Neuropsychologia, 46, 

1787–1799. 

Vilberg, K. L., & Rugg, M. D. (2009). Functional significance of retrieval-related 

activity in lateral parietal cortex: Evidence from fMRI and ERPs. Human Brain 

Mapping, 30, 1490-1501. 



 References 

- 342 - 

Voss, J. L., Lucas, H. D., & Paller, K. A. (2010). Conceptual priming and familiarity: 

Different expressions of memory during recognition testing with distinct 

neurophysiological correlates. Journal of Cognitive Neuroscience, 22, 2638-

2651. 

Voss, J. L., & Paller, K. A. (2006). Fluent conceptual processing and explicit memory 

for faces are electrophysiologically distinct. The Journal of Neuroscience, 26, 

926–933. 

Voss, J. L., & Paller, K. A. (2009). Remembering and knowing: Electrophysiological 

distinctions at encoding but not retrieval. NeuroImage, 46, 280–289. 

Voss, J. L. & Paller, K. A. (Eds.). (2010). Bridging Divergent Models of Recognition 

Memory [Special issue]. Hippocampus, 20 (11). 

Voss, J. L., Schendan, H. E., & Paller, K. A. (2010). Finding meaning in novel 

geometric shapes influences electrophysiological correlates of repetition and 

dissociates perceptual and conceptual priming. NeuroImage, 49, 2879–2889. 

Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe 

contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 

445–453. 

Wais, P. E., Squire, L. R., & Wixted, J. T. (2010). In search of recollection and 

familiarity signals in the hippocampus. Journal of Cognitive Neuroscience, 22, 

109-123. 

Warrington, E. K., & Shallice, T. (1969). The selective impairment of auditory-verbal 

short-term memory. Brain, 92, 885-896. 



 References 

- 343 - 

Wavosaur audio editor, [Computer program]. Version  1.0.1.0, retrieved 9th April 2008 

from www.wavosaur.com/ 

Wechsler, D. (1998). Wechsler Memory Scale, 3rd edition UK (WMS-IIIUK). London, 

UK: The Psychological Corporation. 

Wechsler, D. (1999).  Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, 

USA: The Psychological Corporation. 

Weisgraber, K. H., Rall, S. C., & Mahley, R. W. (1981). Human E apoprotein 

heterogeneity: Cysteine-arginine interchanges in the amino acid sequence of 

the APO-E isoforms. The Journal of Biological Chemistry, 256, 9077–9083. 

Wersching, H., Guske, K., Hasenkamp, S., Hagedorn, C., Schiwek, S., Jansen, S., 

…Floel, A. (2011). Impact of common KIBRA allele on human cognitive 

functions. Neuropsychopharmacology, 36, 1296–1304. 

Wheeler, M. A., Stuss, D. T., & Tulving, E. (1995). Frontal lobe damage produces 

episodic memory impairment. Journal of the International Neuropsychological 

Society, 1, 525-536. 

Wheeler, M. E., & Buckner, R. L. (2003). Functional dissociation among components 

of remembering: Control, perceived oldness, and content. The Journal of 

Neuroscience, 23, 3869–3880. 

Wickelgren, W. A. (1968). Sparing of short-term memory in amnesic patient: 

Implications for strength theory of memory. Neuropsychologia, 6, 235-244. 



 References 

- 344 - 

Wiggs, C. L., Weisberg, J. & Martin, A. (1999). Neural correlates of semantic and 

episodic memory retrieval. Neuropsychologia, 37, 103-118. 

Wilding, E. L. (2000). In what way does the parietal ERP old/new effect index 

recollection. International Journal of Psychophysiology, 35, 81–87. 

Wilding, E. L., Doyle, M. C., & Rugg, M. D. (1995). Recognition memory with and 

without retrieval of context: An event-related potential study. 

Neuropsychologia, 33, 743–767. 

Wilding, E. L., & Rugg, M. D. (1996). An event-related potential study of recognition 

memory with and without retrieval of source. Brain, 119, 889–905. 

Wilding, E. L., & Rugg, M. D. (1997). Event-related potentials and the recognition 

memory exclusion task. Neuropsychologia, 35, 119-128. 

Wilson, R. S., Bienias, J. L., Berry-Kravis, E., Evans, D. A., & Bennett, D. A. (2002a). 

The apolipoprotein E !2 allele and decline in episodic memory. Journal of 

Neurology, Neurosurgery, and Psychiatry, 73, 672–677. 

Wilson, R. S., Schneider, J. A., Barnes, L. L., Beckett, L. A., Aggarwal, N. T., Cochran, 

E. J., …Bennett, D. A. (2002b). The apolipoprotein E !4 allele and decline in 

different cognitive systems during a 6-year period. Archives of Neurology, 59, 

1154–1160. 

Windann, S., Urbach, T. P., & Kutas, M. (2002). Cognitive and neural mechanisms of 

decision bias in recognition memory. Cerebral Cortex, 12, 808-817. 



 References 

- 345 - 

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition 

memory. Psychological Review, 114, 152-176. 

Wixted, J. T. (2010). Remember/know judgments in cognitive neuroscience: A 

illustration of the underrepresented point of view. Learning and Memory, 16, 

406-412. 

Wixted, J. T., & Squire, L. R. (2011). The medial temporal lobe and the attributes of 

memory. Trends in Cognitive Sciences, 15, 210-217. 

Wolk, D. A., Schacter, D. L., Lygizos, M., Sen, N. M., Holcomb, P. J., Daffner, K. R., 

& Budson, A. E. (2006). ERP correlates of recognition memory: Effects of 

retention interval and false alarms. Brain Research, 1096, 148–162. 

Wong, S. T., Athos, J., Figueroa, X. A., Pineda, V. V., Schaefer, M. L., Chavkin, C. C., 

…Storm, D. R. (1999). Calcium-stimulated adenylyl cyclase activity is critical 

for hippocampus-dependent long-term memory and late phase LTP. Neuron, 

23, 787–798. 

Woodruff, C. C., Hayama, H. R., & Rugg, M. D. (2006). Electrophysiological 

dissociation of the neural correlates of recollection and familiarity. Brain 

Research, 1100, 125–135. 

Yick, Y. Y., & Wilding, E. L. (2008). Material-specific neural correlates of memory 

retrieval. NeuroReport, 19, 1463–1467. 

Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: 

Evidence for a dual-process model. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 20, 1341-1354. 



 References 

- 346 - 

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 

years of research. Journal of Memory and Language, 46, 441-517. 

Yonelinas, A. P., Aly, M., Wang, W.-C., Koen, J. D. (2010). Recollection and 

familiarity: Examining controversial assumptions and new directions. 

Hippocampus, 20, 1178-1194. 

Yonelinas, A. P., & Jacoby, L. L. (1995). The relation between remembering and 

knowing as bases for recognition: Effects of size congruency. Journal of 

Memory and Language, 34, 622-643. 

Yonelinas, A. P., & Parks, C. M. (2007). Receiver operating characteristics (ROCs) in 

recognition memory: A review. Psychological Bulletin, 133, 800-832. 

Yovel, G., & Paller, K. A. (2004). The neural basis of the butcher-on-the-bus 

phenomenon: When a face seems familiar but is not remembered. NeuroImage, 

21, 789-800. 

Zimmerman, M. (2002). Psychiatric Diagnostic Screening Questionnaire (PDSQ). Los 

Angeles, USA: Western Psychological Services. 


