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Abstract
Monthly U.S. coal price time series data are testedetermine the persistence of
shocks. The time series is then disaggregated hgtHeof agreement to further
explore the first and second moments of pricingabejur. Results show that prices
have a variance that changes over time and tebé taghly persistent. Prices from
long-term transaction agreements tend to requireerfiags and have a higher degree
of persistence.
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1. Introduction
Coal is a prime energy source for the productiorlettricity in the US and many
other countries. Further, electricity is an inpub the production of many goods and
services. Thus, an understanding of the evolutiocoal prices is relevant for many
planning and forecasting models. In addition, #wslution of coal prices has
important implication for energy policy. US coalpgly and demand is driven largely
by domestic forces, compared to crude oil, whogeplsumay be susceptible to
exogenous shocks such as unrest in Arab natiordembwith fluctuations in output
brought about by OPECs activities. Further, theipyg and trading of coal occur
differently from other energy sources due to itsnfo(solid versus liquid) and
distribution throughout the world. We therefore eapcoal prices to depict different

time series patterns from other sources of energy

An analysis of the time series properties of U.&alorices is undertaken here.
Monthly aggregate data and a disaggregation ofi#li@ are analyzed to determine the
process by which prices evolve. The disaggregatsomrices in coal contracts

(agreements greater than one year or greater)veekat spot prices (agreements less

than one year).

Coal has supplied roughly 20% of the US primaryrgnand 50% of US electricity
generation for the last 25 years. A stylised fddhe US coal market is that nearly all
the coal consumed is produced domestically, witke limports or exports (Energy
Information Administration, 2007)Coal-fired power plants currently consume 91%
of all coal mined in the U.S., steadily increasifigm 70% in 1972 (Energy

Information Administration, 2005). The US imporése small, but increasing



percentage of its coal. Until the year 2000, theeg@etage of coal imported was less
than 1% and it has risen to 3% in 2007. In respdoghe large increase in oil prices
in the 1970’s, the U.S. government initiated sulzsisl to the production of coal-fired
power plants. As a result, energy use from coalei@msed from 17% of total U.S.

energy use in 1972 to 22% in 2000 (Energy InforaraAdministration, 2006).

Coal contracts are the common form of procuremenhe US. The use of the spot
market has been increasing since the late-1980sandghly 20% of all transactions
throughout the 1990s. At the same time, the avedagation of contracts has fallen,
from 14 years to 8 years (Lange and Bellas, 20@Ontracts are generally between a
mine, coal-fired power plant, and a transportafion (often railroad). The contracts
contain many characteristics such as a specifiezk @djustment mechanism and
minimum quantity and coal attribute provisionsoskow (1985) provides a detailed
overview of contracts in the coal industry and sateat a mine and a power plant
usually rely on long-term contracts that are inctatg but quite complex. Such
contracts contain both price and non-price prowsithat serve to prevent both parties
from breach. Joskow (1988 and 1990) finds thatphee provisions stipulated in
contracts were largely adhered to despite the dawnin the market for coal that
occurred post-1982. He concludes that in a longrteontract, mines and plants
preferred abiding by the contractual obligationseimegotiation, breach of contract or
costly litigation. As a result, we expect prices lie less variable for contract
transactions (relative to spot) though the penseaof shocks may be higher if they

are encorporated into the provisions of the cohtrac



In spite of the fact that coal play an importanterin the US and indeed the
industrialised economy energy mix, there is a ssirgy lack of research into the time
series properties of coal prices, especially netato the research done regarding the
evolution of petroleum prices and other sourcesnafrgy. Ellerman (1995) discusses
the world coal market and concludes that the U$heésresidual supplier and that
changes in productivity drive coal prices. Humpkrg$995) argues that the coal
market could be described as interlocking regionatket and that Australia is more
relevant to world prices than the U.S. Pindyck9@)Quses annual data from 1870-
1996 to determine the time series properties of @mawell as oil and natural gas)
prices. Pindyck (1999) argues that the price sesf®uld have a stochastic trend line
as they should reflect the marginal cost of exitbact which varies with new
discoveries and changes in technology. Bachmeier @nffin (2006) test for
integration of the US coal market using spot pritesn 1990-2004. They find weak
evidence of market integration. Warrell (2006) gesor evidence of market
integration in coal using a sample of European aaplan prices over the sample
period 1980-2000. Mixed evidence is found of aernmational market for coal with
the entire sample suggesting one market while tibesample of the 1990s behaves

more regional than international.

There is a good deal of literature on the timeeseproperties of oil prices. For
instance, economic theory suggests that oil shdeksl to higher inflation, a
contraction in output, and higher unemploymenthae short run. It is the rise in
energy prices, rather than “high” energy pricest ttauses these macroeconomic
problem, see Kilian (2208), Jones et al (2004), Ham (1983), Darby (1982) for

empirical evidence. More recently, the literaturgs Hocussed on the relationship



between oil prices and stock returns. If high ailcgs depress real output, then
increases in oil price depress aggregate stoclepthy lowering expected earnings.
Sadorsky (1999) concludes that changes in oil griogact economic activity but,

changes in economic activity have little impactihprices. Jones and Kaul (1996)
argue that changes in oil prices granger preceds# aamnomic series, have an effect

on output and real stock returns in the UnitedeStat

2. Coal pricedata
Data on coal prices comes from the Federal EnegguRtory Commission’s Form
423 survey. It contains monthly plant level obs&ores of coal transactions for all
power plants greater than 50MW capacity. Infororathn the quality, quantity, price
and type of transaction is given for each obsewwati The prices are for delivered
coal, thus they include the transportation costbe time series analyzed here runs
from July 1972-December 2002, 366 observations.e phces are real cents per
million British Thermal Units (mm Btu), discountday the Consumer Price Index
(CPI). The CPI data is the monthly consumer pricgex from the International

Monetary Fund’s (IMF) online edition of the Intetimmal Finance Statistics (IFS)

The time series was created by averaging the pmicdl relevant transactions in a
given month. An aggregate time series (all trafsas) and a disaggregation are
analyzed here. The first disaggregation is bysaation type, contract or spot. A
contract transaction is any transaction from are@gent of one year or over in
duration, spot transactions are for agreementess than one year in duration. The
coal price series for the sample period July 197Décember 2002. Average coal

prices for the aggregate, contract, and spot sdrigag the sample are $2.21, $2.26,



and $2.12 respectively. The standard deviation;nguhe sample are $0.76, $0.85,
and $0.76 respectively. Statistical evidence howewnédicates that whereas contract

is negatively skewed, spot prices are positivebwed.

Figure 1 gives the aggregate time series and dh&ract and spot disaggregation
series. There is a positive price shock in the-b8d0s corresponding to a large
decrease in labour productivity and another snitk in the 1979/1980. From 1980

until 2002, the real price falls at a steady ratel @ small increase in the year 2002.

3. Mod€

Let p, be coal prices, a simple AR)(model is specified as

g (L)p = ¢ (1)
where the AR ) polynomial inL of orderP is ¢, (L) =1-gL~-..-@Le" and ¢,
satisfies the white noise propertiefs,] =0,E[ &” | =0°and E[5¢,] =0 Os #t.

To check the whiteness of the residuals of (1) welyaa modified version of the
Brock, Dechert and Scheinkman (1987) test, BDSstwort. We conjecture that
nonlinearities in coal prices will be importanteramining the particular time series
models that fit the data. Further, nonlinearitiesiba close affinity with the concept
of efficiency of the coal market, where if coalqas are efficient, then current coal
prices should contain no information in predictigure coal prices. Given the

importance of coal as a source of energy, suchigtedulity will have important



implication for the demand for, and supply of caald the pricing policy as well as

regulation of the US coal market.

To model variability we employ GARCH models (seell®slev et al, 1992 for a

survey). Given (1) as the mean equation we sp#uogfyariance equation as

O-tz = aO + algzt—l+ IBlUZt—l (2)

where g,° is the conditional variance. Ther, models the short-run persistence of
shocks in coal prices while, represent long-run persistence. The parameters
a(L)= aL+..aland B(L)= BL+ ...+ BL° are equivalent to an ARMA (p, q)

if all the roots of 1-,8(L) lie outside the unit circle. The conditional \aarte must

be non-negative. This necessitates the followistricions on the parametera> 0,
a,> 0 andB, >0.

We also account for asymmetries (Black 1976, Gbris282) by fitting GJR-M (or

Threshold GARCH, TGARCH)

o =ay+ag PO+ yE AN 3
N._, is an indicator for negative,_, i.e. N_ =1 if £_,<0 and N,, =0 if &_,>0

anda,, B, and y; are non-negative parameters satisfying conditsimgar to those of

the GARCH in {2}. From {3}, a positives,_, contributesa,e,_’

too,”, whereas a
negativee,_, has a larger impadia, + )¢, with y,>1. Finally an EGARCH is fit

as



In(h) = + .z, + (74| - E(z)))+ BIn(hy) (4)
The natural log formulation ensures positive vares; thus dispensing with the need
for parameter restrictions. Secondly, volatilitytiate t depends on both the size and

sign of the normalized errors (see Nelson, 1991).

3.1 Time series patterns of coal prices

We first examine the behaviour of coal prices aberperiod 1972 to 2002 as shown
in Figure 1. The graph in Figure 1 seems to be mesarting although this is at

different speeds. Given this behaviour of coal gsjat is plausible that the true data
generating process for coal prices contains onmane unit roots. One immediate
(and perhaps inappropriate) method to think of wodt would be to examine the

autocorrelation function (acf) of coal prices. Hoeg although shocks to a unit root
process will remain in the system indefinitely, thef for a unit root process (a
random walk) will often be seen to decay away v&owly to zero. Thus such a

process may be mistaken for a highly persistentdbationary process. Based on
Figure 1 we test for random walks in coal pricesmaishe Augmented Dickey Fuller

test.

Table1: ADF test

Contract Spot Aqggregate
Levels First Diff | Levels First Diff Levels First Diff
-0.506 -3.272 -1.379  -5.429 -1.005 -9.275

Note: Critical values at the 5% level= -2.869. Maxim lag chosen is 12 based on Schwartz Criterion




In Table 1, the unit root cannot be rejected foy ahthe disaggregated coal prices.
Traditional unit root tests such as the ADF suffem low power and may not be
very informative of the time series patterns oflqmées. To gain further insight we
extend the analysis by fitting a general autoreggvesmodel in the price series and
examine whether there is evidence of randomnessnantinearities. The strategic
interaction among coal market participants, demamd supply factors and coupled
with the dynamics of economy-wide fluctuations magroduced nonlinearities in
coal prices. The BDS test based on range (se&erla 2001 and Kenda and
Briatka, 2005) is applied here. This test overcontles problem of selecting
embedding dimensions and the proximity parameteergnt in traditional BDS test
of Brock et al (1996, 1997). The range is seledtedugh integration across the
correlation integral, thereby avoiding the arbiiraelection of epsilon. We fit (1) in
the disaggregated coal prices to pre-whiten tha.ddtis way we make sure that the
rejection of the null hypothesis of pure noise i anly to significant nonlinearity.
Therefore, we determine the pre-whitening AdrRfor values op from O (regress on a
constant) up td0 lags and the one with the minimum Schwartz Cotelis chosen.
Table 2 display the results of the AB) (model selected on the basis of information

criteria for each of the disaggregated coal prices.



Table2: AR (p) Model

Contract Spot Aqggregate
u -0.0008(-0.44) | -0.0007(-0.24) -0.0008(-0.3102)
a 0.222***(4.388) | 0.575***(13.37) | 0.616**(2.798)
. 0.132**(2.578)
@ 0.296***(5.87)
@,
@
BG(5) 1.858[0.1009] | 1.019[0.405] 3.421[0.000]
DW 1.95 2.04 1.85
ARCH(10) | 6.308[0.000] 4.506[0.000] 12.622[0.000]

The evidence from Table 2 that Contract coal pratesuld be modelled with a higher
order AR model is not surprising given the commae wf pre-specified price
adjustment mechanisms. With the exception of theti@ot series, the Aggregate and
Spot series are best modelled by assuming shatst Whereas Table 2 indicates
that there is no first order serial correlatiorthie data, significant ARCH effects can
be detected in all coal series, indicating that AR@odels could well approximate
the data generating process. Beside the presenSBOH effects, one would like to
see whether any further structure remains in the. dor instance if the AR (p) model
is able to explain the behaviour of coal prices, @ect the residuals to be
independently and identically distributed. We stheeresiduals of the best linear AR

(p) model and test the residuals for any remainimgilséependence. Our next step is
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to use the residuals of the AR) (regression to compute the BDS test statistics for

nonlinearity. The results are summarised in Table 3

Table 3: BDStest for Randomness

ﬁZ ﬁs ﬁ4 ﬁS ﬁG ﬁ7 ﬁB ﬁg ﬁlO
Contract 1.356 1.965 2533 3.112 3.682 4.256 4.804 535 9.6
Spot 0.994 1413 1.837 2245 2669 3.102 3.522 3.931 5 4.3

Aggregate 0.286 0.396  0.487 0571 0.656 0.743 0829 0.915 021.Q

Notes All the computed test statistics from thed€nda(2000) and Kenda and Briatka (2005) BDS
test using the optimal range of (06Q 1.900 ) with a bootstrap sample of 2500 were rejecteithet

1% significance level. Computations were done u&igl software

In Table 3 we compute the BDS statistic in suchay was to rule out the narrowest
null of exact linearity. We choose the optimal ranp be (0.6@, 1.900) as
suggested by Kenda (2001) and Kenda and Briatka (2005) Belaire-Franch
(2003) show that if there is excess kurtosis indat, the assumption of independent
and identical distribution (iid) of the error temwvould be erroneously rejected by the
test frequently. Also since, the BDS is nonparaimethere is a strong case for
bootstrapping. Therefore, 2500 new samples werepieadently drawn from the
empirical distribution of the pre-whitened data.l e computed BDS statistics
rejects the null at 1%. However, rejection of thél mnder BDS is not informative

regarding the type of nonlinearity that is presentoal prices. Nevertheless we gain

' K2K was used to compute the BDS test statistidHerspecified range (Kenda and Briatka 2005).
Available from: http://home.cerge-ei.cz/kocendatisafe.htm.
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the key insight that coal prices exhibit predicéaphtterns. The results from the BDS
and the ARCH test point to the fact that nonlingesi exist in coal prices. The
constant variance assumption of coal prices in dlyurejected in Table 3Since the

coal market is a dynamic industry, we expect charnigegechnology and economic
conditions to cause the variance of coal priceghange over time. We therefore
model the remaining structure in coal prices hyniit GARCH models to uncover the

dynamics of the second moments.

4. Coal PriceVariability
The estimates of the volatility models are reportedable 4. The estimates are done
by assuming studertdistributions for the normalised residuals to walléor fatter
tails. Estimates of the parameters are obtainech&yimising the likelihood function

over sample period.

The estimates in Table 4 indicate that the lagged prices for Aggregate, Spot and
Contract are significant and predictable for alldels GARCH models. Only the
estimated GARCH model for Contract shows predietaidl the mean up to 3 lags.
For Aggregate, all fitted models indicate that thean is quite predictable up to 2

lags.

A close look at Table 4 reveals that not onlyhis mean of coal prices predictable,
but also that there is a high degree of persistemabe conditional variance. The

variance estimates shows significant ARCH and GARfects witha + £ close to

unity. In fact, a closer examination of GARCH iralies a + £=0.94, a + 5=0.88

12



and a + £=0.95 for Contract, Spot and Aggregate respectivEhe TGARCH for
both Contract and Spot gives+ £=0.99 anda + =0.96 respectively. The highly

statistically significant estimates of these parargecoupled with their closeness to
unity, implies that shocks to the conditional vade of Contract and Spot will be
highly protracted. As expected, the parameterspait &re smaller than Contract, as
the transactions are less likely to be linked duee in the Spot market. However,

for all EGARCH and the Aggregate TGARCH modaeist £ >1. In this instance the

second and fourth unconditional moments do not glig the conditional distribution
is still well defined. In contrast to the statiopavariance case, the impacts of
variance shocks remain forever. We could argue thatasymmetric models are
either not suited to modelling the coal price serag simply, the series could well be
approximately by alternative GARCH models such hs integrated GARCH.
Although an integrated GARCH (IGARCH) process imdi series is not unusual, a
model of conditional volatility that is non-statemy could be of limited use to coal
market participants. A probable parameterizatiorthef volatility process that takes
this into account is the Fractionally Integrated RE2H (FIGARCH) model of Bailie

et al (1996).

Further, from Table 4, the3 coefficient in the conditional variance equatian i

considerably larger thamr in the vast majority of cases. A large sum of ¢hes
coefficients implies that a large positive or négatreal coal prices causes future
forecasts of the variance to be high; this is Usefuconsidering these models for
forecasting.Overall, the results show that there is pervasiresgnce of significant

autoregressive conditional heteroscedasticity al paces.
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Next, we examine whether there is asymmetry in poaks. Does a negative shock
to coal prices (i.e. decrease in this period coakep) tend to cause variability to rise
by more than an increase (positive shock) of tmeesmagnitude? A question of this
nature would have implications for coal productiand pricing. Thgr parameter
captures this in the EGARCH and TGARCH models, bdioc an asymmetric effect

y>0 and statistically significant. From Table4,s statistically insignificant for

Contract and Spot for TGARCH. However, EGARCH cagduthe asymmetry in coal
prices quite well as seen from Table 4, wit)h being statistically significant and
positive across models and disaggregated coal peides. This implies that negative
shocks (price falls) persist longer than positivecks in the coal market. It is
suggested that the ability of mines to stop praduactelative to start new production

is a factor in this result.

5. Conclusion
A number of models have been used to test the grep@f coal price evolution.
Coal prices tend to have non-linear propertiesaandn-constant variance over time.
This is not surprising given discovery of new ressr technological advances in
mining, and changes in regulatory policy. The Cacttseries requires more lags in
the AR and GARCH models than the Spot or Aggregatees, likely a result of the
price adjustment mechanisms used in contractstentdigh transactions cost that
come with renegotiation. For all series the p&sise of shocks is high, with most

GARCH models predicting amr + £ close to unity, and none below 0.88. The
lowesta +  comes from the Spot series, which is expectededimese are much

shorter agreements, which lowers the transactiosssaf altering the price. Coal

14



contracts often have price adjustment mechanissdsdi economy-wide indicators
like the Consumer Price Index which would expl&ie high persistence of coal
prices. Finally, the series tend to have asymmeffects with respect to price
shocks. It is suggested that this is due to thigyabf mines to start new production

relative to stopping production.

The wide spread use of coal in the US economy makesderstanding of the
evolution of coal prices important for energy acdreomy-wide modellers. The
results here are instructive in the persistena®af prices and their shocks as well as
the differences between prices from long-term @mt$rand those from the spot

market.
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Figure 1: Coal Prices
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Table 4. Results of Fitting GARCH models

Contract Spot Aggregate
GARCH EGARCH TGARCH GARCH EGARCH TGARCH GARCH EGARCH TGARCH
u -0.003 -0.003 -0.003 -0.004 -0.004 -0.003 -0.0037 -0.0034 -0.0032
(-3.64) (-6.92) (-6.83) (-5.43) (-5.28) (-2.72) (-7.318) (-6.54) (-5.659)
i 0.216%** 0.2113%** 0.161** 0.178%* 0.172%*
(3.657) (3.44) (2.717) (3.202) (2.874)
? 0.137%* 0.133**
(2.369) (2.224)
0.193%*
% (3.66)
a, 0.0001 -1.489 0.0000 0.0000 -1.06 0.0000 0.0000 -0.976 0.0000
(2.33) (-2.77) (2.23) (3.09) (4.123) (2.956) (-2.52) (-4.74) (3.877)
a, 0.294%%* 0.523* 0.381%** 0.457%* 0.422%% 0.448%* 0.365*** 0.342%* 0.446%*
(3.65) (1.82) (3.39) (3.39) (4.37) (3.42) (3.804) (4.046) (5.433)
B, 0.625%** 0.876*** 0.606*** 0.426*** 0.904%** 0.528%** 0.588*** 0.921 %% 0.666***
(7.45) (15.37) (6.58) (5.73) (30.82) (7.025) (8.32) (44.59) (15.19)
Y, 0.433%* -0.234 0.145%* -0.229 0.180%** 0.406**
(3.904) (-1.44) (2.83) (-1.57) (3.304) (4.477)
AlC -6.369 -6.340 -6.342 -5.152 -5.135 -5.201 -6.264 .288 -6.263
SBC -6.304 -6.276 -6.278 -5.099 -5.071 -5.115 -6.200 .208 -6.188
ARCH(10) 0.938 1.124 1.307 0.774 1.458 1.1334 0.949 1.348 1.0.98
[0.497] [0.343] [0.224] [0.653] [0.153] [0.336] [0.487] [0.203] [0.362]
LBQ(6) 6.1304 4.85 5.557 4.1702 11.98 7.243 5.538 11.114 5.635
[0.294] [0.56] [0.475] [0.654] 0.101] [0.124] [0.354] [0.134] [0.345]
LBQ(12) 12.77 13.07 14.97 7.20 12.95 11.924 17.186 11.99 13.844
[0.308] [0.364] [0.243] [0.783] [0.113] [0.218] [0.102] [0.364] [0.242]
T.Dist 8.634** 11.42* 9.964** 4,074 4.29%** 5.159%** 4.591%* 5.745%% 19.56
(2.84) (1.85) (2.145) (3.79) (3.01) (3.146) (3.67) (2.93) (1.38)
LL 1158.7 1163.2 1163.3 945.31 949.12 951.99 1146.2 50.61 1146.9

*x +% % indicates significance at 1%, 5% and 10%vels respectively. AIC, SBC represent the Akakel Schwarz criterion. LBQ is the Ljung-Box stétisTest statistics
are reported in () whilp-values are reported in [ ]. T-dist is the paramefdhe student t-distribution and LL is the ldkelihood value of the estimated GARCH models.
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