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ABSTRACT 

Detecting stress in plants resulting from different stressors including nitrogen 

deficiency, salinity, moisture, contamination and diseases, is crucial in crop 

production. In the Nile Valley, crop production is hindered perhaps more 

fundamentally by issues of water supply and salinity. Predicting stress in crops by 

conventional methods is tedious, laborious and costly and is perhaps unreliable in 

providing a spatial context of stress patterns. Accurate and quick monitoring 

techniques for crop status to detect stress in crops at early growth stages are needed to 

maximize crop productivity. In this context, remotely sensed data may provide a 

useful tool in precision farming. This research aims to evaluate the role of in situ 

hyperspectral and high spatial resolution satellite remote sensing data to detect stress 

in wheat and maize crops and assess whether moisture induced stress can be 

distinguished from salinity induced stress spectrally. 

A series of five greenhouse based experiments on wheat and maize were undertaken 

subjecting both crops to a range of salinity and moisture stress levels. 

Spectroradiometry measurements were collected at different growth stages of each 

crop to assess the relationship between crop biophysical and biochemical properties 

and reflectance measurements from plant canopies. Additionally, high spatial 

resolution satellite images including two QuickBird, one ASTER and two SPOT HRV 

were acquired in south-west Alexandria, Egypt to assess the potential of high spectral 

and spatial resolution satellite imagery to detect stress in wheat and maize at local and 

regional scales. Two field work visits were conducted in Egypt to collect ground 

reference data and coupled with Hyperion imagery acquisition, during winter and 

summer seasons of 2007 in March (8-30: wheat) and July (12-17: maize). Despite 

efforts, Hyperion imagery was not acquired due to factors out with the control of this 

research.    

Strong significant correlations between crop properties and different vegetation 

indices derived from both ground based and satellite platforms were observed.  RDVI 

showed a sensitive index to different wheat properties (r > 0.90 with different 

biophysical properties). In maize, GNDVIbr and Cgreen had strong significant 

correlations with maize biophysical properties (r > 0.80). PCA showed the possibility 

to distinguish between moisture and salinity induced stress at the grain filling stages. 
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The results further showed that a combined approach of high (2-5 m) and moderate 

(15-20) spatial resolution satellite imagery can provide a better mechanistic 

interpretation of the distribution and sources of stress, despite the typical small size of 

fields (20-50 m scale). QuickBird imagery successfully detects stress within field and 

local scales, whereas SPOT HRV imagery is useful in detecting stress at a regional 

scale, and therefore, can be a robust tool in identifying issues of crop management at a 

regional scale. Due to the limited spectral capabilities of high spatial resolution 

images, distinguishing different sources of stress is not directly possible, and 

therefore, hyperspectral satellite imagery (e.g. Hyperion or HyspIRI) is required to 

distinguish between moisture and salinity induced stress.   

It is evident from the results that remotely sensed data acquired by both in situ 

hyperspectral and high spatial resolution satellite remote sensing can be used as a 

useful tool in precision farming in the Nile Valley, Egypt. A combined approach of 

using reliable high spatial and spectral satellite remote sensing data could provide 

better insight about stress at local and regional scales. Using this technique as a 

precision farming and management tool will lead to improved crop productivity by 

limiting stress and consequently provide a valuable tool in combating issues of food 

supply at a time of rapid population growth.  
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1 INTRODUCTION 

1.1 Research Rationale 

The shortage of good quality water resources has become an important issue in arid 

and semi-arid regions. For this reason the availability of water resources of marginal 

quality such as drainage water, wastewater, saline ground water and agricultural 

drainage water has become an important consideration in supplementing supply. The 

efficiency of water usage within irrigated sectors is generally low and significant 

savings could be achieved through more careful management of water resources. 

Jones (1999) reported that the major limiting factor in crop productivity is water. Crop 

water needs must, therefore be satisfied (Penuelas et al., 1992).  

Water is becoming a major topic of discussion on national and international scales. 

Globally, 73% of all fresh water used is for irrigation, another 21% is used by the 

industrial sector and the remaining 6% used is for domestic purposes (Gonzalez, 

1998). To emphasise its importance in regions such as Middle East water may become 

synonymous with power. The population density of Egypt doubled in the last three 

decades with an average annual growth rate of 1.8% without increasing in land and 

water resources (Hamza and Mason, 2004).  The River Nile is the main source of 

water in Egypt providing more than 95% of the total water used. Egypt’s annual quota 

of the Nile water is 55.5 billion cubic meters (El-Wakeel and El-Mowelhi, 1993) 

distributed across a range of requirements including agriculture, domestic and 

industry. Besides a rapidly increasing population, Egypt’s water requirements have 

further increased as a result of new irrigation networks required by land reclamation 

projects and a new valley project where water will be pumped from Lake Nasser and 

transported hundreds of miles away to its Western Desert. 

In the future, the demand for water will increase and it is predicted that the quantity of 

Nile water will no longer be sufficient to meet the demand within the next 25 years in 

terms of industrial development and agricultural expansion that together consume the 

highest proportion of more than 85% of the water withdrawal from the Nile (Hamza 

and Manson, 2004). The pressure is therefore on the Egyptian Government to look for 

other sources of water even low quality water, or use new techniques to use the 

limited resources more efficiently. Irrigation is vital to insure the essential moisture 
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for plant growth. In addition, Egypt is a unique case concerning irrigation as most 

agricultural lands are under irrigation because rainfall is not sufficient for growing 

crops. Cereal crops occupied approximately 670 million hectares worldwide during 

the year 2000 (FAO, 2005). Current increases in area under agriculture occur at the 

expense of natural ecosystems. Thus, increasing agricultural productivity without 

substantial modifying the natural ecosystem is a top priority. As successful plant 

biotechnologies have been developed; around the world researchers are examining a 

wide range of possibilities for improving the productivity of crops, ranging from 

developing crops with resistance to herbicides and insect pests, to crops with an 

increased ability to withstand drought, frost or salinity. In addition, new techniques 

(remote sensing and precision agriculture) are leading to better methods of producing 

and managing agricultural products, but primarily within the developed world.  

Remote sensing has been used to monitor vegetation for a few decades. It provides 

timely information over large areas of economic importance for example wheat and 

maize crops (Penuelas and Inoue, 1999; Osborne et al., 2002a; Ozturk & 

Aydin, 2004; Sclemmer et al., 2005; Clay et al., 2006; Hong et al., 2007). Crop health 

and productivity can be estimated by almost instantaneous non-destructive data 

acquisition over vast areas (Clevers, 1997). Also, the innovative technique of airborne 

remote sensing can provide valuable information in crop stress management (Steven 

1993, Reyniers et al., 2004). Such timely information concerning crop productivity is 

of vital importance for decision makers, from small-scale farmers to the national 

government, providing a potential way forward for increasing crop productivity whilst 

using water resources more efficiently. 

Salinity and drought are major inhibitors to agronomic production and increasing 

efforts to remotely detect the effects of both moisture and salinity induced stress for 

irrigation management are needed since few studies have quantitatively assessed the 

ability of remote sensing technology to characterise simultaneous water and salinity 

stress on crop yields (Poss et al., 2006). Irrigation and water salinity management 

practices need to be adjusted to decrease the excessive losses of water and control the 

salinity in the root zone at the optimum level by adding proper application rates of 

water. Monitoring water and salinity status has traditionally been based on destructive 

sampling. Furthermore, monitoring plant status using sample-point technique is 
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tedious, laborious and a costly process.  A promising alternative is the use of remotely 

sensed measurements as a quick, reliable and non-destructive tool that integrates the 

plant response to water and salinity stresses. 

Remote sensing technology (aircraft-based) is currently being used as a management 

tool in precision farming. However, there is a need for a ground-based remote sensing 

system to provide quick and accurate prediction of water and salinity stresses. 

Quantitative estimations of plant biochemical and biophysical variables can be 

achieved by the measurement of reflected radiation from plant leaves and canopies 

(Carter, 1994; Penuelas et al., 1994). The pattern and the intensity of plant canopy 

reflected radiation, especially in the visible (VIS) and NIR, depend mainly on the 

biochemical content and vegetation amount of the plant (Fernandez et al., 1994).  

Vegetation indices based on remote sensing have been acquired with ground, airborne 

and satellite systems (Penuelas and Filella, 1998). Narrow-band (hyperspectral) 

indices were shown to be more accurate than broad band indices in terms of 

correlating with plant biochemical data, because small physiological changes are 

mostly detectable at specific wavelengths (Penuelas et al., 1994). These indices can 

contrast reflectance from the same range, or from two different ranges mainly the VIS 

and NIR via different mathematical formulae. Normalized Difference vegetation 

Index (NDVI), Simple Ratio (SR), Soil Adjusted Vegetation Index (SAVI) and Water 

Band Index (WBI) have been widely used by remote sensing scientists to quantify 

green biomass, health status and water content etc. (Penuelas et al., 1994; Gamon et 

al., 1995). 

Spectral reflectance between 680-780 nm, defined as the red edge spectrum has been 

used to assess chlorophyll concentration, nitrogen and water stress (Filella and 

Penuelas, 1994). It has been found that the NIR bands at 900 and 970 nm are sensitive 

to crop moisture conditions and were used for early water stress detection (Penuelas et 

al., 1996). Therefore, the relative change in the reflected light energy from the plant 

canopy could be used as a key link between various combinations of stress. However, 

little work has been done on the influence of salinity induced stress on the expected 

properties of vegetation and whether its influence can be distinguished from moisture 

induced stress.   
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1.2 Aims and objectives 

The overall aim of this study is to investigate the potential of in situ hyperspectral and 

satellite remote sensing in detecting stress in wheat and maize to help manage limited 

water and land resources to maximise crop production. The study examines the crop 

response to moisture and salinity induced stress through controlled greenhouse based 

experiments followed by field visits in Egypt coupled with RS acquisition. The 

following objectives are set out to achieve the aims of this research. 

The objectives of this study: 

• To grow wheat and maize crops in controlled greenhouse conditions with 

sufficient number of replications to demonstrate whether moisture or salinity 

induced stress has a distinguishable influence on plant health (biophysical and 

biochemical properties). 

• From time series hyperspectral measurements of a sample of the greenhouse 

wheat and maize crops, simulate broad band and hyperspectral satellite remote 

sensing capabilities to evaluate the ability to measure plant health and 

differentiate moisture and salinity induced stress. 

• Undertake ground reference data collection in Egypt of wheat (March 2007) 

and maize (July 2007) crops including in situ hyperspectral measurements, 

soil sample collection for determining moisture, salinity, nitrogen 

concentration, pH, GPS coordinates, biometric measurements and total 

chlorophyll concentration.  

• Apply the empirically determined/calibrations to satellite images to evaluate 

the capability of monitoring crop health status and causes of stress (moisture 

and salinity).  

• Evaluate the potential effectiveness and value of implementing remote sensing 

technologies for precision farming and effective resources management in 

Egypt. 
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2 LITERATURE REVIEW 

2.1 Introduction 

This chapter mainly focuses further on the issues of crop production in Egypt and the 

remote detection of plant and crop stress. Remotely sensed data can be acquired at 

different levels including in-situ, airborne and satellite remote sensing. Much research 

has utilised remote sensing techniques for monitoring vegetation and plant health 

including crop productivity, biophysical properties such as aboveground biomass, leaf 

area index, grain yield and biochemical properties such as chlorophyll a concentration 

and other pigments. This chapter’s aim is to investigate the factors causing stress in 

crops in particular wheat and maize in the Egyptian context and draws together the 

possibility of using both in situ hyperspectral measurements and high spectral and 

spatial resolution satellite remote sensing in detecting crop stress.    

2.2 Cultivated land and crop production in Egypt 

2.2.1 Overview 
Population in Egypt is growing very rapidly as Egypt’s population density has 

doubled during the last three decades (Hamza and Manson, 2004). The total 

agricultural land in Egypt is estimated at 3.5 million hectare which presents around 

3.3 percent of the whole land mass of Egypt (FAO, 2005). As at present 5.4% of land 

resources in Egypt is qualified as excellent, while about 40% of either poor or of low 

quality, mainly due to issues of salinity, water logging and sodicity. Crop productivity 

for some crops such as maize has improved during the last three decades by 82% 

(FAO, 2005), relying on the introduction of the earlier maturing varieties of different 

crops, mechanization, modern irrigation techniques and new monitoring systems for 

plant status. 

In Egypt, the main field crops are maize, rice and cotton during the summer season 

and wheat, clover and bean during the winter season. Cereal production represents 

about 50% of the value of field crops, occupying about 2.72 million ha of the whole 

cropped area. Wheat occupies approximately 1.26, maize 0.88, rice 0.59, sorghum 

0.15 and barley 0.19 million ha (FAO, 2005). Wheat is considered the most important 

crop and the Egyptian Government gives priority to wheat production providing 

farmers with varieties which tolerate different types of stress. Wheat production has 
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improved a lot during the last three decades. Despite these improvements in wheat 

production, new techniques are still needed to increase crop productivity to sustain 

rapid population growth. The government also supplies farmers with high yielding 

varieties of maize such as Single Cross 10 which is imported from the USA.  

2.2.2 Production of wheat  
Wheat is a very adaptable crop grown from the Arctic Circle to the equator, from sea 

level to 3000 m, and in areas with between 250 to 1800 mm of annual rainfall. Wheat 

is, however, best suited to areas between 30o and 50o N, and 25o and 40o S latitude 

(Stoskopf, 1992). Despite the substantial increases in wheat production achieved 

globally over the last 50 years, further increases are required to meet the demands of 

the rapid population growth. An average projection is for world population to reach 

8.3 billion by the year 2025, before possibly stabilizing at about 10 billion towards 

2100 (Gooding and Davis, 1997). With constant per capita food consumption, 

therefore, yield needs to be 57% higher in 2025 compared with 1990 (Gooding Davis, 

1997). 

According to Klapp (1967) the most favourable climate for wheat would be a mild 

winter followed by a warmer summer with high radiation without excessive cooling 

summer rains and the optimum temperature for growth is usually within the narrow 

range of 20-25 oC (min 2 oC – max 30 oC). Ideal annual rainfall can vary widely, 

between 250-1000 mm depending on season and stage of growth (Stoskopf, 1992). 

The optimum sowing depth of wheat is, like that of most crops, a compromise and 

commonly ranges from about 2.5-10 cm. Wibberley (1989) suggests that 3 cm is ideal 

for cereals for most temperature soil conditions. Sowing deeply reduce the risk of the 

seed being eaten, particularly by birds.          

There are several published scales of cereal development that describe particular 

developmental stages defined by the external appearance and usually supplemented 

by a diagram. These include Zadoks scale, Feeks scale and Agricultural Development 

and Advisory scale (Zadoks et al., 1974; Wibberley, 1989). Among these scales, 

Zadoks is the most commonly used scale. Table 2.1 shows the Zadoks scale for 

identifying wheat developmental stages. 
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Table  2-1The decimal growth stage score for cereal development (Zadoks et al., 1974). 
 
Zadoks Scale  Growth Stage Zadoks Scale Growth Stage 

Germination Booting 

0.0 Dry seed 4.1 Early booting 

0.1 Start of water imbibitions 4.3 Mid booting 

0.3 Complete imbibitions 4.5 Late boot stage 

0.4 Radical emerged from caryopsis 4.7 Flag leaf sheath opening 

0.7 Coleoptile emerged from caryopsis 4.9 1st awns visible 

0.9 Leaf at coleoptiles tip Ear emergence 

Seedling development 5.1 1st spikelet visible 

1.0 1st leaf through coleoptile  5.3 ¼ of ear emerged (10.2) 

1.1 1st leaf unfolded  5.5 ½ of ear emerged (10.3) 

1.2 2nd leaf unfolded etc. i.e 5.7 ¾ of ear emerged (10.4) 

1.n nth leaf unfolded (where n<9) 5.9 Ear completely emerged (10.5) 

1.9 9 or more leaves unfolded Anthesis 

Tillering 6.1 Beginning of anthesis 

2.0 No tillers  6.5 Halfway through anthesis 

2.1 Main shoot and one tiller  6.9 Anthesis complete 

2.2 Main shoot and two tillers  Milk development 

2.n Main shoot and n tillers (n<9)  7.1 Water ripe 

2.9 9 or more tillers unfolded 7.5 Mid milk ripe (11.1) 

Stem elongation Dough development 

3.0 Pseudo stem erect(4-5) 8.5 Early dough (11.2) 

3.1 1st node detectable (6)  8.7 Late dough 

3.2 2nd  node detectable (7)  Ripening 

3.n nth node detectable (n<7)  9.1 Grain hard (difficult to divide)  

3.7 Flag leaf just visible (8) 9.2 Grain hard (11.4) 

3.9 Flag leaf ligule just visible (9)   Grain loosening in daytime 

 

2.2.3 Production of maize 
Besides wheat and rice, maize is considered the world’s third most important cereal 

crop. In Africa maize is grown over a wide range of environmental and geographical 

regions ranging from lowland (Niger’s northern Sahel), mid altitude and Ethiopia’s 

sub-tropical high land environments to converted frost lands of Sierra Leone (Zaidi, 

2004). Maize is mainly grown in Egypt in the summer season between May and 

September at small scales by most farmers in the Nile Delta and Valley. Maize 

production has increased from 3.35 million tonnes in 1982 to 6.1 million tonnes in 
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2002 (FAO, 2005) as a result of using high yielding varieties and hybrids exported 

from other countries such as USA. At a very small scale some farmers grow maize 

between August and December following vegetable crops like tomato, melon and 

watermelon. 

Maize growth stages and development 

There are several systems for identifying maize growth stages, the most common 

being Iowa State’s system (Ritchie et al., 1992). This system divides plant 

development into vegetative (V) and reproductive stages (R). Subdivisions of the V 

stages are designated numerically as V1, V2, V3, etc. through Vn, where n represents 

the last leaf stage before VT for the specific hybrid under consideration. The first and 

last V stages are designated as VE (Emergency) and VT (Tasseling). The n will 

fluctuate with hybrid and environmental differences. The six subdivisions of 

reproductive stages are designated numerically with their common names (Table 2.2) 

Table  2-2 different growth stages for maize crop (Ritchie et al., 1992). 
 
Growth stage Description 
Vegetative stages 
VE, emergency stage  Coleoptile emerges from soil surface 
V1, first leaf stage  The collar of the first leaf is visible 
V2, second leaf  The collar of the second leaf is visible 
V3, third leaf  The collar of the third leaf is visible 
V6, sixth leaf  The collar of the sixth leaf is visible 
V9, ninth leaf  The collar of the ninth leaf is visible 
V12, twelfth leaf  The collar of the twelfth leaf is visible 
V15, fifteenth leaf  The collar of the fifteenth leaf is visible 
V18, eighteenth leaf  The collar of the eighteenth leaf is visible 
VT, tasseling stage The last branch of the tassel is completely visible 
Reproductive stages  
R1, silking stage  Silks are visible on 50% of the plants  
R2, blister stage  Kernels are filled with clear fluid and the embryo can be seen 
R3, milk stage  Kernels are filled with a white, milky, fluid  
R4, dough stage  Kernels are filled with a white paste 
R5, dent stage  The top part of the kernels are filled with solid starch 
R6, physiological maturity  The back layer is visible at the base of the grain, grain moisture is 

usually 35% 

 

2.2.4 Socioeconomic pressure on crop production 
Wheat provides a major source of energy, protein and dietary fibres in human 

nutrition. Despite successful attempts to increase local wheat production as mentioned 

previously, Egypt continues to import wheat from amongst the USA, Australia and 
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Russia due to rapid population growth. The Egyptian Government has undertaken a 

massive effort to improve wheat production by supplying farmers with high yielding 

stress-tolerant varieties (drought, salinity, disease, etc.) but the country is still only 

40% self-sufficient. The reasons are: a) the limited cultivated area as the land 

cultivated with wheat in Egypt estimated at almost 1.26 million hectare and that is to 

rise by an additional 150 thousands, which represents nearly half of the cultivated 

land in Egypt, b) the rapid population growth particularly in the second half of the 

twentieth century with nearly the same cultivated area. Given the need to increase 

wheat production, it is important to use limited water and land resources very 

efficiently by using highly productive varieties, modern irrigation systems, stress 

tolerant varieties, expanding the cultivated area by using ground water and 

agricultural drainage water, which has been estimated at 17 billion cubic meter and 

using new techniques for monitoring crops such as remote sensing.     

2.2.5 Climate change and crop production 
Agricultural production and climate are closely linked, which means any change in 

climate will affect agricultural production. Climate change will affect the production 

directly and indirectly, for example, increasing temperature in a specific region will 

increase evapotranspiration, and therefore, the water requirements of crops especially 

summer crops. The length of the growing seasons and tolerance to pests and diseases 

will also be affected. Egypt is located in an arid region and climate change reduces 

crop production due to increased demand for water. Moreover, with increasing 

temperature, the amount of water delivered by the Nile will most likely decrease. 

Although agricultural production per unit area has increased substantially over the last 

few decades, further increases are limited by the availability of water and energy 

resources, land degradation and desertification, which affect the fertile lands for 

agricultural production. 

Many researchers studied the climate change impacts on crop production in Egypt. El-

Raey et al. (1995) reported that land losses of 12 to 15% of Egypt’s current arable 

land as a result of a one meter sea-level rise. Nicholls and Leatherman (1995) 

estimated that a mean of 1 meter global sea-level rise by 2100 would give rise to a 

0.37 meter sea level rise at the Nile Delta. Increased temperature as a result of climate 

change would increase evapotransipiration for most crops, which is likely to increase 
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crop water requirements and lower crop yields (Eid and Saleh, 1992). In addition, 

water flows from the Nile could be affected by upstream development in countries 

within the Nile basin such as Sudan and Ethiopia. 

2.2.6 Limiting factors for crop production 
Globally, water is regarded as the major limiting factor that reduces crop productivity 

especially in arid and semi-arid regions (Jones, 1999). Paolo and Rinaldi (2008) 

investigated maize yield response to irrigation and nitrogen fertilization and 

concluded that maize productivity is highly dependent on irrigation supplies in 

particular in areas with water limited conditions. They also reported that irrigation 

was more effective than nitrogen in increasing grain yield in two successive years. 

Barnabas et al. (2008) reported that drought is one of the major limitations to food 

production worldwide. High temperature causes high evapotranspiration making it 

difficult to meet water requirements of crops (Penuelas et al., 1992). Drought reduces 

the final crop yield of maize by 36% in the low land areas and 21% in sub-tropical 

areas (CIMMYT, 1988). Drought at any growth stage reduces crop yield but 

maximum reductions occurs at the flowering stage but early growth stage and mid to 

late grain filling stage are also sensitive (Claasen and Shaw, 1970). Edmeades et al. 

(1992) estimated that in the developing world, annual yield losses due to drought may 

approach 24 million tonnes, equivalent to 17% of a normal year’s production.   

The second major limiting factor is salinity as the accumulation of dissolved salts in 

the soil water inhibits plant growth (Gorham, 1992). Flowers et al. (1997) reported 

that approximately 7% of the world’s total land area is affected by salinity. Few crops 

are tolerant of high salinity. Most agricultural land in arid and semi-arid regions 

depends on irrigation for growing crops, which enhances salinity problems.  

The third limiting factor is the availability of nutrients. Drought and low soil fertility 

are the most stresses threatening maize production in eastern and southern Africa 

(Banziger and Diallo, 2004). Nitrogen (N) is the most important element affecting 

crop grain yield and is the most limiting nutrient in crop production as cropping 

practices become more intensive, other nutrients will likely become limiting as well 

(Osborne et al., 2002a). Nitrogen, because of its high plant demand and variability 

within the soil, is the most intensively managed plant nutrient in crop production 

(Schlemer, et al., 2005). They also concluded that stresses that involve deficiencies of 
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nitrogen and water will adversely affect the amount of chlorophyll plants produce as 

well as cell turgidity.  

In addition to drought, salinity and nutrients stressors, there are some biotic factors 

that are limiting wheat and maize production. For example in Africa maize grain yield 

is affected by some of these factors including; the spotted stem borer (Chilo parellus), 

Africa stem borer (Sesamia calamistis), stalk borer (Busseola fusca), and the pink 

stem borer (Sesamia cretica). The most important diseases that affect maize 

production are turcicum leaf blight (Exserohilum turicicum), common rust (Puccinia 

sorghi), gray leaf spot (Cercospora zeae-maydis) and the maize streak virus 

transmitted by Cicadulina leaf hoppers. 

2.2.7 Water resources and use  
Egypt’s climate is characterized by hot dry summers and mild winters. It is a 

predominantly arid country and agriculture in Egypt depends on irrigation from the 

River Nile. The necessary increase in food production to support the annual 

population growth (1.8%) compels the country to use all sources of water (drainage 

water, groundwater and treated sewage water) for the expansion of irrigated 

agricultural land.  Rainfall is very low, irregular and unpredictable as annual rainfall 

ranges from a maximum of about 200 mm in the northern coastal region to a 

minimum of nearly zero in the south, with an average of 51 mm.  

Agricultural water use: 

While the amount of water used for agriculture has declined slowly during the past 

decade, it still accounts for the largest share (85.4%). This amount does not include an 

annual estimated loss of 2 billion m3 due to evaporation from the irrigation system 

(FAO, 2005). Surface irrigation system is used in most cultivated lands of the Nile 

Valley and Delta. Its efficiency is considered to be low as a result of deep percolation 

and evaporation. Excess application of water to crops contributes to problems of 

salinity and high water tables. It must also be noted, however, that excess irrigation 

water contributes to ground water, a good part of which is pumped or partially reused 

through cycling. The measured drainage water out of the system amounted to about 

17 billion m3. In the newly reclaimed lands, modern irrigation systems such as drip 

and sprinkler irrigation systems are used to increase the efficiency of irrigation 
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systems. The government does not give permits for new water to lands unless 

evidence is given of the use of new irrigation technologies. 

Re – use of agricultural drainage and treated waste water 

The policy of the Egyptian Government is to use drainage water (up to salinity of 4.5 

dS m-1) after it is blended with fresh Nile water. Reuse of drainage water, returned to 

the Nile in irrigation is estimated at 4.84 billion m3 per year in 2001-2 (FAO, 2005). 

In fact, direct use of drainage water for irrigation with salinity from 2 to 3 dS m-1 is 

common in the district of northern Delta, where there are no other alternatives or in 

areas of limited better water quality supply. Farmers in Beheira, Kafr-Elsheikh, 

Damietta and Dakhlia regions have successfully used drainage water directly for 

periods of 25 years to irrigate over 10000 ha of land, using traditional farming 

practices. The major crops include clover, rice, wheat, barley, sugar beet and cotton. 

Yield reduction of 25 to 30% is apparently acceptable to local farmers. Yield 

reductions observed are attributed to water logging and salinization resulting from 

over-irrigation and other forms of poor agricultural, soil and water management 

(Rhoades et al., 1992). 

Agricultural drainage water in Upper Egypt is discharged back into the Nile; this 

affects the quality of the Nile water, where its salinity increases from 0.4 dS m-1 in 

Aswan to 0.6 dS m-1 in Cairo. Hamza and Manson (2004) reported that because of the 

increased food needs in Egypt, two basic strategies are possible: importing food or 

growing more food. They also mentioned that reuse and efficient water utilisation 

have the highest priorities of the Egyptian Government. According to Egyptian 

estimates, they state that an additional 20.9 km3 year-1 could be made available 

through recycling water by changing irrigation techniques, adopting water efficient 

crops and cropping patterns, this is equal to 30% of the water that used at present.    

2.2.8 Water quality 
The first priority when using water for irrigation is salinity levels because salinity 

affects both soil structure and yield productivity in the same time. Many parameters 

are usually used to define irrigation water quality to assess salinity hazards and 

determine appropriate management strategies. A complete water quality analysis will 

include the following: 
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• The total concentration of the soluble salts. 

• The relative proportion of sodium to the other cations and anions.  

• The bicarbonate concentration as related to the concentration of calcium and 

magnesium. 

• The concentration of specific elements and compounds.  

Table 2.3 shows different elements that always found in irrigation water and the level 
of these elements.  
 
Table  2-3 The common elements found in irrigation water (Longenecker and Lyerly, 1994). 
 
Element Chemical symbol Approximate proportion 
Sodium chloride NaCl Moderate to large 
Sodium sulphate Na2SO4 Moderate to large 
Calcium chloride CaCl2 Moderate 
Calcium sulphate (gypsum) CaSO4 2H2O Moderate to small 
Magnesium chloride MgCl2 Moderate 
Magnesium sulphate MgSO4 Moderate to small 
Potassium chloride KCl Small 
Potassium sulphate K2SO4 Small 
Sodium bicarbonate NaHCO3 Small 
Calcium carbonate CaCO3 Very small 
Sodium carbonate Na2CO3 Trace to none 
Borates BO-3 Trace to none 
Nitrates NO-3 Small to none 

 

A simple approach to evaluate the suitability of irrigation water is to observe the long 

term influence of water with similar chemical composition on soils and crops in a 

zone where other factors and conditions are similar to those of the project area. 

However, it is not always possible to apply this approach, and therefore, some kind of 

water classification may be required. 

The salt effects on plant physiological process resulting from lowering of the soil 

water potential and the toxicity of specific anions (Bresler et al., 1982). However, it 

has been repeatedly reported that non-toxic highly saline water has an agricultural 

potential. If irrigation can be managed in a way which provides a high soil moisture 

content, and consequently high soil water potential within the whole root zone, the 

osmotic effects will be dampened (Michelakis et al., 1993). Moreover, when saline 

water is skilfully used for irrigation, it can be beneficial for agricultural production, 
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particularly in orchards (Hoffman et al., 1986). Saline water used for agricultural 

production offers several additional benefits: 

• Re-use (instead of disposal as with fresh water) during the entire year, with 

minimal environmental risk of ground water deterioration (Oron, 1993). 

• Enlarge the cultivated area with crops.   

 

Table 2.4 shows the classification of water of different origins which allow a 

comparison among the salinity of drainage water, ground water and surface water. 

Table  2-4 Classification of water of different origins (Rhoades et al., 1992). 
 
Type of water  EC (dS/m) TDS (g/l) Water class 
Drinking and irrigation water < 0.7 <0.5 Non saline 
irrigation water 0.7 – 2 0.5 - 1.5 Slightly saline 
Primary drainage water and ground water  2 - 10 1.5 - 7 Moderately saline 
Secondary drainage water and ground water 10 - 20 7 - 15 Highly saline 
Very saline groundwater 20 - 45 15 - 35 Very highly saline 
Seawater >45 > 35 Brine 
 
TDS - Total Dissolved Salts; EC - Electrical Conductivity 

 

In 1976, the FAO developed new guidelines for a rapid evaluation of the suitability of 

water for irrigation. These guidelines were slightly modified by Ayers and Westcot 

(1985). The relationship between the chemical composition of the water and the soil 

salinity, the effect of sodium on the infiltration rate, the specific toxicity of several 

ions and other specific effects are taken into account in these guidelines (Table 2.5). 

These guidelines can be widely applied in the irrigated lands of the arid and semi-arid 

regions and cover the range from sandy loam to permeable clay loam soils. Drainage 

conditions have to be good using the most efficient system. It is assumed that there is 

a deep water table or it can be controlled by a subsurface drainage system. 

Furthermore, losses of water through percolation are at least 15% of the applied 

water. This assumption is valid for surface and sprinkler irrigation methods. If water 

is applied more frequently by localized irrigation a different approach is 

recommended. 
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Table  2-5 Guidelines for interpretation of water quality for irrigation (Ayers and Westcot, 1985). 
 
Potential irrigation problem Units None Slight to moderate Severe 

Salinity (affects crop water availability)  

ECi dS m-1 <0.7 0.7-0.3 >3.0 

TDS Mg/l <450 450-200 >2000 

Infiltration(affects infiltration rate of water into the soil, evaluate using EC and SAR together) 

SAR                                                                                                 EC (ds m-1) 

0-3     >0.7 0.7-0.2 <0.2 

3-6     >1.2 1.2-0.3 <0.3 

6-12   >1.9 1.9-0.5 <0.5 

12-20   >2.9 2.9-1.3 <1.3 

20-40   >5.0 5.0-2.9 <2.9 

Specific ion toxicity (affects sensitive crops) 

Sodium (Na)     

Surface irrigation SAR <3.0 3.0-9.0 >9.0 

Sprinkler irrigation meq/l <3.0 >3.0  

Chloride (Cl)     

Surface irrigation meq/l <4.0 4.0-10.0 >10.0 

Sprinkler irrigation meq/l <3.0 >3.0  

Boron (B) Mg/l <0.7 0.7-3.0 >3.0 

Miscellaneous effects (affects susceptible crops) 

Nitrogen (NO3 – N) Mg/l <5.0 5.0-30 >30.0 

Bicarbonate (HCO3) meq/l <1.5 1.5-8.5 >8.5 

(Overhead sprinkling only) 

pH                                             normal range 6.5-8.4   

 

For Egypt, El-Lakany et al. (1986) reported that the reduction in production of soils 

affected by salinity is about 30%, threatening the livelihoods of the poor farming and 

having a significant negative impact on the food production of Egypt. Recently, the 

Egyptian Government has tried to overcome the salinity problem in irrigated areas by 

establishing new efficient drainage systems such as sub-surface drainage system, but 

the annual average net income from crops grown with drainage systems is more 

limited than for those grown without drainage systems (Amer et al., 1989). Therefore, 

new techniques should be followed to solve this problem such as using genetic 

engineering technique to have high tolerant crops and using large-scale monitoring 

techniques (e.g. satellite remote sensing) to predict stress on plants at early stages.          
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2.3 Sources of plant and crop stress 

There are many factors that affect the growth of any crop including water stress, 

salinity, disease, nutrients, pollution and heat stress and these factors affect the grain 

yield of both wheat and maize. In this research project we are mainly focusing on 

moisture and salinity stress due to their importance for Egypt. The term of plant stress 

is considered to be a condition that deviates significantly from the condition required 

for optimal plant growth and thus could cause harmful effects when the limit of a 

plant’s ability to adjust is reached (Larcher, 1995).  

2.3.1 Water stress 
When plants are subjected to water stress, it affects the availability of water to plants, 

and therefore, water content of plant cells is lower than the optimum level and causes 

some degree of metabolic disturbance, hence, a plant is said to be suffering water 

stress (Fitter and Hay, 1981). Leaf curling, wilt or drastic decrease of leaf area 

expansion is generally symptoms of water stress (Alscher et al., 1990). Plants 

subjected to water stress reduce stomatal conductance, causing a decrease in 

transpiration rate, this affects the leaf energy balance and ends with increasing leaf 

temperature (Jones, 1999). Water stress affects leaf area and leaf angle distribution 

(LAD) in many plant species. Ehleringer and Forseth (1989) reported that several 

plant species have shown the ability to adjust leaf angle in response to limited soil 

moisture. The extent of moisture stress impact on plant leaves depends on the 

occurrence of the water stress relative to the phenological stage of the plant and 

severity of water deficit (Chaney, 2000). 

Researchers have concluded that water availability is one of the major factors limiting 

maize production. Eck (1986) found that stress imposed on maize at vegetative stages 

of growth for 14 and 28 days reduced yields by 23 and 46% respectively. However, 

maize is very sensitive at specific periods of the growing season to moisture stress; 

during tasseling and continuing through grain filling (Musick and Dusek, 1980). They 

also reported that soil moisture stress during periods of tasseling and silking was most 

detrimental to yield, and that soil moisture stress during the time of grain filling was 

more harmful to yield than during vegetative growth. Schneider and Howell (1998) 

compared the yields of maize at different watering regimes, which were five levels in 

25% increment ranging from 0 to 100% AWC (available water content) through the 
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growing season. Yields were highest when AWC of soil was held close to 100% 

throughout the growing season.  

The availability of soil water is a major factor limiting wheat production in most 

regions of the world especially under semi arid and arid environments (Ozturk and 

Aydin, 2004). They also reported substantial losses in grain yield are caused by water 

deficiency depending on the developmental stage at which water stress occurs.  

2.3.2 Salinity stress 
Plant growth is hindered by salinity especially in sensitive plant species; salinity 

affects plant growth in three major ways (Greenway and Munns, 1980): (i) water 

deficit arising from the more negative water potential (elevated osmotic pressure) of 

the soil solution, (ii) specific ion toxicity usually associated with either excessive 

chloride or sodium uptake and (iii) nutrient ion imbalance when the excess of Na+ or 

Cl- leads to a diminished uptake of K+ , Ca+ , NO3
- or PO4

-, or to impaired internal 

distribution of one or another of these ions. 

Excess salinity within the plant root zone has a general deleterious effect on plant 

growth since water with high salinity is toxic to plants and poses a salinity hazard 

(University of Texas, 2007). High concentrations of salt in the soil can result in a 

physiological drought condition-that is, even though the field appears to have plenty 

of moisture, the plants wilt because the roots are unable to absorb water. They also 

reported that this effect is primarily related to total electrolyte concentration and is 

largely independent of specific solute composition. The hypothesis that best seems to 

fit observations is that excessive salinity reduces plant growth primarily because it 

increases the energy that must be expended to acquire water from the soil of the root 

zone and to make the biochemical adjustments necessary to survive under stress. This 

energy is diverted from the process which leads to growth and yield. Larcher (1995) 

reported that plants are under salinity stress when salt content in the root zone exceeds 

the capacity of plants to cope. Plants try to adapt with high salinity in the root zone by 

reducing leaf size, scorching of leaf tips or margins, and premature discoloration and 

abscission of the leaves. 

Salinity reduces the rate of leaf expansion therefore the total leaf area of the plant is 

reduced (El-Hendawy, 2004). The common decrease in leaf expansion is associated 
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with a loss in cell turgor pressure rather than a salt specific effect. This is supported 

by the evidence that Na+ and Cl- are always below toxic concentrations in the growing 

cells themselves. In a study on wheat, Hu and Schmidhalter (1998) reported that 

irrigating wheat with water containing 120 Mm NaCl decreased the growth rate by 

25%. However, Ball (1988) found that the common decrease in leaf expansion is not 

related to a loss in turgor pressure and is most likely a result of a change in hormonal 

signalling from roots to leaves. 

Generally, salinity significantly decreases tiller numbers and their appearance in 

wheat (Mass and Poss, 1989). Salinity significantly reduces the total dry matter yield 

and the degree of reduction in total dry matter depending on genotypes and salt 

concentrations (Pessarkali and Huber, 1991). Aloy (1992) found that 1000-seed 

weight in barley was more strongly affected by salinity than grain number per spike 

and spikes per plant. Furthermore, the response of phenological aspects of plants to 

salinity changes with plant development stages (Neumann, 1995). Many plants show 

a reduced tolerance to salinity during the germination period (early stages) but show 

greater tolerance during later growth stages whilst other crops show the opposite. 

Research has shown that wheat, sorghum and cowpea were the most sensitive during 

the vegetative and early growing stages, less sensitive during flowering, and least 

sensitive during the grain filling stage (Mass and Poss, 1989). 

2.3.3 Heat and chilling stress 
Heat and cold stress depending on their intensity and duration can impair the 

metabolic activity, growth and variability of plants and thus limit the distribution of a 

species. When the critical temperature threshold of a species is exceeded, cell 

structures and cellular functions may be damaged (Larcher, 1995). Plants under heat 

stress are darker when compared with non-stressed plants and plants that suffer from 

this type of stress have dry or yellow – dry spots on their leaves (Staub, 1990). 

Physical and/or physiological changes that are induced by exposure to very low 

temperature include loss of chlorophyll, apparent as leaf yellowing, and purpling as a 

result of photo-oxidation (Saltveit and Morris, 1990).  

It is predicted that increases in greenhouse gas concentration will result in increasing 

mean temperatures of about 2°C by the middle of the 21st century (Kattenberg et al., 

1996). The growth stage of wheat most likely to be affected is the grain filling stage 
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as the duration of grain filling in cereals is determined principally by temperature 

(Wheeler et al., 1996). They also reported that high temperature episodes occurring 

near to anthesis can reduce the number of grains per ear and the subsequent rate of 

increase in harvest index, resulting in smaller grain yields.    

2.3.4 Nutrients stress  
Nitrogen deficiency is the most common and widespread nutrient deficiency (Larcher, 

1995). When plants are subjected to nitrogen stress the first symptom tends to be 

yellowing of leaves. Most maize crops in African countries suffer from nitrogen 

deficiency because of intensive cropping system as most farmers grow at least three 

crops per year which leads to lack of soil fertility. Also, due to increasing chemical 

fertilization prices, farmers can not afford enough fertilizer to compensate for the loss 

of nitrogen in intensive cropping systems. In addition to grain yield reduction due to 

the lack of nitrogen, nitrogen deficiency may result in reducing ear biomass at 

flowering and under drought conditions (Edmeades et al., 1992).       

2.4 Plant morphological responses to stress 

Every part of a plant may be affected by any type of stress although in most cases one 

or some parts of a plant are affected first. Leaf responses to different stresses are very 

important when taking into account remote sensing techniques in detecting plant 

stress particularly the decrease in the rate of leaf expansion and consequent decrease 

in the total leaf area. The decrease in leaf expansion is generally thought to be due to a 

drop in cell turgor pressure. However, Ball (1988) suggested that it was more likely a 

result of a change in hormonal signalling from roots to leaves.  

In maize crops suffering drought, the maize grain yield is decreased as a result of 

decreasing plant stand during the seedling stage, by decreasing leaf area development 

and therefore, decreasing photosynthetic rate as a result particularly during the pre-

flowering stage, by decreasing ear and kernel set during the two weeks bracketing 

flowering, and by inducing early leaf senescence during the grain filling stage. At the 

cellular level, drought results in accumulating abscisic acid mainly in the roots where 

it simulates plant growth. Under severe drought, cell division is inhibited and 

therefore a lack of cell expansion results.  
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2.5 Remote sensing of Vegetation 

2.5.1 Introduction 
Remote sensing is the acquisition of information about our environment by devices 

not in direct physical contact with the objects or phenomena being sensed, i.e., non 

contact sensing. In the broadest sense this definition includes sensors and capabilities 

as old as human himself. However, in a more restricted sense, the term is commonly 

used to mean acquisition with various auxiliary devices human has designed to extend 

his natural sensory capabilities. Remote sensing provides the ability to collect 

information concerning large areas at frequent intervals through satellite remote 

sensing techniques and the monitoring capability for agricultural and hydrology has 

improved greatly during the last decade (Ambast et al., 2002). 

The remote sensing task is taken to include the experimental plan, the selection of 

sensors to be used, the reception, recording and processing of data from these sensors, 

and equally important, the extraction and interpretation of useful and timely 

information from that data. Such remote sensing information is derived from data 

gathered through the measurement of force fields with the gravimeters 

magnetometers; the measurement of acoustical energy by seismograph, sonar or 

microphones; more commonly, the measurement of electromagnetic radiation by 

ground–based, airborne or satellite cameras, radar, infrared and multispectral 

scanners. These remote sensing instruments provide two kinds of information: basic 

scientific information on the earth and its environment (including the other planets or 

astronomical observations on a universal scale), and applied scientific information 

useful for the intelligent management of earth resources or the solution of specific 

problems. Recently there are many satellite sensors including high spatial and high 

spectral resolution satellites. Table 2.6 shows some of these satellites characteristics 

including the spectral and spatial resolution, revisit period and the application of these 

satellites. In 1980s and 1990s, it was not common to use satellite remote sensing in 

detecting stress in crops due to limited spectral and spatial resolutions. However, with 

launching the first generation of high spectral and spatial resolution (e.g. Hyperion, 

IKONOS and QuickBird) at the beginning of 21st century, it is now possible to use 

these platforms to detect stress and even distinguish sources of stress.   
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Table  2-6 The spatial and spectral specification of some satellite remote sensing instruments. 
 

satellite Spatial 
Resolution 

Spectral Resolution Revisit 
Period 

Primary 
Applications 

IKONOS 4 m Multispectral                4 
bands 0.45-0.88 μm 

1-2 days Terrestrial mapping  

ALI 30 m Multispectral              10 
bands 0.4-2.4 μm 

unspecified Designed to replace 
the landsat instrument 

MODIS 0.25-1 km Multispectral              36 
bands 0.4-14.4 μm 

2-4 days Terrestrial 
oceanography and 
atmospheric 

ASTER 15 m Multispectral                
14 bands 0.52-0.86 μm 

16 days Vegetation mapping 
and thermal 
applications 

AVHRR 1.1 km Multispectral                5 

bands 0.58-12.5 μm 

1 day Large scale vegetation 
mapping 

Hyperion 30 m Hyperspectral          220 
bands 0.4-2.5μm 10 nm 
bandwidth  

variable Varied applications 

ARIES 10 m Hyperspectral 32bands 
0.4-1.05 μm               10 
μm bandwidth 

7 days Mineralogical and 
vegetation mapping 

Landsat TM7 30 m Multispectral                5 
bands 0.5-1.1 μm 

16 days Geological and 
vegetation 

MERIS 300 m Multispectral              15 
bands 0.39-1.04 μm  

3 days Oceanography 

SeaWiFS 1.1 km Multispectral           
8bands 0.4-0.885 μm 

1 day Ocean colour  

Orbwiew-4 
warfighter 

4-8 m Hyerspectral            200 
bands 0.4-2.5 μm 10 nm 
bandwidth 

N/A N/A 

QuickBird 2.4 m Multispectral                5 
bands 0.44-0.9 μm 

1-3.5 days Terrestrial mapping 

SPOT 5 20 m Multispectral           
5bands 0.5-0.89 μm 

2-3 days  Terrestrial mapping 

AHS Dependent 
on flying 

height 
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2.5.2 Principles of stress detection by remotely sensed data 
Remote sensing provides information about objects through the analysis of data 

acquired by a device that is not in contact with the target (Lillesand and Kiefer, 2000). 

Detection of plant stress by remote sensing is mainly dependant on the assumption 

that stress factors that interfere with photosynthesis process or the physical structure 

of the plant affect the absorption of light energy and thus alter the reflectance 

spectrum by reliably measuring the reflectance spectrum of the status of plant health. 

Leaf reflectance is affected by different factors including leaf internal structure, 

surface properties, the concentration and distribution of biochemical components such 

as chlorophyll a and water content. Remote sensing analysis of reflectance has been 

used by many researchers to predict stress in plants by predicting yield, biomass, 

chlorophyll concentration, leaf water content and protein content (Penuelas et al., 

1997a; Lu et al., 2005). Basically, leaf chlorophyll concentration is one of the main 

factors that affect reflectance from plant canopies particularly in the visible (VIS) and 

near infrared (NIR) wavelengths (500-900nm). Also, leaf water content is one of the 

primary factors that affect the reflectance in the region between 1300 and 2500 nm 

(Carter, 1991). Moran et al. (1994) reported that plants subjected to water stress have 

higher leaf temperature than normal plants and other types of crop stress related to 

water uptake by plant roots or translocation of water to the leaves for evaporation also 

have similar symptoms. 

Attempts have been made by many researchers to investigate the reflectance from 

canopies of stressed plants. It has been reported that plants under stress show a 

decrease in reflectance of the near infrared region, a reduced red absorption in the 

chlorophyll active band (680 nm), and a consequence shift of the red edge (Malthus 

and Madeira, 1993; Carter, 1993).   

2.5.3 Factors controlling the spectral responses of vegetation 
Reflectance measurements are affected by many climatic parameters such as 

atmosphere, soil background, wind, viewing angle, the height of the sensor from plant 

canopies and light intensity. These factors affect the spectral signature from 

vegetation and consequently reduce the efficacy of remotely sensed data in 

monitoring specific features (e.g. plant health status).  
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Soil background: 

Soil background has a great effect on reflectance measurements particularly at the 

very early growth stages because of the low density of plant shoots and leaves. 

Elvidge and Lyon (1985) found that the NIR and red based indices have pronounced 

soil background influences at low vegetation cover. Mickelson et al. (1998) reported 

that Green Vegetation Index (GVI) values were much less influenced by soil 

background. Little changes in soil reflectance ratios as soil moisture changed because 

a change in soil reflectance due to water concentration is similar in the visible and 

near-infrared (NIR) regions of the whole spectrum (Jackson et al., 1983). This fact 

demonstrates that soil moisture might not have a big effect on some derived 

vegetation indices. They also found that dark and low reflecting soils influence 

vegetation indices less than high reflecting and light coloured soils. Huete et al. 

(1984) reported that the spectral differences between soils may be closely associated 

with variations in surface moisture, particle size distribution, soil mineralogy, soil 

structure and surface roughness. Rainey et al. (2000) showed the importance of 

mineralogy in the maintenance of soil and sediment moisture in response to drying 

conditions. Clay rich sediment maintained low reflectance for longer whilst drying 

compared with silt and sand rich sediment. Huete (1988) proposed the Soil Adjusted 

Vegetation Index (SAVI) to minimise the effects of soil background on the 

quantification of greenness by incorporating a soil adjustment factor (L) in the basic 

NDVI equation. This factor is determined by the relative percentage of vegetation and 

whether the soil is light or dark; Huete gave the value of L at different growth stages 

as follow: 1.0 for emergent crops, 0.5 for the intermediate stage, and 0.25 for the 

final, pre tassel stage. 

Wind 

Wind has also a great effect on the reflectance from plant canopies as it affects the 

structure of canopies and leaf inclination angle, and therefore, the reflectance. Lord et 

al. (1985b) carried out a study to investigate the effects of wind on spectral 

reflectance; they reported that within the windy and calm periods, extreme values of 

spectral reflectance differed by 60% and 12%, respectively, in the red and by 40% and 

8% in the NIR for the barley canopy. The plant canopy architecture, the wind 
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conditions and the spectral regions all affected the magnitude of the influence of wind 

on the spectral reflectance of the canopy. 

Atmosphere 

Conditions in the atmosphere, i.e. the amount of incident sunlight and the percentage 

of water vapour affect reflectance from plant canopies. Many attempts have been 

undertaken to investigate these effects. Lord et al. (1985a) investigated the potential 

of using reflectance data collected under both cloudy and sunny conditions; they 

found that the reflectance measured under cloudy conditions with relatively constant 

irradiance values was constant and approximately 10% higher than the values 

measured at similar sun angles during sunny conditions. This suggests that it would be 

better to measure reflectance under cloudy conditions to minimise the impact of 

atmosphere. Gao and Goetz (1992) stated that it is important to minimise the length of 

time between the measurement of the reflectance panel and the target in order to 

reduce the error due to water vapour variability. Therefore, during reflectance 

measurements if a reference panel is used and the atmospheric conditions are 

changeable, the time between them should be a minimum as variability of 

atmospheric water vapour between the time when the reference panel and target 

measurements are acquired may affect the obtained spectrum. 

Solar angle:  

The effects of solar angle on reflectance measurements have been studied by some 

researchers. Pinter et al. (1987) reported that the NIR/red ratios of winter wheat were 

significantly influenced by changes in solar angles. They reported that the NIR/red 

ratio was highest in mid-morning and mid afternoon and lowest at the highest solar 

position near midday. Increasing solar zenith angle led to increasing NDVI values and 

with small sun zenith angle (SZA) improved the NDVI contrast between green 

vegetation and soil and also the land cover discrimination in all bands, except for 

those placed in the 750-1100 nm range (Galvao et al., 2004). Lord et al. (1988) 

investigated the relationships between daily variations in sun angles and both red and 

near infrared reflectance measured throughout a growing season over different types 

of crop canopies; they found that for wheat canopies visible reflectance is 

approximately constant throughout the day and infrared reflectance increases when 



 

 
 

25

angle from solar azimuth increases. Therefore, reflectance measurements should be 

undertaken near the solar zenith (at noon) to decrease the effects of solar angle on 

canopy reflectance (Asrar et al., 1985; Serrano et al., 2000). 

Viewing angle: 

The ratio of off-nadir to nadir radiance increases or decreases as view zenith angle 

increases depending on view azimuth angle. Galvao et al. (2004) reported that at large 

solar zenith angles, this spectral interval was useful to separate primary forest/old 

woody vegetation re-growth from most of the other surface components due to 

enhancement in the shade fraction associated with the arboreal covers. Ranson et al. 

(1985) reported that the position of the sensor relative to the sun was an important 

factor for determining the angular reflectance characteristics of crop canopies. Pinter 

et al. (1987) reported that off-nadir viewing significantly influenced spectral band 

ratios. Thus, the nadir is a very popular viewing angle selected for reflectance 

measurements.    

2.5.4 Satellite sensor specification 
Generally sensors collect the sun radiation of the electromagnetic spectrum which 

basically comprises the entire range of the radiant energies or wave frequencies of 

solar radiation from the shortest wavelengths to the longest wavelengths. The 

electromagnetic spectrum is divided into seven portions including; visible, infrared, 

radio, microwave, ultraviolet, x-ray, and gamma ray radiation (NASA, 2005). Remote 

sensing instruments are characterized by their resolutions including; spatial resolution, 

spectral resolution, temporal resolution and radiometric resolution. Remote Sensing 

sensor’s spectral resolution is determined by the bandwidth of the electromagnetic 

radiation of the channels used. High spectral resolution is achieved by narrow 

bandwidths which collectively are likely to provide a more accurate spectral signature 

for discrete objects than broad bandwidth. Temporal resolution is determined as the 

repetitive coverage of the ground by the remote sensing system. Radiometric 

resolution of a satellite remote sensing sensor’s is defined by the number of discrete 

levels into which signals may be divided. The spatial resolution describes the 

geometric properties of the imaging system.  Three types of satellite datasets were 

evaluated in this research project including ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer), QuickBird, and SPOT (Satellite Pour l` 
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Observation de la Terre satellite) which are high spatial resolution satellites, Tables 

2.7-2.9 show technical characteristics of these three satellites. 

ASTER satellite 

ASTER is a cooperative effort between NASA and Japan’s Ministry of Economy 

Trade and Industry (METI), with the collaboration of scientific and industry 

organizations in both countries. The ASTER instrument provides the next generation 

in remote sensing imaging capabilities compared with the older landsat Thematic 

Mapper (TM). It captures high spatial resolution data in 14 bands, from the visible to 

the thermal infrared wavelengths. ASTER instrument consists of three separate 

instrument subsystems. Each subsystem, operates in a different spectral region, has its 

own telescope(s). ASTER’s three subsystem are: the Visible and Near Infrared 

(VNIR), the Shortwave Infrared (SWIR) and the Thermal Infrared (TIR). The VNIR 

subsystem operates in three spectral bands at visible and NIR wavelengths, with a 

spatial resolution of 15 m. The SWIR subsystem operates in six spectral bands in the 

Near Infrared region through a single-nadir pointing telescope that provides 30 m 

spatial resolution. The TIR subsystem operates in five bands in the thermal infrared 

region using a single, fixed-position, and nadir looking telescope with a resolution of 

90 m. Table 2.7 shows an overview of ASTER technical specifications and Figure 2.1 

shows the ASTER satellite instrument. 

 

 
 

Figure  2-1 ASTER satellite instrument (www.satimagingcrop.com). 
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Table  2-7 Technical specifications of ASTER satellite instrument. 
 

Characteristics VNIR SWIR TIR 

 Band 1: 0.52-0.60 µm 

Nadir looking 

Band 4: 1.6-1.7 µm Band 10: 8.125-

8.475 µm 

 Band 2: 0.63-0.69 µm 

Nadir looking 

Band 5: 2.145-2.185 µm Band 11: 8.475-

8.825 µm 

Spectral range Band 3: 0.76-0.86 µm 

Nadir looking 

Band 6: 2.185-2.225 µm Band 12: 8.925-

9275 µm 

 Band 3: 0.76-0.86 µm 

Backward looking 

Band 7: 2.235-2.285 µm Band 13: 10.25-

10.95 µm 

  Band 8: 2.295-2.365 µm Band 14: 10.95-

11.65 µm 

  Band 9: 2.36-2.43 µm  

Ground resolution 15 m 30 m 90 m 

Data rate (Mbits/sec) 62 23 4.2 

Cross-track Pointing 

(deg.) 

+/-24 +/-8.55 +/-8.55 

Cross-track Pointing 

(km) 

+/-318 +/-116 +/-116 

Swath Width (km) 60 60 60 

Detector Type Si PtSi-Si HgCdTe 

Quantization (bits) 8 8 12 

 

QuickBird satellite 

QuickBird is the second generation of the earlybird satellites launched by Digital 

Globe. This satellite launched on October 18th 2001, QuickBird is one of the first 

commercial remote sensing satellites capable of gathering sub-meter resolution data 

over a very wide swath. The QuickBird satellite incorporates an ITT – designed and 

built sensor subsystem, consisting of the focal plane array, image compression and 

electronics. The subsystem captures 0.61 meter-resolution panchromatic imagery, and 

2.4 meter multi-spectral imagery. It produces 11 x 11 km snapshots to 11 x 225 km 

strip maps. In addition to green, red and near infrared wavelengths, the multispectral 

image sensor can also process a blue channel, enabling true colour imaging from 

space. Table 2.8 shows the technical specification of the QuickBird satellite and 

Figure 2.2 shows the QuickBird satellite instrument.    
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Figure  2-2  QuickBird satellite instrument (www.satimagingcrop.com). 

 
 
 
Table  2-8 Technical specifications of QuickBird satellite instrument. 

 

Characteristic   Specification 

Launch Date   October 18, 2001 

Launch Vehicle  Boeing Delta II 

Launch Location  Vandenberg Air Force Base, California, USA 

Orbit altitude  450 km 

Orbit Inclination 97.2°, sun-synchronous 

Speed 7.1 km/second-25,560 km/hour 

Equator Crossing Time 10.30 a.m. (descending node) 

Orbit Time 93.5 minutes 

Revisit Time 1-3.5 days depending on latitude (30° off-nadir) 

Swath Width 16.5 km x 16.5 km at nadir 

Metric accuracy 23-meter horizontal (CE90%) 

Digitization  11 bits 

Resolution  Pan: 61cm (nadir) to 72 cm (25° off-nadir)  

MS: 2.44 m (nadir) to 2.88 m (25° off-nadir) 

Image bands  Pan: 450 – 900 µm, Blue: 450 – 520 µm, Green: 520 – 600 µm, 

Red: 630 – 690 µm, NIR: 760 – 900 µm  

 

SOPT satellite  

SPOT satellite is a joint venture between French, Swedish, and German organization 

and operated by the French-based company in Toulouse. SPOT 1 was launched in 

February 1986 by the French Government Agency, Centre National d`Etudes Spatials 

(CNES). Thereafter, SPOT 2, 3, 4 and 5 were launched. The SPOT sensors have the 

ability to image from vertical viewing (nadir) up to plus or minus 27 degrees off-
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nadir. SPOT satellite has two sensors and when used in dual mode, both sensing 

instruments can be pointed to cover adjacent ground areas, while viewing the earth 

from the vertical (nadir) position. Table 2.9 shows the technical specifications of the 

SPOT satellite and Figure 2.3 shows the SPOT satellite instrument.  

 
 

Figure  2-3 SPOT 5 satellite instrument (www.satimagingcrop.com). 
 
 
Table  2-9 Technical specification of SPOT 5 satellite instrument. 
 
Characteristic   Specification 

Launch Date   May 3, 2002 

Launch Vehicle  Ariane 4 

Launch Location  Guiana Space Centre, Kourou, French Guyana 

Orbit altitude  822 km 

Orbit Inclination 98.7°, sun-synchronous 

Speed 7.4 km/second-26,640 km/hour 

Equator Crossing Time 10.30 a.m. (descending node) 

Orbit Time 101.4 minutes 

Revisit Time 2-3 days depending on latitude  

Swath Width 60 km x 60 km to 80 km at nadir 

Metric accuracy <50 m horizontal position accuracy (CE90%) 

Digitization  8 bits 

Resolution  Pan: 2.5 m form 2 x 5 m scenes; Pan: 5 m (nadir) 

MS: 10 m (nadir); SWI: 20 m (nadir) 

Image bands  Pan: 480 – 710 µm, Green: 500 – 590 µm, Red: 610 – 680 µm, NIR: 

780 – 890 µm, Short-Wave IR: 1,580 – 1,750 µm  
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Hyperion satellite 

Hyperion satellite was launched by NASA in November 2000 on board the EO-1 as 

the first satellite based hyperspectral imager. Hyperion is a pushbroom imager with 

220 spectral bands in the range 400-2500 nm, a 10 nm bandwidth, a 30 meter pixel 

size and a 7.5 km swath. This platform provides a new class of earth observation data 

for improved earth surface characterisation and can image 7.5 km by 100 km land 

area per image. The standard scene width and length are 7.7 and 42 kilometres 

respectively, with an optional increased scene length of 185 kilometres.  

The Hyperion instrument includes; system fore optics design based on the Korea 

Multi-Purpose Satellite (KOMPSAT) Electro Optical Camera (EOC) mission. A focal 

plane array provides separate Shortwave Infrared (SWIR) and Visible and Near 

Infrared (VNIR). Hyperion imaging has a wide range of applications including; 

agriculture, forestry, environmental management, mining and geology. Using 

shortwave infrared range in Hyperion could provide better understanding and accurate 

crop stress detection. Moreover, high spectral resolution of Hyperion imagery could 

enhance the ability to distinguish sources of stress such as moisture and salinity 

induced stress. Table 2.10 details the technical specifications of the Hyperion satellite 

instrument and Figure 2.4 shows a photograph of Hyperion satellite instrument.  

 

 

Figure  2-4 Hyperion instrument on board EO-1 (www.satimagingcrop.com). 
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Table  2-10 Technical specification of Hyperion satellite instrument (www.satimagingcrop.com). 
 
Characteristic   Specification 

Launch Date   November 21, 2000 

Spectral range  0.40-2.40 μm 

Spatial resolution 30 m 

Swath width 7.6 Km 

Spectral resolution  10 nm 

Spectral coverage  Continuous  

Pan band resolution N/A 

Number of spectral bands 220 

Revisit frequency 16 days 

Sensor type  MSI 

 
 

2.5.5 Application of remote sensing to plant and crop stress 
detection and mapping 

Estimates of biophysical and biochemical properties of crops and related traits from 

remotely sensed data are crucial especially if there is a disease or any type of stress, 

which leads to low crop productivity. The latest generation of high spectral and spatial 

resolution was launched by NASA at the beginning of 21st century. These platforms 

have high spatial and high spectral capabilities and are suitable for mapping 

vegetation cover. Many studies demonstrated the potential of remotely sensed data in 

mapping vegetation. Monitoring plant status using sample-point technique in large 

areas is tedious, laborious and a costly process, alternatively, non-destructive 

techniques such as remote sensing are quick, easy and cheap to perform. Davis and 

Tyler (2003) reported that remote sensing has the potential of providing a valuable 

monitoring technique for assessing the ecological impact of radionuclide 

contamination in vegetation. They stated that changes in leaf pigments (chlorophyll a 

and b, carotenoids) and biomass as a result of water and nutrient deficiency and other 

environmental influences can be detected through spectral reflectance characteristics 

of plant leaves. Jago et al. (1999) used field and airborne satellite spectrometry 

measurements to predict chlorophyll concentration in grassland affected by soil 

contamination and wheat field affected by different levels of nitrogen fertilization. 

They reported that the use of remotely sensed estimates of the red edge position 
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(REP) for estimating chlorophyll concentration has the potential for inferring both 

land contamination and grain yield. 

Remote sensing and precision agriculture: 

Precision agriculture uses information technologies acquired from global positioning 

systems (GPS), geographical information systems (GIS) and remote sensing (RS). 

Precision farming is the term used to describe the goal of increased efficiency in the 

management of agriculture. It is a developing technology that modifies existing 

techniques and incorporates new ones to produce a new set of tools for the manager to 

use (Rains and Thomas, 2000).  The aim behind precision agriculture is to increase 

the productivity of grain yields under limited resources while decreasing production 

costs and minimising environmental impacts (Barnes et al., 1996). Precision farming 

basically aims to develop spatially varying crop management strategies to enhance the 

economic efficiency of crop production. It also aims to optimise agricultural practices 

by managing fields according to the measured within-field variability in soil and crop 

conditions: the economic margin from crop production may be increased by 

improving yield or reducing unnecessary inputs; the risk to the environment is 

mitigated because inputs are adjusted to match specific crop requirements, avoiding 

waste; the greater quality assurance is available to the food supply chain through 

improved traceability from precise recording of field applications. Whilst precision 

farming can provide economic benefits, increasing pressure towards environmental 

responsibility will most likely be the main factor driving the uptake of precision 

farming in the future. 

Remote sensing imagery provides a visual method for observing the effects of 

managed inputs such as chemicals, fertilizers and cultural practices such as tillage 

(Casady and Palm, 2002). It is also useful in understanding the impact of 

environmental factors such as disease infestation (Yang et al., 2005). In contrast to 

yield maps, which affect only future decisions, remotely sensed images may be 

collected several times throughout the growing season and allow timely management 

decisions to correct problems or deficiencies in the current crop. Therefore, remote 

sensing can provide a robust technique for precision agriculture of crops. Inventions 

of many modern technologies made it easier to precisely apply spatially-variable 
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inputs to agricultural fields (Rawlins, 1996) and provided the inputs for research in 

this area. Some of these new technologies are as follows: 

• Global positioning system (GPS) that provides the ability to identify locations 

precisely within a field.  

• Grain monitoring sensors mounted on combine harvesters to provide measures 

of grain yield (Patty et al., 2001). 

• The high capacity of modern computers, which provides the ability to store a 

huge dataset on very small devices. 

During the last three decades, cameras and digital image scanners on satellite systems 

and airplanes have been improved greatly. The development of these digital devices 

has the most profound impact on the efficiency of remotely sensed data (Congalton 

and Green, 1999). Clevers (1986) has proven that reflectance measurements can be 

used to estimate LAI and field spectroscopy can be used to monitor field trails and 

provide information instantaneously and non-destructively. Remote sensing 

instruments have been widely used to collect reflectance data using broad band 

spectra collected from aircrafts and satellites. Both systems have the ability to provide 

images and data with high spatial and spectral resolution. These techniques have been 

largely applied in precision agriculture, in which crop management is performed in 

small units, on a local basis, rather than field wide. This requires the ability to detect 

and identify spatial distribution of crop stress in precise locations within a field in a 

way that allows management decisions to vary in those diverse locations (Thirkawala, 

1999). In this context, many agricultural practices such as irrigation, seeds, herbicides 

and fertilizations may be applied in precise location and amount, based on the spectral 

data output. This innovative technique can maximise crop productivity at low cost. 

Spectral imagery together with soil maps collected by aircraft based systems have 

been widely used in precision agriculture for assessing spatial variability in crops, 

which make it easier for farmers to obtain detailed spatial information about their 

crops and therefore take the right decision to avoid crop yield reduction and maximise 

crop productivity. 
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Natural vegetation 

Satellite images have become an important source of information for monitoring 

vegetation and mapping land cover and land cover change on regional, continental, 

and global scales (Teillet et al., 1997). Many vegetation indices have been developed 

for qualitative and quantitative assessment of vegetation using remote spectral 

measurements (Bannari et al., 1995). Sensors with spectral bands in the red and NIR 

are very useful in monitoring vegetation since the difference between the red and NIR 

bands has been shown to be a strong indicator of the amount of photosynthically 

active green biomass (Tucker, 1979). Therefore, the Ratio Vegetation Index (RVI) 

and the Normalized Difference Vegetation Index (NDVI) are now the most 

commonly used vegetation indices. Starks et al. (2006) developed canopy reflectance 

algorithms for real-time prediction of bermudagrass pasture biomass and nutritive 

values. They concluded that biomass was correlated linearly with the reflectance 

ratios of R605/R515, R915/R975 and R875/R725. 

However using datasets for current generation of earth orbiting satellite carrying 

broad band sensors such as Landsat Thematic Mapper (TM), SPOT and High 

Resolution Visible (HRV) have limitations in providing accurate estimates of 

biophysical characteristics of agricultural crops (Thenkabail et al., 1995) and natural 

vegetation (Friedle et al., 1994). Therefore, reliable high spectral resolution satellite 

remote sensing such as Hyperion is important for predicting different types of stress 

and even distinguishing between different sources of stress. Hyperion imagery has 

more than 200 spectral bands which in turn enable researchers to define wavelengths 

sensitive to a particular kind of stress.          

Crop production  

Crop production is highly affected by many factors which are considered as limiting 

factors such as water, salinity, nutrients, diseases, pests and weeds stress. In most 

cases the aboveground biomass is mainly affected and the effect appears for example 

on leaves in terms of tone, colour, orientation and leaf area (Inoue, 2003). These 

changes of plant leaves result in changing reflectance from plant canopies which 

might be detected by remotely sensed data, and therefore, allow accurate and timely 

assessment of the extent of damage and identifying management units for time critical 
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material applications (Inoue, 2003). Prasad et al. (2007) showed the potential of 

spectral reflectance indices as a selection tool for wheat grain yield; they concluded 

that vegetation indices were strongly related to wheat grain yield in a linear fashion 

confirming the effectiveness for determining the higher yielding genotypes. They also 

reported that indices based on the minor water absorption band consistently provide 

the best relationship with grain yield. 

Toler et al. (1981) carried out an investigation to detect Phymatotrichum root rot of 

cotton and wheat stem rust by using false colour NIR photography. Malthus and 

Madeira (1993) reported that fungal and mildew infected leaves of Faba have been 

detected using remotely sensed data before symptoms were visible to the human eyes. 

Moreover, spectral properties can be used to detect stress caused by pests such as 

insects’ damage in wheat fields (Riedell et al., 2000). Remote Sensing data have been 

widely explored as a useful tool for monitoring, detecting and mapping of weeds in 

agricultural crops (Moran et al., 1997a; Lamb and Brown, 2001). However, some 

researchers mentioned that monitoring weeds in agricultural crops is a very difficult 

task so many researches used classification algorithms to delineate weed patches 

based on statistical variability in the spectral response of soil, crop and weed 

canopies.  

2.5.6 Measuring stress from different platforms 
When sun light touches plant surfaces, it is reflected in the form of radiations having 

characteristics of intensity and spectral range. This spectral radiance is commonly 

measured by many sensor-based systems in the visible, NIR and thermal infrared to 

assess and compare plant biochemical properties under healthy and stressful 

conditions. Green plants absorb most of the red light and most of the NIR light. 

Reflectance decreases in the NIR region of the spectrum and increases in the VIS part 

in stressed plants. Remotely sensed measurements can be acquired by different 

platforms and every type of platform has its own specifications. In general, there are 

three different types of platforms: ground-based, airborne and spaceborne.  
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Spectroradiometers measurements 

Spectroradiometry is a commonly used ground-based remote sensing technique for a 

wide range of industrial applications (Yang et al., 2007). Spectroradiometry 

measurements are a quantitative measure of radiance, irradiance, reflectance or 

transmission of objects by using hand-held spectroradiometers, radiometers or 

infrared thermometers (IRT) above plant canopies. It measures both radiance and 

irradiance of an object and correlates them to the biological, chemical and physical 

attributes of the object. These above canopy sensors are always hand-held or mounted 

on a tripod, tower, tractor etc.  Radiometers are used for this purpose to acquire 

reflectance from above canopies and these radiometers are often used with broad band 

similar to those of satellite sensors. Red and NIR ranges have been used mainly to 

calculate vegetation indices correlated with canopy structure parameters such as LAI.  

Many researchers have used spectroradiometry data to assess broad band and 

hyperspectral vegetation indices (Blackburn, 1998; Serrano et al., 2000; Sims and 

Gamon, 2003; Gitelson et al., 2005; Franke and Menz, 2006; Li et al., 2008). For 

example, in a maize experiment Schlemmer et al. (2005) employed specroradiometry 

measurements to detect chlorophyll concentration in maize leaves. They concluded 

that remotely sensed data is a useful tool in determining a wide variety of 

physiological properties of plants in a large area and established a strong correlation 

between chlorophyll concentration and the ratio 600/680 nm. Therefore, ground-based 

spectroradiometry sensors can be used to collect data about plant surfaces for 

comparison with data acquired by aircrafts or satellite sensors. Hong et al. (2007) 

employed ground-based remote sensors to predict maize biomass under nitrogen 

stress conditions; they established strong relations between vegetation indices derived 

from different hand-held spectral sensors and maize biomass.  

Aircraft measurements 

Airborne measurements have been used to monitor vegetation and crop health by 

many scientists (Goel et al., 2003; Yang et al., 2006a and 2006b). There are different 

types of airborne observation platforms such as balloons and powered and high 

altitude sounding rockets.  Aircrafts airborne sensors have been used in different 

research areas such as water quality, plant monitoring, and climate. Generally, 
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airborne sensors have been used in a development study phase leading to their 

subsequent deployment on satellite platforms. In airborne remote sensing, downward 

or sideward looking sensors are mounted on an aircraft to obtain images of the earth’s 

surface. This has provided a very high spatial resolution images (20 cm or less), 

which are comparable to the images obtained by satellite sensors.  

Previous studies showed the effectiveness of airborne imagery for monitoring Earth’s 

features such as detecting stress in plants. For example, Goel et al. (2003) showed the 

potential of hyperspectral airborne remote sensing to detect weed infestation and 

nitrogen stress in maize. Yang et al. (2006a and 2006b) established a strong 

relationship between grain sorghum and cotton yields with vegetation indices derived 

from airborne imagery data.      

However, obtaining airborne images is very costly per unit area of ground cover. 

Also, the coverage area is low in comparison to the satellite sensors and airborne 

missions are often carried out as one time operations, but satellite missions offer the 

possibility of continuous monitoring of the earth. The Canadian CASI (Compact 

Airborne Spectrographic Imager) was the first available airborne hyperspectral 

scanner, which contains a two-dimensional CCD array-pushbroom imaging 

spectrograph. CASI collects data in 288 programmable bands between 400 and 900 

nm. Due to the high cost for continuous monitoring of crops, using airborne remote 

sensing in management applications is difficult. Airborne imagery faces some 

problems including the cost of obtaining frequent measurements and the problems 

associated with geometric correction.  

Satellite level 

Although using in-situ and airborne remote sensing have been successfully used to 

monitor different aspects on the ground, using airborne data has some difficulties 

associated with geometric correction and the high cost of obtaining frequent 

measures. Using high spatial and spectral resolution satellite remote sensing to 

monitor aboveground features such as vegetation and crops can be a robust technique. 

For example, Tyler et al. (2006) investigated the potential of remote sensing of water 

quality in shallow lakes; they stated that satellite remote sensing has the potential to 

provide truly synoptic views of water quality in particular the spatial distribution of 
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phytoplankton. Recently, there has been big interest among researchers for estimating 

of biophysical and biochemical properties of vegetation. A massive effort is under 

way to obtain large spatial and temporal scale estimates of LAI and fPAR (fraction of 

photosynthetic active radiation) absorbed by plant canopies, key state variables in 

most of these models (Buermann et al., 2001). AVHRR (Advanced Very High 

Resolution Radiometers) on board the NOAA (National Oceanic and Atmospheric 

Administration) is one of the most commonly used satellites for estimating canopy 

structure (Buermann et al., 2001). Thematic Mapper (TM) on board the Landsat 

satellite also used for estimating canopy structure (Fassncht et al., 1997; Tian et al., 

2000).  

Although, satellites are very important to observe earth’s surface particularly 

agriculture, higher spatial and spectral resolution and low revisit period may have to 

be accomplished. The improvements and advances in satellite sensor technology 

providing higher spatial resolution (e.g. QuickBird and Ikonos sensors) enhance the 

ability of using satellite in precision farming. The advantage of these satellites is the 

revisit period (1-3 days), which was difficult to be accomplished with many other 

satellite systems (Moran, 2000). High spatial resolution satellite sensor imaging, such 

as Ikonos imagery, processed with standard remote sensing algorithms, offers a basis 

for mapping and updating habitat information (Mehner et al., 2004). Others used 

QuickBird satellite for detecting biochemical and biophysical properties in crops (Wu 

et al., 2007a; Wu et al., 2007b). Yang et al. (2006a and 2006b) investigated the 

potential of QuickBird satellite images to predict and map cotton and grain sorghum 

yield patterns; they established strong correlations between vegetation indices derived 

from QuickBird images and both crop yields.     

Recently, hyperspectral satellite imagers such as Hyperion have been used in 

monitoring vegetation; this satellite has more than 200 spectral bands, which enable 

the construction of effective continuous spectra for every pixel in the scene. This will 

enable researchers to develop new vegetation indices for detecting stress in crops and 

facilitate the process of distinguishing different sources of stress in crops such as 

moisture induced stress from salinity induced stress. Bannari et al. (2008) developed 

several spectral chlorophyll indices to quantify chlorophyll concentration of wheat 

crops at both the canopy and the leaf scales using remotely sensed data. These 
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chlorophyll indices were derived from Hyperion imagery and the results demonstrated 

that Nomalized Difference Pigment Index (NDPI) is the best index for estimating 

wheat chlorophyll content. 

Some new satellites such as VENUS and HyspIRI are launching in the next five 

years. These satellites are supposed to be more advanced than the pervious satellite 

generations in terms of revisit period, spatial and spectral capabilities. For example, 

the new micro satellite, VENUS, will carry a unique super spectral space camera, and 

will have an advanced plasma-thruster engine for propulsion. VENUS will provide 

farmers with accurate information about their crops, and consequently, take informed 

decisions to better treat their crops and maximise crop productivity. It can also be 

used for fishing and locate the places of large quantities of fish in mid sea. 

HyspIRI is also a new hyperspectral satellite imager, which is proposed to be 

launched sometime around 2013. HyspIRI satellite instrument will have a TIR 

scanner and a hyperspectral imager that will cover UV, VIS, SWIR, and TIR ranges. 

The TIR range will have 8 bands between 3.9 and 12.7 μm with 45 m pixel resolution. 

HyspIRI data will provide useful information in the analysis of surface temperature, 

geology, surface morphology, natural resources, drought, soil and vegetation. The 

SWIR range of the HyspIRI may provide better understanding about crop stress at a 

regional scale.     

2.5.7 Spectral vegetation indices 
Reflectance is the ratio between the amount of energy reflected from an object and the 

amount of energy incident on the same object. Generally, plants have low reflectance 

in the blue and red portion of the spectrum because of chlorophyll absorption, with a 

slightly higher reflectance in the green, thus plants appear green to our eyes. Plants 

reflect approximately half of the incident radiation in the NIR portion of the 

electromagnetic spectrum. Some studies have found that measurements in the short-

wave infrared can be correlated to leaf water content due to water absorption of SWIR 

radiation; however, these correlations are strong only for an extreme range of leaf 

water contents.  

Reflectance characteristics depend on the absorption of light at specific wavelengths, 

and are indicators of plant traits. The amount of energy reflected from a plant in the 
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visible (VIS) and near infrared (NIR) portion of the spectrum has been correlated to 

many crop characteristics including biophysical and biochemical properties; 

chlorophyll concentration, biomass, height, LAI and canopy density. Reflectance in 

the VIS part of the spectrum depends on the absorption of light by leaf chlorophyll 

and other pigments such as lutein and carotenoids. It is relatively low in the VIS as a 

result of high absorption of light by these pigments. In contrast reflectance in the NIR 

region is relatively low since it is not absorbed by these plant pigments, but scattered 

by plant tissue (Knipling, 1970).   

The most common application of reflectance data is the generation of vegetation 

indices (VIs). Vegetation indices are linear combinations and/or ratios of spectral 

bands designed to enhance the vegetation signal of pixels and spectral measurements. 

The most widely used vegetation indices for plant status are the Normalized 

Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Soil Adjusted 

Vegetation Index (SAVI), Physiological Reflectance Index (PRI), Water Index (WI) 

and Simple Ratio (SR). Spectral reflectance indices were developed on the basis of 

simple mathematical formulae such as ratios or differences between the reflectance at 

given wavelengths (Araus et al., 2001). SR and NDVI were the first SRIs developed, 

using information from the VIS and NIR ranges of the magnetic spectrum. These 

vegetation indices have been employed to predict different vegetative traits such as 

LAI or green biomass (Tucker and Seller, 1986). Some researchers have been used 

VIs based on VIS, PRI is one of these indices used to assess radiation use efficiency 

by plants (Penuelas et al., 1995), some others have used VIs based on the NIR, such as 

WI to assess water status of canopy (Penuelas et al., 1993).  

NDVI is one of the commonly used vegetation indices, which has been correlated to 

many variables such as crop nutrient efficiency, final yield in small grains and long 

term water stress. Although NDVI has been successfully used for vegetation 

monitoring, it is very likely that the physical characteristics actually being detected by 

the index are related to some measure of canopy density or total biomass since NDVI 

values change over the growing season. Due to the effects of soil background on 

reflectance measurements, Huete (1988) suggested SAVI to minimize the effects of 

soil background on the quantification of greenness by incorporating a soil adjustment 

factor (L) in the basic NDVI equation.  
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Additionally, different combinations of the VIS and /or the NIR bands have been used 

to develop some other vegetation indices to assess various crop parameters. 

Normalized Pigment Chlorophyll Index (NPCI) and Pigment Simple Ratio (PSR) 

were used to classify different crops based on the assessment of their nutrient status 

(Filella et al., 1995). Penuelas et al. (1994) developed a new NPC based on the VIS 

range of the electromagnetic spectrum; to assess physiological changes in nitrogen 

limited sunflower. Gamon et al. (1997) used the PRI to estimate short-term variation 

in photosynthetic activity by optically measuring the xanthophyll cycle. Most 

researchers investigate the relationships between different vegetation indices and 

plant biochemical parameters under controlled conditions of viewing angle. However, 

vegetation indices were found to be sensitive to the viewing geometry.   

The spectral reflectance in the NIR region is determined by leaf internal structure, dry 

matter content and two minor water-related absorption bands at 970 nm and 1200 nm 

(Campbell, 1996). Penualas et al. (1993, 1994, 1996 and 1997) investigated the 

reflectance in the 950-970 nm region as an indicator of plant water content. The 

results showed that the ratio of the reflectance at 970 nm, one of the weak water 

absorption bands, to the reflectance at 900 nm as reference wavelength (R970/R900) or 

Water Index (WI) was closely linked the changes in relative water content. In addition 

the Normalized Difference Water Index (NDWI) used two NIR channels; one centred 

at 860 nm and the other at 1240 nm, was proposed to evaluate vegetation liquid water 

from space by Gao (1996).  

Absorption of radiation by water in the leaf is the primary effect of water content on 

reflectance. All the above methods for evaluating vegetation water content were based 

on the spectral reflectance ratios, combinations of spectral features within water-

related absorption bands. Unfortunately, the absorption spectrum related to foliar 

water is also affected by the atmospheric vapour, and it is very difficult to distinguish 

the contribution of foliar liquid water and atmospheric vapour to the water-related 

absorption spectrum. 

Besides the primary effect of water content on the reflectance, secondary effects of 

water content on reflectance occur that can not be explained by the radiative 

properties of water. Some of the secondary effects of water content on leaf reflectance 

are influenced by the transmissive rather than absorptive properties of water, and the 
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refractive indices in air and cellulose are different, therefore, the multi reflection 

inside the leaf is different due to cell turgor with different water content, and so 

reflectance in 700-1300 nm region varies with water content due to its effect on the 

leaf internal structure (Carter, 1991). 

Previous studies showed that narrow band spectra are more efficient than broad 

spectra in accurately detecting physiological changes at specific wavelengths, which 

makes the utilisation of spectral indices more efficient (Gitelson et al., 2005). Narrow 

spectral bands also allow derivative analysis that decreases noise effects on the 

spectral signals and minimise variation related to soil reflectance background and 

illumination conditions (Filella and Penuelas, 1994; Blackburn, 1998).  

Many derivative indices have been revealed in the literature. First derivatives have 

been used to minimise the spectral effects of leaf structure, soil background and 

resolve overlapping spectra (Filella and Penuelas, 1994; Filella et al., 1995). The red 

edge position (REP) defined as the maximum slope of spectral reflectance transition 

between the red around 680 nm and reflected radiations in the NIR around 780 nm, 

has been used as a good indicator of chlorophyll concentration at the leaf and canopy 

levels (Filella and Penuelas, 1994; Penuelas and Filella, 1998). Filella and Penuelas 

(1994) concluded that a slight shift of the REP towards the visible is an indication of a 

decrease in chlorophyll concentration. They also stated that the shift toward the longer 

wavelengths (NIR) accompanied with an increase in NIR reflectance is an indication 

of the increase in leaf chlorophyll concentration. Table 2.11 gives an overview of 

some of the previously published vegetation indices. 

Some studies have shown the effectiveness of vegetation indices to predict crop yield 

at early growth stages. Prasad et al. (2007) employed different vegetation indices to 

predict wheat grain yield at early stages. They developed two new vegetation indices 

(NWI-3 and NWI-4) and established a strong relationship between wheat grain yield 

and vegetation indices. In another wheat experiment, Babar et al. (2006) showed 

strong correlations between wheat yield and NIR based indices and concluded that at 

booting stage the correlations were very low. Royo et al. (2003) used vegetation 

indices as indirect estimation for wheat crop yield and found that vegetation indices 

produced higher correlations at reproductive growth stages in comparison to early 

vegetative growth stages.      
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Despite many studies having shown the possibility of vegetation indices in detecting 

changes in plants physiological status as a result of different stressors, some others 

have shown poor relationship with plant properties. For example, Aparicio et al. 

(2002) investigated the relationship between growth traits and spectral vegetation 

indices in durum wheat; they concluded that the suitability of NDVI and SI as 

predictive tools for LAI within a group of genotypes being compared at a specific 

growth stage was poor, probably because genetic variability was not large enough to 

create wide LAI differences. Many studies have shown the ability of vegetation 

indices to predict wheat grain yield under stressful conditions. However, under well 

water conditions the relationships between wheat grain yield and ongoing vegetation 

indices are weak (Babar et al., 2006). 

It is therefore evident that most researchers in the past decades focused on the stress 

resulting from water and nutrient stress and a very limited number focused on the 

potential for using spectral indices as a useful tool for predicting stress resulting from 

salinity. Hence, it is necessary to investigate different areas of the spectrum to detect 

wavelengths sensitive to salinity induced stress in existing of moisture induced stress. 

Moreover, most studies in the literature undertook their studies at the leaf scales 

ignoring the effects of canopy structure on reflectance at the canopy scale. 

Additionally, some previous studies showed the possibility of vegetation indices to 

predict crop properties at the canopy scale using solar radiation, which is not 

consistent especially in winter season. The research presented here was undertaken at 

the canopy scale under controlled illumination conditions.   
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Table  2-11 previously published vegetation indices collected from literature. 
 

Notation Name Formulae  reference 

NDVI Normalized Difference 

Vegetation Index 
NDVI = REDNIR

REDNIR
+
−  Rouse et al., 1974 

RVI Ratio Vegetation Index RVI = d
NIR
Re  Pearson & Miller, 

1972 

DVI Difference Vegetation Index DVI = NIR-Red Tucker, 1979 

SLAVI Specific Leaf Area 

Vegetation Index 

SLAVI = NIR/(Red + NIR) Lymburner et al., 

2000 

SAVI2 Second Soil Adjusted 

Vegetation Index 
SAVI2 = abd

NIR
/Re +

 Major et al., 1990 

TVI Triangular Vegetation Index TVI= 60(ρNIR - ρGreen)-100(ρRed - ρGreen) Broge & Leblanc, 

2001 

NPCI Normalized Total Pigment-

Chlorophyll a ratio Index 
NPCI = 

)680430(
)680430(

RR
RR

+
−  Penuelas et al.,1997b 

WBI Water Band Index WBI = 900
950

R
R

 
Riedell and 

Blackmer, 1999 

OSAVI Optimized Soil Adjusted 

Vegetation Index 
OSAVI = 16.0),1(Re

Re
=+

++
−

LLLdNIR
dNIR  Rondeaux et al., 

1996 

VI1 Vegetation Index one  VI1 = )1( −green
NIR  Vina, 2003 

VI2 Vegetation Index two  VI2 = )1694(
800
−R

R  Vina, 2003 

LMI Leaf Moisture Index LMI = 830
1650

R
R   Parkes, 1997 

SIPI Structural Independent 

Pigment Index 

SIPI = (R800 – R450) (R800 – R680)  Penuelas and Inoue, 

1999 

YI Yellowness Index  YI = (R580 – 2R630 + R680)/Δ2, Δ = 50 

nm 

Adams et al., 1999 
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VARI Visible Atmospheric 

Resistant Index 
VARI = 

bluedgreen
dgreen
−+

−
Re

Re  Gitelson et al., 2002 

RDVI Renormalized Difference 

Vegetation Index  

RDVI = DVINDVI×  Reujean & Breon, 

1995 

GNDVI Normalized Difference 

Greenness Vegetation Index  
GNDVI = 

greenNIR
greenNIR

+
−  Osborne et al., 2004 

SI Stress Index SI = 
NIR

dRe  Jiang et al., 2003 

NPCI Normalized Pigment 

Chlorophyll Index 
NPCI = 

430680
430680

RR
RR

+
−  Filella et al., 1995 

PSR Pigment Simple Ratio PSR = 
430
680

R
R  Filella et al., 1995 

IPVI Infra-red Percentage 

Vegetation Index 
IPVI = dNIR

NIR
Re+

 Crippen, 1990 

NWI-1 Normalized Water Index 1 NWI-1 = )900970(
)900970(

RR
RR

+
−  Babar et al., 2006 

NWI-2 Normalized Water Index 2 NWI-2 = )850970(
)850970(

RR
RR

+
−  Babar et al., 2006 

WI Water Index WI = 970
900

R
R  Penuelas et al., 1996 

SAVI Soil Adjusted Vegetation 

Index 
SAVI = )1(Re

Re
LLdNIR

dNIR
+

++
−    Huete, 1988 

PRI Physiological Reflectance 

Index 
PRI = )531550(

)531550(
RR
RR

+
−   Penuelas et al., 1994 

NDWI Normalized Difference  

Index 
NDWI = )1204865(

)1204865(
RR
RR

+
−   Gao, 1996 

 
 

2.5.8 Using spectral indices for plant stress detection 
Water, salinity, heat, disease, pollution and nitrogen are factors affecting plant health 

and therefore affecting canopy properties in terms of aboveground biomass, leaf area, 

chlorophyll concentration and leaf temperature. The magnitude of these effects 
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depends mainly on the amount of stress imposed, the crop type, variety, growth stage, 

soil and climatic factors. Measuring reflectance from plant canopies through detectors 

of remote sensing systems has been investigated as an indicator of plant status. 

Spectral data from remote sensing platforms are usually analysed based on the 

absorption/reflectance or fluorescence features of monitored plants or canopies. The 

fluorescence technique is best suited for chlorophyll characterisation in the blue, red 

and NIR fluorescence spectrum (Gitelson et at., 1999).  

All growing plants reflect very little light energy in the red region due to high 

absorption features of chlorophyll pigments, but reflect high amount of NIR light due 

to leaf internal structure characteristics. The amount of reflected radiometric energy 

from plant canopies is a function of the amount of their tissue biochemical contents. 

Strong correlations between spectral reflectance and many plant biochemical and 

physiological variables such as plant dry biomass, chlorophyll concentration, nitrogen 

content, water content and leaf area index have already been established ( Carter and 

Miller, 1994; Penuelas et al., 1994; Blackmer et al., 1996; Carter et al., 1996; 

Penuelas and Filella, 1998). Hence variation in spectral reflectance has been related to 

specific changes in vegetation characteristics and growth due to several stress factors 

such as water deficiency (Moran et al. 1994, Graeff and Claupein 2007), nutrient 

deficiency (Carter, 1994) and diseases infestation (Penuelas et al., 1995; Xu et al., 

2007). Other investigations have shown that reflectance measurements can be used to 

estimate foliar chemical content. This technique assumes that a foliar spectrum is the 

sum of the absorption features of each chemical weighed by its concentration (Curran, 

1989).   

Spectral reflectance and water stress detection 

Many researchers studied the relationship between leaf water content and spectral 

reflectance. Carter (1993) studied the effects of water content on leaf reflectance and 

found that spectral reflectance centred at 1450, 1490 and 2500 nm bands showed the 

greatest sensitivity to water content. Tian et al. (2001) concluded that reflectance 

spectra of wheat leaves in the 1650-1850 nm region were dominated by water content. 

Absorption by water was expected to be very strong in the thermal region of the 

spectrum, so the infrared bands were considered inadequate for measuring the water 

concentration of whole plants or canopies. However, water absorption features were 
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found to dominate spectral reflectance in the NIR region of the spectrum. Sims and 

Gamon (2003) tested two field portable spectrophotometers and identified three 

wavelength regions (950-970, 1150-1260 and 1520-1540 nm) that established better 

correlations with water content from canopies of 23 plant species. 

Plant water content was also related to vegetation indices based on the combination of 

two spectral bands in the NIR of the spectrum. Gao (1996) proposed a water index 

similar to NDWI and stated that it could be used for canopy water content estimation. 

Guiducci et al. (1993) report trends of LAI of well watered and droughted treatments 

for several field crops.  

However, remote sensing of plant water content is difficult because the absorption 

band sensitive to foliar liquid water is also sensitive to the atmospheric vapour (Liu et 

al., 2004). Strong positive correlations were observed between plant water content 

(PWC) of wheat and spectral reflectance in 740-930 nm region in all of six different 

growth stages, which indicates that the NIR spectral reflectance increases due to the 

effect of PWC on the leaf internal structure. This mechanism also affects the red edge 

spectrum in 680-740 nm region (Liu et al., 2004). They also concluded that the 

spectral reflectance increases rapidly and the red edge becomes steeper if PWC is 

higher. The spectral reflectance of the green vegetation in 1300-2500 nm region is 

dominated by liquid water absorption, and also weakly affected by absorption due to 

other biochemical components, such as protein, lignin and cellulose (Carter, 1991).  

Spectral reflectance for Nitrogen stress detection 

Nitrogen is an essential element for plant nutrition and because of its high demand in 

the plant and high variability within the soil; it is the most intensively managed plant 

nutrient in crop production. Stresses that involve deficiencies of N and water will 

adversely affect the amount of chlorophyll plants produce as well as cell turgidity 

(Schlemmer et al., 2005). Most researchers often use the chlorophyll concentration as 

an indicator of nitrogen deficiency. Remotely sensed measurements of chlorophyll 

could provide information about the status of plants without the use of destructive 

sampling. Reflectance in the visible part of the spectrum (particularly at 550 nm and 

675 nm) is highly indicative of chlorophyll a concentration and nitrogen status of 

various growing plants (Buschmann et al., 2000).      
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Recently, remote sensing has been used in precision farming to assist nitrogen 

management in agriculture. Because of the close link between leaf chlorophyll and 

leaf N concentration, remote sensing techniques have the potential to evaluate the N 

variability over large fields quickly (Daughtry et al., 2000). Reflectance spectroscopy 

has been used effectively to estimate tissue nitrogen concentration in various crops 

(Blackmer et al., 1994; Rodriguez and Miller, 2000). Assessing N crop status requires 

development of a direct relationship between spectral data at specific wavelengths and 

leaf N status or an indirect relationship between spectral data and plant chlorophyll 

status. Many studies have shown a close correlation between chlorophyll 

concentration of plants and N availability (Blackmer et al., 1994; Filella and 

Penuelas, 1994; Clay et al., 2006). Cutler (2000) investigated the relationship between 

remotely sensed data and canopy chlorophyll concentration of wheat under various 

regimes of fertilization, pesticide/fungicide application and found a strong correlation 

between reflectance measurements and canopy chlorophyll concentration. 

Plants under N deficiency will have decreased photosynthetic activity and chlorophyll 

concentration, which will affect other physiological variables and hence the overall 

spectral signal from the plant. These changes could be optically detected in the red 

region of the spectrum (increase in red reflectance) and the NIR (decrease in NIR 

reflectance). Thus, reflectance measurements assessing chlorophyll could also be used 

to indirectly characterize the N status. Green reflectance peak at 550 nm and red 

reflectance at 700 nm were found to be strongly correlated to chlorophyll a 

concentration (Schepers et al., 1996). However, reflectance sensitivity was found to 

be higher at 550 nm for medium to high chlorophyll concentration, whereas for low 

concentration, reflectance sensitivity was higher at 675 nm. Blackmer et al. (1994) 

studied the effect of different nitrogen treatments on the spectral reflectance of maize 

leaves in the 400 to 700 nm region, and found that reflectance measurements near 550 

nm could be used to detected N deficiencies in maize leaves, and thus predict grain 

yield. In another maize experiment, Blackmer et al. (1996) noticed that reflectance 

measurements at 550 nm and 710 nm were highly correlated with various N 

treatments. 

The NIR spectral region has also been used for predicting N deficiency in many 

crops. GopalaPillai et al. (1998) employed digital aerial imagery to detect nitrogen 
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stress from reflected maize canopies in the infrared channel. Strong correlations 

between canopy reflectance and applied nitrogen amounts were established. Spectral 

bands between 780 nm and 810 nm were found to be sensitive to the presence of 

amino acids (R-NH2), which are the building blocks of proteins (Stone et al., 1997). 

Gitelson et al. (1996) reported that there is a good correlation between near infrared 

range of the spectrum (700-750) and total leaf chlorophyll concentration of different 

tree species. Broad band vegetation indices acquired from various crops showed good 

correlations with vegetation (Fernandez et al., 1994; Stone et al., 1997). Other studies 

proposed hyperspectral indices for direct variable estimation, For example, for wheat 

Stone et al. (1996) showed a strong correlation between NDVI calculated at 660 nm 

and 780 nm and N uptake. In another wheat experiment, Reyniers et al. (2006) 

employed NDVI derived from Ikonos imagery and multispectral data and established 

a strong relationship between NDVI derived from both platforms and nitrogen status.   

Bausch and Duke (1996) used a range of N fertilization treatments on maize and 

reported that differences in LAI of about 1 were significant at 0.05 only between the 

zero N and all the other treatments. Zero N LAI began to differ from the other 

treatments only after the 10th leaf (V10) stage, but the greatest difference with the 

other treatments occurred after the onset of leaf senescence. The yield difference 

between the Zero N and the 102 kg N ha-1 treatment was 22%, but there was also a 

difference of 14% between the latter and the 220 kg N ha-1, between which visible 

LAI differences appeared only during senescence. In a maize experiment, Wu et al. 

(2007b) showed the possibility of estimating LAI using broad band vegetation indices 

derived from QuickBird satellite imagery. They also reported that among all broad 

band vegetation indices MSAVI was the best LAI estimator. Other studies showed the 

possibility of remotely sensed data to predict grain yield under different nitrogen 

levels (Raun et al., 2001; Royo et al., 2003; Babar et al., 2006; Prasad et al., 2007). 

For example, Raun et al. (2001) established a strong relationship between wheat grain 

yield and NDVI.   

Pattey et al. (2001) showed significant differences in LAI (as assessed by 95% 

confidence) between low nitrogen (17 kg ha-1) and high nitrogen (155 kg ha-1) maize 

treatments at much earlier growth stages. The absolute differences were of about 0.5 

LAI, corresponding to 25 - 40% differences according to the growth stage. In this 
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case, LAI was different in the period between 35 and 50 days after emergence, after 

which no significant differences appeared until the start of senescence. The yield 

difference assessed using a yield monitor, was statistically significant. A more 

standardized assessment of the effect of N stress on LAI can be carried out by 

considering the nitrogen nutrition index (NNI) the ratio of actual biomass dry weight 

N concentration to the critical N concentration required to produce maximum dry 

matter (Lemaire and Gastal, 1997). Nitrogen deficiency occurs when NNI<1. Using 

such an approach Vouillot et al. (1998) demonstrated that wheat at NNI of 0.6 had an 

LAI of about 70-75% of that of the unstressed control (which had a NNI not 

significantly different from 1).  

Regarding the interaction between water and nitrogen, Fernandez et al. (1994) 

reported that for wheat at anthesis, LAI was about 3 for non-fertilized non-irrigated 

treatment, 3.5 for the irrigated non-fertilized, 4.5 for non-irrigated fertilized (200 kg N 

ha-1) and 5.3 for the irrigated fertilized treatment. Clutterbuck and Simpson (1978) 

showed differences of about 0.5 maximum LAI between irrigated and non-irrigated 

potato at a fertilization level of 200 kg N ha-1, which increased to differences of about 

1.5 at 300 kg N ha-1.   

Spectral reflectance to predict plant disease 

Using remotely sensed data to detect stress in plants is based on the assumption of a 

strong relationship between stress and photosynthesis or the physical structure of the 

plant and affects the absorption of light energy, and thus changes the reflectance 

spectrum of the plants (Moran et al., 1997b). Hyperspectral remote sensing using 

remotely sensed reflectance for many contiguous narrow bands has been documented 

in crop management such as distinguishing various plant species, predicting crop 

yield, aboveground biomass, chlorophyll concentration and predicting damage caused 

by plant diseases such as pests and fungal infestation ( Pinter et al., 2003). Riedell and 

Blackmer (1999) investigated the effects of sucking insects on wheat leaf reflectance 

by infesting wheat seedlings with aphids (Diuraphis noxia Mordvilko) or greenbugs 

(Schizaphis graminum Rondani). Comparing reflectance from these infested plants 

with healthy plants, they reported that the leaves from infested plants had lower 

chlorophyll concentration and displayed significant changes in reflectance spectra at 

certain wavelengths (500-525, 625-635, and 680-695 nm). Nilsson (1991) used a 
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hand-borne radiometer to monitor plant growth and predict yield and yield reduction 

caused by plant disease. He reported that there is a good correlation between spectral 

reflectance data and plant growth, green biomass and grain yield as well as infection 

by various diseases at various levels of N fertilization and irrigation. A number of 

reflectance ratios proposed by Carter (1994) can be used as indicators of plant stress 

including competition, herbicides, pathogen, mycorrhizae, senescence, and 

dehydration. These ratios were significantly greater in stressed compared with non-

stressed leaves for all stressors.      

Wheat production is greatly affected by many different diseases among which are 

pests and fungal diseases. Severe damage happens to wheat production in some areas 

caused by greenbug (Schizaphis graminum) feeding, combined with its abundance. 

Yang et al. (2005) concluded that wheat damage by greenbug feeding was the most 

important insect pest of wheat in much of the great plain region of the United States. 

They also characterized greenbug-induced stress in wheat using a hand-held 

radiometer concluding that using radiometers to detect greenbug-induced stress is 

possible. The band centred at 694 nm and the vegetation indices derived from bands 

centred at 800 and 694 nm were identified as most sensitive to damage due to 

greenbug infestation. In addition, they mentioned that broad Landsat TM bands and 

derived vegetation indices also showed the potential for detecting stress in wheat 

caused by greenbug infestation. 

Other researchers have attempted to characterize stress caused by plant diseases, 

Malthus and Madeira (1993) used the hyperspectral data acquired by a 

spectroradiometer to detect the fungus Bortrytis faba (chocolate spot) infection of 

beans in the field by scanning at 2 nm intervals over the range 400 – 1100 nm. They 

mentioned that the most significant change of reflectance was a flattening of the 

response in the visible region and a decrease in the near infrared reflectance at 800 

nm. Genc et al. (2008) shown the possibility of vegetation indices derived from 

spectroradiometry measurements to detect the damage to wheat crops by sunn pest 

(Eurygaster integriceps). Xu et al. (2007) employed reflectance measurements to 

assess the damage to tomato leaves by leaf miner. They concluded that spectral 

reflectance decreased significantly with increasing severity level at short wavelengths 

of the NIR and the most sensitive wavelengths to the damage by leaf miner were 
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centred at 1450 and 1900 nm. In another wheat experiment, Franke and Menz (2006) 

monitored the heterogeneity of fungal diseases within agricultural sites using 

multispectral QuickBird satellite images. They found that high resolution 

multispectral data are generally suitable to detect in-field heterogeneity of vegetation, 

but they are not effective enough to detect stress factors.      

Spectral reflectance and salinity stress 

Drought and salinity are major inhibitors to agronomic production (Poss et al., 2006). 

Distinguishing salinity from other types of stress is very important particularly in 

areas located in arid and semi-arid regions. Few studies have shown the possibility of 

using reflectance measurements as a useful tool in predicting salinity stress in crops. 

Irrigation management may address salinity stress detected indirectly by remote 

sensing of biomass reduction (Pinter et al., 2003). Poss et al. (2006) used canopy 

reflectance spectra obtained in the 350-1000 nm region from two viewing angles 

(nadir view and 45° from nadir) to predict stress in alfalfa and wheat. They reported 

that the ability of narrow-band remote sensing of canopy reflectance to detect the 

effects of salinity and water stress was determined for alfalfa and wheatgrass forage 

crops. 

Predicting biochemical properties of plant canopies such as chlorophyll concentration 

might be useful. One of the primary biochemical parameters that affect canopy 

reflectance in the visible domain is the concentration and total amount of leaf 

chlorophyll (Wang et al., 2002b). Other studies showed the potential of reflectance 

measurements to detect salinity induced stress in terms of temperature, LAI, plant 

height and chlorophyll. Wang et al. (2002a) investigated the potential of reflectance 

measurements to assess salinity stress on production of elephant grass; they concluded 

that canopy spectral reflectance in the NIR region was reduced incrementally with 

increasing levels of salinity stress. Salinity effects on different plant biophysical 

variables related to canopy development can be determined with remote sensing 

techniques (Penuelas et al., 1997a). Wang et al., (2002a) investigated also the 

potential of reflectance measurements to interpret salinity and irrigation effects on 

soybean, stating that canopy reflectance in the NIR was significantly and consistently 

reduced by the salinity treatments. They attributed this decrease to increases in leaf 

mass caused by salinity and found a relationship with the simple ratio vegetation 
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index (SRVI), with 660 and 830 nm as the most sensitive waveband combination. 

They also mentioned that reflectance in the visible domain did not show a salinity 

effect or any correlation to leaf chlorophyll changes from salinity stress. 

It is therefore suggeseted that vegetation indices can be used as indirect tool to detect 

stress in crops including moisture, salinity, nitrogen deficiency, pollution and 

diseases. However, there is no single vegetation index to correlate well with a plant 

property over the growing season and therefore more work is needed to validate the 

results obtained using this technique to detect stress in crops.            

2.6 Summary 

This chapter provides an introduction to the agricultural context of Egypt in terms of 

land and water resources, population growth and crop production, factors influencing 

crop production including moisture, salinity, nutrients, disease and heat stress. 

Through reviewing the potential capability of remote sensing, we are now able to 

formulate testable hypothesis upon which to evaluate the role of satellite based remote 

sensing in increasing crop productivity.  

This chapter has demonstrated the efficacy of monitoring agricultural crops by 

assessing aboveground biomass, grain yield, chlorophyll concentration and total leaf 

area, through remote sensing. Vegetation indices have been widely used to detect 

plant status. Broad band and narrow band based vegetation indices have been widely 

used for predicting plant status. Many studies have been undertaken to use remotely 

sensed data to detect nitrogen, disease and moisture induced stress in crops, but few 

studies have been undertaken to detect salinity induced stress by remotely sensed 

data. In this case, increased efforts to remotely detect the effect of salinity hazard and 

water stress for irrigation management are needed since few studies have 

quantitatively assessed the ability of remote sensing technique to characterize 

simultaneous water and salinity stress on plant yields (Poss et al., 2006).  

Ground based sensors such as spectroradiometers and radiometers have been widely 

used for predicting stress on plants subjected to different types of stress such as 

moisture, salinity, disease and nutrient stresses. Most of these studies have been 

undertaken at the leaf scale (apical leaves) ignoring the effects of canopy structure. 

Also, from previous studies it is noted that airborne remotely sensed data have been 



 

 
 

54

used in many fields monitoring vegetation in wetlands, water quality and forestry, but 

are still very expensive in the field of agriculture for monitoring crop health. Using 

satellite data in particular high spatial resolution satellites (QuickBird, SPOT and 

ASTER) and high spectral resolutions (Hyperion) is promising in monitoring crop 

status in terms of yield, biomass and chlorophyll. The following hypotheses have been 

deduced to provide the focus for this research: 

1. Moisture and salinity stress greatly affect wheat and maize productivity. 

2. In situ hyperspectral measurements are able to detect stress in wheat and 

maize resulting from moisture and salinity stress. 

3. Moisture induced stress can be distinguished from salinity induced stress 

spectrally. 

4. High spatial resolution satellite remote sensing imagery can detect stress in 

wheat and maize at local and regional scales at early growth stages, and 

therefore, maximise crop productivity. 
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3 MATERIALS AND METHODS 

3.1 Introduction 

This chapter describes the generic methodologies and equipment used during this 

research project, necessary to underpin the experimental approach to address the 

hypotheses derived at the end of chapter 2. This chapter will cover details of soil and 

vegetation sample collection, preparation and analysis. The spectroradiometry 

acquisition is described here, but details of their specific use are covered in the 

experimental Chapters 4 and 5. Satellite data acquisition and analysis will be 

described in Chapter 6.    

3.2 Vegetation Sampling 

During both greenhouse-based experiments and field work campaigns, plant samples 

were collected for identifying different biophysical and biochemical measurements 

including plant height, leaf area index, total aboveground biomass, chlorophyll a 

concentration. Care was taken to ensure that the sampling of leaves for chlorophyll 

determination was done as early as possible before sun rise during field visits in Egypt 

to minimise the influence of the climate extremes.  

3.2.1 Vegetation sampling strategy for greenhouse experiments 
After measuring spectral reflectance, plant samples were collected from an area of 

0.15 m2. Samples were collected three times for biomass and leaf area index over the 

growing season of the Scottish winter wheat including harvesting and two were 

concurrent with spectroradiomtry measurements. Plant height was measured at the 

same time as spectroradiometry measurements were made. Leaf samples were 

collected over the growing season, immediately following the acquisition of 

reflectance measurements. Samples were analyzed for leaf pigments and chlorophyll 

a concentration. During the first two experiments of Scottish wheat (winter season 

2005-6) the timing of the reflectance measurements was dependent upon the weather 

and lighting conditions. To avoid the problems associated with the limitations of the 

Scottish climate, a darkroom was constructed behind the greenhouse experiments in 

which the lighting conditions could be controlled. This enabled much greater control 

over the timing of data collection and sampling for later experiments.     
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The whole plants were cut with a pair of scissors just above the soil surface, separated 

into leaves, stalks and spikes and each component weighed to determine fresh weight. 

Following oven drying at 70o C for 72 hours the dry weight was determined, then the 

leaf water content was calculated as follows: 

FW
DWFWLWC −

= ……………….3.1 

Where: 

LWC is the leaf water content 

FW is the fresh weight of the sample and 

DW is the dry weight of the sample 

From every treatment a sample of 10 youngest fully developed leaves was taken for 

further analysis of chlorophyll a during the first two wheat experiments (Scottish 

wheat 2005-6 and Egyptian wheat, spring season of 2006). In the last two experiments 

of Scottish and Egyptian wheat varieties in winter season of 2006-7 the samples were 

split for chlorophyll a determination and estimation of the pigment concentrations 

through HPLC analysis.   

At harvesting time the spikes were cut and threshed manually to determine grain yield 

and derive grain yield in kg m-2. Two hundred grains were randomly collected from 

the harvested pots from different replicates to estimate the thousand grain weights. 

For maize crop, biomass samples were collected at four different stages over the 

growing season at V6 (sixth leaf), V12 (twelfth leaf), R1 (silking stage) and at 

harvesting. Two plants were sampled from one pot from each treatment to determine 

aboveground biomass, plant height, leaf area index, plant water content and 

chlorophyll a concentration as explained above.  

3.2.2 Vegetation sampling in the field  
Two field work visits were undertaken in south-west Alexandria, Egypt, one for 

winter wheat and the other for maize to collect ground reference data coupled with 

satellite image acquisition. The vegetation sampling was timed to be within a few 

days of Hyperion image acquisition for both field visits. For each investigated field 
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with a typical size of 0.25-0.50 hectare, reflectance measurements were taken at five 

random locations closely followed by crop sampling at the same locations. Three 

samples were collected for determining different crop properties. Crop biomass was 

cut at ground level from 0.25 m2 and placed in a sealed plastic bag then taken for 

biometric analysis (leaf area index, plant height, total biomass, spikes weight). Plant 

height was the only agronomic parameter that was measured at each location within 

the same field (non-destructive measure). To determine chlorophyll concentration, 20 

apical leaves were sampled from each field then put in an ice box before sun rise and 

quickly transferred to a lab (Alexandria University, Egypt) for chlorophyll analysis 

using SPAD chlorophyll meter. Care was taken to ensure that all vegetation samples 

were collected at the spectra locations within a field. For maize the same approach 

was followed, but sampling three plants at each location. Figure 3.1 shows vegetation 

sampling for wheat in the field during field work in Egypt. At a number of 4 sites, 

vegetation sampling was prohibited by the farmer.  

  

 

Figure  3-1 Collecting vegetation samples of wheat crop in the field during field visit in 2007. 
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3.3 Vegetation pigment analysis 

3.3.1 Chlorophyll a analysis through laboratory based 
spectrophotometry 

Spectrophotometer instrument 

A digital Cecil spectrophotometer was used to measure the absorbance of the extracts 

at different wavelengths (480,510, 630, 647, 664, 665 and 750 nm). Table 3.1 shows 

the technical specifications of the Cecil spectrophotometer. 

Table  3-1 The technical specification of the digital spectrophotometer employed in determining 
chlorophyll a concentration in wheat and maize leaves. 
 

Parameter  Description  

Model CECIL, CE 1021 

Optical system Littrow monochromator using 1200 lines/mm holographic grating; 

coated optics. Accommodates 100 mm cells 

Optical bandwidth  8 nm 

WI range  200-1000 nm; CE1021 and 325-1000 nm; CE1011 

WI Accuracy +/- 1 nm 

WI Reproducibility  +/- 0.1 

Scan Speed  1-4000 nm/min 

Stray light  Less than 0.05% at 220 nm and 340 nm 

Photometric accuracy +/- 0.005A or 1%  

Start up wavelength  400 nm 

Lamp change wavelength 355 nm (default) 

 

Sample preparation 

A sub-sample from each treatment consisting of 10 leaves was selected randomly 

among the youngest fully developed leaves for analysis. Using a corer, twenty leaf 

discs of 0.4 cm in diameter were taken from each treatment and pooled. Three leaf 

discs were chosen randomly, cut into small pieces and ground up in a mortar and 

pestle. Four ml of 90% acetone solution was used initially to extract chlorophyll. The 

extract was transferred to a 10 ml plastic centrifuge tube. The mortar and the pestle 

were rinsed with 4 ml of 90% acetone solution which was then added to the centrifuge 

tube and the total volume made up to 10 ml. The centrifuge tubes were sealed, left in 

the dark for 2-4 hrs then centrifuged at 3000 rpm for 5 minutes. 
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Sample analysis using spectrophotometer  

To measure the absorbance, a volume of 3 ml of extract was transferred from the 

upper half of the supernatant to a spectrophotometer cuvette. The absorbance of the 

blank solution (90% acetone) was measured first and then the extract was measured at 

480 nm to check how concentrated the extract was. The absorbance of the extracts 

and blank solution was measured at specific wavelengths (510, 630, 645,646, 663, 

664, 665, and 750 nm). The concentration of chlorophyll a was determined according 

to Lichtenthaler (1987) using the following equation:  

Chl a = 12.21 A663 – 2.81A646 

Where: 

Chl a is the chlorophyll a concentration in µg cm-3 of the 90% acetone solution 

A646 and A663 are the absorbance at 646 and 663 nm wavelengths respectively. To 

convert the concentration of chlorophyll a to µg cm-2 of leaf the chlorophyll amount 

was related to the amount of acetone and the leaf area, which was used for the 

extraction. The chlorophyll a concentration was also determined using HPLC 

instrument and different pigments were also measured.      

3.3.2 Pigment analysis using HPLC 
HPLC instrument 

The HPLC (High Performance Liquid Chromatography) system used in this study 

consists of a Dionex quaternary gradient pump which connected to a Spherisorb TM 

OSD2 reverse-phase C-18 column (25 cm x 4.6 mm, 5µm particles, 90-100 000 plates 

m-1) and a lab Alliance UV6000LP photodiode array detector (PDA). An oven was 

used to maintain the Spherisorb TM OSD2 reverse phase C-18 column at 30oC during 

analysis. Pigments for RP-HPLC analysis were extracted from maize and wheat 

leaves using the method described in section 3.3.1.  

Sample preparation 

Samples of apical leaves were collected from each treatment by cutting leaves at the 

base, placing them in a sealable plastic bag and refrigerating as quickly as possible. 
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Discs of 0.7 cm in diameter were taken from different locations on each leaf 

replicated five times for wheat and three times for maize. Three discs were chosen 

randomly, cut into small pieces and transferred to a mortar. The pigments were 

extracted using 90% acetone solution following the same method described in section 

3.3.1. 

Sample analysis using HPLC 

Using a syringe, a volume of 500 µl of the extract was injected into the RP-HPLC 

system; the injection value was interfaced with a 100 µl Dionex stainless steel LC 

sample loop. The chromatic conditions for pigment separation followed the protocol 

of Wright et al. (1991), which employs three mobile-phase solvents in a linear 

gradient programme (Table 3.2): the protocol includes three solvents: solvent A, 

80:20 methanol:0.5 M ammonium acetate (v/v); Solvent B, 90:10 acetronitrile : water 

(v/v); and solvent C, 100% ethyl acetate. A constant flow rate of 1 ml min-1 was used. 

Pigment peaks were quantified using absorbance (mAU) at 436 nm. The pigment 

peaks were identified through comparisons with standard reference pigments obtained 

from the water quality institute (VKI), Horsholm, Denmark and via comparisons with 

published pigment PDA absorption spectra, elution sequences and retention times 

(RTS). The solvents used were HPLC grade and de-ionized water was purified using a 

Milli-Q system. Ammonium acetate was A.R. grade. 
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Table  3-2 The RP-HPLC solvent system used in the (a) start-up, (b) analytical and (c) shut down 
protocols employed in the analysis of wheat and maize leaves pigment signatures (Wright et al., 1991). 

 

Solvent A Solvent B Solvent C Time (min) 

 

Flow rate 

(ml min-1) (%) (%) (%) 

Conditions 

(a) Start-up protocol      

0 1.0 0 0 100 Start-up 

3 1.0 0 0 100 Washing 

6 1.0 0 0 100 Linear gradient 

16 1.0 0 100 0 Linear gradient 

17 1.0 100 0 0 Ready for analysis 

(b) Analytical gradient protocol    

0 1.0 100 0 0 Injection 

4 1.0 0 100 0 Linear gradient 

18 1.0 0 20 80 Linear gradient 

21 1.0 0 100 0 Linear gradient 

24 1.0 100 0 0 Linear gradient 

29 1.0 100 0 0 Equilibrium 

(c) Shut down protocol     

0 1.0 100 0 0 Analysis complete 

3 1.0 0 100 0 Linear gradient 

6 1.0 0 0 100 Linear gradient 

16 1.0 0 0 100 Washing 

17 1.0 0 0 100 Shut down 

3.3.3 Total chlorophyll through SPAD meter 
For measurement of chlorophyll concentrations during field work in Egypt, a hand-

held SPAD 502 meter (Minolta, Osaka, Japan) was used due to difficulties accessing 

laboratory equipment. SPAD provides a convenient means of making relative 

determinations of the leaf chlorophyll concentration (dimensionless). Chlorophyll has 

absorbance peaks in the blue (400-500 nm) and red (600-700 nm), with no 

transmittance in the NIR. The SPAD determines the relative amount of chlorophyll 

presented by measuring the absorbance of the leaf in two wavelength regions (red and 

NIR). Using transimittance in these two regions, the meter calculates a numerical 

value, which is a proportional to the amount of chlorophyll in a leaf.  Twenty apical 

leaves were sampled before sun rise to avoid high temperature, sealed in a plastic bag 

and kept cool in an ice box. Leaf samples were taken from different locations within 

each field as close as possible to locations of in situ spectroradiometry measurements. 
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In the laboratory (Faculty of Agriculture, University of Alexandria, Alexandria, 

Egypt) chlorophyll concentration was measured using SPAD chlorophyll meter. To 

reduce the variability, the meter readings were taken at three different locations on 

each leaf from the leaf tip to the leaf base and the average of these three readings was 

calculated. Also, readings from twenty leaves of each location were averaged to 

reduce variability to a minimum. Chlorophyll concentration was not determined for 

the third study site (Bangar site) due to availability of SPAD meter.     

3.4 In situ Spectroradiometry measurements  

3.4.1 Instrument 
An ASD FieldSpec Pro spectroradiometer from Analytical Spectral Devices Inc. 

(Boulder, Co 80301 USA) was used to measure reflectance from plant canopies using 

both solar radiation and artificial illumination. This instrument can detect reflected 

light from the canopy ranging from 350 nm to 1050 nm, covering the visible near 

infrared (VNIR) portion of the magnetic spectrum. The Visible/Near Infrared (VNIR) 

portion of the spectrum is measured by a 512 channel silicon photodiode array 

overlaid with an order separation filter. Each channel, an individual detector itself, is 

geometrically positioned to receive light within a narrow bandwidth (1.4 nm). The 

VNIR spectrometer has a spectral resolution of approximately 3 nm at around 700 

nm. Table 3.3 shows the specifications of the ASD FieldSpec instrument. 

Table  3-3 The specifications of the ASD FieldSpec TH spectroradiometer. 
 
parameter Description 

Model ASD FieldSpec Pro Inc. (Boulder, Co 80301 USA) 

Spectral range  350 – 1050 nm 

Sampling interval 1.6 nm @ 350 – 1050 

Spectral resolution  3 nm @ 700 

Typical data collection rate 

(solar illumination) 

0.7 spectra/second 

Detector 512 channel Silicon photodiode array 350 – 1050  

Field of view (FOV) 25o (FOV)  

Calibration Wavelength, reflectance, radiance, irradiance. All calibration are 

NIST traceable 

Noise Equivalent Radiance 

(NER) 

UV/VNIR 5.0 x 10 -9 , W cm-2 nm-1 Sr-1 @700nm 
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Field use 

An ASD FieldSpec Pro spectroradiometer was used to measure the spectral 

reflectance from plant canopies at a specific height from the soil surface. Each 

reflectance spectrum was the average of a number of scans (which was adjusted and 

calculated by the spectroradiometer). The spectroradiometer was mounted at the end 

of a support telescope pole at a specific height from the soil surface to maximise the 

scanning area. A foreoptic was aligned vertically (nadir) with a field of view (FOV) 

of 3.5o and a FOV of 25° without using the foreoptic. In all greenhouse experiments 

the height of the spectroradiometer was kept at 1.7 m from the pot soil surface and it 

was adjusted to cover most of the (whole) canopy of each pot. The spectroradiometer 

was connected to a computer, which stores the individual scans for subsequent 

processing. Reflectance spectra (350 nm-1050 nm) of the plant canopies were 

acquired regularly with solar radiation during clear days (free-cloud days) from 11am 

to 3 pm over the first two experiments of the Scottish and Egyptian wheat 

experiments. Spectra collection was started at early growth stages before applying 

different treatments, and continued over the growing season until harvest time. Five 

scans for each pot were acquired to obtain the average, and therefore, reduce 

variations within pots.  

During field work in Egypt, care was taken to keep a constant distance of 2 m 

between the spectroradiometer and soil surface using an iron stand (see Fig. 3.2). The 

instrument was used without the foreoptic during field work, providing a FOV of 25° 

and notes were taken during the daily work about weather conditions including light 

intensity, time and cloud cover. Also, the reflectance was measured as quickly as 

possible to cover many fields within a short period of time (around noon) before sun 

angle changes to reduce variability. Care was taken to minimise the influence of 

shadow and the white Spectralon reference panel was used before acquiring 

reflectance at each location within the same field during the field work. A 

combination of visual inspection and distance from irrigation channels was used to try 

and encompass a gradient of crop stress across the study area.  Figures 3.2 and 3.3 

show examples of measuring reflectance from wheat canopies using natural solar 

radiation and artificial illumination source (two 300 W halogen lamps). Figure 3.4 

shows reflectance measurements at the leaf scale under darkroom conditions.   
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Figure  3-2 Measuring reflectance from wheat canopy in the field. 

 

Darkroom measurements 

For the greenhouse experiments reflectance measurements were also made in a 

darkroom to avoid changing light intensity from solar radiation and to have a constant 

light incident on the plant canopy. The darkroom measured 3.9 x 2.75 x 2.35 m 

(length x width x height). To minimise the reflectance from the floor and walls a non-

reflective black cloth with a very low reflectance (reflectance < 5%) was used to 

cover the walls to prevent reflectance from them and the floor was painted with a non-

reflective black paint. The spectroradiometer and two 300 W halogen lamps were 

mounted on the ceiling at a height of 2 m to cover the maximum possible area from 

each pot. The instrument was calibrated using a white Spectralon reference panel 

(reflectance ≈ 100%). Fig. 3.3 shows the darkroom during reflectance measurements 

from wheat canopies. The distance between the spectroradiometer and pot surface 

were kept constant over the whole growing season.  
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Figure  3-3 Measuring reflectance from wheat canopy in the darkroom using artificial illumination. 
 
 
 
 

 
 
Figure  3-4 Measuring spectral reflectance at the leaf scale under darkroom conditions using artificial 
illumination. 
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3.4.2 Physical Characteristics of Plants 

3.4.3 Biometric properties  
Leaf area index (LAI) 

Leaf area was measured three times for the Scottish wheat experiments and five times 

for the Egyptian wheat experiments during the growing season immediately after 

spectroradiometry measurements from wheat and maize crops. The number of 

replicates of each treatment was larger for Egyptian wheat. Ten wheat plants were sub 

sampled and all leaves were removed, weighed and the fresh weight was recorded. 

Twenty discs of 1 cm in diameter were taken from different leaves randomly of the 

sub-sample at different locations on each leaf from leaf tip to leaf base. Five discs 

were taken randomly to determine leaf area for each treatment. To calculate the whole 

leaf area the weight and the area measured for the five discs were used according to 

the following equation.  

The whole leaf area = 
DW

DAWT ×   …………….3.2 

Where WT is the weight of the whole sample, 

DA is the area of a specific number of discs  

DW is the weight of these discs  

After calculating the leaf area for each treatment, the Leaf area index can be 

calculated by dividing the total leaf area for each sample by the area occupied by 

these plants as follows: 

LAI = 
SA
LA  

Where: 

LAI is the leaf area index 

LA is the leaf area per sample 

SA is the occupied land area 
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Plant height 

Plant height was recorded bi-weekly during the first two experiments of Scottish and 

Egyptian wheat (winter 2005-6 and spring 2006). Additionally, plant height was 

measured immediately after measuring reflectance from plant canopies. During the 

last three experiments using the darkroom, it was measured immediately after 

measuring reflectance since reflectance measurements were independent of weather 

conditions.       

3.4.4 Grain yield 
Wheat plants were harvested at the end of June for winter season 2005-6, early 

September for spring wheat 2006. In the third experiment for Egyptian and Scottish 

winter wheat 2006-7, Egyptian wheat reached maturity (end of May) before Scottish 

wheat (mid June). The maturation of grain was observed visually depending on the 

colour as plants turned completely yellow and also some spikes were threshed 

manually to make sure that all seeds were dry. At harvesting, there were three pots for 

each treatment and plants were cut just above soil level and separated into leaves, 

stems and spikes. Spikes for each pot were threshed manually and the total grain yield 

was recorded. The grain yield was converted to kg m-2
 by relating the yield from an 

area of 0.15 m2 to an area of 1 m2.  

3.5 Soil Sampling    

3.5.1 Soil sampling for greenhouse experiments 
The soil used in the greenhouse pot experiments was taken from the walled garden 

area at the University of Stirling. Soil was collected from surface and sub surface 

levels (10-30 cm) and mixed thoroughly to be representative of the soil used in the pot 

experiments. Soil samples of approximately 1 kg each were sub-sampled to 

characterise the soil properties (electrical conductivity, pH, chemical analysis-anions 

and cations and particle size distribution). Samples for analysis were oven dried at 

105°C for 24 hours then ground and sieved to < 2 mm.      

3.5.2 Soil sampling for field work 
In June 2006 and before the two field work visits were undertaken, soil samples were 

collected from the study area (south-west Alexandria, Egypt). Sample sites were 

chosen randomly from surface (0-20 cm) and sub-surface levels (20-40 cm). A soil 
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sample of approximately 1 kg was collected and immediately put in a sealed plastic 

bag for analysis.  Twenty three soil samples were collected covering three different 

areas; Kahr, Hewaihy and Bangar sites within the study area. To determine soil 

characteristics, some soil chemical analysis such as salinity, pH, anions, cations and 

nitrogen concentration were determined. During the two field work visits in March 

and July 2007 to collect ground reference data for wheat and maize, three soil samples 

were collected from each field at different locations and placed in a sealed plastic bag 

then taken as soon as possible to a laboratory belonging to the ministry of agriculture 

in Egypt for analysis.  

3.6 Soil Analysis 

3.6.1 Soil pH 
Three oven dried soil samples were taken to determine the pH. Soil paste extracts 

were prepared and the pH measured according to Rowell (1994). A WPA analogue 

pH meter model C14/16/18 was used to measure soil pH. The pH values were also 

determined in the presence of calcium chloride (CaCl2).    

3.6.2 Soil Salinity 
The soil salinity in oven dried soil samples was determined using soil paste extract 

according to Rowell (1994). Soil samples were weighed to determine the wet weight 

then oven dried for 24 hours at 105°C and passed through a 2 mm sieve. A weight of 

about 300 g of oven dried soil was put into a weighed 500 ml plastic beaker. Distilled 

water was added to the soil sample with stirring until nearly saturated. The paste was 

allowed to stand for several hours to wet thoroughly, and then more water was added 

to form a saturated paste. In this state the paste glistens as it reflects light, flows 

slightly when the beaker is tipped, slides freely and cleanly off a spatula and is 

consolidated easily by tapping the beaker after a trench has been formed in the paste 

with a spatula. The beaker was covered and allowed to stand overnight and then the 

condition of the paste was checked. More distilled water or more dried soil was added 

depending on the paste condition. After that the saturated paste was transferred on to a 

toughened filter paper in a Buchner funnel, the extract was collected in a sample glass 

after applying suction to the filtering unit. Before measuring the electrical 

conductivity of the soil paste, the instrument was calibrated against NaCl solutions as 
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recommended. Finally, the electrical conductivity of the sample was measured and 

recorded at 25°C.  

3.6.3 Organic matter and particle size distribution  
Particle size distribution aims to determine different particles of sand, silt and clay to 

provide a soil classification. Three sub-samples of oven dried soil were taken from the 

greenhouse experiment soil for determining particle size distribution. Organic matter 

determined by loss on ignition at 375oC (Ball, 1964) was very low (0.09%). Ten 

grams from each sample were suspended in 25 ml of distilled water and 2 ml of 

Calgon (Sodium hexametaphosphate) was added for dispersing. The suspension was 

left for 10 minutes to ensure that the soil was fully saturated and then shaken for 10 

more minutes to give a homogenous suspension. Before injecting the sample into the 

instrument (Coulter LS 230), an automatic stirrer with a magnet was used for stirring 

the suspension and finally a pipette was used to take a volume of the suspension then 

injected into the instrument for analysing particle size distribution. The instrument 

gives the percentage of clay, silt and sand (see Table 3.4), which were recorded to use 

it on the triangle diagram to determine soil texture. These three percentages then used 

to identify soil texture.        

3.6.4 Exchangeable Anion and Cation concentration  
Sub-samples of oven dried soil sieved to < 2 mm diameter were used to determine 

cations and anions. To quantify the concentration of anions and cations, an amount of 

0.5 g oven dried soil was weighed and transferred to a 50 ml beaker then a volume of 

20 ml KCl (1.0 M) from a measuring cylinder was added and the mixture was stirred 

to ensure complete wetting of the soil (Rowell, 1994). The suspension was filtered 

through a no. 2 filter paper into a 100 ml volumetric flask, and then the soil was 

leached with another four 20 ml portion of KCl. Two volumes of 50 ml of the extract 

were taken for determining different cations using atomic absorption (UNICAM 989 

AA Spetrometer) and anions using dionex (DX-120 ION Chromatography). All 

standards for different elements were bought from Ficher Scientific International 

Company. Table 3.4 shows some soil specifications including anions (CO3, HCO3, 

SO4 and Cl), cations (Ca, Mg, Na and K), organic matter, percentage of silt, sand and 

clay, electrical conductivity, pH and field capacity. Anions and cations were also 



 

 
 

70

determined in water samples collected during greenhouse experiments using same 

routine.   

Table  3-4 some physical and chemical properties of the soil used in the greenhouse experiments. 
 

Field capacity (%) 30.10 
Sand (%) 58.48 
Silt (%) 36.79 
Clay (%) 4.73 
pH 4.90 
Electrical Conductivity, EC, (ds m-1) 1.20 
Organic matter (%) 0.09 
Calcium, Ca, mg/kg   88.00  
Magnesium, Mg, mg/kg    13.20  
Sodium, Na, mg/kg   6.68  
Potassium, K, mg/kg   7.46  
Carbonate, CO3, mg/kg   0.50 
Bicarbonate, HCO3, mg/kg   57.0 
Sulphur, SO4, mg/kg   30.70 
Chloride, Cl, mg/kg   27.48 
 
 

3.7 Statistical analysis 

Analysis of variance was performed in MINITAB v.15 to analyse yield and 

aboveground biomass data for both wheat and maize under moisture and salinity 

stressors. Salinity, moisture and salinity/moisture were used as predictor variables, 

and yield and biomass data as the response variables. Data were checked for 

normality using Anderson- Darling method with 95% significance level.  

Where necessary residual diagnostics were performed to ensure compliance with the 

assumptions of the regression. The Pearson Product Moment correlation coefficient 

was used to test the association between different vegetation indices and crop 

properties and to identify optimum vegetation indices. Simple linear and multiple 

regression analysis were used to derive regression equations to the retrieval of grain 

yield and biomass under moisture and salinity stressors.      

The differences in the spectral signatures from healthy and stressed treatments were 

also investigated using the Principle Component Analysis (PCA) in MINITAB v.15. 

The spectral datasets from each experiment were examined individually and the best 

results were chosen to identify the optimum time to distinguish between moisture and 

salinity induced stress. The advantage of using PCA is to reduce the dimensionality of 
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large datasets such as spectroradiometry. Prior to performing the PCA and to reduce 

the dimensionality of the 0.5 nm of the instrument spectral resolution, the original 

spectral datasets were averaged to 10 coarser resolution datasets. Moreover, the five 

scans obtained from each pot or location was averaged to reduce variability within 

each pot or location. The spectra between 400 nm and 900 nm were used in this 

analysis to avoid noise extremes at either ends of the spectrum.        

3.8 Summary 

This chapter describes the methodologies used to collect and prepare vegetation, 

characterise their spectral properties and soil samples for analysis to achieve the 

objectives of this research project, previously mentioned in Chapter 1. The techniques 

and the instruments used to determine the soil characteristics are described in this 

chapter. The design of the greenhouse experiments and the specific implementation of 

in situ spectroradiometry are described in Chapters 4 and 5. More specific, remote 

sensing acquisition details, data processing and analysis will be described in 

Chapter 6. The next chapter will investigate the potential of in situ hyperspectral 

measurements in detecting stress in wheat crops when subjected to moisture and 

salinity stress.  
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4 IN SITU SPECTRORADIOMETRY MEASUREMENTS 
IN MONITORING WHEAT  

4.1  Introduction 

Chapter 3 outlined the generic methodology and equipment used in this research 

project. This chapter explores the potential for in-situ hyperspectral remotely sensed 

data to predict stress in wheat when subjected to a combination of various salinity and 

moisture stresses and addresses the following hypotheses: (i) in situ hyperspectral 

measurements are able to detect stress in wheat crops and (ii) moisture induced stress 

can be distinguished from salinity induced stress spectrally.  

 In order to control factors influencing the response of wheat crops, reflectance 

measurements from the plant canopies and leaves are collected to evaluate the 

response of both broad band and hyperspectral vegetation indices to predict 

biophysical and biochemical properties of wheat including; aboveground biomass, 

plant height, leaf area index, final grain yield and chlorophyll a concentration. This 

chapter focuses on wheat crops and contrasts the behaviour of Scottish and Egyptian 

wheat varieties in response to salinity and moisture induced stress. Wheat has been 

chosen specifically for this research as it is the most important agricultural crop in 

Egypt.       

4.2 Aims and objectives 

The specific aim of the research presented in this chapter is to evaluate the potential 

of in situ hyperspectral measurements for detecting stress in Scottish and Egyptian 

wheat varieties when subjected to both salinity and moisture induced stress. The 

specific research objectives are: 

• Under controlled greenhouse conditions grow wheat and subject plants to 

moisture and salinity induced stress over ranges known to have an effect on 

plant response.  

• Use reflectance measurements to detect stress in wheat under controlled 

conditions through using different vegetation indices. 
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• Establish whether salinity induced stress can be distinguished spectrally from 

moisture induced stress. 

• Identify which spectral indices are sensitive to different crop properties.  

• Identify wavelengths sensitive to stress and biochemical properties of wheat 

crops. 

• Consider implications for remote sensing for wheat stress.  

 

4.3 Experimental design and methods 

4.3.1 Greenhouse experiment 
The greenhouse-based experiments were undertaken at the gardens of the University 

of Stirling, Stirling, United Kingdom (latitude 56°8`46.25``, longitude 3°55`4.54``) 

during winter season of 2005-6, spring season of 2006 and winter season of 2006-7. 

The experimental soil was a sandy loam with low organic matter (0.09%), a pH of 4.9 

and an EC of 1.2 dS m-1. The particle size distribution consists of 58.48% sand, 

36.79% silt and 4.73% clay (see Table 3.4 for a more detailed breakdown of soil 

properties). About 2500 kg of soil was collected from the University of Stirling’s 

Estates Garden Centre to fill pots. To ensure soil homogeneity, the soil was mixed 

thoroughly and three sub-samples were collected for chemical analysis, including pH, 

electrical conductivity (EC), cations (K+, Na+, Mg2+, Ca2+) and anions, (Cl-, SO4
2-, 

CO3, HCO3). 

The Scottish wheat variety Gladiator was grown initially in the 2005-6 winter 

growing season. This variety has a lower tolerance to salinity and thus examines the 

ability to distinguish salinity and moisture induced stress spectrally. Scottish and 

Egyptian wheat varieties were used in three successive growing seasons (see Table 

4.1). Winter wheat was sown in the second week of October 2005 and during the last 

week of October 2006.  Spring wheat was sown in the last week of March 2006. 

Wheat seeds were sown at a depth of 3-5 cm at a seed rate of 200 seeds m-2; a specific 

mesh was designed for this purpose to ensure that plant spacing was constant and 

uniform for all pots. Nitrogen, phosphor and potassium were applied to the pots at 
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levels of 100, 60 and 60 kg ha-1 respectively. In all growing seasons the total amount 

of phosphor and potassium was applied during soil preparation. The total dose of 

nitrogen was applied in the first week of March in all seasons for winter wheat and at 

the middle of May for the spring wheat. 

 

Table  4-1 Different growing seasons for Scottish and Egyptian wheat varieties. 
 
Season  Variety  Sowing date Harvest date 
Winter 2005-6 Scottish (Gladiator) 12 October 25 June 
Spring 2006 Egyptian (Sakha 8) 24 March 4 September 
Winter 2006-7 Scottish (Gladiator) 25 October 15 June  
Winter 2006-7 Egyptian (Giza 93) 25 October 28 May 

  

To subject plants to different levels of moisture and salinity stress, eleven different 

treatments were used including: one control (tap water with an average salinity of 

0.05 dS m-1 with 90% FC (Field Capacity) moisture regime, three moisture regimes at 

75%, 50% and 25% FC, three water salinity levels at 2, 4, and 6 dS m-1, and four 

combinations of both moisture and salinity (a complete list of the treatments is given 

in Table 4.3). Tap water was salinized with sodium chloride (NaCl) and Calcium 

chloride (CaCl2) mixture at 1:1 volume ratio; concentrations were used to generate EC 

values of about 2, 4 and 6 dS m-1. A large container was used to mix tap water with 

the salinization solution. Samples of tap water were collected for chemical analysis 

including cations and anions (see Table 4.2). To achieve a high germination rate, tap 

water was used for the first two irrigations in all treatments. During the first 

experiment (Scottish wheat, winter growing season 2005-6) the watering regime was 

set as intervals of 20, 30 and 40 days and one control at 10 days. The watering regime 

was changed for the remainder of the experiments to fractions of field capacity. 

 
Table  4-2 Chemical analysis of tap water samples from the greenhouse. 
 

Cations, mg/l Anions mg/l Sample pH EC, 
ds m-1 Ca Mg Na K Cl SO4 NO3 P 

1 6.31 0.083 9.31 0.98 1.93 0.263 4.11 11.67 0.62 2.63 
2 6.09 0.072 9.73 0.98 2.23 0.277 4.16 11.7 0.61 2.75 
3 6.21 0.068 9.72 0.97 2.11 0.262 4.12 11.76 0.61 2.85 
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Table  4-3 Moisture, salinity and moisture/salinity treatments applied to the crops (five replicates). 
 

Watering regime (% FC) Treatment  Salinity 
0.90 0.75 0.50 0.25 

T1 0.05 +    
T2 0.05  +   
T3 0.05   +  
T4 0.05    + 
T5 2 +    
T6 4 +    
T7 6 +    
T8 6  +   
T9 6    + 
T10 2  +   
T11 2    + 

  

Temperature was monitored in the greenhouses using a Grant, Squirrel SQ 800 data 

logger at 15 minute intervals and downloaded into MS Excel in order to calculate 

average daily and monthly values. Figure 4.1 shows the average monthly temperature 

in the 2005-6 and 2006-7 growing seasons. 
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Figure  4-1 Average monthly temperature inside the greenhouse in the 2005-6 and 2006-7 growing 
seasons. 

4.3.2 Spectral data analysis 
The spectral reflectance data was measured using an ASD FieldSpec Pro 

spectroradiometer, then downloaded to PC and pre-processed with ASD software. The 

in situ hyperspectral and laboratory darkroom spectral data were interpolated to a final 

spectral resolution of 0.5 nm then truncated between 300 and 1000 nm. Finally the 
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reflectance was smoothed to further reduce the noise at the start and the end of the 

magnetic spectrum by passing a 5 nm running mean filter over the whole spectrum.  

To use reflectance in detecting stress in plants, 55 previously published narrow and 

broad band spectral vegetation indices were calculated (Tables 4.4 and 2.11). Blue, 

green, red and NIR bands were calculated from hyperspectral measurements using 

QuickBird bands, and then these bands were used to calculate different vegetation 

indices. The reflectance values for each band were averaged in Excel to have the 

mean. The calculated vegetation indices were used to predict changes in plant 

physiological responses to salinity and moisture stressors. Figure 4.2 shows the 

typical vegetation spectral response of the wheat canopy under clear sky conditions 

obtained in the 2005-6 growing season. To distinguish between moisture and salinity 

induced stress, Principle Component Analysis (PCA) was used to analyse the spectra 

in the 400-900 nm range; this eliminated the noise at either end of the spectrum. PCA 

were performed on all datasets collected over the growing season in each experiment 

to choose the optimum time to differentiate between these two stressors. 

To investigate the effects of moisture, salinity and moisture/salinity on different 

biophysical and biochemical properties of wheat crops, analysis of variance 

(ANOVA) was applied to the data. Furthermore, simple and multiple regression 

analysis were carried out to predict wheat properties as a function of moisture and 

salinity stress levels.  

 
 

Figure  4-2 An example of typical vegetation spectral reflectance measured from wheat canopy under 
solar radiation obtained from a control sample of healthy Scottish wheat.  
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Table  4-4 Different spectral reflectance indices calculated from in situ and laboratory darkroom 
spectroradiometry (le Mair et al., 2004). 

 

Vegetation Index Formula  Intended scale  Reference 

NDVIbroad 

NDVIhyper 

(RNIR-RRed)/( RNIR+RRed) 

(R800-R680)/(R800+R680) 

Canopy Rouse et al., 1973 

Green NDVIbroad 

Green NDVIhyper 

(RNIR-Rgreen)/( RNIR+Rgreen) 

(R750-R550)/(R750+R550) 

Canopy Gitelson et al., 1996 

SIPI (R800-R445)/(R800+R680) Leaf Penuelas et al., 1995 

TCHVI [(Rred-Rgreen)+(RNIR-Rred)]/ 

[(Rred-Rgreen)+(RNIR-Rred)] 

Canopy Yefremenko et al.,1998 

NPQI (R415-R435)/ (R415+R435) Leaf Barnes et al., 1992 

SRPI 

NPCI 

R415-R680 

(R680-R430)/(R680+R430) 

Leaf Penuelas et al., 1994 

PSSRb 

PSNDb 

R800-R635 

(R800-R635)/(R800+R635) 

Leaf Blackburn, 1998 

Rshoulder Mean R750-850 Canopy Strachan et al., 2002 

PRI (R531-R570)/(R531+R571) Leaf Gamon et al., 1992 

C420 R420/R695 Leaf Carter, 1994 

R800/R550 

R800-R550 

 Leaf Buschmann & Nagel, 

1993 

NDI R800R680 Canopy Jordan, 1969 

R695/R760 

R605/R760 

R710/R760 

R695/R670 

R550 

  

 

Leaf 

 

 

Carter, 1994 

R675/R700 

R675/(R700Xr650) 

 Leaf Chappelle et al., 1992 

R672/(R550Xr708) 

R672/R550 

 R860/(R550Xr708) 

  

Leaf 

Datt, 1998 

R750/R550 

R750/R700 

R725/R675 

  

Leaf 

Gitelson & Merzlyak 

,1994 

(R850-R710)/ (R850+R680)  Leaf Datt, 1999 

(R780-R710)/ (R780+R680)  Leaf Maccioni et al., 2001 
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4.4 Results and discussion 

4.4.1 Effects of moisture and salinity stress on biophysical 
properties of wheat 
 

Grain yield 

ANOVA analysis was used to assess the effects of both moisture and salinity on 

wheat grain yield. The results are listed in Table 4.5 and depicted in Figures 4.3 and 

4.4. The results show that both moisture and salinity significantly affected wheat grain 

yield in all seasons of winter 2005-6, spring season of 2006 and winter 2006-7 on 

both Egyptian and Scottish wheat varieties. Moisture stress treatments highly affected 

the yield (R2 = 0.96 and p = 0.000 in the 2005-6 growing season). A significant 

decrease in grain yield was observed with increasing water stress level. The highest 

grain yield of 1.17 and 1.03 kg m-2 were recorded with the control treatments in the 

2005-6 and 2006-7 growing seasons in Scottish wheat. The Egyptian wheat varieties 

followed the same trend with the highest grain yields of 0.66 and 0.62 kg m-2 recorded 

in the control treatments of the winter season 2006-07 and spring season 2006 

respectively. 

Table  4-5 P values of analysis of variance (ANOVA) results for the effects of moisture, salinity and 
moisture/salinity on grain yield of Scottish and Egyptian wheat crops in different seasons. Highlighted 
values are significant (P<0.05).  
 

Source of variation Season 
Moisture Salinity Moisture/ salinity 

R2 R2
adj 

Winter 2005-6 0.000 0.000 0.000 96.9 95.5 
Spring 2006 0.000 0.000 0.000 98.5 97.9 
Winter 2006-7 (Scottish) 0.000 0.000 0.000 99.0 98.6 
Winter 2006-7 (Egyptian) 0.000 0.000 0.000 96.9 95.5 

 

Salinity also significantly affected wheat grain yield in all seasons for both the 

Scottish and Egyptian wheat varieties. Significant decrease in wheat grain yield was 

observed with increasing water salinity levels. The highest grain yield was recorded 

with the control treatments of tap water. The lowest grain yields of 0.22, 0.17, 0.36 

and 0.21 kg m-2 for Scottish winter wheat in 2005-6, Egyptian spring wheat 2006, 

Scottish winter wheat 2006-7 and Egyptian winter wheat 2006-7, respectively were 

recorded with low watering regime and high salinity levels.  
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Figures 4.3 and 4.4 show that wheat grain yield was affected by increasing salinity 

levels; this may be due to the main function of good water quality in building new 

cells and their growth. Results also showed that the effects of moisture regime on 

grain yield was higher than the effects of salinity in all growing seasons, this may be 

attributed to the low rate of photosynthesis as a result of small leaf area. The 

interaction between moisture regime and salinity level also had a significant effect on 

wheat grain yield in all growing seasons.  

Simple and multiple linear regressions were performed to investigate the relationship 

between wheat grain yield and both salinity and moisture levels. The multiple 

regression equations below were developed to describe this relationship. A simple 

regression analysis was applied first to assess the relationship between grain yield and 

moisture levels. The results showed that a significant linear relationship was found 

between grain yield and moisture regime in all growing seasons for both Scottish and 

Egyptian wheat varieties. This indicated that yield reductions were highest in 

treatments with low watering regimes (25% FC or 40 days interval in the first 

experiment with Scottish wheat, 2005-6 growing season). A further significant linear 

relationship was found between wheat grain yield and water salinity levels indicating 

that reductions in grain yield were higher with high salinity levels (6 dS m-1).  

Multiple regression analysis showed a significant relationship between wheat grain 

yield and both moisture and salinity stress (R2 = 0.80, 0.87, 0.88 and 0.89 for Scottish 

wheat in 2005-6, Egyptian wheat in spring 2006 and both Scottish and Egyptian 

wheat in 2006-7 respectively). 

The following are the multiple regression equations for the relationship between 

Scottish and Egyptian wheat grain yield and both moisture and salinity stress 

treatments in different growing seasons: 

Scottish wheat in winter season 2005-6  

Equation 4.1: Y = 1.09 – 0.021 F – 0.028 S  R2 adj = 78.3% 

Scottish wheat in winter season 2006-7 

Equation 4.2: Y = 0.285 – 0.74 W – 0.041 S R2 adj = 82.6% 
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Egyptian wheat in spring season 2006 

Equation 4.3: Y = 0.046 – 0.51 W – 0.005 S R2 adj = 85.8% 

Egyptian wheat in winter season 2006-7 

Equation 4.4: Y = 1.8 – 0.49 W – 0.027 S  R2 adj = 88.1% 

Where Y was the total grain yield (kg m-2), F the watering frequency (days), S the 

water salinity level (dS m-1) and W the watering regime (% FC). For all regression 

equations, p values were always 0.000 associated with high values of coefficient of 

determination (R2) and the difference between R2 and adjusted R2 was always less 

than 1.5%. Some relationships may not be conclusively linear, but useful for the first 

approximation. For example, Fig 4.4 shows linear relationship in the first graph and 

non-linear in the third graph.    

 

           

            

Figure  4-3 The effects of moisture and salinity stress on total grain yield of Scottish wheat in the 2005-
6 and 2006-7 growing seasons (n = 12). 
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Figure  4-4 The effects of watering regime and water salinity on total grain yield of Egyptian wheat in 
the spring season of 2006 and winter season of 2006-7 (n = 12). 
 

Aboveground biomass 

The analysis of variance was performed to assess the relationship between 

aboveground biomass and both moisture and salinity stress. Results detailed in Table 

4.6 show that the aboveground biomass has been greatly affected by moisture stress in 

all growing seasons of Scottish and Egyptian wheat varieties. Results illustrated in 

Figures 4.5 and 4.6 show that there is a noticeable reduction in total biomass with 

decreasing moisture levels. The highest production of aboveground biomass was 

recorded with the control treatment (tap water at 90% FC). The aboveground biomass 

was negatively correlated with decreasing watering regime level. This data also 

showed that grain yield was negatively correlated with increasing water salinity level. 

It was further observed that the total aboveground biomass was not affected by 

different treatments of salinity and moisture stress over the first three months 

(November-January) of the winter wheat growing seasons. This may be due to the low 

evapotranspiration during this time, which affects the rate of photosynthesis in plants.   
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Table  4-6 P values of analysis of variance (ANOVA) results for the effects of moisture, salinity and 
moisture/salinity on aboveground biomass of Scottish and Egyptian wheat varieties at harvesting in 
different growing seasons. Highlighted values are significant (P<0.05).  
 

Source of variation Season 
Moisture Salinity Moisture/salinity 

R2 R2
adj 

Winter 2005-6 (Scottish) 0.000 0.000 0.000 95.9 94.1 
Spring 2006 (Egyptian) 0.000 0.000 0.000 99.0 98.6 
Winter 2006-7(Scottish) 0.000 0.000 0.000 98.7 98.1 
Winter 2006-7 (Egyptian) 0.000 0.000 0.000 96.5 94.9 
 
 

Simple and multiple regressions were performed to investigate the relationship 

between total aboveground biomass and moisture and salinity stress. The simple 

regression equations showed significant differences for both stressors between control 

and different salinity and moisture levels. This significant linear relationship between 

biomass and both factors indicating that biomass is highly reduced with saline water 

and low watering regime, and therefore, multiple regression analysis has been 

performed to develop a regression equation to predict total aboveground biomass. 

Following are the multiple regression equations for all winter and spring growing 

seasons of Scottish and Egyptian wheat varieties. 

Scottish wheat in winter season 2005-6  

Equation 4.5: B = 2.18 – 0.03 F – 0.036 S  R2 = 86.6%; R2
adj = 85.7%  

Scottish wheat in winter season 2006-7 

Equation 4.6: B = 0.731 + 1.26 W – 0.083 S R2 = 82.1%; R2
adj = 81.0% 

Egyptian wheat in spring season 2006 

Equation 4.7: B = 0.36 + 0.95 W – 0.012 S  R2 = 89.9%; R2
adj = 89.2% 

Egyptian wheat in winter season 2006-7 

Equation 4.8: B = 0.5 + 1.17 W – 0.065 S  R2 = 86.4%; R2
adj = 85.5% 

Where B was the total aboveground biomass (kg m-2), F the watering frequency 

(days), S the water salinity level (dS m-1) and W the watering regime (% FC). It is 

clear from regression equations that both moisture and salinity stressors greatly 

affected aboveground biomass of wheat in all experiments. The strongest relationship 
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was observed in spring season 2006, which may have been a result of weather 

conditions during this time (high temperature, and therefore, high evapotranspiration).    

Total biomass also was negatively correlated with salinity levels in all experiments of 

Scottish and Egyptian wheat varieties. Results obtained from the first and last 

experiments showed similar relationship (both Scottish wheat). Figures 4.5 and 4.6 

showed positive linear relationship between the measured aboveground biomass and 

both moisture and salinity stress levels. 

Because grain yield and aboveground biomass are closely linked, it can be further 

noticed that the coefficient of determination derived from regression equations for 

both crop parameters are approximately similar in all experiments. It is therefore 

important to estimate biomass at early growth stages to avoid crop reductions.  

  

           

           

Figure  4-5 The effects of watering regime and water salinity on total aboveground biomass of Scottish 
wheat in 2005-6 and 2006-7 growing seasons (n = 12).  
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Figure  4-6 The effects of watering regime and water salinity on total aboveground biomass of 
Egyptian wheat in the 2006 and 2006-7 growing seasons (n = 12). 
 

Plant height 

Plant height was recorded concurrently with the reflectance measurements. Over the 

first two experiments with the Scottish wheat variety (winter season of 2005-6) and 

Egyptian wheat variety (spring season of 2006) the plant height was recorded every 

two weeks in addition to the immediate measurement after reflectance measurements 

were taken. This was because reflectance measurements during the first two 

experiments were affected by ambient light levels. In later experiments the darkroom 

was used to ensure consistent light intensity. Results detailed in Table 4.7 show the 

relationship between moisture, salinity and moisture/salinity and the plant heights of 

Scottish and Egyptian wheat varieties in three successive seasons of winter 2005-6, 

spring 2006 and winter 2006-7. 

Generally, both moisture and salinity significantly affected wheat plant height in all 

wheat experiments at most measuring dates (R2 > 0.85; p = 0.000). The interaction 

between these two stressors also showed significant effects on wheat plant height at 

most measuring dates. At early growth stages moisture, salinity and moisture/salinity 

did not show any significant effects on wheat plant height in all experiments. 
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Figure  4-7 P values of analysis of variance (ANOVA) for the relationship between moisture, salinity, 
moisture/salinity and plant height of Scottish and Egyptian wheat varieties at different DAS over the 
four experiments. Highlighted values are significant (P<0.05).   
 

Source of variation Season 
Moisture Salinity Moisture/Salinity 

R2 R2
adj 

06/05Scottish       
73   DAS 0.705 0.603 0.662 0.19 0.00 
125 DAS 0.000 0.000 0.000 0.89 0.84 
181 DAS 0.000 0.000 0.000 0.89 0.84 
207 DAS 0.000 0.000 0.000 0.99 0.99 
225 DAS 0.000 0.000 0.000 0.99 0.98 

2006Egyptian       
57 DAS 0.738 0.106 0.150 0.56 0.36 
78 DAS 0.000 0.030 0.000 0.95 0.93 
91 DAS 0.000 0.120 0.000 0.95 0.93 
103 DAS 0.000 0.006 0.000 0.94 0.92 
127 DAS 0.000 0.002 0.000 0.91 0.87 

06/07Scottish       
97 DAS 0.762 0.481 0.317 0.29 0.00 
135 DAS 0.183 0.959 0.817 0.23 0.00 
177 DAS 0.000 0.000 0.006 0.96 0.94 
198 DAS 0.000 0.000 0.030 0.96 0.94 
223 DAS 0.000 0.000 0.000 0.98 0.97 

06/07Egyptian       
83 DAS 0.123 0.715 0.100 0.60 0.52 
108 DAS 0.354 0.931 0.796 0.18 0.00 
130 DAS 0.000 0.000 0.000 0.93 0.91 
149 DAS 0.000 0.000 0.000 0.96 0.94 
197 DAS 0.000 0.000 0.000 0.98 0.97 
    
 

4.4.2 Effects of moisture and salinity stress on chlorophyll a 
concentration of wheat leaves 

The relationship between chlorophyll a concentration in wheat leaves and different 

salinity and moisture treatments is presented in Table 4.8 and illustrated in Figures 4.8 

and 4.9. These show that both moisture and salinity treatments have significantly 

reduced the chlorophyll a concentration at the highest salinity and lowest watering 

regime level. There is a strong negative correlation between moisture stress and total 

chlorophyll a concentration. A significant correlation was also observed between the 

measured chlorophyll a and salinity levels, especially after applying the nitrogen dose 

in March in both winter growing seasons (2005-6 and 2006-7) and in May in the 

spring growing season of 2006. 

Analysis of variance results for the first experiment demonstrated that up to 125 DAS 

the relationship between chlorophyll a concentration and salinity/moisture was not 

significant as p values ranged from 0.100 to 0.880. From 181 DAS, moisture, salinity 
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and moisture/salinity significantly affected the concentration of chlorophyll a. At 225 

DAS the effects of moisture and moisture/salinity were non-significant; this may be 

due to chlorophyll a degradation prior to and during ripening.  

Results obtained from the second experiment show that the effects of moisture were 

higher than the effects of salinity on chlorophyll a concentration in the plants. The 

effects of moisture started to be significant from 78 DAS. Moisture/salinity did not 

show any significant effects over the whole experiment. The early stress detection in 

this experiment (Egyptian wheat variety, spring season of 2006) may be attributed to 

the high temperature and the long days during this time of the year (April-August). 

Results obtained from the last two experiments of Scottish and Egyptian wheat in the 

2006-7 growing season showed the same trend as the first two experiments with no 

significant effects detected. This is a result of the static period of growing 

(November–February), which may be attributed to very short days at this time of the 

year. At 177 and 130 DAS for Scottish and Egyptian wheat respectively, results 

showed that salinity, moisture and salinity/moisture had significant effects on the 

concentration of chlorophyll a.         

The highest correlation between moisture and salinity stress and chlorophyll a 

concentration was observed just prior to flowering in May in both the 2005-6 and 

2006-7 winter growing seasons for Scottish wheat variety (r = 0.95 and -0.92 for the 

2005-6 growing season and 0.95 and -0.94 for moisture and salinity in the 2006-7 

season). The results obtained from Egyptian wheat experiments (winter wheat season 

2006-7)  demonstrate that the highest correlation between chlorophyll a concentration 

and different moisture and salinity stress treatments were recorded around the 

flowering stage at the end of April (r = 0.85 and -0.87 for moisture and salinity stress 

respectively). Figures 4.8 and 4.9 showed the effects of moisture and salinity on 

chlorophyll a concentration extracted from wheat leaves in different seasons for the 

Scottish and Egyptian wheat varieties. It can be noticed that in all experiments both 

moisture and salinity stressors did not significantly affected wheat chlorophyll a 

concentration at early growth stages particularly winter seasons of Scottish and 

Egyptian wheat varieties. 
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Figure  4-8 Effects of moisture and salinity treatments on chlorophyll a concentration in Scottish wheat 
leaves at flowering stage in the 2005-6 and 2006-7 growing seasons (n = 12). 
 

             

            
 
Figure  4-9 Effects of moisture and salinity treatments on chlorophyll a concentration in Egyptian 
wheat leaves in the spring season of 2006 and winter season of 2006-7 (n = 12). 
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It is evident that the effects of salinity on chlorophyll a concentration over the second 

experiment (Egyptian variety) was not high in comparison to all other experiments 

and this may be attributed to the short growing season and consequently the lower 

amount of accumulated salts. 

Table  4-8 P values of analysis of variance (ANOVA) for the relationship between moisture, salinity 
and moisture/salinity and the concentration of chlorophyll a extracted from Scottish and Egyptian 
wheat leaves in different seasons. Highlighted values are significant (P<0.05). 
 

Source of variation Season 
Moisture Salinity Moisture/salinity 

R2 R2
adj

 

05/06Scottish       
73   DAS 0.201 0.157 0.000 0.73 0.61 
125 DAS 0.215 0.882 0.579 0.26 0.00 
181 DAS .0000 .0000 .0000 0.95 0.93 
207 DAS .0010 .0010 .0080 0.77 0.67 
225 DAS 0.067 .0240 0.151 0.56 0.37 

2006Egyptian       
57 DAS 0.223 0.324 0.211 0.40 0.13 
78 DAS .0020 0.100 0.286 0.62 0.45 
91 DAS .0000 0.495 0.895 0.64 0.48 
103 DAS .0010 .050 0.913 0.63 0.46 
127 DAS .0010 0.06 0.922 0.63 0.46 

6/070Scottish       
97 DAS 0.353 0.952 0.110 0.63 0.47 
135 DAS 0.215 0.882 0.579 0.27 0.00 
177 DAS 0.070 0.020 0.151 0.56 0.37 
198 DAS .0000 .0000 .0000 0.93 0.90 
223 DAS .0000 .0000 .0000 0.97 0.96 

07/06Egyptian       
83 DAS 0.498 0.005 0.180 0.56 0.36 
108 DAS 0.201 0.157 .0000 0.73 0.62 
130 DAS .0000 .0000 0.326 0.84 0.76 
149 DAS .0000 .0000 .0000 0.96 0.95 
197 DAS .0000 .0010 0.183 0.75 0.65 
 

  

4.5 Reflectance measurements as a potential for predicting 
stress in Scottish and Egyptian wheat  

4.5.1 The association between spectral reflectance and 
biochemical properties  

The relationship between reflectance measurements and both moisture and salinity 

stress is depicted in Figure 4.10 which shows whole spectra measured from the wheat 

plant canopy under both stressors using solar radiation. The spectra collected from 

healthy plants (control treatment) show low values of reflectance in the blue region as 

a result of strong absorption by chlorophyll and other pigments. In the green region 
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the spectral reflectance from the wheat canopy increases up to the peak that is referred 

to as the ‘green peak’. After the reflectance has reached this peak it decreases between 

about 625 and 680 nm as a result of chlorophyll a absorption. The behaviour of the 

spectral reflectance changes in the NIR region as the spectral reflectance increases 

rapidly forming the rededge (680-730 nm).  

However, the spectral reflectance from stressed plants is different from the spectra 

obtained from healthy plants. Moisture stress greatly affects the signature as spectral 

reflectance increases in the blue, green and red regions. This may be due to the effects 

of different pigments and chlorophylls (a and b). The reflectance decreases in the NIR 

region in comparison to spectral signatures obtained from healthy plants (Serrano et 

al., 2000). The curves show that the green peaks from the spectra obtained from 

moisture induced stress treatments were shifted positively in comparison to spectra 

obtained from healthy and salinity stressed plants; this may be attributed to the 

dryness of leaf edges. The moisture stress had higher effects on the spectral signature 

in comparison to salinity effects (Figure 4.10).   

(a)                                                              (b)    

            

Figure  4-10 Typical spectral signatures obtained from (a) Scottish wheat canopies and (b) Egyptian 
wheat canopies at the grain filling stage under moisture and salinity stress using solar radiation. 
 
 

4.5.2 Simple broad band spectral indices 
Wheat grain yield  

Twelve broad band spectral vegetation indices have been examined in this research 

project. Results in appendix A (Tables A2, A8, A14 and A20) show the correlation 

coefficient for the relationship between these twelve indices and the measured wheat 
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grain yield. Correlation coefficients have been used to investigate the possibility of 

predicting grain yield of Scottish and Egyptian wheat varieties using these indices. 

The coefficient of correlation for the relationship between wheat grain yield and 

different spectral vegetation indices was calculated at different growth stages from 

early growth through to harvest time. Results demonstrate that the majority of the 

twelve broad band indices had significant relationships with the measured wheat grain 

yield for all experiments (winter and spring seasons). 

In the first experiment (Scottish wheat, winter season 2005-6) at early growth stages it 

is not possible to predict wheat grain yield as the coefficient of correlation values 

ranged from -0.08 to 0.19. This may be attributed to the similar spectral response 

from different treatments. At 181 DAS the relationship became stronger and the 

coefficient of correlation values increased into the significant range. The strongest 

correlation was recorded at 225 DAS with RVI, GNDVIbr, SR and RDVI (r = 0.91).  

Results obtained from the second experiment (Egyptian wheat, spring season of 2006) 

gave the highest relationship between different spectral vegetation indices and wheat 

grain yield at 91 DAS. The strongest correlation was recorded with RVI and SI (r = 

0.96). During this experiment the temperature and day length were considerably 

different in comparison to the winter season; days were longer and the temperature 

higher. The early prediction of grain yield may be attributed to the shorter growing 

season, which was approximately 5 months from sowing date to harvest 

(approximately 9 months for the winter season). The growing season for Egyptian 

wheat varieties is also slightly shorter than for the Scottish wheat and therefore the 

maturation more rapid. 

Results obtained from the third experiment (Scottish wheat variety, winter season of 

2006-7) show that at 97 DAS it is possible to predict wheat grain yield (an early 

growth stage). The results from this experiment demonstrated that the strongest 

correlation recorded at 198 DAS with GNDVIbr (r = 0.92). The early prediction of 

grain yield in this experiment may be due to the high level of moisture control as 

fractions of field capacity were used. 

Results for the correlation coefficient obtained from the fourth experiment are listed 

in Table A20. The results demonstrate that at early growth stages the spectral 
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vegetation indices did not show high correlations for predicting wheat grain yield. 

This may be attributed to the similar spectral signature from different treatments. At 

108 DAS eight out of twelve spectral vegetation indices had a significant relationship 

with wheat grain yield. The strongest correlation was observed between OSAVI and 

wheat grain yield at 197 DAS (r = 0.94). In addition, NDVI, SLAVI, RDVI and IPVI 

had high significant correlations with the measured grain yield (all > 90). 

The results from all experiments with Scottish and Egyptian wheat showed that the 

highest correlations between wheat grain yield and different vegetation indices were 

observed after the flowering stage. This is because at late stages of the growing 

season some old leaves started to dry, especially in the stressed treatments (moisture 

and salinity induced). RDVI, RVI and SR gave the highest significant correlation 

figure for predicting wheat grain yield observed in the second experiment (Egyptian 

wheat, spring season 2006) as early as 91 DAS (r = 0.97 and 0.96). Overall RVI was 

the best at predicting grain yield with both Scottish and Egyptian wheat varieties. 

Some other indices (NDVI, SR, RDVI, OSAVI and SLAVI) also produced high 

significant correlation for predicting wheat grain yield in all experiments.  Figure 4.11 

shows the relationship between RVI and Scottish and Egyptian wheat varieties in 

different seasons. The graphs show strong significant relationships between RVI and 

wheat grain yield in all experiments (R2 > 0.75; p = 0.000). 
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Figure  4-11 The relationship between the Ratio Vegetation Index (RVI) obtained using natural and 
artificial illumination and wheat grain yield at the grain filling stage in different growing seasons (n = 
33). 
 

Aboveground biomass 

Aboveground biomass and grain yield are closely linked and, therefore, both moisture 

and salinity treatments greatly affected aboveground biomass. The coefficient of 

correlation for the relationship between the measured aboveground biomass and 

different broad band ratio indices is given in Tables A3, A9, A16 and A21 (appendix 

A). The results demonstrate that the effects of moisture stress were higher than the 

effects of salinity on aboveground biomass. From the time series hyperspectral 

spectroradiometry measurements, collected over the growing season, it can be seen 

that at early growth stages none of the tested broad band vegetation indices were 

significantly correlated with the measured aboveground biomass (all experiments). 

The correlation values for the relationship between different broad band indices and 

the measured aboveground biomass of Scottish wheat variety in winter season of 

2005-6 are given in Table A3 (appendix A). The results show that all broad band 

vegetation indices produced a significant correlation with the measured aboveground 

biomass at late growth stages. At 181 DAS all tested broad band indices had 
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significant correlations with the measured biomass and the strongest correlation 

values were recorded at 225 DAS with GNDVIbr and RDVI (r = 0.92). NDVI, RVI, 

SR, SLAVI, and IPVI also gave a highly significant correlation with the measured 

aboveground biomass (all 0.91). 

In the second experiment (Table A9), at the early growth stage (57 DAS), none of the 

tested broad band vegetation indices had significant correlations with the measured 

aboveground biomass. At 78 DAS most of the tested indices had high significant 

correlations which ranged from -0.68 to -0.72 for the negative values and from 0.72 to 

0.80 for the positive values. The strongest correlation was observed at 91 DAS with 

RDVI (r = 0.98). NDVI, RVI, SR, SLAVI and IPVI also gave high significant 

correlation (r = 0.97) with the measured aboveground biomass. Correlations obtained 

from the 91 DAS were higher than those obtained at 103 and 127 DAS which may be 

a result of early senescence.  

In the third experiment (Table A16), at 177 DAS, all tested spectral vegetation indices 

had significant correlation with the measured aboveground biomass. The strongest 

correlation was observed at 198 DAS with GNDVIbr (r = 0.90). NDVI, RVI, OSAVI, 

RDVI and IPVI also had exhibited strong correlations (r = 0.88-0.89). At 223 DAS 

most of the correlation coefficient values were significant but less than at 198 DAS. 

This can be attributed to the senescence that occurs in late growth stages which leads 

to a decrease in chlorophylls and other pigments in the leaves. 

In the fourth experiment (Table A21) the correlations between different broad band 

spectral vegetation indices and the measured aboveground biomass were very low at 

the early growth stage (r < 0.3). At 108 DAS, eight out of the twelve indices had a 

significant correlation with the measured aboveground biomass. The strongest was at 

197 DAS with RDVI and OSAVI (r = 0.94). NDVI, RVI, OSAVI, RDVI and IPVI 

also had a high significant correlation (r = 0.91-0.92). Figure 4.12 shows the 

relationship between RDVI and the measured aboveground biomass in different 

growing seasons; the strong linear relation can be clearly observed in these diagrams. 

It is evident that in all experiments VI1 always produced poor correlations with 

different biochemical and biophysical crop properties.  
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Figure  4-12 The relationship between Red Difference Vegetation Index (RDVI) obtained using natural 
and artificial illumination and aboveground biomass of Scottish and Egyptian wheat in different 
growing seasons (n = 33). 
 
 

Leaf Area Index (LAI) 

LAI was measured three times during the two Scottish wheat experiments due to low 

number of replicates (5) but it was measured five times with the Egyptian wheat 

variety (6 replicates). The correlations between LAI and the different broad band 

vegetation indices are given in Tables A4, A12, A18, and A24 (Appendix A). The 

results obtained from the first experiment showed that at 181 DAS all the tested 

indices had significant correlation with the measured LAI. At 207 DAS the values had 

increased to (r > 0.7). The strongest correlation was recorded with GNDVIbr at 225 

DAS (r = 0.90). The poorest correlation was recorded with VI1 (all experiments) in 

both Scottish and Egyptian wheat varieties. 

Table A12 (appendix A) shows the relationship between LAI and the broad band 

indices in the second experiment. At the early growth stage (55 DAS) none of the 

tested broad band indices was significantly correlated with LAI. From 78 DAS 

onward most of the tested broad band indices had significant correlations with the 

measured LAI (r > 0.6). The strongest correlation was recorded with NDVI, SAVI, 
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SLAVI, OSAVI, SI and IPVI at 91 DAS (r = ±0.96). The correlations started to 

decrease after 91 DAS as a result of early maturation (the leaves began to yellow). 

The third experiment (Table A18) had the same trend as the first experiment - both 

are Scottish wheat. All tested broad band indices were significantly correlated with 

the measured LAI on all measurement dates. The correlation coefficient between 

broad band indices and the measured LAI was significant and increased with time, 

reaching a maximum value at 223 DAS with GNDVIbr (r = 0.90).   

Correlation values for the relationship between broad band indices and the measured 

LAI obtained from the fourth experiment showed that at 83 DAS none of the broad 

band indices was significant with LAI (r < 0.30). From 108 DAS most of the tested 

broad band indices were significantly correlated with the measured LAI. The 

strongest correlation was recorded at 197 DAS with NDVI, SLAVI and IPVI (r = 

0.96). GNDVIbr and SI also produced high significant correlations with the measured 

LAI (r = 0.95 and -0.95 respectively). 

               

              

Figure  4-13 The relationship between NDVI and GNDVIbr  obtained using natural and artificial 
illumination and leaf area index of Scottish and Egyptian wheat varieties in different growing seasons 
(n = 33). 
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Chlorophyll a concentration 

In all experiments the spectral signature from stressed plants was different from those 

obtained from healthy plants. This is a result of changes in levels of chlorophyll a and 

other pigments caused by the stress factors. The regression equation and correlation 

coefficient for the relationships between different broad band vegetation indices and 

the measured chlorophyll a concentration have been investigated. The correlation 

values are given in Tables A1, A7, A13 and A19 (appendix A). There is no significant 

correlation between the measured chlorophyll a concentration and different broad 

band spectral vegetation indices at early growth stages. Data obtained from the first 

experiment show that up to 125 DAS all tested broad band indices had non-significant 

correlation values. This may be attributed to the low difference in chlorophyll a 

concentration and other pigments. The strongest correlation was observed at 181 DAS 

with RVI, SR and RDVI (r = 0.57). The majority of the twelve broad band indices 

gave a significant correlation with chlorophyll a concentration at 207 and 225 DAS.  

Correlation values from the second experiment (Egyptian wheat, spring season of 

2006) are detailed in Table A7. Most of the twelve broad band indices gave 

significant correlation with the concentration of chlorophyll a at 78 DAS. At early 

stages all tested broad band vegetation indices had a low correlation with the 

measured chlorophyll a. The strongest correlation was recorded at 127 DAS with 

SAVI and OSAVI (r = 0.69); this may be a result of the low aboveground biomass 

caused by the short growing season. 

The same trend was observed in the third experiment (Scottish wheat, winter season 

of 2006-7); results are given in Table A13. At early growth stage the relationship 

between different spectral vegetation indices and the measured chlorophyll a was 

non-significant with all tested indices. Correlation values became significant at 177 

DAS with eight out of the twelve broad band indices producing significant 

correlations (r > 0.35). At 198 and 223 DAS all twelve broad band indices produced a 

significant correlation with chlorophyll a (r > 0.55 with the majority of the indices). 

The strongest correlation was recorded at 198 DAS with SAVI and OSAVI (r = 0.84). 

In the fourth experiment (Table A19) up to 130 DAS the correlation coefficient was 

non-significant with all vegetation indices. This may be attributed to dormancy during 
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early winter months (November- January). At 149 DAS half of the broad band indices 

produced significant correlations with the concentration of chlorophyll a (r > 0.45). 

At 197 DAS all tested indices had significant correlations with the measured 

chlorophyll a with the strongest correlation recorded with OSAVI (r = 0.79). 

Chlorophyll a concentration was also measured using HPLC, and similar results to 

those obtained using spectrophotometer were observed. Other pigments such as 

chlorophyll b and lutien were also measured by HPLC. Chlorophyll b demonstrated 

a similar trend to chlorophyll a with both moisture and salinity induced stress. 

However, the relationship between lutien and both stressors was poor. The results 

suggest that OSAVI is a good indicator for predicting chlorophyll a concentration; it 

gave the strongest correlation in three of the four experiments. SAVI, RVI and SR 

also gave good results with strong correlations in all experiments. Figure 4.14 shows 

the relationship between OSAVI and the concentration of chlorophyll a in different 

seasons for Scottish and Egyptian wheat varieties.  

         

         

Figure  4-14 The relationship between OSAVI (using natural and artificial illumination) and 
chlorophyll a concentration for Scottish and Egyptian wheat varieties in different growing seasons (n = 
33). 
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4.5.3 Hyperspectral indices 
Wheat grain yield 

Forty three hyperspectral vegetation indices were examined to detect stress in wheat 

during this research. Results given in Tables A2, A8, A14 and A20 (appendix A) 

show that the majority of the tested vegetation indices are good predictors of wheat 

grain yield, particularly at the flowering stage. Results obtained from the first 

experiment showed that at the early growth stage (<125 DAS) most of these indices 

showed low correlations with the measured wheat grain yield. At 181 DAS the 

correlation values were significant with fifteen spectral indices (r > 0.34). At 207 and 

225 DAS, the majority of the indices had significant correlation with the yield (r > 

0.45). The strongest correlation was recorded at 225 DAS with the band ratio 

R750/R550 (r = 0.93). GNDVIhy, SRhy and R800/R550 were also good at predicting wheat 

grain yield (r = 0.90). 

Results obtained from the second experiment (spring season) showed that the grain 

yield can be predicted at the early growth stage. At 78 DAS more than half of the 

hyperspectral indices had significant correlations with the measured grain yield (r > 

0.4). At 91 DAS the majority of the hyperspectral indices gave highly significant 

correlations, the strongest correlation was recorded with the band ratios of SRhyper and 

R725/R675 (r = 0.97). The early prediction of wheat grain yield in this experiment may 

be attributed to the shorter growing season. In addition, the temperature was higher; 

this accelerates plant growth and consequently decreases maturation time.  

In the third experiment (Table A14), results showed that grain yield can be predicted 

successfully using hyperspectral vegetation indices. At 97 DAS almost half of the 

indices gave significant correlations with the measured grain yield (r > 0.4). The 

strongest correlation between the vegetation indices and wheat grain yield was 

observed at 198 DAS with 5 indices; GNDVIhyper, R800/R550, R750/R550, Cgreen and CNIR 

(r = 0.92). The decrease in correlation between different indices and wheat grain yield 

at the last measurement may be attributed to senescence and the decreased 

concentration of chlorophyll a. 

In the fourth experiment (Table A20) GNDVIhyper, R800/R500, R750/R550, Crededge and 

Cgreen gave a high significant relationship with the measured wheat grain yield. The 
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strongest correlation was recorded At 197 DAS with NDVIhyper (r = 0.94). Results 

also further showed that up to 108 DAS the correlation between grain yield and 

vegetation indices was non-significant for more than half of those assessed. Seventeen 

indices gave significant correlations for predicting yield. Similar results were also 

obtained at 130 DAS; thirteen indices gave significant relationships with grain yield.  

It is evident that most of the spectra obtained from the wheat canopy (using both solar 

radiation and artificial illumination inside the darkroom) show a strong relationship 

with the measured wheat grain yield. Some of the indices had non-significant 

correlations with the grain yield (e.g. WI, WBI and NPQI). The band ratio R750/R550 

gave the strongest correlation for predicting yield in two experiments and therefore is 

a good predictor for wheat grain yield. Figure 4.15 demonstrates the relationship 

between the band ratio R750/R550 and the measured wheat grain yield in different 

growing seasons including winter and spring. The figure shows that there is a positive 

linear relationship between the band ratio and grain yield in all seasons (R2 = 0.86, 

0.84, 0.76 and 0.86) for Scottish and Egyptian wheat. 

             

             

Figure  4-15 The relationship between R750/R550 (using natural and artificial illumination) and wheat 
grain yield for Scottish and Egyptian wheat varieties in different growing seasons (n = 33). 
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The results show that the majority of the hyperspectral indices examined in this 

research have strong relationship with the measured wheat grain yield. This may be 

used to predict other biophysical and biochemical properties of wheat. Comparing the 

results obtained from both broad band and hyperspectral indices for predicting wheat 

grain yield, it can be seen that there is no great difference between the strongest 

correlations obtained using the two methods. This is a good indicator that it should be 

possible to extrapolate the results at a large scale using high spatial resolution satellite 

remote sensing such as QuickBird imagery.  

Aboveground biomass  

The correlation coefficient for the relationship between the forty three hyperspectral 

vegetation indices and the measured aboveground biomass is given in Tables A3, A9, 

A16 and A21 (appendix A). At early growth stages, the majority of the tested 

hyperspectral indices did not show strong correlations with the measured 

aboveground biomass. Results obtained from the first experiment show that at 181 

DAS 29 indices showed significant correlations with the measured aboveground 

biomass, with the strongest correlation observed at 225 DAS with 5 indices; 

GNDVIhy, SIPI, R800/R550, R750/R550 and Cgreen (r = 0.92). Over the three measurement 

dates in this experiment the relationship gradually increased, with the highest 

correlation values at 225 DAS. Very few indices did not show any significant 

correlation (e.g. PSI and R700/R670 produced the lowest values < 0.30). 

In the second experiment (Table A9) the results showed that at 57 DAS none of the 

tested hyperspectral indices were significantly correlated with the measured 

aboveground biomass; the correlation coefficient values ranged from -0.28 to 0.31. At 

78 DAS the relationships were more significant with twenty eight indices having 

significant correlations with the measured aboveground biomass (r > 0.35). At 91 

DAS the majority of the tested indices produced highly significant correlations with 

the measured biomass (r > 0.45). The strongest correlation observed was with the 

band ratio R750/R700 (r = 0.98), this gave one of the earliest strong correlations 

observed over the whole set of wheat experiments. NDVIhy, PSNDb, SRhy, R675/R700, 

RNDVI and Crededge gave almost identical results (r = 0.97).  At 103 DAS and 127 

DAS the correlation values decreased in comparison to those from 91 DAS; this may 
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be due to the senescence occurring at late stages during which chlorophyll a and other 

pigments decrease towards a minimum at harvest time. 

The results obtained from the third experiment (Scottish wheat 2006-7) are detailed in 

Table A16. At 177 DAS most hyperspectral vegetation indices showed high 

significant correlations with the measured aboveground biomass. At 198 DAS thirty 

nine indices were significantly correlated with the aboveground biomass (r > 0.38) 

with the strongest correlation observed at 198 DAS with CNIR (r = 0.92). GNDVIhy, 

R800/R550, R750/R550 and Cgreen gave higher correlations in comparison to the other 

indices (r = 0.90). At 223 DAS nearly two thirds of the indices gave significant 

correlations with the biomass. As in the other experiments, WI, WBI and NPQI did 

not show any significant correlations with the measured biomass (r < 0.25).  

The results obtained from the fourth experiment had the same trend as the previous 

experiments. It should be mentioned that both hyperspectral and broad band indices 

derived from the darkroom were much more controlled and the dates of measuring 

reflectance were close to specific growth stages (tillering, booting, flowering, 

heading, and grain filling stages). Results are detailed in Table A21. Roughly half of 

the tested hyperspectral indices did not show any significant correlation with the 

measured aboveground biomass except at the final date of measurement. The 

strongest correlation derived from the experiment was observed at 197 DAS with 

NDVIhy, SRhy, R800/R550, R695/R670 and R750/R550 (r = 0.93). The results obtained from 

all experiments showed that there was no great difference between hyperspectral and 

broad band vegetation indices in predicting aboveground biomass. This is useful as 

the imagery available for this research project is high spatial resolution only (limited 

number of bands). Like results from other experiments NPQI, PSR and WBI produced 

non-significant correlations with the measured aboveground biomass over the 

growing season. 

The results therefore suggest that broad band vegetation indices can be used as 

indirect tool to estimate aboveground biomass of wheat crops. Many vegetation 

indices produced strong correlations with the measured biomass at different growth 

stages.  
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Leaf area index (LAI) 

The correlation coefficient values for the relationship between the measured LAI and 

the forty three hyperspectral indices are given in Tables A4, A12, A18 and A24 

(appendix A). Results obtained from the first experiment showed that most of the 

tested hyperspectral indices were significantly correlated with the measured LAI at 

181 DAS. At 207 DAS, the majority of the tested hyperspectral indices gave 

significant correlation (r > 0.45). Of the three measurement dates the 225 DAS dataset 

produced the highest significant correlations. The strongest correlation was recorded 

with both GNDVI and SIPI (r = 0.90). Cgreen, R800/R550 and R750/R550 gave high 

significant correlation during the experiment (r = 0.88). Some indices such as PSI and 

R700/R670 had non-significant correlation with the measured LAI (r < 0.33).  

In the second experiment (Table A12) the results showed that at the early growth 

stage (55 DAS) nearly all the tested hyperspectral indices were not significantly 

correlated with the measured LAI (r < 0.34). At 78 DAS more than half of the 

evaluated ratios significantly correlated with the measured LAI (r > 0.35). At 91, 103 

and 127 DAS, the majority of the hyperspectral indices gave high significant 

correlations. The strongest correlation was recorded at 91 DAS with SIPI (r = 0.97). 

The correlation coefficients at 103 and 127 DAS were significant for most of the 

hyperspectral indices but lower than the values obtained at 91 DAS, this may be 

attributed to the decrease in chlorophyll a at late stages. 

The results obtained from the third experiment (Scottish wheat 2006-7) had the same 

trend as the first experiment with this variety. Results given in Table A18 show that at 

177 DAS the majority of hyperspectral indices were significantly correlated with the 

measured LAI and the values of the coefficient of correlation increased until reaching 

the maximum values at 198 and 223 DAS with Cgreen, R800/R550 and GNDVIhyper (r = 

0.90). Some hyperspectral indices also gave high significant correlations with the 

measured LAI including SRhyper, R750/R550 and CNIR (r = 0.89). It was noted that some 

of the tested hyperspectral indices did not give significant correlations with the 

measured LAI in this experiment (e.g. WI, PSI, NPQI and WBI). 

In the fourth experiment (Table A24) the results showed that at early growth stage (83 

DAS) most of the hyperspectral indices were not significantly correlated with the 
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measured LAI. At 108 DAS nearly a third of the tested hyperspectral indices 

exhibited significant correlations with the measured LAI (r > 0.37). Both the 149 and 

197 DAS datasets produced better results in comparison with the previous 

measurements. At 197 DAS the majority of indices had significant correlations with 

the strongest correlation recorded with three different band ratios; NDVIhyper, 

R675/R700 and RNDVI (r = ±0.96). Other hyperspectral indices such as GNDVIhyper, 

PSNDb, R695/R760, R605/R760, Cgreen, R750/R550 and R800/R550 also gave strong 

significant correlations with the measured LAI (r = 0.92 to 0.94). The wavelength of 

550 nm seems to be of particular importance for examining the effects of stress in 

wheat as it is at this wavelength that the most obvious changes brought about by stress 

can be observed (chlorophyll a concentration, yield, biomass and plant height are all 

affected here). Wavelengths of 750 and 800 nm are also sensitive for predicting 

biophysical and biochemical properties of wheat crops. 

From the results above it can be seen that a comparison of hyperspectral and broad 

band vegetation indices for predicting LAI shows that there is little difference 

between the strongest correlations from both methods. Some broad band indices such 

as RVI and NDVI give higher correlations in comparison to the hyperspectral indices.            

Chlorophyll a concentration 

The correlation coefficient values for the relationship between different hyperspectral 

indices and chlorophyll a concentration for all experiments are given in Tables A1, 

A7, A13 and A19 (appendix A). At early growth stages the correlation values were 

non-significant in all experiments (winter and spring seasons). At 73 and 125 DAS, 

none of the hyperspectral indices gave significant correlations with the measured 

chlorophyll a (r < 0.30). At 181 and 225 DAS, the majority of the indices gave 

significant correlations with chlorophyll a with the strongest correlation observed at 

207 DAS with the band ratio R695/R670 (r = 0.62). At 181 DAS only nine vegetation 

indices had non-significant correlation with the measured chlorophyll a concentration 

(r < 0.33). WI, PSI, NWI-1, NWI-2 and WBI were not sensitive for chlorophyll a 

concentration in all growing seasons with occasional exceptions. 

In the second experiment the correlation values are given in Table A7. Early signs of 

a significant relationship were observed at 78 DAS with nineteen indices (r > 0.34). 
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At 91 DAS thirty nine indices had a significant relationship with the measured 

chlorophyll a concentration. At 103 and 127 DAS, the majority of the hyperspectral 

indices produced significant correlations with the strongest correlation observed was 

with PSNDbroad (r = 0.68) at 127 DAS. The early prediction of chlorophyll a 

concentration in this experiment may be attributed to the short growing season (spring 

season) in comparison with the other winter season experiments. 

In the third experiment (Scottish wheat, 2006-7) the spectroradiometry measurements 

were collected at 97, 135, 177, 198 and 223 DAS. At early growth stages the majority 

of the hyperspectral indices gave non-significant correlations with chlorophyll a (r < 

0.35). At 177 DAS thirteen vegetation indices had low significant correlation values. 

At 198 and 223 DAS most of the hyperspectral vegetation indices had significant 

correlations with the chlorophyll a concentration. The strongest correlation was 

recorded with R800/R550 and Cgreen at 198 DAS (r = 0.84). Again it seems that the 

wavelength 550 is particularly sensitive to changing plant properties. Four vegetation 

indices (WI, PSI, NPQI and WBI) gave non-significant correlations with the 

measured chlorophyll a (r < 0.30).  

In the fourth experiment (Egyptian wheat variety, 2006-7 growing season), 

chlorophyll a concentration was affected by both moisture and salinity treatments in 

comparison to control treatments. The majority of the spectral vegetation indices 

produced significant correlations. At early stages most of the hyperspectral indices 

gave non-significant correlations with the measured chlorophyll a (r < 0.35). At 149 

DAS more than half of the indices gave significant correlation values. At 197 DAS 

the majority of the forty three indices gave significant correlations. The strongest 

correlation was recorded at 197 DAS with the band ratio R695/R670 (r = 0.78). It is 

evident that the highest correlations from all experiments were found at the late 

growth stage. This may be due to the early senescence which occurs with stressed 

plants as many leaves turn dry and yellow, therefore affecting reflected spectra.   

Comparing the results obtained from both broad band and hyperspectral indices the 

results showed no great difference between the two methods. The strongest 

correlation for the relationship between vegetation indices and chlorophyll a 

concentration was similar in all experiments. For example, the difference between the 

strongest correlation recorded with broad band ratios and hyperspectral indices was 
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the same in the third experiment (r = 0.84) and in two of the other experiments the 

difference was 0.01.  

Red edge position (REP) 

The red edge position has been calculated for all spectral data collected. Results given 

in Tables A25, A26, A27 and A28 (appendix A) detail the relationship between REP 

and the measured chlorophyll a concentration from Scottish and Egyptian wheat 

leaves in different seasons. Results demonstrated that REP is a good indicator for the 

concentration of chlorophyll a, in particular at the flowering stage. The strongest 

correlation was observed after the application of the required dose of nitrogen (r = 

0.64, 0.69, 0.79 and 0.74 for the four experiments respectively). At early growth 

stages REP did not show a significant relationship with the measured chlorophyll a 

concentration. The strongest correlations were observed at 207, 103, 198 and 149 

DAS in the four experiments respectively. The results suggest that the REP is a 

sensitive index to changes in chlorophyll a concentration in wheat leaves when 

compared to the other vegetation indices assessed. These findings are supported by 

other studies (Schlemer et al., 2005).   

             

               
Figure  4-16 The relationship between REP and the concentration of chlorophyll a extracted from 
Scottish and Egyptian wheat leaves in different seasons (n = 33). 
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Figure  4-17 The relationship between the band ratios R695/R670 and R800/R670 and the concentration of 
chlorophyll a from Scottish and Egyptian wheat leaves in different seasons (n = 33). 
 

 

Identifying wavelengths sensitive to chlorophyll a of wheat at the canopy scale 

The spectral data collected in the first two experiments of Scottish and Egyptian 

wheat varieties using solar radiation during free-cloud days were used to develop a 

new index for predicting chlorophyll a concentration at the canopy scale. The 

coefficient of correlation for the relationship between reflectance and the measured 

chlorophyll a concentration for the whole spectra was calculated and plotted against 

wavelength (Figure 4.18). Reflectance data from 400 nm to 900 nm was used for this 

relationship to avoid the noisy data at the beginning and the end of the spectrum. The 

results given in Figure 4.18 show that the strongest correlation between reflectance 

and chlorophyll a concentration was found in two main regions: around 700 and 760 

nm (r = 0.66 and 0.36 respectively). Moreover, 550 nm seems a sensitive wavelength 

to predict chlorophyll a concentration. The data obtained at 207 DAS from the first 

experiment with Scottish wheat gave the best result from the four experiments.  
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Figure  4-18 The relationship between correlation coefficient and wavelength of the spectra collected 
from wheat leaves using solar radiation. 

 

4.5.4 Distinguishing moisture induced stress from salinity induced 
stress 

Both moisture and salinity stressors had a strong effect on the wheat crop in terms of 

total grain yield, total aboveground biomass, plant height, LAI, chlorophyll a and 

pigment concentration. To distinguish between moisture and salinity induced stress 

the whole spectra collected from all treatments and from each replicate were analyzed 

using PCA (Principle Component Analysis). This was applied to all spectra collected 

over the whole growing season from early growth stages (tillering) until harvest time. 

It has been noted that at the early growth stages it is very difficult to distinguish 

between moisture and salinity treatments as there is great overlap between different 

treatments. This may have been a result of similar spectral signatures from different 

treatments. However, at the early grain filling stage it becomes possible to distinguish 

between moisture and salinity induced stress. Despite the late distinction between 

moisture and salinity induced stress, these findings can be used for improving 

agricultural practices in the following growing seasons. 

The dataset collected at the beginning of May gave the clearest differentiation 

between moisture and salinity induced stress in the 2005-6 growing season. PCA has 

the potential of distinguishing between spectra collected from healthy canopies and 
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spectra collected from stressed canopies but for most of the datasets, it was not 

possible to distinguish between moisture and salinity induced stress.  The results from 

this analysis are given in Figures 4.19-22 for all experiments. These examples from 

the four experiments show the clearest distinction between moisture and salinity 

induced stress. The results show that at around the flowering of growth, the spectra 

collected from moisture induced stress tend to plot separate in one quarter of the score 

plot and the spectra collected from salinity induced stress plot in an opposite quarter. 

For example, in Figure 4.20 moisture induced stress treatments plot in the lower right 

corner and the salinity induced stress treatments plot in the upper right. In addition, 

the distinguishing between moisture and salinity induced stress is clearer for the data 

collected in the darkroom using controlled artificial illumination (Scottish and 

Egyptian wheat experiments in 2006-7 winter growing seasons). 

At early growth stages all signatures from different treatments were undifferentiated, 

possibly as a result of similar chlorophyll a concentration and other pigments, and 

therefore similar spectral signature especially during the period of November-

February. From April, the increase in day length encourages photosynthesis and 

therefore increases the concentration of chlorophyll a and pigments. Furthermore, 

adding the required dose of nitrogen at the beginning of March increased the 

concentration of chlorophyll a. The late distinction between salinity induced stress 

and moisture induced stress may be attributed to the combined effects of these 

stresses on the pigments and the early senescence, which occurs with moisture stress 

treatments. It was observed that moisture stress increased the number of dry leaves, 

particularly in the older ones. Moreover, the effects of moisture stress on crop 

physiological changes were higher in comparison to salinity stress, possibly as a result 

of crop tolerance to salinity. 

These results showed the possibility of using PCA to differentiate between moisture 

and salinity induced stress at reproductive growth stages. Despite the late distinction 

between moisture and salinity in this research, these findings can be used for 

following seasons by taking informed decisions to reduce the effects of these stressors 

on wheat crops.  
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Figure  4-19 Score plot of PCA for whole spectra collected from control, moisture and salinity induced 
stressed Scottish wheat canopies at 207 DAS in 2005-6 growing season (n = 33). (Treatment labels: CON-
control; F1-75% FC; F2-50% FC; F3-25% FC; S1-2 dS m-1; S2-4 dS m-1; S3-6 dS m-1; HFLS-0.75% FC and 2 dS m-1; HFHS-
0.75% FC and 6 dS m-1; LFLS-0.25% FC and 2 dS m-1; LFHS-0.25% FC and 6 dS m-1).        
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Figure  4-20 Score plot of PCA for whole spectra collected from control, moisture and salinity induced 
stressed Scottish wheat canopies at 198 DAS in 2006-7 growing season (n = 33). (Treatment labels: CON-
control; F1-75% FC; F2-50% FC; F3-25% FC; S1-2 dS m-1; S2-4 dS m-1; S3-6 dS m-1; HFLS-0.75% FC and 2 dS m-1; HFHS-
0.75% FC and 6 dS m-1; LFLS-0.25% FC and 2 dS m-1; LFHS-0.25% FC and 6 dS m-1).        
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Figure  4-21 Score plot of PCA for whole spectra collected from control, moisture and salinity induced 
stressed Egyptian wheat canopies at 103 DAS in spring season of 2006 (n = 33). (Treatment labels: CON-
control; F1-75% FC; F2-50% FC; F3-25% FC; S1-2 dS m-1; S2-4 dS m-1; S3-6 dS m-1; HFLS-0.75% FC and 2 dS m-1; HFHS-
0.75% FC and 6 dS m-1; LFLS-0.25% FC and 2 dS m-1; LFHS-0.25% FC and 6 dS m-1).        
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Figure  4-22 Sore plot of PCA for whole spectra collected from control, moisture and salinity induced 
stressed Egyptian wheat canopies at 197 DAS in 2006-7 growing season (n = 33). (Treatment labels: CON-
control; F1-75% FC; F2-50% FC; F3-25% FC; S1-2 dS m-1; S2-4 dS m-1; S3-6 dS m-1; HFLS-0.75% FC and 2 dS m-1; HFHS-
0.75% FC and 6 dS m-1; LFLS-0.25% FC and 2 dS m-1; LFHS-0.25% FC and 6 dS m-1).        
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4.6 Summary 

The potential for using hyperspectral reflectance measurements for detecting stress in 

Scottish and Egyptian wheat varieties has been investigated in this chapter. More 

specifically the potential of remotely sensed was evaluated through controlled 

greenhouse experiments coupled with hyperspectral data collected to detect whether 

stress results from both salinity and moisture stresses in both Scottish and Egyptian 

wheat varieties can be distinguished. The Scottish wheat was grown in the winter 

season of 2005-6 and 2006-7, Egyptian wheat was grown in the spring season of 2006 

and the winter season of 2006-7. The context of the research was to detect 

physiological changes in wheat subjected to salinity and moisture stresses through the 

detection of different biophysical and biochemical properties of wheat crops using 

remotely sensed data.  

The results demonstrated that both moisture and salinity had significant effects on 

both biophysical and biochemical properties of wheat plants which therefore 

decreased total grain yield. Aboveground biomass, plant height, LAI and chlorophyll 

a were all affected by both moisture and salinity stresses. Also, results showed that 

calculated vegetation indices have the ability to detect changes in physiological status 

of wheat crops and some of these vegetation indices had a strong correlation with 

different biophysical and biochemical properties in wheat crops. For example, NDVI 

and RVI are good indicators of total grain yield and total aboveground biomass. No 

great difference between the coefficient of correlation values obtained using narrow 

band ratios (hyperspectral indices) and broad band ratios were found for predicting 

wheat grain yield and other properties of wheat crop. The strongest correlation for 

both methods was very similar in all experiments.  In addition, indices calculated by 

transforming datasets such as the first derivative index, showed a highly significant 

relationship with the concentration of chlorophyll a. REP is a first derivative index 

which showed a strong correlation with the concentration of chlorophyll a in plant 

leaves (R2 = 0.64, 0.69, 0.79 and 0.74 in the four experiments).  

The PCA results showed that it is possible to distinguish between moisture and 

salinity induced stresses, but not before the flowering stage which is late in the 

growing season. This may be as a result of thin leaves of wheat, which may reduce the 

spectral response and therefore a crop with broader leaves such as maize may have a 
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higher response. Maize is the third most important crop in Egypt for animal fodder 

and recently people are starting to mix maize and wheat flour in bread manufacture. 

Maize leaves are broader than wheat and therefore detecting stress in maize using 

remotely sensed data might provide better results. The next chapter will explore the 

potential of using remotely sensed data in the detection of stress in maize subjected to 

different moisture and salinity regimes.   

In summary remotely sensed data provides a robust approach for detecting plant 

physiological status, particularly in arid and semi-arid regions, which suffer from 

different types of stress such as drought and salinity stress. Furthermore, such novel 

techniques may be able to provide a useful tool in precision farming, which can give a 

better insight into plant heath and detect early signs of stress at a very early growth 

stage, and consequently avoid reduction in crop productivity, thus maximizing crop 

production in areas of the world that can ill-afford crop failure.           
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5 IN SITU SPECTRORADIOMETRY MEASUREMENTS 
IN MONITORING MAIZE  

5.1 Introduction 

Having demonstrated the potential for estimating grain yield and distinguishing 

between moisture and salinity induced stress with wheat crops in Chapter 4, this 

chapter extends this work to a broader leaved crop, maize. With its broader leaves, 

maize has the potential of increasing the spectral signal to noise ratio. In addition, it is 

a crop that grows in the summer season in the Nile Valley of Egypt and is perhaps 

subject to more intense moisture and salinity induced stress. The timing of maize 

crops would therefore have a better opportunity to be monitored by remote sensing 

and it is therefore hypothesized that maize is more sensitive to salinity and moisture 

induced stress than wheat and therefore more sensitive at distinguishing salinity and 

moisture induced stress. The greenhouse experiments described in Chapter 4 are 

therefore repeated for an Egyptian variety of maize (Zea maize L) during summer 

growing season of 2006-7. Both hypotheses of (i) in situ hyperspectral measurements 

can predict stress in maize and (ii) moisture and salinity induced stress can be 

distinguished spectrally are examined in this chapter.      

5.2 Rationale  

Generally, maize production is hindered by many factors including, drought, salinity, 

low soil fertility, nitrogen deficiency, use of non-tolerant varieties for pests and 

diseases, so maize production is different from place to place depending on the 

stressing factors. For example, in eastern and southern Africa, the annual maize 

production has averaged 16.2 million tones over the past two decades. During this 

period of time production fluctuated between 7.3 and 22.4 million tones primarily as a 

function of different types of stress including drought, salinity, heat stress, etc. 

resulting in the variability in maize production (Banziger et al., 2000). 

Moisture stress is a key factor influencing maize production worldwide particularly 

sub-Saharan Africa. Drought has reduced maize productivity by 36% in the lowland 

areas and 21% in subtropical areas and affects around 23% of the land area 

(CIMMYT, 1988). Water stress affects maize productivity at different growth stages 

but some stages are particularly sensitive to drought including the early growth stages, 
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flowering and mid to late grain filling stages. The flowering stage is considered the 

most sensitive growth stage by drought as it reduces the capacity of developing 

kernels because the functioning of a key enzyme, acid invertase, is impaired 

(Westagte, 1997). Drought decreases maize grain yield by: (i) decreasing plant stand 

during the seedling stage, (ii) decreasing leaf area and therefore decreasing the rate of 

photosynthesis, (iii) decreasing ear and kernels and (iv) early leaf senescence during 

grain filling stage.     

Salinity is also an important factor in decreasing maize crop productivity, particularly 

in arid and semi arid regions in Africa. As described in Chapter 2, Egyptian farmers 

use low quality water from agricultural drainage water, which is mainly saline. High 

salinity leads to an increase in the osmotic pressure in the root zone and makes it 

difficult for plants to absorb water and different nutrients. Most research on detecting 

stress in plants focused on the leaf scale, which ignores the effects of canopy structure 

and soil background. Therefore investigating the potential of remotely sensed data at 

canopy scale is very important to evaluate the effectiveness of different broad band 

and hyperspectral indices in detecting stress in crops. Many studies have shown the 

potential of remotely sensed data to detect stress in crops, but most of these studies 

were at the leaf scale. Unlike many studies, in our research reflectance measurements 

were collected at the canopy scale under controlled conditions.        

5.3 Aims and objectives 

This chapter assesses the potential of in situ hyperspectral measurements to detect and 

distinguish sources of stress in maize and evaluate whether salinity and moisture 

induced stress can be distinguished spectrally. The specific objectives of the research 

presented in this chapter are to:  

• Grow maize under controlled greenhouse conditions. 

• Subject maize plants to a range of moisture and salinity induced stress and 

quantify the effects of both stressors on plant growth. 

• Use reflectance measurements to detect stress in maize under controlled 

conditions through using different hyperspectral and broad band vegetation 

indices.  
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• Establish whether salinity induced stress can be distinguished spectrally from 

moisture induced stress.  

• Identify which spectral indices are sensitive to different crop properties.  

• Identify wavelengths sensitive to stress and biochemical properties of maize. 

• Consider implications for remote sensing for maize stress.  

 

5.4 Experimental design and methods 

5.4.1 Experimental design 
A greenhouse-based experiment was conducted to assess the potential of in situ 

hyperspectral measurements to detect stress in maize. The same treatments of 

watering and water salinity used in section 4.3.1 have been used in this experiment 

(see Table 5.2 for more details about watering and salinity levels). The pots from the 

wheat crop experiments were emptied and filled with homogenised soil from the same 

location.  The soil samples collected for chemical analysis and the results showed 

similar values for the different chemical elements (see Table 3.4 for more details 

about soil). Also, water samples were collected for analysis several times during the 

growing season (Table 5.1).  Maize seeds were sown on 25th May 2007 at a density of 

three plants per pot. To ensure a high percentage of germination, seeds were sown at 

two seeds per hole and thinned to just one plant per hole after two weeks of sowing. 

The experiment comprised 66 pots which represent eleven different treatments of 

moisture and salinity (Table 5.2). To maintain moisture content within the pots at 

specific levels, two ways of monitoring moisture in pots were used. Pots from all 

treatments were weighed and the required amount of water was added to reach 

specific moisture content. At the same time a theta probe moisture meter was used to 

measure the moisture level. The theta probe was calibrated using the gravimetric 

method in determining moisture content. The total amount of phosphorous and 

potassium fertilizer was applied during soil preparation for cultivation at a rate of 60 

kg ha-1 each, but nitrogen was applied at a rate of 200 kg ha-1 split over two doses. 

The first dose was applied one month after sowing and the second was just before 

flowering (both doses were added manually).   
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Table  5-1 Chemical analysis of tap water used in this experiment.  
 

Cations, mg/l Anions mg/l Sample pH EC, 
ds m-1 Ca Mg Na K Cl SO4 NO3 P 

1 6.62 0.08 8.75 1.05 2.12 0.286 9.54 12.14 0.66 3.76 
2 6.01 0.06 9.68 1.04 2.06 0.269 4.67 10.5 0.82 2.98 
3 6.06 0.05 9.75 1.06 2.07 0.274 2.5 11.12 0.73 2.51 

 

Table  5-2 Different treatments of moisture and salinity levels used in this experiment (6 replicates 
each). 
 

Watering regime (% FC) Treatment  Salinity 
0.90 0.75 0.50 0.25 

T1 0.05 +    
T2 0.05  +   
T3 0.05   +  
T4 0.05    + 
T5 2 +    
T6 4 +    
T7 6 +    
T8 6  +   
T9 6    + 
T10 2  +   
T11 2    + 

 

5.4.2 In-situ and dark room Spectroradiometry measurements 
In-situ measurements 

The ASD FieldSpec Pro spectroradiometer (350-1050 nm) was used to measure the 

reflectance from maize canopy and leaves. The reflectance measurements were 

acquired in the same darkroom used in wheat experiments (see section 3.4.1. for more 

details). Spectra collection was started at very early growth stages (V7) and onward 

during the growing season until harvest time. Each reflectance measurement 

comprised ten individual scans and five reflectance measurements were taken from 

each pot. Care was taken to minimize the influence of shadow and the white reference 

Spectralon panel was used before acquiring the reflectance from each pot. Figure 5.1 

shows the reflectance measurements from maize canopies under artificial illumination 

source (two 300 W halogen lamps). The spectroradiometer was kept at specific height 

over the growing season.  
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Figure  5-1 Measuring reflectance from maize canopy using an artificial illumination source inside the 
darkroom. 

 

5.4.3 Spectral data analysis 
The spectral reflectance data was analyzed using the same software and procedures 

used for the wheat. Also, the same 55 broad band and hyperspectral vegetation indices 

were used to predict plant physiological responses to salinity and moisture stressors. 

After flowering stage hyperspectral measurements were collected at the leaf scale as a 

result of increasing plant height to more than 2 m. Fig 5.2 shows the vegetation 

spectral response of maize canopy under darkroom conditions using artificial 

illumination source. Reflectance from maize leaves was undertaken in another 

darkroom (Figure 3.4) at the leaf scale. This darkroom was painted with a non 

reflective paint to minimise the effects of reflects from walls and ceiling. Non-

reflective black cloth (reflectance < 5%) was also used underneath the instrument to 

minimise the reflectance from other objects around plant leaves. In this darkroom the 

spectrometer was kept at a constant distance of approximately 50 cm from plant 

leaves.      
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Figure  5-2 A typical spectral vegetation spectrum obtained from maize leaves under artificial 
illumination source. 

 

5.5 Results and discussion 

5.5.1 Effects of moisture and salinity stress on biophysical 
properties of maize 

 

Grain yield 

The effects of moisture, salinity and moisture/salinity stress on maize grain yield were 

assessed through analysis of variance. Results given in Table 5.3 and depicted in 

Figure 5.3 show the effects of both salinity and moisture stress on maize grain yield. 

Both moisture and salinity stressors significantly affected maize grain yield (R2 = 

0.98%; p = 0.000). The highest yield of 1.86 kg m-2 was recorded with the control 

treatments (high quality water with low salinity). The salinity treatments also 

significantly affected maize grain yield; the grain yield was negatively correlated with 

increasing salinity levels (p = 0.000). The lowest maize grain yield of 0.35 kg m-2 was 

recorded with the low watering regime and the highest salinity (6 dS m-1). The 

interaction between salinity and moisture stressors significantly affected maize grain 

yield (p = 0.000) with a high coefficient of determination (R2 = 0.98).  
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Table  5-3 P values of the analysis of variance (ANOVA) results for the effects of moisture, salinity 
and moisture/salinity on maize grain yield in 2007 growing season. Highlighted values are significant 
(P<0.05).   
 

Source of stress Parameter  
Moisture Salinity Moisture/salinity 

R2 R2
adj 

Yield 0.000 0.000 0.000 97.9 96.9 

 

The reduction in maize grain yield as a result of increasing water salinity levels may 

be attributed to the main function of good quality water in building new cells and their 

elongation. It was noted that in all treatments with high salinity, the plant leaves 

looked twisted even with high moisture content within each pot. The explanation for 

that is when plants experience high salinity, the osmotic pressure in the root zone 

increases and therefore the ability of plants to absorb water and different nutrients 

from the root zone is hindered. Figure 5.3 shows the effects of both watering regime 

and water salinity on maize grain yield. The figure demonstrates that there is a 

significant positive linear relationship between watering regime and maize grain yield 

(R2 = 0.92; p = 0.000) and a significant negative linear relationship between water 

salinity and maize grain yield (R2 = 0.92; p = 0.000).   

              

Figure  5-3 The effects of (a) watering regime and (b) water salinity on maize grain yield in 2007 
growing season (n = 12). 

 

To predict maize grain yield under salinity and moisture stress, simple and multiple 

regression analyses were performed. Simple regression analysis showed that the grain 

yield was positively correlated with increasing moisture regime (R2 = 0.92) and 

therefore a significant linear relationship was found between moisture treatments and 

maize grain yield. Also, a significant linear relationship between water salinity and 
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maize grain yield was observed. As mentioned above, the reduction in maize grain 

yield was highest in the treatments with low watering regime and high salinity level. 

Multiple regression analysis was then performed and the results showed that there is a 

high significant relationship between maize grain yield and both stressors (R2 = 0.88; 

p = 0.000). Equation 5.1 shows the multiple regression equation for predicting maize 

grain yield: 

Equation 5.1: Y = 0.22 + 1.53W – 0.07 S R2
adj = 87.7%  

Where Y is the total grain yield (kg m-2), W the watering regime (%FC) and S the 

water salinity level (dS m-1). 

Aboveground Biomass 

Aboveground biomass was collected four times during the growing season, including 

harvest time. Vegetation samples were collected immediately after measuring 

reflectance from the maize canopies at different growth stages. Results given in Table 

5.4 and illustrated in Figure 5.4 show the effects of moisture, salinity and 

moisture/salinity on aboveground biomass of maize. Moisture stress significantly 

affected the aboveground biomass (R2 = 0.93) and this may be attributed to the 

decrease in leaf area as plants try to cope with moisture stress by twisting leaves to 

decrease the surface area for evaporation. The rate of photosynthesis decreases as a 

result and the concentration of different pigments decreases. Salinity stress also 

significantly affected the aboveground biomass (R2 = 0.91). The highest aboveground 

biomass was recorded with the control treatments (highest watering regime and 

lowest water salinity level).  

Table  5-4 P values of the analysis of variance (ANOVA)  results for the effects of moisture, salinity 
and salinity/moisture on aboveground biomass of maize in 2007 growing season. Highlighted values 
are significant (P<0.05).   
 

Source of stress Parameter  
Moisture Salinity Moisture/salinity 

R2 R2
adj

 

Biomass 0.000 0.000 0.000 0.98 0.97 

   

Aboveground biomass was negatively correlated with the salinity stress treatments as 

the lowest aboveground biomass was recorded with the highest level of salinity 

(6 dS m-1). Again, the decrease in aboveground biomass as a result of increasing 
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salinity level may be attributed to the increase in osmotic pressure, which affects the 

rate of water and nutrient absorption from the root zone.  The highest aboveground 

biomass of 14.7 kg m-2 was recorded with the control treatment and the lowest 

aboveground biomass of 2.56 kg m-2 was recorded with the treatment of highest 

salinity (6 dS m-1) and the lowest watering regime (0.25% FC). 

            

  Figure  5-4 The effects of (a) watering regime and (b) water salinity on the aboveground biomass of 
maize crop in 2007 growing season (n = 12). 
 

To predict the aboveground biomass when subjected to both moisture and salinity 

stress, simple and multiple regression analysis were performed. The simple regression 

analysis demonstrated that the measured aboveground biomass was positively 

correlated with increasing watering level (R2 = 0.93). A significant negative linear 

relationship was observed between aboveground biomass and water salinity (R2 = 

0.91). Therefore, simple regression analysis showed significant differences between 

the control treatment (low salinity and high watering level) and different salinity and 

watering levels. A multiple regression analysis was then performed to develop a 

regression equation to predict aboveground biomass under both moisture and salinity 

stress. The multiple regression analysis showed a high significant relationship 

between maize biomass and both stressors (R2 = 0.92; p = 0.000), following is the 

multiple regression equation. 

Equation 5.2: B = 2.53 + 11.1 W – 0.69 S R2
adj = 79.7%  

Where B is the total aboveground biomass (kg m-2), W the watering regime (%FC) 

and S the water salinity level (dS m-1).    
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Leaf Area index (LAI) 

LAI was measured immediately after measuring reflectance from the plant canopy. 

The results of the ANOVA for the relationship between moisture, salinity and 

moisture/salinity stress and LAI of maize are given in Table 5.5. Both moisture and 

salinity stress significantly affected the LAI at all measuring dates (R2 > 0.95). Also, 

the interaction between moisture and salinity stress had significantly affected LAI. 

The decrease in LAI as a result of water salinity may be due to the effect of osmotic 

pressure, which affects the absorption of water and different nutrients from the root 

zone. The highest LAI of 3.23 was recorded at the flowering stage with control 

treatments and the lowest was recorded with treatment 9 (lowest watering and highest 

salinity).      

Table  5-5 P values of analysis of variance (ANOVA) results for the effects of moisture, salinity and 
moisture/salinity on leaf area index of maize crop in the 2007 growing season. Highlighted values are 
significant (P<0.05).  
 

Source of stress Growth stage 
Moisture Salinity Moisture/salinity 

R2 R2
adj

 

65 DAS 0.000 0.000 0.000 0.99 0.98 
80 DAS 0.000 0.000 0.000 0.96 0.96 
90 DAS 0.000 0.000 0.000 0.96 0.95 
105 DAS 0.000 0.000 0.000 0.97 0.96 

  

                

Figure  5-5 The effects of moisture and salinity stress on LAI of maize crop at 90 DAS in 2007 
growing season (n = 12). 
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Plant height 

Plant height of maize was measured concurrent with the acquisition of reflectance 

spectra as this provided a non-destructive measure. The plant height was measured 

until the flowering stage only as the plant height becomes constant after flowering. 

Analysis of Variance was applied to assess the relationship between maize plant 

height and moisture, salinity and moisture/salinity. Table 5.6 shows p values of the 

ANOVA.  

The results demonstrated that moisture, salinity and their interaction significantly 

affected maize plant height in particular during the grain filling stage (R2 = 0.98; 

p = 0.000). At the earliest growth stage (30 DAS), no stressor had a significant effect 

on maize height. At 45 DAS both moisture and salinity significantly affected the plant 

height, but not the combined stresses. Between 65 DAS and harvest time, all factors 

had a significant effect on plant height as the coefficient of determination was always 

greater than 0.90. Figure 5.6 shows the effects of moisture and salinity stress on maize 

plant height. It can be seen from the figure that there is a significant positive linear 

relationship between moisture regime and maize plant height (R2 = 0.97; p = 0.000). 

Also, there is a significant negative linear relationship between plant height and water 

salinity (R2 = 0.92; p = 0.000).  

 

Table  5-6 P values of analysis of variance (ANOVA) results for the effects of moisture, salinity and 
moisture/salinity on the plant height of maize crop in 2007 growing season. Highlighted values are 
significant (P<0.05). 
  

Source of stress Growth stage 
Moisture Salinity Moisture/salinity 

R2 R2
adj

 

30 DAS 1.00 0.952 0.907 0.06 0.00 
45 DAS 0.000 0.000 0.709 0.91 0.87 
65 DAS 0.000 0.000 0.000 0.97 0.96 
80 DAS 0.000 0.000 0.000 0.99 0.99 
90 DAS 0.000 0.000 0.000 0.98 0.97 
105 DAS 0.000 0.000 0.000 0.98 0.98 
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Figure  5-6 The effects of moisture and salinity stress on plant height of maize crop at flowering stage 
in summer season of 2007 (n = 12). 
  

5.5.2 Effects of moisture and salinity stress on chlorophyll a 
concentration of maize 

 

Chlorophyll a concentration of maize leaves was measured immediately after 

measuring reflectance from maize canopy. ANOVA analysis was performed to assess 

the relationship between moisture, salinity and moisture/salinity and chlorophyll a 

concentration of maize leaves. The results for this relationship are given in Table 5.7 

and depicted in Figure 5.7. At early growth stage (30 DAS) the chlorophyll a 

concentration was not affected by different treatments of moisture and salinity. At 45 

DAS the concentration of chlorophyll a was negatively correlated with both moisture 

and salinity stress, but the interaction between these two stressors was non-

significantly correlated with the chlorophyll a (R2 = 0.76). Between 65 DAS and 

harvest time moisture, salinity and their interaction were significantly correlated with 

the measured chlorophyll a (R2 = 0.94, 0.93, 0.91 and 0.96 at 65, 80, 90 and 105 DAS 

respectively). It should be mentioned here that the intervals between measuring dates 

were small because the plants were growing very fast during this period of time (mid-

summer). From the flowering stage onwards reflectance was measured at the leaf 

scale as the plant height was very close to the spectrometer in the darkroom.  

Figure 5.7 illustrates the effects of moisture and salinity on chlorophyll a 

concentration. The figure shows that water regime had a greater effect on chlorophyll 

a concentration in comparison to salinity effects. It is noted that chlorophyll a 

concentration was not affected by moisture and salinity at early stages such as grain 

yield, biomass and LAI; this may be attributed to the small evaporation surface.  



 

 
 

125

Table  5-7 P values of analysis of variance results for the effects of moisture, salinity and 
moisture/salinity on chlorophyll a concentration of maize leaves in summer season of 2007. 
Highlighted values are significant (P<0.05). 
  

Source of variation Growth stage 
Moisture Salinity Moisture*salinity R2 R2

adj 

30 DAS 0.873 0.503 0.176 0.33 0.03 
45 DAS .000 .000 0.142 0.83 0.76 
65 DAS .000 .000 .010 0.96 0.94 
80 DAS 0.00 0.00 0.00 0.95 0.93 
90 DAS 0.00 0.00 0.00 0.94 0.91 
105 DAS 0.00 0.00 0.00 0.97 0.96 

 

               

Figure  5-7 Effects of moisture and salinity stress on chlorophyll a concentration extracted from maize 
leaves at 80 DAS in summer season of 2007 (n = 12).  

 

The chlorophyll a concentration was determined also using HPLC and the results 

were roughly similar to those obtained using the spectrophotometer. In addition, the 

other pigments such as chlorophyll b and lutien decreased with increasing the stress 

level in both cases of salinity and moisture stress. This may be explained as a result of 

decreasing the plant ability to absorb water and basic nutrients from the root zone in 

both cases of stress. As mentioned before, increasing osmotic pressure in the root 

zone makes it difficult for plants to absorb water and nutrients and therefore plants try 

to cope with that by decreasing the leaf surface and consequently the rate of 

photosynthesis decreased, which affects pigment concentrations.    

5.6 Reflectance measurements as a potential for predicting 
stress in maize 

The spectral signature obtained from healthy and stressed (moisture and salinity 

induced stress) plants has been plotted against the wavelength as illustrated in Figure 
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5.8. This figure shows a typical spectral reflectance signature obtained from maize 

leaves subjected to both salinity and moisture stress under artificial illumination 

conditions. The spectral reflectance obtained from healthy plant leaves has low values 

in the blue region (400-520 nm) as a result of strong absorption of different pigments 

and chlorophylls, particularly chlorophyll a. Over the green region, the spectral 

reflectance increases until reaching the green peak, then the reflectance values 

decrease over the red region as a result of absorption by chlorophyll a. Over the NIR 

region the reflectance increases rapidly forming the red edge shoulder (680-730 nm). 

When comparing the spectral signatures obtained from healthy plants and those 

obtained from stressed ones (moisture and salinity induced stress), the results 

demonstrated that the reflectance obtained from stressed leaves is greater than 

reflectance obtained from healthy plants over the blue and green regions. It can be 

seen that moisture stress has greatly affected the spectra in comparison to control 

treatment (healthy plants) as the spectral reflectance increases in blue, green and red 

region, which may be as a result of decreasing chlorophylls and other accessory 

pigments. In the NIR region, the spectral reflectance obtained from stressed canopies 

decreases in comparison to spectra obtained from healthy canopies as also identified 

by others (Serrano et al., 2000).  

The effect of salinity stress on spectral reflectance is also noticeable as the reflectance 

increases in the blue, green and red region until REP shoulder, and then the 

reflectance values decreased over the NIR region in comparison to spectra collected 

from healthy plants. It is also apparent from the figure that the effects of moisture 

stress on spectral reflectance is higher than the effects of salinity stress; this may be 

due the dry edge of leaves as a result of reduced water absorption from soil, which 

therefore affects the spectra.  

In general, the reflectance collected from stressed treatments (moisture and salinity 

induced stress), that have low chlorophyll concentration, showed a significant positive 

increase in the VIS range and significant negative increase in the NIR range. This can 

be explained by the effects of decreased chlorophyll and pigment absorption. Similar 

results were observed by Penuelas et al., 1997a, Wang et al., 2002a and 2002b.      
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Figure  5-8 An example of typical spectral reflectance signature obtained from maize leaves subjected 
to moisture and salinity stress under darkroom conditions. 
 

5.6.1 Simple broad band spectral indices 
Grain yield  

The correlation coefficient for the relationship between twelve broad band indices and 

the measured maize grain yield is given in Table B2 (appendix B). At early growth 

stages (30 and 45 DAS) most of the tested broad band indices were non-significantly 

correlated with the measured grain yield; this may be attributed to the similar spectral 

signature from different treatments of moisture and salinity induced stress. At 65 

DAS, all tested indices were significantly correlated with the maize grain yield (r 

ranged between -0.55 and 0.73). At 80 DAS all indices gave highly significant 

correlation with the strongest correlation recorded with GNDVIbr (r = 0.94). NDVI, 

SLAVI and IPVI also produced highly significant correlation values (r = 0.93). At 90 

and 105 DAS, the majority of the tested broad band indices significantly correlated 

with the grain yield, but the correlation values were lower than those at 65 and 80 

DAS; this may be due to chlorophyll degradation at late stages of the growing season. 

Figure 5.9 shows the relationship between maize grain yield and both GNDVIbr and 

NDVI. The figure shows that both indices show a positive linear relationship with 

maize grain yield (R2 = 0.88).   
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Figure  5-9 The relationship between (a) GNDVIbr and (b) NDVI obtained from the darkroom 
spertroradiometry and total grain yield of maize crop in summer season of 2007 (n = 33).  

  

Aboveground biomass 

The coefficient of correlation for the relationship between broad band indices and the 

measured aboveground biomass of maize is detailed in Table B3 (appendix B). The 

results demonstrated that at 65 DAS all vegetation indices significantly correlated 

with the measured aboveground biomass (r > 0.45). At 80 DAS all vegetation indices 

significantly correlated with biomass and at this stage the correlation coefficient was 

higher in comparison to the previous and the subsequent dates of data collection. This 

may be attributed to the high chlorophyll concentration at early flowering stages. At 

90 DAS, nine tested broad band indices were significant with the measured 

aboveground biomass. The strongest correlation was recorded with GNDVIbr (r = 

0.85) at 80 DAS. NDVI, RDVI and SI gave also high significant correlations (r = 

0.82-0.83). VI1 often gives low correlation in comparison to the other indices during 

this experiment. Figure 5.10 shows the relationship between aboveground biomass 

and both GNDVIbr and RDVI.  
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Figure  5-10 The relationship between (a) GNDVIbr and (b) NDVI obtained from the darkroom 
sectroradiometry and the measured biomass of maize crop in summer season of 2007 (n = 33).  

Plant height 

Plant height was measured immediately after measuring reflectance from plant 

canopies at early stages or leaves at late stages of the growing season. The coefficient 

of correlation between maize plant height and different broad band vegetation indices 

are detailed in Table B4 (appendix B). At early growth stages (30 and 45 DAS) none 

of the tested indices were significantly correlated with the measured plant height as 

the correlation coefficient values ranged from -0.28 to 0.25. At 65 DAS, all indices 

were significantly correlated with the measured plant height. At 80 DAS all indices 

produced high significant correlations with the strongest correlation recorded with 

RVI and SI (r = 0.82). RDVI, GNDVIbr and DVI also gave high significant 

correlations with the measured plant height (r = 0.78-0.80). At 90 and 105 DAS most 

indices gave significant correlations, but less than values at 80 DAS (canopy scale). 

Figure 5.11 shows the relationship between plant height and both RVI and GNDVIbr 

at 80 DAS, which represents the last time of measuring reflectance at canopy scale.  

           

Figure  5-11 The relationship between (a) RVI and (b) GNDVIbr obtained from the darkroom 
spectroradiomtry and the plant height of maize crop in 2007 growing season (n = 33).  
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Leaf Area Index (LAI) 

The results for the relationship between the measured LAI and different broad band 

indices are given in Table B6 (appendix B). Due to low number of replicates 

vegetation samples were not collected at 30 and 45 DAS for determining LAI and 

aboveground biomass. At 65 DAS seven out of twelve indices gave significant 

correlations with the measured LAI. The correlation values increased with increasing 

the vegetation mass until 80 DAS then decreased after that. This may be attributed to 

senescence at the late growth stages, and also measuring reflectance at the leaf scale 

may be another reason for lower correlation. The strongest correlation therefore was 

recorded at 80 DAS with GNDVIbr (r = 0.91). At 90 and 105 DAS most indices gave 

significant correlations but the correlation values were lower than that at 80 DAS 

which may be attributed to measuring scale. NDVI, SLAVI and IPVI also gave high 

significant correlations with LAI (r = 0.90). 

            

Figure  5-12 The relationship between (a) GNDVIbr and (b) NDVI obtained from the darkroom 
sectroradiometry and the leaf area index of maize crop at 80 DAS in 2007 growing season (n = 33). 
 

Chlorophyll a concentration 

The relationship between different broad band vegetation indices and the 

concentration of chlorophyll a is detailed in Table B1 (appendix B). At early growth 

stages (30 and 45 DAS) none of the tested broad band indices gave significant 

correlation with the measured chlorophyll a (r < 0.20). No effect of moisture and 

salinity on plant growth at early growth stage and therefore no difference in spectral 

signature from different treatments. At 65 DAS most vegetation indices were 

significantly correlated with the measured chlorophyll a concentration. The highest 

correlations were observed at 105 DAS with the strongest correlation recorded with 
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DVI (r = 0.79). SAVI was also strongly correlated with the chlorophyll a 

concentration (r = 0.76). It was noted that the correlation between chlorophyll a 

concentration and different spectral vegetation indices was higher at the leaf scale 

than the canopy scale as shown in Table B1. The 105 DAS dataset was obtained at the 

leaf scale but the results at the previous dates were all at the canopy scale. Figure 5.13 

shows the relationship between DVI, SAVI and the measured chlorophyll a 

concentration at 105 DAS. The figure shows a positive linear relationship between 

both DVI and SAVI and chlorophyll a concentration (R2 = 0.62 and 0.58 

respectively). 

              

Figure  5-13 The relationship between (a) DVI and (b) SAVI obtained from the darkroom 
spectroradiometry and the measured chlorophyll a concentration extracted from maize leaves in 
summer season of 2007 (n = 33). 
 

5.6.2 Hyperspectral indices 
 

Grain yield 

To detect stress in maize, forty three different hyperspectral vegetation indices were 

derived from darkroom spectroradiomtery data at both leaf and canopy scales. The 

correlation coefficients between hyperspectral indices and the measured maize grain 

yield are detailed in Table B2 (appendix B). The results showed that for the first two 

dates, the correlation values were non-significant with the majority of the forty three 

indices. This may have been a result of similar spectral signature from different 

treatments since the effects of both stressors were still very low. At 65 DAS, most of 

the tested hyperspectral indices gave high significant correlation with the measured 

grain yield. The strongest correlation was recorded at 80 DAS with 8 indices; 

NDVIhy, GNDVIhy, SIPI, PSNDbr, R695/R760, R605/R760, R710/R760 and RNDVI 
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(r = ±0.93). At 90 and 105 DAS most hyperspectral vegetation indices produced 

significant correlations, but lower than observed values at 80 DAS. It was noted from 

the results that there was no great difference between the strongest correlation 

coefficient obtained using the hyperspectral and broad band ratio indices. 

Figure 5.14 shows the relationship between maize grain yield and both GNDVIbr and 

R710/R760 at the flowering stage. The figure shows that there is a positive linear 

relationship between GNDVIbr and maize grain yield (R2 = 0.86; p = 0.000). Also, 

there is a negative linear relationship between R710/R760 and maize grain yield (R2 = 

0.87; p = 0.000).   

               

Figure  5-14 The relationship between (a) GNDVIhy  and (b) R710/R760 obtained from the darkroom 
spectroradiometry and the measured grain yield of maize at 80 DAS in 2007 growing season (n = 33). 

 

Aboveground biomass 

The correlation coefficients for the relationship between the aboveground biomass 

and different hyperspectral vegetation indices derived from the darkroom at the 

canopy and leaf scales are given in Table B3 (appendix B). Due to low number of 

replicates, the aboveground biomass was collected for the first time at 65 DAS and 

the results showed that almost half of the hyperspectral vegetation indices gave 

significant correlations with the measured biomass, however, the correlation values 

were not high. At 80 DAS the majority of indices showed strong significant 

correlations with the measured biomass. The strongest correlation was recorded at 80 

DAS with GNDVIhy and SIPI (r = 0.85). NDVIhy, PSNDb, RNDVI, R695/R760, 

R605/R760 and R710/R760 also produced strong correlations (r = 0.83). However, some 

indices such as NPQI produced non-significant correlation with the measured biomass 
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throughout the growing season. Significant correlations were also recorded at 90 and 

105 DAS, but most indices produced lower correlation values in comparison to 80 

DAS dataset (canopy scale). This may be a result of measuring reflectance at the 

canopy scale, which gives better results than measuring at the leaf scale in terms of 

biomass. Figure 5.15 shows the relationship between GNDVIbr, R710/R760 and the 

measured biomass of maize. A positive linear relationship between biomass and 

GNDVIhy (R2 = 0.71) is shown. Also, there is a negative linear relationship between 

R710/R760 and the measured aboveground biomass (R2 = 0.71).    

                  

Figure  5-15 The relationship between (a) GNDVIhy and (b) R710/R760 obtained from the darkroom 
spectroradiometry and the measured aboveground biomass of maize crop in 2007 growing season (n = 
33). 

 

Leaf Area Index (LAI) 

The correlation coefficient for the relationship between hyperspectral vegetation 

indices and the measured LAI of maize is given in Table B6 (appendix B) and 

illustrated in Figure 5.16. At 65 DAS, almost half of the hyperspectral vegetation 

indices demonstrated significant correlations with the measured LAI (r ≥ 0.35). At 80 

DAS the majority of the hyperspectral indices produced strong significant correlations 

with the measured LAI. The strongest correlation was recorded at 80 DAS (just before 

flowering stage) with the band ratio R710/R760 (r = -0.91). NDVIhy, GNDVIhy, SIPI, 

PSNDb, R695/R760, R605/R760 and RNDVI also produced high significant correlations (r 

values were 0.89 and ±0.90). At 105 DAS the correlation coefficient values were 

significant with almost two thirds of the hyperspectral indices but generally less than 

those obtained at 80 and 90 DAS, and this may be due to measuring at the leaf scale 

and the onset of senescence at late stages. Figure 5.16 shows the relationship between 
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LAI and both R710/R760 and GNDVIhy. The graphs show that there is a negative 

significant linear relationship between LAI and the band ratio R710/R760 (R2 = 0.82; p 

= 0.000). Also, there is a significant positive linear relationship between GNDVIhy 

and the measured LAI (R2 = 0.80; p = 0.000).     

                  

Figure  5-16 The relationship between (a) R710/R760 and (b) GNDVIhy obtained from the darkroom 
spectroradiometry and leaf area index of maize crop at 80 DAS in 2007 growing season (n = 33). 

 

Plant Height 

Plant height is the only biophysical property that was measured every time together 

with hyperspectral measurements immediately after measuring reflectance from plant 

canopies. The correlation coefficient for the relationship between hyperspectral 

vegetation indices and the measured plant height of maize is given in Table B4 

(appendix B) and illustrated in Figure 5.17. At early growth stages (30 and 45 DAS), 

all hyperspectral vegetation indices did not show any significant correlations with the 

measured plant height (r < 0.30). At 65 DAS, almost half of the hyperspectral indices 

gave significant correlations with the measured plant height.  

The highest correlations during the experiment were obtained from 80 DAS dataset 

with the strongest correlation recorded with the band ratios R800/R550 and Cgreen 

(r = 0.86). R750/R550, Cred edge, CNIR and R750/R700 also produced strong significant 

correlations with the measured plant height (r = 0.84-0.85). The coefficient of 

correlation for the datasets obtained at 90 and 105 DAS had significant relationships, 

but generally the correlation values were less than those obtained at 80 DAS. Figure 

5.17 shows a significant positive linear relationship between maize plant height and 

both R800/R550 and R750/R550 (R2 = 0.74 and 0.73; p = 0.000 respectively). The results 
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suggest that 550, 750, and 850 nm wavelengths are sensitive for predicting maize 

plant height and other maize properties.   

               

Figure  5-17 The relationship between (a) R800/R550 and (b) R750/R550 obtained from the darkroom 
spectroradiometry and the plant height of maize crop at 80 DAS in 2007 growing season (n = 33).    

   

Chlorophyll a concentration 

Forty three hyperspectral vegetation indices derived from darkroom measurements at 

both leaf and canopy scales were calculated. The correlation coefficient for the 

relationship between hyperspectral indices and the measured chlorophyll a 

concentration is given in Table B1 (appendix B). The results showed that at 30 and 45 

DAS, none of the indices were significantly correlated with the measured 

chlorophyll a (r < 0.34). At 65 DAS, nineteen vegetation indices were significantly 

correlated with the chlorophyll a (r ≥ 0.35). At 80 and 90 DAS, most of the indices 

significantly correlated with the chlorophyll a with the highest correlations obtained 

from 105 DAS dataset (leaf scale). The strongest correlation was recorded with 

PSSRb and R800-R550 (r = 0.80). The results suggest that deriving vegetation indices 

from reflectance measurements at the leaf scale for predicting chlorophyll a 

concentration gives better results in comparison to measuring at the canopy scale. 

This may be attributed to the effects of canopy structure and soil background on 

reflectance. 

The first derivative of reflectance was also used to predict chlorophyll a 

concentration. REP has been calculated from the data obtained at the canopy scale 

(prior to flowering stage) and at the leaf scale (late growth stages). The results (Table 

B7; appendix B) exhibited that there is a significant relationship between REP and the 
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measured chlorophyll a concentration at the flowering stage. At 65 DAS, the 

coefficient of correlation started to be significant (r = 0.43) between the REP and the 

measured chlorophyll a concentration, and increased onwards until the late stages of 

vegetative growth. As many other indices, at early growth stage it is difficult to 

predict chlorophyll a concentration using REP. The strongest correlation was 

recorded at 105 DAS (r = 0.88) from the data obtained at the leaf scale.  

                 

Figure  5-18 The relationship between (a) R800/R550 and (b) R800-R550 obtained from the darkroom 
spectroradiometry and the chlorophyll a concentration extracted from maize leaves in 2007 growing 
season (n = 33). 

 

Comparing the results obtained using hyperspectral and broad band vegetation indices 

with the results obtained using REP, the strongest correlation obtained from REP (r = 

0.88) is comparable to the strongest correlation obtained using different hyperspectral 

and broad band indices (r = 0.80 recorded with R800-R550). Figure 5.19 shows the 

relationship between REP and the measured chlorophyll a concentration at different 

growth stages. The figure demonstrates that REP derived from hyperspectral data 

obtained at the leaf scale gave better results for predicting chlorophyll a concentration 

compared with those derived from data obtained at the canopy scale. For example, 

data collected at 105 DAS at leaf scale demonstrated strong significant correlations 

(R2 = 0.77; p = 0.000). 

It is further shown that the datasets collected under controlled conditions in the 

darkroom produced higher correlations with chlorophyll a concentration at the leaf 

scale in comparison to the canopy scale (Figure 5.19). However, predicting other crop 

properties such as aboveground biomass using vegetation indices derived from 
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datasets collected at the leaf scale produced lower correlations in comparison to 

canopy scale. 

                

                 

Figure  5-19 The relationship between REP and the concentration of chlorophyll a extracted from 
maize leaves at different growth stages in summer season of 2007 (n = 33). 
 

Identifying wavelengths sensitive to chlorophyll a concentration of maize crop 

The spectra obtained from the darkroom during the growing season from early growth 

stages until harvest time were used to identify wavelengths sensitive to chlorophyll a 

concentration. The coefficient of correlation was calculated between the reflectance 

values (400-900 nm) collected from different treatments and the measured chlorophyll 

a concentration, and then plotted against the wavelength (Figure 5.20). Wavelengths 

between 400 nm and 900 nm were used for this analysis to avoid the extreme noise at 

both ends of the spectrometer sampling range. High correlation values were found at 

three regions of the electromagnetic spectrum (550, 705 and 770 nm respectively). 

The highest correlation coefficient of -0.60 found at 550 nm and the other values were 

found at 705 and 770 nm (r = -0.55 and 0.59 respectively). These results were the best 

over the growing season as the highest correlation coefficient changed in response to 

growth stage as a result of vegetation cover and the concentration of chlorophylls. For 
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example, before and after applying the whole dose of nitrogen in June the 

concentration of chlorophyll a changed highly. These results in accordance with many 

studies as several narrow band spectral vegetation indices have been developed using 

wavelengths around 550 and 750 nm. The hyperspectral ratios of R750/R550, R750/R700, 

and R800/R550 were found to be highly correlated with chlorophyll a concentration 

(Lichtenthaler et al., 1996, Gitelson et al., 1996 and Datt, 1999). 

 

Figure  5-20 The relationship between the correlation coefficient and wavelength of the spectra 
collected from maize leaves obtained under darkroom conditions.    

 

5.6.3 Distinguishing moisture induced from salinity induced stress 
The spectra collected at different growth stages at both canopy and leaf scales were 

analyzed using Principle Component Analysis (PCA). The score plot of the PCA 

analysis is depicted in Figure 5.21, shows that the spectra collected from healthy 

plants can be distinguished from the spectra collected from stressed plants (moisture 

and salinity induced stress), and this may be attributed to the plant water status and 

the concentration of different pigments. The spectra collected from treatments with 

high watering regime were close to each other and were plotted in one corner of the 

score plot. However, the spectra collected from stressed canopies or leaves tend to 

plot in a different quarter of the score plot whenever leaf water content and different 

chlorophylls become lower. The results depicted in Figure 5.21 show the score plot 

for the dataset of 80 DAS; the graph shows that healthy and low stressed treatments 
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(low salinity of 2 dS m-1 and high watering regime of 75% FC) are plotted in the 

upper right corner of the score plot. It can also be noticed that all treatments that 

suffer from moisture stress are plotted in the lower left corner. It is further shown that 

most combinations of moisture and salinity are plotted in the lower left corner. 

When plants reached the flowering stage some plants were over 175 cm in height, 

which made it difficult to measure reflectance at the canopy scale inside the darkroom 

because the plants were very close to the spectroradiometer. Therefore, plant leaves 

were collected and reflectance was measured at the leaf scale. The spectra collected at 

105 DAS were used to distinguish between moisture and salinity induced stress. 

Figure 5.22 shows that the control and well watered treatments with low salinity are 

located in the upper right corner of the score plot. The figure also exhibits that most 

treatments that suffer from salinity are located in the lower left corner of the score 

plots. The moisture induced treatments are located in the upper left corner. All 

combinations of moisture and salinity induced stress are located in the lower right 

corner of the score plot. The dissimilarities between healthy treatments and stressed 

ones (moisture and salinity) may be attributed to the changes in biochemical and 

biophysical properties of maize including different pigments, plant height, biomass 

and LAI. 

The results suggest that it is possible to distinguish between moisture and salinity 

induced stress from flowering stage onward. Despite the late distinction between 

moisture and salinity induced stress, these results can be used effectively for 

following growing seasons to avoid both stressors. It can be mentioned here that 

measuring reflectance in an actual maize field may give better results. Since 

reflectance can be measured at many locations with in the same field then the data can 

be averaged and therefore decrease the variations within the same field. 
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   Figure  5-21 The score plot of PCA for the spectra collected from healthy and stressed maize 
canopies at 80 DAS under darkroom conditions (n = 33). (Treatment labels: CON-control; F1-75% FC; F2-50% 
FC; F3-25% FC; S1-2 dS m-1; S2-4 dS m-1; S3-6 dS m-1; HFLS-0.75% FC and 2 dS m-1; HFHS-0.75% FC and 6 dS m-1; LFLS-
0.25% FC and 2 dS m-1; LFHS-0.25% FC and 6 dS m-1).        
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Figure  5-22 The score plot of PCA for the spectra collected from healthy and stressed maize leaves at 
105 DAS under darkroom conditions (n = 33). (Treatment labels: CON-control; F1-75% FC; F2-50% FC; F3-25% 
FC; S1-2 dS m-1; S2-4 dS m-1; S3-6 dS m-1; HFLS-0.75% FC and 2 dS m-1; HFHS-0.75% FC and 6 dS m-1; LFLS-0.25% FC and 
2 dS m-1; LFHS-0.25% FC and 6 dS m-1).        
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5.7 Summary 

A greenhouse based experiment was undertaken to investigate the effects of both 

moisture and salinity induced stress on biophysical and biochemical properties of 

maize crop including grain yield, aboveground biomass, LAI, plant height, and 

chlorophyll a concentration. A time series of spectroradiometry measurement was 

collected to assess the potential of remotely sensed data to detect stress in maize when 

subjected to both salinity and moisture induced stress. Furthermore, the study aimed 

to distinguish between salinity and moisture induced stress spectrally. The reflectance 

measurements were measured at both canopy and leaf scales as the height of the 

darkroom was not suitable for measuring reflectance at late stages of the growing 

season. 

Fifty five different broad band and hyperspectral vegetation indices were calculated 

and examined for detecting stress in maize. The results demonstrated that the 

strongest correlations obtained using hyperspectral and broad band vegetation indices 

were similar. The majority of the tested indices demonstrated strong significant 

correlations with different biophysical properties of maize crop including grain yield, 

aboveground biomass, plant height and LAI. REP was highly correlated with the 

concentration of chlorophyll a particularly after applying the required dose of 

nitrogen in June. The correlation values were greater than 0.80 at the flowering and 

grain filling stages and this may be attributed to early senescence in the stressed 

treatments.  

PCA was applied to differentiate between moisture induced stress and salinity 

induced stress. The score plots of PCA showed the ability to distinguish between 

stressed plants and healthy plants at flowering stage. Some datasets showed the 

possibility to distinguish between moisture and salinity induced stress. Generally, it 

can be seen that PCA effectively showed the dissimilarities between healthy and 

stressed treatments, but it is problematic to define the source of stress at early growth 

stages. Measuring reflectance in an actual field may give better results as the canopy 

cover is greater and therefore the spectral response may be more consistent.  

Therefore, remotely sensed data can be a robust technique for detecting stress in 

plants subjected to salinity and/or moisture stress. Detecting stress at early growth 
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stage could prevent reduction in grain yield and consequently maximise crop 

productivity. In addition, it is possible to use green, red and NIR bands derived from 

satellite imagery to extrapolate the data obtained using in situ hyperspectral 

measurements. Hyperspectral satellite imagery (e.g. Hyperion) is needed since it has 

many spectral bands (>200), which enable researchers to detect different parameters 

of plant health. 

The results obtained above show that remotely sensed data obtained using 

hyperspectral measurements is a useful technique in predicting plant health status and 

therefore it would be beneficial if the results can be extrapolated to large scales using 

high spectral and spatial resolution satellite remote sensing. The next chapter will 

explore the ability of high resolution satellite imagery to detect stress in wheat and 

maize in the Nile Valley of Egypt to maximise crop productivity and use limited 

water and cultivated land resources more efficiently. In conclusion the results from 

this chapter validated the hypothesis that in situ hyperspectral measurements are able 

to detect stress in maize and even sometimes distinguish between moisture and 

salinity induced stress spectrally at the flowering stage.      
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6 EVALUATING SATELLITE REMOTE SENSING FOR 
OPTIMIZING WHEAT AND MAIZE PRODUCTION 

6.1 Introduction 

The previous two chapters (Chapter 4 and 5) have investigated the potential of in situ 

hyperspectral reflectance measurements to predict physiological changes in wheat and 

maize caused by moisture and salinity stress. More specifically, the aim was to detect 

stress through measurements of reflectance from crop canopies and to relate different 

spectral vegetation indices (broad band and hyperspectral indices) to changes in 

biophysical and biochemical properties of wheat and maize including plant height, 

LAI, aboveground biomass, grain yield and chlorophyll concentration. The results 

from these two chapters demonstrated that hyperspectral reflectance measurements 

have the potential to detect and even differentiate between salinity and moisture 

induced stress. Furthermore, the results obtained from hyperspectral and broad band 

vegetation indices are similar for detecting the biophysical responses to stress. This 

chapter extrapolates the results from Chapter 4 and 5 to the field environment to 

assess the ability of both in situ hyperspectral and high spatial resolution satellite 

imagery to detect stress in wheat and maize in the Nile Valley of Egypt. Here we 

examine the hypothesis that in situ hyperspectral and high spatial resolution remote 

sensing imagery are able to detect stress in wheat and maize and even moisture 

induced stress can be distinguished spectrally from salinity induced stress. In 

undertaking this, we establish a possible methodology for the remote sensing of crop 

stress in Egypt.   

Aims and Objectives 

The overall aim of this chapter is to investigate the potential of in situ and satellite 

remote sensing data to detect stress in wheat and maize in the Nile Valley of Egypt. 

The specific objectives of the research presented in this chapter are to: 

1. Evaluate whether the outcomes from the greenhouse experiments can be 

replicated in the field. 

(a) For stress detection  



 

 
 

144

(b) For distinguishing moisture and salinity induced stress 

2. Assess the efficiency of classification algorithms to map different crop types. 

3. Having mapped individual crop types through remote sensing, predict wheat 

and maize biophysical and biochemical properties via remotely sensed data. 

6.2  Methodology 

6.2.1 Study area 
The study area is located in south-west Alexandria, Egypt (latitude of 30° 55` 50`` 

and longitude of 29° 53` 35.6``). To have a range of stress levels in fields, three study 

sites were chosen, Hewaihy, Kahr and Bangar. The soil at these sites is a sandy loam 

with low concentration of nitrogen, as these sites have been reclaimed recently from 

the eastern desert. Figure 6.1 shows a map of the study sites. The majority of the 

fields use flood irrigation with a few farms irrigated by sprinkler or trickle irrigation, 

especially at the Bangar site. The weather in this area is characterised by hot summers 

and mild winters with respective average temperatures of 24.3ºC and 16.6ºC, average 

precipitation 0 and 28.3 mm per annum; average humidity 69 and 68%; and average 

wind speed 13.5 and 14.2 km h-1 (The Weather Network, 2008).  

Table 6.1 details the three sites and different dates of in situ hyperspectral survey.  

These sites are mainly located at the end of irrigation channel systems. The Bangar 

site was initially reclaimed to be irrigated by sprinkler irrigation system, but farmers 

gradually changed the system to flood irrigation and therefore crop requirements 

increased with the same amount of available water. Some fields at this site are 

suffering from salinity stress since farmers have used agricultural drainage water for 

irrigation for at least three decades. The accumulation of salts in the soil profile over 

this period of time affects plant health particularly sensitive crops such as maize.     



 

 
 

145

Table  6-1 Different sites and dates for the spectroradiometry survey in wheat fields in south-west 
Alexandria, Egypt in 2007 winter growing season. 
 

Site 
Kahr Hewaihy Bangar 

11 March 12 March 15 March 
19 March 28 March  
27 March   

 

 

Figure  6-1 A map showing the three study sites south-west Alexandria, Egypt (adapted from Google 
earth). 

 

6.2.2 Field work timing 
Field work was conducted in wheat fields (8-30 March) and maize fields (10-17 July) 

in Egypt during winter and summer seasons of 2007. The field work was timed to 

coincide with the acquisition of Hyperion images in both summer and winter seasons 

of 2006-7. March was chosen for detecting stress in wheat because the weather starts 

to be warmer and the grain filling stage starts in March. The middle of July was 

chosen for detecting stress in maize due to the high possibility of experiencing stress 

in maize as a result of high evapotranspiration and the shortage of water during this 

time. A large area is cultivated with rice in the Nile Delta, which consumes massive 
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amounts of water. This is why the study sites chosen tend to suffer from moisture and 

salinity stress. Chapter 2 outlined the typical irrigation agricultural practices for main 

crops in that area.  

During the field work, the coordinates of 27 ground control points were collected  

using GPS (Global Positioning System), which represent fixed points such as 

intersects between roads and railway lines, bridges and roads, high ways and main 

drains or channels. Photographs have been taken for all these ground control points. 

Care was taken to ensure that this number of ground control points will cover the 

whole study area. During the first field visit in March to collect data in wheat fields, a 

time series of in situ hperspectral measurements was conducted to assess the 

physiological changes during this period of time and was undertaken during the 

second field visit in summer to collect data from maize field. 

6.2.3 In situ hyperspectral measurements survey and sampling 
strategy 

For wheat, an in situ hyperspectral survey was conducted in the study area during the 

winter growing season of 2007 (8-30 March) concurrent with the acquisition of 

Hyperion satellite imagery. The hyperspectral survey was conducted in random fields 

depending on the size of the field and the status of these fields in terms of stress. 

Basically, healthy fields were always located at the beginning of irrigation channels 

and the stressed fields at the end of irrigation channels. Care was taken to obtain the 

hyperspectral measurements at the same locations within the same fields on different 

measuring dates. An ASD FieldSpec hand-held spectroradiometer was used to 

measure reflectance from plant canopies (see Table 3.3 for the instrument technical 

specifications). The reflectance measurements were restricted between 10 am and 

3 pm to minimize the influence of changes in solar zenith angle. Figure 6.2 shows an 

example of measuring reflectance in a wheat field. During the in situ hyperspectral 

survey, the sensor was kept at a constant distance from the soil surface using an iron 

stand of 2 m height. Vegetation samples were collected immediately after measuring 

reflectance from plant canopies to quantify aboveground biomass and LAI (for more 

details about vegetation strategy and chlorophyll analysis, see section 3.2 and 3.3). 

Plant height was measured following reflectance measurements from plant canopy at 

each location within the same field. Soil and water samples at each site were collected 

for chemical analysis.  
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Figure  6-2 Measuring reflectance from wheat canopy under clear sky conditions during field work 
visit in Egypt, March 2007. 

 

6.2.4 Remote sensing data acquisition  
Hyperion 

The use of Hyperion imagery was planned at the beginning of the research project as 

the only platform to provide hyperspectral imagery (more than 200 bands) at a 

suitable spatial resolution (30 m). The number of bands obtained from the spectral 

resolution of the Hyperion satellite enables researchers to have the ability to detect 

stress in crops through hyperspectal band ratios providing the potential for the in situ 

results to be replicated. For wheat in the winter season of 2007, a Hyperion scene was 

ordered to be acquired on 10th March 2007, but due to the > 99% cloud cover at this 

time the acquisition was rejected. For the summer season a Hyperion scene was 

ordered to be acquired on 15th of July to coincide with field work, but tasking 

conflicts and sensor calibration requirements resulted in no images being acquired. 

ASTER 

ASTER is a multispectral satellite with a 15 m spatial resolution. ASTER imagery 

also was ordered to be acquired on 5th, 20th March and 5th April to have a time series 

for the crop development. Due to high percentage of cloud cover in March the 
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acquisition was rejected. An ASTER image was acquired on 23rd April 2007 for 

winter wheat for the study area, which is very late for the wheat growing season in 

Egypt since it is harvested during the first half of May. The radiance derived from this 

image was used to calculate vegetation indices, but the results showed very poor 

relationship between different fields of the hyperspectral survey as a result of 

chlorophyll degradation at this late stage. 

QuickBird  

Two QuickBird multispectral images were acquired covering wheat and maize crops. 

QuickBird satellite is a high spatial resolution satellite comprises four multi spectral 

bands (blue, green, red and near-infrared) of 2.4 m spatial resolution. The first 

QuickBird image of wheat fields was acquired at 09:06 h GMT on 7th April 2007 for 

the study area (south-west Alexandria, Egypt). The second QuickBird image of maize 

fields was acquired at 09:13 h GMT on 29th June 2007. Further details about 

QuickBird images are given in Table 6.3. 

Figure  6-3 Technical characteristics of both QuickBird images of wheat and maize fields acquired in 
April and June 2007 in south-west Alexandria, Egypt. 
 

 7th April image 29th June image 
Satellite QuickBird QuickBird 
Acquisition date  2007-04-07 2007-06-29 
Acquisition time 09:06  09:13 
Cloud cover 33% 0% 
Off nadir angle 13° 22° 
Target azimuth angle  210° 51° 
Spectral bands  4 4 
Environmental quality 99% 99% 
Centre location  Lat/Lon 30.99°/29.84° Lat/Lon 30.99°/29.84° 

  

SPOT HRV 

SPOT HRV is a multispectral satellite, which gives 20 m spatial resolution with four 

spectral bands including blue, green, red and near infrared (see Table 2.9 for more 

details about the sensor specifications). Two SPOT HRV images were also planned to 

be acquired on 5th and 20th July concurrent with field work visit. The first SPOT HRV 

image of maize fields in the study area south-west Alexandria was acquired at 8.69 h 

GMT on 30th June 2007. The second SPOT HRV image was acquired at 9.14 h GMT 
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on 9th July 2007. More information about SPOT HRV satellite images are given in 

Table 6.4. 

Figure  6-4 Technical characteristics of both SPOT HRV images of maize fields acquired for the study 
area south-west Alexandria, Egypt. 
 

 30th June image 9th July image 
Satellite  SPOT4 SPOT4 
Instrument HRVIR1 HRVIR2 
GRS reference  108-288 108-288 
Acquisition date  2007-06-30 2007-07-09 
Acquisition time 08:41:15 09:08:12 
Cloud cover 0 0 
Orientation angle 8.9° 12.3° 
Incidence angle 28.9° 28.9° 
Sun angle Azimuth: 107.6 Azimuth: 119.8 
Spectral bands 4 4 
Shift along track 0 0 
Centre location Lat/Lon 30.95°/29.79  Lat/Lon 30.95°/ E29.79 

 

6.2.5 Image processing  
Geo Corrections 

At the beginning, the row images were visually investigated for clouds and associated 

shadows. The QuickBird image acquired on 7th March 2007 was 33% cloud cover 

with associated shadows. Some of the fields of in situ hyperspectral survey were 

completely covered by these clouds and shadows. The 29th June QuickBird image was 

cloud free since no clouds or shadows were detected visually. ENVI v4.4 was used to 

geo-correct all satellite images including QuickBird, ASTER and SPOT HRV. The 

manual method of geo-correction was used with the available ground control points 

(27 fixed points). These GCPs were used on the uncorrected image to link it to these 

points. The 27 points nearly covered the whole scene, but it seems that the number of 

points was not enough. Thereafter, the method of image to image correction was used 

as the second QuickBird image was geo-corrected by infoterra (up to 14-meter 

RMSE). This routine was used for 100 points on both images until the whole image 

was covered and gave better results in comparison to the manual method. The 

transformed image was checked with the geo-corrected image and they gave 

approximately similar locations for each fixed point. 
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Atmospheric corrections 

The main aim of atmospheric correction is to remove the effects of the atmosphere to 

make sure that the radiance reflected back to the sensor is the same as the radiance 

that would be observed at the surface by the same sensor. There are many techniques 

for atmospheric correction ranging from very simple methods to complex computer 

models. Ideally the atmospheric correction would correct the surface radiance to 

percentage reflectance, and thus any subsequent calibration would have greater 

generic value. However, the simplest method which only accounts for the influence of 

atmosphere on the radiance value is the dark pixel method, which does not need any 

additional atmospheric data. Due to the lack of information regarding the atmosphere 

it seems that the dark pixel is suitable to correct the images used for this research. 

Also, many researchers used the dark pixel method to atmospherically correct satellite 

imagery (Hadjimitsis and Clayton 2004, Wu, et al., 2005, Tyler et al., 2006). For 

example, Wu, et al. (2005) mentioned that the DOS (Dark Object Subtraction) 

technique was effective for the visible bands and produced ρλ with the root mean 

square error (RMSE) of less than 0.01. In addition, Hadjimitsis and Clayton (2004) 

compared some techniques for atmospheric correction and reported that from an 

operational point of view the dark pixel method (which derives its input parameters 

from the image itself and is relatively easy to implement) is to be preferred over more 

sophisticated techniques that require the acquisition of atmospheric or meteorological 

data.  

The dark pixel method is based on the assumption that there are some points on each 

satellite image, which are black and the reflectance from these points is nearly similar. 

However, the disadvantage of this approach is that the derived image is specific for 

that image and is difficult to apply more generally. All images in this research project 

were atmospherically corrected using the dark pixel method (dark pixel subtraction) 

in ENVI v4.4. The FLAASH module was also applied to correct SPOT HRV and 

QuickBird images, but the resulting images did not give useful results to apply for 

detecting stress in both wheat and maize. 

A further attempt to deduce reflectance from satellite imagery by regression against in 

situ spectra is described in appendix D. However, the temporal difference between in 
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situ hyperspectral and satellite data acquisition proved problematic and no successful 

systematic correction could be established.       

Image classification 

The capability of remotely sensed data as a useful tool in precision agriculture was 

explored firstly by identifying different crops in satellite images. Prior to applying 

classification algorithms, images were geo-corrected, geo-referenced to the standard 

summer scene (the 29th June QuickBird image) and atmospherically corrected. For 

image classification it is sometimes important to group image pixels into different 

classes. It is defined as the process of grouping image pixels into classes that show 

similar spectral and/or textural values and assigning them to meaningful information 

classes. Fassanacht et al. (1997) divided image classification of remotely sensed data 

into two categories including unsupervised and supervised classifications. Both 

unsupervised and supervised classification algorithms were examined in this research 

including Maximum Likelihood (MLC), Minimum Distance (MDC) and k-means 

classification. MLC and MDC algorithms were chosen because they are commonly 

used for classifying vegetation (Shanmugam et al., 2006). Image classification was 

performed using ENVI v.4.4 (ENVI, 2003). 

Unsupervised classification 

Unsupervised classification algorithms were chosen because they do not need much 

information about the image being studied in terms of image features since the 

information classes are determined statistically by putting them in clusters by natural 

groupings of spectral values in the dataset. Bachmann et al. (2002) defined 

unsupervised classification as a way of assessing the spectral clusters within a dataset 

and determining specific areas that may overlap spectrally with others. The only 

specifications of the unsupervised classifications are the number of desired classes 

and thresholds, the number of iteration to perform and the class convergence. The 

most commonly used unsupervised classifications are k-means and ISODATA.  

Isodata classification calculates class means evenly distributed in the data space and 

then iteratively clusters the remaining pixels using minimum distance techniques. In 

this techniques all pixels are classified to the nearest class unless a standard deviation 
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or distance threshold is specified, in which case some pixels may be unclassified if 

they do not meet the selected criteria.  

K-means unsupervised classification calculates initial class means evenly distributed 

in the data space, and then iteratively clusters the pixels into the nearest class using a 

minimum distance technique. Each iteration recalculates class means and reclassifies 

pixels with respect to the new means. In this case all pixels are classified to the 

nearest class unless a standard deviation or distance threshold is specified. 

Supervised classification 

Unlike unsupervised classifiers, supervised classification needs some data to be 

collected for the area of interest to create spectral signature data from the imagery or 

import spectral signature data from laboratory or field measurements. Supervised 

classification depends on the collection of non-contiguous pixels may provide higher 

variance than polygonal pixel collection and avoid the associated autocorrelation 

effects, although it may not be spectrally broad enough to convey specified classes 

accurately. The most commonly used supervised classifications are Maximum 

Likelihood classification (MLC) and Minimum Distance (MDC) algorithms so they 

were examined in this research project. MLC assumes that the statistics for each class 

in each band are normally distributed and calculates the probability that a given pixel 

belongs to a specific class. Each pixel is assigned to the class that has the highest 

probability. MDC uses the mean vectors of each endmember and calculates the 

Euclidean distance from each unknown pixel to the mean vector for each class. All 

pixels are classified to the nearest class unless a standard deviation or distance 

threshold is specified.      
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6.3 Using in situ hyperspectral measurements to detect 
stress in wheat and maize crops  

6.3.1 Wheat 
Aboveground biomass  

Where possible the aboveground biomass samples were collected from three locations 

within each field immediately after collecting the in situ reflectance data. The 

correlation coefficient for the relationship between twelve different broad band 

spectral vegetation indices and the measured aboveground biomass is detailed in 

Tables 6.2-6.4 for different study sites. Figure 6.5 shows the fields sampled within the 

two study sites at Hewaihy and Kahr. It is shown from the figure that some fields of 

the in situ hyperspectral survey were covered by clouds (33% cloud cover) and the 

associated shadows. This affected the relationship between the in situ hypespectral 

and satellite data. The results demonstrate that the dataset collected from the first 

study site (Kahr) showed strong correlations between most of the tested broad band 

indices and the measured aboveground biomass on different dates. It is noted that the 

majority of broad band vegetation indices had significant correlations with the 

measured aboveground biomass on all measuring dates of the in situ hyperspectral 

survey. The strongest correlation was recorded with NDVI, SAVI, IPVI and SLAVI 

on 11th March (r = 0.79), with NDVI, SAVI, SI and SLAVI on 19th March (r = ±0.75) 

and recorded with OSAVI on 27th March (r = 0.83). There was no significant 

correlations between VI1 and the measured biomass on two dates out of three 

collected from that study site. These findings concur with the results obtained from 

the greenhouse experiments. RVI gave higher correlations with the measured 

aboveground biomass, which is useful for using high spatial resolution satellite 

imagery with limited spectral resolution such as QuickBird (4 bands). 

The results obtained from the dataset collected from the Hewaihy site are detailed in 

Table 6.3. The coefficient of correlation between the measured biomass and different 

broad band indices was non-significant for the majority of cases and this may be 

attributed to the variation in weather conditions throughout the day during measuring 

reflectance. Also, plants can not benefit equally from the application of different 

fertilizers. The decrease in the relationship may also be a result of the small difference 

in plant health within this site. The strongest correlation was recorded with RVI on 
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28th March (r = 0.51) and NDVI, SLAVI and IPVI on 12th March (r = 0.49). As 

expected VI1 produced very poor correlations with the measured aboveground 

biomass obtained from both 12th and 28th March.  

The dataset collected from the third site (Bangar), which is nearly 20 km from the first 

site represents an area newly reclaimed from the desert. The irrigation system was 

designed initially as sprinkler irrigation, but farmers changed the system gradually to 

flood irrigation and consequently the crop water requirement increased. The results 

collected from the one-day survey at this site showed that most of the tested broad 

band indices significantly correlated with the measured aboveground biomass. The 

strongest correlation was recorded with RDVI (r = 0.85). Also, RVI and SR gave high 

significant correlations with the measured biomass. It is therefore noticeable that both 

NDVI and RVI are good indicators for predicting aboveground biomass, which as 

mentioned above useful when using high spatial resolution satellite imagery such as 

QuickBird, ASTER and SPOT HRV. 

The strong correlations between different broad band vegetation indices and the 

measured aboveground biomass provide evidence that these indices are sensitive 

indicators to changes in the physiological status of wheat. Therefore, these indices can 

be used to estimate crop biomass and consequently a rough estimate of crop grain 

yield, which is closely related to aboveground biomass. The vegetation indices that 

produce low correlations with the measured biomass may be sensitive to other crop 

traits and therefore they should be examined to detect other crop parameters. For 

example, lignin and cellulose were not included in this research, but could be linked 

to those vegetation indices. 
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Figure  6-5 QuickBird image acquired on 7th April 2007 showing different fields at the Hewaihy and 
Kahr sites south-west Alexandria, Egypt. 
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Table  6-2 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices derived from in situ survey and Egyptian wheat properties collected in March 2007 
at the Kahr site, south-west Alexandria, Egypt. Highlighted values are significant (P<0.05) and bold 
values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI .690 .790 .870- .730 
RVI .730 .760 .860- .790 

SAVI .650 .790 .860- .680 
GNDVIbr .660 .700 .810- .730 

DVI .590 .760 .820- 61.0 
SR .730 .750 .860- .790 

SLAVI .690 .790 .870- .730 
OSAVI .680 .790 .880- .710 

VI1 0.27 0.14 -0.17 -0.04 
RDVI .740 .780 .880- .790 

SI .670- .780- .860 .720- 

 
 
 
 
 

11 March 
 

IPVI .690 .790 .870- .730 
NDVI .840 .750 .860 .710 
RVI .700 .660 .940 .710 

SAVI .870 .720 .790 .660 
GNDVIbr .650 .660 .900 .670 

DVI .870 .690 .730 .630 
SR .700 .660 .940 .710 

SLAVI .840 .750 .860 .710 
OSAVI .860 .740 .820 .680 

VI1 .740- .620- .550- -0.48 
RDVI .740 .690 .930 .720 

SI .850- .750- .840- .690- 

 
 
 
 
 

19 March 
 

IPVI .840 .750 .860 .710 
NDVI .760 .820 .850 .720 
RVI .780 .820 .850 .740 

SAVI .790 .780 .690 .510 
GNDVIbr .790 .820 .870 .760 

DVI .730 .630 .530 .380 
SR .780 .820 .850 .740 

SLAVI .760 .820 .850 .720 
OSAVI .800 .830 .780 .610 

VI1 -0.30 -0.11 0.02 0.12 
RDVI .770 .820 .850 .740 

SI .750- .820- .840- .720- 

 
 
 
 
 

27 March 
 

IPVI .760 .820 .850 .720 
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Table  6-3 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices derived from in situ spectroradiometry survey and wheat crop properties collected in 
March 2007 at the Hewaihy site, south-west Alexandria, Egypt. Highlighted values are significant 
(P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI .520 .490 0.47 0.42 
RVI .490 0.46 .510 0.35 

SAVI 0.35 0.45 0.36 0.40 
GNDVIbr 0.46 0.46 0.43 0.41 

DVI 0.27 0.43 0.31 0.38 
SR .490 0.46 .500 0.35 

SLAVI .520 .490 0.47 0.42 
OSAVI 0.42 0.47 0.41 0.41 

VI1 -0.18 -0.43 -0.26 -0.37 
RDVI .500 0.47 .500 0.37 

SI .510- -0.48 -0.45 -0.42 

 
 
 
 
 

12 March 
 

IPVI .520 .490 0.47 0.42 
NDVI 0.45 0.39 0.81 .700 
RVI 0.69 .510 0.81 .690 

SAVI 0.55 0.45 0.80 .730 
GNDVIbr 0.60 0.46 0.83 .700 

DVI 0.62 0.49 0.77 0.72 
SR 0.69 0.51 0.81 0.69 

SLAVI 0.45 0.39 0.81 0.70 
OSAVI 0.51 0.43 0.82 0.72 

VI1 0.68- -0.48 -0.44 0.49- 
RDVI 0.62 .490 0.83 0.71 

SI -0.40 -0.35 0.79- 0.69- 

 
 
 
 
 

28 March 
 

IPVI 0.45 0.39 0.81 0.70 

 

Table  6-4 Coefficient of correlation for the relationship between different broad band spectral 
vegetation  indices derived from in situ spectroradiometry survey and wheat crop properties collected 
in March 2007 at the Bangar site, south-west Alexandria, Egypt. Highlighted values are significant 
(P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

Chlorophyll 
(µg cm-2) 

NDVI .910 .810 0.66 0.85 
RVI .720 .830 0.61 0.94 

SAVI .840 -0.39 0.12 -0.35 
GNDVIbr .880 .780 .500 .800 

DVI -0.17 -0.01 0.12 0.13 
SR .720 0.83 0.61 0.94 

SLAVI .910 0.82 0.66 0.85 
OSAVI .880 0.82 0.60 0.87 

VI1 .550- 0.64- -0.21 0.75- 
RDVI .800 0.85 0.64 0.94 

SI .930- 0.78- 0.63- 0.79- 

 
 
 
 
 

15 March 
 

IPVI .910 0.82 0.66 0.85 
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Leaf area index (LAI)  

LAI was measured for each field at three different locations within the same field. 

The coefficients of correlation for the relationship between the measured LAI and 

different broad band vegetation indices are detailed in Tables 6.2-6.4 for the three 

different sites. The results for the first site demonstrate that most of the tested broad 

band indices derived from in situ spectroradiometry exhibited strongly significant 

correlations with the measured LAI. VI1 is the only spectral index which gave no 

significant correlations with the measured LAI for most datasets. RVI, SR, RDVI and 

GNDVIbr gave the strongest correlations on 11th, 19th, and 27th March (r > 0.70). 

Additionally, NDVI always gave a highly significant correlation with LAI. 

The coefficients of correlation for the relationship between different indices and the 

measured LAI at the Hewaihy site are detailed in Table 6.3. The results demonstrate 

that for the dataset collected on 12th March, none of the tested broad band indices 

gave significant correlations with the measured LAI since the coefficient of 

correlation ranged between -0.37 and 0.42. In the 28th March dataset, all tested broad 

band indices gave significant correlations with the measured LAI with the strongest 

correlation recorded with SAVI (r = 0.73). NDVI, OSAVI and RDVI also produced 

high significant correlations with the measured LAI (r ≥ 0.70). The lack of strong 

correlations obtained from the 12th March dataset may be explained as a result of the 

small difference in crop properties or wheat is a tolerant crop to different stressors 

such as moisture and salinity.  

The results for the Bangar site (Table 6.4) showed strong correlations between the 

majority of the tested indices and the measured LAI. The strongest correlation was 

recorded with RVI, RDVI and SR (r = 0.94). It is evident from the results of the three 

study sites that VI1 produced non-significant correlations with the measured LAI. 

Additionally, RVI, SR and RDVI are good indicators for predicting LAI on most 

measuring dates of the hyperspectral survey undertaken in the three study sites. These 

results concur with the results obtained from the greenhouse experiments.      
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Plant height  

The correlation coefficient between different broad band indices and the measured 

plant height from the Hewaihy site on 12th March was not highly correlated (Table 

6.3). This may be attributed to weather conditions during measuring reflectance. 

Moreover, the difference in plant height at different locations was rather small. Just 

three indices gave significant correlation with the measured plant height (r ≥ 0.50). It 

was noted that this dataset did not show high correlations between different indices 

and the measured crop properties and the lack of strong correlation may be attributed 

to the small difference in these properties at different sites within this area. The 

correlation coefficient for the dataset collected on 28th March showed highly 

significant relationships between the majority of broad band indices and the measured 

plant height with the strongest correlation recorded with both GNDVIbr and RDVI 

(r = 0.83). OSAVI, RVI and NDVI produced highly significant correlations (r = 0.81-

0.82) with the measured plant height. At the Bangar site most vegetation indices had 

significant correlations with the measured plant height with the strongest correlation 

recorded with NDVI, IPVI and SLAVI (r = 0.66). 

Chlorophyll concentration  

Twenty apical leaves were sampled from each field and the SPAD chlorophyll meter 

was used to estimate relative chlorophyll concentration in the lab (Faculty of 

Agriculture, University of Alexandria, Egypt). Leaf samples were collected on 29th 

March following the hyperspectral survey of 27th and 28th at the Kahr and Hewaihy 

sites. The red edge position (REP) was estimated from in situ spectra collected from 

different sites. REP and the measured chlorophyll concentration data are detailed in 

Table 6.5. The coefficient of correlation for the relationship between REP and the 

chlorophyll concentration was calculated. A highly significant correlation between 

REP and the chlorophyll concentration of wheat was noticed in all datasets (r = 0.83), 

which concur with the results obtained from the greenhouse experiments. The 

chlorophyll concentration was determined just once during the field work visit 

because of the availability of the SPAD meter. The results showed that in stressed 

fields, REP tends to be at shorter wavelengths and at longer wavelength in healthy 

fields. The chlorophyll concentration was not determined at the third study site 

because the SPAD meter was not available. The regression analysis was performed to 
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determine a regression equation for predicting chlorophyll concentration using REP 

data as follows: 

Chlorophyll concentration = 0.992 REP-681.5 

Table  6-5 The measured chlorophyll concentration of Egyptian wheat leaves and REP derived from the 
spectra collected from the same fields during field work conducted in March 2007 at different study 
sites south-west Alexandria, Egypt. 
 

R1 R2 R3 site 
Ch RP Ch RP Ch RP 

Salah1 41.3 725.1 40.9 721.9 41.1 722.9 
Salah2 49.2 729 46.6 728.9 47.6 728.6 
Mehlap 42.9 732.4 44 731.8 40.9 731.7 

Atef 46.7 732.5 45.3 733.4 43.5 732.5 
Omara 39.8 724.2 38.2 721 39 724 
Fathy 26.7 719.7 29.5 719.7 30.1 720 
Taha 32.0 721.6 28.4 722.5 30.2 719 

Omran 36.9 726.2 34.7 724.9 36.2 726.6 
Shaaban 46.5 734.1 45.4 731.2 43.45 735 
Kosairy 45.8 732.2 45.2 731.5 43.8 733.2 
Ashraf 48.01 734.0 47.8 734.5 45.4 733.8 
Saber 43.4 732.1 41.1 730.5 43.1 731.5 

r 0.83 

 

Besides REP as an indicator for the chlorophyll concentration, the coefficient of 

correlation for the relationship between different broad band vegetation indices and 

the measured chlorophyll content was calculated and is detailed in Tables 6.2-6.4. At 

the Kahr site most vegetation indices had significant correlations with chlorophyll 

concentration in all datasets with the strongest correlation recorded with RVI and SR 

(r = 0.73) in the 11th dataset, with SAVI and DVI (r = 0.87) in the 19th dataset, and 

with OSAVI (r = 0.80) in the 27th dataset. At the Hewaihy site most vegetation indices 

produced significant correlations with the measured chlorophyll particularly in the 

28th dataset. The strongest correlation was recorded with RVI and SR (r = 0.69) in 

28th March. At the Bangar site similar results were observed as the majority of 

vegetation indices produced high significant correlations with the strongest recorded 

with SI (r = -0.93). Generally, REP gives high correlations with the measured 

chlorophyll concentration compared with the results obtained from different sites on 

different dates since some vegetation indices give high correlations on a specific day 

and very low correlations on others such as VI1.  



 

 
 

161

The reflectance measurements obtained from these three sites were also investigated 

by plotting reflectance against wavelength. The average of reflectance values from 

each field was calculated and the dataset for each day was plotted. Figure 6.6 shows 

the difference between spectral responses from five different fields on 11th 19th and 

27th March 2007. Graph 6.6 (a) shows that the spectral response obtained from the 

field suffering from salinity stress is different from healthy ones as the reflectance in 

the green and red regions is always higher than those of healthy fields. The 

reflectance in the NIR region is always lower than the spectral response from healthy 

canopies. These findings concur with the results obtained from the greenhouse based 

experiments.     

        

 

Figure  6-6 The spectral response measured from different wheat fields at the Kahr site, south-west 
Alexandria, Egypt on (a) 11, (b) 19 and (c) 27 March 2007 under clear sky conditions.    

 

The results obtained from the data collected on 19th March are depicted in Figure 

6.6 (b); it was notable that the results had the same trend of the data collected on 11 

March as the reflectance measured from stressed canopies has high reflectance in the 

visible region of the spectrum and over REP region exhibited low difference 
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especially with using the average of reflectance from each field (decrease the 

variations within the same field). The difference between reflectance from stressed 

fields and healthy fields is higher in the NIR region. The slight difference between 

different healthy fields may be attributed to differences in chlorophyll concentration, 

biomass, plant height or leaf area, which may be resulted from different sowing dates. 

The 27th March dataset depicted in Figure 6.6 (c) which shows that the spectral 

response from the three healthy fields and two stressed fields have similar pattern.  

The second study site was nearly 5 kilometres from the previous one and in situ 

hyperspectral survey was conducted on two days (12 and 28th March 2007). The 

results obtained from this site are depicted in Figure 6.7. The reflectance from five 

different fields at the Hewaihy site had the same trend as the other study sites since 

reflectance from stressed fields was higher in the visible part of the spectrum and 

lower in the NIR region in comparison to the healthy fields. 

            

Figure  6-7 The spectral signature obtained from five different wheat fields at the Hewaihy study site, 
south-west Alexandria, Egypt on (a) 12 and (b) 28 March 2007 under clear sky conditions. 
 

The in situ hyperspectral survey also included a study site 20 kilometres south from 

the first two sites. It was chosen because of the soil texture (sandy to sandy loam) and 

because most fields in that area suffer from moisture stress but not salinity stress since 

irrigation water salinity is less than 1 dS m-1. The reason why these fields are 

suffering from moisture stress is that this site reclaimed two decades ago and the 

irrigation system was designed initially as sprinkler irrigation, but farmers gradually 

changed the system to the traditional irrigation method (flood irrigation) and 

resultantly the amount of irrigation water is insufficient for the total cultivated area.  
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The spectral response from four different fields at the Bangar site and one more field 

a way about 10 km from that site representing a wheat field under salinity stress is 

depicted in Figure 6.8. The spectral response from the only healthy field is different 

from the other stressed fields. The reflectance pattern approximately had the same 

pattern as shown in the first two study sites. The high salinity in the field chosen (7 dS 

m-1) greatly affected the response from plant canopies. It is shown that the reflectance 

obtained from the field under salinity stress is higher than those obtained from 

moisture stressed and healthy fields, but low reflectance in the NIR range compared 

with healthy fields.   

 

Figure  6-8 The reflectance measurements obtained from five different wheat fields on 15 March 2007 
at the Bangar site, south-west Alexandria, Egypt under clear sky conditions. 

 

Distinguishing between moisture and salinity induced stress 

To distinguish between stressed fields and healthy fields or distinguish moisture 

induced stress from salinity induced stress, Principle Component Analysis (PCA) was 

performed on each dataset. Figures 6.9-6.13 show the score plot of the PCA for all 

datasets collected during in situ hyperspectral survey at the three different sites. As 

illustrated in the first three figures, which represent the first study site, the score plot 

shows the dissimilarities between healthy fields and fields suffering from moisture 

and salinity stress. In Figure 6.10 there is some overlap between salinity and moisture 

induced stress, which was difficult to separate and this may be attributed to the 
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tolerance of wheat crops to both moisture and salinity stressors. The results depicted 

in Figure 6.12 shows a gradient between three healthy fields and this may be 

attributed to the slight difference in plant height, chlorophyll concentration and LAI 

or aboveground biomass. This may be explained by different sowing dates, soil 

fertility and drainage system efficiency in each field.   

The score plot of the third site’s dataset is shown in Figure 6.13. It is noticeable that 

healthy sites are distinguished from fields suffering from moisture and salinity stress. 

The clear distinction at this site may be attributed to the high level of stress as the 

salinity level was on average over 7 dS m-1 and moisture induced stress is apparent at 

this site as a result of changing irrigation system. Also, the nitrogen concentration 

determined in the soil at this site was low. The results sometimes show some overlap 

between moisture and salinity induced stress and even between different healthy 

fields. This may be attributed to the slight difference between healthy fields as a result 

of different sowing dates and the overlap between different stressors may be attributed 

to the tolerance of wheat to stress.  
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Figure  6-9 The score plot of PCA for the spectra collected on 27 March 2007 from healthy and salinity 
induced stressed wheat canopies under clear sky conditions at the Kahr site (n = 20). (Site labels; TA-
TAHA; ME-MEHLAP; OM-OMRAN;AS-ASHRAF;AT-ATEF). 
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Figure  6-10 The score plot of the Principle Component Analysis for the spectra collected on 19 March 
2007 from healthy, moisture and salinity induced stressed wheat canopies under clear sky conditions at 
the Kahr site (n = 20). (Site labels; SH-SHAABAN; ME-MEHLAP; OM-OMRAN; OMA-OMARA;SA-SABRY;AT-
ATEF). 
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Figure  6-11 The score plot of the Principle Component Analysis for the spectra collected on 11 March 
2007 from healthy and salinity induced stressed wheat canopies under clear sky conditions at the Kahr 
(n = 20). (Site labels; R-RAMADAN; ME-MEHLAP; K-KOSAIRY;AS-ASHRAF;TA-TAHA). 
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Figure  6-12 The score plot of the Principle Component Analysis for the spectra collected on 28 March 
2007 from healthy, moisture and salinity induced stressed wheat canopies under clear sky conditions at 
the Hewaihy site (n = 25). (Site labels; S1-ASLAH1;S2-SALAH2;S3-SALAH3;S4-SALAH4; FA-FATHY). 
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Figure  6-13 The score plot of the Principle Component Analysis for the spectra collected from healthy 
and moisture and salinity induced wheat canopies under clear sky conditions in March 2007 (n = 25). 
(site labels; AB-ABUMASOUD2;ABU-ABUMASOUD1;MO-MOSTAFA1;M2-MOSTAFA2; MOS-MOSTAFA3). 
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6.3.2 Maize 
Aboveground biomass  

As with wheat twelve broad band vegetation indices were calculated from in situ 

hyperspectral survey. The fields within the study area were chosen according to plant 

health and care was taken to have a stress gradient ranging from very healthy fields to 

highly stressed fields. Figure 6.14 shows a QuickBird image with different fields 

within the study area. The correlation coefficient for the relationship between 

vegetation indices and different biophysical and biochemical properties of maize 

crops is given in Table 6.6. Strongly significant correlations between different 

vegetation indices and the measured biophysical and biochemical properties were 

observed. The 12th July dataset showed that eleven indices out of twelve had highly 

significant correlations with the measured aboveground biomass. The strongest 

correlation was recorded with RVI and SR (r = 0.87). RDVI and GNDVIbr also 

produced high significant correlations with the measured aboveground biomass 

(r > 0.80). 

The 14th July dataset had the same trend as all tested broad band indices produced 

highly significant correlations with biomass (r > 0.90) except VI1 (r = -0.44). The 

strongest correlation was recorded with RDVI (r = 0.97). SR, SAVI and RVI also 

produced very high correlations with the measured biomass (r ≥ 0.95). As expected 

VI1 had the poorest correlations with the biomass (r = -0.44). 

The 15th July data set showed also strong correlations between different vegetation 

indices and the measured biomass. The strongest correlation was recorded with RVI, 

SR and RDVI (r = 0.98). NDVI, GNDVIbr, SLAVI and IPVI also produced high 

significant correlations with the measured aboveground biomass (r = 0.96).  
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Figure  6-14 QuickBird image showing different fields within the study area south-west Alexandria, 
Egypt. 

 

To identify the optimum vegetation index, which correlate well with crop properties; 

data from the three-day in situ hyperspectral survey in maize fields was combined. 

The coefficient of correlation between the tested broad band indices and the measured 

aboveground biomass is detailed in Table 6.7. The results showed that the strongest 

correlation was recorded with RVI, SR and RDVI (r = 0.95) and as expected VI1 

produced non-significant correlation (r = -0.37). Figure 6.15 shows the relationship 

between RVI and the measured biomass for the combined dataset. A strong 

significant linear relationship between aboveground biomass and RVI (R2=0.90; p = 

0.000) is shown in the figure.  

 

Figure  6-15 The relationship between RVI derived from in situ hyperspectral survey and the measured 
aboveground biomass of maize collected in Egypt in July 2007 (n = 45). 
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Table  6-6 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices and maize properties over the three-day hyperspectral survey (12-15 July 2007) in 
south-west Alexandria, Egypt. Highlighted values are significant (P<0.05) and bold values are the 
strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI .810 .760 .850 .800 
RVI .670 .870 .910 .850 

SAVI .790 .720 .830 .760 
GNDVIbr .800 81.0 .900 .830 

DVI .770 .650 .790 .690 
SR .670 .870 .910 .850 

SLAVI .780 .770 .840 .810 
OSAVI .800 .740 .840 .780 

VI1 0.46 0.33 0.25 0.42 
RDVI .710 .840 .900 .840 

SI .830- .630- .760- .700- 

 
 
 
 
 

12 July 
 

IPVI .780 .770 .840 .810 
NDVI .890 4.90 .930 .920 
RVI .950 .960 .980 4.90 

SAVI .890 .960 .930 .950 
GNDVIbr .900 .940 .920 .920 

DVI .850 .940 .880 .940 
SR .950 .960 .980 .940 

SLAVI .900 .950 .940 .930 
OSAVI .890 .950 .930 .940 

VI1 -0.37 -0.44 -0.39 .500- 
RDVI .940 .970 .980 94.0 

SI .760- .840- .820- .830- 

 
 
 
 
 

14 July 

IPVI .900 .950 .940 .930 
NDVI .970 .960 .970 .980 
RVI .940 .980 .980 .980 

SAVI .970 .940 .950 .970 
GNDVIbr .970 .960 .970 .980 

DVI .970 .900 .920 .950 
SR .940 .980 .980 .980 

SLAVI .970 .960 .970 .980 
OSAVI .970 .950 .960 .970 

VI1 .820- .610- .660- .730- 
RDVI .950 .980 .980 .980 

SI .960- .950- .960- .970- 

 
 
 
 
 

15 July 

IPVI .970 .960 .970 .980 
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Table  6-7 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices and the combined dataset of different maize properties collected over the three-day 
hyperspectral survey (12-15 July 2007) in south-west Alexandria, Egypt. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI 0.89 .910 .920 .890 
RVI .860 0.95 0.96 0.95 

SAVI .870 .900 .900 0.99 
GNDVIbr .880 .930 .930 0.99 

DVI .800 .860 .840 .910 
SR .860 0.95 0.96 0.94 

SLAVI 0.89 .910 .920 .950- 
OSAVI .880 .910 .910 .440- 

VI1 -0.26 -0.37 -0.32 -0.20 
RDVI .880 0.95 0.96 .980 

SI 0.85- .840- .850- .980- 

 
 
 
 
 

12-15 July 
 

IPVI 0.89 .910 .920 .440- 

 

It is evident that maize crop is sensitive to different sources of stress such as salinity 

and moisture induced stress. The difference in spectral response from stressed 

canopies and healthy canopies may be attributed to the vegetative parameters, which 

are functions of many stressors. Additionally, great aboveground biomass eliminates 

the effects of soil background. Figure 6.16 shows two photographs for a healthy field 

and another field suffering from salinity stress. The photographs show the difference 

between plant canopies in both fields, which support the results of good correlations 

between different vegetation indices and aboveground biomass. 

 

          

Figure  6-16 Tow photographs showing the extremes from a very healthy maize field and another field 
suffering from salinity stress.  
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Leaf area index of maize (LAI) 

As shown in Figure 6.16 leaf area of healthy plants completely covers the soil surface 

and therefore there are no effects from soil background compared with stressed plants. 

The correlation coefficient for the relationship between the twelve broad band 

vegetation indices and the measured LAI is detailed in Table 6.6 and 6.7. Vegetation 

indices demonstrated strong significant correlations with the measured LAI on all 

measuring dates. The 12th July dataset demonstrated that RVI and SR produced the 

strongest correlation with LAI (r = 0.85). The 14th July dataset showed that RVI and 

SR had high significant correlation, but the strongest correlation was recorded with 

SAVI (r = 0.95). This may be attributed to the advantage of SAVI in reducing the 

effects of soil background from stressed fields. The strongest correlation obtained 

from the 15th July dataset was recorded with RVI, NDVI, GNDVIbr, SR, SLAVI, 

RDVI and IPVI (r = 0.98). From the combined data it is shown that SAVI and 

GNDVIbr produced the strongest correlation with the measured LAI (r = 0.99). The 

regression analysis was used to investigate the relationship between GNDVIbr and the 

measured LAI of maize (Figure 6.17). A strong significant relationship between 

GNDVIbr and the measured LAI (R2 = 0.82). In all datasets VI1 produced the poorest 

to correlate with the measured LAI.  

 

Figure  6-17 The relationship between GNDVIbr derived from in situ hyperspectral survey and the 
measured LAI collected from maize fields in July 2007 (n = 45). 
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Plant height 

All vegetation indices demonstrated a highly significant correlation with the measured 

maize plant height except VI1. RVI and SR had the strongest correlation with the 

measured plant height on 12th July (r = 0.91). In the 14th and 15th July datasets RVI, 

SR, and RDVI produced the strongest correlations with the measured plant height 

(r = 0.98). Interestingly, the results obtained from the combined dataset show similar 

trends as the three indices produced the strongest correlation with the measured plant 

height (r = 0.96). The reason for strong correlations between plant height and different 

indices may have been a result of the large difference in plant height in stressed and 

healthy fields, which in turn affects the spectral response from plant canopies. 

Therefore, care was taken to keep constant the distance between the spectroradiometer 

and soil surface. Additionally, soil background may affect reflectance measurements 

in stressed fields. The regression analysis was performed on the combined dataset to 

investigate the relationship between RVI and the measured plant height (Figure 6.18). 

A strong significant linear relationship between plant height and RVI was observed 

(R2 = 0.93; p = 0.000). 

 

Figure  6-18 The relationship between RVI derived from in situ hyperspectral survey and the measured 
plant height of maize crops collected in July 2007 in south-west Alexandria, Egypt (n = 45).  
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Chlorophyll concentration 

Apical leaf samples were collected from each field of the in situ hyperspectral survey 

and the chlorophyll concentration was measured in a lab at Alexandria University, 

Egypt using SPAD chlorophyll meter. From the hyperspectral survey REP was 

calculated as an indicator of chlorophyll and other pigments (Table 6.8). The 

coefficient of correlation for the relationship between REP and the measured 

chlorophyll concentration was calculated for each dataset and the results showed 

strong significant correlations between the measured chlorophyll content and REP. 

The combined dataset was used to assess the relationship between REP and the 

chlorophyll concentration. A strong correlation was observed between SPAD meter 

readings and REP (r = 0.80). When maize crop is subjected to moisture and salinity 

stress, plants try to cope by decreasing the leaf area to decrease the evaporation 

surface, which therefore affects the photosynthetic rate and consequently the pigment 

concentration.  

Table  6-8 The measured chlorophyll concentration of maize leaves and the red edge position derived 
from in situ hyperspcetral survey at different sites on 12, 14 and 15 July 2007 during the field work 
visit in Egypt. 
 

R1 R2 R3 Date site 
Ch REP Ch REP Ch REP 

Saber 48.4 730.6 50.1 730.9 49.5 730.1 
Medhat 50.7 730.6 47.7 730.4 49.9 729.5 
Mehlap 49.4 729.4 48.2 729.2 49.6 730.0 

Abderahim 42.16 724.6 43.25 725.4 43.1 726.1 

 
 

12 July 

Farid 33.21 722.5 30.64 720.5 30.9 718 
Omara 31.5 718.6 34.3 718.3 33.2 719.6 
Reda 49.5 729.8 48.3 730.2 52.4 730.4 
Eza 34.4 714.3 31.6 718.9 33.3 718.3 

Ahmed 30.3 702 33.3 696.2 32.0 696.9 

 
 

14 July 

Haj 48.4 728.3 48.2 730.4 47.1 729.6 
Salem 48.4 729.6 49.6 730.03 48.5 729.1 
Helmy 36.2 722 32.6 718.9 35.7 719.9 

Shetaiwy 51.0 730.6 50.6 730.7 47.6 728.7 
Habeeb 35.1 720.8 34.2 716.8 32.3 717.5 

 
 

15 July 

Abdelbad 34.4 716.9 31.8 717.2 32.9 726.2 

 Ch is the chlorophyll concentration and REP the red edge position   

Besides REP, the coefficient of correlation for the relationship between the twelve 

broad band vegetation indices and the measured chlorophyll concentration was 

calculated (Table 6.6 and 6.7). The majority of vegetation indices had strongly 

significant correlations with the measured chlorophyll concentration particularly in 
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the 15th July dataset (r > 0.80). The strongest correlation was recorded with SI (r = -

0.83) on 12th July, RVI and SR (r = 0.95) on 14th July and NDVI, SAVI, GNDVIbr, 

DAVI, SLAVI, OSAVI and IPVI (r = 0.97) on 15th July. The combined dataset 

demonstrated that NDVI, SLAVI and IPVI had the strongest significant correlation 

with the measured chlorophyll concentration (r = 0.89). Additionally, regression 

analysis was performed to assess the relationship between NDVI and the measured 

chlorophyll concentration (Figure 6.19). A significant positive linear relationship 

between NDVI and the measured chlorophyll concentration (R2 = 0.79; p = 0.000) is 

shown. NDVI seems to be sensitive indicator for chlorophyll of maize canopies. The 

results obtained from the combined dataset also showed that VI1 produced non-

significant correlations with any maize properties.   

 

Figure  6-19 The relationship between NDVI derived from in situ hyperspectral survey and the 
measured chlorophyll concentration collected from maize fields in July 2007 in south-west Alexandria, 
Egypt (n = 45).  

 

It is evident from the results of the two field visits that most broad band vegetation 

indices examined in this research had strong correlations with different maize crop 

properties including aboveground biomass, plant height and LAI, which means the 

reflectance from plant canopies is a function of changes in plant biochemical and 

biophysical properties. A strong relationship between chlorophyll concentration and 

REP confirmed that REP is a good indicator for plant chlorophyll. Besides different 
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vegetation indices the physiological changes resulting from moisture and salinity 

induced stress were investigated through plotting reflectance from healthy and 

stressed fields in the same figures. The individual and combined datasets were used to 

show differences in reflectance (Figure 6.20).  

As expected the results exhibited that the spectral response from maize crops gave 

better results in comparison to those obtained from wheat fields. This may be 

attributed primarily to the broader leaves of maize and there is a noticeable decrease 

in size as a result of both stressors. Furthermore, the high temperature in the summer 

season increases evapotranspiration from plants and evaporation from soil at the same 

time and therefore subjects plants to stress more quickly. Like the results obtained 

from the greenhouse experiments, the reflectance obtained from stressed canopies is 

higher in the green and red regions of the magnetic spectrum in comparison to 

reflectance obtained from healthy canopies. However, the reflectance from stressed 

canopies is lower in the NIR region in comparison to those obtained from healthy 

canopies. 

             

            

Figure  6-20 The spectral response collected from  different sites of maize crops on  (a) 12th July, (b) 
14th July, (c) 15th July 2007 and  (d) the combined dataset of the three different dates collected under 
clear sky conditions. 
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Distinguishing between moisture and salinity induced stress 

The Principle Component Analysis (PCA) was performed on each dataset of 12th, 14th 

and 15th July to show dissimilarities between reflectance from healthy and stressed 

fields. Figures 6.21-6.23 show the score plot of the PCA for each dataset. The 12th 

dataset showed that the PCA has the ability to distinguish healthy sites from those 

suffering from moisture and salinity stress. The dissimilarities shown between healthy 

fields may be a result of slight differences in biochemical and biophysical properties 

of maize crops. These differences may be attributed to different sowing dates, 

nitrogen application and moisture stress at specific growth stage. The 14th July dataset 

comprised one healthy field and three salinity induced fields. It is shown that the 

healthy field replicates tend to plot in one corner (the bottom left corner) and away 

from all salinity stressed fields. The 15th July dataset showed that healthy fields tend 

to plot in one side of the score plot (the right side of the score plot) while the stressed 

fields are plotted on the left side. PCA showed the ability to separate moisture 

induced stress from salinity induced stress particularly where large difference between 

healthy and stressed fields. 

The results suggest that, using the technique of remotely sensed data to monitor plant 

health with broader leaved crops such as maize will enhance the efficiency of this 

technique. PCA score plots demonstrated that distinguishing between moisture and 

salinity induced stress is possible especially when plants are subjected to severe 

stress. The results further showed that distinguishing between moisture and salinity 

induced stress in maize is highly possible, but in wheat it needs a high stress level 

since wheat is a tolerant crop and mainly is grown in winter and therefore under low 

moisture stress. Also, the weather conditions should be considered when comparing 

both crops in terms of stress as maize is a summer crop and wheat is a winter crop. In 

this case temperature, light intensity and day length should be considered as effective 

parameters in plant health and therefore reflectance measurements. 
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Figure  6-21 The score plot of the Principle Component Analysis (PCA) for the spectra collected from 
healthy, moisture and salinity induced stressed maize canopies under clear sky conditions in summer 
growing season of 2007 in south-west Alexandria, Egypt (n = 25). (Site labels: Sa-Saber; Ra- Ramdan; Fa-Farid; 
Me-Mehlap; Abd-Abdelrahim). 
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Figure  6-22 The score plot of the Principle Component Analysis for the spectra collected from healthy 
and salinity induced stressed maize canopies under clear sky conditions in summer growing season of 
2007 in south-west Alexandria Egypt (n = 20). (Site labels: Re-Reda; Ez-Eza; Om-Omara; Ah-Ahmed).  
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Figure  6-23 The score plot of the Principle Component Analysis (PCA) for the spectra collected from 
healthy, salinity and moisture induced stressed maize canopies under clear sky conditions in summer 
growing season of 2007 in Egypt (n = 25). (Site labels: SH-Shetaiwy; SA-Salem; HE-Helmy; HA-Habeeb; AB-
Abdelbadea).  

  

6.4 Predicting Stress with high spatial resolution platforms in 
wheat  

6.4.1 Introduction 
Predicting different biophysical and biochemical properties of wheat crop through in 

situ and high spatial resolution satellite remote sensing is important for maximising 

crop production through stress detection at early growth stage. Major advances could 

be made in crop management if it were possible to detect physiological changes 

resulting from different types of stress in wheat through in situ and high spatial 

resolution satellite remote sensing. In this section the results of the analysis of 

QuickBird images, ASTER image and in situ hyperspectral measurements are 

described. The hypothesis of whether high spatial resolution satellite imagery can 

detect stress in wheat crops is also examined.     

6.4.2 Spatial suitability 
Both QuickBird and ASTER satellite images were evaluated in this research to detect 

stress in wheat. ASTER data was planned to be acquired three times; on 5th March, 

20th March and 5th April 2007 to have a time series satellite imagery. Due to cloud 

cover during this period of time just one image was acquired on 23rd April 2007, 
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which was too late to encompass the wheat growing season in Egypt. Additionally, 

due to a lack of large fields in Egypt, using ASTER imagery in detecting stress is 

problematic as the majority of fields have a width less than 20 m and, as ASTER’s 

spatial resolution is 15 m, overlap between spectral signatures from even different 

crops results in mixed pixels. However, using ASTER imagery could be useful in 

detecting stress at a regional scale. With improvements in satellite capabilities 

providing spatial resolution less than 10 m such as QuickBird and Ikonos imagery 

may provide a useful tool in precision farming. QuickBird imagery with 2.4 m spatial 

resolution has the potential for detecting stress and has a suitable resolution for the 

Egyptian farming context.  

In the study area, farmers divide their fields into two or three strips each planted with 

different crops. In winter season they mainly grow wheat and clover while in summer 

they grow maize, melon and tomato. These different crops have different spectral 

signatures and due to the possible overlap may produce poor relationships between 

vegetation indices and crop properties. Therefore a single pixel may contain a mixture 

of crops. Figure 6.24 shows both QuickBird and ASTER images for the same study 

area; it is evident that obtaining pure spectra from that area using ASTER image is 

problematic due to issues of mixed pixels. 
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(a) 

 
 

(b) 

 
 
Figure  6-24 QuickBird and ASTER satellite images for the same study area showing differences in 
pixel size.   
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6.4.3 Image classification 
During field work visits notes were recorded regarding other crops in the same study 

site mainly clover crop. K-means unsupervised classification was performed on both 

QuickBird and ASTER images using ENVI v4.4. Four bands of both images (blue, 

green, red and near infrared) were used in this classification and 10 output classes 

were created. The image was investigated visually using a number of known fields as 

guides. The k-means classification showed the dissimilarities in spectral response 

from different targets including different crops, bare soil and water surfaces. The 

classification produced two classes for wheat crops. The two classes of wheat crops 

may be a result of plant health status since some fields were approaching maturation 

while others were still in the grain filling stage and therefore would likely have 

different chlorophyll and other pigment concentration. The image was reclassified 

using the post classification procedure in ENVI. The two wheat classes were defined 

and combined together in one class. It can be seen in the image that there are some 

misclassified pixels particularly those covered by clouds and associated shadows. The 

post classification technique was used to mask areas of cloud and shadow from 

further analysis.  

 Figure 6.25 shows different classes of crops as it is noticeable that the spectral 

signature from wheat fields is different from clover, bare soil and water. The class in 

red colour shows wheat fields represent the majority of fields in the image. Slight 

overlap between clover and wheat fields was detected after classification particularly 

with the very small fields. These two crops are the most common in that area as the 

majority of farmers grow them for production of livestock. Some other classes 

represent bare soil, clouds, shadows and water surfaces are defined. The figure also 

shows that clouds and shadows have more than one class depending on the density of 

both of them. When creating the training dataset for different crops, care was taken to 

choose them away from any clouds and shadows to decrease the effects of both of 

them on the spectral signature from crops. 
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Figure  6-25 K-means unsupervised classified QuickBird image acquired on 7th April 2007 for wheat 
and other crops in south-west Alexandria, Egypt. 
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To check the accuracy of the classification, a validation dataset was created for some 

fields known as wheat, clover, bare soil, or water from the hyperspectral survey. The 

number of pixels in the ground reference dataset varied as a result of the 33% cloud 

cover, which covered large number of these different pixels. The overall accuracy of 

the k-means unsupervised classification was calculated using a confusion matrix. It 

compares the location and class of each ground reference pixel with the location and 

the class of the corresponding pixels in the k-means classification. Confusion matrices 

allow the classification accuracy to be evaluated in terms of class accuracy, overall 

accuracy and Kappa coefficient. Table 6.9 shows the statistics of the confusion matrix 

including the overall accuracy, user’s accuracy, producer’s accuracy and Kappa 

coefficient. The overall accuracy of the k-means classification was slightly high of 

77.4 % even with poor classification for specific targets.  

The classification accuracy varied for identifying different classes ranging from 

42.24% (for bare soil) to 97.60% (for wheat crops). The classification accuracy for 

clover and water are 94.36 and 72.45% respectively. The slight low classification 

accuracy for water may be a result of the spectral confusion between water and 

shadows.   Additionally, the results give the user’s and producer’s accuracy for each 

single class. The low classification accuracy for identifying bare soil may be a result 

of spectral confusion between dry soils and wet soils. The moisture content in some 

fields may be higher in comparison to others. At this period of time some people 

prepare their lands to grow tomato so irrigated and non-irrigated bare soils can be 

found in the same time. Additionally some mixed pixels of bare soil and other crops 

such as clover were also detected. The lowest producer’s accuracy was associated 

with bare soil class (42.24%), which may be a result of the spectral confusion from 

different moisture content in bare soils and mixed pixels. The slight lower values of 

Kappa coefficient for the main classes of 0.698 may be a result of many misclassified 

pixels. However, the k-means produced high classification accuracy it might produce 

too many misclassified pixels. For example the > 0.95 accuracy for identifying wheat 

crops may lead to high percent of misclassified pixels.  
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Table  6-9 Confusion matrix results for k-means unsupervised classification of wheat and other objects 
in south-west Alexandria, Egypt. 
  

Ground truth (Percent) Class 
Wheat water Bare soil Clover total 

User’s 
Accuracy 

Unclassified 0.00 0.00 0.00 0.00 0.00 (%) 
Wheat  .6097 25.82 12.65 4.17 35.09 69.90 
Water 2.02 .4572 45.1 0.28 29.43 61.74 
Bare soil 0.38 0.29 .2442 0.93 10.42 96.06 
Clover  0.00 1.45 0.00 .6394 25.06 98.55 
total 100.00 100.00 100.00 100.00 100.00  
Producer’s 
Accuracy (%) 97.60 72.45 42.24 94.63   

Kappa 
Coefficient 698.0      

Overall 
Accuracy .7740      

 

Supervised classification 

Unlike unsupervised classification algorithms, supervised classifiers start with a 

training dataset by predefining the different signature for each class followed by class 

assignments using decision rule. Supervised classification was also performed on both 

images of ASTER and QuickBird. MLC and MDC algorithms were used to 

differentiate between different crops in the study area. Both classifiers were 

performed to choose the best method to classify images in terms of overall accuracy, 

Kappa coefficient, producer’s and user’s accuracy. MLC is commonly used in 

classifying vegetation by many authors (Mehner et al., 2004; Su et al., 2007). It 

assumes that the statistics for each single class in each band are normally distributed 

and assesses the probability that a pixel belongs to a specific class. Minimum distance 

(MDC) algorithm was then performed to differentiate between different classes in the 

images to choose the optimum classifier.  

The corrected images were used to define the training dataset for fields, which are 

known to be wheat from the field work. Other classes such as clover, water surfaces 

and bare soil were considered distinct classes. The training dataset was created 

manually by defining a number of pixels for each class, and then the classification 

method was performed using the training dataset and extrapolated across the 

QuickBird image acquired on 7th March 2007. Both MDC and MLC supervised 

classification showed high classification accuracy for identifying different classes 

including the main two crops, wheat and clover. Figure 6.26 shows QuickBird 
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supervised classified image with the main two crops and other targets. It is noted from 

the classified image that the clouds and associated shadows have affected the 

accuracy of the classification as they did in the unsupervised one. Some misclassified 

fields particularly the ones covered by shadows were observed. It can be seen in the 

image that there is a spectral confusion between water and shadow as both are dark 

targets. 

To evaluate the classification accuracy for both MLC and MDC, a ground reference 

dataset was created using radiance spectra from different classes known from the field 

work visit. The spectra for the ground reference dataset were manually created and 

were independent from the training dataset. The ground reference dataset composed at 

least 1000 pixels for each class. A confusion matrix was constructed to assess the 

overall accuracy of both algorithms (Tables 6.10 and 6.11). The overall classification 

accuracy for both algorithms is very high (91.77 and 88.70% for MLC and MDC, 

respectively).  

The classification accuracy for different classes is also very high, ranging from 

85.95% (for classifying clover) to 97.79 % (for classifying water) in MLC algorithm 

and ranging from 79.47 (for classifying clover) to 95.67 (for classifying water) in 

MDC algorithm. It is noticed that the only difference between these two algorithms is 

in identifying clover. The classification accuracy for identifying wheat crops is very 

high with both algorithms (> 85%). Decreases in the accuracy of classifying clover by 

MDC algorithm may be attributed to spectral confusion, which is due to the effects of 

clouds and associated shadows. The high values of Kappa coefficient (0.890 and 

0.849) support the high classification accuracy for both MLC and MDC. 

The results therefore suggest that MLC is a good classifier for identifying different 

agricultural crops. Previous studies have reported similar results showing the 

effectiveness of MLC to classify vegetation (Su et al., 2007; Pu et al., 2008; Wang et 

al., 2008).   
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 Figure  6-26 Minimum distance supervised classification of QuickBird image acquired on 7th April 
2007 for different crops in south-west Alexandria, Egypt. 
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Comparing the classification accuracies obtained using both unsupervised and 

supervised classification algorithms, it is noticeable that although k-means algorithm 

produced 97.6 % accuracy for classifying wheat; it produced low accuracies for both 

bare soil and clover crop (42.24 and 72.45% respectively), and therefore, many 

misclassified pixels were produced. Additionally, Kappa coefficient values are higher 

in supervised classification algorithms (0.890 and 0.849) in comparison to k-means 

classification (0.697). The low value of Kappa coefficient for using k-means is a good 

indicator for the many mixed pixels and therefore some of these pixels were poorly 

identified. Consequently, supervised classification gives better results in terms of 

overall accuracy, individual class classification accuracy and Kappa coefficient 

values. Furthermore, the user’s and producer’s accuracies are always higher in 

supervised algorithms. For example, the k-means algorithm produced a user’s 

accuracy of 61.74% for identifying clover, which is low in comparison to MLC and 

MDC (90.67 and 88.03 respectively). Also, the k-means algorithm produced a user’s 

accuracy of 69.90% for identifying wheat crops while MLC and MDC produced 

comparable values (96.29 and 89.20 respectively). 

 

Table  6-10 Confusion matrix results for maximum likelihood classification of wheat crops and other 
objects in south-west Alexandria, Egypt. 
 

Ground truth (Percent) Class 
Wheat Clover  Bare soil Water  total 

User’s 
Accuracy 

Unclassified 0 0 0 0 0.00 (%) 
Wheat  24.09 1.28 2.04 0.00 22.75 96.29 
Clover 4.26 95.58 3.99 0.09 22.63 90.67 
Bare soil 5.32 11.10 .4692 2.12 28.92 84.51 
Water  0.00 1.67 1.51 .7997 25.70 96.9 
Total 100 100 100 100 100.00  
Producer’s 
Accuracy (%) 90.42 85.95 92.46 97.79   

Kappa 
Coefficient 098.0      

Overall 
Accuracy(%) 77.19      
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Table  6-11 Confusion matrix results for minimum distance classification of wheat crops and other 
objects in south-west Alexandria, Egypt.  

Ground truth (Percent) Class 
Wheat Clover  Bare soil Water  total 

User’s 
Accuracy 

Unclassified 0.00 0.00 0.00 0.00 0.00 (%) 
Wheat  .1287 6.68 3.64 0.00 23.66 89.2 
Clover  6.97 .4779 3.37 0.00 21.55 88.03 
Bare soil 5.91 10.51 .7591 4.33 29.29 82.79 
Water  0.00 3.34 1.24 .6795 25.49 95.58 
total 100.00 100.00 100.00 100.00 100.00  
Producer’s 
Accuracy (%) 87.12 79.47 91.75 95.67   

Kappa 
Coefficient 849.0      

Overall 
Accuracy 70.88      

 

6.4.4 Application of vegetation indices for stress 
Following the image processing (geo-correction, atmospheric correction, 

normalization, classification), the image was masked just to show wheat crops only 

using masking procedure in ENVI. Wherever possible in the image different broad 

band vegetation indices were derived from the corrected QuickBird image. Tables 

6.12-6.15 detailed the correlation coefficient values for the relationship between 

different vegetation indices and the measured biophysical and biochemical properties 

of wheat crops. The locations of in situ measurements within each field were 

identified on the QuickBird image using the GPS coordinates. Nine pixels at each 

location were chosen to reduce variability, and then averaged to have the mean value 

of radiance. Care was taken to make sure that the location of the in situ measurements 

point is the centre of these nine pixels. The 12th March dataset demonstrated that the 

majority of vegetation indices were significantly correlated with different wheat 

properties. SI produced the strongest correlation with three different properties; 

chlorophyll concentration, aboveground biomass and plant height (r = -0.683, -0.819 

and -0.654 respectively). Unexpectedly, VI1 produced the highest correlation with the 

measured LAI (r = 0.638). DVI produced the lowest correlations with all wheat 

properties except aboveground biomass (r = 0.583). 

The results obtained from the 28th March dataset showed better results in comparison 

to 12th March dataset. This may be due to the small time difference between imagery 

acquisition and the time of field work data collection. Strong significant correlations 

were observed between broad band indices and wheat biophysical properties except 

plant height since the correlations were not as high as the other crop properties. This 
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may be attributed to the low difference in plant height between different fields of the 

in situ hyperspectral survey. SI produced the strongest correlation with the measured 

chlorophyll concentration (r = -0.904). RVI and SR had the strongest correlations 

with the measured aboveground biomass (r = 0.826). In contrast to results obtained 

from greenhouse experiments, VI1 has the strongest correlation with both plant height 

and LAI (r = 0.564 and 0.845 respectively). 

Due to cloud cover and associated shadows, many fields of the in situ hyperspectral 

survey at the Kahr site were obscured and were therefore eliminated from this 

analysis. Some fields of in situ survey were in a clear part of the image and therefore 

different indices were derived and correlated to different wheat properties. The 27th 

March dataset was used to calculate the coefficient of correlation between wheat 

properties and broad band vegetation indices (Table 6.14). Strong significant 

correlations were recorded between all vegetation indices and wheat properties 

particularly biomass, plant height and LAI. RVI and SR produced the strongest 

correlation with chlorophyll concentration (r = 0.669). RDVI showed the strongest 

correlation with both biomass and LAI (r = 0.927 and 0.919 respectively). NDVI and 

SI produced the strongest correlation with plant height (r = 0.885 and -0.889 

respectively). The correlations produced from that dataset demonstrated better results 

in comparison to the 12th March dataset as a result of the small time difference 

between data collection and imagery acquisition (7th April 2007). 

To decrease variations of the effects of weather conditions on reflectance 

measurements, the combined dataset collected from both study sites (Kahr and 

Hewaihy) on 27th and 28th March 2007 was used to assess the effectiveness of 

different broad band indices in predicting different wheat properties (Table 6.15). 

Strong correlations were observed between all indices and the chlorophyll 

concentration with the strongest recorded with SI (r = -0.864). In contrast to the 27th 

dataset, RVI and SR produced the lowest correlation with the measured chlorophyll 

concentration. NDVI again showed a strong significant relationships with the 

measured chlorophyll producing similar correlations to SI (r = 0.863). It is further 

noticed from individual and combined datasets that SI and NDVI produced similar 

results with different wheat properties. DVI produced the strongest correlation with 

the measured biomass, plant height and LAI (r = 0.850, 0.656 and 0.811 respectively). 
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However, from individual datasets DVI sometimes demonstrates low relationships 

with different crop properties. This may be attributed to the strong correlations 

between DVI and different indices obtained from the 27th dataset. It can be seen that 

SI always give highly strong correlations with the measured chlorophyll. For 

example, SI produced the strongest correlation in three datasets out of four including 

the combined dataset. It is therefore evident that no single index produces the 

strongest correlation in all datasets and the relationship between different indices and 

crop properties changes from one dataset to another.     

Table  6-12 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices derived from QuickBird image and wheat biophysical and biochemical properties 
data collected on 12th March 2007 at the Hewaihy site in south-west Alexandria, Egypt. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI .6760 .8160 .6360 .5760 
RVI .6130 .7620 .5090 .6210 

SAVI .6760 .8150 .6360 .5760 
GNDVIbr .6710 .7970 .6180 .5970 

DVI 0.353 .5830 0.245 0.419 
SR .6130 .7620 .5090 .6210 

SLAVI .6760 .8160 .6360 .5760 
OSAVI .6760 .8160 .6360 .5760 

VI1 .6260 .7670 .5350 .6380 
RDVI .5020 .7020 0.418 .5030 

SI .6830- .8190- .6540- .5690- 

 
 
 
 
 

12 March 
 

IPVI .6760 .8160 .6360 .5760 
 
 
Table  6-13 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices derived from QuickBird image and wheat biophysical and biochemical properties 
data collected on 28th March 2007 at the Hewaihy site in south-west Alexandria, Egypt. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI .8930 .7880 .5390 .7950 
RVI .6790 .8260 .5520 .8410 

SAVI .8930 .7880 .5390 .7940 
GNDVIbr 0.880 .7660 .5130 .7790 

DVI .7440 .7390 0.431 .6910 
SR .6790 .8260 .5520 .8410 

SLAVI .8930 .7880 .5390 .7950 
OSAVI .8930 .7880 .5390 .7940 

VI1 .7470 .8240 .5640 5.840 
RDVI .8300 .7750 .4910 .7530 

SI .9040- .7530- .5040- .7610- 

 
 
 
 
 

28 March 
 

IPVI .8930 .7880 .5390 .7950 
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Table  6-14 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices derived from QuickBird image and wheat biophysical and biochemical properties 
data collected on 12th March 2007 at the Kahr site in south-west Alexandria, Egypt. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI .6270 5.900 .8850 .8940 
RVI .6690 .8390 .8110 .8840 

SAVI .6270 .9050 .8850 .8940 
GNDVIbr .6270 .8840 .8360 .8840 

DVI .4980 .9190 .8560 .9160 
SR .6690 .8390 .8110 .8840 

SLAVI .6270 .9040 .8850 .8940 
OSAVI .6270 .9040 .8850 .8940 

VI1 .6660 .8290 .7970 .8780 
RDVI .5440 .9270 .8730 .9190 

SI .6190- .9080- .8890- .8890- 

 
 
 
 
 

27 March 
 

IPVI .6270 .9050 .8850 .8940 
 
 
Table  6-15 Coefficient of correlation for the relationship between different broad band spectral 
vegetation indices derived from QuickBird image and wheat biophysical and biochemical properties 
data collected on 27th and 28th March 2007 (combined) in south-west Alexandria, Egypt. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlation values. 
 

Crop properties 
Date Vegetation 

index Chlorophyll 
(µg cm-2) 

Biomass  
(kg m-2) 

Height 
(m) 

LAI 

NDVI 0.863 0.689 0.588 0.677 
RVI 0.696 0.706 0.616 0.665 

SAVI 0.863 0.689 0.588 0.677 
GNDVIbr 6.830 0.654 0.557 0.623 

DVI 0.747 0.850 0.656 0.811 
SR 0.696 0.706 0.616 0.665 

SLAVI 0.863 0.688 0.588 0.677 
OSAVI 0.863 0.688 0.587 0.677 

VI1 .7180 0.665 0.594 0.607 
RDVI 0.826 0.810 0.649 0.781 

SI 0.864- 0.649- 0.541- 0.652- 

 
 
 
 
 

27-28 March 
 

IPVI 0.863 .6890 .5880 .6770 

 

The combined dataset was also used to investigate the relationship between broad 

band vegetation indices derived from in situ hyperspectral survey and the same broad 

band indices derived from the QuickBird satellite imagery (Figure 6.27). Regression 

analysis showed that there is a significant positive linear relationship between NDVI 

derived from in situ hyperspectral and NDVI derived from QuickBird satellite image 

(R2 = 0.61; p = 0.000). From both individual datasets and the combined dataset, 

NDVI would appear to be a good indicator for detecting stress in crops. The decrease 
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in the relationship may have been a result of the 10 days difference between in situ 

survey and imagery acquisition since the crops were at late stage of the growing 

season and one week difference may change crop properties particularly chlorophyll 

concentration. Furthermore, as shown in Table 6.3 that the two QuickBird images for 

wheat and maize were acquired at 13° and 22° off nadir whilst hyperspectral data 

acquired at nadir viewing angle and therefore affects the reflectance from plant 

canopies. Also, both images were acquired at mid morning while hyperspectral data 

collected around midday, which in turn affect the comparison.   

 

Figure  6-27 The relationship between NDVI derived from in situ hyperspectral survey and NDVI 
derived from  QuickBird image collected from wheat fields in south-west Alexandria, Egypt (n = 30). 
 

To extrapolate the results on a large scale, NDV and DVI maps were created using the 

classified QuickBird image (Figure C1 and C2; appendix C). Both maps were created 

first for the whole image including all classes then masked just for wheat crops via the 

created training dataset. Some wheat fields known from the field work visit were used 

to create the training dataset for wheat crops. The band math then was run to create 

NDVI and DVI maps for the whole scene. Figure C1 shows that there is no specific 

trend for decreasing NDVI over the whole scene, which as mentioned before as a 

result of different agricultural practices including different sowing dates, nitrogen 

fertilization rate, moisture and salinity induced stress. NDVI map shows the 

dissimilarities in plant health over the whole cultivated area. Fields in red colour 

shows the healthy ones in terms of biomass, chlorophyll, plant height and LAI. It is 
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further shown that some areas in purple colour are suffering from stress and therefore 

produce lower NDVI values in comparison to other areas as shown in the same figure 

since the stressed area is suffering from salinity stress or nutrient deficiency. 

The regression analysis was performed on the data collected during hyperspectral 

survey to calculate regression equations for predicting biophysical and biochemical 

properties of wheat including biomass, chlorophyll, plant height and LAI. The indices 

produced the strongest correlations with each property were used to calculate these 

equations. Due to high sensitivity of NDVI to chlorophyll and DVI to LAI, plant 

height and biomass, they were used to calculate regression equations as follows: 

Equation 6.1 LAI = -0.17 + 0.004 DVI   R2 = 0.66 p = 0.000 

Equation 6.2 Plant height = 0.28 + 0.001 DVI  R2 = 0.48 p = 0.000 

Equation 6.3 Biomass = -0.59 + 0.01 DVI   R2 = 0.72 p = 0.000 

Equation 6.4 Chlorophyll = 14.8 + 34.3 NDVI  R2 = 0.75 p = 0.000 

The regression equations then were used in ENVI to create maps for predicting 

different biochemical and biophysical properties of wheat (Figures 6.28 and 6.29). 

The decrease in the relationship between in situ data and satellite data may be 

attributed to the time difference between them; even with a one week difference in 

March and April as plants are approaching maturation and chlorophyll concentration 

can be changed markedly. Additionally, the cloud cover and shadows affected this 

relationship by covering some fields used for the in situ hyperspectral survey.  

The two calibrated maps for chlorophyll concentration and biomass demonstrate that 

there is no specific trend for stress across the whole area. This can be attributed to 

different agricultural practices throughout the area. However, it can be noticed in the 

calibrated image that some large fields have high values of both chlorophyll 

concentration and biomass as a result of using similar agricultural practices including; 

sowing dates, nitrogen fertilization rate, plant protection schedule and consequently 

high vegetation cover, which lead to high productivity. The maps also showed that the 

fields at the top of the image have high values of both chlorophyll and biomass as a 

result of using high quality water directly from the main irrigation channel.    
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Figure  6-28 classified QuickBird (NDVI) image acquired on 7th April calibrated to chlorophyll 
concentration of wheat crops in south-west Alexandria, Egypt. 
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Figure  6-29 classified QuickBird (DVI) image acquired on 7th April calibrated to aboveground 
biomass of wheat crops in south-west Alexandria, Egypt. 
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Figures 6.30 and 6.31 show a significant positive relationship between NDVI and the 

measured chlorophyll concentration (R2 = 0.75; p = 0.000). A strong positive linear 

relationship is also shown in Figure 6.32 between DVI and the measured biomass 

(R2 = 0.72; p = 0.000). The results obtained using QuickBird satellite imagery 

demonstrated that both NDVI and SI are sensitive indicators of the chlorophyll 

concentration (often give higher correlations with the measured chlorophyll in 

comparison to other indices). Unexpectedly, RVI values from satellite imagery did 

not produce high correlations with the measured biomass and therefore do not match 

the results obtained by in situ hyperspectral survey. 

 

Figure  6-30 The relationship between NDVI derived from the QuickBird image acquired on 7th April 
2007 and the measured chlorophyll concentration (SPAD measures) collected in south-west 
Alexandria, Egypt (n = 27). 

 

Figure  6-31 The relationship between DVI derived from the QuickBird image acquired on 7th April 
2007 and the measured aboveground biomass collected in south-west Alexandria, Egypt (n = 27) 
 

Figure 6.32 shows an example of NDVI for stressed and healthy areas, which are very 

close, but irrigated from two different channels. The healthy fields belong to one 
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farmer who applies the same agricultural practices; same sowing date, fertilization 

rate, same wheat variety and irrigation intervals. The other side shows some small 

fields, which are owned by many farmers who use different agricultural practices. 

Generally these fields are suffering from stress (mainly salinity) since that area is 

irrigated with saline water for more than 20 years. It can also be seen in Figure 6.32 

that there is a gradient in NDVI values in the healthy area and this may be attributed 

to a slight moisture stress. Furthermore, the permeability and the drainage conditions 

may differ from place to place within the same area depending on distance to the main 

drains, which in turn affect moisture level in the root zone.  

 

 

Figure  6-32 An example of NDVI derived from QuickBird image for two stressed and healthy areas 
within the study site, south-west Alexandria, Egypt. 
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6.5 Predicting Stress with high spatial resolution platforms in 
maize crop 

6.5.1 Introduction 
The potential of in situ hyperspectral and high spatial resolution satellite remote 

sensing to monitor maize crop health are investigated in this section through 

calculating different broad band vegetation indices. More specifically, investigating 

whether remotely sensed data is able to detect moisture and salinity stress in maize 

crops in the Nile Valley of Egypt or not. The classification methods used and 

extrapolating results across the whole satellite image is also described. We are 

examining the third hypothesis of this research assessing whether high spatial 

resolution satellite imagery can detect stress in maize or not.     

6.5.2 Spatial suitability 
A SPOT HRV image was acquired for the same study area on 9th July 2007 and this 

image was evaluated to be used for detecting stress in maize fields at a regional scale. 

The results showed that in such a small field system it is problematic to use SPOT 

HRV satellite images to detect stress in maize within a field scale; since most of the 

fields in that area have width less than 20 m, and therefore the mixed pixels from 

different crops make the analysis of crop stress difficult. It is also difficult to remove 

overlap between pixels from different fields, which sometimes have different crops 

and therefore different spectral signatures. However, using SPOT HRV imagery for 

detecting stress at a regional scale may provide a better understanding about stress 

trends with reasonable cost.  

A QuickBird image was acquired on 29th June 2007 for the study area in south-west 

Alexandria, Egypt. The 2.4 m resolution image was examined to map stress at a local 

scale. The first QuickBird image acquired on 7th April 2007 showed the possibility to 

detect stress in wheat at a local scale. A combined approach of using higher and 

medium spatial resolution images (QuickBird and SPOT HRV) could provide better 

insight about stress at both local and regional scales. Figure 6.33 shows the difference 

in pixel size between QuickBird image and SPOT HRV image for the same study area 

as a result of each image resolution. 
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(a) 

 

(b) 

 
 
Figure  6-33 Two satellite images of (a) QuickBird and (b) SPOT HRV showing the difference between 
them in pixel size and the details shown from each image. 
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6.5.3 Image classification 
Unsupervised classification 

Classification algorithms were used to identify different crops particularly maize, then 

assessing the potential of remotely sensed data to detect stress in maize. Unsupervised 

classification algorithms were chosen since some studies showed their effectiveness in 

classifying vegetation (Yang et al., 2006a and 2006b). K-means unsupervised 

classification was performed on both QuickBird and SPOT HRV images using ENVI 

v4.4. Four bands of both images (blue, green, red and near infrared) were used in this 

classification and 10 output classes were created. The classified images produced 

more than one class for maize crops as a result of stress and different growth stages. 

The post classification in ENVI was used to combine them in one class. The classified 

image was reclassified to merge classes representing just one class for each target. 

The image was investigated visually using a number of known fields as guide. 

Farmers in the study area grow maize after winter season crops such as wheat and 

clover. Some farmers prefer to keep clover as much as they can to feed cattle so they 

sow maize in the middle of June. The earlier sowing date for maize in that area is 

around middle of May following the harvest of wheat crops. This explains why there 

are different growth stages at the same time. In summer season, two weeks are enough 

for maize crop to progress to another growth stage with great difference in plant 

height. Figure 6.34 shows the final unsupervised classified QuickBird image, which 

shows different classes- maize in red, water in cyan, melon in blue, tomato in green, 

bare soil in yellow. 

It can be seen from the QuickBird classified image that most of the cultivated area is 

maize. Most farmers grow maize because it is not costly in terms of fertilizers, 

pesticide and fungicide. Some bare soils were misclassified and overlap occurs with 

tomato or maize at the very early stage, which may be a result of mixed pixels or 

spectral confusion from similar spectral characteristics. Soil moisture content also 

varies from field to field depending on many factors such as permeability, distance 

from main drains and distance from irrigation channels, irrigation intervals and drains 

system efficiency and therefore affects the spectral signature. Crops such as tomato or 

maize at early growth stage may be misclassified as a result of the effects of soil 
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background on reflected energy from both soil surface and vegetation, which leads to 

mixed pixels.  

 

 

 Figure  6-34 K-means unsupervised classification of the QuickBird image acquired on 29th June 2007 
for maize and other crops in south-west Alexandria, Egypt. 

 

The overall accuracy of the K-means unsupervised classification was calculated using 

a confusion matrix. This was calculated using the original QuickBird image by 

defining the fields, which they are known as maize during the field work visit. Also, 
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other classes such as melon, tomato, bare soil and water surfaces were considered as 

different classes. A confusion matrix was applied following the same routine 

explained for wheat images. Table 6.16 shows the statistics of the confusion matrix 

including the overall accuracy, Kappa coefficient and the individual classification 

accuracy for each class. The results show that the classification accuracy is generally 

high (80.62%). However, the classification accuracies derived for various classes are 

different ranging from 58.12 (for tomato fields) to 94.13% (for water surfaces). The 

classification accuracy for maize crops is very high (93.46). The low accuracy derived 

for tomato crop may be attributed to many mixed pixels. This may be explained by 

the spectral confusion between tomato and other targets on the ground or to the mixed 

pixels between tomato and bare soil. Additionally, the growth stage of tomato may be 

another factor that leads to the spectral confusion since at early growth stage the 

vegetation cover is very low and the soil background affects the classification 

accuracy.  It is also notable that the lowest producer’s accuracy was associated with 

tomato crop, which shows that the ground reference data for tomato crop were not 

accurately defined. The classification accuracy is supported by high kappa coefficient 

value of 0.758. An accuracy of 93.46% in maize identification may lead to many 

misclassified pixels as the associated user’s accuracy for maize crop is low (61.91%) 

in comparison to other targets. 

     

Table  6-16 Confusion matrix results for the k-means unsupervised classification of maize and other 
objects in south-west Alexandria, Egypt. 
 

Ground truth (Percent) Class 
Maize Tomato Melon Bare soil Water Total 

User’s 
Accuracy 

Unclassified 0 0 0 0 0 0 (%) 
Maize .4693 41.88 3.6 0.67 1.67 26.56 61.91 
Tomato 6.09 .1258 2.43 0.96 32.32 20.63 59.90 
Melon 0.23 0.00 .7793 3.94 0.00 19.97 95.73 
Bare soil 0.23 0.00 0.00 .0166 0.29 13.39 99.80 
Water 0.00 0.00 0.19 0.00 .1394 19.46 99.26 
Total 100 100 100 100 100 100  
Producer’s 
Accuracy 
(%) 

93.46 58.12 93.77 94.13 66.01 
  

Kappa 
Coefficient 

.7580       

Overall 
Accuracy 

%.6280       
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Supervised classification 

Unlike unsupervised classification, supervised algorithms start with creating a training 

dataset then run the classification procedures.  From the hyperspectral survey coupled 

with the QuickBird imagery acquisition, different crops, bare soil and water surfaces 

were identified. A training dataset was created using spectra derived from the defined 

classes to run both MLC and MDC algorithms. The training dataset comprised at least 

1000 pixels for each class. MLC produced a very high overall accuracy (93.67%), 

which is the highest among all three classification algorithms (k-means, MLC and 

MDC). MDC also produced high overall accuracy of 89.94% associated with high 

Kappa coefficient of 0.874. MLC and MDC algorithms produced high classification 

accuracies in comparison to k-means unsupervised classification (80.62%).  

Although the classification accuracy obtained using unsupervised classifications was 

high, the accuracy for each class varied and was very low for tomato crop. Figure 6.35 

shows the supervised classified QuickBird image showing different crops. The class 

in red colour shows maize fields, which is distinct among all classes. The other 

distinct crops over the whole scene are tomato and melon in green and blue colours, 

respectively. Some mixed pixels were detected in the image particularly the very 

small fields close to each other with different crops. Sometimes the spectral confusion 

occurs as a result of plant health status since there are some very healthy and very 

stressed fields. For example, some farmers do not follow the correct agricultural 

rotations (growing the same crop every season), which affect crop health indirectly 

even when applying the optimum rates of nitrogen, seed rate, crop variety, optimum 

sowing date and irrigation interval. 
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Figure  6-35 Minimum distance supervised classification of QuickBird image acquired on 29th June 
2007 for maize and other crops in south-west Alexandria, Egypt. 
 

To evaluate the classification methods, a confusion matrix was derived from both 

MLC and MDC classifications of the QuickBird imagery by identifying a validation 

dataset, which was independent from the training dataset. The validation dataset 

composed at least 1000 pixels for each class. The results of the confusion matrix 

showed that the overall classification accuracy derived from MLC for all different 

classes is high ranging from 89.87 (for maize) to 96.79% (for water surfaces) and 

from 85.10 (for tomato crop) to 96.71% (bare soil) with MDC classifier. User’s and 

producer’s accuracy were high in both MLC and MDC (> 0.85) supporting the high 

overall accuracy.  
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It is further noticed that the lowest classification accuracy obtained from k-means 

unsupervised classification was observed with the tomato crop. The user’s and 

producer’s accuracies were also very high (> 80%) with all classes in both MLC and 

MDC. It can also be seen that the classification accuracy for identifying maize crops 

using MLC and MDC was very high (> 0.80) with high classification accuracies for 

other classes. Although k-means classifier produced very high classification accuracy 

for maize (93.46), it produced very low accuracy for identifying tomato. This leads to 

many misclassified pixels and therefore low overall accuracy. Consequently, 

unsupervised classification produced very high accuracy for identifying maize fields, 

but the overall accuracy and classification accuracy for individual classes are lower in 

comparison to supervised classification algorithms (Table 6.16, 6.17 and 6.18). 

Furthermore, Kappa coefficient values in supervised algorithms are comparable to 

those obtained from k-means classifier.  

The results suggest that supervised classification algorithms showed high overall 

accuracy and individual classification accuracy in the same time for identifying 

various classes. The low classification accuracy for tomato may have been a result of 

wide furrows that farmers use for growing tomato, which are sometimes around 1 

meter in width so at early growth stages most of the soil is bare and there is strong 

possibility of background effects. 

It can be seen from the confusion matrix results that the overall accuracy and the 

individual classification accuracy for identifying different classes are higher for 

summer season imagery than those obtained from winter season imagery which, may 

be a result of the effects of clouds and associated shadows on classification accuracy. 

Moreover, Kappa coefficient values for summer season imagery were comparable to 

those of winter season imagery. The spectral confusion resulted from both clouds and 

associated shadows affecting the overall accuracy and other parameters. For example, 

too many water pixels were identified as shadow, which therefore led to many mixed 

pixels in the image.  
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Table  6-17 Confusion matrix results for MLC algorithm of maize and other crops in south-west 
Alexandria, Egypt. 
 

Ground truth (Percent) Class 
Maize Tomato Melon Bare soil Water Total 

User’s 
Accuracy 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 (%) 
Maize .8789 4.66 5.1 4.07 0.00 20.81 86.70 
Tomato 3.28 .6793 1.67 0.19 0.00 19.98 94.82 
Melon 2.06 0.19 .4092 0.00 0.09 19.25 97.55 
Bare soil 4.78 1.49 0.46 .7495 3.12 20.60 90.40 
Water 0.00 0.00 0.37 0.00 .7996 19.36 99.61 
Total 100 100 100 100 100 100.00  
Producer’s 
Accuracy (%) 89.87 93.67 92.4 95.74 96.79   

Kappa 
Coefficient 

21.90       

Overall 
Accuracy 

%67.39       

 
 
Table  6-18 Confusion matrix results for MDC algorithm of maize and other crops in south-west 
Alexandria, Egypt. 
     

Ground truth (Percent) Class 
Maize Tomato Melon Bare soil Water Total 

User’s 
Accuracy 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 (%) 
Maize 43.48 11.64 7.60 3.19 0.38 21.54 78.67 
Tomato 10.69 10.58 1.30 0.10 0.00 19.64 87.63 
Melon 0.94 0.00 .1091 0.00 5.67 19.83 93.35 
Bare soil 3.94 3.26 0.00 .7196 1.32 20.53 91.65 
Water 0.00 0.00 0.00 0.00 .6392 18.46 100.00 
Total 100.00 100.00 100.00 100.00 100.00 100.00  
Producer’s 
Accuracy (%) 84.43 85.10 91.10 96.71 92.63   

Kappa 
Coefficient 

874.0       

Overall 
Accuracy (%)  

94.89       

 

Before calculating vegetation indices and to convert radiance obtained from 

QuickBird image to reflectance; the reflectance obtained from the three-day in situ 

hyperspectral survey (combined dataset) and the radiance obtained from the 

QuickBird satellite image were used for regression analysis to convert radiance to 

reflectance. The results of the regression analysis showed significant relationships in 

band 1, 2 and 3 (R2 = 0.65, 0.66 and 0.65 respectively). However, the relationship was 

very poor in the NIR (band 4) with a very low coefficient of determination of 0.02 

(p = 0.380). Due to this poor relationship in the NIR region, this method for 

converting radiance to reflectance is not useful since band 4 is very important to 

calculate most broad band vegetation indices. The results therefore suggest that 
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converting radiance to reflectance needs a lot of reflectance measurements from fixed 

ground control points to be dependable for conversion.  

6.5.4 Application of vegetation indices for stress 
Twelve broad band vegetation indices were derived from the QuickBird satellite 

image acquired on 29th June 2007. The coefficient of correlation for the relationships 

between different indices and both biophysical and biochemical properties of maize 

crops collected from the study area is detailed in Tables 6.19-6.22. The data collected 

on 12th, 14th and 15th July were used separately. Then the combined dataset from the 

three day survey was used to investigate the potential of different broad band indices 

to detect stress in maize crops. The results from the 12th July dataset demonstrated 

that all vegetation indices produced high significant correlations for predicting 

biomass, LAI and plant height. Unexpectedly, RVI produced non-significant 

correlation with the measured chlorophyll concentration. SI produced the highest 

correlations to predict chlorophyll, plant height and LAI (r = -0.669, -0.966 and -

0.943 respectively). Strong correlations were also observed between both GNDVIbr 

and NDVI and different crop properties. NDVI, SAVI, OSAVI and IPVI produced the 

strongest correlation for predicting aboveground biomass (r = 0.98).  

The 14th July dataset demonstrated similar results for predicting chlorophyll 

concentration as the highest correlation was also recorded with SI (r = -0.719). All 

vegetation indices were significantly correlated with different crop properties. The 

strongest correlations for predicting biomass, plant height, and LAI were recorded 

with NDVI (r = 0.874, 0.876 and 0.804 respectively). It can be noticed from different 

tables that some indices produce approximately similar correlations for predicting 

crop properties. For example, GNDVIbr, SAVI, OSAVI and IPVI produced similar 

correlations to NDVI for predicting biomass, plant height and LAI.   

The 15th July dataset showed very strong correlations between all vegetation indices 

and maize biophysical and biochemical properties (r > 0.90). GNDVIbr gave the 

strongest correlation with the measured chlorophyll concentration while SI produced 

the strongest correlations with the measured biomass, plant height and LAI (r = -

0.980, -0.991 and 0.970 respectively). It can be seen that GNDVIbr and NDVI 

produced approximately similar correlations with different maize properties. The 

combined dataset from the three-day survey was used to choose the best index for 
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predicting each crop property (see Table 6.22). As expected SI produced the strongest 

correlation with the measured chlorophyll concentration (r = -0.785). GNDVIbr 

produced the strongest correlation with the measured biomass, plant height and LAI 

(0.914, 0.926 and 0.892 respectively). NDVI produced approximately similar results 

obtained with GNDVIbr. 

From both individual and the combined datasets, it is further noticed that GNDVIbr is 

a sensitive indicator of different maize crop properties. It is shown in Table 6.22 that 

NDVI and GNDVIbr produced similar correlations with different maize properties. 

The strong relationships between different indices and maize properties may have 

been a result of the sensitivity of maize crops to stress and therefore large differences 

between healthy and stressed fields. Generally the majority of vegetation indices 

produced strong correlations with maize properties. 

Comparing the results derived from in situ hyperspectral survey and QuickBird 

satellite image, it is shown in Tables 6.7 and 6.22 that NDVI derived from both 

datasets demonstrated strong significant correlations with chlorophyll concentration. 

GNDVIbr derived from both datasets produced high significant correlations with 

maize biophysical properties. The majority of indices derived from both datasets were 

significantly correlated with each other. The only exception was VI1 derived from in 

situ data since it produced non-significant correlations with maize crops while gave 

significant correlations with QuickBird satellite data.          

Table  6-19 Coefficient of correlation for the relationship between different broad band vegetation 
indices derived from QuickBird image and maize biophysical and biochemical properties data collected 
on 12th July 2007 in south-west Alexandria, Egypt. Highlighted values are significant (P<0.05) and 
bold values are the strongest correlation values. 
 

Crop properties Date Vegetation 
index Chlorophyll Biomass Height LAI 
NDVI .6020 0.983 .9420 .9330 
RVI .4290 0.932 9.830 .8620 

SAVI .6020 0.983 .9420 0.933 
GNDVIbr .6230 .9810 .9520 0.934 

DVI .5610 .9780 .9240 .9220 
SR .4290 0.932 0.839 .8620 

SLAVI 0.602 0.983 .9420 .9330 
OSAVI .6020 0.983 .9420 .9330 

VI1 0.476 0.951 0.871 0.886 
RDVI .5840 0.981 0.934 .9290 

SI 0.669- .9790- 0.966- 0.943- 

 
 
 
 
 

12July 
 

IPVI 0.602 0.983 .9420 .9330 
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Table  6-20 Coefficient of correlation for the relationship between different broad band vegetation 
indices derived from QuickBird image and maize biophysical and biochemical properties data collected 
on 14th July 2007 in south-west Alexandria, Egypt. Highlighted values are significant (P<0.05) and 
bold values are the strongest correlation values. 
 

Crop properties Date Vegetation 
index Chlorophyll Biomass Height LAI 
NDVI .7090 .8740 .8760 .8040 
RVI .6390 .8540 .8360 .7630 

SAVI .7090 .8740 .8760 .8040 
GNDVIbr .6930 .8740 .8710 .7980 

DVI .7120 .8170 .8440 .7690 
SR .6390 .8540 .8360 .7630 

SLAVI .7090 .8740 .8760 .8040 
OSAVI .7090 .8740 .8760 .8040 

VI1 .6390 .8600 .8410 .7670 
RDVI .7160 .8530 .8660 .7930 

SI .7190- .8560- .8690- .7990- 

 
 
 
 
 

14 July 
 

IPVI .7090 .8740 .8760 .8040 
 
 
 
Table  6-21 Coefficient of correlation for the relationship between different broad band vegetation 
indices derived from QuickBird image and maize biophysical and biochemical properties collected on 
15th July 2007 in south-west Alexandria, Egypt. Highlighted values are significant (P<0.05) and bold 
values are the strongest correlation values. 
 

Crop properties Date Vegetation 
index Chlorophyll Biomass Height LAI 
NDVI .9690 .9750 .9870 .9630 
RVI .9560 .9460 .9640 .9330 

SAVI .9690 .9750 .9870 .9630 
GNDVIbr .9700 .9770 .9870 .9640 

DVI .9360 .9350 .9740 .9210 
SR .9560 .9460 .9640 .9340 

SLAVI .9690 .9750 .9870 .9620 
OSAVI .9690 .9750 .9870 .9630 

VI1 .9620 .9550 .9690 .9420 
RDVI .9560 .9590 .9840 .9460 

SI .9650- .9800- .9910- .9690- 

 
 
 
 
 

15 July 
 

IPVI .9690 .9750 .9870 .9630 
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Table  6-22 Coefficient of correlation for the relationship between different broad band vegetation 
indices derived from QuickBird image and maize biophysical and biochemical properties collected on 
12-15th July 2007 in south-west Alexandria, Egypt. Highlight values are significant (P<0.05) and bold 
values are the strongest correlation values. 
 

Crop properties Date Vegetation 
index Chlorophyll Biomass Height LAI 
NDVI 0.754 0.909 0.919 0.889 
RVI 0.585 88.70 0.799 0.794 

SAVI 0.754 0.909 0.919 0.889 
GNDVIbr 0.759 0.914 0.926 0.892 

DVI 0.722 0.857 0.882 0.849 
SR 0.585 0.788 0.799 0.794 

SLAVI 0.754 0.909 0.919 0.889 
OSAVI 0.754 0.909 0.919 0.889 

VI1 0.644 0.844 0.852 0.838 
RDVI 0.742 0.888 5.900 0.874 

SI 0.785- 0.909- 0.926- 0.889- 

 
 
 
 

12-15 July 
Combined 

IPVI 0.754 0.909 0.919 0.889 
 
 

To extrapolate the results obtained from the in situ hyperspectral survey and 

QuickBird imagery, NDVI, SI and GNDVIbr maps were created from the QuickBird 

image using the band math procedure in ENVI (Figures C3-5). Following the image 

being classified; the derived maps were then masked just to have these areas 

containing maize crops. Some fields known as maize from the fieldwork visit were 

used to create ground reference dataset of maize then used to mask the image to show 

maize fields only. GNDVIbr map shows the dissimilarities between healthy and 

stressed fields over the whole area. It can be seen from the image that the main 

irrigation canal at the middle of the image nearly divides the site into two areas. The 

upper area represents fields which are irrigated directly from this canal without using 

any type of pumping stations and therefore irrigation water is available all the time. 

However, the area below this canal is irrigated from small channels, which are 

supplied with water by irrigation pumping stations and consequently water is not 

available all the time. 

It can be further seen from GNDVIbr map that healthy maize fields have greater 

GNDVIbr values which coloured in red. Few fields in the upper half were coloured in 

purple producing low values of GNDVIbr (>0.25) as a result of sub-optimum 

agricultural practices. However, at least one third of the lower half is coloured in 

purple giving GNDVIbr values less than 0.25 which is obvious evident for stress in 

that area particularly the right bottom corner. This area is suffering from severe 
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moisture stress every summer since a massive amount of water is consumed by rice 

crops in the Nile Valley and Delta (0.59 million hectare), which therefore decrease the 

water flow in main canals nationwide especially the ends of these canals. It can also 

be seen in the above mentioned figures that the upper left corner of the lower half 

produced high values of GNDVIbr in comparison to the rest of that half. This can be 

attributed to the source of irrigation water since that area is also irrigated directly from 

the main canal. The regression equations for the relationship between biophysical 

properties of maize and GNDVIbr were calculated to extrapolate the results across the 

study area (figure 6.36).  

The regression analysis was performed between GNDVIbr as a sensitive index for 

different maize properties and biophysical and biochemical properties of maize 

including biomass, plant height, LAI and chlorophyll concentration. The combined 

dataset from the three-day survey was used for this analysis. 

Biomass = -1.33 + 16.9 GNDVIbr  R2 = 0.84  p = 0.000  

LAI = -0.42 + 6.87 GNDVIbr   R2 = 0.80  p = 0.000 

Plant height = 0.03 + 3.44 GNDVIbr  R2 = 0.86  p = 0.000  

Chlorophyll = 29.1 + 34.9 GNDVIbr  R2 = 0.58  p = 0.000 

A strong positive linear relationship between GNDVIbr and the measured 

aboveground biomass is shown in Figure 6.38 (R2 = 0.84; p = 0.000). GNDVIbr also 

showed a significant relationship with the chlorophyll concentration (R2 = 0.58). The 

decrease in the relationship between chlorophyll concentration and different 

vegetation indices may be a result of the time difference between field sampling and 

satellite imagery acquisition. The two weeks difference can make a great change in 

maize properties particularly chlorophyll concentration. For example, when a farmer 

applies a dose of nitrogen to crops it significantly changes the chlorophyll 

concentration especially if it is the first dose and crops are suffering from nitrogen 

deficiency.      
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Figure  6-36 classified QuickBird (GNDVI) image acquired on 29th June calibrated to Aboveground 
biomass of maize crops in south-west Alexandria, Egypt. 
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Also, SI map was used to create a map for predicting chlorophyll concentration. The 

regression analysis was performed to determine the regression equation between SI 

and chlorophyll concentration and extrapolate the results across the whole image.  

Figure 6.37 show a map for predicting chlorophyll concentration for maize crops in 

the study area south-west Alexandria.  

 

 

Figure  6-37 classified QuickBird (SI) image acquired on 29th June calibrated to chlorophyll 
concentration of maize crops in south-west Alexandria, Egypt. 
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Figure  6-38 The relationship between GNDVIbr derived from QuickBird image and (a) aboveground 
biomass of maize and (b) chlorophyll concentration of maize leaves collected in south-west 
Alexandria, Egypt (n = 45).  
  

The relationship between in situ hyperspectral measurements and satellite data was 

investigated through regression analysis. The combined dataset collected during the 

three-day survey was used for this analysis. GNDVIbr was derived from both in situ 

and QuickBird satellite imagery for same fields then the regression analysis was 

performed to determine the regression equation between GNDVIbr derived from both 

datasets (Figure 6.39). A significant linear relationship between GNDVIbr obtained 

from both platforms is shown (R2 = 0.75; p = 0.000). Some outliers which may be due 

to changes in weather conditions during measuring reflectance were detected. It 

should be mentioned that maize crops in south-west Alexandria grow very quickly 

during July and August and therefore great differences exist in plant properties 

including plant height, leaf area and biomass. During July and August, temperatures 

are at their maximum and as a result the evapotranspiration increases.    

 

Figure  6-39 The relationship between GNDVIbr derived from in situ hyperspectral measurements and 
GNDVIbr derived from QuickBird satellite image (n = 45). 
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6.6 Stress detection at regional scales 

In order to detect stress at a regional scale the SPOT HRV image acquired on 9th July 

was used to extrapolate the results across south-west Alexandria, Egypt. As 

mentioned before, the spatial resolution of SPOT HRV image (20 m) produced some 

mixed pixels particularly from small fields. The classified SPOT HRV image (Figure 

6.40) was used to assess trends in plant stress across the whole region. Following 

image processing, the image was classified using k-means unsupervised classification. 

Then two classes of maize and two of bare soil were combined in one class each using 

post classification in ENVI. Applying supervised classification algorithms is 

problematic since it is difficult to create a training datasets for maize crops due to 

mixed pixel effects. The image then was masked just for maize crop using image 

masking procedure.  

NDVI map was created using the masked image to predict plant health in the whole 

region. It is noticed that stress is obvious at the edge of the cultivated area and plant 

health increases towards the Delta centre. It can be seen that the values of NDVI 

increase gradually from the far west and south west to inside the Delta. This can be 

attributed to many factors; firstly, the study area is a newly reclaimed area, which was 

originally desert and soil fertility is very low in comparison to the old Valley and 

Delta. People try to overcome this deficiency by adding manure and chemical 

fertilizers. Secondly, most fields in that area suffer from moisture stress particularly 

during the summer season due to the large area cultivated for rice, which consumes a 

massive amount of the available water. Furthermore, the weather conditions in that 

area may affect plant health since it is close to an extensive area of desert (the West 

Desert). 

Interestingly, it is noticeable that there are some circular patches of very healthy fields 

and they are quite large. These fields are owned by private companies, which follow 

the optimum agricultural practices. They are irrigated using a sprinkler irrigation 

system called centre pivot which is capable of irrigating between 50-100 hectare 

circular areas depending on the length of the system. Chemicals such as fungicides 

and pesticides are applied through irrigation system so the chemicals are distributed 

uniformly. Also, fertilizers are applied to fields through the system to insure high 

fertilization use efficiency over the whole field and therefore low spatial variability. 
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The results suggest that using satellite remote sensing to detect stress in crops in large 

field-system will be a highly effective tool since large fields enable researchers to 

have fewer mixed pixels and therefore pure spectral signatures for training and the 

ground-reference datasets. This will decrease the variation within the same field and 

therefore increase the classification accuracy obtained by different algorithms. In 

addition, although lacking spatial detection within and across small fields, the broad 

underlying trends can still be observed. Improvements in remote sensing capabilities 

in terms of spectral and spatial resolution and the number of bands seem to increase 

the efficiency of this technique to detect stress in crops. For example, satellite images 

of less than 1 m spatial resolution with sufficient number of spectral bands in such a 

small-field system can be very beneficial in distinguishing between moisture and 

salinity stress. 

In a large-field system, using a high spectral resolution satellite imagry such as 

Hyperion (more than 200 spectral bands) would increase the ability of this technique 

to show dissimilarities between different fields as a result of changes in physiological 

properties of plants and even distinguish between different sources of stress. The in 

situ hyperspectral measurements demonstrated that there are wavelengths sensitive to 

specific types of stress such as moisture stress (Penuelas et al., 1997b). In this context, 

Hyperion satellite imagery would be very useful in distinguishing different sources of 

stress. Improvements in Hyperion satellite specifications in terms of spatial resolution 

seem to be very beneficial in detecting stress and even distinguishing between 

different types of stress. 

The new generation of hyperspectral satellites, VENUS and HyspIRI, with high 

spectral capabilities may provide useful information in detection stress at regional 

scale. Moreover, this will enhance the capability of distinguishing sources of stress 

such as moisture and salinity induced stress.  
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   Figure  6-40 A NDVI map derived from SPOT HRV image acquired on 9th July 2007 in south-west 
Alexandria, Egypt.    

 

6.7 Summary 

The potential of remotely sensed data, both ground based and satellite based, to detect 

stress in wheat and maize was investigated in this chapter. In situ hyperspectral survey 

was undertaken twice in summer and winter seasons of 2007 at a study area south-

west Alexandria, Egypt. High spatial resolution satellite imagery including 

QuickBird, ASTER and SPOT HRV were used for this research to detect stress at 

local and regional scales to extrapolate the results obtained by in situ hyperspectral 

survey. High spectral resolution satellite imagery (Hyperion) was planned and 

requested two times for both winter and summer season crops, but there was no 

imagery available due to weather conditions in winter season of 2007 and tasking 

conflicts and sensor calibration requirements in summer season of 2007.  
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Green, red and NIR ratios were derived from both in situ hyperspectral and QuickBird 

satellite images to evaluate the efficiency of remotely sensed data in detecting stress 

in wheat and maize crops. Twelve broad band spectral vegetation indices were 

derived from in situ hyperspectral measurements and the results demonstrated that the 

majority of the twelve vegetation indices had significant correlations with the 

measured biophysical and biochemical properties of both wheat and maize. 

Reflectance measurements showed variations between healthy fields and fields 

suffering moisture and salinity stress, particularly with maize crops. In addition, the 

results obtained using the principle component analysis showed the potential to 

distinguish between moisture and salinity induced stress in maize crop as a broader 

leaved crop. However, some overlap occurred between salinity and moisture induced 

stress with spectra collected from wheat fields.   

To extrapolate the results derived from in situ hyperspectral survey, high spatial 

resolution satellite images were used. Vegetation indices from satellite image were 

evaluated to define the best indices to create maps for detecting different wheat and 

maize properties. NDVI, SI and GNDVIbr demonstrated strong significant correlations 

with different crop properties. The results collected for maize crop showed that the 

correlation coefficient between crop properties and vegetation indices derived from 

both in situ and satellite platforms were significant at most dates of measurements. 

The coefficient of correlation for the relationship between NDVI derived from in situ 

hyperspectral and NDVI derived from QuickBird image was usually significant (r > 

0.75). The results also demonstrated the possibility of using satellite data to detect 

stress in wheat. As a tolerant crop grown in winter season, the correlations between 

NDVI and crop properties were significant, but distinguishing between moisture and 

salinity stress always associated with some overlap. As expected the results obtained 

for maize gave better results compared with those of wheat due to the sensitivity of 

maize to different stressors. 

High spectral satellite remote sensing imagery (Hyperion) is needed for distinguishing 

moisture and salinity induced stress since Hyperion satellite imagery has more than 

200 spectral bands, which provide the ability to calculate different hyperspectral 

vegetation indices and detect wavelengths sensitive to both moisture and salinity 

stressors. Furthermore, a combined approach of high and moderate spatial resolution 



 

 
 

219

satellite images can give good indicator about stress trends at both local and regional 

scales. However, high spatial resolution satellite imagery can not distinguish between 

moisture and salinity induced stress spectrally due to limited number of spectral 

bands. Some other satellite images such as Hyperion and HyspIRI can be used to 

distinguish between the two types of stress.          

It can be concluded that remote sensing has the potential to be a robust technique in 

detecting stress in agronomic crops particularly arid and semi arid regions since most 

crops suffer from some types of stress such as moisture and salinity stress. In addition, 

remote sensing may provide a useful tool to assess the demand for redesigning 

irrigation systems in countries such as Egypt and therefore expanding the cultivated 

area to tackle the rapid population growth. The research in this chapter succeeded in 

proving the hypothesis that in situ and high spatial resolution remote sensing imagery 

can predict stress in maize and wheat through predicting changes in biophysical and 

biochemical properties of both crops.  
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7 DISCUSSION AND CONCLUSIONS 
 

7.1 Introduction 

The main objective of most agronomists is to increase crop productivity to sustain the 

massive worldwide increase in population. However, increasing crop productivity is 

hindered by many stress factors including drought, salinity, pollution, fertilizer 

deficiency and disease. Monitoring crop health by sample-point technique is tedious, 

laborious and a costly process. There is therefore a demand to improve the monitoring 

of plant status at a large scale to achieve greater productivity. Remote sensing and 

precision farming are relatively new techniques used in the field of agronomy to 

target resource and improve crop production (Brisco et al., 1998). In this context, 

remote sensing has the potential of providing much valuable information on crop 

stress and its management in Egypt.  

Salinity and drought are major inhibitors to crop production and increasing efforts to 

remotely detect the effects of both moisture and salinity induced stress for irrigation 

management are important in semi arid and arid environments. A few studies have 

shown the ability of remote sensing technology to detect the impacts of water and 

salinity stress on crop yields (Poss et al., 2006). Research and technology advances in 

the field of remote sensing have greatly enhanced the ability to detect and quantify 

physical and biological stresses that affect the productivity of agricultural crops 

(Hong et al., 2007). Before launching the first generation of high spatial resolution 

IKONOS and QuickBird satellite imagers in 1999 and 2001, satellite imagery had 

limited use in precision farming as a result of coarse spatial resolution, long revisit 

period and slow data delivery (Yang et al., 2006b). In this context, this thesis 

examines the efficacy of implementing remote sensing to detect stress in wheat and 

maize crops in the Nile Valley of Egypt. The chapter addresses each of the hypotheses 

outlined in Chapter 2 (see section 2.6).    
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7.1 The association between crop productivity and moisture and salinity stress  

The first hypothesis tested in this research was moisture and salinity induced stress 

affect crop grain yield. 

Moisture and salinity stressors are inhibitors of crop productivity. The results from 

this research showed that both moisture and salinity stress had significantly affected 

different agronomic parameters of both wheat and maize crops including; grain yield, 

biomass, plant height, LAI and chlorophyll concentration. Multiple regression 

analysis showed strong and significant relationships between wheat grain yield and 

both moisture and salinity induced stress (R2 > 0.85 in the four experiments of wheat). 

The watering regime of 25% FC reduced wheat grain yield by 78, 69, 61, and 58% in 

the 2005-6, 2006 and 2006-7 growing seasons with biggest impact on Scottish wheat 

in the 2005-6. Salinity level of 6 dS m-1 decreased wheat grain yield by 46, 26, 45, 

and 40% in the 2005-6, 2006 and 2006-7 growing seasons respectively. The decrease 

in wheat grain yield can be attributed to the effects of both stressors on all agronomic 

parameters. During the vegetative growth, plant height, leaf area, and tiller number 

were affected by both moisture and salinity and therefore the aboveground biomass 

was also decreased. Multiple regression analysis also showed strong significant 

relationships between aboveground biomass and both moisture and salinity stress (R2 

> 0.80 in all experiments). Furthermore, both stressors had significantly affected LAI, 

chlorophyll concentration and plant height.  

Similar significant relationships were also observed between maize crop yield and 

both moisture and salinity stressors. Regression analysis demonstrated that moisture 

and salinity had significantly affected maize grain yield (R2 = 0.88; p = 0.000). The 

highest stress level of moisture and salinity reduced maize yield by 69 and 42% 

respectively. Also, both stressors had significantly affected aboveground biomass of 

maize particularly at late stages (R2 = 0.91; p = 0.000). Moisture and salinity stress 

also affected LAI, plant height and chlorophyll concentration (R2 > 0.90; p = 0.000). 

The strong relationships between both stressors and maize may be attributed to the 

apparent differences between healthy and stressed treatments. It was further noticed 

that the effects of stress on maize crops were higher in comparison to wheat crops. 

This can perhaps be explained by the great differences in climatic conditions between 

summer and winter and therefore the stress level. The broad leaves of maize are likely 
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to increase the evapotranspiration rate and subsequently any stress greatly affects 

plant health. Furthermore, wheat crops are tolerant of stress while maize is considered 

a sensitive crop to different stressors.        

These results concur with what is generally known about plant response to moisture 

and salinity induced stress. Under moisture stress, absorbing nutrients by roots from 

soil is reduced by decreasing the rate of diffusion of nutrients from the soil matrix to 

the absorbing root surface (Pinkerton and Simpson, 1986). Nutrient transport from 

roots to shoots is also limited as a result of low transpiration rates and impaired active 

transport and membrane permeability (Kramer and Boyer, 1995). Under moderate 

water stress, partial stomatal closure, which reduces H2O transpiration and the CO2 

available for C fixation, may occur for several hours a day. Plants experiencing 

moderate stress may not wilt or have photochemical activity impaired (Souza et al., 

2004). With increasing levels of water deficiency, the plant increasingly appears 

wilted and the actual photochemical activity of chlorophyll can be reduced (Souza et 

al., 2004).  

Previous studies have documented the effects of moisture and salinity on crop 

productivity. Drought is one of the major limitations to food production worldwide 

and one of the major stress factors during the maturation and ripening of cereals in 

many production areas (Barnabas et al., 2008). They also stated that plants respond to 

drought stress at the molecular, cellular and physiological levels depending on the 

species and genotype, the length and the severity of water loss, stage of development, 

the organ and cell type and the sub-cellular compartment. Furthermore, they reported 

that periods of water stress during the grain filling stage caused large yield losses.  

High salinity in the soil can result in physiological drought even with high moisture 

content in the soil profile. The plants wilt because the ability of roots to absorb water 

and different nutrients is very weak. Under salinity stress conditions, soil contains 

high levels of the following ratios Na+/Ca+2, Na+/K+, Ca+2/Mg+2 and Cl-/NO3
-, 

resulting in specific ion toxicity (Grattan and Grieve, 1999). Salinity always impairs 

the distribution of macro and micronutrients along the growing leaves of maize 

(Neves-Piestuna and Bernstein, 2005; Hu et al., 2007) and wheat (Hu et al., 2000) 

thereby affecting the rate of growing tissues.     
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In wheat, final grain yield is affected by the number of tillers, spikes, grain per spike 

and grain weight. These yield components may be affected by different types of 

stress. For example, Mass and Poss (1989) in studying the effects of salinity on wheat 

grain yield; concluded that salinity affected the tiller and spikelet number and 

therefore greatly affected the final grain yield. During vegetative growth, different 

agronomic parameters including tiller number, leaf number and LAI decreased with 

increasing salinity levels (El-Hendawy, 2004). 

In conclusion, the experimental work presented here has been undertaken under 

controlled conditions in terms of temperature, watering interval, irrigation regime and 

fertilization rates. This eliminates the environmental factors that affect crops in actual 

fields particularly the amount of rainfall for wheat crops during winter season. The 

results obtained from this research showed that water having low salinity (2 ds m-1) 

can be used for watering tolerant crops such as wheat with only slight effects on grain 

yield. This implies that the estimated amount of agricultural drainage water in Egypt 

(17 billion m3) could be used to extend the cropped area by at least 25% and therefore 

increases crop production to tackle the problem of rapid population growth.  

7.2 Using in situ measurements in detecting stress in crops  

7.2.1 Wheat crop 
The second tested hypothesis was in situ hypertspectral measurements can detect 

stress in crops.  

The experimental work outlined in Chapter 4 and 5 demonstrated the effectiveness of 

vegetation indices in predicting different biophysical and biochemical properties of 

wheat. Due to changes in the relationship between different vegetation indices and 

crop properties over the growing season, the correlation values were ranked for all 

experiments to choose the optimum index for predicting different biophysical and 

biochemical properties of wheat. Generally, grain yield was highly correlated with 

specific vegetation indices at specific growth stages and poorly correlated with others. 

Poor correlations between different vegetation indices and wheat grain yield were 

recorded at early growth stages. In the four experiments, milk stage seems the best 

growth stage to predict wheat grain yield. Ranking showed that the optimum 

hyperspectral index to detect wheat grain yield is R725/R675. In the meantime, RVI and 
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SR were ranked the best broad band vegetation indices for predicting wheat yield. 

A strong significant correlation was observed between RVI and wheat yield for the 

first two experiments (r = 0.91 and 0.96 for the 2005-6 winter season and 2006 spring 

season respectively). 

Ranking also further showed that RDVI is a sensitive indicator for predicting 

aboveground biomass of wheat. It produced the best index to correlate with wheat 

biomass in the first two experiments of the Scottish and Egyptian wheat (r = 0.92 and 

0.98 for the winter season 2006-7 and spring season 2006). Additionally, RVI was the 

fourth best index to predict aboveground biomass of the Scottish and Egyptian wheat 

(r > 0.90). Moreover, RVI was ranked the optimum index for predicting chlorophyll a 

concentration for all wheat experiments. The strongest correlation between RVI and 

chlorophyll a concentration was recorded in the 2006-7 growing season of the 

Scottish wheat (r = 0.82). Specific indices produced strong correlations at a specific 

stage, but poor correlations over the growing season. For example, OSAVI produced 

the highest correlation with the measured chlorophyll a concentration (r = 0.84), but 

lower correlations over the growing season. REP is also a sensitive indicator for 

chlorophyll a concentration in comparison to the majority of the tested broad band 

and hyperspectral vegetation indices with the strongest correlation of 0.79 recorded in 

the third experiment.   

Other studies have documented the possibility of using remotely sensed data to 

predict grain yield and other crop properties under different stresses using spectral 

vegetation indices. Most studies investigated the potential of remotely sensed data at 

the leaf scale under controlled conditions eliminating the effects of canopy structure. 

For example, at the leaf scale Marti et al. (2007) investigated the possibility of using 

NDVI to predict wheat biomass and grain yield at early stages, and found that NDVI 

at milk-grain stage was well correlated to final grain yield and biomass of wheat. 

Some attempts have been made to detect crop properties under salinity stress. For 

example, Wang et al. (2002a) concluded that canopy spectral reflectance in the NIR 

region of the spectrum was reduced incrementally with increasing salinity level. Also, 

Penuelas et al. (1997a) reported that changes in barley biophysical properties resulted 

from salinity stress can be determined with remote sensing technique. Our research 

examined the potential of remotely sensed data at the canopy scale under controlled 
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conditions to detect stress in wheat and maize. We have shown that at the canopy 

scale stress can be detected using both hyperspectral and broad band vegetation 

indices. Moreover, crop yield can be estimated through remotely sensed data.  

Babar et al. (2006) employed different vegetation indices at the leaf scale as a 

potential indirect technique to predict wheat grain yield; they concluded that 

measuring reflectance at heading and grain filling stages appear to be the most 

suitable time to differentiate genotypes for wheat grain yield. They also found that 

RNDVI, GNDVI and SR showed significant positive correlations with grain yield at 

heading and the grain filling stages in three years cases. Royo et al. (2003) 

investigated the effectiveness of vegetation indices in predicting wheat grain yield and 

concluded that milk-grain stage shown to be the most appropriate developmental 

stage for yield assessment. In contrast, other studies demonstrated that the best time to 

predict wheat grain yield was recorded at maturation not at booting, heading, anthesis 

or milk-grain stages (Aparicio et al., 2000). They also found that RNDVI was 

correlated well with wheat grain yield. However, the work presented here at the 

canopy scale has shown that the milk stage seems the best stage for predicting grain 

yield.  

7.2.2 Maize crop 
Maize is a broader leaved crop than wheat and is therefore assumed to be a crop more 

susceptible to different types of stress. We hypothesized that the spectral signature 

from maize canopy will be greatly affected by physiological changes resulting from 

both moisture and salinity stress and more so than wheat. As a sensitive crop, maize 

needs to be monitored efficiently to manage areas of stress and avoid reduction in 

crop productivity. The experimental work detailed in Chapter 5 established a strong 

relationship between maize properties and both broad band and hyperspectral 

vegetation indices. In this research, 55 hyperspectral and broad band vegetation 

indices have been examined to predict maize properties under moisture and salinity 

induced stress. Strong correlations between many vegetation indices and different 

biophysical and biochemical properties of maize were observed. There was no 

specific index to predict a crop parameter over the growing season. As a result the 

coefficient of correlation for the relationship between different vegetation indices and 

the measured crop properties at different growth stages was ranked to choose the 



 

 
 

226

optimum index for predicting each maize property. Crededge was the optimum 

vegetation index to predict chlorophyll a concentration in maize crop. As mentioned 

in Chapter 5 the wavelength 550 nm is sensitive to many maize properties. Ranking 

also showed that the band ratios R750/R550 and R800/R550 are sensitive for predicting 

chlorophyll a concentration. These two indices were also ranked among the best five 

indices for predicting maize plant height. 

R750/R550 was also ranked the fourth best index among 55 indices for predicting maize 

grain yield. The best ranked index for predicting maize yield was the band ratio 

R695/R760. GNDVIbr ranked the most sensitive broad band index for predicting 

aboveground biomass and LAI. These findings are supported by other studies, for 

example Shanahan et al., (2001) reported that GNDVIbr had the strongest correlation 

with maize grain yield at mid-grain filling stage, which can be used to produce 

relative yield maps. It is further shown that some vegetation indices produced higher 

correlations at specific growth stages, but in general poor relationships for the whole 

growing season. For example, VI1 gave the strongest correlation at 80 DAS at the 

canopy scale (r = -0.62) although it produced non-significant correlations on four 

dates out of six (r < 0.20). Crededge was recorded the optimum index to correlate with 

chlorophyll a concentration of maize leaves. Similar results were obtained by Gitelson 

et al. (2005) as they proposed three different indices to predict chlorophyll 

concentration, Cgreen, Crededge and CNIR. 

Quantifying crop productivity in cereals is considered a priority in most research 

programmes (Steinmetz et al., 1990) due to urgent need for different grain crops to 

tackle the rapid increase in population growth worldwide (Rudorff et al., 1996). 

Increased efforts are therefore needed to detect the effects of moisture and salinity 

induced stress in maize since some studies have shown the potential of remotely 

sensed data in monitoring maize health status (Blackmer et al., 1996; Osborne et al., 

2002b; Daughtry et al., 2000; Hong et al., 2007; Wu et al., 2007c). However, most 

research in agricultural crops focused on detecting moisture and nitrogen deficiency 

stress. Our studies focused on using remotely sensed data in detecting moisture and 

salinity stress and distinguishing between them spectrally. Previous studies reported 

the effectiveness or remotely sensed data to detect stress in crops. For example, 

chlorophyll a concentration (Gitelson and Merzlyak, 1996; Cuttler and Curran, 2000; 
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Sims and Gamon, 2003), Pest damage (Yang et al., 2005; Mirik et al., 2007; Genc et 

al., 2008), salinity induced stress (Penuelas et al., 1997a; Wang et al., 2002a; Wang et 

al., 2002b), pollution stress (Davids and Tyler, 2003) nitrogen deficiency (Osborne, 

2004; Schlemmer et al., 2005; Reyniers and Vrindts, 2006; Clay et al., 2006; 

Tartachnyk and Rademacher, 2006; Hong et al., 2007 ) and moisture stress ( Penuelas 

and Inoue, 1999; Osborne et al., 2002b; Bahrun et al., 2003; Ozturk and Aydin, 2004; 

Tilling et al., 2007). The results therefore suggest that spectral vegetation indices 

derived from hyperspectral measurements can be used successfully to predict wheat 

and maize properties. 

The results further demonstrated that vegetation indices performed inconsistently over 

the growing season in both wheat and maize crops. There is no specific vegetation 

index that gives strong correlations with a crop property over the growing season. It is 

therefore clear that more work is needed to validate the effectiveness of using 

vegetation indices as a non-destructive tool to predict crop properties.   

To the best of the author’s knowledge, this research is the first to investigate the 

potential of remotely sensed data to detect stress in wheat and maize resulting from 

the combined effects of moisture and salinity stress. Moreover, most scientists who 

are working to detect stress in crops measure reflectance at the leaf scale (basically 

apical leaves) ignoring the effects of canopy structure on reflectance measurements, 

which are arguably important in terms of satellite remote sensing imagery. In this 

research, measurements at both leaf and canopy scales were used to assess the 

differences between healthy and stressed plants. 

7.2.3 Comparison between broad band and hyperspectral 
vegetation indices in detecting stress in wheat and maize 

The sub-hypothesis tested and outlined in Chapters 4 and 5 was hyperspectral 

vegetation indices are more sensitive to physiological changes in plant status 

resulting from stress than broad band vegetation indices. Twelve broad band and 

forty three hyperspectral vegetation indices have been examined in this research to 

detect the biophysical and biochemical properties of wheat and maize. The results 

demonstrated that there are no great differences between broad band and 

hyperspectral vegetation indices under both natural and artificial illumination 
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conditions. The strongest correlations obtained using both hyperspectral and broad 

band indices were similar in most cases. 

The results demonstrated slight differences between broad band and hyperspectral 

vegetation indices. In all experiments of wheat and maize crops some hyperspectral 

indices produced slightly higher correlations with a crop parameter than broad band 

indices. For example, R800-R550 produced the highest correlations with chlorophyll a 

concentration of maize at the leaf and canopy scales (r = 0.80 and 0.63 respectively), 

while the highest correlations from broad band indices were obtained with GNDVIbr 

(r = 0.79 and 0.61). Similar to these results, Elvide and Chen (1995) investigated the 

potential of hyperspectral and broad band vegetation indices in monitoring rooted 

pinyon pine canopy with five different gravel backgrounds; they reported that 

hyperspectral vegetation indices had only slightly better accuracy than broad band 

vegetation indices. Deriving vegetation indices from a dataset measured at the leaf 

scale produced higher correlations with chlorophyll a in comparison to the data 

collected at the canopy scale. At the leaf scale, the variation in plant architecture is 

ignored and the effects of different parameters of weather are also ignored. 

Furthermore, most researchers collect apical leaves and do not consider the effects of 

leaves at lower levels of the canopy, which contribute to the spectral reflectance. 

Measuring reflectance from plant canopies under controlled illumination in this 

research appear to be much more representative for the general plant health rather 

than specific part of these plants.  

7.2.4 Distinguishing between moisture and salinity induced stress 
The third hypothesis tested in this research was moisture and salinity induced stress 

can be distinguished spectrally. 

PCA score plots showed that moisture induced stress in wheat can be distinguished 

from salinity induced stress at the grain filling stage, but these results are too late for 

remediation. At the grain filling stage it is too late to take a decision to reduce the 

effects of stress and avoid crop yield reductions. However, these findings are 

considered important implications for the following growing seasons and the decision 

makers can make informed decisions to avoid stress in this area by means of re-

designing irrigation system and following optimum agricultural practices. Re-
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designing irrigation systems will provide the optimum crop water requirements and 

consequently increase water use efficiency.       

In addition, hyperspectral survey coupled with the acquisition time of satellite 

imagery showed the possibility of distinguishing between fields suffering from 

moisture and salinity stress particularly when the stress levels were high (Figures 6.12 

and 6.13). However, when the stress level was low overlap between both stressors 

was detected. Hyperspectral measurements showed that reflectance in the green and 

red regions of the spectrum in fields with salinity induced stress was always lower 

than in those with moisture stress. The same trend was also observed in the NIR 

region as reflectance obtained from fields with moisture induced stress was always 

higher than those obtained from fields with salinity induced stress (Figure 6.8). 

Further work in investigating plant changes as a result of increasing soil salinity is 

required to validate these findings, and assess exactly which parameters are 

susceptible to each type of stress and therefore distinguish between these two stressors 

as early as possible. Other crop properties such as lignin and cellulose should be 

investigated under both moisture and salinity stress and whether these parameters 

affect reflectance from plant canopies and/or leaves. Furthermore, use of the SWIR 

region of the spectrum may provide useful information about plant stress.     

7.3 Using satellite remote sensing in detecting and 
differentiating stress 

The fourth hypothesis tested in this research was high spatial resolution satellite 

remote sensing imagery can detect stress in wheat and maize crops at both local and 

regional scales at early stages and therefore help maximise crop productivity. 

In situ hyperspectral measurements have been documented in the literature as a useful 

potential tool to predict different biophysical and biochemical crop properties. Due to 

the lack of spectral and spatial resolution capabilities of satellites in 1980s and 1990s, 

it was not common to use satellite imagery in detecting crop stress. With the 

launching of the first hyperspectral satellite (Hyperion) on board Earth Observing-1 

by NASA in 2000, the use of hyperspectral data has increased.  



 

 
 

230

7.3.1 Identifying crop types (classification) 
Different classification algorithms were performed to identify different crops within 

the study area. Both unsupervised and supervised classification methods were used in 

this research to choose the most robust classifier for images to identify different crops. 

K-means of unsupervised classification is widely used in classifying vegetation 

(Bachmann, 2002; Yang et al., 2006a; Yang et al., 2006b). Therefore, it was 

performed on all images of this research. The results showed that k-means 

classification produced classified image of wheat with slightly high overall accuracy 

of 77.4%, but produced low classification accuracies for specific classes. The 

existence of clouds and associated shadows might affect the accuracy of this method 

and many mixed pixels were detected. For example, the classification accuracy for 

identifying bare soil was very low (42.24%), which means it was poorly identified. 

The low accuracy may be attributed to differences in the moisture content of bare 

soils and also the spectral confusion resulting from the very small plants in some 

fields. Some farmers grow tomatoes in March; the plants are very small and are 

grown in very wide furrows (0.8-1 m). This results in many mixed pixels in the 

classified image. 

MLC and MDC supervised classification algorithms were also performed on all 

images. Many researchers showed the effectiveness of supervised classifiers in the 

literature for mapping vegetation (Jahne, 1991; Richardes, 1993; Foody et al., 1992; 

Su et al., 2007). Our results showed that MLC produced the highest accuracy for 

identifying wheat crops. The overall accuracy derived from the confusion matrix was 

very high (> 90%) with associated high Kappa coefficient supporting the high overall 

accuracy. Although MDC algorithm produced high overall accuracy (88.7%), the 

classification accuracy to identify a specific class was less compared with the results 

obtained using MLC. Both classifiers produced two distinct crops, wheat and clover, 

for the winter image, which are the most commonly grown crops in that area. The 

results suggest that supervised classification algorithms are advantageous in 

comparison to k-means classifier. 

Similar to the results in this research, many researchers have shown that MLC has 

high accuracies for mapping vegetation. Pu et al. (2008) found that MLC produced 

high overall accuracy for classifying vegetation in a forest using airborne CASI data. 
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Wang et al. (2008) compared three classification methods (feed-forward neural 

network classifier), Clustering-Based Neural Network classifier (CBNN) and MLC 

for discriminating mangrove canopies in the Caribbean coast of Panama using 

IKONOS data. They concluded that CBNN and MLC presented the best classification 

accuracy. In contrast, Bagan et al. (2008) compared Self Organizing Map (SOM) 

neural network with MLC for classifying ASTER data and found that using all band 

combinations of VIS, VNIR, SWIR and TIR, SOM produced higher classification 

accuracy in comparison to MLC. The implementation of a neural network approach to 

classification is an area worthy of future investigation in the Egyptian context.            

7.3.2 Detecting stress in wheat 
Having classified the image for a specific crop type, the crop status influenced by 

stress could be examined. QuickBird and ASTER images were used in this research 

project to assess the potential of high spatial resolution remote sensing images to 

detect stress in wheat. The only available ASTER image was acquired at the end of 

April 2007, which is very late for wheat crops in Egypt and consequently no 

significant correlations were found between vegetation indices derived from the 

ASTER image and the different biophysical and biochemical properties of wheat 

crops in the three study sites. 

The 2.4 m resolution QuickBird imagery acquired on 7th April 2007 was also 

examined to detect stress in wheat in the same study area. Most vegetation indices 

derived from QuickBird imagery demonstrated highly significant correlations with 

different biophysical and total chlorophyll concentrations of wheat. Strong correlation 

values were observed between chlorophyll concentration and both SI and NDVI (r = 

±0.86). DVI produced the strongest relationships with biomass, plant height and LAI 

(r = 0.85, 0.66 and 0.81 respectively). From individual datasets NDVI produced 

strong relationships with different crop properties. 

Within the QuickBird image there were no systematic spatial trends for crop stress. 

However, the stressed areas could be related to different agricultural practices. 

Furthermore, tolerance of wheat crops to stress may be another reason for that since 

wheat is a tolerant crop in comparison to other crops such as maize. However, stress 

can be detected in the image for specific areas, which suffer from severe stress 

(Figure 6.32).  
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Comparing the results obtained from in situ hyperspectral survey and QuickBird 

image, a significant positive correlation was observed between vegetation indices 

derived from in situ hyperspectral measurements and the same indices derived from 

QuickBird satellite imagery. The time difference between in situ hyperspectral survey 

and acquisition time for QuickBird image however, may influence the comparisons. 

Furthermore, the clouds and associated shadows may affect the spectral signature 

from some fields. Additionally, illumination changes due to cloud cover during in situ 

hyperspectral survey may be another reason for this decrease. These factors may have 

contributed to the scatter in the comparison, but nevertheless a robust comparison was 

demonstrated.  

7.3.3 Differentiating stress 
Wheat was chosen at the start of this research as the most important crop for Egypt. 

The results obtained from the four greenhouse experiments of the Scottish and 

Egyptian wheat varieties demonstrated that the distinction between moisture and 

salinity induced stress occurs late in the growing season. Close to the flowering stage 

it was possible to distinguish between the two types of stress spectrally. PCA 

successfully demonstrated the potential of distinguishing between healthy and 

stressed fields and even between moisture and salinity induced stress using in situ 

hyperspectral measurements collected during field visits for both wheat and maize 

(see Figures 6.9-13 and Figures 6.21-23). This concurred with the results of the 

greenhouse experiments.  

Due to limited spectral resolution of the QuickBird satellite imagery, it was not 

possible to differentiate between different sources of stress from the spectral 

signatures. The four bands of QuickBird imagery were used to calculate the most 

commonly used vegetation indices to detect stress in both wheat and maize crops. 

Distinguishing between moisture and salinity induced stress needs hyperspectral 

satellite imagery such as Hyperion or similar platforms, which provides more than 

200 spectral bands. However, using this type of imagery will be restricted by the 

small-field system and many mixed pixels in the image will be problematic. 

Therefore, co-operation between the Egyptian Government and farmers is very 

important to tackle this problem, specifically, to sow crops at the same time and have 

larger areas cultivated with the same crop.  
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Other investigations encourage subtle changes in the spectral response have also 

demonstrated that direct comparison with broad band reflectance is very limited. 

However, decorrelating spectral information through PCA analysis can sometimes 

provide subtle information on spectral change. For example, Tyler et al. (2006) 

demonstrated the potential of Landsat TM and ETM imagery to map chlorophyll a 

concentration in Lake Balaton and concluded that chlorophyll a concentration cannot 

be mapped directly from raw image data. However, the mixture modelling approach 

can provide a robust technique for mapping chlorophyll a in open fresh water in the 

presence of heterogeneous suspended sediment concentrations, which tend to 

dominate the reflectance characteristics. In this context, the addition of the shortwave 

infrared (SWIR) may provide useful information on plant canopy structure (Gong et 

al., 2003; Twele et al., 2008; Wang et al., 2008).  

Using a mixture modelling approach may provide a way forward for distinguishing 

moisture and salinity induced stress. Some studies have shown the possibility of 

estimating sub-pixel abundance by means of multivariate regression (Rainey et al., 

2003).  Among few different soft classification algorithms, mixture modelling was 

considered the most suitable technique because it does not need too much ground 

reference data (Bastin, 1997), however, it may also be worth exploring the Artificial 

Neural Network (ANN) approach in future research. Mixture modelling may therefore 

be applied in mapping crops to detect stress using high spectral resolution remote 

sensing imagery and solve the mixed pixels resulting from the small field system.  

7.4 Using remote sensing in detecting and differentiating 
stress in Maize crops   

7.4.1 Identifying crop types (classification) 
To differentiate between different crops and even between healthy and stressed fields, 

both unsupervised and supervised classification algorithms were performed on 

QuickBird and SPOT HRV images to identify different crops. K-means unsupervised 

classification demonstrated slightly higher overall accuracy (80.62%) associated with 

high Kappa coefficient (0.758). However, the classification accuracy for identifying 

tomato crops was very low (58.12%). As mentioned in section 6.5.3 the low 

classification accuracy may have been a result of the spectral confusion produced 

from other crops during their early growth stage. Also, some mixed pixels occur as a 
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result of very low vegetation cover at early growth stages since more than 80% of soil 

is bare. At early growth stages, tomato has low vegetation cover and the crop may be 

classified as bare soil or melon since both crops are grown on wide furrows 

approximately at the same time following a clover crop. 

Supervised classification algorithms demonstrated high overall accuracy associated 

with high Kappa coefficient values. As with the wheat imagery the MLC produced the 

highest overall accuracy of 93.67% with high associated Kappa coefficient of 0.921. 

Although MDC produced high overall accuracy of 89.94%, the classification accuracy 

for identifying maize was less (84.43%) in comparison to MLC (89.87%). The 

decrease in classification accuracy to identify maize crops using MDC may have been 

a result of different growth stages and therefore different biophysical and biochemical 

properties. MLC demonstrated very high user’s and producer’s accuracies (> 0.85). In 

conclusion, supervised classification algorithms provided better results in comparison 

to k-means in terms of overall accuracy, Kappa coefficient and individual 

classification accuracies for different classes. Results from our research are supported 

by previous studies that demonstrated high accuracy of MLC algorithm to classify 

vegetation (Bagan et al., 2008; Wang et al., 2008). MLC is commonly used technique 

for the classification of vegetation. Shanmugam et al. (2006) concluded that MLC 

produced higher accuracies in comparison to unsupervised classifier. However, they 

established a decrease in the classification accuracy of both ISODATA and MLC with 

increasing number of classes being identified. Other studies showed that although 

hard classification techniques such as MLC give high accuracy, it produced too many 

mixed pixels and therefore the mixed pixels identified as the most similar class. These 

studies demonstrated that soft classification techniques such as linear spectral mixture 

modelling or ANN approach could produce accurate vegetation maps comparable to 

those obtained using hard classification techniques and needs to be explored in future 

work in the Nile Valley of Egypt.   

7.4.2 Detecting stress in maize 
To detect dissimilarities between healthy and stressed fields in south-west Alexandria 

at local and regional scales, QuickBird and SPOT HRV images were examined in this 

research project to detect stress in maize. The 20 m resolution SPOT HRV image had 

the same problem as the ASTER image in the winter season since the spatial 
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resolution is similar to a field’s width resulting in great overlap between pixels from 

different fields with different crops and therefore different spectral signatures. 

However, the SPOT HRV image produced an overview picture to understand the 

stress in the whole region (Figure 6.40). It also shows that the newly reclaimed land at 

the Bangar site suffers from stress as a result of using sub-optimum agricultural 

practices particularly changes from sprinkler irrigation to the traditional irrigation 

method (flood irrigation). Moreover, the figure shows several fields irrigated by 

centre pivot system, which have very high NDVI values as indicator of larger 

biomass. The sandy to sandy loam soils in that area have a high infiltration rate and 

therefore massive amount of water is lost through deep percolation. The SPOT HRV 

image gave a clear understanding about the stress at a regional scale, which can be 

used as an indicator for reconsidering irrigation system design in the whole country.   

The 2.4 m resolution QuickBird image was also used to derive broad band vegetation 

indices to detect stress at a local scale. Twelve broad band vegetation indices were 

calculated using the red and near infrared bands derived from the corrected image. 

Strong correlations between different biochemical and biophysical properties of maize 

and the majority of vegetation indices were observed. From individual datasets it can 

be seen that NDVI had strong correlations with different maize properties (r > 0.90). 

Results also showed that NDVI and SI had strong correlations with all maize 

properties. GNDVIbr produced the strongest correlations with biomass, height and 

LAI (r = 0.914, 0.926 and 0.892 respectively). NDVI produced similar correlations 

obtained by GNDVIbr with biomass, height and LAI.    

A strong relationship between GNDVIbr derived from in situ and GNDVIbr derived 

from satellite image was observed. Figure 6.39 shows a linear significant relationship 

between GNDVIbr obtained from both datasets (R2 = 0.75). The decrease in this 

relationship may have been a result of the temporal difference between in situ 

hyperspectral survey and QuickBird acquisition time.  

GNDVIbr and SI calibrated maps derived from the QuickBird images were used to 

create maps for predicting aboveground biomass and chlorophyll concentration 

(Figures 6.36 and 6.37 respectively). GNDVIbr map showed that the study area is split 

into two halves and most fields of the upper half have high GNDVIbr values. Most 

fields in the lower half have low values of biomass and chlorophyll, which is evidence 
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for stress from both moisture and salinity. When farmers suffer from shortage of fresh 

water they use agricultural drainage water to irrigate their crops. In this case moisture, 

nitrogen and salinity stress are closely linked since farmers generally can not add the 

required amount of nitrogen on time and wait until fresh irrigation water becomes 

available. Broadly, the GNDVIbr demonstrated that stressed fields are distributed 

throughout the image, which may be attributed to different agricultural practices in 

each field. In conclusion, a specific trend for crop stress was shown in different 

calibrated maps of maize properties and therefore QuickBird satellite imagery 

successfully identified stressed areas at local scale in south-west Alexandria.          

7.5 Implication within Egypt’s Agricultural system 

7.5.1 High spatial resolution and coverage 
The small field system in Egypt is a result of changing the system of communism to 

capitalism in the 1990s. The Egyptian Government sold the landmass to a large 

number of farmers. Farmers usually have less than one hectare particularly in the Nile 

Delta and Valley. Monitoring these small fields individually with satellite remote 

sensing imagery with a spatial resolution of more than 10 m is problematic. However, 

high spatial resolution satellite images such as SPOT HRV and ASTER may provide 

a better understanding about stress at regional scales. New satellite sensors with 

spatial resolution less than 5 m such as QuickBird and IKONOS are very useful in 

such system to detect stress within a field and/or at a local scale. The results of our 

research showed that at field and local scales QuickBird imagery was able to 

differentiate between healthy and stressed fields particularly maize crops since the 

stress in some fields was apparent in comparison to wheat crop. However, these 

satellite sensors have limited spectral capabilities, which in turn restrict the use of 

these satellite platforms in differentiating different types of stress such as salinity and 

moisture, but would be used for targeting more detailed investigation. 

In this research QuickBird satellite images showed the possibility of detecting stress 

at the local scale, but applying this type of imagery at a regional scale will be very 

costly. Alternatively, using a combined approach of high spatial resolution satellite 

imagery with moderate spatial resolution imagery such as SPOT HRV or ASTER will 

give a general idea about stressed areas in the Nile Valley and Delta at a reasonable 

cost. It can be seen in Figure 6.40 that SPOT HRV imagery showed the possibility of 
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detecting stress at a regional scale and identifying areas of good irrigation practices. 

From this imagery stressed areas can be identified and targeted using higher 

resolution satellite imagery such as QuickBird. SPOT HRV imagery showed that the 

Bangar site has the lowest values of NDVI as a result of using poor irrigation 

practices. Interestingly, the same figure showed that there are some large fields near 

the Bangar site that have very high values of NDVI, which is an indicator of very 

healthy maize crops within the same stressed area. Consequently, QuickBird and 

SPOT HRV together could give a better understanding about stress at both local and 

regional scales at a reasonable cost as well as policing agricultural practices, 

providing a mean for costing the return in crop yield against the cost of improved 

irrigation management and enable a forecast of future crop yields. 

7.5.2 High spectral resolution     
This research has shown that high spectral resolution remote sensing of 

spectroradiometry data has the potential of providing important crop monitoring 

information, especially in distinguishing between salinity and moisture induced stress. 

However, currently the Hyperion satellite platform is the only system that approaches 

the specification required to monitor and distinguish different sources of stress within 

Egyptian field systems. Unfortunately, Hyperion is a research tool and no other 

platform is currently available to provide suitable monitoring requirements. However, 

as illustrated with the SPOT HRV image, the slightly poorer spatial resolution (20 m) 

may still be sufficient to provide a broader understanding of sources of stress across 

field system, if not within. Additionally, the hyperspectral infrared imager (HyspIRI; 

2013-2016) would be effective satellite imagery in detecting stress at a regional scale 

since it provides images at 400-2500 nm with 45 m spatial resolution. Using this 

imager with the new advances in detectors, optics and electronics could acquire 

images with 210 spectral bands in the above mentioned range. As documented in the 

literature the SWIR may provide useful data in detecting stress in crops. Other crop 

properties such as lignin and cellulose could be estimated using the SWIR range. In 

the next 5 years, the proposed VENUS and HyspIRI platforms could provide suitable 

spectral capabilities and consequently enhance the ability to differentiate sources of 

stress.   
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However, the implementation of in situ hyperspectral measurements in conjunction 

with SPOT HRV imagery to target field campaigns may provide an effective 

compromise in understanding the sources of stresses in specific field systems. 

However, the effectiveness of this type of implementation is clearly an area requiring 

further research.     

To apply high spectral satellite remote sensing imagery such as Hyperion or similar 

platforms needs co-operation between the Government and farmers in Egypt. The 

Government is now establishing a new agricultural development in a valley called 

Toshki in southern Egypt. The project aims to reclaim over a million hectares of land 

and is expected to be irrigated from the Nile, which therefore affects the availability 

of water for the Nile Valley and the Delta. In this considerable area it would be easy 

to use high spatial and spectral satellite remote sensing for different purposes in 

agricultural fields. The high summer temperature in this area (>40°C) results in high 

evapotranspiration rates and hence high crop water requirements. 

7.5.3 Predicting crop yield 
Maximising crop production at minimum cost is very important for farmers. Mapping 

and predicting yield at an early growth stage is therefore essential for farmers to take 

decisions to improve their agricultural practices. Monitoring plant status by means of 

remotely sensed data will enable farmers to maintain optimal levels of soil moisture 

and nutrients and avoid overuse of different chemicals, which potentially contaminate 

soil and water. A further advantage is the possibility to quantify the amount of grain 

needed to satisfy population demand. It is therefore evident that using satellite 

imagery could be a robust tool in site specific management in the Nile Valley and the 

Nile Delta of Egypt. 

Different vegetation indices derived from both hyperspectral and satellite based 

systems showed strong correlations with different maize and wheat properties. 

QuickBird satellite imagery successfully mapped the spatial variability of 

aboveground biomass, which is closely linked to crop grain yield. Grain yield can 

therefore be predicted using this type of satellite imagery. Successful mapping of 

agricultural grain crops at early stages will provide a useful tool to detect areas 

suffering from stress and therefore enable remediation to be implemented to increase 

yield. Avoiding and managing crop stress in the Nile Valley may increase and even 
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double crop productivity, which is crucial to a country like Egypt to sustain the rapid 

population growth. 

Detecting stressed areas can help manage limited water and land resources more 

efficiently. For example, SPOT HRV scene showed that using centre pivot irrigation 

system led to high biomass, which was an indicator of crop status in comparison to 

near fields (the Bangar site) irrigated by conventional irrigation method. Although the 

cost of this type of irrigation system is initially high, in the long term it will be very 

economical in terms of crop productivity and resource use. The centre pivot irrigation 

systems have very high irrigation efficiency since they provide plants with the 

required amounts of water, fertilizers and chemicals. The high efficiency of this 

system will save at least 30% of irrigation water (deep percolation losses) and 

consequently this amount can be used to expand the cultivated area. 

Similar to the results obtained in this research, previous studies showed the possibility 

of using satellite imagery to predict crop properties. High spatial resolution imagery 

offers new opportunities for crop management (Yang et al., 2006a). They concluded 

that cotton yield was successfully mapped using both QuickBird and airborne images. 

In a sorghum field experiment, Yang et al. (2006b) established a strong significant 

relationship between sorghum grain yield and both datasets of QuickBird and airborne 

images. Reyniers and Vrindts (2006) also established a strong correlation between 

NDVI derived from both Ikonos and multispectral radiometer and nitrogen variability 

in a wheat field under various seeding densities and nitrogen application rates. Wu et 

al. (2007a and 2007b) utilised QuickBird satellite images to estimate chlorophyll 

concentration and LAI of potato and maize canopies and showed the possibility of 

using this type of imagery to detect crop properties. The results obtained from our 

research showed the potential of QuickBird images to detect stress at local scale, 

however, cloud interference and high cost of these images could limit the use of them 

in making timely management decisions (Wu et al., 2007a). High spatial resolution 

satellite imagery has the potential for mapping crop growth variability and identifying 

problem areas within fields (Yang et al., 2006b). The results therefore suggest that 

QuickBird satellite images could provide useful data to detect stress at both within 

field and local scales. Moreover, SPOT HRV and/or ASTER images could give a 

general insight about stress trends at regional scales at a cheap cost in the same time. 
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7.6 Key findings 

7.6.1 Hypotheses 
1. Moisture and salinity induced stress greatly affected wheat and maize grain 

yield. 

It has been demonstrated that the grain yield of both wheat and maize crops were 

significantly affected by both moisture and salinity stress in all greenhouse 

experiments. Wheat was less affected by both stressors than maize, hence maize 

would benefit from being grown in less stressed areas less likely to experience 

these stresses.  

2. In situ hyperspectral measurements are able to detect stress in wheat and 

maize resulting from moisture and salinity stress. 

The results showed that broad band and hyperspectral vegetation indices derived 

from in situ spectroradiometry measurements can detect stress as well as various 

biophysical and biochemical properties of maize and wheat. Different indices 

strongly correlated with the grain yield of both wheat and maize.   

3. Moisture induced stress and salinity induced stress can be distinguished 

spectrally. 

The analysis showed that for the first time that moisture and salinity induced 

stress can be distinguished in wheat and maize. PCA of the hyperspectral data 

(400 nm-900 nm) successfully showed the dissimilarities between plants affected 

by moisture and salinity induced stress particularly at the grain filling stage in 

wheat and at the flowering stage in maize. At early stages, overlap between 

moisture and salinity stress was detected. Despite the late distinction between the 

two stressors, these results can be used as a reference for following seasons. 

4. High spatial resolution remote sensing imagery can detect stress in wheat and 

maize at local and regional scales and therefore contribute to maximising 

crop productivity. 

This hypothesis has been proven since both QuickBird and SPOT HRV images 

successfully mapped and detected stress in wheat and maize. The processed 
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images showed for the first time the extent of crop stress at both regional and local 

scales. In addition, QuickBird image data strongly correlated with maize and 

wheat biomass, which is closely linked with grain yield. It is therefore possible to 

map and estimate grain yield during the growing season through remotely sensed 

data. 

7.6.2 Redesigning irrigation system 
There is a clear need to redesign the irrigation system as the SPOT HRV image 

showed that the newly reclaimed areas at the Bangar site are suffering from severe 

moisture stress, particularly at the border between cultivated land and the west desert. 

Furthermore, the soil in this site had low fertility due to very low nitrogen 

concentration. Additionally, the sandy to sandy loam texture leads to a high 

infiltration rate, which results in massive water losses through deep percolation. Soils 

with such specifications need much more efficient agricultural practices.  

The 9th July SPOT HRV image showed that the centre pivot irrigation system 

produced the highest vegetation cover for maize crops in south-west Alexandria since 

it has high irrigation efficiency. Crops are provided with the optimum amount of 

water, chemicals and fertilizers. Keeping water losses at a minimum and reducing the 

risk of soils and surface water contamination.  

7.6.3 The spatial perspective on stress 
Our research also demonstrated the ability to distinguish between healthy and stressed 

areas and even identify different crops within field system through the combined 

approach of ground and satellite based platforms. The results highlight the importance 

of crop choice in maximising productivity in areas experiencing stress. For example 

wheat crop showed high tolerance to both moisture and salinity and therefore can be 

successfully grown in such areas. Sensitive crops such as maize should be grown in 

less stressed areas near the main irrigation canals (e.g. Mynofia and Dakahlia). 

It is also further shown that crop grain yield can be effectively estimated through 

remotely sensed data before crop maturation. Predicting different biophysical and 

biochemical properties of crops, which are closely linked with crop yield, can increase 

crop productivity by avoiding stress at specific growth stages (e.g. grain filling stage). 
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Moreover, applying efficient irrigation systems will increase crop productivity and 

increase water use efficiency (the amount of grain per unit area in; e.g. kg m-1). 

Some farmers grow rice crops in sandy and sandy loam soils (high infiltration rate), 

which is not allawed due to limited water resources. As a result, the Egyptian 

Government introduced a penalty to farmers who grow rice in such soils. Using 

remote sensing technique as a useful tool for policing areas of rice crops will deter 

farmers from growing rice in these areas. Remote sensing therefore would be a useful 

quick tool to target these fields and can be a robust policing tool to identify contrary 

irrigation practices. 

7.6.4 Distinguishing sources of stress 
The research presented in this thesis showed the potential of in situ hyperspectral 

measurements to detect stress and even distinguish between moisture and salinity 

induced stress. PCA successfully showed dissimilarities in plant responses resulting 

from moisture and salinity stress. Due to limitations in spectral resolution of high 

spatial resolution images, it is difficult to distinguish between moisture and salinity 

induced stress. However, new platforms such as VENUS and HyspIRI with high 

spectral resolution (more than 200 spectral bands) can enhance the ability of remote 

sensing imagery to detect stress in crops and even distinguish sources of stress at a 

regional scale. In addition, Hyperion can provide reliable satellite imagery to 

differentiate sources of stress.  

These new platforms can provide decision makers with better understanding about 

areas, which suffer from moisture and/or salinity induced stress, and consequently, 

take informed decisions to follow the right irrigation policy. For example, areas 

suffering from salinity stress can be flooded with fresh water for two or three times to 

reduce the salinity effects on plants. Moreover, areas irrigated using trickle irrigation 

system sometimes suffer from slight salinity stress as a result of partial-wet zones, 

which can be identified using these hyperspectral platforms and consequently take a 

quick decision to solve the problem and avoid yield reductions.  

7.6.5 Contribution 
Chapter 4, 5 and 6 demonstrated the potential of detecting stress in wheat and maize 

crops using both in situ hyperspectral and satellite remote sensing data. Importantly, 
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the data have shown for the first time the spatial extent of stress across a portion of 

the Nile Delta. This has illustrated the considerable potential for improving crop yield 

and the framework for better management of water and land resources. From this 

spatial context it may be possible to undertake a cost benefit analysis of the cost of 

improving irrigation system compared with the improvement in crop yield. At this 

scale there is clear need for the government in formulating policy and regulations to 

stimulate this type of development. 

The remote sensing data have demonstrated that a substantial improvement in crop 

productivity can be gained by redesigning irrigation systems to those such as the 

centre pivot system and forms of drip irrigation. As new areas become developed (e.g. 

Toshki and Sinai in southern and northern Egypt) and pressures from population and 

climate change, this type of modification will become a priority for Egypt. In this 

context, remote sensing has the potential of forecasting crop yield and targeting areas 

requiring attention and policing. This type of monitoring can be performed by SPOT 

HRV and QuickBird or similar platforms. Mapping south-west Alexandria by SPOT 

HRV satellite established a decreasing stress trend from the edge of cultivated land to 

inside the Nile Delta which is a sign of shortage of water and poor agricultural 

practices in this area or may have been a result of combined effects of both salinity 

and moisture stressors. In addition, identifying the area occupied by each crop will be 

very useful in determining the amount of water required for the whole regions, and 

thus assessing the size of irrigation channels required to supply the sufficient 

irrigation water. Newly reclaimed areas in Toshki and Sainai will affect water 

resources for the existing cultivated land in the Nile Valley and Delta, so accurate 

techniques of crop monitoring such as remote sensing are crucial. 

The application of high spatial resolution remotely sensed data in monitoring 

agricultural crops as a precision farming tool has many benefits for wheat and maize 

growers. Firstly, by detecting stress at early stages informed decisions can be made to 

improve agricultural practices. Secondly, remotely sensed data can be used to predict 

grain yield and thereby provide a rough estimate of the potential income. In addition, 

remotely sensed data can reduce inputs for agricultural production by providing 

accurate data for optimising seed rates and application rates for fertilisers, fungicide 

and pesticides. Finally, lowering application rates (fertilizers, fungicide, pesticide and 
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seeds) and input costs tend to lead to an increase in overall income and would be 

useful for extending the area of cultivated land. 

As the pressure on water resources increases and climate change further influences 

water availability, issues of salinity induced stress may also become more important. 

The ability of hyperspectral platforms to distinguish moisture and salinity stress is a 

particularly novel finding from this research. In the immediate future, this type of 

analysis may be performed from in situ data.  

In conclusion, mapping crop health in an area like south-west Alexandria by means of 

remotely sensed data can be used efficiently to make informed decisions in site 

specific management. The valuable information obtained by SPOT HRV images can 

be used as a policing tool for detecting prohibited agricultural practices. Both 

QuickBird and SPOT HRV images produced representative maps of crop stress at 

local and regional scales. However, remote sensing data collection in this research has 

been restricted by some limitations, which are now being summarized.  

7.6.6 Limitations 
• The commercial availability of high spectral resolution satellite imagery 

(Hyperion) was a problem. However, this kind of satellite imagery may 

provide agronomists with better understanding for detecting changes in plant 

physiology resulting from different stressors. 

• Weather conditions in winter restricted the acquisition of satellite imagery 

particularly high spectral resolution (Hyperion). Owing to problems with 

Hyperion, other images had to be acquired resulting in a large time difference 

between in situ measurements and satellite image acquisition.  In this research 

in situ data was collected approximately 10 days before the acquisition of 

QuickBird satellite imagery, which decrease the relationship between both 

datasets. 

• Small-field systems in Egypt make it problematic to use satellite imagery with 

spatial resolutions greater than 10 m. Overlap between spectral signatures 

from different fields with different crops leads to poor relationships between 

different crop properties and spectral datasets. 
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• Time series satellite imagery was needed for monitoring wheat crop 

development throughout the growing season to detect stress as early as 

possible and avoid reduction in crop productivity. Platforms with high revisit 

cycles would resolve this issue since new platforms provide images with 2-3 

revisit cycles. Due to the weather conditions in winter, there is no guarantee 

for image acquisition since sometimes the cloud cover is over 75%. 

• The only available QuickBird image for winter wheat crop in south-west 

Alexandria was associated with 33% cloud cover and consequently many 

fields of the in situ hyperspectral survey were covered by clouds and 

associated shadows. This restricted the comparison between in situ 

hyperspectral and satellite data.  

• Assistance from farmers during field work visits was very limited as some 

farmers refused to provide vegetation samples. To increase cooperativeness 

local farmers in Egypt should be notified and trained by local authorities 

regarding scientific research and new technologies. 

• There was a lack of equipment to extract chlorophylls and pigments during 

field work visits, hence, the chlorophyll concentration was determined by 

a SPAD meter which only provides a relative measure for total chlorophyll. 

• Different sowing dates for maize crops in south-west Alexandria sometimes 

hindered the distinction between moisture and salinity induced stress. Farmers 

grow maize in that area following wheat and clover, which are harvested at 

different times. 

7.6.7 Future work 
The results obtained from this thesis suggest that both in situ hyperspectral and high 

spatial satellite remote sensing can be used to detect different biophysical and 

biochemical properties in wheat and maize. However, distinguishing different types of 

stress at early stages is still problematic and some improvements may lead to a better 

understanding of the changes in plant physiological status. For example, using 

ground-based instruments with shortwave Infrared band may lead to better results 
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regarding stress. In this context, there are some improvements to enhance the future 

work which can be summarized as follow:   

• Investigating spectral signatures from different crops and assessing the ability 

to distinguish different signatures for different crops. 

• Characterising spectral properties for the same crop at different sites with 

various soil and climatic conditions. 

• Investigating spectral signatures from the same crops under different irrigation 

systems such as sprinkler, trickle and flood irrigation and assessing the 

efficiency of irrigation system from hyperspectral datasets. 

• Use of in situ hyperspectral measurements including shortwave Infrared band, 

which might be useful in identifying wave bands sensitive to moisture and 

salinity stress.   

• Using hyperspectral satellite imagery (Hyperion, VENUS and HyspIRI) with 

low visit cycles to detect stress in different crops and identify wavelengths 

sensitive to physiological changes resulting from moisture and salinity stress. 

• High spatial and spectral resolution satellite remote sensing need to be 

evaluated for detecting stress in different crops. 

• Assessing the potential for the innovative use of remotely sensed data in 

detecting stress in crops resulting from other factors in particular pollution. 

Recently farmers in Egypt have been burning the residues of their crops after 

harvesting, especially rice straw, which produces serious air pollution during 

the summer season every year. Remote sensing imagery could identify 

accurately the polluted areas and subsequently take actions against farmers 

who do not follow the regulations could be implemented.  

• Another source of pollution which results from discharging industrial effluent 

into the River Nile needs to be investigated as many heavy metals are released 

from factories on both sides of the river. These metals could be causing stress 

in agricultural crops. Monitoring water quality in the Nile by remote sensing 
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imagery in this case could produce accurate maps of water quality identifying 

the main areas of pollution.   

7.6.8 Final conclusion 
Monitoring crop health in the Nile Valley of Egypt is based on traditional methods of 

sample-point techniques. As a result of rapid population growth but little increase in 

the amount of water and cultivated land, there is an urgent need for new technologies 

to increase and even double crop productivity in the Nile Valley of Egypt. The use of 

new technologies such as remote sensing is still restricted in the field of agriculture in 

the Nile Valley. The small-field system hinders the application of remote sensing 

techniques at an individual level since it would be costly for every farmer who owns 

less than one hectare to monitor his crops health by satellite imagery. However, 

cooperation between farmers and the Government will be very useful for applying this 

technology. Growing one crop in the same area following the same agricultural 

practices including ploughing, crop variety, nitrogen rate, irrigation interval, plant 

protection methods and sowing date will make it easier to utilise remote sensing 

techniques to detect stress in this area and resultantly enhance crop productivity.  

The combined approach of using high and moderate spatial resolution satellite remote 

sensing such as QuickBird and SPOT HRV can give a better understanding about 

stress at both local and regional scales. Due to limited spectral resolution of these 

satellite images, it is difficult to distinguish different sources of stress. However, this 

may be resolved in the next 5 years with the launch of new satellite systems (VENUS, 

2010 and HyspIRI, 2013-2016) with high spectral resolution and low revisit cycles. 

The results obtained from this research established the possibility to detect stress in 

south-west Alexandria by mapping different crop properties using both QuickBird and 

SPOT HRV images. Moreover, in situ Hyperspectral remotely sensed data 

demonstrated the ability to distinguish between moisture and salinity induced stress 

spectrally. High spectral resolution imagery (Hyperion or similar platforms) is 

therefore a reliable satellite imagery to achieve this task at a regional scale.    

This research project has demonstrated the high efficiency of high spatial resolution 

remote sensing imagery to detect stress in wheat and maize by predicting different 

plant parameters such as LAI, biomass, plant height and chlorophyll concentration. 

Using this technique in the Nile Valley will maximise the efficiency of water use and 
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decrease input costs (pesticides, fungicides, fertilizers, seeds and irrigation). Remote 

sensing can therefore be used as a useful, quick and cost-effective tool in precision 

farming and regional analysis giving timely information about crops in specific areas 

and thereby providing valuable data for decision makers.           
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APPENDIX A 

Table A1- Coefficient of correlation for the relationship between different vegetation indices and 
chlorophyll a concentration of Scottish wheat obtained at different DAS in the 2005-06 growing 
season. Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 
 

Chlorophyll a concentration (µg cm-2)  Scale Vegetation index 
73 DAS 125 DAS 181 DAS 207 DAS 225 DAS 

 NDVI -0.01 0.11 0.56 0.51 0.50 
 RVI 0.00 0.19 0.57 0.55 0.55 
 SAVI -0.08 -0.05 0.53 0.56 0.49 
 GNDVI br 0.01 0.10 0.55 0.52 0.55 
Broad DVI -0.07 -0.11 0.50 0.55 0.45 
band SR 0.00 0.19 0.57 0.55 0.55 
 SLAVI -0.01 0.11 0.56 0.51 0.50 
 OSAVI -0.07 0.00 0.55 0.55 0.49 
 VI1 0.08 0.14 -0.46 -0.46 -0.14 
 RDVI 0.00 0.17 0.57 0.54 0.54 
 SI 0.01 -0.10 -0.55 -0.51 -0.48 
 IPVI -0.01 0.11 0.56 0.51 0.50 
 WI 0.04 0.19 -0.29 -0.29 -0.24 
 PSI -0.06 0.00 0.14 -0.27 -0.09 
 NWI-1 -0.08 0.11 -0.48 -0.24 -0.29 
 NWI-2 -0.13 0.09 -0.54 -0.24 -0.30 
 NDVI hy -0.01 0.10 0.56 0.51 0.48 
 GNDVI hy 0.02 0.09 0.54 0.52 0.56 
 SIPI -0.04 0.06 0.54 0.53 0.51 
 SRPI 0.05 0.28 0.37 0.46 0.46 
 NPCI -0.02 -0.22 -0.43 -0.44 -0.44 
 NPQI -0.12 0.23 -0.21 0.17 0.35 
 PSSRb -0.07 -0.10 0.50 0.55 0.47 
 PSNDb 0.02 0.11 0.56 0.51 0.51 
 Rshoulder -0.08 -0.13 0.48 0.50 0.32 
 C420 0.08 0.15 -0.06 0.30 0.45 
 NDI -0.07 -0.11 0.50 0.55 0.45 
 SR hyper 0.01 0.21 0.57 0.56 0.54 
 R800-R550 -0.07 -0.10 0.51 0.57 0.52 
 R800/R550 0.02 0.12 0.53 0.54 0.59 
 R695/R760 0.02 -0.12 -0.56 -0.49 -0.49 
 R605/R760 0.01 -0.11 -0.56 -0.51 -0.51 
 R710/R760 -0.04 -0.12 -0.55 -0.48 -0.52 
Hyper R695/R670 0.02 0.08 0.52 0.62 0.38 
 R550 -0.09 -0.20 0.23 -0.33 -0.49 
 R675/R700 -0.01 -0.09 -0.56 -0.58 -0.41 
 R675/(R700*R650) 0.08 0.17 -0.21 0.28 0.57 
 R672/(R55*R708) 0.07 0.03 -0.47 -0.32 -0.01 
 R672/R550 0.01 -0.11 -0.56 -0.50 -0.39 
 R860/(R550*R708) 0.10 0.21 0.06 0.39 0.56 
 R750/R550 0.02 0.12 0.55 0.54 0.59 
 R750/R700 0.02 0.18 0.56 0.51 0.56 
 R725/R675 0.01 0.19 0.58 0.55 0.51 
 (R850-R710)/(R850-R680) 0.08 0.12 0.47 0.41 0.59 
 (R780-R710)/(R780-R680) 0.08 0.12 0.48 0.41 0.58 
 R700-R670 -0.09 -0.20 0.32 0.29 -0.27 
 RNDVI 0.00 0.09 0.56 0.51 0.48 
 PSR 0.00 -0.20 -0.44 -0.47 -0.43 
 WBI -0.03 0.16 -0.40 -0.32 -0.26 
 SIPI -0.03 -0.09 -0.52 -0.48 -0.41 
 YI 0.00 0.08 0.11 -0.35 -0.42 
 VI2 0.08 0.15 -0.46 -0.46 -0.15 
 Cgreen 0.02 0.12 0.53 0.54 0.59 
 Cred edge 0.02 0.18 0.54 0.51 0.56 
 C NIR 0.06 0.11 0.42 0.50 0.55 
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Table A2- Coefficient of correlation for the relationship between different vegetation indices and grain 
yield of Scottish wheat obtained at different DAS in the 2005-06 growing season. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations. 
  

Grain yield (kg m-2)  Scale Vegetation index 
73 DAS 125 DAS 181 DAS 207 DAS 225 DAS 

 NDVI 0.07 0.28 0.35 0.76 0.88 
 RVI 0.11 0.33 0.35 0.84 0.91 
 SAVI -0.15 0.30 0.40 0.71 0.86 
 GNDVI br 0.15 0.18 0.34 0.76 0.91 
Broad DVI -0.15 0.30 0.41 0.64 0.79 
band SR 0.11 0.33 0.35 0.84 0.91 
 SLAVI 0.07 0.28 0.35 0.76 0.88 
 OSAVI -0.12 0.30 0.39 0.74 0.87 
 VI1 0.16 -0.29 -0.40 -0.40 -0.28 
 RDVI 0.10 0.32 0.36 0.83 0.91 
 SI -0.06 -0.27 -0.35 -0.74 -0.86 
 IPVI 0.07 0.28 0.35 0.76 0.88 
 WI 0.20 -0.13 -0.18 -0.52 -0.75 
 PSI -0.10 0.13 -0.02 -0.09 -0.13 
 NWI-1 -0.16 0.14 -0.29 -0.56 -0.77 
 NWI-2 -0.04 0.10 -0.33 -0.56 -0.78 
 NDVI hy 0.08 0.29 0.35 0.76 0.87 
 GNDVI hy 0.19 0.15 0.32 0.75 0.91 
 SIPI 0.05 0.26 0.33 0.77 0.90 
 SRPI 0.10 0.11 0.20 0.75 0.84 
 NPCI 0.09 -0.20 -0.28 -0.71 -0.78 
 NPQI -0.11 -0.21 -0.07 0.58 0.66 
 PSSRb -0.15 0.30 0.41 0.64 0.80 
 PSNDb 0.06 0.27 0.35 0.76 0.89 
 Rshoulder -0.16 0.29 0.41 0.48 0.56 
 C420 0.23 -0.12 -0.06 0.59 0.71 
 NDI -0.15 0.30 0.41 0.64 0.79 
 SR hyper 0.13 0.36 0.34 0.85 0.90 
 R800-R550 -0.13 0.29 0.42 0.62 0.84 
 R800/R550 0.22 0.16 0.30 0.78 0.92 
 R695/R760 -0.16 -0.24 -0.35 -0.74 -0.87 
 R605/R760 -0.15 -0.24 -0.37 -0.75 -0.87 
 R710/R760 -0.33 -0.16 -0.32 -0.74 -0.89 
Hyper R695/R670 0.02 0.38 0.40 0.88 0.79 
 R550 -0.25 0.24 0.28 -0.61 -0.75 
 R675/R700 0.00 -0.35 -0.39 -0.85 -0.82 
 R675/(R700*R650) 0.25 -0.22 -0.23 0.66 0.88 
 R672/(R55*R708) 0.24 -0.33 -0.36 -0.26 -0.24 
 R672/R550 0.07 -0.35 -0.39 -0.78 -0.78 
 R860/(R550*R708) 0.31 -0.13 -0.09 0.71 0.89 
 R750/R550 0.18 0.17 0.32 0.78 0.93 
 R750/R700 0.14 0.23 0.32 0.80 0.91 
 R725/R675 0.10 0.39 0.39 0.84 0.89 
 (R850-R710)/(R850-R680) 0.33 0.04 0.21 0.66 0.86 
 (R780-R710)/(R780-R680) 0.31 0.06 0.22 0.66 0.87 
 R700-R670 -0.22 0.29 0.35 0.06 -0.19 
 RNDVI 0.05 0.29 0.35 0.76 0.87 
 PSR 0.12 -0.20 -0.29 -0.70 -0.79 
 WBI 0.24 -0.06 -0.24 -0.57 -0.77 
 SIPI -0.08 -0.24 -0.33 -0.69 -0.78 
 YI -0.28 0.34 0.08 -0.49 -0.71 
 VI2 0.17 -0.29 -0.40 -0.37 -0.27 
 Cgreen 0.22 0.16 0.30 0.78 0.92 
 Cred edge 0.18 0.21 0.30 0.80 0.91 
 C NIR 0.33 0.03 0.13 0.74 0.89 
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Table A3- Coefficient of correlation for the relationship between different vegetation indices and 
aboveground biomass of Scottish wheat obtained at different DAS in the 2005-06 growing season. 
Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 
 

Aboveground biomass (kg m-2)  Scale Vegetation index 
181 DAS 207 DAS 225 DAS 

 NDVI 0.44 0.79 0.91 
 RVI 0.44 0.83 0.91 
 SAVI 0.44 0.71 0.88 
 GNDVI br 0.43 0.79 0.92 
Broad DVI 0.43 0.62 0.81 
band SR 0.44 0.83 0.91 
 SLAVI 0.44 0.79 0.91 
 OSAVI 0.44 0.76 0.90 
 VI1 -0.41 -0.35 -0.28 
 RDVI 0.44 0.83 0.92 
 SI -0.43 -0.78 -0.89 
 IPVI 0.44 0.79 0.91 
 WI -0.25 -0.61 -0.71 
 PSI 0.04 -0.01 -0.13 
 NWI-1 -0.37 -0.60 -0.76 
 NWI-2 -0.42 -0.61 -0.78 
 NDVI hy 0.43 0.79 0.90 
 GNDVI hy 0.41 0.78 0.92 
 SIPI 0.41 0.81 0.92 
 SRPI 0.29 0.78 0.87 
 NPCI -0.35 -0.70 -0.80 
 NPQI -0.07 0.55 0.68 
 PSSRb 0.44 0.62 0.82 
 PSNDb 0.43 0.79 0.91 
 Rshoulder 0.42 0.44 0.56 
 C420 -0.04 0.58 0.72 
 NDI 0.43 0.62 0.81 
 SR hyper 0.43 0.83 0.90 
 R800-R550 0.44 0.60 0.85 
 R800/R550 0.39 0.79 0.92 
 R695/R760 -0.44 -0.78 -0.90 
 R605/R760 -0.46 -0.78 -0.90 
 R710/R760 -0.42 -0.78 -0.91 
Hyper R695/R670 0.45 0.86 0.83 
 R550 0.25 -0.67 -0.77 
 R675/R700 -0.45 -0.84 -0.86 
 R675/(R700*R650) -0.20 0.70 0.87 
 R672/(R55*R708) -0.39 -0.19 -0.26 
 R672/R550 -0.45 -0.78 -0.81 
 R860/(R550*R708) 0.00 0.73 0.87 
 R750/R550 0.41 0.79 0.92 
 R750/R700 0.42 0.80 0.90 
 R725/R675 0.47 0.82 0.89 
 (R850-R710)/(R850-R680) 0.32 0.72 0.86 
 (R780-R710)/(R780-R680) 0.33 0.72 0.87 
 R700-R670 0.32 -0.01 -0.13 
 RNDVI 0.44 0.79 0.90 
 PSR -0.37 -0.71 -0.82 
 WBI -0.30 -0.64 -0.75 
 SIPI -0.42 -0.73 -0.83 
 YI 0.11 -0.54 -0.73 
 VI2 -0.41 -0.32 -0.26 
 Cgreen 0.39 0.79 0.92 
 Cred edge 0.40 0.81 0.90 
 C NIR 0.25 0.79 0.90 
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Table A4- Coefficient of correlation for the relationship between different vegetation indices and LAI 
of Scottish wheat at different DAS in the 2005-06 growing season. Highlighted values are significant 
(P<0.05) and bold values are the strongest correlations. 
 

Leaf Area Index Scale Vegetation index 
181 DAS 207 DAS 225 DAS 

 NDVI 0.55 0.76 0.85 
 RVI 0.57 0.76 0.81 
 SAVI 0.48 0.64 0.82 
 GNDVI br 0.53 0.78 0.90 
Broad DVI 0.46 0.53 0.74 
band SR 0.57 0.76 0.81 
 SLAVI 0.55 0.76 0.85 
 OSAVI 0.51 0.71 0.84 
 VI1 -0.42 -0.23 -0.21 
 RDVI 0.57 0.77 0.84 
 SI -0.55 -0.75 -0.85 
 IPVI 0.55 0.76 0.85 
 WI -0.17 -0.65 -0.56 
 PSI 0.24 -0.12 0.00 
 NWI-1 -0.49 -0.62 -0.63 
 NWI-2 -0.53 -0.64 -0.64 
 NDVI hy 0.55 0.76 0.84 
 GNDVI hy 0.52 0.78 0.90 
 SIPI 0.53 0.80 0.90 
 SRPI 0.36 0.74 0.81 
 NPCI -0.42 -0.62 -0.67 
 NPQI -0.18 0.46 0.68 
 PSSRb 0.46 0.52 0.75 
 PSNDb 0.56 0.76 0.85 
 Rshoulder 0.43 0.33 0.49 
 C420 -0.10 0.49 0.57 
 NDI 0.46 0.53 0.74 
 SR hyper 0.56 0.76 0.79 
 R800-R550 0.46 0.51 0.81 
 R800/R550 0.51 0.79 0.88 
 R695/R760 -0.55 -0.75 -0.84 
 R605/R760 -0.54 -0.76 -0.87 
 R710/R760 -0.53 -0.76 -0.85 
Hyper R695/R670 0.58 0.79 0.78 
 R550 0.21 -0.74 -0.79 
 R675/R700 -0.57 -0.77 -0.79 
 R675/(R700*R650) -0.09 0.74 0.82 
 R672/(R55*R708) -0.41 -0.04 -0.16 
 R672/R550 -0.58 -0.71 -0.71 
 R860/(R550*R708) 0.16 0.76 0.81 
 R750/R550 0.52 0.78 0.88 
 R750/R700 0.54 0.75 0.80 
 R725/R675 0.60 0.73 0.80 
 (R850-R710)/(R850-R680) 0.42 0.75 0.82 
 (R780-R710)/(R780-R680) 0.43 0.74 0.83 
 R700-R670 0.32 -0.11 -0.11 
 RNDVI 0.56 0.76 0.84 
 PSR -0.42 -0.65 -0.71 
 WBI -0.32 -0.68 -0.60 
 SIPI -0.50 -0.70 -0.78 
 YI 0.20 -0.64 -0.72 
 VI2 -0.42 -0.20 -0.20 
 Cgreen 0.51 0.79 0.88 
 Cred edge 0.53 0.76 0.80 
 C NIR 0.36 0.81 0.84 
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Table A5- Coefficient of correlation for the relationship between different vegetation indices and leaf 
water content of Scottish wheat obtained at different DAS in the 2005-06 growing season. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlations. 
 

Leaf water content (%) Scale Vegetation index 
181 DAS 207 DAS 225 DAS 

 NDVI 0.43 0.82 0.92 
 RVI 0.42 0.81 0.85 
 SAVI 0.39 0.78 0.89 
 GNDVI br 0.41 0.79 0.92 
Broad DVI 0.39 0.70 0.82 
band SR 0.42 0.81 0.85 
 SLAVI 0.43 0.82 0.92 
 OSAVI 0.41 0.81 0.91 
 VI1 -0.37 -0.46 -0.29 
 RDVI 0.42 0.83 0.89 
 SI -0.43 -0.81 -0.92 
 IPVI 0.43 0.82 0.92 
 WI -0.09 -0.59 -0.71 
 PSI 0.07 0.04 -0.22 
 NWI-1 -0.30 -0.51 -0.78 
 NWI-2 -0.36 -0.52 -0.80 
 NDVI hy 0.42 0.82 0.91 
 GNDVI hy 0.40 0.78 0.91 
 SIPI 0.40 0.81 0.91 
 SRPI 0.30 0.81 0.90 
 NPCI -0.35 -0.75 -0.81 
 NPQI -0.07 0.55 0.69 
 PSSRb 0.39 0.70 0.82 
 PSNDb 0.43 0.81 0.92 
 Rshoulder 0.37 0.54 0.56 
 C420 -0.04 0.63 0.73 
 NDI 0.39 0.70 0.82 
 SR hyper 0.40 0.81 0.85 
 R800-R550 0.39 0.68 0.84 
 R800/R550 0.37 0.75 0.87 
 R695/R760 -0.43 -0.80 -0.92 
 R605/R760 -0.44 -0.80 -0.92 
 R710/R760 -0.41 -0.79 -0.92 
Hyper R695/R670 0.44 0.86 0.83 
 R550 0.21 -0.60 -0.75 
 R675/R700 -0.43 -0.86 -0.87 
 R675/(R700*R650) -0.13 0.63 0.84 
 R672/(R55*R708) -0.36 -0.33 -0.27 
 R672/R550 -0.44 -0.83 -0.82 
 R860/(R550*R708) 0.05 0.65 0.83 
 R750/R550 0.39 0.75 0.88 
 R750/R700 0.40 0.80 0.86 
 R725/R675 0.44 0.81 0.85 
 (R850-R710)/(R850-R680) 0.31 0.71 0.87 
 (R780-R710)/(R780-R680) 0.33 0.70 0.89 
 R700-R670 0.28 0.13 -0.09 
 RNDVI 0.43 0.82 0.92 
 PSR -0.36 -0.76 -0.84 
 WBI -0.15 -0.62 -0.75 
 SIPI -0.41 -0.78 -0.87 
 YI 0.19 -0.45 -0.71 
 VI2 -0.37 -0.43 -0.26 
 Cgreen 0.37 0.75 0.87 
 Cred edge 0.38 0.80 0.86 
 C NIR 0.23 0.78 0.89 
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Table A6- Coefficient of correlation for the relationship between different vegetation indices and plant 
height of Scottish wheat obtained at different DAS in the 2005-06 growing season. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations.  
 

Plant height (m) Scale Vegetation index 
73 DAS 125 DAS 181 DAS 207 DAS 225 DAS 

 NDVI -0.30 0.46 0.55 0.85 0.88 
 RVI -0.28 0.45 0.51 0.82 0.84 
 SAVI -0.40 0.37 0.53 0.77 0.85 
 GNDVI br -0.33 0.45 0.54 0.85 0.91 
Broad DVI -0.40 0.35 0.51 0.68 0.79 
band SR -0.28 0.45 0.51 0.82 0.84 
 SLAVI -0.30 0.46 0.55 0.85 0.88 
 OSAVI -0.39 0.41 0.55 0.82 0.87 
 VI1 0.40 -0.32 -0.48 -0.40 -0.29 
 RDVI -0.29 0.46 0.52 0.84 0.87 
 SI 0.30 -0.46 -0.55 -0.84 -0.87 
 IPVI -0.30 0.46 0.55 0.85 0.88 
 WI -0.07 -0.06 -0.11 -0.70 -0.62 
 PSI 0.00 0.16 0.01 -0.07 -0.20 
 NWI-1 -0.04 -0.08 -0.39 -0.56 -0.70 
 NWI-2 -0.15 -0.11 -0.46 -0.59 -0.71 
 NDVI hy -0.24 0.44 0.54 0.85 0.86 
 GNDVI hy -0.29 0.44 0.53 0.84 0.91 
 SIPI -0.20 0.44 0.54 0.86 0.90 
 SRPI 0.21 0.14 0.29 0.83 0.83 
 NPCI -0.05 -0.19 -0.34 -0.73 -0.74 
 NPQI -0.01 -0.21 -0.10 0.51 0.67 
 PSSRb -0.40 0.36 0.51 0.67 0.80 
 PSNDb -0.29 0.48 0.54 0.85 0.88 
 Rshoulder -0.40 0.33 0.49 0.49 0.56 
 C420 0.20 -0.03 -0.14 0.60 0.67 
 NDI -0.40 0.35 0.51 0.68 0.79 
 SR hyper -0.22 0.44 0.50 0.82 0.83 
 R800-R550 -0.40 0.37 0.51 0.66 0.84 
 R800/R550 -0.27 0.41 0.49 0.81 0.89 
 R695/R760 0.30 -0.48 -0.55 -0.84 -0.87 
 R605/R760 0.28 -0.49 -0.57 -0.84 -0.89 
 R710/R760 0.19 -0.47 -0.52 -0.84 -0.88 
Hyper R695/R670 -0.08 0.33 0.53 0.86 0.78 
 R550 -0.37 0.12 0.28 -0.71 -0.75 
 R675/R700 0.16 -0.35 -0.55 -0.87 -0.81 
 R675/(R700*R650) 0.29 -0.06 -0.26 0.70 0.83 
 R672/(R55*R708) 0.35 -0.27 -0.49 -0.20 -0.20 
 R672/R550 0.21 -0.34 -0.53 -0.81 -0.74 
 R860/(R550*R708) 0.26 0.11 0.01 0.73 0.83 
 R750/R550 -0.29 0.42 0.51 0.81 0.89 
 R750/R700 -0.32 0.45 0.49 0.82 0.84 
 R725/R675 -0.22 0.44 0.54 0.81 0.83 
 (R850-R710)/(R850-R680) -0.35 0.38 0.39 0.79 0.86 
 (R780-R710)/(R780-R680) -0.27 0.40 0.41 0.79 0.86 
 R700-R670 -0.36 0.19 0.39 0.03 -0.12 
 RNDVI -0.24 0.44 0.55 0.85 0.87 
 PSR -0.04 -0.18 -0.36 -0.75 -0.76 
 WBI -0.16 -0.06 -0.25 -0.72 -0.67 
 SIPI 0.18 -0.34 -0.49 -0.81 -0.80 
 YI -0.44 0.42 0.11 -0.60 -0.68 
 VI2 0.39 -0.32 -0.48 -0.37 -0.28 
 Cgreen -0.27 0.41 0.49 0.81 0.89 
 Cred edge -0.31 0.45 0.47 0.82 0.84 
 C NIR -0.28 0.33 0.31 0.85 0.87 
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Table A7- Coefficient of correlation for the relationship between different vegetation indices and 
chlorophyll a of Egyptian wheat obtained at different DAS in spring season 2006. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations. 
 

Chlorophyll a concentration (µg cm-2) Scale Vegetation index 
57 DAS 78 DAS 91 DAS 103 DAS 127 DAS 

 NDVI -0.01 0.38 0.58 0.59 0.68 
 RVI 0.02 0.42 0.58 0.59 0.68 
 SAVI 0.09 0.39 0.60 0.62 0.69 
 GNDVI br -0.01 0.10 0.50 0.58 0.31 
 DVI 0.11 0.38 0.60 0.54 0.67 
Broad SR 0.02 0.42 0.58 0.59 0.68 
band SLAVI -0.01 0.38 0.58 0.59 0.68 
 OSAVI 0.05 0.40 0.59 0.62 0.69 
 VI1 -0.15 -0.35 -0.56 -0.16 -0.49 
 RDVI 0.01 0.41 0.58 0.60 0.68 
 SI 0.02 -0.37 -0.58 -0.58 -0.68 
 IPVI -0.01 0.38 0.58 0.59 0.68 
 WI 0.34 0.26 -0.18 -0.37 -0.40 
 PSI -0.10 0.40 0.52 0.46 0.24 
 NWI-1 0.04 0.17 -0.48 -0.23 -0.39 
 NWI-2 0.05 0.18 -0.49 -0.32 -0.37 
 NDVI hy -0.03 0.40 0.58 0.60 0.67 
 GNDVI hy 0.01 0.07 0.47 0.57 0.29 
 SIPI 0.02 0.42 0.58 0.62 0.64 
 SRPI -0.12 0.04 0.57 0.37 -0.04 
 NPCI 0.06 -0.02 -0.57 -0.46 0.28 
 NPQI -0.27 -0.46 0.34 -0.05 -0.53 
 PSSRb 0.13 0.39 0.60 0.51 0.65 
 PSNDb 0.02 0.43 0.58 0.59 0.68 
 Rshoulder 0.14 0.35 0.58 0.25 0.49 
 C420 0.05 -0.05 0.46 0.13 -0.54 
 NDI 0.11 0.38 0.60 0.54 0.67 
 SR hyper 0.00 0.44 0.57 0.60 0.66 
 R800-R550 0.12 0.31 0.57 0.43 0.34 
 R800/R550 0.01 0.09 0.48 0.58 0.28 
 R695/R760 -0.01 -0.45 -0.57 -0.58 -0.61 
 R605/R760 0.04 -0.11 -0.52 -0.58 -0.35 
 R710/R760 -0.09 -0.50 -0.55 -0.56 -0.61 
Hyper R695/R670 -0.15 0.00 0.62 0.62 0.57 
 R550 0.15 0.25 0.01 -0.20 0.32 
 R675/R700 0.15 -0.15 -0.61 -0.62 -0.66 
 R675/(R700*R650) -0.06 -0.09 0.38 0.27 -0.30 
 R672/(R55*R708) -0.03 -0.33 -0.64 -0.42 -0.51 
 R672/R550 0.01 -0.40 -0.61 -0.59 -0.31 
 R860/(R550*R708) -0.04 -0.04 0.42 0.42 -0.06 
 R750/R550 0.04 0.09 0.48 0.58 0.29 
 R750/R700 0.10 0.47 0.55 0.58 0.59 
 R725/R675 -0.05 0.39 0.58 0.61 0.65 
 (R850-R710)/(R850-R680) 0.31 0.52 0.39 0.38 -0.58 
 (R780-R710)/(R780-R680) 0.30 0.52 0.42 0.39 -0.57 
 R700-R670 0.02 0.03 0.58 0.26 0.62 
 RNDVI -0.02 0.36 0.58 0.60 0.67 
 PSR 0.07 -0.02 -0.58 -0.45 0.29 
 WBI 0.14 0.12 -0.19 -0.31 -0.37 
 SIPI 0.01 -0.32 -0.56 -0.53 -0.61 
 YI 0.26 0.32 0.35 0.43 0.04 
 VI2 -0.14 -0.33 -0.56 -0.12 -0.45 
 Cgreen 0.01 0.09 0.48 0.58 0.28 
 Cred edge 0.09 0.48 0.55 0.58 0.61 
 C NIR 0.20 0.51 0.47 0.55 0.47 
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Table A8- Coefficient of correlation for the relationship between different vegetation indices and grain 
yield of Egyptian wheat obtained at different DAS in spring season of 2006. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Grain yield (kg m-2) Scale Vegetation index 
57 DAS 78 DAS 91 DAS 103 DAS 127 DAS 

 NDVI 0.20 0.71 0.95 0.90 0.78 
 RVI 0.23 0.72 0.96 0.93 0.78 
 SAVI 0.13 0.73 0.94 0.78 0.76 
 GNDVI br 0.26 0.20 0.91 0.87 0.20 
 DVI 0.11 0.71 0.92 0.58 0.78 
Broad SR 0.23 0.72 0.96 0.93 0.78 
band SLAVI 0.20 0.71 0.95 0.90 0.78 
 OSAVI 0.15 0.76 0.95 0.86 0.78 
 VI1 -0.05 -0.66 -0.78 0.01 -0.42 
 RDVI 0.22 0.72 0.96 0.93 0.78 
 SI -0.19 -0.71 -0.94 -0.88 -0.78 
 IPVI 0.20 0.71 0.95 0.90 0.78 
 WI 0.02 0.49 -0.49 -0.74 -0.71 
 PSI -0.22 0.59 0.41 0.70 0.35 
 NWI-1 0.20 0.30 -0.73 -0.49 -0.69 
 NWI-2 0.18 0.30 -0.81 -0.67 -0.67 
 NDVI hy 0.19 0.73 0.94 0.90 0.81 
 GNDVI hy 0.29 0.14 0.87 0.87 0.16 
 SIPI 0.16 0.82 0.93 0.87 0.72 
 SRPI 0.14 -0.02 0.94 0.67 0.13 
 NPCI -0.24 0.11 -0.96 -0.79 0.32 
 NPQI -0.18 -0.52 0.62 0.11 -0.64 
 PSSRb 0.12 0.72 0.92 0.55 0.71 
 PSNDb 0.23 0.75 0.95 0.89 0.76 
 Rshoulder 0.06 0.66 0.84 0.10 0.43 
 C420 0.34 -0.31 0.87 0.39 -0.62 
 NDI 0.11 0.71 0.92 0.58 0.78 
 SR hyper 0.22 0.73 0.97 0.94 0.80 
 R800-R550 0.13 0.58 0.90 0.42 0.28 
 R800/R550 0.30 0.16 0.87 0.89 0.18 
 R695/R760 -0.25 -0.80 -0.94 -0.87 -0.76 
 R605/R760 -0.24 -0.30 -0.92 -0.88 -0.26 
 R710/R760 -0.30 -0.77 -0.94 -0.87 -0.66 
Hyper R695/R670 0.00 0.18 0.93 0.93 0.64 
 R550 -0.05 0.49 -0.26 -0.52 0.29 
 R675/R700 -0.02 -0.47 -0.96 -0.92 -0.79 
 R675/(R700*R650) 0.17 -0.26 0.77 0.68 -0.14 
 R672/(R55*R708) 0.02 -0.71 -0.88 -0.38 -0.55 
 R672/R550 -0.10 -0.71 -0.91 -0.90 -0.51 
 R860/(R550*R708) 0.22 -0.19 0.86 0.84 -0.04 
 R750/R550 0.31 0.16 0.87 0.89 0.21 
 R750/R700 0.32 0.75 0.96 0.91 0.74 
 R725/R675 0.16 0.72 0.97 0.94 0.81 
 (R850-R710)/(R850-R680) 0.30 0.65 0.85 0.66 -0.72 
 (R780-R710)/(R780-R680) 0.36 0.67 0.87 0.68 -0.67 
 R700-R670 -0.03 0.30 0.68 0.10 0.75 
 RNDVI 0.20 0.70 0.95 0.90 0.81 
 PSR -0.24 0.11 -0.96 -0.76 0.33 
 WBI -0.15 0.27 -0.59 -0.67 -0.67 
 SIPI -0.21 -0.42 -0.89 -0.81 -0.79 
 YI -0.03 0.52 0.08 0.73 0.02 
 VI2 -0.05 -0.64 -0.77 0.06 -0.38 
 Cgreen 0.30 0.16 0.87 0.89 0.18 
 Cred edge 0.31 0.75 0.96 0.91 0.73 
 C NIR 0.36 0.64 0.89 0.87 0.38 
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Table A9- Coefficient of correlation for the relationship between different vegetation indices and 
aboveground biomass of Egyptian wheat obtained at different DAS in spring season of 2006. 
Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 
 

Aboveground biomass (kg m-2) Scale Vegetation index 
57 DAS 78 DAS 91 DAS 103 DAS 127 DAS 

 NDVI 0.10 0.72 0.97 0.91 0.87 
 RVI 0.13 0.72 0.97 0.91 0.87 
 SAVI 0.04 0.77 0.96 0.81 0.84 
 GNDVI br 0.14 0.24 0.91 0.91 0.21 
Broad DVI 0.03 0.74 0.94 0.61 0.85 
band SR 0.13 0.72 0.97 0.91 0.87 
 SLAVI 0.10 0.72 0.97 0.91 0.87 
 OSAVI 0.05 0.80 0.97 0.88 0.86 
 VI1 0.00 -0.68 -0.81 -0.01 -0.47 
 RDVI 0.12 0.72 0.98 0.92 0.87 
 SI -0.08 -0.72 -0.96 -0.90 -0.87 
 IPVI 0.10 0.72 0.97 0.91 0.87 
 WI -0.01 0.49 -0.55 -0.71 -0.73 
 PSI -0.28 0.58 0.46 0.68 0.43 
 NWI-1 0.24 0.29 -0.79 -0.57 -0.71 
 NWI-2 0.23 0.33 -0.85 -0.74 -0.68 
 NDVI hy 0.08 0.74 0.97 0.91 0.89 
 GNDVI hy 0.17 0.18 0.87 0.91 0.18 
 SIPI 0.05 0.85 0.96 0.92 0.82 
 SRPI 0.10 -0.03 0.95 0.66 0.13 
 NPCI -0.17 0.13 -0.96 -0.72 0.38 
 NPQI -0.16 -0.51 0.55 0.02 -0.66 
 PSSRb 0.04 0.75 0.94 0.58 0.79 
 PSNDb 0.12 0.77 0.97 0.91 0.86 
 Rshoulder 0.00 0.69 0.86 0.13 0.47 
 C420 0.31 -0.34 0.84 0.31 -0.70 
 NDI 0.03 0.74 0.94 0.61 0.85 
 SR hyper 0.12 0.74 0.97 0.91 0.89 
 R800-R550 0.05 0.61 0.91 0.45 0.30 
 R800/R550 0.18 0.18 0.86 0.92 0.19 
 R695/R760 -0.14 -0.81 -0.96 -0.89 -0.85 
 R605/R760 -0.12 -0.34 -0.93 -0.90 -0.29 
 R710/R760 -0.19 -0.78 -0.96 -0.89 -0.79 
Hyper R695/R670 -0.08 0.17 0.93 0.89 0.68 
 R550 -0.06 0.51 -0.22 -0.52 0.34 
 R675/R700 0.06 -0.47 -0.97 -0.91 -0.85 
 R675/(R700*R650) 0.18 -0.32 0.76 0.66 -0.19 
 R672/(R55*R708) 0.09 -0.73 -0.91 -0.37 -0.62 
 R672/R550 -0.02 -0.68 -0.94 -0.89 -0.57 
 R860/(R550*R708) 0.21 -0.22 0.86 0.83 -0.06 
 R750/R550 0.19 0.17 0.87 0.92 0.21 
 R750/R700 0.22 0.75 0.98 0.91 0.83 
 R725/R675 0.07 0.73 0.97 0.91 0.89 
 (R850-R710)/(R850-R680) 0.26 0.67 0.86 0.71 -0.75 
 (R780-R710)/(R780-R680) 0.31 0.67 0.88 0.73 -0.71 
 R700-R670 -0.09 0.32 0.71 0.10 0.79 
 RNDVI 0.09 0.70 0.97 0.91 0.89 
 PSR -0.16 0.13 -0.95 -0.70 0.39 
 WBI -0.19 0.30 -0.62 -0.65 -0.68 
 SIPI -0.11 -0.37 -0.92 -0.82 -0.86 
 YI -0.03 0.52 0.14 0.74 0.06 
 VI2 0.00 -0.66 -0.80 0.05 -0.42 
 Cgreen 0.18 0.18 0.86 0.92 0.19 
 Cred edge 0.21 0.76 0.97 0.91 0.83 
 C NIR 0.30 0.67 0.91 0.90 0.48 
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Table A10- Coefficient of correlation for the relationship between different vegetation indices and leaf 
water content of Egyptian wheat obtained at different DAS in spring season of 2006. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlations. 
 

Leaf water content (%)  Scale Vegetation index 
57 DAS 78 DAS 91 DAS 103 DAS 127DAS 

 NDVI -0.24 0.08 0.97 0.94 0.89 
 RVI -0.22 0.04 0.88 0.90 0.88 
 SAVI -0.26 0.02 0.96 0.79 0.83 
 GNDVI br -0.23 -0.01 0.88 0.94 0.12 
 DVI -0.25 0.00 0.95 0.57 0.85 
Broad SR -0.22 0.04 0.88 0.90 0.88 
band SLAVI -0.24 0.08 0.97 0.94 0.89 
 OSAVI -0.27 0.04 0.97 0.89 0.87 
 VI1 0.21 0.01 -0.84 0.04 -0.45 
 RDVI -0.23 0.05 0.93 0.93 0.89 
 SI 0.25 -0.08 -0.98 -0.94 -0.90 
 IPVI -0.24 0.08 0.97 0.94 0.89 
 WI -0.08 0.12 -0.56 -0.74 -0.72 
 PSI -0.09 0.08 0.51 0.69 0.52 
 NWI-1 -0.12 0.16 -0.75 -0.54 -0.71 
 NWI-2 -0.05 0.15 -0.84 -0.71 -0.69 
 NDVI hy -0.24 0.07 0.97 0.94 0.93 
 GNDVI hy -0.23 -0.02 0.84 0.93 0.08 
 SIPI -0.30 0.05 0.97 0.94 0.82 
 SRPI 0.03 0.05 0.95 0.69 0.19 
 NPCI 0.04 -0.01 -0.91 -0.74 0.36 
 NPQI 0.39 0.16 0.47 0.09 -0.64 
 PSSRb -0.24 0.00 0.95 0.54 0.75 
 PSNDb -0.24 0.10 0.97 0.94 0.86 
 Rshoulder -0.22 -0.01 0.88 0.07 0.43 
 C420 0.16 0.13 0.79 0.35 -0.68 
 NDI -0.25 0.00 0.95 0.57 0.85 
 SR hyper -0.21 0.03 0.89 0.89 0.92 
 R800-R550 -0.24 -0.02 0.90 0.40 0.18 
 R800/R550 -0.21 -0.04 0.81 0.92 0.07 
 R695/R760 0.21 -0.12 -0.97 -0.93 -0.93 
 R605/R760 0.21 -0.02 -0.92 -0.94 -0.22 
 R710/R760 0.19 -0.12 -0.96 -0.92 -0.85 
Hyper R695/R670 -0.19 -0.11 0.86 0.87 0.63 
 R550 -0.16 0.01 -0.12 -0.57 0.42 
 R675/R700 0.24 0.03 -0.95 -0.92 -0.86 
 R675/(R700*R650) 0.16 0.02 0.68 0.73 -0.18 
 R672/(R55*R708) 0.23 -0.06 -0.93 -0.33 -0.68 
 R672/R550 0.21 -0.10 -0.95 -0.91 -0.67 
 R860/(R550*R708) 0.08 -0.01 0.79 0.89 -0.11 
 R750/R550 -0.22 -0.04 0.81 0.93 0.10 
 R750/R700 -0.21 0.09 0.93 0.92 0.90 
 R725/R675 -0.21 0.03 0.89 0.90 0.92 
 (R850-R710)/(R850-R680) -0.06 0.11 0.84 0.72 -0.81 
 (R780-R710)/(R780-R680) -0.08 0.11 0.87 0.75 -0.77 
 R700-R670 -0.24 -0.09 0.76 0.05 0.74 
 RNDVI -0.24 0.07 0.97 0.94 0.92 
 PSR 0.03 -0.02 -0.93 -0.73 0.37 
 WBI -0.09 0.11 -0.67 -0.68 -0.69 
 SIPI 0.23 -0.11 -0.97 -0.87 -0.92 
 YI -0.11 0.07 0.19 0.76 0.18 
 VI2 0.21 0.02 -0.83 0.09 -0.37 
 Cgreen -0.21 -0.04 0.81 0.92 0.07 
 Cred edge -0.20 0.08 0.93 0.92 0.89 
 C NIR -0.17 0.02 0.93 0.91 0.46 
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Table A11- Coefficient of correlation for the relationship between different vegetation indices and 
plant height of Egyptian wheat obtained at different DAS in spring season of 2006. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations. 
 

Plant height (m) Scale Vegetation index 
57 DAS 78 DAS 91 DAS 103 DAS 127 DAS 

 NDVI 0.19 0.68 0.93 0.85 0.84 
 RVI 0.18 0.68 0.88 0.86 0.84 
 SAVI -0.10 0.56 0.93 0.74 0.82 
 GNDVI br 0.09 0.23 0.88 0.84 0.18 
 DVI -0.15 0.52 0.92 0.54 0.84 
Broad SR 0.18 0.68 0.88 0.86 0.84 
band SLAVI 0.19 0.68 0.93 0.85 0.84 
 OSAVI 0.00 0.61 0.93 0.82 0.84 
 VI1 0.30 -0.43 -0.82 0.05 -0.51 
 RDVI 0.19 0.68 0.91 0.87 0.84 
 SI -0.20 -0.68 -0.93 -0.84 -0.84 
 IPVI 0.19 0.68 0.93 0.85 0.84 
 WI 0.13 0.37 -0.65 -0.69 -0.69 
 PSI 0.06 0.56 0.50 0.65 0.47 
 NWI-1 -0.13 0.15 -0.75 -0.63 -0.66 
 NWI-2 -0.09 0.18 -0.86 -0.78 -0.63 
 NDVI hy 0.23 0.70 0.93 0.86 0.87 
 GNDVI hy 0.09 0.18 0.85 0.84 0.15 
 SIPI 0.10 0.76 0.94 0.85 0.83 
 SRPI 0.48 0.12 0.89 0.66 0.06 
 NPCI -0.40 0.02 -0.86 -0.70 0.44 
 NPQI 0.25 -0.38 0.41 0.06 -0.71 
 PSSRb -0.17 0.54 0.92 0.50 0.78 
 PSNDb 0.18 0.74 0.93 0.85 0.84 
 Rshoulder -0.28 0.45 0.86 0.07 0.50 
 C420 0.32 -0.14 0.72 0.28 -0.73 
 NDI -0.15 0.52 0.92 0.54 0.84 
 SR hyper 0.22 0.70 0.88 0.86 0.86 
 R800-R550 -0.19 0.45 0.89 0.37 0.27 
 R800/R550 0.10 0.18 0.83 0.85 0.15 
 R695/R760 -0.23 -0.78 -0.93 -0.83 -0.84 
 R605/R760 -0.12 -0.30 -0.90 -0.84 -0.24 
 R710/R760 -0.21 -0.80 -0.93 -0.82 -0.79 
Hyper R695/R670 0.18 0.09 0.84 0.86 0.61 
 R550 -0.36 0.25 -0.17 -0.51 0.42 
 R675/R700 -0.20 -0.37 -0.91 -0.87 -0.81 
 R675/(R700*R650) 0.38 -0.04 0.67 0.64 -0.25 
 R672/(R55*R708) 0.17 -0.49 -0.87 -0.35 -0.66 
 R672/R550 -0.26 -0.64 -0.89 -0.85 -0.57 
 R860/(R550*R708) 0.39 0.01 0.80 0.80 -0.13 
 R750/R550 0.08 0.17 0.83 0.86 0.17 
 R750/R700 0.18 0.75 0.91 0.86 0.82 
 R725/R675 0.20 0.65 0.88 0.86 0.85 
 (R850-R710)/(R850-R680) -0.05 0.75 0.85 0.57 -0.71 
 (R780-R710)/(R780-R680) -0.01 0.76 0.88 0.61 -0.68 
 R700-R670 -0.18 0.02 0.71 0.08 0.73 
 RNDVI 0.21 0.66 0.93 0.86 0.86 
 PSR -0.41 0.03 -0.88 -0.69 0.45 
 WBI 0.05 0.16 -0.76 -0.66 -0.64 
 SIPI -0.34 -0.44 -0.90 -0.78 -0.85 
 YI -0.34 0.39 0.09 0.64 0.15 
 VI2 0.30 -0.42 -0.81 0.10 -0.44 
 Cgreen 0.10 0.18 0.83 0.85 0.15 
 Cred edge 0.20 0.75 0.91 0.86 0.83 
 C NIR 0.14 0.74 0.91 0.82 0.51 
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Table A12- Coefficient of correlation for the relationship between different vegetation indices and LAI 
of Egyptian wheat obtained at different DAS in spring season of 2006. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Leaf Area Index Scale Vegetation index 
57 DAS 78 DAS 91 DAS 103 DAS 127 DAS 

 NDVI 0.03 0.63 0.96 0.91 0.83 
 RVI 0.07 0.64 0.91 0.90 0.82 
 SAVI 0.08 0.67 0.96 0.81 0.82 
 GNDVI br 0.11 0.14 0.90 0.91 0.23 
 DVI 0.09 0.64 0.95 0.62 0.83 
Broad SR 0.07 0.63 0.91 0.90 0.82 
band SLAVI 0.03 0.63 0.96 0.91 0.84 
 OSAVI 0.06 0.70 0.96 0.88 0.83 
 VI1 -0.10 -0.60 -0.85 -0.03 -0.51 
 RDVI 0.05 0.64 0.94 0.91 0.84 
 SI -0.02 -0.63 -0.96 -0.90 -0.84 
 IPVI 0.03 0.63 0.96 0.91 0.84 
 WI 0.12 0.51 -0.52 -0.64 -0.57 
 PSI -0.23 0.65 0.49 0.64 0.41 
 NWI-1 0.37 0.32 -0.78 -0.64 -0.56 
 NWI-2 0.32 0.38 -0.87 -0.75 -0.53 
 NDVI hy 0.01 0.66 0.96 0.91 0.85 
 GNDVI hy 0.14 0.09 0.86 0.90 0.20 
 SIPI 0.05 0.76 0.97 0.92 0.79 
 SRPI -0.08 -0.07 0.93 0.65 0.07 
 NPCI 0.02 0.18 -0.89 -0.74 0.38 
 NPQI -0.41 -0.50 0.42 0.06 -0.61 
 PSSRb 0.10 0.65 0.95 0.59 0.76 
 PSNDb 0.06 0.70 0.95 0.91 0.82 
 Rshoulder 0.10 0.60 0.89 0.15 0.50 
 C420 0.12 -0.31 0.72 0.34 -0.67 
 NDI 0.09 0.64 0.95 0.62 0.83 
 SR hyper 0.04 0.66 0.91 0.90 0.83 
 R800-R550 0.12 0.50 0.92 0.46 0.29 
 R800/R550 0.14 0.08 0.84 0.91 0.19 
 R695/R760 -0.05 -0.76 -0.95 -0.90 -0.82 
 R605/R760 -0.05 -0.22 -0.93 -0.91 -0.31 
 R710/R760 -0.11 -0.76 -0.94 -0.89 -0.78 
Hyper R695/R670 -0.17 0.02 0.91 0.87 0.63 
 R550 0.06 0.49 -0.15 -0.49 0.39 
 R675/R700 0.14 -0.32 -0.96 -0.91 -0.81 
 R675/(R700*R650) 0.05 -0.27 0.67 0.65 -0.25 
 R672/(R55*R708) 0.03 -0.67 -0.92 -0.39 -0.63 
 R672/R550 0.06 -0.67 -0.93 -0.89 -0.51 
 R860/(R550*R708) 0.08 -0.21 0.79 0.83 -0.10 
 R750/R550 0.16 0.07 0.84 0.91 0.21 
 R750/R700 0.16 0.71 0.93 0.91 0.79 
 R725/R675 -0.02 0.62 0.92 0.90 0.83 
 (R850-R710)/(R850-R680) 0.33 0.70 0.79 0.66 -0.77 
 (R780-R710)/(R780-R680) 0.34 0.71 0.82 0.69 -0.76 
 R700-R670 -0.04 0.19 0.80 0.14 0.74 
 RNDVI 0.02 0.61 0.96 0.91 0.85 
 PSR 0.03 0.18 -0.91 -0.71 0.40 
 WBI -0.06 0.31 -0.61 -0.59 -0.53 
 SIPI -0.01 -0.38 -0.93 -0.84 -0.83 
 YI 0.10 0.56 0.17 0.73 0.10 
 VI2 -0.10 -0.57 -0.84 0.02 -0.45 
 Cgreen 0.14 0.08 0.84 0.91 0.19 
 Cred edge 0.14 0.71 0.93 0.90 0.80 
 C NIR 0.35 0.69 0.88 0.87 0.48 
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Table A13- Coefficient of correlation for the relationship between different vegetation indices and 
chlorophyll a concentration of Scottish wheat obtained at different DAS in the 2006-07 growing 
season. Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 
 

Chlorophyll a concentration (µg cm-2) Scale Vegetation index 
97DAS 135 DAS 177 DAS 198 DAS 223 DAS 

 NDVI -0.11 0.31 -0.42 0.80 0.61 
 RVI -0.08 0.32 -0.38 0.83 0.69 
 SAVI -0.09 0.29 -0.12 0.84 0.59 
 GNDVI br -0.11 0.36 -0.36 0.83 0.60 
 DVI -0.07 0.28 -0.08 0.83 0.57 
Broad SR -0.08 0.32 -0.37 0.83 0.69 
band SLAVI -0.11 0.31 -0.42 0.80 0.61 
 OSAVI -0.10 0.30 -0.19 0.84 0.60 
 VI1 -0.01 -0.24 -0.08 -0.78 -0.38 
 RDVI -0.09 0.32 -0.39 0.83 0.65 
 SI 0.12 -0.31 0.43 -0.78 -0.57 
 IPVI -0.11 0.31 -0.42 0.80 0.61 
 WI 0.03 0.18 -0.01 -0.16 -0.25 
 PSI -0.24 -0.25 -0.13 0.09 -0.03 
 NWI-1 -0.02 0.08 0.13 -0.60 -0.28 
 NWI-2 -0.02 0.11 0.23 -0.52 -0.28 
 NDVI hy -0.11 0.30 -0.43 0.80 0.59 
 GNDVI hy 0.02 0.34 -0.34 0.83 0.59 
 SIPI -0.11 0.52 -0.08 0.59 0.47 
 SRPI -0.02 0.13 -0.17 0.65 0.58 
 NPCI 0.00 -0.01 0.03 -0.62 -0.51 
 NPQI -0.19 -0.03 -0.04 -0.11 0.01 
 PSSRb -0.08 0.28 -0.07 0.83 0.59 
 PSNDb -0.12 0.30 -0.42 0.81 0.62 
 Rshoulder 0.01 0.24 0.07 0.79 0.40 
 C420 0.08 0.26 -0.04 0.30 -0.09 
 NDI -0.07 0.28 -0.08 0.83 0.57 
 SR hyper -0.06 0.29 -0.41 0.82 0.68 
 R800-R550 0.04 0.28 -0.02 0.82 0.54 
 R800/R550 0.02 0.37 -0.30 0.84 0.65 
 R695/R760 0.08 -0.31 0.40 -0.78 -0.57 
 R605/R760 0.11 -0.30 0.44 -0.79 -0.58 
 R710/R760 0.07 -0.34 0.43 -0.80 -0.59 
 R695/R670 -0.17 0.16 -0.41 0.54 0.56 
Hyper R550 -0.01 -0.20 0.34 -0.37 -0.32 
 R675/R700 0.04 -0.30 0.28 -0.73 -0.55 
 R675/(R700*R650) -0.16 0.30 -0.32 0.48 0.56 
 R672/(R55*R708) 0.14 -0.16 0.28 -0.75 -0.23 
 R672/R550 0.12 -0.29 0.43 -0.79 -0.58 
 R860/(R550*R708) -0.04 0.40 -0.43 0.79 0.69 
 R750/R550 0.02 0.35 -0.30 0.83 0.65 
 R750/R700 -0.07 0.32 -0.41 0.83 0.68 
 R725/R675 -0.02 0.28 -0.38 0.79 0.66 
 (R850-R710)/(R850-R680) 0.01 0.44 -0.04 0.72 0.54 
 (R780-R710)/(R780-R680) 0.11 0.44 -0.08 0.73 0.59 
 R700-R670 -0.19 0.22 0.01 0.35 0.31 
 RNDVI -0.14 0.31 -0.46 0.78 0.60 
 PSR 0.07 0.03 0.11 -0.47 -0.43 
 WBI -0.01 0.19 0.18 -0.23 -0.02 
 SIPI 0.33 -0.28 0.14 -0.60 -0.45 
 YI 0.16 0.34 0.30 0.35 0.44 
 VI2 -0.02 -0.25 -0.09 -0.78 -0.35 
 Cgreen 0.02 0.37 -0.30 0.84 0.65 
 Cred edge -0.07 0.33 -0.41 0.83 0.68 
 C NIR -0.07 0.41 -0.24 0.88 0.65 
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Table A14- Coefficient of correlation for the relationship between different vegetation indices and 
grain yield of the Scottish wheat at different DAS in the 2006-07 growing season. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations. 
  

Grain yield (kg m-2) Scale Vegetation index 
97DAS 135 DAS 177 DAS 198 DAS 223 DAS 

 NDVI 0.54 0.53 0.61 0.90 0.45 
 RVI 0.65 0.61 0.64 0.88 0.58 
 SAVI 0.28 0.60 0.35 0.89 0.52 
 GNDVI br 0.49 0.56 0.54 0.92 0.42 
 DVI 0.17 0.60 0.29 0.88 0.54 
Broad SR 0.65 0.61 0.64 0.88 0.58 
band SLAVI 0.54 0.53 0.61 0.90 0.45 
 OSAVI 0.42 0.59 0.43 0.91 0.50 
 VI1 0.24 -0.57 -0.13 -0.79 -0.56 
 RDVI 0.62 0.59 0.63 0.90 0.51 
 SI -0.51 -0.50 -0.61 -0.88 -0.39 
 IPVI 0.54 0.53 0.61 0.90 0.45 
 WI -0.04 -0.04 -0.02 -0.11 -0.12 
 PSI -0.74 -0.42 0.13 0.03 0.15 
 NWI-1 -0.17 -0.08 -0.03 -0.58 -0.37 
 NWI-2 -0.05 -0.05 -0.21 -0.52 -0.50 
 NDVI hy 0.54 0.51 0.59 0.90 0.44 
 GNDVI hy 0.62 0.60 0.48 0.92 0.40 
 SIPI 0.25 0.70 -0.02 0.61 0.36 
 SRPI 0.42 0.26 0.29 0.74 0.34 
 NPCI -0.30 -0.16 -0.19 -0.69 -0.53 
 NPQI 0.18 -0.18 0.06 -0.17 0.10 
 PSSRb 0.17 0.60 0.29 0.88 0.55 
 PSNDb 0.55 0.53 0.58 0.91 0.45 
 Rshoulder -0.22 0.57 0.14 0.80 0.56 
 C420 0.68 0.14 0.18 0.44 0.03 
 NDI 0.17 0.60 0.29 0.88 0.54 
 SR hyper 0.66 0.59 0.60 0.87 0.58 
 R800-R550 0.07 0.61 0.22 0.86 0.54 
 R800/R550 0.63 0.66 0.48 0.92 0.49 
 R695/R760 -0.53 -0.50 -0.62 -0.88 -0.38 
 R605/R760 -0.49 -0.48 -0.62 -0.89 -0.39 
 R710/R760 -0.44 -0.52 -0.62 -0.89 -0.41 
 R695/R670 0.58 0.56 0.54 0.70 0.51 
Hyper R550 -0.54 -0.25 -0.24 -0.54 0.20 
 R675/R700 -0.66 -0.58 -0.64 -0.82 -0.44 
 R675/(R700*R650) 0.08 0.29 0.07 0.63 0.12 
 R672/(R55*R708) -0.66 -0.37 -0.55 -0.72 -0.46 
 R672/R550 -0.59 -0.45 -0.57 -0.85 -0.49 
 R860/(R550*R708) 0.58 0.55 0.46 0.88 0.40 
 R750/R550 0.67 0.65 0.50 0.92 0.48 
 R750/R700 0.52 0.60 0.57 0.90 0.55 
 R725/R675 0.74 0.61 0.67 0.85 0.57 
 (R850-R710)/(R850-R680) -0.12 0.52 0.21 0.77 0.31 
 (R780-R710)/(R780-R680) -0.07 0.51 0.27 0.79 0.31 
 R700-R670 0.29 0.55 0.33 0.40 0.42 
 RNDVI 0.55 0.54 0.64 0.89 0.45 
 PSR -0.09 -0.08 0.09 -0.58 -0.54 
 WBI -0.08 -0.04 -0.26 -0.23 0.02 
 SIPI -0.04 -0.37 -0.14 -0.72 -0.23 
 YI 0.03 0.50 0.08 0.47 0.10 
 VI2 0.28 -0.57 -0.11 -0.79 -0.55 
 Cgreen 0.63 0.66 0.48 0.92 0.49 
 Cred edge 0.48 0.61 0.55 0.90 0.55 
 C NIR 0.32 0.61 0.37 0.92 0.49 
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Table A15- Coefficient of correlation for the relationship between different vegetation indices and 
plant height of Scottish wheat at different DAS in the 2006-07 growing season. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Plant height (m) Scale Vegetation index 
97DAS 135 DAS 177 DAS 198 DAS 223 DAS 

 NDVI 0.25 0.84 0.83 0.91 0.39 
 RVI 0.21 0.79 0.86 0.86 0.50 
 SAVI 0.03 0.77 0.51 0.85 0.43 
 GNDVI br 0.17 0.88 0.74 0.92 0.35 
 DVI 0.04 0.74 0.44 0.83 0.44 
Broad SR 0.21 0.79 0.86 0.86 0.50 
band SLAVI 0.25 0.84 0.83 0.91 0.39 
 OSAVI 0.12 0.81 0.60 0.88 0.41 
 VI1 0.24 -0.62 -0.20 -0.72 -0.39 
 RDVI 0.23 0.83 0.85 0.89 0.44 
 SI -0.26 -0.82 -0.82 -0.91 -0.33 
 IPVI 0.25 0.84 0.83 0.91 0.39 
 WI -0.22 -0.08 -0.16 -0.20 -0.08 
 PSI -0.03 0.04 0.32 0.12 0.03 
 NWI-1 -0.19 -0.24 0.04 -0.47 -0.21 
 NWI-2 -0.16 -0.19 -0.08 -0.39 -0.30 
 NDVI hy 0.27 0.83 0.79 0.91 0.39 
 GNDVI hy 0.15 0.89 0.70 0.91 0.32 
 SIPI 0.05 0.79 0.38 0.66 0.26 
 SRPI 0.06 0.48 0.26 0.83 0.41 
 NPCI 0.06 -0.25 -0.08 -0.78 -0.50 
 NPQI -0.34 0.01 -0.11 -0.13 0.07 
 PSSRb 0.01 0.74 0.45 0.83 0.44 
 PSNDb 0.23 0.84 0.79 0.92 0.39 
 Rshoulder -0.23 0.63 0.23 0.73 0.39 
 C420 0.07 0.50 0.28 0.38 0.03 
 NDI 0.04 0.74 0.44 0.83 0.44 
 SR hyper 0.23 0.79 0.79 0.85 0.51 
 R800-R550 -0.08 0.73 0.38 0.81 0.41 
 R800/R550 0.19 0.87 0.71 0.89 0.41 
 R695/R760 -0.23 -0.82 -0.81 -0.90 -0.33 
 R605/R760 -0.30 -0.84 -0.79 -0.91 -0.32 
 R710/R760 -0.16 -0.83 -0.71 -0.91 -0.36 
 R695/R670 0.11 0.70 0.57 0.74 0.39 
Hyper R550 -0.25 -0.57 -0.39 -0.64 0.05 
 R675/R700 -0.28 -0.76 -0.77 -0.82 -0.35 
 R675/(R700*R650) 0.18 0.64 0.22 0.73 0.25 
 R672/(R55*R708) -0.27 -0.46 -0.71 -0.64 -0.30 
 R672/R550 -0.33 -0.76 -0.78 -0.86 -0.45 
 R860/(R550*R708) 0.23 0.80 0.65 0.89 0.41 
 R750/R550 0.18 0.86 0.71 0.88 0.41 
 R750/R700 0.20 0.82 0.79 0.88 0.49 
 R725/R675 0.22 0.79 0.83 0.84 0.48 
 (R850-R710)/(R850-R680) -0.41 0.70 0.00 0.77 0.38 
 (R780-R710)/(R780-R680) -0.44 0.70 0.08 0.80 0.32 
 R700-R670 -0.03 0.57 0.34 0.37 0.27 
 RNDVI 0.20 0.85 0.82 0.91 0.39 
 PSR -0.37 -0.06 0.16 -0.68 -0.50 
 WBI -0.32 -0.03 -0.34 -0.29 0.03 
 SIPI -0.14 -0.72 -0.34 -0.79 -0.20 
 YI 0.21 0.59 0.14 0.53 0.05 
 VI2 0.21 -0.63 -0.20 -0.72 -0.38 
 Cgreen 0.19 0.87 0.71 0.89 0.41 
 Cred edge 0.21 0.83 0.78 0.89 0.49 
 C NIR -0.13 0.83 0.34 0.91 0.44 
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Table A16- Coefficient of correlation for the relationship between different vegetation indices and 
aboveground biomass of Scottish wheat at different DAS in the 2006-07 growing season. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlations. 
  

Aboveground biomass ((kg m-2) Scale Vegetation index 
177 DAS 198 DAS 223 DAS 

 NDVI 0.49 0.88 0.39 
 RVI 0.57 0.86 0.51 
 SAVI 0.57 0.88 0.47 
 GNDVI br 0.53 0.90 0.37 
 DVI 0.57 0.86 0.49 
Broad SR 0.57 0.86 0.51 
band SLAVI 0.49 0.88 0.39 
 OSAVI 0.56 0.89 0.44 
 VI1 -0.55 -0.79 -0.52 
 RDVI 0.55 0.88 0.45 
 SI -0.47 -0.86 -0.34 
 IPVI 0.49 0.88 0.39 
 WI -0.07 -0.11 -0.15 
 PSI -0.48 0.01 0.12 
 NWI-1 -0.06 -0.58 -0.32 
 NWI-2 -0.03 -0.52 -0.47 
 NDVI hy 0.47 0.87 0.39 
 GNDVI hy 0.57 0.91 0.35 
 SIPI 0.65 0.59 0.30 
 SRPI 0.27 0.73 0.28 
 NPCI -0.18 -0.68 -0.45 
 NPQI -0.20 -0.16 0.09 
 PSSRb 0.57 0.86 0.50 
 PSNDb 0.49 0.89 0.40 
 Rshoulder 0.55 0.80 0.52 
 C420 0.12 0.42 0.00 
 NDI 0.57 0.86 0.49 
 SR hyper 0.55 0.85 0.52 
 R800-R550 0.59 0.85 0.49 
 R800/R550 0.62 0.90 0.43 
 R695/R760 -0.46 -0.86 -0.33 
 R605/R760 -0.45 -0.87 -0.34 
 R710/R760 -0.48 -0.87 -0.36 
 R695/R670 0.52 0.66 0.44 
Hyper R550 -0.23 -0.51 0.21 
 R675/R700 -0.53 -0.78 -0.37 
 R675/(R700*R650) 0.24 0.59 0.09 
 R672/(R55*R708) -0.35 -0.72 -0.42 
 R672/R550 -0.40 -0.83 -0.44 
 R860/(R550*R708) 0.49 0.86 0.35 
 R750/R550 0.62 0.90 0.43 
 R750/R700 0.57 0.88 0.50 
 R725/R675 0.58 0.83 0.50 
 (R850-R710)/(R850-R680) 0.46 0.77 0.32 
 (R780-R710)/(R780-R680) 0.47 0.79 0.30 
 R700-R670 0.51 0.39 0.36 
 RNDVI 0.50 0.87 0.40 
 PSR -0.14 -0.57 -0.46 
 WBI -0.03 -0.24 -0.02 
 SIPI -0.33 -0.70 -0.21 
 YI 0.47 0.44 0.03 
 VI2 -0.55 -0.79 -0.51 
 Cgreen 0.62 0.90 0.43 
 Cred edge 0.58 0.88 0.50 
 C NIR 0.54 0.92 0.45 
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Table A17- Coefficient of correlation for the relationship between different vegetation indices and leaf 
water content of Scottish wheat at different DAS in the 2006-07 growing season. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations. 
 

Leaf water content (%) Scale Vegetation index 
177 DAS 198 DAS 223 DAS 

 NDVI 0.85 0.92 0.31 
 RVI 0.76 0.86 0.43 
 SAVI 0.73 0.83 0.36 
 GNDVI br 0.88 0.89 0.26 
 DVI 0.69 0.80 0.37 
Broad SR 0.76 0.86 0.43 
band SLAVI 0.85 0.92 0.31 
 OSAVI 0.78 0.87 0.34 
 VI1 -0.55 -0.68 -0.35 
 RDVI 0.81 0.90 0.37 
 SI -0.84 -0.91 -0.25 
 IPVI 0.85 0.92 0.31 
 WI -0.15 -0.09 -0.24 
 PSI 0.08 0.25 0.08 
 NWI-1 -0.22 -0.47 -0.24 
 NWI-2 -0.19 -0.42 -0.35 
 NDVI hy 0.85 0.91 0.30 
 GNDVI hy 0.89 0.87 0.24 
 SIPI 0.74 0.68 0.19 
 SRPI 0.54 0.75 0.34 
 NPCI -0.29 -0.67 -0.47 
 NPQI -0.07 -0.14 0.09 
 PSSRb 0.68 0.80 0.37 
 PSNDb 0.85 0.91 0.30 
 Rshoulder 0.56 0.69 0.36 
 C420 0.54 0.45 0.00 
 NDI 0.69 0.80 0.37 
 SR hyper 0.77 0.84 0.44 
 R800-R550 0.67 0.76 0.35 
 R800/R550 0.85 0.86 0.33 
 R695/R760 -0.84 -0.90 -0.24 
 R605/R760 -0.86 -0.89 -0.23 
 R710/R760 -0.85 -0.89 -0.27 
 R695/R670 0.71 0.80 0.36 
Hyper R550 -0.64 -0.63 0.11 
 R675/R700 -0.75 -0.87 -0.29 
 R675/(R700*R650) 0.71 0.75 0.16 
 R672/(R55*R708) -0.38 -0.67 -0.30 
 R672/R550 -0.75 -0.91 -0.39 
 R860/(R550*R708) 0.84 0.89 0.31 
 R750/R550 0.85 0.86 0.33 
 R750/R700 0.81 0.88 0.41 
 R725/R675 0.76 0.86 0.42 
 (R850-R710)/(R850-R680) 0.70 0.70 0.33 
 (R780-R710)/(R780-R680) 0.70 0.73 0.26 
 R700-R670 0.48 0.43 0.24 
 RNDVI 0.86 0.92 0.31 
 PSR -0.09 -0.56 -0.50 
 WBI -0.09 -0.14 -0.12 
 SIPI -0.75 -0.79 -0.11 
 YI 0.53 0.47 0.10 
 VI2 -0.55 -0.67 -0.34 
 Cgreen 0.85 0.86 0.33 
 Cred edge 0.81 0.88 0.41 
 C NIR 0.83 0.86 0.35 
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Table A18- Coefficient of correlation for the relationship between different vegetation indices and LAI 
of the Scottish wheat at different DAS in the 2006-07 growing season. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Leaf Area Index Scale Vegetation index 
177 DAS 198 DAS 223 DAS 

 NDVI 0.42 0.86 0.86 
 RVI 0.52 0.88 0.83 
 SAVI 0.48 0.86 0.78 
 GNDVI br 0.39 0.87 0.90 
 SR 0.52 0.88 0.83 
Broad SLAVI 0.42 0.86 0.86 
band OSAVI 0.46 0.87 0.82 
 VI1 -0.48 -0.76 -0.63 
 RDVI 0.47 0.89 0.86 
 SI -0.37 -0.84 -0.84 
 IPVI 0.42 0.86 0.86 
 WI -0.12 -0.22 -0.12 
 PSI 0.02 0.06 0.08 
 NWI-1 -0.24 -0.59 -0.18 
 NWI-2 -0.36 -0.49 -0.13 
 NDVI hy 0.42 0.86 0.85 
 GNDVI hy 0.36 0.87 0.90 
 SIPI 0.29 0.64 0.81 
 SRPI 0.38 0.75 0.49 
 NPCI -0.52 -0.72 -0.25 
 NPQI -0.04 -0.09 0.02 
 DVI 0.50 0.85 0.75 
 PSSRb 0.50 0.84 0.75 
 PSNDb 0.42 0.86 0.86 
 Rshoulder 0.48 0.77 0.64 
 C420 0.06 0.38 0.54 
 NDI 0.50 0.85 0.75 
 SR hyper 0.53 0.89 0.82 
 R800-R550 0.48 0.83 0.74 
 R800/R550 0.43 0.90 0.90 
 R695/R760 -0.37 -0.83 -0.84 
 R605/R760 -0.37 -0.84 -0.86 
 R710/R760 -0.40 -0.85 -0.85 
 R695/R670 0.43 0.70 0.70 
Hyperspec R550 0.14 -0.54 -0.59 
 R675/R700 -0.40 -0.82 -0.77 
 R675/(R700*R650) 0.14 0.61 0.69 
 R672/(R55*R708) -0.40 -0.69 -0.45 
 R672/R550 -0.48 -0.82 -0.77 
 R860/(R550*R708) 0.38 0.86 0.85 
 R750/R550 0.43 0.89 0.89 
 R750/R700 0.50 0.87 0.85 
 R725/R675 0.51 0.86 0.82 
 (R850-R710)/(R850-R680) 0.37 0.73 0.72 
 (R780-R710)/(R780-R680) 0.33 0.75 0.71 
 R700-R670 0.33 0.39 0.55 
 RNDVI 0.42 0.85 0.86 
 PSR -0.54 -0.58 -0.01 
 WBI -0.02 -0.28 -0.10 
 SIPI -0.27 -0.68 -0.73 
 YI 0.02 0.48 0.65 
 VI2 -0.47 -0.76 -0.63 
 Cgreen 0.43 0.90 0.90 
 Cred edge 0.51 0.88 0.86 
 C NIR 0.48 0.89 0.87 
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Table A19- Coefficient of correlation for the relationship between different vegetation indices and 
chlorophyll a concentration of the Egyptian wheat at different DAS in the 2006-07 growing season. 
Highlighted values are significant (P<0.05) and bold values are the strongest correlation. 
 

Chlorophyll a concentration (µg cm-2) Scale Vegetation index 
83 DAS 108 DAS 130 DAS 149 DAS 197 DAS 

 NDVI 0.06 0.24 -0.28 0.67 0.72 
 RVI 0.45 0.24 -0.34 0.27 0.73 
 SAVI 0.04 0.06 -0.30 0.60 0.77 
 GNDVI br 0.08 -0.32 -0.28 -0.31 0.70 
Broad DVI 0.13 0.09 -0.30 0.10 0.74 
band SR 0.39 0.24 -0.34 0.10 0.73 
 SLAVI 0.24 0.24 -0.28 0.10 0.72 
 OSAVI 0.05 0.09 -0.31 0.66 0.79 
 VI1 0.13 -0.02 0.26 0.52 -0.69 
 RDVI 0.12 0.24 -0.32 0.47 0.74 
 SI 0.08 -0.24 0.27 0.17 -0.69 
 IPVI -0.15 0.24 -0.28 0.50 0.72 
 WI 0.10 0.24 0.59 -0.22 -0.19 
 PSI 0.17 -0.35 0.13 0.16 0.22 
 NWI-1 0.15 0.15 -0.31 0.04 -0.31 
 NWI-2 0.16 0.27 -0.30 0.02 -0.31 
 NDVI hy 0.07 0.21 -0.33 0.64 0.73 
 GNDVI hy 0.19 0.19 -0.21 -0.10 0.70 
 SIPI -0.05 0.34 -0.03 0.31 0.69 
 SRPI 0.15 -0.18 0.10 0.04 0.36 
 NPCI 0.05 0.18 -0.08 0.60 -0.25 
 NPQI 0.03 -0.09 -0.04 0.61 -0.17 
 PSSRb 0.18 0.10 -0.28 -0.05 0.75 
 PSNDb 0.13 0.22 -0.18 0.39 0.72 
 Rshoulder -0.07 0.03 -0.27 -0.59 0.70 
 C420 -0.13 -0.19 -0.31 -0.63 0.18 
 NDI -0.08 0.09 -0.30 -0.47 0.74 
 SR hyper -0.01 0.19 -0.42 0.59 0.75 
 R800-R550 0.20 0.10 -0.27 -0.31 0.75 
 R800/R550 -0.02 0.19 -0.18 -0.68 0.73 
 R695/R760 -0.18 -0.23 0.30 0.19 -0.70 
 R605/R760 -0.10 0.10 0.32 -0.46 -0.70 
 R710/R760 -0.01 0.19 0.19 -0.63 -0.70 
 R695/R670 -0.22 0.61 -0.14 0.47 0.78 
Hyper R550 0.13 -0.03 -0.19 0.41 0.40 
 R675/R700 0.07 -0.47 0.28 0.47 -0.73 
 R675/(R700*R650) 0.02 -0.22 0.19 0.66 -0.21 
 R672/(R55*R708) 0.16 -0.27 0.35 0.00 -0.72 
 R672/R550 0.29 -0.30 0.31 -0.01 -0.69 
 R860/(R550*R708) 0.12 -0.12 0.15 0.07 0.13 
 R750/R550 0.05 0.13 -0.25 0.64 0.73 
 R750/R700 0.08 0.02 -0.35 0.16 0.71 
 R725/R675 0.37 0.39 -0.34 0.23 0.74 
 (R850-R710)/(R850-R680) -0.05 -0.29 0.14 -0.65 0.58 
 (R780-R710)/(R780-R680) -0.11 0.01 0.07 -0.02 0.59 
 R700-R670 0.06 0.34 -0.20 0.67 0.57 
 RNDVI 0.10 0.48 -0.24 0.21 0.72 
 PSR -0.20 0.15 -0.27 0.12 -0.04 
 WBI -0.19 0.25 0.39 0.11 -0.06 
 SIPI 0.05 0.35 0.03 0.63 -0.62 
 YI -0.07 -0.09 -0.13 -0.67 0.34 
 VI2 0.06 -0.05 0.26 0.67 -0.68 
 Cgreen 0.13 0.19 -0.18 0.39 0.73 
 Cred edge 0.07 0.09 -0.31 0.46 0.71 
 C NIR 0.12 -0.55 -0.10 0.06 0.64 
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Table A20- Coefficient of correlation for the relationship between different vegetation indices and 
grain yield of Egyptian wheat at different DAS in the 2006-07 growing season. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Grain yield (kg m-2) Scale Vegetation index 
83 DAS 108 DAS 130 DAS 149 DAS 197 DAS 

 NDVI 0.23 0.55 0.43 0.79 0.93 
 RVI -0.11 0.60 0.42 0.79 0.91 
 SAVI 0.21 0.26 -0.13 0.25 0.90 
 GNDVI br 0.18 0.55 0.28 0.68 0.92 
Broad DVI 0.25 0.20 -0.18 0.21 0.85 
band SR -0.10 0.60 0.42 0.79 0.91 
 SLAVI -0.16 0.55 0.42 0.79 0.93 
 OSAVI 0.22 0.29 -0.05 0.35 0.94 
 VI1 0.27 -0.19 0.34 -0.03 -0.77 
 RDVI 0.25 0.59 0.43 0.80 0.93 
 SI 0.27 -0.53 -0.42 -0.78 -0.91 
 IPVI 0.00 0.55 0.42 0.79 0.93 
 WI -0.05 0.20 0.00 0.29 -0.40 
 PSI 0.06 -0.53 0.14 -0.22 0.38 
 NWI-1 0.24 -0.30 -0.19 -0.04 -0.46 
 NWI-2 0.24 -0.13 -0.06 -0.03 -0.44 
 NDVI hy 0.24 0.07 0.35 0.78 0.94 
 GNDVI hy 0.26 0.62 0.27 0.62 0.93 
 SIPI -0.42 0.16 0.73 0.37 0.87 
 SRPI 0.24 -0.06 0.15 0.52 0.59 
 NPCI 0.21 0.11 -0.05 -0.28 -0.45 
 NPQI 0.20 -0.24 -0.24 0.19 -0.27 
 PSSRb 0.25 0.28 -0.17 0.20 0.86 
 PSNDb 0.23 0.47 0.40 0.79 0.92 
 Rshoulder -0.23 0.20 -0.33 0.04 0.78 
 C420 -0.31 0.18 -0.07 0.32 0.15 
 NDI -0.24 0.20 -0.18 0.21 0.85 
 SR hyper 0.29 0.13 0.33 0.78 0.92 
 R800-R550 0.27 0.37 -0.20 0.13 0.85 
 R800/R550 -0.27 0.59 0.26 0.59 0.93 
 R695/R760 -0.35 -0.55 -0.36 -0.72 -0.91 
 R605/R760 -0.30 -0.36 -0.31 -0.78 -0.91 
 R710/R760 -0.20 -0.13 -0.13 -0.62 -0.93 
 R695/R670 -0.30 0.32 0.41 0.74 0.92 
Hyper R550 0.25 -0.10 -0.56 -0.28 0.40 
 R675/R700 0.20 -0.43 -0.55 -0.80 -0.92 
 R675/(R700*R650) 0.23 -0.17 0.46 0.22 -0.11 
 R672/(R55*R708) -0.46 -0.15 -0.09 -0.53 -0.84 
 R672/R550 -0.47 -0.11 -0.44 -0.75 -0.89 
 R860/(R550*R708) 0.30 0.10 0.64 0.55 0.32 
 R750/R550 0.23 0.61 0.28 0.60 0.93 
 R750/R700 -0.05 0.58 0.26 0.67 0.91 
 R725/R675 -0.23 0.60 0.44 0.83 0.91 
 (R850-R710)/(R850-R680) -0.19 0.19 -0.23 0.08 0.84 
 (R780-R710)/(R780-R680) -0.09 0.62 -0.07 0.06 0.85 
 R700-R670 0.23 0.16 -0.17 0.15 0.64 
 RNDVI 0.25 0.63 0.45 0.76 0.93 
 PSR -0.26 -0.08 -0.14 0.17 -0.08 
 WBI -0.26 0.26 -0.23 0.23 -0.23 
 SIPI 0.22 0.56 -0.31 -0.75 -0.82 
 YI -0.24 0.51 0.59 0.18 0.47 
 VI2 0.23 -0.19 0.33 -0.02 -0.76 
 Cgreen 0.23 0.59 0.26 0.59 0.93 
 Cred edge 0.18 0.57 0.25 0.67 0.90 
 C NIR -0.02 -0.34 -0.08 0.18 0.89 
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Table A21- Coefficient of correlation for the relationship between different vegetation indices and 
aboveground biomass of Egyptian wheat at DAS in the 2006-07 growing season. Highlighted values 
are significant (P<0.05) and bold values are the strongest correlations. 
 

 Aboveground biomass (kg m-2) Scale Vegetation index 
83 DAS 108 DAS 130 DAS 149 DAS 197 DAS 

 NDVI 0.26 0.57 0.37 0.78 0.92 
 RVI -0.09 0.61 0.37 0.77 0.92 
 SAVI 0.24 0.29 -0.18 0.23 0.89 
 GNDVI br 0.20 0.51 0.22 0.67 0.91 
Broad DVI 0.27 0.22 -0.22 0.19 0.84 
band SR -0.11 0.62 0.37 0.77 0.92 
 SLAVI -0.18 0.56 0.37 0.78 0.92 
 OSAVI 0.24 0.32 -0.10 0.33 0.94 
 VI1 0.29 -0.21 0.37 -0.02 -0.76 
 RDVI 0.28 0.60 0.37 0.78 0.94 
 SI 0.29 -0.55 -0.37 -0.77 -0.90 
 IPVI 0.01 0.56 0.37 0.78 0.92 
 WI -0.06 0.29 0.00 0.27 -0.36 
 PSI 0.09 -0.54 0.11 -0.23 0.36 
 NWI-1 0.26 -0.29 -0.23 -0.04 -0.43 
 NWI-2 0.27 -0.10 -0.09 -0.04 -0.38 
 NDVI hy 0.26 0.09 0.30 0.77 0.93 
 GNDVI hy 0.28 0.67 0.21 0.61 0.92 
 SIPI -0.42 0.16 0.74 0.36 0.89 
 SRPI 0.26 -0.09 0.12 0.48 0.54 
 NPCI 0.24 0.12 -0.03 -0.26 -0.37 
 NPQI 0.22 -0.28 -0.19 0.19 -0.25 
 PSSRb 0.27 0.30 -0.21 0.18 0.85 
 PSNDb 0.26 0.43 0.35 0.77 0.91 
 Rshoulder -0.25 0.23 -0.36 0.03 0.77 
 C420 -0.33 0.20 -0.08 0.25 0.17 
 NDI -0.26 0.22 -0.22 0.19 0.84 
 SR hyper 0.31 0.14 0.28 0.78 0.93 
 R800-R550 0.29 0.40 -0.24 0.11 0.84 
 R800/R550 -0.29 0.63 0.21 0.58 0.93 
 R695/R760 -0.36 -0.55 -0.31 -0.71 -0.90 
 R605/R760 -0.32 -0.37 -0.25 -0.77 -0.90 
 R710/R760 -0.22 -0.08 -0.08 -0.63 -0.91 
 R695/R670 -0.32 0.38 0.38 0.74 0.93 
Hyper R550 0.28 -0.09 -0.57 -0.30 0.39 
 R675/R700 0.22 -0.49 -0.49 -0.79 -0.93 
 R675/(R700*R650) 0.25 -0.22 0.47 0.23 -0.12 
 R672/(R55*R708) -0.45 -0.20 -0.03 -0.51 -0.84 
 R672/R550 -0.42 -0.14 -0.39 -0.73 -0.88 
 R860/(R550*R708) 0.32 0.07 0.64 0.56 0.31 
 R750/R550 0.26 0.66 0.22 0.60 0.93 
 R750/R700 -0.06 0.56 0.20 0.65 0.91 
 R725/R675 -0.22 0.66 0.38 0.82 0.92 
 (R850-R710)/(R850-R680) -0.21 0.16 -0.23 0.08 0.82 
 (R780-R710)/(R780-R680) -0.09 0.60 -0.09 0.06 0.83 
 R700-R670 0.26 0.21 -0.19 0.14 0.63 
 RNDVI 0.27 0.66 0.40 0.75 0.92 
 PSR -0.28 -0.14 -0.18 0.21 -0.06 
 WBI -0.28 0.34 -0.24 0.22 -0.18 
 SIPI 0.25 0.62 -0.27 -0.74 -0.79 
 YI -0.26 0.48 0.55 0.15 0.53 
 VI2 0.26 -0.22 0.36 -0.01 -0.75 
 Cgreen 0.26 0.63 0.21 0.58 0.93 
 Cred edge 0.20 0.55 0.19 0.65 0.91 
 C NIR -0.02 -0.42 -0.12 0.17 0.87 
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Table A22- Coefficient of correlation for the relationship between different vegetation indices and leaf 
water content at different DAS in the 2006-07 growing season. Highlighted values are significant 
(P<0.05) and bold values are the strongest correlations. 
 

Leaf water content (%) Scale Vegetation index 
83 DAS 108 DAS 130 DAS 149 DAS 197 DAS 

 NDVI 0.19 0.54 0.28 0.62 0.75 
 RVI -0.09 0.57 0.29 0.62 0.80 
 SAVI 0.17 0.20 -0.17 0.18 0.72 
 GNDVI br 0.11 0.38 0.18 0.57 0.75 
Broad DVI 0.22 0.14 -0.20 0.16 0.66 
band SR -0.19 0.58 0.29 0.62 0.80 
 SLAVI -0.26 0.54 0.28 0.62 0.75 
 OSAVI 0.18 0.24 -0.11 0.26 0.76 
 VI1 0.22 -0.13 0.33 -0.01 -0.59 
 RDVI 0.21 0.56 0.29 0.63 0.80 
 SI 0.21 -0.52 -0.28 -0.61 -0.72 
 IPVI -0.02 0.54 0.28 0.62 0.75 
 WI -0.04 0.41 0.00 0.22 -0.18 
 PSI 0.17 -0.43 0.11 -0.31 0.20 
 NWI-1 0.22 -0.15 -0.26 -0.01 -0.19 
 NWI-2 0.22 0.02 -0.14 -0.01 -0.13 
 NDVI hy 0.19 0.14 0.24 0.63 0.75 
 GNDVI hy 0.24 0.70 0.18 0.58 0.76 
 SIPI -0.31 0.19 0.68 0.46 0.73 
 SRPI 0.22 -0.16 0.22 0.29 0.33 
 NPCI 0.17 0.21 -0.16 -0.12 -0.18 
 NPQI 0.16 -0.26 0.00 0.08 -0.22 
 PSSRb 0.23 0.18 -0.19 0.15 0.68 
 PSNDb 0.20 0.30 0.27 0.66 0.75 
 Rshoulder -0.18 0.14 -0.32 0.02 0.60 
 C420 -0.25 0.07 -0.12 0.10 0.23 
 NDI -0.20 0.14 -0.20 0.16 0.66 
 SR hyper 0.23 0.17 0.23 0.65 0.80 
 R800-R550 0.26 0.32 -0.22 0.10 0.67 
 R800/R550 -0.20 0.66 0.17 0.57 0.79 
 R695/R760 -0.29 -0.42 -0.25 -0.57 -0.72 
 R605/R760 -0.25 -0.32 -0.19 -0.63 -0.72 
 R710/R760 -0.16 0.04 -0.07 -0.54 -0.73 
 R695/R670 -0.31 0.48 0.31 0.62 0.78 
Hyper R550 0.21 -0.21 -0.50 -0.29 0.25 
 R675/R700 0.17 -0.66 -0.41 -0.69 -0.75 
 R675/(R700*R650) 0.18 -0.30 0.34 0.13 -0.06 
 R672/(R55*R708) -0.28 -0.22 0.03 -0.34 -0.67 
 R672/R550 -0.16 -0.21 -0.30 -0.55 -0.70 
 R860/(R550*R708) 0.25 0.13 0.58 0.53 0.28 
 R750/R550 0.19 0.70 0.18 0.57 0.80 
 R750/R700 -0.04 0.41 0.15 0.52 0.77 
 R725/R675 -0.15 0.75 0.32 0.69 0.80 
 (R850-R710)/(R850-R680) -0.16 0.08 -0.19 0.12 0.63 
 (R780-R710)/(R780-R680) -0.11 0.43 -0.06 0.13 0.65 
 R700-R670 0.19 0.17 -0.17 0.11 0.47 
 RNDVI 0.21 0.60 0.32 0.61 0.75 
 PSR -0.24 -0.22 -0.18 0.26 -0.06 
 WBI -0.24 0.47 -0.23 0.27 0.00 
 SIPI 0.18 0.64 -0.33 -0.62 -0.57 
 YI -0.19 0.28 0.38 0.04 0.57 
 VI2 0.19 -0.12 0.31 -0.01 -0.58 
 Cgreen 0.20 0.66 0.17 0.57 0.79 
 Cred edge 0.15 0.40 0.15 0.53 0.77 
 C NIR -0.09 -0.51 -0.08 0.21 0.68 
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Table A23- Coefficient of correlation for the relationship between different vegetation indices and 
plant height of Egyptian wheat at different DAS in the 2006-07 growing season. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Plant height (m) Scale Vegetation index 
83 DAS 108 DAS 130 DAS 149 DAS 197 DAS 

 NDVI -0.06 0.12 0.42 0.76 0.90 
 RVI 0.12 0.07 0.44 0.74 0.91 
 SAVI -0.05 0.07 -0.02 0.22 0.89 
 GNDVI br -0.08 0.04 0.31 0.65 0.90 
Broad DVI -0.06 0.05 -0.06 0.17 0.84 
band SR 0.04 0.07 0.44 0.74 0.91 
 SLAVI 0.03 0.12 0.42 0.76 0.90 
 OSAVI -0.06 0.08 0.05 0.32 0.93 
 VI1 -0.06 -0.06 0.19 0.00 -0.76 
 RDVI -0.10 0.09 0.44 0.76 0.93 
 SI -0.08 -0.14 -0.42 -0.76 -0.88 
 IPVI 0.02 0.12 0.42 0.76 0.90 
 WI -0.02 0.35 -0.15 0.34 -0.43 
 PSI -0.23 -0.15 0.12 -0.18 0.32 
 NWI-1 -0.06 0.31 -0.02 0.08 -0.48 
 NWI-2 -0.06 0.39 0.11 0.06 -0.46 
 NDVI hy -0.06 0.01 0.37 0.75 0.92 
 GNDVI hy -0.06 0.21 0.32 0.57 0.91 
 SIPI 0.12 0.14 0.69 0.27 0.87 
 SRPI -0.06 -0.05 0.14 0.54 0.54 
 NPCI -0.05 0.06 -0.09 -0.29 -0.43 
 NPQI -0.05 -0.13 -0.15 0.06 -0.24 
 PSSRb -0.07 0.05 -0.05 0.16 0.85 
 PSNDb -0.09 0.00 0.39 0.75 0.90 
 Rshoulder 0.05 0.06 -0.18 0.01 0.77 
 C420 0.01 0.34 -0.13 0.35 0.20 
 NDI 0.03 0.05 -0.06 0.17 0.84 
 SR hyper -0.04 -0.05 0.37 0.74 0.93 
 R800-R550 -0.05 0.13 -0.07 0.09 0.84 
 R800/R550 0.08 0.25 0.30 0.53 0.93 
 R695/R760 0.12 -0.05 -0.40 -0.70 -0.88 
 R605/R760 0.07 -0.01 -0.34 -0.75 -0.88 
 R710/R760 0.03 0.15 -0.17 -0.59 -0.91 
 R695/R670 0.02 0.05 0.31 0.70 0.91 
Hyper R550 -0.09 -0.07 -0.42 -0.30 0.40 
 R675/R700 -0.05 -0.21 -0.53 -0.76 -0.91 
 R675/(R700*R650) -0.05 -0.15 0.24 0.25 -0.13 
 R672/(R55*R708) 0.11 -0.12 -0.13 -0.49 -0.84 
 R672/R550 0.16 -0.11 -0.43 -0.71 -0.87 
 R860/(R550*R708) -0.06 0.03 0.55 0.53 0.32 
 R750/R550 -0.06 0.22 0.32 0.55 0.93 
 R750/R700 -0.02 -0.01 0.29 0.62 0.92 
 R725/R675 0.21 0.19 0.45 0.78 0.91 
 (R850-R710)/(R850-R680) 0.04 -0.23 -0.23 0.06 0.82 
 (R780-R710)/(R780-R680) -0.18 -0.09 -0.05 0.04 0.83 
 R700-R670 -0.06 0.06 -0.08 0.14 0.62 
 RNDVI -0.06 0.07 0.42 0.74 0.91 
 PSR 0.06 -0.02 -0.22 0.21 -0.12 
 WBI 0.06 0.31 -0.35 0.25 -0.22 
 SIPI -0.05 0.24 -0.39 -0.78 -0.77 
 YI 0.06 -0.06 0.50 0.12 0.42 
 VI2 -0.06 -0.06 0.18 0.01 -0.76 
 Cgreen -0.09 0.25 0.30 0.53 0.93 
 Cred edge -0.05 0.04 0.28 0.61 0.91 
 C NIR -0.18 -0.12 0.03 0.15 0.89 
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Table A24- Coefficient of correlation for the relationship between different vegetation indices and LAI 
of Egyptian wheat at different DAS in the 2006-07 growing season. Highlighted values are significant 
(P<0.05) and bold values are the strongest correlations. 
 

Leaf Area Index Scale Vegetation index 
83 DAS 108 DAS 130 DAS 149 DAS 197 DAS 

 NDVI 0.20 0.46 0.4 0.82 0.96 
 RVI -0.23 0.51 0.39 0.81 0.89 
 SAVI 0.18 0.17 -0.2 0.16 0.84 
 GNDVI br 0.23 0.47 0.22 0.64 0.95 
Broad DVI 0.23 0.12 -0.25 0.13 0.78 
band SR -0.26 0.52 0.39 0.81 0.89 
 SLAVI -0.27 0.46 0.4 0.82 0.96 
 OSAVI 0.19 0.20 -0.11 0.26 0.90 
 VI1 0.25 -0.10 0.41 0.07 -0.69 
 RDVI 0.24 0.50 0.39 0.82 0.93 
 SI 0.27 -0.44 -0.4 -0.81 -0.95 
 IPVI -0.10 0.46 0.4 0.82 0.96 
 WI 0.06 0.22 0.08 0.30 -0.49 
 PSI 0.04 -0.41 0.09 -0.05 0.55 
 NWI-1 0.21 -0.28 -0.28 -0.13 -0.57 
 NWI-2 0.22 -0.14 -0.17 -0.11 -0.51 
 NDVI hy 0.21 0.04 0.31 0.80 0.96 
 GNDVI hy 0.25 0.52 0.18 0.53 0.94 
 SIPI -0.52 0.08 0.74 0.38 0.92 
 SRPI 0.21 0.02 0.19 0.47 0.67 
 NPCI 0.18 0.04 -0.1 -0.22 -0.46 
 NPQI 0.16 -0.28 -0.19 0.14 -0.41 
 PSSRb 0.23 0.20 -0.23 0.12 0.79 
 PSNDb 0.22 0.40 0.39 0.83 0.95 
 Rshoulder -0.20 0.12 -0.4 -0.06 0.70 
 C420 -0.27 0.15 0.1 0.38 -0.02 
 NDI -0.19 0.12 -0.25 0.13 0.78 
 SR hyper 0.27 0.10 0.28 0.80 0.89 
 R800-R550 0.26 0.26 -0.28 0.04 0.78 
 R800/R550 -0.25 0.49 0.18 0.54 0.92 
 R695/R760 -0.38 -0.46 -0.31 -0.74 -0.94 
 R605/R760 -0.29 -0.38 -0.27 -0.81 -0.94 
 R710/R760 -0.16 -0.17 -0.11 -0.61 -0.93 
 R695/R670 -0.33 0.29 0.51 0.76 0.91 
Hyper R550 0.24 -0.14 -0.61 -0.41 0.31 
 R675/R700 0.16 -0.33 -0.54 -0.90 -0.96 
 R675/(R700*R650) 0.19 -0.06 0.57 0.37 0.01 
 R672/(R55*R708) -0.49 -0.10 -0.08 -0.49 -0.81 
 R672/R550 -0.60 -0.11 -0.45 -0.83 -0.93 
 R860/(R550*R708) 0.28 0.15 0.63 0.65 0.39 
 R750/R550 0.20 0.51 0.19 0.55 0.92 
 R750/R700 0.07 0.50 0.23 0.69 0.89 
 R725/R675 -0.37 0.50 0.43 0.89 0.89 
 (R850-R710)/(R850-R680) -0.14 0.27 -0.2 0.03 0.82 
 (R780-R710)/(R780-R680) -0.06 0.58 -0.07 -0.04 0.83 
 R700-R670 0.20 0.08 -0.19 0.05 0.58 
 RNDVI 0.22 0.53 0.47 0.79 0.96 
 PSR -0.24 0.01 -0.2 0.09 0.00 
 WBI -0.24 0.29 -0.14 0.20 -0.33 
 SIPI 0.19 0.50 -0.29 -0.82 -0.82 
 YI -0.21 0.40 0.57 0.25 0.50 
 VI2 0.20 -0.11 0.39 0.08 -0.69 
 Cgreen 0.22 0.49 0.18 0.54 0.92 
 Cred edge 0.14 0.50 0.22 0.69 0.89 
 C NIR 0.00 -0.28 -0.2 0.11 0.89 



 

 
 

299 

Table A25- The relationship between the rededge position and the measured chlorophyll a concentration extracted from Scottish wheat leaves  
collected at DAS in the 2005-06 growing season. Highlighted values are significant (P<0.05) and bold value is the strongest correlations.  

Days after sowing  
73 DAS 125 DAS 181 DAS 207 DAS 225 DAS Treatment Replicates 

Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a 
R1 717.5 34.27 721.7 37.75 726.1 53.54 728.5 53.87 728.7 52.30 
R2 718 35.83 717.1 38.47 729 49.94 727 55.83 729.2 54.21 T1 
R3 716.5 35.30 721 36.03 728.4 47.23 729.5 47.60 728 46.21 
R1 719 34.95 720.9 41.38 725.8 52.20 727.5 45.93 719.1 44.59 
R2 717 34.89 717.4 40.19 727.3 44.19 725 44.85 719.4 43.54 T2 
R3 718.5 28.95 713.3 35.25 726.1 42.51 727 55.13 720.2 53.53 
R1 718.5 31.40 712 40.06 727.1 41.80 713.5 36.95 705.4 35.87 
R2 719 32.49 713 39.39 727.8 37.67 716 39.05 703.3 37.91 T3 
R3 718 31.87 717.3 39.61 724.9 35.94 715 37.10 702.4 36.02 
R1 718 27.67 706.2 44.93 722.9 28.95 710 33.86 696.1 32.88 
R2 718 26.58 709 41.47 724.4 30.91 705 39.93 696.6 38.77 T4 
R3 719 26.11 714.4 39.65 724.6 29.28 706 38.40 700.9 42.14 
R1 716.5 27.72 713.9 39.36 727.1 52.10 728 43.99 729.2 42.71 
R2 717 26.91 716 37.53 728.4 52.45 728.5 43.77 727.9 42.49 T5 
R3 717.5 31.46 715.5 36.78 727.1 49.35 726.8 51.07 728.1 39.87 
R1 718.9 30.23 714 37.07 723.6 49.04 726 36.06 725.6 35.01 
R2 719 29.70 716.4 40.57 725 46.20 727 36.43 725.3 35.37 T6 
R3 717.5 32.38 714 34.77 728.4 43.84 727 45.81 725.1 44.48 
R1 718 31.53 712.5 40.55 726.1 40.52 722.5 41.20 720.1 40.00 
R2 716.5 30.84 711.5 40.23 727.6 41.46 724 42.07 721.3 40.84 T7 
R3 716.5 27.44 708 38.77 725.1 42.71 722 43.30 722.6 42.04 
R1 717 33.39 705.5 39.28 723 26.52 709.5 30.34 695.4 29.45 
R2 717 31.68 703.6 35.92 724.9 27.04 706.3 36.17 695.2 35.12 T8 
R3 716.5 31.97 702.5 43.90 724.7 27.81 704 35.89 697.8 49.41 
R1 718 30.71 713.5 41.82 728.8 37.81 722 39.12 719.1 37.98 
R2 718.5 29.75 718.4 39.14 725 38.70 719.5 41.18 720.5 39.98 T9 
R3 717 32.51 702.4 41.28 726.8 39.74 721 35.23 722.5 34.21 
R1 718.5 36.09 709 44.36 725.2 26.46 707 35.36 698.1 34.33 
R2 717.5 36.25 711.2 40.13 723.6 29.55 708 37.68 699.3 36.58 T10 
R3 719 29.32 709.5 39.11 723.4 28.30 710 42.80 699.6 41.55 
R1 719 36.58 718.6 43.67 727.5 46.26 725 44.89 718.5 43.58 
R2 718.5 38.01 719.5 41.38 724.9 43.79 724.5 43.46 717.4 42.19 T11 
R3 718.5 35.73 717.7 34.01 728.4 42.27 726 39.57 716.3 38.42 

r   0.07 -0.28 0.59 0.64 0.47 
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Table A26- The relationship between the rededge position and the measured chlorophyll a concentration extracted from Egyptian wheat leaves   
collected at different Das in spring season of 2006. Highlighted values are significant (P<0.05) and bold values are the strongest correlations.  

Days after sowing  
57 DAS 78 DAS 91 DAS 103 DAS 127 DAS Treatment Replicates 

Rededge Chl a Rededge Chl a  Rededge Chl a Rededge Chl a Rededge Chl a 
R1 698.5 30.46 720.5 32.64 720.5 48.59 730.5 52.44 726 58.27 
R2 699.5 31.54 719.5 34.13 719.5 50.73 729.5 46.15 730 51.28 T1 
R3 700 29.94 719 33.62 719 53.01 728.6 47.12 730.5 52.36 
R1 699.5 29.31 719.5 33.28 719.5 48.16 724.5 48.28 724.5 53.65 
R2 699.5 32.1 718 33.23 718 45.62 727 45.08 728 50.09 T2 
R3 700 30.4 719.5 27.57 719.5 50.42 727.5 50.28 727.5 55.87 
R1 700.5 29.45 717 29.90 712 42.07 721.5 54.38 721.5 60.42 
R2 699 28.47 715.5 30.94 715.5 42.80 719.5 38.52 719.5 42.80 T3 
R3 698.5 31.54 713 30.35 713 43.12 719 37.13 719 41.25 
R1 702 28.46 719 26.35 699.5 47.38 718.5 40.29 713 44.77 
R2 698 28.9 716.5 25.31 703 40.66 715 43.98 714.5 48.87 T4 
R3 699.5 31.2 713.8 29.06 701.5 39.19 714.5 39.75 712 44.17 
R1 700.5 30.61 718 32.38 718 49.75 728 52.23 728 58.03 
R2 700 30.58 718.5 34.56 718.5 50.09 727 52.17 729 57.97 T5 
R3 698.5 31.2 717.5 29.96 717.5 48.84 725.5 43.96 727.5 48.84 
R1 699.5 29.87 717 28.79 717 41.65 722.5 42.59 723 47.33 
R2 698 30.7 718 28.28 718 50.27 720 43.98 724 48.87 T6 
R3 699 31.45 718.5 30.84 718.5 52.93 719.5 47.07 724.5 52.30 
R1 699.5 28.74 717 30.03 717 40.80 718 41.88 720.5 46.54 
R2 701.5 29.45 718 29.37 718 49.63 718.5 45.27 719 50.30 T7 
R3 699 28.46 718.5 26.13 718.5 51.37 716 45.76 718.5 50.84 
R1 701.5 30.21 717.5 26.89 711.5 49.29 717 45.65 718.5 50.72 
R2 701.5 30.67 713 30.18 713 47.82 715.3 43.10 719.5 47.89 T8 
R3 700 29.65 715 30.45 715 47.01 718.5 42.56 717 47.29 
R1 699.5 28.94 715.5 25.38 699 41.56 711.5 32.93 709 36.59 
R2 700 30.61 718 28.34 701 42.29 713 37.78 711.5 41.97 T9 
R3 699.5 30.54 714.6 28.94 702.5 40.18 713.5 45.46 708.5 50.51 
R1 700.5 31.26 717.5 34.37 717.5 50.45 726.5 46.90 726.5 52.11 
R2 700.5 31.02 718 34.52 718 47.30 726 47.76 725 53.06 T10 
R3 698.5 29.57 718 27.93 718 48.69 724.5 44.38 723.5 49.32 
R1 699 28.69 716.3 25.99 703.5 41.61 714 41.42 714 46.02 
R2 698.5 29.64 717 27.87 700.5 46.63 713.3 38.93 715.5 43.25 T11 
R3 699 30.21 716.9 27.18 700 39.37 713.5 42.27 711 46.97 

r   -0.04 0.26 0.67 0.69 0.66 
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Table A27- The relationship between the rededge position and the measured chlorophyll a concentration extracted from Scottish wheat leaves  
collected at different DAS in the 2006-07 growing season. Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 

Days after sowing  
97 DAS 135 DAS 177 DAS 198 DAS 223 DAS Treatment Replicates 

Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a 
R1 713.1 32.64 721.7 35.28 721.3 53.54 722.3 56.11 726.5 52.30 
R2 714.8 34.13 717.1 35.95 714.6 49.94 721.2 56.70 728 54.21 T1 
R3 721.5 33.62 721 33.68 719.9 47.23 729.9 48.53 728.6 46.21 
R1 715.7 33.28 720.9 38.68 716.1 52.20 712.7 50.98 719.3 44.59 
R2 719.9 33.23 717.4 37.56 716 44.19 715.7 52.64 721.8 43.54 T2 
R3 710.6 27.57 713.3 32.94 717 42.51 720.3 44.81 724.5 53.53 
R1 707 29.90 698.3 37.44 713.6 51.80 712.1 22.76 721.3 35.87 
R2 714.2 30.94 719 36.81 716 37.67 710.6 21.87 719.2 37.91 T3 
R3 715.2 30.35 717.3 37.02 713 35.94 715.3 28.72 721.5 36.02 
R1 711 26.35 716.2 41.99 705.2 28.95 710.9 16.89 718.3 32.88 
R2 707.6 25.31 698.7 38.76 703.1 30.91 707.1 18.88 719.5 38.77 T4 
R3 706.2 24.86 714.4 37.05 708.1 29.28 707.2 17.98 716.6 42.14 
R1 718.3 26.40 713.9 36.78 719.7 52.10 718.2 48.88 728.3 42.71 
R2 719.7 25.63 699.2 35.08 718.1 52.45 714.5 52.74 727.4 42.49 T5 
R3 716.6 29.96 699 34.37 707.7 49.35 720.1 46.10 724.4 39.87 
R1 719.1 28.79 700 34.64 713.6 49.04 711.3 29.17 722.7 35.01 
R2 715.4 28.28 698.8 37.91 711 46.20 708.1 23.61 724.8 35.37 T6 
R3 720.5 30.84 704.3 32.49 712.2 43.84 703.3 31.76 721.9 44.48 
R1 719.1 30.03 698.4 37.90 712.6 40.52 710.7 23.84 716.8 40.00 
R2 717.2 29.37 699.9 37.60 711.6 41.46 705.3 19.39 720.4 40.84 T7 
R3 716.5 26.13 698.9 36.24 717.5 42.71 701.7 21.01 716.8 42.04 
R1 711.5 31.80 698.4 36.71 712.2 26.52 710.4 13.62 716.4 29.45 
R2 702.4 30.18 703.6 33.57 712.1 27.04 701.5 14.33 711.6 35.12 T8 
R3 708.1 30.45 721.3 41.03 714.8 27.81 703.2 21.06 714.3 49.41 
R1 721 29.25 719.6 39.09 703 37.81 701.3 13.00 715.7 37.98 
R2 718 28.34 718.4 36.58 707.1 38.70 703.4 11.88 713.9 39.98 T9 
R3 719.2 30.97 699.3 38.58 712.2 39.74 706.1 17.21 715 34.21 
R1 719.7 34.37 719 41.46 714.5 26.46 706.4 36.74 724.3 34.33 
R2 715.4 34.52 717.2 37.50 717.5 29.55 710.1 31.55 723.6 36.58 T10 
R3 718.2 27.93 719.5 36.55 715.1 28.30 714.5 28.35 722.6 41.55 
R1 716.3 34.83 718.6 40.81 712 46.26 701.8 16.14 715.8 43.58 
R2 713.2 36.20 719.5 38.68 710.4 43.79 705.2 16.13 717.6 42.19 T11 
R3 713.6 34.03 717.7 31.78 711.2 42.27 700.2 16.58 719.7 38.42 

r   0.19 0.20 0.38 0.79 0.36 
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Table A28- The relationship between the rededge position and the measured chlorophyll a concentration extracted from Egyptian wheat leaves 
collected at different DAS in the 2006-07 growing season. Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 

Days after sowing  
97 DAS 135 DAS 177 DAS 198 DAS 223 DAS Treatment Replicates 

Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a 
R1 699.5 28.38 704 32.64 716.4 38.45 714.5 46.06 719.6 48.06 
R2 701.8 29.71 701.8 34.13 712.7 35.11 720.2 44.89 723.1 43.89 T1 
R3 693 29.26 704 33.62 714.4 37.48 716.3 43.85 721.1 46.85 
R1 704.1 29.95 704.1 33.28 711.2 36.75 715.6 42.94 718.7 45.94 
R2 699.1 29.90 703 33.23 708.5 32.13 713 41.16 719.8 40.16 T2 
R3 698.3 27.82 698.3 27.57 710.7 33.51 712.3 44.13 722.5 33.13 
R1 704.1 28.91 704.1 29.90 708.2 29.91 716.9 35.23 718.7 27.38 
R2 699 27.84 699 30.94 704.2 26.17 711.6 38.64 717.2 27.71 T3 
R3 696.3 27.32 698.5 30.35 709.5 25.26 708.1 36.80 716.2 26.58 
R1 702.6 29.71 702.6 26.35 702.5 26.50 707 28.70 713.6 20.63 
R2 697.7 28.78 697.7 25.31 701.5 23.01 711.3 31.18 713.4 16.27 T4 
R3 703.3 26.38 699 24.86 700 28.25 704.4 32.19 706.2 35.31 
R1 701.8 28.76 701.8 26.40 711.4 33.96 718.4 44.31 718.5 42.45 
R2 700.7 30.06 700.7 25.63 713 28.23 716.3 41.90 718.1 35.28 T5 
R3 703.1 26.96 703.1 29.96 711.4 33.43 723.5 43.30 724 35.53 
R1 696.3 29.91 696.3 28.79 707 27.65 713.6 36.41 719.2 34.56 
R2 695.1 28.45 695.1 28.28 709 18.40 715.2 33.14 715.6 23.00 T6 
R3 696.6 27.76 696.6 30.84 702.3 27.68 711.3 36.24 718 34.60 
R1 700.5 27.02 700.5 30.03 708.3 22.12 702.6 38.16 711.3 27.66 
R2 695.3 30.43 695.3 29.37 705.9 22.21 698.3 32.64 709.4 27.76 T7 
R3 698 26.52 698 26.13 704.2 23.75 709.9 33.54 710.7 29.68 
R1 701.9 28.62 701.9 31.80 710.1 16.35 705.3 32.15 709.5 20.43 
R2 697.7 27.16 697.7 30.18 705.2 17.60 707.3 30.19 714.2 22.00 T8 
R3 700.3 27.40 700.3 30.45 709.8 24.36 703.2 30.37 713.2 30.45 
R1 706.6 26.32 706.6 29.25 700.1 14.18 707.8 28.47 707.4 17.72 
R2 700.9 29.50 700.9 28.34 703.9 14.43 706.5 27.94 707.7 18.03 T9 
R3 699.9 27.87 699.9 30.97 704 22.21 708.6 29.47 705 27.76 
R1 699 30.93 699 34.37 710.2 34.41 712.2 42.16 718.7 43.01 
R2 705.8 31.07 705.8 34.52 708.2 33.42 716.3 43.70 720 41.77 T10 
R3 702.1 30.14 702.1 27.93 706 26.09 715.9 41.35 716.8 32.61 
R1 697.8 31.35 697.8 34.83 705.2 13.15 702.4 28.14 709.2 16.44 
R2 695.4 32.58 698.4 36.20 700.9 23.51 707.1 27.60 712.2 29.39 T11 
R3 703.2 30.63 703.2 34.03 702.4 23.14 703.6 27.46 703.5 28.92 

r   -0.11 0.26 0.61 0.74 0.63 
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APPENDIX B 

Table B1- Coefficient of correlation for the relationship between different vegetation indices and 
chlorophyll a concentration of an Egyptian maize variety at different DAS in summer season of 2007. 
Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 

 
chlorophyll a concentration (µg cm-2) Scale Vegetation index 

30 DAS 45 DAS 65 DAS 80 DAS 90 DAS 105 DAS 
 NDVI 0.02 0.16 0.38 0.47 0.51 0.58 
 RVI -0.05 0.17 0.52 0.59 0.46 0.59 
 SAVI -0.18 0.10 0.38 0.60 0.03 0.76 
 GNDVI br -0.03 0.13 0.47 0.53 0.56 0.72 
 DVI -0.17 0.08 0.38 0.61 -0.02 0.79 
Braod SR -0.05 0.17 0.52 0.59 0.46 0.59 
band SLAVI 0.02 0.16 0.38 0.47 0.51 0.58 
 OSAVI -0.16 0.11 0.38 0.57 0.13 0.67 
 VI1 0.19 -0.05 -0.35 -0.62 0.16 -0.05 
 RDVI -0.02 0.17 0.48 0.55 0.49 0.59 
 SI -0.05 -0.16 -0.34 -0.44 -0.50 -0.58 
 IPVI 0.02 0.16 0.38 0.47 0.51 0.58 
 WI 0.17 0.10 -0.06 -0.08 -0.26 -0.51 
 PSI -0.07 -0.12 0.28 0.42 0.00 0.26 
 NWI-1 0.18 0.34 -0.21 -0.32 0.02 -0.53 
 NWI-2 0.20 0.33 -0.19 -0.31 -0.28 -0.57 
 NDVI hy 0.07 0.08 0.34 0.45 0.49 0.50 
 GNDVI hy 0.12 0.14 0.47 0.54 0.58 0.75 
 SIPI -0.10 0.05 0.36 0.43 0.27 0.48 
 SRPI 0.18 -0.09 0.29 0.34 0.74 0.20 
 NPCI -0.15 0.06 -0.24 -0.31 -0.77 -0.06 
 NPQI -0.03 -0.07 -0.31 -0.24 -0.23 -0.09 
 PSSRb -0.20 0.12 0.39 0.62 -0.02 0.80 
 PSNDb -0.06 0.19 0.41 0.47 0.52 0.63 
 Rshoulder -0.20 0.05 0.36 0.63 -0.14 0.41 
 C420 0.17 0.01 0.28 -0.40 0.51 0.22 
 NDI -0.17 0.08 0.38 0.61 -0.02 0.79 
 SR hyper 0.00 0.10 0.50 0.57 0.40 0.47 
 R800-R550 -0.18 0.13 0.43 0.63 -0.03 0.80 
 R800/R550 0.06 0.14 0.51 0.58 0.55 0.77 
 R695/R760 0.03 -0.19 -0.36 -0.45 -0.56 -0.63 
 R605/R760 0.07 -0.17 -0.40 -0.47 -0.53 -0.66 
Hyper R710/R760 0.12 -0.13 -0.44 -0.50 -0.69 -0.72 
 R695/R670 -0.04 -0.08 0.33 0.49 0.13 -0.35 
 R550 -0.21 -0.05 0.07 0.53 -0.36 -0.53 
 R675/R700 -0.07 -0.07 -0.26 -0.46 -0.38 0.36 
 R675/(R700*R650) 0.19 0.08 -0.11 -0.37 0.58 0.51 
 R672/(R55*R708) 0.20 0.01 -0.19 -0.46 -0.10 0.60 
 R672/R550 0.07 -0.04 -0.23 -0.42 -0.46 0.36 
 R860/(R550*R708) 0.22 0.10 0.14 0.06 0.72 0.65 
 R750/R550 0.10 0.14 0.50 0.58 0.57 0.76 
 R750/R700 -0.06 0.18 0.49 0.57 0.61 0.69 
 R725/R675 -0.03 0.13 0.46 0.57 0.32 0.19 
 (R850-R710)/(R850-R680) -0.25 0.11 0.32 0.35 0.33 0.71 
 (R780-R710)/(R780-R680) -0.24 0.11 0.33 0.45 0.38 0.71 
 R700-R670 -0.16 -0.04 0.11 0.50 -0.24 -0.58 
 RNDVI -0.03 0.13 0.34 0.46 0.50 0.51 
 PSR 0.16 -0.25 -0.17 -0.28 -0.76 -0.06 
 WBI 0.21 0.16 -0.06 0.03 -0.34 -0.52 
 SIPI -0.20 -0.13 -0.14 -0.29 -0.63 -0.32 
 YI -0.09 0.22 0.40 0.51 0.07 0.39 
 VI2 0.20 -0.06 -0.35 -0.62 0.16 -0.13 
 Cgreen 0.06 0.14 0.51 0.58 0.55 0.77 
 Cred edge -0.08 0.17 0.50 0.57 0.62 0.70 
 C NIR 0.11 0.07 0.42 0.51 0.40 0.78 
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Table B2 - Coefficient of correlation for the relationship between different vegetation indices and grain 
yield of an Egyptian maize variety at different DAS in summer season of 2007. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Grain yield (kg m-2) Scale Vegetation index 
30 DAS 45 DAS 65 DAS 80 DAS 90 DAS 105 DAS 

 NDVI 0.06 0.00 0.54 0.93 0.75 0.50 
 RVI 0.06 0.04 0.73 0.89 0.67 0.50 
 SAVI -0.34 -0.17 0.58 0.87 0.30 0.62 
 GNDVI br 0.03 0.10 0.64 0.94 0.67 0.58 
 DVI -0.38 -0.22 0.59 0.84 0.24 0.62 
Broad SR 0.06 0.04 0.73 0.89 0.67 0.50 
band SLAVI 0.06 0.00 0.54 0.93 0.75 0.50 
 OSAVI -0.32 -0.15 0.57 0.90 0.39 0.56 
 VI1 0.40 0.21 -0.55 -0.77 -0.10 0.03 
 RDVI 0.06 0.02 0.68 0.92 0.71 0.50 
 SI -0.06 0.01 -0.50 -0.92 -0.75 -0.50 
 IPVI 0.06 0.00 0.54 0.93 0.75 0.50 
 WI 0.04 0.48 0.09 -0.40 -0.40 -0.67 
 PSI 0.02 -0.45 0.46 0.61 0.28 0.35 
 NWI-1 0.36 0.12 -0.41 -0.56 -0.11 -0.58 
 NWI-2 0.42 0.28 -0.39 -0.68 -0.44 -0.62 
 NDVI hy 0.02 -0.24 0.50 0.93 0.74 0.48 
 GNDVI hy 0.02 0.15 0.63 0.93 0.60 0.60 
 SIPI -0.34 0.30 0.48 0.93 0.53 0.51 
 SRPI -0.03 -0.41 0.30 0.76 0.84 0.08 
 NPCI -0.03 0.41 -0.26 -0.62 -0.83 0.15 
 NPQI 0.24 -0.42 0.03 -0.06 -0.22 -0.25 
 PSSRb -0.37 -0.15 0.60 0.83 0.24 0.61 
 PSNDb 0.21 0.10 0.60 0.93 0.74 0.51 
 Rshoulder -0.41 -0.21 0.57 0.78 0.11 0.27 
 C420 0.29 -0.35 0.14 -0.37 0.42 -0.01 
 NDI -0.38 -0.22 0.59 0.84 0.24 0.62 
 SR hyper 0.06 -0.18 0.72 0.88 0.62 0.45 
 R800-R550 -0.42 -0.10 0.64 0.80 0.21 0.63 
 R800/R550 -0.13 0.10 0.67 0.90 0.58 0.62 
 R695/R760 -0.02 -0.11 -0.55 -0.93 -0.78 -0.51 
 R605/R760 0.03 -0.07 -0.57 -0.93 -0.74 -0.52 
Hyper R710/R760 0.39 -0.04 -0.62 -0.93 -0.79 -0.56 
 R695/R670 -0.33 -0.21 0.47 0.80 0.39 -0.13 
 R550 -0.40 -0.23 0.21 0.57 -0.11 -0.47 
 R675/R700 -0.27 0.01 -0.37 -0.89 -0.66 0.15 
 R675/(R700*R650) 0.41 0.22 -0.22 -0.10 0.41 0.38 
 R672/(R55*R708) 0.25 0.22 -0.31 -0.80 -0.39 0.43 
 R672/R550 -0.04 0.18 -0.37 -0.90 -0.73 0.19 
 R860/(R550*R708) 0.36 0.17 0.14 0.46 0.63 0.51 
 R750/R550 0.07 0.07 0.67 0.91 0.62 0.61 
 R750/R700 0.00 -0.03 0.72 0.92 0.76 0.54 
 R725/R675 0.14 0.04 0.66 0.88 0.58 0.25 
 (R850-R710)/(R850-R680) -0.48 0.11 0.41 0.28 0.08 0.53 
 (R780-R710)/(R780-R680) -0.52 0.18 0.44 0.56 0.15 0.53 
 R700-R670 -0.39 -0.13 0.23 0.75 0.04 -0.43 
 RNDVI -0.12 -0.02 0.50 0.93 0.75 0.47 
 PSR -0.05 -0.13 -0.14 -0.59 -0.82 0.15 
 WBI 0.04 0.44 -0.01 -0.29 -0.49 -0.71 
 SIPI 0.20 0.21 -0.19 -0.86 -0.83 -0.17 
 YI -0.11 0.16 0.57 0.64 0.33 0.22 
 VI2 0.43 0.20 -0.55 -0.77 -0.09 -0.04 
 Cgreen -0.13 0.10 0.67 0.90 0.58 0.62 
 Cred edge -0.12 0.01 0.73 0.92 0.76 0.55 
 C NIR 0.07 -0.03 0.52 0.80 0.28 0.62 
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Table B3- Coefficient of correlation for the relationship between different vegetation indices and the 
aboveground biomass of an Egyptian maize variety at different DAS in summer season of 2007. 
Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 

 
Aboveground biomass (kg m-2) Scale Vegetation index 

65 DAS 80 DAS 90 DAS 105 DAS 
 NDVI 0.49 0.83 0.63 0.51 
 RVI 0.67 0.79 0.53 0.50 
 SAVI 0.54 0.78 0.14 0.68 
 GNDVI br 0.60 0.85 0.59 0.62 
 DVI 0.54 0.74 0.09 0.72 
Broad SR 0.67 0.79 0.53 0.50 
band SLAVI 0.49 0.83 0.63 0.51 
 OSAVI 0.52 0.81 0.24 0.59 
 VI1 -0.51 -0.68 0.06 -0.05 
 RDVI 0.63 0.82 0.58 0.51 
 SI -0.45 -0.83 -0.63 -0.51 
 IPVI 0.49 0.83 0.63 0.51 
 WI 0.00 -0.42 -0.45 -0.54 
 PSI 0.37 0.60 0.14 0.23 
 NWI-1 -0.30 -0.52 -0.06 -0.45 
 NWI-2 -0.28 -0.62 -0.40 -0.48 
 NDVI hy 0.44 0.83 0.62 0.46 
 GNDVI hy 0.59 0.85 0.55 0.65 
 SIPI 0.42 0.85 0.40 0.45 
 SRPI 0.25 0.62 0.80 0.14 
 NPCI -0.21 -0.51 -0.79 0.01 
 NPQI 0.05 0.16 -0.29 -0.19 
 PSSRb 0.56 0.73 0.08 0.71 
 PSNDb 0.55 0.83 0.63 0.54 
 Rshoulder 0.52 0.69 -0.04 0.38 
 C420 0.18 -0.40 0.43 0.12 
 NDI 0.54 0.74 0.09 0.72 
 SR hyper 0.66 0.77 0.48 0.43 
 R800-R550 0.59 0.71 0.06 0.72 
 R800/R550 0.63 0.81 0.53 0.66 
 R695/R760 -0.49 -0.83 -0.67 -0.54 
 R605/R760 -0.52 -0.84 -0.63 -0.57 
Hyper R710/R760 -0.59 -0.84 -0.74 -0.62 
 R695/R670 0.40 0.70 0.25 -0.26 
 R550 0.18 0.53 -0.25 -0.46 
 R675/R700 -0.31 -0.80 -0.52 0.27 
 R675/(R700*R650) -0.16 -0.15 0.52 0.40 
 R672/(R55*R708) -0.27 -0.73 -0.25 0.48 
 R672/R550 -0.32 -0.80 -0.61 0.29 
 R860/(R550*R708) 0.15 0.41 0.67 0.53 
 R750/R550 0.63 0.82 0.55 0.65 
 R750/R700 0.67 0.82 0.66 0.58 
 R725/R675 0.60 0.78 0.41 0.19 
 (R850-R710)/(R850-R680) 0.43 0.27 0.18 0.61 
 (R780-R710)/(R780-R680) 0.45 0.53 0.25 0.61 
 R700-R670 0.19 0.67 -0.11 -0.48 
 RNDVI 0.44 0.83 0.63 0.46 
 PSR -0.10 -0.46 -0.79 0.01 
 WBI -0.09 -0.36 -0.55 -0.59 
 SIPI -0.12 -0.76 -0.77 -0.27 
 YI 0.54 0.63 0.17 0.28 
 VI2 -0.51 -0.68 0.06 -0.13 
 Cgreen 0.63 0.81 0.53 0.66 
 Cred edge 0.68 0.81 0.66 0.59 
 C NIR 0.50 0.73 0.32 0.69 
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Table B4- Coefficient of correlation for the relationship between different vegetation indices and the 
plant height of an Egyptian maize variety at different DAS in summer season of 2007. Highlighted 
values are significant (P<0.05) and bold values are the strongest correlations. 
 

Plant height (m) Scale Vegetation index 
30 DAS 45 DAS 65 DAS 80 DAS 90 DAS 105 DAS 

 NDVI -0.05 -0.25 0.39 0.71 0.72 0.55 
 RVI -0.07 -0.25 0.57 0.82 0.65 0.55 
 SAVI -0.12 -0.27 0.39 0.77 0.29 0.69 
 GNDVI br -0.09 -0.13 0.55 0.80 0.71 0.65 
 DVI -0.11 -0.25 0.39 0.78 0.24 0.70 
Broad SR -0.07 -0.25 0.57 0.82 0.65 0.55 
band SLAVI -0.05 -0.25 0.39 0.71 0.72 0.55 
 OSAVI -0.12 -0.28 0.38 0.76 0.39 0.63 
 VI1 0.11 0.21 -0.35 -0.75 -0.09 0.01 
 RDVI -0.06 -0.25 0.52 0.78 0.68 0.55 
 SI 0.04 0.25 -0.35 -0.67 -0.72 -0.55 
 IPVI -0.05 -0.25 0.39 0.71 0.72 0.55 
 WI -0.14 -0.02 0.05 -0.47 -0.44 -0.64 
 PSI 0.08 -0.07 0.27 0.52 0.21 0.30 
 NWI-1 -0.01 0.14 -0.23 -0.49 -0.17 -0.61 
 NWI-2 -0.04 0.12 -0.21 -0.54 -0.47 -0.64 
 NDVI hy 0.00 -0.27 0.34 0.69 0.71 0.51 
 GNDVI hy -0.06 -0.12 0.56 0.82 0.67 0.67 
 SIPI 0.00 -0.01 0.35 0.74 0.49 0.54 
 SRPI 0.02 -0.16 0.26 0.53 0.82 0.14 
 NPCI -0.05 0.14 -0.22 -0.47 -0.80 0.09 
 NPQI -0.02 -0.01 0.04 0.20 -0.25 -0.20 
 PSSRb -0.14 -0.26 0.40 0.78 0.23 0.70 
 PSNDb -0.15 -0.18 0.45 0.71 0.73 0.58 
 Rshoulder -0.11 -0.22 0.36 0.75 0.11 0.32 
 C420 -0.02 0.09 0.29 -0.16 0.44 0.07 
 NDI -0.11 -0.25 0.39 0.78 0.24 0.70 
 SR hyper -0.02 -0.29 0.55 0.80 0.59 0.48 
 R800-R550 -0.12 -0.25 0.45 0.79 0.22 0.71 
 R800/R550 -0.09 -0.14 0.59 0.86 0.64 0.70 
 R695/R760 0.07 0.17 -0.40 -0.68 -0.76 -0.57 
 R605/R760 0.24 0.19 -0.45 -0.70 -0.74 -0.59 
Hyper R710/R760 0.05 0.17 -0.53 -0.77 -0.83 -0.64 
 R695/R670 0.11 -0.13 0.31 0.60 0.32 -0.19 
 R550 -0.08 -0.08 0.03 0.50 -0.13 -0.52 
 R675/R700 -0.01 0.12 -0.20 -0.64 -0.59 0.23 
 R675/(R700*R650) 0.07 0.08 -0.01 -0.16 0.43 0.45 
 R672/(R55*R708) 0.04 0.17 -0.13 -0.55 -0.33 0.52 
 R672/R550 -0.05 0.18 -0.20 -0.62 -0.66 0.26 
 R860/(R550*R708) 0.07 0.03 0.29 0.45 0.66 0.59 
 R750/R550 -0.13 -0.15 0.59 0.85 0.67 0.69 
 R750/R700 -0.05 -0.19 0.58 0.84 0.76 0.61 
 R725/R675 -0.03 -0.18 0.49 0.77 0.52 0.25 
 (R850-R710)/(R850-R680) -0.11 -0.07 0.45 0.56 0.20 0.62 
 (R780-R710)/(R780-R680) 0.02 -0.06 0.47 0.72 0.27 0.62 
 R700-R670 -0.03 -0.09 0.06 0.56 0.00 -0.50 
 RNDVI 0.03 -0.23 0.34 0.69 0.71 0.51 
 PSR 0.08 -0.02 -0.14 -0.43 -0.81 0.09 
 WBI -0.13 -0.04 0.00 -0.45 -0.52 -0.67 
 SIPI -0.08 0.04 -0.10 -0.56 -0.80 -0.22 
 YI -0.17 -0.11 0.42 0.80 0.30 0.30 
 VI2 0.11 0.21 -0.35 -0.75 -0.10 -0.06 
 Cgreen -0.09 -0.14 0.59 0.86 0.64 0.70 
 Cred edge -0.04 -0.17 0.59 0.84 0.76 0.62 
 C NIR -0.05 -0.11 0.52 0.85 0.41 0.71 
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Table B5- Coefficient of correlation for the relationship between different vegetation indices and the 
plant water content of maize leaves at different DAS in summer season of 2007. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Plant water content (%) Scale Vegetation index 
65 DAS 80 DAS 90 DAS 105 DAS 

 NDVI 0.37 0.48 0.75 0.39 
 RVI 0.57 0.56 0.66 0.38 
 SAVI 0.38 0.60 0.39 0.49 
 GNDVI br 0.53 0.48 0.59 0.45 
 DVI 0.37 0.60 0.34 0.49 
Broad SR 0.57 0.56 0.66 0.38 
band SLAVI 0.37 0.48 0.75 0.39 
 OSAVI 0.37 0.58 0.47 0.44 
 VI1 -0.34 -0.61 -0.21 0.04 
 RDVI 0.52 0.54 0.70 0.39 
 SI -0.33 -0.46 -0.75 -0.39 
 IPVI 0.37 0.48 0.75 0.39 
 WI -0.02 0.09 -0.45 -0.57 
 PSI 0.30 0.54 0.35 0.22 
 NWI-1 -0.20 -0.20 -0.15 -0.47 
 NWI-2 -0.17 -0.34 -0.47 -0.50 
 NDVI hy 0.32 0.48 0.76 0.37 
 GNDVI hy 0.53 0.47 0.49 0.47 
 SIPI 0.33 0.39 0.57 0.42 
 SRPI 0.22 0.31 0.76 0.04 
 NPCI -0.19 -0.30 -0.71 0.17 
 NPQI 0.02 -0.29 -0.31 -0.21 
 PSSRb 0.39 0.60 0.33 0.48 
 PSNDb 0.44 0.50 0.73 0.39 
 Rshoulder 0.35 0.61 0.22 0.21 
 C420 0.15 -0.53 0.26 -0.04 
 NDI 0.37 0.60 0.34 0.49 
 SR hyper 0.55 0.57 0.63 0.35 
 R800-R550 0.43 0.59 0.29 0.50 
 R800/R550 0.56 0.48 0.47 0.50 
 R695/R760 -0.37 -0.47 -0.77 -0.38 
 R605/R760 -0.41 -0.47 -0.72 -0.40 
Hyper R710/R760 -0.49 -0.46 -0.72 -0.44 
 R695/R670 0.35 0.58 0.48 -0.07 
 R550 0.04 0.66 0.05 -0.38 
 R675/R700 -0.21 -0.53 -0.69 0.11 
 R675/(R700*R650) -0.01 -0.54 0.24 0.28 
 R672/(R55*R708) -0.10 -0.61 -0.50 0.35 
 R672/R550 -0.19 -0.49 -0.76 0.16 
 R860/(R550*R708) 0.28 -0.14 0.45 0.41 
 R750/R550 0.55 0.48 0.52 0.49 
 R750/R700 0.55 0.50 0.70 0.42 
 R725/R675 0.51 0.57 0.60 0.19 
 (R850-R710)/(R850-R680) 0.44 0.08 -0.06 0.42 
 (R780-R710)/(R780-R680) 0.45 0.23 0.01 0.41 
 R700-R670 0.08 0.63 0.18 -0.33 
 RNDVI 0.32 0.49 0.76 0.37 
 PSR -0.10 -0.26 -0.72 0.17 
 WBI -0.09 0.25 -0.53 -0.62 
 SIPI 0.00 -0.35 -0.82 -0.10 
 YI 0.46 0.17 0.41 0.16 
 VI2 -0.34 -0.62 -0.21 -0.02 
 Cgreen 0.56 0.48 0.47 0.50 
 Cred edge 0.56 0.49 0.69 0.43 
 C NIR 0.51 0.36 0.17 0.50 
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Table B6- Coefficient of correlation for the relationship between different vegetation indices and the 
LAI of an Egyptian maize variety at different DAS in summer season of 2007. Highlighted values are 
significant (P<0.05) and bold values are the strongest correlations. 
 

Leaf area index Scale Vegetation index 
65 DAS 80 DAS 90 DAS 105 DAS 

 NDVI 0.32 0.90 0.85 0.49 
 RVI 0.54 0.82 0.81 0.48 
 SAVI 0.37 0.80 0.82 0.63 
 GNDVI br 0.52 0.91 0.9 0.60 
 DVI 0.38 0.76 0.74 0.63 
Broad SR 0.54 0.82 0.81 0.48 
band SLAVI 0.32 0.90 0.85 0.49 
 OSAVI 0.34 0.85 0.84 0.56 
 VI1 -0.35 -0.69 -0.21 0.01 
 RDVI 0.48 0.87 0.84 0.49 
 SI -0.28 -0.89 -0.85 -0.49 
 IPVI 0.32 0.90 0.85 0.49 
 WI -0.10 -0.39 -0.56 -0.61 
 PSI 0.20 0.57 0 0.34 
 NWI-1 -0.11 -0.53 -0.63 -0.50 
 NWI-2 -0.08 -0.65 -0.64 -0.53 
 NDVI hy 0.26 0.89 0.84 0.44 
 GNDVI hy 0.54 0.90 0.9 0.62 
 SIPI 0.25 0.90 0.9 0.45 
 SRPI 0.23 0.73 0.81 0.13 
 NPCI -0.20 -0.62 -0.67 0.05 
 NPQI 0.06 0.10 0.68 -0.17 
 PSSRb 0.40 0.74 0.75 0.64 
 PSNDb 0.40 0.89 0.85 0.53 
 Rshoulder 0.36 0.70 0.49 0.30 
 C420 0.29 -0.41 0.57 0.10 
 NDI 0.38 0.76 0.74 0.63 
 SR hyper 0.53 0.81 0.79 0.40 
 R800-R550 0.45 0.72 0.81 0.66 
 R800/R550 0.57 0.86 0.88 0.62 
 R695/R760 -0.33 -0.90 -0.84 -0.53 
 R605/R760 -0.38 -0.90 -0.87 -0.55 
Hyper R710/R760 -0.50 -0.91 -0.85 -0.59 
 R695/R670 0.24 0.74 0.78 -0.24 
 R550 0.01 0.51 -0.79 -0.48 
 R675/R700 -0.11 -0.85 -0.79 0.24 
 R675/(R700*R650) 0.07 -0.08 0.82 0.40 
 R672/(R55*R708) -0.05 -0.78 -0.16 0.47 
 R672/R550 -0.13 -0.86 -0.71 0.27 
 R860/(R550*R708) 0.31 0.48 0.81 0.51 
 R750/R550 0.56 0.86 0.88 0.62 
 R750/R700 0.55 0.86 0.8 0.55 
 R725/R675 0.46 0.81 0.8 0.19 
 (R850-R710)/(R850-R680) 0.52 0.28 0.82 0.58 
 (R780-R710)/(R780-R680) 0.52 0.56 0.83 0.58 
 R700-R670 0.02 0.69 -0.11 -0.48 
 RNDVI 0.26 0.90 0.84 0.45 
 PSR -0.12 -0.58 -0.71 0.05 
 WBI -0.15 -0.32 -0.6 -0.67 
 SIPI -0.03 -0.84 -0.78 -0.21 
 YI 0.42 0.61 -0.72 0.29 
 VI2 -0.35 -0.69 -0.2 -0.06 
 Cgreen 0.57 0.86 0.88 0.62 
 Cred edge 0.56 0.86 0.8 0.56 
 C NIR 0.55 0.78 0.84 0.63 
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Table B7- The relationship between the rededge position and the measured chlorophyll a concentration extreacted from Egyptian maize leaves collecteed at different DAS in 
summer season of 2007. Highlighted values are significant (P<0.05) and bold values are the strongest correlations. 

Days after sowing      
30 DAS 45 DAS 65 DAS 80 DAS 90 DAS 105 Treatment Replicates 

Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a Rededge Chl a 
R1 707.7 40.77 714.8 47.45 726.1 45.07 729.4 44.20 720.3 62.91 724.5 61.41 
R2 704.4 37.53 710.4 39.58 721 42.60 725 47.61 719.1 58.12 726.1 59.52 T1 
R3 704.6 41.63 712 44.02 722.7 41.82 727.9 43.20 719.8 55.31 723.4 57.40 
R1 702.7 40.23 706.3 33.53 722.1 43.15 725.2 47.82 719.6 52.92 721.8 48.48 
R2 706.8 38.69 715.2 35.06 721.6 40.80 728.2 42.41 719.3 50.49 720.9 45.94 T2 
R3 705.1 36.67 712.2 30.96 720.2 41.30 722.5 40.43 716.6 51.79 726.3 43.68 
R1 709.2 40.47 705.3 27.34 711.9 36.50 715 34.17 708.4 28.47 719.6 29.39 
R2 707.1 37.73 714.2 26.76 712.4 35.20 718.5 30.55 705.6 32.84 718 29.70 T3 
R3 708.7 35.68 716.4 26.82 712.1 33.14 719.4 31.84 708.5 34.45 718.2 32.16 
R1 712.6 40.64 708.5 26.45 711.8 30.15 730.5 31.09 702.3 29.56 712.2 26.00 
R2 704.6 39.61 713.2 30.96 714.2 29.41 727.6 29.86 700.6 33.63 711.1 25.39 T4 
R3 711.7 38.55 715.2 34.38 708.2 32.66 727.7 30.24 702.2 26.31 713 27.92 
R1 708.8 35.30 716.8 36.14 721.3 39.15 724.5 38.41 715.7 49.98 726.6 49.30 
R2 708.7 41.01 714.7 39.65 721.8 40.64 716.4 39.13 710.6 55.35 721.9 47.14 T5 
R3 707.1 41.29 709.6 45.56 723.2 141.30 714.7 41.66 713.5 54.90 723.3 51.11 
R1 711.3 42.17 710.4 36.64 712.6 37.30 710.2 33.90 708.3 41.87 720.3 37.36 
R2 716.4 40.77 704.3 35.89 715 36.40 704.2 36.77 708.9 34.89 718.6 34.44 T6 
R3 714.8 37.11 715.5 35.00 717.4 38.15 705.6 35.54 709.7 45.09 721.8 39.07 
R1 714.8 39.10 707.7 28.77 702 37.33 702.6 25.92 697.6 32.02 715.4 25.97 
R2 712 37.53 700.5 33.15 705.1 34.56 712.7 25.58 696.7 25.67 714.7 24.12 T7 
R3 705.9 37.73 710 31.85 703.5 37.19 714.1 26.58 696 35.00 714 31.20 
R1 705.4 35.47 705.1 31.85 705 30.25 713.6 24.49 695.5 33.49 712.1 28.12 
R2 717.6 40.84 703.2 27.26 701.3 27.90 705.3 23.15 695.7 32.02 714.1 29.42 T8 
R3 714.1 34.76 709.6 26.58 701.8 29.25 712.5 21.71 695.6 24.57 707.8 24.29 
R1 711.9 41.60 712 27.85 711.2 26.46 715.7 23.15 696.5 25.63 711.9 21.96 
R2 709.2 38.55 712 24.16 709.3 22.95 708.6 24.01 695.8 36.03 705.6 20.39 T9 
R3 703.3 37.73 718.4 25.29 710.6 24.03 707.7 28.83 696.5 24.94 709.9 23.54 
R1 701.7 39.95 714.1 35.54 721.5 33.76 709.5 38.51 707 41.11 720.8 43.48 
R2 707.8 40.87 718.2 37.63 714 35.75 724.1 35.27 706.8 42.52 719.7 35.20 T10 
R3 712.5 41.63 714.2 34.66 712.8 32.92 722.8 36.22 709.2 44.09 717.5 41.63 
R1 707.5 36.16 707.9 28.32 709 26.91 709 28.43 697.5 22.27 712.5 24.25 
R2 710.5 34.55 709 30.17 713.4 28.66 705 25.38 696.5 25.63 706.5 24.32 T11 
R3 707.5 39.61 711 31.47 707.9 29.90 702.5 27.50 697.3 26.86 711.3 22.99 

r   0.08 0.17 0.43 0.54 0.88 0.87 
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APPENDIX C 

 
 

Figure C1: NDVI map derived from QuickBird image acquired on 7th April 2007 for wheat crops 
in south-west Alexandria, Egypt. 
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Figure C2: DVI map derived from QuickBird image acquired on 7th April for wheat crops in south-
west Alexandria, Egypt.  
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Figure C3: NDVI map derived from QuickBird image acquired on 29th June for maize crops in south-
west Alexandria, Egypt. 
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Figure C4: SI map derived from QuickBird image acquired on 29th June for maize crops in south-west 
Alexandria, Egypt. 
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Figure C5: GNDVIbr map derived from QuickBird image acquired on 29th June for maize crops in 
south-west Alexandria, Egypt.  
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APPENDIX D 

Converting radiance to reflectance 

Following the simple dark pixel subtraction technique, an attempt was made to 

convert radiance to reflectance by matching pixels with in situ spectra. Radiance in 

each band from the QuickBird image was derived via specific ROIs in ENVI. The 

reflectance obtained from in situ hyperspectral survey at each location within the 

same field was averaged to simulate the bands of QuickBird image (four spectral 

bands). The dataset collected from the Hewaihy site on 28th March was used for this 

analysis since at the Kahr site more than half of the fields of in situ hyperspectral 

survey were covered by clouds and associated shadows. The regression analysis was 

performed to investigate the relationship between reflectance and radiance in every 

band. The results showed non-significant relationships between reflectance obtained 

from in situ hyperspectral survey and radiance obtained from QuickBird satellite 

image as p values were non-significant in bands 1, 3, and 4 (p = 0.41, 0.37, 0.89 

respectively) and very low coefficient of determination values in these three bands (R2 

= 0.050, 0.060, and 0.002). Only band 3 data gave low significant relationship (R2 = 

0.37; p = 0.017). 

The regression analysis was also performed on the dataset collected from the Hewaihy 

site on the 12th March. Same trends of the 28th dataset were observed as the 

coefficient of determination values was 0.001, 0.230, 0.090, and 0.05 in bands 1, 2, 3, 

and 4 respectively. Figure 6.25 shows the relationship between reflectance derived 

from in situ hyperspectral measurements and radiance derived from QuickBird 

satellite image in different band. The results therefore suggest that it is difficult to 

convert radiance to reflectance through the relationship between reflectance obtained 

from in situ hyperspectral and radiance obtained from QuickBird satellite image. Lots 

of reflectance data from many fixed ground control points such as roads are needed to 

convert radiance to reflectance. 
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Figure D1:  The relationship between reflectance obtained from in situ hyperspectral survey and 
radiance obtained from QuickBird satellite image in (a) band 1, (b) band 2, (c) band 3 and (d) band 4 (n 
= 15). 
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