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Summary 

 

Hoverflies are important for their roles in ecological and environmental services, 

and are also charismatic species of conservation interest in their own right. Almost 

half of all hoverflies are saprophages, which are organisms that feed on dead or 

decaying organic matter, and these include saproxylic species that depend on 

deadwood. Deadwood and its associated community are a rich source of forest 

biodiversity and are fundamental to forest function, but due to poor management, 

many saproxylics are threatened or endangered, and techniques for conserving 

saproxylic species are poorly developed. In this thesis I study the ecology and 

conservation management of an endangered UK saproxylic fly, the Pine hoverfly, 

Blera fallax (Linnaeus) (Diptera, Syrphidae) and the dispersal ability of the 

similarly endangered Aspen hoverfly, Hammerschmidtia ferruginea (Fallén) 

(Diptera, Syrphidae). My main goals were to clarify methods to support their 

recovery in active programmes of species conservation in Scotland, UK. For B. 

fallax, this included experimenting with habitat creation techniques, investigating 

the best conditions for larval growth and assessing competition effects. In addition, I 

evaluated the genetic variability of the remaining population in Scotland by 

comparing it with one in Europe to determine whether genetic constraints may limit 

recovery. For H. ferruginea, I determined dispersal ability with field experiments 

involving mark and recapture techniques. 

 

By cutting holes at the surface of stumps of Pinus sylvestris, breeding habitat was 

created artificially for B. fallax at the remaining known locality for this species in 

the UK. Over 4 years, 81 % of holes were colonized by B. fallax, and by up to six 

 2



other saproxylic syrphid species. The most successful holes were those cut into the 

heartwood, seeded with pine chips and sawdust and partially covered, as indicated 

by a combination of field occupancy monitoring and lab growth experiments. 

Observations of larval morphology and behaviour within rot holes revealed 

specializations that largely segregate the species in both time and space, and may 

mitigate interspecific competition between B. fallax and three more common 

syrphid species. I further demonstrated that B. fallax has a life history that features 

facultative semivoltine development, which may be a bet-hedging strategy to cope 

with fluctuating levels of larval food. Fifty B. fallax larvae were successfully reared 

and bred in captivity and from these, 430 descendent laboratory reared larvae and 

adults were released across three relocation sites. After initial success at the first re-

location site when a new generation of larvae appeared in holes in 2010, a 

population crash at all sites occurred in the following year, possibly caused by 

adverse weather conditions. This disappointing result highlights the vulnerability of 

small populations to stochastic events, and means that survival of B. fallax may now 

depend on those larvae that are semivoltine, supplemented by animals currently 

being reared in captivity. My genetic analyses revealed similarly troubling 

information that highlights the precarious existence of B. fallax in Scotland: 

compared with a population in Sweden, Scottish B. fallax had significant less 

neutral genetic variation, and showed signs of a recent and severe bottleneck that 

reduced the effective population size to just 12 (CI: 0 - 266) individuals at some 

point in the last 200 years. Mindful of these challenges, I exploit my new data on 

the ecology and life history of B. fallax and combine it with techniques for captive 

rearing and for monitoring the genetic health of B. fallax into specific protocols and 

general prescriptions for the on-going recovery and management of this species.  
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In order to assess the dispersal ability of H. ferruginea (and therefore its potential 

for recolonizing newly created habitat), in May to July over two years, adults were 

marked and released from a central point and subsequently monitored at the 

breeding site, decaying aspen wood Populus tremula, where adults tend to assemble 

for mating and oviposition. Adults were resighted visiting logs of decaying aspen 

set out at 1 km intervals along transects up to 7 km away. Up to 10 % of released 

individuals were resighted up to 5 km from the central release point. Most 

dispersing individuals (68 %) were resighted at 1 km, which I propose as the 

optimal distance for managing aspen for this species.  

 

Both of these hoverflies are case studies of techniques for recovering endangered 

saproxylic flies. Overall, my findings greatly increase fundamental knowledge of 

the ecology and natural history of these flies, and clarify some of the practical 

approaches that will be required in their conservation. 
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“But more than roles and research projects, is the fact that in taking a little time to 
become acquainted with hoverflies, is invariably to become smitten by them” 
 
Rotheray and Gilbert 2011 
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   Chapter 1 

1 Introduction 
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1.1 Insect conservation 

 

Possibly the most diverse group of organisms on Earth are the insects, comprising 

half of the world’s described species (Primack 1998; Cardoso et al. 2011), so 

conserving insects is fundamental to maintaining biodiversity (Dunn 2005). 

Projections based on better-known taxa estimate that 40,000 insects have gone 

extinct in the last 600 years (Dunn 2005). Their specialisations and complex 

ecological associations make them particularly vulnerable to habitat fragmentation 

and land-use changes (Samways 1994). Their importance in ecosystem functioning 

is widely recognised and yet despite this, insects have been neglected in 

conservation studies worldwide, often due to a lack of basic knowledge of their 

biology and distribution (Dunn 2005; Balvanera et al. 2006; Samways 2006; 

Cardoso et al. 2011). Conservation efforts often rely on shortcuts for the 

maintenance of biodiversity and to monitor conservation problems such as umbrella 

species (species whose conservation confers protection to a large number of 

naturally co-occurring species), and indicator species (used to assess the condition 

of a particular habitat or ecosystem; Caro & O’Doherty 1999; Roberge & 

Angelstam 2004). While broad scale conservation management can be more 

efficient and economical, it can overlook critical small-scale habitats and special 

features. Due to scale, efficiency and tight budgets, there is an argument for broad 

conservation management using these surrogates (Simberloff 1998; Samways 2007). 

However, specialist and rare species are often over looked, and their specific needs 

are not provided for. In order to conserve these most threatened species, we need to 

focus investigation on their specific requirements and target habitat management 

accordingly. 
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While conservation objectives often favour more popular, charismatic species 

(Martín-López et al. 2009) this trend is gradually changing, with current on-going 

conservation management work focusing on several insect groups including 

butterflies (Thomas et al. 2009, 2011), and bumblebees (Goulson et al. 2011), and 

species-specific interventions such as relocation projects for the field cricket 

(Gryllus campestris (Orthoptera, Gryllidae)) (Hochkirch et al. 2007), the mottled 

grasshopper (Myrmeleotettix maculatus (Orthoptera, Acrididae)) (Gardiner 2010) 

and the southern damselfly (Coenagrion mercuriale (Odonata, Coenagrionidae)) 

(Purse 2002). Insects have been proposed as effective flagship species (taxa used to 

generate public support and funding for conservation goals) for particular habitats 

and for conservation in general (Caro & O’Doherty 1999; Guiney & Oberhauser 

2009). These insect-focused conservation projects are still in the minority however, 

especially in terms of funding and resource allocation. Most of the current work 

relies heavily on charitable organisations such as Butterfly Conservation and the 

Bumblebee Conservation Trust raising the profile of these species groups. Very 

little conservation effort has been directed at hoverflies, a little known and often 

misunderstood group of insects. Why should we want or need to conserve 

hoverflies? 

 

1.2 The importance of hoverflies 

 

Diptera constitute the third most diverse order of insects, with an estimated 120,000 

species, and hoverflies are one of the largest families of Diptera with more than 

6,000 species worldwide (Gilbert et al. 1994; Rotheray & Gilbert 2011). There are 

56 UK Red Data Book listed hoverflies, and seven have UK Biodiversity Action 
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Plans (Stubbs & Falk 2002; Ball et al. 2011). These plans highlight the need for 

focused investigation into unknown details of their natural history, especially 

concerning their life cycles, breeding sites and larval stages, behaviours and 

requirements (Drake & Baldock 2005).  

 

Hoverflies provide essential ecological and environmental services such as the 

pollination of a variety of plants in both natural and agricultural systems, predation 

of aphids, control of invasive weeds, and recycling of wastes (Rotheray and Gilbert 

2011). They are among the most frequent insect visitors to flowers, and visit a wide 

range of species (Gilbert 1980, 1981, 1985). They are known to pollinate up to 30 

leading crops and cultivated plants (Ball et al. 2011; Rotheray & Gilbert 2011). In 

light of recent declines in bee species, hoverflies are becoming increasingly 

important pollinators (Biesmeijer et al. 2006; Jauker et al. 2009, 2011). They also 

form a vital resource for many kinds of predators, from invertebrates such as beetles, 

spiders, wasps and ants, to birds and mammals (Rotheray and Gilbert 2011). In 

contrast to the generally uniform feeding habits of adults, the larvae have a great 

diversity of form, feeding mode and place of development; from predation on 

aphids, ants, and bee and wasp larvae, to feeding on plants including invasive weeds, 

and organic decaying matter (Owen 1981; Gilbert 1986; Schönrogge et al. 2002). 

 

Due to their diverse preferences and tolerances, species assemblages are 

characteristic of particular habitats and environmental conditions and therefore they 

can be used as indicators of site quality, and monitoring effects of environmental 

and landscape-level change (Sommaggio 1999; Burgio & Sommaggio 2007). Lists 

of hoverfly species have been drawn up as indicators of ancient woodlands, forming 
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groups that describe the condition of a woodland based on their abundance and 

species richness, aided by relatively easy identification and sampling (Stubbs 1982; 

Speight 1986; Maleque et al. 2009). Most hoverflies are specialists and many are 

geographically endemic and are therefore of greater biodiversity significance 

(Primack 1998; Rotheray & Gilbert 2011).  

 

Almost half of all hoverflies are saprophages (Gilbert 1994). These are species that 

play pivotal roles in the decomposition and recycling of a vast range of materials 

from decaying vegetation in lakes, rivers and rot holes, to compost, dung and dead 

wood (Gilbert 1986). They break down waste from agricultural and industrial 

processes, which opens up possibilities for their commercial use. They can be found 

from coasts to mountaintops, in tropical and temperate forests, in grasslands and 

savannahs and even deserts (Rotheray & Gilbert 2011). Because of their often-

striking colours, large size, stable taxonomy and recognisable hovering behaviour, 

hoverflies are a good flagship group for saproxylic species.  

 

1.3 Saproxylics 

 

Saproxylic organisms are a diverse group that includes invertebrates, fungi and 

micro-organisms that recycle minerals and nutrients and are part of a complex, and 

often specialised, community of decomposers (Grove 2002). Deadwood is a highly 

biodiverse, species rich resource (Carey 1989; Peterken et al. 1992; Humphrey 

2005; Humphrey et al. 2005); in Scandinavia it is estimated that up to 7,000 species 

depend on deadwood (Marchetti 2005). In Britain, an estimated 6 % of the entire 

invertebrate fauna exclusively depend on saproxylic organisms or decaying wood 
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(Butler et al. 2002; Lassauce et al. 2011). Deadwood and its dependent community 

are recognised as fundamental to forest function through critical processes such as 

nutrient cycling (Butler et al. 2002; Grove 2002; Jonsson et al. 2005; Schmuki et al. 

2006). Due to the specialised fauna and high number of associated threatened 

species, saproxylics can be used as bio-indicators of site quality, and thus indicators 

of forests of conservation importance (Speight 1989).  

 

Less intensive forest management is better for saproxylics (Grove & Tucker 2000; 

Grove 2002). Recent research has highlighted the sensitivity of saproxylic species 

where in managed forests, fewer individuals and species are found compared to old 

growth or primary forests (Grove 2002; Humphrey 2005). Saproxylic organisms 

have suffered from unsympathetic forest management involving the removal of 

dead trees, branches and stumps that can obstruct forest operations, and are thought 

to be potential sources of outbreaks of pest species (Schiegg 2001). A large number 

of studies have highlighted the difficulties in prescribing management that meets the 

requirements of all saproxylic species (Jonsell et al. 2003; Jonsson et al. 2005; 

Davies et al. 2008; Lassauce et al. 2011). This is broadly due to a dearth of 

knowledge about their conservation needs, the dependence of species groups on 

different age and decay structures of decaying wood, and often complicated 

ecological relationships (Rotheray & MacGowan 2000; Yee et al. 2004; Smith et al. 

2009; Weslien et al. 2011).  

 

Understanding the dispersal abilities of species of conservation concern is critical, 

for this will determine the likelihood that they colonize any suitable habitat that is 

created for them. While many species have reportedly low powers of dispersal 

 24



relative to human-induced habitat fragmentation (Grove 2002; Ranius et al. 2011), 

little is known of the capability of saproxylic species to colonise new areas and 

compensate for local extinctions. A number of techniques have been used to 

determine the dispersal abilities of saproxylic beetles (Jonsson 2002; Ranius 2006; 

Svensson et al. 2011). These have mainly used mark recapture and telemetry 

methods, and genetic studies have complemented findings (Jonsson et al. 2003; 

Ranius 2006; Schmuki et al. 2006). However, few studies have measured the 

dispersal ability of saproxylic flies.  

 

1.4 Conservation management and the case study of two hoverflies 

 

Conservation management is the practical approach to preventing extinction of 

species, and if possible, reintegrating them into properly functioning ecosystems 

(Primack 1998). This is achieved through gathering information on population 

biology, ecology, and genetics and determining the best strategies for protecting 

rare species and designing the best recovery programmes.  

 

This thesis empirically analysed several aspects of the conservation biology of two 

endangered saproxylic hoverflies in Scotland: the Pine hoverfly Blera fallax 

(Linnaeus) and the Aspen hoverfly Hammerschmidtia ferruginea (Fallén). These 

species have been the focus of survey and management work since the early 1990s 

(Rotheray & MacGowan 2000; Rotheray et al. 2001). They both meet criteria as 

indicator species as they are associated with a tree species characteristic of a 

particular woodland type (native boreal forests of the northern hemisphere), they are 

dependent on dead wood and are excessively localised (Speight 1989). They are 
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relatively large making them easy to find and recognise, and therefore are also 

appropriate as flagship species for their breeding habitat. Both species have recently 

been proposed for addition to Schedule 5 of the Wildlife and Countryside Act, 1981 

(Ball et al. 2011). 

 

The main motivation of this study was to fill the gaps in our knowledge of these 

species, in particular to identify factors affecting growth, survival, and recruitment, 

and potentially limiting the recovery of populations in Scotland. Successful 

techniques have been devised to investigate the requirements and habitat 

preferences of H. ferruginea and these have assisted conservation protocols 

(Rotheray et al. 2009). Similar techniques were required for B. fallax, in which the 

majority of efforts were focused. 

 

1.5 The pine hoverfly Blera fallax 

 

The Pine hoverfly Blera fallax is listed in the UK Red Data Book as category 1 

(endangered) and it is a UK Biodiversity Action Plan priority species. This status 

was confirmed in 1999 after an extensive 12-year survey, which indicated a decline 

from 8 to 2 populations since the early 1900’s mainly due to loss of habitat and 

changes in forestry management (Rotheray & MacGowan 2000). In 2007, B. fallax 

was included in the Species Action Framework (SAF), a Scottish Natural Heritage 

(SNH) initiative (Scottish Natural Heritage 2007), which focuses on funding 

projects to improve the status of species deemed significant to overall Scottish 

biodiversity. This species is arguably Britain’s rarest resident insect. 
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Blera fallax biology 

 

Blera fallax larvae filter-feed microbes in rot holes occurring in decaying roots and 

holes at the surface of stumps of Scots Pine, Pinus sylvestris L. In Scotland, B. 

fallax has not been found associated with any other tree species, however in 

Scandinavia it has been found in Norway Spruce Picea abies (Speight 2008). The 

larvae have an extended anal segment for respiration under water which gives them 

their common name of rat-tailed maggot or long-tailed larvae (Rotheray 1993). The 

complex mouthparts consist of a pump in the head skeleton and various filters that 

suck in fluid and filter out microbes, which are the source of food (Hartley 1963; 

Roberts 1970; Rotheray 1993). Larvae have a pair of spiracles at the front of the 

body, thought only to play a minor role in gas-exchange, and a coating of protective 

spicules across the front of the thorax, which may also assist in loosening microbes 

in the substrate (Rotheray & Gilbert 1999; Rotheray 1993). Electron micrographs of 

these filters and microbial cultures made from samples taken within the gut of 

closely related species indicate that larvae feed on bacteria and microbes of ~0.1µm 

(Mahmoud 1999). Blera fallax larvae are almost translucent at first but become 

opaque with accumulating white fat as they grow. Fat seems to be required for 

overwinter survival and pupation in the spring. Blera fallax adults are sexually 

dimorphic in colour pattern, and they have been observed feeding on wild raspberry 

(Stubbs & Falk 2002). 
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Blera fallax distribution and habitat decline 

 

Blera fallax is found across the Palearctic as far east as Japan and south as the 

Pyrenees (Speight 2008). Based only on scant, intermittent records, it is considered 

locally rare or declining wherever it has been recorded (Speight 2008). Declines in 

Scotland are probably associated with changing forestry practices in Scotland. Since 

the mid 19th century, monoculture conifer plantations have expanded, reducing the 

size and age structure in woodlands to meet prime cultivation standards. Stumps are 

also often destroyed by forestry operations, removed for re-seeding, and sometimes 

used for biofuel (Walmsley & Godbold 2010).  

 

Blera fallax as an umbrella species 

 

Conserving B. fallax may confer protection to a large number of naturally co-

occurring species. In Scotland, B. fallax shares its habitat with at least 30 

endangered taxa from several groups including Diptera (Rotheray et al. 2001), 

parasitic Hymenoptera and Coleoptera (Alexander 1988; Butler et al. 2002). The 

pine stump habitat is not only important for rot hole dwelling species. The larvae of 

Xylota jakutorum (Diptera, Syrphidae) are known to develop in the borings of pine 

weevils (Hylobius abietus) in conifer stumps (Rotheray & Stuke 1998). Others 

include the hoverfly Microdon mutabilis (Diptera, Syrphidae) and their associated 

Formica lemani ant colonies, mason bees such as Osmia unciniata, the UK 

Biodiversity Action Plan species twinflower Linnaea borealis, and a range of lesser-

known wood decaying fungi, lichen, mosses and bryophytes (Lonsdale et al 2008). 

By conserving B. fallax, other species in this rich community should also benefit. 
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1.6 Main objectives for B. fallax  

 

Captive breeding and relocation  

 

Due to the small number individuals that could only be found in one site at the 

beginning of this study, the decision was made to captive breed B. fallax in order to 

re-populate previously occupied sites. This involved meeting and discussing site 

creation possibilities with local foresters and land managers where habitat was 

deemed suitable enough for relocation i.e. pine trees were of a suitable size and age 

structure, and adult food plants were available. Three sites were selected based on 

these specifications, as well as a long-term commitment to monitoring and 

supplementation of breeding habitat by the owners. Relocations to each of these 

sites were planned in successive years, in accordance with Actions drawn up under 

the SNH SAF (Appendix 5.2). 

 

Habitat creation 

 

Experimental habitat creation for this species had not previously been attempted, 

but was clearly necessary at both extant sites and in sites where reintroductions 

were planned. Experimental techniques involved boring holes into stumps, either 

left after felling or newly felled, and then filling them with wood chips or sawdust.  
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Captive rearing larvae 

 

At the same time as creating habitat for B. fallax, we needed to develop methods for 

rearing larvae ex-situ. Therefore, we formulated various larval growth experiments 

investigating the effects of substrate size, volume, and inter-specific competition, in 

addition to investigating whether B. fallax larvae can develop in other host tree 

species. The results from this work not only provide insight into the life history 

strategies of B. fallax, but may also identify sensitive stages in development that 

may require special or specific management. 

 

Competition and co-existence 

 

Understanding the ecology of species interactions and coexistence can clarify 

factors that may influence declining populations. Competitive exclusion may limit 

the success of relocations so understanding potential conflicts is critical. Blera 

fallax shares its rot hole habitat with eight other species of saprophagous fly. 

Occupancy is dominated by three more commonly found hoverflies including 

Callicera rufa (Schummel), Myathropa florea (Linnaeus) and Sphegina clunipes 

(Fallén) (Diptera, Syrphidae). These species differ in their morphology chiefly by 

the length of their posterior breathing tube, which may underpin resource 

partitioning by defining the depth that each species tends to occupy within a rot hole.  

 

Myathropa florea may be the main competitor with B. fallax. It is widespread across 

the British Isles (Stubbs & Falk 2002) and can be found in a wide range of rot holes 

or water-filled crevices in both coniferous and deciduous trees (Rotheray 1993). 
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Callicera rufa is found in coniferous tree-holes, mainly spruce Picea abies, larch 

Larix decidua and pine (Stubbs & Falk 2002). Although C. rufa is fairly widespread, 

and has even recently been recorded in England (Shropshire and Nottinghamshire) 

(Nigel Jones pers. comm.), it is largely restricted to Caledonian pine woodland in 

the Scottish Highlands (MacGowan 1994; Rotheray et al. 2001). Sphegina clunipes 

is a common species, widespread across the British Isles as far north as Sutherland 

(Stubbs & Falk 2002). It is normally associated with deciduous woodlands, and 

most often found in decaying sap under bark (Rotheray 1993; Stubbs & Falk 2002), 

but has recently been found in numerous artificial pine rot holes. 

 

In order to determine species-specific microhabitat use, laboratory observations on 

the four species in artificial rot holes were carried out to determine functional 

differences in relation to their characteristic morphological features. 

 

Conservation genetics  

 

Where captive breeding and translocation play a role in management protocols, 

inbreeding effects and effective population size become particularly relevant issues 

(Leberg 2005). Small populations are at risk of loss of genetic diversity through 

drift, inbreeding depression, and reduced adaptive potential (Frankham 1998). 

Reduced fitness caused by inbreeding has been demonstrated in numerous 

controlled experiments (Armbruster et al. 2000; Woodworth et al. 2002; Whitehorn 

et al. 2010) and in studies on wild populations (Brown & Brown 1998; Keller 1998; 

Saccheri et al. 1998). While the effects on different taxa and individual populations 

appear to vary (Elgar & Clode 2001), especially with respect to demographic and 
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environmental stochasticity, inbreeding depression is considered pervasive enough 

to have a generally detrimental effect on population persistence (Keller & Waller 

2002).  

 

We investigated effective population size and genetic diversity of the single 

remaining population in Scotland, to assess the signs of recent demographic changes 

such as a population bottleneck. We sought to place the genetic diversity of Scottish 

B. fallax in context by comparing it with Swedish samples, which were considered 

to be from a more genetically ‘healthy’ population. We were able to do this by using 

material from adults that died in captivity in the course of our captive breeding trials. 

The genetic data will also help to assess the feasibility of translocation and captive 

breeding from elsewhere in Europe if a genetic ‘rescue’ attempt is necessary. In 

addition, we investigated non-invasive techniques for extracting DNA in order to 

facilitate population monitoring for future conservation efforts without the risk of 

harming individuals.  

 

1.7 The aspen hoverfly Hammerschmidtia ferruginea 

 

The Aspen hoverfly Hammerschmidtia ferruginea is listed in the UK Red Data 

Book as a category 1 (endangered) species, and it is included in the UK Biodiversity 

Action Plan (UKBAP). Since 1999 the number of UK sites occupied by H. 

ferruginea decreased from 15 to 8 thought mainly due to loss or reduction of 

breeding habitat (Rotheray et al. 2009).  
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Hammerschmidtia ferruginea biology 

 

Hammerschmidtia ferruginea is a specialist saprophage depending on a rare and 

temporary resource: decaying cambial layers under bark of dead aspen Populus 

tremula L. (Salicaceae). Previous attempts at utilising closely related Black poplar 

Populus nigra were unsuccessful, perhaps because of the depth or width of 

cambium rot (I. MacGowan pers. comm.). Over 200 larvae can occupy and emerge 

from a ~3-metre long P. tremula log in one year (Rotheray et al. 2009). Adults feed 

on rowan, bird cherry and hawthorn, and can locate breeding habitat up to 1 km 

from the emergence site (Rotheray et al. 2009). Males gather on logs and defend 

territories, and females visit logs to mate and oviposit eggs (Rotheray et al. 2009).  

 

Hammerschmidtia ferruginea distribution and habitat decline 

 

Hammerschmidtia ferruginea has a Holarctic distribution from Alaska to Japan, 

however it is locally rare (Speight 1989, 2008). In Continental Europe, H. 

ferruginea face different circumstances than in Britain as trees are taller, and thicker, 

and deadwood usually becomes available when they reach their natural age limit, 

rather than mainly due to intermittent stormy conditions in Scotland (Rotheray et al. 

2009). From the time a tree falls or a branch breaks off, it can take up to two years 

for the cambial layers to become suitable for larval development and, depending on 

size and location, a piece of wood with cambial decay can last from just one to three 

years before the bark cracks and the decay dries out (Rotheray et al. 2009). Trees in 

Europe probably have a longer decay period due to their size. Aspen is threatened 

across Europe (Kouki et al. 2004), and in the UK there are few aspen woodlands 
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large enough (>100 trees) to maintain a constant input of dead wood. This means 

that intervention is required in Scotland to ensure a continuity of suitable deadwood 

to sustain remaining populations of H. ferruginea. 

 

Hammerschmidtia ferruginea as an umbrella species 

 

In Scotland, H. ferruginea is considered an umbrella species for a group of 13 other 

rare and similarly endangered Diptera dependent on aspen (Rotheray 2001). Aspen 

is an important element of the boreal habitat, which harbours a multitude of 

organisms that depend on different parts and stages of the aspen lifecycle, and 

therefore many species are threatened by its decline. The animals that depend on it 

are typically either herbivorous or saproxylics (Kouki 2008). These include aspen 

specialist fungi, lichens, moths, beetles and flies (Cosgrove et al. 2005). Seventeen 

moths predominantly depend on aspen in Scotland, including the UK BAP species 

the Dark Bordered Beauty Epione vespertaria (Leptidoptera, Geometridae). Aspen 

is capable of seeded growth, but it most often exhibits vegetative reproduction, 

where one parent plant has many suckers growing off roots. Aspen stands are 

diminishing, and those that remain are small and isolated. Grazing of palatable 

suckers, chiefly by deer, hampers expansion and regrowth efforts in the UK.  
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Main objectives for H. ferruginea 

 

Dispersal 

 

Nothing is known of the dispersal capability of H. ferruginea. The remaining 

localities for this species are centred in Strathspey, Scotland, where they are 

separated by a minimum of 5 km (Rotheray et al. 2009). It is unknown whether H. 

ferruginea are able to disperse such distances, and if not, management ought to 

consider providing linking pockets of breeding habitat. Therefore, two years of this 

study involved setting up mark and recapture experiments to determine how far H. 

ferruginea is capable of dispersing and detecting breeding habitat. In addition, 

observations were made of the behaviour of territorial males and ovipositing 

females on logs in order to investigate mate-seeking requirements and colonisation 

ability. 
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1.8 Summary of aims 

 

The main aim of this study was to determine conservation and recovery 

requirements of two endangered saproxylic hoverflies in Scotland. This involved 

developing techniques to find the answers to the following main questions: 

 

1. How does the rot hole substrate and competitive environment affect larval 

growth in B. fallax, and what are the consequences of unfavourable larval 

growth conditions for adult size (Chapter 2, 3 and 5)? 

2. Is interspecific competition for resources in a rot hole likely to affect the 

recovery of B. fallax (Chapter 3)? 

3. What is the genetic variation of the Scottish B. fallax population compared 

to Swedish flies, and might genetic constraints limit the recovery of this 

species (Chapter 4)? 

4. What is the dispersive potential of H. ferruginea and how will this affect its 

conservation (Chapter 6)? 
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Chapter 2 

2 Growth, development and life-history strategies 

in an unpredictable environment: case study of 

a rare hoverfly Blera fallax (Diptera, 

Syrphidae) 
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2.1 Abstract 

 

The development of holometabolous insects varies in response to fluctuating 

environments. Adult characteristics are strongly influenced by larval conditions, and 

variation in phenotypic traits, such as size and development time, depends on 

available resources. The main aim of this study was to investigate the 

developmental requirements and phenotypic plasticity of the endangered pine 

hoverfly Blera fallax (Linnaeus) (Diptera, Syrphidae). Blera fallax is dependent on 

a scarce and ephemeral habitat in Scotland, Scots pine Pinus sylvestris L stump rot 

holes. Conservation management for this species involves creating habitat to expand 

existing populations, creating new areas for relocations, and captive breeding and 

rearing larvae to boost populations and provide material for relocations. In order to 

do this effectively, we need to determine what conditions best promote larval 

growth, identify the level of plasticity in larval and adult characteristics in 

potentially food-limited conditions, and establish ecological requirements of this 

species at the larval stage to guide research and management efforts. We 

manipulated the pine substrate volume, wood chip size and host species, and 

investigated intraspecific competition by increasing larval density in artificial larval 

microcosms. We assessed ontogeny by measuring growth rate, fat deposition, 

survival, time to maturation and male and female adult thorax and wing length. 

Individuals in low resource conditions not only took longer to develop but also had 

reduced thorax and wing lengths. Females were larger but had more variable size at 

maturity compared with males. Males typically did not emerge smaller in resource-

limited conditions, presumably at the expense of developmental rate. In fact, males 

seemed more likely to become semivoltine, extending development time to achieve 
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similar sizes irrespective of environmental resource availability. The growth curve 

observed in the field was most similar to that in resource-limited conditions in the 

lab, suggesting that resources are limiting in nature. Between 2 and 20 % of larvae 

extended development over two years regardless of growth conditions, perhaps 

indicating a strategy to circumvent extinction during years with very low breeding 

success. We discuss the implications of our results for optimising captive breeding 

conditions for this species, and for creation of artificial rot hole habitat in the field. 
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2.2 Introduction 

 

Unpredictability in food quantity and quality is a reality for many organisms and 

life-history characteristics can vary in response (Blanckenhorn 1998; Shertzer & 

Ellner 2002; Skalski et al. 2005; Hou et al. 2011). Organisms can regulate 

physiological processes over a wide range of environmental conditions (Sweeney & 

Vannote 1978; Taylor 1981; Schmidt-Nielsen 1997; Blanckenhorn 1999), and often 

demonstrate phenotypic plasticity, which consists of changes in an organism’s 

phenotype in response to changes in the environment. Although some of the 

phenotypic variation induced by the environment can be non-adaptive, such as 

reduced overall size when food limitation impedes development, other aspects of 

development, including the resolution of trade-offs between growth and adult 

longevity, are probably adaptive, i.e. the phenotypic response is moulded by 

selection (Stillwell et al. 2010).  

 

In holometabolous insects, most of the growth (which combines the rate of increase 

in mass and timing of maturation) occurs in larval form, a specialized life stage for 

accumulating resources (Abrams et al. 1996). Development time depends strongly 

on resource availability, and typically involves a trade-off between two important 

aspects of life history: spending more time in the feeding larval stage can increase 

adult size (which may in turn have beneficial consequences for mating success or 

fecundity; Roff 1992; Stearns 1992; Esperk & Tammaru 2004; Dmitriew 2011), but 

the extended developmental period will usually either restrict adult longevity (e.g., 

in seasonal environments) or increase generation time. Longer development may 

also increase exposure to predation or parasitism. Often size is more important than 
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the length of time it takes to develop, so many animals delay sexual maturation to 

increase in size despite the entailed costs (Policansky 1983; Reznick 1990). 

Although organisms vary in the mechanisms by which the trade-offs between 

growth and other life history traits are governed, in seasonal environments many 

invertebrates have a diapause stage in which growth is temporarily arrested to allow 

overwintering or aestivation (Smith & Smith 2006). As both diapause and 

developmental life history decisions are likely to be governed by environmental 

cues, we predict that diapause is one of the key life history traits that may show 

plasticity in response to growing conditions (Abrams et al. 1996).  

 

In the context of studying adaptive plasticity across life history traits in response to 

food limitation, we investigated growth in the larval stage of the endangered pine 

hoverfly Blera fallax (Diptera, Syrphidae). Conservation management for this 

species involves creating breeding habitat at new locations and relocating 

individuals by captive breeding and rearing techniques (Chapter 5). In order to do 

this effectively, we need to know how to adjust conditions to enhance the fitness of 

individuals and populations. Therefore, we investigated the growth trajectories of 

larvae in response to several experimentally manipulated conditions (including 

characteristics of the larval substrate and the presence and intensity of intraspecific 

competition). Our findings may help identify aspects of the environment that are 

amenable to conservation management, and which have measurable effects on the 

fitness of developing hoverflies.  
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Natural history of B. fallax 

 

Blera fallax is a specialist saproxylic insect; the larval stage develops on microbes 

in rot holes occurring in stumps and decaying roots of Scots Pine, Pinus sylvestris L. 

This microhabitat develops due to heart-rot fungi, chiefly Phaeolus schweinitzi, 

softening heartwood that is often exposed when the tree falls. A cavity then forms in 

the heartwood, which fills with rainwater and microbes. Rot holes also form in the 

exposed surface of stumps left behind after felling in pinewood plantations. After up 

to nine years, stumps decay and lose their capacity for water retention, and this 

occurs at a faster rate in smaller stumps (Graham E. Rotheray pers. comm.). As 

forestry practices have changed, stumps have become smaller, or have been 

removed completely for re-seeding, resulting in a reduction in new breeding habitat 

for B. fallax. This is probably the reason for the decline in Scottish populations from 

five to one in the last 20 years (Rotheray & MacGowan 2000; Chapter 5).  

 

Due to the nature of their formation, rot holes are heterogeneous, varying in width 

and depth, host tree, location and content (Kitching 1971; Fisher et al. 1990; Sota et 

al. 1994; Yanoviak 1999; Paradise 2004; Bell et al. 2005). They contain a mass of 

decaying detritus, which is variable in nutrients, chemistry, fungi, bacteria and 

protozoa (Walker et al. 1991). The type and location of the substrate within rot 

holes can have significant effects on the fitness of organisms that feed in them (Fish 

& Carpenter 1982; Fisher et al. 1990; Walker et al. 1991; Srivastava & Lawton 

1998; Kaufman et al. 2008). As part of developing techniques for artificial creation 
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of rot holes, it is important to investigate how rot hole conditions affect larval 

growth. 

 

Rot holes often differ in quality according to the number of occupants. Through 

intermittent survey work over the past eight years, B. fallax larvae have been found 

at various developmental stages throughout the year, with from one to thirty 

individuals sharing a rot hole (Rotheray et al. 2001). In other Dipteran species 

inhabiting rot holes, the effects of competition are moderated because of Allee 

effects: larval activity may promote bacterial growth through grazing, which means 

that larvae with low densities of interspecific competitors outperform those living in 

isolation (Walker et al. 1991; van de Bund et al. 1994; Kaufman et al. 1999; Graca 

et al. 2000). However, most studies report competition for resources among filter 

feeding larvae (Livdahl 1982; Fisher et al. 1990; Broberg & Bradshaw 1995; Knight 

et al. 2004). This may place selection on ovipositing females, who must 

strategically spread their eggs among resource patches in a way that promotes 

development and avoids intraspecific competition for limited resources. 

 

In the current study, our main questions concern how substrate conditions affect 

larval development, and the relative importance of intraspecific competition versus 

Allee effects on larval fitness. To answer these questions we altered the growing 

conditions for larvae and measured the response in larval growth, fat deposition, 

larval survival, development time, and pupal and adult size. Furthermore, because B. 

fallax depends on a fluctuating and heterogeneous resource, we may expect this 

species to adjust its life history strategy according to the available resources. We 

expect that larval growth will increase with increased substrate surface area to water 
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volume (which may promote microbe density). We further predict that intraspecific 

competition will affect larval growth in limited resource conditions, but will not be 

as important when microbes are less limiting, and if Allee effects are apparent. 

Finally, we expect larvae in poorer conditions to develop for longer but emerge at 

comparable sizes to those in high resources, especially in males, due to presumed 

advantages of achieving large size over early emergence (see Chapter 5).  

 

2.3 Methods 

 

We subjected larvae to several experimental conditions and monitored growth and 

survival at equal time intervals from the onset of each experiment until eclosion, 

and measured several adult traits upon emergence. The experiments were run over 

two years due to constraints on sample sizes and time imposed by the on-going 

captive breeding and conservation management efforts for this species. Maternal 

lineages were tracked in the second year. 

 

All lab experiments were carried out using 250ml glass bottle microcosms with 

foam stoppers and pine bark ladders (9 x 3 x 1 cm3), to allow larvae to adhere to and 

crawl closer to the surface to breathe. Moss plugs were provided towards the end of 

the developmental period. These were situated at the mouth of the microcosms for 

larvae to crawl into upon exiting the water to pupate. Microcosms were filled with 

pine chips or sawdust and bottled water (Highland Spring Ltd) and were left for 48 

hours to allow the content to become saturated before introducing larvae. These 

were kept in climate-controlled facilities at temperatures and photoperiods 

corresponding with those that they would experience naturally in North Central 
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Scotland (Table 2.1). Environmental conditions were estimated using datalogger 

temperature readings and Met Office reports. Larvae were selected based on size 

(where possible < 7mm body length, which corresponds to the first or early second 

instar) and randomly assigned to treatments for each experiment. Larvae were 

starved for 24 hours before each experiment to minimise the effect of pre-

experimental conditions.  

 

To measure larval and pupal area and adult traits, we placed individuals on 

laminated lined paper for scale, captured a digital image, and estimated the two-

dimensional area or length of adult trait using ImageJ software (Abràmoff et al. 

2004), a public-domain software package for image processing. In experiment 2, 

after transferring larvae to filter paper to remove excess water, mass was also 

measured on a 0.001g resolution balance. Adult size traits included the length of the 

thorax from the point at which the neck meets the pronotum to the apex of the 

scutellum, the length between two wing veins (landmarks 1 and 3 in Milankov et al. 

2010), and (for samples in year two) head length between the neck and the tip of the 

fronds (Stubbs & Falk 2002), and head width at the widest points of the eyes. 

Development time was assessed as the number of days from the start of the 

experiment until the day of eclosion. 
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2.3.1 Experiment 1.  

 

Effect of pine woodchip size and Nipagen antifungal treatment 

 

In addition to potential stress incurred due to substrate form and condition, rot hole 

inhabiting Syrphid larvae occasionally suffer from filamentous fungal growth on the 

integument, with likely negative consequences for their survival and health. 

Consequently we wished to simultaneously investigate the effects of particle size 

(wood chip/less surface area versus sawdust/greater surface area to water volume) 

and the application of Nipagen (a standard antifungal agent in experiments 

involving Drosophila, e.g., Tinsley et al. 2006). A replicate (x40) three-factor 

experiment included the following treatments: sawdust (S) (50 ml), chips (C) (50 

cm3), sawdust and chips (CS) (25 ml + 25 cm3), and sawdust (50 ml) plus 0.5 ml 

(0.35%) Nipagen (NS), with one larva inhabiting each microcosm. We chose 

substrate volumes based on data from a previous study (see Chapter 3). Five 

millilitres of water was added to each microcosm every few months to replace 

losses due to evaporation. We took seventeen larval area measurements between 

30th August 2009 and 14th July 2010. The measurement interval was increased to 30 

days between November 2009 and January 2010, but otherwise measurements were 

taken at fifteen-day intervals.  

 

Larval growth field comparison 

 

We collected field growth data to study the ‘natural’ B. fallax larval growth 

trajectory over time. Between July and November 2009, twenty-seven artificially 
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bored pine rot holes containing B. fallax larvae were located in the field. These were 

visited five times in thirty-day intervals, and all larvae located in the stumps were 

photographed and measured for larval area. No manipulation was carried out in the 

field, and due to the large number of confounding variables, such as the size of 

bored hole, larval density and an inability to identify individual larvae, formal 

statistical comparisons between field data and in-situ experiments were not possible.  

 

Fat deposition over time 

 

Blera fallax larvae are almost transparent during growth and development, but they 

become opaque with white fat as they over winter or pupate. Fat deposition over 

time was also calculated (for C, CS, S and NS treatments) using the digital images 

by measuring the area of larval mass that did not contain fat and subtracting this 

from the total area.  

 

2.3.2 Experiment 2.  

 

Effect of intra-specific competition  

 

A replicated (x20) 2x2x3 full factorial experiment was carried out in 2010 with a 

new generation of B. fallax larvae, which included two substrate levels (low = 40 

and high = 80 ml pine sawdust), two water levels (low = 70 and high = 140 ml) and 

three larval densities (1, 2 and 3 larvae) (Table 2.2). We were unable to explore 

higher densities of competition because of the limited number of larvae available; 

furthermore we wanted to explore the possibility of Allee effects, which are most 
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likely to be evident in small groups. Larvae sharing a microcosm were from the 

same brood, i.e. were siblings through the maternal line, from one of thirteen dams. 

Four weight and area measurements were taken at fifteen-day intervals between 18th 

September and 10th November 2010.  

 

Effect of tree species 

 

Blera fallax appears to be a pine specialist in Scotland, but as they occur in other 

conifer hosts abroad, we wanted to know whether alternate species could support 

larvae, broadening options for future habitat creation. The effect of tree species on 

larval growth was investigated by a replicate (x20) experiment including 50 ml 

sawdust per microcosm of Pine P. sylvestris, Birch Betula pubescens and Spruce 

Picea abies. One larva was added to each microcosm and three area and weight 

measurements were taken at fifteen-day intervals from September until November 

2010.  

 

2.3.3 Statistical analysis 

 

All statistical analyses were carried out using the statistical package R (version 

2.13.1) (R Team 2011). 

 

Fitting growth curves 

 

We assessed pre-winter growth over the first four time intervals because the growth 

in this period appeared to be asymptotic (conforming to the most typical growth 
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functions). After these intervals, some individuals had entered winter diapause and 

started decreasing in area, which often prevented model convergence. We began by 

comparing the fits of several nonlinear functions, including asymptotic regressions, 

the Michaelis-Menton model, and von Bertalanffy (vB) growth functions. 

Likelihood ratio tests comparing these models revealed that the vB curve was at 

least as strongly supported as other approaches, and significantly better than two-

parameter models. Furthermore, the parameters produced by this function (L0, size 

at hatching/birth; L∞, mean asymptotic size, and K, a growth rate constant) are 

relatively easily interpreted in terms of the life history of the flies. Consequently, we 

focussed our model refinement on models using the vB function.  

 

To determine whether individual treatments affected the parameter estimates, we 

grouped subjects by treatment and fit nonlinear functions conditional on the 

treatment level, as suggested by Crawley (2007). This method allows coefficients to 

vary by treatment group. When parameter estimates suggested different model fits 

between treatments, we subdivided the data by groups and created separate models 

for each treatment. This mixed nonlinear modelling (in which treatment is fitted as 

if it were a random effect) did not allow us to simultaneously estimate treatment 

effects and account for pseudoreplication. We verified that our parameter estimates 

were not biased by temporal autocorrelation (pseudoreplication because of repeated 

measurements on individuals) in two ways: by building linear mixed effects models 

with microcosm fitted as a random effect, and checking that these models produced 

similar parameter estimates to those of the fixed effects models; and by explicitly 

modelling the autocorrelation using a first order autoregressive, as suggested by 

Crawley (2007). Neither of these approaches suggested that the parameter estimates 
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were biased by pseudoreplication. In our results, we only report bootstrapped 

estimates and confidence regions from fixed effects models for simplicity. We 

conclude significant differences in parameter estimates whenever the bootstrapped 

mean for one treatment is not included in the 95% CI for another. Note that while 

we interpret each parameter in turn, the fitted parameter estimates are obviously not 

independent of one another. For example, the growth constant describes the average 

rate of growth over time until reaching the asymptotic size (i.e. average size 

achieved before winter diapause). In addition, the coefficients should not be 

interpreted as actual values. For example, time was recorded as ‘day of experiment’ 

rather than ‘age of larva’, therefore L0 will be an underestimate of actual size at 

hatching/birth.  

 

This approach was used to compare larval growth across treatments in experiment 1 

and 2. In addition, the data in each treatment were split by sex to assess sex 

differences in growth. We recorded both mass and larval area in the second 

experiment, but as the two variables were strongly collinear (R = 0.97), and the 

model outcome did not depend on the response used, we report only models based 

on larval mass below for simplicity. 

 

Fat deposition over time 

 

Fat deposition was a binomial response (the proportion of larval area that was 

opaque). We initially tried to fit generalized linear models with binomial error to 

model this response, but we were unable to reliably estimate the variance accounted 

for by individual microcosms. Consequently, we simply used non-parametric 
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Kruskal-Wallis tests to confirm between-treatment fat deposition differences two 

weeks before (day 49, 20th October) and after (day 230, 29th April) larvae became 

completely opaque with fat. 

 

Survival analysis 

 

Survival analysis was carried out up until day 300 in experiment 1, and 200 in 

experiment 2. We fitted survival curves using the non-parametric Cox’s 

proportional hazards model, and compared the output with a parametric model, 

alternately assuming a constant hazard and a non-constant hazard with Weibull 

errors (Crawley 2007). A censoring vector was used because some individuals 

survived beyond the end of the experiment, and the time of death was unknown for 

others. 

 

Pupation, emergence and adult size traits 

 

Chi-square tests were used to assess sex ratios between treatments and over time, 

and to compare numbers eclosing between treatments. Linear regression was used to 

test the relationship between day of pupation and pupal period before eclosion.  

 

We used multivariate analysis of variance (MANOVA) to determine the effect of 

treatment and sex on development time (1/day in experiment), pupal size (√pupal 

area; pupal area was square root transformed to convert it to the linear scale shared 

with size traits), and adult size traits. Model simplification was carried out using 
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likelihood ratio tests, and sequentially deleting terms (beginning with higher order 

interactions) that did not significantly decrease model deviance (Crawley 2007).  

 

2.4 Results 

 

2.4.1 Experiment 1. Effect of pine woodchip size and Nipagen 

 

The nonlinear model using the vB function parameters would not converge when 

using the full dataset. Of 40 replicates, 3 each in treatments S (Sawdust) and NS 

(Nipagen and Sawdust), and 15 in C (Chips) did not appear to grow or did not 

pupate within the same year as the experiment (Table 2.2). No slow-growing 

individuals were found in treatment CS (Chips and Sawdust). Upon removing these 

replicates from the analysis, convergence was then achieved (Fig 2.1). The slow-

growing individuals were not included in growth or fat deposition analysis, but were 

used to compare adult size traits between years. Below we will refer to the subset of 

individuals that grew slowly in the first year as semivoltine. 

 

Larval growth 

 

We predicted that larval growth would be adversely affected in the low surface area 

to water volume treatment i.e. treatment C; as predicted, individuals in treatment C 

reached a lower mean asymptotic (L∞) size of 0.456 (0.426 – 0.523 confidence 

interval CI) than those in the S (0.60), NS (0.72) and CS (0.571) treatments (Fig 2.1, 

Table 2.3). The growth constant (K) was indistinguishable across treatments C 
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(0.089) and CS (0.095), but was greater in those treatments than in treatments NS 

(0.023) and S (0.041) (Fig 2.1, Table 2.3). Estimated size at hatching (L0) did not 

significantly differ across any of the treatments (Table 2.3). There was also no effect 

of sex on growth (data not shown). 

 

The mean asymptotic parameter for growth data collected from the field was 

slightly greater than but comparatively similar to that for lab treatment C, and the 

growth constant (0.15, 0.098 – 0.325 CI) was greater than in all lab treatments (Fig 

2.1, Table 2.3).  

 

Fat deposition over time 

 

Individuals in treatment C not only appeared to take longer to grow but also to build 

up fat reserves before winter, and appeared to lose a greater proportion of fat after 

winter while gaining in size (Fig 2.2). Two weeks before becoming completely 

opaque with fat (day 49, 20th October) a Kruskal-Wallis test indicated significant 

differences in the proportion of body area covered by fat between C and CS (χ2 = 

3.75, df = 1, P = 0.05), NS (χ2 = 5.14, df = 1, P < 0.05) and S (χ2 = 6.36, df = 1, P < 

0.05). From November until March (days 79 to 164), fat deposition was 100 % in all 

treatments and feeding appeared to be suspended, indicated by a lack of dark 

colouration in the gut. Two weeks after winter (day 230, 29th April), similar 

significant differences were found, in which the proportion of fat was lower in 

individuals in treatment C compared with CS (χ2 = 8.52, df = 1, P < 0.005), NS (χ2 = 

18.37, df = 1, P < 0.005) and S (χ2 = 16.4, df = 1, P < 0.005) (Fig 2.2). Before 

pupation, fat deposition returned to 100 % and the gut area became clear. 
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Survival analysis 

 

While the greatest mortality was in treatment CS (0.35, Table 2.2), we could not 

detect a statistically significant effect of treatment on survival (Z = 1.2, P > 0.1, Cox 

proportional hazard). The trend indicated that most deaths occurred early in the 

experiment, and few individuals died after the first 100 days.  

 

Pupation, emergence and adult size 

 

Seventeen large, opaque individuals (7 CS, 4 NS and 6 in S treatments) were found 

exiting the microcosms before winter, a response apparently indicating the 

completion of development, after which larvae begin searching for a place to pupate. 

These individuals were returned to microcosms, and moss plugs were provided 

within which larvae readily came to rest. 

 

Individuals took between 13 and 36 days to develop and eclose depending on when 

in the year they pupated. The later the onset of pupation, the shorter the subsequent 

pupal period before eclosion (r2 = 0.79, F1,112 = 420.6, P < 0.001). A significantly 

greater number of B. fallax eclosed in treatments CS (26), NS (25) and S (26) than 

in C (13, χ2 = 14.9, df = 3, P < 0.005, Table 2.2). 

 

The sex ratio did not deviate significantly from 50:50 (M/F 45/44). In the first week 

of the emergence period, significantly more males emerged than females (M/F 

38/22, χ2 = 8.97, df = 1, P < 0.05), and more females emerged in the final 23 days 

(M/F 7/22, χ2 = 7.76, df = 1, P < 0.05). Females overall took longer to develop to 
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eclosion (MS = 344.18, F1,88 = 16.49, P = 0.0001). We assessed within treatment 

sex-differences in development time, which showed the same trend in CS, NS and S, 

but no significant difference between males and females in C (Table 2.4). 

Individuals in C took longer to develop (Table 2.4), and significantly fewer eclosed 

compared with each of the other treatments (χ 2 = 3.78, df = 1, p = 0.05, Table 2.2). 

 

Individuals in treatment C had smaller pupal areas, thorax and wing lengths, and 

took longer to develop compared with individuals in treatments CS, NS and S 

(MANOVA, P < 0.005, Fig 2.3, Table 2.5). No difference was found between S, NS 

and CS (Fig 2.3). Female wing and thorax lengths were greater than those of males, 

and wing length in both males and females was significantly greater in treatments 

CS, NS and S than in C (MANOVA, P < 0.05, Fig 2.4, Table 2.4 and 2.5).  

 

A significant treatment by sex interaction was found for thorax and wing lengths 

when semivoltine individuals were included in the model. These individuals were 

smaller compared with those that eclosed in the previous year, and males tended to 

have greater thorax lengths and longer wings than females, the opposite trend to the 

other treatments (MANOVA, P < 0.05, Fig 2.4, Table 2.4 and 2.5).  

 

2.4.2 Experiment 2. Effect of intra-specific competition  

 

As in experiment 1, between 2 and 20 % of larvae in each treatment did not appear 

to grow substantially in the first year. The nonlinear model using the vB function 

parameters would not converge with these replicates included in the model. 
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Therefore, 29 of 240 replicates (i.e. microcosms) were removed from the analysis 

(between 1 and 4 per treatment).  

 

Larval growth 

 

We predicted larval density would have an effect on growth, but as pine sawdust 

substrate and water volume increased, or in the presence of Allee effects, the impact 

of competition would be reduced. As there were no interactions between larval 

density, water and sawdust level (data not shown), we consider their effects on 

growth parameters sequentially, below.  

 

The mean asymptotic size decreased significantly as the number of larvae increased 

from one larva per microcosm (0.100, 0.085 – 0.134 CI) to two (0.066, 0.06 – 

0.083) and three (0.051, 0.048 – 0.058) (Fig 2.5, Table 2.3). The growth constants 

were lowest in single larva microcosms (0.035, 0.019 – 0.053 CI), and did not 

overlap with the confidence region for the growth constant of three larvae 

microcosms (0.068, 0.041 – 0.104 CI) (Fig 2.5, Table 2.3). In two larva microcosms 

the growth constant was intermediate to and indistinguishable from that for the 

other two treatments.  

 

The mean asymptotic size was significantly lower in low water level (0.061, 0.056 – 

0.069 CI) relative to high water treatments (0.084, 0.073 – 0.116 CI) (Fig 2.6, Table 

2.3). The growth constant was greater in low water (0.056, 0.036 – 0.081 CI) 

compared with high water (0.036, 0.018 – 0.054) (Fig 2.6, Table 2.3). The mean 

asymptotic size was significantly lower in low sawdust (0.060, 0.055 – 0.068 CI) 
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relative to the high sawdust treatment (0.088, 0.076 – 0.127 CI) (Fig 2.6, Table 2.3). 

Growth constants were greater in low sawdust (0.064, 0.041 – 0.095 CI) compared 

with the high sawdust treatment (0.032, 0.016 – 0.048) (Fig 2.6, Table 2.3). 

 

As for experiment 1, estimated size at hatching (L0) did not differ significantly 

across any of the treatments (Table 2.3). Male and female subsets also did not 

produce different parameter estimates (data not shown). 

 

Effect of tree species 

 

The mean asymptotic size was highest for pine (0.093, 0.073 – 0.238 CI) although 

this was statistically indistinguishable from the estimate for the birch sawdust 

treatment (0.079, 0.066 – 0.164 CI). Asymptotic size was significantly lower in 

spruce (0.06, 0.05 – 0.12 CI) (Fig 2.7, Table 2.3). Growth constants and size at 

hatching (L0) did not significantly differ across tree species (Table 2.3). As above, 

male and female subsets of data did not produce significantly different growth 

parameters (data not shown). 

 

Survival analysis 

 

Sawdust, water and larval density all had significant effects on survival (Sawdust, Z 

= -2.5, P < 0.05; Water, Z = 5.8, P < 0.005; Larvae, Z = -4.3, P < 0.005, Cox 

proportional hazard). Survival decreased significantly in the high water and low 

sawdust and larvae treatments (Fig 2.8). The greatest mortality was found in the 

high sawdust, high water and low larval density treatments (0.55 to 0.65, Table 2.2), 
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and the lowest was in the low water, high larval density treatments (0.03 to 0.15, 

Table 2.2).  

 

Only two individuals died in the phase of the experiment on tree species during 

which we monitored growth (September to November 2010), therefore we did not 

conduct formal survival analysis for those samples. Mortality across tree species 

treatments was determined in June and July 2011, and in total, significantly more 

individuals died in the pine treatment (0.55), compared with birch (0.30) and spruce 

(0.10) (χ 2 = 32.10, df = 2, P < 0.005, Table 2.2). 

 

Pupation, emergence and adult size 

 

Across treatments, the sex ratio was significantly female biased (M/F 64/102, χ 2 = 

8.69, df = 1, P = 0.003). A smaller proportion of B. fallax individuals eclosed within 

one year in low (0.33) compared with high sawdust treatments (0.47) and low (0.37) 

compared with high water treatments (0.44), and significantly fewer in high 

compared with low competition treatments (1 vs. 3 larvae, χ 2 = 9.14, df = 1, P < 

0.005, Table 2.2). There were significantly more males emerging (26) than females 

(18) in the first two weeks of emergence (M/F 0.41/0.18, χ 2 = 8.97, df = 1, P < 

0.005).  

 

Larval density, water and sawdust level had significant effects on thorax and wing 

lengths, puparium areas, and times to eclosion, all of which were consistent with 

effects of these treatments on larval growth. Thorax and wing lengths and pupal 

areas decreased in increasing larval density and decreasing sawdust and water levels 
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(MANOVA, P < 0.05, Table 2.6). However, the effects of these treatments 

sometimes depended on sex. Compared with males, a greater negative effect is 

evident in female thorax and wing length and puparium area in increasing larval 

density treatments (sex by density interaction P < 0.05, Fig 2.9, Table 2.6). While 

male wing lengths did not differ according to sawdust levels, females had 

significantly longer wings in high sawdust treatments (sex by sawdust interaction P 

< 0.05, Fig 2.10, Table 2.6).  

 

Females took longer to eclose (day in experiment, mean 254 ± 6.5 SD, standard 

deviation) than males (250 ± 5.2 SD), and females on average were larger than 

males (Table 2.4). However, development time was also significantly shorter for 

both males and females in high sawdust and water treatments (Table 2.4 and 2.6).  

 

Effects of tree species 

 

Chi-squared tests show no significant difference between the total number eclosing 

or the number of males and females in pine (M/F 2/6), birch (M/F 7/3) or spruce 

treatments (M/F 6/5). Tree species did have a significant effect on thorax length, 

wing length and puparium area (MANOVA, P < 0.05, Table 2.6): individuals in the 

spruce treatment had significantly smaller thorax and wing lengths and pupal areas 

(Table 2.6, Fig 2.11). We found no differences in development time between 

treatments.  
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2.5 Discussion 

 

Rearing conditions had a strong effect on the growth, development time, and adult 

size traits of B. fallax. Individuals grew larger in treatments with smaller wood chip 

size, and in greater substrate and water volumes and lower larval densities. In 

conditions that do not sustain rapid growth, some individuals responded by 

extending development into an extra growing season, i.e. they became semivoltine. 

Surprisingly, individuals grew larger in birch (a species in which B. fallax are never 

found in nature) than spruce (a host species exploited by B. fallax in Europe). Males 

and females appeared to resolve the trade-off between development time and size at 

eclosion differently, with males prolonging development and females emerging 

smaller. 

 

Growth and life history at the larval stage 

 

Depending on available resources, larvae grew rapidly at the beginning of their 

development, but growth then slowed and individuals reached an asymptotic size 

before winter, a phase that may be governed by seasonal triggers such as 

photoperiod and temperature signals. Photoperiod is often the main environmental 

cue in insects (Nylin & Gotthard 1998). The initial growth trajectory probably 

reflects the period when all available resources are devoted to premature growth 

(Day & Taylor 1997). For larvae in good conditions, the asymptotic size defines the 

mass at eclosion, i.e. no more growth occurs before pupation, while for those in less 

favourable conditions, growth continues after winter.  
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Voltinism 

 

Survey results from 2011 showed no new instars at any B. fallax site, the surviving 

populations consisting solely of larvae that were developing over two years (see 

Chapter 5). This suggests a complete failure of adult breeding at all sites, perhaps 

due to cold and wet weather during the adult breeding season. Therefore bet 

hedging by producing some slow growing, semivoltine offspring may improve the 

survival of B. fallax during unpredictable or unreliable periods. Theory suggests 

when the environment is unpredictable, females should increase the variation in 

their offspring as an adaptive strategy (Marshall et al. 2008; Crean & Marshall 

2009; Monro et al. 2010). Such developmental plasticity has been reported in other 

insects such as stoneflies and damselflies (Cayrou & Céréghino 2005) but it has 

never been formally reported in hoverflies. In addition, this strategy may also 

reduce direct sibling competition within rot holes (Chapter 5).  

 

Larval growth and the pine rot hole 

 

Individuals grew faster and larger in treatments with sawdust than without. The 

ability of microbes to metabolize wood probably depends on what fraction of the 

wood is exposed to water. This increases dramatically in sawdust treatments relative 

to wood chips. Growth rates of filter feeding larvae have been found to increase 

with increased area of submerged surfaces (Juliano & Reminger 1992; Leonard & 

Juliano 1995; Eisenberg et al. 2000). Insect larvae have been observed grazing 

preferentially over the surface of the wood and leaf substrate in tree-holes, heavily 

affecting microbe abundance in these specific areas ( Kaufman et al. 2001, 2002). 
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Different species of bacteria and other microbes adhere to and grow on the substrate 

surface, and increased abundance and species richness is found near the substrate 

surface as opposed to the water column (Harlan & Paradise 2006). In experiment 1, 

individuals in treatment CS (with both wood chips and sawdust) had a greater, 

though not significant, growth rate (Fig 2.1). The larger wood chips may provide a 

better surface area for larvae to move along, and dislodge and graze microbes from 

the surface, possibly assisted by their anterior spiracles. Providing this and the same 

volume of sawdust to increase the overall surface area will probably provide the 

best conditions for larval growth based on these results.  

 

Our assessment of growth in the field revealed substantial variation in growth, but 

overall corresponded with the resource-limited conditions (C) in the lab suggesting 

that in nature, resources may often be limited. Therefore, ensuring rot hole surface 

area is maximised by, for example providing chips and sawdust, would benefit 

larval growth in the field. 

 

Increasing larval abundance does not appear to promote microbial growth to the 

benefit of B. fallax larvae, as would be true if Allee effects were strong at low larval 

densities. Instead, the results correspond with studies that show density-dependent 

limitations on growth (see Bradshaw & Holzapfel 1992; Broberg & Bradshaw 

1995). Presumably, larval grazing depletes the resources available; it may also 

select for bacterial populations that have a stronger ability to adhere to the substrate 

surface, or those that are resistant to digestion. Complex effects of filter feeding 

have been demonstrated in studies of mosquitoes, where the microbial community 

changes both directly due to removal of protozoa competitors for microbes and 
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indirectly due to changes in nutrient content (Kaufman et al. 2008; Addicott 1974; 

Paradise & Dunson 1997; Kaufman et al. 1999, 2008).  

 

An important natural element that was missing in our study was rainwater or 

stemflow, and it may ultimately be this that limits larval growth (Kaufmen et al 

2008). Stemflow has been found to neutralize density-dependent competition, 

suggesting a likely influence on nutrient dynamics and bacterial populations, and 

thus on larval Syrphid productivity (Walker et al. 1991). In addition, natural tree 

holes can also experience inputs of detritus such as leaves or pine needles, and these 

will provide more surface area and nutrients (Carpenter 1983; Daugherty et al. 

2000; Daugherty & Juliano 2002, 2011). Rapid degradation in the quality of rot hole 

detritus has been found in recent studies (Maciá & Bradshaw 2000; Kaufman et al. 

2008). The accumulation of waste products such as ammonia may be an additional 

time or density-dependent issue causing further depression in larval growth 

(Carpenter 1983). If this is true, another advantage of stemflow or rainfall may be 

diluting or flushing such waste metabolites. However, it is important to note that 

most studies assessing the content and dynamics in tree-holes involve buttress holes, 

which are lined with bark. Pine rot holes in stumps penetrate the hard wood where 

decomposition may contribute considerable differences in nutrient quality and 

therefore microbial abundance (Kitching 1971; Fish & Carpenter 1982).  

 

Fat deposition 

 

As winter approaches, energy seems to be re-directed from mass accumulation to 

pre-winter fat storage. Once fat storage is complete, signified by a once translucent 
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body becoming completely opaque with white fat, larvae appear to stop feeding and 

enter a slow-moving over-winter stasis, which is probably an energy conserving 

behavioural response (Hart & Bale 1997a). Fat storage is an important basic 

survival requirement for unproductive periods such as overwintering in many 

organisms, often involving trade offs in which energy has been directed from body 

and skeletal growth to fat reserves (Bull et al. 1996; Morgan & Metcalfe 2001; 

Shertzer & Ellner 2002). Fat deposition was slower in individuals in less favourable 

conditions, however by the over-winter period (November to March) these 

individuals had accumulated fat reserves that were indistinguishable observationally 

from those of rivals (they were 100 % opaque).   

 

Individuals that had not completed development before winter (i.e. they continued 

to gain size after winter) became almost transparent again in spring, which suggests 

they probably utilised the fat for post-winter growth as well as gaining more energy 

from continued feeding. Similar findings have been reported in mosquitoes, which 

take advantage of the rise in temperature after winter to catch up with growth 

(Bradshaw 1973). In B. fallax, the post-winter growth rate did not seem to exceed 

that observed in the autumn, suggesting that growth may be limited by the 

environment rather than developmental constraints that are shed during 

compensatory growth phases.  

 

When development is complete, individuals again appear to channel resources into 

fat storage before pupating. However some individuals continued to develop for 

another year. A small number of larvae appear to grow very little and take more 

than one year to develop independent of treatment.  
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Effect of tree species 

 

Larvae grow as well in birch as they do in pine, and while growth is significantly 

inhibited in spruce compared to the other species, the same number of individuals 

eclosed in spruce as they did in birch, and more than pine within a year. Clearly the 

larval stage is capable of developing in a range of alternative resources. Ovipositing 

females with strong larval substrate preferences therefore may be limiting the 

success of the species by not utilising all the available alternative habitats. Blera 

fallax has not been found in any other tree species than pine in Scotland, and gravid 

females are disinclined to oviposit in rotting spruce or birch sawdust (Chapter 5). 

The specialisation on pine may occur because pine habitat was more available or 

productive than alternative tree rot holes at some past time, or it may be that our 

study did not include aspects of fitness that reveal costs of growth in alternative 

species of hosts, such as subsequent mating success or fecundity. 

 

Wandering larvae and pupation 

 

In lab conditions, B. fallax individuals that had completed development were 

observed ‘wandering’ before winter, the same behaviour observed in many 

holometabolous insects when they begin searching for a place to pupate (Huffaker 

& Gutierrez 1998). For B. fallax, this may leave individuals vulnerable to 

desiccation or predation, but may also protect them from freezing water in the rot 

hole, which they may no longer require for development. Clearly captive breeders 

will need to allow for wandering by developing larvae when rearing this species by 

applying moss plugs to microcosms as early as September. 
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Survival 

 

Larval survival was significantly higher in low levels of water, high levels of 

sawdust, and high larval densities, and in spruce and birch treatments compared 

with pine. The treatment levels with lowest survival were also those in which 

growth rate was highest. Physiological costs associated with maximised growth may 

be the cause, whereby an organism’s susceptibility to short term stresses are 

increased by higher metabolic demands necessary for faster growth (Blanckenhorn 

1998), and many studies have evidence for such negative associations (Metcalfe & 

Monaghan 2001; Lavoie & Oberhauser 2004; Mangel & Munch 2005; Stoks et al. 

2006; Dmitriew & Rowe 2007). However, the costs of growing slowly could also 

have been masked by the lab conditions, such as a lack of an unknown 

environmental stress (e.g., predation or pathogen pressure). We don’t know how 

important water, sawdust or larval density is for survival in natural conditions, and 

measuring survival in the field is difficult, as larvae often crawl into tight crevices 

and often exit the rot hole completely before winter (E.L. Rotheray, pers. obs.).   

 

Increasing larval density (from 1 to 3 larvae) and the application of the anti-fungal 

treatment Nipagen did not appear to affect survival. Fungal growth was not directly 

assessed in the Nipagen experiment, but while fungal growth was apparent in all 

treatments there were no noticeable differences in mortality across them. We 

conclude that while Nipagen does not appear to negatively affect larval growth or 

survival, its application similarly has no obvious beneficial impact on mortality. 
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Development, pupal and adult size 

 

Individuals reared in low resource conditions had longer development times, lower 

single year eclosion rates, and smaller morphological traits. The sizes at eclosion 

appear to decrease with less productive conditions.  

 

The duration of the pupal stage decreased significantly with the day in the year on 

which pupation took place, a phenomenon probably triggered by photoperiod 

(Gotthard et al. 1999; Gotthard 2008). While it is not known if there are any 

associated costs in B. fallax, other Dipteran species have demonstrated lower 

fecundity associated with decreased pupal development time (Telles-Romero et al. 

2011).  

 

Size may be important to females if it is associated with higher levels of fecundity. 

While it is likely to be an experimental artefact brought about by low sample size, 

female B. fallax in captivity have shown increased fecundity with decreasing wing 

length (Chapter 5). Most studies show a positive correlation of insect wing and 

thorax size with fecundity (Grimaldi & Jaenike 1984; Honěk 1993; Nylin & 

Gotthard 1998; Armbruster & Hutchinson 2002). Females probably allocate more 

energy than males to reproduction in low resource conditions thereby exhibiting a 

stronger response to lower resources. This in turn may explain the response of 

semivoltine individuals where resource levels may have deteriorated over time 

further reducing the threshold size of females below that of males in these 

conditions.  
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Females, which on average are larger than males, appear to vary more substantially 

in size at eclosion than males, who appear more likely to retain size at the expense 

of not achieving maturity and having to develop for another year. Eclosing at a 

smaller size may be compensated by avoiding mortality risks associated with 

increased development time, such as increased exposure to predation, bacterial and 

viral infection, and possibly increased over-wintering survival risks. For males, 

achieving a certain body size may be essential for mating success (see Chapter 5), 

which could explain why males are less likely to emerge smaller in restricted 

conditions. It often benefits males to emerge first, a feature known as protandry, in 

which males mature their reproductive organs and set up territories ahead of female 

emergence. This can lead to smaller size in males or changes in the levels of sexual 

size dimorphism throughout the season (Nylin & Gotthard 1998). 

 

The contrasts across the sexes in the propensity to become semivoltine and the 

resolution of tradeoffs between development and adult size may reflect sex-specific 

adaptive differences in investment (Dmitriew et al. 2009). However, there are many 

unresolved questions about the nature of selection on the two sexes, including the 

sign and intensity of size associated sexual and fecundity selection (see Chapter 5) 

that will need to be resolved before we can state this with any confidence. 

 

Conservation and animal husbandry for B. fallax 

 

We found clear effects of several aspects of the rearing environment on 

development time, eclosion and adult size. Based on these results, the conditions 

that best enhance fitness for B. fallax reared ex-situ include a minimum sawdust 
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level of 40 ml and 140 ml water per larva, rearing in groups of no more than two per 

microcosm. Increasing the number to two per microcosm may improve survival. For 

semivoltine larvae, ex-situ conditions may require supplementation of new sawdust 

substrate and water in order to maximise growth in year two of their development.  

 

Conservation management involves creating habitat for B. fallax by boring holes in 

pine stumps, and the nature of the hole determines the contents and the density 

(Chapter 5). The findings from this study suggest hole boring techniques such as the 

tools and methods used (see Chapter 5) will be important determinants of B. fallax 

larval growth, which is directly associated with individual fitness. Increasing the 

substrate and rot hole surface area or structural complexity will probably benefit 

larval growth by providing access to more resources. Wild densities can be much 

higher than the ones we manipulated which could potentially inhibit larval growth 

or be a source of mortality (Chapter 3) therefore it may benefit individual larval 

growth and survival if they were distributed across available habitat at B. fallax 

localities. Further study should investigate the effects of rainwater and natural 

detritus as well as efforts to increase the surface area in rot holes in the field. 

Monitoring larval growth and survival between July and no later than September 

allows for the initial growth trajectory to be measured, and reduces the chances of 

larvae exiting the rot hole before growth and survival data collection is complete. 

Because B. fallax can be semivoltine, monitoring should consider this time frame 

and management efforts should include a two-year plan whereby habitat is assured 

and secured all year round. 
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Table 2.1 Average monthly temperatures and mid-month light levels, as programmed in larval 
rearing climate-controlled facilities. 
 

 
Maximum 

temperature 
(°C) 

Minimum 
temperature 

(°C) 

Lights 
on 

Lights 
off 

January 7 2 08:30 16:25 
February 4 1 07:45 17:15 
March 8 4 06:45 18:40 
April 13 5 05:30 20:50 
May 17 7 05:00 21:15 
June 18 9 04:15 22:15 
July 19 10 05:10 21:35 

August 18 8 05:30 21:15 
September 15 8 06:30 20:00 

October 10 5 07:50 18:10 
November 7 4 07:45 16.15 
December 7 1 08:45 15:30 

 



 71 

 
Table 2.2 Year, treatments, total number of larvae included in each treatment, number of male and female adults emerged from each treatment, and percentage dead 
and pupated within one year. W, water; L, larvae. 
 

Pre-winter larval area (mean ± standard error)    

Year 
Substrate 
volume 

Water 
volume Treatment Initial area (mm2) Final area (mm2) Total N at start Female Male 

Dead 
(%) 

Pupated  
(%) 

 
Experiment 1 

1 50 70 Chips 0.223 ± 0.102 0.274 ± 0.182 40 9 4 30 33 
1 50 70 Chips + Sawdust 0.233 ± 0.113 0.374 ± 0.267 40 14 12 35 65 
1 50 70 Sawdust + Nipagen 0.207 ± 0.168 0.359 ± 0.261 40 9 16 28 65 
1 50 70 Sawdust 0.194 ± 0.112 0.381 ± 0.232 40 13 13 23 70 
1 - - Field 0.182 ± 0.09 0.377 ± 0.162      
 

Experiment 2 
2 40 140 S40W140L1 0.207 ± 0.067 0.477 ± 0.064 20 6 2 55 40 
2 40 140 S40W140L2 0.214 ± 0.080 0.404 ± 0.029 40 10 6 58 40 
2 40 140 S40W140L3 0.217 ± 0.073 0.371 ± 0.034 60 11 4 25 27 
2 80 140 S80W140L1 0.216 ± 0.075 0.444 ± 0.040 20 5 2 65 35 
2 80 140 S80W140L2 0.202 ± 0.062 0.355 ± 0.034 40 13 15 15 73 
2 80 140 S80W140L3 0.227 ± 0.058 0.313 ± 0.033 60 14 13 17 47 
2 80 70 S80W70L1 0.210 ± 0.074 0.527 ± 0.066 20 6 5 25 55 
2 80 70 S80W70L2 0.236 ± 0.065 0.470 ± 0.054 40 17 3 3 53 
2 80 70 S80W70L3 0.235 ± 0.057 0.421 ± 0.052 60 7 3 7 18 
2 40 70 S40W70L1 0.245 ± 0.039 0.485 ± 0.042 20 7 7 25 70 
2 40 70 S40W70L2 0.240 ± 0.036 0.396 ± 0.029 40 4 3 10 18 
2 40 70 S40W70L3 0.228 ± 0.040 0.347 ± 0.029 60 2 1 15 5 
2 40 140 Birch 0.225 ± 0.091 0.373 ± 0.149 20 3 7 30 50 
2 40 140 Spruce 0.226 ± 0.094 0.340 ± 0.138 20 5 6 10 55 
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Table 2.3 Bootstrapped von Bertalanffy parameter estimates and 95 % confidence intervals for 
models of larval mass increase across experimental treatments: chips, chips and sawdust, nipagen 
and sawdust and sawdust, and field larval growth (Experiment 1); and 1, 2 and 3 larval densities; low 
and high sawdust and water treatments; and birch, pine and spruce sawdust treatments (Experiment 
2). 
 

Treatment 
Mean asymptotic size, 

L∞ (95% CI) 
Growth constant, K 

(95% CI) 

Mean size at hatching, 
L0* 

(95% CI) 
Experiment 1    

Chips 0.456 
(0.426 – 0.523) 

0.089 
(0.033 – 0.233) 

-9.129 
(-24.98 – -3.189) 

Chip + Sawdust 0.571 
(0.54 – 0.61) 

0.095 
(0.06 – 0.175) 

-5.60 
(-9.13 – -2.63) 

Sawdust + Nipagen 0.72 
(0.54 – 2.62) 

0.023 
(0.003 – 0.065) 

-17.15 
(-39.06 - -6.86) 

Sawdust 0.60 
(0.53 – 0.84) 

0.041 
(0.017 – 0.071) 

-9.57 
(-19.22 - -5.256) 

Field 0.50 
(0.46 – 0.53) 

0.15 
(0.098 – 0.325) 

-2.026 
(-3.84 - -0.42) 

 
Experiment 2    

 
Low water level  

(70 ml) 

 
0.061 

(0.056 – 0.069) 

 
0.056 

(0.036 – 0.081) 

 
-7.72 

(-11.45 - -5.33) 
High water level  

(140ml) 
0.084 

(0.073 – 0.116) 
0.036 

(0.018 – 0.054) 
-7.63 

(-12.07 - -5.02) 
Low sawdust level  

(40ml) 
0.060 

(0.055 – 0.068) 
0.064 

(0.041 – 0.095) 
-6.14 

(-9.80 - -3.90) 
High sawdust level 

(80ml) 
0.088 

(0.076 – 0.127) 
0.032 

(0.016 – 0.048) 
-9.21 

(-14.03 - -6.29) 

1 larva/microcosm 0.100 
(0.085 – 0.134) 

0.035 
(0.019 – 0.053) 

-6.51 
(-10.21 - -4.19) 

2 larvae/microcosm 0.066 
(0.060 – 0.083) 

0.047 
(0.025 – 0.070) 

-8.20 
(-13.13 - -5.31) 

3 larvae/microcosm 0.051 
(0.048 – 0.058) 

0.068 
(0.041 – 0.104) 

-7.98 
(-13.07 - -4.91) 

 
Tree species    

Birch 0.079 
(0.066 – 0.164) 

0.067 
(0.015 – 0.159) 

-6.196 
(-15.244 – -2.34) 

Spruce 0.06 
(0.05 – 0.21) 

0.054 
(0.006 – 0.19) 

-9.72 
(-26.68 – -2.99) 

Pine 0.093 
(0.073 – 0.238) 

0.05 
(0.01 – 0.097) 

-4.99 
(-10.55 – -2.29) 

* Note that time was recorded as ‘day of experiment’ rather than ‘age of larva’, therefore L0 will be 
an underestimate of actual size at hatching/birth.



 
Table 2.4 Main B. fallax rearing conditions with trait measurements (mean ± standard deviation SD) in treatments; chips, chips and sawdust, nipagen and sawdust, and 
sawdust; 2010, semivoltine individuals (those that took two years to develop but from the same brood) (Experiment 1); and 1, 2 and 3 larval densities; low and high 
sawdust and water treatments; and birch, pine and spruce sawdust treatments (Experiment 2).  
 

 Thorax length (mean ± SD) 
  

Wing length (mean ± SD) 
 

Pupal area (mean ± SD) 
 

Day emerged (mean ± SD) 
  Treatment   Female Male Female Male Female Male Female Male

 
Experiment 1 

Chips 0.329 ± 0.03 0.322 ± 0.01 0.643 ± 0.05 0.610 ± 0.02 0.281 ± 0.04 0.269 ± 0.01 164 ± 10.2 158 ± 5.0 
Chips + Sawdust 0.359 ± 0.01 0.347 ± 0.02 0.670 ± 0.03 0.645 ± 0.02 0.335 ± 0.03 0.352 ± 0.02 157 ± 3.1 154 ± 1.4 

Sawdust + Nipagen 0.362 ± 0.02 0.350 ± 0.02 0.684 ± 0.02 0.654 ± 0.02 0.340 ± 0.02 0.340 ± 0.03 158 ± 3.7 154 ± 2.1 
Sawdust 0.350 ± 0.02 0.346 ± 0.02 0.682 ± 0.04 0.659 ± 0.02 0.328 ± 0.03 0.327 ± 0.02 158 ± 3.2 154 ± 3.3 

Semivoltine 0.261 ± 0.02 0.281 ± 0.03 0.546 ± 0.04 0.575 ± 0.04 0.202 ± 0.05 0.227 ± 0.03 540 ± 7.8 536 ± 7.4 
 

Experiment 2 
1 larva 0.325 ± 0.02 0.316 ± 0.09 0.637 ± 0.04 0.606 ± 0.03 0.286 ± 0.03 0.265 ± 0.03 150 ± 6.5 146 ± 5.2 
2 larvae 0.307 ± 0.02 0.304 ± 0.02 0.613 ± 0.02 0.603 ± 0.02 0.244 ± 0.03 0.258 ± 0.03 153 ± 6.2 149 ± 10.1 
3 larvae 0.285 ± 0.03 0.291 ± 0.03 0.583 ± 0.03 0.584 ± 0.04 0.218 ± 0.02 0.241 ± 0.03 155 ± 10.5 150 ± 7.8 

Water 70 (low) 0.308 ± 0.03 0.299 ± 0.02 0.608 ± 0.04 0.587 ± 0.03 0.247 ± 0.04 0.246 ± 0.03 154 ± 8.3 149 ± 7.3 
Water 140 (high) 0.301 ± 0.03 0.305 ± 0.02 0.609 ± 0.04 0.603 ± 0.03 0.244 ± 0.04 0.259 ± 0.03 152 ± 8.0 149 ± 9.0 
Sawdust 40 (low) 0.294 ± 0.03 0.301 ± 0.02 0.596 ± 0.04 0.598 ± 0.03 0.234 ± 0.04 0.246 ± 0.04 152 ± 7.9 148 ± 5.4 
Sawdust 80 (high) 0.311 ± 0.02 0.304 ± 0.03 0.617 ± 0.03 0.597 ± 0.03 0.251 ± 0.04 0.259 ± 0.03 153 ± 8.4 149 ± 9.7 

Birch 0.315 ± 0.01 0.306 ± 0.02 0.631 ± 0.03 0.619 ± 0.01 0.249 ± 0.02 0.277 ± 0.04 145 ± 9.1 140 ± 4.7 
Pine 0.314 ± 0.02 0.342 ± 0.01 0.608 ± 0.05 0.619 ± 0.04 0.258 ± 0.03 0.277 ± 0.02 142 ± 6.0 144 ± 10.6 

Spruce 0.294 ± 0.02 0.292 ± 0.02 0.596 ± 0.03 0.574 ± 0.03 0.217 ± 0.01 0.221 ± 0.02  144 ± 6.8 141 ± 2.9 
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Table 2.5 Multivariate (MANOVA) hypothesis test results (Experiment 1), between treatments Chips, Sawdust and Nipagen, Chips and Sawdust, and Sawdust and 
within treatment by sex differences. MS, mean sum squared value. 
 
 Thorax length 

 
Wing length 

 
Pupal area 

 
Development time 

 Experiment 1 MS F        Prob>F MS F Prob>F MS F Prob>F MS (106) F Prob>F
 
Treatment 0.002 7.65 < 0.001 0.004 5.14 0.003 0.014 20.56 < 0.001 0.02 7.98 < 0.001 
Sex   

 

  

0.002 5.01 0.028 0.016 18.44 < 0.001 0.0002 0.31 0.582 0.04 14.37 0.0003
Treatment x Sex* 0.001 2.4 0.031 0.002 2.51 0.025 0.001 0.82 0.555    
 
Sex differences within treatment           
Chips + Sawdust 

 
0.001 3.625 0.069 0.004 6.160 0.020 0.002 3.149 0.089 0.006 5.300 0.030 

Chips 0.0002 0.322 0.582 0.003 1.400 0.262 0.0004 0.345 0.569 0.01 0.964 0.347
Nipagen + Sawdust 

 
0.001 2.600 0.121 0.005 14.553 

 
0.001 0.00002 0.005 0.945 0.01 9.560 0.005 

Sawdust 0.0001 0.195 0.663 0.004 3.622 0.069 0.00001 0.012 0.915 0.01 7.204 0.013
* interaction results only for semivoltine adults included in model 
 
Table 2.6 Multivariate (MANOVA) hypothesis test results investigating the effects of larval density (1/2/3 larvae), sawdust volume (high/low), water volume 
(high/low) and tree species (pine/birch/spruce) on adult traits (Experiment 2). MS, mean sum squared value. 
 
 Thorax length Wing length Puparium area 

  
Development time 

 Experiment 2 MS F Prob>F MS F     Prob>F MS F Prob>F MS (105) F Prob>F
 
Larvae 0.014 34.1 < 0.001 0.021 30.8 < 0.001 0.031 49.9 < 0.001 0.05 4.4 0.014 
Sawdust 0.010 24 < 0.001 0.011 15.7 < 0.001 0.021 34.9 < 0.001 0.001 0.1 0.736 
Water  0.002            

            
            
            

            
            

5.5 0.021 0.011 16.3 < 0.001 0.012 19.7 < 0.001 0.06 5.2 0.024
Sex 0.0003 0.8 0.369 0.008 10.8 0.001 0.002 3.1 0.080 0.003 8.9 0.003
Larvae x  sex 0.0003 0.9 0.400 0.001 2.1 0.122 0.004 6 0.003 0.002 0.1 0.895
Sawdust x sex 0.002 5.6 0.019 0.006 8.8 0.003 0.001 1.7 0.194 0.002 0.1 0.725
 
Tree species 

 Treatment 0.002 5.5 0.010 0.004 4.7 0.018 0.008 10.199 0.001 4.404 0.125 0.883
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Figure 2.1 B. fallax larval growth curves implemented by the von Bertalanffy growth function fitted by nonlinear fixed effects models, and ‘jittered’ point data to 
illustrate the differences in pine wood treatments (Experiment 1): Chips and Sawdust, Chips, Sawdust, and Sawdust plus Nipagen fungal treatment (left) and 
comparing Chips and field growth data (right).  
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Figure 2.2 Percentage fat (y-axis) in each time interval representing August 2009 (day 1) until June 2010 (day 230) (x-axis), illustrated in separate graphs for each 
treatment; Chips, Sawdust and Nipagen, Chips and Sawdust, and Sawdust (Experiment 1). 
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Figure 2.3 Boxplots illustrating the difference in √ pupal area (mm), and thorax and wing length 
between semivoltine individuals (those that took two years to develop) and in Chips C, Chips and 
Sawdust CS, Sawdust and Nipagen NS, and Sawdust S treatments (Experiment 1).  
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Figure 2.4 Boxplots illustrating the difference in thorax (top row) and wing length (bottom row) between males (M) and females (F) in semivoltine individuals (those 
that took two years to develop) and in Chips, Chips and Sawdust, Sawdust and Nipagen, and Sawdust treatments (Experiment 1).  
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Figure 2.5 B. fallax larval growth curves implemented by the von Bertalanffy growth function fitted 
by nonlinear fixed effects models, and ‘jittered’ point data to illustrate the differences in 1, 2 and 3 
larval density treatment groups (Experiment 2). 
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Figure 2.6 B. fallax larval growth curves implemented by the von Bertalanffy growth function fitted by nonlinear fixed effects models, and ‘jittered’ point data to 
illustrate the differences in grouped low (40 ml) and high (80 ml) pine sawdust treatments (left), and grouped low (70 ml) and high (140 ml) water treatments 
(Experiment 2).
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Figure 2.7 B. fallax larval growth curves implemented by the von Bertalanffy growth function fitted 
by nonlinear fixed effects models, and ‘jittered’ point data to illustrate the differences in pine, spruce 
and birch wood treatment groups (Experiment 2). 
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Figure 2.8 Cox proportional hazard survival curves drawn separately for water, larval density and sawdust treatments (Experiment 2). 



 
 
 
 

1 2 3

0.
22

0.
26

0.
30

0.
34

Number of larvae

Le
ng

th
 o

f m
al

e 
th

or
ax

 (m
m

)

1 2 3

0.
22

0.
26

0.
30

0.
34

Number of larvae

Le
ng

th
 o

f f
em

al
e 

th
or

ax
 (m

m
)

1 2 3

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Number of larvae

Le
ng

th
 o

f m
al

e 
w

in
g 

(m
m

)

1 2 3

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Number of larvae

Le
ng

th
 o

f f
em

al
e 

w
in

g 
(m

m
)

1 2 3

0.
40

0.
45

0.
50

0.
55

0.
60

Number of larvae

A
re

a 
of

 m
al

e 
pu

pa
riu

m
 (m

m
)

1 2 3

0.
40

0.
45

0.
50

0.
55

0.
60

Number of larvae

A
re

a 
of

 fe
m

al
e 

pu
pa

riu
m

 (m
m

)

 
 
Figure 2.9 Boxplots showing response of male and female thorax (top row), wing length (middle 
row) and √ puparum area (bottom row) (mm) to larval density. The y-axis represents the mean value 
for all larvae in one microcosm.  

 83



 
 
 

40 80

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

Sawdust (ml)

M
al

e 
w

in
g 

le
ng

th
 (m

m
)

40 80

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

Sawdust (ml)

Fe
m

al
e 

w
in

g 
le

ng
th

 (m
m

)

 
Figure 2.10 Boxplots showing different responses of male and female wing length (mm) to sawdust 
level (larval density = 1). 
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Figure 2.11 Boxplots showing different response variables: √ puparium area, and thorax and wing 
length (mm) to tree species birch, pine and spruce. 
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Chapter 3 

3 Differences in ecomorphology and microhabitat 

use of four saproxylic larvae (Diptera, 

Syrphidae) in tree stump rot holes 
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3.1 Abstract 

 

We explored co-existence and microhabitat partitioning in larvae of four species of 

hoverfly which occupy rot holes in Scots Pine Pinus sylvestris L. in Scotland, UK: 

the endangered pine hoverfly Blera fallax (Linnaeus), and three more common 

species, Callicera rufa (Schummel), Myathropa florea (Linnaeus) and Sphegina 

clunipes (Fallén) (Diptera, Syrphidae). Our primary aim was to investigate 

competitive exclusion risks to B. fallax, a species that now survives at only one site 

in the UK. We examined morphological differences between species and compared 

these to microhabitat use in an artificial rot hole. In addition, we measured larval 

growth for three of the species in different volumes of pinewood substrate to 

investigate differences in development in response to varying substrate levels. Field 

surveys confirmed that B. fallax, C. rufa and M. florea co-occur in pine rot holes. 

Sphegina clunipes was not abundant and only occurred with B. fallax on two 

occasions. Species differed in their growth rates and responses to variation in 

substrate level. Blera fallax developed quickly before winter, and decreasing 

substrate volume significantly inhibited growth, while C. rufa and M. florea took 6 

months longer to achieve critical size for eclosion. Each species inhabited a distinct 

depth in the rot hole and exhibited correspondingly different behaviours associated 

with respiration and the length of their posterior breathing tubes. Blera fallax has an 

extendable breathing tube, which extended up to four times the body length (up to 

46 mm) but is shorter than the body when fully retracted. Blera fallax occupied all 

areas of the rot hole. Myathropa florea has a long, extendable breathing tube (up to 

63 mm) that is longer than the body when fully retracted, and was observed most 

regularly at the deepest points in rot holes. Callicera rufa has a short, non-
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extendable breathing tube (mean length 0.96 mm), was highly sensitive to 

disturbance, and was most regularly found at an intermediate depth. Sphegina 

clunipes is the smallest species with a non-extendable, body length-long breathing 

tube (mean length 2.95 mm) and was most often found near the surface. The 

microhabitat partitioning observed in this study may facilitate the coexistence of 

these four species, and suggests that competitive exclusion will not hamper 

conservation management efforts for B. fallax. 
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3.2 Introduction 

 

Closely related species that have similar niches may compete where their ranges 

overlap, but under the competitive exclusion principle they should be living in ways 

that minimise competition (Armstrong & McGehee 1980; Hardin 1960). Such 

adaptations can arise through coevolved niche shifts, or if already present upon first 

encounter may maintain co-existence (Lotka 1932; MacArthur 1972). Rare or 

specialised species less tolerant to competition may be vulnerable to even small 

competitive differences resulting in extinction (Hardin 1960). Coexistence 

mechanisms may buffer against extinction by providing advantages to rare or 

endemic species (Levins & Culver 1971; Lankau 2011). Fluctuations in 

environmental quality may affect competition and the consequent diversity in a 

habitat (Gotthard 2008; Pal et al. 2009; Chakraborty & Li 2010). Determining 

whether natural populations are food limited, and how different species respond to 

fluctuating levels in resources, is important in the study of species interactions in 

communities (Lenski 1984; Juliano 1986; Olson & Olson 1989). Rot hole 

communities provide excellent opportunities to study inter and intra-specific 

competition as they are discrete, spatially limited and capable of being 

experimentally manipulated (Kitching 1971; Srivastava & Lawton 1998; Srivastava 

2005).  

 

Saproxylic or dead wood syrphid larvae (Diptera, Syrphidae) have undergone 

considerable ecological radiation and occupy diverse microhabitats in woodlands, 

especially tree-holes, where they are well adapted for developing on decaying 

matter while being immersed (Gilbert et al. 1994). Modifications in Syrphid 

 88



saprophages in relation to other lower Cyclorrhapha (a higher taxonomic rank under 

the order Diptera), include greater size and enlarged mouthparts with a mechanism 

for filtering microbes suspended in fluids (Gilbert et al. 1994; Rotheray & Gilbert 

1999, 2011). Being semi-aquatic and unable to swim, they need to reach the water 

surface in order to respire, where they may be particularly vulnerable to natural 

predators. To move underwater they have prolegs with crochets to grip substrates 

and an extended posterior breathing tube, which allows respiration while grazing on 

microbes in an aquatic environment, and limits exposure to terrestrial predators 

(Gilbert et al. 1994; Rotheray & Gilbert 1999). The degree of modifications varies 

across rot hole species, which may give rise to resource partitioning between 

otherwise potentially competing species (MacArthur 1972; Pfennig et al. 2007).  

 

Four saprophagous syrphid species co-occur in pine, Pinus sylvestris L. tree rot 

holes in Scotland, UK, including the endangered pine hoverfly Blera fallax 

(Linnaeus), and three more common species, Callicera rufa (Schummel), 

Myathropa florea (Linnaeus) and Sphegina clunipes (Fallén) (Diptera, Syrphidae) 

(Fig 3.1). These species are chiefly univoltine, with overlapping flight periods 

between June and August for B. fallax and C. rufa, while M. florea is on the wing 

between May and October and S. clunipes, between May until September (Stubbs & 

Falk 2002). They also vary in the length of their breathing tubes and in the range of 

habitats they are associated with i.e. the condition and the species of their host tree. 

Unlike the other species, B. fallax is confined to P. sylvestris, and probably due to 

habitat loss currently exists at only one site in Scotland (Rotheray & MacGowan 

2000; Rotheray 2010). Myathropa florea is widespread across the British Isles 

(Stubbs & Falk 2002) and can be found in a wide range of rot holes or water-filled 
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crevices in both coniferous and deciduous trees (Rotheray 1993). Blera fallax and M. 

florea have long, extendable posterior breathing tubes, and are thought to be the 

most derived of the four saprophages (Gilbert et al. 1994). Callicera rufa is found in 

coniferous tree-holes, mainly spruce Picea abies, larch Larix decidua and P. 

sylvestris (Stubbs & Falk 2002). Although C. rufa is fairly widespread, and has 

recently been recorded in England (Shropshire and Nottinghamshire) (Nigel Jones 

pers. comm.), it is largely restricted to Caledonian pine woodland in the Scottish 

Highlands (MacGowan 1994; Rotheray et al. 2001). Sphegina clunipes is a common 

species, widespread across the British Isles as far north as Sutherland (Stubbs & 

Falk 2002). It is normally associated with deciduous woodlands, and most often 

found in decaying sap under bark (Rotheray 1993; Stubbs & Falk 2002), but has 

recently been found in numerous artificial P. sylvestris rot holes (see Chapter 5). 

Sphegina clunipes and C. rufa have shorter, non-extendable posterior breathing 

tubes, and C. rufa has two sets of three large anterior hooks, the function of which is 

unclear although they may assist in excavation of rot hole substrates (Rotheray 

1993). It is unknown if these differences partition the microhabitat of larvae 

sufficiently to eliminate or reduce competition for resources, and how such 

restrictions within the rot hole may affect their potential vulnerability to natural 

enemies or varying environmental conditions. It is particularly important that we 

determine how the pine rot hole community interacts in order to support 

conservation management for B. fallax. Effort is currently focused on retaining and 

expanding populations by relocating larvae into artificially created habitat at sites in 

the historical range for this species (Rotheray 2010; see Chapter 5). We need to 

confirm B. fallax will not be competitively excluded, or less able to cope in the 
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conditions created for its recovery, in which case an alternative management 

approach would be required.  

 

There have not been any previous studies of saproxylic fauna in pine rot holes or 

involving the four fly species investigated here. Rotheray & MacGowan (2000) 

suggested that the quantity of wet decay found in rot holes is sufficient not to cause 

competition for resources between these four species. While some studies looking at 

increasing densities of rot hole filter-feeding communities detect no adverse effect 

on survival or biomass (Walker et al. 1991; van de Bund et al. 1994; Kaufman et al. 

1999; Graca et al. 2000), most studies suggest competition in rot holes have 

negative effects (Livdahl 1982; Fisher et al. 1990; Broberg & Bradshaw 1995; 

Knight et al. 2004). Microbial diversity and abundance in a rot hole varies 

depending on the size of hole, tree species, and location, and environmental 

variables such as light availability (Kitching 1971; Sota 1998; Strand et al. 1999; 

Maciá & Bradshaw 2000; Paradise 2004; Bell et al. 2005). This in turn affects 

insect productivity which is directly related to the type and volume of detritus 

substrate (Fish & Carpenter 1982; Walker et al. 1991; Srivastava & Lawton 1998; 

Paradise 2004; Kaufman et al. 2008). Syrphid abundance in particular correlates 

with detritus volume (Srivastava & Lawton 1998). 

 

Resource partitioning may reduce levels of competition, as has been found in a 

number of other insect communities inhabiting similar discrete water-filled 

environments (Levot et al. 1979; Seifert & Seifert 1979; Bradshaw & Holzapfel 

1992; Fincke 1992; Sota et al. 1994). Insect larvae have been recorded 

preferentially grazing on the surface area of rot holes and leaf detritus, and on 
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particular bacterial taxa, decreasing abundance and microbial community structure 

associated with these specific areas (Kaufman et al. 2001, 2002, 2008). If larvae 

from different species segregate spatially, and these areas vary in productivity, we 

might predict different tolerance across taxa to changes in substrate levels. We 

wanted to test whether differences in larval behaviour covaried with differences in 

the response of the larvae to experimentally manipulated conditions in artificial rot 

holes. We predicted that, as a pine specialist, B. fallax growth response to resource-

depleted conditions would equal or better co-occurring species. 

 

Pine rot hole syrphids appear to vary in their characteristic responses to physical 

disturbance and freezing conditions (E.L. Rotheray, pers. obs.), which may be 

important for escaping from predators and surviving overwinter. While there are no 

known predators within the rot holes, a species of parasitoid, Rhembobius 

perscrutator Thunberg (Hymenoptera, Ichneumonidae) attack puparia of B. fallax, 

C. rufa and M. florea, all of which exit the rot hole in order to pupate. Beetles, birds 

and mammals are probably opportunistic predators of both larvae and pupae. 

Movement within rot holes may have been shaped by predation pressure if the 

different parts of the hole are subject to contrasting predation risk (Sih 1986; Relyea 

2001; Schulte et al. 2004). Over-wintering larvae often move out of water upon 

freezing to avoid conditions, which can affect fly larva survival (Teets et al. 2011). 

This may make them more vulnerable to predation during these periods, and hence 

is likely to be important when considering the shape and depth of artificial rot holes 

created as part of conservation management protocols. Therefore, in addition to 

investigating microhabitat use and resource accessibility, we investigated inter-

specific differences in response to disturbance and freezing conditions in the four 
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species. We predicted that species with longer breathing tubes would inhabit deeper 

areas in the rot hole, where they are less vulnerable to predation, but exit a rot hole 

ess upon freezing in winter months.  l

 

3.3 Methods 

 

3.3.1 Field data collection 

 

To assess co-occurrence among the four species in this study, nine larval surveys 

took place at Curr Wood in Strathspey, Scotland, UK (57°18’ N, 3°39’ W) between 

November 2007 and February 2011. For each survey, the detritus content of ~100 

pine stump rot holes was searched through, and a plastic pipette was used to 

carefully probe cracks and crevices deeper in the hole. Larval characters, such as the 

breathing tube and anterior spiracles, were used to identify each species (Rotheray 

1993; see Appendix 5.3). The abundance of each species and degree of co-

occurrence of B. fallax, C. rufa, M. florea and S. clunipes was recorded.  

  

3.3.2 Morphological measurements 

 

Ten larvae from each species (B. fallax, C. rufa, M. florea and S. clunipes) were 

collected from Curr Wood on 11th October 2008 and reared in captivity. In May and 

June 2009, final instar body length (from the tip of the anterior to the base of the 

posterior breathing tube), and posterior breathing tube length (from base of the 
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posterior breathing tube to the tip of the tube) was measured using a digital calliper. 

Maximum observed breathing tube lengths of B. fallax were also measured. This 

was made possible due to the tendency of B. fallax individuals to move along 

excavated tunnels in the sawdust adjacent to the transparent wall of glass 

microcosms, while the tip of their breathing tubes remained at the surface. The 

length was estimated using digital callipers and/or measuring tape. This was not 

possible for M. florea as larvae were never fully visible in this way, however in 

some cases the breathing tubes were not retracted upon removal allowing them to be 

measured. After transferring larvae to filter paper to remove excess water, weight 

was measured on a 0.001g resolution balance. The number of each species surviving 

to eclosion was also recorded. 

 

3.3.3 Location and microhabitat use 

 

Ten artificial pine ‘rot hole’ microcosms were created using 1000 ml glass jars 

filled with 200 ml pine sawdust, ~200cm3 pine wood chips and 200ml bottled spring 

water. Microcosms were kept in climate-controlled facilities on 12-hour temperature 

and photoperiod cycles corresponding with those that they would experience 

naturally in North Scotland. These were estimated using data logger temperature 

readings and Met Office reports (although they were generally kept above 1°C to 

avoid mortality due to freezing) (Table 2.1). Microcosms were left for 48 hours to 

allow the substrate to become saturated. One larva of each species was placed into 

each microcosm. After 24 hours acclimation, instantaneous sampling techniques 

were used to record the location and activity of each individual (Altmann 1974). 

Three variables were recorded: 1) Position. The microcosm content (9 cm in height) 
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was divided into equal parts designated as surface (6 to 9 cm), middle (3 to 6 cm), 

or bottom (0 to 3 cm). 2) Respiration. Two respiratory organs are used for air 

exchange in syrphid larvae; the posterior breathing tube or the anterior spiracles, 

which are thought only to play a minor role (Gilbert et al 1994). Utilisation was 

determined by observing if either was in contact with the water surface. 3) 

Movement. Individuals were recorded as either moving or stationary. Spot 

observations were repeated twenty-one times for a total of 40 larvae between 7th and 

24th November 2008. 

 

Vibrations were an inevitable consequence of tracking activity and location of each 

species in the microcosms. Callicera rufa was highly sensitive to vibrations of any 

kind, causing individuals to quickly retreat if near the surface. Therefore, in order to 

obtain a more accurate description of natural behaviour, an additional observation 

was carried out focusing on single C. rufa activity throughout 60-minute periods. A 

stop clock was used to record the time each individual spent completely submerged 

or breathing (i.e. posterior breathing tube breaking the water surface). This was then 

repeated once for each individual ensuring a minimum 24-hour interval.  

 

3.3.4 Response to freezing 

 

During surveys carried out in the winter months when rot holes were frozen, small 

numbers of C. rufa and B. fallax were found either resting on the frozen water 

surface or in crevices in the stump or around the hole. After noting differences 

among species in their response to freezing in the field, an experiment investigating 

behavioural response to falling temperature was carried out in December 2008. Ten 
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microcosms already described above containing one of each of the four species 

were supplemented with an additional six microcosms each containing 3 B. fallax 

larvae, and temporarily moved into a climate-controlled cabinet programmed to the 

same daily cycles but with a lower minimum temperature of -2oC. Once the water 

surface became frozen, the location of each individual was recorded (i.e. submerged 

or above the surface), and the temperature was returned to cycles reaching 

minimum 1°C (see Table 2.1) to allow larvae access to the surface to breathe. A 

Chi-squared test was used to assess differences between species by numbers at the 

surface or submerged. 

 

3.3.5 Disturbance response 

 

Two experiments were carried out to investigate response to disturbance. Both 

experiments required that individuals had their posterior breathing tubes in contact 

with the water surface. The first experiment was designed to mimic disturbance that 

a foraging predator may cause at the water surface. A plastic pipette was used to 

briefly touch the water, at least 4cm from where the breathing tube was breaking the 

surface, and the immediate response of the individual was recorded i.e. if the tube or 

larva retracted or withdrew from the surface. These tests were repeated three times 

with 48-hour intervals for a total of 40 individuals (10 of each species).  

 

The second experiment was designed to determine how larvae cope if they are 

dislodged from a substrate. Individual larvae were gently detached from their 

anchorage, either from in the sawdust or on the bark ladder, using the end of a 

plastic pipette. Individuals were then observed for ten minutes or until they sunk or 
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found substrate, during which their behaviour was monitored and the response 

(positive or negative buoyancy) was recorded.  

 

All statistical analyses were carried out using the statistical package R (version 

2.13.1) (R Team 2011). Linear mixed effects (LME) models in the ‘nlme’ package 

(Bates & Maechler 2008) were used to account for repeat measures. This method 

uses restricted maximum likelihood to produce unbiased estimates of model 

parameters to test hypotheses. LME provide estimates of the influence of fixed 

effects on the mean as well as influence of random effects on variance, allowing 

correlation between within-group errors and unequal variances. We used frequency 

of microhabitat-use or behaviours (respiration and movement) to predict location in 

the rot hole and behaviour by species with individual larva identity fitted as a 

random effect in both tests. We report significance tests for analysis of variance 

(ANOVA) with restricted maximum likelihood (REML) used to compare models 

with and without species as an explanatory variable. 

 

We used generalised linear mixed effects models with Binomial error distribution to 

model species differences in response to disturbance (no withdrawal/withdrawal) 

and dislodging (float/sink), with individual larva fitted as random effects. Due to the 

unbalanced design, we report significance tests for type-II sums-of-squares 

implemented in the ‘car’ package (Weisberg & Fox 2010).  
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3.3.6 Growth experiments 

 

Growth experiments to assess differences among species in resource acquisition 

were carried out using manipulated quantities of P. sylvestris sawdust collected 

from a pine wood mill in Abernethy Forest, Scotland in the same volume of water. 

Fourteen 250ml glass microcosms with foam stoppers were filled with 10 - 70 ml 

(in 10 ml increments) pine sawdust, 70mls water, and bark ladders (9 x 3 x 1 cm3) 

to allow larvae to crawl closer to the surface to breath. Microcosms were left for 48 

hours to allow the content to become saturated.  

 

On 29th August 2009, fourteen captive bred ~1st instar B. fallax larvae were selected 

based on size (< 7mm body length). Larvae were starved for 24 hours to minimise 

the effect of pre-experimental conditions, before transferring one randomly 

designated individual into each microcosm. Initial larval measurements were taken 

on 29th August and a further two on 2nd and 20th October 2009. Individual larvae 

were measured following methods outlined in Chapter 2. Individuals were removed 

from the microcosm using a plastic pipette and transferred to laminated lined paper 

for scale. Digital images of each larva were taken, and its two-dimensional area was 

calculated using ImageJ software (Abràmoff et al. 2004). To avoid excessive B. 

fallax mortalities, after the final measurement in October, surviving individuals in 

low sawdust volumes (< 50 ml) were provided with additional substrate. No further 

larval measurements were made, although the number of individuals surviving to 

eclosion was recorded.  
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In 2010, these methods were repeated using twenty-one larvae each of C. rufa and 

M. florea collected from the Curr Wood. Due to logistical reasons, B. fallax was not 

included in this experiment. The experiment was started slightly later in the year as 

no C. rufa larvae were found in breeding sites until late August. Each volume (10 to 

70ml) was duplicated three times for each species. Initial larval area measurements 

were taken and a further two at fourteen-day intervals between 23rd September and 

21st October 2010, plus one additional measurement on 16th May 2011. Weight was 

also measured at the initial and first two time intervals, and in July 2011 (for 

logistical reasons, area was not measured in July). Larvae were transferred to filter 

paper to remove excess water, and weight was measured on a 0.001g resolution 

balance. Individuals surviving to eclosion were recorded.  

 

Linear models were used to investigate the effect of sawdust volume on growth for 

each species. Larval area (mm2) was used for time intervals 1 (August/September) 

to 4 (May), and weight (for C. rufa and M. florea) for time intervals 1 to 5 (July). 

Although the differences in size measures across species prohibit direct 

comparisons, weight and area are strongly correlated and should reflect similar 

patterns overall; corresponding results were found using either measurement (see 

Chapter 2). Total area change (and weight change for C. rufa and M. florea) 

between the first two time intervals (pre-winter growth) was modelled for each 

species as a function of sawdust volume, and separate models were used to measure 

change in area between the initial time interval and May (time interval 4), and 

weight between the initial time interval and July (time interval 5) for C. rufa and M. 

florea. Chi-squared tests were used to measure differences in the number surviving 
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between species, and in low volumes (< 40 ml) compared with high volumes (> 30 

ml). 

 

In order to visualize the effect of volume on growth across species, nonparameteric 

thin-plate splines of body area and mass as a function of sawdust volume and time 

were generated, implemented using the ‘fields’ package for R (Furrer et al. 2009). 

The smoothing parameter (lambda) for the response surface was determined using 

generalised cross-validation (GCV). 

 

3.4 Results 

 

3.4.1 Field data collection 

 

Between 2007 until 2011, larvae of the four species were found in sixty-two rot hole 

breeding sites. In 35% of holes larvae co-occurred: 9% with three species mainly M. 

florea, B. fallax and C. rufa; and 27% with two species, mainly B. fallax and M. 

florea (18%). Rot holes containing one species (65%) were mainly B. fallax (32%). 

Sphegina clunipes was mainly found alone, co-occurring with B. fallax in one rot 

hole, and with B. fallax and M. florea in one other.  

 

The abundance of each species varied throughout the year. The most abundant was 

M. florea and the least abundant was S. clunipes (Table 3.1). All four species were 

present as 1st instar larvae in rot holes between July and August, but C. rufa tended 

to appear later than the other species (Table 3.1). The abundance of M. florea and B. 
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fallax appeared to decrease dramatically after winters 2007/08 and 2010/11, 

decreasing by 84 and 62% in M. florea, and 94 and 79% in B. fallax, respectively 

(Table 3.1). Callicera rufa also dropped in abundance in 2010/11 by 59% (Table 

3.1). Larval density per rot hole varied from one to eight (mean 4.1 ± 2.2 SD) for B. 

fallax, three to nine (mean 5.4 ± 2.76 SD) for C. rufa, two to ten (mean 5.74 ± 2.76 

SD) for M. florea and five to eleven (mean 6.04 ± 3.88 SD) for S. clunipes (Table 

3.1). 

 

3.4.2 Morphology 

 

Based on body weight, on average C. rufa and M. florea were the largest of all four 

species at 0.177 ± 0.05 and 0.167 ± 0.04 milligrams (mg) respectively, and S. 

clunipes was the smallest at 0.011 ± 0.002 mg (mean ± Standard Deviation SD) 

(Table 3.2). Myathropa florea had the longest breathing tube, which measured 

roughly double the length of the body (24.6 ± 14.6 mm, Table 3.2) and extended up 

to four times body length reaching 62.8 mm in one case. The B. fallax breathing 

tube length was an average half the length of the body (7.2 ± 1.98, Table 3.2), but 

could also extend up to four times body length reaching up to 46.2 mm.  

 

A significant difference was found between the numbers of individuals surviving 

between each species (χ2 = 58.5, df = 3, P < 0.005). The number of captive reared 

larvae surviving to eclosion in 2008 to 2009 was least in S. clunipes (40%) and 

greatest in C. rufa (100%), with intermediate survival in M. florea (70%) and B. 

fallax  (66%) (Table 3.2). The larvae were not monitored periodically so exact time 

of death is not known, preventing further survival analysis. 

 101



 

3.4.3 Location and microhabitat use 

 

The generalised linear models compared using REML suggested a strong difference 

between species in their rot hole location (L = 145.9, p < 0.0001), and between 

species in their behaviour (respiration and movement) (L = 59.6, p < 0.0001) in a 

rot hole. Myathropa florea was most often observed at the bottom of the microcosm, 

either completely submerged or with the breathing tube at the water surface (Fig 3.2 

and 3.3). In contrast S. clunipes was most often found near the surface, but again it 

tended to be either completely submerged or with the breathing tube at the water 

surface (Fig 3.2 and 3.3). Callicera rufa was almost always found in the middle of 

the microcosm and completely submerged (Fig 3.2 and 3.3). Blera fallax appeared 

to inhabit all areas equally (Fig 3.2), was the most mobile of the four species, and 

was regularly observed with the head end at the surface (Fig 3.3). 

 

During a 60-minute period, C. rufa (n = 10) moved to the water surface to respire a 

minimum of three and maximum of seven times (mean 4.7 ± 1.2 SD). Upon 

submergence, individuals moved to the central part of the microcosm. Per 

surface/submergence interval, the maximum-recorded length of time spent at the 

surface was 11:05 min (1:7 ± 1:7 min) and submerged was 28:02 min (10:2 ± 6.38 

min) (Fig 3.4). 
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3.4.4 Response to freezing 

 

Twenty-five (86%) B. fallax and eight (80%) C. rufa were found on the frozen 

water surface in the incubators, while all M. florea and S. clunipes remained 

submerged (χ2 = 58.5, df = 3, P < 0.005). 

 

3.4.5 Disturbance response 

 

The generalised linear mixed-effect model showed a strong effect of species on 

buoyancy (i.e. floating upon dislodging) (χ2 = 15.65, p = 0.001), but no significant 

response for disturbance (i.e. withdrawing upon disturbance) (χ2 = 6.36, p = 0.09) 

(Table 3.3). However, the binomial model did not fit well because all C. rufa and S. 

clunipes individuals behaved identically. Comparing the remaining two taxa showed 

that B. fallax was more likely to respond to disturbance than M. florea (χ2 = 5.86, p 

= 0.016) and was more likely to float upon dislodging (χ2 = 11.68, p = 0.001) (Table 

3.3). Callicera rufa showed a consistent withdrawal response to disturbance, and 

was positively buoyant where upon losing anchorage they would arch and twist at 

the water surface until finding substrate to grip. Sphegina clunipes did not retract 

upon disturbance and was consistently negatively buoyant, and on reaching the 

bottom of the microcosm remained motionless. Most B. fallax withdrew upon 

disturbance (73%), and 83% were positively buoyant upon dislodging (Table 3.2). 

Blera fallax response to losing anchorage was similar to C. rufa although twisting 

movements were less pronounced. Myathropa florea was 40% positively buoyant 

and responded to stimulus 33% of the time (Table 3.2). Myathropa florea was 
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consistently more slow-moving than B. fallax and C. rufa whether at the surface or 

submerged. 

 

3.4.6 Growth experiments 

 

Blera fallax growth was significantly affected by sawdust volume (Parameter 

estimate 0.005 ± 0.001 SE, t = 7.17, P < 0.001) (Table 3.4). Larvae grew more 

slowly in lower volumes of sawdust, and B. fallax accumulated most of their mass 

before the winter, while the other taxa experienced growth before and after 

overwintering (Table 3.4, Fig 3.5). In November all remaining B. fallax individuals 

in volumes greater than 50 ml had exited the rot hole, presumably to pupate (see 

Chapter 2; Rotheray & MacGowan 2000). Mortality was lower in higher volumes of 

sawdust (14%) compared with those in 30ml sawdust and less (29%) (χ2 = 5.23, df = 

1, P < 0.05).  

 

Pre-winter growth was not significantly affected by sawdust volume in C. rufa 

(Parameter estimate -0.0002 ± 0.001 SE, t = -0.36, P = 0.724) or M. florea 

(Parameter estimate 0.001 ± 0.0004 SE, t = 1.32, P = 0.203). In early spring, volume 

had a significant effect on growth in M. florea (Parameter estimate 0.002 ± 0.001 

SE, t = 2.08, P = 0.05), but not in C. rufa (Parameter estimate 0.001 ± 0.001 SE, t = 

1.13, P = 0.274). Using total growth change from time interval 1 to 5 (September to 

July), a significant effect of sawdust volume on growth was evident in both C. rufa 

and M. florea (Table 3.4, Fig 3.5).   
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All C. rufa and M. florea individuals in treatments above 20 ml eclosed in July, and 

overall mortality was lower than B. fallax (43%) at 14% in M. florea, and 10% in C. 

rufa (χ2 = 29.04, df = 2, P < 0.005).  

 

3.5 Discussion 

 

The co-occurring species assessed in this study exhibited variation in development 

time, feeding strategies and microhabitat preferences, which may be evidence for 

resource partitioning reducing effects of competition in pine rot holes. 

 

Co-occurrence in the field was confirmed in at least three of the four species 

irrespective of time of year, and larval density was similar across co-occurring 

species. The exception was S. clunipes, which was not as abundant, was smaller 

than the other species, and was only twice observed co-occurring with B. fallax and 

M. florea. This suggests competition for resources could potentially occur between 

B. fallax, C. rufa and M. florea.  

 

3.5.1 Growth experiments 

 

It is important to address the restrictions of this experiment, which limit 

interpretation. Primarily, the experiment assessing B. fallax growth was carried out 

in a previous year and at an earlier time in the year therefore, while it is a true 

representation of the timing of the lifecycle of these taxa, it limits direct 

comparisons between B. fallax and the other taxa. Furthermore, varying sawdust 
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volume alone creates different conditions in a microcosm. The response of larval 

growth may not be caused by volume as much as the conditions created by 

increasing the sawdust to water ratio (see Chapter 2). In order to derive a more 

direct assessment of how larvae are affected by volume of pine wood substrate, 

water volume would need to be manipulated also. 

 

Blera fallax and M. florea both achieved considerable growth before winter, 

whereas C. rufa appeared to grow gradually throughout the developmental period. 

During the winter, like many overwintering larvae, feeding is probably suspended 

as a means to survive freezing conditions (Hart & Bale 1997a, 1997b; Bale 2002; 

Chapter 2). Unlike B. fallax in good quality conditions, C. rufa and M. florea may 

be more dependent on the following spring and early summer to achieve critical size 

for eclosion. 

 

While growth in both C. rufa and M. florea is inhibited in low volumes of pine 

sawdust, B. fallax appears to be worst affected. Both C. rufa and M. florea accessed 

enough food for growth in even the lowest sawdust volume, but took longer to 

develop to a sufficient size for eclosion. While C. rufa and M. florea may be better 

able to develop in resource limited habitats, it is unknown if B. fallax would be 

subjected to similarly low detritus conditions in natural circumstances. However, 

larvae developing in lab conditions exhibited similar growth to B. fallax in the field 

(Chapter 2), which suggests that resources may also be limiting in natural 

circumstances. Blera fallax can continue to develop for another year if conditions 

are poor (Chapter 2). Controlled comparative field studies using similarly sized 
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stump rot holes with the same content as microcosms, would be required to assess 

this further.  

 

Blera fallax was able to achieve more growth in a shorter period of time, which may 

be part of a strategy for avoiding competition with larger species that arrive later 

and take longer to develop. As indicated by the ‘exiting’ behaviour observed in B. 

fallax upon completing development, individuals in high sawdust volumes had 

probably achieved enough growth for pupation before winter and therefore entered 

into a long period of diapause before pupating in the spring (Chapter 2). By growing 

fast, B. fallax may also reduce negative effects of competition due to their greater 

size compared with new larval instars of their competitor species, a finding reported 

in mosquitoes where larger size leads to competitive advantages in tree-holes 

(Livdahl 1982). A similar strategy is reported in Mecistogaster damselflies 

(Odonata) colonising tree-holes earlier in the wet season than other larger guild 

members thereby avoiding competition and gaining a head start in growth critical to 

its survival (Fincke 1992). Size may in fact partition resources further as reported by 

Srivastava and Lawton (1998) in M. florea which, as the larger larval filter feeder, 

appears to have very little effect on the abundance of smaller species inhabiting the 

same rot hole. The size of a filter feeder can shape the size and abundance of the 

microbe community and can even lead to phenotypic plasticity within certain 

bacterial taxa where individuals in a population change in size to decrease grazing 

vulnerability (Gerritsen 1984; Hahn & Höfle 2001; Matz & Kjelleberg 2005; 

Salcher et al. 2005). If this occurs in pine rot holes, different larval instars may be 

exploiting different bacterial species or microbial populations thus reducing 

competition further. 
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As well as size, activity and ability to move through dense substrate may affect 

larval growth. Myathropa florea showed signs of being growth-inhibited in the 

higher volumes, which may be related to the more compacted substrate as the 

sawdust to water ratio increases. Indeed a previous study has found that M. florea 

prefer low detritus tree holes (Schmidl et al. 2008). Myathropa florea was also 

particularly slow-moving, which in less densely packed habitat may otherwise 

improve feeding efficiency by using less energy to move around (Reinhold 1999). 

The anterior hooks of C. rufa may assist passage through the substrate and thus 

provide access to more microbes. This may serve as an extra advantage in such 

conditions and possibly explains the constant gradual growth and lack of inhibited 

growth in higher volumes. Blera fallax was not inhibited in higher sawdust volumes, 

however inhibited growth in higher volumes has been evident in another study 

(Chapter 2). Rot hole content in the field becomes compact during dry periods, 

particularly during late summer (E.L. Rotheray pers. obs.), so having the ability to 

cope with such conditions is likely to be important.  

 

3.5.2 Location and microhabitat use 

 

As predicted, M. florea was most often observed in the deepest areas of the 

microcosm where they tended to remain, anchored in the sawdust. In contrast, B. 

fallax was more active, and apparently capable of occupying all areas in the 

microcosm. This may be an advantage of the readily extendable breathing tube of B. 

fallax. In contrast with M. florea, B. fallax could retract their breathing tube to less 

than the length of their body, which may allow for less restricted movement if 
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breathing tubes can become tangled or trapped. Rot in pine stumps can travel deep 

into the root system (Rotheray & MacGowan 2001) thus being able to search for 

food in such small cracks and crevices may be advantageous. 

 

Callicera rufa appeared to be restricted to the centre of the microcosm probably due 

to the necessity for it to access the surface to breathe at least three times every hour. 

This requirement may make them more vulnerable to predation, and consequently 

select for more antipredatory behaviour. The anterior hooks of C. rufa may provide 

a further advantage in assisting anchorage, which may be particularly important for 

this species in light of its buoyancy. Thrashing at the surface may increase the risk 

of predation, as found in tree-hole inhabiting mosquitoes (Juliano & Reminger 

1992). Callicera rufa has no extendable breathing tube, therefore moving quickly to 

safety may be more important and advantageous than sinking to the bottom where 

they run the risk of drowning. The ability to sink has previously been recorded in M. 

florea where they reportedly hold or expel air from their breathing tube to retain or 

lose buoyancy (Buckton 1895; Greig 1989). Myathropa florea was also less 

sensitive to disturbance, probably due to reduced vulnerability being deep in the rot 

hole for most of the time. Sphegina clunipes was not mobile, sensitive to 

disturbance, or buoyant, and showed no physical reaction upon sinking. The greatest 

proportion of mortality was also found for S. clunipes. Pine rot holes may be a sub-

optimal habitat for this species, possibly utilised when their preferred habitat 

(decaying sap under bark) is rare or unavailable.  
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3.5.3 Response to freezing 

 

Blera fallax and C. rufa were observed resting on the frozen surface of microcosms 

upon freezing while M. florea and S. clunipes remained below the surface. A 

survival tactic of final instar larvae i.e. those that have finished feeding, might be to 

quit rot holes during freezing if survivorship is greater outside than inside a freezing 

tree hole. Artificial habitat created for B. fallax may be more vulnerable to freezing 

completely for longer periods than natural rot holes, due to the shallow cavity 

compared with natural holes that can extend deep into the roots of a tree (Rotheray 

& MacGowan 2000). Larvae can withstand being frozen having been chipped from 

solid ice and found alive and moving (G.E. Rotheray pers. comm.), but they may be 

vulnerable to constriction and physical rupture if trapped in the solid ice for 

extended periods. In the field, a number of C. rufa larvae have been observed 

trapped exiting rot holes in winter, and M. florea, whenever observed during these 

periods, has been trapped under the frozen surface (E.L. Rotheray pers. obs.). 

Subsequent surveys suggested these individuals from both species had died. 

Callicera rufa and B. fallax move to the surface of the rot hole when it freezes, and 

B. fallax moves out of the hole completely if fully grown (see Chapter 2) possibly 

giving them a strategic advantage over M. florea and S. clunipes. A more detailed 

study is required into the specific dynamics within a rot hole over the winter period, 

and how larvae survive these conditions. 

 

This study provides insight into the mechanisms that may facilitate resource 

partitioning and permit coexistence of these syrphids in pine tree rot holes. It also 

demonstrates variable avoidance tactics and survival strategies used by different 
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species to exist in these seasonal, heterogeneous habitats. Intra-specific competition 

for resources was not directly assessed, but the inter-specific response to altered 

resource levels suggests that further experiments would be worthwhile. Differences 

in time of feeding and feeding strategies probably minimises the overlap among 

species with similar diets. Blera fallax develops earlier than the other taxa and may 

have a further advantage in being able to inhabit all depths of a rot hole, which may 

allow it more flexibility in adjusting feeding depth to maximize food intake. These 

findings suggest competitive effects are likely not to impact on conservation 

strategies for this species.   
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Table 3.1 Total abundance of B. fallax, C. rufa, M. florea and S. clunipes present in rot holes, the number of rot holes occupied (No. RH), and the number of new and 
previously occupied rot holes in each year at Curr Wood recorded between 2007 until 2011.  

Rot holes 

B. fallax No. RH C. rufa No. RH M. florea No. RH S. clunipes No. RH 

 
Total 

occupied 
Previously 
occupied 

Newly 
occupied 

2007 November            35 10 16 6 118 15 5 1 20 - 20
2008          April 2 1 21 5 19 6 0 0
2008          July 5 5 8 2 4 2 17 2
2008          August 109 16 19 3 182 23 19 3
2008             October 100 13 27 5 113 23 23 2 32 15 17
2009          July 142 24 0 0 162 16 0 0
2009             September 59 13 33 4 91 16 18 2 33 23 10
2010             August 111 22 61 7 101 14 7 1 33 25 8
2011             February 37 11 25 4 39 14 7 1 20 20 0

- initial survey 
 
 
Table 3.2 Larval body and posterior breathing tube measurements (mean ± SD), final instar weight and mortality of B. fallax, C. rufa, M. florea and S. clunipes from 
May and June in year one, 2008.  
 

Species Body length 
(mm) 

Tube length 
(mm) 

% tube to body 
length 

Final instar 
weight (mg) % Mortality* % Buoyant % Disturbance 

responsive 
B. fallax 13.5 ± 2.11 7.2 ± 1.98 54 ± 11 0.072 ± 0.03 34 83 73 
C. rufa 17.7 ± 3.2 0.96 ± 0.3 6 ± 1 0.177 ± 0.05 0 100 100 
M. florea 13.4 ± 3.3 24.6 ± 14.6 187± 88 0.167 ± 0.04 30 40 33 
S. clunipes 6.2 ± 0.9 2.95 ± 0.8 49 ± 18 0.011 ± 0.002 60 0 0 

* n = 10 except B. fallax where n = 50 



Table 3.3 Parameter estimates for generalised linear mixed-effects models intra-specific response to 
disturbance (withdrawal upon disturbance) and dislodgement (positive or negative buoyancy). 
 

 Parameter estimate ± SE z-value p-value 
Disturbance     
 
B. fallax 4.765 ± 2.15 1.895 0.058* 
C. rufa 1.86 ± 2.165e+04 0.001 0.999 
M. florea -8.214 ± 3.282 -2.503 0.012* 
S. clunipes -1.02 ± 1.225e+07 0.000 1.000 
    
Buoyancy    
 
B. fallax 2.65 ± 0. 96 2.758 0.005* 
C. rufa 18.95 ± 8.996e+04 0.007 0.9944 
M. florea -4.527 ± 1.32 -3.063 0.002* 
S. clunipes -22.18 ± 3.166e+0.4 -0.008 0.993 

* <0.005 significance 
 
 
Table 3.4 Parameter estimates for general linear model of B. fallax larval area change over 50 days 
August to October) and C. rufa and M. florea weight (mg) over 250 days (September to July), in 20 
o 70ml sawdust treatments. 

(
t
 

  Parameter estimate ± SE t-value p-value 
Growth response to volume    
 
B. fallax    

Intercept -0.025 ± 0.034 -0.737 0.438 
Sawdust volume 0.005 ± 0.001 7.174 <0.001* 
    
C. rufa    
Intercept -0.002 ± 0.012 -0.154 0.88 
Sawdust volume 0.002 ± 0.0003 8.111 <0.001* 
    
M. florea    
Intercept 0.029 ± 0.012 2.479 0.024 
Sawdust volume 0.001 ± 0.0003 3.29 0.004* 
* <0.005 significance 
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Figure 3.1 Four final instar saprophagous syrphid species co-occurring in Pinus sylvestris tree rot 

oles. From left Myathropa florea, Blera fallax, Sphegina clunipes and Callicera rufa (Diptera, 
yrphidae) 
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Figure 3.2 Stacked column plot illustrating number of times each species, B. fallax, C. rufa, M. 
florea and S. clunipes, was recorded at three locations, surface (6 to 9 cm), middle (3 to 6 cm) and 
bottom (0 to 3 cm) in 1000ml glass artificial rot holes (21 instantaneous observation sampling were 
made over 17 days). 
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Figure 3.3 Stacked column plot illustrating number of times each species, B. fallax, C. rufa, M. 
florea and S. clunipes, was recorded as completely submerged, moving, or anterior/posterior 
breaking the water surface (21 instantaneous sampling observations were made over 17 days). 

 

Figure 3.4 Boxplot illustrating the time C. rufa (n = 10) spent with the posterior breathing tube 
breaking the water surface or completely submerged over 60-minute periods.  
 

 

 

 

 
 
 
 



  M. florea 

    
C. rufa B. fallax 

 
Figure 3.5 Plotted thin plate spline surface for larval body weight over time (day in experiment) in sawdust volumes 10 to 70 ml for B. fallax, C. rufa, M. florea. 
Lambda was estimated by generalized cross-validation (GCV). Note difference in time, which reaches a maximum 28 days for B. fallax and 250 for C. rufa and M. 
florea.
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Chapter 4 

4 Genetic variation and population decline of an 

endangered hoverfly Blera fallax (Diptera: 

Syrphidae) 
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Blera fallax (Diptera: Syrphidae) 

 



4.1 Abstract 

 

Genetic diversity is one of several factors affecting extinction risk in vulnerable 

populations. In addition to informing conservation management strategies, data on 

genetic variability can also shed light on the recency and magnitude of historic 

bottlenecks. The pine hoverfly Blera fallax is one of the rarest invertebrates in the UK, 

known from just two populations in Scotland. It belongs to an often overlooked, species-

rich community that is fundamental to forest function, the saproxylics (that depend on 

dead wood). To assist current conservation management for B. fallax, including captive 

breeding and translocations, it is important to know whether genetic factors will limit the 

success of recovery. Using 12 microsatellite loci, we compared the genetic variation in 

Scottish with Swedish specimens (Swedish populations are thought to represent a more 

outbred B. fallax population). As expected, the Scottish population showed significantly 

lower levels of polymorphism, expected heterozygosity and allelic richness than the 

Swedish population. Furthermore, significant genetic differentiation was found between 

the two B. fallax populations (FST=0.134). We then used an allele frequency-based 

approach and a Bayesian coalescent-based method to assess genealogical history and 

detect recent changes in population size. Unexpectedly, data from not only the Scottish 

but also the Swedish population indicated a strong and relatively recent decline that was 

more pronounced in Scotland. We discuss the implications of our findings for future 

conservation management planning, the first undertaking of its kind for saproxylic 

species in Britain.   
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4.2 Introduction 

 

The conservation management of endangered species involves ensuring the survival of 

viable populations and increasing their abundance and distribution (Primack 1998). This 

requires knowledge of the behaviour and ecology of a species in order to identify the 

causes of decline and manage accordingly, but it also involves assessing genetic diversity 

in the frequently small, isolated and threatened populations, which can limit the adaptive 

potential of the species (Lande 1988). Populations with limited genetic diversity are more 

susceptible to environmental change and thus at greater risk of extinction (Frankham 

1995, 1998, 2005). Where captive breeding and translocation play a role in management 

protocols, inbreeding effects and effective population size become particularly relevant 

issues (Leberg 2005). Reduced fitness caused by inbreeding has been demonstrated in 

numerous controlled experiments (Armbruster et al. 2000; Woodworth et al. 2002; 

Whitehorn et al. 2010) and in studies on wild populations (Brown & Brown 1998; Keller 

1998; Saccheri et al. 1998), and while the effects on different taxa and individual 

populations appear to vary (Elgar & Clode 2001), especially with respect to demographic 

and environmental stochasticity, inbreeding depression is considered pervasive enough to 

have a generally detrimental effect on population persistence (Keller and Waller 2002). 

Where populations are considered highly vulnerable, conservation management often 

involves introducing individuals from a genetically and demographically healthy 

population to improve fitness (Dowling et al. 2005; Edmands 2007; Biebach & Keller 

2010). While this has shown to be highly effective across a number of studies (Tallmon 

et al. 2004) such intentional hybridization can also lead to a subsequent reduction in 

fitness known as outbreeding depression (Templeton 1986; Lynch 1991; Edmands 2007), 

an effect that often becomes apparent in later generations (e.g., Armbruster et al. 2000; 
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Aspi 2000). While evidence for outbreeding depression is scarce, it is important to 

consider this risk and assess genetic and adaptive similarity between populations intended 

for translocation and hybridization (Edmands 2007).  

 

Our main objective was to investigate the genetic diversity of the UK endangered 

hoverfly Blera fallax (Diptera, Syrphidae) by comparing a Scottish population with one 

in Continental Europe which, based on the distribution and condition of its pine wood 

habitat (Willis et al. 1998), is assumed to be less isolated and more panmictic (G. 

Rotheray pers. comm.). Our data will facilitate population monitoring and the design of 

conservation strategies for B. fallax in Britain as well as help to assess the feasibility of 

translocation and captive breeding of B. fallax from elsewhere in Europe if a genetic 

‘rescue’ attempt is necessary.  

 

Historically, B. fallax was probably an early coloniser of the Caledonian pine wood 

habitat; the larva filter-feeds on microbes in rot holes occurring in decaying roots and 

holes in the surface of stumps of Scots Pine, Pinus sylvestris L. (Rotheray & Stuke 1998; 

Rotheray et al. 2000). This microhabitat develops due to heart-rot fungi softening 

heartwood that is often exposed when a tree falls or is felled. Based on survey results 

from five consecutive years, B. fallax over-winters at the larval stage and primarily has a 

univoltine life cycle (Rotheray et al., unpub. data). As a saproxylic species, B. fallax is an 

important bio-indicator of habitat quality and is part of a very diverse, species-rich group 

of organisms that play a vital functional role in forest ecosystems, and include a high 

proportion of threatened species (Speight 1989; Grove 2002; Jonsson et al. 2005; 

Lassauce et al. 2011). Blera fallax is found across the Palearctic as far as Japan and 

South as far as the Pyrenees and, based only on scant, intermittent records collected over 
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the past 250 years, it is considered locally rare or declining wherever it has been recorded 

(Speight 2008). No detailed information on the distribution or health of these Palearctic 

populations exists. In Scotland, B. fallax shares its habitat with at least 30 endangered 

taxa from several groups including Diptera (Rotheray et al. 2001), parasitic Hymenoptera, 

Coleoptera, fungi and lichens (Alexander 1988; Butler et al. 2002). Blera fallax is listed 

in the UK Red Data Book as category 1 (endangered). It is a Biodiversity Action Plan 

priority species and is one of 32 species listed in the Species Action Framework, a 

Scottish Natural Heritage initiative that focuses on improving the status of species 

deemed significant to overall Scottish biodiversity (Scottish Natural Heritage 2007).  

 

Based on historical pine pollen records and indications derived from fossils of colonizing 

arthropods during the Holocene epoch (Birks 1970; Bennett 1984; Whitehouse 2006), B. 

fallax has probably been isolated in Scotland since the last glaciation 7000 to 10000 years 

ago. Its geographic range underwent a severe decline from eight to two sites between 

1950 and 2000 due to loss of habitat and changes in forestry management (Rotheray & 

MacGowan 2000). Larval counts and extensive habitat surveys indicate that just a few 

hundred individuals remain across both sites (I. MacGowan pers. comm.). Furthermore, 

survey work during the past four years has failed to locate signs of B. fallax at one of 

these sites. The remaining population may be highly isolated, inbred and have limited 

dispersal ability. Therefore current conservation practices involve captive breeding and 

translocation to historically inhabited sites in Scotland where new habitat has been 

created. To assist this effort, we urgently need data on the effective population size and 

genetic diversity of the remaining population. In this context we sought to estimate the 

genetic diversity of Scottish B. fallax, to compare it with Swedish samples, and to assess 

the signs of recent demographic changes in both populations. 
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4.3 Methods 

 

Sampling and DNA extraction 
 

In October 2008, after extensive searches identified just one remaining locality for this 

species, fifty B. fallax larvae were collected from forty pine rot holes at Curr Wood in 

Strathspey, Scotland, UK (57°18’ N, 3°39’ W). No more than two larvae were collected 

from one rot hole. These were reared to eclosion, and bred in captivity as part of a captive 

breeding program (Rotheray 2010). Seventeen individuals that had endured substantial 

wing damage while in captivity were frozen upon death, while the rest were released at 

the collection site in Curr Wood in an attempt to minimize the impact of our sampling on 

the source population. Between June and November 2009, twenty-two larvae and one 

adult B. fallax were collected by Hans Bartsch from a pine woodland site in Järfälla, 

Sweden (59°24’ N, 17°52’ E) (Fig. 4.1). We selected this site because of its similar 

latitude and its proximity to a colleague who could collect and identify specimens. No 

other extant sites were readily available for sampling at this stage. Although no detailed 

surveys of the current health of this population (or any other Palearctic population) exists, 

we expected based on the availability of habitat that the Swedish population should be 

larger. All Swedish larvae were frozen before being transferred to 90% ethanol, and the 

adult female was pinned dry.   

 

Whole larvae were used to extract genomic DNA. The hind legs were removed from 

adults and stored frozen as a reference collection in case of contamination or loss of 

samples, while the rest of the body was used for DNA extraction (Rotheray et al. 2011). 

Twelve species-specific microsatellite markers (HF_8RB, HF_S56, HF_WMK, HF_JRW, 

HF_C4A, HF_OH2, HF_0IY, HF_AN4, HF_5VB, HF_AMQ, HF_FCT, HF_RKX) 
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developed from Scottish B. fallax were used for population genetic analysis (Rotheray et 

al. 2011). Polymerase chain reaction (PCR) and genotyping was carried out as in 

Rotheray et al. (2011). 

 

Statistical analysis 
 

The statistical analyses to determine allelic richness, heterozygosity and population 

differentiation were performed with Fstat 2.9.3 (Goudet 1995), GenALEx 6.1 (Peakall & 

Smouse 2006) and Arlequin 3.11 (Excoffier et al. 2005). Population structure was 

inferred using a Bayesian clustering method implemented in STRUCTURE 2.3.3 

(Pritchard et al. 2000), which allocates individual genotypes into groups (K number of 

populations) by an estimated membership coefficient Q for each individual based on 

allele frequencies at unlinked loci. An admixture model was used with default parameter 

settings. One to five possible populations (K) were tested; each run had a burn in period 

of 50,000 steps, followed by 100,000 steps of Markov chain Monte Carlo (MCMC) 

sampling, and was iterated five times for both populations together and for each 

separately. Convergence was checked by comparing the output between runs. 

 

In order to detect population decline and find evidence for historical bottlenecks we used 

two methods. The first analysed allele frequencies in BOTTLENECK 1.2 (Piry et al. 

1999). Here we used two models of mutation: the more conservative stepwise mutation 

model (SMM) and the less conservative infinite allele model (IAM) (Luikart & Cornuet 

1998; Maudet et al. 2002). The second employed likelihood-based Bayesian methods that 

inferred population demographic history by coalescence from the full allelic distribution, 

implemented in MSVAR version 1.3 (Beaumont 1999). This assumes an ancestral 

effective population size N1 that gradually changed to a recent effective population size 
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N0 at time Ta generations. We assumed a single generation per year (based on results 

from field surveys and larval growth studies, Rotheray et al., unpub. data), an exponential 

population size change and wide, log-normal distribution prior for the mean value of the 

demographic parameters across loci: mean 4 and variance 3 for N1 and N0; mean 3 and 

variance 2 for time since population size change Ta. The prior of the mutation parameter 

µ was set to a relatively low level of mean -4 and variance 0.5, based on the mixture of di, 

tri and tetra-nucleotidic repeat motif in the microsatellites used (Rotheray et al. 2011). A 

wide prior with a low mean is necessary due to the lack of empirical and independent 

data on B. fallax microsatellite mutation rate. All demographic and mutational parameters 

were allowed to vary among loci using the hierarchical model implemented in MSVAR 

(Beaumont 1999) and setting a mean of 0 and a variance of 0.5 for the variance 

parameters. Each Markov chain was run for 5 x 109 steps recording the parameter values 

every 50,000 steps for a total of 100,000 output lines. We ran five independent chains 

using different starting values to assess convergence using the Gelman-Rubin diagnostic 

(Gelman & Rubin 1992) implemented in the R package coda (Plummer et al. 2006), after 

cutting off the first 10% of each chain as a burn in period. The chains were then 

combined to estimate the mode of the posterior density of the model parameters and their 

90% High Probability Density (HPD) using the R package boa (Smith 2007). 

 

4.4 Results 

 

Genetic variation  
   

The percentage of polymorphic loci was 91.67% in the Swedish population and 66.67% 

in the Scottish population. The inbreeding coefficient (FIS) across all loci in both 
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populations showed no significant deviation from zero (Table 4.1), indicating a lack of 

evidence for non-random mating and further population substructure. After Bonferroni 

corrections, locus HF_8RB showed significant deviation from Hardy-Weinberg in the 

Swedish population and was excluded from further analyses.   

 

The maximum number of alleles per locus varied from four (mean 2.08 ± 0.29 SE) to six 

(mean 3.12 ± 0.46 SE) in the Scottish and Swedish populations respectively. One private 

allele was found in the Scottish population while twelve were found in the Swedish 

(Table 4.1).  Overall, expected heterozygosity (HE) and allelic richness was significantly 

lower in the Scottish population (HE 0.30 ± 0.08 SE; allelic richness 2.0 ± 0.26 SE) than 

in the Swedish population (HE 0.49 ± 0.06 SE; allelic richness 3.3 ± 0.5 SE) (one-tailed 

Mann-Whitney; HE and allelic richness P=0.05) (Table 4.1).  

 

Population genetic structure  
 

Genetic differentiation between the two populations was significant (FST=0.134, P<0.001, 

Table 4.1). The STRUCTURE analysis showed the highest likelihood of the data with 

two populations (K = 2, results not shown) and clear segregation was found from the 

assignment test; 93% of Scottish individuals were assigned to one population and 83% of 

the Swedish individuals to the other (Fig. 4.2). No subdivision was found within either 

population; all individuals were assigned to each cluster (K = 2 to 5) with equal 

probability. This demonstrates an absence of immigration from other populations i.e. a 

lack of population substructure. 
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Inferences of population demographic history 
 

Under IAM, both the Scottish and Swedish populations showed significant signs of 

recent bottlenecks (Wilcoxon test, one-tailed for heterozygote excess, Scottish p = 0.039 

and Swedish p = 0.009) while under the more conservative SMM there was a marginally 

non-significant trend in the Scottish population (Wilcoxon test, one-tailed for 

heterozygote excess, P = 0.055), and no evidence for the Swedish population (Wilcoxon 

test, one-tailed for heterozygote excess, P = 0.313).  

 

Using Bayesian methods (Beaumont 1999), we found a clear, strong signal for a 

population decline in both populations (Table 4.2). The five independent analyses of the 

two populations yielded convergent chains according to the Gelman-Rubin diagnostic 

(Gelman & Rubin 1992). The genetic data contained useful information to estimate the 

demographic parameters as shown by the posterior distributions that differ substantially 

from the prior distributions (Figure 4.3. A, B and C). As expected, there was no 

information relative to the mutation rate, as the posterior and the prior distributions for 

the mutation rate parameter are similar (Figure 4.3. D). This implies that the demographic 

parameter estimates depend on the mutation rate prior, which was confirmed by repeated 

analysis using different mutation rate priors (data not shown). Contemporary effective 

population size, N0, is relatively smaller in Scotland (12 [0-266] individuals, mode and 

90% HPD) than in Sweden (80 [1-1654]) (Table 4.2). These low estimates are more than 

two orders of magnitude smaller than the large ancestral effective population sizes for the 

two populations: 47567 [5456-446937] and 31169 [4224-227798] individuals for the 

Scottish and Swedish populations, respectively (Table 4.2). The time since population 

size change is slightly more recent for the Scottish population, 167 [3-3159] years, 

compared to 344 [4-6578] for the Swedish population. The high magnitude of population 
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size change, computed as log10 (N0/N1), of -3.49 [-5.46 - -2.27] and -2.39 [-4.62 - -1.43] 

for the Scottish and Swedish population respectively, means that it is very unlikely that 

such high estimates result from a confounding effect such as population substructure or 

sampling bias alone (Chikhi et al. 2010). This likelihood is verified by the lack of 

substructure found by the STRUCTURE analysis within each population. These results 

clearly indicate a very strong and relatively recent decline in effective population size in 

both populations, which is more pronounced and probably more recent for the Scottish 

one. 

 

4.5 Discussion 

 

As expected, the geographically isolated population of B. fallax in Scotland has less 

genetic diversity than the population in Sweden. Moreover, the two populations are 

clearly genetically distinct. More unexpected was the finding that both the Scottish and 

Swedish population appear to have gone through a fairly recent decline, which has direct 

consequences for the conservation of the species and suggests that B. fallax may be 

especially vulnerable to fragmentation.  

 

Genetic evidence for population isolation in Scotland is apparent through the allele 

frequency-based bottleneck analysis. The less conservative IAM model suggests that both 

Scottish and Swedish populations have gone through a recent bottleneck, whereas under 

the SMM model, (which is considered more suitable for microsatellites; Luikart & 

Cornuet 1998), the test for the Scottish population was marginally non-significant 

(Wilcoxon Test: PSMM=0.055), and there was no evidence for a bottleneck in the 

Swedish population. A conservative interpretation of these results would suggest the 
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Scottish population has gone through a recent bottleneck (Luikart & Cornuet 1998). This 

initially confirmed our presumption that the population from Sweden would show less 

evidence for a decline due to greater habitat continuity. Swedish populations are less 

isolated and likely to experience immigration from surrounding localities, i.e. experience 

greater gene flow, and the habitat is considered to be less fragmented which facilitates 

gene flow. However, the Bayesian modeling method suggested that both populations 

have undergone a severe decline, which occurred approximately 200 years earlier in the 

Swedish population. This estimate accords reasonably well with human changes in land 

use in the 1700’s; forest fires were repressed and woodlands were felled for construction 

and timber (Zackrisson 1977). It may have been forest fires, which happened on an 

approximately eighty-year cycle (Zackrisson 1977) that caused an initial bottleneck in the 

population, or proceeding deforestation since fires were repressed. We would need more 

data about the past and current population and habitat structure in Sweden, and to sample 

more Swedish B. fallax populations in order to comment further. The discrepancy 

between the bottleneck analysis and the Bayesian inference is probably due to inefficient 

use of the genetic information for the former approach (Felsenstein 1992). Similar 

situations where the SMM failed to detect a bottleneck have been found in other studies 

(Olivieri et al. 2008; Craul et al. 2009). If the Bayesian analysis is correct, it indicates 

that B. fallax may be particularly vulnerable to habitat fragmentation and, as suggested by 

observations of the Scottish population, have limited dispersal ability even in pine 

woodlands that appear to be fairly well connected (Willis et al. 1998). 

 

The Scottish population shows a more severe decline, estimated to have occurred more 

recently approximately 167 years ago. This estimate is supported by the history of 

woodland management in Strathspey recorded for this period. Individuals sampled in 
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Scotland are from a population that, since the 1800’s, may have been restricted to a 200-

hectare pine plantation, Curr Wood. This woodland was planted with native P. sylvestris 

in 1796 and was established woodland by 1858 (Dunlop 1993). Between 1750 and 1850, 

and during World War 1 and 2, substantial clear felling was carried out in Strathspey 

(Worrell & Dunlop 2003). While this may have provided a lot of B. fallax habitat at the 

time, i.e., numerous pine stumps left to decay, after a period of natural regeneration these 

areas were extensively re-planted and re-seeded which involved ploughing and up-

rooting stumps (Dunlop 1994). Accidental fires associated with the felling process were 

frequent, and destroyed vast areas of woodland; a six day long fire in 1948 destroyed the 

woodland near to and surrounding Curr Wood, which has never recovered (Dunlop 1994). 

During this time Curr Wood survived and, while thinning continued periodically, it was 

left to regenerate naturally (Worrell & Dunlop 2003) which is probably how B. fallax 

became isolated but persisted there. 

 

The more recent population decline and isolation in Scotland may explain the reduced 

genetic diversity when compared to Sweden, however occurring on the edge of a species’ 

range can also have consequences for the genetic diversity of populations (Hewitt 1996, 

2000; Ibrahim et al. 1996). Such genetically impoverished populations have been found 

in many studies across taxa from European pool frogs Rana lessonae (Zeisset & Beebee 

2001), and European hedgehogs Erinaceus europaeus and E. concolor (Seddon et al. 

2001) to the grasshopper Chorthippus parallelus (Cooper et al. 1995) and the butterfly 

Polyommatus coridon (Krauss et al. 2004). The Scottish B. fallax population is on the 

edge of its West European range while the Swedish population is in the centre of its 

North Westerly range. Investigation into the genetic diversity of B. fallax across its 

European range will be necessary in order to explore this further. 
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Conservation and future research 
 

The species geographic range and the recent bottleneck may explain the reduced genetic 

diversity observed in the Scottish population, but we do not yet know the fitness 

consequences of this reduction. While evidence has shown reduced genetic diversity has 

a deleterious effect on fitness (Reed & Frankham 2003), the effect of inbreeding on 

fitness in wild populations is not only difficult to measure, it also varies a great deal 

depending on different evolutionary and environmental factors, such as past founding 

events, genetic purging or complex ecological associations (Hedrick & Kalinowski 2000). 

Ongoing monitoring of the Scottish population will be necessary in order to detect such 

detrimental effects. Since 2007, in an effort to recover B. fallax in Scotland, active 

conservation management has included captive breeding from the remaining Scottish 

population and relocation to historic native pine woodlands where rot holes have been 

artificially created. While preliminary results for the translocation look promising 

(Rotheray 2010), the long and short-term effects this will have on genetic diversity, 

especially with regard to the number of individuals bred and subsequently translocated, 

are unclear. Due to lack of records and experts outside of Britain, sampling was only 

possible from one other population in Europe to compare with what appears to be the sole 

remaining UK population. Future work should assess and compare the diversity of 

populations across the Palearctic in order to better evaluate the condition of the Scottish 

population, as well as gain a better sense of B. fallax population genetic structure, 

effective population size and evolutionary potential. This may be achieved through 

nonlethal methods utilising empty puparia, which can be located within and around the 

rot hole habitat (see Appendix 4.2). Sampling historic genetic data using museum 

specimens has been done successfully for butterflies and bumblebees (Harper et al. 2006; 

Strange et al. 2009; Lye et al. 2011), and we consider this to be another potential source 
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of informative genetic data. Results from such studies may also clarify the probable 

viability of future relocations on newly founded Scottish sites. Maudet et al. (2002) 

showed through simulations that only a small number of immigrants from a well-

differentiated, variable population are required to improve and sustain heterozygosity. 

However, if such translocations are to be carried out as part of ongoing conservation 

efforts, care should be taken with regard to possible adaptive differentiation across 

populations. The clear genetic distinction between the Scottish and Swedish populations 

is not unexpected, as they may have been separated for up to 10,000 years. It is possible 

that due to this separation and resulting divergence, the two populations have become 

locally adapted, in which case hybridization of these stocks could have negative genetic 

repercussions (Templeton 1986; Lynch 1991; Edmands 2007). Translocation efforts 

using individuals from Sweden could fail due to them being maladapted, or could cause 

outbreeding depression. Evidence of outbreeding depression has been demonstrated for 

hybridizing populations of mosquito fish Gambusia holbrook just 100 meters apart 

(Templeton 1986) and bark beetles Xylosandrus germanus 6km apart (Peer & Taborsky 

2005), and second generation fitness problems arose after crossing Drosophila from 

geographically isolated populations (Aspi 2000). Even though the evidence for such local 

adaptation causing outbreeding depression is relatively scarce compared to that for 

inbreeding, translocation of individuals for hybridization with those in Scotland should 

only be carried out if the population is clearly suffering from inbreeding depression.  

 

Saproxylic organisms form a complex and specialized community of decomposers, 

fundamental to forest function (Speight 1989; Grove 2002; Schmuki et al. 2006). Modern 

forestry practices continue to overlook the importance of retaining dead wood, often 

opting for an over-managed, ‘tidy’ woodland system (Butler et al. 2002; Humphrey 
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2005; Humphrey et al. 2005; Lonsdale et al. 2008). Due to the limited and temporally 

unpredictable availability of dead wood and the dependency of many species on specific 

stages of its decay, many saproxylic populations are characteristically small and isolated, 

but often exhibit limited dispersal abilities (Speight 1989; Butler et al. 2002; Ranius 

2006). This causes particular susceptibility to adverse effects including woodland 

fragmentation (Jonsson 2003; Schmuki et al. 2006) and, especially where they depend 

more on plantations rather than natural mixed-age woodland, demographic fluctuations 

such as boom and bust cycles (Rotheray et al. 2009). For B. fallax, the microsatellite 

markers used here to assess genetic diversity can be further utilized by investigating fine-

scale population genetic structure to better understand mating systems and dispersal 

ability, thus inform efficient conservation management strategies. 
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Table 4.1 Population statistics comparing Scottish and Swedish B. fallax populations per locus [FST, differentiation coefficient; P FST, p-value of observed FST under 
the assumption of panmixia; NA, number of alleles and private alleles; AR, allelic richness; HE, expected heterozygosity; FIS, inbreeding coefficient; P FIS, p-value 
of observed FIS under the assumption of panmixia] 
 

 
          Scotland

 
Sweden

 
 

Locus FST P FST  NA/private  AR HE FIS P FIS  NA/private AR HE FIS P FIS

HF_8RB             -0.001 0.375 4/0 2 0.747 -0.271 0.972 4/0 4.00 0.758 -0.269 0.989
HF_C4A             0.148 0.010 2/0 3 0.337 0.130 0.537 2/0 2.00 0.511 -0.109 0.823
HF_JRW             -0.021 0.538 3/1 3 0.508 0.076 0.440 2/0 2.43 0.449 -0.066 0.786
HF_S56             0.104 0.000 3/0 2 0.683 -0.304 0.941 3/0 3.98 0.590 0.268 0.068

HF_WMK             0.154 0.005 2/0 3 0.059 0.000 - 3/0 2.98 0.503 0.139 0.333
HF_0IY             0.151 0.000 3/0 1 0.570 -0.032 0.556 6/3 5.34 0.763 -0.143 0.742
HF_5VB             0.078 0.063 1/0 2 0.000 * * 3/2 2.37 0.237 -0.105 1.000
HF_AN4             0.155 0.000 2/0 1 0.487 -0.344 0.979 4/2 3.43 0.675 -0.229 0.950
HF_OH2             0.338 0.000 1/0 1 0.000 * * 6/5 4.75 0.706 0.078 0.271

HF_AMQ             * * 1/0 2 0.000 * * 1/0 1.00 0.000 * *

HF_FCT             0.034 0.248 1/0 2 0.000 * * 2/0 1.82 0.125 -0.048 1.000

HF_RKX -0.023            1.000 2/0 2 0.337 0.130 0.537 2/0 2.00 0.348 -0.257 1.000
Over all 

loci 0.134            0.000 2 2 0.298 -0.0884 0.537 3 3.16 0.491 -0.037 1.000

*monomorphic, – no p-value due to calculated FIS value of zero 
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Table 4.2 Posterior distribution estimates: the mode and the 90% High Probability Density interval in brackets estimated from the posterior density kernel of the log scale 
parameter (as showed in Figure 5.3) back transformed in natural scale. N0 and N1 are expressed in number of individuals, Ta in years assuming a generation time of one year 
and µ in 10-4 mutations per generation per haploid genome. 
 

Population 

Contemporary 
effective population 

size (N0) 
Ancestral effective 
population size (N1) 

Time since population 
size change (Ta) 

Mean mutation rate 
(µ) 

Scotland 12 [0-266] 47567 [5456-446937] 167 [3-3159] 0.73 [0.12-4.46] 

Sweden 80 [1-1654] 31169 [4224-227798] 344 [4-6578] 0.76 [0.13-4.81] 

 
 
 

 
 
Figure 4.1 Map showing locations of the Scottish (left circle) and Swedish (right circle) B. fallax populations used in the study. 
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Figure 4.2 Bar plot showing inferred population ancestry (membership coefficient Q) for two assumed clusters (K=2) indicated by dark and light grey bars (first 17 bars are 
individuals sampled from the Scottish population, and the remaining 23 are Swedish). 
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Figure 4.3 Posterior density distributions for (A) current and (B) ancestral effective population size, (C) time since the population decline and (D) microsatellite mutation rate 
for Scottish and Swedish populations of B. fallax. The dashed lines represent the prior distributions of the parameters, the thick, dark and thin, light grey lines represent the 
Scottish and Swedish populations respectfully. 

 



 

Appendix 4.1 

Polymorphic microsatellite loci for the 

endangered pine hoverfly Blera fallax (Diptera: 

Syrphidae) 
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Abstract  
 

We describe eleven polymorphic microsatellite loci developed for Blera fallax using 

‘next generation’ 454 whole genome shotgun sequencing, along with conditions for 

three multiplex PCR reactions. We tested allelic variation on forty B. fallax 

individuals from Scotland and Sweden. Allelic richness and expected 

heterozygosity were 3.03 ± 0.274 (mean ± Standard Deviation) and 0.391 ± 0.057 

respectively. The number of alleles per locus ranged from 2 to 6. We anticipate that 

these loci will assist conservation management by allowing the monitoring of 

translocated populations, estimating effective population size, and assessing 

population structure and dispersal in Scotland and across Europe. 
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Introduction 
 

The pine hoverfly Blera fallax has declined in Scotland, UK and is now confined to 

just two sites (Rotheray & MacGowan 2000). It is listed in the Species Action 

Framework (Scottish Natural Heritage 2007), a Scottish Natural Heritage initiative 

for biodiversity significant species. Actions stipulate expanding the range of B. 

fallax from two to five localities by 2012. The small source population has probably 

gone through a recent genetic bottleneck, so we urgently need data on how 

translocation might affect genetic variability. Microsatellite markers have been 

developed for just one syrphid species with limited success (Schönrogge et al. 

2006). Here we describe the development of polymorphic microsatellites using 454 

pyrosequencing (Santana et al. 2009) to investigate the genetic diversity within B. 

fallax.   

 

We collected 50 larvae from Dulnain Bridge, Scotland, and reared them to eclosion 

for captive breeding (Rotheray 2010). We froze seventeen adults after death for 

sequencing and genotyping. We obtained 22 further larvae and one adult from a 

pine woodland in Järfälla, Sweden. These larvae were frozen before storage in 90% 

alcohol, and the adult was pinned. 

 

Method 
 

We extracted genomic DNA (gDNA) using the DNeasy Blood & Tissue Kit 

(Qiagen), including optional RNase treatment. DNA yield was quantified using a 

ND-1000 spectrophotometer (NanoDrop). Pooled gDNA of two male and two 

female Scottish flies was used for shotgun sequencing of 1/8 plate on a 454 Genome 
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Sequencer FLX with Titanium chemistry (454 Life Sciences, Roche). We obtained 

71,804 reads (25,184,020 total bases), of which 74% were longer than 300 base 

pairs (average read length = 351 bp). We de novo assembled the reads using 

Newbler 2.3 (454 Life Sciences), which resulted in 1150 contigs with an average 

size of 714bp (21.58% of the reads assembled). Both unassembled reads and contigs 

were used to identify microsatellite loci using the programs iQDD 0.9 (Meglecz et 

al. 2007) and Msatcommander 0.8.2 (Faircloth 2008). In total, we obtained 330 

uninterrupted microsatellite loci with repeat motifs between two and six bp and at 

least five repeats for tetra and penta motifs, six for trinucleotide and eight for 

dinucleotide motifs. For 75 microsatellite loci we could design PCR primers with 

the PRIMER 3 package (Rozen & Skaletsky 2000) implemented in iQDD and 

Msatcommander (TM > 60°C, otherwise default settings).  

 

Of these, we selected 28 loci to test for PCR amplification using gDNA of one male 

and female from the Scottish population. The PCR reactions contained 10 ng 

template DNA, 1x Phire Hot Start Reaction Buffer including 1.5 mM MgCl2 

(Finnzymes), 0.25 µM forward and reverse primer, 0.2 mM dNTPs, 0.2 µl Phire 

Hot Start DNA Polymerase (Finnzymes) and ddH2O to 10 µl total volume. PCR 

amplifications were performed in a VeritiTM Thermal Cycler (Applied Biosystems) 

with two different cycling profiles. First, we tested a standard profile with three 

different annealing temperatures (PCR1, Table 1). In cases where this profile did 

not result in a specific PCR product, we applied a touchdown profile (PCR2, Table 

1). Of the twenty-eight primer pairs tested, sixteen amplified a specific product of 

the expected size, as verified on 1.5% agarose gels. These sixteen loci were tested 

for polymorphisms on eight Scottish and six Swedish B. fallax using 2.5% agarose 
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gels. Of these, thirteen primers pairs were selected based on band patterns within 

and between populations. Forward primers were fluorescently labeled and combined 

into three multiplex PCR reactions, named Fallacplex 1, 2 and 3. PCR reactions 

contained 10 ng template DNA, 1x Multiplex PCR Master Mix (Qiagen), between 

0.08 and 0.5 µM of each primer (Table 2) and ddH2O to 10 µl. Fallacplex 1, 2 and 3 

PCR conditions are described in Table 1. We then genotyped 17 Scottish (7 adult 

males, 10 adult females) and 23 Swedish (1 adult female, 22 larvae) B. fallax 

individuals.  Fragment length analysis was conducted using a 3730 DNA Analyzer 

and GENEMAPPER 4.0 software (both Applied Biosystems). The statistical 

analyses were performed with Fstat 2.9.3 (Goudet 1995), GenALEx 6.1 (Peakall & 

Smouse 2006) and GENEPOP 4.0 (Raymond & Rousset 1995). 

 

Results and discussion 
 

We achieved consistent PCR amplification for all forty individuals. Of thirteen 

microsatellite loci, one locus failed to amplify in the multiplex reaction, and one 

was monomorphic for both populations. No significant linkage disequilibrium could 

be found at any pair of loci in either population, and no evidence for null alleles was 

detected. The number of alleles per locus ranged from 2 to 6 with a total allelic 

richness of 3.03 (±0.274). Expected and observed heterozygosities ranged from 

0.059 to 0.763 (mean 0.391 ±0.057) and from 0.059 to 0.957 (mean 0.426 ±0.067), 

respectively (Table 2). One locus (HF_S56) showed significant deviation from 

Hardy-Weinberg equilibrium after sequential Bonferroni correction in one of the 

two populations (Table 2) (Rice 1989).   
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The novel microsatellite markers presented here not only assist conservation for this 

species in Scotland, but have wider applications for describing the distribution and 

dispersion of B. fallax across Europe. Our study confirms the effectiveness of long 

read, high-throughput sequencing for developing polymorphic microsatellites in 

non-model invertebrate species.  

 



Table 1 PCR cycling conditions for the initial testing (PCR1 and PCR2), and the three final multiplexes (Fallac 1, 2 and 3).  
 PCR1 PCR2 Fallacplex 1 & 2 Fallacplex 3 
Initial denaturation 98 °C, 30 sec 98 °C, 30 sec 95 °C, 15 min 95 °C, 15 min 
TD denaturation  98 °C, 5 sec  94 °C, 30 sec 
TD annealing  64 -0.5 °C/cycle, 10 sec  64 -0.5 °C/cycle, 1 min 30 sec 
TD extension  72 °C, 20 sec  72 °C, 1 min 
  15 cycles  15 cycles 
Denaturation 98 °C, 5 sec 98 °C, 5 sec 94 °C, 30 sec 94 °C, 30 sec 
Annealing 58/61/64 °C, 10 sec 56 °C, 10 sec 64 °C, 1 min 30 sec 56 °C, 1 min 30 sec 
Extension 72 °C, 20 sec 72 °C, 20 sec 72 °C, 1 min 72 °C, 1 min 
 35 cycles 25 cycles 35 cycles 25 cycles 
Final extension 72 °C, 1 min 72 °C, 1 min 60 °C, 30 min 60 °C, 30 min 

TD, touchdown PCR profile 

 143 



Table 2 Characteristics of 12 microsatellite loci in Blera fallax  
Locus 

GenBank no. 
Repeat 
Motif   Primer sequence 

Conc. 
(µM) 

Allele size 
range (bp) 

Fallac
-plex 

Ta 
(°C) Pop  Na HE Ho P 

HF_8RB       (CT) 10 F 6FAM-TCGCCCATCTACGTTCACC 0.1 169-188 1 64 1 4 0.747 0.941 0.273
JN206627  R GTTTCCACCGAAAGCAGTACACG 0.15     

       
  

2 4 0.758 0.957 0.003*
HF_S56 (AC) 11 F NED-CTCTCGCGCAAACTTTAAATCC 0.15 263-279 1 64 1 3 0.683 0.882 0.017
JN206628 R GTTTATCGCGTGATGTTGCGAAG 0.2     

       
       

       
       

       
       

       
  

2 3 0.590 0.435 0.312
HF_WMK (ACAT) 7 F VIC-AGGACAGTGCAGAGGTTGC 0.1 187-199 1 64 1 2 0.059 0.059 -
JN206629 R TAGGCCGTTCACTATCCGC 0.15 2 3 0.503 0.435 0.170
HF_JRW (ACC) 9 F 6FAM-GCATTCAGCAACACAAAAACAGATAAA 0.3 310-322 1 64 1 3 0.508 0.471 0.567
JN206630 R AGGGGTGCACGACGACTACAG 0.4 2 2 0.449 0.478 1.000
HF_C4A (AATG) 6 F PET-TGATGCAACAGATGCTGGG 0.1 255-267 1 64 1 2 0.337 0.294 0.537
JN206631 R GTCCTCGGCGGTGAAATAC 0.15 2 2 0.511 0.565 0.689
HF_OH2 (AC)11 F PET-ATTAAACTATGAGCGATGTCTGG 0.15 189-205 2 64 1 1 0.000 0.000 -
JN206632 R GTTTGAATGCACTGCGTCACTCC 0.2     

       
       

       
       

       
       

       
  

2 6 0.706 0.652 0.980
HF_0IY (AGC) 10 F NED-CGATCGGCAACTCATGTGG 0.15 242-257 2 64 1 3 0.570 0.588 0.536
JN206633 R TACACAGGGTAAGCTCGGC 0.2 2 6 0.763 0.870 0.379
HF_AN4 (ACG) 12 F VIC-AGGCACTGAGAACGAAAAGAATG 0.1 170-185 2 64 1 2 0.487 0.647 0.303
JN206634 R GCAGCGAGGCAGACGATAG 0.15 2 4 0.675 0.826 0.253
HF_5VB (ACAT) 6 F 6FAM-AGGGCCCAGTATTTGGTTG 0.15 291-303 2 64 1 1 0.000 0.000 -
JN206635 R GAATTTGGGCCGGTAACGAG 0.2 2 3 0.237 0.261 1.000

HF_AMQ (GT) 10 F NED-GGCAGTCGGGATTTCTTCC 0.4 188 3 
64-56 
TD 1 1 0.000 0.000 -

JN206636 R GTTTCTCTCCCGCCAGGATACTC 0.5     

        
  

2 1 0.000 0.000 -

HF_FCT (AC) 10 F PET-ACCCCTTTTGTCGTTCGTTTAGT 0.08 277-283 3
64-56 
TD 1 1 0.000 0.000 -

JN206637 R GTTTCATTCAGGTGAGATTCGCTTTTG 0.12      2 2 0.125 0.130 1.000
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         HF_RKX (ACAT) 7 F 6FAM-CAGGAAGAAAGAATCGGCAA 0.08 211-215 3
64-56 
TD 1 2 0.337 0.294 0.537

 JN206638   R GAGTAGTTCCCTGTTGGGCA 0.12       2 2 0.348  0.435 0.538 
F, forward primer sequence; R, reverse primer sequence; Conc., primer concentration in the PCR; Ta, annealing temperature; TD, touchdown PCR; Pop, population (1: 
Scotland, 2: Sweden); Na, number of alleles; HE, expected heterozygosity; Ho, observed heterozygosity; P, P-value of probability test for deviation from Hardy-Weinberg 
equilibrium (HWE). Fluorescent dye labels are shown in italics at the 5’ end of each forward primer.  PIG-tail bases (Brownstein et al. 1996) are presented underscored. 
*significant deviation from HWE after sequential Bonferroni correction (Rice 1989), (-) monomorphic loci 

 



 

Appendix 4.2 

Nonlethal DNA sampling methods for the 

endangered Scottish hoverfly Blera fallax 

(Diptera, Syrphidae) 
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Abstract 
 

We present non-lethal methods of extracting hoverfly DNA sufficient for 

microsatellite analysis from small pieces of adult tissue such as single terminal tarsi 

and wing tips, and sections of year old empty puparia. Verified by gel 

electrophoresis, the DNA extracted was sufficient for amplifying microsatellite 

primers developed to assist conservation management of the endangered hoverfly 

Blera fallax (Diptera, Syrphidae) in Scotland. This work will not only assist captive 

breeding and on-going monitoring of populations in Scotland, but it also 

demonstrates how molecular markers could be used to monitor populations of 

endangered insects without using potentially harmful sampling procedures. 
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Introduction 
 

The main aim was to investigate non-lethal means of extracting DNA sufficient for 

monitoring the genetic variation and population structure of the pine hoverfly Blera 

fallax (Diptera, Syrphidae) in Scotland. Current conservation efforts include 

attempts to characterize genetic diversity within and among populations throughout 

Europe. However, this species is extremely rare in Scotland, with only one small 

surviving population, so destructive sampling for genetic studies is not possible. 

Hence here we develop protocols for non-destructively extracting DNA from larvae 

and puparial cases.  

 

Survey work mainly involves searches for the larval stage in the rot holes in stumps 

of P. sylvestris where they develop, although this can be difficult as the deep cracks 

and crevices within the holes are often inaccessible. Blera fallax larvae exit the rot 

hole habitat in order to pupate. Whole or parts of empty puparia can often be found 

outside the rot hole, and in some cases this is the only evidence we have for B. 

fallax presence and successful eclosion. Adult B. fallax are elusive and rarely seen.   

 

A captive breeding programme for this species is underway. In addition to 

monitoring genetic diversity in wild populations, analysing DNA from captive 

individuals may be valuable in revealing signs of inbreeding, and in matching adults 

for breeding purposes.  

 

A number of techniques for non-lethal extraction of DNA from insects have been 

investigated. For example, no negative survival impacts were found in Bombus 

terrestris when removing the terminal portion of the tarsus of the mid leg or hind 
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leg for DNA extraction, nor were there any found for rare butterflies’ Vanessa 

cardui and Satyrodes eyrydice upon removal of small parts of their hind wings 

(Holehouse et al. 2003; Hamm et al. 2010). Wing tips have also often been used as 

a source of non-lethal extraction in honeybees Apis mellifera and butterflies such as 

Parnassius apollo (Lushai et al. 2000; Châline et al. 2004). However, to our 

knowledge attempts to extract DNA from empty puparia have not been previously 

explored. Such methods could be generally applicable across a broad range of 

invertebrate taxa.  

 

Method and Results 
 

Several possible sources of DNA were investigated: adult wing tips and terminal 

single tarsal segments; empty year-old puparia stored at room temperature and fresh 

< 1-month-old puparia stored at -4°C; and water collected from a B. fallax larval rot 

hole. Sterile blades and fine tweezers were used to remove wing clippings of no 

more than 2 mm from the tip of the wing from adults that died in captivity. The 

same sterilised tools were used to remove single terminal tarsi, and for dividing 

puparia. Whole empty puparia as well as the posterior and anterior halves were used 

in separate extractions. Water was taken directly from artificial rot hole microcosms 

inhabited by B. fallax larvae, as well as from 2 ml spring water from a sterile petri 

dish where a larva was left overnight. No more than 0.5 ml of water was transferred 

to a 2 ml eppendorf tube, centrifuged for 3 minutes, and using a pipette, the bottom 

0.1 ml was removed for DNA extraction. Each DNA source was sampled three 

times. 

 

We extracted DNA using the HotShot protocol (Holehouse et al. 2003) and the 
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DNeasy Blood and Tissue Kit (Qiagen). DNA yield was quantified using a ND-

1000 spectrophotometer (NanoDrop). Two species-specific microsatellite markers 

(HF_WMK and HF_OIY) developed from Scottish B. fallax were used (Rotheray et 

al. 2011). Amplification was carried out in a 10 µL final volume using QIAGEN 

Multiplex PCR kits. Each reaction contained 1 µL Q-solution, 2 µL H2O, 5 µL PCR 

Master Mix, 1 µM of primer and 1 µL (undiluted) DNA product. A B. fallax 

positive control (previously sequenced DNA product) was used, as well as a 

negative control (lacking DNA product) to account for possible contamination. 

Polymerase chain reaction (PCR) was carried out as in Rotheray et al (2011) and 

amplification of the product of the expected size was verified on 1.5% agarose gel.  

 

We achieved amplification for wing tip, terminal tarsi, whole and anterior portions 

of fresh puparia and year-old puparia. No amplification was achieved for rot hole 

water (69.3 ± 15.32 ng/µl). The DNA yield estimated by the spectrophotometer 

does not correlate with band strength on gels, which increased from the wing tip 

(5.9 ± 2.12 ng/µl), whole puparia (119.06 ± 106.78 ng/µl) and anterior section of 

puparia (4.2 ± 4.14 ng/µl), year-old puparia (28.63 ± 47.26 ng/µl) to the terminal 

tarsi (2.42 ± 0.79 ng/µl). Excess RNA, and microbial DNA from the rot hole water, 

may have caused the variation found in DNA yield concentrations. While our 

results require verification and sizing by DNA sequencing, based on the size of 

product and control band amplification used, our results suggest that sufficient 

DNA can be extracted from not only fresh, whole puparia, but also smaller pieces of 

puparium up to one year old. Our findings will not only assist genetic monitoring of 

B. fallax but widens the possibilities for non-destructive genetic studies of all 

holometabolous insects.  
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5.1 Abstract 

 

Conservation management aims to prevent extinctions and restore endangered 

species in an effort to preserve biodiversity and a healthy functioning ecosystem. 

This involves determining causes of population decline and investigating 

autecology in order to develop effective strategies to restore species or habitats. The 

current study investigates the ecological requirements of a highly endangered 

saproxylic insect, the Pine hoverfly Blera fallax (Diptera, Syrphidae), while at the 

same time evaluating the success of practical conservation management efforts for 

this species. This involved developing techniques for creating and expanding 

effective breeding habitat (Pinus sylvestris stump rot holes), finding the optimum 

growing conditions for larvae, developing procedures for captive breeding, and 

monitoring relocated and source populations. In addition, an objective of this study 

was to assess the factors affecting successful monitoring, management and 

translocation. Larvae were successfully reared in captivity in 40 ml P. sylvestris 

substrate immersed in 70 ml water, and took between 270 and 415 days to eclose. In 

captivity, adults were on the wing between 11th May and 24th August, with males 

and females having an average lifespan of 38 and 34 days, respectively. Adults fed 

on a range of flowering plants but preferred Rosaceae, particularly Sorbus 

aucuparia. Oviposition was apparently triggered by water-soaked P. sylvestris 

sawdust, and captive females produced up to 188 eggs each. In the first year of 

relocation, 179 captive-bred individuals (84 larvae and 95 adults) were released, and 

43 1st instar larvae were subsequently found in artificial breeding habitat at the 

release site, and 1 km away. These findings on the biology, life strategies and 
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techniques for monitoring the genetic health of B. fallax, are combined to develop 

protocols for on-going conservation management.  
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5.2 Introduction 

 

Conservation management decisions are often necessary before data is obtained on 

species threatened with extinction (Primack 1998). But in order to improve the 

effectiveness of such decisions, we need to understand the ecological requirements 

and reasons for decline. 

 

Blera fallax (Diptera, Syrphidae) is listed in the UK Red Data Book as category 1 

(endangered) and it is a UK Biodiversity Action Plan (BAP) priority species. This 

status was confirmed in 1999 after an extensive 12-year survey, which indicated a 

population decline from 8 to 2 known populations since the early 1900’s (Rotheray 

& MacGowan 2000). Blera fallax was included in the Species Action Framework 

(SAF), a Scottish Natural Heritage (SNH) initiative, which focuses on funding 

projects to improve the status of species deemed significant to overall Scottish 

biodiversity. Priority is given to those that are likely to benefit from determined 

conservation management plans based on known species requirements (Scottish 

Natural Heritage 2007).  

 

Having been first discovered in the late 19th century (Verrall 1901) very little was 

known about B. fallax until 1998 when the larval stage was first described 

(Rotheray & Stuke 1998). Blera fallax is a specialist saproxylic insect, the larval 

stage developing on microbes in rot holes occurring in stumps and decaying roots of 

Scots Pine, Pinus sylvestris L. In Scotland, B. fallax has not been found associated 

with any other tree species, however in Scandinavia it does develop in Norway 

Spruce Picea abies L. (Speight 2008). As a saproxylic species it is an important bio-
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indicator of habitat quality and is part of a very diverse, species-rich and specialised 

group of organisms that play a vital functional role in forest ecosystems (Grove 

2002; Jonsson et al. 2005; Speight 2008; Lassauce et al. 2011). Blera fallax is found 

across the Palearctic, but has been scantily recorded (Speight 2008). In Scotland B. 

fallax shares its larval habitat with at least 30 endangered insect taxa from diverse 

groups (Rotheray et al. 2001). It is part of a unique community of invertebrates that 

make up the Caledonian Forest ecosystem (Shaw & Thompson 2006).  

 

Action 3 of the SNH SAF prescribes that the number of sites inhabited by B. fallax 

be increased from 2 to 5 localities by 2012 (Appendix 5.2). Breeding habitat loss 

over the last 100 years is thought to be the main factor that caused the decline in B. 

fallax populations, and availability of habitat is thought to limit population 

expansion today, therefore restoring suitable breeding habitat is the highest priority 

for conservation management (Rotheray & MacGowan 2000). This requires 

characterising the habitat at extant B. fallax sites, developing techniques for habitat 

creation, and preparing sites for relocation. In order to source a sufficient number of 

individuals for relocation and reduce the impact on the remaining population, 

captive breeding and rearing are required.  

 

Captive rearing is an increasingly used interim strategy particularly for butterflies 

while long-term recovery techniques are developed, although it has had varied 

success (Crone et al. 2007; Schultz et al. 2008). As a consequence of captive 

breeding, genetic deterioration or diseases may lead to lower fitness, reducing 

population growth (Frankham 1998; Woodworth et al. 2002; Leberg & Firmin 

2008). Reductions in mating success and selection for smaller body and wing size 

 155



have been reported from other captive breeding attempts (Joron et al. 2003; Schultz 

et al. 2009). Nevertheless, captive breeding is sometimes the only option for 

maintaining severely at-risk populations in the short-term (Crone at al. 2007). 

 

Below, we describe several progressive stages of research on this species and its 

conservation management. These are the first attempts to develop captive breeding 

protocols for saproxylic hoverfly conservation. 

 

5.3 Habitat creation techniques 

 

Following successful techniques of habitat creation for the pine rot hole inhabiting 

Callicera rufa (Diptera, Syrphidae) (MacGowan 1994), we created rot holes by 

boring holes into the centre of stumps left after felling, using a chainsaw or drill, 

thereby mimicking the rotting process (see Appendix 5.3 and figures therein). Using 

a chainsaw, holes were created by making two parallel 15cm deep cuts straight 

down into the surface of the stump. These were positioned either side of the 

heartwood centre roughly 15 to 20 cm apart. Two further cuts were made 

perpendicular to and connecting the initial cuts to complete a square on the surface. 

These were made at 45º angles into the centre of the stump to join at a ~15cm deep 

point thus cutting out a triangle-shaped wedge. The hole was filled with either 

sawdust (untreated from a local sawmill) or wood chips, or sawdust and chips, and 

the triangle wedge was used to partially cover the hole to protect the content from 

evaporating while allowing rainwater to fill the cavity.  
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The second method was carried out using a petrol-powered drill and 25mm auger 

bit. Roughly 10cm diameter circular holes were created by boring repeatedly into 

the centre of the stump resulting in a 15 cm deep cavity occupying the heartwood. 

Sawdust created by the drilling process was used to fill the hole, and thick bark was 

used to partially cover the cavity.  

 

Often suitable stumps are not available so plastic pots were also tested as an 

alternative breeding habitat. Pots (18 x 18 wide x 24 cm deep) were sunk into the 

earth and filled completely with pine wood chips. Six small holes were pierced into 

the sides of the pots near the top to allow excess water to escape, and bark was 

loosely placed over the top for protection, and to prevent passing invertebrates from 

falling in.  

 

All rot holes were tagged with plastic laminated identity codes, and GPS 

coordinates were taken in order to monitor occupation and water retention over time.  

 

5.4 Extant B. fallax field sites and habitat creation 

 

Curr Wood  

 

This site is a 200-hectare plantation (57°18’ N, 3°39’ W) (Figure 5.1). It is privately 

owned and has no conservation notifications. It consists mainly of P. sylvestris but 

also has deciduous trees such as Sorbus aucuparia (Rosaceae) and Betula pubescens 

(Betulaceae). Curr Wood was planted with native P. sylvestris in the late 18th 

century, thinned periodically, and left to regenerate naturally (Worrell & Dunlop 
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2003). Consequently, several hundred large P. sylvestris stumps exist at the site. 

Blera fallax was first recorded near Curr Wood in the early 20th century, and empty 

puparia were found on-site in 1997 (Rotheray & MacGowan 2000).  

 

Artificial breeding habitat was previously created within a 10-hectare (Ha) area in 

2003. Forty-two rot holes were bored using a chainsaw and fifteen plastic pots were 

set out. Three pots were positioned in an exposed, clear felled area and the 

remaining twelve were positioned within the woodland under canopy cover. 

Through 2008 until 2010, an additional 134 chainsaw-bored holes were created 

within the same area, and in June 2011, these were supplemented with 50 drill-

bored holes (Table 5.1).  

 

Anagach Wood 

 

Anagach is a long-established pinewood plantation surrounding Grantown-on-Spey, 

6 km North East of Curr Wood (57°19’ N, 3°36’ W) (Figure 5.1). It is a community 

owned woodland of about 400 Ha. After the original ancient pinewood was lost due 

to timber extraction, the site was re-planted with P. sylvestris 30 years before Curr 

Wood in 1766 (Worrell & Dunlop 2003). Blera fallax was first recorded at Anagach 

in 1949, and in 1997 over 10 empty puparia were found, however, no evidence of B. 

fallax has been confirmed since then (Rotheray & MacGowan 2000).  

 

In 2007 through 2008, ten plastic pots were placed at one metre points along a 

straight transect within the woodland, and 25 holes were cut in stumps using a 
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chainsaw and filled with pine wood chips (Table 5.1). These were within a 10 Ha 

area and were created near locations where B. fallax had been recorded previously. 

 

5.5 Breeding habitat surveys 

 

Fourteen rot hole surveys were carried out at Curr and Anagach Woods between 

November 2007 and February 2011. We searched the detritus content of chainsaw-

bored rot holes, plastic pots, and stumps with natural heart-rot for B. fallax presence. 

A plastic pipette and pastry brush were used to carefully probe cracks and crevices 

deeper in the hole.  

 

Curr Wood  

 

Each year through 2007 to 2011 we searched the detritus content of 59 chainsaw-

bored rot holes, 15 plastic pots, and two stumps with natural heart-rot (in total 76) 

for B. fallax presence. Of these, 7 had chips alone, 22 sawdust, 47 chips and 

sawdust, and 46 were exposed (> 5 metres from canopy cover). All other naturally 

rotted holes (28) were too difficult to access due to the depth and small opening to 

the hole, and the remaining bored stumps (47 %) did not retain water. Half of these 

bored stumps were lacking the wedge or bark cover used to partially protect the hole 

from drying out which may have been the cause of water loss.  

 

In addition to surveys, nine variables were measured for each rot hole in Curr Wood. 

These included the date the hole was bored, height and circumference of stump, 

hole circumference, hole depth, exposure (> 5 metres from woodland edge), content 
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type (sawdust, chips, or chips and sawdust), cover type (bark, wood chunks or 

wedge), and pH using a pHep5 Meter (Hanna HI-98128). 

 

We used generalized linear models (GLMs) with Binomial error distributions to 

assess the effect of these nine stump variables on the presence or absence of species 

in a stump (Crawley 2007). Our maximal models included main effects and all 

second-order interactions, and were simplified using stepwise comparisons of model 

AIC implemented with the ‘stepAIC’ function from the ‘MASS’ (Venables & 

Ripley 2002). 

 

Five temperature data loggers were used to determine the thermal conditions in the 

artificial rot holes, and whether there were any differences between exposed stumps, 

those within the woodland, and in plastic pots. Four aquatic dataloggers (Gemini 

Tinytag Aquatic TG-4100) were positioned at the deepest point within artificial rot 

holes (three in Curr Wood and one at the first proposed relocation site, 

Rothiemurchus Estate). The dataloggers were set to take a temperature 

measurement every hour. The first was placed in a 14cm deep hole in an exposed 

stump 30 metres from the woodland edge, and collected measurements from 

December 2007 until July 2010. The second was positioned in one of the exposed 

24 cm deep plastic pots, which were sunk into the earth, two metres from the 

exposed stump. It took measurements for 18 months from April 2008 until October 

2009. The third was positioned in a 13cm deep hole in a stump within the woodland, 

40 m from the other dataloggers but on the same elevation (240 m), and it took 

measurements for 15 months from April 2009 until July 2010. The fourth was 

positioned in a 14 cm deep rot hole created in a P. sylvestris stump in 
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Rothiemurchus Estate, from May 2009 until July 2010. The fifth was an Air 

datalogger (Tinytag Transit TG-4080) and was positioned in Curr Wood at the base 

of a tree inside a sealed wooden bird box from April 2008 until July 2010. 

Differences in the range of temperatures between types of rot hole environment 

were assessed using one-way analysis of variance (ANOVA). 

 

Blera fallax larvae were found in 48 (81%) chainsaw-bored holes (5.3 ± 5.5 larvae 

per hole) (mean ± Standard Deviation SD), and both of the stumps with natural 

heart rot (13 ± 10.4). No B. fallax larvae were found in plastic pots. Blera fallax 

were repeatedly found in the same artificially bored rot holes over the four years: 

eight were occupied every year, an additional eight were occupied for three years, 

and nineteen were occupied for two years. Total larval density over four years in 

one rot hole varied from 1 to 78 (14.13 ± 19.64). Of stumps containing B. fallax 

larvae, 13 (± 18.99) were exposed and 16 (± 20.76) were unexposed. More larvae 

were found in rot holes with both chips and sawdust (16.8 ± 19.2) than sawdust 

(11.3 ± 22.1) or chips alone (5 ± 9.4). The number of B. fallax found in stumps 

created in 2003 (12.6 ± 19.5), 2007 (16.6 ± 20.87) and 2009 (15.7 ± 19.6) did not 

differ significantly (X2 = 0.57, P = 0.75). No measured habitat trait was found to 

predict B. fallax presence (all GLM, P > 0.1, see Table 5.3 for a comparison of 

means for occupied and unoccupied stumps). 

  

Between April 2008 and July 2010, air temperature reached a maximum of 33.56 °C 

and a minimum of -14.39 °C. Average monthly water temperature fluctuations in 

rot holes fell within the range of the air temperature (Fig 5.2). The temperature 

reached a lower minimum in exposed pine stump rot holes (-9.19 °C) compared 
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with plastic pots sunk into the earth (-4.36 °C) and the unexposed stump (-1.56 °C). 

Maximum temperatures were near equal in all breeding habitats, reaching one 

degree higher in the exposed stumps (24.10 °C). No significant difference was 

found between monthly maximum, minimum or mean temperature readings from 

stump or plastic pot rot holes (ANOVA, P > 0.1). 

 

Anagach Wood 

 

Of ~200 P. sylvestris stumps located in Anagach Wood, approximately 50 older 

stumps (at a more advanced stage of decay) were exhaustively searched for suitable 

water-retaining cavities, or wet rot. Of these, 10 stumps had naturally rotted holes 

that retained water. No B. fallax larvae or puparia were found in any breeding 

habitat artificially created or natural in Anagach Wood. While C. rufa and M. florea 

were found (~ 4 per stump or pot), S. clunipes was the most numerous species, 

occurring in similar quantities (~10 per breeding habitat) in artificially bored rot 

holes and plastic pots. 

  

5.6 Adult ecology 

 

During 2007 and 2008, we investigated several aspects of adult ecology, including 

the nature of food plants, mating behaviour and dispersal ability (following methods 

as in Rotheray et al 2009). We positioned 104 emergence traps over felled stumps 

with natural heart rot (37), as well as all artificially bored rot holes (67) at Curr 

Wood before May 14, 2008. The emergence traps were made from 3 x 3 metre 

white cotton netting and malleable fence wire. The traps were secured to the ground 
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using pegs fashioned from the fence wire and heavy branches. In total, six B. fallax 

(3 males, 3 females) were caught in four emergence traps over one naturally rotted 

and three artificially bored P. sylvestris stumps. Other insects caught in the traps 

included several true flies, M. florea (5), C. rufa (6), Sericomyia lappona (6), 

Rhingia campestris (27), Helophilus pendulus (5), Speghina clunipes (15), 

Microdon sp., Xylota segnis (1), and a single species, Rhembobius sp., of 

Ichneumonid parasitoid of flies (5) (Table 5.4). By mid June, all traps were removed 

to allow ovipositing females access to the rot holes. 

 

For a mark-recapture experiment, we surveyed a 3 km transect that covered the area 

where stumps and traps were located and where flowering trees and shrubs were 

found, including large patches of S. aucuparia, Cytisus scoparius (Fabaceae), and 

Rubus idaeus (Rosaceae). Each trap was checked at least daily and the transect 

surveyed twice a day (10am until 1pm, and 2pm until 5pm, weather permitting) 

from 14th May until 31st July 2008. Two unmarked females were observed 

ovipositing in a naturally rotted stump and one that was artificially bored, 400 

metres apart. Both females were marked and released, but never re-sighted. There 

were no additional sightings of B. fallax during transect surveys.  

 

5.7 Captive breeding for relocation 

 

In October 2008, a survey identified 100 B. fallax larvae in the artificially created 

rot holes at Curr Wood. Because this was probably a small fraction of the actual 

population size based on the amount of available naturally rotted habitat, we 

removed 50 larvae for captive breeding in the laboratory. From this initial sample, 
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more than 1,200 larvae have been bred in captivity to date, of which 430 have been 

released at relocation sites and the source site (Table 5.2).  

 

Rearing larvae to eclosion 

 

Larvae were transferred individually to 1000 ml glass bottle microcosms, which 

were designed to simulate rot holes. A mix of ~200 ml each of P. sylvestris sawdust, 

chips and spring water were allotted to each bottle based on observation of rot holes 

in the field. Larvae were kept in climate-controlled facilities with thermal conditions 

that mimicked those experienced in the field in Strathspey, estimated using on-site 

dataloggers and Met Office reports. However, to avoid mortality due to the water in 

the microcosms freezing, temperatures were kept above 1°C (see Table 2.1).  

 

During the captive breeding period, we conducted experiments to study how larvae 

responded to substrate conditions and intra-specific competition effects (see Chapter 

2). We also conducted behavioural observations to inform rearing and habitat 

creation techniques, as well as to investigate microhabitat use and life history (see 

Chapter 3). These experiments suggest that optimal growth requires a minimum of 

40 ml P. sylvestris sawdust (or chips and sawdust) and 70 ml of spring water per 

larva (Chapter 2). We provided bark pieces to allow larvae to crawl out of the water, 

or approach the surface to breathe, as well as moss plugs at the top of the 

microcosm, which fully developed larvae require for overwintering or pupation 

(Chapter 2). Sponge stoppers were also used to prevent larvae from wandering out 

of the microcosm completely. Mortality was proportionally greater in 2009 (46 

individuals, 29 %) than 2010 (114 individuals, 22 %). In 2009, 85 % (39 

 164



individuals) of the individuals that died did so in the first 15 days (early instars) of 

development (Table 5.5).  

 

Upon pupation, each individual was weighed on a 0.001g resolution balance, and 

carefully transferred to individually labelled plastic cups filled with tissue paper and 

moss to prevent pupae from incurring damage while in transit. A piece of cotton 

netting was secured over the top of the cup with an elastic band. Newly emerged 

adults tend to sit on this netting while their cuticle hardens and wings expand, which 

conveniently makes them visible for collection and transferral to breeding cages. 

Upon ensuring that the adult’s wings had completely extended, each one was 

transferred to laminated lined paper, and a photograph was taken for measuring 

adult traits, including wing and thorax length (and leg length in 2009). All 

individuals eclosed and were kept in captivity in 2009 (19/19 Males/Females), and 

in subsequent years a random selection of 7 to 10 individuals from each larval 

growth treatment (see Chapter 2) were kept for captive rearing (15/24 M/F in 2010, 

30/30 M/F in 2011) while the rest were released at the relocation site. Individuals 

that were not kept for captive breeding were transferred, on the day of their 

emergence, to 9 x 2 cm tubes for transportation to their release site. Those kept for 

captive breeding were individually marked using non-toxic enamel paint and moved 

into breeding cages.  

 

Adult flight cages 

 

Two types of cage were tested: one large outdoor cage positioned on-site at the 

release location where an observer could enter to record adult behaviour and time 
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budgets in a close-to natural situation; and four small indoor cages that provided 

better control over light and temperature and were used primarily to observe mating 

and oviposition behaviour. The four indoor cages (45 x 45 x 60 cm) were 

constructed using white cotton netting, malleable wire and ten linked strip lights 

(90cm, 21 Watt fluorescent bulbs) (Fig 5.3). The outdoor cage was constructed 

using white cotton netting (for the roof and door) and polyethylene mesh (for the 

walls) over a polypropylene frame (roughly 195cm height, 375cm length, 90cm 

width) (Fig 5.3). Cotton was more appropriate for the roof as plastic tended to 

collect water droplets that could damage or drown the insects, which tended to 

gather on the roof of the cage. The cage was constructed by mid-May in a partially 

shaded position at the relocation site. Large pine branches were fixed along the 

walls and roof of the cage to provide extra shade and roosting habitat, and two 3-

litre plastic freezer bags sunk into the ground and filled with wet P. sylvestris 

sawdust and chips as artificial rot holes.  

 

A range of food-plants were presented to adults in the indoor and outdoor cages 

based on what was available in and around Curr Wood. They were collected from 

the field and positioned in bottles filled with water, plugged with netting to prevent 

individuals from falling in. Feeding was recorded when adults visited flower heads 

and moved mouthparts over the stamens and at the base of the perianth. Food plants 

were removed if after two days no adults were observed feeding on them, and all 

flowers that were used were replaced on a two-day cycle. An additional nectar 

source was provided by soaking cotton wool in dilute honey solution (1ml 

honey/10ml water), wrapping it in cotton mesh and securing it to the roof or walls 
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using a crocodile clip. In the outdoor cage, wood ants became attracted to the honey 

solution making it necessary to alter its location each day. 

 

Daily, 2 to 4 hour-long observations were made in the outdoor cage (between the 

hours of 8am and 8pm, weather permitting) to ascertain behaviours, mating 

frequencies, and estimate time budgets. The main behavioural categories were 

feeding, resting, ground searching and mate seeking. Ground searching was defined 

as adults moving over the ground vegetation. Sexual activity was defined as males 

chasing females or each other. For each category the time, individual and length of 

time per individual was recorded.  

 

Fifty-one hours were spent observing adults in the outdoor cage. Adults were on the 

wing in captivity from 11th May until 24th August, and males and females had a 

mean lifespan of 38 (± 17.59) and 34 days (± 16.4) respectively (Table 5.5). In total, 

44 and 43 % of the day (between 8am and 8pm in good weather conditions) was 

spent feeding and resting respectively. Individuals were most often observed resting 

on the walls and roof of the netting. Adults fed on Sorbus aucuparia (Rosaceae) 

(66%), Stellaria holostea (Caryophyllaceae) (27%), Umbelliferae spp. (Apiaceae) 

(23%), Bedstraw (Galium spp.) (Rubiaceae) (2%), Rosa canina (Rosaceae) (<1%), 

and Buttercups Ranunculus spp. (Ranunculaceae) (< 1%). Adults did not feed on 

Cytisus scoparius (Fabaceae), Ajuga reptans (Lamiaceae), Senecio jacobaea 

(Asteraceae), P. sylvestris, Prunus padus (Rosaceae), or Rubus idaeus (Rosaceae). 

 

Adults were observed behaving territorially 6 %, and searching on the ground 7 % 

of the time. Ground searching was recorded a total of 36 times, of which the mean 

 167



time spent was 8.4 minutes. During this time, adults would move their mouthparts 

over damp patches of earth and in the bags of wet sawdust. Upon subsequent visits 

at the beginning and end of the observation period, the ground and the netting were 

liberally sprayed with water, and often adults were observed drinking immediately.  

 

In indoor cages, adults spent most of their time on the roof of the cage at the closest 

point to the light source. Flowers had to be positioned near this area in order for 

adults to land on them and feed. Water was imbibed only when the netting near the 

top of the cage was sprayed, after which adults would often drink immediately. 

 

Mating requirements 

 

As well as general observations of individuals in both outdoor and indoor 

environments, in order to gather information on sexual behaviour, we studied how 

the density of adults affected the number of mating attempts. Using the indoor cages 

as replicates, we varied the number of males and females from 2 to 10 (always with 

a unity sex ratio). The number of copulation events per individual, and copulation 

duration was recorded. Copulation was defined by physical contact between male 

and female genitalia. All copulations were assumed to be of equal value. 

 

We assessed directional sexual selection on phenotypic traits using standardized 

linear selection gradients (ß), which are partial coefficients from regressions of all 

relevant phenotypic traits on relative fitness (Arnold & Wade 1984a, 1984b). Our 

index of male mating success was the number of matings acquired. For comparison, 

we also measured partial coefficients between female traits and mating frequency, 
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although for females we have no a priori reason to expect that mating success 

covaries with fitness. For each analyses, we first included all mated and unmated 

individuals in a generalised linear model with binomial error distribution. We then 

eliminated the zero fitness class (i.e., individuals who never mated, or females who 

laid no eggs), because membership in the zero class could arise as an artefact of the 

artificial rearing regime and consequently obscure more interesting patterns of 

variation among mating or fecund individuals. All coefficients and standard errors 

come from Gaussian linear models featuring standardized thorax width, wing length 

and pupal mass. P-values were obtained from generalized linear models with 

Poisson error distribution. Our low sample size prevented us from analysing 

patterns of nonlinear selection. 

 

We assessed the effect of the number of previous matings on female copulation 

duration using linear mixed effects (LME) models implemented in the ‘nlme’ 

package (Bates & Maechler 2008). We modelled copula duration as a function of 

the mating number (first, second or third mating), including the random effect of 

female identity to account for repeated measures on individuals. 

 

Outdoor cage 

 

Adult males aged 15 days or older could be observed chasing passing male and 

female individuals and repeatedly returning to within inches of the same location, 

from here on termed ‘temporary territories’. Males would keep these temporary 

territories for up to 13 minutes (3.77 ± 3.37) (mean ± SD) often in a sun-lit area on 

the ground or in vegetation. This behaviour was only recorded between 12:30 and 
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16:35, at temperatures between 15 and 24°C, on 26 separate occasions. Upon 

landing on a female, the male’s hind legs were secured around the female’s 

abdomen and copulation was apparently initiated by stroking the underside of the 

female abdomen with the tip of the male abdomen.  

 

Indoor cages 

 

Males aged >11 days and females aged >15 days were observed mating in the 

indoor cages (Table 5.5). In the five days following the first recorded mating event, 

mating occurred slightly more regularly in higher density cages (0, 1, 3 and 3 

matings in densities 1:1, 2:2, 3:3 and 5:5, respectively), although the small sample 

precludes drawing strong conclusions from this. Moving individuals in preparation 

for the density experiment led to a cessation of mating attempts for several days. 

Therefore, to encourage as much mating as possible the remaining individuals were 

divided into two cages and no further manipulations were made.  

 

In total, eleven males and thirteen females were recorded mating in the first year of 

experimentation (of total 19/19 M/F). Females copulated up to 9 times (3.5 ± 2.11), 

and males copulated up to 8 times (4.75 ± 2.67). Copulations lasted between 1.5 and 

70 minutes (26.7 ± 15.8). Among the 12 females that mated more than once, we 

found a significant effect of mating number on copulation duration (1st, 2nd and 3rd) 

(Parameter estimate 8.35 ± 3.21 SE, t = 2.59, P < 0.05). Duration increased by an 

average of 10.9 ± 14.46 (SD) minutes between first and second copulation. 
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Analyses that included mated and unmated individuals detected no significant 

results (data not shown). However, in spite of our small sample, analyses that 

eliminated the zero fitness class detected marginally nonsignificant (P = 0.089) 

directional sexual selection for longer thoraces in males (whole model R2 = 0.700, 

F3,7 = 5.438, P = 0.030; Fig 5.4, Table 5.6). Wing length and pupal mass had 

substantially smaller parameters, and did not significantly predict mate number. By 

contrast, none of the morphological traits predicted female mating success (whole 

model R2 = 0.145, F3,8 = 0.452, P = 0.723; Fig 5.4, Table 5.6). 

 

Oviposition requirements 

 

A number of different techniques were attempted in the small cages to induce 

oviposition and determine preferences. These included providing 0.5 and 3 litre 

freezer bags, and 250 and 1000 ml jars, half-filled or completely filled with P. 

sylvestris, P. abies or B. pubescens sawdust and water. These were introduced to 

each cage 24 hours after a mating event was observed, and left for either one hour 

or the duration of the observation period (up to 3 hours).  

 

We assessed fecundity selection on morphological traits in a similar way to our 

analysis of sexual selection, above, estimating standardized linear selection 

gradients (ß) as the partial coefficients of linear multiple regressions of thorax 

length, wing length and pupal mass on the number of eggs laid. As above, we 

eliminated the zero fecundity class to prevent these individuals from skewing 

patterns of covariance among fecund females. Unlike for mate number models, P-

values for this analysis came from the same Gaussian error models that provided the 
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coefficients (i.e., we assumed that fecundity had normal error, even though the 

small sample prevented validation of this assumption). 

 

Females were not observed ovipositing in artificial rot holes positioned either in the 

outdoor or indoor cage environment. Oviposition was triggered only upon sealing 

gravid females into 0.5 to 3 litre freezer bags, with 0.25 to 1.5 litres of wet P. 

sylvestris sawdust. P. abies and B. pubescens did not trigger oviposition. Females 

would begin ovipositing eggs after 1 to 20 minutes of being sealed into the bag.  

 

Females were gravid no sooner than 14 days after first mating. The oviposition 

period in captivity was between 24th June and 24th August. Each female produced 

10 to 50 eggs per clutch, and up to 188 per female (Table 5.5). In 2009, five females 

survived to oviposit resulting in ~463 larvae, and in each of 2010 and 2011, 

fourteen females produced ~800 larvae.  

 

Although there is usually positive directional selection for fecundity in female 

insects, we detected significant negative directional selection for shorter wings, i.e. 

greater fecundity was recorded in females with shorter wing length (whole model R2 

= 0.738, F3,6 = 5.644, P = 0.035) (Fig 5.4, Table 5.6). In fact the coefficients for both 

wing length (ß = -1.022) and pupal mass (ß = -0.261) were negative, although the 

latter was indistinguishable from zero. 
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Rearing captive-bred larvae 

 

Freezer bags of water-soaked P. sylvestris sawdust and B. fallax eggs were sprayed 

with spring water daily but otherwise remained un-manipulated for several weeks to 

avoid harming the eggs and first instars. If larvae had grown sufficiently, i.e. were 

clearly visible (body length > 0.5 mm long), the content of the bags was carefully 

searched, and larvae were counted and transferred into glass microcosms prepared 

with substrate as described above (Table 5.5). Between September and November, a 

random selection of 2nd and 3rd captive bred instars (body length > 1 cm long) were 

transferred to breeding habitat created at each relocation site (84 in 2009, 51 in 2010, 

40 in 2011, Table 5.2).  

 

5.8 Relocation sites and habitat preparation 

 

Three relocation sites were selected based on four main criteria:  

 

1. They were within the species historic range and surveys over a number of years 

had confirmed its absence at the time of relocation.  

2. Sites were of sufficient distance (> 5 km) from existing populations that natural 

colonisation is unlikely.  

3. The site had sufficient suitable habitat and potential for long-term habitat 

supplementation.  

4. The site will receive a long-term (50 years +) commitment to protecting, 

monitoring and supplementing habitat. 
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A standard approach at each site was used to determine the presence of B. fallax and 

the condition of the habitat. Thorough surveys of the area were carried out by means 

of exhaustive searches, emergence traps over rotting pine stumps, and artificial rot 

holes created at least a year in advance, to confirm as far as possible the absence of 

B. fallax within the area for relocation. Thereafter, habitat creation techniques 

varied across sites depending on what habitat was available, as detailed below. 

 

Rothiemurchus Estate 

 

This site is 20 km south from Curr Wood on the privately owned, 3,000 Ha 

Rothiemurchus Estate (57°10’ N, 3°48’ W) (Figure 5.1). Blera fallax was first 

recorded in nearby Aviemore in the late 19th century, and was last recorded in 1942 

(Rotheray & MacGowan 2000). This site was considered suitable for the first 

relocation attempt due to the large number of P. sylvestris stumps available for easy 

habitat creation, and the keen interest of foresters to develop the site for this species 

as part of their biodiversity action remit. 

 

In 2003, holes were cut in 18 stumps within a 500 m2 area using a chainsaw as 

described above. These were filled with pine chips and sawdust, and the hole was 

partially covered with the wedge created in the cutting process. In 2007, C. rufa and 

M. florea were found in 12 of 18 rot holes in Rothiemurchus Estate. Based on 

empty and live puparia found on site, at least 7 C. rufa and 19 M. florea eclosed in 

August and September the same year.  
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In July 2008, two additional groups of holes in stumps were created, spaced one km 

from each other and the original site forming three points of an equilateral triangle. 

While the design was based on groups of available stumps within the area, this 

enabled a first estimate of dispersal ability. The two groups consisted of 46 and 30 

stumps, giving a total of 94 chainsaw-cut rot holes. Fifteen Norway spruce P. abies 

stumps (8 and 7 at each site) were used in addition to P. sylvestris to investigate the 

option of utilising another species of tree to create habitat for B. fallax, the stumps 

of which are large and abundant at the site. These were created in the same way 

using a chainsaw, and filled with pine chips and sawdust.  

  

In 2008, just 4 weeks after boring, C. rufa and M. florea were found in 15 newly 

bored P. sylvestris stumps, as well as in three P. abies stumps. Speghina spp., 

Chalcosyrphus nemorum, Clusoides geomyzinus and Myetophilidae spp. were also 

found in P. sylvestris rot holes (Table 5.4). 

 

In September 2009, 84 captively reared 2nd and 3rd instar B. fallax larvae were 

transferred in groups of 3 into 28 bored P. sylvestris stumps at the most northern of 

the three sites created at Rothiemurchus. This site was chosen because it was the 

greatest distance from the road, and had the greatest number of bored stumps (46). 

In May and June 2010, 95 (M/F 50/45) captively reared adults were released at the 

same site (Table 5.2). In September, 43 first instar B. fallax larvae were found in 12 

stumps, four of which were found in the southwest group 1 km away from the 

release site, demonstrating that mating and oviposition had successfully occurred. 
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In June 2011, thirty additional drill-bored holes were created in P. sylvestris stumps 

at the most northern site (Table 5.1). Between May and June, 48 (M/F 24/24) adults 

were released at the same site in Rothiemurchus Estate, and in September, three 

large larvae were found that were considered to be semivoltine i.e. larvae from the 

previous year developing for two years (Table 5.2; Chapter 2). Surveys indicated a 

total of 37 larvae found at Curr Wood were also semivoltine (Table 5.2). 

 

Abernethy Forest and Dell Woods  

 

The second relocation site was Abernethy Forest National Nature Reserve (57°15’ 

N, 3°40’ W), 8 km south of Curr Wood, owned and managed by the Royal Society 

for the Protection of Birds (RSPB). It extends over 2,800 Ha, two thirds of which is 

native Caledonian forest (Summers et al. 1997) (Figure 5.1). Blera fallax was first 

recorded at Loch Garten in Abernethy Forest in 1934, and was last seen in the same 

area in 1982 (Rotheray & MacGowan 2000). Since then habitat creation in the form 

of plastic pots and bored holes have been tried and tested but no B. fallax larvae 

have been found. Stump habitat in Abernethy Forest is limited, so we had to fell 

trees in order to create enough stumps for hole boring and relocation. 

 

The site selected for relocation was a 10 Ha plantation where P. sylvestris range 

from ~20 to 50 cm diameter (24.67 ± 10.55) (mean ± SD). The site was planted in 

1958, and is close to the last observation site for B. fallax at Loch Garten. In August 

2010, 100 trees of 28 to 40 cm diameter (32.76 ± 2.55), 95 to 131 cm circumference 

(113.61 ± 8.25) were felled. These were distributed evenly across a 10-hectare area. 

They were cut at minimum 28 cm height (63.78 ± 13.02) from the ground in order 
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to insure enough depth for bored holes. The holes were drilled using a generator-

powered drill and 25 mm auger bit. Holes were partially covered using large chain-

sawed slabs from the felled tree, and monitored for water retention over several 

months after creation. Due to a lack of rain and concern over whether the stumps 

would retain water, each hole was filled or topped up using bottled spring water or 

water from Loch Garten one month after boring. We studied the relationship 

between several stump variables (including diameter, circumference, height, and 

hole diameter) and water retention, which was measured as height of water in bored 

hole. In addition to holes in stumps, 10 holes were bored in the side of felled trees to 

attempt an alternative form of habitat creation.  

 

In 2008, only Speghina spp. was found inhabiting the artificial breeding sites 

created at Abernethy Forest. In October and November 2010, 87 % of bored holes 

were retaining water two months after felling and hole boring. No relationship was 

evident between any stump variable measured and water holding capacity. None of 

the holes (n = 10) bored in the side of felled trees appeared to retain water. In 

September 2010, 51 B. fallax larvae were transferred in groups of 3 into 17 holes. In 

April 2011, 10 empty B. fallax puparia and 11 live pupated B. fallax were found 

around the holes. In May and June 2011, 78 adults (M/F 30/48) were released at 

Abernethy Forest (Table 5.2). In September 2011, Speghina spp. larvae (~30) and 

three B. fallax larvae, considered to be semivoltine, were found in bored holes 

(Table 5.2). 

 

SNH-owned Dell Woods is 375 hectares of native pinewood and is part of 

Abernethy Forest, 5 km from Curr Wood (57°15’ N, 3°39’ W) (Figure 5.1). Due to 
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a lack of suitably sized stumps or available P. sylvestris trees for felling, breeding 

habitat was created by sinking 16 plastic pots into the earth and filling them with P. 

sylvestris chips. They were situated every two metres along a transect extending 

from inside the woodland to an exposed area. Surveying here began in 2007 and 

continued annually until 2010. 

 

Four species have been identified inhabiting plastic pots at Dell Woods. These 

include C. rufa, M. florea, Speghina spp and Xylota spp (Table 5.4). No B. fallax 

larvae or evidence of occupation has been found. 

 

Inshriach Forest  

 

The third relocation site was Inshriach Forest, which comprises 3,000 Ha of forest, 

is 8 km south of Rothiemurchus Estate, and is owned and managed by Forestry 

Commission (57°07’ N, 3°53’ W) (Figure 5.1). Like Abernethy Forest, Inshriach 

lacked a sufficient number of large stumps and thus felling was required in order to 

create habitat. A 5 Ha P. sylvestris plantation site was identified where enough 

suitable trees were available for felling and long-term breeding habitat 

supplementation. This site was planted between 1949 and 1950. As part of 

investigating habitat creation techniques, it is important to know if suitable habitat 

can be created as part of normal harvesting rotations. In order to test this, 160 trees 

were felled included two size ranges (20cm and 30 cm diameter), and two height 

ranges (60 cm and ‘normal felling height’ roughly 20 cm or as close to the ground 

as machines allow), duplicated forty times. Both a petrol-powered drill and 

chainsaw (due to logistical and mechanical issues) were used to create holes. Each 
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stump was filled with sawdust created from the boring process and partially covered 

with the bored wedge, or large pieces left from creating the cavity. Felling and hole-

boring were complete by November 2011. Due to a lack of rain, bottled water was 

used to confirm water retention in 10 bored holes, and 40 2nd and 3rd instar larvae in 

groups of 4 were transferred into these holes in November 2011 (Table 5.2).  

 

5.9 Conservation genetics and population supplementation 

 

Supplementation of breeding habitat (minimum 10 new bored rot holes per year), 

and of captively reared larvae and adults will continue at each site as necessary, 

until monitoring shows signs that a self-sustaining population exists. To further 

inform management of these small populations, DNA extracted from B. fallax 

individuals that died in captivity was used to develop microsatellite markers 

(Appendix 4.1). Genetic variation was measured by comparing the Scottish 

population with Swedish B. fallax specimens thought to represent a more outbred 

population (Chapter 4). While the genetic variation was lower in the Scottish 

population than the Swedish, the fitness consequences of this difference are 

unknown. Therefore, on-going monitoring is necessary in order to detect 

detrimental effects such as those from inbreeding (Frankham 1995, 1998, 2005). To 

assist these plans, a preliminary investigation into non-invasive techniques for 

extracting DNA was carried out (Appendix 4.2). Sufficient DNA for microsatellite 

amplification was extracted not only from small pieces of adult tissue such as single 

terminal tarsal segment and wing tips, but also from sections of year-old empty 

puparia (Appendix 4.2).  
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5.10 Discussion 

 

Restoration ecologists must understand the ecology and biology of a species in 

order to create the conditions required for its successful re-establishment. Through 

experiments and observations over the past four years on both the larval and adult 

stages of B. fallax, we have developed important methods to help restore this 

species. Using techniques developed for captive breeding and animal husbandry at 

every life history stage, we have relocated individuals to previously occupied sites, 

and now have data to show successful utilisation of habitat created at two 

previously occupied locations in Scotland. Furthermore, we were able to identify 

adult food plants as mainly coming from the family Rosaceae, and demonstrated a 

minimum dispersal distance of 1 km. As this is the first attempt at conservation 

management of this kind for saproxylic hoverflies, there is little against which to 

compare progress. However, we have met targets set by the SNH SAF and UK BAP 

steering group (Appendix 5.2), and have protocols in place for taking B. fallax 

conservation management forward. 

 

Habitat assessment 

 

Ensuring that suitable breeding habitat is available over space and time is critical to 

the success of restoration and relocation. Genetic and historic evidence suggests the 

population at Curr Wood became recently isolated, probably due to forestry 

practices such as uprooting stumps, re-seeding and burning habitat in the area 

(Worrell & Dunlop 2003). Where B. fallax occurred in the past, intensive or 

unsympathetic management has resulted in large patches of old growth forest being 
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replaced by young plantation trees lacking structural diversity. This probably 

isolated and fragmented B. fallax populations, which eventually died out. Therefore, 

creating suitable breeding habitat was the highest priority. This required studying 

the habitat at the extant B. fallax site, Curr Wood, selecting a relocation site based 

on similar characters, and re-creating enough breeding habitat to re-establish a 

population.  

 

The distribution of larvae in rot holes depends on female oviposition preferences, 

and probably a range of factors affecting detection. Larvae were repeatedly found 

occupying the same superficially similar stump rot holes over up to four years, 

while never found in others. While habitat preferences were not tested directly, the 

time the rot hole was created, and the dimensions of the stump or hole did not 

appear to explain this preference. It may be due to a number of untested factors such 

as resin acids, tree host-related chemistry or rot hole content, or a female’s ability to 

detect some other trait such as differences in surface area within a rot hole or other 

factors that promote microbe abundance (Jonsell et al. 2001; Kainulainen & 

Holopainen 2002). Myathropa florea has been found in more detritus-rich sites, 

suggesting that they are able to select more productive breeding habitat (Srivastava 

& Lawton 1998). Further study through controlled experimental manipulations or 

measures of microbial diversity and abundance would be required to gain a better 

understanding of female oviposition preference. 

 

Blera fallax larvae were never found in plastic pots filled with pine chips and 

sawdust in Curr Wood. Once captive females were sealed in bags containing chips 

and sawdust, oviposition was eventually triggered, so perhaps the volatile chemicals 
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that might attract females to oviposit were too dilute in plastic pots in-situ. 

Oviposition could not be triggered by any other species of tree, including P. abies 

which is known to be inhabited by B. fallax abroad. Blera fallax was not found in 

rot holes created in P. abies, even when filled with P. sylvestris wood chips. Picea 

abies is not native to the UK, which could explain why Scottish B. fallax might not 

be attracted to it. Picea abies also rots far more quickly than P. sylvestris 

(Vollbrecht et al. 1995; Marchetti & metsäinstituutti 2005; Mäkinen et al. 2007). 

Stumps that decay slowly may retain water for longer, which may explain the 

preference for P. sylvestris. In addition, while larvae find enough resources for 

growth in different tree species including P. abies, they do grow faster in P. 

sylvestris, and adults are significantly larger (Chapter 2). Perhaps this is a feature of 

the decaying process and associated microbes in P. sylvestris wood. 

 

Water retention is a central concern when creating artificial rot holes. A large 

percentage of stumps did not retain water in Curr Wood. These stumps were fairly 

old, having remained for 10 years since the last clear fell rotation. As well as 

becoming dry and rotten, it was likely that they had a high number of beetle-

excavated tunnels and holes. At Abernethy Forest, we tested a different form of 

habitat creation by using a drill, which created a smaller hole with less surface area 

and exposure to the elements, but of the same depth (see Appendix 5.3). While 

these holes appear to retain water in the short-term, their long-term suitability is 

unknown. Another species of rot hole dwelling insect (Sphegina spp.) was attracted 

to these holes, and we have evidence from captive release experiments that B. fallax 

larvae develop and overwinter successfully in this breeding habitat, but it remains to 

be seen if this type of hole will attract gravid females. 
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The rot hole environment is prone to temperature fluctuations, reaching -9°C in 

winter. The more exposed rot holes tended to drop to a lower minimum temperature. 

Whether this has any effect on larval survival is not known. Larval occupancy did 

not differ between more exposed rot holes and those within canopy cover, or in the 

vicinity of the woodland edge. Temperatures were milder, though not significantly 

so, in plastic pots sunk into the earth compared to an exposed stump rot hole, but 

whether this trend explains the lack of colonisation of plastic pots is unclear.  

 

Adult emergence traps caught few flies. This may be explained by the tendency of B. 

fallax larvae to develop quickly and move out of and away from the stump before 

winter (Chapter 2 and 3). Dipteran larvae can move more than 30 metres in search 

of a suitable place to pupate (Hagstrum & Subramanyam 2010). This may be part of 

their natural ‘wandering’ phase triggered by a critical size threshold. At this time, 

they conserve energy over the winter by entering into a stasis or diapause phase in 

the surrounding vegetation. There may be additional survival advantages associated 

with this behaviour such as avoiding detection by parasitoids (Hagstrum & 

Subramanyam 2010; Chapter 3); B. fallax has one known predator, the parasitic 

Rhembobius perscrutator Thunberg (Hymenoptera, Ichneumonidae) which is a 

generalist parasitoid of syrphid pupae (Rotheray & MacGowan 2000).  
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Captive breeding 

 

By 2007, it was apparent that only one population of B. fallax survived in the wild 

in the UK. Therefore, the decision was taken to attempt captive rearing to boost 

numbers and provide material for relocations.  

 

One problem encountered when keeping adults in cages was the provision of water. 

In the outdoor cages, both males and females spent time in the ground vegetation, 

probably in search of water. Rain and damp earth alone may not be enough to 

provide drinking water for hoverflies restricted to cages during warmer, drier 

periods. Adults were only observed drinking water in the indoor cages once it was 

sprayed in areas they were likely to visit due to the heat and light. Developing better 

techniques of providing water, pollen and nectar for adult hoverflies would probably 

improve their survival in captivity. Because indoor cages allow better control over 

thermal and humidity conditions, greater capacity for monitoring survival and 

condition of adults, and greater ability to re-capture females for oviposition, this 

was our most effective way to captive breed B. fallax. 

 

Through captive breeding, we were able to observe B. fallax behaviour and 

reproductive biology, none of which has been reported previously. Females mated 

up to nine times, and copulation duration tended to increase with the number of 

copulations. This is not unusual in insects when competition causes males to 

attempt displacement of sperm stored from previous copulations (Price et al. 1999; 

Snook & Hosken 2004). Males with greater thorax lengths were also more 

successful in copulating with females, which corresponds to sexual differences in 
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development as shown in Chapter 2 where experiments on larval growth suggest 

that for males, thorax length is more important than risks involved in taking longer 

to develop. Male size may be related to or important for mate-seeking behaviour; 

males were observed holding temporary territories in outdoor cages, but we did not 

observe overt aggression between males that might favour larger individuals in 

contests. Where mating takes place in the field is unknown. While other saproxylic 

flies (e.g., Neriids and aspen hoverflies, Preston-Mafham 2001; Rotheray et al. 

2009) gather at the breeding site, we never observed male B. fallax defending or 

attending pine stumps in the field. 

 

Data from the small number of females induced to oviposit eggs shows that shorter 

wings correlate with fecundity. Most studies show insect wing and thorax size 

positively correlating with fecundity (Grimaldi & Jaenike 1984; Honěk 1993; Nylin 

& Gotthard 1998; Armbruster & Hutchinson 2002). Our finding could be an 

experimental artefact brought about by difficulties in providing the appropriate 

conditions for oviposition and low sample size. Inducing oviposition took two 

weeks after the first mating, and was not achieved by any other means than sealing 

females in bags full of wet pine sawdust. This suggests the conditions provided are 

not ideal, which may also explain low female survival to oviposition (26% in the 

first year, 47 % in the second and third year). It would be useful to study 

vitellogenesis, egg retention and oviposition in future years, should the population 

become healthy enough, to determine whether the negative covariance between 

wing length and fecundity reflects genuine selection or not. 
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The status of the relocation and conservation management  

 

Relocations appeared to be initially successful, particularly the first release at 

Rothiemurchus in 2009. Over 40 new larvae were found in artificially created rot 

holes up to one km from the release site demonstrating successful survival, mating, 

local dispersal and oviposition. Unfortunately, 2011 appears to have been a very 

poor year for B. fallax at all sites, including the sole natural wild population at Curr 

Wood. No new larvae were found at any B. fallax site in 2011, the surviving 

populations consisting solely of larvae that were developing over two years. This 

suggests a complete failure of adult breeding at all sites, perhaps due to cold and 

wet weather during the adult breeding season. Large population fluctuations due to 

stochastic events are not uncommon in insects. Blera fallax may have a bet-hedging 

strategy in order to cope during these adverse periods involving a number of larvae 

developing over two years regardless of growth conditions (Chapter 2). However, 

with the current precariously low population size, bust periods could readily drive 

the species to extinction.  

 

The success of re-establishment depends on on-going management at relocation 

sites and at Curr Wood, where expansion and supplementation of the breeding 

habitat is imperative. This requires long-term cooperation of landowners and 

managers implementing informed, conservation based practices. Management for B. 

fallax is inexpensive, and can probably fall in line with normal harvesting rotations. 

This is currently being investigated at Inshriach Forest. While harvesting procedures 

often already involve leaving a number of tall stumps to create diversity of habitat 

structure and habitat for nesting birds (Summers 2007) stumps are still being 
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unnecessarily treated with fungicides. Recommendations for habitat creation will 

include refraining from this practice as well as providing tall stumps for hole-boring 

(Appendix 5.3).  

 

The overlying feature of Rothiemurchus Estate, Abernethy Forest and Inshriach 

Forest is that these areas are cultural landscapes or owned or under management 

actions that aim at conserving and increasing biodiversity using a level of intensive 

management that would be uneconomical for commercial forestry. Commercial 

thinning continues in Curr Wood, the most recent round of which aimed to remove 

up to 30% of the trees in January 2012. Although the future of the site is uncertain, 

short-term viability of B. fallax habitat has been assured (A. Elliot, pers. comm.). 

Management plans for the next few years involve expanding breeding habitat in the 

5-mile radius around Curr Wood, which covers 1000 Ha of woodland managed by 

Scottish Woodlands. The intention is also to link up pockets of woodland such as 

the community-owned Ellan Wood in Carrbridge where habitat creation has already 

begun.  

 

Monitoring 

 

Having an effective means to measure abundance of any endangered species is 

essential to monitor population trajectories, the effectiveness of management actions, 

and to measure the impact of environmental change. There are many advantages to 

concentrating on the early, more abundant larval stages rather than the elusive 

adults when monitoring species that are rare and difficult to find (Rotheray et al, 

2001). Based on our findings on B. fallax larval phenology, optimal detection time 
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is late summer (August to September). Often empty puparia are the only evidence 

found for B. fallax occupancy, especially because natural habitat, which often 

extends deep into the roots of pine stumps, is difficult to search (Rotheray & 

MacGowan 2000). We may also be able to monitor the genetic health of populations 

by extracting DNA from empty puparia (Appendix 4.2). Acquiring DNA in this 

way will also facilitate monitoring of captive bred populations, where non-invasive 

sampling methods are required to prevent the inadvertent mortality of rare captive 

specimens.  

 

Conservation significance 

 

Blera fallax is one of many saproxylic organisms, a group which also includes 

diverse invertebrates, fungi and micro-organisms that recycle minerals and nutrients 

and are part of a complex, and often specialised, community of decomposers. This 

resource and its community are now recognised as fundamental to forest function 

through critical processes such as nutrient cycling (Grove 2002; Schmuki et al. 

2006). Saproxylics can be used as bio-indicators of site quality, and thus indicators 

of forests of conservation importance (Speight 1989). Blera fallax meets the criteria 

as an indicator species as it is associated with a tree species that is characteristic of a 

particular woodland type (native boreal forests of the northern hemisphere), it is 

dependent on dead wood and is excessively localised (Speight 1989). In addition, 

unlike the adults, the larvae are relatively easy to find and recognise; hence B. fallax 

is suitable to play a role as a flagship species. Blera fallax is also found in 

association with a range of other saproxylic Diptera that will benefit from 

management promoting mature timber or old growth forests.  
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Saproxylic organisms have suffered from unsympathetic forest management 

involving the removal of dead trees because fallen branches, trees and stumps 

obstruct forest management and are thought to be potential sources of outbreaks of 

pest species (Schiegg 2001). Stumps are not only destroyed by forestry operations 

in plantation woodlands, but are being removed for re-seeding, and even used for 

biofuel (Walmsley & Godbold 2010). The pine stump habitat is not only important 

for rot hole dwelling species, such as most of those found in association with B. 

fallax in this study. The larvae of Xylota jakutorum (Dipetera, Syrphidae) are known 

to develop in the borings of the pine weevil Hylobius abietus (Coleoptera, 

Curculionoidea) in conifer stumps (Rotheray & Stuke 1998). Others include 

Microdon mutabilis (Diptera, Syrphidae) and their associated Formica lemani 

(Hymenoptera, Formicidae) ant colonies, mason bees such as Osmia unciniata 

(Hymenoptera, Megachilidae), the UK Biodiversity Action Plan species twinflower 

Linnaea borealis, and a range of lesser-known wood decaying fungi, lichen, mosses 

and bryophytes (Lonsdale et al 2008). Forestry in the UK now includes retaining 

deadwood, including stumps, as part of their guidance and good practice, however 

widespread understanding and appreciation of the biodiversity importance of 

deadwood is needed (Forestry Commission 2002).  

 

Conclusion 

 

Well-managed breeding programmes as properly integrated components of wider 

efforts have good conservation potential. This study is a significant example of the 

benefits, as well as tribulations, of captive breeding in invertebrate conservation.  
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The main difficulty is often that there are few analogous studies and very little 

background information, unlike the case for most vertebrates. But this study is an 

example of what can be achieved in four years of focused research, in cooperation 

with foresters, landowners and managers, to re-establish an endangered insect. 



Table 5.1 Artificial habitat created at six sites over eight years.  
 

 Number of artificial rot holes created 

Sites 2003       2007 2008 2009 2010 2011 Total

Curr Wood 52       17 15 60 50 194

Anagach Wood 10       25 35

Rothiemurchus Estate 18       43 30 30 121

Abernethy RSPB        100 10 110

Dell wood SNH        16 16

Inshriach FC        160 160
 
 
Table 5.2 Maximum larval abundance per year at each site (N) and number of adults (released between May and July) or larvae (L) (released between September and 
October) (R) at each site.  
 
  

          
2007 2008 2009          2010 2011 

Site Owner/Manager N N N Released Released N Released N

Curr Wood Private 35 109 142 0 10 (5/5)* 111 24 (8/16)* 37 

Anagach Wood Community owned 0        

        

0 0 0 0 0 0 0

Rothiemurchus Estate Private 0 0 0 84 (L) 95 (50/45)* 43 48 (24/33)* 3 

Abernethy Forest RSPB - 0 0 0 51 (L) - 78 (30/48) * 3 

Inshriach Forest Forestry Commission - - - - 0 0 40 (L) -
- not surveyed  * Males/Females  
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Table 5.3 Pine stump and rot hole dimensions for those occupied versus those never occupied by B. fallax through 2007 until 2011 at Curr Wood. 
 
Pine stump and rot hole dimensions Occupied by B. fallax Not occupied by B. fallax 

Circumference (cm) 153.84 ± 17.86  128.42 ± 35.3 
Height (cm) 34.96 ± 12.88  

  
  

  

29.84 ± 14.4 
Hole depth (cm) 13.32 ± 6.22 13.04 ± 4.9 
Hole opening area (cm2) 256.02 ± 67.35 204.54 ± 110.3 
pH 5.06 ± 0.27 5.13 ± 0.28 
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Table 5.4 List of species or groups of species, description (and any listed status), locality and biology, found in association with habitat created for B. fallax. 
 
Species Description  Locality Biology

Callicera rufa Diptera, Syrphidae Rot hole Scottish coniferous woodland; saproxylic larvae; rot 
holes and water-filled cavities in conifers 

Chalcosyrphus nemorum Diptera, Syrphidae  Rot hole Deciduous woodland; saproxylic larvae; decaying sap 
under fallen wood 

Microdon spp. Diptera, Syrphidae  Emergence trap Coniferous woodland; larvae predatory in ant nests in P. 
sylvestris stumps 

Myathropa florea Diptera, Syrphidae Rot hole Deciduous and coniferous woodland; saproxylic larvae; 
holes and water-filled cavities 

Sphegina clunipes Diptera, Syrphidae Rot hole Deciduous and coniferous woodland; saproxylic larvae; 
decaying sap under bark and water-filled cavities 

Sphegina sibirica Diptera, Syrphidae Rot hole Pine woodland; larvae probably saproxylic under bark of 
decaying wood 

Clusiodes geomyzinus Diptera, Clusiidae (BAP species) Rot hole Coniferous woodland; saproxylic larvae; decaying fallen 
branches and stumps water-filled cavities 

Mycetophilidae spp. Diptera, Mycetophilidae  Rot hole Deciduous and coniferous woodland; saproxylic larvae; 
fruiting fungi and water-filled cavities 

Rhembobius perscrutator Hymenoptera, Ichneumonidae Emergence trap Parasitoid of large Cyclorrhaphan Diptera puparia 

Sericomyia lappona Diptera, Syrphidae  Emergence trap Wet woodlands and moorland; saproxylic larvae; peaty 
pools and boggy streams 

Rhingia campestris Diptera, Syrphidae  Emergence trap Saproxylic larvae; animal dung, silage and decaying 
organic matter 

Helophilus pendulus Diptera, Syrphidae Emergence trap Wet habitats; saproxylic larvae; pools and stream sides 

Xylota segnis Diptera, Syrphidae  Rot hole Saproxylic larvae; wet decaying organic matter 
including water-filled cavities and compost heaps 
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Table 5.5 Life history, fecundity, and oviposition, B. fallax larval and adult rearing requirements. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Estimated (due to unknown individual 1st instars), and based on univoltine life cycle (see Chapter 2) 

Life history   Days Range
Time from oviposition to 1st visible instar 24th June to 15th July 21 21 - 45 
Time from visible instar to final instar 24th June to 16th June 326 28 – 326* 
Pupation period 15th April to 16th June 62 13 - 36 
Time from first instar to adult 16th July to 11th May 415 270 - 357* 
Emergence 11th May to 30th June 41  
Flight period 11th May to 24th August 105 7 - 105 
Time from emergence to mating 11th May until 27th June 47 11 - 30 
Time from emergence to oviposition 11th May to 10th July 60 14 - 30 
Oviposition 24th June to 24th August 61 5 - 61 
Maximum recorded adult age 31st May to 24th August 86 7 - 86 
 
Biology    

  
  

   

Fecundity  188 maximum eggs per female 5 -188  
Oviposition stimuli Water soaked P. sylvestris sawdust (0.5 L) 
Early instar mortality 24 %*1

Late instar mortality 4 %*1

 
Rearing/dietary requirements 
Larval Minimum 40 ml P. sylvestris sawdust + 70 ml water per larva 

Adult Pollen + nectar (particularly Rosacea) + dilute honey solution 
and water 

*1 Based on mortality in 2009 larval growth conditions                                                                                                                                                                                                                  
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Table 5.6 Standardized linear selection gradients (ß) for male and female mating success, and female fecundity, for a small number of caged Blera fallax. All 
coefficients and standard errors come from Gaussian linear models featuring standardized thorax width, wing length and pupal mass. P-values were obtained from 
generalized linear models with Poisson error distribution. 
 
 Male mating success Female mating success Female fecundity 
Trait             ß SE z P ß SE z P ß SE t P
Thorax length             0.593 0.259 1.699 0.089 -0.144 0.697 -0.282 0.778 0.222 0.283 0.786 0.462
Wing length             -0.165 0.253 -0.512 0.609 0.195 0.658 0.389 0.697 -1.022 0.269 -3.794 0.009
Pupal mass             0.192 0.192 1.056 0.291 0.237 0.251 1.158 0.247 -0.261 0.259 -1.007 0.353
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Figure 5.1 Map illustrating extant B. fallax sites Curr Wood and Anagach Wood, and relocations sites Rothiemurchus Estate, Abernethy Forest (and Dell Wood), and 
Inshriach Forest 
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Figure 5.2 Average monthly maximum and minimum air temperature over time at site 1 (Curr Wood) and separate graphs for maximum and minimum temperatures in 
each rot hole type; exposed site 1, ES1; plastic pot site 1, PS1; exposed site 2 (Rothiemurchus Estate), ES2; and Unexposed site 1, US1. 
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Figure 5.3 Outdoor cage for captive breeding and observing behaviour of B. fallax constructed using white cotton netting (for the roof and door) and polyethylene 
mesh (for the walls) over a polypropylene frame (roughly 195cm height, 375cm length, 90cm width) (left) and indoor cages (45 x 45 x 60 cm) constructed using white 
cotton netting, malleable wire and ten linked strip lights (90cm, 21 Watt fluorescent bulbs) (right).  
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Figure 5.4 Added variable plots illustrating the partial effects of A) male thorax length on relative male mating success; B) female thorax length on relative mate 
number; and C) female wing length on relative fecundity. 
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Appendix 5.1 

Restoring the endangered Pine hoverfly, UK 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the: Global Re-introduction Perspectives: 2010 
IUCN/SSC Re-introduction Specialist Group (RSG). Edited by Pritpal S. Soorae  
Published as: 
 
Rotheray E.L. (2010) 'Restoring the endangered pine hoverfly in the UK' In: Global 
Re-introduction Perspective: 2010. IUCN/SSC Re-introduction Specialist Group & 
Environmental Agency (ed. Soorae, P.S.), 21-24 
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Introduction 

 

The endangered status of the Pine hoverfly (Blera fallax) (Diptera, Syrphidae) was 

confirmed in 1999 after a 12-year investigation (Rotheray & MacGowan, 2000). 

The study concluded that the species had probably existed in the British Isles for 

several millennia, but that in the last hundred years it had declined in distribution 

from eight to just two known sites, both confined to the central highlands of 

Scotland. In 1999, the pine hoverfly was listed in the UK Red Data Book as 

category 1 (endangered), it is also a UK Biodiversity Action Plan priority species, 

and is one of 32 species listed in the Species Action Framework (2007), a Scottish 

Natural Heritage (SNH) initiative which focuses on improving the status of species 

deemed significant to overall Scottish biodiversity. Very little is known about the 

ecology of the pine hoverfly. In particular the elusive adults are very difficult to 

find; during the 12-year study no adults were observed (Rotheray & MacGowan, 

2000). However breeding sites were identified where larval stages could be found 

and intervention is essential if we wish to safeguard UK populations of this species. 

In 2008 the first attempts were made to re-locate the pine hoverfly to its historic 

sites in Scotland.  

 

Goals 

 

Goal 1: Identify at least two potential re-location sites within the species’ historic 

range. 

Goal 2: Increase breeding resources at re-location sites. 

Goal 3: Establish populations of pine hoverflies at two re-location sites. 

Goal 4: Carry out annual monitoring to record progress and prepare additional sites 

to link populations. 

 

Success Indicators 

 

Indicator 1: Self‐sustaining populations established at re-location sites. 

Indicator 2: Distribution of the pine hoverfly extended in Scotland. 
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Project Summary 

 

Feasibility: In Scotland the Pine hoverfly’s preferred habitat is Scots pine (Pinus 

sylvestris). It is a specialist saprophage: it develops in rotting pine stumps. Heart rot 

fungus (Phaeolus schweinitzi) attacks the centre of the tree causing it to weaken, 

fall and snap at the base revealing a hole that fills with rain water, and it is in this 

cavity that the larvae filter feed. Currently in Scotland this micro-habitat is rarely 

found in native pine woodlands due to a lack of veteran and senescent trees. The 

remaining populations survive in non-native plantations where rot holes are formed 

in pine stumps left vulnerable to decay after felling. It is possible to create breeding 

sites by boring holes in stumps, filling them with pine chips or sawdust and 

allowing the rain to fill the cavity. Habitat creation in this way began in the 90’s and 

proved successful for a closely related species, Callicera rufa (MacGowan, 1994). 

In 2003, the same methods were used at pine hoverfly sites and by the following 

year it was confirmed to have been similarly effective (Rotheray, 2006). Due to 

these simple, swift and inexpensive methods of management, re-locating this 

species to historic sites in Scotland is a practical option, which appeals to site 

owners and managers alike. The pinewood sites proposed for re-location are historic 

sites for the pine hoverfly with a characteristic ground flora and associated shrubs. 

These plants, particularly rowan (Sorbus aucuparia) provide food for adults in the 

form of pollen and nectar. At these sites, the pine wood habitat has improved since 

the last records of the pine hoverfly due to the positive management actions under 

the influence of the SSSI (Sites of Special Scientific Interest) and SAC (Special 

Areas for Conservation) designations, which cover the sites. Both sites have 

included provision of artificially created rot holes as part of their agreed long term 

forest planning. 

 

Implementation 

 

The number of individuals to be released at re‐location sites is under investigation 

and the implementation process is being developed and agreed between the BAP 

coordination group and the Species Action Framework management group. Rather 
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than directly transferring individuals from one site to another, in June 2009 an 

attempt to captive breed the pine hoverfly was made. This species had never 

previously been bred in captivity and this type of re-location of a saproxylic insect 

has never been attempted anywhere in the world. In November 2008, fifty larvae 

were removed from the wild and reared in captivity in jars filled with water and 

pine wood chips. In June 2009, thirty-eight of them emerged as adults and were 

split between one large on-site cage (designed to observe adult behaviour in a more 

natural setting) and four small indoor cages. Over a period of 2 months the captive 

adults were successfully fed on pine woodland associated flora, mated in on-site and 

indoor cages, and several females oviposited a total of about 460 eggs, of which 

roughly 300 larvae have survived to date. Although both cage methods were 

successful, the smaller indoor cages are considered more advantageous due to the 

greater amount of control, protection and ease of assembly. In October 2009, 85 of 

the captive bred larvae that had reached the final stage in development were 

transferred to 28 bored stumps at one of the new sites where three groups of 30 

bored stumps had been created within a kilometre of each other. In June 2010, 95 

adults were released at the same site and the remainder entered into a second 

generation of captive breeding. To avoid inbreeding and 2nd generation habituation 

(adaptation to captive conditions) individuals from the original site will be included 

in captive breeding efforts during 2010. Although recent surveys show that the 

removal of 50 larvae from the original population has not had a measurable negative 

affect on the population, it is proposed that of the captive bred stock 50 adults will 

be released at the original site in 2011 to supplement the population. 

 

 

Post-release monitoring 

 

The relocation site is being monitored monthly and each larva that is located is 

photographed to follow development. Sixty percent of the released larvae were 

found in the cut stump holes four weeks after release. Eight weeks after release, a 

total of 15% were located in the holes. It is known that during winter, fully 

developed larvae of the pine hoverfly tend to move out of the water and into leaf 

litter on the ground or into deep cracks in the stumps where they are very hard to 

locate, while smaller larvae remain in the holes and complete their development in 
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spring. This may explain the low numbers of larvae remaining in holes. In August 

2010, 43 new B. fallax larvae were found in 12 stump holes we created, four of 

which were 1 km away from the site they were released.  

 

Major difficulties faced 

 

Because of the lack of scientific research on the ecology of this species, in particular 

the adult requirements for feeding and breeding, much of the project involved trial 

and error. 

Lack of large pine stumps for habitat creation (holes cut in small stumps tend to 

only temporarily hold water). 

 

Major lessons learned 

 

New understanding of insect husbandry, in particular the ability to rear adult flies in 

small indoor cages while utilising large outdoor cages to investigate pine hoverfly 

behaviour. 

 

Success of project 

Reason(s) for success/failure 

 

Having started in November 2008, the re-location of the pine hoverfly is in its early 

stages. As yet we do not know if the population at the re-location site will establish 

itself, however having found a new generation of larvae there, this has been taken as 

an indicator of success at this preliminary stage. 
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Appendix 5.2 

Actions and performance targets for the Species 

Action Framework (SAF) plan to manage the Pine 

hoverfly 
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Actions and performance targets for the SAF plan to manage the Pine hoverfly  
 
Action 1. Ensure the maintenance of viable populations. 
Performance measure: minimum number of breeding locations maintained at 2007 
levels, to end of project. 
 
Action 2. Increase the amount of breeding habitat  
Performance measure: double the number of active breeding locations by 2009. 
 
Action 3. Increase the range from 2 to 5 localities by 2012. 
Performance measure: three new localities stocked with larvae by 2011. 
 
Action 4. Develop techniques for using artificial breeding sites. 
Performance measure: demonstrate increased productivity of individual breeding 
sites to 2011. 
 
Action 5. Monitoring effectiveness of actions and reporting outcomes. 
Performance measure: populations monitored to end of project. 
 
Action 6. Investigate autecology particularly larval survival and adult dispersal. 
Performance measure: detailed understanding fed into more effective management 
by 2010. 
 
Action 7. Develop partnerships with site owners and others. 
Performance measure: three new localities stocked with larvae by 2011. 
 
Action 8. Prepare guidance material on habitat management. 
Performance measure: guidance material produced by March 2010. 
 
Action 9. Manage the project effectively.  
Performance measure: project managed effectively with reports, meeting and 
reviews, to end of project
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Forest Operations and Guidance for conserving 

the Pine Hoverfly Blera fallax 

 

 208



Forest Operations and Guidance for conserving the Pine Hoverfly Blera fallax  
 
Summary: 
 
The Pine hoverfly Blera fallax is a 
saproxylic insect dependent on Pine 
Pinus Sylvestris. It is endangered in 
the British Isles, and active 
conservation is managed under the 
Scottish Natural Heritage Species 
Action Framework. The larval stage 
of this insect develops in water-filled 
rot holes which occur naturally in 
broken or wind blown trees and also 
in mature pine tree stumps. However 
due to the removal of of stumps and 
felling policies in the past, B. fallax 
breeding habitat has become 
extremely rare. 
 

 

 
The Pine hoverfly Blera fallax

 
In the British Isles, the few remaining population of the Pine hoverfly occur 
Strathspey, Scotland. Captive breeding and re-location projects are underway to 
expand the species distribution to previously occupied sites: Rothiemurchus Estate, 
Abernethy Forest, Glenmore Forest and Ishriach Forest. 
 
 
Aim: Incorporate Pine hoverfly habitat creation into standard forestry management 
and its promotion in forestry best practice guidelines. 
 
 
Habitat creation: Refrain from using chemical treatment on stumps. Create rot 
holes by boring holes into pine stumps using either a chainsaw or drill. Retention of 
water is vital and this is optimised by boring into the heartwood centre only 
(normally no more than ~10 cm diameter wide in the centre of a stump).  
 

 
Stump and hole specifications 
(cm) 

Stump Height 30 to 60 
Stump Width > 25 
Hole Width 10 x 10 
Hole Depth 15 

 209



 
Drill-boring rot holes: Using a petrol powered drill and 25mm auger bit, make 
~10cm diameter circular holes by boring repeatedly into the stump resulting in a 15 
cm deep cavity occupying the heartwood centre. Fill the cavity with sawdust created 
in the boring process.  
 
 
Chainsaw-boring rot holes: Make two parallel, 15cm deep cuts into the surface of 
the stump positioned either side of the heartwood centre roughly 15 to 20 cm apart. 
Make two further cuts, perpendicular to and connecting the initial cuts to complete a 
square on the surface. Make these at 45º angles into the centre of the stump to join 
at a ~15cm deep point boring out a triangle-shaped wedge. Fill the cavity with 
sawdust created in the boring process, and place the triangle wedge partially over 
the hole to protect the content from evaporating while allowing rainwater to fill the 
cavity.  
 
 

  
Bored rot holes created using a chainsaw (left) and drill into the heartwood (right) 
 
 
Distribution and supplementation: Habitat creation must be done annually (10 to 
20 holes bored) to account for holes that don’t retain water, and attempts must be 
made to link up and create continuous areas of habitat within 1km distances. 
 
 
Identification and biology: Pine hoverfly larvae have long breathing tubes, which 
they telescopically extend to breathe while feeding deep in the rot hole. They can be 
found in rot hole between July and May however the best time to survey is 
September. Most often they develop within a year, and are on the wing between 
May and July. 
 
 
Table showing dates and time of four different stages of life history  

* based on adults in captivity 

Life history Date Number of days (range) 
Larval development in rot holes 24th June to 16th June 28 to 326+ 
Pupation period 15th April to 16th June 13 to 36 
Adult emergence period 11th May to 30th June 50 
Adult flight period 11th May to 24th August* 7 to 105 
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Pine hoverfly larva (left) and developing puparia in moss (right) 
 
 
Larvae: Larval body length (not including breathing tube) varies from 2 mm (1st 
instar) to 16 mm long (final instar). They can be identified based on two main 
characters. 1. A completely white, extendable breathing tube with brown tip. 2. An 
arch of moustache-like anterior spicules.  
 
 

  
Pine hoverfly larva showing arching moustache-like spicules (left) and four most common species 
found in a pine rot holes: from left Myathropa florea, the Pine hoverfly Blera fallax, Speghina 
clunipes and Callicera rufa (right). 
 
 
Adults: From the head to wing tip adults measure 1.2 cm. Adults mainly feed on 
Rowan Sorbus aucuparia but will feed on a variety of pine wood associated flora 
such as Greater Stitchwort Stellaria holostea, Umbellifers (Apiaceae), Bedstraw 
(Rubiaceae), Dog-Rose Rosa canina and Buttercup (Ranunculaceae). 
 
 
References and sources of information 
 
Rotheray E.L. (2010) 'Restoring the endangered pine hoverfly in the UK' In: Global 
Re-introduction Perspective: 2010. IUCN/SSC Re-introduction Specialist Group & 
Environmental Agency (ed. Soorae, P.S.), 21-24. 
 
Malloch Society Website 
 
www.mallochsociety.org.uk/blera-2006-status 
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Chapter 6 

6 Mark recapture estimates of dispersal ability 

and observations on the territorial behaviour of 

the rare hoverfly, Hammerschmidtia ferruginea 

(Diptera, Syrphidae) 
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6.1 Abstract 

 

In order to effectively manage habitat for fragmented populations, we need to know 

the capacity of species to colonise unoccupied habitat patches. Dispersal is vital in 

maintaining viable populations in increasingly fragmented environments by 

allowing re-colonisation of areas in which populations have gone extinct. The 

endangered aspen hoverfly Hammerschmidtia ferruginea (Fallén, 1817) (Diptera, 

Syrphidae) depends on a limited and transient breeding habitat: decaying aspen 

wood Populus tremula L. (Saliaceae). Conservation management for H. ferruginea 

involves encouraging aspen expansion across Scotland, and ensuring retention, 

maintenance and continuity of dead wood where H. ferruginea has been recorded 

and in areas that may link populations. In order to do this effectively we need to 

know how far H. ferruginea can disperse. By taking advantage of the tendency of 

adults to group on decaying aspen logs, we estimated dispersal ability through mark 

and recapture techniques. In the first year, 1,066 flies were marked as they emerged 

from aspen logs and 78 were re-sighted at artificially-placed decaying aspen logs, 

one of which was 4 km from the release site along a transect including “stepping 

stones” of breeding habitat separated by 1 km. In the second year, of 1,157 

individually marked flies, 112 were re-sighted and one was observed 5 km from the 

release site with no intermediately spaced stepping-stones of breeding habitat. 

Aspen logs are probably important mate-seeking sites, which should be left 

undisturbed during the flight period between early May and late July. Territorial 

behaviour was recorded at all (19) decaying aspen log locations. In total, 72 males 

were recorded defending territories, which overlapped with 68% of female 

oviposition sites. Male dispersers had longer wings, and males recorded in territorial 
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disputes on aspen logs had longer thoraces than the average for re-sighted and total 

emerged males. While these results show H. ferruginea is capable of locating 

decaying logs up to 5 km away, most dispersing individuals (68%) were recorded at 

1 km, which should be taken into account in developing management protocols. If 

enough dead wood is available it should be distributed within a radius of 1 to 2 km, 

and where possible, as stepping-stones linking up aspen woodlands. 
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6.2 Introduction 

 

In the UK, the aspen hoverfly Hammerschmidtia ferruginea is listed in the UK Red 

Data Book as a category 1 (endangered) species, and it is included in the UK 

Biodiversity Action Plan (UKBAP). It is listed as an indicator of internationally 

important forests, and is rare throughout its Holarctic distribution (Speight 1989, 

2008). Hammerschmidtia ferruginea is considered a flagship species for a group of 

13 other rare and similarly endangered Diptera in Scotland that all depend on aspen, 

Populus tremula L. (Salicaceae) (Rotheray 2001).  

 

Since 1999 the number of UK sites occupied by H. ferruginea has decreased from 

15 to 8 (Rotheray et al. 2009). The main reason for this decline is probably that it is 

a specialist saprophage depending on a rare and temporary resource: decaying 

cambial layers under bark of dead aspen wood. From the time a tree falls or a 

branch breaks off, it can take up to two years for the cambial layers to become 

suitable for larval development and, depending on its size and location, a piece of 

wood with cambial decay can last from just one to three years before drying out 

(Rotheray et al. 2009). During periods when habitat is in short supply, H. ferruginea 

can also develop in small pockets of decaying sap that exude from damage on living 

trees (Rotheray 1991). In the UK there are few aspen woodlands large enough 

(>100 trees) to maintain a constant input of dead wood, and in Scotland where some 

large groups of aspen stands exist, unpredictable winds and storms are the chief 

cause of fluctuations in the amount of dead wood present.  
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As part of the UKBAP process, strategies must be designed for the restoration, 

protection and monitoring of H. ferruginea. Conservation management involves 

encouraging the expansion of aspen and insuring continuity of deadwood (Rotheray 

et al. 2009). This includes detecting the quantity and state of decay of dead aspen 

wood at all H. ferruginea sites and supplementing breeding habitat as necessary by 

severing branches or whole trees (Rotheray et al. 2009). In order to plan this 

effectively we need to know how far individuals can disperse. In 2006, a mark and 

recapture experiment estimated the dispersal ability of H. ferruginea at no less than 

1 km, but the hoverfly was considered to be capable of moving further than this 

based on known distances of up to 4 km between populated sites (Rotheray et al. 

2009). Therefore, we carried out a two-year project to specifically investigate the 

dispersal ability of H. ferruginea. In addition to this, breeding sites were evaluated 

for their utilisation as mate-seeking sites, a gap in the known ecology of this 

endangered hoverfly.  

 

6.3  Methods 

 

Field site 

 

The study involved surveying H. ferruginea localities in Strathspey as described by 

Rotheray et al. (2009). Dispersal experiments took place at Insh Marshes National 

Nature Reserve (NNR), Inverness-shire, Scotland (57°05’ N, 3°58’ W), which is 

owned and managed by the Royal Society for the Protection of Birds (RSPB). The 

reserve is primarily a wetland floodplain with wet woodland fringed by birch Betula 

pubescens and aspen at higher elevations.   
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6.3.1 Distribution and habitat quality 

 

All aspen woodland sites were located using aerial photographs of the area, which 

identify aspen due to its tendency to flush later in the year than more common 

species such as Betula spp. (Kouki 2008). These were surveyed for decaying aspen 

wood and early larval stages of H. ferruginea in order to avoid any bias within the 

experimental areas, and build a basic distribution map of Strathspey populations. 

Survey methods for larvae and puparia were those described previously by Rotheray 

et al. (2009). 

 

Dispersal experiments 

 

Two experiments were carried out between May and August 2009 and 2010. The 

first sought to investigate dispersal ability using decaying aspen logs set out from a 

central point at 1 km intervals to a maximum of 4 km. The second experiment was 

designed to estimate maximum dispersal ability from 1 to 7 km, and to assess 

morphological differences between dispersers (those observed at 1 km +) and non-

dispersers (those only observed at the release location), and males defending 

territories on the logs. Data on emergence, size differences and sex ratio over time 

were also assessed in both years. 
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6.3.2 Experiment 1: stepping-stone dispersal ability 

 

In 2008, nine aspen trees were felled on private land local to Insh Marshes, and 

donated to the reserve to provide habitat for H. ferruginea. These were cut into 

twenty logs of similar length (mean 113 ± 26.7 SD cm) and width (32 ± 7.4 cm). In 

2009, two 3 km and one 4 km long transects were set up using decaying aspen logs 

extending out from a central location at ~120° angles from each other, pointing 

south, northwest and northeast (Fig 6.1). Two logs were positioned at the central 

meeting point of the transects, and at 1, 2 and 3 km “stepping stone” points along 

each transect. One additional log was positioned at 4 km on the NE transect. We 

conducted extensive searches to confirm no other decaying aspen branches or logs 

were within 1 km of the experimental area. 

 

From the 14th May until 24th June, emergence traps were constructed over six 

decaying fallen or severed aspen on and around Insh marshes. The traps were 

simple constructions using pesticide-free mosquito netting and malleable fence wire. 

Each trap was checked for emergence every morning and afternoon, between 7am 

and 8pm. All H. ferruginea caught in traps were removed individually using a 3 x 

10 cm collection tube, and marked on the thorax using a dry grass stem and non-

toxic enamel paint using a different colour or combination of colours for each day 

of emergence. Marking was carried out in the tube, or within a marking cage made 

from a plastic open-ended 3 x 10 cm tube with a cork plunger and flexible netting 

over one end where the insect could be gently immobilised (Bonduriansky & 

Brooks 1997). Occasionally, marking required moving adults into cool bags for 

several minutes to reduce activity. Each adult was photographed on laminated lined 
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paper for scale, and the length of the thorax, from where the neck meets the 

pronotum to the apex of the scutellum, and the length between two wing veins 

(landmarks 1 and 3 in Milankov et al. 2010) were measured using ImageJ software 

(Abràmoff et al. 2004). Adults were released the same day at the central meeting 

point of the transects.  

 

From 16th May until 5th July, 60-minute observation sessions were spent at each 

group of decaying logs in succession throughout the day, with the starting location 

rotated each day (from 9/10am to 7/8pm depending on weather). We noted the local 

wind direction, and recorded the number of marked and unmarked H. ferruginea 

individuals throughout each session. Digital images of marked individuals were 

taken when possible, and were used to identify individuals by comparing mark 

shape and location on the thorax; otherwise sex and colour combination was 

recorded. 

  

6.3.3 Experiment 2: estimated maximum dispersal ability 

 

In 2010, similar techniques were used as in experiment 1, however this time two 

decaying logs were placed at eight points from 0 to 7 km from one central release 

location with no intermediately placed stepping stones (Fig 6.2). Logs were sourced 

from a local golf course where three aspen trees had fallen naturally and snapped at 

the base. These were cut into similar lengths (128 ± 26.7 cm) and were of similar 

width (28 ± 6.8 cm). 
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From 17th May until 22nd June, we constructed emergence traps over seven decaying 

logs or trees in and around RSPB Insh Marshes, and one west of Newtonmore 

(57°04’ N, 4°07’ W). We used the same methods as described above for experiment 

1 to collect and mark H. ferruginea caught in the traps, however each individual 

was this time given a unique mark using a combination of colours and locations on 

the thorax. 

 

From 4th June until 14th July, each log was observed as described in experiment 1, 

except that adult activity, location on the aspen log, territorial behaviour and 

oviposition were also recorded. Behaving territorially was defined as males chasing 

passing insects and repeatedly returning to a similar location on the aspen log. 

‘Contests’ were defined as events involving two males in physical contact. A male 

was considered to have ‘won’ a contest if it returned to the original location and 

continued territorial behaviour, while a ‘losing’ male would either leave the site or 

take up a territory elsewhere. Oviposition was defined as when the female 

ovipositor could be observed probing cracks in the bark. Territory and female 

oviposition locations were recorded on basic illustrative representations of the logs. 

Territories were described as overlapping oviposition locations if they were within 

20 cm on the log.  

 

Males and females appear to darken in colour as they age (Rotheray et al. 2009). To 

test the accuracy of thorax colour or shade as a prediction of age, we compared each 

marked individual to a strip of paper with seven progressively darker shades 

labelled 1 to 7, and assigned each individual to the most similar colour category. 
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This category was later compared with known adult ages based on dates of 

emergence. 

 

Statistical analysis 

 

Chi-squared tests were used to assess deviations from the unity sex ratio over the 

emergence period. We used general linear models to assess differences in adult 

thorax and wing length between sexes, associations between thorax and wing length 

and day of emergence, and associations between the direction of dispersal and local 

wind direction. We used generalised linear models (GLMs) with Binomial error 

distribution to model the influence of wing and thorax length on dispersal (a 

binomial response, with individuals recaptured at 1 or more km away from their 

capture site as dispersers) and the outcome of territorial contests between males. 

Finally, we used a linear model to predict thorax shade (with category number 

treated as a continuous variable) as a function of adult age. All statistical analyses 

were carried out using the statistical package R (version 2.13.1) (R Team 2011). 

 

6.4 Results  

 

6.4.1 Distribution and habitat quality 

 

In June 2011, decaying aspen wood and newly fallen trees and branches were found 

at all H. ferruginea sites in Strathspey (see Rotheray et al. 2009). Empty puparia or 

signs of H. ferruginea were found in one fallen aspen tree at Creagan Bruegach 
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(57°05’ N, 3°58’ W), two at Kinveachy (57°05’ N, 3°58’ W) and one at 

Newtonmore (57°05’ N, 3°58’ W). Each site, including H. ferruginea localities pre 

and post 2006 (Rotheray et al. 2009), was mapped to indicate potentially 

overlapping areas, and areas where breeding habitat supplementation should be 

focussed (Fig 6.3). 

 

6.4.2 Experiment 1: stepping-stone dispersal ability 

 

Emergence 

 

Between 15th May and 14th June 2009, 1,066 individuals were caught in six 

emergence traps, most of which came from one severed tree (664). Overall the sex 

ratio was female biased (M/F = 465/573, χ2 = 11.24, df = 1, P < 0.001). The sex 

ratio was significantly male biased in the first fifteen days (15th until 29th May) of 

the emergence period (χ2 = 6.55, df = 1, P < 0.05) and significantly female biased 

over the final fifteen days (χ2 = 28.32, df = 1, P < 0.001). The average daily 

emergence was 34 flies (± 30.37 SD) with a peak of 107 on May 30th. 

 

Dispersal 

 

In total, 105 hours were spent observing aspen logs (~10 hours at each) during 

which 78 (7.3%) marked H. ferruginea were re-sighted. Most individuals were re-

sighted at the release location (62 %). Of those that dispersed (28), 39% were 

observed at 1 km, 43% at 3 km, and one individual was re-sighted at 4km (Table 

6.1). More individuals were observed at logs extending northeast from the release 
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point (18) than the southwest (3) and south (7) (χ2 = 12.9, df = 2, P < 0.005), and 

this didn’t appear to relate to wind direction (P > 0.05). Male and female maximum 

longevity (estimated as the latest recapture date) was 41 (11 ± 14.67) and 28 (11 ± 

8.64) (mean ± SD) days respectively, and there was no difference between the 

number of males (20) and females (23) dispersing (χ2 = 0.21, df = 1, P = 0.65). 

 

Adult size 

 

Males had significantly longer wings (MS = 0.69, F1,995 = 196.64, P < 0.001) and 

thoraces (MS = 0.303, F1,995 = 316.36, P < 0.001) than females (Table 6.2). Of 78 

re-sighted individuals, only three females and one male could be individually 

identified from photographs, therefore we were unable to conduct analyses of 

morphological correlates of dispersal in this experiment.  

 

6.4.3 Experiment 2: estimated maximum dispersal ability 

 

Emergence 

 

On the 17th May until 20th June 2010, eight emergence traps constructed over 

decaying aspen logs caught 1157 H. ferruginea adults, 94% of which emerged from 

one fallen tree located near Newtonmore. Overall the sex ratio was male biased 

(M/F = 592/519, χ2 = 4.79, DF = 1, P < 0.05). The sex ratio was significantly male 

biased in the first fifteen days of the emergence period (M/F = 431/254, χ2= 45.7, 

DF = 1, P < 0.001) and significantly female biased in the final nineteen days (M/F = 
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161/265, χ2 = 25.39, DF = 1, P < 0.001). There was an average daily emergence of 

37 (± 56.2 SD) with a peak of 247 individuals on 23rd May. 

 

Dispersal 

 

In total, 249 hours were spent observing aspen logs (~31 hours each) during which 

115 hoverflies (10%) were re-sighted. The release site at 0 km had the greatest 

number of individuals recorded (87 marked and 76 unmarked) (Table 6.1, Fig. 6.2). 

Of those that dispersed (28), 68 % were observed at 1 km, and one male was 

observed at 5km (Table 6.1). Males were found to repeatedly visit logs, as part of 

their territorial behaviour, whereas females were recorded visiting infrequently 

(M/F = 252/131, χ2 = 38.2, df = 1, P < 0.005). There was no significant difference 

between the number of males and females dispersing (M = 58, F = 49, χ2= 0.76, df = 

1, P > 0.05). No significant linear relationship was found between local wind 

direction and the direction of dispersal (P > 0.05). Maximum male and female 

longevity was 45 (30.7 ± 7.2) and 45 (25.7 ± 8.2) days respectively.  

 

Mate seeking 

 

Between 4th June and 13th July, we recorded 72 males defending territories and 46 

females ovipositing on the aspen logs.  

 

Females observed ovipositing were between 10 and 42 days old (25.46 ± 8.05) 

(mean ± SD). Of visiting females observed, 44 % were observed ovipositing (Table 

6.1). Of all male territorial locations on aspen logs, 68% were on or near (< 20cm 
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distance) female oviposition locations. Males were observed hovering over females 

briefly, landing on them and immediately carrying them away from the oviposition 

resource and out of sight. Females often oviposited within male territories during 

male territorial behaviour. The maximum number of individuals at a log during one 

hour was nine at 0 km (Table 6.1).  

 

Adult size 

 

Males had significantly longer wings (MS = 0.48, F2,1208 = 187.27, P < 0.001) and 

thorax lengths (MS = 0.16, F2,1034 = 147.04, P < 0.001) than females (Table 6.2). No 

linear relationship was found between size traits and time of emergence (P > 0.05).  

 

On average, males and females from 2009 had significantly smaller thoraces (male: 

MS = 0.007, F1,1089 = 6.2, P < 0.001, female: MS = 0.02, F1,1110 = 24.51, P < 0.001) 

and wing lengths (male: MS = 0.27, F1,1001 = 89.32, P < 0.001, female: MS = 0.16, 

F1,1027 = 53.63, P < 0.001) than those in 2010 (see Table 6.2 for means). 

 

The generalised linear model showed a strong effect of male wing and thorax length 

on dispersal (GLM, P < 0.005, Table 6.3). Wing length was greater in dispersing 

males (0.784 ± 0.052, mean ± SD (mm)) than re-sighted (at 0 km only) males (0.747 

± 0.053) and total emerged males (0.75 ± 0.05). Thorax length was smaller in 

dispersing males (0.365 ± 0.028) than total emerged males (0.379 ± 0.04) but not re-

sighted males (0.370 ± 0.032). No effect was found of female wing or thorax length 

on dispersal (see Fig 6.4 and Table 6.2 for means).  
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In total, 21 contests were recorded involving 23 uniquely identified males. Twelve 

of these contests involving 14 males took place at 0 km. The generalised linear 

model showed a strong effect of male wing length on the outcome of territorial 

contests (Z = 2.247, P < 0.05) but no effect of thorax length (Z = -0.844, P = 0.4, 

Table 6.3). Males in territorial contests had longer wings (0.783 ± 0.04) than non-

dispersing, re-sighted males (0.747 ± 0.053) and total emerged males (0.750 ± 0.05). 

No effect of thorax or wing length was found on ‘winning’ males in contests, which 

had on average greater thorax (0.379 ± 0.041) and wing length (0.789 ± 0.043) than 

contest ‘losers’ (thorax: 0.360 ± 0.023, wing: 0.776 ± 0.039) (See Fig 6.5 for 

means). No linear relationship was found between age and ‘winning’ or ‘losing’ 

males (P > 0.05). 

 

Adult age positively affected thorax shade (r2 = 0.38, F1,99 = 62, P > 0.001) (Fig 6.6). 

 

6.5 Discussion 

 

In Scotland, six of eight remaining Hammerschmidtia ferruginea sites are located in 

Strathspey (Rotheray et al. 2009). Each known site is separated by up to 5 km along 

a 40 km length of Strathspey, from the most southern at Creagan Bruegach to the 

most northern at Grantown-on-Spey (Rotheray et al. 2009). The findings in this 

study imply that H. ferruginea is capable of dispersing at least 5 km, suggesting the 

network of sites in Strathspey probably form a metapopulation, i.e. a group of 

unstable, local populations occupying discrete habitat patches linked by dispersal 

(Hanski 1998). Although large aspen stands (>5 Ha) are rare in Scotland, aspen is 

widely distributed, and recent surveys using aerial photographs have identified 
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several small pockets of aspen woodland outside previously mapped areas in 

Strathspey (Worrell 1993; MacGowan 1997; Kouki 2008). Hammerschmidtia 

ferruginea can probably detect and locate decaying aspen in these more isolated 

areas, using them as stepping-stones between larger woodlands, and as habitat 

availability fluctuates through space and time. This may explain how populations 

have survived in Strathspey while elsewhere they have declined. 

 

A lack of deadwood can cause abrupt local extinctions, possibly isolating 

populations across the landscape. Current conservation management efforts aim to 

link up fragmented habitat for this hoverfly (H. ferruginea UKBAP Steering Group 

pers. comm.), and the findings from this study broaden the management options by 

enabling exploitation of more isolated aspen woodlands. However, it is important to 

note that fewer individuals will locate breeding habitat at greater distances. While as 

many individuals were observed at 3 km as there were at 1 km in 2009, in 2010 

most dispersing individuals (68 %) were observed only at 1 km from the release 

location. Moreover, despite more than double the observation effort, fewer decaying 

logs to observe, and ~100 more marked individuals in 2010, the same number (28) 

were observed dispersing in both years. It is likely that stepping-stones augment H. 

ferruginea dispersal, but this result could also be due to several other factors. For 

example, differences in quality between the decaying logs within and between the 

two experiments, may alter detection and attraction, or the location and direction of 

transects may have an effect. Indeed in 2009, the number of re-sighted individuals 

observed on the transect extending northeast was greater than those found to the 

south and southwest, which did not appear to correspond with the prevailing wind 

direction. Dispersal propensity is probably strongly affected by the landscape. 
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Transects in 2009 extended south toward valleys where there are no aspen 

woodland. In 2010, more activity was observed at logs closer to and around Insh 

Marshes reserve, 4 and 6 km southwest from the release site. Breeding habitat has 

been continuous at the reserve for at least the last 20 years (Rotheray & MacGowan 

2000; Rotheray et al. 2001, 2009) and probably attracts individuals from further 

north by way of volatiles evaporating from the decay.  

 

For H. ferruginea, wings are essential for tracking changing resources. Dispersing 

males had significantly longer wings than those that were re-sighted at the release 

location, and compared to the average population wing length. Dispersal ability 

often positively correlates with indices of body size and wing length (Denno 1994; 

Hoffmann et al. 2007; Sekar 2011; Stevens et al. 2012). While no significant 

difference was found, thorax length was greater in males that won contests 

compared with losers, and males that dispersed. There may be a trade off with 

dispersal and thorax length, related to winning contests. Variation among 

individuals in insect wing development and associated muscle tissue are often 

regulated by trade-offs between flight capability and reproduction (Zera & Denno 

1997). The ability to disperse can also have direct consequences on mating success. 

For example, the planthopper Prokelisia dolus (Hemiptera: Delphacidae) has a 

flightless morph which outcompetes with those that are capable of flight in mating 

success (Langellotto et al. 2000).  

 

Wing length, as well as thorax length may be important to males in winning 

territorial contests. Winning males also had longer wings, and those involved in 

contests had significantly longer wings than the average for the population. 
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Territorial behaviour in flies commonly involves male defence of oviposition sites 

to monopolize incoming females (Maier & Waldbauer 1979; Preston-Mafham 

2001). Gravid females are attracted to the breeding site, and presumably to the 

particular areas that offer the best conditions for larval development. The 

hypothesised resource-dependant polygyny in this system was supported by the 

number of territories that overlapped with oviposition sites on the logs, and by 

males repeatedly defending these areas. While we could not directly study paternity 

success in the current experiment, we expect that males who patrolled and won 

contests for high quality territories achieve better insemination success with gravid 

females visiting the site.  

 

If sexual selection based on resource defence polygyny is strong in this species, it 

may have implications for the conservation genetics of this species. For example, if 

just a few males secure most of the copulations, this could dramatically reduce the 

effective population size. Current habitat management for H. ferruginea often 

involves cutting up aspen trees in an attempt to extend the time one fallen aspen 

provides breeding habitat (Rotheray et al. 2009), but this results in reducing the area 

available for males to set up territories, potentially increasing the intensity of sexual 

selection and the resulting skew in mating and paternity success. This may have 

knock-on effects on genetic variation in H. ferruginea populations, a question 

deserving more scrutiny in future work. 

 

All individuals were significantly smaller in 2009 than those in 2010. The primary 

source tree in 2010 was fairly isolated at 8 km from known localities for H. 

ferruginea, and the tree had fallen and snapped at the base, whereas the main source 
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for individuals in 2009 was a severed tree in the middle of a known locality for this 

species. Both sources were large whole trees that had been decaying and therefore 

available as breeding habitat for three years, and were not suitable as breeding 

habitat in subsequent years after the experiments as the rotting layer had dried out. 

The difference in fly size between years may be an indicator of resource condition 

due to severing which appears to dry the rot faster. Testing this hypothesis would 

require experiments that assess the effects of severing trees on the rot layer. 

 

Like many insects that are relatively large, agile flyers and are dependent on a local 

and restricted resource, H. ferruginea appears to be capable of substantial dispersal. 

However, deadwood insects are often associated with low dispersal rates due to the 

fluctuations in breeding habitat availability. Relatively small species and 

intermediate dispersers are thought to be more vulnerable to fragmentation, thus 

better subjects for detecting the effects of habitat fragmentation (Bailey 2007; 

Watanabe et al. 2010). Habitat isolated by a few hundred metres has an effect on 

specialist insect beetles associated with aspen (Ranius et al. 2011). Diptera that 

depend on the same transient habitat as H. ferruginea may exhibit similar 

requirements, however further investigation into the dispersal abilities of these 

species is necessary to confirm H. ferruginea as a suitable umbrella species. 

 

For a detailed study of individual populations, it is advantageous to be able to 

estimate the age of individuals. Our work has confirmed that thorax shade provides 

a reasonable estimate of adult age in H. ferruginea, with our categorical 

assignations of thoracic shade capturing 38% of the variation in adult age. This 

technique could therefore be used to help monitor local populations, by indicating 
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when, where and how adults are active, mating and ovipositing, and in which part of 

their flight period they may be. This is important to ensure that the resources 

required are protected when these activities take place. In our study, this critical 

period was between early May to late July. Such data are important for managing 

populations because at these times in particular, fallen timber should not be 

disturbed.  

 

Conservation management 

 

Current H. ferruginea population declines have probably resulted from a lack of 

periodic storms that boost deadwood input (Rotheray et al. 2009). Due to the small 

size of aspen woodlands, enough dead wood is frequently not available for 

saproxylic insects that specialize on aspen. Functional connectivity among 

populations will depend on the natural tendency of flies to disperse which may in 

turn depend on population density. While H. ferruginea is rare, due to its 

dependence on a characteristically varying level of breeding resource, it may have 

evolved to cope with fluctuating levels of suitable fallen wood. When breeding 

habitat is scarce, H. ferruginea have been found in sap runs, which occur on live, 

damaged aspen trees (Rotheray & MacGowan 2000). However, patch abundance 

and distribution may alter such that population dynamics break down, and 

continuity of breeding habitat within colonisation distance and through time is 

crucial (Grove, 2002). Studies of how breeding habitat quality, landscape elements 

and composition affect H. ferruginea dispersal may clarify factors limiting 

colonisation. Understanding movement dynamics at the landscape level could be 

determined through non-invasive molecular techniques (Jonsson et al. 2003; 

 231



 232

Vinatier et al. 2011; Appendix 4.2). Current conservation management should focus 

on maintaining breeding habitat continuity by supplementing gaps in dead wood in 

addition to creating new habitat within colonisation distance of about 5 km. It is 

also important to preserve existing aspen connected networks where natural 

dynamics can be relied on to produce new suitable breeding habitat. 

 



Table 6.1 Total number of marked H. ferruginea individuals re-sighted at each distance from the release site in 2009 and 2010, and for each distance: total marked and 
unmarked individuals, maximum number observed over a 1 hour session, % of total males and females observed, % of visiting females observed ovipositing per site. 
 

Number of re-sighted individuals 2010 total observed H. ferruginea at each location 

Km 2009 2010 Male Female Total  Maximum no. per hour 
% males 
of total   

% females 
of total 

% visiting females 
ovipositing per site 

0        45 87 51 36 163 9 40 44 39 
1          11 19 10 9 60 6 14 17 64
2          4 4 1 5 16 5 1 11 29
3          12 2 0 2 18 3 6 2 100
4          1 2 1 1 46 6 13 5 43
5          - 1 1 0 21 3 6 5 50
6          - 0 0 0 58 7 14 16 43
7          - 0 0 0 18 4 5 2 50

 
Table 6.2 Male and female thorax and wing measurements in 2009 and 2010, and separately for the subsets of dispersing individuals (1 km +) in 2010 (Dispersers), 
and males that ‘won’ and ‘lost’ in territorial contests. 
 Total Thorax length (cm) (mean ± SD) Wing length (cm) (mean ± SD) 

Total in Year  M F M F 
2009 1066 0.373 ± 0.034 0.337 ± 0.029 0.72 ± 0.06 0.67 ± 0.059 
2010 1157 0.379 ± 0.04 0.35 ± 0.028 0.75 ± 0.05 0.69 ± 0.05 

Dispersal 2010      
Dispersers 28 0.365 ± 0.028 0.337 ± 0.034 0.784 ± 0.052 0.693 ± 0.066 
Re-sighted 50 0.370 ± 0.032 0.344 ± 0.025 0.747 ± 0.053 0.691 ± 0.048 

Contests 2010      
Winners 24 0.379 ± 0.041 - 0.789 ± 0.043 - 
Losers 19 0.360 ± 0.023  0.776 ± 0.039  
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Table 6.3 Parameter estimates for generalised linear models with Binomial error distribution modelling the influence of wing and thorax length on dispersal in 2010 in 
separate models for dispersing males (1 km +) and total emerged males in 2010; dispersing (1 km +) and re-sighted males (at 0 km only) in 2010; and males that were 
re-sighted (at 0 km only) and in territorial contests. 
 

 Parameter estimate ± SE z-value p-value 
Disperse v emerge 2010   
Intercept -8.62 ± 4.58 -1.882 0.059 
Thorax length -17.05 ± 8.29 -2.057 0.039* 
Wing length 14.86 ± 5.528 2.688 0.007* 
    

   

   

Disperse v re-sight 
Intercept -9.07 ± 5.685 -1.596 0.111 
Thorax length -9.06 ± 10.759 -0.842 0.399 
Wing length 14.45 ± 6.426 2.248 0.025* 
 
Contest v non-disperse   
Intercept - 9.06 ± 5.686 -1.592 0.111 
Thorax length    -9.09 ± 10.766 -0.844 0.398 
Wing length 14.44 ± 6.427 2.247 0.025* 

* <0.05 significance
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Figure 6.2 Map of experiment 2 illustrating the location of each group of decaying logs (red circles) 
from 1 to 7 km from the central release location (red circle with central ‘R’) (maps: 
http://maps.google.co.uk/maps). 

Figure 6.1 Map of experiment 1 illustrating the location of each group of decaying logs (red circles) 
at 1 km points from the central release location (red circle with central ‘R’) (maps: 
http://maps.google.co.uk/maps

  

 
). 

 

http://maps.google.co.uk/maps
http://maps.google.co.uk/maps
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Figure 6.3 Map of North Scotland indicating H. ferruginea localities with 5km dispersal rings where it was last recorded 2006 - 2011 (yellow circles) and previously 
occupied pre-2006 H. ferruginea sites (red circles) (maps: http://maps.google.co.uk/maps).

http://maps.google.co.uk/maps
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Figure 6.4 Boxplot to illustrate thorax and wing length of males (M) and females (F) re-sighted at 
the release location, and re-sighted at 1 to 5 km (Dispersers, Experiment 2). 
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Figure 6.5 Boxplots to illustrate wing length of males re-sighted at 1 to 5 km (Dispersers), males re-
sighted at the release site (Non Dispersed) those in territorial contests that ‘lost’ (Lost contest) and 
‘won’ (Won contest) (Experiment 2). 
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Figure 6.6 Linear regression of individual ‘jittered’ thorax shade assigned by observers (treated as a 
continuous variable) and age of H. ferruginea individuals (Experiment 2). 
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   Chapter 7 

7 Discussion 
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7.1 Summary of aims 

 

This thesis investigated the adult and larval requirements of a saproxylic hoverfly 

Blera fallax (Diptera, Syrphidae) in conjunction with practical conservation 

management. Captive breeding and rearing enabled a detailed examination of larval 

life history traits and microhabitat use, as well as identification of adult food plants. 

It also demonstrated the potential of these hoverflies to be useful models for 

studying life history strategies and how they enable populations to cope with 

characteristic, fluctuating resources.  

 

In addition, using mark and recapture methods, it assessed the dispersal ability of 

another endangered saproxylic hoverfly, Hammerschmidtia ferruginea. These are 

the first attempts of their kind to identify the requirements of endangered saproxylic 

hoverflies and apply the findings to encourage and conserve populations. 

 

Main findings: 

 

1. The rot hole substrate and competitive environment negatively affects larval 

growth in B. fallax, which has consequences on adult size (Chapter 2, 3 and 

5). 

2. Interspecific competition for resources in a rot hole is not likely to affect the 

recovery of B. fallax (Chapter 3). 

3. Lower levels of genetic variation were detected in the Scottish B. fallax 

population compared to Swedish flies; genetic constraints that may limit the 

recovery of this species (Chapter 4). 
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4. Hammerschmidtia ferruginea was recorded dispersing up to 5km from a 

release site, informing conservation management protocols for this species, 

and providing a first estimate for saproxylic fly dispersal (Chapter 6). 

 

7.2 Captive breeding and relocation of B. fallax 

 

The aim of relocation projects is to reduce the risk of extinction for an endangered 

species by creating more self-sustaining populations. Intervention of this kind is 

usually undertaken in situations where so much habitat has been lost that the rate of 

local extinctions threatens to completely eliminate a species. Previous insect captive 

breeding and/or relocation attempts have mainly involved butterflies, but have also 

included crickets and grasshoppers, dragonflies and damselflies, stick insects and 

burying beetles (Amaral et al. 1997; Witkowski et al. 1997; Sherley 1998; Berggren 

2005; Hannon & Hafernik 2007; Hochkirch et al. 2007; Honan 2008; Gardiner 

2010). Results have been highly variable, and there does not appear to be a formula 

for success as every species, population, location and circumstance is different. 

Careful selection of the source population appears to be important. The source 

populations for most successful relocation attempts were large, viable and from 

nearby locations. Risks associated with translocation include a loss of genetic 

variability due to small population size, which may lead to lower fitness and reduce 

population growth (Frankham 1998; Woodworth et al. 2002; Leberg & Firmin 

2008). However, sustainable populations can be established despite some loss of 

genetic variability (Brookes et al. 1997; Witzenberger & Hochkirch 2008). 

Relocation of just 50 individuals has reportedly established a viable and genetically 

diverse population of the mountain endemic butterfly Erebia epiphron silesiana 
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(Schmitt et al 2005). There was only one source population of B. fallax available for 

captive breeding and relocation in this study, it was not large, and seems to have 

limited genetically variability (Chapter 4).  

 

Extinction risk is elevated by inbreeding depression, and low genetic variability 

appears to reduce the fitness of a species before it goes extinct (Saccheri et al. 1998; 

Spielman et al. 2004), so inbreeding depression effects must be closely monitored 

both in wild and lab-reared stocks. In the case of Scottish B. fallax, augmentation 

through reintroduction from populations elsewhere in Europe is an option. However, 

these populations have probably been separated for up to 10,000 years and we have 

no detailed understanding of the degree of local adaptation there may be in the 

Scottish population. Such adaptation is known to occur over hundreds as opposed to 

thousands of years, and so is likely to be present (Stockwell et al. 2003). Before 

considering introducing individuals from abroad, we would need to sample more 

populations of B. fallax in Europe in order to determine what the genetic variation 

of populations is, and culture and cross populations in the lab to investigate 

compatibility and outbreeding effects. If the effective population size of B. fallax in 

Scotland is as low as our analysis suggests (Ne = 12, albeit with a fairly large 

confidence interval, see Chapter 4), this may have consequences for the adaptive 

evolution regardless of the quality of any newly introduced alleles (Charlesworth 

2009). This is because in small populations the effects of genetic drift can swamp 

even strong selection. Scottish B. fallax may require significant augmentation in 

order to have any affect on the genetic variability and adaptive potential of the 

population. 
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7.3 Determining habitat requirements of B. fallax 

 

Providing the correct habitat is probably the most important factor that determines 

the success of relocation attempts. Success can only be evaluated by close 

monitoring of the relocated population. A study which relocated over 1,600 tiger 

beetles Cicindela dorsalis dorsalis (Coleoptera: Cicindelidae) had promising initial 

results, only to experience a massive decline in the proceeding years, the cause of 

which was unidentified due to lack of post-release monitoring (Knisley et al. 2005). 

Damselflies relocated in California experienced a similar failure due to not 

accounting for ecological requirements at the occupied sites (Hannon & Hafernik 

2007). Specialised ecological relationships, involving highly interdependent pairs or 

groups of species such as the Large Blue butterflies Maculinea spp. and their 

Myrmica ant hosts (Thomas et al. 2009), highlight the importance of understanding 

the ecology and cause of decline in species before attempting relocations. Baseline 

information on all developmental stages is required for adequate conservation 

management. 

 

In the course of this thesis, we encountered difficulties studying B. fallax adult 

requirements in the field. It is not surprising that our attempts were unsuccessful; 

other studies of rare hoverflies have had similarly limited results when 

concentrating on the elusive adult stage (Drake & Baldock 2005). Location of adult 

hoverflies is often only possible if they have a mate-seeking strategy that 

concentrates adults at an identifiable resource in the field, such as in the territorial 

behaviour of H. ferruginea on fallen aspen wood (Chapter 6). By focusing on 

observing breeding habitat, B. fallax adults were eventually observed. However, the 
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very low catch per unit effort (two female sightings over 6 weeks of surveying time, 

Chapter 5) suggests that limited conservation resources should be spent elsewhere. 

Only by surveying for larvae were we able to deduce that adults can locate habitat 

up to 1 km from a release or emergence site (Chapter 5).  

 

Some useful information on adult biology was acquired through captive breeding. 

The most useful finding in terms of the relocation was that adults fed on a variety of 

food plants (Chapter 5), which suggests that like most adult hoverflies, B. fallax is a 

generalist and is not limited by availability of food plants. This fact broadens the 

potential benefits of conserving B. fallax by confirming its role as a pollinator in 

pine woodlands. Through captive breeding, we were also able to document new 

details of B. fallax behaviour, reproductive biology and longevity, including that 

males appear to hold temporary territories, that females mate up to 9 times, and that 

both can live beyond 50 days in captivity. These observations have implications for 

captive breeding purposes, for example, where more successful males may 

dominate paternity in cages. A greater number of cages with fewer males per cage 

may be beneficial for sustaining the limited genetic diversity of Scottish flies in 

future captive breeding efforts.  

 

Stimulation of oviposition was only possible by enclosing females with wet pine 

sawdust (Chapter 5), which probably means there are unknown elements that 

females require to trigger oviposition. We have yet to establish the pine stump or rot 

hole traits that determine female selection preferences for oviposition. It may be an 

olfactory response to heart-rot fungus, which causes the initial decay. Investigations 

into beetles in spruce stumps found that the height of stumps was not as important 
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as the presence of two species of fungus which appeared to have an association with 

beetle presence (Jonsell & Weslien 2003). Much more work is needed on the 

oviposition preferences of B. fallax, and other saproxylic hoverflies. We know that 

we can create habitat that is suitable in pine stumps, indicated by B. fallax larval 

occupancy every year for 4 years in artificially created holes (Chapter 5), and we 

know we should only utilise pine stumps for habitat creation (Chapter 2 and 5). We 

have been able to show that viable holes can be created in smaller trees between 25 

and 30 cm width, which makes use of plantation-sized trees being felled as part of 

normal pinewood harvesting rotations (Chapter 5). The suitability of these holes has 

been suggested by their ability to retain water and their occupation by other species 

of Diptera (Chapter 5). How deep the cavity can be before losing water retention, or 

the optimal depth and area we can bore into stumps at normal harvesting height for 

long-term water retention, is yet to be determined. Continued monitoring and 

experimental habitat creation should clarify this.  

 

It is important to identify the reason for decline or any factors that may limit the 

success of relocation to a new site. Intraspecific larval growth experiments 

demonstrated that competition for resources can occur in artificial rot holes and this 

can limit adult size (Chapter 2). Therefore, future relocations should ensure that the 

smallest possible number of B. fallax larvae is introduced into each rot hole. While 

interspecific competition in a rot hole may not limit B. fallax based on microhabitat 

use observations (Chapter 3), further experimentation may identify whether there 

are competition effects between species for resources that may inhibit growth and 

larval survival in B. fallax. Observations on microhabitat use identified B. fallax as 

the only species of four to inhabit all areas of the rot hole (Chapter 3). This 
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strengthens the argument that B. fallax may be an effective umbrella species for the 

pine rot hole habitat.  

 

It is cost-effective to focus survey work on the larval stage of B. fallax as they 

occupy a discrete, easily monitored habitat, sampling is not invasive, and we now 

know enough about the life cycle in order to design suitable protocols. Blera fallax 

appears to have a flexible life history strategy where, depending on levels of larval 

food, semivoltism may occur. Similar semivoltine life histories have been reported 

in dragonflies, damselflies and stoneflies (Purse & Thompson 2002; Schultheis et al. 

2002; Cayrou & Céréghino 2005; Watts et al. 2005; Raebel et al. 2010) but no 

evidence has been reported for hoverflies. Facultative semivoltinism in B. fallax 

may reflect a bet-hedging strategy that enables a proportion of the population to 

survive years when conditions are unsuitable for adult activity (Schultheis 2002). 

There are probably costs associated with this strategy, such as increased risk of 

mortality over time, but it may allow some individuals to survive catastrophic 

events. For example, in 2011, breeding appears to have been at a very low level or 

to have failed altogether at all sites, including the one natural population, probably 

due to cold and wet weather during the adult flight period. Only semivoltine larvae 

appear to have survived this event. Weather is a major factor known to influence the 

success of insect translocation projects (Pearce-Kelly et al. 1998; Hochkirch et al. 

2007). The translocation of the field cricket Gryllus campestris has shown a 

consistent population and range expansion that was probably assisted by suitable 

weather in each year after an initial release of 200 individuals (Hochkirch et al. 

2007). The recent population crash in B. fallax highlights the vulnerability of such 

small populations to natural stochastic events. It is not yet known whether the 

 246



population will recover, and if so whether there may be an additional loss of genetic 

variability through bottlenecking.   

 

It is difficult to learn from failed relocations due to the lack of published data on 

those that are unsuccessful (Fischer 2000). Studies from even very similar species 

from the same family can have considerably different results or require alternative 

techniques (Pearce-Kelly et al. 1998) so comparing attempts, especially those in 

different family groups, may not improve the success rate.  

 

7.4 Conservation of saproxylic hoverflies 

 

In Europe, the importance and diversity of saproxlic hoverflies is slowly being 

recognised, and through focused survey work the composition of communities are 

being established in order to focus conservation priorities (Reemer 2005; Ricarte et 

al. 2007, 2009). Good forestry practice in the UK now includes retaining deadwood 

(Forestry Commission 2002), however a more widespread understanding and 

appreciation of the importance of deadwood is needed. Leaving habitat entirely 

unmanaged is rarely optimal and broad or best-fit management strategies for 

saproxlic species do not yet exist (Davies et al. 2008). Saproxylic communities 

change over time and differ in their requirements and needs (Ranius et al. 2011; 

Weslien et al. 2011). The principal lesson of species-level conservation studies is 

that the requirements of individual species vary, so to ensure survival, tailored 

actions are required. It is important to determine requirements and provide for every 

stage of an insect life cycle. This is evident from my thesis, where two species 

depend on a relatively short-lived habitat window. Deadwood can also be an 
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important mate-seeking site, and size, location and volume may be important for the 

species in this study, especially if it has an effect on decay time. For species like H. 

ferruginea, intervention is required to ensure constant deadwood input, but 

manipulating deadwood is a short-term solution. Even though experimentally 

controlled and replicated evidence is lacking, currently the general prescriptions for 

saproxylic species are to increase forest area, the number of large trees, the age 

structure, and to allow dead or moribund trees to decay naturally (Davies et al. 

2008). In addition, encouraging adult food plants through diversity of structure is 

also necessary (Fayt et al. 2006; Gittings et al. 2006). 

 

We probably need appropriate representative umbrella species or species groups to 

represent microhabitats for conservation planning in woodlands. Sub groups of 

saproxylic hoverflies can act as indicators for each other (Smith et al. 2009). 

Whether B. fallax or H. ferruginea are good umbrella species is an important 

question for future study. Compared with other saproxylic species, the colonisation 

ability of H. ferruginea appears to be good (dispersing up to 5 km distance, see 

Chapter 6), but many hoverflies have limited dispersal abilities (Wratten et al. 2003). 

Like the saproxylic beetle Bolitophagus reticulates (Jonsell et al. 2003), H. 

ferruginea appears to more frequently disperse short distances, which suggests that 

new deadwood breeding habitat should be linked to existing populations by islands 

of habitat spaced no more than 1 km apart (Chapter 6). Using population genetic 

techniques (by sampling DNA from populations that move between overlapping 

habitat patches) has proven useful in understanding dispersal patterns and abilities 

in other taxa (Jonsson et al. 2003; Watts et al. 2004; Ranius 2006; Schmuki et al. 

2006), and this could be aided by our ability to nonlethally sample from the 
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discarded puparia of emerged flies (Appendix 4.2). Using molecular markers, we 

will be able to detect much more precisely rates of migration between adjacent 

habitat patches, which could substantially improve practices for managing the 

landscape for deadwood insects. For example, this information may help in 

prioritising investment of scarce resources into populations that need it most. 

 

The approach to habitat management for species such as H. ferruginea requires not 

just focusing on the localities where they occur, but it also requires landscape level 

conservation i.e. of fragments of habitat adjacent to the main areas that provide 

additional support for populations. This will assist long-term persistence and 

survival by forming a metapopulation landscape (Dover & Settele 2009). Such 

habitat corridors or stepping-stones may need to be managed on different scales for 

different species groups depending on dispersal and colonisation abilities. These 

should be created with short-term and long-term movement in mind, therefore 

conserving individual species and biodiversity. This requires maintaining 

heterogeneity in land quality while reducing the contrast between habitat patches, 

connecting patches and reducing isolation.  

 

In order to conserve saproxylic hoverflies i.e. create sustainable populations, we 

need to confirm their status and distribution, and identify threats and gaps in the 

knowledge about adults and larval requirements. To ensure that conservation action 

will ensue and for funding, time and labour to be made available, some level of 

legislation or national or regional plan needs to be in place under which 

conservation action can be authorised. The support, agreement and enthusiasm of 

landowners and managers at localities holding populations or habitat in the area is 
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crucial to successful short and long-term implementation (Hochkirch et al. 2007; 

Daniels 2009). Deadwood conservation considered in this study is both cost 

effective and simple. It involves monitoring the deadwood habitat, ensuring 

suitability and overlapping resources, protecting veteran trees, and encouraging 

regeneration. In addition, by implementing actions over the short-term, greater long-

term benefits are gradually accrued, due to the habitats conserved for the aspen and 

pine hoverflies, which assist other invertebrates, vertebrates, plants, fungi and 

lichens and beyond. 

 

Blera fallax and H. ferruginea are relics of our ancient, boreal, Caledonian pine 

wood forest, existing now only in Scotland in the British Isles, making them an 

important part of our natural heritage. Our appreciation of this importance is 

exemplified by the enthusiastic participation of numerous organisations, private 

landowners and managers throughout the course of my thesis work.  

 

Some difficult triage decisions are likely to be necessary as increasing numbers of 

insect species reach endangered status and where conservation is hampered by 

limited resources such as money, space, time and materials. Saproxylic hoverflies 

such as the ones in this study stand as an example showing that such problems and 

difficulties can be overcome. They also stand proxy for large, species rich groups 

that include organisms other than insects sharing or relying on similar habitats and 

where, as we have shown, techniques for their conservation are simple, inexpensive 

and can be immediately rewarding in terms of maintaining biodiversity. Overall, my 

findings greatly increased fundamental knowledge of the ecology and natural 

history of these flies, and clarified some of the practical approaches that will be 
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required in their conservation. This work demonstrates what can be achieved for 

saproxylic species conservation, and insect conservation as a whole.  
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