
A S Y S T E M F O R C O N T R O L L I N G , M O N I T O R I N G A N D

P R O G R A M M I N G T H E H O M E

claire maternaghan

Doctor of Philosophy

Computing Science and Mathematics

University of Stirling

October 2012

D E C L A R AT I O N

I, Claire Maternaghan, hereby declare that the work presented in this thesis is my own original

work unless otherwise indicated in the text, and that it has not been submitted for any other

degree or award. In particular, I note the following contributions from others:

• The approach and original implementation for policy overlap detection in Chapter 4

was by my supervisor Kenneth J. Turner. My contribution was to extend the approach

and to integrate it fully with Homer.

Stirling, October 2012

Claire Maternaghan

A B S T R A C T

As technology becomes ever more pervasive, the challenges of home automation are increas-

ingly apparent. Seamless home control, home monitoring and home programming by the end

user have yet to enter the mainstream. This could be attributed to the challenge of developing

a fully autonomous and extensible home system that can support devices and technologies of

differing protocols and functionalities.

In order to offer programming facilities to the user, the underlying rule system must be

fully independent, allowing support for current and future devices. Additional challenges

arise from the need to detect and handle conflicts that may arise among user rules and

yield undesirable results. Non-technical individuals typically struggle when faced with a

programming task. It is therefore vital to encourage and ease the process of programming the

home.

This thesis presents Homer, a home system that has been developed to support three key

features of a home system: control, monitoring and programming. Homer supports any

third-party hardware or software service that can expose its functionality through Java and

conform to the Homer interface. Stand-alone end user interfaces can be written by developers

to offer any of Homer’s functionality.

Where policies (i.e. rules) for the home are concerned, Homer offers a fully independent

policy system. The thesis presents a custom policy language, Homeric, that has been designed

specifically for writing home rules. The Homer policy system detects overlaps and conflicts

among rules using constraint satisfaction and the effect on environment variables.

The thesis also introduces the notion of perspectives to ease user interactivity. These have

been integrated into Homer to accommodate the range of ways in which a user may think

about different aspects and features of their home. These perspectives include location, device

type, time and people-oriented points of view. Design guidelines are also discussed to aid

end user programming of the home.

The work presented in this thesis demonstrates a system that supports control, monitoring

and programming of the home. Developers can quickly and easily add functionality to the

home through components. Conflicts can be detected amongst rules within the home. Finally,

design guidelines and a prototype interface have been developed to allow both technically

minded and non-technical people to program their home.

iii

A C K N O W L E D G E M E N T S

I am grateful to SICSA, the Computing Science and Mathematics Department here at Stirling,

and the MATCH project for funding my research (and gadget collection!).

Most importantly I would like to thank my supervisor, Ken Turner, for his unwavering

patience, continued advice and support, and never ending supply of green pen.

Secondly, I would like to thank my other supervisors Evan Magill, Phil Gray and Steve

Brewster, along with the members of the MATCH project – especially Marilyn McGee-Lennon,

Tony McBryan and Mario Kolberg.

Many thanks to Iain McGinniss, Jamie Furness and Andrew Abel who have all provided me

with invaluable advice and encouragement throughout my PhD. Thanks for (almost) keeping

me sane!

Special mention to Marwan Fayed and Sam Nelson for their continued support – no matter

what, when or why.

Thank you to all the Stirling PGTips members – both past and present – in particular Liam,

Jesse, Gavin, Larry, Soufiene and Nicky. I’ll miss the many evenings of food, drinks, pool,

Settlers, take-outs, pub quizzes, Uno,. . .

Finally, my greatest thanks go to my family for their continued love and support throughout

my studies.

iv

...for my parents

L I S T O F P U B L I C AT I O N S

book chapters

Pervasive Computing for Homer Automation and Telecare

C. Maternaghan and K.J. Turner

In Pervasive Communications Handbook, Pages 17.1–17.25

CRC Press, Boca Raton, Florida, USA

Editors: S.I.A. Shah, M. Ilyas and H.T. Mouftah

ISBN 978-1-4200-5109-4

November 2011

Home Care Networks

K.J. Turner and C. Maternaghan

In Advances in Home Care Technologies: Results of the MATCH Project, Pages 2.1–2.20

IOS Press, Amsterdam, The Netherlands

Editors: K.J. Turner

In Print

papers

A Component Framework for Telecare and Home Automation

C. Maternaghan and K.J. Turner

7th IEEE Consumer Communications and Networking Conference, Pages N4.1–N4.5

IEEE Communications Society, Los Alamitos, California, USA

ISBN 978-1-4244-5175-3

January 2010

A Configurable Telecare System

C. Maternaghan and K.J. Turner

4th ACM International Conference on PErvasive Technologies Related to Assistive

Environments, Pages D.25–D.32

ACM, New York, USA

ISBN 978-1-4503-0772-7

May 2011

vi

Programming Home Care

C. Maternaghan and K.J. Turner

5th International Conference on Pervasive Computing Technologies for Healthcare, Pages

5.1–5.7

IEEE Communications Society, Los Alamitos, California, USA

Editors: M.K. Wolters, K.J. Turner and H. Lakany

ISBN 978-1-9369-6814-5

May 2011

technical reports

The Homer Home Automation System

C. Maternaghan

Computing Science and Mathematics, University of Stirling, UK

Technical Report CSM-187

ISSN 1460-9673

December 2010

How do People want to Control their Home?

C. Maternaghan

Computing Science and Mathematics, University of Stirling, UK

Technical Report CSM-185

ISSN 1460-9673

April 2011

Can People Program Their Home?

C. Maternaghan

Computing Science and Mathematics, University of Stirling, UK

Technical Report CSM-191

ISSN 1460-9673

April 2012

vii

C O N T E N T S

i introduction 1

1 introduction 2

1.1 Context . 2

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Research Contributions . 4

1.5 Structure of Thesis . 5

2 background 7

2.1 Introduction . 7

2.2 Home Automation . 8

2.2.1 Introduction . 8

2.2.2 Motivation . 9

2.2.3 State of the Art . 9

2.2.4 Analysis . 11

2.2.5 Summary . 13

2.3 User Studies . 14

2.3.1 User Study 1: What People Want . 14

2.3.2 User Study 2: How People Want To Control the Home 17

2.3.3 User Study 3: Can People Program Their Homes 18

2.4 Requirements for a Home System . 22

2.4.1 System . 22

2.4.2 User Interaction . 23

2.4.3 Policies . 23

2.5 Conclusions . 24

ii my contribution 26

3 homer: architecture 27

3.1 Introduction . 27

3.2 Background . 28

3.2.1 Conceptual Approaches . 28

3.2.2 Within the Home . 29

viii

contents ix

3.3 Requirements . 29

3.4 State of the Art . 30

3.4.1 Existing Solutions . 30

3.4.1.1 Ubiquitous Frameworks . 30

3.4.1.2 Home Frameworks . 31

3.4.1.3 Service-Oriented Frameworks 36

3.4.1.4 Component Glueware . 37

3.4.1.5 Device Communication . 39

3.4.2 Conclusions . 40

3.5 Architecture . 41

3.5.1 OSGi . 41

3.5.2 Database . 41

3.5.3 Event Coordinator . 44

3.5.4 System Gateway . 45

3.5.5 Component Gateway . 46

3.5.6 Service Gateway . 47

3.5.7 Runtime Requirements . 47

3.6 Components . 48

3.6.1 Developer Perception . 49

3.6.1.1 SetUp . 49

3.6.1.2 Registration . 49

3.6.1.3 System Device Types . 49

3.6.1.4 System Devices . 51

3.6.1.5 Triggers, Conditions and Actions 52

3.6.2 User Perception . 54

3.6.2.1 User Device Types . 54

3.6.2.2 User Device . 54

3.6.3 Existing Homer Components . 55

3.7 Services . 56

3.7.1 OSGi Services . 56

3.7.2 Homer Services . 57

3.7.3 Developer Perception . 57

3.7.3.1 Writing a Service . 57

3.7.3.2 Using a Service . 58

3.7.4 Existing Homer Services . 58

3.8 Conclusions . 58

contents x

4 homer: policies 60

4.1 Introduction . 60

4.2 Background . 61

4.3 Requirements . 62

4.4 State of the Art . 63

4.4.1 Existing Work . 63

4.4.1.1 Policy Enforcement . 63

4.4.1.2 Policy Representation . 66

4.4.1.3 Policy Conflict Handling . 68

4.4.2 Conclusions . 71

4.5 Policy Language . 72

4.5.1 Format . 72

4.5.1.1 When Clause . 72

4.5.1.2 Do Clause . 73

4.5.2 Language . 75

4.5.3 Representation . 76

4.5.4 Applicability . 79

4.6 Policy System . 79

4.6.1 Architecture . 80

4.6.2 Registry: Policy Management . 80

4.6.3 Live Policy Handler: Policy Enforcement 81

4.6.3.1 When Clause . 82

4.6.3.2 Do Clause . 86

4.6.4 Domain and Language Independence . 87

4.6.5 Scalability . 88

4.7 Conflict Handling . 88

4.7.1 Overlap Detection . 89

4.7.1.1 Overlap Types . 90

4.7.1.2 Related Work . 93

4.7.1.3 Overlap Detection with Homeric Policies 95

4.7.2 Conflict Detection . 98

4.7.2.1 Challenges . 99

4.7.2.2 Related Work . 100

4.7.2.3 Environ Effects . 103

4.7.2.4 Design . 106

4.7.3 Policy Validation . 109

contents xi

4.7.3.1 Checking The When Clause . 109

4.7.3.2 Checking The Do Clause . 110

4.7.4 Conflict Resolution . 110

4.7.4.1 Describing Conflicts . 110

4.7.4.2 Handling Conflicts . 111

4.7.5 Illustration . 112

4.7.5.1 Environs . 112

4.7.5.2 Policies . 114

4.7.5.3 Interactions . 115

4.7.5.4 Results . 116

4.8 Case Study . 120

4.8.1 Overview . 120

4.8.2 Results . 121

4.8.2.1 Can Users Understand Homeric? 122

4.8.2.2 Can Users Translate into Homeric? 122

4.8.2.3 Can Users Write Homeric? . 123

4.8.2.4 Additional Findings . 124

4.8.3 Summary . 125

4.9 Conclusions . 125

5 homer: programming the home 127

5.1 Introduction . 127

5.2 Background . 129

5.2.1 Programming by Demonstration . 129

5.2.2 Natural Language Programming . 130

5.2.3 Visual Programming . 130

5.2.4 Tangible Programming . 130

5.3 Requirements . 131

5.4 State of the Art . 132

5.4.1 Existing Work . 132

5.4.1.1 Programming by Demonstration 132

5.4.1.2 Natural Language Programming 133

5.4.1.3 Visual Programming . 134

5.4.1.4 Tangible Programming . 144

5.4.2 Analysis . 148

5.5 Design Guidelines . 151

5.6 Homer Web Server . 152

contents xii

5.7 Prototype User Interfaces . 153

5.7.1 Homer for iPhone . 154

5.7.2 Homer for iPad . 154

5.7.2.1 Users . 154

5.7.2.2 Platform . 155

5.7.2.3 Design . 157

5.7.3 Homeric Wizard . 157

5.8 Conceptual Design of a Home Interface . 159

5.8.1 Touch Control . 160

5.8.2 Vocabulary . 160

5.8.3 Combine Control and Monitoring with Rules 161

5.8.4 Customisation . 161

5.8.5 Home Page . 162

5.8.6 Navigation . 163

5.8.7 Scenarios . 163

5.8.8 Perspectives . 164

5.8.8.1 People . 164

5.8.8.2 Locations . 164

5.8.8.3 Devices . 166

5.8.8.4 Time . 167

5.8.9 Rules . 167

5.8.9.1 Feature Control . 168

5.8.9.2 Intelligent Automated Tutorials 169

5.8.9.3 Templates . 169

5.8.9.4 Library . 169

5.9 Case Study . 169

5.9.1 Overview . 169

5.9.2 Results . 170

5.9.2.1 Perspectives . 170

5.9.2.2 Visual and Natural Language Programming Techniques . . . 171

5.9.3 Summary . 172

5.10 Conclusions . 172

5.10.1 Summary . 172

5.10.2 Review . 173

contents xiii

iii home run 175

6 conclusion 176

6.1 Thesis Summary . 176

6.2 Achievements . 178

6.2.1 Review . 178

6.2.2 Contributions . 180

6.3 Applicability on a Wider Scale . 180

6.4 Limitations . 182

6.5 Future Work . 184

6.6 Concluding Remarks . 187

iv back matter 189

references 190

L I S T O F F I G U R E S

Figure 2.1 Age and Gender Distribution for User Study 1: What People Want . . 15

Figure 2.2 Example Trigger, Condition and Action in User Study 3 19

Figure 2.3 Gender and Familiarity with Policies for User Study 3 20

Figure 3.1 Homer Architecture . 42

Figure 3.2 Homer Database Organisation . 43

Figure 3.3 Homer Running Profile . 48

Figure 3.4 The Sequence of Events on Registration of a Component 50

Figure 4.1 Sample When Clause Tree . 72

Figure 4.2 Sample Do Clause Tree - Simple . 73

Figure 4.3 Sample Do Clause Tree - Complex . 74

Figure 4.4 When Clause for JavaScript Object Notation (JSON) Example 77

Figure 4.5 Do Clause for JSON Example . 78

Figure 4.6 Homer Policy System . 80

Figure 4.7 When Clause for Durations Example . 85

Figure 4.8 Sample do Clause Tree with Only Actions 86

Figure 4.9 Homer Running Profile Whilst Adding 2000 Policies 88

Figure 4.10 Conflict Detection Process of Two Actions for Same Device 107

Figure 4.11 Conflict Detection Process of Two Actions for Different Devices 108

Figure 4.12 Example Correctness Scores for Each Difficulty Level 122

Figure 4.13 Translation Correctness Scores for Each Difficulty Level 123

Figure 5.1 Capture and Access Magnetic Poetry (CAMP)’s Magnetic Poetry Interface

[126] . 134

Figure 5.2 Sample of Cortexa’s interface for creating rules within the home[31]

(poor quality as copied from a video). 135

Figure 5.3 The iCap user interface [117] . 136

Figure 5.4 Indigo’s user interfaces for defining triggers and actions for the home. 136

Figure 5.5 A Microsoft Xbox Controller. 137

Figure 5.6 Kodu’s rule-building menu [91]. 137

Figure 5.7 Kodu’s doughnut-style menu [91]. 138

Figure 5.8 Lego Mindstorms [70] . 139

Figure 5.9 Oscar [97]. 140

xiv

List of Figures xv

Figure 5.10 Sample Oscar “setup” [97]. 140

Figure 5.11 Oscar [97]. 141

Figure 5.12 Tasker (tasker.dinglisch.net). 142

Figure 5.13 Topiary Map Interface [73]. 143

Figure 5.14 Topiary Scenario Producer Interface [73]. 143

Figure 5.15 Topiary Storyboard Interface [73]. 144

Figure 5.16 Twine Device (supermechanical.com/twine). 145

Figure 5.17 Twine (supermechanical.com/twine). 145

Figure 5.18 Accord Project, showing the jigsaw pieces and a sample policy (get a

shopping list for groceries as an Short Messaging Service (SMS) to your

mobile phone) on the custom jigsaw reader [1]. 146

Figure 5.19 3d Media cubes [13]. 147

Figure 5.20 SiteView [10]. 148

Figure 5.21 Example Communication with the Homer Web Server. 153

Figure 5.22 Two screenshots of the iPhone Prototype: Browse by Locations or Devices.154

Figure 5.23 Screenshot of the iPhone Prototype: View a Device. 155

Figure 5.24 Possible Devices. 156

Figure 5.25 Screenshot of iPad Prototype: Writing a Policy. 158

Figure 5.26 The Homeric Wizard Application (with Overlay Text) 159

Figure 5.27 The Homeric Wizard Application (with Example Policy) 160

Figure 5.28 Mock-up: Home Screen. 162

Figure 5.29 Mock-up: People Screen. 165

Figure 5.30 Mock-up: Person Screen. 165

Figure 5.31 Mock-up: Location Screen. 166

Figure 5.32 Mock-up: Device Screen. 167

Figure 5.33 Mock-up: Time Screen. 168

Figure 5.34 Counts for “Using Perspectives Made it Easier to Write Rules” 170

Figure 5.35 Counts for “The Evaluation was Challenging” 171

Figure 5.36 Nesting Terms in the Homeric Wizard 172

tasker.dinglisch.net
supermechanical.com/twine
supermechanical.com/twine

L I S T O F TA B L E S

Table 4.1 Sample Environs and their Desired Effect 104

Table 4.2 Conflicting Environs . 105

Table 4.3 Sample Policy Conflicts . 106

Table 4.4 Illustrative Devices and the Environs Affected 113

Table 4.5 Analysis Results for Example Policies and Environs 117

Table 4.6 Details of Possible Conflicts . 118

xvi

A C R O N Y M S

ACCENT Advanced Component Control Enhancing Network Technologies

ACCORD Administering Connected Co-Operative Residential Domains

ACHE Adaptive Control of Home Environments

ADL Architecture Description Language

API Application Programming Interface

APPEL Adaptable and Programmable Policy Environment and Language

BPEL Business Process Execution Language

CAMP Capture and Access Magnetic Poetry

CEDIA Custom Electronic Design and Installation Association

CORBA Common Object Request Broker Architecture

CRESS Communication Representation Employing Systematic Specification

CTT Concur Task Trees

ECA Event-Condition-Action

EPSRC Engineering and Physical Sciences Research Council

GUI Graphical User Interface

HAI Home Automation, Inc.

HCI Human Computer Interaction

HTTP Hyper-Text Transfer Protocol

HTTPS Hyper-Text Transfer Protocol Secure

IBM International Business Machines

ID IDentifier

IDE Integrated Developer Environment

INCA Infrastructure for Capture and Access

xvii

acronyms xviii

iOS iPhone Operating System

IP Internet Protocol

iROS Interactive Room Operating System

IT Information Technology

JaCoP Java Constraint Solver

JSON JavaScript Object Notation

JTP Java Theorem Prover

MATCH Mobilising Advanced Technologies for Care at Home

OHF Open Healthcare Framework

OSGi Open Services Gateway initiative

PC Personal Computer

PCOM Pervasive COMputing

PDA Personal Digital Assistant

PHP PHP Hypertext Processor

PROSEN Proactive Condition Monitoring of Sensor Networks

PVR Personal Video Recorder

RECAP Rigorously Evaluated Conflicts Among Policies

RFID Radio-Frequency IDentification

RMI Remote Method Invocation

SAT Service Activator Toolkit

SCA Service Component Architecture

SHA Secure Hash Algorithm

SHAKE Sensing Hardware Accessory for Kinaesthetic Expression

SMS Short Messaging Service

SOA Service-Oriented Architecture

SODA Service-Oriented Device Architecture

acronyms xix

SQL Structured Query Language

SSL Secure Sockets Layer

TCA Trigger, Condition and Action

TCP Transmission Control Protocol

TLS Transport Layer Security

URL Uniform Resource Locator

VCR Video Cassette Recorder

WD When-Do

WS Web Service

XML eXtensible Mark-up Language

T E R M I N O L O G Y

Case Study Describes the different evaluations performed in Chapters 3, 4 and 5. Typic-

ally these case studies were small illustrations or modest evaluations.

Event Is used throughout this thesis to mean a trigger, condition or action (TCA).

Policy Within this thesis, a type of rule in the format when something happens or is

true do something.

Web Server Is used to describe the Homer HTTP API.

xx

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

This chapter will introduce the context, motivations, objectives and research contributions for

this thesis. Additionally, the structure of the thesis is given.

1.1 context

The home forms the integral central core of everyday life. This is where our day starts and

ends, and our homes should exist to make our lives as comfortable as possible.

Many people would like help to perform the mundane and routine home tasks, leaving

them more time to enjoy life. No one can carry out banal tasks as well as a machine, and here

enters home automation.

A home automation system should weave itself into everyday home life, working tirelessly

behind the scenes to help and ease daily chores for the residents. Turning lights off behind you,

ensuring all the doors are locked when you are asleep or at work, maintaining a comfortable

household temperature when occupied. These are all examples of what a home automation

system could do for you, and there are endless other possibilities.

2

1.2 motivation 3

1.2 motivation

Home automation has been something of a science fiction fantasy for decades. Never before

has it been as technically feasible as it is today. The past five years alone has seen pervasive

computing become a reality, with many homes now overrun with smart phones, tablet

computers, laptops, web-enabled television sets, and home computers.

The time is ripe to make the home automation fantasy come true. Leading worldwide

companies, such as Google and Microsoft, are spending billions of dollars to give this research

the push that it requires to transform it from possibility to reality.

Currently, approaches are emerging from two polar extremes. One which focuses on a

single task, such as home security systems, and another which aims to integrate available

tasks into one coherent home system.

Single task solutions can offer highly sophisticated functionality for end users. However,

these are ultimately limited in scope and cannot be combined with other solutions.

Home systems, on the other hand, offer users a range of functionality for their home

through a unified interface. Such an example is Control4, a leading home automation system

available on the market, which combines various lighting, security and media systems for the

user.

There exists a strong desire for home customisability and programmability, to allow the

home to be tailored to individual needs [17, 125]. Despite this desire, existing solutions

available do not allow programmability by end users. Instead, home systems typically require

trained professionals to install, maintain and customise the system which is both inconvenient

and expensive.

A user customisable home system brings new challenges to the typical home solutions

available by enabling programmability by untrained, and often non-technical, users. Research

needs carried out to help ease the task of programming the home for users, from the underlying

language to the end user programming interface techniques.

Through developing a flexible home automation system which can be easily setup, main-

tained and programmed by the end user the need for expensive system installers and pricey

customisation and maintenance costs can be substantially reduced. By lowering costs, and

offering a system which can easily be extended over time, home automation becomes an

affordable and realistic option for many households.

1.3 objectives 4

1.3 objectives

The primary objective of my research is to design and develop a home system which can be

used to address the desire for flexible, yet easy to use, customisation for the home.

The work presented in this thesis aims to address the following list of objectives:

• Design a flexible system to support the vast range of existing hardware and software for

the home, as well as future devices through third-party support. The system must allow

a means of flexibly combining the functionality of these devices at a higher level.

• Design a language for both technical and non-technical users which can allow the

combining of the home functionality in an expressive, flexible and unambiguous form.

• Design advanced offline detection mechanisms. As there are high chances of conflicts

between user written rules (policies) for the home these must be detected and reported

to the user at the time of writing and saving a policy.

• Offer end user programming techniques to expose the custom home language to both

technical and non-technical users, since the policies must be expressible from a very

high-level by an extremely wide range of users.

These objectives are reviewed in Chapter 6.

1.4 research contributions

The following is a list of research contributions that are made throughout this thesis, as an

outcome of the objectives stated in Section 1.3.

• Custom Home Policy Language A new custom policy language is presented within

this thesis to provide a platform for customising and programming the home. The

language is custom designed for the home, emerging from extensive reviews of existing

approaches coupled with tailored user studies. The language extends the existing state

of the art by offering novel policy language features such as the blurred distinction of

triggers and conditions, optionally ordered terms, and conditional actions.

• Novel Policy Overlap Technique To improve the accuracy of the offline policy conflict

detection and to aid the user understand any presented conflicts at definition time, a

technique is presented which can detect if two or more policies overlap with one another.

If a policy is considered to overlap with another, then the two policies are analysed for

conflicts. If, on the other hand, the policies do not overlap, then these are not considered

to conflict and therefore would not be analysed. This reduces the number of unlikely

1.5 structure of thesis 5

conflicts presented to the user. The policy overlap technique presented is unique within

the policy domain, therefore advancing the state of the art.

• Advancements in Policy Offline Conflict Detection Existing approaches to conflict

detection within the home are primitive and rigid. Advancements to these existing

techniques are presented which improve the accuracy of conflicts detected, as well

as allow users to personalise what is considered a conflict within their home. The

conflict detection work presented makes use of customisable environment variables and

resources to obtain a more accurate understanding of how various actions effect the

home.

In summary, this thesis presents a customisable home system by allowing the user to effectively

program their home. This is achieved through the design of a home policy language to enable

the functionality of the various hardware and software in the home to be combined flexibly.

The supporting policy engine enforces this language and offers an advanced two-stage offline

conflict detection process. The first stage involves novel policy overlap detection techniques,

whilst the second offers personalisable conflict detection techniques.

1.5 structure of thesis

This thesis contains the following seven chapters:

• Chapter 1 – Introduction

Introduces the thesis, providing a summary of context, objectives and achievements.

• Chapter 2 – Background

Introduces the background to home automation and telecare, and describes the user

studies performed within this research. The studies are analysed to produce three

collections of requirements, addressed in Chapters 3, 4 and 5.

• Chapter 3 – Homer: Architecture

Describes the underlying architecture of Homer. This includes a full review of existing

home systems and service-oriented frameworks. The design and implementation details

are then described, providing an explanation of how Homer was built and operates. The

work presented in this chapter offers a test-bed for the policy work within Chapter 4. By

researching and developing a dynamic and programmable home system, policy research

can be grounded in a concrete way to allow strong research contributions to be made.

• Chapter 4 – Homer: Policies

Describes the Homer policy system’s ability to handle rules within the home. This

1.5 structure of thesis 6

involves Homeric (the Homer policy language) whose language specification and rep-

resentation are provided. Details are provided of how a policy can be validated and

checked if and how it overlaps with existing policies, and secondly how any policies

which it may conflict with are reported. A case study is also provided, evaluating the

success of Homeric with end users.

• Chapter 5 – Homer: Programming the Home

Describes the research and development carried out in regard to programming the home.

Design guidelines are provided, as well as the notion of perspectives. Again, a case

study is given to evaluate the work presented. This chapter aims to produce a set of

guidelines which express the most successful end user programming techniques for

programming the home, for both technical and non technical individuals, which will

emerge from existing end user programming research. This work, therefore, provides a

means of evaluating the policy research from Chapter 4.

• Chapter 6 – Conclusions

Concludes the work presented in this thesis by exploring the strengths and weaknesses

of the work, reviewing the extent to which the research objectives have been met, and

discussing possible future work directions.

2
B A C K G R O U N D

This chapter discusses the background and requirements for the research presented in this

thesis.

2.1 introduction

The notion of “automating” tasks through the advances of technology dates back to the 1950s,

with the commercialisation of computer technology [35]. Since then, despite early fears of

increasing control of “electric brains” [35], we have witnessed notable impact on a wide

range of industries. Telephone switchboard operators, who were at one stage ubiquitous,

are now largely replaced by automated telephone exchanges and answering machines. In

the manufacturing industry it is claimed that, as a result of technology, productivity rose

roughly 250 percent [98]. To get a premium car out of the driveway it now takes 100 million

lines of code running on dozens of microprocessors [26], automating many of the required

tasks of early cars. These form just a few examples of the many industries which have

adopted computing technology, enhancing and automating their products and manufacturing

processes.

7

2.2 home automation 8

Technology is becoming ever more pervasive. With the falling price of technology, and

the general public’s increase in technical ability, interest and acceptance, the possibility of

automating and enhancing our daily lives within our home is becoming more and more

feasible.

There now exist a large number of academic researchers and commercial companies

developing specialised hardware, software systems and user interfaces for home automation.

This chapter introduces the state of the art in home automation. User studies performed for

this research project are discussed, leading to a collection of requirements to be tackled in

later chapters.

2.2 home automation

2.2.1 Introduction

The terms “home automation” and “smart homes”, used interchangeably, imply some level of

sophistication and intelligence in the home itself. However, this is far from the case. The term

“automation” gave rise to a lot of semantic confusion in the early 1950s, when the term was

first used in relation to computer technology. A definition was settled upon as:

Automation simply means something significantly more automatic than previously existed

in that plant, industry or location.

Bright, 1958 [35]

Within the home this confirms the notion that homes themselves are not “automated” or

“smart”. Instead tasks can be automated through the use of a computerised system which,

without such a system, is not possible.

A “smart” or “automated” home describes a home which has a number of technologies

connected to some central system. The system can be used to offer monitoring and control

capabilities locally or remotely. The automated aspect can be achieved by combining the

individual pieces of functionality of the various installed technologies in flexible ways to

result in “rules” or “policies” for the home. These rules offer a mechanism for the home

system to automate tasks that were previously performed manually. Augusto documents the

history of smart environments and discusses current technical challenges that researchers and

developers face [7].

Within this thesis, we refer to automation as “programming”. This term best describes

the concept of being able to combine the functionality available in the home at a higher

level, to produce custom, richer functionality. The automated home, in effect, is one which is

programmable. This differs from the concept of “configurability”, which is purely a concept

2.2 home automation 9

of parametrisation. Certain variables and values of the home can be altered by the user to

customise the home system. For example, setting the home to use metric units instead of

imperial or to use 24-hour time. Programming, on the other hand, is allowing the end user to

define control logic of the system. For example, making the heating come on when the front

door opens after 6pm on Mondays and Wednesdays.

This section discusses the motivation for automated and smart homes, introduces the

leading research, examples and companies working within this field, and finally closes with

an analysis of the state of the art.

2.2.2 Motivation

On the whole, people are feeling “busier” than ever before [42]. The focus of “busyness” can

be careers, families or social activities [33]. Regardless, if industries can successfully make use

of technological advances to enhance and automate the production process, why can we not

obtain these same benefits in our daily lives?

As technology continues to seep into our homes, so too does the desire to make use of

its functionality to help streamline and automate many of our daily tasks (the user study

performed in Section 2.3.1 confirms this desire).

Ultimately, with the combination of busier lives, ubiquitous technology and increased

technical abilities, the real question is – why would we not want to ease and automate our

daily lives through the use of technology in our homes?

2.2.3 State of the Art

A thorough overview of the history of home automation systems over the years can be found

in [11] and [49]. This section aims to categorise and summarise the most relevant of work,

with an analysis in the following section.

living labs There is currently a large amount of research into living labs which can

allow experimental work to be carried out in a more realistic setting. Examples include

Mozer’s adaptive house [29], Georgia Tech Aware Home [61], Orange [49], eHome [69] and

MIT’s House_n [54]. These labs provide a test-bed for research into, for example, networking

and protocols within the home, reliability of home control systems and trialling of new user

interfaces. In addition, user trials can take place whereby users are asked to effectively live in

the lab for a set time. This offers a means of evaluating the research in a safe and controlled

environment, with the benefits of a more realistic setting.

2.2 home automation 10

networks Home networks is also of popular focus [27, 47, 103], along with their man-

agement and access control issues [62, 85]. The goals are to design common protocols and

standards for device communication, enhance and integrate existing protocols, increase

general device security within the home and simplify the concepts for end users.

user studies User studies into social and acceptability issues surrounding some areas

of home automation help researchers better understand the current problems. For example,

easing network management [48, 114], diversity between households [47], and the role of the

technology “guru” of the home [103, 108].

home systems At the heart of such home automation research is the underlying home

system itself. Currently this research typically resides in one of three main categories: living

labs, telecare research and commercial solutions. The most notable are now discussed.

Control4 (www.control4.com) is a leading home automation company in both Europe and

the US, and offers solutions all over the world. It currently has custom integrators and

distributors in over 70 countries worldwide [28]. Control4 offers tailored home automation

packages to suit individual home owners needs, at “affordable” prices. However, in reality

these solutions are luxury treats for fortunate individuals, and are unlikely to be found in the

average home any time soon. Although the technology costs themselves are reducing, with

Control4 much of the cost is found in the design, installation, customisation and maintenance

of each individual package.

Cortexa (www.cortexa.com) is an American company which offers customers control over

the home. The company has integrated its system with a small range of the most popular

technologies in home automation, such as Home Automation, Inc. (HAI) (mentioned below)

and Insteon (www.insteon.net, a leading manufacturer of heating, lighting and home sensor

control for the home). Cortexa have manufactured custom computer boxes to house the

system and a 15-inch touch-screen to interact with and manage the home. Cortexa have also

developed an iPhone application and a web interface. The company has tried to stand alone

from others in the market, which has resulted in isolating itself. Customers are offered only

the Cortexa user interfaces, and must purchase only Cortexa-compatible hardware. When

other companies update or add new hardware to their collection, Cortexa has to update its

own code to provide these updates or to add functionality for their users. This is unsustainable

and can only lead to frustrated customers and out-of-date software.

www.control4.com
www.cortexa.com
www.insteon.net

2.2 home automation 11

MATCH (Mobilising Advanced Technologies for Care at Home, www.match-project.org.uk) is a

collaborative research project between the Universities of Dundee, Edinburgh, Glasgow and

Stirling. It is primarily focused on home care, with four main strands of research: monitoring

and analysis of resulting home care data, speech recognition and synthesis, multimodal

interaction, and finally the use of policies and ontologies within the home care field.

The MATCH home system is designed and based upon research into home care and the

unique problems it brings. For example, MATCH offers the ability for multiple stakeholders to

define desired actions that should take place. It can then intelligently and appropriately handle

requests from these different stakeholders, calculating what should occur and when, whilst

ensuring all goals and restrictions that may be set are adhered to [87]. The MATCH home system

was the inspiration for the spin-off project MultiMemoHome (www.multimemohome.org), which

explores effective reminder systems within home care.

OmniQare (www.omniqare.com) is a leading system within Europe promoting independent

living, and encouraging and enabling people to live in the comfort of their own homes for

longer. The system aims to keep the ageing population informed, independent and safe.

OmniQare comes packaged on a purpose-built all-in-one touch-screen Personal Computer (PC)

offering 6 main strands of services: safety, communication, shopping, services, contact and

well-being. Various devices can be connected to the system to enhance its functionality. For

example, the user could connect sensors to measure and share their health details (such as

heart-rate or blood pressure). OmniQare also incorporates a small application store (similar

to the Apple “app store” or Android “market place”), which offers individual services to

further enhance the system, including games, radio players and specialised communication

applications.

2.2.4 Analysis

The technical feasibility for home automation has existed for decades, so why then has it not

been widely adopted? This question is posed by Torbensen [125] and Brush et al. [17], who both

aimed to gain insight into the situation. Torbensen conducted a comprehensive analysis of the

market and Brush organised structured home visits with a range of households who currently

live with home automation. Both provided useful and insightful information regarding many

of the barriers of current home automation solutions which are now discussed.

• Cost The first major problem observed was the cost. Either in terms of installation,

customisation and maintenance for those with outsource setups from commercial com-

panies, or in terms of time for those custom installs by the technically capable. In the

www.match-project.org.uk
www.multimemohome.org
www.omniqare.com

2.2 home automation 12

case of commercial companies there is a large premium on the base cost of the tech-

nology which is unavoidable for those less technically capable households. This cost,

however, typically buys a more coherent experience for the users and removes a lot of

the maintenance and customisation issues that can arise.

Although cost is a current issue within home automation, it is not really one which

further research can aid. Overtime technology costs will fall as popularity and adoption

increases.

• Disjointed Hardware The second major problem leads on from this notion of cost

and time and focuses on the raw hardware itself. The non-outsourced homes reported

how disjointed the market is and how challenging it can be to integrate the available

hardware to exploit the full potential of an automated home. In many cases these

highly technically capable individuals had failed to successfully combine the various

sub-systems within their home due to compatibility and integration issues. Companies

such as Control4 and Cortexa spend a lot of resources trying to integrate and support

the wide range of home technology available on the market. This leaves those more

technically capable individuals, who are unwilling to pay premium costs, stuck with

disconnected sub-solutions.

This is a two-fold problem: one of hardware and one of software. The notion of using

one common protocol for device communication within the home has been a goal

for decades, with the dream that all hardware within the home can interact using

the same means of communication [3, 37, 119, 122]. Software research, on the other

hand, has learnt to adapt to the realisation that the home is full of devices which

communicate using different protocols and technologies. Much work has been carried

out to explore possible hardware-software bridge layers (typically termed “glueware”)

[25, 64] and service oriented architectures [44, 86, 109, 111] as a means of supporting

this ever-widening range of technology within the home.

• Inflexibility Another major frustration is the lack of customisation options available.

Those who outsourced and made use of solutions offered commercially felt trapped,

stuck with an inflexible system which required professional aid for every slight adjust-

ment or alteration. On the other hand, those who had chosen the independent route

were faced with the integration challenges and the complexity of customisation across

the various manufacturers and technologies.

Inflexibility and rigidity in home automation solutions is a major unsolved problem, and

one which industry is not keen to address (likely due to business reasons – the less the

customer can do for themselves, the more they must pay the company). At the technical

2.2 home automation 13

level there are multiple problems to solve: firstly a platform is required which can allow

communication with a vast range of hardware within the home; secondly some means

of exposing the functionality available in the home; thirdly, a means of combining this

functionality in a flexible way; and finally providing a way that the user can perform the

customisation by combining the functionality available in their home. Within academia,

research has focused on the general hardware and architecture aspects [44, 86, 109, 111]

mentioned in the first two problems. However, the latter problems of combining the

functionality within the system and by the user is lacking.

• User Interfaces In addition to the lack of customisation made available to the user, the

user interfaces are typically extremely complicated and overloaded. This is apparent

when looking at the interfaces of Crestron, Control4, Cortexa and many of the other

leading home automation systems available [75].

Research has explored many avenues for possible user interaction within the home, for

example through gesture [52, 120], remote control [97], voice [40, 41, 145, 146], and web

[30, 99]. However, less research has been conducted to explore how best to expose end

user programming functionality to the user. Currently, there exist early explorations into

the end user programming techniques of demonstration [36], natural language [40, 126],

tangible [107] and visual [117].

• Security A final concern to the participants regarding their home automation solutions

was that of security. This often came down to personal preference of the end user,

with some preferring to not expose any functionality of their home externally whilst

others were happy to, for example, control their front door and access security cameras

remotely. Such personal preference varied regardless of technical competence.

Security should be of high importance for any home automation solution, and as such

has been researched for decades [6, 12, 51]. However, more research needs carried out to

help simplify and ease the stigma and issues of security for the end user.

2.2.5 Summary

Currently, there exist home systems which provide monitoring and control capabilities for

users. However, only a handful of companies additionally offer automation aspects, confirming

the abuse of the phrases ‘home automation’ and ‘smart home’. For those systems that do offer

automation, most are programmed by the developer at installation time. The few systems

remaining, which actually allow users to program their own home, are overly complicated

and crude. This leaves customers limited, and therefore frustrated.

2.3 user studies 14

Another major problem with existing home systems is the lack of functionality. Many

solutions support only a limited subset of available hardware, therefore each system limits

the user to predefined manufacturers and restricted capabilities. This same limitation can

be found in the user interface to the home, where users typically can only make use of one

company’s interface.

Control4 is, by far, the most advanced and flexible solution currently available. It allows

manufacturers to integrate their technology with the Control4 system, both for underlying

home functionality and user interactions. The main drawback with Control4, however, is not

only the premium cost, but the lack of customisation available for the user. All automation is

written by developers for each installation and is therefore costly and inconvenient for the

user to tweak or customise their home’s behaviour.

To summarise, the notion of a “smart home” is proven technically possible by the existing

range of systems. Sadly, however, there is no one solution which allows the user freedom to

use any desired technology and user interface, or the flexibility to program their home.

2.3 user studies

Three user studies were carried out over the duration of this research project and are discussed

in this section. Requirements gathered from the studies are documented in Section 2.4. The

first user study explored desired functionality of a smart home. The second, more in-depth,

user study built upon the findings of the first, and examined user preferences for general

control and methods of interaction with a hypothetical smart home. The final study provided

feedback regarding design decisions about the Homer policy language, to verify the suitability

of the chosen approach.

2.3.1 User Study 1: What People Want

This preliminary user study was carried out in June 2009. It aimed to investigate general

desired functionality that technology could provide within a home. This was achieved by

asking individuals the following question:

“Is there anything you’d like your house to be able to do for you?”

This question was intended to return open-ended feedback, without constraints and

guidelines. This format encouraged imaginative and creative thinking and maximised the

variety of responses received. A small number of interviews were carried out, as well as

sending targeted emails, inviting people to participate by answering the question. These

people included family members, work colleagues and employees from a couple of local IT

2.3 user studies 15

Figure 2.1: Age and Gender Distribution for User Study 1: What People Want

companies. Of these potential respondents, thirty responded. The range of age and gender of

the respondents is shown in Figure 2.1.

Of the responses received there were some general similarities both amongst and across age

ranges. Within the younger age brackets (20 – 29 and 30 – 39) there was much more desire for

functionality that would improve the ease and efficiency of busy everyday lives. Examples

include:

• Everyday Tasks: numerous respondents expressed the wish for automation or help

with everyday tasks within the home. Recurring examples included watering plants,

maintaining food stocks and feeding pets.

• Reminders: there was a clear desire for integrated reminders and relevant notifications

in people’s everyday lives. These ranged widely, including grocery reminders when

passing a shop, home insurance up for renewal, car running low on petrol, reporting

breaking news, needing a card for a partner’s birthday and dental appointments. One

respondent concluded her list of desired reminders with “you get the idea - reassurance

for the absent-minded and faintly neurotic”.

• Flexible Appliance Control: continuing the idea of rushed daily lives, many people

described how they would like to streamline their days with more automated features

and advanced means of appliance control. Some examples include switching on the

coffee machine from bed, turning on the oven on the way home from work, automatically

locking the front door as you leave, opening curtains when it is time to rise, and running

bath water to desired parameters.

Respondents of a younger demographic also expressed interest in general energy efficiency,

monitoring and management. Such examples include having the heating only on in occupied

rooms, remotely switching on and off appliances, making use of cheaper energy tariffs at

2.3 user studies 16

night and automatically reporting energy usage data to the energy supplier (to improve billing

accuracy). Generally this demographic showed a lot of interest in energy, with one respondent

saying upfront that they would like: “all the technology to be as energy-efficient as possible.”

As the age bracket increased, so did the desire for advanced heating control: one respondent

summed this up by writing “why are central-heating timers so utterly stupid?!”. Respondents

described how they would like to have control of their heating remotely, as well as being

dependent on their physical location (both internally in occupied rooms, and externally

based on proximity to the home). A more advanced response described the desire for the

environment within their house to be kept “comfortable”, defining comfortable as temperature,

humidity, lighting, ventilation and sound level.

Due to the limited sample size of the older age bracket, detailed conclusions cannot be

drawn. However some general themes were identified, including the desire for information

about local events, special offers of relevance (such as local cheapest priced goods), health

issues (incorporating appointment scheduling and receiving updates on local flu vaccinations)

and important news.

The only feature that was desired by all age brackets was general peace of mind features.

Examples include security alerts when away from the home and notifications of any appliances

left on or windows or doors unlocked when leaving the home or going to bed.

In addition to the main themes there were some other interesting responses. These included

the following categories, with examples:

• Media: multi-room playback, global control, intelligent music choice based on mood

and people present.

• Lighting: lighting modes, intelligent control, dimming to act as a reminder.

• Security: status reports (particularly when on holiday), contact in case of anything

untoward happening.

• Food: keep the house stocked with food normally bought, suggest recipes based on

ingredients within the home, reminder of what groceries are needed when near a

supermarket.

• Social: digital whiteboard for shared family communications, local events, new film

releases.

• Reminders: shopping, appointments, bills, TV programs.

• Remote Access and Control: ability to call/SMS/email the home, status reports, query

appliance states.

2.3 user studies 17

The full results from this study can be made available by the author on request.

This study produced interesting results which helped guide the initial design of the Homer

system. A simple observation is that, even from a limited set of individuals questioned,

people can want very different things from a potential home system. In order to design and

produce a home system that can satisfy this wide range of requests it is key that the system be

modular, extensible and flexible. Requirements gathered from this study are discussed further

in Section 2.4.

2.3.2 User Study 2: How People Want To Control the Home

Having observed the desire for smarter homes from user study 1, the author then required an

understanding of how people would like to control and interact with their home. This study

was a far more detailed analysis, with 150 respondents taking part. A summary of the key

details of this study are discussed within this subsection. The full description and analysis is

published in [79].

The study was a short (5–10 minute) online questionnaire designed to collect a range of

demographic data, information about technical abilities and opinions, and finally information

about interactions with a hypothetical home system. This information included the preferred

modalities, devices and locations for interactions with the home system.

The survey took place over two weeks in April 2010. Exponential non-discriminative

snowball sampling 1 was used to distribute the survey to a wide audience. This resulted in

150 completed surveys by individuals from a diverse demographic background and with a

wide range of technical abilities.

The results produced a range of quantitative and qualitative data that was analysed thor-

oughly to evaluate hypotheses and to gain a clear understanding of exactly how people would

like to control the home. The respondents demonstrated a very strong desire to control the

home when offered “the perfect system”. PCs, laptops, tablets and smart phones were of

similar high preference as possible devices to control the home, with the exception of a games

console which proved to be very unpopular. As for the means of control, respondents much

preferred the notion of controlling their home through touch or remote control, rather than

voice or gesture based. Home security was also of concern, confirming the findings from the

previous study. There was very little mentioned about security issues concerning the home

system itself, which is somewhat surprising: the respondents had few trust or safety issues

with a potential home system.

1 A technique used to obtain access to a wider range of people, by asking respondents to pass the study to others and

similarly asking those individuals to pass it on, and so on [24].

2.3 user studies 18

The key findings from this study include the desire for flexibility, programming and general

freedom over control and customisation for any potential home system. A flexible home

system should be able to be controlled through a range of interfaces and devices, using

different modes of interaction. A home system should be programmable by the user if desired.

Finally, the system should offer the freedom to be controlled from anywhere.

The findings from this user study aided the design and support of end-user interfaces for

the Homer system (discussed further in Chapter 5). Acknowledging the general desire for

choice and freedom when controlling the home, it became important to offer a flexible and

extensible means of control. The requirements from this study are described in more detail in

Section 2.4.

2.3.3 User Study 3: Can People Program Their Homes

Having explored what potential users would want to be able to do with a home system, and

how they would like to control it, a final study was carried out to explore if users would be

able to program their home. A small paper-based questionnaire session was carried out with

local maths and computer science postgraduate research students. The questionnaire aimed to

discover if technically minded people can formulate policies, allowing the author to consider

the format, wording and general understanding of the policy approach. This information was

then used to help guide the design of the Homer policy language.

The study was designed to take 50 minutes in total. This included a five minute introductory

discussion to describe the high-level notion of programming a home, three example simple

policies, and what was involved in the tasks set in the questionnaire. Although the purpose

of the study was described by introducing the concept of programming the home, very little

direction and background was provided about policies and how to formulate them. This was

to simulate a more realistic situation where end users of a home system would, most likely,

have no or little prior knowledge or experience of policies.

General information was collected about the participants, including their gender and

familiarity with policies. This opportunity was used to obtain information about general

interest in home systems from a more technically minded group of people. The participants

were asked if they would like a smart home, how they would like it controlled (under their

control or by the home system) and if they had ever looked into home automation. The main

focus of the questionnaire involved three policy based tasks for the participant to complete:

1. The first question asked the participant to formulate a policy from a given subset of

example terms (Trigger, Condition and Actions). An example of each type of term is

shown in Figure 2.2. Thirty-five sample terms were given which included terms about

2.3 user studies 19

Figure 2.2: Example Trigger, Condition and Action in User Study 3

doors, windows, lights, fans, temperature, SMS, email, boiler, motion detection and

weather.

2. The participants were asked to write example terms that had not already been provided

on the example sheet.

3. Finally, sample policies were requested that would help automate or enhance the

participant’s daily life. It was made clear that there was no correct way to write a policy,

and encouraged the participant to join the terms to formulate policies in ways that made

sense to them.

The user study took place in October 2010, where twelve postgraduate research students

from the University of Stirling came together for the hour of the study. There was a mix of

gender and policy experience, as shown in Figure 2.3, with expert policy familiarity being

rare. This, however, is not an issue within this user study as the less exposure and experience

the participants had to policies the more similar they are to a potential home system users.

The questionnaire forms were collected, collated and analysed to reveal some interesting

results. Most policies that were written, for both question 1 and 3, were valid. Only three

participants wrote an invalid policy for question 1, reducing to only one respondent in question

three. This is greatly reassuring in that, although these participants were of a technical and

intellectual background, they could formulate valid policies free-form, without guidance,

restriction of choice, or feedback from a user interface. The three most notable results are

discussed in more depth in turn, including the lack of distinction between triggers and

conditions, perspectives of terms and the trend for simplicity.

For the policies written in question 1 and 3, 75% of participants wrote at least one policy

that had no trigger and was composed entirely of conditions and actions. In many cases,

conditions were used when the nature of the trigger alternative was intended. For example,

2.3 user studies 20

Figure 2.3: Gender and Familiarity with Policies for User Study 3

one participant wrote “when time is 8:00pm then feed cat”. In this policy the intention is that

when the time becomes 8pm, the cat should be fed, which is a trigger, rather than a condition.

The example terms that were given to the participants were colour coded (as shown in

Figure 2.2): green for triggers, orange for conditions and blue for actions. Even with this visual

distinction, along with the natural language, the difference between triggers and conditions

was not apparent to most of the participants.

A second discovery this user study revealed is that different individuals chose to refer to

terms from different perspectives. These perspectives were:

• Location: the location of the device or service. Some examples include “hall lamp is on”,

“bedroom door opens” and “house receives SMS”.

• Time: based upon some notion of time. Some examples include “when dusk”, “time is

later than 10pm” and “morning alarm goes off”.

• Personal: referring to a device or service from first person perspective. Some examples

include “check my temperature”, “when I get up” and “my fridge is empty”.

• Device: referring to the device or service directly. Some examples include “phone

receives call”, “shower is on” and “main door is open”.

On average participants made use of two perspectives throughout the policies they wrote for

question 3, and the most popular of these was the device perspective. The personal perspective

produced an interesting problem: the term “send SMS” could be interpreted as both a trigger

and an action. From the personal perspective “send SMS” is a trigger, meaning that when “[I]

send SMS” the policy should then react and do something. However, from a device perspective

“send SMS” is meant as a command, written in a policy as an action that should be carried out.

A final observation made from the results of this study is that, on the whole, participants

wrote relatively simple policies. Despite the participants’ technical backgrounds, policies had

2.3 user studies 21

an average of only three terms. (There was only one policy far longer than the average length,

with eight terms in a single policy). By far the most common formats for policies was the

standard “when trigger – if condition – then action ", and the blurred trigger version “when

condition and condition – then action ".

Three participants wrote more sophisticated policies, including ordered lists of terms,

optional terms and some examples of conditions amongst the action list. This was interesting,

as these participants were able to express logic within one policy where other participants

required two. For example, logic expressed using two policies: “when I arrive home from work

and temperature > 24°c do open window” and “when I arrive home from work and temperature

< 24°c do turn on heating”, was represented in one policy as: “when I arrive home from work

do if temperature > 24°c then open window else turn on heating”.

Various discussions took place among participants as the questionnaire was carried out, the

most relevant of which are discussed below.

There was a debate about the wording difference of the start of a policy, where some

people said they would prefer to use “if” rather than “when”, which was used in the example

policies given at the beginning of the study. However, interestingly they led themselves to the

correct conclusion that actually there is very little difference, and both would be completely

acceptable.

The participants also noticed the lack of any form of not within given terms and examples,

with some participants wanting to make use of such logic. Other participants were actively

against the use of not, pointing out that all terms typically had an opposite. So instead of

saying not “boiler is on”, you could simply just use the appropriate term “boiler is off”. Those

in favour of not were unable to produce examples that would require the operator, and as a

result all policies written by the participants within the questionnaire did not involve any nots.

A final point of discussion revolved around policies that could take place when the home

was empty. One participant asked if policies were only for when within the home, of if they

could write policies for when they are on holiday. This question inspired others, with the

realisation that the home could be automated from afar.

This user study revealed some crucial information that helped define the Homer policy lan-

guage. Realising that the participants could not differentiate between triggers and conditions

led to the decision to blur the distinction between triggers and conditions. Also, by observing

that, when given the freedom, participants referred to terms from different perspectives, it

showed that the user should not be forced to refer to the devices and services in a predefined

way. Instead, they should be able to freely jump between perspectives as a way of accessing

devices and services within their home. Another lesson learnt was that the most common

2.4 requirements for a home system 22

policies written were actually relatively simple in terms of language requirements. Although

a few participants chose to write more complex policies, they were indeed outliers – even

amongst a technically minded group of people. The message here is that:

“Simple things should be simple and complex things should be possible.”

Alan Kay2 [35]

Of the more sophisticated policy formats, ordered and optional events should be possible. A

final decision learnt from this user study was that a not operator was most likely unnecessary.

If a technically minded set of participants could not think of a requirement for it then it would

just become a language feature that added more complexity than was really required. The

policy requirements are discussed in greater detail in Section 2.4 and Chapter 4.

Many valuable lessons were learnt from these user studies. They all helped to guide the

design decisions made for the various aspects of Homer, as well as extend – and suppress –

the requirements for the research.

2.4 requirements for a home system

From the three user studies many valuable lessons were learnt and observations made about

what people want from a home system, how they would like to control it, and finally if they

are able to program it. A list of requirements for a home system was drawn from the user

studies.

2.4.1 System

Observing the wide range of desired home functionality and automation, it is clear that a

home system must be extremely modular and extensible. As new devices and services become

available to the consumer market it is crucial that the home system can support them (given

an open API for developers). This allows the home system to offer a wide, and ever-growing,

array of functionality for the user. However, not only should the home system support as many

devices and services as possible, it should also allow these individual pieces of functionality

to be combined in flexible, configurable and dynamic ways. With the combination of up-

to-date devices and services and a means of combining their functionality, a fully dynamic

and configurable home system can be offered. This would meet the extremely wide list of

desired home functionality described by users in all three trials. Chapter 3 expands upon

2 Alan Curtis Kay (born in 1940) is an American computer scientist known for his early pioneering work on object-

oriented programming and windowing graphical user interface design.

2.4 requirements for a home system 23

these requirements in relation to home systems, and explores existing home architectures to

assess if such a system currently exists.

2.4.2 User Interaction

A home system clearly must be designed to be simple and easy to use for a wide range of

possible end users. The second user study, described in Section 2.3.2, explored the preferred

modes and devices for interacting with a home system. The results from this study showed that,

on the whole, people liked the idea of interacting with their homes through touch – whether

using a touch phone, tablet, wall panel, or any other touch input device. However, people

were not against the idea of interacting with their home through other means such as voice,

remote controls or gesture. Similarly, respondents showed interest in making use of different

devices for interacting with the home. These devices ranged from mobile phones to televisions.

For these reasons it would be advantageous for a home system to be controllable through a

range of different interfaces and devices. This would maximise the ease of integration and

acceptability of a potential system within a home.

The second user study also showed that people were keen to have control over their home

remotely, which the other studies also confirmed. Therefore a second requirement of user

interaction with a home system is to ensure that the system can be controlled away from the

home, ideally using the same applications and interfaces. For example, an iPad application

used within the home to control devices and services should behave identically within and

away from the home.

The third user study demonstrated that people typically referred to the devices and services

within the home from different perspectives. This must be taken into consideration in the

design of home system interfaces. Forcing the user to think about the home in one particular

way will increase the difficulty and frustration for the user, perhaps making the system seem

unnatural to the less patient or less technically minded. So, any user interface for the home

system must support access to devices and services through the four perspectives described

in Section 2.3.3 (personal, device, time and location).

The user interaction requirements are all discussed in further detail in Chapter 5.

2.4.3 Policies

The third user study revealed interesting observations about how people write policies for the

home. Four critical requirements for a policy language can be taken from the study.

Firstly, the difference between triggers and conditions is too subtle. Many of the participants

in the third study wrote policies that contained no trigger, as well as using conditions when

2.5 conclusions 24

they wanted trigger behaviour. It is vital that policies can handle interchanging use of triggers

and conditions and behave as the user would expect.

The ability to negate terms was decided as unnecessary by the participants of study 3. If

twelve technically minded individuals were unable to require this operator then it can be

assumed that the average home resident will also be unable. For this reason, a policy language

designed for the home does not need to support negation of terms.

The justification for not supporting negation of terms also extends to prohibition policies,

where the user could specify something that they did not want to happen. For example,

“never turn on the heating when the front door is open”. Such policies introduce ambiguity

to the policy system. What should the policy system do if a user tells the heating to turn on,

at the same point as someone walks through the front door? Such ambiguous behaviour is

undesirable for a home system, as users must always feel in control of their home.

A final requirement for a home policy language is to support optional and ordered term

combinators, as well as allow conditionals within the action list. These features were used by

some of the participants in the study, and therefore shows that on occasion the possibility of

more advanced features would be desirable.

Each of these policy language requirements is discussed in further depth in Chapter 4.

The three studies described in Section 2.3 have all contributed invaluably to the requirements

gathering for the three strands to this work: the home system, user interaction and the policy

system. These strands are discussed in further detail in their respective chapters.

2.5 conclusions

This chapter introduced home automation, explaining the motivations and exploring the

state of the art. It was shown that with the increase in pervasive computing there is demand

for home automation. Existing home systems are limited, revealing a gap in both industrial

development and research.

Three user studies were performed during the research. These were discussed in turn,

describing the methodologies and results for each. The first study involved 30 participants,

who helped paint a picture of the general desires people have for technology within their

homes. This led onto the second study, involving 150 participants, which provided a deeper

understanding of the desires expressed in the first study. The preferred modes, means

and tools for interacting with the home through some home system helped influence key

research and design decisions as seen in coming chapters. The third user study was much

narrower, involving only twelve participants and focusing on purely the language aspects of

programming the home.

2.5 conclusions 25

These studies produced crucial requirements for home systems, including their functionality

and user interactivity. All requirements grouped naturally into the three main research areas

of this thesis: the home system (architecture), home customisation (policies), and home

interactions (end user programming). It was observed that a home system should be extensible

and modular, to ensure that third-party developers can add support for additional hardware

and software services. The policy system should support a language which allows the

distinction between triggers and conditions to be blurred, actions that can be conditional, and

triggers and conditions which can be combined, optional or ordered. It was also discovered that

there would be little requirement for negation of triggers and conditions, nor the possibility

to handle prohibition policies. Finally, the user studies showed that it would be optimal to

provide a range of different interface modalities and styles, and to ensure that a wide range

of ages and technical abilities were catered for. For interacting with and programming the

home, it was observed that many people think about their home and the devices within it

from different perspectives, and this should be respected in the interface design.

Five open problems emerged after exploring the state of the art of home automation. Within

this thesis, it was decided to address the problem of how to offer flexible customisation of the

home.

The following chapters now take forward the knowledge of existing home automation

systems and research, coupled with user requirements for the three key aspects of a home

system, aiming to answer the research question: How can we offer flexible customisation of

the home?

Part II

M Y C O N T R I B U T I O N

3
H O M E R : A R C H I T E C T U R E

This chapter explores what is required for the core aspect of a home system and introduces

Homer, a home automation system developed to satisfy these requirements. This work

provides a test-bed for the forthcoming policy work in Chapter 4.

3.1 introduction

Within a home environment it is crucial that any system behaves both reliably and consistently

to gain the trust of the user. A home system should be able to support a wide range of

different devices and services, both existing and future. The dream of a common protocol for

all devices within our daily lives is just that. In reality there are many different communication

means, protocols and APIs, and the chances of these ever sharing some universal standard is

remote. Instead, any home system must be able to support the wide and ever growing range

of devices or, as many companies do, support at least a subset of devices.

The core framework for the home system is one of the most vital parts of the whole setup.

Any system which is not reliable, robust and adaptable has increased chances of being rejected

by users, as well as potential third-party developers. Most home automation companies

make their own custom framework which then makes it difficult to allow or encourage other

27

3.2 background 28

developers to integrate. This, therefore, leaves that company responsible for integrating other

technologies and protocols in order to maximise their capabilities and attractiveness to the

market.

This chapter first introduces the background of service-oriented computing. The require-

ments for a home system are discussed, followed by an exploration of the state of the art. The

architecture of Homer is then described in detail, as are the components and services. The

Homer system has been fully implemented except where stated.

3.2 background

As computing becomes more pervasive, so too does software. This naturally leads to the desire

of software reuse and integration, developed locally or by third-party developers. A widely

adopted approach is for software to be decomposed into useful components which each offer

a useful service. These services can then be combined to produce higher level software which

is more robust and maintainable. This concept is known as Service-Oriented Computing and

is realised through a Service-Oriented Architecture (SOA) [115]. This describes principles in

software design which encourage code reuse, modularity, distribution, interoperability and

standards-compliance.

This section introduces the buzzwords within the area of service-oriented computing,

followed by how Service-Oriented Architecture (SOA) can help the problems faced with home

automation systems.

3.2.1 Conceptual Approaches

There exist three main conceptual approaches used within service-oriented computing, each

of which is described below.

SOA (Service-Oriented Architecture) is a concept for designing software in a modular way.

Code is split into natural components, or tasks, which offer particular services. These loosely-

coupled blocks of code are relatively independent from each other. Individual SOA blocks can

be associated with one another through service orchestration (or ‘choreography’) [5, 76, 137].

This process allows applications to be developed utilising a set of services. With such a system

in place, it is very easy to replace or add new services, providing a highly flexible and dynamic

architecture.

SCA (Service Component Architecture, www.osoa.org) is a collection of standards describing a

component-based framework that complies with the principles of SOA. The idea behind SCA is

that component implementations should be separable from how they are interconnected. It

www.osoa.org

3.3 requirements 29

should be possible to develop components in a range of languages. The framework should

allow these components to be ‘wired up’ in a variety of configurations, without having to

worry about the component implementations. Furthermore, reconfiguration should be easy –

perhaps because of a new component implementation, or because new requirements need a

different configuration.

SODA (Service-Oriented Device Architecture, www.eclipse.org/ohf/components/soda) is a

service-based programming model designed to standardise and simplify the interaction of

devices with service-oriented systems. The goal is to allow easy interaction with sensors and

actuators for developers. A development kit and Service Activator Toolkit (SAT) have been

created. The development kit, which is an Open Services Gateway initiative (OSGi) component,

is for interfacing with hardware devices through Java. The SAT eases the process of building

and working with service-oriented OSGi components by simplifying the registration and

discovery of services.

3.2.2 Within the Home

The home is full of individual devices and self-contained automated systems (such as home

theatre setups, security systems and lighting) that typically cannot communicate with one

another. The principles of SOA lend themselves to the home automation domain, providing

tools and frameworks for supporting the combination and programming of various individual

devices, technologies and systems in the home.

With the rise in knowledge and quality of SOA in the late nineties, service frameworks have

become increasingly popular. The most common and successful of these are discussed in

Section 3.4.

3.3 requirements

Requirements for a home system were gathered from user studies presented in Section 2.3.

These studies looked into what users may want from a potential home system, and how

they would wish to interact with such a system. These requirements were summarised in

Section 2.4 and are expanded below with respect to architectural issues.

Devices The following features are required for the support of devices and software services

within the home:

• Extensible The system should be extensible to allow new/existing/future devices and

services to be added and supported by the system.

www.eclipse.org/ohf/components/soda

3.4 state of the art 30

• Modular The system should be modular to ensure device support is self-contained,

therefore allowing easy installation (and uninstallation) of device support without

affecting the system.

• Developer Friendly The system should allow independent developers to write and

install support for different devices and services quickly.

System The following features are required for the Homer system:

• Embedded Policy Support The system should offer policy support as a means of

managing and orchestrating functionality from devices and services in a flexible manner.

• Dynamic The system should be dynamic, with no dependencies on the devices, to

ensure all internal features (such as policy support) continue to work as new devices

are added to the system, are reconfigured or are removed.

• Configurable The system should be easily or automatically configurable in ways con-

venient for the user, and should minimise any decisions or hard-coded settings at code

level. This also supports the design principles recommended by Davidoff et al. [34] for

developing end-user programming systems within a smart home environment.

These were taken as the requirements for the home system to be developed. Primarily, the

resulting system must offer a test-bed for the policy work undertaken in Chapter 4. Existing

home frameworks, as well as software architecture technologies, were explored to ensure the

correct tools and methods were used. These are described in Section 3.4.

3.4 state of the art

The following state of the art discusses existing home frameworks and possible framework

technologies. The relevant possibilities are analysed, then final conclusions are drawn to

decide how best to meet the requirements of Section 3.3.

3.4.1 Existing Solutions

Firstly existing home frameworks are explored then more generic architecture technologies

are discussed, to ensure a broad scope of possible architectures is considered.

3.4.1.1 Ubiquitous Frameworks

There are numerous systems, mostly from academics, which aim to deal with the wide array

of different devices and protocols in our technological world. These projects have often not

3.4 state of the art 31

dealt with the home environment, so only a few of the most relevant are discussed briefly

here.

Aura [118] was an ambitious research project carried out between 2000 and 2004 at Carnegie

Mellon University. The goal was to increase an individual’s productivity by implementing

a system which supports the notion of each individual having an ‘aura’ of computing and

information services around them at all times, regardless of location. The project team believed

that a major source of user distraction is the management of computing resources as situations

and environments evolve and change. The Aura implementation involves a central “task

manager” which processes task requests and filters them to the appropriate application, on

the appropriate device, through the appropriate communication channel, all dependent on

the current environment and context of the user and the desired task.

Interactive Workspaces [56] is a research project from Stanford University exploring the

technologies and solutions for integrated multi-person and multi-device collaborative work-

spaces. The project aims to ease and enhance the meeting space, where resources can easily

be shared and exploited to their full potential. The Interactive Workspaces project utilises the

Interactive Room Operating System (iROS); a custom built framework using Java. iROS mostly

comprises a central event handler and data store. Particular device types are wrapped within

separate “applications”, and all communication between the applications must go via the

event handler. This ensures each application has no dependencies on other applications, and

allows for a more robust and easily maintained system.

As can be seen from these ubiquitous environment frameworks, a common technique for

handling communication among possible devices is through some central intermediary. This

eliminates the dependency of devices on one another, and allows all communication and

control to be coordinated at a higher level. Therefore, by using some central intermediary it is

possible to increase overall system modularity, scalability and configurability. However, the

above solutions do not offer integration support for new devices written by developers or the

ability to manage or program the device functionality at a higher level.

3.4.1.2 Home Frameworks

Having looked at existing generic ubiquitous computing frameworks, major frameworks

tailored for the home are discussed below. Firstly systems and projects from academia will be

introduced, then the more polished commercial projects.

academic

3.4 state of the art 32

Atlas [64] started as an academic project in Florida supporting sensor-actuator networks in

a plug-and-play, service-oriented manner. Atlas can now be purchased through its retailer

Pervasa (www.pervasa.com). Atlas m2m Middleware, as it is now known, provides a framework

that can automate the sensor-to-service (hardware-to-software) conversion.

Atlas is primarily aimed at developers, who can make use of specialised Atlas hardware

modules to connect and interface to devices, and then program them through the Atlas

middleware platform. Atlas uses OSGi (a service-oriented Java framework, discussed in more

depth in Section 3.4.1.3), designing each hardware module to be a separate service which

can be installed into the middleware instance with no dependencies on other hardware. This

service-oriented design therefore increases modularity and extensibility. In the developers’

words “Atlas offers the magic of plug-and-play to the widest array of sensors and devices”.

However, the main limitation of Atlas is the limited number of hardware modules available,

and the lack of ability to add support for third-party devices.

Gaia [109] was an academic research project from 2000-2005 which aimed to tackle many of

the same problems as this research project, using the same philosophies. Although Gaia is

now out-of-date and unsupported, it is of interest due to the strong crossover and similarities

discussed below.

The researchers of the Gaia project believed that “people’s living spaces” (including homes,

offices, cars and airports) should be programmable and interactive, and always remain in the

control of the user. Gaia was developed as middleware between people and their technological

environment, offering a programmable and customisable system. Gaia and Homer share the

common belief that all device functionality should be made available through one system and

then programmed at a higher level to fully exploit the environment (though focused primarily

on the home within Homer). This results in one system which can meet the many different

needs of users.

Gaia emerged from years of research on reflective middleware and meta-operating systems,

particularly focused on ubiquitous computing and the idea of hiding device and operating

system heterogeneity, adapting dynamically to changes in the environment. There are three

main parts to Gaia: the kernel (manager of the various devices connected to the system,

where CORBA (Common Object Request Broker Architecture, www.corba.org) is utilised for all

communication); the application framework (implemented in Java and offering functionality

to register, manage, and control Gaia applications); and finally the applications themselves

(higher level chunks of functionality, such as a music player, calendar reminder or presentation

viewer). The applications are written using LuaOrb [25], a high-level scripting language, to

program and configure the functionality of the various devices of the system. All internal

www.pervasa.com
www.corba.org

3.4 state of the art 33

communication is carried out using events to decouple the system and enable a more dynamic

and flexible architecture.

There were many researchers and projects involved in development of Gaia resulting in

a very sophisticated framework for programming an environment. However, there is little

information regarding dynamically supporting new devices and services by third-party

developers. Instead, it appears, meta-information about devices and services is required

within Gaia for it to understand and make use of their functionality. This is highly restrictive,

as it means support for new devices, technology and services remains in the hands of the

project developers. It is a near impossible task to keep up with the fast-paced changing nature

of the technology world.

MATCH (Mobilising Advanced Technologies for Care at Home, www.match-project.org.uk) is

introduced in Section 2.2.3. The philosophies and core system are discussed in more detail

here.

MATCH emerged from a research project which was primarily focused on addressing key

problems within telecare. This included the complex scenario surrounding care management

for the residents; trying to harmonise the various goals and desires of the care givers, friends,

family and the resident themselves. To address this challenge policies and goals were used to

allow desired rules to be expressed for the resident by the various parties. The core policy

system and supporting language is known as Advanced Component Control Enhancing

Network Technologies (ACCENT), and is discussed in detail in Section 4.4.

MATCH, from its foundation up, focuses on easing and minimising user influence at runtime.

This has resulted in a system which aims to make decisions behind the scenes and therefore

has a tight integration between function and behaviour. This is arguably appropriate within

the telecare situation, due to the advantages of easing the burden of the system upon the user

and having to handle multiple requirements from the various stakeholders. However, in terms

of home automation it is highly desirable to ensure that all behaviour is fully controlled and

understood by the user. The system should purely act as a proxy between the user and the

desired function.

Due to this major difference in philosophy, MATCH was unable to provide a test-bed to

demonstrate the policy work described in Chapter 4. The core MATCH system is explored and

discussed below to observe any successful architectural decisions.

Major implementation work was carried out within the project, resulting in an advanced

home system (described in further detail by McBryan [88]). It was developed using OSGi,

with the notion of different devices and software services (such as email, weather forecasts

and calendar events) each being their own component. Components request bindings to

www.match-project.org.uk

3.4 state of the art 34

other components if required (for example the speakers component may require the speech

synthesis component). All communications go through a central “event broker” to reduce

unnecessary coupling where possible. MATCH also offers an embedded policy service, allowing

a higher means of combining the functionality from the devices and services.

Many positive design decisions can be learnt from the MATCH home system, namely the use

of OSGi, components and policies. However the actual implementation is too closely focused

on home care problems. This resulted in a different philosophical approach which involves

decision-making processes taking place at code level. This is considered disadvantageous

within the home, as all events that take place should do so from command (such as through a

policy or directly through some user interface) to minimise potential user confusion.

commercial

Amigo [4] is an advanced, commercial, open-source, middleware platform for dynamically

integrating heterogeneous services and devices within the networked home environment.

The service-oriented system is split into three sections: the base middleware, the intelligent

user services, and the programming and deployment framework. The programming section

allows programmers to create “Amigo aware” services in Java (using OSGi) or .net (Microsoft’s

.net framework, www.microsoft.com/NET). Supporting the two main runtime environments

for developing services allows the vast majority of programmers to be able to easily create

components for their system. The core Amigo technology is web services, following the

WS-Addressing, WS-Discovery and WS-Eventing standards to increase compatibility.

Amigo handles every software layer needed to create and control a smart home system,

ranging from the communication protocols to the user interfaces. Developers are allowed to

write applications and component software as they please. Unfortunately, Amigo does not

have any in-built means of combining functionality in the form of policies. This could be

achieved through an external policy server, however I hypothesise that only basic functionality

would be possible. More advanced tasks, such as conflict detection, would require internal

system knowledge and adjustments.

Control4 (www.control4.com) was introduced in Section 2.2.3, and can be considered a

leading home automation company. Their business model is extremely simplistic: they provide

a framework and allow anyone to develop ‘drivers’ to allow their products to interoperate

with Control4 (currently 6500 third-party devices have been made compatible [28]). By forcing

the other companies to write their own drivers in order for their devices to be compatible

www.microsoft.com/NET
www.control4.com

3.4 state of the art 35

means that Control4 does not need to manage and maintain updates or alterations other

companies may make.

Control4 also offers companies the opportunity to embed the ‘Control4 operating system’

into other devices, integrating their platform tightly with Control4 (using highly functional

‘two-way drivers’) and producing applications which users can buy and run through their

Control4 user interfaces. The latter requires developers to pay a membership fee which entities

them to create (using Adobe Flash ActionScript and PHP) and sell applications through the

store.

As sophisticated and highly polished as Control4 is, there is no means to program the

system at a high-level. This results in each home installation having to be customised by

developers and system installers for that particular installation. Any changes that may be

desired in the home setup must be requested and handled by the company rather than the

customer. This is both costly and inconvenient for users.

iQare (www.omniqare.com) is a software platform made in the Netherlands by OmniQare

(introduced in Section 2.2.3). Although designed for telecare and older users, the framework

and approach is applicable across a broader domain. The iQare framework is designed to be

run on a purpose-built touch-screen PC, and any user interactions must take place through

this.

There exist over 50 applications for the device, although developers can build their own to

be integrated using a custom eXtensible Mark-up Language (XML) protocol. OmniQare have

simplified the notion of interacting with various different devices and services by offering one

standard means of supporting them through purpose-built applications. However, this results

in a system with an interface that acts purely as a gateway to single-purpose applications. So

far there is no means of integrating or managing these applications, or services, on a larger

scale. This means that the overall system cannot be programmed to combine the various

pieces of functionality of the individual applications

At this stage of the literature review it can be seen that there has not been a solution which

meets all the given requirements outlined in Section 3.3. An interesting observation is that

each system comes close, yet none is able to offer a test-bed for the policy work in Chapter 4,

nor meet the requirements of supporting new devices from developers as well as offering the

ability to program the devices at a higher level.

www.omniqare.com

3.4 state of the art 36

3.4.1.3 Service-Oriented Frameworks

Having learnt design successes from various existing solutions, and observed the lack of an

existing system which would support the requirements, frameworks for writing a custom

home system were explored. The nature of the proposed home system within this research

lent itself to service orchestration, where individual devices can be represented as services

that can be combined at a higher level. For this reason service frameworks were explored and

discussed below.

Jini (www.jini.org) is a Java-based, service-oriented architecture for distributed systems.

This could allow components to be located within the home, while accessing common services

such as weather forecasting on a central server. However, the full benefits of Jini, primarily

its distributed nature, are not applicable for my research as typically a home system and

its connected devices are all local within the home. For this reason Jini was discounted,

along with other distributed solutions such as Fabric3 (www.fabric3.org) and Paremus

(www.paremus.com).

OSGi (Open Services Gateway initiative, www.osgi.org) is a popular open standard by the OSGi

Alliance, defining a modular software framework for Java which follows the SOA paradigm. It

is designed to provide developers with a service-oriented, component-based environment,

offering standardised ways to manage the software lifecycle.

Numerous existing home systems and projects are implemented using OSGi, including

Amigo, Atlas, and MATCH. It is rumoured that OSGi was originally drafted to address the

unique problems that home automation produces [100], offering a fully dynamic component

based framework which supports the notion of different developers and companies writ-

ing components (termed “bundles” within OSGi) that can simply be installed into the one

framework. OSGi also offers an event messaging service to support communication between

components and the home system without introducing dependencies. OSGi is highly suited to

the problems presented in this chapter, and was therefore seriously considered as a possible

home framework (conclusions drawn in Section 3.4.2).

Stepstone (stepstone.projects.openhealthtools.org) is a project that began between IBM

and the University of Florida. It focused on research for the Gator Technology Smart Home

(www.gatortechintegration.com). The project now involves Eclipse and OHF (Open Healthcare

Framework, www.eclipse.org/ohf), which is a project within Eclipse designed to improve the

process of creating healthcare systems by providing extensive tools and frameworks. Existing

and emerging standards are followed to lower integration barriers and encourage interoperable

www.jini.org
www.fabric3.org
www.paremus.com
www.osgi.org
stepstone.projects.openhealthtools.org
www.gatortechintegration.com
www.eclipse.org/ohf

3.4 state of the art 37

open source infrastructures. Stepstone demonstrates how a service-based programming model

can be used to build healthcare solutions using embedded technology, service-oriented

architecture and open standards. Unfortunately, Stepstone only formed in early 2009 (during

the architecture research, design and development work within my project) and as such was

too immature to be considered. However, Stepstone in reality is a very poorly supported

open-source project and as such has remained rather primitive and immature, and has not

lived up to the expectations and promises of its sales pitch.

3.4.1.4 Component Glueware

Having explored home frameworks, this section looks into possible ways of combining com-

ponents. These glueware technologies could work alongside, or instead of, the aforementioned

potential home framework.

Acme (www.cs.cmu.edu/~acme) is an Architecture Description Language (ADL) system. ADLs

are used to represent systems in a high-level abstract way, which is both human and machine

readable. Acme is simple and light weight. It can be used as a common interchange format,

or as a foundation for developing new architecture design and analysis tools. Unfortunately,

there is still no universal agreement on what ADLs should represent, and the existing tools,

such as Acme, are very academically oriented with little commercial support. Such an unclear

high-level description language provided little concrete support for my research.

BPEL (Business Process Execution Language, [43]) is an XML-based standard for creating a

‘business process’ flow from discrete services. It can be used as a component glue framework,

allowing processes composed of the components to be defined. ActiveBPEL [39] is an open

source Java implementation of the BPEL engine. In addition to ActiveBPEL, a visual BPEL tool

could be used to ease the process of writing BPEL. The main four available are: ActiveVOS

Designer [39], Oracle BPEL Process Manager [101], CRESS (introduced later in this section) and

the Eclipse BPEL Project (www.eclipse.org/bpel). Potential use of BPEL is discussed with CRESS

later in this section.

Concur Task Trees CTT is a notation proposed by Mori and Parernó [92]. Relationships and

possible tasks are represented by a task model in a CTT as an inverted tree. This logic can

be applied to the concept of representing home services as a tree of services, where each

service is made up of child services. However, although CTT may be appropriate for producing

high-level services, I consider this technique too restrictive for combining events to represent

policies and for little benefit.

www.cs.cmu.edu/~acme
www.eclipse.org/bpel

3.4 state of the art 38

CRESS (Communication Representation Employing Systematic Specification [132]) was developed

by Turner at the University of Stirling. It is a visual programming language oriented towards

linking components through arbitrary program logic (internally expressed in BPEL). Using

Turner’s system would allow the BPEL input-output (Receive, Reply and Invoke) to be mapped

to Java objects using ActiveBPEL’s custom invoke handlers. BPEL could then be used along

with a Java-based architecture as, or in addition to, the method of connecting components.

CRESS allows tasks to have loops, branches, fault handlers, concurrency, data structures and

void nodes, which allows a complex service glueware to be created. The use of CRESS in

relation to BPEL is discussed at the end of this section.

BPEL and CRESS are a potential component glueware option for within the home. This would

involve using BPEL as a means of combining home components and services, and potentially

CRESS as a visual designer. Turner has indeed used BPEL for this purpose [130, 131]. However,

the BPEL language itself is bloated (using XML to represent a process flow between components),

and adds complexity and rigidity to potential solutions. Although CRESS hides this complexity

and offers a much cleaner user interface, it requires a technical user to translate a policy into

the CRESS format. This process should ideally be carried out automatically when a policy is

written using any one of Homer’s user interfaces (described in Chapter 5). Therefore a systems

interface to BPEL would need to be written to allow the Homer policy server to generate the

component process in BPEL when a new policy is saved. Therefore, although BPEL and CRESS

could be used, a lot of adaptation and alterations would be required for little benefit.

PCOM (Pervasive COMputing [9]) is a lightweight component system for pervasive com-

puting. Resulting applications consist of a tree of components, where the functionality of a

component is the sum of its children. Each component has a contract defining its dependen-

cies, which allows for self-configuration and no manual setup. The contracts use the concept

of Signals and Slots [140]. Weis et al. [141] used PCOM to create a software development

solution supporting developers, customisers and users. This is achieved using a graphics

toolkit for customisers and self-configuration algorithms to ease development. The model is

based upon desktop applications where developers can create extensible applications and

components, customisers use these to develop custom applications, and finally users configure

these applications to their individual needs by adjusting predefined settings. PCOM, which

forms the lower-level part of their architecture, allows developers to create components which

“automatically orchestrate themselves”. So any user could download new components, “PCOM

enabled”, and they would automatically be integrated into the environment. The middleware

software, Nexel, is a graphical programming language aimed at “hobby programmers” to

allow the production of PCOM components through a drag-and-drop style interface. PCOM is

3.4 state of the art 39

interesting, but the solution is designed for technical people and focuses on the creation of

applications rather than rules and policies.

Tuscany (tuscany.apache.org) is an Apache open-source implementation of SCA. Tuscany

offers a means of combining components written in different languages, including BPEL, C++,

Java, JavaScript, Spring, and various scripting languages. This has many advantages, such as

the possibility of different developers being able to write components for the home in their

preferred language, or language most suited to the hardware or software service. Components

are combined using custom XML, but graphical tools are available to ease this process.

Due to Tuscany’s potential appropriateness within the home, a prototype home system

was developed to allow a more educated judgement. Tuscany was still in its infancy during

implementation, as was the Eclipse Integrated Developer Environment (IDE) plug-in which

offered a graphical tool for combining components. Nonetheless a prototype was developed

– for more information regarding the prototype system see [81]. A small set of sample Java

components (a clock, simulated boiler and email/SMS sender/receiver) were written to allow

testing of Tuscany’s ability to combine their functionalities. Unfortunately, Tuscany provided

no support for service discovery or management, and in practice brought little advantage

when used with local Java-based components. A Remote Method Invocation (RMI) component

was written to interface to a Nabaztag rabbit (www.nabaztag.com) to test Tuscany’s behaviour

with non-local components. This turned out to be extremely awkward and cumbersome to

both setup and utilise.

The main attraction of Tuscany is its ability to integrate with other technologies. However,

within my project the assumption is that the majority of the components are both local and

in Java, so not enough use would be made of this major advantage. Even if it were, it is

challenging to interface Tuscany with components of different languages. With respect to this

observation, as well as Tuscany having no support for service discovery and management,

and its immature state, it was decided that it would not make a suitable home system within

this research project.

3.4.1.5 Device Communication

Finally, the last section of this state of the art looks at two possible means of communicating

with services at a more automated level.

Speakeasy [38] is a set of common interaction patterns presented by Edwards et al. It

provides a solution to the low-level problem of communication between hardware components.

These patterns allow rich interactions between computational entities with little previous

tuscany.apache.org
www.nabaztag.com

3.4 state of the art 40

knowledge of each other. Speakeasy uses Java bytecode and Jini multicast/unicast discovery

protocols. However, the solution focuses on connecting devices for immediate feedback in the

environment; there would be little knowledge of exactly what functionality the device could

support and offer. This, therefore, means it could not be used to meet the requirements for a

home system.

Zeroconf (www.zeroconf.org) is a service discovery concept pushing for “zero configura-

tion”. Bonjour, formally Rendezvous, is Apple’s implementation of Zeroconf, and currently

the most popular of implementations. Others include Avahi and Microsoft’s “wireless zero

configuration”. Within local networks Zeroconf locates devices such as printers and computers,

and the services that they offer, using TCP/IP. Zeroconf services need to be programmed at

the application level. The Zeroconf protocol is not strongly supported within typical home

devices, so unfortunately it could not be used as a sole means of detecting and communicating

with devices within the home.

3.4.2 Conclusions

There were two primary aspects to consider when choosing the home framework: firstly, the

flexibility of combining the functionality of these devices at a higher level and, secondly, its

ability to support devices written by third-party developers. As was described in the literature

review, there is no suitable existing home framework which meets this criteria. However,

various lessons were learned: components should be treated as services for the home system,

components should not have dependencies on one another and to encourage a dynamic

modular system an event broker can be used for passing messages between components and

the home system.

Different technologies for developing a home system were then explored. This included

service-oriented frameworks, component glueware and device communications. Of these,

OSGi was considered the most suitable framework, offering a mature means of supporting a

component structure and message passing through an in-built event messaging service. The

possibility of combining these components through Tuscany was considered, but dismissed

due to its immature state and over-complexity. Finally, it was judged that there was no existing

automated means of detecting and handling devices, and instead this would need to be done

manually by corresponding components.

A custom framework was needed to offer a truly modular, extensible and programmable

home system which meets the requirements outlined in Section 3.3. This framework should

be built using OSGi and its internal event messaging service. The resulting system, named

Homer, is described in the sections that follow.

www.zeroconf.org

3.5 architecture 41

3.5 architecture

A high-level architectural diagram for Homer is shown in Figure 3.1. Each part of the diagram

is explained throughout the thesis. Firstly, the internal workings of the Homer Framework

are described within this section. Secondly, the components and services which form the link

between the home and the internal system are discussed in Sections 3.6 and 3.7 respectively.

The Policy System, which combines the functionality of the various components at a high level,

is discussed in Chapter 4. Finally, the Web Server, (simply an HTTP API for Homer) that allows

end-user applications to be developed for interaction with the home system, is described in

Chapter 5.

All elements within the Homer framework can access the database API directly, can register

listeners with the event coordinator, and can be notified of events taking place. The only

public developer interfaces available for communicating with the internal Homer framework

are the three gateways. Similarly, the only external entries to the Homer system are through a

service, a component or an HTTP request.

3.5.1 OSGi

The Knopflerfish implementation of OSGi was chosen as the tool to build the Homer home

system, due to both the success of existing projects in using this implementation and also to

the local knowledge and expertise available.

OSGi offers a service-oriented architecture, as described in Section 3.4.1.3. Each service is

implemented as an OSGi bundle. Each bundle can be installed, uninstalled, started and stopped

– all while the OSGi framework is running. This allows users to install new components without

restarting their machine, and offers greater flexibility to Homer, component developers and

system maintainers. As an example of this flexibility is if something went wrong internally

with a particular piece of hardware, or the user was no longer using a certain device type, the

system (or system maintainer) could easily restart or uninstall the relevant bundle at runtime

without affecting the home system.

OSGi also offers a flexible event service which allows events to be both sent and received

globally within the OSGi system. This is discussed in more detail in Section 3.5.3.

3.5.2 Database

The Homer database stores all information and data regarding the components and the user

installation. Figure 3.2 shows a diagrammatic high-level overview of the database and the

relationship between the various entities.

3.5 architecture 42

Figure 3.1: Homer Architecture

3.5 architecture 43

Figure 3.2: Homer Database Organisation

Notionally, the database can be split into two main aspects: the component data and the

user data. The component data consists of all information provided by Homer components,

describing device types that they offer as well as any supported triggers, conditions or actions

of that device type. On the user side, all such data exists per home installation and is fully

customisable and definable by the home user or system installer. This user data consists of all

information regarding locations, devices within the home (including configuration details,

such as the module address in the case of x10), any environment factors that interest the user,

how the actions of the various devices affect these factors, and finally any policies that have

been defined.

The Homer database is implemented using the Java embedded SQL h2 Database Engine.

This can be installed anywhere (local or remote) for access by Homer. Only the Homer

Framework itself has access to the database: no external access by components, services, or

any other aspect of the OSGi system is permitted. In a typical home installation it is envisioned

that the database would be stored locally, on the same machine as the home system is running

on. This would minimise security risks, and offer the fastest access option. h2 offers many

strong security features which can be used to ensure that all data within the Homer Database

is protected. Such features include user password authentication (which uses cryptography

methods SHA-256 and salt), use of SSL/TLS for remote connections, and encryption of database

files.

3.5 architecture 44

All desired data requests for the database are abstracted into a general Homer Database

interface, allowing any data storing implementation to be supported.

3.5.3 Event Coordinator

The Homer Event Coordinator is responsible for posting events regarding triggers, conditions

and actions within Homer, and allowing other Homer entities to register listeners for such

events.

OSGi provides an event messaging service which allows events to be broadcast throughout

the entire OSGi framework. Any bundle (component) within OSGi can choose to listen for

events and (more importantly) for event patterns.

Any Homer Event which the Event Coordinator posts, via OSGi, uses a Homer-specific event

name (such as “uk.ac.stir.cs.homer”) and contains identifiers for:

• User device and user device type

• Location and location context

• System device and system device type

• Event (trigger, condition or action).

With all of this information present in each post, it makes it possible for any interested

party to listen to particular events. For example, it is possible to listen to all Homer events by

simply registering a listener with OSGi anywhere within the framework for all events with the

chosen Homer event name. On the other hand, specific filters could be applied to restrict the

events. For example, one might specify only events that take place in a particular room, all

actions requested of a particular device type, or all events which involve a particular device.

To listen for an event, convenience methods have been provided within the Event Coordin-

ator to conceal the custom OSGi event structure, and instead make use of the default Java

listeners. This allows the internal Homer modules to register their Java listener with the Event

Coordinator, providing any desired filters. Internally, the Homer Event Coordinator registers

this listener with OSGi, specifying the filters. If an event is broadcast within OSGi that passes

the given filters, the listener will automatically be notified of this event.

Utilising this event mechanism reduces inter-system dependencies, allows knowledge of

triggers occurring, conditions and action requests to be obtained anywhere within OSGi, and

finally allows such events to be filtered to ensure interested parties are notified of only relevant

events.

3.5 architecture 45

3.5.4 System Gateway

The System Gateway is used for all communication between external Homer entities and

the Homer framework. This typically involves requests from the user via the Web Server,

however the Policy System also makes use of some functions offered by the System Gateway.

A complete list of functions includes:

• Setup and Configuration:

These features are achieved by communicating directly with the Homer Database

(through its ‘public’ interface).

– Add, edit or remove

∗ device instances

∗ device types

∗ locations and location contexts

∗ environs and information regarding their effects.

– Rename

∗ trigger, condition and action names

∗ system device type names.

• Report New Hardware that a component has detected and reported to the Component

Gateway. Any information is passed to the Webserver for any interested user applications.

This allows these applications to notify or ease the setup of any new hardware by

knowing some key configuration details such as identification codes (as with Plugwise

and Visonic Sensors).

• Device Control, whereby an action to be performed on a particular device instance is

requested by either a user or a policy. This is achieved by communicating directly with

the Homer Event Coordinator which broadcasts a request that such an action is carried

out.

• Information Retrieval:

– Ask if a condition is true or false with a particular device instance.

– Request any combination of information from the database, optionally restricted

by any criteria (such as the location of a particular desk lamp, all devices within

a particular location, or all locations within a particular location context which

contain devices with actions). Such requests are handled by communicating with

the Homer Database.

• Policy Configurations:

3.5 architecture 46

– Save a new policy (optionally requesting any conflicts to be checked).

– Edit, delete, enable or disable an existing policy.

– Retrieve a list of all existing policies, optionally restricted by any criteria (such

as all enabled policies, all policies involving something in the living room, or all

policies which are a month old). All policy requests are handled by communicating

with the Policy System directly. If any changes are to be saved to the database, the

Policy System will handle them. This encourages the principle that only the Policy

System should manipulate the policies in the database.

3.5.5 Component Gateway

The Component Gateway is used for all communication between Homer components and the

Homer framework. It is in charge of the following functionality:

• Registering components (and their associated triggers, conditions and actions) with Homer,

and ensuring this information is always up-to-date. This is carried out by communicating

directly with any registered Homer component and the Homer Database.

• Reporting triggers that occur, responding to condition queries and handling action requests.

These requests are handled by communicating directly with the relevant Homer com-

ponent and the Event Coordinator. All triggers are reported by the component, then

the Component Gateway forwards this information to the Event Coordinator (which in

turn broadcasts this information as an event, so all interested parties, such as the Policy

System, can be notified). In the opposite direction, the Component Gateway registers

listeners with the Event Coordinator for condition and action requests. If such an event

is broadcast, the Component Gateway detects this and handles it appropriately. In the

case of an action request, the appropriate component is simply requested to perform

the desired action. In the case of a condition, the component is asked if such a condition

is true or false. The Component Gateway then contacts the Event Coordinator with the

given result.

• Reporting Detection of New Hardware that any Homer component detects and reports.

Any configuration information that the component can report, along with the system

device type, is passed to the System Gateway. The System Gateway then sends it to the

Webserver for any interested user applications.

• Registering new instances of devices, and editing or removing existing instances, with the

relevant component. Such requests are instigated by the user, therefore entering Homer

via the System Gateway. For convenience, the System Gateway can communicate directly

3.5 architecture 47

with the Component Gateway to make such requests. The System Gateway, however,

remains responsible for contacting the database for this request.

• Exposing services by offering a method for components to access the Service Gateway.

3.5.6 Service Gateway

The Service Gateway manages and provides Homer services to developers. It is responsible

for maintaining the list of current services available within the framework, creating, managing

and closing instances when required, and handling access permissions. Anyone can contact

the Service Gateway and request a desired service by name. If such a service is available at

runtime, and the requester has the correct permissions, an instance of this service is returned.

More information regarding Homer Services can be found in Section 3.7.

3.5.7 Runtime Requirements

The Homer framework is built upon OSGi, therefore any operating system that can support

Java could technically support Homer. Figure 3.3 shows a profile of Homer starting and

running, with typical household activity, for 20 minutes with eight components on a Windows

7 32-bit Operating System, with an Intel Core 2 Quad CPU 2.66GHz and 3GB of RAM. As

can be seen, Homer used at most 20MB of memory and barely made use of the CPU after

a 15% initial use at start up. Homer, with eight major components, requires approximately

20MB in memory. With such small requirements, it is believed that Homer could run on far

less powerful machines.

Homer would be ideally suited for a small media PC style machine in the home, positioned

relatively centrally to maximise connectivity options and wireless ranges. The core Homer

system does not require Internet Access to function, but some components or services may

(such as Weather, email and Twitter), as well as remote user interfaces as these communicate

with Homer via HTTP.

Android supports Knopflerfish [124], so it would be possible to run Homer on the more

powerful mobile phones and tablet computers which run Android, such as the HTC One X,

the Samsung Nexus, or the Acer Transformer. However, this would mean that there would be

limited hardware support due to lack of connectivity options. A mobile phone also implies

that it would be taken with the person when they leave the home, which would be undesirable

for a home system as it should be based permanently in the home to be able to send and

receive local requests, such as listening for triggers or requesting actions to take place.

3.6 components 48

Figure 3.3: Homer Running Profile

3.6 components

As previously discussed, the use of components allows for independent units of code to

interact with particular devices within the home. If a device is to be supported by the home

system, the component can be installed and therefore its functionality can be exposed and

made usable by Homer. This is a popular concept, and one that has been around for decades:

“He will consult a catalogue offering routines in varying degrees of precision, robustness,

time-space performance, and generality. He will be confident that each routine in the family

is of high quality - reliable and efficient. [. . .] He will expect families of routines to be

constructed on rational principles so that families fit together as building blocks. In short,

he should be able safely to regard components as black boxes.”

M. D. McIlroy, 1969 [89]

This section discusses the use of components within the Homer system, firstly from the

developer’s perspective, then from the user’s. Finally, the currently supported components of

Homer are described.

3.6 components 49

3.6.1 Developer Perception

3.6.1.1 SetUp

In order for a component to be installed within Homer it must be an OSGi bundle. This

requires installation of the Knopflerfish OSGi framework. The bundle must import the Homer

Framework bundle, and can optionally make use of any Homer services (such as the logger,

described in Section 3.7). The bundle should be self-contained. Any dependencies on third-

party libraries should be contained within the bundle itself. Knopflerfish provides a means of

storing system properties, which should be used for any pure developer properties.

3.6.1.2 Registration

When a bundle is installed within OSGi it is simply registered within the OSGi runtime

framework, ready for use. Once the bundle is “started” (configured to do so automatically after

installation) OSGi calls the start-up code within the bundle. Here is where the developer should

notify Homer of new components, achieved simply by registering their Homer Components

with the Component Gateway.

A Homer Component is simply a Java class which implements a Homer Component

interface, provided within the Homer Framework bundle. This class ensures that specific

methods are provided by the new Homer Component. These methods are:

• Getting all supported system device types. This allows Homer to obtain a list of system

device types offered by any component. When the bundle registers its components with

Homer, each component is taken in turn and the following steps take place (shown

pictorially in Figure 3.4):

– System devices types are requested and handled, as discussed in Section 3.6.1.3.

– If the component offers triggers, conditions or actions, these are requested and

handled, as discussed in Section 3.6.1.5.

• Registering, editing or deleting an existing system device. This is discussed in more

detail in Section 3.6.1.4.

3.6.1.3 System Device Types

Each bundle can offer multiple Homer Components, which in turn can each offer any number

of system device types. A system device type correlates directly to the hardware (or individual

software service). Examples include email, door sensor, x10 lamp module, and infrared

controller. Each system device type offers its own collection of triggers, conditions and/or

actions, as discussed in Section 3.6.1.5.

3.6 components 50

Figure 3.4: The Sequence of Events on Registration of a Component

3.6 components 51

A system device type is described with a unique identifier (for more information regarding

how Homer handles identifiers, see [78]), and an easily understood name (such as “x10

Appliance Module” – the name can be changed by the user easily when configuring the home).

Finally, any information that would be required when creating an instance of the device is

described. For example, in the case of an x10 appliance module, the address of the module

(such as “a1” or “b12”) would be required when defining a new device which makes use of

this device type. Therefore, the x10 component will state its requirement is a 2-3 character

string with label “Address”.

An example scenario can be illustrated in the design of an OSGi bundle for support of the

Visonic sensors. Visonic offer a range of wireless devices and sensors. This could result in a

Visonic bundle, offering three components: a magnetic contact, a button and an environment

sensor. In turn, these three components would offer individual system device types. The

magnetic contact could offer a door and a window sensor device type. The button could offer

a pendant alarm, wrist alarm and wall alarm device types. Finally, the environment sensor

component could offer temperature and humidity device types. However, this is unrestricted

and each developer can design components entirely as they wish. For example, it is perfectly

acceptable to have had just one Visonic component offering the entire collection of devices,

instead of splitting this across multiple components.

3.6.1.4 System Devices

A system device is an instance of a system device type. For example, an instance of the x10

lamp module would be a particular module with a particular address (such as b3). These

instances are defined by the end user when setting up and customising the home.

A walk-through is now provided to illustrate system devices and the component role when

instances are added, edited and removed:

1. A user buys a new x10 module to extend the current collection, and physically installs it

for a lamp within his home.

2. The user then tells Homer about this new device, describing its information and stating

that it uses an x10 module (a particular system device type currently installed in Homer).

At this point the user is required to provide the address of the new module.

3. Homer saves this information in the database.

4. All components of the chosen system device types are notified of the new instance. They

are provided with the system device type, (newly assigned) system device identifiers,

and any parameter values. In this scenario, only the x10 lamp module system device

3.6 components 52

type is associated with the new installation. It is given the new system device identifier

for the lamp, and the address of the module (such as b3).

5. The x10 component should store this address along with the system device identifier

at runtime. This will allow any future action requests to turn on or off this new device

by simply providing the component with the system device identifier and the desired

action identifier. The x10 address is already known.

• If and when the Homer system is restarted in the future, each component will be notified

about its existing devices in the same way at start-up.

• If the user changes the address of the newly installed device, they can simply edit the

already provided address through a user interface to Homer, in exactly the same way as

they would edit any other property of the device (such as its name, location or icon).

Homer stores any changes made in the database and notifies the x10 component of any

changes.

• If the user decides they no longer wish to make use of their new x10 module they should

edit the properties of the lamp to represent which hardware it is now using (or simply

delete the lamp if it is no longer to be part of Homer). Again, any changes are saved to

Homers database and the x10 component is notified of the removal of the x10 module.

There are multiple reasons to have both system and user devices/device types. Primarily,

the separation allows developers to work at a lower level without needing to worry about

users. In turn, this allows users to setup their home system using any desired vocabulary

and customisations without worrying about the rigidity and complications of the underlying

hardware. It also allows for user devices within the home to be of one user device type (such

as television), but making use of multiple system device types (such as x10 and infrared).

Conversely, one system device type (such as x10) can be the hardware supporting multiple

different user device types (such as a kettle, television and fan). User devices and their types

are discussed from the user perspective in Section 3.6.2.

3.6.1.5 Triggers, Conditions and Actions

Triggers, conditions and actions (termed here as TCAs) must be specified within the component.

The developer must specify if any of its system device types offer TCAs by implementing the

relevant Homer interface for each. Each interface defines a method to get the list of respective

triggers, conditions or actions. The condition and action interfaces also define methods to

check a particular condition and request a particular action respectively.

3.6 components 53

The registration of TCAs, the posting of triggers, and the handling of condition and action

requests are discussed in turn below.

registration The process of registering TCAs is illustrated in Figure 3.4. Each step takes

place if the component specifies it offers the respective TCA by implementing the corresponding

interface. If any interface is implemented, the required getter method will also be implemented

and therefore allow Homer to obtain a list of any offered TCAs.

All TCAs are described with the following information:

• Unique identifier.

• Friendly description, such as “opens” or “turn on”.

• System Device Type identifier with which it is associated.

• Any parameters should be specified using the same techniques as that for describing

additional required information when adding a new system device. Each parameter that

is required for the trigger, condition or action must be described. For example, dimming

an x10 lamp module to a specific level would require one parameter which is to be a

percent. By describing any required parameters, user interfaces will be able to gather

the parameter values from the user when they are describing their desired TCA.

Condition descriptions should state any trigger or actions which result in the condition in

question becoming true. For example, the “is open” condition would become true if the

“opens”/“open” trigger/action takes place. This is useful information to allow Homer to better

understand the relationship between TCAs.

In the case of conditions and actions, the Component Gateway registers listeners with the

Homer Event Coordinator. The listeners will be notified when Homer has been requested to

verify a condition or perform an action respectively.

posting triggers When a trigger takes place, the bundle is responsible for notifying

Homer. This is achieved very simply by calling a method provided by the Component Gateway

to report a trigger occurred. The only information required is the system device and trigger

identifiers, and any associated parameters. For example, system device temperature sensor1

trigger rises above1 parameter 28°c.

When the Component Gateway is contacted, it passes on the information directly to the

Homer Event Coordinator where it is then broadcast as an event within OSGi. The event

handling is described in more detail in Section 3.5.3.

1 Replaced identifiers with their associated name for readability.

3.6 components 54

handling conditions If the Component Gateway is notified about a desired condition

validation, it contacts the appropriate component directly, providing the details to allow the

component to calculate the answer, and then responds with a simple true or false. The details

include, again, the system device and condition identifiers, as well as any parameters. The

system device type identifier is also provided for completeness. With this information, the

component is able to verify if that particular system device meets the given condition.

Once a condition result is calculated, the Component Gateway contacts the Event Coordin-

ator with this. The Event Coordinator can then broadcast this result for the requester (along

with any other interested parties) to hear.

handling actions Actions are handled in a very similar way to conditions. If the

Component Gateway is notified about a requested action to be performed, it contacts the

appropriate component, passing on the identifiers and parameters. The responsibility then

lies with the component to perform the requested action.

3.6.2 User Perception

Unlike the developer, whose perspective revolves around the hardware, the user’s view of

the home is at a higher level. As an example, the user will most likely want a “Television”

device type, with instances such as “Kitchen Television” or “Main Television”. On a hardware

(system) level this could correlate to multiple different hardware (system device) types. For

example, the Kitchen Television may make use of an x10 Appliance Module for turning

the television on and off, whereas the Main Television could make use of both x10 and an

infrared controller, allowing both the turn on and turn off features of x10 as well as the more

fine-grained control provided by the infrared controller.

The notion of user device types and their instances is discussed below.

3.6.2.1 User Device Types

The user (or system installer) can define any number of user device types with no restrictions.

A user device type is simply described by a name (such as Television) and an icon. A unique

identifier is provided automatically.

3.6.2.2 User Device

A user device is an instance of a user device type. Any number of user devices can be

defined for the home. They are given a name (such as desk lamp, main television, outside

temperature), their associated user device type, their location, and an icon. When describing

3.6 components 55

this information, the user must also specify which system device types it utilises, and must

provide any information these system device types require. For example, the desk lamp may

use an x10 lamp module with address a2, the main television may use an x10 appliance

module with address b3 and an infrared controller for a Sony kdl-9500d, and the outside

temperature may use a Visonic temperature sensor with address 7d5a8. A default state can

also be specified for the user device by choosing a condition from any conditions offered by

the system device types in question. For example, the desk lamp and television could have

default states “is off” (provided by x10 permitted conditions). The outside temperature would

most likely not be given a default state, since it is such a variable measurement.

If the chosen system device types contain any actions, the user is asked to describe if and

how they affect the environment. For example, turning on the desk lamp will increase the

light level. This is discussed in further detail within Chapter 4.

When the user saves a new device, Homer creates a new system device instance for each

system device type supported by the new user device. Each system device is associated with

the user device in the database. Each component in charge of a supported system device type

is notified of the new system device added to Homer (this is described in Section 3.6.1.4). This

decouples the hardware data (such as x10 address) from the higher level information about

the device (such as location and icon). The advantages of this strategy are also described in

Section 3.6.1.4.

3.6.3 Existing Homer Components

Device support has been created for use in both home automation and telecare. Examples of

possible Homer components are provided below. Although most of these are fully implemen-

ted, some (e.g. for Tunstall equipment or the Wii) are at an early prototype stage.

• Appliance Control: Appliances that are controlled via the mains, including lighting,

fans and televisions can be controlled through x10 or Plugwise. Additionally, appliances

that are controlled via infrared, including televisions, audio-visual systems and DVD

recorders, can be controlled by Homer using IRTrans (www.irtrans.com).

• Communication: Communication services, including email, SMS, Twitter, message display

on a digital photo frame, and speech input/output (using code from the University of

Edinburgh) can be offered.

• Energy Consumption: Energy usage can be monitored per appliance using Plugwise

sensors. This allows Homer to react to how much energy is being used and can help

reduce energy consumption. For example, clothes washing might be delayed until other

energy demands are lower.

www.irtrans.com

3.7 services 56

• Environment: Oregon Scientific sensors (www.oregonscientific.com) are used for hu-

midity and temperature. The Google Weather API is used to obtain the current weather

or a forecast for chosen locations.

• Home Automation: Sensors from companies such as Tunstall (www.tunstallhealth.

com) and Visonic (www.visonic.com) include movement detectors, pressure mats and

reed switches (cupboard, door, window). Future support will include curtain/blind

controllers, garage door controllers, and remote door locking and unlocking.

• Telecare: Telecare sensors from Tunstall and Visonic include alarms (pendant, wrist),

hazard detectors (flood, gas, smoke), medicine dispensers, and pressure mats (bed,

chair). Specialised sensors include detectors for enuresis, epileptic seizures and falls.

• User Interfaces: Various ‘Internet buddies’ are supported as they appeal to less tech-

nical users. Examples of these are the i-Buddy ‘angel’ (www.unioncreations.com), the

Nabaztag ‘rabbit’ (www.nabaztag.com), and the Tux Droid ‘penguin’ (www.ksyoh.com).

The WiiMote (www.nintendo.com) can be used to communicate using gestures and tactile

output. Using code from the University of Glasgow, similar functionality found with

a WiiMote is also available from the SHAKE (Sensing Hardware Accessory for Kinaesthetic

Expression, www.dcs.gla.ac.uk/research/shake). Screen-based user interfaces, such as

through an iPhone or website, are discussed in Chapter 5.

3.7 services

Homer Services are designed to handle common tasks and functionality used by component

developers. This saves duplication of logic within different components (or dependencies

between them), eases the development process, and encourages separation of logical units of

code. This section introduces the concept of OSGi services and how Homer handles them. Next,

the section looks at how the developer can write and make use of Homer services. Finally,

existing Homer Services are described.

3.7.1 OSGi Services

Within OSGi, services can be registered and obtained from any bundle. A service can be any

Java interface, with an implementation that is registered with the OSGi framework. Once

registered, anyone else within the framework can request the service for their own use.

Unfortunately the design of OSGi services is very limited. In reality all that OSGi provides

is a mechanism for obtaining an instance of a class which was instantiated elsewhere. OSGi

service handling has the following limitations:

www.oregonscientific.com
www.tunstallhealth.com
www.tunstallhealth.com
www.visonic.com
www.unioncreations.com
www.nabaztag.com
www.ksyoh.com
www.nintendo.com
www.dcs.gla.ac.uk/research/shake

3.7 services 57

• Services are looked-up by using the class name of the service, rather than a more friendly

alternative. There is no global way of handling services of the same nature, such as

loggers.

• The same instance is passed around, where in some cases it may be desirable to have a

new instance of the service for each usage.

• A service would be accessible by any developer, as there is no central means of controlling

access to the services.

It was decided that a custom Homer Service Gateway would be used in favour of OSGi services

due to these limitations.

3.7.2 Homer Services

Similar to the design and installation of Homer Components, developers create dedicated

bundles which offer individual services that implement the Homer Service interface. Services

are registered with Homer through the Service Gateway (discussed in Section 3.5.6).

A Homer Service can be public or private, running as a single or multiple instance. Public

services are available to all Homer developers, whereas private services are written and used

only by the core Homer framework. If single instance, only one instance of the service will

exist at runtime. This is useful for services like a database. Multiple instance services, on the

contrary, are services where each service user should have their own instance.

Homer Services are managed by the Service Gateway, which was discussed in Section 3.5.6.

3.7.3 Developer Perception

3.7.3.1 Writing a Service

If a developer has a useful service to offer, or makes use of a particular piece of functionality

across multiple bundles, it can be wrapped as a Homer Service for themselves and others to

make use of.

To create a Homer Service, the developer should make a new OSGi bundle which will

represent it. A class should be written which implements the Homer Service interface. This

interface ensures that required properties are supplied and methods are supported. These

include if the service should be single or multiple instance, whether access should be public

or private, and deal with instantiation and service lifecycle maintenance (such as reaction to

starting and stopping the framework). Once written, the service can be registered with the

Homer Service Gateway by calling the appropriate registration method and providing the

class and a short user-friendly descriptive name.

3.8 conclusions 58

At runtime, when the service bundle is installed into the framework and started, the

new service will be registered with Homer and made available to all those with the correct

permissions.

3.7.3.2 Using a Service

To make use of an existing Homer Service its given name should be used. Firstly, the

component developer gets hold of the Service Gateway through the Component Gateway.

Then the developer can query the Service Gateway, requesting the service of interest. If the

service is available at runtime, an instance of the service is returned for the component’s use.

If a service has been requested but does not exist, possible future work could be undertaken

to allow Homer to make attempts to locate and install the necessary service as required.

Currently, the Service Gateway simply returns a null response and the component developer

must handle this.

3.7.4 Existing Homer Services

Homer has a few services that have been found useful. These are:

• Logging: A logger is provided to offer the standard features of any logger library. This

provides consistency amongst all loggings, controlled singular output of log messages,

and saves developers having to include a logger within each bundle.

• Serial Port Communication: This service offers a means for hardware component de-

velopers to connect to a specified serial port and handle communications with the

device.

• Email Receiver: This service allows developers to register an email account and to be

notified when new email is received.

3.8 conclusions

This chapter presented Homer, a Home Automation system which addresses the full range of

requirements that emerged from the user studies described in Chapter 2 and, most importantly,

provided a system to base the policy server work upon described in Chapter 4.

A service-oriented framework was developed which offers a plug-and-play style architecture

to allow third-party developers to write components and services for the home. This ensures

that Homer’s functionality offered to end users is not reliant solely on the developers of

Homer, but rather on anyone who decides to add support for a particular product or service.

3.8 conclusions 59

Homer offers a fully embedded and device-independent policy server (discussed in

Chapter 4) which can make use of Homer components and the services they support autonom-

ously. This ensures that the components can be programmed at a high level, without depend-

encies or native code within Homer.

A web server (discussed in Chapter 5) is also offered, which exposes all the functionality of

Homer through a web API. This allows third-party developers to write user interfaces for any

device and any purpose.

With the core Homer system in place research contributions can be made through the

policy engine work, including a custom policy language for the home and unique overlap and

conflict detection techniques. These are described in Chapter 4.

4
H O M E R : P O L I C I E S

This chapter explores the nature of policies within the home and the journey taken to design,

develop and evaluate a policy system built for Homer.

4.1 introduction

Currently most home automation companies combine devices and services within the home

at code level. Typically when a home system is installed, the occupiers are asked how they

would like their home to behave and then the developers code this logic at the system level.

When users want to change how the home behaves they may have to pay the developer to

amend the code.

User needs within a home change over time, so it makes sense that the user can easily

and quickly change how the home behaves. Unfortunately this view is currently not shared

with many of the home automation companies in today’s market (an overview of the limited

support that some companies do give for programming the home was discussed in Chapter 2,

and in more depth in Chapter 5).

A home system with a library of components could have some form of logic to combine

them. All components offer information about the environment, events that occur, and/or

can influence the environment in some way. This logic lends itself to policies, which are often

60

4.2 background 61

represented in Event-Condition-Action (ECA) form. An example could be: “when freezing

weather is forecast, if the user is on holiday, then switch the central heating on for an hour in

the morning and evening”. A telecare example could be: “when the user is late in rising, if it is

not the weekend, then alert a relative to this by text message”. This concept of integrating home

devices and services using policies allows the home system to be managed at a higher-level.

With a user interface in place, the user can then “program their home” (see Chapter 5).

This chapter first discusses the background of policies. The requirements for the policy

system are then introduced, leading on to an exploration of existing work in this field. The

policy language (named “Homeric”) and server developed for Homer are then presented,

along with the methods used to handle conflicts. Finally, the work of this chapter is evaluated

in a case study.

4.2 background

The term ‘policy’ is centuries old, with the general definition:

“A set of ideas or a plan of what to do in particular situations that has been agreed officially

by a group of people, a business organization, a government or a political party.”

Cambridge English Dictionary, dictionary.cambridge.org

Expanded slightly: a policy is a description of desired behaviour under specified circum-

stances. A policy is typically described by a set of statements outlining the specific intentions,

regulations and actions, as well as other meta information such as the purpose of the policy,

who or what the policy applies to or affects, and the time-scale or date for when the policy

applies. It should be noted that a policy and a law differ as a law requires or prohibits actions,

whereas a policy aims to guide actions toward a desired goal. An in-depth exploration into

the history of policies can be found in work by Campbell [21].

Within the computing field a policy is a high-level statement specifying a list of desired

actions to occur when certain events occur and conditions are met. The concept of policies

allows desired functionality and rules to be written for a given system separately from the

underlying code. This allows for the behaviour of systems to be handled, configured and

reconfigured without the need to reprogram.

A computing system typically receives inputs, can verify different conditions, and can

perform actions. The system features do not tend to vary once provided, however the runtime

combination of these features can. Hence, it makes sense to separate the features from

combination logic.

dictionary.cambridge.org

4.3 requirements 62

During the past decade policies in computing have been applied to a wide array of fields. In

the early days policies were commonly applied to networking and to the handling of security

and user authentication (a history of policies can be found in [16]). Nowadays policies have

many additional applications, including call control (e.g. [14]), business rules (e.g. [55]), access

control (e.g. [72]), user preferences (e.g. [110]), sensor data collection (e.g. [22]) and power

management (e.g. [116]).

Within the context of the home, there is a wide range of devices and services that can

be supported by the home system. For example, a lamp can be turned on and off, a door

opens and closes, the temperature can be queried, and an SMS can be sent and received. These

individual pieces of functionality may be combined in endless ways to create very different

effects. The combination of these pieces of functionality should be dynamic, reconfigurable

and scalable. This can be achieved through the use of polices, allowing the various triggers,

conditions and actions offered by the system to be combined.

4.3 requirements

Given the user study in Section 2.3.3 exploring how technically minded individuals might

wish to write policies for the home, many requirements can be inferred for the Homer policy

system and language.

The language for Homer must be flexible, supporting a range of policies that could be

written for the home. As the user interface for writing policies for Homer is separate (discussed

in Chapter 5) from the underlying language, it is possible for differing user interfaces to be

designed and supported by Homer. Therefore a more sophisticated language can be offered

by the policy server, allowing Homer user interfaces to decide which of the language features

to offer.

Language Features The following language features for the Homer policy system were

derived from the user study presented in Section 2.3.3:

• When-Do Format Policies should be expressed in a when – do format, rather than in the

when trigger – if condition – then action format.

• Composite Terms It should be possible to combine triggers and conditions with and/or

(but avoiding not).

• Ordered Terms Support for ordered triggers and conditions is desirable, using an

appropriate operator such as then.

• Blurred Triggers and Conditions The distinction between triggers and conditions

should be blurred.

4.4 state of the art 63

• Conditional Actions The ability to qualify actions with conditions is desirable.

Server Features The following features are required for the Homer policy server itself:

• Scalable Number of Policies Based upon what users would be able to state about their

home, the policy server should be able to handle 125 policies1 as a minimum.

• Local Policies All policies for a home should be stored locally, within the home system,

for efficiency, offline conflict handling, and security reasons.

• Offline Conflict Handling is crucial within a home system, as multiple policies will

be written perhaps by different people and perhaps with large time frames between

them. Therefore, there is high chance that conflicting policies will be written for the

home. Detecting these conflicts when the user tries to save the newly written policy

is desirable, as opposed to runtime analysis where the system must make attempts to

resolve conflicts as they arise. This could confuse the residents of the home if events do

not occur when they are expected.

This section has stated the requirements for the Homer policy system. Existing policy

solutions are explored in Section 4.4 and each is analysed against this set of requirements.

Conclusions are drawn at the end of the Section, where an appropriate policy approach is

discussed given the requirements for Homer. The Chapter then introduces, discusses and

evaluates the chosen solution and its features.

4.4 state of the art

The following state of the art discusses possible enforcement, representation and conflict

handling of policies, focusing only on the most relevant work. Existing work is analysed, and

final conclusions are drawn to decide which policy solutions will work best for Homer.

4.4.1 Existing Work

The following section discusses existing work in policy enforcement, representation and

conflict handling.

4.4.1.1 Policy Enforcement

Leading existing policy enforcement work is by Sloman and Turner, with their systems Ponder

and ACCENT respectively. Each are discussed in turn.

1 As a rough calculation: an average of 5 rooms with roughly 5 appliances or devices within and 5 policies controlling

such devices results in 125 policies.

4.4 state of the art 64

ACCENT (Advanced Component Control Enhancing Network Technologies, www.cs.stir.ac.uk/

accent) was a research project funded by the Engineering and Physical Sciences Research

Council (EPSRC) between September 2001 and March 2005. It resulted in a call control language

which could be used to define user policies and find conflicts amongst them. ACCENT therefore

allowed users to manage and configure call preferences.

There are three layers comprising the ACCENT system: a communications layer to communic-

ate with the managed system, a policy server layer to store and deploy the policies, and a user

interface layer to allow policies to be written by end users. Complementing the policy server

is a goal server that allows the user to define high-level objectives. There are various policy

wizards which allow non-technical users to define policies. Conflicts among the policies are

automatically detected and resolved (for example, the user wishes the house to be warm, but

also wishes to save energy).

The underlying language which represents the goals and policies is APPEL (Adaptable and

Programmable Policy Environment and Language, www.cs.stir.ac.uk/appel), discussed in more

detail in the following section.

ACCENT has been adapted for use in other domains, including sensor networks in the

PROSEN project (Proactive Condition Monitoring of Sensor Networks, www.cs.stir.ac.uk/prosen)

for wind turbine management and, more relevantly, telecare in the MATCH project (Mobilising

Advanced Technologies for Care at Home, www.match-project.org.uk).

ACCENT is of significant relevance to this work. This research has been conducted at Stirling,

has been used within the home, and offers sophisticated policy tools. Due to the relevance of

this work, a more detailed analysis of how to use ACCENT within Homer was carried out.

The main advantages of the ACCENT system are local expertise, ample documentation

and appearing to meet the requirements for the Homer policy system. APPEL has some

interesting features which could be desirable within a home, yet have not been discussed in

the requirements of Homer. These features include:

• Timed Policies which can allow the policies to have timers within, such as “when the

garage door is opened, set a timer for two minutes, when this expires close the door”.

To fit into Homer it would be more desirable to have a timer component, which would

allow policies of the form: “when the garage door is opened do wait two minutes then

close the door”.

• Policy Variables which can increases flexibility when writing policies. Two examples

include: “when the user has not risen by 10am increment the count of such occasions,

when this count reaches 5 within a week, text a relative” and “when I receive an email

from a friend do display the email content on my television”.

www.cs.stir.ac.uk/accent
www.cs.stir.ac.uk/accent
www.cs.stir.ac.uk/appel
www.cs.stir.ac.uk/prosen
www.match-project.org.uk

4.4 state of the art 65

• Runtime Conflict Detection and User-Defined Resolution can be extremely useful

within a home environment, as conflicts will undoubtedly take place. It is also crucial,

from the Homer philosophy, that the user is able to define how the home should behave

if such conflicts do arise. This means that the home system remains unintelligent, simply

following commands specified by the user.

However, there were some critical drawbacks in using ACCENT within Homer:

• Poor Identifiers ACCENT is very closely tied to the application domain it is being used

for. Policies embody the particular devices and the TCAs associated with them. The

given name for a particular device instance, such as “front door”, is used as the unique

identifier for the instance within ACCENT. This is also the case for device types (such as

“door”) and actions (such as “opens”). Using the user-given name as a unique identifier

has major drawbacks, including the most obvious notion of wanting to change the name

of a given instance or supporting different natural languages.

• Philosophical Differences As much as it is advantageous to develop solutions that can

be applied to different problem domains, it also has drawbacks. ACCENT was originally

designed for telephony, which requires decisions to be made live on behalf of the user

(such as when choosing which policy to execute based on “policy preferences” or which

actions to carry out to meet various “goals” of the system). For telecare this was also

the case. A resident’s home system would make decisions on behalf of carers, family

and friends. It would be rare for the residents themselves to decide how their home

should behave. This is perfectly acceptable for the application domains of ACCENT so

far. However, within the home automation domain the author believes it is vital for the

residents to always feel in control of their home at all times. The system should never

make independent decisions on behalf of the resident as this will cause confusion and

reduce trust. For this reason many of ACCENT’s philosophies do not fit with Homer.

• Policy Language The underlying policy language, APPEL, is very intertwined with the

policy engine and is incapable of supporting a different language. As discussed in the

next section, APPEL does not meet the language requirements for Homer.

Due to this list of limitations, and the fact that it does not meet the given requirements in

Section 4.3, this project was not considered further as a possible policy system for Homer.

Ponder [32] (and its derivative Ponder2, www.ponder2.net) is a policy system that also

incorporates a self-contained, general-purpose, stand-alone management system. It is an

ongoing research project from Imperial College, London.

www.ponder2.net

4.4 state of the art 66

Ponder supports an awareness of events, allowing external Java-based applications to

communicate with Ponder through events alone. Ponder has been designed to offer a simple,

extensible and scalable means of supporting policies within a Java system. PonderTalk [133],

a high-level, object-oriented language based on Smalltalk, is used to control and configure

Ponder. A number of research projects have made use of Ponder, including body-area networks

of sensors and actuators [60], unmanned autonomous vehicles [134], and large web service-

based infrastructures [112]. Ponder is even available on Android.

The supported policy language offered by Ponder is discussed in the following section,

though was found to not support the desired language features for Homer.

Ponder offers a sophisticated set of tools for defining, compiling and managing a set of

policies. It also supports domains and embedded conflict handling and refinement. However,

Ponder can not easily interact with the managed system, and policy specification is considered

an offline activity. This means that Ponder is difficult to install, run and experiment with.

Ponder has not been designed for use in a home setting, and suffers the same list of

drawbacks as discussed for ACCENT. Turner discusses Ponder’s shortcomings in [104]. For

such reasons Ponder was also discounted as a possible policy system for Homer.

4.4.1.2 Policy Representation

Three leading policy representations and languages are discussed in turn.

APPEL (Adaptable and Programmable Policy Environment and Language [129]) is the underlying

language which represents the goals and policies in ACCENT (discussed in the previous

section). It describes the policies using an XML-based grammar. APPEL supports two policy

types: regular policies in the ECA format, and resolution policies which allow administrators

to customise how conflicts among regular policies are handled.

Each policy can be given a preference (“must”, “should”, “prefer”, “prefer not”, “should

not”, “must not”) to allow users to state how strongly they would like the policy to be

considered when selected for execution.

ACCENT policies must be in the format: “when triggers (optional: if conditions) do actions”.

Triggers and conditions may be joined with and and or operators, and actions combined with

just the and operator.

With respect to the requirements for Homer, outlined in Section 4.3, there are a number of

language features that ACCENT does not support. These include:

• having policies in the When-Do (WD) format instead of an ECA format

4.4 state of the art 67

• allowing conditions to be treated as triggers, whereby they can be interspersed amongst

the list of triggers

• allowing ordered terms of triggers and conditions

• allowing conditional actions.

Due to ACCENT not supporting the required language features outlined in Section 4.3,

ACCENT is not a valid policy language solution for Homer.

Formal Logic can be used to represent policies in a strict, unambiguous form. It can be

difficult to formulate such policies, however they are simpler to interpret by computers.

Example projects which make use of formal logic to represent policies include KAoS [136], Rei

[57] and work carried out by Owen et al. [102]. These research concepts are relatively similar,

so for that reason only one is discussed.

Description logic is used by Owen et al. [102] for representing policies within pervasive

computing, primarily focused in the office environment. The approach is very user centric,

wanting to simplify the notion of policies and find a language flexible enough to support the

wide array of policy formats that non-technical users wish to express.

The policy language designed and used by Owen is in the form of a rule which contains one

precondition and one postcondition. Examples of policies that Owen designed the language

for include:

• “Send me an email when my printer goes offline.”

• “Print colour documents to the colour printer.”

• “If a document is sent to printer x and it is offline, send to printer y instead.”

The language supports the when-do format and can blur the distinction between triggers

and conditions by treating all triggers as explicit conditions. However, it is designed to be

simplistic, aimed at non-technical end users. The language, as a result, is rather primitive

and does not support optional terms, ordered terms, multiple actions or conditional actions.

Examples of policies that Owen could not support (purposely aimed at the office environment)

include:

• “Send me an email when my printer goes offline or runs out of ink.”

• “If printer x runs out of ink email me and email computer administration.”

• “If a document is sent to printer x then printer x runs out of ink, send me an email.”

4.4 state of the art 68

Due to the failure of meeting the Homer requirements outlined in Section 4.3, as well as

the uncertainty of success, difficulty to reproduce, and concerns over the expressibility of

policies, it was decided that formal logic would not be best suited for representing policies

with Homer.

Ponder2 Ponder2 supports ECA policies (termed obligation policies within Ponder), but

cannot support when – do policies. The language is very restricted: it is limited to simple and

and or combinations of the same term type (so it would not be possible to write “when trigger

or condition”), requires conditions to be handled in the traditional way (instead of combined

with triggers within the same when clause), cannot support ordered terms within the when

clause, and finally cannot support conditional actions. Example policies that could not be

represented within Ponder2, therefore not meeting the requirements for a Homer policy

system, are:

• “when the front door is open do turn on the hall light.”

• “when the front door is open or the back door opens do turn on the hall light.”

• “when the front door opens then the front door closes do turn off the hall light.”

• “when the front door is open then the back door is open do if it is windy outside do close

the front door.”

Ponder2 is not flexible enough to represent the range of policies that are required for Homer,

therefore it was discounted as a possible policy solution for Homer.

4.4.1.3 Policy Conflict Handling

Within a home environment it is inevitable that policy conflicts will arise. A conflict is when

actions take place within the home causing undesirable or unexpected outcomes. There are

typically multiple residents within the home who will be writing, amending and removing

policies over time as their requirements change. It is therefore highly desirable to prevent as

many conflicts as possible.

Work on policy conflict handling, traditionally termed feature interactions, originated from

telecommunications services [105]. Here, various call features would interact at runtime and

cause undesirable and sometimes unpredictable behaviour for users. An exhaustive look at

existing techniques to help detect potential call feature conflicts are described and compared

by Calder [20] and Keck [59].

Within telecommunications services feature interactions, research exists which aims to filter

features which do not conflict. This helps to reduce the cost of conflict analysis as the process

4.4 state of the art 69

would be performed on a subset of all features. Novel approaches are presented in [63], [67]

and [95], which aim to filter features prior to conflict analysis. The techniques cannot be

applied readily to policy systems in general, due to extreme differences both philosophically

and technically. However, the broader concept of filtering has not yet been applied to the

general policy field. In the case of Homer with offline policy conflict detection, the number of

existing policies any given policy should be analysed against could be dramatically reduced

by examining the when clause of the policies to observe if they could happen at the same

time. This is of benefit as it reduces the number of potential conflicts reported to the user.

Within a policy system there are two main approaches for handling conflicts. One approach

makes attempts to detect and handle conflicts at runtime (online), whilst the other works

statically at definition time (offline) [77].

online Runtime conflict detection is extremely useful in distributed policy systems,

where policies may interact with other policies from a different policy system. This is a

frequent scenario within telephony, where the caller’s policies may interact for the first time

with a receiver’s policies. There, possible conflicts must be handled at runtime. ACCENT,

discussed in Section 4.4, is a policy system designed for telephony which handles such

runtime conflicts.

offline Offline, or static, conflict handling is a useful technique to prevent or prepare

for conflicts in advance. It can be used to aid prevention of policy conflicts by notifying the

user of any potential conflicts at the time of writing a policy, or to ask the user how any such

conflicts should be handled in advance of them ever occurring.

Existing solutions for conflict handling within the policy domain are now discussed.

ACCENT provides a solution for handling conflicts across both local and distributed policy

systems [15] at runtime. The distributed approach purposely avoids the use of a centralised

resource, instead opting to send policies (including conflict resolution policies) to the server

(in telephony: the callee). The server collates all the policies, and formulates a list of requested

actions. The resolution process attempts to find and resolve any conflicts by making use of

conflict resolution policies. The local solution works in a similar manner, by collating all the

actions requested to happen when a particular trigger occurs, and again handling any conflicts

among these.

ACCENT, as well as handling online detection, can also handle offline policy conflict detection.

This is achieved using a separate tool called RECAP (Rigorously Evaluated Conflicts Among Policies

4.4 state of the art 70

[23]), which mostly focuses on telephony, though it could also be applied to the home. RECAP

makes use of ontologies to obtain meta-data about action effects, such as technical (e.g.

bandwidth) and social (e.g. privacy) aspects. Policies can therefore be analysed to look for any

which will alter the same effect, and flag these as conflicting pairs. A simple user interface

allows an end user to confirm or deny any detected conflicting pairs, and optionally write

resolution policies which describe what the policy server should do if such a conflict were to

arise at runtime.

The offline conflict detection algorithms used within ACCENT originated from telephony,

and have never been applied to home automation or telecare. Resolution policies are an

attractive feature, however the metadata describing the effects of actions require specialised

technical expertise as they are defined by developers and cannot be altered or customised at a

higher-level.

KAoS [135] is a policy system developed by researchers at the University of West Florida.

It supports offline policy conflict detection and resolution using a version of Stanford’s Java

Theorem Prover (JTP). When searching for conflicts, all policies are sorted according to user-

defined criteria, then analysed for any potential issues (such as undesired authorisation and

obligation combinations). The resolution process involves determining the lowest priority

policy from a conflicting policy pair, and allowing their custom policy harmonisation algorithm

to modify this policy logic to the minimum degree necessary to resolve the conflict, producing

zero, one or more replacement policies. Their resolution process, therefore, involves no user

input.

KAoS is, like Homer, designed to ease policy management for end users. However, KAoS

differs greatly in its approach as it handles policy conflicts behind the scenes and alters policies

without user approval or consent. Within Homer, this would be considered disadvantageous

as the user would write a policy that may well be altered, or affect existing policies, without

the user knowing.

Wilson worked on a solution for handling runtime conflicts within home automation [143].

The home has many services and devices which are made by different manufacturers and

developers, so there are plenty of conflicts that could arise within the home. Their solution

draws from the concept of file locking, such that when a file is in use it becomes locked so

that no other user can make changes. Similarly, if any policy is interacting with a particular

device or service within the home then that device or service becomes “locked”, meaning no

other policy or user can change it.

4.4 state of the art 71

Wilson, as well as Nakamura et al. [94], adapted the work of previous researchers within

the feature interaction domain. Typically this work was applied within the call control area, so

Wilson and Nakamura adapted and extended the existing research for the home environment.

Nakamura took a mathematical, object-oriented, low-level approach whereas Wilson worked

at a more flexible higher-level.

Both Wilson and Nakamura model the effect of actions upon the home in a relatively

rigid and primitive manor, in order to gauge what actions should be permitted at runtime.

With respect to Homer, and the requirements outlined in Section 4.3, this is not a desirable

solution as the home would not behave consistently and predictably for the user. Offline

conflict detection is far preferred for Homer, however the general approach of making use of

meta-information about the effects of actions upon the environment is be explored further in

Section 4.7.

4.4.2 Conclusions

This section discussed existing work in policy enforcement, representation and conflict

handling.

It has been shown that related approaches for policy enforcement did not fit the require-

ments for managing the home. ACCENT and Ponder2 could conceivably have been adapted

for Homer, however neither offered a rich and flexible enough policy language that met

the requirements for Homer. It was decided that a custom-built policy system would be

written. This was designed to handle all the requirements (discussed in Section 4.3) cleanly

and efficiently, and to be integrated with Homer as a separate module. Policy enforcement

within Homer is described in Section 4.6.

Existing policy representations in leading policy systems were discussed, showing that

many of the desired language features for the home could not be represented. These features

include a when-do format, ordered and optional terms, blurred distinction between triggers

and conditions, and finally conditional actions. These language features emerged from user

studies discussed in Section 2.3.3 and, within this thesis, are deemed valuable for a language

designed to allow both technical and non-technical individuals to program their home. For

these reasons a new, custom language will be designed for the home. This is described in

Section 4.5.

Existing conflict detection techniques emerged from the call control domain, and as such are

typically designed to work at runtime with a pre-set collection of meta-information about the

affect of actions. An approach is required that makes use of the advances made by Wilson and

Nakamura, primarily the nature of comparing environment effects to determine conflicts, and

4.5 policy language 72

Figure 4.1: Sample When Clause Tree

the idea of describing the effect of a device and its functions on the surrounding environment.

An improved solution should extend their work by offering more sophisticated and user-

customisable handling of conflicts to handle the challenges described in Section 4.7.2.1. In

addition to the conflict detection work, inspiration should be drawn from the notion of

filtering potential conflicting call features and applied within the policy field. Both filtering

and conflict handling techniques for Homer are described in Section 4.7.

4.5 policy language

The requirements for the language are stated in Section 4.3. This section describes the language

designed for Homer (“Homeric”) based upon these requirements.

4.5.1 Format

4.5.1.1 When Clause

A single when clause introduces a list of triggers and conditions. These express the events that

must occur, and circumstances that must be met, for a policy to fire. The language blurs the

distinction between triggers and conditions, allowing the user to mix and match triggers and

conditions freely within the when clause. This results in a simple but flexible language.

Each term within the when clause must be combined using an and, or or then operator. This

allows for terms to be required, optional or ordered. The when clause has a tree structure

which allows for precedence of terms to be stated unambiguously. Any leaf of a tree must be

a trigger or condition and any parent node must be an operator. Figure 4.1 demonstrates this

visually, and represents the clause: “when t1 and ((c1 or t2 or t3) then c2)”.

Due to Homer’s support of ordered triggers and conditions, there was a need for a time

limit that these terms must occur within. This is called a duration limit. Duration limits

determine how closely in time events must occur in the when clause. As an example, consider

4.5 policy language 73

Figure 4.2: Sample Do Clause Tree - Simple

a policy that detects night wandering: “when the resident gets out of bed at night then opens

the front door”. A time limit of ten minutes might be appropriate for this. Without such a

limit, the user getting up earlier than usual, then later checking if the milk has arrived could

be misconstrued as night wandering. Any groups of terms that are joined using the and or

then operator can specify a duration limit. If no duration limit is specified then the default

duration limit for a policy is 60 seconds. This can be seen in the language specification (in

Section 4.5.2) with further details in Section 4.6.3.

4.5.1.2 Do Clause

The do clause is simply one or more actions that are combined using and operators.

The only additional complexity is the support of conditional actions. Conditions are suppor-

ted within the do part of the policy as it was found that users often wish to impose conditions

on actions. A typical policy might be: “when I get home from work do play my favourite music

and if it is dark outside do turn on the hall light”. Anywhere amongst the list of actions there

can be a condition, with an associated list of actions to be carried out if the condition is met,

and optionally a list of actions if the condition is not met.

Figures 4.2 and 4.3 visually demonstrate two sample do clause trees for Homer. Figure 4.2

reads: “do a1 and (if c1 do a2)”. Figure 4.3 reads: “do a1 and (if (c1 or c2) do a2 else do a3)”.

4.5 policy language 74

Figure 4.3: Sample Do Clause Tree - Complex

4.5 policy language 75

4.5.2 Language

The policy language, defined using Antlr (www.antlr.org), for Homer is:

policy : "when" event "do" execution "." ;

event : simple_event | "(" compound_event ")" ;

simple_event : trigger | condition ;

compound_event : event (timed_event | or_event) ;

timed_event : (("then" | "and") event)* ("within" duration)? ;

or_event : ("or" event)* ;

execution : simple_execution | "(" compound_execution ")" ;

simple_execution : action ;

compound_execution : and_execution | conditional_execution ;

and_execution : execution ("and" execution)* ;

conditional_execution : "if" action_condition "do" execution ("else" "do" execution)? ;

action_condition : condition | "(" (and_condition | or_condition) ")" ;

and_condition : condition ("and" condition)* ;

or_condition : condition ("or" condition)* ;

trigger : user_device_id trigger_id (parameter)* ;

condition : user_device_id condition_id (parameter)* ;

action : user_device_id action_id (parameter)* ;

duration : /* unsigned positive integer */ ;

parameter : /* uninterpreted character string, e.g. "12", "Alice" */ ;

_id : / uninterpreted unique character string, e.g. 984657651468,

DFAS8FD62FAD9DF00033498D */ ;

www.antlr.org

4.5 policy language 76

4.5.3 Representation

An individual policy is stored and expressed using JSON (JavaScript Object Notation, www.json.

org). JSON is a text-based, language independent data-interchange format. It is a lightweight

and easier to parse alternative to XML.

A policy must specify a unique identifier, a name, the author, the dates it was created and

last edited (in unix time), if the policy is enabled, and finally the when and do clauses. A

skeleton policy JSON representation looks like:

"policy": {

"id": "123", // id of the policy, set by the Homer Database

"name": "Summer Heating", // user chosen identifier name of the policy

"author": "Alice", // author of the policy

"dateCreated": 1326985200, // date created in UNIX time

"dateLastEdited": 1326985200, // date last edited in UNIX time

"enabled": true, // boolean: true if enabled, false if not

"when": {...}, // JSON object of when clause

"do": {...} // JSON object of do clause

}

The when and do clauses of a Homer policy represent the tree structure of the policy. Any

parent node must be an operator (e.g. and, or, then, if) which states how its array of children

are combined. A child is either an operator node, or an event node. An event node is a leaf,

which must provide the user device ID, event ID, the type, and any parameters to describe the

exact trigger, condition or action specified by the user. This is discussed again in Section 4.6.3,

and in more detail in Chapter 3. As an example, take the following policy:

when office door opens

then (movement is detected in hall or front door mat is being stood on)

then office door closes

do turn on heating

and if light level is below 50% do turn on the hall light.

www.json.org
www.json.org

4.5 policy language 77

Figure 4.4: When Clause for JSON Example

The when clause is relatively simple, with three terms combined using then, with the middle

term an option of two terms combined using an or. The tree shown in Figure 4.4 shows the

hierarchical representation of this policy, which within JSON would look like:

{ "then": [

{ "event": {

"userdeviceid": "12", // office door

"eventid": "185DDD121346C5A207A4", // opens

"type": "TRIGGER" }

},

{ "or": [

{ "event": {

"userdeviceid": "25", // hall movement detector

"eventid": "1F960252B3EF9E51B25", // movement detected

"type": "TRIGGER" }

},

{ "event": {

"userdeviceid": "6", // front door mat

"eventid": "E8DF87ACB3EF9E51D76", // is being stood on

"type": "CONDITION" }

}

]},

{ "event": {

"userdeviceid": "12", // office door

"eventid": "76E4D7FE437D04A8B323E", // closes

"type": "TRIGGER" }

}

]}

4.5 policy language 78

Figure 4.5: Do Clause for JSON Example

A diagrammatic tree and the JSON code representation are now given for the do clause from

the example policy (”do turn on heating and if light level is below 50% do turn on the hall

light.”), just as was given for the when clause. The tree is shown in Figure 4.5, and the JSON is

as follows:

{ "and": [

{ "event": {

"userdeviceid": "16", // heating

"eventid": "9D9E9DC9A9D9E9F658D56E87123", // turn on

"type": "ACTION" }

},

{ "if": {

"condition": [

{ "event": {

"userdeviceid": "19", // light level

"eventid": "D2E1F5D7E89A912A5E", // below

"type": "CONDITION",

"parameters": ["50"] } // parameters always in array for consistency

}

],

"action": [

{ "event": {

"userdeviceid": "2", // hall light

"eventid": "C7D8E65A1A1133AD45E6", // turn on

"type": "ACTION" }

}

]}

}

]}

The Homer technical report [78] contains further information and further examples of Homer

policies expressed in JSON.

4.6 policy system 79

4.5.4 Applicability

Homeric is a language that is custom designed for the both technical and non-technical people

to be able to program their home. The language has emerged from user requirements, and

focused on providing a flexible and advanced language for technical users, as well as being

able to offer a simplistic language which less technical users can work with. Homeric offers

advanced language features as requested by very technically capable people, and due to the

range of operators and notion of precedence highly sophisticated logic can be represented in

one policy. At the same time, the design of interchangeable triggers and conditions in favour

of the traditional when <trigger> if <conditions> then <actions> has hugely simplified the

policy language for less technical users [80]. This approach and goal is different than existing

policy work, which typically tries to design a hybrid solution. This results in a language that is

too restrictive for technically capable individuals, and too complicated for those less technical.

The Homer policy language, although designed for the home, could be used in other

domains. When a policy language is required to combine triggers, conditions and actions,

regardless of domain, Homeric could be used to offer a highly flexible and sophisticated

means of combing the terms. Homeric has been tested within the telecare field, but not directly

with any other field. Nonetheless, it is believed that Homeric could be readily applicable to

other policy-ready fields.

Whilst Homeric offers novel language features – including blurred distinction between

triggers and conditions, ordered events and conditional actions – it lacks some features of

more mature policy languages. These features were discussed in detail in Section 4.4 and

include timed policies, policy variables and prohibition policies. However, these features are

entirely possible within Homeric and are purely an implementation task.

Homeric has been introduced and described within this section. The language is a novel

contribution to research, offering a fully tailored language for the home which is designed

to support the flexible nature of home policies desired by both technical and non-technical

individuals.

Novel features of the language, which extend upon the work by Owen [102], Sloman [32]

and Turner [129], include the WD format for policies, the blurring of distinction between

triggers and conditions, support for ordered terms, and finally allow actions to be conditional.

4.6 policy system

Homer policies define how the home should react when particular events occur. The Homer

policy system manages and enforces all policies written. The policy system architecture,

implementation and enforcement are discussed in this section.

4.6 policy system 80

Figure 4.6: Homer Policy System

4.6.1 Architecture

The overall Homer architecture diagram was given in Figure 3.1. This shows the policy server

in relation to the Homer framework components. Figure 4.6 introduces a more detailed

diagram of the Homer policy system.

There are four parts which comprise the policy server. Firstly, the Registry, which handles

saving new policies, editing and deletion of existing ones, and enabling and disabling a

policy. The registry is discussed in Section 4.6.2. The Live Policy Handler for enforcement of

enabled policies is discussed in Section 4.6.3. The Overlap Detector, which is used to detect

if a policy’s when clause is valid, and if a policy overlaps with a given set of policies; this is

discussed in Section 4.7.1. Finally, the Conflict Detector detects conflicts between a policy and

a given set of policies and is discussed in Section 4.7.2.

The policy server is embedded within the Homer architecture. This allows the policy server

to make use of the internal event coordinator (discussed in Section 3.5.3) to listen for triggers

from components, and the System Gateway (discussed in Section 3.5.6) to validate conditions

and request actions to be performed. There is also direct access to the Homer Database

(discussed in Section 3.5.2) for the saving of policies, and for accessing any data required

about terms and devices.

4.6.2 Registry: Policy Management

The Registry exposes the functionality of the policy server to Homer. This includes the ability

to add new policies to Homer, and to edit and delete existing policies. The Registry also offers

the ability to enable and disable existing policies.

When new policies are added to the policy server various tasks are performed:

1. Validation

4.6 policy system 81

(a) Firstly, the policy server validates the JSON policy representation to ensure that the

policy is correctly written, conforms to Homeric, and all event identifiers (trigger,

condition, action and user device IDs) exist and are correct.

(b) Secondly, the policy server checks that the when clause is valid. It achieves this by

making use of the Overlap Detector. A policy is considered valid when it is possible

for the policy to be fired. An example invalid policy would be “when the front door

is open and the front door is closed”. It is not possible for the front door to be both

open and closed at the same time, therefore this policy is invalid. The Overlap

Detector simply examines the policy for possible overlaps. If no overlaps are found,

the policy is deemed invalid. Technical details of the Overlap Detector can be found

in Section 4.7.1.

2. Conflict Handling (discussed in more depth in Section 4.7)

(a) The first stage of handling conflicts is to detect overlap between the new policy and

existing policies.

(b) The second stage is to detect if there are any conflicting actions that will be carried

out by the new policy and any overlapping existing policies.

3. Storage and Activation - only if any conflicts have been handled or are to be ignored (as

stated by the user).

4. The policy server saves the policy into the Homer database. The information is obtained

from the JSON representation of the policy which was passed to the policy server.

5. Once the policy has been saved into the database it is passed to the Live Policy Handler

to be enforced. This is discussed in Section 4.6.3.

6. If the policy was set to be enabled in the original policy description, the Live Policy

Handler is told to enable the policy. This is also discussed in Section 4.6.3.

Editing a policy simply involves updating the information in the database, removing the

old policy from the Live Policy Handler and adding the newly updated version. Deleting a

policy involves removing the policy from both the database and Live Policy Handler.

4.6.3 Live Policy Handler: Policy Enforcement

The Live Policy Handler is used to enforce the set of Homer Policies which are stored in the

database. A policy may be enabled or disabled. There are two parts involved when enforcing

policies. Firstly, the Live Policy Handler must listen for the relevant triggers and conditions

taking place within the system and know when a policy’s when clause has been met. Once this

4.6 policy system 82

happens, the do part of the policy must be executed. These two stages are discussed within

this subsection.

Due to the modular nature of Homer, it is vital that the policy server has no dependencies

on the components themselves. Instead, the policy server registers a listener with the Homer

Event Coordinator for any trigger or condition that is of interest. Similarly, it can directly

request actions to be performed through the Homer Event Coordinator. If an event occurs, the

Homer Event Coordinator will broadcast this information to all listening parties (the technical

details of the Homer Event Coordinator can be found in Chapter 3, Section 3.5.3). This is a

powerful feature of the Homer policy system as it only needs to be informed of the type of

event (trigger, condition or action), the event ID (which uniquely identifies the event, such as

“opens”, “send”, “turn on”), the device ID (which uniquely identifies the device in question,

such as “front door”, “bedside lamp”, “Stirling weather”) and any parameters required for

the event (provided as a list of string values, such as “sunny”, “10”, “Alice is home from work

now.”).

4.6.3.1 When Clause

The when clause of the policy determines when a policy’s do clause should be executed. In

order to know when the requirements of a when clause have been met the Live Policy Store

must listen for component events occurring.

condition handling Traditionally, policies of the ECA format involve listening for

triggers occurring, before checking all conditions are true, then finally requesting all actions

be carried out. However, Homeric uses the WD policy format and blurs the distinction between

triggers and conditions for the user. As an example, conventionally “light turns on” is a

trigger, or an event, which occurs at a particular moment in time. On the other hand “light is

on” is a condition which at any point in time can be evaluated as true or false. Within the user

studies carried out in this research (described in Section 2.3.3), it was shown that users would

typically use conditions when the behaviour of the trigger was actually intended. Therefore

the solution presented is to allow users to make use of either triggers or conditions without

distinguishing between these.

Within Homer, a trigger is handled in the traditional sense. The policy server registers a

listener with the Homer Event Coordinator to be notified when the trigger occurs. Conditions

are handled in two ways: as a trigger or as a condition. So it is possible to evaluate any

condition through the Homer Event Coordinator. It is also possible to register a listener for

conditions, to be notified when the condition becomes true. Revisiting the previous example,

4.6 policy system 83

“light is on” evaluates to true at any point the light is on. If the light is off, then at the point in

time it becomes on, the condition would be met: a notification would be broadcast, notifying

all listeners.

Example policies to clarify this concept are given below. Firstly, consider a policy with only

one condition:

when bedside light is on do turn off heating.

The policy server will load this policy and register a listener for the one and only term in the

when clause, which happens to be a condition. This policy will fire when the bedside light

turns on, so this condition becomes true.

A second example which includes both a trigger and a condition:

when bedside light is on and bedroom window opens do turn off heating.

The policy server will load this policy and register listeners for both the condition (”bedside

light is on”) and the trigger (”bedroom window opens”). The policy will fire when both of

these events occur or become true within the default policy duration (typically 60 seconds).

Therefore, if the bedside light is turned on, the condition is met as the light is now on,

the policy server will attempt to evaluate all conditions within the policy. There are no other

conditions to evaluate, so it starts a timer (discussed in further detail in the forthcoming

durations paragraph) where all other terms within the policy must occur or become true. If

the bedroom window is opened within this time, the policy will fire. If it is not then the policy

is reset and the timer is cancelled.

If, on the other hand, the bedroom window is opened first, the policy server will again

attempt to evaluate all conditions. There is one condition term unevaluated, so if at this point

in time the bedside lamp is on (perhaps it has been on for some time before the window

opened, hence the policy not firing when the lamp turned on) the policy will fire. If it is not,

then a timer is started. If the lamp turns on within this time the policy will fire, else the policy

will reset and the timer will be cancelled.

operator handling There are three supported operators within the when clauses of

Homeric: and, or and then. As described in Section 4.5.1.1, a Homer when clause is a tree

structure, where each parent is one of the three supported operators.

A parent node is evaluated as true when its children are evaluated as true. For an and

operator all children must be true. For the or operator any one of the children must be true.

For a then operator each child must become true in turn.

4.6 policy system 84

To start, when a policy is loaded all of the children of any and or or terms are told to register

listeners for becoming true. These children report to the parent when this is the case. The then

term tells only its first child to register a listener and report back.

A leaf node is either a trigger or a condition. If a parent of a leaf node requests it to register

a listener, the Homer Event Coordinator is contacted and a listener is registered for the given

leaf node details (user device, event type, event and parameters).

When a trigger occurs or a condition becomes true the leaf node notifies its parent node.

When any parent node is notified of its child becoming true, the parent stops listening for

that event and then re-evaluates itself.

Re-evaluation of any node involves determining if that node is true at that point in time.

This requires different processes for the different types of nodes:

• Trigger A trigger nodes describes an event which can occur at a point in time, therefore

trigger nodes are false until the event takes place.

• Condition A condition node, on the other hand, contacts the Homer Event Coordinator

requesting to know if its condition evaluates to true or false at that point in time.

• And For an and node, this involves a check to see if all its children are now true, or if it

is still waiting for some children.

• Or For the or node, once any child is true the node itself becomes true.

• Then For a then node, checks must be made to see if the children are true, in order. As

soon as a child reports false, the then node is false and all checks stop. When a child of a

then node becomes true the listener for that node is cancelled, and replaced with a new

listener for the next node in the sequence. When the last node in the sequence becomes

true the then node evaluate to true.

When a node evaluates to true the node then reports this to its parent. When the root node

reports it is true, the policy fires.

durations A policy composed of and and then nodes must have a duration, which is

simply a time limit in which all nodes must evaluate to true. There is a system default value,

typically 60 seconds, which can be customised to suit the users preference. It is possible that

any and or then node has been given a particular duration to use, rather than the default. If no

duration is given in an and or then node specification, the default value is used.

Every and and then node within a when clause has its own timer. This timer begins when

one child becomes true, and lasts for the specified time (which, if not set, uses the default

4.6 policy system 85

time instead). If not all of the node’s children become true within the time period, the node

resets itself.

As an example of policy durations take the following, purposely strange, policy:

when the front door opens and (the temperature falls below 5°c and ice forms on

the windows within 10 minutes) within 1 minute do [. . .].

Figure 4.7: When Clause for Durations Example

This when clause (also shown in Figure 4.7) appears odd on first inspection, as the inner

term has a longer specified duration than the outer. This can be easily handled by the Homer

policy system using the methods already described. The two main scenarios that could occur

are:

• If either of the sub-terms of the and node become true (the temperature falls below 5°c

or ice forms on the windows) then the 10 minute timer will start. Both these terms must

take place within this 10 minutes, or the node will reset. If they both do occur, then the

parent and term will be notified and will start the 1 minute timer. The front door must

open within this minute for the policy to execute. If it does not the root and node (and

therefore policy) is reset.

• Alternatively, the door could open first. This would cause the root node and term to start

a timer for 1 minute. In this case, the temperature must fall below 5°c and the ice must

form on the windows within this time for the policy to fire. If not, again the root node

will reset.

enabling A policy can be disabled or enabled within the Live Policy Store. This simply

toggles if trigger or condition nodes are listening to events from the Homer Event Coordinator.

Disabling a policy removes any listeners. Enabling the policy causes the necessary terms to

request listeners.

4.6 policy system 86

4.6.3.2 Do Clause

The do clause specifies a list of actions to be carried out if the when clause is satisfied.

conditional actions An action, or group of actions, may be preceded with a con-

ditional clause. This clause must contain conditions, which are combined using and and or

operators. Any conditional action can optionally include an else statement, which can similarly

also contain a list of actions or other conditional actions.

A do clause, like the when clause, is represented as a tree. If a do clause simply lists actions,

then the root node is an and operator, and all the leaf nodes are the actions. This is illustrated

in Figure 4.8.

Figure 4.8: Sample do Clause Tree with Only Actions

If there is an if node the tree will contain an if parent node, with either two or three children:

two children if there is no else clause, and three if there is. These two scenarios are illustrated

in Figures 4.2 and 4.3.

When a policy is executed, all non-conditional actions are requested to occur. If there exists

an if within the do node then the following nodes are handled:

• Condition Firstly, all conditions are evaluated in turn. The condition part of the if is

either a single condition, or multiple ones joined with an and or or operator. If the node

evaluates to true the actions are performed, otherwise (if an else exists) the else actions

are performed.

• Action If the condition was evaluated to true, the action tree is requested to execute.

The action tree can contain the same mix of actions and if statements as the root node,

and is handled in exactly the same way.

• Else Action [Optional] If the condition was evaluated to false these action(s) will be

executed.

performing actions The Homer policy system handles actions by making use of the

Homer Event Coordinator. The policy system provides the Homer Event Coordinator with

4.6 policy system 87

the action details (user device ID, event ID and parameters), and the Homer Event Coordinator

handles distributing the requests to the relevant components (as described in Chapter 3).

4.6.4 Domain and Language Independence

Due to the clean separation of system information and identifiers, the Homer policy system

could be used with other domains. Such an example could include telephony, where the same

database schema would be populated with telephony devices and terms. A policy could then

be written which made use of this information. An example telephony policy could be:

when home phone receives a call and time is between 8am and 5pm and day is

weekday

do forward call to work phone.

Pulling out the underlying data from this policy, there exists:

• Four “devices”: “home phone”, “time”, “day” and “work phone”

• One trigger: <phone> “receives a call”

• Two conditions: <time> “is between” and <day> “is”

• One action: “forward call to” <phone>

• Three parameters: “0800”, “1700” and “weekday”

Within the database the devices, triggers, conditions and actions would have all been assigned

a unique identifier. This means that through a Homer policy editor, the user could express a

policy using the natural language names for each term taken from the database, then save

them to Homer using their IDs instead. This would result in the above policy looking more

like:

when [TRIGGER:1,A] and [CONDITION:2,A“0800”,“1700”] and [CONDITION:3,A,“weekday”]

do [ACTION:4,A].

This policy is completely domain independent. By knowing the event and its type, the device

and any parameters, the policy server is able to successfully enforce policies. By knowing

these IDs, listening for triggers, querying conditions and requesting actions can all be achieved

using the Homer Event Coordinator. This has the added benefit that Homer is completely

natural language independent. By simply altering the natural language names, or providing a

language set within the database, any Homer user interface will reflect the chosen language

without affecting IDs, Homer or the policy server.

4.7 conflict handling 88

Figure 4.9: Homer Running Profile Whilst Adding 2000 Policies

4.6.5 Scalability

To test the scalability of the Homer policy system, 2000 policies were added to Homer one after

another (with a 0.1 second delay between). Each one was validated, tested for overlapping

policies, then checked for conflicts between overlapping policies. The profile of this process is

shown in Figure 4.9, running on Windows 7 32-bit Operating System, with an Intel Core 2

Quad CPU 2.66GHz and 3GB of RAM. As can be seen, Homer’s use of memory increased

from around 15MB at the start, to around 40MB after all 2000 policies were added. CPU

usage was approximately 20% whilst a policy was analysed and added. This dropped to

approximately 0.3% once all policies had been added. The length of time taken to add each

policy very gradually increased over time, but this was barely noticeable. Since all policies exist

in working memory, the time to execute a policy is negligible as quite simply the individual

policy will be notified through a listener when a relevant event occurs, and in turn requests

an action to occur by directly contacting the Homer Event Coordinator.

4.7 conflict handling

To ensure the user is always in control of the home system, conflicts could be handled either

at runtime using resolution policies written in advance, or statically at the time of writing a

4.7 conflict handling 89

policy. The ideal scenario would be to incorporate both, producing a hybrid solution. However,

within the scope of this research it was decided to focus primarily on one solution.

Both offline and online conflict detection and resolution are extremely useful, and arguably

essential, features within a policy system. For Homer, the philosophy of the user always being

in control of the home (and therefore home system) meant that automatic handling of conflicts

at runtime was disadvantageous. Firstly, at runtime there is no appropriate, non-invasive,

reliable or efficient way to ask the user how they would like to handle the conflict. Secondly,

at runtime the home system would not behave how the user would expect, either due to the

system attempting to handle a conflict or, in the case of multiple users, the conflict being

handled by one user without involvement of another. Finally, it may not be possible, or

appropriate, to delay the execution of time-critical or security-critical policies.

The author believes that ideally any potential conflicts with a policy should be reported to

users when they are planning and writing them. This has multiple advantages, including the

new policy being fresh in the user’s mind, and having the user’s attention and time. It also

provides the opportunity to maintain and organise the collection of existing policies.

For these reasons, it was decided to add support for offline conflict detection and resolution

to Homer. When the user attempts to save a policy (new or edited) it should be analysed

against the existing set of policies to find any potential conflicts. This problem is two-fold.

Firstly, a potentially conflicting policy must also be executable when the new policy fires (the

policies overlap) and secondly, if the policies do overlap, the list of actions for both policies

must be analysed to see if there are any conflicting effects on the home (conflict detection).

The following sections describe the methods used to detect if policies overlap or their actions

conflict with one another, and the resolution handling techniques employed.

4.7.1 Overlap Detection

The notion of filtering potential conflicts prior to conflict analysis was originally applied

to call control features, known as ‘filtering’. However, this concept has not been applied to

policy conflict detection. Within the policy domain, non-conflicting policies could be filtered

by evaluating if the policies would apply at the same time. Within Homer, this would mean

evaluating if a policy’s when clause could occur at the same time as another policy’s when

clause. The term chosen to describe this notion is “policy overlap detection”.

Overlap detection must determine if it is possible for two or more policies to take place at

the same time. To illustrate overlapping terms, take the following three policies:

4.7 conflict handling 90

Policy A: when front door is open do . . .

Policy B: when front door is closed do . . .

Policy C: when email is received do . . .

It is not possible for the front door to be both open and closed at the same time, therefore

Policy A and Policy B do not overlap with one another. Receiving an email is independent of

the door being open or closed, therefore both Policies A and B can overlap with Policy C.

4.7.1.1 Overlap Types

Studying the overlapping nature of Homeric policies resulted in the following four overlap

types:

related triggers and conditions Related triggers and conditions always overlap

with one another, and never overlap with their opposites:

when 1 when 2 Overlap?

front door closes front door is closed Yes

front door closes front door is open No

Homer supports conditions within policies which have the characteristics of a trigger.

Therefore the following two policies indeed overlap:

Policy A: when front door opens do . . .

Policy B: when front door is open do . . .

The condition in Policy B can be both a condition and a trigger. Therefore Policy B cannot

overlap with either of the following policies:

Policy C: when front door closes do . . .

Policy D: when front door is closed do . . .

The same applies in reverse, Policy D cannot overlap with Policy A or B. Indeed, policies

A and B will not overlap with either of policies C or D. When detecting overlap this blurring

in the definition of triggers and conditions must be taken into consideration.

time-based terms Time-based terms must be respected when compared with any other

term groups. Example clauses considered to overlap with time-based terms are shown in the

following table:

4.7 conflict handling 91

when 1 when 2 Overlap?

a then b b Yes (when a then b)

a then b b and a Yes (when a then b)

a then b b or a Yes (when a then b)

a then b b then a No

a then b a then x then b Yes (when a then x then b)

Homeric supports time-based (ordered) terms with the then operator. This introduces

complications, as not only are terms conjunctive or disjunctive, they can also be restricted by

order. Take the following two policies:

Policy E: when front door opens then front door closes do . . .

Policy F: when front door closes then front door opens do . . .

It is hard to decide if these policies overlap or not. Considering the generic form of the policies

“when a then b” and “when b then a”, the argument falls against them overlapping. However,

these policies could technically overlap. Looking again at Policy E and F, imagine the front

door opens. Policy E would detect this and begin listening for the front door closing. If it

did close, Policy E would fire and Policy F would begin listening for the front door opening.

If, within the default time limit, the front door does open, then Policy F would also fire.

Therefore, we can see that Policy E and Policy F may overlap. On the other hand, it can be

argued that these policies are each describing an event as two individual events occurring in a

specific order. So, although the policies technically overlap, it could be argued that for end

users these policies describe different events taking place and therefore do not in fact overlap.

Within Homer, it has been decided that an overlap is where a complete group of sibling

terms overlap with another complete set of sibling terms. Therefore “when a then b” would

not overlap with “when b then a”, but would overlap with “when a then x then b”.

parameters Parameters and their values must be correctly compared with one another.

As shown in the following table:

Parameters associated with a term are another complication for overlap detection within

Homer. Different parameters have very different importance, which the following contrived

example demonstrates:

Policy G: when email is received from Sam reading “Turn on the heating.” do . . .

Policy H: when email is received from Samantha reading “turn on heating” do . . .

4.7 conflict handling 92

when 1 when 2 Overlap?

t rises above 30°c t is 25°c No

t rises above 30°c t falls below 35°c Yes (when t is between 30°c and 35°c)

SMS received: “Hello” SMS received: “Help” No

SMS received: “Hello” SMS received: “hello” Yes (when SMS received: “Hello”)

These two policies both make use of the same trigger (“email received”), which requires two

parameters. The first is the name of the sender, the second is the body of the email. The first

of these parameters must be exact matches to be considered the same person, whereas the

second parameter is far less restricted and clear cut.

There are also numeric parameters which are far easier to compare. For example:

Policy I: when temperature rises above 20°c do . . .

Policy J: when temperature is 24°c do . . .

Policy I contains a trigger (“rises above”), whilst Policy J contains a condition (“is”). Both of

these terms are concerned with the temperature, and the first parameter of each term specifies

the value of concern. It is crucial that any overlap detection can understand the relationship

between terms and correctly interpret the term and corresponding parameter.

conditional actions All conditional actions must be incorporated into the overlap

detection process. The following table illustrates the two examples:

Policy 1 Policy 2 Overlap?

when a when a do if b do . . . Yes (when a and b)

when a when a do x and if b do y . . . x: Yes (when a), y: Yes (when a and b)

Homeric supports conditional actions, resulting in policies which have additional constraints

listed within the do clause. These must be taken into consideration when analysing policies

for overlap. For example:

Policy K: when door is closed do . . .

Policy L: when . . . do if door is open do . . .

Policy K will not overlap with Policy L due to the constraint within the do clause.

There is additional complexity when there are multiple actions within the do clause, for

example:

4.7 conflict handling 93

Policy M: when door is open do turn off heating . . .

Policy N: when door is open do turn on light and if door is closed do turn on heating

In this case, there are two possible outcomes. The first ignores the conditional action, and will

conclude that when the door is open two actions will take place (turn off heating and turn on

light). The second outcome, taking into consideration the condition action, will conclude that

there is no overlap between policies M and N as the door cannot be both open and closed at

the same time.

4.7.1.2 Related Work

Two-stage policy overlap detection is a novel concept, inspired from filtering techniques

found in the feature interaction domain. The following section discusses existing work and

explores the problem space to evaluate a possible means of achieving the goal of filtering non

overlapping policies within Homer.

heuristic Wu et al. [144] present a call control feature interaction solution which incor-

porates a naive overlap detection stage. This stage involves examining if there are any triggers

in common between two features. If there are none, it is assumed that the features do not

overlap, and therefore do not conflict. This is considered too primitive for Homer and a more

sophisticated and accurate solution is desired.

Kolberg et al. [67] presented a heuristic based solution to reduce the number of features

to be analysed for conflicts, by performing a pre-conflict analysis. Features are firstly split

into connection equations, then interaction prone scenarios are found by applying a custom

heuristic algorithm to a pair of connection equations.

Nakamura et al. [95] aim to solve the same feature interaction filtering problem as Kolberg,

though uses an alternative approach. This approach involves use case maps, a requirement

notation method, to allow the functionality of features to be fully categorised and represented.

The relevant data from the use case maps which refer to a particular call scenario are then

pulled together into a custom feature matrix to allow a heuristic algorithm to determine the

interaction status.

Both solutions presented by Kolberg and Nakamura require detailed domain knowledge

about the triggers, conditions and actions and how they relate to one another. This works for

a finite domain, however it is not feasible within an unbounded system where third-party

features can be added. These solutions were also designed purely around call control, therefore

typically only one trigger is involved. Within Homeric there can be countless triggers (and

conditions) combined using various operators.

4.7 conflict handling 94

A heuristic based solution, that can detect the sophisticated range of possible overlaps

within Homer, could prove extremely challenging within such an expansive area of home

automation, and particularly within Homer where third-party developers can extend the

range of supported features. For this reason further options are explored.

historic data An alternative approach could be to make use of existing knowledge of

the home and the devices within. Logs of events and data for the home could be fed into a

probability algorithm which would be able to calculate the likelihood of policies overlapping.

This approach had the advantage that it was completely decoupled from the components and

required no extra knowledge about the terms. However, this approach would only work once

a vast amount of data had been collected about the home. Even then, there would always

exist rare activities within the home (such as fire alarms or burst pipes) which would never

produce enough data that the policy system could accurately understand when these could

overlap with other terms.

logic Finally, an approach was considered to exploit the logical nature of the policy

language.

Heisel [50] et al. present an approach that makes use of both formal logic and heuristic

techniques to gauge feature interaction. The approach is designed to work on any domain

which can have its states, inputs, outputs and actions modelled. When a new feature is added

to the knowledge set it is first checked if it conflicts with the existing model. The first stage

involves analysing the pre-conditions of the new feature with the existing model, and the

second stage analysing the post-conditions. The first stage is where the filtering takes place,

formal logic algorithms determine constraints with pre-conditions that are neither exclusive

nor independent of each other.

However, Heisel’s solution requires detailed knowledge about pre- and post-conditions up

front for all the different features which is not possible within the broad and dynamic nature

of home automation.

constraint satisfaction Despite the drawbacks to Heisel’s solution, a logical ap-

proach was explored which did not require additional knowledge about the triggers and

conditions of Homer.

A sat solver was initially ruled out due to its different focus. A constraint satisfaction solver

is much better suited for the task, as it supports constraints on the range of possible values any

given variable could have. Such a tool could reason about a given set of conditions to deduce

4.7 conflict handling 95

if there are any contradictions amongst two policies. If no contradictions are discovered (the

constraints can be met), it could be concluded that the policies are able to overlap with one

another.

A standalone prototype solution was developed by Turner to explore the feasibility of a

constraint satisfaction solver for detecting conflicts between primitive terms. The results were

positive, so this approach was extended and fully integrated with Homer to detect overlap

between Homer policies. This is described in more detail in the next section.

Currently work exists to ‘filter’ features that are considered to not be interacting before

conflict algorithms are applied. However, all of these approaches require extensive knowledge

about the features upfront which cannot readily be provided within home automation.

Secondly, these approaches are typically intertwined with the conflict analysis stage and

incorporate the features’ actions rather than purely the triggers and conditions as is desired

for the Homer approach.

The proposed approach using constraint satisfaction to determine overlap between a group

of policies extends the existing state of the art. This is achieved by designing a novel two-stage

approach which cleanly separates the overlap detection algorithms (involving triggers and

conditions) and the conflict detection algorithms (involving actions), supporting a complex

policy language, and not requiring extensive knowledge about the domain.

4.7.1.3 Overlap Detection with Homeric Policies

Two or more policies can be tested for overlap by imposing their list of constraints on the

Java Constraint Solver (JaCoP) “store”. Each term within a policy is translated into a constraint,

and each constraint within a policy is combined (using convenience methods) with the

relevant operators (and, or, then). Finally, both sets of policy constraints are combined using

the and operator and imposed on the store. The constraints can then be searched using

depth-first searching technique to determine if there are any possible solutions which can

satisfy all constraints. If the policies do overlap, the first set of possible values to satisfy

the constraints is saved, to later be displayed to the user (described further in the conflict

resolution Section 4.7.4).

conditional actions Homeric supports conditional actions, resulting in policies

which have additional constraints listed within the do clause. In order to handle this, the

Conditional Actions Overlap Type, any policy with one or more conditional actions is

translated into numerous sub-policies. Each sub-policy lists all the constraints within the when

4.7 conflict handling 96

clause and all actions within the do clause, eliminating any conditional actions. For example,

take the following policy:

Policy A: when a do b and if c do e

This would result in the two following sub-policies:

Policy A.1: when a do b

Policy A.2: when a and c do b and e

Secondly, a more complicated example:

Policy B: when a or b

do c and

if (d or e) do (if f do g)

else do (h and i)

This would result in the two following sub-policies:

Policy B.1: when a or b do c and h and i

Policy B.2: when (a or b) and (d or e) and f do c and g

This does not effect the policy overlap reporting as the list of required terms will be reported

to the user, as will any conflicting actions, without the requirement to specify a particular

sub-policy. Although the above examples only result in two sub-policies, this approach is

recursive and so can handle any number of required sub-policies.

elimination Each policy pair is firstly analysed for any common terms between them. If

there are no terms in common, it can be concluded that, although technically possible that the

policies could overlap, the chances are too slim to bother the user with. If, however, there are

any shared terms (such as “Tuesday” and “weekday”, “all lamps” and “bedside lamp”) then

the policies are put forward for analysis as there is a higher chance that they will overlap.

translation Each term within a policy is translated into a constraint. The process for

translating a term into a constraint is described below, for terms with and without parameters.

Terms Without Parameters For a condition term with no parameter, attempts are made to

convert it into a trigger term instead. As an example, “door is open” would be translated into

its trigger form “door opens”. Performing this translation where possible handles the Related

Triggers and Conditions Overlap Type.

Once the term has been converted (if possible) to its trigger form, it is translated into a

constraint. As an example, take the following two terms:

4.7 conflict handling 97

Policy A: when front door opens do . . .

Policy B: when front door is closed do . . .

This would result in two constraints:

Constraint A: Name “front door”, Value “opens”, Comparator equals

Constraint B: Name “front door”, Value “closes”, Comparator equals

Terms With Parameters If a term has a parameter, no attempts are made to convert con-

ditions to their trigger alternative. Instead, each parameter is converted into an individual

constraint in order to handle the Parameters Overlap Type.

Two examples are as follows:

Policy A: when humidity falls below 20°c do . . .

Constraint A: Name “humidity”, Value 20, Comparator less than

Policy B: when SMS received from Alice saying Turn On Heating do . . .

Constraint B-1: Name “SMS”, Value “Alice”, Comparator equals

Constraint B-2: Name “SMS”, Value “Turn On Heating”, Comparator case-insensitive

equals

handling time-ordered terms In order to support the notion of ordered terms

(through Homer’s use of then), additional information is required. This addresses the Time-

Based Terms Overlap Type.

Each term is allocated a relative time value to represent the ordering. A sophisticated

process is carried out to support timings of events across different policies and sets of then

terms. As an example:

Policy A: when front door opens do . . .

Policy B: when front door closes then movement is detected then the front door

opens do . . .

Each term in Policy B would be given a time relative to each other (e.g. front door closes at

time = 0, movement detected at time = 1, front door opens at time = 2). The difficulty arises

when assigning a time to the only term in Policy A. Giving the term time 0 would result in no

overlap being detected, however, giving the term time 2 would result in overlap.

The following rules are used to handle then terms within policy overlap checking:

1. then vs’ then: A complete then clause must be a subset of the other policy’s then clause,

allowing additional terms in the fuller then clause and respecting the order of both

4.7 conflict handling 98

clauses. Example: “when a then b then c” versus “when a then c” (overlaps when “a then b

then c occurs”).

2. then vs’ and: A complete subset of one clause inside the other, allowing additional terms

in the fuller clause and ignoring order. Order is only recognised when describing the

conditions of the overlap. Examples: “when a then b” versus “when a and b and c” (overlap

when “a then b occurs, as well as c”), and “when a then b then c” versus “when c and b”

(overlap when “a then b then c occurs”).

3. then vs’ or: Any term within the or clause is a complete subset of a then clause, again

allowing additional terms in the fuller clause and respecting the order of the then clause.

Examples: “when a or b” versus “when b then c then d” (overlap when “b then c then

d occurs”), and “when a then (b or c)” versus “when a then b” (overlap when “a then b

occurs”).

execution Once the policies have been translated into a set of constraints and enforced

upon the constraint store, the store can be searched for possible solutions. JaCoP currently

offers only a depth-first search, which is perfectly suited to the requirements of this task. Once

the search has been performed the result states if the policies overlap, or if no overlaps were

found.

translation of results If policy overlap is detected, there exists some combination

of values which can satisfy the terms (constraints) within the policy. The result is analysed to

produce a list of possible values for the given set of policy terms, along with the order these

events must occur (relevant for the then operator).

Having detected if policies overlap with one another, conflict detection techniques are

required to analyse if pairs of policies conflict.

4.7.2 Conflict Detection

Conflict detection must determine if a given policy will result in undesired effects when

executed at the same time as another policy. As a simple example:

Policy A: . . . do turn on lamp

Policy B: . . . do turn off lamp

In this example trying to execute both policies would result in an undesirable effect: it would

be extremely useful to be able to detect any such problems before runtime to be able to report

them to the user, therefore deciding in advance how best to handle or avoid such problems.

4.7 conflict handling 99

4.7.2.1 Challenges

There are multiple challenges involved with detecting conflicts amongst policies.

conflict perception Firstly, it is often down to the individual to decide what they

consider a conflict. Take the following two policies:

Policy A: . . . do open the window

Policy B: . . . do turn on the heating

There are some people who may feel these two policies conflict with one another, as it is

undesirable to both open a window (reduce temperature) and turn on the heating (increase

temperature). However, there are other people who may not consider this conflicting, as they

may enjoy the fresh air whilst wanting to remain warm. Due to this human deciding factor,

policies have different levels of conflict, including none, potential and probable.

inconsistent effects Another problem is the notion of analysing the actions for their

effect on the environment. Some effects can be straightforward, for example turning on the

heating will increase the household temperature. However, opening the curtains will increase

the light level only if it is not dark outside.

Positive, negative and opposing pairs of effects are not necessarily conflicting. For example,

turning on the heating and opening the window have opposing effects on the temperature

within the room. This could be considered a conflict. A second example, where in the evening

a lamp is turned on and the curtains are closed, results in opposing effects on the light level

within the room. This, however, would typically not be considered a conflict.

varying effect direction Some actions may affect more than one aspect of the

environment. As a simple example, turning on a lamp with an incandescent bulb will increase

both the light level and the temperature of the room. Opening a window will increase the air

flow but decrease the temperature.

environmental data management There is the notion that actions can effect the

environment (variable) or make use of an external factor (resource). This would be lot of

information to enter and manage by either the developer or end user, but would be useful as

Homer would have a greater understanding of what effect actions have on their surroundings.

However, this also introduces challenges of how variable and resource effects are combined.

For example, if we say that a telephone ringing increases the audio-level by 10 decibels and

turning on the television increases the audio-level by 30 decibels, naively one may assume

4.7 conflict handling 100

that if both events take place the audio-level would be 40 decibels. This, however, is incorrect

as decibels are not additive.

4.7.2.2 Related Work

The work of Wilson [142], which was inspired by the work of Kolberg, Magill, Marples

and Reiff-Marganiec [19], greatly influenced the research, design and solution of the Homer

conflict detection. This section discusses the work of Nakamura and Wilson, and explores

how this can be enhanced to work offline within Homer.

nakamura Nakamura developed a tool that modelled the specifications (primarily the

appliances and “environment properties”) of a home network. Each device (appliance) within

the home is regarded as an object which has properties and methods that directly relate

to the actual device’s state and events. Each method has a pre- and post-condition which

must be met before the method can be carried out. If the conditions are not met, then the

desired action is considered a conflict. As well as devices, the environment was also modelled.

Each device method describes how it makes use of or affects a pre-set list of environment

properties (namely power, temperature and brightness), including if it is writing or reading

the environment property. If any combination of method calls results in illegal effects on

the properties then they are deemed conflicting. The drawbacks to Nakamura’s tool are

the restricted nature of the home appliances, the assumptions made for a fixed API across

appliances for the home, the limited nature of predefined, hard-coded environment properties,

and finally the tightly coupled nature of the meta-information with the underlying code.

wilson Wilson worked at a higher level, however he shared many similar approaches

with Nakamura. As well as the two levels that Nakamura used (devices and environment) to

describe the home network, Wilson had a third: “Service Layer”. The service layer was used to

combine the functionality of the devices to produce higher-level services for the home. Within

Homer, this would be the policy system. Instead of hard-coding the information regarding

the environment (”environment variables”, or variables for short) and the devices at the code

level, Wilson provided a means of obtaining the information in XML form from a remote

database. This allows for a much simpler and extensible solution to managing device and

environment information.

locks All communication with devices in the Wilson system must go via a device layer.

To manage conflicts between devices, this layer utilises a locking system to gauge when

4.7 conflict handling 101

various events may be performed on devices, or environment variables may be affected. The

device layer can lock a device, and a device can lock a variable. There are four types of locks

available:

• NS : Not Shared Exclusive lock, not compatible with any other lock.

• S+ : Shared, Increase Only Allow only increasing effects on the device or variable,

compatible with only S+.

• S- : Shared, Decrease Only Allow only decreasing effects on the device or variable,

compatible with only S-.

• S±: Shared Unknown behaviour, so only compatible with S±.

This locking system allows, for example, a fan and air-conditioning to be turned on at

the same time as they both decrease the temperature within the room. However, turning on

the heating and the air-conditioning would not be allowed, since one would increase the

temperature and the other would decrease it.

This solution works well within the home, as it is a generic access control system for the

devices and environment within the home. It is extensible as any device or environment

variable can be supported by simply ensuring that the information regarding it is described in

the remote database. However, the approach is slightly naive as it assumes that two positives

or two negatives should always be allowed, and opposing pairs are conflicts. As discussed

in the challenges section (4.7.2.1), conflicts can mean different things to different people. To

some people, turning on the air-conditioning and the heating at the same time is a perfectly

normal occurrence.

environmental effects Explorations were carried out of the various environment

factors, the range of home appliances and services, and the effects on them. Interesting issues

and challenges were observed. Namely:

• Different events for the same device can each effect the environment in different ways.

For example, turning on a lamp will increase light level and heat within the room, and

also consume power. Turning off the same lamp will decrease light level and heat, but

simply not consume power.

• The effects of an event can be in opposite senses. For example, turning on the air-

conditioning will decrease the temperature but increase the noise level.

• There is the notion of resources which are consumed (gas, power, water, etc.) and

environment variables that are affected (temperature, audio, humidity, etc.).

4.7 conflict handling 102

• It could be desirable to allow users to have their own resources and variables. For

example, a user could want to maintain a base level of “comfort” within their home.

Such a concept could be of no interest to some people but highly useful to others.

Defining what affects the “comfort” variable is unique to the individual. For example,

someone may consider being comfortable to involve the house never falling below 23°c,

whereas someone else may consider it to mean there is always air flow.

• It was considered that it may be desirable to write policies which interrogate the

variable or resource. For example, when power usage is high do send SMS to Alice

saying “Warning! The house is currently using a lot of power.”, or “when temperature

falls below 15°c and house is occupied do turn on the heating”. However, it was later

observed that more sophisticated information would be required about how the devices

affect the resources and variables (for example, how much power turning on a device

would produce or heat a lamp would emit). This leads to complicated solutions and

further challenges (as discussed in Section 4.7.2.1). However in most, if not all, cases

the information about the variable or resource could be obtained more accurately and

simply from dedicated devices and sensors. For example, power monitors could read

power usage and thermometers could read temperature.

• In the case of resources, it was observed that on the whole it is desirable to minimise their

usage. For variables, it is case-dependent. See Table 4.1 for a list of sample resources and

variables and their desired usage (the table is described in more depth in the following

section).

• Attempting to find a solution that will work in all cases is near enough impossible.

There is a vast range of possible devices and services within the home, coupled with the

varying nature of possible end users. General rules should be put into place which aim

to detect overlap and err on the side of caution, with the ability to handle exceptions to

these rules for special cases.

• Finally, it was observed that not all resources and variables are of interest when detecting

overlap. For example, observing that two lamps both increase power usage is not of

relevance in comparison to the increase in light level. Similarly, water usage is of concern

for some countries, but not for others.

A solution was designed to encapsulate and extend a hybrid of Wilson’s and Nakamura’s

work alongside the new requirements and observations made in regard to Homer. Appreciat-

ing the requirement for resources and variables, the term “environ” was defined to encompass

4.7 conflict handling 103

them both. Environs are introduced and discussed in further detail in the following section

(4.7.2.3).

By utilising environs, and the appreciation that there exist environs that should be minim-

ised, maximised or ignored, it is possible to determine if a set of actions conflict. For example,

two actions which minimise an environ that should be maximised will result in a conflict.

This is discussed in further detail in Section 4.7.2.3.

The information regarding the effects that the actions for a device may have on environ(s)

would be entered by the user when adding a new device type. This is explained in more detail

in Section 3.6.2.2.

4.7.2.3 Environ Effects

An environ is a term used to describe an environment variable or a resource of a home, similar

to the notion of “variables” by Wilson et al. [143] and “environment properties” by Nakamura

et al. [94]. These are used to better understand the effects that actions of devices and services

have on the home environment. Some examples include temperature, water, power, light level,

etc. These environs have one of three properties:

• Minimising: The usage or value of the environ should be minimised. Such as energy,

which should be kept as low as possible. Inspired from Wilson’s “S-” concept.

• Maximising: The usage or value of the environ should be maximised. Such as security,

which should be kept as high as possible. Inspired from Wilson’s “S+” concept.

• Neutral: The usage or value of the environ should be either minimising or maxim-

ising, however all effects should be in the same sense. Such as temperature, which is

an environment variable within the home that typically is not desired to be actively

increased or decreased, but generally should be altered in the same direction. Turning

on the air conditioning (reducing temperature) and the heating (increasing temperature)

is typically undesirable. The neutral environ property is inspired from Wilson’s “S±”

concept.

Common environs and their respective properties are shown in Table 4.1. Each environ can be

set to “ignored” which means the environ should not be taken into consideration in conflict

detection.

For any given action performed on a particular type of device it is possible to describe how

environs are affected (increased, decreased, no effect). This is done through a user interface,

rather than at the code level. The information could be gathered from the system installers,

4.7 conflict handling 104

Environ Desired Effect

Gas Minimise

Humidity Minimise

Noise Minimise

Power Minimise

Water Minimise

Audio Neutral

Light Neutral

Temperature Neutral

Security Maximise

Table 4.1: Sample Environs and their Desired Effect

the end user, or a database of default information. Some examples illustrate what might be

defined:

• “turn on bedside lamp”: increase light level, increase power.

• “turn on air-conditioning”: decrease temperature, increase power, increase noise.

It is important to describe only the most relevant of environ effects, rather than listing all the

insignificant side-effects of the action. For example, increase temperature was not included in

the list of environ effects for “turning on the bedside lamp” above. This is because it is of such

little importance, and at no point would the decision of turning on the lamp be affected by

the slight temperature increase it would cause. On the other hand, the increase in noise when

the air-conditioning is turned on was included, as many air-conditioning units are irritatingly

noisy. It may be desirable to keep noise to a minimum when trying to sleep, entertaining

guests or listening to music, for example. However, some house owners may have much

quieter air-conditioning units and therefore this environ effect could be removed from the list

of affected environs.

It is possible for a user to add their own custom environs, and describe how these are

affected just as they would describe any other environ. This allows less concrete, and often

more personalised, environs to be added to Homer. For example, “comfort”, “security”, or

even “happiness”.

As described previously, any action may increase (‘+’) or decrease (‘-’) zero or more environs.

This information can be used to aid conflict analysis (design details can be found in Section

4.7 conflict handling 105

4.7.2.4). Any two environ effects can be compared, to calculate if they conflict using Table 4.2.

This table shows that if there are two environ effects which increase a minimising environ

or decrease a maximising environ then there are undesirable effects. For example, turning

on the washing machine and the air-conditioning unit both increase noise, however noise is

an environ that most likely is specified to be minimising, therefore it would be considered

undesirable to turn on two noisy devices at the same time. The table also shows that when

increasing and decreasing a neutral variable there is the potential for undesirable effects. For

example, turning on a heater and a fan at the same time will both increase and decrease the

perceived temperature. Temperature would typically be a neutral variable which implies that

it should be affected in the same way, hence this pair of actions would be conflicting.

++ – +-

Minimise X

Maximise X

Neutral X

Table 4.2: Conflicting Environs

The notion of categorising the effects of actions upon the environment for the home

originates from Wilson et al. [143] and Nakamura et al. [94]. Environs extends their work by

being designed to work in offline conflict detection rather than online. Previous research

worked by knowing what affect an action could have upon a variable, and effectively locking

that variable at runtime when an action took place. If that action was to increase the variable,

then whilst the lock was in place only actions that also increased the variable would be

permitted. This is primitive and limited, as in some cases it may actually be a conflict to

increase a variable twice, for example it could be considered undesirable to increase the

noise level in the home by two different devices. This is where the novel concept of environ

properties advance existing work, as variables now have additional meta-data to describe how

they should be treated to help better understand conflicting behaviour.

Environs have extended the work of Wilson and Nakamura to provide offline conflict

detection. This is achieved by removing the concept of locking variables and devices, and by

extending the notion of environment variables through the addition of meta-data.

4.7 conflict handling 106

Conflict Action 1 Action 2

None send email turn on lamp

Same turn on lamp turn on lamp

Opposing turn on lamp turn off lamp

Possible dim lamp to 80% turn off lamp

Table 4.3: Sample Policy Conflicts

4.7.2.4 Design

The Homer Conflict Detection logic is cleanly decoupled from the Policy Server (represented

in Figure 4.6). The process for detecting conflict amongst a set of actions is discussed below.

Conflict Types Firstly, there are four different conflict states to describe a pair of environ

effects:

• None: There exist no known conflicts between the two actions. Such as “send email”

and “turn on lamp”.

• Same: The two actions are exactly the same. This can be a conflict where the action is

costly or involves the user, such as “send SMS to Alice saying ‘Heating turned on’.” (both

costly, and confusing and irritating for the user to receive twice).

• Opposing: The two actions will result in opposing effects on the environment. Such as

“turn on lamp” and “turn off lamp”.

• Possible: The two actions may conflict. Such as “set temperature to 20°c” and “set

temperature to 30°c”, or “open window” and “turn on heating”.

These states are used by Homer when describing the list of conflicts detected between two

actions. Table 4.3 provides examples for each conflict type.

The Process The detection of conflicts relies on comparing each action in one policy with

each action of the second. If there are multiple policies then the process is carried out three

times, once for each pair of policies.

For each action pair, the potential for overlaps is analysed and a list of any that are detected

is returned. This list is added to the master list of overlaps already detected, and finally that

master list is returned as the complete list of overlaps. Each individual conflict is given an ID

for reference.

4.7 conflict handling 107

Figure 4.10: Conflict Detection Process of Two Actions for Same Device

The process for detecting overlap depends on whether the action pair is concerned with the

same device or different devices. Each approach is discussed below.2

Same Devices The process for detecting conflict between two actions concerning the same

device is shown in Figure 4.10.

Firstly it must be established if the actions are the same (e.g. both “turn on”, “send”, “open”,

etc.). This is represented in the figure with the split horizontal pane.

If the actions are the same, any potential parameters must be taken into consideration:

• The two actions are the same if there are no parameters, or the parameter values are all

the same. In this case it can be reported that the two actions are identical, so they are

given the conflict state “same”. For example: “turn on desk lamp”.

• However, if the parameter values differ in some way the two actions are clearly not the

same. In this case, if the action is known to:

2 For all environ comparisons, it is assumed that if the environ itself is set to be ignored then it will be.

4.7 conflict handling 108

Figure 4.11: Conflict Detection Process of Two Actions for Different Devices

– not affect the environment (an environ) in some way we can assume that the action

pair does not overlap (”none”). For example: “send email to Alice saying ‘Heating

turned on’ ” versus “send email to Bob saying ‘Dinner time!’ ”.

– affect the environment, the best-guess is that this pair of actions may indeed cause

some conflict. This is given the conflict state “potential”. For example: “dim lights

to 80%” versus “dim lights to 20%”.

If the actions are different (shown in the bottom half of Figure 4.10) then the effects of each

action upon the environment are listed (note: parameters are ignored). For the same environ,

the effects are compared (shown simplified in Table 4.2) to gauge if the pair of effects could

be considered conflicting. As shown in both the figure and table:

• If the environ property is maximising and the environ effects of the actions are decreasing,

a conflict can be assumed (”possible”). This also applies for the opposite (minimising

environ, with two increasing effects). For example: if light level was to be maximised,

the actions are “turn off light” and “dim light to 20%”.

• If the environ property is neutral and the two environ effects are opposing (one increases

whilst the other decreases), it is assumed that this may have an undesirable effect.

Therefore the state “opposing” is assigned to this pair of environ effects. For example:

“turn on heating” versus “turn off heating”.

If the environ effect pair reach the end of these checks without flagging as a conflict, it can be

assumed that there is no conflict between them (so is assigned “none”). For example: “change

channel on television” versus “increase volume on television”.

Different Devices The process for detecting conflict between two actions concerning different

devices is shown in Figure 4.11.

4.7 conflict handling 109

The process for different devices is much simpler than that of same devices, and in actual

fact is nearly identical to how differing actions for the same device are handled. A reduced

description (to save duplication of content), with examples, is given below.

For each action pair, their effects upon the environment are listed. For the same environ,

the effects are compared to gauge if the pair of effects could be considered conflicting:

• If the environ property is maximising and the two environ effects are decreasing (or

indeed the opposite – a minimising environ with two increasing effects), a conflict can be

assumed (”possible”). For example: “turn on the washing machine” versus “turn on

air-conditioning” (as both increase noise, which is a minimising variable).

• If the environ property is neutral and the two environ effects are opposing, it is assumed

that this may have an undesirable effect. Therefore the state “opposing” is assigned

to this pair of environ effects. For example: “turn on heater” versus “turn on fan” (as

one increases temperature and the other decreases it, where temperature is a neutral

variable).

Again, if the environ effect pair reach the end of these checks without flagging as a conflict, it

can be assumed that there is no conflict between them and therefore assigned “none”. For

example: “send email” versus “turn on heating”.

Handling Conditional Actions Conditional actions do not exist within the policies that are

analysed as all policies are re-phrased to ensure all conditions are within the when clause. This

process was described in Section 4.7.1.3.

Examples Table 4.3 brings together given examples throughout this section to conclude the

design of the Homer Conflict Detection logic.

4.7.3 Policy Validation

It is possible for a user to write a policy which has an invalid when clause and/or a contra-

dicting set of actions within the do clause. Each of these can be tested for, as discussed in this

section.

4.7.3.1 Checking The When Clause

The Homer overlap checker is able to validate any policy’s when clause by simply looking for

overlaps amongst the terms. If the overlap detector cannot find any overlaps, then the policy

can be deemed valid. The following two policies demonstrate invalid when clauses:

4.7 conflict handling 110

when the front door is open and the front door is closed do . . .

when the humidity rises above 60% and the humidity falls below 40% do . . .

4.7.3.2 Checking The Do Clause

The Homer conflict checker is able to validate any policy’s do clause by simply looking for any

conflicts amongst its set of actions. If any conflict is detected the user can be notified of such

conflicts before confirming the save of the new policy. The following two policies demonstrate

invalid do clauses:

. . . do turn on the desk lamp and turn off the desk lamp.

. . . do turn on the heating and turn on the air-conditioning.

4.7.4 Conflict Resolution

The final stage of conflict handling is reporting to the user any potential conflicts that may

have been detected, and deciding how best to handle them. This is typically termed “conflict

resolution”. Within Homer, conflicts are detected at the point the user saves their policy (new

or edited) or enables a policy. If Homer discovers any conflicts between overlapping policies

they are reported to the user. The user must decide how they would like the conflict(s) to

be handled before the policy is saved. The process for describing any conflicts and handling

them is discussed in this section.

4.7.4.1 Describing Conflicts

When a policy is added, edited or enabled by a user, Homer analyses it against every other

existing enabled policy in the database. Any conflicts detected between the new/updated/en-

abled policy and an existing policy are collected. Once all policies have been analysed the

resulting collection of conflicts is returned to the user interface client.

Each policy pair with conflict is described to the user in natural language to make under-

standing the conflict as easy as possible. The following example pair of policies are used to

describe and demonstrate the output process:

New Policy (A): when it is a Saturday and the time is 11pm do turn on the bedroom

lamp.

Existing Policy (B): when the time is 11pm do turn off the bedroom lamp.

Homer will detect that on Saturdays when the time is 11pm Policy A and Policy B will conflict

as opposing actions will take place. This information is a list of overlaps and conflicts (as

described in the sections 4.7.1 and 4.7.2), which is translated into JSON for portability. A

4.7 conflict handling 111

temporary ID is given in the case of it being a new policy, and is stored temporarily in the

database until further actions have been requested. If no action is requested within 24 hours,

it can be assumed that the policy should be deleted.

The output user interface client can decide how best to display this information to the user.

The simplest choice could be conversion of the information into natural language, with a

range of default options for how best to handle the given conflict.

The example policies A and B would result in the following possible natural language

description of the conflicts:

Your new policy “A” may conflict with existing policy “B” when it is a Saturday

and the time is 11pm, as the bedroom lamp will turn off and turn on (which are

opposing actions).

The template version of this sentence would be:

Your <new | updated | re-enabled> policy <new/updated/enabled policy name>

may conflict with existing policy <existing policy name> when <list of required

triggers/conditions>, as <list of conflicts>.

The template version for one given conflict in the “list of conflicts” is:

<device name> will <conflicting action from existing policy> and <conflicting ac-

tion from new/updated/re-enabled policy> (which are <type of conflict> actions).

Along with the description of the conflicts, options must be provided for how the user

would like them handled (discussed in the next subsection).

4.7.4.2 Handling Conflicts

Homer supports handling conflicting policies at both the conflict level and the policy level:

• Overlap and Conflict Options:

– Ignore: There is no overlap/conflict in this case.

– Qualified ignore (using example “turn on kitchen radio” versus “turn on desk

lamp”):

∗ Ignore for all devices of these types: There will never be overlap/conflict between

either of the devices types, for example radios will never conflict with lamps.

∗ Ignore for all devices of new/edited/enabled policy: There will never be an overlap/-

conflict between all devices types of the new/edited/enabled policy against

the particular device mentioned in the existing policy, for example radios will

never conflict with the desk lamp.

4.7 conflict handling 112

∗ Ignore for all devices of the existing policy: There will never be an overlap/conflict

between all devices types of the existing policy against the particular device

mentioned in the new/edited/enabled policy, for example the kitchen radio

will never conflict with any lamp.

• Policy Options:

– Save Anyway: The conflict is acknowledged and deemed unimportant, so save the

policy.

– Disable <existing policy name>: By disabling the existing policy the conflict is avoided.

If the policy were re-enabled the overlap would be reported once again.

– Edit <existing policy name> or <new/edited/enabled policy name>: Edit the policy will

let the user amend the conflict or eliminate the overlap between them.

– Delete <existing policy name> or (If new policy) Delete <new policy name>: Delete the

existing policy, or in the case of a new policy effectively cancel it.

– (If editing or re-enabling) Cancel: Do not save any changes made (if editing), or do

not re-enable.

Again, it is entirely down to the user interface designer which and how these options

should be presented to the user.

In the case of ignored pairs of devices/device types, the identifiers are stored in special

tables within the database (one for overlap, another for conflict) which deals with combinations

to be ignored. These are then taken into consideration when detecting overlaps and conflicts.

4.7.5 Illustration

A range of policies were independently defined and used to illustrate the effectiveness of the

Homer overlap, conflict and resolution aspects. Firstly the environs and existing devices are

given. Then the policies are listed, followed by a table showing the overlaps and conflicts

between the given policies. Finally the results are collated and discussed.

4.7.5.1 Environs

Table 4.2 shows the eight environs involved within this illustration, along with their desired

effect. For the sake of this illustration, no environs will be ignored. Table 4.4 shows the devices

used within the given policies and the environs they effect.

4.7 conflict handling 113

Device Environ(s)

Burglar Alarm Security

Curtains Light

Dehumidifier Humidity, Power, Noise

Door Security, Temperature

Heating Temperature, Gas

Lamp Light, Security

Oven Gas, Power, Temperature

Radio Audio, Power, Security

Sprinkler Water

SMS

Television Audio, Power, Security

Washing Machine Power, Noise, Water, Humidity

Window Temperature, Security

Table 4.4: Illustrative Devices and the Environs Affected

4.7 conflict handling 114

4.7.5.2 Policies

The sample policies, which fully exploit all the features of Homeric, used within this illustra-

tion are:

1. when time is earlier than 8:30pm

do turn on the hall lamp.

2. when time is 7pm

do turn off the hall lamp.

3. when time is between 8pm and 10pm

do open the window.

4. when washing machine turns off

do turn on dehumidifier.

5. when front door is open and front door is closed

do turn on the washing machine.

6. when front door is open or front door is closed

do turn on the washing machine.

7. when receive SMS from Alice saying “On Way Home.”

do if temperature is below 18°c do turn on heating.

8. when receive SMS from Alice saying “on way home.”

do turn on oven and if temperature is warmer than 24°c do open the window else if

temperature is cooler than 18°c do turn on heating.

9. when (day is a weekday and time is 6:30am) or (day is a weekend and time is 8:30am)

do turn on heating.

10. when (front door opens or back door opens) and time is after 5pm and lamp is off

do turn on hall lamp.

11. when day is a weekday and time is 7:30am

do turn on oven and open curtains.

12. when time is 9:45pm

do turn off television.

13. when television turns off then lamp turns off

do turn on bedside lamp and close curtains.

4.7 conflict handling 115

14. when receive SMS from Alice saying “start washing machine!”

do turn on washing machine.

15. when day is Sunday and time is 11am

do turn on washing machine.

16. when day is Sunday then washing machine turns off

do turn on dehumidifier.

17. when day is a weekday and time is 7:30am

do turn on radio.

18. when time is 8am or time is 5pm

do send SMS to Alice saying “Feed cat!”.

19. when temperature is warmer than 25°c and time is 2pm

do turn on sprinkler.

20. when (curtain closes then bedside lamp turns on) and time is after 10pm

do turn on burglar alarm.

4.7.5.3 Interactions

One-by-one the above policies were added to the Homer policy server. As each one was added

it was firstly validated. Then, if valid, it was checked for overlaps against all previously added

policies. If any policies were considered to overlap, these were analysed for conflicts. Table 4.5

shows the results for each policy added. The table columns from left to right show what

happens as new policies are defined; the column height grows as more policies are added to

the old policies. As an example, the column numbered 13 shows what happens when policy

13 is added to the database which contains existing policies 1 to 12: possible conflict e is

detected between policies 13 and 10.

Conflict handling is commutative and associative, therefore the order in which policies are

added is irrelevant and does not affect the outcome.

For the sake of this exercise, all policies were added to the policy store regardless of

conflict outcome, with the exception of invalid policies. The policies were added in the order

they appear in the list provided in Section 4.7.5.2, hence policy 1 was the first policy added

(at which point the store was empty), then policy 2 was added and compared with the

existing policy in the store (1). When policy 3 was added it was compared to policies 1 and 2

independently. This process continued up to and including policy 20.

4.7 conflict handling 116

The only invalid policy is number 5, which would result in the user being asked to correct

it because its event clause is invalid: “front door is open and front door is closed” cannot be

satisfied.

The possible conflicts detected when adding the twenty policies are described in Table 4.6.

The table states the overlap condition, the analysis outcome, and the likely user reaction to

each reported case. These results are discussed in more detail in Section 4.7.5.4.

4.7.5.4 Results

As can be seen from Table 4.5 the Homer policy system has successfully detected the one

invalid policy, and the numerous conflicts amongst the various policies. Examples of the

different types of conflicts illustrated in Table 4.2 were all correctly detected and presented.

The average length of time taken to add a policy and perform the analysis was 0.022 seconds.

Homer’s novel approach of detecting overlaps before performing conflict detection analysis

strongly reduces the number of potential conflicts reported to the user. Without such overlap

detection, each new policy’s effect on the environment would be compared to all existing

policies regardless of the relevance. For example, without overlap analysis, if a new policy

turned on a light on Mondays at 6pm and another policy turned off the lamp on Tuesdays

at 6pm a conflict would be reported. In reality, these two policies can never conflict with one

another since they can never fire at the same time. Homer’s novel overlap detection will filter

these policies and therefore such a “conflict” would never be reported.

false positives There is a large degree of subjectivity as to whether a conflict is indeed

genuine. This is why it is important for Homer to offer a customisable conflict detection

process. The user can customise and define environs and how they are affected within their

home, as well as provide feedback on presented conflicts. The more that the user performs

these customisations, the less reports of uninteresting of irrelevant conflicts (i.e. false positives)

they will receive.

Customisable environs have the added benefit that Homer is able to detect conflicts that

no other existing approach can. Homer allows the user to add their own environs and to

customise how policy actions affect these. Homer can then detect conflicts in a unique and

personalised way. Homer is able to detect conflicts that the work of ACCENT, Nakamura and

Wilson cannot.

Following user reactions to possible conflicts, the end result is a set of acceptable policies.

Since conflict detection has been performed offline, at definition time, the policies should

execute without conflicting (in the user’s judgement).

4.7 conflict handling 117

New

1 2 3 4 5? 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Old

a 1

c 2

d 3

g 4

5

6

b 7

f 8

9

e 10

i 11

12

13

14

h 15

16

17

18

19

20

Table 4.5: Analysis Results for Example Policies and Environs

4.7 conflict handling 118

Case Overlap Condition Action Analysis Likely Reaction

a 7pm opposing: hall lamp on and off (op-

posite actions)

change policy

b homeward SMS and 0°c possible: gas oven on and gas cent-

ral heating on (may exceed gas use

limit)

change policy if gas

use important

same: gas central heating on twice

(duplicate actions)

ignore as harmless

c front door opens and 5pm and

lounge lamp off

opposing: hall lamp off and lounge

lamp on (opposite light effects)

ignore as harmless

d 9:45pm possible: window open and TV off

(both decreasing security)

change policy if se-

curity important

e front door and 5pm and (televi-

sion off then lounge lamp off)

opposing: curtains closed and

lounge lamp on (opposite light ef-

fects)

ignore as harmless

f washing machine SMS and home-

ward SMS and 0°c

possible: washing machine on and

air conditioning on (may exceed

power use limit)

change policy if

power use important

g Sunday then washing machine

off

same: dehumidifier on twice (du-

plicate actions)

ignore as harmless

h (Sunday then washing machine

off) and 11am

possible: dehumidifier on and

washing machine on (may exceed

power use or noise limit)

change policy if

power use/noise

important

i Monday and 7:30am possible: immerser on and air con-

ditioning on (may exceed power

use limit)

change policy if

power use important

Table 4.6: Details of Possible Conflicts

4.7 conflict handling 119

false negatives As with any conflict or interaction analysis, there is the possibility of

false negatives: cases that are not detected by the analysis. This can result in policies being

saved which could potentially conflict with existing policies.

There are two ways that false positives can arise within the Homer conflict analysis. The

first is the situation where a possible overlap is not detected, so the policy is filtered out

before conflict analysis is performed. The second is where a conflict between two overlapping

policies is undetected.

Missed Overlaps There are two known situations that could result in a user believing that

two policies overlap (and therefore could conflict) which Homer would not consider an

overlap.

The first situation is where two policy’s then clauses are in different orders, for example

when x then y versus when y then x (this problem is discussed in more depth in Section 4.7.1.3).

Homer believes that, in the case of at least one ordered clause, there must be a complete

subset of one set of clauses within another. For example, when x then y then z overlaps with

when y then z. However, the aforementioned example of x then y would not be considered to

overlap with y then x, as one is not a complete subset of the other. The user, however, may

perceive this to be an overlap.

The second situation that could result in a missed overlap is where the user perceives

two events to overlap which are completely unrelated as far as Homer is concerned. As an

example, if one policy will fire when Alice’s morning alarm clock turns on and another policy

will fire when Alice gets out of bed – should these be considered to overlap? Homer currently

cannot detect overlap between technically unrelated devices, however a user may perceive

these events to overlap as they are closely related in reality.

Missed Conflicts Missed conflicts can only arise if the user believes something to be a

conflict but has not specified this in the environs. For example, if the user considers the

washing machine turning on at the same time as the shower to be a conflict due to water

pressure issues, then this needs expressed within the environ information (simply create a

water pressure environ, state that it is desirable to minimise this environ, then tell Homer that

turning on showers and turning on washing machines both increase the water pressure).

As long as the user has set up and customised environs to represent their personal model

view of their home and the environs within, then Homer can correctly detect conflicts that

effect the user’s environs in undesirable ways.

Within Homer false negatives will not cause the system to fail. Two conflicting policies

taking place at runtime may result in strange behaviour for the user (such as a lamp turning off

4.8 case study 120

and on very quickly), but this will not affect Homer. This is unlike telephony where a missed

feature interaction could cause serious problems, such as an undetected call forwarding loop.

In contrast, false negatives are not a problem for Homer. Although the user may consider

them undesirable, they will not cause system errors.

parsing overlap result The only results which are harder to understand are when

the minimum possible value is provided for an overlap to take place. For example, this often

appeared when describing a possible value for temperature as 0°c. This is simply a result

of JaCoP, which provides the minimum value which satisfies the constraints (in the case of a

less than operator, the lower constraint starts at zero). This can also be seen when comparing

days or times, for example if two policies refer to a weekday, this is translated into a range

from Monday to Friday, the overlap is presented as Monday. Similarly, for times, if one policy

refers to after 2am and another refers to time before 8pm, Homeric will report that the policies

overlap at 2am. Possible improvement when describing the overlaps to the user could be

to obtain the range of possible values, or to choose the value closest to that specified in the

policies.

The results demonstrate that the state of the art has been extended, by adapting and building

upon the work of Wilson and Nakamura, to offer a customisable offline means of detecting

conflicts between policies.

4.8 case study

Having designed Homeric, an evaluation was performed to analyse if it meets the needs of

end users. This evaluation involved 71 participants, who each wrote numerous policies in

Homeric. A summary of the key details of this study is discussed within this section. The full

description and analysis is published in [80].

4.8.1 Overview

The evaluation was a 15-30 minute exercise that was designed to evaluate both Homeric and

work performed in end user programming (discussed in Chapter 5). A custom wizard tool

(named the Homeric Wizard) was designed and developed to allow Homeric policies to be

written by dragging individual triggers, conditions and actions of devices into their desired

position in the policy. An example of the interface can be seen in Figure 5.27.

The evaluation took place over two weeks from March to April 2012. It was an Online ques-

tionnaire which was distributed to a wide audience through exponential, non-discriminative

4.8 case study 121

snowball sampling.3 Participation was received from a wide range of ages and technical

abilities, ensuring Homeric was evaluated by a large and varied audience.

The participants were asked to perform three types of tasks within the evaluation. The

first of these was for users to describe in their own words three different example policies

(presented in the Homeric Wizard). The second task involved the participants using the

tool themselves to write two policies, both of which had to meet a particular goal. Thirdly,

the participants were asked to write two policies of their own. All of these tasks could be

performed at one of three different difficulty levels:

• Level 1: Easy

• Level 2: Intermediate

• Level 3: Advanced

More advanced language features were introduced at each level increase. Those at level 1

could write policies with only the and operator to join terms within the when clause, and only

plain (non-conditional) actions permitted in the do clause. Level 2 allowed the additional use

of or and then in the when clause, but still only plain actions within the do clause. Finally,

level 3 allowed conditional actions within the do clause. The one language feature supported

by Homer that was not exposed through the Homeric Wizard tool is durations for groups of

terms within the when clause. This was originally offered to those at level 3, but during the

evaluation pilot it was discovered that even technically competent individuals were struggling

to grasp the advantages offered by such a feature. For this reason the durations language

feature was removed from the evaluation.

Durations were added to Homeric as a solution to implementation problems that arose at

the development stage. Ultimately, if a particular trigger or condition of a policy fires, how

long should a policy stay active waiting for the remaining triggers and conditions to occur?

Different times can vary the behaviour of a policy greatly. It was therefore felt that a default

value should be chosen, but more technically capable users could change this for particular

policies if they so desired. Unfortunately, it may be the case that the concept is too complicated

for most people and potentially an alternative solution should be explored. However, without

evaluating durations no conclusions can be drawn from the pilot study.

4.8.2 Results

The results of the evaluation produced a range of quantitative and qualitative data that was

analysed thoroughly to evaluate hypotheses and to gain a clear understanding of Homeric’s

3 A technique used to obtain access to a wider range of people, by asking respondents to pass the study to others and

similarly asking those individuals to pass it on, and so on [24].

4.8 case study 122

Figure 4.12: Example Correctness Scores for Each Difficulty Level

success. An overview of the findings for each of the three tasks are discussed in turn, with the

full data presented in [80].

4.8.2.1 Can Users Understand Homeric?

Task 1 involved the user explaining, in their own words, what various example policies meant.

For many, this would have been the first time they would be faced with such rule-based logic,

and for all, the first time seeing the Homeric Wizard interface. Despite this, the results were

very impressive. The three examples were marked on correctness, and scores were awarded

for each participant attempt. Figure 4.12 shows the average scores (as percentages) for each

example and at each difficulty level. As can be seen, the average scores across examples

and difficulty levels were always over 85%. Secondly, it was shown that for intermediate

and advanced users the average score increased for each example. This shows that, as the

participants gained experience and confidence, their performance improved, even across only

three examples. This shows promise that the learning curve for Homeric is short, and that

Homeric language features are understandable (with no prior explanations) when presented

at an appropriate user difficulty level.

4.8.2.2 Can Users Translate into Homeric?

The second task involved the user writing Homeric, using the Wizard tool, to produce two

policies. Each policy was to meet a particular high-level goal. Similar to task 1, each policy

written by the participant was marked as to how well it satisfied the goal. Despite very little

introduction (a few simple screenshots in the form of a brief visual tutorial), the results were

4.8 case study 123

Figure 4.13: Translation Correctness Scores for Each Difficulty Level

very positive, as the graph in Figure 4.13 shows. At all difficulty levels each average score

was comfortably above the hypothesised 85%. This confirms that participants were able to

formulate Homeric policies to meet predefined goals.

4.8.2.3 Can Users Write Homeric?

The final task involved the participants writing two Homeric policies to meet their own

personal goals for the home. This was to help understand if Homeric offered a simple

enough language for less technical individuals, whilst also supporting the more ambitious

and sophisticated policies written by more technically experienced participants. Participants

wrote policies for a wide range of goals within the home, including heating management,

reminders, home security and home comfort. The average number of terms used in a single

policy across all users was 4.2, with a total of 93 and, or and then terms and 46 conditional

action terms used.

Only approximately 10% of participants made any form of error. These were where a policy

could never fire due to too many required conditions such as “it is Saturday and it is Sunday”.

This is potentially the fault of the user interface rather than the language, and in practice the

Homer conflict detector would discover such errors and report them to the user anyway.

This task in the evaluation confirmed Homeric’s success. A wide range of policies were

written by all ages and technical abilities, achieving different goals and tasks for the home. The

only language features requested that Homeric does not support is the not operator (requested

by two participants) and loops (requested by one participant). Overall, participants were able

to successfully use Homeric to write rules for the home and only 10% made any form of error.

4.8 case study 124

4.8.2.4 Additional Findings

There were many comments made by participants throughout the evaluation in regard to

Homeric, as well as useful observations. These are discussed below:

• It was observed that many participants made use of variable names to refer to hard-

coded data in the examples, such as “bedtime”, “work day” and “comfortable home

temperature”.

• Conditional actions proved to be a personal preference, with some participants disliking

them whilst others made frequent use of them. A total of 46 conditional actions were

used by the participants throughout the evaluation.

• There were many observations on the duration of a rule, in the sense of how long do a

policy’s actions persist and do they need to be manually undone? For example, if one

turns on the burglar alarm when leaving for work, will it automatically be turned off

on arriving home? This lends itself to extending the notion of when term durations to

include action durations too, such as “turn on the radio for 10 minutes”.

• There were frequent requests for sensor and actuator fusion by all technical abilities.

Participants wanted to easily control groups of devices, rather than specifying multiple

terms individually.

• Some participants occasionally overloaded their when clause to result in unnecessary

and unlikely combinations of events. For example, if a policy involved locking the back

door and front door at 11pm each night the participant would write “when time is 11pm

and the back door is unlocked and the front door is unlocked do lock the front door and

lock the back door”. The checks of the doors being unlocked is unnecessary, and results

in the policy firing only if both doors are unlocked – which is presumably not what the

participant intended.

• Very few participants made reference to potential conflicts amongst policies, but those

that did appeared to prefer the notion of offline conflict detection, stating how they

would like to be warned about any potential conflicts when they tried to save a new

policy.

• Only two participants out of the total 71 mentioned negation, and only one mentioned

loops, confirming that these are not high-priority or desirable language features for the

home.

4.9 conclusions 125

4.8.3 Summary

The key findings from this evaluation include the success of a wide range of individuals in

understanding, transcribing and writing Homeric policies. Homeric has met the needs of these

71 participants, proving itself to be a flexible and appropriate language for programming the

home.

4.9 conclusions

Three research contributions have been made within this chapter: a custom policy language

for the home, novel policy overlap detection, and advancements to the state of the art of policy

conflict detection. Each are now discussed in turn.

Language

This chapter has presented a new policy language, Homeric, which is custom-designed for

the home.

Homeric has evolved from various user studies (discussed in Section 2.3) and research to

result in a language which has been custom designed to allow a wide range of end users to

program their home. The language offers flexibility and sophistication for more advanced

technical users, as well as offering a simpler version for less technically minded individuals.

The following language features for the Homer policy system, as seen in the language

specification in Section 4.5, offer novel features that currently do not exist in other policy

languages. These include:

• When-Do Format: Policies are expressed in a when – do format, rather than in the

traditional when trigger – if condition – then action format.

• Ordered Terms: Ordered triggers and conditions are supported, using a then operator.

• Blurred Triggers and Conditions: The distinction between triggers and conditions are

blurred, allowing them to be interspersed within the when clause.

• Conditional Actions: Actions can be qualified with conditions with the do clause.

An evaluation was performed to verify the acceptability and usability of Homeric. 71

participants of varying age and technical ability were asked to read and write policies using

Homeric. The results from this evaluation were extremely positive, with every participant

successfully understanding and formulating policies.

Homeric has advanced the current state of the art by offering a when-do policy format

with novel language features custom designed for the demands of home automation.

4.9 conclusions 126

Overlap Detection

Overlap detection is the first part of a novel two-part process presented for detecting conflicts

between policies. When a user saves a new policy the first part of the conflict detection process

involves obtaining a list of all policies which could be take place at the same time at runtime.

This list is considered a list of ‘overlapping’ policies.

Overlap detection is achieved by using a constraint satisfaction solver to gauge if policies

can overlap with one another. This approach advances the state of the art as the full language

features of Homeric can be supported, and no prior knowledge about the triggers and

conditions are required.

An illustration is presented that demonstrates the overlap detection algorithms on a range

of twenty Homeric policies which fully exploit the language features available. The results

show that the approach was successful, and it enhanced the overall Homer conflict detection

by eliminating conflicts which would be highly improbable.

Homer’s overlap detection techniques advance the state of the art by offering a novel

approach to detecting if policies can overlap with one another.

Conflict Detection

Sophisticated conflict detection techniques form the second part of the Homer conflict detec-

tion process. After non-overlapping policies have been eliminated, the remaining policies are

analysed for potential conflicts.

The Homer conflict detection makes use of custom user-defined environment variables

(termed “environs”). Information on how any actions within Homer alter an environ is

stored, allowing the conflict detection algorithms to judge if two or more actions will alter the

environs (and therefore the home) in undesirable ways. The user is able to fully customise

environs to offer a truly personalised conflict detection process.

An illustration presented in this chapter demonstrated that Homer correctly identified all

potential conflicts between twenty sample policies. The reasons justifying why two given

policies are considered conflicting is an outcome of the two-stage process and can be presented

to the user. This is also highlighted in the illustration.

The conflict detection techniques for Homer extend and adapt existing conflict detection

approaches to offer an advanced and customisable offline conflict detection solution.

5
H O M E R : P R O G R A M M I N G T H E H O M E

This chapter discusses end user applications for Homer, focusing specifically on programming

the home. The work presented here provides a front-end to allow the policy language, Homeric,

to be evaluated with end users, as well as means of testing and demonstrating the policy

overlap, conflict and resolution work.

5.1 introduction

It is clear that commercial home automation companies have mastered the art of providing

control of the home to users. There are countless applications on varying hardware and

platforms that all offer a high-quality user interface for controlling the home. Whilst the

companies have been prettifying their control interfaces they have been ignoring the problem

that users cannot program and customise the home themselves. Some academic projects have

tried to tackle this problem with varying degrees of success. What seems to be missing from

all solutions is the ability for users to both control and automate their homes.

Important as the underlying framework is for automated homes, the user interface also plays

a very significant role. Home automation can be for anyone; no matter their age, technical

ability, physical disabilities or accessibility requirements. All of these people will want to be

127

5.1 introduction 128

able to interact with the home in different ways [79]. There are three main types of interaction

that the user may have with the home (dependent on what the system can provide):

• Controlling – allowing the user to manipulate devices within the home, such as turning

on heating or lights. This should be possible from within the home or remotely.

• Monitoring – being able to view the home so as to see the states of different devices

such as the temperature or energy consumption. This is usually done remotely, from

work or on holiday for example.

• Programming – a more advanced feature of home automation where the user can set

rules for automating the home, for example “when I arrive home from work do play my

favourite music”. This would usually be defined from within the home, but could also

be done remotely.

Nearly all home automation companies support control, some support monitoring, but

only a handful support programming. This is not particularly surprising, as controlling a

newly kitted out home is highly desirable, whereas people may not be aware of the notion

of monitoring or programming their home. In terms of the user interface, companies have

mastered good-looking, simple and user-friendly ways of controlling and monitoring the home

(for example Control4 and Cortexa mentioned in Section 2.2.3 and 5.4 respectively). However,

the major missing feature of every home automation company that has been analysed within

this research project is the lack of good tools to allow users to program their home or, in many

cases, the lack of support at all.

Configurability for any system is crucial, especially when it is aimed at a wide range of

users. The more configuration options and the greater degree of customisation available the

higher the chance of user satisfaction. Typically it is rare for any two individuals to share

routines and preferences within their daily lives, even within the same family. Any home

system must accommodate the wide variety of opinions, desires and preferences of the users,

which will typically vary greatly between home installations. The needs of users will also

change and evolve dynamically over time, therefore the ability to reconfigure the home is

essential.

This chapter explores end user programming with respect to the home, and how this ties in

with Homer. Firstly, the background of end user programming is outlined. The requirements

for this work are stated, followed by an exploration of existing end user applications for the

home. The chapter then describes design guidelines and philosophies. Next, the Homer Web

Server is described, followed by the iPhone, iPad and web-based prototype interfaces. Finally,

the chapter closes with a case study, evaluation and conclusions.

5.2 background 129

5.2 background

Researchers at MIT Media Laboratories propose the following definition for end user pro-

gramming:

End-User Development can be defined as a set of methods, techniques, and tools that allow

users of software systems, who are acting as non-professional software developers, at some

point to create, modify or extend a software artefact.

Lieberman et al. [74]

Within the context of this research, end user programming is the concept of allowing

any user of the home system the ability to combine device logic into mini, self-contained

applications. These can be considered policies that manage the home. At the user level the

concept is effectively programming the devices within the home to result in desired behaviour.

End user programming is known to be an extremely challenging problem. Many of the

challenges are explained by Nardi [96], but they primarily boil down to the fact that extract-

ing desired functionality in an unambiguous way from non-technical individuals, with no

programming experience, is extremely difficult to automate.

Four different strands of end user programming research exist, each with the intention of

easing the process of translating desire into unambiguous logic that computer systems can

process. These strands are programming by demonstration, natural language programming,

visual programming and tangible programming. Each of these are discussed in turn and

examples within home automation are provided in the state of the art section (5.4).

5.2.1 Programming by Demonstration

Programming by demonstration, although there can be crossover, can mean two very different

things:

definition 1: intelligent context-aware systems The system learns rules by

observing its environment and adapting its behaviour as its knowledge base grows. An

everyday example of such a system is Amazon (www.amazon.com), which recommends products

based on previous products looked at. This approach of end-user programming is commonly

used within academia in the home automation field. A home system observes the way you and

your family live and manipulate your home environment; it then tries to detect patterns and

attempts to automate tasks. This process is forever ongoing to continually allow more accurate

and in-depth observations. Within the home the user’s activities and needs can change over

www.amazon.com

5.2 background 130

time, so intelligent context-aware systems offer an autonomous means of adapting to the

user’s dynamic lifestyle.

definition 2 : macro-recording systems The user describes a scenario or series of

events by physically manipulating the devices within the environment. The system records

the series of events that take place and can then save these as rules for the home. This method

aims to be a simple way for users to program their system, as instead of trying to express

what they want hypothetically using some constrained user interface, they can simply carry

out the tasks in real life. However, a major problem users have when trying to program is

how to express what they want. For example how would a user express safely what should

happen when a fire alarm or burglar alarm is activated? Another limitation of the system is

context – how does the system knows which information, conditions and events are relevant.

For example, is the current temperature, weather, light level, time of day, etc. important and

applicable to the current macro?

5.2.2 Natural Language Programming

Users can define rules using natural language, for example “when it is cold outside keep

my house warm”. This could be provided through various means, for example speech,

handwriting or keyboard input. Natural language is very attractive to the end-user due to the

lack of constraints. However, programming systems which can support natural language are

extremely complicated [58, 106, 139]. If the challenges of computer interpretation of logic and

rules expressed in natural language can be overcome, this method of end user programming

could prove successful and favourable.

5.2.3 Visual Programming

Visual Programming is where users can program by manipulating visual representations of

programming elements. There exist many successful visual programming languages which

are widely used [18]. This is a popular method for end user programming as it is a hybrid

of easy interpretation by computer systems as well as a simplified means of programming

for the user. Unfortunately this method is based upon logical connections and flow between

elements which can prove challenging for some individuals.

5.2.4 Tangible Programming

This allows users to physically piece together component representations to form desired

rules. In many respects, tangible programming is similar to visual programming in the sense

5.3 requirements 131

that the end user combines individual programming elements together, minimising ambiguity

and allowing the computer to interpret what the user has expressed literally. The advantage

of tangible programming is the lack of screen-based user interface. By moving the user away

from the typical computer and into a more physical, dynamic and non-technical environment,

the user should arguably feel less intimidated and restricted and feel more free and confident

to play with ideas and learn.

5.3 requirements

User Studies carried out and discussed in Chapter 2 produced the following list of require-

ments for user interaction with the home:

• Accommodating Cater for a very wide range of users.

• Multi-Devices A range of devices and platforms should be available to interact with

the home system.

• Multi-Interfaces Touch interfaces should definitely be offered, but not necessarily ex-

cluding other modes of interface such as voice, remote control or gesture.

• Multi-Perspectives Allow users to be able to interact with the devices in the home from

four different perspectives: location, device, personal and time.

• Remote Control The ability to control the home remotely, such as at work or on the

move.

This list of requirements accurately describes the core requirements for any home system.

The Homer framework supports all three types of functionality: monitoring, controlling and

programming. All of these are exposed through Homer interfaces.

CEDIA (Custom Electronic Design and Installation Association, www.cedia.co.uk), the interna-

tional trade organisation for the home electronic systems industry, held in London in June

2010 provided me the opportunity to obtain direct experience of many of the leading home

automation user interfaces and tools. It is definitely fair to say that, for the most part, the user

interfaces are of a high standard and would be difficult to improve. This visit also confirmed

that controlling and monitoring homes was neither new nor novel, but companies simply

looked blank when asked about providing users with the ability to program their home. So,

due to the maturity of monitoring and controlling interfaces in the commercial world, the end

user programming aspect was chosen as the main focus of this research. This enhances the

research performed on policies, described in Chapter 4.

www.cedia.co.uk

5.4 state of the art 132

5.4 state of the art

This section explores the most significant and relevant work carried out within the four main

categories of end user programming, then extracts conclusions to shape the design guidelines

and philosophies described throughout the rest of the chapter.

5.4.1 Existing Work

Research efforts within programming by demonstration, natural language, visual and tangible

programming are discussed below.

5.4.1.1 Programming by Demonstration

intelligent context-aware systems

ACHE (Adaptive Control of Home Environments [93]) is a system which automates the control

of heating, lighting and ventilation within the home. ACHE has two main goals: maximise user

comfort and minimise costs. The system learns the user’s preferences in home comfort, and

tries to automate such settings for the user. If the user has to manually adjust the home (for

example, turning off lighting or turning on the heating) the system can learn from this and

continually try to satisfy both goals with increasing accuracy. The developer’s motivation for

intelligent context-aware systems is that people typically do not enjoy programming their

home VCRs, so there is a question of why they would want to program their own home.

macro-recording systems

A CAPpella [36] is a context-aware prototyping system which can be programmed by

demonstration, expressed as a situation and an associated action. A GUI is then used to

select which portions of the demonstration are relevant. The next time the system detects the

recorded situation, it will perform the specified action. The authors argue that their system

allows users to define much more complex rules than those that have to be defined more

concretely. A CAPpella’s feasibility study demonstrated the users’ ease and liking for the

system when creating rules [36].

Alfred [40] is a natural language end user programming interface for intelligent environ-

ments which terms itself a “multi-modal macro recorder”. Authors Gajos et al. state that

human-centred computation should be “adaptive, reactive, and empower the user to configure

and extend the behaviour of the system using natural modes of interaction”. Alfred allows

users to program the system by specifying a name for a new goal, demonstrating one or more

5.4 state of the art 133

actions that should take place, and then telling the system any conditions of the goal. The

interaction is primarily by speech command, which is discussed further in section 5.4.1.2, but

still supports the notion of programming the home by demonstrating physical manipulation

of devices.

5.4.1.2 Natural Language Programming

Alfred [40], introduced and described above in section 5.4.1.1, is an example of a system

which uses a mixture of end user programming methods, in this case: programming by

demonstration and natural language. Natural language plays a strong role in this solution,

allowing users to engage in a “conversation” with the system. Here is a sample dialogue taken

from [40] which demonstrates a user programming a new rule within the home:

User: I want to record a new macro.

Computer: Beginning to record a macro. Say ‘stop recording’ when you are done.

User: Turn on the main lights. Open the drapes. Turn on my desk lamp. Say ‘good

morning.’ Stop recording.

Computer: What phrase would you like to associate with this macro?

User: ‘Good morning, computer.’

Computer: Any other phrase?

User: No, I am done.

Computer: Macro added!

From now on, when the user says “Good morning, computer” the lights will turn on, the

drapes will open, the desk lamp will turn on and the computer will say “good morning”.

Alfred demonstrates effective use of natural language to allow users to create rules with

instant feedback and assurance. Unfortunately, no user testing has been carried out on this

project.

CAMP (Capture and Access Magnetic Poetry [126]) allows users to define goals and rules at

a very high level by piecing together words from a library in any desired order (shown in

Figure 5.1) in the style of magnetic poetry. It is used as a way of providing users with a flexible,

yet computationally constrained, means of natural language programming. The system parses

natural language rules into a lower level intermediate representation ready for the underlying

capture and access system, Infrastructure for Capture and Access (INCA). The preliminary

user evaluation reaffirmed the developers’ belief that CAMP’s interface was extremely simple

5.4 state of the art 134

to use and allows their users flexibility to express their desires in a way that makes sense to

them.

Figure 5.1: CAMP’s Magnetic Poetry Interface [126]

Knoll et al. [66] demonstrates their visual scripting language for programming ubiquitous

computing environments, discussing their successful experiences of user trials in creating

rules using their graphical editor with either a mouse or digital pen. Their system is, however,

very constrained and users can input only a limited set of commands.

5.4.1.3 Visual Programming

Cortexa (www.cortexa.com) is a top-of-the-range home automation solution that claims to

offer “the most user-friendly, secure, powerful and simplistic system available”. It supports

a wide range of home automation hardware. The package attempts to combine and expose

many services and applications through a simple user interface. Cortexa does allow end

users to program the home, however this is exposed through a very administrative user

interface (shown in Figure 5.2) and requires technical experience to use. This shows that

even a high-profile commercial home automation company has not been able to produce a

workable solution to allow end-users the flexibility and ease of automating devices in their

home.

www.cortexa.com

5.4 state of the art 135

Figure 5.2: Sample of Cortexa’s interface for creating rules within the home[31] (poor quality as copied

from a video).

Girder (www.promixis.com) is a tool to allow the mapping of input events, such as key

presses on a keyboard, to an output event, such as play in iTunes. It has support for most of

the common home automation standards such as X10, Insteon and HAI. The software is rather

immature, with a basic menu-driven interface to add and configure devices, as well as to map

input and output events of these devices. This process requires technical expertise and even

custom coding at times.

iCap [117] is a visual programming tool for defining rules within the home. When new

devices are connected to the system, the user draws a small icon to represent the device. These

can then be dragged onto two windows: situation or action (as shown in Figure 5.3). The

situation window holds conditions of the rule, allowing input devices to be placed within the

window. The action window holds the action events, made up of output devices, to occur if

the conditions are met. The user is able to test rules in a simulation mode.

www.promixis.com

5.4 state of the art 136

Figure 5.3: The iCap user interface [117]

Indigo (www.perceptiveautomation.com) is a superior home control system for X10 and

Insteon devices. It provides computer, web and iPhone/iPad interfaces to allow full control

over all supported devices within the home. Rules can be built for the home, supporting

triggers, conditions and actions. The interfaces for defining a trigger and action are shown in

Figure 5.4. This is very form-filling in nature and appears to be clear and simple to understand.

Unfortunately, it is unknown how successful this interface has been for users.

Figure 5.4: Indigo’s user interfaces for defining triggers and actions for the home.

www.perceptiveautomation.com

5.4 state of the art 137

Kodu is a Microsoft Xbox 360 game (Microsoft’s game console, www.xbox.com) for allowing

gamers to create their own game. Kodu is designed for any age, though is primarily aimed at

children. Each object can be given a large number of rules in the when-do format (shown in

Figures 5.6 and 5.7). The interface is extremely simple and fully icon-based, requiring very

little explanation of how to use it. However, a simple and fun introduction to how the rules

and interface work is still given. To confirm that their user interface can be successfully used

at a young age, Microsoft performed a five month trial with 8-11 year old children which was

extremely successful [113]. Another important aspect to note about this user interface for end

user programming is that its sole input mechanism is an Xbox Controller (see Figure 5.5),

which has a limited set of buttons.

Figure 5.5: A Microsoft Xbox Controller.

Figure 5.6: Kodu’s rule-building menu [91].

www.xbox.com

5.4 state of the art 138

Figure 5.7: Kodu’s doughnut-style menu [91].

Kolberg et al. present work which utilises digital paper and pen technology to offer non-

technical users a simple means of controlling the appliances in their home [68], primarily

focused on programming Personal Video Recorders (PVRs). Forms can be created which use

the Anoto patterned paper technology to allow users to fill in a series of check boxes to define

rules for their home. The home system, which they developed using OSGi, then analyses

any completed form and forwards the request to the desired device (video recorder in their

case). Pen and paper technology provides a simple, user-friendly and non-technical means

of interfacing with a home system and Kolberg et al. have received a positive response from

computing scientists, teachers and pupils.

Lego Mindstorms robots are programmed using a simple graphical programming language.

This software treats the robot as a set of sensors and actuators. The user can piece together

graphical representations of these sensors and actuators to form rules. Programming flow

concepts, such as loops and branches, can be easily incorporated. A review of the software

can be found in Knoll’s literature study [66], where he claims that the software “can even

be mastered by children”. A demonstration of the software can be watched at [70] and a

screenshot of this is shown in Figure 5.8.

5.4 state of the art 139

Figure 5.8: Lego Mindstorms [70]

5.4 state of the art 140

Figure 5.9: Oscar [97].

Figure 5.10: Sample Oscar “setup” [97].

Oscar [97] was a project working on easing the interoperability of media devices within

the home. The application is interfaced through a small touch screen tablet PC (shown in

Figure 5.9), where user trials were carried out and showed that users were comfortable with

this medium as it was similar in form and function to remote controls. Users also found

the application easy to use with no manual or prior instructions. Oscar allows users to

create simple “setups” which define how components are found, selected and connected to

each other to carry out the desired activity. Setups are mostly for routing media streams to

hardware, which can then be run on demand. An example setup is shown in Figure 5.10

where music from the central server is requested to play in the kitchen. Two screenshots of

the application are shown in Figure 5.11, one showing the list of devices available to the user

and the second displaying any setups that have been created by the user.

5.4 state of the art 141

Figure 5.11: Oscar [97].

Tasker is an Android application which allows users to fully program their phone. It extracts

all the individual features and functions of the phone and allows the user to put these together

in the form of rules. Tasker has the notion of contexts (application, time, date, location, event,

gesture) which when activated can perform tasks (set of actions). A screenshot showing a

series of rules can be seen in Figure 5.12. The application has proven extremely popular,

winning numerous awards and gaining many rave reviews. One such quote from a journalist

is:

“When it comes to device automation, there’s just one 900lb gorilla in the Android space,

and that’s Tasker.” [147]

Tasker’s popularity and success may be primarily with more technically-minded users, but

this can still demonstrate a highly successful end user programming interface. Secondly, the

passionate reviews for programming phones help confirm that there is desire for programming

the devices in people’s lives (and, by extension, in their homes).

5.4 state of the art 142

Figure 5.12: Tasker (tasker.dinglisch.net).

Topiary [73] is a tool to provide a quick and easy way to prototype location-aware applic-

ations. The relevant part of this project is its user interfaces (shown below in Figures 5.13,

5.14 and 5.15). Figure 5.13 shows a map in which users can add routes, places, people, areas,

and ‘things’ (for example cars and printers). To add such items the user is provided with a

simple interface to draw areas and shapes over a map and drag-and-drop items of interest.

Figure 5.14 demonstrates the process for defining ‘scenarios’ using Topiary. Scenarios are

the concept of events and conditions. The user can select an area of the map and choose

the Scenario Producer tool. Then, by the act of manipulating the objects on screen, various

scenarios can be represented. Finally, with properties defined from Figure 5.13 and scenarios

from Figure 5.14, the user can piece these together to form interaction sequences using a

storyboard (Figure 5.15). The storyboard concept had not been used for such an application

before but, despite its novel and friendly interface, user testing did not show positive results.

This is mostly due to users not fully understanding the Topiary storyboard interface nor its

usefulness.

tasker.dinglisch.net

5.4 state of the art 143

Figure 5.13: Topiary Map Interface [73].

Figure 5.14: Topiary Scenario Producer Interface [73].

5.4 state of the art 144

Figure 5.15: Topiary Storyboard Interface [73].

Twine supermechanical.com/twine is sold as a cheap and easy way to:

”get the objects in your life texting, tweeting or emailing”

The physical Twine device (shown in Figure 5.16) is a 2.5 inch square with various in-built

sensors. These sensors can be programmed to text, tweet1 or email. An example of the

company’s web-based user interface is given in Figure 5.17, showing the use of the common

when-then policy format and simple pull-down menus that give the user a predefined list of

options. This interface was designed to not require a “nerd degree”, allowing non-technical

users to enhance the devices within their home.

5.4.1.4 Tangible Programming

Physical component programming is becoming easier. This is thanks to various projects

which focus on abstracting the hardware programming and providing an API for software

programmers. This allows for faster and easier means of making use of physical components

in higher-level software applications and systems. Examples of such projects include iStuff [8],

1 Post a Twitter message.

supermechanical.com/twine

5.4 state of the art 145

Figure 5.16: Twine Device (supermechanical.com/twine).

Figure 5.17: Twine (supermechanical.com/twine).

supermechanical.com/twine
supermechanical.com/twine

5.4 state of the art 146

Figure 5.18: Accord Project, showing the jigsaw pieces and a sample policy (get a shopping list for

groceries as an SMS to your mobile phone) on the custom jigsaw reader [1].

Phidgets [46] and Papier-Mâché [65]. The most relevant examples of tangible programming

are discussed below.

ACCORD (Administering Connected Co-Operative Residential Domains) [53, 107] is a

framework for allowing dynamic configuration of a library of components. These components

can be combined to form policy-style rules within the home. The policies are created using

physical wooden jigsaw pieces connected together as shown in Figure 5.18. User trials carried

out in [53, 107] were very successful, highlighting that users were able to easily grasp the

notion of jigsaw pieces representing various devices or functions and combining them to form

connections. The users were able to create sets of connected components to solve example

problems, they also suggested further components with sample applications.

Akesson et al. [2] developed a barcode scanner technique for programming devices within

the home. Their work is similar to the Accord project and has substantial crossover with the

second definition of programming by demonstration discussed above. A system has been

developed which supports the creation of rules within the home by using a barcode reader

and attached Personal Digital Assistant (PDA) offering further options. Devices are connected

by linking their functions. The barcode reader can also be used to allow the user to see what

rules a particular device is involved in.

5.4 state of the art 147

Media Cubes is a project which uses three dimensional wooden cubes (shown in Figure 5.19)

as a means of defining rules within the home [13]. The cubes communicate using infrared

and can be paired or placed beside devices within the home to signify different requests. The

latest work to happen on this project was 2001 [45], so unfortunately the technologies used

are rather dated. However, their work remains unique.

Figure 5.19: 3d Media cubes [13].

SiteView [10] is a project for programming an office, though intended to be extendible to

a home environment. The model is based on conditions and actions, whereby up to three

conditions are specified using RFID tagged cards which represent conditions: times of day,

weather and temperature. These are placed in designated places (as shown in Figure 5.20

labeled “condition composer”). An action is then specified by placing another RFID tagged

card on a 2D floor plan of the office. There is a screen (also shown in Figure 5.20, labelled

“environment display”) which displays a photograph of the office in the state of the conditions

specified. When an action is placed, the photograph changes to show what the office would

look like if that action were carried out.

5.4 state of the art 148

Figure 5.20: SiteView [10].

5.4.2 Analysis

There is no one-solution-fits-all in end-user programming. Most of the solutions above focus

narrowly on one technique instead of trying to explore a hybrid. This can result in rigid,

inflexible and uncustomisable solutions. Take, for example, the Accord project; it allows

users to piece together three wooden jigsaw pieces to form a home policy. This is extremely

restrictive as policies are then tied to the form input-process-output, where each device state

must be represented as a separate jigsaw piece. Since there is no way to specify details about a

device on a particular jigsaw piece, there is no way to query or verify what the newly formed

policy will do or receive feedback of any kind. Suffering from similar restrictions, yet using a

different method, is a CAPpella. This system allows users to program rules within their home

by demonstrating desired scenarios and events through physically manipulating the devices.

This solution does not allow users to deal with situations that are difficult to demonstrate.

For example; consider “when the fire alarm is activated”, “when the temperature reaches

18°c in the living room” or “when it is sunny outside”. Both Accord and a CAPpella suffer in

functionality due to restricting the control and setup of rules within the home to one type of

programming method.

Many solutions are still very device-centric. Other researchers in the field also agree:

“Despite their use of simplified input languages and mechanisms, these systems tend to be

device-centric rather than user-centric, task-centric, or goal-centric. They require that users

5.4 state of the art 149

approach the configuration of ubicomp applications from the perspective of a developer,

by treating application development as the configuration and integration of devices and

sensors rather than a domestic goal or task that a user is trying to achieve.”

Truong et al. [127]

Programmers typically create very device-oriented home frameworks and then attempt to

make them usable for end-users. It is crucial that the user’s goals are focused on, rather

than the developer’s view. Truong et al. carried out a study to analyse how users think about

context-aware capture applications:

“As we had hypothesized, the results of our study showed that people who had no experience

developing ubiquitous computing applications tended to frame the descriptions of their

desired applications in terms of their domestic goals and needs rather than in terms of

device behaviours.”

Truong et al. [127]

These findings reiterate how important it is to focus on user goals, and avoid restricting the

user by offering only one view of the system.

For many of the solutions described above, it would be extremely difficult to extend

or to support the addition of new devices and features. SiteView, for example, displays

photographs of the environment matching the given conditions set by the user and then what

the environment will look like if the chosen action is carried out. This will work well for a

small set of possible conditions and actions. However, in Homer, possible conditions and

actions can be added at any point. Photographs will therefore be difficult to keep up-to-date,

especially photographs of mixed conditions which would result in an exponentially growing

number of photographs required. On a similar note, other examples of the requirements

necessary to extend supported functionality on projects discussed above include: new jigsaw

pieces would need to be developed and programmed for each new device added to the Accord

project, new vocabulary and rules would need to be added to Alfred to allow the system

to understand and handle new devices and scenarios, and new rules and training for ACHE

would be needed to handle other services of the home. A home and its devices change and

develop over time. Any home system needs to be able to handle this dynamically and easily,

and ideally with a large degree of automation.

Each of the four main categories of end user programming has both advantages and disad-

vantages which are summarised below.

5.4 state of the art 150

• Programming by demonstration

– Intelligent Context Aware Systems the lack of user input is the major plus point.

Users need not feel responsibility for customising and maintaining the system, as

they can just leave the system alone and relax in the knowledge that it has some

level of intelligence and is making the design decisions for them. However, such a

system takes away the feeling of control from the user. This can be a good thing,

but some users may like the ability to override or specify particular rules within

the home.

– Macro Recording Systems can offer a very simple means of specifying conditions

and events for the system. Mixed with other means of programming, this can result

in a relatively flexible and simple to use system. However, the technique is limited

in terms of what can be demonstrated.

• Natural Language Programming, when done well, can offer a truly natural interaction

method for programming. Users can think about rules very differently from each other,

so the flexibility and freedom natural language can offer when specifying rules can

be extremely useful. However, poor implementation can result in problematic systems

where users are required to remember a very particular and limited vocabulary and set

of phrases. These would need to be extended each time a new device is added to the

system.

• Visual Programming offers a flexible environment that can be extended and adapted

as the underlying system changes and new devices are added. The resulting interface

has the possibility of having very few dependencies, and therefore can be accessed

from anywhere through some type of computer interface such as a web browser. Once

the user is familiar with the interface, they can program rules relatively quickly and

easily. Visual programming, however, can prove challenging for end users if not made

simple enough. The flip-side of an overly simplistic user interface means programming

functionality has to be seriously reduced. Making the approach easy to understand by

any user and yet still offering the full desired functionality is no easy task. Attention

should be drawn to the success of Kodu, a purely visual programming solution designed

for children to control with only a games console controller. It’s success is both extremely

impressive and a prime example of a well designed visual programming solution.

• Tangible Programming takes users away from the computer in any conventional sense

and therefore reduces any preconceptions, nerves or discomfort from the user, and is

potentially more appealing to a wider audience. However, although it can prove simple

5.5 design guidelines 151

and novel for end users, in reality it is restrictive and primitive. Tangible programming

systems are also typically hard to extend, customise and obtain feedback from.

These techniques individually offer both advantages and disadvantages, however the

most successful projects above were ones that had major crossover with other techniques.

Examples include Alfred (demonstration and natural language) and CAMP (natural language

and tangible). These projects offer a far more flexible solution, allowing the user to find ways

that work best for them, rather than being forced into one particular programming method.

5.5 design guidelines

Having critically reviewed the current techniques and solutions for end-user programming

and home systems, the following design guidelines are recommended when producing a

successful solution for programming the home:

• The Interface Must:

– Allow users to feel in control of their home; even if they are happy with the home

taking care of them, users need to know that they can both:

∗ take control at any point, and

∗ query the system as to why certain events occurred.

– Keep the interface and user programming methods simple.

– Be easily extended and adapted as new technologies come along.

– Avoid forcing users into one particular way of thinking, instead make use of the

notion of perspectives to allow users to interact with a home system in a way that

is comfortable and familiar to them.

– Provide instant feedback to users for reassurance that they have done the right

thing. For example; show the user the rule which they have just created and confirm

that the system has saved this rule.

– Support the expression of rules and events in logically equivalent forms. For

example: the user should be able to express “when I get home turn on the kettle”

and “turn on the kettle when I get home”.

• The Interface Should:

– Provide a means of doing more complicated tasks if the user so desires, but do not

scare more timid users with too many options.

5.6 homer web server 152

– Allow more than one underlying platform so users can choose which suits them

best at any given time. The home works for the user, not the other way around. For

example, provide both a mobile phone application and PC version.

– Accessible from anywhere. For example; whilst at work or on holiday.

• The Interface May:

– Provide an option that the system can function with no configuration by the user.

For example, a context aware system might be used.

To conclude, the quote written in Chapter 2 is highly appropriate:

“Simple things should be simple and complex things should be possible.”

Alan Kay [71]

These guidelines are revisited in the following sections with regard to Homer.

5.6 homer web server

The Homer Web Server was developed to allow external access to the functionality offered

by Homer. By exposing the functionality through a web API, endless end user applications

can be supported which expose any functionality through any web-enabled device. As examples,

it is possible to create a website for monitoring the home, a mobile phone application for

controlling the home and a tablet application for monitoring, controlling and programming the

home. These applications can be developed by any third-party developer granted permission

to access the Homer web API.

The Homer web API operates over HTTP/HTTPS, using JSON for a lightweight and highly

popular means of data interchange. The API is exposed through the embedded OSGi web server.

When Homer starts, the dedicated OSGi Homer Web Server bundle is also started. This bundle

initialises the OSGi web server and installs the Homer API as a servlet.

Any (approved2) developer can contact the servlet, exchanging information to support the

end user application. The list of supported functionality is:

• Obtain Information – All Homer information regarding devices, locations and events

can be requested, optionally with given filters. Some examples include: all locations

with devices that have actions associated within them, all devices within the kitchen, all

x10 devices.

2 A developer is “approved” after requesting access to Homer from those in charge, and being granted permission. At

this stage the developer will be given a private access key which must then be provided with all HTTP requests to

Homer.

5.7 prototype user interfaces 153

Figure 5.21: Example Communication with the Homer Web Server.

• Event Handling – A callback URL can be provided by applications as a means of

registering a listener for triggers occurring (again, with any desired filters). Conditions

can be verified and actions requested in a simple request.

• Policies – All features of the policy system are exposed including writing, editing and

deleting a policy, checking for conflicts between policies, and enabling and disabling

policies.

• Home Setup – Add, edit and delete locations and devices within the home, allowing

full customisation of a home installation on any device.

To illustrate the Homer Web Server a simple example is outlined in Figure 5.21 to demon-

strate the communication required to obtain a list of all lights within the home, and then to

turn one particular light on.

5.7 prototype user interfaces

Sample applications were written to provide prototype interfaces for Homer. Firstly, an iPhone

application was developed to offer control over the home. Secondly, an iPad application was

developed to allow policies to be written. Thirdly, a web-based application was developed to

also allow policies to be written. Each application is discussed in turn below.

5.7 prototype user interfaces 154

Figure 5.22: Two screenshots of the iPhone Prototype: Browse by Locations or Devices.

5.7.1 Homer for iPhone

The iPhone application makes it possible to browse devices by location or type, as shown

in Figure 5.22. The current state of a device can then be viewed, its history of past events is

available, and the device can be asked to perform selected actions, as shown in Figure 5.23. A

live Twitter feed is also available for all events within the home.

5.7.2 Homer for iPad

The iPad application is intended to be the main user interface for the home, meeting the

design guidelines stated earlier in this chapter, as well as design philosophies discussed in

Section 5.8. This prototype primarily focused on programming the home. The full design

should offer monitoring and control over the home as well as the ability to view, write and

edit policies. The choice of users, platform and design of the prototype are discussed in this

section.

5.7.2.1 Users

There are four main sets of user groups that could be satisfied: the younger generation who

are technically savvy, the middle generation who are technically competent, the healthy and

active ageing generation who are technically capable, and the older generation who are, on

the whole, much less technically capable. The healthy and active ageing population was

5.7 prototype user interfaces 155

Figure 5.23: Screenshot of the iPhone Prototype: View a Device.

chosen as the target user group. It is appreciated that this solution will therefore be more than

usable by those in the younger and middle generations, but understood that the older and

less able generation may be missing out. This was a conscious decision as I believe that it is

too late to aim for the older generation as by the time research meets the commercial world it

will be time to cater for the next generation. This will massively reduce the current focus on

accessibility and assistive technologies and will change the focus to developing better designs

and solutions.

5.7.2.2 Platform

From the user study discussed in Section 2.3, people showed a strong desire for touch control

of their home [79]. When asked how likely they would be to use touch control in their home an

impressive 61% answered “very likely” and 38% answered “likely”. This is mirrored in both

commercial and academic systems. The most successful home control systems use a touch

panel interface, to name a few: Cortexa (www.cortexa.com), O2 Joggler (yourfamily.o2.co.uk),

OmniQare (www.omniqare.com) and Oscar [97]. The latter, as stated in Section 5.4.1, showed

that users liked the touch-screen tablet PC interface as it is similar in form and function to

a remote control. Due to a mixture of these reasons it was decided to design and develop a

system for a touch-screen interface. The options available on the market at this time (June

2010) were:

www.cortexa.com
yourfamily.o2.co.uk
www.omniqare.com

5.7 prototype user interfaces 156

(a) The Archos 7 Home Tablet. (b) The X2 iTablet. (c) The Apple iPad.

Figure 5.24: Possible Devices.

• a touch-screen monitor attached to a PC

• a small hand-held touch-screen device

• a tablet PC.

The first on the list, a touch-screen monitor attached to a PC, was ruled out due to the desire for

a portable device which could be carried anywhere within the home. The second, a hand-held

touch-screen device, was ruled out due to lack of screen real-estate that could be offered

by the average hand-held touch-screen device. This left tablet PCs, which unfortunately in

2010 (the time of development) there was an extremely limited range of availing hardware on

the market. The main manufacturers were Archos, X2 and Apple. Archos offered a 5- and

7-inch portable touch-screen device which ran Windows 7 (Figure 5.24a), X2 offered 10.2- and

12.1-inch portable touch-screen devices which also ran Windows 7 (Figure 5.24b) and finally

Apple offered a 9.7-inch touch-screen device (iPad) (Figure 5.24c).

The three options were reviewed to gauge which would be the most sensible within the

context of the home and for the selected user group. All three had wireless capabilities, were

able to run a full web browser, and could offer multimedia features. The hardware of the

Archos and iTablet let them down, with the Archos devices using a resistive touch screen

which was not very responsive and the iTablet being both thick and heavy. The iPad on the

other hand is extremely slick, lightweight and beautiful to hold. However, the iPad has its

own limitations: the lack of Flash support and the restrictive nature of iOS development. The

Archos and iTablet, both running on Windows 7, allowed any windows program to run and

make full use of the hardware capabilities of the device. Appreciating both the advantages

and disadvantages of each of the devices, the iPad was chosen as the most sensible device for

the home and target user group. The iPad, although still new at the time, was judged to be

extremely simple and easy to use as it runs on the same operating system as the extremely

5.7 prototype user interfaces 157

popular iPhone and iPod Touch. This made it perfect for the target user group who are

perhaps not confident with technology.

The major home automation companies such as Crestron and Control4 had developed

applications for the iPad only weeks after the iPad was released. Many of these companies

are predicting that the iPad could help give home automation the next major breakthrough by

making the technology attractive, readily available and usable by a very wide audience.

5.7.2.3 Design

To demonstrate the possibility of writing policies for Homer on a tablet PC, an iPad application

was developed which featured a prototype interface for writing, editing and uploading a

policy.

The screenshot in Figure 5.25 shows a policy for turning off the hall light when leaving

the house. The bottom part of the screen allows users to select clauses, with multiple ways

of selecting the same clause through the use of perspectives. The top part of the screen is

dedicated to the policy, which aims to read naturally in English. Each clause within the policy

can be dragged around to change order, selected and altered using the clause selection at the

bottom of the screen, or removed from the policy altogether.

The purpose of this application was to show one example of a policy editor, and how the

designer of such an application is free to make any decisions they desire. The only requirement

is that the resulting policy sent to Homer conforms to the JSON format.

5.7.3 Homeric Wizard

A prototype web-based application was developed to allow Homeric rules to be written for

the home by both technical and non-technical people. Unlike Homer for the iPhone and iPad,

the Homeric Wizard tool is not connected to Homer. This is because the wizard was developed

to allow evaluations of Homeric, perspectives and end user programming design techniques.

It was therefore desirable to have an unrestricted collection of devices and possible triggers,

conditions and actions to ensure that the end user has a large library of choices, so as to not

interfere with the main goal of the tool.

The Homeric Wizard consists of one main screen which has three sections. The first is a

library of components, their devices and respective triggers, conditions and actions. There

is then a when panel section and a do panel section which allow the triggers, conditions and

actions from the library to be dragged-and-dropped within. Terms within the panels can be

rearranged or deleted by simply dragging the terms individually to their desired location. An

example of the three sections, with overlay descriptive text, can be seen in Figure 5.26.

5.7 prototype user interfaces 158

Figure 5.25: Screenshot of iPad Prototype: Writing a Policy.

5.8 conceptual design of a home interface 159

Figure 5.26: The Homeric Wizard Application (with Overlay Text)

The Homeric Wizard was designed to use a hybrid of visual and (restricted) natural

language programming techniques to offer the user a familiar and easily understood tool.

The full description of the tool can be found in [80]. An example of a simple policy written

using the tool can be seen in Figure 5.27. The policy reads like a sentence: “when any of the

following occur: the back door opens or the front door opens, do turn on the lights in the

kitchen and turn on the table lamp in the hall”. In order to formulate this sentence the correct

“building blocks” needed to be dragged into place, hence the inclusion of visual programming.

This is required to ease the computation involved in parsing the policy greatly, as well as

providing inspiration and reminders to the end user about the functionality available to them.

Perspectives were integrated into the Homeric Wizard to ease browsing and locating specific

devices in the library. The tool is also personalisable by allowing names to be entered, which

are seamlessly integrated into the various locations (e.g. Alice’s Bedroom), devices (e.g. Alice’s

Mobile Phone), events (e.g. Alice’s Birthday) and parameters (e.g. Send text to Alice). The

wizard also supports three difficulty levels to allow the user to write policies at a level most

comfortable to them; for more details see Section 4.8.1 or [80].

The evaluation of the Homeric Wizard is discussed in Section 5.9.

5.8 conceptual design of a home interface

Having thoroughly researched the fields of end user programming in conjunction with home

automation, the following section describes design ideas and philosophies for a conceptual

user interface which can monitor, control and automate the home. This is termed a “home

5.8 conceptual design of a home interface 160

Figure 5.27: The Homeric Wizard Application (with Example Policy)

management” interface throughout the following section. Sample mock-up screenshots are

provided for illustration of a house called “Craigengall”, with two residents “Mum” and

“Dad”. This proposed interface makes use of the research performed to produce a hybrid of

successful techniques and design decisions, whilst also remaining true to the requirements

outlined in Section 5.3. So far, the interface has been designed and mocked-up, but is not yet

implemented.

5.8.1 Touch Control

Through both the literature reviews and user studies performed through this research, touch

control is clearly the most desired interaction means for a home system. Therefore, any

home management interface should be designed for this means, most likely to be used on a

lightweight hand-held tablet device.

5.8.2 Vocabulary

Instead of using computer science terminology, user friendly terms should be used whenever

possible to help simplify the system for the user. For this reason, “rule” should replace “policy”

and “programming” at all times, as it is a less technical and more familiar word.

5.8 conceptual design of a home interface 161

5.8.3 Combine Control and Monitoring with Rules

As noted in the user study in Section 2.3.2 generally end-users feel comfortable controlling

their home, though they tend to fear the prospect of programming it. They desire the ability to

be able to have such rules, and that these rules be easily modified and adapted. However, they

do not like the idea of having to program them. Given the current choice of methods available

to users, this is unsurprising. I hypothesised that if programming aspects were blended into

the general control and monitoring aspects of a home user interface, the user would be less

likely to notice or fear the programming parts. The user would also not necessarily have

to make a conscious decision to program the home by opening a new piece of software or

accessing the “advanced control” parts of their current home interface. Instead, the user should

be able to easily apply rules to any object which they may currently be controlling/monitoring.

Kodu is one of the few success stories of end-user programming. The approach also tightly

integrates the programming aspects with all elements of the game. Although its philosophy is

still relatively logical and simplistic (simply when-do), it has been proven to be easy to use and

understand. Their idea is that any object can be programmed, so in the context of the home

everything within the home could be programmed. Instead of thinking about programming

the home, the user would be programming things within the home directly. People themselves

also play a major role and could have rules attached to them. I believe that by allowing people

to apply rules to objects directly, people are forced to think more concretely, deciding what

they are programming and what they want to happen. This is what they need to be able to do,

no matter what interface they are using to communicate this. The Kodu idea allows people to

tell the system exactly what they want directly.

By tightly integrating the programming aspects with the rest of the home system, the

process and time involved in defining new rules for the home can be simplified.

5.8.4 Customisation

There exist users who prefer default settings and “vanilla” installations, so it is crucial that

the home management system supports minimal setup and customisation, as well as sensible

default settings.

However, there are many users who like to customise their products to suit their daily needs

and requirements. Attempting to satisfy this user group will increase product satisfaction

and suitability, and decrease user frustration. An example solution is a fully customisable

widget-style panel, where the user can select which widgets to display. The right-hand side

panel in the mock-up screenshots of Figures 5.28-5.33 show five sample widgets: current

weather, current view of security web-cam, status of residents and current energy usage. This

5.8 conceptual design of a home interface 162

Figure 5.28: Mock-up: Home Screen.

panel should be shown on all pages of the interface, providing consistency and personalised

relevant information throughout. Additionally, the widgets themselves should act as short-

cuts, allowing users to quickly and easily navigate to elements of the home system which are

of most interest to them.

5.8.5 Home Page

The home page by nature should be an instant gateway to the home. During a prototype

evaluation a user said that the most important aspect of any home system would be the status

of their home:

”Home is the most valuable thing you’ll ever buy in your life. You want to know it’s OK.”

The main central page of a home system should offer an instant overview of the home yet still

allow quick navigation to key features. The most popular home screen amongst existing home

automation companies is to display a plan view of the house. However, this static plan does

not indicate the live status of the home, and is therefore limited and, at times, misleading.

Instead, a live and interactive plan of the home should be shown, illustrated in the mock-up

in Figure 5.28. The plan should show the user exactly what is on and off and where people

are if such information is available. Every element of the map should be interactive: clicking

5.8 conceptual design of a home interface 163

on a device should lead to the device’s page where it can be controlled, lights can be toggled

on and off, and rooms will lead to a dedicated page just for that room (location).

5.8.6 Navigation

It is crucial for any end user application to be easily navigated, and a home system designed for

a whole range of possible users is no exception. The general Human Computer Interaction (HCI)

principles for navigation are relevant, however attention should be made to ensure that the

home screen is always easily accessible through one button from anywhere, the user always

knows where they are, and finally no menu structure should be too deep (for example, a

maximum of three levels deep). These rules help to ease interaction even if this application

was left in an intermediate state. For example, one member of the household may be in the

process of doing something with the application and have to stop for unrelated reasons. The

next person to interact with the application needs to easily know where they are, how to get

to the home screen, and also to have the option of pressing a back button to exit the current

task.

5.8.7 Scenarios

Sensor fusion is the notion of taking a collection of triggers and translating them to some

higher-level event. An example of this could be "front door opens, then hall movement

detected, then front door closed”, which could be fused to say “someone walked into house”.

The dictionary defines “scenario” as:

A sketch, outline, or description of an imagined situation or sequence of events.

Oxford English Dictionary.

This definition confirms that the word “scenarios” could be used as a simple and less

technical word for the when clause of a policy. Further examples of these scenarios within

Homer are “when Mum gets home from work”, “when it is bedtime” or “when no one is in

the kitchen”. The intention is to dissolve the gap between control and programming for the

user, to soften the concept of rules and to allow the user to write rules using statements that

make sense to them. For example, it is far easier to define how Mum gets home from work

once, then in rules simply say “when Mum gets home from work”, instead of specifying the

lower level events in each rule.

Each scenario would need to be defined in some way. This could be done through the same

interface as is used for defining a when clause. The user could save any when clause as a

scenario, allowing it to be reused within other rules.

5.8 conceptual design of a home interface 164

The user should be able to view all events that will occur when specific scenarios occur,

having the option to activate and deactivate each of these events as well as edit, delete and

add new ones.

5.8.8 Perspectives

Users typically think about problems in different ways, so there should be differing means

of programming logically equivalent rules for the home. For example: “turn on the coffee

machine when bed becomes empty” and “when I get up turn on the coffee machine”. This

also applies to viewing rules. For this reason rules should be tightly integrated with the home

management user interface.

User surveys described in 2.3 showed that the four most commonly used perspectives

by users when referring to elements within the home are: people, locations, devices and

time. Each such perspective should offer elements that can be monitored, controlled and

programmed easily and consistently. By doing this the user would be able to add rules to

whatever element of their house they desire, accessed in multiple ways.

Each of the four perspectives is now discussed in turn.

5.8.8.1 People

The occupiers of the house should feature predominantly within the home management

interface. A person-centered menu, such as the mocked up one in Figure 5.29, should provide

instant access to all means of communications currently available and known for that person.

Each person within the household should also have a dedicated screen (such as that shown in

Figure 5.30) to offer further functionality. The person page should display any rules involving

that person, a means of contacting them, any personal preferences, and the ability to create a

new scenario or rule involving them. This allows individuals to view any rules which they

are involved with from a personal point-of-view, being able to see what happens when they,

for example, “get out of bed”, “go to work”, or “get home from work”. This would allow for

easy and quick creation and management of self-centred rules within the home.

5.8.8.2 Locations

Locations, like people, should be able to be browsed, monitored, controlled and programmed.

An example layout is shown in Figure 5.31. A live plan of the room should be shown in some

form, where the status of the devices within the location would be shown visually and users

could interact with the devices to control them. All possible actions which can be performed

within the location at that point in time should be shown.

5.8 conceptual design of a home interface 165

Figure 5.29: Mock-up: People Screen.

Figure 5.30: Mock-up: Person Screen.

5.8 conceptual design of a home interface 166

Figure 5.31: Mock-up: Location Screen.

Similarly, all rules or scenarios which involve the location, or devices within it, should be

easily accessible. By doing so the separation between rules and the home would be reduced,

and the process to manage, edit and write rules would be made more accessible. As an

example, if Mum (in the mock system) were to write a rule from her personal screen (such as

that shown in Figure 5.30) “when I get home from work do turn on the television”, it should

be associated with “Mum”, “living room” and “television” screens. Despite how the rule is

written and the various elements involved, the rule should be made known and accessible

from all relevant elements.

5.8.8.3 Devices

Again, similar to people and locations, devices should also be capable of being browsed,

monitored, controlled and programmed. The page should offer similar functionality as the

locations page, offering easy and immediate access to control the device and manage any

rules which involve it.

Figure 5.32 shows an example television page. In this case, the television is currently on

and so the user is able to change the volume and channel, turn off the television, or setup

5.8 conceptual design of a home interface 167

Figure 5.32: Mock-up: Device Screen.

a program to be recorded. Again, the rule “when mum gets home from work turn on the

television” is shown as it involves the television.

5.8.8.4 Time

Any home system should support time as a condition for rules. The user should be able to

choose at what times they would like something to occur, and hence create a scenario and/or

rule. Time could mean any notion of hour, day, week, month, year, special dates or events

(such as spring, sunrise or sunset). Against any category users should be able to specify any

events that they would like to occur (resulting in rules). Figure 5.33 shows an example time

screen with common and specific time conditions which users can easily select to view events

that take place when these occur, as well as add and edit events.

5.8.9 Rules

The reality of writing rules for the home can be challenging for users, dependent on their

technical ability. The following sections describe means that could be implemented to help

ease the process.

5.8 conceptual design of a home interface 168

Figure 5.33: Mock-up: Time Screen.

5.8.9.1 Feature Control

It is crucial that advanced language features be hidden from less technical or experienced

users. Advanced features will only intimidate these users. Suggested levels for Homeric,

Homer’s policy language 4.5, for differing capabilities are:

• Simple (”I’m a little scared.”): Offers basic capabilities such that triggers and conditions

can only be combined with and, and actions are a simple list. An example would be

“when trigger1 and condition1 do action1 and action2”.

• Medium (”I’d like to give it a go.”): Adds the capability to use the or and then operators

within the when clause. An example would be “when trigger1 then (condition1 or trigger2)

do action1”.

• Advanced (”Let me do everything.”): Support for time intervals on events within the

when clause is added, as well as conditional actions. An example would be “when trigger1

and trigger2 occur within 5 minutes do action1 and if condition1 do action2”.

5.9 case study 169

5.8.9.2 Intelligent Automated Tutorials

Users could be taught the language features of the home system, if they so desire. This

help could be provided in the form of either walk-through tutorials or intelligent automated

tutorials. For example, when the system detects that the user has written a rule (or rules)

which could be more simply represented using a different language feature, it could introduce

and teach the user about such a language feature. This would help to introduce features only

as they become relevant, rather than overloading the user at one point in time.

5.8.9.3 Templates

Template rules could be used for common automated tasks within the home. The user could

then easily fill in these templates to suit their needs. This would help users to write rules and

expose them to the language features available, as well as offer a source of inspiration and

encouragement for using rules within the home.

5.8.9.4 Library

A library of rules could be made available publicly to provide inspiration and to help users

when automating their home. Users could make use of and contribute their own rules to this

global store, which would help users to share and discover useful household rules.

5.9 case study

Having designed the notion of perspectives and explored various end user programming

techniques, an evaluation was designed and carried out to analyse their success. 71 people

participated in the evaluation, of varying ages and technical abilities. Full details of the

evaluation can be found in [80].

5.9.1 Overview

In order to evaluate perspectives and end user programming techniques a custom tool was

required, and so the Homeric Wizard was used. The user needed to write Homeric policies

for this evaluation. For this reason, this case study is paired with that of the policy system.

The policy system study was interested in the success of Homeric, which required a tool

to formulate policies, whereas this evaluation was interested in the success of the tools,

which required the user to write Homeric. A full overview of the evaluation can be found in

Section 4.8.1.

5.9 case study 170

Figure 5.34: Counts for “Using Perspectives Made it Easier to Write Rules”

5.9.2 Results

Within this evaluation two main aspects of programming the home were analysed: firstly, the

success of perspectives, and secondly the success of visual and (restricted) natural language

end user programming techniques. Both are discussed in turn.

5.9.2.1 Perspectives

Perspectives proved very successful within the evaluation. Users were introduced to the

notion of perspectives through a simple graphical tutorial. They were then asked to write four

“rules”, two of which transcribed a given goal and the other two could be anything. For each

task, the Homeric Wizard would use perspectives for one part and not for the other.

It was proven that, on average, participants made use of more than one perspective per

policy, showing that indeed participants made use of perspectives.

Many assumptions had been made originally, assuming that there would be correlation

between the demographics of the user and the perspectives that they used. However, no such

evidence could be observed in the data. This shows that one cannot make assumptions about

the type of user of the application, and that perspectives therefore are even more useful as

they can be offered to everyone, and the user can make use of those that they prefer. It was

found that devices and time were the most common of perspectives.

At the end of the evaluation, participants were asked if they found perspectives made it

easier to write rules in the Homeric Wizard. Figure 5.34 visually shows the very positive results,

confirming that people found perspectives helpful. Feedback was left by many participants,

some of whom took the time to express how much they liked perspectives. Some quotes

include “perspectives make it easier” and “Perspectives = Good”.

5.9 case study 171

Figure 5.35: Counts for “The Evaluation was Challenging”

5.9.2.2 Visual and Natural Language Programming Techniques

The Homeric Wizard tool proved to be a success, with a wide range of users being able to use

the same tool to write policies for their home at a level that they preferred.

The participants were asked to describe how challenging they found writing the “rules”

within this evaluation. The graph in Figure 5.35 shows this data visually, with only 18.3% of

participants claiming that writing the rules was challenging. This is extremely positive, as

such a wide array of people, with very little training, were able to formulate rules for perhaps

the first time and not find the task challenging.

Participants were also asked if they would be likely to ever program their home with a tool

like the Homeric Wizard. 60 out of the total 71 participants responded that they would be

likely or very likely. Unfortunately, it is unknown if those who chose unlikely or very unlikely

were voting against ever wanting to program their home, or if they were voting against the

Homeric Wizard itself. Regardless, such a high number of people voting in favour is extremely

positive and further shows the success of the Homeric Wizard.

The only problem detected with the user interface of the Homeric Wizard was when nesting

terms within groupings (and, or and then nodes). A fair number of participants did not

appreciate that terms within a group should be visually indented and coloured to appear as

children within a group. Figure 5.36 shows an example of correct and incorrect nesting. This

problem would need addressed in future iterations of the Homeric Wizard.

Many positive comments were received regarding the Homeric Wizard, including praise for

its design, simplicity and ease of use. One participant said: “Use of plain language and icons

made it simple to set rules”.

5.10 conclusions 172

(a) Correct (b) Incorrect

Figure 5.36: Nesting Terms in the Homeric Wizard

5.9.3 Summary

The key findings from this evaluation include the success of perspectives and also using a

combination of natural language and visual programming techniques. Together, these help

offer an interface for programming the home to a wide array of ages and technical abilities.

5.10 conclusions

5.10.1 Summary

This chapter has presented an extensive background review of existing state of the art for end

user programming in regard to the home. From this, design guidelines and ideas have been

produced, presented and evaluated.

Through the requirements and consideration of the state of the art it was possible to draw a

list of observations and conclusions to help produce a short and concise collection of design

guidelines. These design guidelines express the key requirements for a successful home

automation interface.

A key observation made throughout the research performed within this chapter was the

simple notion that people typically address the range of devices in their home through varying

means. This has been termed perspectives, and has proven key in allowing a wide range of

possible end users to interact with the same home system in a way that is comfortable and

natural to them.

To aid evaluation of various design principles and ideas stated within the chapter, a tool

was designed and developed to support writing policies for the home. This effectively allows

end users to program their home, where these end users can vary widely in age, experience

and technical ability. Natural language and visual programming techniques were coupled

to form a new style of end user programming for the home. This was embedded within the

Homeric Wizard.

5.10 conclusions 173

A case study involving 71 individuals was undertaken to evaluate the notion of perspectives

and the Homeric Wizard. The results from the evaluation were extremely positive, with every

participant being able to make use of the tool to express policies for the home, despite their

potential lack of experience or technical ability. Perspectives proved to be liked by most

participants, and they certainly eased the task for many. Due to the success of the policies

formulated and the positive feedback, it can be concluded that natural language and visual

programming techniques offer a possible solution for programming the home.

5.10.2 Review

Section 5.3 stated a number of requirements for the user interaction aspect of Homer. These

requirements will now be revisited to assess to what degree they have been met.

• “Accommodating: Cater for a very wide range of users.”

All through the research and design phases of this work it can be seen that the interactiv-

ity between user and system has always focused on simplicity and suitability for users

ranging in both age and technical ability. The design guidelines stated in Section 5.5

reflect this. Having designed the Homeric Wizard for this wide range of users, an

evaluation was conducted to review the interface. The user evaluation, presented in

the case study in Section 5.9, involved 71 participants ranging in age from under 20

to over 60 and from technically poor to technically expert. Every participant was able

to successful understand, translate and write policies using the Homeric Wizard. This

requirement has therefore been met.

• “Multi-Devices: A range of devices and platforms should be available to interact with the home

system.”

Through the design and implementation of the Homer Web Server, presented in Sec-

tion 5.6, any device or platform with a web connection is able to support a Homer

interface. Three example interfaces have been made to demonstrate this: an iPhone

application shown in Section 5.7.1, an iPad application shown in Section 5.7.2, and

finally a web-based application called the Homeric Wizard shown in Section 5.7.3. This

requirement has therefore been met.

• “Multi-Interfaces: Touch interfaces should definitely be offered, but not necessarily excluding

other modes of interface such as voice, remote control or gesture.” As explained for the

previous requirement, the Homer Web Server supports any device or platform with

a web connection. Currently the iPhone and iPad offer a touch interface to Homer,

therefore meeting this requirement. At present there are no other modes of interactivity

5.10 conclusions 174

supported, however the successful work of projects such as Alfred, Accord and SiteView

which make use of voice and tangible objects to program the home are acknowledged

and feature within the future work section below.

• “Multi-Perspectives: Allow users to be able to interact with the devices in the home from four

different perspectives: location, device, personal and time.”

As can be seen within the design guidelines stated in Section 5.5, and the notion of

perspectives described in Section 5.8.8, multi-perspectives are fully integrated and

supported by Homer. The case study in Section 5.9 evaluates the success of perspectives

from a 71-participant study. This requirement has therefore been met.

• “Remote Control: The ability to control the home remotely, such as at work or on the move.”

Due to the design of the Homer Web Server, it is possible for any Homer interface to

work from anywhere that has Internet connectivity. This requirement has therefore been

met.

This chapter has presented guidelines and prototype applications to address the require-

ments stated in Section 5.3. These requirements have been individually assessed and it was

shown that they have all been met within this chapter.

Although there exist many sophisticated home user interfaces from leading home auto-

mation and telecare systems such as Control4, Cortexa, Homeseer and OmniQare, no home

system has integrated a means for non-technical individuals to program their home. Stand-

alone research projects such as Alfred, CAMP, Girder, iCap and Oscar have tackled various

aspects of end user programming challenges to varying degrees of applicability to the home,

integration with a home system, and successful user evaluations. The Homeric Wizard presen-

ted in Section 5.7.3 is a unique example of an end user programming application tailored

purely for the home and designed for both technical and non-technical individuals, with a

successful evaluation involving 71 participants.

Part III

H O M E R U N

6
C O N C L U S I O N

This chapter will summarise the thesis, discussing its achievements, research contributions,

applicability, limitations and potential future work.

6.1 thesis summary

This thesis has presented Homer, a home automation system designed to allow end users to

fully customise their home. This section will discuss the key aspects of the thesis.

A policy system was presented in Chapter 4 which allowed three research contributions

to be made: custom home policy language, novel policy overlap detection, and advanced

customisable conflict detection.

After an in-depth review of existing policy systems and their representations and implement-

ations, a custom home language (entitled Homeric) was designed for the policy representation.

The policy system was fully embedded within Homer to allow any new component to be

automatically supported with policies.

A new technique for policy overlap detection was presented, with the use of the constraint

satisfaction solver JaCoP, allowing any policy to be both validated (checked for logical correct-

ness) and analysed for existing policies that could be applied at the same time. Additionally,

176

6.1 thesis summary 177

policies can be checked statically for conflicts through the use of customisable environs, then

any conflicts detected can be expressed to the user. To conclude this chapter, a case study was

presented which evaluated the success, acceptability and appropriateness of Homeric. The

Homer policy system is described in [78], [82], [83] and [84].

The policy system aimed to offer a possible means of allowing end users to customise and

program their home at a higher level. To better understand the requirements three user studies

were carried out. These studies helped gather the needs and requirements for a home system

from the end user’s point of view. The first user study gathered ideas and goals that people

had for what their home could do for them. This showed the demand for automation features

within the home, and often many desires were perfectly feasible with today’s technology. A

second, larger study was carried out to understand how these people would like to interact

and control their home. Many positive results were unveiled from this study and documented

in [79]. The overall trend was the desire to interact with the home through touch devices from

anywhere (whether somewhere in the home, at work, or even whilst on holiday). Finally, a

third study was conducted to learn about the challenges of programming the home. This

study helped to design and shape the home language, observing the key findings that a not

operator is effectively redundant and that often the difference between triggers and conditions

is misunderstood.

A test-bed, introduced in Chapter 3, was designed and developed to allow the research

contributions of the thesis to be grounded. After a thorough exploration of existing home

systems and architectures a service-oriented design was chosen. OSGi was used to develop

Homer; making use of its modular, loosely-coupled nature to result in a plug-and-play

component architecture. The thesis discussed how third-party developers are able to provide a

Homer Java wrapper for existing components, be it hardware or software based, to seamlessly

integrate their functionality within Homer. Much of the work within this Chapter is presented

in [78], [81], [82].

Additionally, end user programming research was undertaken to allow the policy work

to be evaluated. Chapter 5 provided design guidelines for end user programming support,

tailored for the home. This allowed the policy work of Chapter 4 to be demonstrated and

evaluated. An extensive literature review was presented, analysing existing work for the

four main techniques of end user programming: programming by demonstration, and visual,

tangible and natural language programming. This review, partnered with the user studies

performed earlier in the thesis, allowed design guidelines to be drawn up for the notable

features of a home user interface. The notion of perspectives was also presented, integrated

thoroughly with Homer and offering multiple ways of locating items within the home. Three

6.2 achievements 178

sample Homer user interfaces were given: iPhone, iPad and web applications. The guidelines

and ideas from this chapter were confirmed to be successful after an evaluation was conducted,

given at the end of the chapter within a case study. Some of the principles and ideas from this

chapter are presented in [78] and [83], and results from the evaluation in [80].

6.2 achievements

6.2.1 Review

Four objectives were stated in Section 1.3, which will now be reviewed to help gauge the

success of the thesis.

• Design a language for both technical and non-technical users which can allow the combining of

the home functionality in an expressive, flexible and unambiguous form.

This objective involved designing a custom policy language for the home. This was

key in allowing both technical and non-technical individuals to represent policies for

their home using the same language. Homeric, the custom policy language for Homer,

evolved from thorough research into existing policy systems (Section 4.4) and languages

used for programming the home (Section 5.4), as well as from user feedback obtained

from a dedicated user study (Section 2.3.3).

The language was evaluated by 71 participants, ranging in technical ability and age,

through the Homeric Wizard tool (described in Section 5.7.3). The evaluation, presented

fully in [80] and summarised within Section 4.8, revealed that users were able to under-

stand, transcribe and write Homeric policies with very little background introduction or

tutorial. The average correctness of translated policies was 92.5%, for transcribed policies

was 98.7%, and 90% of participants made no errors when writing policies.

• Design advanced offline detection mechanisms. As there are high chances of conflicts between

user written rules (policies) for the home these must be detected and reported to the user at the

time of writing and saving a policy.

Existing policy conflict detection techniques analyse solely the resulting actions of any

policy, whether at runtime or offline. Since offline conflict detection was chosen (for

reasons, see Section 4.7), it was decided that all reported conflicts should be minimised,

to help eliminate any unnecessary burden on the user when saving policies. To achieve

this a novel technique was used to detect overlap between policies. If it was decided

that two policies could potentially overlap, and therefore could take place at the same

time, potential conflicts would be checked between these two policies. This eliminates

unnecessary conflict detection analysis, and reduces the burden of filtering reported

6.2 achievements 179

conflicts for the user. As a side-effect of this technique, policies are also validated to

ensure that their when clause is feasible.

Offline conflict detection is handled by many existing policy systems such as ACCENT,

KAoS and Ponder. However, these rely on ontologies and policy priorities, and are

typically too complex for Homer. Instead, inspiration was drawn from the techniques

of Nakamura [94] and Wilson [142] with enhancements to allow a richer set of conflict

types and customisation.

An illustration was provided in Section 4.7.5 to show a range of policies being validated,

analysed for overlaps, and then analysed for conflicts.

• Offer end user programming techniques to expose the custom home language to both technical

and non-technical users, since the policies must be expressible from a very high-level by an

extremely wide range of users.

Chapter 5 presents the Homeric Policy Wizard which emerged from thorough back-

ground research and analysis of existing end user programming techniques, discussed in

Section 5.4. The most successful and inspirational tool reported was CAMP [126], which

made use of natural language words and phrases (expressed using a fridge magnet

style) which could be pieced together freely to form rules. CAMP, however, allowed users

to write ambiguous rules which were difficult for the system to parse. The Homeric

Wizard dealt with this issue by adding restrictions to the policy definition interface.

The Homeric Wizard was woven into an evaluation to assess the Homeric language

itself, and also whether both technical and non-technical people can use the wizard to

successfully write policies for the home. This evaluation revealed that all participants,

regardless of age or technical experience, were able to successfully understand, transcribe

and write policies for the home using the Homeric Wizard. The successful results from

the evaluation include: over 50% of the participants found none of the tasks within the

evaluation challenging, and over 85% of the participants agreed that they would like to

use a tool like the Homeric Wizard to program their own home.

• Design a flexible system to support the vast range of existing hardware and software for the home,

as well as future devices through third-party support. The system must allow a means of flexibly

combining the functionality of these devices at a higher level.

Homer is a component-based platform that allows developers to quickly and easily

write components for the home, which become seamlessly integrated into the system.

This is presented in Chapter 3, forming a test-bed for the following objectives.

6.3 applicability on a wider scale 180

6.2.2 Contributions

The following three research contributions have been presented:

• Policy Language: A policy language, named Homeric, is presented which is designed

and tailored specifically for the home. It allows policies to be expressed which can

combine the functionality of devices and services in the home in flexible and unambigu-

ous ways. A user evaluation was performed to confirm the language’s suitability and

acceptability for the home, revealing the success of the language with both technical and

non-technical users.

• Policy Overlap Detection: The Homer policy system provides a novel technique to

validate a policy and examine if it overlaps with existing policies. This was achieved

using constraint satisfaction tools and demonstrates a novel concept of overlap detection

within the policy domain.

• Policy Conflict Detection: The state of the art of policy conflict detection has been

advanced to allow Homer to detect conflicts using customisable environment variable

information. An illustration was presented to demonstrate and validate both the overlap

and conflict detection work.

6.3 applicability on a wider scale

Homer, although designed for the home setting, could readily be applied to other policy-ready

domains (those which lend themselves to functionality of triggers, conditions and actions).

Homeric, the new policy language presented in this thesis, could be readily applied to

many other domains. Sample policies which utilise Homeric for the most popular existing

policy domains include:

• Access Control: “when (it is a weekday and (time is before 8am or time is after 5pm)) or

it is a weekend do lock all access doors and turn on employee entrance card activation

machines”

• Call Control: “when call received from Alice to Bob do redirect Carol”

• Home Care: “when a fall is detected then no movement is detected for 3 minutes do alert

a neighbour”

• Quality of Service: “when bandwidth usage is greater than 95% do if video enabled do

lower video quality else lower audio quality”

• Sensor Networks: “when water level reaches 60cm do open the flood gates”

6.3 applicability on a wider scale 181

As can be seen, Homeric works with ease in these domains. Additionally, by offering unique

language features such as blurred triggers and conditions, ordered terms and conditional

actions Homeric has offered advanced policy representation and extended existing policy

language functionality in these domains.

However, there is one primary function that Homeric does not currently support: prohibition

policies. This form of policy is used to disallow certain behaviour, and is highly beneficial,

sometimes crucial, within policy domains. Although deemed less important within the home,

this poses a limitation within some domains. Examples of policies which could not be

expressed include:

• Call Control: “Alice is not allowed to call Bob”

• Medical: “Only doctors are allowed to prescribe medicine”

• Sensor Network: “No wind turbines may be turned on when wind speeds are greater

than 45mph "

Despite this lack of prohibition policy support, Homer offers advanced and unique language

features which are applicable in a wide range of policy domains.

The second aspect of this work explores the detection of overlap between policies. This was

considered important within the home to reduce the number of irrelevant conflicts reported

to the user.

The Homer overlap detection techniques work best in domains with a wide range of triggers

and conditions which generally represent states or values. Some examples include:

• Access Control: files (opened/closed, locked/unlocked), doors (opens/is open, closes/is

closed, locks/is locked)

• Home Care: curtains (opens/is open, closes/is closed), medicine (is taken/is not taken)

• Quality of Service: call (enables video/disables video, video enabled/video disabled)

• Sensor Networks: water level (rises/falls, is/is higher than/is lower than)

With such triggers and conditions the full benefits of Homer’s blurred triggers and condi-

tions can be realised. For example, “call enables video” (trigger) can be used interchangeably

with “call has video enabled” (condition). This in turn can be detected by the Homer overlap

algorithms and allows Homer to know if two policies simply cannot overlap. For example,

“call enables video” cannot overlap with “call has video disabled”.

The Homer overlap detection is designed to filter irrelevant policies from the list of potential

conflicting policies. This was deemed important within home automation in order to reduce

6.4 limitations 182

the burden on the user, however, this may not be as important in other domains. For example,

if only trained professionals wrote policies for a given wind farm, it may be more beneficial

to report all potential conflicts and not perform pre-filtering.

The Homer conflict detection relies on knowing how the different actions affect the envir-

onment. This can involve altering variables such as temperature or humidity, or consuming

resources such as energy or water. Examples of such environmental data in popular policy

domains include:

• Home Care: temperature, safety

• Quality of Service: bandwidth

• Sensor Networks: wind speed, water level

When such information is available then the Homer conflict detection will be able to

successfully detect conflicting policies which affect the environment in undesirable ways. This

will work with no additional heuristics and will work with no alterations to the existing

algorithms.

However, policy domains which do not lend themselves to environmental modelling will

be unable to make use of the Homer conflict detection. Such domains include access and call

control, where actions typically do not affect the environment.

To conclude, the Homer system has been designed around the home and lends itself to

similar domains such as home care and sensor networks. As can be seen, the individual

contributions of the policy language, overlap detection and conflict detection each can be

applied in other policy domains to varying degrees of success.

6.4 limitations

There exists some limitation of Homer: the central hub nature of the underlying architecture,

lack of sensor and actuator fusion, and no support for runtime conflict detection. Improve-

ments and additional features that could enhance Homer and the work presented here is

discussed in the following Future Work Section.

The core Homer architecture was implemented to provide a test-bed for grounded research

to take place within the policy domain, so as such Homer was designed to run on one single

central computer within the home to eliminate distribution complexities. However, this has

disadvantages:

6.4 limitations 183

• there is a single point of failure, so if something went wrong with the central hub then

the whole home system would stop working

• multi-user limitations, for example if the owner of a block of flats installed Homer to

automate and manage the building, it would not lend itself to then allowing individual

flat residents to individually automate and manage their flat due to the fundamental

Homer design of one installation per home

• finally scalability can be of concern, where sizeable homes/buildings with many devices,

hardware connections, users and policies are all interacting with one central system.

A better design for a home system could be to make use of a more distributed architecture,

allowing hardware communication, policy management and general control to be propagated

and distributed to various systems around the home. The cloud could be used to store the

user data and policies, ensuring that there is one accessible source for the latest information.

For example, in such a hypothetical system one could formulate policies in the cloud. The

cloud could then analyse the policies and propagate them to appropriate users, homes, rooms,

or even devices. Such nodes can be managed by the cloud, so in the case of failure alternative

mechanisms could be used.

A second limitation involves the nature of programmability within Homer. Homeric com-

bines raw triggers, conditions and actions to produce policies. However, typically within the

home these events are low-level and rather device oriented. Often multiple events must be

combined to represent a higher-level activity, and this can be time-consuming and frustrating

for the user to express in multiple policies.

As an example, what if the user would like to express a policy which turns on the hall light

when they walk in the front door, but they do not own any devices to know if the front door

has been opened or closed? The goal could be achieved by piecing together multiple low-level

sensors, such as “when garage door opens then movement detected in garage then garage door

closes then movement detected in hall”. This achieves the desired policy, however if the user

wishes to write further policies involving walking in the front door this logic would need to

be duplicated, which is cumbersome. Additionally, if the user bought a front door sensor at

some point in the future then all the policies which involved the original logic would need to

be individually and manually updated to make use of the new single sensor.

Whilst a home system is running, conflicts are possible. This is especially the case where

there are multiple residents within the home, competing for the same resources with their

own goals and objectives.

6.5 future work 184

Currently, Homer has no way of detecting nor handling such runtime conflicts. Although

the Homer system does not suffer as a result of such conflicts, the users will most likely end

up confused and frustrated. If one user requests the heating to turn on as she leaves work in

order to warm the house for her return, there could be another user within the home trying

to turn off the heating as he’s been cooking and is too warm. Each would be unaware of the

other’s actions, and the net result is that neither resident would be satisfied.

Additionally, the users have no way to query the home. It could be highly useful and

desirable to provide a mechanism for users to be able to question why certain events took

place, in order to better understand why the home is behaving as it is. In the previous example,

the resident in the kitchen at home could query the system to answer why the heating is

on despite him requesting that it be turned off. This would expose the desire of his partner

turning it on for her mobile phone only a few minutes earlier.

6.5 future work

There are a number of areas presented in this thesis that could be advanced. These include:

Policy Language

• Policy variables currently exist in ACCENT but not within Homer. They would be useful

within the Homer policy language to allow users to refer to different values in different

aspects of writing a policy. For example: “when SMS received from <person> saying “What

is the house temperature?” do send SMS to <person> saying “The house temperature

is: <house temperature>°c.“. Research into how best to support this in an anonymous

dynamic way and expose the notion in a simplistic yet flexible way for the user could be

undertaken.

• Sensor and actuator fusion are terms for the notion of relating lower-level events to

higher-level events and could be used to handle the second limitation discussed in the

previous section. An example of both sensor and actuator fusion include:

– Sensor Fusion: “when front door opens and hall movement is detected and front

door closes” could be used to describe someone walking into the house.

– Actuator Fusion: “do turn on the heating and turn off the air-conditioning” could

be used to describe heating up the house.

The act of combining terms to produce higher-level terms is advantageous for the user, as

commonly expressed events can be written once and used many times. It also allows for

changes to be made to the higher-level terms in one place, which will mean all policies

6.5 future work 185

relying on the term will naturally inherit the new logic. This is a feature of ACCENT,

however with research the current rigid style as seen in ACCENT could be extended to

integrate with the dynamic and anonymous nature of Homer.

• Prohibition policies are a popular policy format offered by existing policy engines

discussed in Section 4.4. A prohibition policy allows a user to specify things that should

not be permitted, overriding existing policies at runtime. Such as “when the home is

unoccupied do not turn on heating”. Further research could be undertaken to make this

concept suitable for end users, and to integrate into Homer.

Policy Conflict Detection

• Advancements to Environs

– Environ Assignment: A more sophisticated means of assigning environ effects

would be desirable in Homer. This would involve offering an extensive range of

default values and settings for typical devices within a home (to minimise manual

user input), as well as more customisable environ effects. As a simple example,

describing a particular effect on an environ within Homer is currently rather rigid.

Consider opening a window: if it was a dry day, the humidity level of the home

will tend to fall, while, on a wet day it may well rise.

– Environ Values: Environs could be enhanced by associating values with the action

effects upon the environ. For example, when turning on a washing machines energy

usage will increase by, say, 700 Watts/hour and 90 litres of water will be consumed.

Research into how these values could be specified, how this information could

aid conflict detection and the value they may add to a general home automation

system could greatly enhance the existing work presented in this thesis.

– Environ Limits: Following on from environ values, virtual limits could be associ-

ated with environs and incorporated into the policy language. For example, a user

could write a policy to not allow more than 3000 Watts to be consumed at any one

time. Again, this could enhance the home automation experience for users.

• Conflict Resolution Features would enhance the existing conflict detection work of

Homer. Although it was argued that offline conflict detection was far better suited to

the Homer philosophy of the user always being in charge, the work of ACCENT, KAoS

and Ponder is acknowledged. Homer lacks the sophistication of these policy solutions

due to lack of runtime conflict detection. It would be desirable to offer runtime conflict

handling that is customised and controlled by the user through the use of resolution

6.5 future work 186

policies (inspired from ACCENT). For example, the user could say that if a requested

action conflicts with another, the policy server should choose the action belonging to the

newer policy.

• Conflict Loops are currently undetected by the Homer policy engine. As a concrete

example, take the following two policies: “when the temperature is below 20°c and the

heating is off do turn on the heating” and “when power usage exceeds 4kW do turn off

the heating”. These two policies could cause a loop, whereby the temperature is low

so the heating is turned on, which in turn pushes the power usage over 4kW turning

the heating off again. The effect of turning off the heating will cause the first policy

to evaluate and fire once again. Whilst the temperature remains below 20°c and the

heating puts the power usage over the 4kW limit these policies will continue to trigger,

causing the heating to alternate between turning on and off.

Through the use of environs Homer could realise that turning on the heating will

consume power, which in turn could invoke the second policy. When these two policies

are compared for conflict the turn on and turn off of the heating would result in a conflict

reported to the user. This suggested solution needs further research and integration with

the existing Homer policy engine.

Policy Handling

• Policy Explanations can be highly desirable in a home to allow the user to query why

certain events did (or did not) take place. Currently little work exists in this field, so

research could be performed to extend Homer to allow support of policy explanations

to help provide a means of justification and reassurance for the users.

• Library of User/Template Policies: for some households there could exist very similar

rules as those found in other households, so much so that the notion of a rule ‘store’

or ‘library’ may prove both useful and inspiring for end users. Template rules could be

written which could then be filled-in by end users, people could share their rules for

others to view and try, or even suggested rules could be integrated to help encourage

automation of common routines. This would also bring the advantage of helping teach

users about the Homer policy language and what is possible within their home.

• Multi-Occupancy within the home brings many challenges that have not been addressed

within this thesis. These challenges include:

– Access Restrictions are desirable to ensure that the various members of the house-

hold can only control and alter the home in ways deemed appropriate by the home

6.6 concluding remarks 187

owner/head of household. Can policies aid the general access rules for the home

for the various users? For example, perhaps a policy could be set which disables

the children within the household adjusting any devices out with their bedroom,

or that limits the children to only one hour of television a day.

– Conflicts will arise more frequently if there exist multiple different people defining

them for the one space. Research exists which explores this problem within telecare,

where different stakeholders (such as doctors, nurses, family, friends) may all be

writing policies for one home [128]. The solution presented makes use of policy

hierarchies, whereby policies authored by the stakeholder with highest authority

will be prioritised in all conflicting situations. Research needs to be performed to

evaluate if this approach can work within the home, and how best to integrate this

into a home policy system such as Homer.

– Home Anonymity can be an issue with existing home technology, whereby the

home will often be unable to distinguish the various presences in the home. Unlike

in a one person home, where sensors are activated and the home can assume this

was because of that one person. Multi-occupancy can cause problems with directing

information, evaluating the whereabouts, and personalising and automating events

for a particular person in the home. Work exists which explores the notion of

wearable sensors [121, 123, 138] to help the home obtain a clearer idea of who is

who, however this relies on the users remembering to wear the sensors at all times

and can therefore prove unreliable and problematic.

6.6 concluding remarks

Home automation is inevitable. Technology has taken over our factories, our cars, our work-

places and our homes. The desire and technical feasibility exist to automate our daily lives

through personalised home automation systems. As highlighted in Section 2.2.4, there are

currently five main issues which hinder home automation: high costs, disjointed hardware,

inflexibility, complicated user interfaces, and security concerns. This thesis has aimed to

contribute to research within the inflexibility space, exploring how to improve general home

customisation and programmability aspects.

This thesis has presented a fully implemented and advanced home system. The system is

one of the only which can offer end users the ability to control, monitor and program their

home. By making this requirement a reality Homer has shown what is possible and has laid a

foundation for future home automation.

6.6 concluding remarks 188

Three research contributions have been presented in this thesis: a custom policy language

for the home, novel policy overlap detection, and advancements in existing policy conflict

detection techniques.

To conclude, the research and development presented in this thesis has extended the state

of the art within multiple domains, met the many requirements and objectives discussed

throughout, and offered future directions for various aspects of the work.

Part IV

B A C K M AT T E R

R E F E R E N C E S

[1] Accord Project. Understanding and using the tangible toolbox. www.sics.se/accord/

release/docs/html/D3.2.htm, Sept. 2002.

[2] K. P. Akesson, A. Bullock, T. Rodden, B. Koleva, and C. Greenhalgh. A toolkit for user

re-configuration of ubiquitous domestic environments. Companion to Proceedings of UIST,

2002:1–2, 2002.

[3] A. Alkar and U. Buhur. An internet based wireless home automation system for

multifunctional devices. Consumer Electronics, IEEE Transactions on, 51(4):1169–1174,

2005.

[4] Amigo Project. Amigo project description. www.hitech-projects.com/euprojects/

amigo, Dec. 2008.

[5] T. Andrews, H. Dholakia, Y. Goland, B. Klein, K. Liu, D. Roller, D. Smith, S. Thatte,

I. Trickovic, and S. Weerawarana. Business process execution language for web services.

2003.

[6] A. Arabo and F. El-Mousa. Security framework for smart devices. In Cyber Security,

Cyber Warfare and Digital Forensic (CyberSec), 2012 International Conference on, pages 82–87.

IEEE, 2012.

[7] J. C. Augusto. Past, present and future of ambient intelligence and smart environments.

Environments, 67:1–15, 2010.

[8] R. Ballagas, M. Ringel, M. Stone, and J. Borchers. iStuff: A physical user interface toolkit

for ubiquitous computing environments. In Proceedings of ACM Conference on Human

Factors in Computing Systems (CHI), volume 16, pages 2–4, 2003.

[9] C. Becker, M. Handte, G. Schiele, and K. Rothermel. Pcom – A component system

for pervasive computing. In Proceedings of the 2nd International Conference on Pervasive

Computing and Communications, Orlando, Florida, pages 67–76. IEEE, 2004.

[10] C. Beckmann and A. Dey. Siteview: Tangibly programming active environments with

predictive visualization. In Adjunct Proceedings of UbiComp, pages 167–168, 2003.

[11] G. Bell and J. Kaye. Designing technology for domestic spaces: A kitchen manifesto.

Gastronomica, 2(2):46–62, 2002.

190

www.sics.se/accord/release/docs/html/D3.2.htm
www.sics.se/accord/release/docs/html/D3.2.htm
www.hitech-projects.com/euprojects/amigo
www.hitech-projects.com/euprojects/amigo

references 191

[12] P. Bergstrom, K. Driscoll, and J. Kimball. Making home automation communications

secure. Computer, 34(10):50–56, 2001.

[13] A. F. Blackwell and R. Hague. AutoHAN: An architecture for programming the home.

In Proceedings IEEE Symposia on Human-Centric Computing Languages and Environments,

pages 150–157. IEEE, 2001.

[14] L. Blair, J. Pang, K. J. Turner, S. Reiff-Marganiec, T. Gray, P. Perry, and J. Ireland. Policy

support for call control. Computer Standards Interfaces, 28(6):635–649, 2005.

[15] L. Blair and K. J. Turner. Policies and conflicts in call control. Computer Networks,

51(2):496–514, 2007.

[16] R. Boutaba and I. Aib. Policy-based management: A historical perspective. Journal of

Network and Systems Management, 15(4):447–480, 2007.

[17] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon. Home automation in

the wild: challenges and opportunities. In Proceedings of the 2011 annual conference on

Human factors in computing systems, pages 2115–2124. ACM, 2011.

[18] M. Burnett. Visual language research bibliography. web.engr.oregonstate.edu/

~burnett/vpl.html, 2009.

[19] M. Calder, M. Kolberg, E. Magill, D. Marples, and S. Reiff-Marganiec. Hybrid solutions to

the feature interaction problem. In Proceedings of Feature Interactions in Telecommunications

and Software Systems VII FIW Ottawa Kanada, pages 295–312. IOS Press, 2003.

[20] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature interaction: A critical

review and considered forecast. Computer Networks, 41(1):115–141, 2003.

[21] G. A. Campbell. A goal-directed and policy-based approach to system management.

Technical Report CSM-180, University of Stirling, May 2009.

[22] G. A. Campbell and K. J. Turner. Goals and policies for sensor network management.

In D. Urška, editor, Second International Conference on Sensor Technologies and Applications,

pages 354–359. IEEE, 2008.

[23] G. A. Campbell and K. J. Turner. Policy conflict filtering for call control. In Proceedings

9th Int Conf on Feature Interactions in Software and Communications Systems, pages 93–108.

IOS Press, May 2008.

[24] J. J. Castillo. Snowball sampling. www.experiment-resources.com/snowball-sampling.

html, 2009.

web.engr.oregonstate.edu/~burnett/vpl.html
web.engr.oregonstate.edu/~burnett/vpl.html
www.experiment-resources.com/snowball-sampling.html
www.experiment-resources.com/snowball-sampling.html

references 192

[25] R. Cerqueira, C. Cassino, and R. Ierusalimschy. Dynamic component gluing across

different componentware systems. In Proceedings of the International Symposium on

Distributed Objects and Applications, pages 362–371. IEEE, 1999.

[26] R. Charette. This car runs on code. IEEE Spectrum, 46(3):3, 2009.

[27] M. Chetty, J. Sung, and R. Grinter. How smart homes learn: The evolution of the

networked home and household. UbiComp 2007: Ubiquitous Computing, pages 127–144,

2007.

[28] Control 4. About us. www.control4.com/about-us/, 2012.

[29] D. Cook and S. Das. Smart environments: Technology, protocols and applications, volume 43.

Wiley-Interscience, 2004.

[30] P. Corcoran and J. Desbonnet. Browser-style interfaces to a home automation network.

Consumer Electronics, IEEE Transactions on, 43(4):1063–1069, 1997.

[31] Cortexa. Cortexa system setup. www.youtube.com/user/cortexa2009#p/u/3/

kg4BrHbuO6Q, 2009.

[32] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. Ponder: A language specifying

security and management policies for distributed systems. Technical Report 2000/1,

Imperial College, London, UK, 2000.

[33] C. N. Darrah, J. Freeman, and J. A. English-Lueck. Busier than ever: Why american

families can’t slow down. Anthropology of Work Review, 30(1):288, 2007.

[34] S. Davidoff, M. K. Lee, C. Yiu, J. Zimmerman, and A. K. Dey. Principles of smart home

control. In Proceedings Ubiquitous Computing, pages 19–34, 2006.

[35] D. de Wit. The Shaping of Automation, volume 13. Uitgeverij Verloren, 1994.

[36] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. A CAPpella: Programming by

demonstration of context-aware applications. In Proceedings Conf. on Human Factors in

Computing Systems, pages 33–40. ACM, Apr. 2004.

[37] C. Douligeris, J. Khawand, and C. Khawand. Communications and control for a home

automation system. In Southeastcon’91., IEEE Proceedings of, pages 171–175. IEEE, 1991.

[38] W. K. Edwards, M. W. Newman, and J. Z. Sedivy. The case for recombinant computing.

Technical Report CSL-01-1, 2001.

[39] A. Endpoints. The ActiveBPEL engine. www.activevos.com/community-open-source.

php, June 2009.

www.control4.com/about-us/
www.youtube.com/user/cortexa2009#p/u/3/kg4BrHbuO6Q
www.youtube.com/user/cortexa2009#p/u/3/kg4BrHbuO6Q
www.activevos.com/community-open-source.php
www.activevos.com/community-open-source.php

references 193

[40] K. Gajos, H. Fox, and H. Shrobe. End user empowerment in human centered pervasive

computing. In Pervasive 2002, number 2414 in Lecture Notes in Computer Science, pages

134–140. Springer, 2002.

[41] A. Gárate, N. Herrasti, and A. López. Genio: an ambient intelligence application

in home automation and entertainment environment. In Proceedings of the 2005 joint

conference on Smart objects and ambient intelligence: innovative context-aware services: usages

and technologies, pages 241–245. ACM, 2005.

[42] J. Gershuny. Busyness as the badge of honor for the new superordinate working class.

Social Research, 72(2):287–314, 2005.

[43] C. Geyer. About BPEL. bpel.xml.org/about-bpel, 2007.

[44] P. D. Gray, T. McBryan, N. Hine, C. J. Martin, N. Gil, M. Wolters, N. Mayo, K. J. Turner,

L. S. Docherty, F. Wang, and M. Kolberg. A scalable home care system infrastructure

supporting domiciliary care. Technical Report CSM-173, University of Stirling, Aug.

2007.

[45] D. Greaves. Autohan project. www.cl.cam.ac.uk/research/srg/han/AutoHAN/oldindex.

html, 2000.

[46] S. Greenberg and C. Fitchett. Phidgets: Easy development of physical interfaces through

physical widgets. In Proceedings of the 14th annual ACM symposium on User interface

software and technology, page 209. ACM Press, New York, USA, 2001.

[47] R. Grinter, W. Edwards, M. Chetty, E. Poole, J. Sung, J. Yang, A. Crabtree, P. Tolmie,

T. Rodden, C. Greenhalgh, et al. The ins and outs of home networking: The case

for useful and usable domestic networking. ACM Transactions on Computer-Human

Interaction (TOCHI), 16(2):1–28, 2009.

[48] R. Grinter, W. Edwards, M. Newman, and N. Ducheneaut. The work to make a home

network work. In ECSCW 2005, pages 469–488. Springer, 2005.

[49] R. Harper. Inside the smart home. Springer, 2003.

[50] M. Heisel, J. Souquieres, et al. A heuristic algorithm to detect feature interactions in

requirements. Language Constructs for Describing Features, pages 143–162, 2000.

[51] T. Hjorth and R. Torbensen. Trusted domains in home automation. Computers & Security,

2012.

[52] S. Hughes. SHAKE users group. www.dcs.gla.ac.uk/research/shake, Aug. 2007.

bpel.xml.org/about-bpel
www.cl.cam.ac.uk/research/srg/han/AutoHAN/oldindex.html
www.cl.cam.ac.uk/research/srg/han/AutoHAN/oldindex.html
www.dcs.gla.ac.uk/research/shake

references 194

[53] J. Humble, A. Crabtree, T. Hemmings, K.-P. Akesson, B. Koleva, T. Rodden, and P. Hans-

son. Playing with the bits: User configuration of ubiquitous domestic environments.

In Proceedings of UbiComp 2003, Lecture notes in Computer Science, pages 256–263.

Springer, 2003.

[54] S. Intille. Designing a home of the future. Pervasive Computing, IEEE, 1(2):76–82, 2002.

[55] JBoss. Jboss Drools. jboss.org/drools, Feb. 2008.

[56] B. Johanson and A. Fox. The Stanford interactive workspaces project. The VLSI Journal,

pages 1–30, Aug. 2004.

[57] L. Kagal. Rei: A policy language for the me-centric project. Technical Report HPL-2002-

270, HP Labs, 2002.

[58] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing envir-

onment. In Proceedings of the 4th IEEE International Workshop on Policies for Distributed

Systems and Networks, POLICY ’03, pages 63–74, Washington, DC, USA, 2003. IEEE

Computer Society.

[59] D. Keck and P. Kuehn. The feature and service interaction problem in telecommunic-

ations systems: A survey. Software Engineering, IEEE Transactions on, 24(10):779–796,

1998.

[60] S. L. Keoh, K. Twidle, N. Pryce, A. E. Schaeffer-Filho, E. Lupu, M. Sloman, S. Heeps,

S. Strowes, J. Sventek, and E. Katsiri. Policy-based management for body-sensor net-

works. In 4th International Workshop on Wearable and Implantable Body Sensor Networks,

pages 92–98. Springer, Mar. 2007.

[61] J. Kientz, S. Patel, B. Jones, E. Price, E. Mynatt, and G. Abowd. The georgia tech

aware home. In CHI’08 extended abstracts on Human factors in computing systems, pages

3675–3680. ACM, 2008.

[62] T. Kim, L. Bauer, J. Newsome, A. Perrig, and J. Walker. Challenges in access right

assignment for secure home networks. Proc. HotSec 2010, 2010.

[63] K. Kimbler and L. G. Bouma. Feature Interactions in Telecommunications and Software

Systems V. Ios PressInc, 1998.

[64] J. King, R. Bose, H. I. Yang, S. Pickles, and A. Helal. Atlas: A service-oriented sensor

platform: Hardware and middleware to enable programmable pervasive spaces. In

Proceedings 31st Conference on Local Computer Networks, pages 630–638. IEEE, 2006.

jboss.org/drools

references 195

[65] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-maché. In Proceedings of Human

Factors in Computing Systems, pages 399–406. ACM Press, New York, USA, 2004.

[66] M. Knoll, T. Weis, A. Ulbrich, and A. Brändle. Scripting your home. In Proceedings

of the Second international conference on Location- and Context-Awareness, LoCA’06, pages

274–288, Berlin, Heidelberg, 2006. Springer-Verlag.

[67] M. Kolberg and E. H. Magill. A pragmatic approach to service interaction filtering

between call control services. Computer Networks, 38(5):591–602, 2002.

[68] M. Kolberg and E. H. Magill. Using pen and paper to control networked appliances.

IEEE Communications, 44(11):148–154, 2006.

[69] T. Koskela and K. Väänänen-Vainio-Mattila. Evolution towards smart home environ-

ments: empirical evaluation of three user interfaces. Personal and Ubiquitous Computing,

8(3):234–240, 2004.

[70] Lego Mindstorms. Software demo. mindstorms.lego.com/en-us/Software/Default.

aspx, 2010.

[71] B. Leuf and W. Cunningham. The Wiki Way. Addison Wesley, 2001.

[72] N. Li, M. V. Tripunitara, and Q. Wang. Resiliency policies in access control. ACM

Transactions on Information and System Security, 12(4):113–123, 2009.

[73] Y. Li, J. I. Hong, and J. A. Landay. Topiary: A tool for prototyping location-enhanced

applications. In User interface software and technology, pages 217–226. ACM, 2004.

[74] H. Lieberman, F. Paternó, and M. Klann. End-user development: An emerging paradigm.

End User Development, 9:1–8, 2006.

[75] E. Litvinova and P. Vuorimaa. Engaging end users in real smart space programming. In

Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 1090–1095. ACM,

2012.

[76] B. Margolis and J. Sharpe. SOA for the Business Developer: Concepts, BPEL, and SCA. MC

Press, 2007.

[77] D. J. Marples, S. Tsang, E. H. Magill, and D. G. Smith. A platform for modelling feature

interaction detection and resolution. In Proceedings 3rd Feature Interaction Workshop,

pages 185–199. IOS, 1995.

[78] C. Maternaghan. The homer home automation system. Technical Report CSM-187,

University of Stirling, Dec. 2010.

mindstorms.lego.com/en-us/Software/Default.aspx
mindstorms.lego.com/en-us/Software/Default.aspx

references 196

[79] C. Maternaghan. How do people want to control their home? Technical Report CSM-185,

University of Stirling, Dec. 2010.

[80] C. Maternaghan. Can people program their homes? Technical Report CSM-191, Univer-

sity of Stirling, 2012.

[81] C. Maternaghan and K. J. Turner. A component framework for telecare and home

automation. In Proceedings 7th Consumer Communications and Networking Conference,

pages N4.1–N4.5. IEEE, Jan. 2010.

[82] C. Maternaghan and K. J. Turner. A configurable telecare system. In PETRA, Crete,

Greece, 2011. ACM Press.

[83] C. Maternaghan and K. J. Turner. Pervasive computing for home automation and

telecare. In S. I. A. Shah, M. Ilyas, and H. T. Mouftah, editors, Pervasive Communications

Handbook, pages 17.1–17.25. CRC Press, Nov. 2011.

[84] C. Maternaghan and K. J. Turner. Programming home care. In Proceedings Advances in

Techniques and Technologies for Care at Home, pages 5.1–5.7. IEEE, May 2011.

[85] M. Mazurek, J. Arsenault, J. Bresee, N. Gupta, I. Ion, C. Johns, D. Lee, Y. Liang, J. Olsen,

B. Salmon, et al. Access control for home data sharing: Attitudes, needs and practices.

In Proceedings of the 28th international conference on Human factors in computing systems,

pages 645–654. ACM, 2010.

[86] T. McBryan and P. Gray. A model-based approach to supporting configuration in

ubiquitous systems. In Proceedings Interactive Systems. Design, Specification and Verification,

pages 167–180. Springer, 2008.

[87] T. McBryan, M. R. McGee-Lennon, and P. Gray. An integrated approach to supporting

interaction evolution in home care systems. In Proceedings of the 1st international conference

on PErvasive Technologies Related to Assistive Environments, pages 167–180, New York,

USA, 2008. Springer.

[88] T. McByran and P. Gray. A model-based approach to supporting configuration in

ubiquitous systems. Lecture Notes In Computer Science, 5136:167–180, 2008.

[89] M. D. McIlroy. Mass produced software components. In Software Engineering Concepts

and Techniques, pages 88–98. NATO Science Committee, 1968.

[90] M. E. T. McMurdo. A healthy old age: Realistic or futile goal? British Medical Journal,

321:1149–1151, 2000.

references 197

[91] Microsoft. Kodu. research.microsoft.com/en-us/projects/kodu, 2010.

[92] G. Mori, F. Paternò, and C. Santoro. CTTE: Support for developing and analyzing

task models for interactive system design. IEEE Transactions on Software Engineering,

28(8):797–813, 2002.

[93] M. C. Mozer. The neural network house: An environment that adapts to its inhabitants.

In Proceedings AAAI Spring Symp. Intelligent Environments, pages 110–114, 1998.

[94] M. Nakamura, H. Igaki, and K. ichi Matsumoto. Feature interactions in integrated

services of networked home appliances. In Proceedings Feature Interactions in Telecommu-

nications and Software Systems, pages 236–251. IOS, June 2005.

[95] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo. Feature interaction filtering

with use case maps at requirements stage. In Sixth International Workshop on Feature

Interactions in Telecommunications and Software Systems (FIW’00), IOS Press, pages 163–178,

2000.

[96] B. A. Nardi. A Small Matter of Programming: Perspectives on End User Computing. MIT

Press, 1993.

[97] M. W. Newman, A. Elliott, and T. F. Smith. Providing an integrated user experience of

networked media, devices, and services through end-user composition. Pervasive ’08,

pages 213–227. Springer, 2008.

[98] D. F. Noble. Forces of Production: A Social History of Industrial Automation. Transaction

Publishers, 2011.

[99] R. Nunes and J. Delgado. An internet application for home automation. In Electrotechnical

Conference, 2000. MELECON 2000. 10th Mediterranean, volume 1, pages 298–301. IEEE,

2000.

[100] Open Health Tools. Why OSGi? www.projects.openhealthtools.org/sf/wiki/do/

viewPage/projects.stepstone/wiki/WhyOSGi, 2010.

[101] Oracle. Oracle BPEL process manager. www.oracle.com/technology/products/ias/

bpel/index.html, 2012.

[102] T. Owen, I. Wakeman, B. Keller, J. Weeds, and D. Weir. Managing the policies of non-

technical users in a dynamic world. In Proceedings 6th International Workshop on Policies

for Distributed Systems and Networks, Stockholm, Sweden, pages 251–254. IEEE, 2005.

research.microsoft.com/en-us/projects/kodu
www.projects.openhealthtools.org/sf/wiki/do/viewPage/projects.stepstone/wiki/WhyOSGi
www.projects.openhealthtools.org/sf/wiki/do/viewPage/projects.stepstone/wiki/WhyOSGi
www.oracle.com/technology/products/ias/bpel/index.html
www.oracle.com/technology/products/ias/bpel/index.html

references 198

[103] E. Poole, M. Chetty, R. Grinter, and W. Edwards. More than meets the eye: transforming

the user experience of home network management. In Proceedings of the 7th ACM

conference on Designing interactive systems, pages 455–464. ACM, 2008.

[104] S. Reiff-Marganiec and K. Turner. Use of logic to describe enhanced communications

services. Formal Techniques for Networked and Distributed Sytems—FORTE 2002, pages

130–145, 2002.

[105] S. Reiff-Marganiec and K. Turner. "feature interaction in policies". Computer Networks,

45(5):569–584, 2004.

[106] J. Rimmer, T. Owen, I. Wakeman, B. Keller, J. Weeds, and D. Weir. User policies in

pervasive computing environments. In User Experience Design for Pervasive Computing,

Pervasive 2005, Munich, Germany, May 2005.

[107] T. Rodden, A. Crabtree, T. Hemmings, B. Koleva, J. Humble, K.-P. Akessonn, and

P. Hansson. Configuring the ubiquitous home. In Proceedings 6th Int. Conf. on The Design

of Cooperative Systems, pages 215–230. ACM Press, 2004.

[108] J. Rode, E. Toye, and A. Blackwell. The domestic economy: a broader unit of analysis

for end user programming. In CHI’05 extended abstracts on Human factors in computing

systems, pages 1757–1760. ACM, 2005.

[109] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt.

Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive Computing,

20(4):74–83, 2002.

[110] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley, M. Prabaker, and J. Rao. Understanding

and capturing people’s privacy policies in a mobile social networking application.

Personal and Ubiquitous Computing, 13(6):401–412, 2008.

[111] P. Sánchez, M. Jiménez, F. Rosique, B. Álvarez, and A. Iborra. A framework for devel-

oping home automation systems: From requirements to code. Journal of Systems and

Software, 84(6):1008–1021, 2011.

[112] A. Schaeffer-Filho, E. Lupu, M. Sloman, S. L. Keoh, J. Lobo, and S. Calo. A role-

based infrastructure for the management of dynamic communities. In 2nd International

Conference on Autonomous Infrastructure, Management and Security (AIMS), number 5127

in Lecture Notes in Computer Science, pages 1–14. Springer, 2008.

[113] K. P. Schools. Explorer kodu club. koduclub.org/default.aspx, 2010.

koduclub.org/default.aspx

references 199

[114] E. Shehan and W. Edwards. Home networking and hci: what hath god wrought? In

Proceedings of the SIGCHI conference on Human factors in computing systems, pages 547–556.

ACM, 2007.

[115] M. P. Singh and M. N. Huhns. Service-Oriented Computing. Wiley, Chichester, UK, nov

2004.

[116] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser. Koala: A platform for OS-level

power management. Power, pages 289–302, 2009.

[117] T. Sohn and A. K. Dey. iCAP: An informal tool for interactive prototyping of context-

aware applications. In Extended abstracts on Human Factors In Computing Systems, pages

974–975, New York, USA, 2003. ACM.

[118] J. Sousa and D. Garlan. Aura: An architectural framework for user mobility in ubiquitous

computing environments. In J. Bosch, M. Gentleman, C. Hofmeister, and J. Kuusela,

editors, Proceedings of the 3rd Working Conference on Software Architecture, pages 29–43.

IEEE, Aug. 2002.

[119] N. Sriskanthan, F. Tan, and A. Karande. Bluetooth based home automation system.

Microprocessors and Microsystems, 26(6):281–289, 2002.

[120] T. Starner, J. Auxier, D. Ashbrook, and M. Gandy. The gesture pendant: A self-

illuminating, wearable, infrared computer vision system for home automation control

and medical monitoring. In Wearable Computers, The Fourth International Symposium on,

pages 87–94. IEEE, 2000.

[121] M. Stikic, D. Larlus, S. Ebert, and B. Schiele. Weakly supervised recognition of daily

life activities with wearable sensors. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 33(12):2521–2537, 2011.

[122] D. Strassberg. Home-automation buses: Protocols really hit home. EDN, 40(8):69–84,

1995.

[123] A. Subramanya, A. Raj, J. Bilmes, and D. Fox. Recognizing activities and spatial context

using wearable sensors. arXiv preprint arXiv:1206.6869, 2012.

[124] The Knopflerfish Project. Knopflerfish android. www.knopflerfish.org/releases/3.2.

0/docs/android_dalvik_tutorial.html, 2012.

[125] R. Torbensen. On the emergence of pervasive home automation. 2011.

www.knopflerfish.org/releases/3.2.0/docs/android_dalvik_tutorial.html
www.knopflerfish.org/releases/3.2.0/docs/android_dalvik_tutorial.html

references 200

[126] K. Truong, G. Abowd, and J. Brotherton. Who, what, when, where, how: Design issues

of capture and access applications. In Proceedings Ubiquitous Computing, pages 209–224.

Springer, 2001.

[127] K. Truong, E. M. Huang, and G. D. Abowd. CAMP: A magnetic poetry interface for

end-user programming of capture applications for the home. Proceedings Ubiquitous

Computing, pages 143–160, 2004.

[128] K. Turner. The accent policy system. Technical report, Technical Report CSM-188,

Department of Computing Science and Mathematics, University of Stirling, UK, 2011.

[129] K. Turner, S. Reiff-Marganiec, L. Blair, G. Cambpell, and F. Wang. "appel: An adaptable

and programmable policy environment and language". 2007.

[130] K. J. Turner. Device services for the home. In Proceedings 10th Int. Conf. on New

Technologies for Distributed Systems, pages 41–48. IEEE, May 2010.

[131] K. J. Turner. Flexible management of smart homes. Ambient Intelligence and Smart

Environments, 3(2):83–110, May 2011.

[132] K. J. Turner and K. L. L. Tan. Graphical composition of grid services. In Proceedings 6th

Rapid Introduction of Software Engineering Techniques, number 4401, pages 1–17. Springer,

May 2007.

[133] K. Twidle. Ponder2: PonderTalk. www.ponder2.net/cgi-bin/moin.cgi/PonderTalk,

2008.

[134] K. Twidle, N. Dulay, E. Lupu, and M. Sloman. Ponder2: A policy system for autonomous

pervasive environments. In Proceedings 5th International Conference on Autonomic and

Autonomous Systems, pages 330–335. IEEE, 2009.

[135] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson,

S. Kulkarni, and J. Lott. Kaos policy and domain services: Toward a description-logic

approach to policy representation, deconfliction, and enforcement. In Proceedings 4th

International Workshop on Policies for Distributed Systems and Networks, pages 93–96. IEEE,

2003.

[136] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, and

H. Jung. New developments in ontology-based policy management: Increasing the

practicality and comprehensiveness of KAoS. In Proceedings Workshop on Policies for

Distributed Systems and Networks, pages 145–152. IEEE, 2008.

www.ponder2.net/cgi-bin/moin.cgi/PonderTalk

references 201

[137] W3C. Web services choreography description language version 1.0. www.w3.org/TR/

2004/WD-ws-cdl-10-20041217, 2004.

[138] L. Wang, T. Gu, X. Tao, H. Chen, and J. Lu. Recognizing multi-user activities using

wearable sensors in a smart home. Pervasive and Mobile Computing, 7(3):287–298, 2011.

[139] J. Weeds, B. Keller, D. Weir, I. Wakeman, J. Rimmer, and T. Owen. Natural language ex-

pression of user policies in pervasive computing environments. In Proceedings Workshop

on Ontologies and Lexical Resources in Distributed Environments, 2004.

[140] T. Weis and K. Geihs. Components on the desktop. In Proceedings 33rd International

Conference on Technology of Object-Oriented Languages, pages 250–261. IEEE Computer

Society, 2000.

[141] T. Weis, M. Handte, M. Knoll, and C. Becker. Customizable pervasive applications. In

Proceedings 4th International Conference on Pervasive Computing and Communications, pages

239–244. IEEE, 2006.

[142] M. E. Wilson. An Online Environmental Approach to Service Interaction Management in

Home Automation. PhD thesis, University of Stirling, 2006.

[143] M. E. Wilson, E. H. Magill, and M. Kolberg. An online approach for the service

interaction problem in home automation. In Consumer Communications and Networking

Conference, pages 251–256. IEEE, 2005.

[144] X. Wu and H. Schulzrinne. Handling feature interactions in the language for end system

services. Computer Networks, 51(2):515–535, 2007.

[145] C. Yerrapragada and P. Fisher. Voice controlled smart house. In Consumer Electronics,

1993. Digest of Technical Papers. ICCE., IEEE 1993 International Conference on, pages 154–155.

IEEE, 1993.

[146] B. Yuksekkaya, A. Kayalar, M. Tosun, M. Ozcan, and A. Alkar. A gsm, internet and

speech controlled wireless interactive home automation system. Consumer Electronics,

IEEE Transactions on, 52(3):837–843, 2006.

[147] E. Zukerman. Tasker for android: A mobile app that caters to your every whim.

www.makeuseof.com/tag/tasker-android-mobile-app-caters-whim, 2011.

www.w3.org/TR/2004/WD-ws-cdl-10-20041217
www.w3.org/TR/2004/WD-ws-cdl-10-20041217
www.makeuseof.com/tag/tasker-android-mobile-app-caters-whim

	Declaration
	Abstract
	Acknowledgments
	Dedication
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	Terminology
	Introduction
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Research Contributions
	1.5 Structure of Thesis

	2 Background
	2.1 Introduction
	2.2 Home Automation
	2.2.1 Introduction
	2.2.2 Motivation
	2.2.3 State of the Art
	2.2.4 Analysis
	2.2.5 Summary

	2.3 User Studies
	2.3.1 User Study 1: What People Want
	2.3.2 User Study 2: How People Want To Control the Home
	2.3.3 User Study 3: Can People Program Their Homes

	2.4 Requirements for a Home System
	2.4.1 System
	2.4.2 User Interaction
	2.4.3 Policies

	2.5 Conclusions

	My Contribution
	3 Homer: Architecture
	3.1 Introduction
	3.2 Background
	3.2.1 Conceptual Approaches
	3.2.2 Within the Home

	3.3 Requirements
	3.4 State of the Art
	3.4.1 Existing Solutions
	3.4.1.1 Ubiquitous Frameworks
	3.4.1.2 Home Frameworks
	3.4.1.3 Service-Oriented Frameworks
	3.4.1.4 Component Glueware
	3.4.1.5 Device Communication

	3.4.2 Conclusions

	3.5 Architecture
	3.5.1 OSGi
	3.5.2 Database
	3.5.3 Event Coordinator
	3.5.4 System Gateway
	3.5.5 Component Gateway
	3.5.6 Service Gateway
	3.5.7 Runtime Requirements

	3.6 Components
	3.6.1 Developer Perception
	3.6.1.1 SetUp
	3.6.1.2 Registration
	3.6.1.3 System Device Types
	3.6.1.4 System Devices
	3.6.1.5 Triggers, Conditions and Actions

	3.6.2 User Perception
	3.6.2.1 User Device Types
	3.6.2.2 User Device

	3.6.3 Existing Homer Components

	3.7 Services
	3.7.1 OSGi Services
	3.7.2 Homer Services
	3.7.3 Developer Perception
	3.7.3.1 Writing a Service
	3.7.3.2 Using a Service

	3.7.4 Existing Homer Services

	3.8 Conclusions

	4 Homer: Policies
	4.1 Introduction
	4.2 Background
	4.3 Requirements
	4.4 State of the Art
	4.4.1 Existing Work
	4.4.1.1 Policy Enforcement
	4.4.1.2 Policy Representation
	4.4.1.3 Policy Conflict Handling

	4.4.2 Conclusions

	4.5 Policy Language
	4.5.1 Format
	4.5.1.1 When Clause
	4.5.1.2 Do Clause

	4.5.2 Language
	4.5.3 Representation
	4.5.4 Applicability

	4.6 Policy System
	4.6.1 Architecture
	4.6.2 Registry: Policy Management
	4.6.3 Live Policy Handler: Policy Enforcement
	4.6.3.1 When Clause
	4.6.3.2 Do Clause

	4.6.4 Domain and Language Independence
	4.6.5 Scalability

	4.7 Conflict Handling
	4.7.1 Overlap Detection
	4.7.1.1 Overlap Types
	4.7.1.2 Related Work
	4.7.1.3 Overlap Detection with Homeric Policies

	4.7.2 Conflict Detection
	4.7.2.1 Challenges
	4.7.2.2 Related Work
	4.7.2.3 Environ Effects
	4.7.2.4 Design

	4.7.3 Policy Validation
	4.7.3.1 Checking The When Clause
	4.7.3.2 Checking The Do Clause

	4.7.4 Conflict Resolution
	4.7.4.1 Describing Conflicts
	4.7.4.2 Handling Conflicts

	4.7.5 Illustration
	4.7.5.1 Environs
	4.7.5.2 Policies
	4.7.5.3 Interactions
	4.7.5.4 Results

	4.8 Case Study
	4.8.1 Overview
	4.8.2 Results
	4.8.2.1 Can Users Understand Homeric?
	4.8.2.2 Can Users Translate into Homeric?
	4.8.2.3 Can Users Write Homeric?
	4.8.2.4 Additional Findings

	4.8.3 Summary

	4.9 Conclusions

	5 Homer: Programming the Home
	5.1 Introduction
	5.2 Background
	5.2.1 Programming by Demonstration
	5.2.2 Natural Language Programming
	5.2.3 Visual Programming
	5.2.4 Tangible Programming

	5.3 Requirements
	5.4 State of the Art
	5.4.1 Existing Work
	5.4.1.1 Programming by Demonstration
	5.4.1.2 Natural Language Programming
	5.4.1.3 Visual Programming
	5.4.1.4 Tangible Programming

	5.4.2 Analysis

	5.5 Design Guidelines
	5.6 Homer Web Server
	5.7 Prototype User Interfaces
	5.7.1 Homer for iPhone
	5.7.2 Homer for iPad
	5.7.2.1 Users
	5.7.2.2 Platform
	5.7.2.3 Design

	5.7.3 Homeric Wizard

	5.8 Conceptual Design of a Home Interface
	5.8.1 Touch Control
	5.8.2 Vocabulary
	5.8.3 Combine Control and Monitoring with Rules
	5.8.4 Customisation
	5.8.5 Home Page
	5.8.6 Navigation
	5.8.7 Scenarios
	5.8.8 Perspectives
	5.8.8.1 People
	5.8.8.2 Locations
	5.8.8.3 Devices
	5.8.8.4 Time

	5.8.9 Rules
	5.8.9.1 Feature Control
	5.8.9.2 Intelligent Automated Tutorials
	5.8.9.3 Templates
	5.8.9.4 Library

	5.9 Case Study
	5.9.1 Overview
	5.9.2 Results
	5.9.2.1 Perspectives
	5.9.2.2 Visual and Natural Language Programming Techniques

	5.9.3 Summary

	5.10 Conclusions
	5.10.1 Summary
	5.10.2 Review

	Home Run
	6 Conclusion
	6.1 Thesis Summary
	6.2 Achievements
	6.2.1 Review
	6.2.2 Contributions

	6.3 Applicability on a Wider Scale
	6.4 Limitations
	6.5 Future Work
	6.6 Concluding Remarks

	Back Matter
	References

