Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/37126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDing, Yien_UK
dc.contributor.authorKambouroudis, Dimosen_UK
dc.contributor.authorMcMillan, David Gen_UK
dc.date.accessioned2025-06-11T00:01:27Z-
dc.date.available2025-06-11T00:01:27Z-
dc.date.issued2025-07en_UK
dc.identifier.other104171en_UK
dc.identifier.urihttp://hdl.handle.net/1893/37126-
dc.description.abstractThis paper extends standard AR and HAR models for realised volatility (RV) forecasting to include nonlinearity through two broad regime-switching approaches, the smooth transition and Markov-switching methods. Using daily data for eight international stock markets over the period 2007–2021, a comprehensive comparison is provided using a range of forecast tests that includes statistical and economic (risk management) based metrics. The results show that regime-switching models provide a better in-sample fit and out-of-sample forecasting, although this latter result is less clear-cut at the daily horizon. In comparing the two nonlinear approaches, we find that the abrupt transition technique of the Markov-switching model is preferred to the smooth transition one. It is believed that our results will be of interest to those especially engaged in risk management practice as well as for those modelling market behaviour.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationDing Y, Kambouroudis D & McMillan DG (2025) Forecasting realised volatility using regime-switching models. <i>International Review of Economics and Finance</i>, 101, Art. No.: 104171. https://doi.org/10.1016/j.iref.2025.104171en_UK
dc.rights© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). For commercial reuse, permission must be requested.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_UK
dc.subjectRealised volatilityen_UK
dc.subjectNon-linearityen_UK
dc.subjectRegime switchingen_UK
dc.subjectValue at risken_UK
dc.subjectExpected shortfallen_UK
dc.titleForecasting realised volatility using regime-switching modelsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.iref.2025.104171en_UK
dc.citation.jtitleInternational Review of Economics and Financeen_UK
dc.citation.issn1059-0560en_UK
dc.citation.volume101en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaild.s.kambouroudis@stir.ac.uken_UK
dc.citation.date13/05/2025en_UK
dc.citation.isbn1873-8036en_UK
dc.contributor.affiliationUniversity of Southamptonen_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.identifier.isiWOS:001495142800001en_UK
dc.identifier.scopusid2-s2.0-105005083636en_UK
dc.identifier.wtid2131026en_UK
dc.contributor.orcid0000-0001-8778-3201en_UK
dc.contributor.orcid0000-0002-8230-0028en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.date.accepted2025-05-11en_UK
dcterms.dateAccepted2025-05-11en_UK
dc.date.filedepositdate2025-06-10en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorDing, Yi|0000-0001-8778-3201en_UK
local.rioxx.authorKambouroudis, Dimos|0000-0002-8230-0028en_UK
local.rioxx.authorMcMillan, David G|0000-0002-5891-4193en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2025-06-10en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc/4.0/|2025-06-10|en_UK
local.rioxx.filenameForecasting realised volatility using regime-switching models.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1059-0560en_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
Forecasting realised volatility using regime-switching models.pdfFulltext - Published Version5.28 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.