
Partition Crossover for Continuous Optimization: ePX
Renato Tinós

University of São Paulo

Ribeirão Preto, São Paulo, Brazil

rtinos@ffclrp.usp.br

Darrell Whitley

Colorado State University

Fort Collins, Colorado, USA

whitley@cs.colostate.edu

Francisco Chicano

University of Málaga

Malaga, Spain

chicano@lcc.uma.es

Gabriela Ochoa

University of Stirling

Stirling, Scotland, UK

gabriela.ochoa@cs.stir.ac.uk

ABSTRACT
Partition crossover (PX) is an efficient recombination operator for

gray-box optimization. PX is applied in problems where the objec-

tive function can be written as a sum of subfunctions 𝑓𝑙 (.). In PX,

the variable interaction graph (VIG) is decomposed by removing

vertices with common variables. Parent variables are inherited to-

gether during recombination if they are part of the same connected

recombining component of the decomposed VIG. A new way of

generating the recombination graph is proposed here. The VIG is

decomposed by removing edges associated with subfunctions 𝑓𝑙 (.)
that have similar evaluation for combinations of variables inherited

from the parents. By doing so, the partial evaluations of 𝑓𝑙 (.) are
taken into account when decomposing the VIG. This allows the

use of partition crossover in continuous optimization. Results of

experiments where local optima are recombined indicate that more

recombining components are found. When the proposed epsilon-PX
(ePX) is compared with other recombination operators in Genetic

Algorithms and Differential Evolution, better performance is ob-

tained when the epistasis degree is low.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
• Theory of computation → Random search heuristics;

KEYWORDS
Recombination Operators; Partition Crossover, Gray-box optimiza-

tion

ACM Reference Format:
Renato Tinós, Darrell Whitley, Francisco Chicano, and Gabriela Ochoa. 2021.

Partition Crossover for Continuous Optimization: ePX. In 2021 Genetic and
Evolutionary Computation Conference (GECCO ’21), July 10–14, 2021, Lille,
France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3449639.

3459296

1 INTRODUCTION
In many problems, information about the internal structure of the

problem is available by the inspection of the objective function.

However, this useful information is neglected by most transfor-

mation operators because optimization is viewed as a black-box

© ACM, 2021. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version was published in GECCO ’21, July 10–14, 2021, Lille, France 2021. ACM
ISBN 978-1-4503-8350-9/21/07. https://doi.org/10.1145/3449639.3459288

process. In contrast, gray-box transformation operators take advan-

tage of the knowledge about the decision variables interaction to

guide search [9]. Particularly for recombination, gray-box operators

also allow tunneling between local optima [13].

Here, we consider gray-box optimization problems where the

objective function 𝑓 : D𝑁 → R can be written as:

𝑓 (x) =
∑
𝑙 ∈Ω

𝑓𝑙 (x), (1)

where:

• x = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } ∈ D𝑁 : candidate solution;
• D: domain for the decision variables 𝑥𝑖 ,∀𝑖 ∈ {1, . . . , 𝑁 };
• Ω is the index set of 𝑘-bounded subfunctions, which means

that each subfunction accepts at most 𝑘 variables.

• We will use the notation 1𝑙 to denote an indicator function
that indicates which variables are passed to subfunction

𝑓𝑙 . 1𝑙 can be thought as a bitstring with 1 in the positions

corresponding to variables affecting 𝑓𝑙 and 0 in the rest.

There are several ways to implement recombination. We will

only consider recombination operators that display the gene trans-
mission property [8]. In these operators, a variable in the offspring

must have an assignment inherited from one of the two parents.

Such recombination operators are also respectful: if two parents

share a common variable assignment, that assignment must also

be inherited by the offspring [8].

Partition crossover (PX) is an efficient gray-box recombination

operator originally proposed for the traveling salesman problem

in [14]. PX for pseudo-Boolean problems, i.e., when D = B, was
proposed in [12]. PX decomposes the variable interaction graph
(VIG) [13] by removing variables common to both parents. The

resulting graph is the recombination graph (𝐺𝑟𝑒𝑐). The recombining
components, i.e., the connected components of 𝐺𝑟𝑒𝑐 , determine

the variables that are inherited from the same parent. When D =

B, common variables generally occur more often than in other

domains. PX can be used in other domains; however, we need to

define new ways to identify common variables, or even what that

might mean if variable assignments are only similar. For example,

when D = R, it is necessary to define the precision for checking

when two variables are considered equal. In addition, PX does

not take in account the impact of choosing a variable assignment

from one or another parent on subfunctions 𝑓𝑙 (.). Consider the
following example. Let D = B, 𝑓𝑙 (1, 1, 1) = 2, and 𝑓𝑙 (.) = 1 for all

other combinations of x. If the variables influencing 𝑓𝑙 (.) take value
(0, 1, 1) in one parent and (0, 0, 0) in another parent, it does not

https://doi.org/10.1145/3449639.3459296
https://doi.org/10.1145/3449639.3459296
https://doi.org/10.1145/3449639.3459296

Conference’21, July 2021, R. Tinós et al.

matter whether these variables are inherited from one or the other

parent. In PX, the values of 𝑓𝑙 (.) are not taken into account for

generating the recombination graph.

Here, we propose a new way of generating the recombination

graph. We propose to decompose the VIG by removing edges as-

sociated with subfunctions 𝑓𝑙 (.) that have similar evaluation for

combinations of parents’ variables. For each 𝑓𝑙 (.), the worst com-

bination of parent values for the variables in 1𝑙 is found. If the

difference between 𝑓𝑙 (.) for the worst combination and the best

𝑓𝑙 (.) between the parents is below a threshold, then the edges as-

sociated to this 𝑓𝑙 (.) are removed from the VIG. By doing so, it is

possible to use PX in continuous optimization problems.

The rest of this paper is organized as follows. In Section 2, the

original PX is described. The proposed epsilon-Partition Crossover
(ePX) is described in Section 3. Section 4 presents experiments

where ePX is compared to other recombination operators in pseudo-

Boolean and continuous optimization. Differential evolution (DE)

with ePX is presented; to the best of our knowledge, this is the first

time a gray-box optimization recombination operator is proposed

for DE. Finally, the conclusions are presented in Section 5.

2 BACKGROUND
Let an offspring, x ∈ D𝑁 , be generated when two parents, p ∈ D𝑁
and d ∈ D𝑁 , are recombined. It will be convenient to think of p as

the primary parent and d as the donor parent. We denote with

𝐷𝑃 (p, d) the set of possible potential offspring of p and d when a

recombination operator that transmit alleles is used:

𝐷𝑃 (p, d) =
{
x ∈ D𝑁

���∀𝑖 = 1, . . . , 𝑁 , 𝑥𝑖 = 𝑝𝑖 or 𝑥𝑖 = 𝑑𝑖

}
. (2)

It is very relevant to find ways to generate efficient recombi-

nation. Finding the optimal way of recombining solutions for an

instance, given two parents, is generally NP-hard [5]. However,

information in the parents and the structure of the problem can

be used to find efficient ways to recombine solutions [4, 6, 11, 13].

Information about the interaction between decision variables can

be explicitly stored in the VIG [13]. The VIG is a undirected graph

𝐺𝑉 𝐼𝐺 = (𝑉 , 𝐸), where each vertex 𝑣𝑖 ∈ 𝑉 is related to a decision

variable 𝑥𝑖 and each edge 𝑒𝑖, 𝑗 ∈ 𝐸 indicates that 𝑥𝑖 and 𝑥 𝑗 interact.

In gray-box optimization, the VIG can be built by analyzing the

objective function before running the optimizer. In black-box opti-

mization, an approximation of the VIG can be built by using linkage
models [10] or estimation of distribution algorithms (EDAs) [9].

In network crossover [7], random subgraphs of the VIG define

𝐷𝑃 (p, d). The VIG is also used by PX when generating the recombi-

nation graph. However, information of the parents is employed for

decomposing the VIG. In problems with objective function given

by Eq. (1), e.g., MAX-kSAT, 𝑓 (x) can also be decomposed. Thus, a

greedy strategy can be used for deterministically finding the best

among 2
𝑞
recombination masks, where 𝑞 is the number of recom-

bining components resulting from the VIG decomposition. As a

consequence, the offspring are guaranteed to be piecewise locally

optimal when the parents are local optima. In other words, PX

allows tunneling between local optima.

In PX, the VIG is decomposed by removing vertices related to de-

cision variables common to both parents p and d. If 𝑝𝑖 = 𝑑𝑖 , then it

does not matter if 𝑥𝑖 = 𝑝𝑖 or 𝑥𝑖 = 𝑑𝑖 in the offspring. The connected

components of the resulting (recombination) graph determine the

variables that should remain together. Two new efficient recom-

bination operators improving PX were recently proposed [3, 4].

Both employ the same idea of removing common vertices to de-

compose the VIG. However, they enhance the decomposition of

the recombination graph by identifying articulation points [3] and

using dynamic programming [4].

3 EPSILON-PX (EPX)
Given a parent p and an offspring x, let’s define 1p as the bit mask

with 1 in every position 𝑖 with 𝑥𝑖 = 𝑝𝑖 . Observe that although

1p depends also on the offspring x, we omit this dependence to

simplify the notation. In order to define the ePX for two parents

p and d, it will be convenient to decompose the subfunctions 𝑓𝑙 in

Eq. (1) into three different groups.

Definition 3.1. Let us define the following subsets in Ω:

• Let Ωp denote all subfunctions depending only on variables

in 1p, that is, the subfunctions that can be evaluated by using

variable assignments drawn from parent p.
• Let Ωd denote all subfunctions from Ω − Ωp (not in Ωp)
depending only on variables in 1d, that is, subfunctions that
can be evaluated by using variable assignments drawn from

parent d.
• Let Ωd,p the remaining subfunctions: Ω − Ωp − Ωd, that is,
subfunctions that must be evaluated by using a combination

of assignments of variables variables drawn from p and d.

The evaluation function for offspring x can be rewritten as:

𝑓 (x) =
∑
𝑙 ∈Ωp

𝑓𝑙 (x) +
∑
𝑙 ∈Ωd

𝑓𝑙 (x) +
∑
𝑙 ∈Ωp,d

𝑓𝑙 (x)

=
∑
𝑙 ∈Ωp

𝑓𝑙 (p) +
∑
𝑙 ∈Ωd

𝑓𝑙 (d) +
∑
𝑙 ∈Ωp,d

𝑓𝑙 (x) . (3)

There may exist a subfunction 𝑓𝑧 where the parents p and d
have the same variable assignments for all of the variables in 𝑓𝑧 ;

for example 𝑓4 (𝑥2, 𝑥5, 𝑥9) and
𝑝2 = 𝑑2 = 0, 𝑝5 = 𝑑5 = 1, 𝑝9 = 𝑑9 = 2.125.

In this case, we could inherit from either parent p or parent d. But
by Definition 3.1, we exclusively evaluate these subfunctions using

the primary parent p. In the following we will assume, without

loss of generality, that p is the best parent, that is, 𝑓 (p) ≥ 𝑓 (d).
Then in order to find an improved offspring x, some subfunction

evaluations must be improved by inheriting a subset of assignments

from the donor parent d.
Examples:

We next consider some basic examples of functions. Consider:

𝑓 (x) = 𝑓1 (𝑥1, 𝑥2) + 𝑓2 (𝑥3, 𝑥4) + 𝑓3 (𝑥5, 𝑥6).
In this case, the subfunctions are nonlinear but separable, so it

is always possible to use the following reduced form of 𝑓 (x):

𝑓 (x) =
∑
𝑧∈Ω𝑝

𝑓𝑧 (p) +
∑
𝑧∈Ω𝑑

𝑓𝑧 (d) . (4)

Because the function 𝑓 (x) is separable, either parents p or d could

have the best partial solution for each of the three subfunctions.

Because the evaluation of the primary parent is better than (or

Partition Crossover for Continuous Optimization: ePX Conference’21, July 2021,

equal to) the donor parent, the best possible offspring must inherit
some variable assignments from the primary parent p. If there is
no child better than the primary parent, then the best offspring is

the same as the primary parent, and we obtain Ωp = Ω.
We next consider a function that is not inherently separable:

𝑓 (x) = 𝑓1 (𝑥1, 𝑥2, 𝑥3) + 𝑓2 (𝑥3, 𝑥4, 𝑥5) + 𝑓3 (𝑥5, 𝑥6, 𝑥7) . (5)

If the function in Eq. (5) is pseudo-Boolean, we might find that

two parents have bit assignments 𝑝3 = 𝑑3 = 0 and 𝑝5 = 𝑑5 = 1. By

substituting shared assignments for variables, we can temporarily

rewrite the function in Eq. (5) as:

𝑓 (x) = 𝑓1 (𝑥1, 𝑥2, 𝑥3=0) + 𝑓2 (𝑥3=0, 𝑥4, 𝑥5=1) + 𝑓3 (𝑥5=1, 𝑥6, 𝑥7) .

And by ignoring the assigned variables we could temporarily

rewrite the function in Eq. (5) as:

𝑓 (x) = 𝑓 ′
1
(𝑥1, 𝑥2) + 𝑓 ′2 (𝑥4) + 𝑓

′
3
(𝑥6, 𝑥7), (6)

which is again a separable function. We can assume without loss of

generality that each subfunction knows about the shared assign-

ments (𝑥3 = 0 and 𝑥5 = 1) and computes the appropriate evaluation

so that Eq. (5) and (6) return the same evaluations.

This idea that shared common assignments of values to variables

can temporarily decompose non-separable functions into separable

functions is the key idea behind the standard PX operator. PX first

deletes variables with shared (matching) variable assignments. It

then temporarily constructs a reduced function 𝑓 ′(x) by deleting

the variables with matching assignments. If 𝑓 ′(x) decomposes into

𝑞 linearly separable functions, PX picks the best partial solution

from primary parent p or donor parent d. Thus, given a decomposi-

tion into 𝑞 linearly separable functions, PX returns the best of 2
𝑞

possible offspring using the evaluation function in Eq. (4). Thus, for

the standard PX operator, we require that Ωp,d = ∅. In other words,

only offspring for which Ωp,d = ∅, are considered. We next look at

two other ways that local decomposition can be achieved.

Articulation points. Again assume that the function in Eq. (5)

is pseudo-Boolean, but assume there is only 1 shared bit assignment

(𝑝3 = 𝑑3 = 0). By substituting shared assignments for variables, we

can temporarily rewrite the function in Eq. (5) as:

𝑓 (x) = 𝑓1 (𝑥1, 𝑥2, 𝑥3=0) + 𝑓2 (𝑥3=0, 𝑥4, 𝑥5) + 𝑓3 (𝑥5, 𝑥6, 𝑥7) .

Since the function is k-bounded, there are only a polynomial

number of variable interactions. By constructing the VIG, we can

detect that 𝑓2 and 𝑓3 could be separated by assigning a value to

variable 𝑥5. Thus, we can temporarily create two versions of 𝑓 (x):

𝑓 (x) = 𝑓1 (𝑥1, 𝑥2, 𝑥3=0) + 𝑓2 (𝑥3=0, 𝑥4, 𝑥5=1) + 𝑓3 (𝑥5=1, 𝑥6, 𝑥7),

𝑓 (x) = 𝑓1 (𝑥1, 𝑥2, 𝑥3=0) + 𝑓2 (𝑥3=0, 𝑥4, 𝑥5=0) + 𝑓3 (𝑥5=0, 𝑥6, 𝑥7).
We can again evaluate both of these versions of 𝑓 (x) using the

separable function in Eq. (6). However, to find the best offspring

we must evaluate the function twice, once with 𝑥5 = 0 and once

with 𝑥5 = 1. This additional work is the cost of making the function

𝑓 (x) locally separable.

Removing Subfunctions: The main contribution of this paper

is also showing that we can remove subfunctions as well to promote

local decomposition. Consider again Eq. (5). Assume parent p =

0000000 and parent d = 0010110. The shared variables in this

case are 𝑥1 = 0, 𝑥2 = 0, 𝑥4 = 0, 𝑥7 = 0. In this scenario, there is no

1 3 5 7

2 4 6

f1

f1 f1 f3

f3

f3f2f2

f2

Figure 1: Example for creating the recombination graph.

decomposition because variable 𝑥3 links subfunctions 𝑓1 and 𝑓2,

while variable 𝑥5 links subfunctions 𝑓2 and 𝑓3.

However, from a higher level perspective, it is subfunction 𝑓2
that creates the linkage. Thus, removing subfunction 𝑓2 also locally

decomposes the function 𝑓 (x) (see Figure 1). Of course this also
has a cost; multiple versions of 𝑓2 must be evaluated:

𝑓2 (𝑥3=0, 𝑥4=0, 𝑥5=0) identical to parent p

𝑓2 (𝑥3=0, 𝑥4=0, 𝑥5=1) 𝑥3 from parent p, 𝑥5 from parent d

𝑓2 (𝑥3=1, 𝑥4=0, 𝑥5=0) 𝑥3 from parent d, 𝑥5 from parent p

𝑓2 (𝑥3=1, 𝑥4=0, 𝑥5=1) identical to parent d

Two points should be noted: i) removing subfunctions general-

izes to continuous variable assignments. We are inheriting from

parent p or parent d, so this is still a binary choice, even for con-

tinuous variable assignments; ii) the main challenge we now face

is to decide which subfunctions should be removed to best decom-

pose the function and also create the best opportunities for finding

improved offspring.

Definition 3.2 (𝜖-close subfunctions). Assume an offspring is ob-

tained from parent p and d using a recombination operator that

“transmits alleles,” where the objective function 𝑓 : D𝑁 → R≥0 is
written as Eq. (1). Assume maximization and 𝑓𝑙 (.) ≥ 0. Select a

constant 𝜖 ∈ R with 0 ≤ 𝜖 < 1. Then we say that subfunction 𝑓𝑙 is

𝜖-close if for all possible assignments to offspring x:

𝑓𝑙 (x) ≥ (1−𝜖)max

[
𝑓𝑙 (p), 𝑓𝑙 (d)

]
≥ (1−𝜖) 𝑓𝑙 (p), (7)

Similarly, forminimization we say that 𝑓𝑙 is 𝜖-close if:

𝑓𝑙 (x) ≤ (1+𝜖)min

[
𝑓𝑙 (p), 𝑓𝑙 (d)

]
≤ (1+𝜖) 𝑓𝑙 (d) . (8)

We can use the concept of 𝜖-close subfunctions as one criterion

for deciding which functions can be removed from the VIG. The

new partition crossover that explores 𝜖-close subfunctions is called

epsilon-PX (ePX). Of course, we want to remove subfunctions that

create as much local decomposition as possible. But we also want to

maximize our chances of finding an improving move. By selecting

subfunctions that are 𝜖-close we also exercise control over the

quality of the offspring that can result from decomposition and

recombination, as the next theorem proves.

Theorem 3.3. Let 𝑓 : D𝑁 → R≥0 be an objective function given
by Eq. (1), where 𝑓𝑙 (.) ≥ 0,∀𝑙 ∈ Ω. For maximization, the evaluation
of an offspring, x, generated by recombining two parents, p (the better)
and d, by ePX is bounded by:

𝑓 (x) ≥ (1 − 𝜖) 𝑓 (p) (9)

Conference’21, July 2021, R. Tinós et al.

Proof. ePX decomposes the VIG by removing a subset of sub-

functions where 𝑓𝑙 (x) ≥ (1−𝜖)max[𝑓𝑙 (p), 𝑓𝑙 (d)]. The resulting

graph is the recombination graph (𝐺𝑟𝑒𝑐) and its connected com-

ponents are the recombining components. All of the vertices in a

recombining component are inherited from the same parent. Under

ePX the set Ωp,d indicates those subfunctions that produce edges
in the VIG that connect vertices that are in different recombining

components. Recalling Eq. (3):

𝑓 (x) =
∑
𝑙 ∈Ωp

𝑓𝑙 (p) +
∑
𝑙 ∈Ωd

𝑓𝑙 (d) +
∑
𝑙 ∈Ωp,d

𝑓𝑙 (x) .

In ePX, all variables in a recombining component are inherited

from the parent with best partial evaluation. Thus for subfunctions

𝑙 ∈ Ωp we have 𝑓𝑙 (p) ≥ 𝑓𝑙 (d). Similarly, for subfunctions 𝑙 ∈ Ωd
we have 𝑓𝑙 (d) ≥ 𝑓𝑙 (p). Let Δ ≥ 0 compute the improvement in the

evaluation of the subfunctions in Ωd. We have:∑
𝑙 ∈Ωd

𝑓𝑙 (d) =
∑
𝑙 ∈Ωd

𝑓𝑙 (p) + Δ.

Finally, the subfunctions 𝑙 ∈ Ωp,d are all 𝜖-close and:∑
𝑙 ∈Ωp,d

𝑓𝑙 (x) ≥ (1−𝜖)
∑
𝑙 ∈Ωp,d

𝑓𝑙 (p) .

As consequence, for offspring x:

𝑓 (x) ≥
∑
𝑙 ∈Ωp

𝑓𝑙 (p) +
∑
𝑙 ∈Ωd

𝑓𝑙 (p) + Δ + (1−𝜖)
∑
𝑙 ∈Ωp,d

𝑓𝑙 (p)

𝑓 (x) ≥(1−𝜖) 𝑓 (p) + Δ ≥ (1−𝜖) 𝑓 (p) .
□

Note that if Δ is sufficiently large, then the offspring is guaranteed

to be an improving move. It may be the case that

∑
𝑙 ∈Ωp,d 𝑓𝑙 (x) also

yields an improvement.

3.1 ePX Pseudocode
Algorithm 1 shows the pseudocode for ePX. The maximum 𝑓𝑙 (.)
for the parents (Eq. (7)) is denoted𝑚𝑙 (Step 11). In Step 12, 𝑓 𝑢

𝑙
is the

minimum value of 𝑓𝑙 (.) for all possible offspring y ∈ 𝐷𝑃 (p, d). The
exhaustive search is stopped when a partition with 𝑓𝑙 (.) < (1−𝜖)𝑚𝑙
is found, eventually saving time. In Step 14, the edges representing

𝜖-close subfunctions are removed. Subset Ωℎ indicates the indices

of subfunctions which edges are not removed (Step 16). Like in PX,

the common vertices are also removed (Step 6). This is important

specially when D = B.
There are two types of edges linking vertices in a recombining

component 𝐶 . First, there are internal edges, i.e., edges linking two

vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝐶 . Second, there are external edges, i.e., edges linking
one vertex 𝑣𝑖 ∈ 𝐶 to a vertex 𝑣 𝑗 ∉ 𝐶 . In PX, all external edges of a

recombining component 𝐶 are linked to common vertices. In this

way, the partial evaluation of 𝐶 can be computed by the sum of

𝑓𝑙 (.) related to internal and external edges.

External edges in ePX are some of the edges removed from the

VIG, i.e., 𝜖-close edges. External edges can connect vertices in differ-

ent recombining components, i.e., different connected components

of 𝐺𝑟𝑒𝑐 . The partial evaluations for the recombining components

are computed in steps 21-25. The partial solutions inside the re-

combining components are chosen as in PX (steps 26-34). For the

𝑗-th recombining component, if 𝑔 𝑗 (p) > 𝑔 𝑗 (d), then 𝑥𝑖 = 𝑝𝑖 ∀𝑖
such that vertex 𝑣𝑖 ∈ 𝐶 𝑗 . Otherwise, 𝑥𝑖 = 𝑑𝑖 ∀𝑖 such that vertex

𝑣𝑖 ∈ 𝐶 𝑗 . In some cases, there are no internal edges in the recombin-

ing component. This is the case where the component has only one

vertex; an isolated vertex appears when all its edges are external. A

greedy strategy is adopted for setting 𝑥𝑖 for isolated vertices. In this

strategy, the values of 𝑓𝑙 (.) are computed based on the variables

that were already set. Steps 35-44 show how this strategy is applied.

Algorithm 1
(
x, 𝑓𝑥

)
=ePX

(
p,d,𝜖

)
1: 𝑓𝑥 = 0

2: 𝑥𝑖 = ⊥ ∀𝑖 = 1, . . . , 𝑁

3: 𝐺𝑟𝑒𝑐 = 𝐺𝑉 𝐼𝐺

4: for 𝑖=1 to 𝑁 do
5: if 𝑝𝑖 = 𝑑𝑖 then
6: Delete vertex 𝑣𝑖 with all its edges from𝐺𝑟𝑒𝑐

7: end if
8: end for
9: Ωℎ = ∅
10: for ∀𝑙 ∈ Ω do
11: 𝑚𝑙 = max

[
𝑓𝑙 (p), 𝑓𝑙 (d)

]
12: 𝑓 𝑢

𝑙
= miny∈𝐷𝑃 (p,d)

[
𝑓𝑙 (y)

]
13: if 𝑓 𝑢

𝑙
≥ (1 − 𝜖)𝑚𝑙 then

14: delete from𝐺𝑟𝑒𝑐 all edges associated with 𝑓𝑙 (.)
15: else
16: Ωℎ = Ωℎ ∪ {𝑙 }
17: end if
18: end for
19: Find the 𝑞 connected components of𝐺𝑟𝑒𝑐

20: 𝑔𝑗 (p) = 𝑔𝑗 (d) = 0, ∀𝑗 ∈ {1, . . . , 𝑞 }
21: for ∀𝑙 ∈ Ωℎ do
22: 𝑗 is the index of the connected component where the vertices associated to 𝑓𝑙

belong

23: 𝑔𝑗 (p) = 𝑔𝑗 (p) + 𝑓𝑙 (p)
24: 𝑔𝑗 (d) = 𝑔𝑗 (d) + 𝑓𝑙 (d)
25: end for
26: for 𝑗=1 to 𝑞 do
27: if 𝑔𝑗 (p) > 𝑔𝑗 (d) then
28: 𝑥𝑖 = 𝑝𝑖 ∀𝑖 such that vertex 𝑣𝑖 ∈ 𝐶 𝑗

29: 𝑓𝑥 = 𝑓𝑥 + 𝑔𝑗 (p)
30: else
31: 𝑥𝑖 = 𝑑𝑖 ∀𝑖 such that vertex 𝑣𝑖 ∈ 𝐶 𝑗

32: 𝑓𝑥 = 𝑓𝑥 + 𝑔𝑗 (d)
33: end if
34: end for
35: for ∀𝑙 ∈ (Ω − Ωℎ) do
36: Define vector x𝑝 as 𝑥

𝑝

𝑖
= 𝑥𝑖 if 𝑥𝑖 ≠ ⊥ and 𝑥

𝑝

𝑖
= 𝑝𝑖 otherwise

37: Define vector x𝑑 as 𝑥𝑑
𝑖
= 𝑥𝑖 if 𝑥𝑖 ≠ ⊥ and 𝑥𝑑

𝑖
= 𝑑𝑖 otherwise

38: if 𝑓𝑙 (x𝑝) > 𝑓𝑙 (x𝑑) then
39: 𝑥𝑖 = 𝑝𝑖 for all variables in 1𝑙

40: else
41: 𝑥𝑖 = 𝑑𝑖 for all variables in 1𝑙

42: end if
43: 𝑓𝑥 = 𝑓𝑥 + 𝑓𝑙 (x)
44: end for

Theorem 3.4. Let 𝑓 : D𝑁 → R≥0 be an objective function given
by Eq. (1) and 𝑘 be the maximum epistasis degree, i.e, maximum
number of variables a subfunction depends on. If 𝑀 = |Ω | is 𝑂 (𝑁),
then ePX runs in 𝑂 (𝑁2

𝑘) time. If 𝑘 is 𝑂 (1), then ePX runs in 𝑂 (𝑁)
time.

Proof. The number of edges of𝐺𝑉 𝐼𝐺 for a k-bounded function

is 𝑂 (𝑀𝑘2). If 𝑀 is 𝑂 (𝑁), then doing 𝐺𝑟𝑒𝑐 = 𝐺𝑉 𝐼𝐺 and deleting

vertices and edges associated to common variables (steps 3-8 of

Algorithm 1) is𝑂 (𝑁𝑘2), the same complexity of PX. However, com-

puting 𝑓 𝑢
𝑙

(Step 12) requires in the worst scenario checking all

Partition Crossover for Continuous Optimization: ePX Conference’21, July 2021,

possible assignment for the variables in 𝑓𝑙 using the parents. In this

way, computing 𝑓 𝑢
𝑙

is 𝑂 (2𝑘). If𝑀 is 𝑂 (𝑁), then deleting edges as-

sociated with 𝜖-close subfunctions (steps 10-18) is𝑂 (𝑁 2
𝑘). Finding

the 𝑞 connected components of 𝐺𝑟𝑒𝑐 is 𝑂 (𝑁𝑘2). Because𝑀 and 𝑞

are 𝑂 (𝑁), computing the partial evaluations of the recombining

components (steps 21-25) and assigning the variables (steps 26-44)

are also𝑂 (𝑁𝑘2). Thus, ePX runs in𝑂 (𝑁 2
𝑘) time. If 𝑘 is𝑂 (1), then

the time complexity is 𝑂 (𝑁). □

4 EXPERIMENTS
The proposed crossover (ePX)

1
is compared to other recombination

operators. Results of experiments with pseudo-Boolean and contin-

uous optimization problems are presented. For each type of problem,

two sets of experiments are presented. First, local optima are recom-

bined using different crossover operators and the impact of 𝜖 in the

performance of ePX is investigated. Then, population-based meta-

heuristics with different crossover operators are compared. The

metaheuristics’ parameters are defined based on previous works

[11, 12] and initial experiments not shown here.

4.1 Experimental Design
Different measures are used to compare the results. The successful
recombination rate is given by the number of successful recom-

bination events divided by the number of recombination events

performed during the experiment. A successful recombination oc-

curs when the offspring is better than both parents. The worse
recombination rate is given by the number of worse recombination

events divided by the number of recombination events performed

during the experiment. A worse recombination occurs when the

offspring is worse than at least one parent. In PX, the worse recom-

bination rate is zero, but it can be higher than zero in ePX. The best
fitness is given by the fitness of the best solution found during the

experiment. In continuous optimization problems, we used instead

the best fitness error because the global optimum is known. We also

use time, given by the runtime (in seconds) for the experiment. A

server with 2 processors Intel Xeon E5-2620 v2 (15 MB Cache, 2.10

GHz) and 32 GB of RAM was used. For PX and ePX, the number of
recombining components is also computed. The mean and standard

deviation for these measures are shown. The Wilcoxon signed rank

test with 𝛼 = 0.05 is used to statistically compare the results.

4.1.1 NK Landscapes. The pseudo-Boolean benchmark used in

the experiments is the NK landscapes model. The objective function

is given by Eq. (1), where D = B, 𝑀 = |Ω | = 𝑁 and 𝑘 = 𝐾 + 1 for

𝑙 = 1, . . . , 𝑀 . Ten instances are generated for each combination of

models (random and adjacent) and parameters (𝑁 = {300, 500} and
𝐾 = {2, 4}). The number of runs for each instance is 10, resulting in

100 samples for each configuration. In the first set of experiments for

NK landscapes, 50 local optima generated by local search with first
improvement (LSFI) are recombined. After finding the local optima,

they are exhaustively recombined, i.e., each one is recombined with

the other 49 local optima. The proposed crossover ePX is compared

to: two-point crossover (2X), uniform crossover (UX), multiple 2X

(m2X), multiple UX (mUX), and PX. Each time m2X and mUX are

applied, the two parents are recombined, respectively by 2X and UX,

1
The source code for ePX is freely available on GitHub (https://github.com/rtinos).

10 times, and the offspring with the best evaluation is chosen. In

the second set of experiments for NK landscapes, genetic algorithms
(GAs) with tournament selection, elitism, population restart, bit-flip

mutation, and different types of recombination are applied. The

GA’s parameters are; crossover rate 𝑝𝑐 = 0.6, mutation rate 𝑝𝑚 = 3

𝑁
,

population size 𝜇 = 100, and size of the tournament selection poll

equals to 3. Population restart is implemented by replacing every

50 generations all individuals of the current population, except the

best one, by random individuals optimized by LSFI. LSFI is also

used for the initial population. Each GA is run for
𝑁𝑘
10

seconds.

4.1.2 Continuous Optimization. Four continuous optimization

test functions from the CEC’17 Competition on Single Objective

Real-Parameter Numerical Optimization [1] are used in the ex-

periments. These functions were chosen because their objective

function 𝑓 : R𝑁 → R can be written as Eq. (1). The objective

function for the 𝑖-th test problem is:

𝐹𝑖 (x) = 𝑓 𝑏𝑖
(
M(x − o𝑖)𝑠𝑖

)
+ 𝐹 ∗𝑖 (10)

where 𝑓 𝑏
𝑖
(z) is the basic function, M is the rotation matrix, o𝑖 is

the shift vector, 𝑠𝑖 is the shrink factor, and 𝐹
∗
𝑖
is the offset. Here, we

use the default parameters o𝑖 , 𝑠𝑖 , and 𝐹 ∗𝑖 given in the CEC’17 bench-

mark [1]. The basic functions used here are: Bent Cigar Function

(𝑓 𝑏
1
); Rosenbrock’s Function (𝑓 𝑏

4
); Rastrigin’s Function (𝑓 𝑏

5
); and

Modified Schwefel’s Function (𝑓 𝑏
10
). We transformed the CEC’17

benchmark minimization problems into maximization problems.

The basic function 𝑓 𝑏
4

is non-separable; it can be written as

𝑓 𝑏
4
(x) = ∑𝑁−1

𝑙=1
𝑓𝑙 (𝑥𝑙 , 𝑥𝑙+1). The basic functions 𝑓 𝑏1 , 𝑓

𝑏
5
, and 𝑓 𝑏

10
are

separable, and can be written as 𝑓 𝑏
𝑖
(x) =

∑𝑁
𝑙=1

𝑓𝑙 (𝑥𝑙). However,
by using a rotation matrix, the test function 𝐹𝑖 (x) (Eq. (10)) can
become non-separable. Here we useM = I, where I is the identity
matrix, for 𝐹4. For 𝐹1, 𝐹5, and 𝐹10, we use the rotation matrix (M1)
given in the CEC’17 benchmark [1]. The matrix M1 is composed

of submatrices, each one impacting an independent subset of deci-

sion variables. Each submatrix is a rotation matrix generated from

normally distributed entries by Gram-Schmidt ortho-normalization

with condition number equals to 1 or 2. As a result, the VIG is com-

posed by up to 10 connected components (Table 1); each component

corresponds to one submatrix
2
. The maximum size of the submatri-

ces corresponds to the maximum epistasis degree 𝑘 = max∀𝑙 ∈Ω |1𝑙 |.
The objective function for the continuous optimization problems

used here can be written as Eq. (1), where D = R, and 𝑀 = |Ω | is
𝑂 (𝑁). Other properties of the test problems are given in Table 1

according to the dimension (𝑁), test function, and rotation matrix.

Table 1: Properties of the continuous problems.

Function M 𝑁 𝑘 = max∀𝑙∈Ω |1𝑙 | n. connected comp. in𝐺𝑉 𝐼𝐺

𝐹4 I 30,50,100 2 1

𝐹1 ,𝐹5 ,𝐹10 M1 30 9 6

50 10 8

100 14 10

2
In the CEC’17 competition [1], only black-box algorithms were allowed. However, it

is interesting to note that some of the problems can be decomposed in smaller and

independent subproblems. Despite being not allowed to explicitly explore the structure

of the problem, algorithms, e.g., EDA, could implicitly explore the decomposition of

the objective function.

Conference’21, July 2021, R. Tinós et al.

In the first set of experiments for continuous optimization, 50 lo-

cal optima generated by standard differential evolution (DE/rand/1)

[15] are recombined. The number of runs for each test problem is

10. The DE parameters are: population size 𝜇 = 100, scaling factor

𝐹 = 0.8, and binomial crossover rate 𝐶𝑅 = 0.9. The stopping crite-

rion is best fitness stagnation for 100 + 2𝑁 generations or number

of generations equal to
50000𝑁
𝜇 . After running the DE, the found

local optima are exhaustively recombined, i.e., each one is recom-

bined with the other 49 local optima. The proposed crossover ePX is

compared to: exponential crossover (EX), binomial crossover (BX),

multiple EX (mEX), multiple BX (mBX) and PX. EX and BX are

respectively similar to 2X and UX used in GAs [15]. Each time mEX

and mBX are applied, the two parents are recombined 10 times,

respectively by EX and BX, and the offspring with the best evalu-

ation is chosen. In the second set of experiments for continuous

optimization, DE with different types of recombination is applied.

The DE parameters are the same used in the first set of experiments,

except that each DE is run for 𝑁 seconds. The number of runs is 50.

4.2 Results
This section presents and analyses the results. Additional results

and complete tables are presented in the supplementary materials.

4.2.1 NK Landscapes. We analyzed the impact of 𝜖 in ePX when

local optima were recombined
3
in random NK landscapes with

𝑁 = 500 and 𝐾 = 2. We found that when 𝜖 was increased, the

number of recombining components also increased, as expected.

As a consequence, the successful recombination rate also increased.

However, the mean fitness did not significantly change. Despite

improving the successful recombination rate when increasing 𝜖 ,

the worse recombination rate also increased. In other words, when

increasing 𝜖 , the average number of offspring better than both

parents increased. However, the average number of offspring worse

than at least one parent also increased. Less time was required when

𝜖 increased. This is a result of testing less combinations in Step 12

of Algorithm 1. We set 𝜖 = 0.05 for the rest of the experiments with

NK landscapes.

Tables 2 and 3 present the results of different recombination op-

erators when recombining local optima for NK landscapes
4
. Table 2

shows that ePX found more recombining components than PX. The

results show that removing common vertices and edges associated

with 𝜖-close subfunctions resulted in more recombining compo-

nents. As a consequence, more potential offspring were explored

by ePX than in PX in these experiments.

Finding more recombining components did not necessarily im-

ply finding more successful recombination events when ePX is

compared with PX. In PX, all offspring have fitness better than or

equal to those of the parents. Table 3 shows that the mean best

fitness was significantly better for ePX, when it is compared to all

recombination operators, with exception of PX. When compared to

PX in the experiments with 𝑁 = 300 and 𝑁 = 500, the mean best

fitness was better for ePX in 7 out of 8 experiments. However, we

cannot affirm that fitness results for ePX and PX are significantly

3
Figure S1 in the supplementary materials shows the number of recombining compo-

nents, the successful and worse recombination rates, and the time for different values

of 𝜖 .
4
Tables S1-S4 in the supplementary materials show the complete results.

different, except for one case. The time required by ePX was higher

than the time required by 2X and UX. ePX required more time than

m2X and mUX in, respectively, 9 and 6 out of 12 experiments; the

better results occurred for small epistasis degree (𝐾 = 2). PX also

required less time than ePX, except for two cases.

Table 2: Mean number of recombining components when re-
combining local optima for NK landscapes. The symbols ‘=’,
‘+’, and ‘−’ respectively indicate that the results of the last
column (ePX in this case) is equal, better or worse than the
results related to the respective column. The statistical test
is used to compare the results. The letter 𝑠 indicates that
the differences are statistically significant. The best mean
results are in bold.

Model 𝑁 𝐾 PX ePX

random 300 2 2.2411±0.2574(s+) 2.2473±0.2556
4 1.0012±0.0019(+) 1.0012±0.0018

500 2 2.7026±0.2708(s+) 2.7172±0.2729
4 1.0013±0.0012(+) 1.0013±0.0012

adjacent 300 2 22.8852±0.5819(s+) 22.9176±0.5749
4 9.5854±0.1801(s+) 9.6069±0.1805

500 2 37.3933±0.9161(s+) 37.4822±0.8960
4 15.9802±0.2622(s+) 16.0085±0.2613

In the experiments recombining local optima with different re-

combination operators, the number of recombination events is fixed.

In the GA experiments, the time is fixed. Because a recombination

with ePX generally requires more time than a recombination with

2X, UX, or PX, the mean number of GA generations was smaller for

ePX
5
. However, ePX resulted in significantly better fitness than 2X

and UX in all the experiments with 𝑁 = 300 and 𝑁 = 500, with 2

exceptions for 𝐾 = 4 (Table 4). The GA with ePX also outperformed

m2X and mUX, but in these cases the mean number of generations

was higher for ePX. When compared to PX, ePX produced two

significantly worse results. The difference in fitness was not sta-

tistically different for the other results. In these experiments, the

mean number of generations for ePX was smaller than that for PX.

4.2.2 Continuous Optimization. While the difference between

theminimum andmaximumfitness of the search space is at most 1.0

in NK landscapes, in the test functions for the CEC’2017 benchmark

the difference is much bigger. We tested the impact of changing 𝜖

in ePX when local optima were recombined
6
in problem 𝐹4 with

𝑁 = 100. Again, when 𝜖 increased, the number of recombining com-

ponents of the recombination graph increased. As a consequence,

the successful and worse recombination rates also increased. How-

ever, the mean fitness changed for different values of 𝜖 . In addition,

the time in these experiments did not significantly change when

increasing 𝜖 . In the rest of the experiments, 𝜖 = 0.9.

The results of different recombination operators when recom-

bining local optima for the continuous optimization problems are

5
Table S5 in the supplementary materials shows the number of generations of the GA

and Table S6 shows the complete results for the fitness.

6
Figure S2 in the supplementary materials shows the number of recombining com-

ponents, the successful and worse recombination rates, and the best fitness error for

different values of 𝜖 .

Partition Crossover for Continuous Optimization: ePX Conference’21, July 2021,

Table 3: Best fitness in the experiment with recombining local optima for the NK landscapes.

Model 𝑁 𝐾 2X UX m2X mUX PX ePX

random 300 2 7.28e-1±1.05e-2(s+) 7.28e-1±1.05e-2(s+) 7.28e-1±1.05e-2(s+) 7.28e-1±1.05e-2(s+) 7.32e-1±1.10e-2(+) 7.32e-1±1.09e-2
4 7.44e-1±5.78e-3(s+) 7.44e-1±5.78e-3(s+) 7.44e-1±5.78e-3(s+) 7.44e-1±5.78e-3(s+) 7.44e-1±5.79e-3(+) 7.44e-1±5.79e-3

500 2 7.27e-1±5.48e-3(s+) 7.27e-1±5.48e-3(s+) 7.27e-1±5.48e-3(s+) 7.27e-1±5.48e-3(s+) 7.30e-1±5.33e-3(+) 7.30e-1±5.36e-3
4 7.39e-1±4.02e-3(s+) 7.39e-1±4.02e-3(s+) 7.39e-1±4.02e-3(s+) 7.39e-1±4.02e-3(s+) 7.39e-1±4.03e-3(+) 7.39e-1±4.03e-3

adjacent 300 2 7.24e-1±8.55e-3(s+) 7.20e-1±8.45e-3(s+) 7.27e-1±8.48e-3(s+) 7.20e-1±8.45e-3(s+) 7.38e-1±8.55e-3(s+) 7.38e-1±8.56e-3
4 7.26e-1±6.15e-3(s+) 7.21e-1±6.68e-3(s+) 7.30e-1±6.12e-3(s+) 7.21e-1±6.68e-3(s+) 7.39e-1±6.56e-3(+) 7.39e-1±6.56e-3

500 2 7.21e-1±8.19e-3(s+) 7.17e-1±8.14e-3(s+) 7.23e-1±7.95e-3(s+) 7.17e-1±8.14e-3(s+) 7.36e-1±8.03e-3(+) 7.36e-1±8.03e-3
4 7.20e-1±4.45e-3(s+) 7.15e-1±4.35e-3(s+) 7.23e-1±4.20e-3(s+) 7.15e-1±4.35e-3(s+) 7.33e-1±4.20e-3(-) 7.33e-1±4.20e-3

Table 4: Best fitness in the experiment with the GA for the NK landscapes.

Model 𝑁 𝐾 2X UX m2X mUX PX ePX

random 300 2 7.40e-1±1.07e-2(s+) 7.43e-1±1.08e-2(s+) 7.41e-1±1.09e-2(s+) 7.47e-1±1.07e-2(s+) 7.47e-1±1.10e-2(+) 7.48e-1±1.09e-2
4 7.58e-1±4.82e-3(s+) 7.62e-1±6.65e-3(-) 7.60e-1±5.51e-3(s+) 7.66e-1±6.55e-3(s-) 7.62e-1±5.12e-3(+) 7.62e-1±5.10e-3

500 2 7.35e-1±5.38e-3(s+) 7.40e-1±5.84e-3(s+) 7.36e-1±5.07e-3(s+) 7.47e-1±5.45e-3(s+) 7.48e-1±5.53e-3(+) 7.48e-1±5.42e-3
4 7.50e-1±3.46e-3(s+) 7.51e-1±3.80e-3(+) 7.50e-1±3.69e-3(s+) 7.58e-1±4.32e-3(s-) 7.51e-1±3.28e-3(-) 7.51e-1±3.29e-3

random 300 2 7.49e-1±8.74e-3(s+) 7.40e-1±9.58e-3(s+) 7.49e-1±8.73e-3(=) 7.47e-1±8.80e-3(s+) 7.49e-1±8.73e-3(=) 7.49e-1±8.73e-3
4 7.75e-1±7.36e-3(s+) 7.48e-1±8.07e-3(s+) 7.77e-1±7.00e-3(s+) 7.62e-1±7.74e-3(s+) 7.78e-1±6.90e-3(s-) 7.78e-1±6.90e-3

500 2 7.48e-1±8.14e-3(s+) 7.34e-1±8.65e-3(s+) 7.49e-1±8.22e-3(s+) 7.45e-1±8.56e-3(s+) 7.49e-1±8.22e-3(s-) 7.49e-1±8.22e-3
4 7.68e-1±4.54e-3(s+) 7.34e-1±5.41e-3(s+) 7.75e-1±4.48e-3(s+) 7.53e-1±6.14e-3(s+) 7.78e-1±4.28e-3(-) 7.78e-1±4.27e-3

presented in Tables 5 and 6
7
. Table 5 compares ePX and PX regard-

ing the number of recombining components found in the recom-

bination graph. In PX and ePX, we define that the 𝑖-th vertex is

common (for parents p and d) when |𝑝𝑖 − 𝑑𝑖 | ≤ 1.0𝑒 − 8. Table 5

shows that the VIG was not decomposed in these experiments for

PX. For problem 𝐹4, the number of recombining components found

by PX was only one. For the experiments with M1, the number of

recombining components is similar to the number of components

in 𝐺𝑉 𝐼𝐺 (Table 1). In other words, PX found more than one recom-

bining component in these problems because 𝐺𝑉 𝐼𝐺 was already

fragmented. The difference between the mean number of recombin-

ing components and components of 𝐺𝑉 𝐼𝐺 is not zero (e.g., 5.9996

recombining components and 6 components of 𝐺𝑉 𝐼𝐺 for 𝐹1 and

𝑁 = 30) because removing vertices and edges can eventually reduce

the number of components in 𝐺𝑟𝑒𝑐 . Thus, the results indicate that

removing common vertices was not useful in these problems. For

this reason, the results of PX are not presented in the following.

Table 5 shows that ePX produced better results, mainly for 𝐹4 and

for higher dimension. For 𝐹4, the epistasis degree is 𝑘 = 2 (Table 1).

Finding more recombining components for smaller 𝑘 was also ob-

served in the experiments with NK landscapes (Table 2). Smaller 𝑘

implies a less dense𝐺𝑉 𝐼𝐺 , making it easier to decompose𝐺𝑟𝑒𝑐 . This

is also true when 𝑁 increases. ePX produced a significantly higher

successful recombination rate than all the other recombination op-

erator (EX, BX, mEX, mBX). Findingmore recombining components

results in exploring more potential offspring. In the experiments

with 𝐹4, this was a result of removing edges associated to 𝜖-close

subfunctions. In the experiments withM1, this is a result of using
the information that the 𝐺𝑉 𝐼𝐺 is already fragmented. When the

time is compared, the results of ePX were generally worse. This is

specially true when 𝑘 increases, which can be explained by the time

complexity of ePX: while EX and BX are 𝑂 (𝑁), ePX is 𝑂 (𝑁 2
𝑘).

In the DE experiments, the time is fixed. Because a recombination

with ePX generally requires more time than a recombination with

7
Tables S7-S10 in the supplementary materials show the complete results.

Table 5:Meannumber of recombining components in the ex-
periment with recombining local optima for the continuous
optimization problems.

Problem M 𝑁 PX ePX

𝐹4 I 30 1.0000±0.0000(s+) 3.8441±0.0840
50 1.0000±0.0000(s+) 5.6429±0.1439
100 1.0000±0.0000(s+) 10.8253±0.3574

𝐹1 M1 30 5.9996±0.0013(s-) 5.9828±0.0044
50 7.9994±0.0019(s-) 7.9988±0.0021
100 9.9993±0.0022(-) 9.9992±0.0025

𝐹5 30 5.9996±0.0013(s-) 5.8971±0.0170
50 7.9994±0.0019(s-) 7.9936±0.0036
100 9.9993±0.0022(=) 9.9993±0.0022

𝐹10 30 5.9996±0.0013(s-) 5.9049±0.0210
50 7.9994±0.0019(s-) 7.9910±0.0061
100 9.9993±0.0022(=) 9.9993±0.0022

EX and BX, the mean number of DE generations for ePX is smaller
8
.

However, ePX outperformed the other recombination operators

for 𝐹4 and when M1 was employed, except when compared to

mEX; the results for mEX were statistically better in 4 out of 9

experiments with M1, while the results of ePX were statistically

better in 2 experiments. The results are particularly good for 𝐹4,

where ePX found the global optima in all runs.WhenM1 is used, the
worse results of ePX, when compared to mEX, are mainly explained

by running the DE for fewer generations because ePX requires

more time than EX when 𝑘 increases. Therefore, a new variant

is proposed, where mEX is used in the initial 95% of the running

time, and ePX is used in the last 5%. This variant is calledmEX+ePX.
Table 7 shows that DE with mEX+ePX produced similar or better

results than DE with mEX in all experiments. It also improves DE

with ePX in 7 out of 9 experiments withM1. However, it presents
worse results for function 𝐹4 with 𝑁 = 100.

8
Table S11 in the supplementary materials shows the number of generations of the

DE and Table S12 shows the statistical comparison of DE with ePX and the DE with

other recombination operators regarding the best fitness error.

Conference’21, July 2021, R. Tinós et al.

Table 6: Best fitness error in the experiment with recombining local optima for the continuous optimization problems.

Problem M 𝑁 BX mEX mBX ePX

𝐹4 I 30 4.04e+002±2.12e+002(s+) 3.62e+002±1.75e+002(s+) 3.61e+002±1.86e+002(+) 3.26e+002 ± 1.52e+002
50 8.77e+002±6.33e+002(s+) 7.60e+002±4.99e+002(+) 7.53e+002±5.37e+002(+) 7.11e+002±5.08e+002
100 4.25e+003±2.01e+003(s+) 3.99e+003±1.92e+003(s+) 4.09e+003±1.93e+003(s+) 3.53e+003±1.80e+003

𝐹1 M1 30 3.74e+009±9.10e+008(s+) 3.39e+009±9.46e+008(+) 3.55e+009±1.04e+009(s+) 3.10e+009±1.00e+009
50 1.88e+010±1.51e+010(s+) 1.70e+010±1.34e+010(s+) 1.69e+010±1.40e+010(s+) 1.47e+010±1.26e+010
100 1.73e+010±2.10e+010(s+) 1.70e+010±2.06e+010(+) 1.62e+010±1.96e+010(+) 1.59e+010±1.90e+010

𝐹5 30 2.75e+002±2.58e+001(s+) 2.49e+002±2.74e+001(+) 2.58e+002±2.77e+001(s+) 2.33e+002±2.22e+001
50 5.48e+002±3.40e+001(s+) 5.33e+002±3.85e+001(s+) 5.35e+002±2.96e+001(s+) 4.75e+002±3.15e+001
100 1.25e+003±7.13e+001(s+) 1.18e+003±8.84e+001(s+) 1.19e+003±9.01e+001(s+) 1.11e+003±6.78e+001

𝐹10 30 7.35e+003±2.56e+002(s+) 7.13e+003±1.87e+002(s+) 7.00e+003±2.17e+002(s+) 5.71e+003±3.23e+002
50 1.39e+004±2.97e+002(s+) 1.34e+004±3.85e+002(s+) 1.35e+004±2.57e+002(s+) 1.13e+004±2.99e+002
100 3.19e+004±3.80e+002(s+) 3.09e+004±3.82e+002(s+) 3.09e+004±4.36e+002(s+) 2.72e+004±3.16e+002

Table 7: Best fitness error in the experiment with the DE for the continuous optimization problems.

Function M 𝑁 DE with BX DE with mEX DE with mBX DE with ePX DE with mEX+ePX

𝐹4 I 30 2.05e-006±1.68e-006(s+) 0.00e+000±0.00e+000(=) 9.84e-001±4.81e-001(s+) 0.00e+000±0.00e+000(=) 0.00e+000±0.00e+000
50 3.81e+001±1.06e+000(s+) 0.00e+000±0.00e+000(=) 8.91e+001±2.06e+001(s+) 0.00e+000±0.00e+000(=) 0.00e+000±0.00e+000
100 5.47e+002±1.17e+002(s+) 9.19e+001±5.41e-001(s+) 6.27e+003±2.00e+003(s+) 0.00e+000±0.00e+000(s-) 7.83e+001±5.64e-001

𝐹1 M1 30 3.17e-006±4.17e-006(s+) 0.00e+000±0.00e+000(=) 2.48e+002±1.92e+002(s+) 3.02e-005±2.49e-005(s+) 0.00e+000±0.00e+000
50 1.40e+004±1.31e+004(s+) 1.37e+003±6.50e+002(s+) 3.76e+008±1.64e+008(s+) 8.94e+001±5.68e+001(s-) 1.69e+002±8.14e+001
100 1.17e+009±4.12e+008(s+) 2.01e+008±3.93e+007(s+) 6.81e+010±1.70e+010(s+) 2.79e+010±3.49e+009(s+) 1.24e+008±2.47e+007

𝐹5 30 1.38e+002±6.26e+001(s+) 5.46e+001±6.46e+000(s+) 1.89e+002±2.60e+001(s+) 5.43e+001±8.95e+000(+) 5.05e+001±5.77e+000
50 3.96e+002±2.12e+001(s+) 2.31e+002±1.47e+001(s+) 4.27e+002±2.05e+001(s+) 1.76e+002±1.15e+001(s-) 2.20e+002±1.35e+001
100 1.00e+003±2.90e+001(s+) 1.00e+003±3.63e+001(s+) 1.20e+003±5.47e+001(s+) 1.12e+003±2.41e+001(s+) 9.79e+002±3.21e+001

𝐹10 30 8.15e+003±5.05e+002(s+) 4.12e+003±2.03e+002(s+) 7.88e+003±5.05e+002(s+) 4.22e+003±3.12e+002(s+) 3.97e+003±1.87e+002
50 1.52e+004±3.99e+002(s+) 9.10e+003±3.83e+002(s+) 1.49e+004±3.72e+002(s+) 9.15e+003±3.06e+002(s+) 8.94e+003±3.53e+002
100 3.33e+004±5.10e+002(s+) 2.52e+004±4.90e+002(s+) 3.30e+004±4.85e+002(s+) 2.81e+004±4.56e+002(s+) 2.51e+004±5.16e+002

5 CONCLUSIONS
In PX, the variable interaction graph (VIG) is decomposed by remov-

ing common vertices. The connected components of the resulting

graph (𝐺𝑟𝑒𝑐) indicate the variables that should be inherited together

after recombination. In the proposed ePX, the VIG is decomposed

by removing edges associated with 𝜖-close subfunctions (Defini-

tion 3.2). Common vertices are also removed. Theoretical results

show that the evaluation of an offspring generated by recombining

parents p and d, respectively, with evaluation 𝑓 (p) and 𝑓 (d), is al-
ways better than or equal to (1 −𝜖)max

(
𝑓 (p), 𝑓 (d)

)
, where 𝜖 ∈ R

is a parameter with 0 ≤ 𝜖 < 1 (Theorem 3.3).

By removing edges associated with 𝜖-close subfunctions, the par-

tial evaluations of 𝑓𝑙 (.) are taken into account when decomposing

the VIG. This enables the use of partition crossover in continu-

ous optimization. Here, ePX was compared to other recombination

operators in one pseudo-Boolean problem class (NK landscapes)

and four continuous optimization problems. Results of experiments

where local optima are recombined indicate that more recombining

components are found by ePX than when only common vertices

are removed (in PX). When ePX is compared against other recom-

bination operators in GA and DE, better performance was obtained

in instances where the maximum epistasis degree (𝑘) is low.

The articulation points PX (APX) [3] and the dynastic potential
crossover (DPX) [4] enhance PX by breaking the connected compo-

nents of𝐺𝑟𝑒𝑐 . More connected components result in the exploration

of more potential offspring. However, APX and DPX also decom-

pose initially the VIG by removing common vertices. Thus, a future

work is to enhance APX and DPX by removing edges associated

to 𝜖-close subfunctions. A disadvantage of ePX is that its time

complexity is 𝑂 (𝑁 2
𝑘), while PX is 𝑂 (𝑁𝑘2). Investigating ways of

reducing the time complexity of ePX is another avenue for future

work. The GA and DE with ePX presented here are not intended to

establish new best known algorithms for pseudo-Boolean or con-

tinuous optimization problems. However, we believe that ePX can

be incorporated into efficient algorithms, including some specially

developed for gray-box optimization [2, 4], in order to create state-

of-art algorithms. A simple strategy is to use ePX to recombine

solutions produced by an efficient algorithm, e.g., CMA-ES, or so-

lutions produced by different algorithms in gray-box optimization

problems. Finally, adapting ePX for gray-box optimization problems

with constraints is another relevant future work.

ACKNOWLEDGMENTS
This work was partially supported in Brazil by São Paulo Research

Foundation (FAPESP), under grants 2013/07375-0 and 2019/07665-4,

and National Council for Scientific and Technological Development

(CNPq), under grant 305755/2018-8. It was partially funded in Spain

by Universidad de Málaga, Consejería de Economía y Conocimiento

de la Junta de Andaluía and FEDER, under grant UMA18-FEDERJA-

003 (PRECOG), and the Spanish Ministry of Science, Innovation

and Universities and FEDER under contracts RTC-2017-6714-5 (Eco-

IoT).

Partition Crossover for Continuous Optimization: ePX Conference’21, July 2021,

REFERENCES
[1] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu. 2016. Problem

definitions and evaluation criteria for the CEC 2017 special session and competition
on single objective bound constrained real-parameter numerical optimization. Tech-
nical Report. Nanyang Technological University, Jordan University of Science

and Technology, Zhengzhou University.

[2] A. Bouter, S. C. Maree, T. Alderliesten, and P. A. N. Bosman. 2020. Leveraging

conditional linkage models in gray-box optimization with the real-valued gene-

pool optimal mixing evolutionary algorithm. In Proc. of GECCO’2020. 603–611.
[3] F. Chicano, G. Ochoa, D. Whitley, and R. Tinós. 2018. Enhancing Partition

Crossover with Articulation Points Analysis. In Proc. of GECCO’2018. 269–276.
[4] F. Chicano, G. Ochoa, D. Whitley, and R. Tinós. 2019. Quasi-Optimal Recombina-

tion Operator. In European Conference on Evolutionary Computation in Combina-
torial Optimization (Part of EvoStar). Springer, 131–146.

[5] A. V. Eremeev and J. V. Kovalenko. 2014. Optimal recombination in genetic

algorithms for combinatorial optimization problems: Part II. Yugoslav Journal of
Operations Research 24, 2 (2014), 165–186.

[6] A. V. Eremeev and Y. V. Kovalenko. 2017. Genetic algorithm with optimal re-

combination for the asymmetric travelling salesman problem. In Int. Conf. on
Large-Scale Scientific Computing. 341–349.

[7] M. W. Hauschild and M. Pelikan. 2010. Network crossover performance on NK

landscapes and deceptive problems. In Proc. of GECCO’2010. 713–720.
[8] N. J. Radcliffe. 1994. The algebra of genetic algorithms. Annals of Mathematics

and Artificial Intelligence 10, 4 (1994), 339–384.
[9] R. Santana. 2017. Gray-box optimization and factorized distribution algorithms:

where two worlds collide. arXiv preprint arXiv:1707.03093 (2017).
[10] D. Thierens. 2010. The Linkage Tree Genetic Algorithm. In Parallel Problem

Solving from Nature, PPSN XI, R. Schaefer, C. Cotta, J. Kołodziej, and G. Rudolph

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264–273.

[11] R. Tinós. 2020. Artificial neural network based crossover for evolutionary algo-

rithms. Applied Soft Computing 95 (2020), 106512.

[12] R. Tinós, D. Whitley, and F. Chicano. 2015. Partition crossover for pseudo-boolean

optimization. In Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII. 137–149.

[13] D. Whitley. 2019. Next generation genetic algorithms: a user’s guide and tutorial.

In Handbook of Metaheuristics. Springer, 245–274.
[14] D. Whitley, D. Hains, and A. Howe. 2009. Tunneling between optima: partition

crossover for the traveling salesman problem. In Proc. of GECCO’2009. 915–922.
[15] D. Zaharie. 2009. Influence of crossover on the behavior of differential evolution

algorithms. Applied Soft Computing 9, 3 (2009), 1126–1138.

	Abstract
	1 Introduction
	2 Background
	3 Epsilon-PX (ePX)
	3.1 ePX Pseudocode

	4 Experiments
	4.1 Experimental Design
	4.2 Results

	5 Conclusions
	Acknowledgments
	References

