
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1167–1179
https://doi.org/10.1007/s11265-023-01888-2

Domain‑Specific Optimisations for Image Processing on FPGAs

Teymoor Ali1,3  · Deepayan Bhowmik2 · Robert Nicol3

Received: 16 January 2023 / Revised: 27 July 2023 / Accepted: 28 July 2023 / Published online: 9 September 2023
© The Author(s) 2023

Abstract
Image processing algorithms on FPGAs have increasingly become more pervasive in real-time vision applications. Such algo-
rithms are computationally complex and memory intensive, which can be severely limited by available hardware resources.
Optimisations are therefore necessary to achieve better performance and efficiency. We hypothesise that, unlike generic
computing optimisations, domain-specific image processing optimisations can improve performance significantly. In this
paper, we propose three domain-specific optimisation strategies that can be applied to many image processing algorithms.
The optimisations are tested on popular image-processing algorithms and convolution neural networks on CPU/GPU/FPGA
and the impact on performance, accuracy and power are measured. Experimental results show major improvements over the
baseline non-optimised versions for both convolution neural networks (MobileNetV2 & ResNet50), Scale-Invariant Feature
Transform (SIFT) and filter algorithms. Additionally, the optimised FPGA version of SIFT significantly outperformed an
optimised GPU implementation when energy consumption statistics are taken into account.

Keywords  Domain-specific optimisation · FPGA · Real-time image processing · SIFT · Convolutional neural network
optimisations

1  Introduction

In recent years, real-time vision systems on embedded hard-
ware have become ubiquitous due to the increased need in
different applications such as autonomous driving, edge
computing, remote monitoring etc. Field-Programmable
Gate Arrays (FPGA) offer the speed and flexibility to
architect tight-knit designs that are power and resource-
efficient. It has resulted in FPGAs becoming integrated

into many applications [1]. Often these designs consist of
many low to high-level image processing algorithms that
form a pipeline [2]. Increasingly the race for faster process-
ing encourages hardware application developers to optimise
the algorithms.

Traditionally optimisations are domain agnostic and
developed for general-purpose computing. The majority of
these optimisations aim to improve throughput and resource
usage by increasing the number of parallel operations [3],
memory bandwidth [4] or operations per clock cycle [5]. On
the contrary, domain-specific optimisations are more spe-
cialised in a particular domain and can potentially achieve
larger gain both in terms of faster processing and reducing
power consumption. This paper proposes domain-specific
optimisation techniques on FPGAs that exploit the inherent
knowledge of the image processing pipeline.

Optimisations can be divided into two categories: gen-
eral-purpose and domain-specific. In image processing,
domain-specific optimisations enable a significant reduc-
tion of computational load while maintaining sufficient
accuracy. Example, optimisations are down-sampling [6],
approximation[7], data-type conversion [8], kernel size [9],
bit-width [10] and removing operations entirely. Although
optimisations of algorithms on hardware accelerators, both

Deepayan Bhowmik and Robert Nicol are authors contributed
equally to this work.

 *	 Teymoor Ali
	 t.r.ali@stir.ac.uk

	 Deepayan Bhowmik
	 deepayan.bhowmik@newcastle.ac.uk

	 Robert Nicol
	 robert.nicol@st.com

1	 Division of Computing Science & Mathematics, University
of Stirling, Stirling FK9 4LA, UK

2	 School of Computing, Newcastle University, 1 Science
Square, Newcastle NE4 5TG, UK

3	 Imaging Division, STMicroelectronics, 1 Tanfield, Inverleith
Row, Edinburgh EH3 5DA, UK

http://orcid.org/0000-0002-1576-6645
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01888-2&domain=pdf

1168	 Journal of Signal Processing Systems (2023) 95:1167–1179

1 3

in CPU, GPU and FPGAs have been extensively researched
in [11–13], they are only aimed at the target algorithms.
On contrary, there has been very little work on domain-
specific optimisations of imaging algorithms on FPGAs.
Qiao et al. [14] proposed a minimum cut technique to search
fusible kernels recursively to improve data locality. Rawat
et al. [15] proposed multiple tiling strategies that improved
shared memory and register resources. However, such papers
propose constrained domain-specific optimisation strate-
gies that exclusively target CPU and GPU hardware only.
Reiche et al. [16] proposed domain knowledge to optimise
image processing accelerators using high-level abstraction
tools such as domain-specific languages (DSL) and reus-
able IP-Cores. Other optimisations strategies such as loop
unrolling, fission, fusion etc., do not translate well onto
FPGA design. In demonstrating our proposition, we pre-
sent a thorough analysis of well-known image processing
algorithms, emerging CNN architectures (MobileNetV2[17]
& ResNet50[18]) and Scale Invariant Feature Transform
(SIFT) [19]. The decision to select Mobilenet is due to its
popular use within embedded systems and ResNet, which
consistently obtained higher accuracy rates than other avail-
able architectures. In addition, SIFT being the most popu-
lar feature extraction algorithm due to its performance and
accuracy. The algorithmic properties are exploited with
proposed domain-specific optimisation strategies. The opti-
mised design is evaluated and compared with other general
optimised hardware designs regarding performance, energy
consumption and accuracy. The main contributions of this
paper are:

•	 Proposition of three domain-specific optimisation strate-
gies for image processing and analysing their impact on
performance, power and accuracy; and

•	 Validation of the proposed optimisations on a widely
used representative image processing algorithms and
CNN architectures (MobilenetV2 & ResNet50) through
profiling various components in identifying the common
features and properties that have the potential for optimi-
sations.

2 � Domain‑Specific Optimisations

Image processing algorithms typically form a pipeline with
a series of processing blocks. Each processing block consists
of a combination of low, mid, intermediate and high-level
imaging operations starting from colour conversion, filtering
to histogram generation, features extraction, object detec-
tion or tracking. Any approximation and alteration to the
individual processing block or the pipeline have an impact
on the final outcome, such as overall accuracy or run-time.

However, depending on the applications such alterations are
expected to be acceptable as long as they are within a certain
error range (e.g., ∼ ±10%).

Many image processing algorithms operations share com-
mon functional blocks and features. Such features are useful
to form domain specific optimisations strategies. Within the
scope of this work, we profile and analyse image processing
algorithms to enable potential areas for optimisations. How-
ever, such optimisations impact the algorithmic accuracy
and therefore it is important to identify the trade-off between
performance, power, resource usage and accuracy.

We hypothesise that understanding of this domain knowl-
edge, e.g., processing pipeline, individual processing blocks
or algorithmic performance, can be used for optimisations to
gain significant improvements in run-time and lower power
consumption, especially in FPGA-based resource-limited
environments. Based on the common patterns observed in
a variety of image processing applications, this section pro-
poses three domain-specific optimisation (DSO) approaches:
1) downsampling, 2) datatype and 3) convolution kernel size.
However, on the flip side, often the optimisation can lead to
lower accuracy in return for gains in speed and lower energy
consumption. We compare the effectiveness of these opti-
misations against benchmark FPGA, GPU and CPU imple-
mentations and show the impact on accuracy. Within the
scope of this paper, we have identified three optimisations
strategies which are discussed below:

2.1 � Optimisation I: Down Sampling

Down/subsampling optimisation reduces the data dimen-
sionality while largely preserving image structure and hence
accelerates run-time by lowering the number of computa-
tions across the pipeline. Sampling rate conversion opera-
tions such as downsampling/subsampling are widely used
within many application pipelines (e.g., low bit rate video
compression [6] or pooling layers in Convolutional Neural
Network (CNN) [20]) to reduce computation, memory and
transmission bandwidth. Image downsampling reduces the
spatial resolution while retaining as much information as
possible. Many image processing algorithms use this tech-
nique to decrease the number of operations by removing
every other row/column of an image to speed up the execu-
tion time. However, the major drawback is the loss of image
accuracy due to the removal of pixels. We apply down sam-
pling optimisation using bilinear interpolation and measure
both the run-time and accuracy.

2.2 � Optimisation II: Datatype

Bit width reduction through datatype conversion (e.g., float-
ing-point (FP) to integer) significantly reduces the number
of arithmetic operations resulting in optimised run-time at

1169Journal of Signal Processing Systems (2023) 95:1167–1179	

1 3

lower algorithmic accuracy. Whilst quantising from FP to
integer representations is a common in the software domain,
one of the advantages of reconfigurable hardware is the
capability to reduce dimensionality to arbitary sizes (e.g.,
7, 6, 5, 4 bits) as a tradeoff between accuracy and power/
performance[21–24].

In the field of Image processing, majority of the algo-
rithms are inherently developed using FP calculations.
Although, FP has a higher accuracy representation, it is
more expensive to compute, i.e., large number of arithmetic
computations resulting in increasing resource (higher bit-
width) and energy usage. The substitute for floating-point
is fixed-point arithmetic, in which there is a fixed location
of the point separating integers from fractional numbers.
However, using fixed-point representation, while gaining
performance in speed, will result in loss of accuracy vs FP
representation. A datatype conversion optimisation is pro-
posed here where all operation stages are converted from FP
to integer and note the impact on performance and accuracy.

2.3 � Optimisation III: Convolution Kernel Size

Convolution kernel size optimisation reduces computational
complexity, which is directly proportional to the squared
size of the filter kernel size, i.e., O(n2) or quadratic time
complexity. Convolution is a fundamental operation used in
most image processing algorithms that modify the spatial
frequency characteristics of an image. Given a kernel and
image size n × n and M × N , respectively, it would require
n2MN multiplications and additions to convolve the image.
For a given image, the complexity relies on the kernel size
leading to a complexity of O(n2) . Reducing kernel size sig-
nificantly lowers the number of computations, e.g., a 3 × 3
kernel replacing 5 × 5 kernel would reduce the computation
by a factor of x2.7 . Therefore, we propose this as an ideal
target for optimisation i.e., to use a smaller kernel size which
is however may come at the cost of accuracy.

3 � Case Study Algorithms

In order to apply the optimisations proposed in Section 2, In
this section, a brief description of the representative algo-
rithms and architectures which the optimisations selected
will be applied:

3.1 � SIFT

SIFT [19] is one of the widely used prototypical feature
extraction algorithms. To demonstrate the proposed optimi-
sations, we’ve implemented various versions of SIFT which
consists of two main and several sub-components as shown
in Fig. 1 and described below.

3.1.1 � Scale‑Space Construction

Gaussian Pyramid  The Gaussian pyramid L(x, y, �) is con-
structed by taking in an input image I(x, y) and convolving it
at different scales with a Gaussian kernel G(x, y, �):

where � is the standard deviation of the Gaussian distri-
bution. The input image is then halved into a new layer
(octave), which is a new set of Gaussian blurred images.
The number of octaves and scales can be changed depending
on the requirements of the application.

The implemented block design reads pixel data of input images
into a line buffer show in Fig. 2a. The operations in this stage
are processed in parallel for maximum throughput. This is due
to significant matrix multiplication operations which greatly
impacts the run-time. This stage is the most computationally
intensive, making it an ideal candidate for optimisation.

The Difference of Gaussian DOG(x, y, �) , in Eq.3 is
obtained by subtracting the blurred images between two
adjacent scales, separated by the multiplicative factor k.

The minima and maxima of the DOG are detected by
comparing the pixels between scales shown in Fig. 2b. This
identifies points that are best representations of a region
of the image. The local extrema are detected by compar-
ing each pixel with its 26 neighbours in the scale space. (8
neighbour pixels within the same scale, 9 neighbours within
the above/below scales). Simultaneously, the candidate key-
points with low contrast or located on an edge are removed.

(1)G(x, y, �) =
1

2��2
e
−

x2+y2

2�2 ,

(2)L(x, y, �) = G(x, y, �) ∗ I(x, y),

(3)DOG(x, y, �) = L(x, y, k�) − L(x, y, �).

Figure 1   SIFT Algorithmic
Block Diagram.

1170	 Journal of Signal Processing Systems (2023) 95:1167–1179

1 3

3.1.2 � Descriptor Generation

Magnitude & Orientation Assignment  Inside the SIFT
descriptor process shown in Fig. 3, the keypoint’s magni-
tude and orientation are computed for every pixel within
a window and then assigned to each feature based on local
image gradient. Considering L is the scale of feature points,
the gradient magnitude m(x, y) and the orientation �(x, y)
are calculated as:

(4)m(x, y) =
√

Lx(x, y) + Ly(x, y),

(5)�(x, y) = tan−1
(

L(x, y + 1) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)

)

.

Once the gradient direction is obtained from the result of
pixels in the neighbourhood window, then a 36 bin histo-
gram is generated. The magnitudes are Gaussian weighted
and accumulated in each histogram bin. During the imple-
mentation, m(x, y) and �(x, y) are computed based on the
CORDIC algorithm [25] in vector mode to map efficiently
on an FPGA.

3.1.3 � Keypoint Descriptor

After calculating the gradient direction around the selected
keypoints, a feature descriptor is generated. First, a 16 × 16
neighbourhood window is constructed around a keypoint
and then divided into sixteen 4 × 4 blocks. An 8-bin orien-
tation histogram is computed in each block. The generated
descriptor vector consists of all histogram values resulting

Figure 2   a Scale-Space Hardware Block Diagram b Extrema Detection in Local Space/Scale Neighbourhood.

Figure 3   Magnitude & Orienta-
tion Assignment and Keypoint
Descriptor Generation.

1171Journal of Signal Processing Systems (2023) 95:1167–1179	

1 3

in a vector of 16 × 8 = 128 numbers. The 128-dimensional
feature vector is normalised to make it robust from rotational
and illumination changes.

3.2 � Digital Filters

Digital filters are a tool in image processing to extract useful
information from noisy signals. They are commonly used for
tasks such as smoothing, edge detection, and feature extrac-
tion. Filters operate by applying a kernel, or a small matrix
of values, to each pixel of an image. The kernel is convolved
with the image, and the resulting output value is placed in
the corresponding pixel location of the output image shown
in the Eq. 6. Where I(x, y) is the input image and K(kx, ky) is
the kernel. The convolution result O(x, y) is calculated by:

The indices kx and ky correspond to the coordinates of
the kernel K, x and y correspond to the coordinates of the
output image O.

3.2.1 � Box

The box filter is a simple spatial smoothing technique that con-
volves the image with the kernel shown in Fig. 4a, replacing
each pixel value with the average of its neighboring pixels. This
process has the effect of reducing high frequency noise while
preserving the edges and important details of the image. The
box filter is also computationally efficient and easy to imple-
ment, making it a popular choice for many image processing
applications. However, it can cause blurring and loss of sharp-
ness in the image if the kernel size is too large.

3.2.2 � Gaussian

The Gaussian filter is a widely used linear filter in image
processing and computer vision. It is a type of low-pass fil-
ter that removes high-frequency noise while preserving the
edges in an image. The filter works by convolving the image
with a Gaussian kernel in Fig. 4b, which is a normalised
two-dimensional Gaussian distribution. The Gaussian ker-
nel has a circularly symmetric shape and can be expressed
mathematically as:

(6)O(x, y) =
∑

kx

∑

ky

I(x − kx, y − ky) ⋅ K(kx, ky)

where � is the standard deviation of the Gaussian distribu-
tion, and x and y are the distances from the centre of the
kernel. The size of the kernel and the value of � determine
the amount of smoothing applied to the image.

3.2.3 � Sobel

The Sobel filter is a type of edge-detection filter that uses
two kernels shown in Fig. 4c, one for horizontal changes (x
kernel) and one for vertical changes (y kernel) in an image.
The Sobel filter works by convolving each of these kernels
with the image and then computing the gradient magnitude
at each pixel using the formula:

where Gx and Gy are the convolved images using the x and y
kernels, respectively. The resulting gradient image highlights
edges in the original image and the direction of the edge can
be determined by calculating the angle of the gradient using:

3.3 � Convolutional Neural Network

Convolutional Neural Network’s are a class of deep neu-
ral networks typically applied to images to recognise and
classify particular features. A CNN architecture typically
consists of a combination of convolution, pooling, and fully
connected layers shown in Fig. 5.

The convolution layers extract features by applying a con-
volution operation to the input image using a set of learnable
filters (also called kernels or weights) designed to detect
specific features. The output of the convolution operation
is a feature map, which is then passed through a non-linear
activation function, such as ReLU, to introduce non-linearity
into the network. The convolutional layers can be stacked
to form a deeper architecture, where each layer is designed
to detect more complex features than the previous one.
In addition, it is the most computationally intensive layer
because each output element in the feature map is computed
by repeatedly taking a dot product between the filter and a
local patch of the input, which results in a large number of
multiply-add operations.

The pooling layers are responsible for reducing the spatial
size of the feature maps while retaining important infor-
mation. The most common types of pooling are max pool-
ing and average pooling. These layers typically use a small

(7)G(x, y) =
1

2��2
e
−

x2+y2

2�2

(8)
√

(G2
x
+ G2

y
)

(9)� = tan−1(Gy∕Gx)

Fig. 4   Common image filter kernels

1172	 Journal of Signal Processing Systems (2023) 95:1167–1179

1 3

window that moves across the feature map and selects the
maximum or average value within the window. This opera-
tion effectively reduces the number of parameters in the net-
work and helps to reduce overfitting.

The fully connected layers make predictions based on
the extracted features. These layers take the output from the
convolutional and pooling layers and apply a linear transfor-
mation to the input, followed by a non-linear activation func-
tion. The fully connected layer usually has the same number
of neurons as the number of classes in the dataset, and the
output of this layer is passed through a softmax activation
function to produce probability scores for each class. A CNN
architecture also includes normalisation layers such as batch
normalisation, dropout layers that are used to regularise the
network and reduce overfitting, and an output layer that pro-
duces the final predictions.

4 � Experimental Results and Discussion

We verify the proposed optimisations on ’SIFT’, ’Box’,
’Gaussian’ and ’Sobel’(in Fig. 6) algorithms, as well as
MobileNetV2 and Resnet50 CNN architectures. This is
achieved by creating baseline benchmarks on three target
hardware CPU, GPU and FPGA, followed by the realisations

of the optimisations individually and combined. The CPU and
GPU versions for Filter and SIFT algorithms are implemented
using OpenCV [26]. Pytorch library is used to implement CNN
architectures and optimisations. Additionally, both architec-
tures are pre-trained on the image-net classification dataset.
The FPGA implementation for all algorithms is developed
using Verilog (SIFT/Filter) and HLS (CNN). All baseline
algorithms and CNN model use floating point 32 (FP32), and
an uncompressed grayscale 8-bit 1920 × 1080 input image is
used for the SIFT algorithm, and each sub-operation is pro-
filed. Details of the target hardware/software environments and
power measurement tools are given in Table 1.

Dataset  The input images used in the CNN and Filter exper-
iments are from LIU4K-v2 dataset [31]. The dataset contains
2000 high resolution 3840 × 2160 images with various back-
grounds and objects.

4.1 � Performance Metrics

As part of the evaluation process, we measure using three
different performance metrics, namely, 1) execution time, 2)
energy consumption and 3) accuracy.

Figure 5   Typical layers imple-
mented within CNN Architec-
tures.

Figure 6   Filter Algorithms Applied onto Input Image.

1173Journal of Signal Processing Systems (2023) 95:1167–1179	

1 3

4.1.1 � Execution Time

The execution time measured for the CPU and GPU plat-
forms uses time function libraries to count the smallest tick
period. Each algorithm/operation is run for 1000 iterations
and averaged to minimise competing resources or other
processes directly affecting the architecture, especially for
the CPU architecture. The GPU has an initialisation time
which is taken into account and removed from the results.
The timing simulation integrated into Vivado design suite
software is used to measure the time for the FPGA platform.
The experiments exclude the time of both the image read
and write from external memory. We compute the frame per
second (FPS) as the inverse of the execution time:

4.1.2 � Power Consumption

Two common methods used for measuring power are soft-
ware and hardware-based. Accurately estimating power
consumption is a challenge using software-based methods,
which have underlying assumptions in their models and
may not measure other components within the platform.
In addition, taking the instantaneous watt or theoretical
TDP of a device is not accurate since power consumption
varies on the specific workload. Therefore, we obtain the
total energy consumed by measuring the power over the
duration of the algorithm executed. A script is developed
to automatically start and stop the measurements during
the execution of the algorithm and extract the power values
from the software.

With the use of a power analyser within the Vivado
design suite and the MaxPower-tool, we measure the
FPGA power consumption in two parts, (1) static power
and (2) dynamic power. Static power relates to the con-
sumption of power when there is no circuit activity and
the system remains idle. Dynamic power is the power
consumed when the design is actively performing tasks.
The power consumption for the CPU and GPU is obtained
using HWMonitor and Nvidia-smi software. To have a
fair comparison across the target hardware for the SIFT

(10)FPS = 1∕Execution Time.

algorithm, we normalise it as the energy per operation
(EPO):

Additionally, We calculate the energy consumption for
the Filter and CNN algorithms:

4.1.3 � Accuracy

With an expectation that the optimisations impact over-
all algorithmic accuracy, we capture it by measuring the
Euclidean distance between the descriptors generated
from the CPU (our comparison benchmark) to the descrip-
tor output produced by the FPGA. The Euclidean distance
d(x, y) is calculated in Eq. 13 where x and y are vectors,
and K is the number of keypoints generated.

Subsequently, the accuracy for each Euclidean distance is
calculated using Eq. 14:

The Euclidean Distance denotes the distance between the
two descriptor vectors being compared, and Max Distance
represents the maximum Euclidean distance found in the
vector. The accuracy is transformed to have 100% indicate
identical descriptors, while 0% indicates completely dissimi-
lar descriptors.

We used root mean square error (RSME) to compare the
input image to the output images produced by each hard-
ware accelerator to determine the pixel accuracy. RMSE
is defined as:

(11)Energy = (Power ∗ Execution Time).

(12)EPO = (Power ∗ Execution Time)∕Operations.

(13)d(x, y) =

√

√

√

√

K
∑

i=1

(xi − yi)
2.

(14)Accuracy = 100 −
((

Euclidean Distance

Max Distance

)

× 100
)

(15)RMSE =

√

√

√

√(
1

n
)

n
∑

i=1

(yi − xi)
2

Table 1   Summary Table:
Hardware/Software
Environment & Measurement
Tools.

Architecture Hardware Software /Libraries Power Measurement

Model Clock

CPU AMD 5900x 4.8 GHz Pytorch 2.0 [27] / OpenCV HWMonitor [28]
GPU Nvidia GTX 3070 1730 MHz Pytorch 2.0 / OpenCV Nvidia-smi [29]
FPGA Xilinx ZCU102 300Mhz Vivado 2022.2 / Vitis 2020.2 MaxPower-tool[30]

/ Power Analyser

1174	 Journal of Signal Processing Systems (2023) 95:1167–1179

1 3

Where the difference between the pixel intensity values of
output and input (yi,xi) images. Divided by N, which is the
total number of pixels in the image.

The accuracy of the CNN architecture is measured by
taking the number of correct predictions divided by the total
number of predictions:

A high accuracy indicates that the model is making accu-
rate predictions, while a low accuracy suggests room for
improvement in the model’s performance.

4.2 � Results and Discussions

The results and discussions section contains the evalu-
ation of algorithms in three categories, feature extrac-
tion algorithms (SIFT), filter algorithms (Box, Gaussian,
Sobel) and Convolution Neural Networks (MobilenetV2,
Resnet50).

4.2.1 � SIFT

We obtain results for FPGA implementations of the SIFT
algorithm, considering various optimisations or combina-
tions of them. Two sets of results are captured for octave,
scale of (2,4) and (4,5) as they are regularly reported in the
literature for SIFT implementation on FPGA. The results
are primarily obtained at a target frequency of 300 MHz for
various components of SIFT and execution time and accu-
racy are reported in Table 2 along with FPS numbers in
Fig. 7. Finally, for the completeness we report the resource
and power usage statistics for optimised configurations at
300 MHz in Table 3.

In terms of individual optimisations on the base FPGA
implementation, down sampling and integer optimisations
had the most reduction of accuracy but in trade for a greater
reduction of run-time. On the other hand, 3 × 3 kernel size
(down from default 5 × 5 ) had better accuracy results but
with a small improvement on the overall run-time. In the
case of combined optimisations, both down sampling and

(16)Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100

integer combinations greatly reduced the execution times
but at a cost of 8 ∼ 10% accuracy loss. In the most opti-
mised case, (4,5) and (2,4) configurations achieved 17 and
50 fps, at an accuracy of 90.18% and 89.45% , respectively.
The 10 ∼ 11% loss in accuracy in both configurations can
be attributed to the loss of precision and pixel information
resulting in imperfection in feature detection Fig. 7.

The comparison with optimised CPU and GPU imple-
mentations are shown in Table 4 which includes total exe-
cution time as well as energy consumption per operation
(nJ/Op). Results indicate the optimised FPGA implemen-
tation achieved comparable GPU run-time at 600 MHz but
significantly outperformed them when energy consump-
tion statistics are taken into account. The GPU results
excluded the initialisation time, which would add greater
latency to the overall run-time. In addition, the power con-
sumption of the GPU is at 12.47nJ/Op, which would make
it a difficult choice for real-time embedded systems. On
the other hand, optimised FPGA implementations have
better performance per watt than the GPU and CPU. The
comparison with the state-of-the-art FPGA implemen-
tations are reported in Table 5 and results show major
improvements in the run-time even with larger image size
and more or similar feature points ( ∼ 10000).

4.2.2 � Filter Implementations

Figures 8 and 9 plots the run-time and energy consumption
of three image processing filter algorithms (Box, Gaussian,
and Sobel) with various optimisations applied to the baseline

Table 2   SIFT: Resource Usage Summary of all Optimisations Down-
sampling, 3 × 3Kernel & Integer Arithmetic Configuration.

Configuration LUTs Registers BRAM DSP Power Usage
(Watts)
Dynamic/Static

(2,4) 42.11% 14.32% 21.38% 5.36% 10.324/0.97
(4,5) 43.94% 15.38% 23.30% 6.51% 17.343/0.99

Figure 7   SIFT: FPS and Accuracy for each optimisation on both con-
figurations (octave, scale).

1175Journal of Signal Processing Systems (2023) 95:1167–1179	

1 3

algorithm. Comparing the baseline performance, the CPU
architecture suffers the most in execution time and energy
consumption which can be attributed to lack of many com-
pute cores. In contrast, GPUs and FPGAs exploit data paral-
lelism and stream processing to significantly reduce runtime.

The figures show that the performance of both GPU and
FPGA are comparable in both metrics studied. The GPU
demonstrated a marginally better computation speed com-
pared to the FPGA, with a average improvement of 12.59%
for Box and Gaussian algorithms. However, the GPU has
been observed to consume ∼ 1.20× more Joules than the
FPGA. The high energy cost can be derived from the sup-
port/unused logic components consuming static power. In
the case for Sobel, the FPGA is 1.11 ∼ 1.5× faster over the
GPU across all optimisation strategies. The smaller kernel
size allows the FPGA use its DSP slices to efficiently com-
pute the algorithm, whilst the GPU operations do not fully
occupy the compute resources available which results in load
imbalance and communication latency.

All optimisations, e.g Datatype, Kernel, and Down-
sampling optimisations had major improvements for each
accelerator. Reducing the kernel size to 3 × 3 kernel size had
the most impact due to lowering the number of operations
computed during the convolution operation. The Downsam-
pling and Datatype optimisations had around 11.8 ∼ 24.5%

decrease in run-time for all algorithms. The optimisation
runtime results and accuracy’s of each filter algorithm are
reported in Tables 6 and 7 respectively.

4.2.3 � CNN Architecture

Figure 10 displays the runtime performances and classifica-
tion accuracy of the baseline and optimised CNN algorithms
on each hardware architecture. The results show that the
CPU, GPU, and FPGA exhibit similar levels of performance,
with the GPU having an average improvement of 5.41 ∼ 12%
over the FPGA for the Downsampling optimisation in
MobileNetV2 and the baseline for Resnet50, respectively.
The FPGA leads in the Datatype optimisation over the GPU
with a 6.25 − 11.1% reduction in time for both CNNs. The
Datatype optimisation involves quantisation of the model’s
weights from FP32 to 8-bit to reduce complexity. The FPGA
computes the quantised operations faster on both architec-
tures due to exploiting the DSP blocks and requiring no addi-
tional hardware logic for floating-point arithmetic. However,
the quantised model weights are unable to represent the full
range of values present in the input image, resulting in a
∼ 10% accuracy loss for all platforms. The Downsampling
strategy has a slight improvement in run-time with minimal
impact on the accuracy, with a loss around ∼ 5%.

Table 3   SIFT: Performance
against state-of-the-art.

Bolded values reprsents the most optimised configuration in relation to FPS

Octave, Scale Hardware Platform Image Size Clock (Mhz) Frame
Rate
(FPS)

Chiu [32] 2,4 Virtex-6 640 × 480 100 30
Mizuno [33] 2,4 65 nm CMOS 1920 × 1080 N/A 30
Vourvoulakis [34] 1,4 Cyclone IV 640 × 480 21.7 70

Proposed
2,4 Zynq UltraScale+ 1920 × 1080 300 50
2,4 Virtex UltraScale+ 1920 × 1080 600 100

Table 4   SIFT: Profiling Summary on each Hardware Platform. Baseline & Optimised (Octave, Scale).

Bolded values represents the the architecture with the fastest runtime and lowest power consumption

Operation (ms) CPU (4,5) GPU (4,5) Optimised
FPGA (4,5)

Baseline
FPGA (4,5)

Optimised
FPGA (2,4)

Baseline
FPGA (2,4)

Optimised
FPGA (2,4)
(600Mhz)

Gaussian Pyramid 1118 3 36 45 8 19 4
Extrema Detection 133 2 8 18 3 10 3
Orientation & Magnitude Assignment 128 1 4 16 4 9 2
Descriptor Generation 50 1 10 14 5 5 1
Total Execution Time (ms) 1429 7 60 93 20 43 10
Energy Consumption (nJ/Op) 1620 12.47 4.09 7.34 2.41 5.82 4.61

1176	 Journal of Signal Processing Systems (2023) 95:1167–1179

1 3

Figure 8   Filter: Runtime comparison for optimisations applied on
each architecture.

Figure 9   Filter: Energy consumption comparison for optimisations
applied on each architecture.

Table 6   Image Processing Filters Runtime & Energy Result Summary.

Algorithm Baseline Runtime (ms) Optimised Algorithm Runtimes (ms)

Datatype (INT) Kernel (3x3) Downsampling

CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA

Box Filter (50x50) 38 20 23 32 16 18 18 7 8 29 18 20
Gaussian Filter (31x31) 36 23 25 31 19 22 22 13 15 27 17 21
Sobel Filter (7x7) 65 25 22 38 19 17 45 23 19 55 21 20

Energy Consumption (Joules)
Box Filter 2.85 0.76 0.69 2.56 0.57 0.5 1.53 0.25 0.23 2.5 0.65 0.57
Gaussian Filter 3.16 0.76 0.72 2.63 0.72 0.69 1.87 0.46 0.40 2.3 0.63 0.58
Sobel Filter 5.2 0.95 0.66 2.56 0.70 0.51 3.6 0.85 0.61 9.18 4.4 0.6

Table 5   SIFT: Optimisation Result Summary, 300 Mhz Configuration (Octave, Scale).

Operations Runtimes (ms)

Gaussian
Pyramid

Extrema
Detection

Orientation
Magnitude
Assignment

Descriptor
Generation

Total Runtime
(ms)

Overall Accuracy
(%)

Optimisations (2,4) (4,5) (2,4) (4,5) (2,4) (4,5) (2,4) (4,5) (2,4) (4,5) (2,4) (4,5)

Baseline FPGA 19 45 10 18 9 16 5 14 43 93 98.82% 99.34%
Downsampling 13 40 4 13 5 10 5 13 27 76 95.24% 97.62%
Integer Arithmetic 11 38 4 14 5 8 5 14 25 74 93.45% 95.86%
3 × 3 Kernel 14 43 6 15 5 14 5 14 30 86 97.34% 98.98%
Downsampling + Integer 9 38 4 8 4 7 5 10 22 63 90.78% 91.52%
Downsampling + 3 × 3 9 38 5 12 5 8 5 10 24 68 91.85% 93.26%
Integer + 3 × 3 9 36 5 11 4 9 5 10 23 66 93.34% 94.45%
Downsampling + Integer + 3 × 3 8 36 3 8 4 6 5 10 20 60 89.45% 90.18%

1177Journal of Signal Processing Systems (2023) 95:1167–1179	

1 3

In Figure 11, the energy consumption graph shows that
the CPU consumes on average 3.14× more energy than the
other accelerators for both CNNs. In addition, the Resnet50
architecture has more layers than MobileNetV2, therefore
contains more operations, resulting in higher energy usage.
In all cases, the FPGA consumes the least amount of energy,
1.11 ∼ 3.55× less than the CPU and GPU, to compute the
image classification. The results show the potential of reduc-
ing the computation time of CNN’s by further applying par-
ticular optimisations in each layer but at the cost of slight

accuracy loss. The optimisation results of each CNN archi-
tectures and accuracy’s are reported in Table 8.

Consequently, larger images or complex networks with
many layers and larger filter sizes require more memory
to store the weights and activation’s. This leads to higher
memory requirements, especially within real-time embedded
systems where space is limited. However, applying optimisa-
tions can alleviate the computational load but careful consid-
eration must be taken to understand the trade-offs between
runtime and accuracy depending on the application.

Table 7   RMSE of Linear Filters (Compared to Original Input Image, Lower value indicating greater similarity).

Algorithm Accuracy (RSME)

Unoptimised Datatype (INT) Kernel (3x3) Downsampling

CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA

Box Filter (50x50) 8.16 9.18 10.88 12.23 13.21 15.38 3.34 4.25 6.98 131.11 136.18 148.15
Gaussian Filter (31x31) 7.58 8.21 10.65 9.89 10.21 13.45 3.87 3.98 4.25 143.73 148.45 165.70
Sobel Filter (7x7) 10.25 11.12 13.33 10.34 11.98 13.48 7.55 8.98 9.89 133.11 134.58 149.26

Figure 10   CNN: Architecture Execution Time and Classification
Accuracy comparison of Model Datatype & Input Image Downsam-
pling Optimisations on Resnet50 and MobilenetV2.

Figure 11   CNN: Architecture Energy comparison of Model Data-
type & Input Image Downsampling Optimisations on Resnet50 and
MobilenetV2.

Table 8   CNN Optimisation
Result Summary: Runtimes
and Corresponding Image
Classification Accuracy for
Baseline and Optimisations
Applied on each Hardware.

Algorithm Baseline Runtime (s) Optimisations

Datatype (INT8) Downsampling

CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA

MobileNetV2 0.25 0.18 0.19 0.21 0.16 0.15 0.23 0.17 0.18
ResNet50 0.33 0.22 0.25 0.25 0.18 0.16 0.28 0.20 0.19

Energy Consumption (Joules)
MobileNetV2 22.5 7.20 6.50 16.8 6.30 5.25 19.55 6.40 6.1
ResNet50 29.7 9.4 8.75 21.25 8.1 5.6 23.8 8.4 6.65

1178	 Journal of Signal Processing Systems (2023) 95:1167–1179

1 3

5 � Conclusion and Future Direction

This paper proposes new optimisation techniques called domain
specific optimisation for real-time image processing on FPGAs.
Common image processing algorithms and their pipelines are
considered in proposing such optimisations, which include
down/subsampling, datatype conversation and convolution
kernel size reduction. These were validated on the popular
image processing algorithms and convolution neural network
architectures. The optimisation results for CNN and Filter algo-
rithms vastly improved the computation time for all processing
architectures. The SIFT algorithm implementation results sig-
nificantly outperformed state-of-the-art SIFT implementations
on FPGA and achieved run-time at par with GPU performances
but with lower power usage. However, the optimisations on all
algorithms come at the cost of ∼ 5 − 20% accuracy loss.

The results demonstrate that applying domain-specific opti-
misations to increase computational performance while mini-
mising accuracy loss demands in-depth and thoughtful con-
sideration. One proposal for algorithms comprising multiple
operation stages is to use adaptive techniques instead of fixed
integer downsampling factors, bit-widths, and kernel sizes, is
to employ adaptive techniques. These adaptive methods ana-
lyse the data and dynamically adjust the level of optimisation
based on input characteristics. For instance, adjusting the bit-
width and downsampling factor according to the specific input
data within each stage can yield better results and strike a more
suitable trade-off between performance and accuracy. Several
strategies can be employed in the CNN domain to address the
challenges. Quantisation-Aware Training (QAT) and mixed-
precision training enable the model to adapt to lower preci-
sion representations during training, reducing accuracy loss
during inference with quantised weights and activations.
Additionally, selective downsampling and kernel size reduc-
tion of CNN architectures help retain relevant information
and preserve accuracy. Channel pruning can further offset
accuracy loss by removing redundant or less critical channels.
As a result, employing these strategies and considering hard-
ware constraints makes it possible to strike an optimal balance
between accuracy and performance, unlocking the full potential
of efficient applications.

On the other hand, the drawback of traditional librar-
ies and compilers is that they often struggle to keep pace
with the rapid development of deep learning (DL) models,
leading to sub-optimal utilisation of specialised accelera-
tors. To address the limitation, adopting optimisation-aware
domain-specific languages, frameworks, and compilers is
a potential solution to cater to the unique characteristics of
domain algorithms (e.g., machine learning or image pro-
cessing). These tool-chains would enable algorithms to be
automatically fine-tuned, alleviating the burden of manual
domain-specific optimisation.

Author Contributions  All authors have made substantial contributions
to the conception and design of the work.

Funding  N/A

Data Availibility Statement  The datasets generated during and/or ana-
lysed during the current study are available from the corresponding
author on reasonable request.

Declarations 

Ethics Approval  N/A.

Conflict of Interest/Competing Interests  The authors declare that they
have no conflicts of interest to report.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bhowmik, D., & Appiah, K. (2018). Embedded vision systems: A
review of the literature. In: International Symposium on Applied
Reconfigurable Computing, pp. 204–216. Springer.

	 2.	 Liu, H., & Yu, F. (2016). Research and implementation of color
image processing pipeline based on FPGA. In: 2016 9th Inter-
national Symposium on Computational Intelligence and Design
(ISCID), 1, 372–375. https://​doi.​org/​10.​1109/​ISCID.​2016.​1092

	 3.	 Vourvoulakis, J., Kalomiros, J., & Lygouras, J. (2016). Fully
pipelined FPGA-based architecture for real-time SIFT extraction.
Microprocessors and Microsystems, 40, 53–73. https://​doi.​org/​10.​
1016/j.​micpro.​2015.​11.​013

	 4.	 Chaple, G., & Daruwala, R. D. (2014). Design of Sobel operator
based image edge detection algorithm on FPGA. In: 2014 Inter-
national Conference on Communication and Signal Processing,
pp. 788–792. https://​doi.​org/​10.​1109/​ICCSP.​2014.​69499​51

	 5.	 Leyva, P., Doménech-Asensi, G., Garrigós, J., Illade-Quinteiro, J.,
Brea, V. M., López, P., & Cabello, D. (2014). Simplification and
hardware implementation of the feature descriptor vector calcula-
tion in the SIFT algorithm. In: 2014 24th International Confer-
ence on Field Programmable Logic and Applications (FPL), pp.
1–4. https://​doi.​org/​10.​1109/​FPL.​2014.​69274​09

	 6.	 Lin, W., & Dong, L. (2006). Adaptive downsampling to improve image
compression at low bit rates. IEEE Transactions on Image Processing,
15(9), 2513–2521. https://​doi.​org/​10.​1109/​TIP.​2006.​877415

	 7.	 Sinha, S., & Zhang, W. (2016). Low-power FPGA design using
memoization-based approximate computing. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 24(8), 2665–
2678. https://​doi.​org/​10.​1109/​TVLSI.​2016.​25209​79

	 8.	 Zeng, Y., Cheng, L., Bi, G., & Kot, A. C. (2001). Integer dcts and
fast algorithms. IEEE Transactions on Signal Processing, 49(11),
2774–2782. https://​doi.​org/​10.​1109/​78.​960425

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ISCID.2016.1092
https://doi.org/10.1016/j.micpro.2015.11.013
https://doi.org/10.1016/j.micpro.2015.11.013
https://doi.org/10.1109/ICCSP.2014.6949951
https://doi.org/10.1109/FPL.2014.6927409
https://doi.org/10.1109/TIP.2006.877415
https://doi.org/10.1109/TVLSI.2016.2520979
https://doi.org/10.1109/78.960425

1179Journal of Signal Processing Systems (2023) 95:1167–1179	

1 3

	 9.	 Niklaus, S., Mai, L., & Liu, F. (2017). Video frame interpolation
via adaptive separable convolution. In: 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 261–270. https://​doi.​
org/​10.​1109/​ICCV.​2017.​37

	10.	 Wang, J., Lou, Q., Zhang, X., Zhu, C., Lin, Y., & Chen, D. (2018).
Design flow of accelerating hybrid extremely low bit-width neural
network in embedded fpga. In: 2018 28th International Confer-
ence on Field Programmable Logic and Applications (FPL), pp.
163–1636. https://​doi.​org/​10.​1109/​FPL.​2018.​00035

	11.	 Wang, W., Yan, J., Xu, N., Wang, Y., & Hsu, F.-H. (2015). Real-
time high-quality stereo vision system in FPGA. IEEE Trans-
actions on Circuits and Systems for Video Technology, 25(10),
1696–1708. https://​doi.​org/​10.​1109/​TCSVT.​2015.​23971​96

	12.	 Steinbrücker, F., Sturm, J., & Cremers, D. (2014). Volumetric
3d mapping in real-time on a CPU. In: 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2021–2028.
https://​doi.​org/​10.​1109/​ICRA.​2014.​69071​27

	13.	 Rister, B., Wang, G., Wu, M., & Cavallaro, J. R. (2013). A fast and
efficient sift detector using the mobile GPU. In: 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
pp. 2674–2678. https://​doi.​org/​10.​1109/​ICASSP.​2013.​66381​41

	14.	 Qiao, B., Reiche, O., Hannig, F., & Teich, J. (2019). From loop
fusion to kernel fusion: A domain-specific approach to locality
optimization. In: 2019 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pp. 242–253. https://​
doi.​org/​10.​1109/​CGO.​2019.​86611​76

	15.	 Rawat, P. S., Vaidya, M., Sukumaran-Rajam, A., Ravishankar, M.,
Grover, V., Rountev, A., Pouchet, L.-N., & Sadayappan, P. (2018).
Domain-specific optimization and generation of high-performance
gpu code for stencil computations. Proceedings of the IEEE, 106(11),
1902–1920. https://​doi.​org/​10.​1109/​JPROC.​2018.​28628​96

	16.	 Reiche, O., Häublein, K., Reichenbach, M., Schmid, M., Hannig, F.,
Teich, J., & Fey, D. (2015). Synthesis and optimization of image pro-
cessing accelerators using domain knowledge. Journal of Systems Archi-
tecture, 61(10), 646–658. https://​doi.​org/​10.​1016/j.​sysarc.​2015.​09.​004

	17.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. -C.
(2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 4510–4520. https://​doi.​org/​10.​1109/​CVPR.​2018.​00474

	18.	 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learn-
ing for image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778. https://​doi.​
org/​10.​1109/​CVPR.​2016.​90

	19.	 Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60(2), 91–110.

	20.	 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324.

	21.	 Pappalardo, A. Xilinx/brevitas. (2023). https://​doi.​org/​10.​5281/​
zenodo.​33335​52

	22.	 Colangelo, P., Nasiri, N., Nurvitadhi, E., Mishra, A., Margala, &
M., Nealis, K. (2018). Exploration of low numeric precision deep

learning inference using intel®fpgas. In: 2018 IEEE International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 73–80. https://​doi.​org/​10.​1109/​FCCM.​2018.​00020

	23.	 Lee, D.-U., Gaffar, A. A., Cheung, R. C. C., Mencer, O., Luk, W.,
& Constantinides, G. A. (2006). Accuracy-guaranteed bit-width
optimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(10), 1990–2000. https://​doi.​
org/​10.​1109/​TCAD.​2006.​873887

	24.	 Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.,
Adam, H., & Kalenichenko, D. (2018). Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 2704–2713. https://​doi.​org/​10.​1109/​CVPR.​2018.​00286

	25.	 Andraka, R. (1998). A survey of cordic algorithms for fpga based
computers. In: Proceedings of the 1998 ACM/SIGDA Sixth Inter-
national Symposium on Field Programmable Gate Arrays, pp.
191–200.

	26.	 Bradski, G. (2000). The OpenCV Library. Journal of Software Tools.
	27.	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing
Systems 32, pp. 8024–8035. Curran Associates Inc., ???. http://​
papers.​neuri​ps.​cc/​paper/​9015-​pytor​ch-​an-​imper​ative-​style-​high-​
perfo​rmance-​deep-​learn​ing-​libra​ry.​pdf

	28.	 HWMONITOR. (2023). https://​www.​cpuid.​com/​softw​ares/​
hwmon​itor.​html

	29.	 NVIDIA System Management Interface. (2023). https://​devel​oper.​
nvidia.​com/​nvidia-​system-​manag​ement-​inter​face

	30.	 USB-to-PMBus Interface. (2023). https://​www.​stg-​maxim​integ​rated.​
com/​en/​produ​cts/​power/​switc​hing-​regul​ators/​MAXPO​WER.​html

	31.	 Liu, J., Liu, D., Yang, W., Xia, S., Zhang, X., & Dai, Y. (2019). A
comprehensive benchmark for single image compression artifacts
reduction. In: arXiv.

	32.	 Chiu, L.-C., Chang, T.-S., Chen, J.-Y., & Chang, N.Y.-C. (2013).
Fast SIFT design for real-time visual feature extraction. IEEE
Transactions on Image Processing, 22(8), 3158–3167. https://​
doi.​org/​10.​1109/​TIP.​2013.​22598​41

	33.	 Mizuno, K., Noguchi, H., He, G., Terachi, Y., Kamino, T., Fujinaga,
T., Izumi, S., Ariki, Y., Kawaguchi, H., & Yoshimoto, M. (2011).
A low-power real-time SIFT descriptor generation engine for full-
HDTV video recognition. IEICE Transactions, 94-C, 448–457.
https://​doi.​org/​10.​1587/​trans​ele.​E94.C.​448

	34.	 Vourvoulakis, J., Kalomiros, J., & Lygouras, J. (2016). Fully
pipelined FPGA-based architecture for real-time SIFT extraction.
Microprocessors and Microsystems, 40. https://​doi.​org/​10.​1016/j.​
micpro.​2015.​11.​013

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICCV.2017.37
https://doi.org/10.1109/ICCV.2017.37
https://doi.org/10.1109/FPL.2018.00035
https://doi.org/10.1109/TCSVT.2015.2397196
https://doi.org/10.1109/ICRA.2014.6907127
https://doi.org/10.1109/ICASSP.2013.6638141
https://doi.org/10.1109/CGO.2019.8661176
https://doi.org/10.1109/CGO.2019.8661176
https://doi.org/10.1109/JPROC.2018.2862896
https://doi.org/10.1016/j.sysarc.2015.09.004
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.1109/FCCM.2018.00020
https://doi.org/10.1109/TCAD.2006.873887
https://doi.org/10.1109/TCAD.2006.873887
https://doi.org/10.1109/CVPR.2018.00286
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.cpuid.com/softwares/hwmonitor.html
https://www.cpuid.com/softwares/hwmonitor.html
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.stg-maximintegrated.com/en/products/power/switching-regulators/MAXPOWER.html
https://www.stg-maximintegrated.com/en/products/power/switching-regulators/MAXPOWER.html
https://doi.org/10.1109/TIP.2013.2259841
https://doi.org/10.1109/TIP.2013.2259841
https://doi.org/10.1587/transele.E94.C.448
https://doi.org/10.1016/j.micpro.2015.11.013
https://doi.org/10.1016/j.micpro.2015.11.013

	Domain-Specific Optimisations for Image Processing on FPGAs
	Abstract
	1 Introduction
	2 Domain-Specific Optimisations
	2.1 Optimisation I: Down Sampling
	2.2 Optimisation II: Datatype
	2.3 Optimisation III: Convolution Kernel Size

	3 Case Study Algorithms
	3.1 SIFT
	3.1.1 Scale-Space Construction
	3.1.2 Descriptor Generation
	3.1.3 Keypoint Descriptor

	3.2 Digital Filters
	3.2.1 Box
	3.2.2 Gaussian
	3.2.3 Sobel

	3.3 Convolutional Neural Network

	4 Experimental Results and Discussion
	4.1 Performance Metrics
	4.1.1 Execution Time
	4.1.2 Power Consumption
	4.1.3 Accuracy

	4.2 Results and Discussions
	4.2.1 SIFT
	4.2.2 Filter Implementations
	4.2.3 CNN Architecture

	5 Conclusion and Future Direction
	References

