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SUMMARY

Superspreaders are recognized as being important drivers of disease spread.
However, models to date have assumed random occurrence of superspreaders,
irrespective of whom they were infected by. Evidence suggests though that
those individuals infected by superspreaders may be more likely to become
superspreaders themselves. Here, we begin to explore, theoretically, the effects
of such a positive feedback loop on (1) the final epidemic size, (2) the herd immu-
nity threshold, (3) the basic reproduction number, R0, and (4) the peak prevalence
of superspreaders, using a generic model for a hypothetical acute viral infection
and illustrative parameter values.We show that positive feedback loops can have
a profound effect on our chosen epidemic outcomes, even when the transmission
advantage of superspreaders is moderate, and despite peak prevalence of super-
spreaders remaining low. We argue that positive superspreader feedback loops
in different infectious diseases, including SARS-CoV-2, should be investigated
further, both theoretically and empirically.

INTRODUCTION

Pathogen transmission requires an appropriate contact between a susceptible and infected individual,

such that the susceptible individual is exposed to pathogens shed by the infected individual. Most tradi-

tional compartmental models of infectious disease dynamics assume that, on average, all individuals

behave in the same way.1 However, it has long been known that some individuals, termed ‘‘super-

spreaders’’, contribute far more to pathogen transmission, and epidemic spread, than others.2–5 Super-

spreaders may be defined as individuals in the upper 1% tail of the distribution of pathogen transmission,6

but the term has been more widely applied to those with a strongly disproportionate contribution. The

importance of accounting for this individual variation in epidemiological models has more recently been

recognized, not least because it has played a major role in the ongoing COVID-19 pandemic.7–13

Superspreaders exist for most transmissible diseases of humans, livestock, and wildlife,14 and may origi-

nate in two ways. First, ‘‘supercontactors’’ transmit infection to more individuals because they have a larger

number of contacts than the average, such as in the transmission of HIV and other sexually transmitted dis-

eases (STDs) in humans, through those who are more sexually active,15 and of Sin Nombre hantavirus in

deer mice.16 Second, ‘‘supershedders’’ shed more infectious particles than average and so increase the

probability of infection once an appropriate contact has been made, such as when humans co-infected

with other STDs shed more HIV,17 cattle shed Escherichia coli O157 heterogeneously,18 or humans have

heterogeneous SARS-CoV-2 viral loads.19 Previous work has shown that model predictions accounting

for superspreaders are very different from average-based approaches, with a higher probability of disease

extinction and rarer but more explosive disease outbreaks.6 However, for a closed, fixed-sized population,

the formula for the final epidemic size is unchanged by the presence of superspreaders.20

Multiple studies have explored such heterogeneities in susceptibility and/or contacts and their conse-

quences for disease transmission.21–25 Standard models assume that superspreaders occur irrespective

of who they were infected by,20 but there is evidence from some systems of positive feedback, recently pro-

posed as an explanation for the heterogeneous propagation pattern of COVID-19,26,27 whereby individuals

infected by superspreaders are more likely to be superspreaders themselves. For example, supershedders

could generate further supershedders if a higher inoculum dose is more likely to overwhelm the

mechanisms of resistance, resulting in poor control of viral replication, causing higher viral loads. This hy-

pothesis has been supported by evidence from experiments in other systems28–31 and, for SARS-CoV-2,
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Figure 1. Effects on the final epidemic size

Final epidemic size (where themaximum is 1, reflecting everyone in the population becoming infected) as the strength of the positive feedback loop ðsH/sL; y
axis), the transmission advantage of superspreaders (SS) (p; x axis), and the initial number of SS are varied: (A) initial number of SS = 0% of the total population

size. (B) initial number of SS = 5% of the total population size. (C) initial number of SS = 10% of the total population size. See Table 1 for other parameter

values.
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from: infections arising from exposure to high doses being more likely to be symptomatic and to have

higher intensity32,33; from cases arising from asymptomatic cases being more likely to be asymptom-

atic34,35; from viral loads driving the size and duration of COVID-19 clusters36–38 and SARS-CoV-2 transmis-

sion39; and from the ratio of observed-to-expected superspreader-superspreader dyads being greater

than expected by chance.40

Despite this recognition that superspreaders may generate superspreaders for diseases like COVID-19, no pre-

vious study hasmodeled such positive feedback loops, and hence the role they play in driving the epidemiology

of such diseases remains unknown. In this study, therefore, we develop a genericmodel (for a hypothetical acute

viral infection, like SARS-CoV-2 or MERS-CoV) to begin to explore, theoretically, how positive feedback loops

affect (1) the final epidemic size, (2) the herd immunity threshold, (3) the basic reproduction number, R0, and

(4) the peak prevalence of superspreaders, of an emerging epidemic. By doing so, we hope to stimulate further

work, both theoretical and empirical, on this potentially important phenomenon.

RESULTS

Modeling positive superspreader feedback loops

To understand the role of the positive feedback loop between superspreaders, we developed a generic

model for a hypothetical acute viral infection. The rationale underlying the formulation of this model is

based on the hypothesis (detailed above) that supershedders could generate further supershedders.

The model includes four classes of hosts: susceptible hosts, infected hosts with low-titre infections (non-

superspreaders), infected hosts with high-titre infections (superspreaders; with a transmission advantage

over non-superspreaders of magnitude p), and recovered hosts.

The model includes two routes for the generation of superspreaders. It assumes that some proportion of

infections (sL) from a non-superspreader result in a superspreader—representing the background, sponta-

neous generation of superspreaders. There are multiple mechanisms by which this could happen. For

example, through prolonged contact between the non-superspreader and the recipient, or through the

recipient being more susceptible to infection (due to e.g. genetics or an underlying medical conditions).41

The model also assumes that some proportion of infections (sH) from a superspreader result in another

superspreader. Both proportions (sH and sL) vary between 0 and 1, but if sH > sL, then superspreaders

are more likely to generate new superspreaders, and hence, we use sH=sL throughout to represent the

strength of the positive feedback loop of superspreader infections.

The full mathematical description of the model and details of its implementation are available in the STAR

Methods. The rationale behind the choice of parameter values and initial conditions are also discussed in

the STAR Methods.
2 iScience 26, 106618, May 19, 2023



Table 1. Model parameters and their values

Parameter Symbol Per capita rate Comment

Death rate due to disease a 0 For simplicity, assumed no

excess death due to infection.

Recovery rate g 0.1 Assumed an average infectious

period of one week, as acute viral

infections like SARS-CoV-238 and influenza42

have infectious periods of approximately

one week.

Baseline transmission rate

arising from non-superspreaders

(L-infected hosts)

bL 8 3 10�6 Used an arbitrary

bL that put the baseline R0 in the absence of

superspreading (i.e. when p = 1, sH = sL)

below 1 (see STAR Methods; for the values

used here, RL
0 = 0.8). From this basis,

we can explore whether superspreading

and/or a positive feedback loop has the

potential to drive an epidemic that

would not otherwise occur.

Proportion of infections from a

non-superspreader

(L-infected host)

that result in a superspreader

(H-infected host)

sL 0.05 Assumed that 5% of infections from a

non-superspreader result in a superspreader.

The number of times more

superspreaders (H-infected hosts)

generated by a superspreader

(H-infected host) than a

non-superspreader

(L-infected host), i.e.

the strength of the positive

feedback loop

sH=sL 1–20 Varied from 1 (equal generation of

superspreaders by superspreaders and

non-superspreaders) to the maximum feasible

value of 20 (20 times more superspreaders

generated by a superspreader than a

non-superspreader). This maximum feasible

value arises since sH cannot exceed 1;

given the default value of sL = 0.05, sH=sL

cannot exceed 20.

The number of times by which the

transmission rate from a superspreader

(H-infected host) is greater than the

transmission rate from a

non-superspreader

(L-infected host; the transmission

advantage of superspreaders)

p 1–20 Varied from 1 (equal transmission rate

from a superspreader and a non-superspreader)

to 20 (20 times higher transmission rate from

a superspreader than from a non-superspreader).

This upper bound is consistent with literature on

the superspreading of aerosols for acute

viral infections, like SARS-CoV-243
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Epidemic outcomes reach their highest values when both superspreader advantage and

positive superspreader feedback are high

The final epidemic size (where the maximum is 1, reflecting everyone in the population becoming infected;

Figures 1A–1C), the herd immunity threshold (the proportion of the population that needs to be immune to

achieve herd immunity; Figures 2A–2C), and the basic reproduction number, R0 (Figure 3), all increase with

increases in the transmission advantage of superspreaders, p, and with the strength of the positive feed-

back loop whereby superspreaders generate further superspreaders, sH=sL. Hence, all these epidemic out-

comes reach their highest values when both p and sH=sL are high.
Positive superspreader feedback loops can have little or no effect on epidemic outcomes in

some scenarios

Of course, in the absence of superspreading (p = 1), all epidemiological measures are insensitive to sH= sL
since there is no superspreader advantage on which a feedback loop might act (along the vertical axes of

the figures). Indeed, as shown in STARMethods, if the pathogen is unable to sustain itself in the absence of
iScience 26, 106618, May 19, 2023 3
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Figure 2. Effects on the herd immunity threshold

Herd immunity threshold (the proportion of the population that need to be immune to achieve herd immunity) as the strength of the positive feedback loop

ðsH/sL; y axis), the transmission advantage of superspreaders (SS) (p; x axis), and the initial number of superspreaders are varied: (A) initial number of SS = 0%

of the total population size. (B) initial number of SS = 5% of the total population size. (C) initial number of SS = 10% of the total population size. See Table 1 for

other parameter values.
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superspreading (i.e. if R0 < 1 for a pure low-titre pathogen), there is a lower threshold value of p, given by
ða+gÞ
NbL

, below which no viable amount of positive feedback can drive R0 > 1 (for our baseline parameter

values, this lower threshold value of p is 1.25, suggesting superspreaders need at least a 25% transmission

advantage for an epidemic to occur, regardless of the extent of positive feedback).

Positive superspreader feedback loops can have a profound effect on epidemic outcomes in

other scenarios

Conversely, in the absence of a feedback loop, as assumed in previous studies (sH=sL = 1, along the hor-

izontal axis in the figures), these predicted outcomes, especially R0, may change little with superspreader

advantage. For example, in the absence of feedback, and using the baseline parameter values to generate

Figure 3, R0 is less than 1 (the pathogen fails to cause an epidemic) unless p exceeds 6 (see STARMethods),

and only reaches 1.6 as p approaches 20 (the maximum illustrative value used here). But when there is feed-

back, and especially when the feedback loop is strong (e.g. sH=sL = 20 in Figure 3), R0 rises rapidly, reaching

16 in Figure 3 as p approaches 20, and causing an epidemic (R0 > 1) with only very moderate levels of super-

spreader advantage (p R 1.25; see STAR Methods).

Positive superspreader feedback loops can have a profound effect on epidemic outcomes

even when the proportion of superspreaders in the population remains low

It is also noteworthy that this newly identified effect of the feedback loop on our chosen epidemic outcomes can

be profound even when the proportion of superspreaders in the population remains low. For example, at inter-

mediate levels of superspreader advantage (p = 5), increasing feedback loop strength from 1 to 5, an interme-

diate level of feedback, has a powerful effect on both final epidemic size (Figures 1A–1C) and R0 (Figure 3), with

R0, for example, increasing from less than 1 (pathogen failing to cause an epidemic), to more than 1 (pathogen

causing an epidemic). This is despite the peak prevalence of superspreaders (as a proportion of total population

size) not exceeding �0.5%–10%, depending on the initial number of superspreaders (Figures 4A–4C).

DISCUSSION

Superspreaders are recognized as being important drivers of disease spread. However, models to date

have assumed random generation of superspreaders, irrespective of whom they were infected by. Here,

by contrast, and supported by a range of studies, we explore the importance of positive superspreader

feedback loops, whereby those individuals infected by superspreaders are more likely to be super-

spreaders themselves. We show that superspreaders in their own right (i.e. without positive superspreader

feedback), contrary to widespread perception, may have little effect on our chosen epidemic outcomes

(namely, the final epidemic size, the herd immunity threshold, and the basic reproduction number, R0),

but when positive superspreader feedback is included, the effect may be profound, even when the
4 iScience 26, 106618, May 19, 2023



Figure 3. Effects on the basic reproduction number

The basic reproduction number (R0) as the strength of the positive feedback loop (sH=sL; y axis) and the transmission

advantage of superspreaders (SS) (p; x axis) are varied. See Table 1 for other parameter values.
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transmission advantage of superspreaders is moderate, and despite peak prevalence of superspreaders

remaining low. Thus, our theoretical framework formally supports and enhances the ideas proposed by Bel-

domenico,26 whereby positive feedback loops have the potential to drive the heterogeneous propagation

pattern of a range of infectious diseases, including SARS-CoV-2.

In the context of COVID-19, previous work exploring the effects of population heterogeneity on herd immunity

has suggested that assortative mixing, whereby supercontactors tend to preferentially contact other supercon-

tactors, has no effect on the herd immunity threshold.24 Furthermore, heterogeneity itself may decrease the

threshold, when the proportion of infected (and subsequently immune) individuals in subgroups with the highest

contact rates is higher than in subgroups with low contact rates.25 In contrast, here, we show that positive feed-

back loops, whereby supershedders tend to generate more supershedders, increase the herd immunity

threshold, potentially to a significant degree. This difference reflects supershedding not being a fixed attribute

of an individual in our model, such that superspreaders continue to be generated during the course of an

epidemic, rather than being among the first to become immune (or die).

Our model is necessarily simple. Our aim was, as a first step, to identify the potential effect of positive

superspreader feedback loops on a number of epidemic outcomes. Given the results from this initial study,
A B C

Figure 4. Effects on the peak prevalence of superspreaders

Peak prevalence of superspreaders (as a proportion of total population size,N) as the strength of the positive feedback loop ðsH/sL; y axis), the transmission

advantage of superspreaders (SS) (p; x axis), and the initial number of SS are varied: (A) initial number of SS = 0% of the total population size. (B) initial number

of SS = 5% of the total population size. (C) initial number of SS = 10% of the total population size. See Table 1 for other parameter values.

iScience 26, 106618, May 19, 2023 5
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we contend that the existence of positive feedback loops in different host-pathogen systems warrants

further investigation. It will be important to test our model using empirical data, and to further develop

our model theoretically, to quantify more precisely the effects of positive feedback loops, and to incorpo-

rate further biological details.

Limitations of the study

Wepresent results (generatedentirely via numerical simulation) fromagenericmodel, parameterized using illus-

trative values to represent a hypothetical acute viral infection, as an initial exploration of this potentially impor-

tant phenomenon. Unfortunately, we did not have access to sufficient data to parameterize our model, or to test

our model, for a specific pathogen. However, we hope that others who do, will adapt and parameterize our

model for a specific pathogen and, in so doing, further interrogate our model and its predictions.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Mathematical description of the model

B Calculating epidemic outcomes

B Choice of parameter values and initial conditions

B Additional calculations

d QUANTIFICATION AND STATISTICAL ANALYSIS
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R version 4.0.3 R Foundation for Statistical Computing https://www.r-project.org

Deposited Data

R code to perform simulations This paper https://github.com/kwanelik/Positive-superspreader-feedback-loops

https://doi.org/10.5281/zenodo.7767626
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Klara M Wanelik (klara.wanelik@biology.ox.ac.uk).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d No empirical data were used in this paper.

d All original code for numerics and figure production has been deposited on GitHub and is publicly avail-

able. DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

We initially provide a broad overview of the model structure andmetrics we used to quantify the impacts of

positive superspreader feedback loops on an epidemic; we provide more detailed explanations and calcu-

lations relating to those metrics further down in an ‘additional calculations’ section.
Mathematical description of the model

To understand the role of the positive feedback loop between superspreaders we developed the following

model:

dS

dt
= � SbL

�
L + pH

�
; (Equation 1)
dL

dt
= SbL

��
1 � sL

�
L + p

�
1 � sH

�
H
� � ða + gÞL; (Equation 2)
dH

dt
= SbL

�
sLL + sHpH

� � ða + gÞH; (Equation 3)
dR

dt
= gðH + LÞ: (Equation 4)

where S refers to the number of susceptible hosts, L to infected hosts with low-titre infections (non-super-

spreaders), H to infected hosts with high-titre infections (superspreaders) and R to recovered hosts. bL rep-

resents the baseline transmission rate arising from L-infected hosts. This baseline rate is then increased

through transmission by superspreaders (H-infected hosts) by a magnitude p (we assume pR 1Þ represent-
ing the factor by which the transmission rate from a superspreader is greater than the transmission rate
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from a non-superspreader (i.e. the transmission advantage of superspreaders); Mathematically, p has no

upper bound.

sL is the proportion of infections from a non-superspreader that result in a superspreader, and so repre-

sents the background, spontaneous generation of superspreaders. sH is the proportion of infections

from a superspreader that result in another superspreader. sH and sL both vary between 0 and 1, but if

sH >sL then superspreaders are more likely to generate new superspreaders, and hence we use sH= sL

to represent the strength of the positive feedback loop of superspreader infections.

a is the death rate due to disease, and g the recovery rate from the disease (which may be through natural

recovery, or recovery through hospitalisation), both assumed to be the same for superspreaders and non-

superspreaders. For this model, there are no natural births or deaths, so the population only changes in size

due to deaths resulting from the disease. So, if a = 0 then the population remains constant, sizeN = S + L +

H + R.
Calculating epidemic outcomes

For an infection spreading through a closed, fixed-sized population, it is possible to calculate the final

epidemic size – the total number of individuals infected throughout the epidemic.44 Ma and Earn20 showed

that the formula for the final epidemic size, Z, is unchanged by the presence of a fixed proportion of

superspreaders:

Z = S½0�
�
1 � Exp

�
� Z

bL

a+g

�
1 � sH + psL

� �
�

bL

g+a

��
L½0� + p H½0��

��
: (Equation 5)

Rescaling to express the sizes of each class as proportions of a fixed population size of 1, and in the limit

Ið0Þ/0;Sð0Þ/1 the final epidemic size, Z, for all of the models they considered, is given by Z = 1 �
e�R0Z .20

For the current model, when sH = sL (i.e. when there is no positive feedback loop) the final epidemic size,

Z, is given by the same formula (see ‘additional calculations’ section below). However, when sH > sL, and

so the positive feedback loop does exist, it is not possible to use the methods of Ma and Earn20 to

calculate the final epidemic size, since additional non-linearities in this model disqualify the simplifica-

tions they use. However, in the ‘additional calculations’ section below we show that when sH > sL, the

final epidemic size will be larger than in the absence of such a feedback loop, and this difference

increases as the difference between sH and sL increases. In the Results, we quantify the final epidemic

size numerically by running simulations in R version 4.0.345 using the de-Solve package46 while varying

the ratio sH=sL (the strength of the positive feedback loop, assuming sH=sL R 1) and p (the transmission

advantage of superspreaders, assuming p R 1). We also calculate numerically the peak prevalence

of superspreaders and the herd immunity threshold i.e. the proportion of the population that needs

to be immune to achieve herd immunity. The latter is calculated by subtracting from one the proportion

of the population that remains susceptible when the number of infecteds peaks.23 Finally, we calculate

the basic reproduction number (R0), i.e. the number of new infections generated by one infectious

individual in a completely susceptible population for each of these scenarios. Using the next

generation method of Diekmann et al.47 (see ‘additional calculations’ section below), R0 for this model

is given by:

R0 =

NbL

�
1+psH � sL +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sL � 1 � psH

�2 � 4pðsH � sLÞ
q �

2ða+gÞ : (Equation 6)

Choice of parameter values and initial conditions

Parameter values are chosen to represent a hypothetical acute viral infection for illustrative purposes, and

are consistent with the literature on acute viral infections like SARS-CoV-2, MERS-CoV and influenza (see

Table 1). Again, for illustrative purposes, the initial number of non-superspreader infecteds, L, was kept

constant at 10% of the total population size, N, as was the initial number of recovereds, R, at 0%. We varied

the initial number of superspreaders, H, between 0–10% (consistent with previous modelling of acute viral

infections, like MERS-CoV48). The total population size,N, was set to 10,000 – the population size of a small
10 iScience 26, 106618, May 19, 2023
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town in the UK. All models were run for sufficient periods of time to ensure that the epidemic had

completed in all cases.
Additional calculations

From Equation (1) dividing both sides by S and integrating both sides with respect to t

log

�
SðNÞ
Sð0Þ

�
= � bL

Z N

0

L dt � pbL

Z N

0

H dt: (Equation 7)

To solve Equation (2) we rearrange Equation (1) to get bLpSH in terms of S and L and substitute into Equa-

tion (2). Integrating both sides with respect to t and assuming that LðNÞ = 0 gives:

� Lð0Þ = ðsH � 1Þ½SðNÞ � Sð0Þ� +
Z N

0

SbLLðsH � sLÞ dt � ðg + aÞ
Z N

0

L dt: (Equation 8)

To solve Equation (3) we rearrange Equation (1) to get bLSL in terms of S and H and substitute into Equa-

tion (3). Integrating both sides with respect to t and assuming that HðNÞ = 0 gives:

�Hð0Þ = � sL½SðNÞ � Sð0Þ� +
Z N

0

SbLpHðsH � sLÞ dt � ðg + aÞ
Z N

0

H dt: (Equation 9)

The final epidemic size is the difference between the number of susceptibles at t = 0 and t = N i.e. Z =

Sð0Þ � SðNÞ. Rearranging Equations (8) and (9) in order to get the integrals ofH and Lwith respect to time,

and substituting into Equation (7) gives:

log

�
SðNÞ
Sð0Þ

�
= � bL

a+g

�
Lð0Þ + pHð0Þ � �

1 � sH + psL

�
Z + ðsH � sLÞbL

Z N

0

SL + p2SH dt

�
:

(Equation 10)

When sH = sL this gives the same solution as in Ma and Earn,20 and for a fixed population size of 1 and in the

limit Ið0Þ/0;Sð0Þ/1 the final epidemic size, Z, for all of the models they considered, is given by Z = 1 �
e�R0Z . However, in a model where there is a positive feedback loop, with superspreaders generating more

superspreaders, there is an extra positive term which makes the exponent of the exponential term larger

and still negative and so makes the final epidemic size bigger; the larger the difference between sH and

sL, the larger the impact on the final epidemic size.

2. Calculating the basic reproduction number, R0, using the method of Diekmann et al.47

We calculated R0 following the next generation approach of Diekmann et al.,47 where R0 is the dominant

eigenvalue of the matrix KL, obtained from the transmission matrix T and the inverse of the transitionmatrix

S ðKL = � TS� 1Þ, derived from the equations of the system presented above, and evaluated at the dis-

ease-free equilibrium (population of size N, comprising all susceptible individuals):

T =

�
NbLð1 � sLÞ pNbLð1 � sHÞ

NbLsL pNbLsH

�
: (Equation 11)
S =

��ða+gÞ 0
0 �ða+gÞ

�
: (Equation 12)

and so

KL =

0
BBB@

NbLð1 � sLÞ
ða+gÞ

pNbLð1 � sHÞ
ða+gÞ

NbLsL

ða+gÞ
pNbLsH

ða+gÞ

1
CCCA: (Equation 13)

The dominant eigenvalue (R0) of KL is, as presented above:

R0 =

NbL

�
1+psH � sL +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sL � 1 � psH

�2 � 4pðsH � sLÞ
q �

2ða+gÞ : (Equation 6)
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This expression always exists and is non-negative if 1RsL and 1RsH (i.e. if superspreaders are at least as

likely to generate new superspreaders as non-superspreaders are, as assumed for our model).

We also note that in the absence of superspreading (p = sH = sL = 0), the basic reproduction number for a

pathogen purely transmitting via low-titre, non-superspreaders, is:

RL
0 =

NbL

a+g
: (Equation 14)

3. Threshold superspreading rates for an epidemic

From the above expression for R0 we can calculate analytical expressions for key threshold values of p (the

relative transmission advantage of superspreading) for an epidemic to take off (R0 R 1):
12
(i) How strong does superspreading need to be to allow an epidemic, when transmission from super-

spreaders always generates new superspreaders (i.e. when sH = 1)?
Setting sH = 1 in the above expression for R0, setting that expression equal to 1 (the threshold for an

epidemic to occur), and solving for p gives:

p1 =
ða+gÞ
NbL

=
1

RL
o

: (Equation 15)

For the baseline parameter values used to generate Figure 3, p1 = 1:25.

Hence, even if superspreaders always generate new superspreaders (sH = 1), if RL
o < 1 (such that non-

superspreaders alone are not able to cause an epidemic) there is a lower limit of p that is greater than 1,

that must be exceeded in order for an epidemic to occur. In other words, even 100% transmission of super-

spreading is not necessarily sufficient to drive an epidemic of a pathogen with only mild levels of

superspreading.
(ii) How strong does superspreading need to be to drive an epidemic, when there is no positive

feedback loop between superspreaders (i.e. when sH = sL)?
Setting sH = sL in the above expression for R0, setting that expression equal to 1 and solving for p gives:

p2 =
a+g � NbLð1 � sLÞ

NbLsL
=

1	
RL
o
� ð1 � sLÞ
sL

=
p1 � ð1 � sLÞ

sL
: (Equation 16)

Hence in the absence of a positive feedback loop in superspreader transmission, the rate of superspreader

advantage (p) needs to exceed a threshold value determined by the baseline R0 in the absence of super-

spreading (RL
o) and the rate at which non-superspreaders spontaneously generate superspreaders (sL), in

order for an epidemic to occur. This threshold is shown in Figure 3 by the value of p along the x-axis

(when sH = sL), at the boundary where R0 = 1. For the baseline parameter values used to generate Fig-

ure 3, p2 = 6.
QUANTIFICATION AND STATISTICAL ANALYSIS

Results were generated via numerical simulation in R version 4.0.3.
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