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Fractal-based Ensemble Classification System for
Hyperspectral Images

Behnam Asghari Beirami, Mehran A Pirbasti, and Vahid Akbari, Member, IEEE

Abstract—According to the literature, the utilization of spatial
features can significantly enhance the accuracy of hyperspectral
image (HSI) classification. Fractal features are powerful measures
of texture, representing the local complexity of an image. In
HSI classification, textural features are typically extracted from
dimensionally reduced datacubes, such as principal component
analysis (PCA). However, the effectiveness of textures obtained
from alternative feature extraction methods in improving clas-
sification accuracy has not been extensively investigated. This
study introduces a new ensemble support vector machine clas-
sification system that combines spectral features derived from
PCA, minimum noise fraction, linear discriminant analysis, and
fractal features derived from these feature extraction methods.
The final results on two HSI datasets, namely Indian Pines and
Pavia University, demonstrate that the proposed classification
method achieves approximately 95.75% and 99.36% accuracies,
outperforming several other spatial-spectral HSI classification
methods.

Index Terms—Ensemble learning, Hyperspectral image, Frac-
tal dimension, Voting-based fusion

I. INTRODUCTION

HYPERSPECTRAL images (HSI) are three-dimensional
datasets captured using hyperspectral sensors mounted

on airborne or spaceborne platforms. These images provide
detailed spectral information about surface materials across
different wavelengths of electromagnetic waves [1], enabling
the differentiation of various ground classes. However, the
classification of these large and complex datasets can be
challenging, particularly in cases where training samples are
limited [1].

One major issue associated with the high dimensionality of
HSI is known as ”the curse of dimensionality”, which can lead
to reduced classifier performance [2]. Additionally, within-
class spectral variability and between-class spectral similarity
reduce spectral-based classification accuracy, leading to noisy
classified images. [1]. To tackle these challenges, researchers
have proposed feature extraction (FE) methods to address high
dimensionality in HSIs [3], [4]. FE methods can be categorized
as supervised or unsupervised. Unsupervised techniques, such
as Principal Component Analysis (PCA), transform features
into a new uncorrelated space known as principal components
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[5]. Minimum Noise Fraction (MNF) is another unsupervised
method that reduces noise and organizes features based on
their signal-to-noise ratio (SNR) [6]. In contrast, supervised
techniques like Linear Discriminant Analysis (LDA) utilize
training samples to construct a transformation matrix. LDA
uses within-class and between-class scatter matrices to project
features into a discriminative space [7].

In addition to spectral information, the spatial information of
pixels within HSIs serves as another valuable data source that
can address within-class spectral variability and between-class
similarities in the spectral behavior of materials, ultimately
improving classification accuracy. Different methods exist for
generating spatial features, each capturing contextual informa-
tion from unique perspectives [8], [9]. Morphological Profiles
(MPs), based on the opening and closing morphological oper-
ators, are widely used spatial features for HSI classification.
Beirami and Mokhtarzade introduced an HSI classification
method that initially employs MPs classified with Support
Vector Machines (SVM), followed by post-processing using
the guided filter [10]. Extinction profiles are another spatial
feature employed by Kakhani et al. in combination with deep
learning models for remote sensing image classification [11].
In addition to geometric features, textural features like Gabor
filters are extensively used in various studies to accurately
classify HSIs in different directions and orientations [1], [12].
For further information regarding the various spatial feature
generation methods, please refer to [8].

Utilizing Fractal Dimension (FD) is an effective method
for generating spatial features. FD quantifies the complexity
of fractal patterns and is considered a key feature [13]. For
grayscale images, the numerical value of FD typically falls
within the range of two and three, depending on image
complexity [13]. In Zhu et al.’s study, a combination of
FD features and spectral bands of Landsat ETM+ images
were employed to classify mountainous areas in China [14].
Similarly, Mehdi and Hassan incorporated FD features in their
research for the supervised classification of high-resolution
QuickBird images [15], demonstrating the accurate discrimina-
tion of classes in satellite images. Within the domain of HSI
classification, Beirami and Mokhtarzade integrated multiple
fractal features with spectral features to enhance the accuracy
of image classification [16]. Their research suggests that fractal
features possess significant potential to improve the classifi-
cation accuracy of HSIs. Spatial features in HSI classification
are often derived from reduced-dimension images to overcome
computational challenges. These images, obtained through var-
ious FE methods, exhibit distinct textures for different classes.
Utilizing textural information from diverse reduced images
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Fig. 1. Flowchart of the proposed method

Fig. 2. IVF method

created with different FE methods can improve classification
accuracy. Motivated by the effectiveness of fractal features
in remote sensing image classification, we propose a novel
ensemble HSI classification system. This system combines
spectral and fractal features generated from different FE meth-
ods, contributing to improved HSI classification performance,
addressing challenges, and achieving accurate results with
limited training samples.

The subsequent section provides a detailed explanation of
our proposed method, including feature extraction techniques,
fractal dimension, and the voting method. In Section III, we
analyze the accuracy results of our method and compare them
with other existing HSI classification methods. Finally, in
Section IV, we present our concluding remarks for this study.

II. METHODOLOGY

Fig.1 illustrates the flowchart of the proposed ensemble
approach, comprising five main stages outlined below:

1) The HSI image undergoes dimensionality reduction using
three feature extraction methods: PCA, MNF, and LDA.

2) fractal features are generated from the first three compo-
nents of each dimensionality-reduced feature cube.

3) The reduced spectral data cube with Nc-1 bands (where
Nc represents the number of classes) and its fractal features
are combined through stacking.

4) Each branch is classified using an SVM classifier with
kernel strategy, resulting in label maps.

5) The classification results from all three branches are fused
using an improved voting fusion (IVF) method.

Further information about each stage is provided in the
subsequent subsections.

Fig. 3. Impact of window size on the performance of IVF method

A. Feature extraction methods

In this study, we utilize three widely used FE methods,
namely PCA, MNF, and LDA, to extract the informative low-
dimensional spectral features. More detailed information on
these methods can be found in the references [5]–[7], while a
brief summary is presented below.

• PCA is a commonly employed method for reducing dimen-
sional complexity in data. This unsupervised technique aims
to transform a set of correlated variables into a smaller number
of uncorrelated variables called principal components. These
components represent the directions of maximum variance
within the data and are orthogonal to one another.

• MNF is an unsupervised feature extraction technique
specifically developed for hyperspectral imagery. This method
utilizes the covariance matrix of both data and noise to
transform the input data into a new feature space. Unlike
PCA, MNF ranks extracted features based on their signal-to-
noise ratio (SNR) rather than variance. As a result, MNF may
be more effective in reducing noise while preserving spectral
information.

• LDA is a supervised technique for reducing dimensionality
that identifies the optimal projection of a training dataset
to best separate examples according to their assigned class.
LDA employs class labels to determine the directions that
maximize the separation between classes. Utilizing LDA can
potentially improve classification accuracy, reduce overfitting,
and facilitate clearer data visualization.

B. Fractal features

Fractal dimension (FD) as a textural measure is commonly
obtained using the Pentland method [17], which follows a
directional approach. This method takes into account spectral
variations in the neighboring region of each pixel to extract
fractal features. The self-similarity parameter (H) is defined
based on the difference in grey level between two pixels at a
distance r denoted by Er and a constant value denoted as E0

by [16]:
Err

−H = E0. (1)

The FD is then calculated using the following [16]:

FD = 1−H. (2)
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TABLE I
CLASSIFICATION ACCURACIES FOR THE IP IMAGE, INCLUDING OVERALL ACCURACY (OA), THE KAPPA COEFFICIENT, Z INDEX.

Class # SVM-Spectral SVM-PCA SVM-MNF SVM-LDA PCA-Fractal MNF-Fractal LDA-Fractal Proposed method
1 20.93% 69.76% 86.04% 20.93% 83.72% 100% 90.69% 97.67%
2 68.16% 58.87% 80.91% 51.28% 81.80% 89.38% 75.97% 90.56%
3 55.76% 63.62% 70.97% 59.56% 90.24% 93.53% 86.43% 99.11%
4 45.13% 27.87% 51.76% 37.16% 75.66% 77.87% 69.91% 80.08%
5 85.18% 87.36% 96.73% 71.45% 91.72% 97.16% 91.28% 95.42%
6 93.08% 92.36% 98.41% 87.03% 98.70% 97.26% 97.55% 99.27%
7 80.00% 64.00% 100% 68.00% 100% 100% 100% 100%
8 96.92% 96.26% 93.84% 94.50% 98.24% 100% 98.46% 100%
9 35.29% 35.29% 100% 41.17% 100% 100% 100% 100%
10 56.06% 39.93% 71.53% 51.19% 79.97% 89.17% 80.41% 92.74%
11 74.71% 64.59% 72.82% 69.09% 85.51% 93.14% 87.01% 97.17%
12 60.99% 42.02% 79.96% 52.12% 69.14% 88.29% 76.77% 91.84%
13 98.46% 94.87% 99.48% 89.74% 91.79% 96.41% 94.87% 92.30%
14 88.51% 79.28% 90.68% 82.61% 99.25% 96.58% 98.16% 99.91%
15 50.13% 42.50% 70.29% 42.50% 95.36% 91.00% 86.10% 99.72%
16 86.51% 80.89% 92.13% 84.26% 97.75% 86.51% 86.51% 88.76%
OA 72.92% 65.45% 80.53% 65.95% 87.86% 92.85% 86.86% 95.75%
Kappa 0.684 0.60 0.774 0.60 0.86 0.917 0.847 0.95
|Z − index| 23.7 29.46 15.3 30.03 7.94 2.19 8.68 reference

TABLE II
CLASSIFICATION ACCURACIES FOR THE PU IMAGE, INCLUDING OVERALL ACCURACY (OA), THE KAPPA COEFFICIENT, Z INDEX.

Class # SVM-Spectral SVM-PCA SVM-MNF SVM-LDA PCA-Fractal MNF-Fractal LDA-Fractal Proposed method
1 91.19% 88.52% 89.36% 89.34% 97.84% 97.23% 95.92% 99.74%
2 95.33% 94.62% 96.68% 95.00% 99.04% 98.37% 99.01% 99.69%
3 75.58% 72.93% 69.07% 72.48% 94.43% 97.34% 92.23% 99.79%
4 92.16% 90.41% 92.57% 85.54% 99.00% 98.48% 99.14% 98.66%
5 99.37% 99.37% 99.84% 99.53% 100% 100% 100% 100%
6 82.54% 67.78% 86.47% 75.09% 99.12% 97.06% 99.22% 99.85%
7 73.57% 83.93% 82.99% 82.51% 92.24% 92.32% 86.15% 97.54%
8 80.73% 80.07% 80.61% 82.33% 95.59% 95.14% 94.59% 98.51%
9 99.88% 99.88% 99.44% 99.88% 91.77% 92.66% 94.44% 93.88%
OA 90.28% 87.83% 91.05% 88.77% 97.99% 97.46V 97.38% 99.36%
Kappa 0.87 0.836 0.88 0.849 0.973 0.966 0.965 0.991
|Z − index| 13.76 19.46 13.18 16.73 2.82 3.32 3.95 reference

By taking the logarithm of both sides of eq.(1), we obtain
the following [16]:

log(Er)−H log(r) = C0 (3)

The values of H and C0 can be determined by fitting a linear
regression line between log(Er) and log(r), where H repre-
sents the slope and C0 denotes the intercept [16]. Interestingly,
C0 represents a new fractal feature called “intersection” [16].
In this study, we utilize a combination of fractal dimension
and intersection features as fractal features.

To extract fractal features using the Pentland method, each
pixel is initially surrounded by a moving window of size L.
Then, a random variable r is selected in a specific direction
within the range of (0, L), where r represents the difference
between two random variables a and b, satisfying the condition
0 < a < b ≤ L. Subsequently, the parameter er is computed
as [16]:

er =
|Sb − Sa|
r + 1

, (4)

where Sb and Sa correspond to the grey values of pixels at
distances r and in the assumed direction. Given the positive
integer a, the average of the parameter er can be calculated
as follows [16]:

ēr =

L−r∑
a=0

er

L− r + 1
. (5)

Er is then given as [16]:

Er = ēr
L

r
(6)

The Pentland method calculates the fractal features using a
directional approach, considering four directions: north, south,
northwest to southeast, and northeast to southwest. This results
in different values of H and C0 for each direction. In this
study, fractal features are generated with window sizes of
9×9, 17×17, and 25×25 to capture the spatial characteristics
of objects with different sizes more effectively.

C. Improved voting fusion

Based on Fig. 1, we employed various feature extraction
methods to extract fractal features, and subsequently utilized
SVM for the classification of the stacked spatial and spectral
features. Next, we fused the three classified images to generate
the final classification image, adopting an improved voting
fusion method inspired by [18]. In traditional voting fusion,
the most frequent label from classified images for each pixel
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(a) (b) (c) (d) (e) (f)

Fig. 4. Classification maps of IP dataset a) GT image, b) SVM-spectral, c) PCA-Fractal, d) MNF-Fractal, e) LDA-Fractal, f) Proposed method.

(a) (b) (c) (d) (e) (f)

Fig. 5. Classification maps of PU dataset a) GT image, b) SVM-spectral, c) PCA-Fractal, d) MNF-Fractal, e) LDA-Fractal, f) Proposed method.

determines the final label, but this can lead to noisy results.
To overcome this, the IVF method is applied, which considers
neighboring information. The IVF method involves three steps
Fig.2: defining a window around each pixel, reshaping the
labels within the window into a vector, and selecting the most
frequent label from the combined vectors as the label for the
center pixel. The IVF method produces smoother transitions
compared to the conventional voting method by incorporating
neighboring information. The traditional voting technique can
be seen as a specific case of IVF, where the window size is
reduced to a single pixel, considering only the center pixel.

III. DATASET AND EXPERIMENTAL RESULTS

A. Dataset

In this research, we utilized two well-known hyperspectral
images, with the following descriptions: Indian Pines (IP): The
IP dataset is a widely recognized HSI benchmark collected by
the AVIRIS hyperspectral sensor in Indiana, USA. It contains
145x145 pixels, with 200 spectral bands after excluding low-
information bands. The dataset includes 16 different classes,
including crops and semi-urban features.

Pavia University (PU): The PU dataset is an aerial HSI
captured by the ROSIS sensor. It comprises 115 spectral bands,
with a spatial resolution of 1.3 meters and dimensions of
610×340 pixels. After excluding 12 bands with low infor-
mation content, a total of 103 bands were utilized in the
experiments.

B. Experimental results

In subsequent experiments, 5% of pixels from each class
were randomly selected for training, while the rest were used
for testing classification accuracy. Evaluation metrics included

OA, kappa coefficient, and class accuracies. MATLAB 2020b
was used on a system with a core i5 4090 CPU and 8GB
DDR3 RAM.

The first experiment focused on window size’s impact on
IVF classification accuracy. Window sizes ranged from 1x1
to 11x11 with a step size of 2. Results showed that 7x7 was
the optimal window size for IVF, with accuracy improving up
to that point and decreasing afterward (Fig.3). Larger window
sizes considered more surrounding pixels, which could com-
promise IVF performance, particularly at class edges and for
small classes.

In our second experiment, we compared our spatial-spectral
ensemble strategy to two groups of techniques: spectral-
based HSI classification methods and individual branches
of our method. The spectral-based methods included SVM-
original Spectral, SVM-PCA, SVM-MNF, and SVM-LDA,
while the individual branches were PCA-Fractal, MNF-Fractal,
and LDA-Fractal followed by SVM classification. Our en-
semble approach demonstrated effectiveness, as shown by
the classification accuracy in Tables I and II for IP and PU
datasets. Solely using spectral features with SVM did not
yield high accuracy, but integrating spatial fractal features
improved classification results for both datasets. Combining
the classification results of each branch in our proposed
method significantly increased accuracy, as confirmed by the
Z-score results (all values exceeding 1.96) [1]. Fig.4 and
Fig.5 show the ground truth (GT) and final classification
images, indicating a significant decrease in misclassified pixels
compared to alternative methods.

In the final experiment of this section, we conducted a
comparison between our proposed method and five other
spatial-spectral HSI classification methods proposed in pre-
vious studies [9], [19]–[22]. Mirzapour et al. [9] utilized
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TABLE III
COMPARISON WITH OTHER METHODS

Method
IP PU

OA
Mirzapouret al. [9] 92.78% 98.95%
Majdaret al. [19] 95.07% 98.21%
Wanget al. [20] —* 98.52%
Ghaderizadehet al. [21] 93.27% —*
Caiet al. [22] 77.61% 95.24%
Proposed Method 95.75% 99.36%
* The result is not reported in the original paper

spectral and spatial features, such as MPs, Gabor, and gray-
level co-occurrence matrices, along with an SVM classifier.
Majdar et al. [19] introduced a three-step approach that
combines probabilistic SVM results from spectral and Gabor
features. Wang et al. [20] improved the performance of
low-rank representation by incorporating locality constraint
criteria and a structure-preserving strategy. Ghaderizadeh et
al. [21] employed a 3D fast learning block and a 2D CNN
to extract spectral-spatial features. Cai et al. [22] proposed a
new triple-attention mechanism to assign weights to diverse
features. It utilized a residual network to perform residual
operations and merge these features with deep residual features
using multiple blocks. The contextual semantics of the deep
fusion features were integrated using a BiLSTM network,
and classification was performed using a softmax classifier.
Classification accuracies of various methods are reported in
Table III. Our proposed ensemble fractal classification method
demonstrated superior performance compared to other spatial-
spectral classification methods.

The proposed ensemble method has a processing time of
around 260 seconds on the IP dataset. This processing time is
better than competitor methods like Wang et al. and Majdar
et al., which require approximately 336 and 580 seconds
respectively. It is important to mention that parallel computing
can further reduce implementation time. In this approach, each
branch of the ensemble system is implemented on a separate
system, and the results are combined afterward.

IV. CONCLUSIONS

We propose an ensemble system using three SVM classifier
branches (PCA, MNF, and LDA) with fractal features for HSI
classification. Results on Indian Pines and Pavia University
datasets show a significant accuracy improvement of 22%
and 9%, respectively. The three-branch strategy outperforms
individual branches by 6.5% and 1.75% on average. Our
method is efficient and surpasses other classification methods.
Future work aims to enhance performance with advanced
classifiers and post-processing techniques.
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