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Abstract – In a previous article we explored the
use of a subsampled exponential analysis algorithm to
find the antenna-element positions in a large irregular
planar array after the installation phase. The application
requires an unmanned aerial vehicle to be flown over
the antenna array while transmitting several odd har-
monic signals. The received signal samples at a chosen
reference antenna element are then compared to those at
every other element in the array in order to find its
position. Previously, the far-field approximation was
used to calculate the time delay between received
signals. In this article the method is reconsidered for the
more realistic case of when the source is in the near
field of the array. A number of problems that arise are
addressed, and results from a controlled simulation are
presented to illustrate that the computational method
works.

1. Introduction

Ensuring accurate placement of the antenna
elements in large-N radio interferometers like the Low
Frequency Array (LOFAR) [1] and the Square Kilome-
tre Array [2] is a costly and time-consuming process.
Methods for finding the positions of individual antenna
elements within an irregular array after the installation
phase have been proposed [3, 4] in which signals are
transmitted from an unmanned aerial vehicle (UAV)
toward the array. This saves time and money by

allowing for errors from the designed positions during
placement of the elements, as well as indicating which
elements are connected incorrectly to the back end. The

application of a subsampled exponential analysis
algorithm using the far-field approximation was pre-
sented in [4]. Here the method is extended for when the

UAV is in the near field of the array.

2. Problem Formulation

Figure 1 illustrates narrowband odd harmonic
signals Si (tp) transmitted from the UAV when it is

located at position rp at time tp. The index i � N
distinguishes between frequencies xi ¼ (2i þ 1)x0,
where x0 is the baseband frequency. At time tp, the

signals are expressed as

Si tp

� �
¼ si tp

� �
exp jxitp
� �

ð1Þ

where si(tp) is assumed to remain constant during the

measurement of Si (tp). As in [3, 4], we assume the
signals are strong enough that astronomical sources in
the field of view of the array can be ignored. With the

UAV in the radiating near field of the antenna, a curved
phase front is incident on the array.

A reference antenna element a1 ¼ (0, 0, 0) is

chosen to coincide with the origin. All elements are
assumed to be located in the (x, y)-plane, so their z-
coordinates are zero. In the near field, the time delay of

incidence on the mth antenna element at position am ¼
umx þ vmy þ (0)z relative to a1 at time tp is

Figure 1. The UAV transmits signals Si(tp) at time tp while in the
near field of the planar array.
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sm xp; yp; zp

� �
¼

rp

�� ��� rp � am

�� ��
c

¼
rp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ u2
m þ v2

m � 2 umxp þ vmyp

� �q
c

ð2Þ
where rp¼ xpxþ ypyþ zpz is the vector from the origin
to the UAV’s position, rp ¼ rp

�� ��, rp� am is the vector
from the mth antenna element to the UAV, and c is the
propagation velocity of the signal, or the speed of light
in free space. From the narrowband assumption, the
samples at the mth element at time tp for frequency i are

fmi tp

� �
¼ Si tp þ sm xp; yp; zp

� �� �
’ si tp

� �
exp jxitp
� �

exp jxism xp; yp; zp

� �� �
ð3Þ

To extract the positions (um, vm, 0), we need multiple
samples at time tp, and this from several positions rp,
with p ¼ 1, . . ., P [5]. We use the following shorthand
notations for a fixed UAV position rp:

fmip ¼ fmi tp

� �
;

aip ¼ si tp

� �
exp jxitp

� �
;

Dmp ¼ u2
m þ v2

m � 2 umxp þ vmyp

� �
;

smp ¼ sm xp; yp; zp

� �
¼ 1

c
rp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dmp

q� �
;

Wmp ¼ jx0smp so that 2iþ 1ð ÞWmp ¼ jxismp

ð4Þ

The samples at each element m are filtered into sub-
bands, so for position p,

fmip ¼ aip exp 2iþ 1ð ÞWmp

� �
ð5Þ

The frequency and positional dependence of the
coefficients aip are undesirable. Therefore, we first
divide the sample sets fmip by the reference antenna
element’s samples f1ip ¼ si tp

� �
exp jxitp
� �

exp 0ð Þ ¼ aip,
which gives

f 0mip ¼
fmip

f1ip

¼ exp 2iþ 1ð ÞWmp

� �
ð6Þ

3. Subsampled Exponential Analysis

To ensure that no aliasing occurs, we need
2Wmp

�� ��, p, which leads to the spatial Nyquist criterion

2 rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dmp

q� ���� ���, k0

2
ð7Þ

where k0 is the wavelength of x0. In the dense case
where (7) holds, the base terms Wmp can be recovered
from the signal samples by using any Prony-like
method. If (7) is not satisfied, we have a subsampled
exponential analysis problem that we can solve with a
technique similar to [6, 7]. This dealiasing method
works with coprime scale parameters r1 and r2 and can
also be used in the multivariate case [5]. The equations
for the near-field base terms Wmp in (4) are nonlinear, so

in order to recover from aliasing using this approach,
we first linearize our model with a first-order Taylor-
series partial sum.

4. Linearization of the Near-Field Model

While um and vm denote the coordinates of
antenna element am in the (x,y)-plane and (xp, yp, zp)
denotes the location of the UAV in space at time tp, we
introduce the general coordinates u and v in the plane.
During the linearization, we keep rp¼ xpxþ ypyþ zpz at
time tp fixed, so that the expression

gp u; vð Þ ¼ rp

�� ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp

�� ��2 þ Dp u; vð Þ
q

;

Dp u; vð Þ ¼ u2 þ v2 � 2 uxp þ vyp

� �
varies only with the planar position (u, v). We
approximate gp(u, v) by

Lp u; vð Þ ¼ gp ~u;~vð Þ þ u� ~uð Þg uð Þ
p ~u;~vð Þ

þ v� ~vð Þg vð Þ
p ~u;~vð Þ ð8Þ

where g uð Þ
p and g vð Þ

p are the partial derivatives with
respect to u and v,

g uð Þ
p u; vð Þ ¼ xp � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp

�� ��2 þ Dp u; vð Þ
q ;

g vð Þ
p u; vð Þ ¼ yp � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp

�� ��2 þ Dp u; vð Þ
q ð9Þ

Substituting these equations into (8), the linearized
approximation Lp(u, v) becomes

Lp u; vð Þ ¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

þ
u� ~uð Þ xp � ~u

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

þ
v� ~vð Þ yp � ~v

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

ð10Þ
Let the constant terms in (10), for a certain estimation
~u;~vð Þ, be denoted by

jp ~u;~vð Þ ¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q

�
~u xp � ~u
� �

þ ~v yp � ~v
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q ð11Þ

Then we can use the remaining function

Lp u; vð Þ � jp ~u;~vð Þ ¼
u xp � ~u
� �

þ v yp � ~v
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ Dp ~u;~vð Þ
q ð12Þ

to solve the positions of the elements in the antenna
array in the near-field sub-Nyquist case, where the

common factor 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
p þ Dp ~u;~vð Þ

q
can be used to model

rj, j ¼ 1, 2, as explained in the next section.
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5. Exponential Analysis of the Linearized
Near-Field Problem

Choose 2P radial positions rpj
¼ xpxþ ypyþ zpj

z
with radial distance rpj

¼ rpj

�� ��, for j ¼ 1, 2 and p¼ 1,
. . ., P. Let ~um and ~vm be estimates of the coordinates um

and vm in the (x, y)-plane of antenna am, and let us
denote ~Dmp ¼ Dp ~um;~vmð Þ and jmpj

¼ jpj
~um;~vmð Þ. Note

that ~Dmp is independent of the z-coordinate and
therefore simply indexed by p, not pj. With p and m
fixed, the linearization

Lpj
um; vmð Þ � jmpj

¼
um xp � ~um

� �
þ vm yp � ~vm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ ~Dmp

q
ð13Þ

is used to model the near-field nonlinear

gpj
um; vmð Þ ¼ rpj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q
’ Lpj

um; vmð Þ ð14Þ

The approximation in the right-hand side of (14)
becomes more accurate as the value of ~um;~vmð Þ gets
closer to the true antenna element position (um, vm). We
additionally introduce the virtual UAV position Rp ¼
xpxþ ypyþ Zpz with virtual height Zp and Rp ¼ Rp

�� ��,
such that the spatial Nyquist criterion

2 Rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ Dmp

q� ���� ���, k0

2
ð15Þ

is met for all m. With Rp, we rewrite the value Cmpj
as a

scaled Cmp,

Cmpj
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
pj
þ ~Dmp

q ¼ rjmpCmp;

Cmp ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
p þ ~Dmp

q
ð16Þ

and we start the iterative improvement of the estimation
~um;~vmð Þ. During the iteration, the values of rpj

remain
constant while ~Dmp is updated at every iteration step.
The values of rjmp and Rp are manipulated in every
iteration step to give (16), with the only restrictions
being that the spatial Nyquist criterion in (15) must be
met and rjmp, j ¼ 1, 2 must be coprime in order to
recover from aliasing. If we set rp1

.rp2
, then Cmp2

.
Cmp1

for all m. The ratios

r2mp

r1mp

¼ Cmp2

Cmp1

ð17Þ

rounded to two significant digits provide coprime values
for r1mp and r2mp. For each antenna, we start with ~um

¼ ~vm ¼ 0 so that ~Dmp ¼ 0 and jmp¼ 0. A new value of
the estimated antenna position ~um;~vmð Þ is found as
follows, using our approximated model in conjunction
with the subsampled exponential algorithm.

The samples at each antenna element normalized
by f1ipj

according to (6) are

f 0mipj
¼ exp 2iþ 1ð Þ j

x0

c
rpj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q� �� �
ð18Þ

Thus, a priori we compute the base terms

exp 2j
x0

c
rpj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q� �� �
ð19Þ

using any Prony-like method for the samples f 0mipj
. Here

we prefer the Root-MUSIC algorithm [8] because of its
accuracy. For every antenna element am, every position
p, and every j we use Nt time samples of the form in
(18), with added white Gaussian noise from systematic
effects in the antenna array’s channels. Fortunately, the
noise encourages clustering in the complex plane
around the true solution of the base terms in (19) [6].
We use the densest point from all evaluations as our
best estimate of (19), which is defined as the point
inside the smallest possible radius that contains a
specified minimum number of points around it.

Subsequently, in every iteration step the estimated
base terms are shifted by multiplying them with
exp �j 2x0

c
jmpj

� �
. Since Dmp ’ ~Dmp, we find that

gpj
um; vmð Þ ¼ rpj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q
’ rpj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ ~Dmp

q

and hence that the linearization in (13) can be used.
Moreover,

j
2x0

c
rpj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ Dmp

q
� jmpj

� �

’ j
2x0

c

um xp � ~um

� �
þ vm yp � ~vm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

pj
þ ~Dmp

q
0
B@

1
CA

¼ j
2rjmpx0

c

um xp � ~um

� �
þ vm yp � ~vm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ ~Dmp

q
0
B@

1
CA

ð20Þ

We can therefore denote the left-hand side of (20) by
rjmpUmp. The possible arguments Ump of expðrjmpUmpÞ
are collected in two sets ( j ¼ 1, 2):

Ump þ
j2p
rjmp

l : l ¼ 0; . . . ; rjmp � 1

	 

ð21Þ

Since rjmp are chosen as coprime for every m and p, the
intersection of the sets (21) for j ¼ 1, 2 contains the
unique dealiased argument which is the valid Ump [7].

A complication arises when trying to extract the
values of um; vmð Þ from Ump, which is our ultimate goal.
From the expression for Ump we find

j
c

2x0

Ump þ
rpj
� jmpj

rjmp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ Dmp

q

Inside the square root we have

R2
p þ Dmp ¼ x2

p þ y2
p þ Z2

p þ u2
m þ v2

m � 2 umxp þ vmyp

� �
¼ um � xp

� �2 þ vm � yp

� �2 þ Z2
p ð22Þ
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Equation (22) defines a circle with center xp; yp

� �
and

radius R2
p � Z2

p þ Dmp. Thus for any two distinct
positions of the UAV, the possible solutions of
um; vmð Þ occur at the intersections of two circles. To

find the correct solution, we add distinct UAV positions

so that P � 3 and we have Nc ¼
P

2

� �
combinations of

pairs of circles whose intersections are possible
solutions of um; vmð Þ. We use the mean of the Nc

closest intersections as the solution to um; vmð Þ, which
then becomes the updated value of ~um;~vmð Þ in the linear
model in (13). The entire procedure discussed in this
section is repeated untilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

um � ~umð Þ2 þ vm � ~vmð Þ2
q

, 0:01 ð23Þ

This iterative process should converge due to the
convexity of the linearized function

gpðu; vÞ ¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ u2 þ v2 � 2ðuxp þ vypÞ
q

¼ rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � uÞ2 þ ðyp � vÞ2 þ z2

p

q
:

6. Simulation Results

In practice, this method is performed off-line
using the time-series signals from each antenna element
in the respective frequency bins, as described in (3). To
demonstrate that the algorithm works, we present results
from a controlled simulation that does not include
practical considerations such as mutual coupling or the
precision with which the UAV’s position can be
determined. However, the simulation parameters are
from actual in situ measurement campaigns that were
performed on the LOFAR low-band antenna (LBA),
such as in [9]. We use the outer LBA substation for our
simulation, for which the positions of the antenna
elements are indicated by the crosses in Figure 2. The
flight path of the UAV is a 100 m 3 100 m square, with
some deviations caused by wind. The black dots
indicate the P ¼ 16 positions that are used.

The fifth, seventh, ninth, and 11th harmonics of
the baseband frequency f0 ¼ 6.3585 MHz are transmit-
ted from the UAV, so i¼ [2,3,4,5]. One hundred Monte

Carlo runs were performed for signal-to-noise ratios
(SNRs) of 15 dB to 50 dB. The number of samples at
each position is Nt ¼ 80. For each antenna, the median
estimated position over all runs was taken and
compared with the actual position. The root-mean-
square (RMS) errors of the difference between the x-
and y-positions for all the antenna elements were
calculated at each noise level. The results are presented
in Figure 3 in terms of the wavelength of the highest
frequency harmonic k11 ¼ 4.29 m transmitted from the
UAV. Even at an SNR of 15 dB, the RMS error is less
than 1% of the smallest transmitted wavelength k11,
confirming the efficacy of the computational method.

7. Conclusion

This article expands on the work in [4] by
replacing the far-field approximation with the more
realistic near-field model, along with other subtle
improvements. In order to use the proposed subsam-
pling algorithm, it is necessary to linearize the model
and solve for the antenna positions iteratively. Simula-
tion results that do not yet consider various practical
problems indicate that the algorithm works well. In
future, practical effects such as mutual coupling
between antenna elements in the array will be
considered before moving on to applying the algorithm
to practical data from the field.
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