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   Abstract—The emergence of IPv6 (Internet Protocol Version 6) 

for low-power wireless communication is considered a 

breakthrough allowing a densely populated multi-hop network of 

Internet of Things (IoT) devices to be used for data gathering 

over a range of 1-2 kilometer (km). However, the communication 

between the devices has suffered from external interferences and 

multi-path fading challenge. The Internet Engineering Task 

Force (IETF) and Institute of Electrical and Electronics 

Engineers (IEEE) jointly proposed The IPv6 over IEEE 802.15.4 

TSCH mode (6TiSCH) to deal with existing challenges and 

improve network performance to meet key requirements of 

industrial applications.  The 6Top layer integrates TSCH (Time 

Slotted Channel Hopping)-MAC over IEEE 802.15.4 with the 

rest of the IPv6 stack where the schedule allocation is performed 

by scheduling function (SF). However, network scalability 

remains an open challenge. Specifically, the 6TiSCH Working 

Group (WG) do not define rules towards optimal schedule 

allocation over Time Slotted Channel Hopping (TSCH) mode of 

IEEE 802.15.4. In this paper, we propose Decentralized, and 

Broadcast-based Scalable Scheduling Reservation Protocol for 

6TiSCH Networks (DeSSR). The experimental performance 

analysis demonstrates strong performance under steady and 

bursty traffic when compared with current SFs. This makes 

DeSSR a strong proposal contributing towards improving 

scalability in large-scale 6TiSCH networks. 

Index Terms— Internet of Things (IoT), IEEE 802.15.4 

Networks, 6LoWPAN, 6TiSCH Architecture, TSCH Scheduling. 

I. INTRODUCTION

oT is a network of interconnected resource-constrained 

devices exchanging data simultaneously over the internet. 

Today, billions of IoT devices are connected to the 

Internet world-wide [1]. Consequently, new standards and 

technologies for low power and lightweight communication 

have emerged to match the wired-like connectivity for 

industrial coverage [2]. The 6TiSCH is a wireless 

communication standard, introduced by IETF 6TiSCH WGs in 

2013, with the objective to enhance IPv6 operation using 
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IEEE 802.15.4 specification [3]. It uses a compressed IPv6-

enabled 6LoWPAN stack [4] where the TSCH mode [5] has 

been already added to IEEE 802.15.4 for countering the 

impact of external interferences, and to deal with the multi-

path fading issue using its channel-hopping capability. 

The 6Top layer [6] holds the central position integrating the 

rest of the IPv6 stack to the TSCH-MAC over IEEE 802.15.4. 

This led to improved reliability. However, 6TiSCH 

installations using a densely populated multi-hop Destination 

Oriented Direct Acyclic Graph (DoDAG) topology [7] have 

suffered from poor scalability. The actual bottleneck is the 

collisions in TSCH slotframe [5]. 

Centralized SFs suffer from scalability limitations due to 

high signaling overheads and their use has sharply declined 

after the introduction of distributed scheduling as per the 

literature [8]. 

Distributed scheduling allows both negotiation-based and 

autonomous scheduling operation [8]. Under negotiation-led 

scheduling, it incurs a cost of reoccurring negotiations 

between nodes and their neighbors to adapt to changing traffic 

conditions. Furthermore, the risk of collisions cannot be 

overlooked in a densely occupied slotframe. 

Autonomous scheduling avoids the requirement to 

negotiate. Instead, it assigns the all-time active cells in a static 

manner. However, autonomous SFs perform poorly in 

changing traffic conditions in dynamic topologies causing a 

temporary peak of traffic. Clearly, the use of negotiation-led 

designs cannot be ruled out. 

Currently, the negation-based scheduling has evolved over 

time from reactive to on-demand reservation-based bandwidth 

allocation, albeit there is no guidance provided by the 6TiSCH 

WG. The key algorithms under this category are documented 

in existing literatures [8]-[13]. 

Because the reoccurring 6Top transactions are lengthy and 

charge-consuming and the adaptive negotiation-based SFs use 

a significant amount of control overheads. The use of the 

piggyback technique to ensure an overhead-free operation is 

proposed by the adaptive autonomous SFs [14]. That is, no 

separate Enhanced Beacon (EB) for negotiation. However, 

there is no evidence of such proposals to be beneficial in terms 

of scalability. Furthermore, the combined use of autonomous 

and negotiation-based scheduling [9] does not guarantee 

scalability for larger networks due to poor propagation and 

inefficient adaption. 

Decentralized, Broadcast-based Scheduling (DeBraS) [15] 

is an efficient design that is allowing more than one broadcast 

cells to improve propagation of information in the network, 

hence promoting seamless connectivity of nodes, and avoiding 

network bottlenecks caused by collisions. The selection of 

how many cells will be sufficient is left unto the implementer 

[15]. The design of DeBraS has led to significant 
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improvements during the network bootstrap period and the 

scale of operation, where the key trade-off has been with the 

charge consumption [15]. Previously, we developed Smart 

Scheduling Reservation (SSR), which is a distributed solution 

allowing the 6Top layer to hold a central position while the 

sensor devices are negotiating with their neighbors for 

bandwidth. It offered good scalability and achieved strong 

distribution [12], However, due to limited proliferation of 

information, channel-hopping became slower, which led to 

decline in the performance beyond 70 nodes under heavy 

traffic conditions. Here, we aim to exploit a decentralized, 

broadcast-based scheduling design to improve scalability. 

A. Contribution 

In this article, we review SSR’s key strategies for DeBraS-

led operation. The outcomes of the review include the need for 

enhancement of Dynamic Traffic Strategy (DTS) and Network 

Depth Strategy (NDS). We also replaced the Cell Selection 

Strategy (CSS) with a randomized selection. The following 

contributions are reported in this paper: 

● We propose DeSSR, which enhances the NDS to 

increase participation by nodes and reassess their 

distance from the root in a flexible manner. This was 

aimed to promote competition among nodes to access 

excess TSCH cells. 

● We enhance DTS using PDR (Packet Delivery Ratio) 

and that is necessary to choose the best eligible node for 

allocation. This process does not introduce additional 

overheads. 

● DeSSR is evaluated using a densely populated large-

scale network. In particular the impact of steady, and 

bursty traffic experiments on network performance over 

time is investigated. 

● We test the scalability of DeSSR considering increased 

coverage, network size, buffer size, and packet 

generation periods. 

The remainder of this paper is divided into five main 

sections: Section I provides an introduction of the proposed 

study. This is followed by a review of related work, which 

also discusses SSR in a detailed manner in Section II. Section 

III presents DeSSR. The evaluation is conducted using the 

6TiSCH simulator in Section IV where results are analyzed 

using a variety of scenarios. Finally, Section V concludes our 

work and outlines future directions. 

II. RELATED WORK 

6TiSCH scheduling is a popular topic that links to the 

evolution of lightweight 6TiSCH architecture for industrial 

networks using heterogeneous sensor devices [16]. This 

section reviews the related work in the context of 

decentralized, and broadcast-based scheduling, and discusses 

our previously defined approach, SSR, in a detailed manner. 

A. Literature Review 

This section reviews the key scheduling algorithms, 

dedicated towards the scalability of 6TiSCH networks. 

Municio et al. [15] proposed a lock-based decentralized 

approach, which floods the network with the information 

about the reservation of the locked cells to avoid conflict of 

interest with the other nodes in the network. However, it 

overlooks collisions. In addition, it causes high convergence 

delays due to trade-off with cell consumption, and it does not 

screen unrealistic links. 

Accettura et al. [17] proposed DeTAS (Decentralized Traffic 

Aware Scheduling), which is an extension to TASA (Traffic-

Aware Scheduling Approach). The approach forms a common 

schedule where nodes use multipath reservation to improve 

reliability on a shared medium. However, it causes a high 

volume of overheads. 

Palattella et al. [18] proposed a fixed threshold-based 

scheduling, which allowed adding and deleting the portion of 

cells on demand basis and based on the custom-defined limit. 

However, it under-or-over estimates the demand of cells per 

node since the nodes frequently change their position in the 

network hierarchy. 

Soua et al. [19] fragmented the slotframe into waves where 

each time a sender node transmits a packet, a new pattern of 

wave with unique channel id is made available to control 

collisions. Here, it remains a valid solution as long as the 

nodes do not transmit packets simultaneously and the packets 

are not dropped due to the scarcity of Tx cells similar to 

unicast-based TSCH scheduling operation. 

Raza et al. [20] proposed a decentralized, adaptive multi-hop 

scheduling protocol for 6TiSCH wireless network. It uses a 

data-centric query flooding the network to ensure that the 

traffic is forwarded in advance. Evaluation confirms that it is 

reliable and efficient for mobile-friendly SF, However, the 

query process to reach the nodes located far away from the 

root is subject to high overheads. 

Kralevska et al. [21] proposed a decentralized, multipath 

schedule reservation protocol using the graph theory. 

However, the author ignores bandwidth allocation to traffic 

variation. In the extension to LV (Local Voting) [22], the 

author used the fixed threshold of 10 cells. However, neither 

one is scalable as the pre-estimated load sharing provides no 

benefit for dynamic topology as nodes appear and disappear 

frequently. Additionally, it witnesses high rank-churn and 

poor parent-change, and uses unreliable, and poor links, 

which may be present in the routing topology [8]. 

Duaquennoy et al. propose Orchestra [23], which is the first 

autonomous SF using all-time active slots configured on a per 

node basis using receiver-based and sender-based allocation 

modes. Orchestra allocates one cell per node per slotframe. 

Unfortunately, the approach does not adjust well to variable 

traffic conditions. Further, shortcomings include a comparably 

high latency and low scalability. 

Autonomous Link-based Cell Scheduling (ALICE) [24] is 

considered an enhanced version of Orchestra, which replaces 

Orchestra’s node-based allocation with a link-based 

scheduling approach. Hence, it offers a volume of cells to a 

node depending on the number of RPL (Routing Protocol for 

Low Power and Lossy Networks) neighbors. However, it too 

adopts a static allocation of the autonomous cells, which is not 

optimal considering the unpredictability of a node’s movement 

in the topology [14]. Consequently, ALICE suffers from 

packet loss under heavy traffic conditions and for network 

sizes beyond 64 nodes as is discussed in [14]. Thus, it lacks 

the scalability required for industrial applications where 

hundreds of nodes are deployed under a single root node. 
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ALICE-FP [14] is an extension of ALICE that allows nodes 

to exchange their frame pending bit to allocate more cells to 

the corresponding node that carries more traffic from the 

sending node. The proposal employed piggybacked technique 

and is overhead-free. However, it lacks adaption despite 

assisting nodes which experience peaks of traffic. 

The piggybacked technique is further exploited by Traffic-

Aware Elastic Slotframe Adjustment (TESLA) [25]. It uses 

the receiver-based mode of Orchestra and uses adjustments in 

the slotframe based on incoming traffic. However, this is not 

an overhead-free approach. Recently, autonomous scheduling 

has been utilized alongside the negotiation-based approaches 

using 6top layer or 6P protocol [26]. 

Chang et al. [27] proposed Minimal Scheduling Function 

(MSF), which uses Orchestra for maintaining network 

dynamics and On the Fly bandwidth allocation (OTF) for data 

traffic adaption [28]. OTF’s integration with the MSF has 

made it vulnerable due to fixed threshold-based allocation, 

which under-or-over estimates the demand and leads to 

bandwidth wastage [13]. OTF [18] has been extended by 

numerous SFs and inherited key drawbacks of fixed threshold-

based overprovisioning. Righetti et al. [29] proposed an 

extension of OTF called E-OTF, in which the author used a 

similar representation of bandwidth allocation policy like OTF 

except it uses signaling to measure slot occupancy and provide 

congestion bonus as real-time queue occupation threshold. 

Wang et al. [30] highlighted key drawbacks of E-OTF, as 

poorly defined controls towards optimal scheduling for bursty 

traffic, and insufficient measurement of occupancy threshold. 

Furthermore, E-OTF’s performance under large-scale network 

is currently unknown [30]. 

SSR [12] proposed a unique cake-slicing based distribution. 

It outperformed a range of popular SFs including MSF with 

consideration to traffic adaption. However, SSR experienced a 

decline in performance beyond 70 nodes under heavy traffic 

conditions (packet period of 1s). The next section introduces 

SSR and its key concepts. 

B. Smart Scheduling Reservation 

This SSR [12] is a distributed scheduling solution, designed 

to improve scalability of 6TiSCH industrial networks using an 

analytical technique called ‘cake-slicing’ along with the four 

peer strategies: NDS, DTS, CSS, and Queue Optimization 

Strategy (QoS) or Packet Aggregation Strategy (PAS). This 

section briefly discussed these capabilities of SSR using 

examples.  

 
Fig. 1. Example of the cake-slicing algorithm 
 

Figure 1 demonstrates a distribution of slotframe (S= 100) 

against varying depth identifiers (D= 2,3,4,5,6,7,8,9) using the 

cake-slicing technique of SSR. The output is presented on a 

per row basis, which corresponds to D. The columns represent 

a forecast of slotframe distribution for a multi-hop hierarchical 

network topology, which is divided into a number of hops 

based on the distance to root (controller). According to the 

example in Figure 1, a non-linear pattern is observed with a 

difference in values between hop 1 and hop 2 that is almost 3 

times that of values at hop 2 and it is true for the rest of the 9 

cases presented in this example. This translates into the 

throughput capability of nodes depending on the distance to 

root. The cross (X) sign in Figure 1 is used as a filler in the 

example showing D is less than 9 hops while S and N are non-

zero. A fuller discussion on the cake-slicing algorithm is 

provided in [12]. 

 

 
Fig. 2.  Example of SSR’s Network Depth Strategy. 

 

Figure 2 captures the view of how NDS functions with an 

example. Here, the nodes are numbered alphabetically and the 

rank identifier of RPL [7] is used to calculate distance to root, 

which eventually translates into a number of hops. SSR uses a 

fixed interval of 127, which is added to the corresponding rank 

value to reorganize the topology. In Figure 2, Node A and B 

are located at closest distance to root at hop 1. This means, 

any node whose rank coordinates fall between 257 and 384 

will be considered one-hop away from the root. Nodes C and 

D are considered to be two-hops away. Similarly, node E, F, 

and G follow hop 3, 4, and 5 respectively. However, where the 

rank exceeds the 10 hops, a random hop id is assigned. 

Figure 3 presents an example of DTS using a representative 

cake-slicing scenario from Figure 1, and the example of NDS 

in Figure 2, which also corresponds to Figure 1. Here, the 

example of DTS uses a particular row from Figure 1 where S= 

100 and N=D= 5 and Figure 2 provides hop id of nodes in the 

network topology. In Figure 3, the root node is located at the 

bottom. The nodes that are used for data gathering are aligned 

on the left-hand side, and the computation of DTS threshold 

(Tsd) takes place on the right-hand side. To compute Tsd, DTS 

uses a bitwise operator (>>) between the slice (value) chosen 

based on the hop distance and the constant of 3. Thus, Node 
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Fig. 3.  Example of SSR’s DTS using 5-hop RPL topology. 

 

A, and B get Tsd= 7, which is the highest estimate. Node C and 

D get Tsd= 2 each, that is about 3.5 times less than the value of 

Tsd at hop 1 and is as per the distribution shown in Fig. 1. 

Finally, Node E, F, and G at hop 3 get Tsd= 1, Tsd = 0, Tsd = 0 

respectively. With these heuristics being supplied on the run-

time, SSR replaces static distribution of excess cells in an on-

the-fly manner. 

The original representation of DTS is available in [12]. For 

the influence of DTS on network performance, refer to 

performance evaluation of SSR, which is provided in [12]. 

 

 
 

Fig. 4.  Example of SSR’s CSS using 5 hop RPL topology. 

 

Cell Selection using SSR’s CSS closely follows the cake-

slicing distribution. In Figure 4, it is shown using Figure 1 

where S= 100, and D= 5. CSS treats each corresponding slice 

as a slotframe, which is then scanned thoroughly by nodes for 

free cells until the demand of requested cells is met. 

For example, the 1st slice contains 60 timeslots, Hence, it 

contains 0- 60 slots where the 0th slot is a broadcast schedule, 

used for bootstrapping. 

The next slice is 20 slots long as per the distribution shown 

in Figure 1, hence, the 2nd slotframe starts from 61 and ends 

with 80. That is, exactly 20 slots. 

The rest are shown in Figure 4 where the scheduler 

allocates most slots to the left in the slotframe under normal 

traffic conditions. However, if the occupancy of a slotframe 

reaches 100%, the scheduler chronologically uses the next 

available slotframe and this process continues until the 

demand is met. However, if all slotframes are scanned and the 

occupancy is high, SSR opts for a randomized selection and 

drops packets upon failure to locate the sufficient volume of 

free cells. 

 

 
 

Fig. 5.  Example of SSR’s PAS. 

 

Figure 5 Demonstrates an example of PAS using slicing 

hysteresis from Figure 1, where we retain a list of values from 

a particular row (60, 20, 10, 6 and 4) as slicing hysteresis. 

SSR uses this hysteresis to distinguish self-generated traffic 

from forwarding traffic. The PAS further uses an example to 

show how it functions. Here, P indicates the node’s self-

generated payload, and Rx indicates the forwarding payload. 

PAS threshold is computed as the percentage of corresponding 

slice indexed by the node’s position (hop id). 

In the example given in Figure 5, each tab is divided into 

two parts where the left-hand side of it shows node ID as 

prefix, hierarchically organized in the topology in the same 

order as Figure 2, and the remaining part of the tab contains 

finalized transmission payload (T). 

In the 1st tab, the T is calculated for Node A and B where 

both nodes take 40% of forwarding packets, which is 

calculated using (Rx * (1- PAS threshold)) provided PAS 

threshold is a value between 0.00 and 1.00. The node’s self-

generated payload is collected to 60%, which is inversely 

proportional to share of the forwarding payload to be 

transmitted. Node C and D choose 80% of forwarding streams 

and 20% of self-generated streams. Node E chooses 90% of 

forwarding traffic and 10% of its own. Node F takes 94% of 

forwarding traffic and 6% of its own. Finally, Node G, which 

is located at the bottom of the hierarchy, chooses to take 96% 

of forwarding packets and 4% of its own. In the next section, 

we enhanced SSR to improve the scalability using a 

Decentralized, Broadcast-based scheduler. 
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III. DECENTRALIZED, AND BROADCAST-BASED SCALABLE 

SCHEDULING RESERVATION PROTOCOL 

SSR follows a negotiation-led scheduling approach in 

which nodes allocate and deallocate cells using 6Top 

commands [6]. SSR follows a defined configuration where 

each and every node exchange EBs using minimal cell as per 

the RFC 8180 [31]. That is, in the large-scale network headed 

by a single-sink node, the probability of collision remains a 

key concern, not only in the minimal cell, which is also called 

hard cell (only configured once) but also in the soft cells that 

are allocated and deallocated on demand-basis [31]. The 

collision in minimal cell is handled using back-off mechanism 

provided in IEEE 802.15.4 and collided soft cells are relocated 

using 6Top commands [18]. Furthermore, with the high 

volume of soft cells collided, it can even lead to network 

collapse [18]. The triggering point is the conflict of interest 

with other nodes since the advertisement of real-time changes 

in the slotframe is expensive. 

In this paper, we propose the enhancement of SSR using a 

decentralized, broadcast-based scheduling design, first 

introduced by Tinka et al. [32], and extended by Municio et al. 

[15]. According to this design, nodes advertise their reserved 

cells in the network through more than one broadcast cell. 

This improves propagation to lower the probability of 

collisions.  The approach selects a minimum of 3 broadcast 

cells randomly. 

As far as the topology formation is concerned, once the root 

is configured, it triggers transmission of EBs, and DoDAG 

information objects (DIO) messages to allow new nodes to 

join. A node, when switched on, initiates listening at a 

randomly chosen channel and receives EBs from nearby 

nodes, thereby discovering nodes in its surrounding. The 

joining node selects one of the neighbors as Join Proxy (JP) to 

which it synchronizes its clock to and starts the joining 

process [33]. A Join Proxy is an existing RPL neighbor 

sharing connectivity metrics with joining node [31]. Further 

information on how connectivity metrics are calculated by 

RPL is available in RFC 6550 [7]. The joining process then 

requires the node to follow the secure join operation [33]. 

Here, the joining node exchanges unicast messages with 

security information, carried within EBs. Once the node is 

authenticated, it sends DIS (DoDAG Information Solicitation) 

messages [31] to solicit DIOs from RPL neighbors. The node 

then deciphers the DIOs to acquire a preferred parent and rank 

information [7]. Lastly, the joined node must add at least 1 Tx 

cell with the corresponding parent using 6top unicast 

messages [43], which are also carried by EBs. Hence, network 

formation incurs a significant number of overheads. 

The proposed solution follows the design principles of RPL 

RFC 6550 where non-storing mode is default mode of 

operation [7]. Here, multiple nodes send data to the root node 

via a preferred parent. The root node populates path 

information to the outgoing packet’s header information 

leading to a downward trajectory to reach the corresponding 

destination in DoDAG topology, i.e., source routing. Hence, 

there is no requirement for a node in DoDAG to store an entire 

set of routing entries. Instead, a single entry to the 

corresponding Direct Acyclic Graph (DAG) parent is 

sufficient. This is important as the nodes are memory-

constrained devices. The full set of routing entries is only 

stored by the root, which is also responsible for computing the 

shortest path to the destination. This mechanism is supported 

by Destination Advertisement Object (DAO) and Destination 

Advertisement Object-Acknowledgement (DAO-ACK) 

unicast messages, sent periodically by non-root nodes in the 

topology. The DAO messages contain downward routing 

entries and are marked valid upon a timely receipt of DAO-

ACK [7]. If the destination is not found, then the packet is 

dropped. This mechanism is discussed in more detail in [7]. 

The following scheduling restrictions are imposed by DeSSR:  

● All source nodes send data to the root node via 

preferred parent selection and follow RPL’s non-storing 

routing mode of operation [7]. 

● A sensor node can either transmit or receive the packet 

at a time hence it follows a half-duplex communication. 

● Parents and children can transmit and receive a packet 

using the same TSCH cell. 

● A Child node from a common parent can either transmit 

or receive packets simultaneously using the same time 

slot and channel id (cell). 

In this section, we propose DeSSR, and review the key 

strategies of SSR towards the decentralized, broadcast-based 

scheduling operation. 

 

A. SSR, and Decentralized, Broadcast-based Scheduling 

SSR anticipates requirements to monitor queue occupation 

and adapts traffic conditions on nodes (motes) dynamically. 

However, it allocates too many cells to nodes based on the 

NDS distribution and ignores poor links (nodes) on the way to 

root. Hence, further screening of nodes is necessary to avoid 

bandwidth wastage. Apart from that, SSR uses the fixed value 

of 127, which separates nodes from one another based on the 

hop-distance. The potential problem with this constant is that 

when nodes are allowed to use shared cells rapidly, the current 

limit of 127 undermines the node’s participation. 

SSR’s CSS is not suitable for decentralized, and broadcast-

based scheduling as the strategy demands adjacent Tx cells in 

the slotframe thereby, triggering a high volume of collided 

cells. Hence, the proposed solution must avoid using CSS. 

One option to use is the random selection method, However, it 

too does not promise a collision-free operation. As far as the 

packet aggregation is concerned, it uses a unique strategy 

based on the dynamicity of the cake-slicing heuristics. That is, 

the aggregation follows dynamic selection of payload in the 

node’s buffer. Hence, it will be implemented without any 

modification. Similarly, the cake-slicing method. 

 

B. Design principles of DeSSR 

DeSSR is a distributed SF, which, on one hand, promotes 

increased negotiation between nodes using enhanced NDS, 

while eliminating poorly performing nodes to have extra cells 

on the other hand. It filters the nodes based on PDR: a value 

between 0.00 to 1.00. The proposed solution does not 

introduce additional overheads while integrating PDR-based 

screening on top of DTS. DeSSR allocates cells when the 

available cells are not enough for a node to complete the 

transmission of payload. The algorithm is shown in Figure 6.  
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      DeSSR Bandwidth Allocation Algorithm 

DeSSR Allocation (Now_cells, Req_cells) 

Now_cells← Number of cells in node buffer 

Req_cells← Number of cells needed to match traffic 

T← threshold to calculated, S← slotframe length 

rank ← RPL rank of a node, ND← network depth 

Interval← [256,512,368….N.] 

pdr← packet delivery ratio of a node. 

hop ← calculate_rank (rank, Interval) 

T← int ((get Slicer(S, hop) >> number of parents) * pdr)  

  if  Req_cells> Now_cells AND Now_cells==0 then 

        if Req_cells > 0 AND  (pdr/1.5)>0.5  then 

                Now_cells= Req_cells-Now_cells + (T+1)/2 

        end if 

  else if Req_cells < (Now_cells - T)    then 

        Now_cells = Now_cells- Req_cells- (T+1)/2 

  else  

        Now_cells= 0 

  end if 

End 

Fig. 6. DeSSR’s bandwidth allocation algorithm. 

 

DeSSR-led scheduling indicates that only the deserving 

nodes are given excess cells ensuring the estimated PDR of 

eligible nodes is greater than 0.5. As far as the role of NDS is 

concerned, it provides a context to each node where the value 

of the interval is reset from 127 to 256 out of many available 

choices. This means, the higher the NDS interval, the higher 

the participation. 

The algorithm begins with the get Slicer (cake-slicing) 

function, which generates a list of slices, indexed by node’s 

hop id. The resultant value is processed using a bitwise right-

shift operator against the number of parents. 

Currently, the number of parents that a node can have been 

limited to 3 per DAG. But in mesh topology, this number can 

be even greater than 3. Here a greater value will get a lower 

dynamic threshold limit (T), and a lower number of children 

will get a high T value. 

The end results are multiplied with pdr and that is how T is 

calculated for overprovisioning in DeSSR. The rest of the 

algorithm follows the same rules for ADD and REMOVE 

operation as SSR except an additional PDR-based screening 

while adding new cells. 

IV. PERFORMANCE EVALUATION 

DeSSR’s performance is evaluated using the 6TiSCH 

simulator [33], which is a discreate event-driven simulator. It 

can be used to deploy and test large-scale networks and can 

predict network behavior accurately and realistically 

compared to mathematical models [33]. 

The simulator uses the algorithm provided by Pister et al. 

[34] for collision-detection. The energy-consumption is based 

on a realistic energy model, introduced by Vilajosana et al. 

[35] for calculating charge consumed during various radio 

activities. In their paper the authors provided the 

measurements used for transmission, reception, and idle-

listening. The battery capacity is limited to 2200 milliampere-

hours (mAh). 

The TSCH slotframe is configured using 101 slots with the 

maximum duration of 10 milliseconds (ms) each and 16 

channels. Hence each slotframe cycle lasts 1010ms. 

The broadcast probability of EB and DIO is set to 0.1, and 

0.22 respectively. The routing beacons including DIOs and 

DAOs are sent per 1s and 60s respectively. 

The experiment uses multiple simulation runs and for every 

run, it generates a new topology. The nodes are positioned 

randomly, and each one is connected to at least 3 RPL 

neighbors whose PDR (Packet Delivery Ratio) is expected to 

be about 0.5 or higher. 

PDR is calculated based on Received Signal Strength 

Indicator (RSSI) metrics [36]. The qualifying RSSI threshold 

to allow packet reception is -97 Decibel Milliwatts (dBm). 

Figure 7 captures a view of topology using the 6TiSCH 

simulator [33]. 

 

  
Fig. 7. A view of topology in 6TiSCH simulator. 

 

This experiment is divided based on the steady, and bursty 

traffic pattern [21]. In the steady traffic scenario, the nodes 

will experience a continuous flow of packets generated 

periodically. In the bursty traffic scenario, a sample of burst 

consisting of a stream of packets will be injected given 

timestamps. In either scenario, packet’s destination is the root 

alone. OTF [18], and LV [21] are selected for comparison 

based on the literature review. The remaining set of 

parameters are given in the corresponding tables. 

A. Steady Traffic Experiment 

The experiment uses the 6TiSCH simulator, which considers 

a single IPv6 subnet in which data is gathered continuously at 

a sample rate of 60 packets per minute. The payload is 

generated soon after the network is configured. 

In the 6TiSCH network, nodes take time to join the network 

and the sooner a node is assigned rank, the sooner it starts 

transmitting path information to the root through DAOs. The 

data packets are transmitted using a multipath scenario 

depending on the transmission schedule that nodes have 

reserved with their preferred parent. The configuration 

parameters for this experiment are given in Table 1. 
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                                 TABLE I 

                       CONFIGURATION PARAMETERS 

Parameters Value 

Nodes [100] 

Area Square, [1*1] km 

Housekeeping Period [5]s 

Packet Generation Interval [1]s 

Slot Duration [10]ms 

Channel Density [16] 

Slotframe Length [101] 

Buffer Size [100] packets 

NDS interval [256] 

Radio Sensitivity [-97] dBm 

Simulation cycles [100] 

Simulation runs [100] 

Confidence Interval [95] percent 

Number of broadcast cells [3] cells 

Number of RPL children [3]  

Broadcast probability of EBs [0.1] 

Broadcast probability of DIOs [0.33] 

DIO period [1]s 

DAO Period [60]s 

  
Fig. 8. Application-generated packets over time. 

 

 Figure 8 shows a steady packet generation scenario as soon 

as the joining is complete, just slightly ahead of slotframe 

cycle 20. After this, all SFs maintain a steady payload portion 

of 100 packets over time. as all nodes have joined the network 

(post configuration time). 

Figure 9 depicts a stream of packets being sent to the root 

where number of packets are shown on the Y-axis and 

timestamps in slotframe cycles are given on the X-axis. The 

presented results in Figure 9 shows the throughput in volume 

of packets unstreamed by LV, OTF and DeSSR. Here, LV is 

showing variations as a difference between lower and upper 

mean values, computed at a 95% confidence interval. The 

variations are triggered due to scheduling incompetence 

against changing traffic conditions in dynamic topology. LV 

distributes the payload equally between nodes and disregards 

the fact that nodes closer to the root are responsible to send 

more packets than those at a farther distance from the root. 

Fig. 9. Application payload up streamed successfully. 

 

The rest of the SFs show progress with the evidence of DeSSR 

sending slightly more packets than OTF in the beginning. 

 
Fig. 10. Cell consumption in steady traffic flow over time.  

 

Sensor nodes depend on the slotted medium to dispatch the 

payload. Figure 10 shows that OTF reserves more cells in 

advance where a higher threshold limit (8 cells) translates into 

the highest number of cells being scheduled. LV doesn’t use 

overprovisioning, hence, the volume of scheduled cells by LV 

is lower than OTF. Albeit, both SFs scheduled significantly 

higher volumes of cells compared to DeSSR. 

 
Fig. 11. Volume of collided cells over time. 
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In broadcast-based scheduling, collisions can be expected 

where the key to control is reduced cell consumption. It is 

evident through Figure 10 and Figure 11. Figure 11 reflects 

that high cell consumption causes an increased volume of 

collided cells and eventually triggers higher charge 

Consumption. Since DeSSR’s consumption was the lowest, 

hence the collided cells triggered over time are the lowest too. 

 
Fig. 12. Lowest charge consumption in mA over time. 

 

Figure 12 shows that charge consumption by DeSSR is 

roughly the same as the others and this is due to the DeBraS 

scheduling itself, where the negotiations take place frequently, 

and beacons are dispatched frequently allowing more and 

more nodes to participate in negotiations with other nodes. 

 
Fig. 13. RPL rank-churn over time.  

 

In the dynamic topology, the node’s rank increases for two 

reasons: (1) downgrading link quality, and (2) interference. 

The rank is a weight assigned by IETF RPL [7] for forming 

routing topology where nodes advertise their rank frequently 

in the network to probe the shortest path to the root. This 

process is called preferred parent change [7]. While the rank 

fluctuates, it triggers the additional number of 6Top cycles. 

Thus, a lower-bound in rank-churn is preferred to a stable 

network. In Figure 13, LV maintains a fairly steady portion 

rank-churn over time, which contrasts rank-churn patterns of 

OTF and DeSSR. The reason of rank oscillation by LV is poor 

bandwidth allocation, which also leads to many 

inconsistencies including poor Tx-buffer utilization. 

 
Fig. 14. Node-churn over time upper-bound is preferred.   

 

Contrary to the rank-churn, the node-churn is the process 

that influences network performance positively if an upper-

bound is followed. In DeBraS-led operation, the nodes from 

an uncommon parent can transmit or receive packets 

simultaneously. When high node-churn is evident, nodes are 

flexible to progress to the shortest path to root, which cuts 

down latency, improves utilization of cell, and balances the 

traffic load. However, if there are not enough cells provided to 

probe the shortest path,  the node-churn becomes 

counterproductive. This is evident in Figure 14 where a lower-

bound node-churn is followed by LV while OTF and DeSSR 

both exhibit a high node-churn over time. 

Fig. 15. 6Top add/remove operations per slotframe cycle.  

 

In general, the SFs add and delete cells to nodes as a result 

of the changing traffic conditions. Figure 15 shows a volume 

of ADD/DELETE transactions per slotframe cycle (time), 

where ADD transactions are observed above the X-axis and 

DELETE transactions are observed below the X-axis. The 

results show that LV triggers ADD and DELETE transactions 

most frequently compared to OTF and DeSSR because it lacks 

overprovisioning. OTF, in order to suppress the recurrent 

transactions, allocates a fixed number of cells. However, OTF 

does not match the real-time demand, and that way, it under-

or-overestimates the actual demand. This also means, while it 

underestimates the demand, a slightly more cycles of ADD 

and DELETE are scheduled. DeSSR adapts the demand based 
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on the slicing heuristics where nodes closer to the root are 

allowed to maintain a high throughput. Figure 15 shows that 

DeSSR triggers a balanced number of overheads, which is 

roughly the same as OTF despite the lowest consumption 

observed by DeSSR. That is necessary to balance the recurrent 

6Top overheads for the improved network performance. 

 
Fig. 16. Transmission buffer utilization over time. 

 

Figure 16 shows how the Tx-buffer is managed by SFs over 

time based on the traffic adaption strategies. In this regard, LV 

maintains a roughly steady portion with a high volume of 

packets remains in the queue throughout the time.  DeSSR and 

OTF follow a non-linear pattern where DeSSR keeps the 

lowest volume of packets in the queue to control congestion. 

 
Fig. 17. Showing packet loss due to congestion over time. 

 

Figure 17 depicts that LV triggers congestion throughout 

the time and incurs packet loss. DeSSR and OTF trigger 

congestion for a shorter time where DeSSR registers the 

lowest estimate of congestion to Tx-buffer ratio. 

In Figure 18, DeSSR’s latency is settling to the lowest over 

time, while OTF maintains three peaks depending on the 

multiple threshold limits. It shows that higher threshold causes 

reduced latency. Unlike OTF,  DeSSR settles latency to 1s 

over the time, which is optimized to the point that it is free 

from the trade-off with cell consumption. LV’s latency 

remains largely between 2s and 3s and this kind of delay is not 

ideal for real-time operation given there are other technologies 

that are only rejected because of the high delay. 

 
Fig. 18. Latency maintains a steady lower-bound. 

B. Discussion 

The steady experiment simulates the industrial deployment 

using the 6TiSCH standard where the performance of DeSSR 

was compared with LV and OTF using several key indicators. 

The results confirmed that DeSSR offers high throughput 

using the lowest volume of cells compared to other SFs. The 

charge consumption is roughly the same as others because of 

decentralized, and broadcast-based scheduling-led operations. 

Notably, DeSSR showed strong performance over time 

compared to the LV and OTF, and achieved lowest volume of 

collided cells, lowest latency, lowest congestion in queue, 

improved node-churn, and optimized Tx-buffer. However, it 

triggered a slightly high 6top transactions as these were 

necessary to adapt rapidly changing network dynamics. 

C. Bursty Traffic Experiment 

The bursty traffic experiment draws significance from the 

real-world industrial scenarios such as leak detection [37]. 

According to this, nodes experience a sudden gust of traffic. 

The experiment injects a sample of 25 packets per burst per 

node in a network of 100 nodes at fixed timestamps of 20 and 

60 respectively in slotframe cycles. For analysis, the results 

are benchmarked with the OTF using multiple thresholds. The 

queue length for all nodes is 100 packets. The remaining 

configuration parameters are given in Table 2. 

                                 TABLE II 

                       CONFIGURATION PARAMETERS 

Parameters Value 

Nodes [100] 

Area Square, [1* 1]km 

Housekeeping Period [5]s 

Packet Generation Interval [1]s 

Slot Duration [10]ms 

Channel Density [16] 

Slotframe Length [101] 

Buffer Size [100] packets 

NDS interval [256] 

Radio Sensitivity [-97] dBm 

Simulation cycles [100] 

Simulation runs [100] 



10 

 

 
Fig. 19. Packets generated during traffic burst over time. 

 

Figure 19 depicts the volume of traffic generated as per the 

bursty traffic conditions where each node generates roughly 

the 25 packets over the given time and this process repeats 

twice per slotframe run. Because a TSCH slotframe repeats 

itself over time hence for each repetition (run), two traffic 

bursts are supplied per run. Both SFs consistently generate 

2475 packets precisely at slotframe cycle 20 and 60 

respectively. 

 
Fig. 20. Total number of packets up streamed to root.  

Fig. 21. Packet loss due to congestion in the queue.  

Figure 20 shows packet transmission capability where OTF 

drops more packets during the 1st peak compared to 2nd peak. 

The reason is poor assessment of demand. On the other hand, 

DeSSR sends more packets than all three variants of OTF 

throughout time and it is evident in Figure 20. 

In a sudden gust of heavy traffic, congestion can occur due 

to fixed queue capacity. Figure 21 shows that each peak incurs 

packet loss due to congestion where DeSSR’s loss is the 

lowest considering a toll of 30 packets during 1st peak and 70 

packets during the 2nd peak. OTF suffers the worst congestion 

with the highest volume of cells. 

 
Fig. 22. Cell consumption in a bursty traffic scenario. 

 

Figure 22 demonstrates the volume of scheduled cells by 

both SFs over the sudden arrival of a heavy payload. 

According to this, DeSSR schedules the lowest portion of cells 

on average and during both events despite there being no 

packets to send. Conversely, OTF follows a fixed distribution 

where the higher threshold limit translates into the high 

consumption of cells and eventually causes an increased 

collision. 

The presented results in Figure 22 shows that DeSSR 

scheduled the lowest volume of cells where it uses scheduled 

cells efficiently to ensure reliable operation that is free from 

performance trade-offs. 

 
 

Fig. 23. Collided Tx cells as a function of time considering the 

bursty traffic scenario.  
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Figure 23 shows the volume of collided cells triggered by 

both SFs over time. Here, both SFs randomly select cells from 

the slotframe, and it is possible that two or more nodes are 

using the same Tx cells for transmission simultaneously under 

common parent. So, the collision can be expected. Apart from 

that, a higher consumption of cells can also influence collision 

to increase. In Figure 22, DeSSR observes the lowest cell 

consumption, hence the volume of collided cells triggered by 

DeSSR is the lowest too as shown in Figure 23, and this is true 

for both events, and for remaining times when there is no 

activity (idle times). 

 
Fig. 24. Charge consumption(mA) over time in bursty traffic. 

 

Figure 24 shows a charge consumption over time by OTF, 

and DeSSR. Here, both SFs consumed roughly the same 

amount of battery charge whereas the DeSSR consumed 

slightly less charge, however, the margin seems very thin. The 

key reason is the decentralized, broadcast-based scheduling 

itself where enhanced beacons take a toll of most charge 

consumed by both SFs. Charge consumption is further 

discussed in detail under Section IV (F) (1). 

 
Fig. 25. Add/Remove 6Top operation per slotframe cycle. 

 

Figure 25 shows 6Top ADD/DELETE activities over time 

where ADD activities are the positive number, shown above 

the X-axis and DELETE activities are the negative number, 

shown below the X-axis. In the beginning, the scheduler 

unanimously adds 40-45 cells to nodes towards bootstrapping. 

This process is the same for both steady and bursty traffic 

scenarios as can be compared with Figure 15. As the first 

event unfolds at slotframe cycle 20 in Figure 25, Both SFs 

generate marginally the same amounts of overheads except for 

the OTF with the highest threshold limit. The reason is 

obvious that each node is given 8 cells already by OTF and 

when nodes change position, OTF does not have to allocate or 

deallocate cells more often. On the contrary, DeSSR sends 

substantially more packets than OTF’s high threshold using 

the lowest volume of cells and when the nodes change their 

parent frequently in search of closer parent to the root, it 

releases occupied cells and allocates new ones in an adaptive 

manner. The key benefit is that released cells are available for 

other nodes to use and this is why it causes additional 

ADD/DELETE transactions. The 2nd event at slotframe cycle 

60 indicates the toll of 6Top ADD/DELETE transactions is 

higher than the 1st event. The key reason is that more cells are 

scheduled at this time by both SFs, as is shown in Figure 22. 

D. Discussion 

In the bursty traffic experiment, DeSSR outperformed OTF 

considering high throughput, lowest number of packet loss due 

to congestion, lowest scheduled cells, reduced collisions, 

lower charge consumption, and a fairly-balanced 6Top cycles. 

With these key achievements, DeSSR outperforms currently 

popular decentralized, broadcast-based scheduling functions 

and it achieved this without monitoring queue occupation. 

However, further experimentation is ideal to test scalability of 

DeSSR knowing that its packet transmission capability is 

higher than the most SFs. 

E. Scalability Analysis 

This experiment tests the scalability of DeSSR, and it is 

divided into three parts. In the first part, we test the reliability 

in medium-sized networks against extreme traffic load. In the 

2nd part, the network size is increased to 100 nodes. Finally, 

in the 3rd part, we increased the buffer size. We have followed 

the steady pattern depending on the packet period intervals. 

The results are compared with multiple variants of the OTF. 

The configuration parameters are given in Table 3. 

 
                                  TABLE III 

                       CONFIGURATION PARAMETERS 

Parameters Value 

Nodes [50,100] 

Area Square, [2*2]km 

Housekeeping Period [5]s 

Packet Generation Interval [1.0, 0.5, and 0.1] s  

Slot Duration [10]ms 

Keep Alive Period [10]ms 

Channel Density [16] 

Slotframe Length [101] 

Buffer Size [10,100] packets 

NDS interval [256] 

Radio Sensitivity [-97] dBm 

Simulation cycles [100] 

Simulation runs [100] 
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1) Scalability Analysis of Medium-sized Network 

In this experiment, a total of 50 nodes are deployed 

randomly where queue length of all nodes is 10 packets 

[22]. The experiment produces a number of subplots 

reflecting the impact of varying traffic load over time 

where buffer size is explicitly mentioned. 

 

 
       Fig. 26. Payload generation over time. 

 

Figure 26 is divided into three subplots depending on the 

traffic load scenarios where each subplot observes steady 

distribution of traffic over time. That is, about 50 packets 

are generated per cycle under packet period 1s, 100 

packets under packet period 0.5s, and 500 packets under 

packet period 0.1s. These estimates correspond to the 

total number of packets to be generated as per the given 

traffic rate. 

 

 
Fig. 27. Reliability for medium-range deployment. 

 

Figure 27 shows that both OTF and DeSSR take a hit 

and the packet loss is evident for a shorter time between 

slotframe cycle 20 and 40 except that DeSSR's loss is 

less pronounced. 

In the 3rd subplot of Figure 27 particularly, we observe 

intense load where DeSSR is capable of delivering a 

high volume of traffic load while OTF is challenged due 

to high consumption to collisions ratio. On the contrary, 

DeSSR drops packets due to constrained buffer size. 

 
Fig. 28. Latency for medium-range deployment. 

 

Figure 28 shows latency over time where DeSSR, at 

slotframe cycle 20 and 40, triggers the lowest delay of 2s 

provided not all packets are delivered at this stage. 

Thereafter, it remains fairly steady around 1s, and it is 

the same for OTF too. At this stage, most packets are up 

streamed successfully. 

The 3rd subplot of Figure 28 tallies the gap between 

trajectories of OTF and DeSSR, at slotframe cycle 20 

and 40, and the delay is yet the lowest among all 

trajectories of DeSSR, which is concerning. The reason 

is too many cells were given to nodes, which the nodes 

utilized to progress to shortest path and delivered a fairly 

less amount of payload. 

 

 

2) Scalability Analysis of Large-scale Network 

The experiment is used for testing scalability and 

robustness of DeSSR using 100 nodes. This time, the 

network is twice as dense and queue length is 10 packets 

for all nodes. 

 

    
         Fig. 29. Payload generation over time in large networks. 

 

Figure 29 depicts application-generated payload over 

time where 100, 200, 1000 packets are generated for 

most of the time following the period interval 1s, 0.5s, 

and 0.1s respectively. 
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         Fig. 30. End-to-End reliability as a function of time. 

 

Figure 30 shows three consecutive subplots where 

reliability is shown on the Y-axis and time is given on 

the X-axis. Here, both SFs drop packets between 

slotframe cycle 20 and 60, due to congestion. However, 

a leading gap is observed, which monitors sharp declines 

in reliability of DeSSR and OTF as the load increases 

proportionately. Here, DeSSR still sends more packets 

than OTF and is more efficient in recovering from the 

packet loss compared to OTF. 

    
        Fig. 31. Packet loss due to congestion in the buffer. 

  
        Fig. 32. Latency as a function of time, 100 nodes. 

Figure 31 analyzes a backlog of packets that are lost due 

to congestion. The results show that congestion is the 

factor behind the loss incurred in Figure 30. 

Figure 32 shows latency over time and the results are 

more or less the same as shown in Figure 28. Hence, it 

will not be accurate to predict the actual behavior. 

 

3) Large-scale Network with Increased Queue Length 

This experiment increases the queue length to 100 

packets and uses a packet period of 0.5s. The presented 

results show the impact of congestion in the queue, end-

to-end reliability, and latency. With previous approaches 

including OTF, congestion caused poor performance 

with OTF’s performance significantly degrading during 

the temporary peak of traffic between slotframe 

timestamp 20 and 60. The results presented are averaged 

at a 95% confidence interval using 100 slotframe runs. 

This drop in performance is indicated by an increase in 

dropped packets leading to a reliability drop to about 

75% and a latency of between 6 and 8s for OTF. DeSSR 

performs significantly better with reliability staying 

above 90% over time and latency not exceeding 4s. 

  
         Fig. 33. Congestion in the extended buffer over time.  

 
        Fig. 34. Reliability over time and extended size of buffer. 

 

Figure 33 shows that at an early stage (slotframe cycle 

20 and 40), congestion cannot be ruled out despite an 
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increase in buffer size. Here, both SFs drop packets due 

to congestion, except DeSSR’s loss is 75% less than 

OTF and it observes quick recovery over time. 

Figure 34 shows that the extension to buffer size is 

rewarding for both SFs. However, both SFs drop packets 

in the beginning due to congestion, which negatively 

impacts the end-to-end reliability as is shown in Figure 

34. Here, DeSSR observes the lowest decline in 

reliability and provides stability to the network fairly 

quickly compared to the OTF. 

  
        Fig. 35. Latency over using extended buffer scenarios. 

 

Figure 35 shows end-to-end latency over time. Here, 

OTF registers a maximum delay depending on the 

threshold limits. That is, the higher the threshold limit, 

the lower the delay. That is because nodes have enough 

cells to probe the shortest path to the root. Results show 

that OTF’s trajectories take longer to reach optimal 

latency of 1s while the DeSSR achieves the target in a 

fairly shorter time, and yet observes the lowest delay 

comparatively. 

F. Discussion 

This section discusses the performance of DeSSR in terms 

of side-effects considering charge-consumption, complexity, 

and scalability. 

 

1) Charge Consumption  

In 6TiSCH network, charge consumption is impacted by 

a number of aspects including the cost of network 

formation, dynamics of SF, and management of costs 

incurred due to propagation and control overheads. 

Network bootstrap is an expensive period in low-power 

and lossy networks, involving frequent EBs carrying 

broadcast and unicast traffic. In a fully configured 

DoDAG topology, nodes periodically generate EBs 

ensuring nodes are synchronized [33]. Hence, an optimal 

broadcast strategy is useful to reduce energy 

consumption. Vucinic et al. [38] studied various 

broadcast strategies to minimize the delay in network 

formation by setting an optimal point to control portions 

of EBs without ignoring the convergence delay and 

collision. Therefore, all broadcast messages are carried 

in a form of slotted aloha [31]. The author also proposed 

an optimal threshold (0.1 and 0.33 for EB and DIO), 

which is representative of the lowest network formation 

time in the network of 45 nodes considering reduction in 

the volume of EBs [33]. Municio et al. [33] showed the 

delay in network formation increases in a steady-linear 

fashion as the network size increases using the same 

hysteresis. DeSSR uses the same value as described as 

optimal in [38] and demonstrates a shorter bootstrap 

period using more than one broadcast cell from the 

TSCH slotframe. The remaining portion of the slotframe 

is left unused for the SFs to implement. 

In 6TiSCH network, nodes compute their radio duty-

cycle per slot depending on how long it takes to finish 

the scheduled task. A variation in charge-consumption is 

likely as different SFs take different approaches adapting 

and managing the traffic in the network. Daneel et al. 

[13] highlighted the role of SF carries to prevent 

recurrent wastage of charge, triggered by poor 

overprovisioning and static allocation of cells, i.e., a 

mismatch between the actual traffic and predicted traffic. 

No defined mechanism so far has been proven optimal. 

Hence, charge consumption is dependent on the 

priorities of different SFs [18] (refer to Section III for 

review of SFs). 

In a dynamic topology, nodes change parents frequently. 

This has a considerable impact on the underlying TSCH 

links [15]. That is, each parent-changing node must 

relocate its resources from one parent to another parent. 

Hence charge consumption varies from the point of how 

and to what extent the movement of non-root nodes is 

controlled. For this reason, many recently introduced 

SFs do not allow leaf nodes to have a Tx cell. However, 

this negatively affects the optimal path formation in RPL 

routing. Thus, constraining parent-change is not only a 

greedy setup but also has repercussions on overall 

scalability of the network. Our proposal inherits some of 

the key drawbacks of using multiple broadcast cells for 

advertisement [15]. However, it permits non-leaf nodes 

to have access to Tx cells. To analyze the impact of 

broadcast cells on charge consumption, a separate 

experiment is conducted using the same configuration 

parameters as used in Table 2, except the range of 

broadcast is set to be 1- 8 cells. 

  
   Fig. 36. Charge consumed by the varying broadcast cells. 
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Figure 36 illustrates the cost of managing scheduling 

dynamics indicating that the lowest number of broadcast 

cells consume the lowest amount of charge. However, 

this is not true with the highest portion comprising 7 – 8 

cells with the presented results showing a moderate 

charge-consumption that increases over time and is 

about the same level as with 3- 4 cells. The highest 

amount of charge is consumed with 6 and 5 broadcast 

cells. Municio et al.[15] argues the key reason for this 

behavior being the increased waiting time for 

contention-access in large-scale networks. Hence, the 

charge-consumption decreases in larger networks. 

DeSSR retains the same number of broadcast cells as 

used by other algorithms. 

 

2) Complexity  

The complexity of DeSSR is analyzed in terms of 

control overheads (6Top transactions).  This is further 

illustrated in Figure 15 where key SFs are shown to have 

added and deleted negotiated cells over time. The 

exchange is facilitated using 6Top unicast transactions, 

which take a longer time to execute and are resource 

intensive. Hence, the fewer number of cells are used the 

better. DeSSR manages complexity of control overheads 

by allowing extra cells to be reserved for the nodes 

closer to the sink and ensuring a strong PDR. However, 

this is not an absolute allocation. For nodes which 

change parent, the resources attached are only diverted 

to the new parent depending on the criteria provided by 

DeSSR. Hence the requirement is managed dynamically. 

This is evident in the analysis presented in Section 

IV(A), and (C). 

The complexity of EBs overshadows the complexity due 

to control overheads. This is shown under Figure 12 

where no significant variations are present in charge 

consumption by DeSSR, LV and OTF, with DeSSR 

observing the lowest cell consumption, lowest collision, 

and roughly same complexity level as OTF. This 

suggests the complexity of DeSSR in terms of 

propagation is comparable to the other SFs. 

DeSSR does not add new overheads, instead, it allows a 

high availability of collision-free cells without causing 

trade-offs with latency and reliability. It achieves 

improved scalability allowing hundreds of nodes to use 

spare cells under a single DoDAG tree. 

The flow of RPL control messages is unaffected by 

DeSSR’s scheduling approach. 

 

3) Scalability 

We studied performance degradation factors in large-

scale networks using multiple simulation-based 

experiments, and benchmarked results of DeSSR against 

other SFs in Section IV (E). 

The selection of SFs was made as per the literature 

review presented in Section II (A). A number of recently 

published SFs such ALICE, and MSF, do not qualify for 

this comparison due to poor propagation, and limited 

throughput [14]. 

The significance of the contribution by DeSSR is 

presented using the following points: 

• Improved availability of Tx cells at both steady and 

bursty traffic conditions. (Figure 10 and Figure 22 in 

Section IV). 

• Improved throughput despite using the lowest 

portion of cells. (Figure 20, and 27). 

• Reduced collision among Tx cells so that extra cells 

can be allocated to nodes experiencing a temporary 

peak. (Figure 11 and Figure 12). 

• DeSSR’s complexity in terms of 6Top overheads is 

comparable with OTF and is significantly lower 

than LV.  (Figure 15). 

• There are no trade-offs involved with latency and 

charge consumption. (Figure 9, Figure 16 and 

Figure 18). 

Further experiments are carried out to test scalability 

using several hundred nodes. E-OTF’s performance, as 

per the literature review, has been unknown for larger 

networks. Hence, DeSSR and E-OTF are included in the 

experiment to test performance considering the 

scalability being the prominent concern. The E-OTF is 

configured with no extra cells and the rest of the 

configuration parameters are the same as shown in Table 

2 except the network density is increased to several 

hundred nodes. 

 
Fig. 37. Scalability of DeSSR over several hundred 

nodes using 60 packets per minutes.  

 

 Figure 37 highlights the contribution DeSSR makes for 

large-scale networks of several hundreds of nodes in 

size. Figure 37 shows DeSSR’s reliability to be at least 

99% even for networks up to 700 nodes (95% 

confidence interval). The results indicate a drop of 

performance of E-OTF beyond 400 nodes. This makes 

DeSSR a strong candidate for managing large-scale 

networks without ignoring the fundamental need of 

reliable and scalable operation. 

V. CONCLUSION 

This article presents DeSSR following the aim to improve 

scalability of IEEE802.15.4e networks. The work of DeSSR 

implemented TCSH-MAC mode in a decentralized and 

broadcast-based operation. The key contribution is provided 

through PDR-based DTS and using flexible NDS assessment. 
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The performance of DeSSR was extensively tested using 

steady and bursty traffic experiments in a large-scale network 

of 100 nodes under packet generation period of 1s. Results 

showed that DeSSR outperformed both LV & OTF and 

achieved best results in steady traffic experiment. In a bursty 

traffic experiment, DeSSR’s performance was superior to 

multiple versions of OTF thresholds. Towards scalability, 

DeSSR got tested with varying buffer sizes and varying traffic 

conditions. Results showed, in both medium-scale and large-

scale networks, DeSSR maintains a significant lead over OTF. 

Finally, the scalability test was conducted using large 

networks up to 700 nodes. The results show that DeSSR 

significantly outperforms E-OTF for larger networks. 
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