
1

DeSSR: a Decentralized, Broadcast-based Scalable

Scheduling Reservation Protocol for 6TiSCH Networks

Kaushal Kumar, and Mario Kolberg, Senior Member, IEEE

 Abstract—The emergence of IPv6 (Internet Protocol Version 6)

for low-power wireless communication is considered a

breakthrough allowing a densely populated multi-hop network of

Internet of Things (IoT) devices to be used for data gathering

over a range of 1-2 kilometer (km). However, the communication

between the devices has suffered from external interferences and

multi-path fading challenge. The Internet Engineering Task

Force (IETF) and Institute of Electrical and Electronics

Engineers (IEEE) jointly proposed The IPv6 over IEEE 802.15.4

TSCH mode (6TiSCH) to deal with existing challenges and

improve network performance to meet key requirements of

industrial applications. The 6Top layer integrates TSCH (Time

Slotted Channel Hopping)-MAC over IEEE 802.15.4 with the

rest of the IPv6 stack where the schedule allocation is performed

by scheduling function (SF). However, network scalability

remains an open challenge. Specifically, the 6TiSCH Working

Group (WG) do not define rules towards optimal schedule

allocation over Time Slotted Channel Hopping (TSCH) mode of

IEEE 802.15.4. In this paper, we propose Decentralized, and

Broadcast-based Scalable Scheduling Reservation Protocol for

6TiSCH Networks (DeSSR). The experimental performance

analysis demonstrates strong performance under steady and

bursty traffic when compared with current SFs. This makes

DeSSR a strong proposal contributing towards improving

scalability in large-scale 6TiSCH networks.

Index Terms— Internet of Things (IoT), IEEE 802.15.4

Networks, 6LoWPAN, 6TiSCH Architecture, TSCH Scheduling.

I. INTRODUCTION

oT is a network of interconnected resource-constrained

devices exchanging data simultaneously over the internet.

Today, billions of IoT devices are connected to the

Internet world-wide [1]. Consequently, new standards and

technologies for low power and lightweight communication

have emerged to match the wired-like connectivity for

industrial coverage [2]. The 6TiSCH is a wireless

communication standard, introduced by IETF 6TiSCH WGs in

2013, with the objective to enhance IPv6 operation using

Manuscript received February 13, 2023; accepted November 17, 2023.

Date of publication xx xx, xxxx; date of current version xx xx, xxxx.

Kaushal Kumar is with Computing Science and Mathematics – Division,

University of Stirling, Stirling FK9 4LA, U.K. (e-mail:

kaushal.kumar@stir.ac.uk).

Mario Kolberg is with Computing Science and Mathematics – Division,

University of Stirling, Stirling FK9 4LA, U.K. (e-mail: mario.kolberg@

stir.ac.uk).

Copyright (c) 2023 IEEE.

 For the purpose of open access, the author has applied a
Creative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript

version arising.

IEEE 802.15.4 specification [3]. It uses a compressed IPv6-

enabled 6LoWPAN stack [4] where the TSCH mode [5] has

been already added to IEEE 802.15.4 for countering the

impact of external interferences, and to deal with the multi-

path fading issue using its channel-hopping capability.

The 6Top layer [6] holds the central position integrating the

rest of the IPv6 stack to the TSCH-MAC over IEEE 802.15.4.

This led to improved reliability. However, 6TiSCH

installations using a densely populated multi-hop Destination

Oriented Direct Acyclic Graph (DoDAG) topology [7] have

suffered from poor scalability. The actual bottleneck is the

collisions in TSCH slotframe [5].

Centralized SFs suffer from scalability limitations due to

high signaling overheads and their use has sharply declined

after the introduction of distributed scheduling as per the

literature [8].

Distributed scheduling allows both negotiation-based and

autonomous scheduling operation [8]. Under negotiation-led

scheduling, it incurs a cost of reoccurring negotiations

between nodes and their neighbors to adapt to changing traffic

conditions. Furthermore, the risk of collisions cannot be

overlooked in a densely occupied slotframe.

Autonomous scheduling avoids the requirement to

negotiate. Instead, it assigns the all-time active cells in a static

manner. However, autonomous SFs perform poorly in

changing traffic conditions in dynamic topologies causing a

temporary peak of traffic. Clearly, the use of negotiation-led

designs cannot be ruled out.

Currently, the negation-based scheduling has evolved over

time from reactive to on-demand reservation-based bandwidth

allocation, albeit there is no guidance provided by the 6TiSCH

WG. The key algorithms under this category are documented

in existing literatures [8]-[13].

Because the reoccurring 6Top transactions are lengthy and

charge-consuming and the adaptive negotiation-based SFs use

a significant amount of control overheads. The use of the

piggyback technique to ensure an overhead-free operation is

proposed by the adaptive autonomous SFs [14]. That is, no

separate Enhanced Beacon (EB) for negotiation. However,

there is no evidence of such proposals to be beneficial in terms

of scalability. Furthermore, the combined use of autonomous

and negotiation-based scheduling [9] does not guarantee

scalability for larger networks due to poor propagation and

inefficient adaption.

Decentralized, Broadcast-based Scheduling (DeBraS) [15]

is an efficient design that is allowing more than one broadcast

cells to improve propagation of information in the network,

hence promoting seamless connectivity of nodes, and avoiding

network bottlenecks caused by collisions. The selection of

how many cells will be sufficient is left unto the implementer

[15]. The design of DeBraS has led to significant

I

2

improvements during the network bootstrap period and the

scale of operation, where the key trade-off has been with the

charge consumption [15]. Previously, we developed Smart

Scheduling Reservation (SSR), which is a distributed solution

allowing the 6Top layer to hold a central position while the

sensor devices are negotiating with their neighbors for

bandwidth. It offered good scalability and achieved strong

distribution [12], However, due to limited proliferation of

information, channel-hopping became slower, which led to

decline in the performance beyond 70 nodes under heavy

traffic conditions. Here, we aim to exploit a decentralized,

broadcast-based scheduling design to improve scalability.

A. Contribution

In this article, we review SSR’s key strategies for DeBraS-

led operation. The outcomes of the review include the need for

enhancement of Dynamic Traffic Strategy (DTS) and Network

Depth Strategy (NDS). We also replaced the Cell Selection

Strategy (CSS) with a randomized selection. The following

contributions are reported in this paper:

● We propose DeSSR, which enhances the NDS to

increase participation by nodes and reassess their

distance from the root in a flexible manner. This was

aimed to promote competition among nodes to access

excess TSCH cells.

● We enhance DTS using PDR (Packet Delivery Ratio)

and that is necessary to choose the best eligible node for

allocation. This process does not introduce additional

overheads.

● DeSSR is evaluated using a densely populated large-

scale network. In particular the impact of steady, and

bursty traffic experiments on network performance over

time is investigated.

● We test the scalability of DeSSR considering increased

coverage, network size, buffer size, and packet

generation periods.

The remainder of this paper is divided into five main

sections: Section I provides an introduction of the proposed

study. This is followed by a review of related work, which

also discusses SSR in a detailed manner in Section II. Section

III presents DeSSR. The evaluation is conducted using the

6TiSCH simulator in Section IV where results are analyzed

using a variety of scenarios. Finally, Section V concludes our

work and outlines future directions.

II. RELATED WORK

6TiSCH scheduling is a popular topic that links to the

evolution of lightweight 6TiSCH architecture for industrial

networks using heterogeneous sensor devices [16]. This

section reviews the related work in the context of

decentralized, and broadcast-based scheduling, and discusses

our previously defined approach, SSR, in a detailed manner.

A. Literature Review

This section reviews the key scheduling algorithms,

dedicated towards the scalability of 6TiSCH networks.

Municio et al. [15] proposed a lock-based decentralized

approach, which floods the network with the information

about the reservation of the locked cells to avoid conflict of

interest with the other nodes in the network. However, it

overlooks collisions. In addition, it causes high convergence

delays due to trade-off with cell consumption, and it does not

screen unrealistic links.

Accettura et al. [17] proposed DeTAS (Decentralized Traffic

Aware Scheduling), which is an extension to TASA (Traffic-

Aware Scheduling Approach). The approach forms a common

schedule where nodes use multipath reservation to improve

reliability on a shared medium. However, it causes a high

volume of overheads.

Palattella et al. [18] proposed a fixed threshold-based

scheduling, which allowed adding and deleting the portion of

cells on demand basis and based on the custom-defined limit.

However, it under-or-over estimates the demand of cells per

node since the nodes frequently change their position in the

network hierarchy.

Soua et al. [19] fragmented the slotframe into waves where

each time a sender node transmits a packet, a new pattern of

wave with unique channel id is made available to control

collisions. Here, it remains a valid solution as long as the

nodes do not transmit packets simultaneously and the packets

are not dropped due to the scarcity of Tx cells similar to

unicast-based TSCH scheduling operation.

Raza et al. [20] proposed a decentralized, adaptive multi-hop

scheduling protocol for 6TiSCH wireless network. It uses a

data-centric query flooding the network to ensure that the

traffic is forwarded in advance. Evaluation confirms that it is

reliable and efficient for mobile-friendly SF, However, the

query process to reach the nodes located far away from the

root is subject to high overheads.

Kralevska et al. [21] proposed a decentralized, multipath

schedule reservation protocol using the graph theory.

However, the author ignores bandwidth allocation to traffic

variation. In the extension to LV (Local Voting) [22], the

author used the fixed threshold of 10 cells. However, neither

one is scalable as the pre-estimated load sharing provides no

benefit for dynamic topology as nodes appear and disappear

frequently. Additionally, it witnesses high rank-churn and

poor parent-change, and uses unreliable, and poor links,

which may be present in the routing topology [8].

Duaquennoy et al. propose Orchestra [23], which is the first

autonomous SF using all-time active slots configured on a per

node basis using receiver-based and sender-based allocation

modes. Orchestra allocates one cell per node per slotframe.

Unfortunately, the approach does not adjust well to variable

traffic conditions. Further, shortcomings include a comparably

high latency and low scalability.

Autonomous Link-based Cell Scheduling (ALICE) [24] is

considered an enhanced version of Orchestra, which replaces

Orchestra’s node-based allocation with a link-based

scheduling approach. Hence, it offers a volume of cells to a

node depending on the number of RPL (Routing Protocol for

Low Power and Lossy Networks) neighbors. However, it too

adopts a static allocation of the autonomous cells, which is not

optimal considering the unpredictability of a node’s movement

in the topology [14]. Consequently, ALICE suffers from

packet loss under heavy traffic conditions and for network

sizes beyond 64 nodes as is discussed in [14]. Thus, it lacks

the scalability required for industrial applications where

hundreds of nodes are deployed under a single root node.

3

ALICE-FP [14] is an extension of ALICE that allows nodes

to exchange their frame pending bit to allocate more cells to

the corresponding node that carries more traffic from the

sending node. The proposal employed piggybacked technique

and is overhead-free. However, it lacks adaption despite

assisting nodes which experience peaks of traffic.

The piggybacked technique is further exploited by Traffic-

Aware Elastic Slotframe Adjustment (TESLA) [25]. It uses

the receiver-based mode of Orchestra and uses adjustments in

the slotframe based on incoming traffic. However, this is not

an overhead-free approach. Recently, autonomous scheduling

has been utilized alongside the negotiation-based approaches

using 6top layer or 6P protocol [26].

Chang et al. [27] proposed Minimal Scheduling Function

(MSF), which uses Orchestra for maintaining network

dynamics and On the Fly bandwidth allocation (OTF) for data

traffic adaption [28]. OTF’s integration with the MSF has

made it vulnerable due to fixed threshold-based allocation,

which under-or-over estimates the demand and leads to

bandwidth wastage [13]. OTF [18] has been extended by

numerous SFs and inherited key drawbacks of fixed threshold-

based overprovisioning. Righetti et al. [29] proposed an

extension of OTF called E-OTF, in which the author used a

similar representation of bandwidth allocation policy like OTF

except it uses signaling to measure slot occupancy and provide

congestion bonus as real-time queue occupation threshold.

Wang et al. [30] highlighted key drawbacks of E-OTF, as

poorly defined controls towards optimal scheduling for bursty

traffic, and insufficient measurement of occupancy threshold.

Furthermore, E-OTF’s performance under large-scale network

is currently unknown [30].

SSR [12] proposed a unique cake-slicing based distribution.

It outperformed a range of popular SFs including MSF with

consideration to traffic adaption. However, SSR experienced a

decline in performance beyond 70 nodes under heavy traffic

conditions (packet period of 1s). The next section introduces

SSR and its key concepts.

B. Smart Scheduling Reservation

This SSR [12] is a distributed scheduling solution, designed

to improve scalability of 6TiSCH industrial networks using an

analytical technique called ‘cake-slicing’ along with the four

peer strategies: NDS, DTS, CSS, and Queue Optimization

Strategy (QoS) or Packet Aggregation Strategy (PAS). This

section briefly discussed these capabilities of SSR using

examples.

Fig. 1. Example of the cake-slicing algorithm

Figure 1 demonstrates a distribution of slotframe (S= 100)

against varying depth identifiers (D= 2,3,4,5,6,7,8,9) using the

cake-slicing technique of SSR. The output is presented on a

per row basis, which corresponds to D. The columns represent

a forecast of slotframe distribution for a multi-hop hierarchical

network topology, which is divided into a number of hops

based on the distance to root (controller). According to the

example in Figure 1, a non-linear pattern is observed with a

difference in values between hop 1 and hop 2 that is almost 3

times that of values at hop 2 and it is true for the rest of the 9

cases presented in this example. This translates into the

throughput capability of nodes depending on the distance to

root. The cross (X) sign in Figure 1 is used as a filler in the

example showing D is less than 9 hops while S and N are non-

zero. A fuller discussion on the cake-slicing algorithm is

provided in [12].

Fig. 2. Example of SSR’s Network Depth Strategy.

Figure 2 captures the view of how NDS functions with an

example. Here, the nodes are numbered alphabetically and the

rank identifier of RPL [7] is used to calculate distance to root,

which eventually translates into a number of hops. SSR uses a

fixed interval of 127, which is added to the corresponding rank

value to reorganize the topology. In Figure 2, Node A and B

are located at closest distance to root at hop 1. This means,

any node whose rank coordinates fall between 257 and 384

will be considered one-hop away from the root. Nodes C and

D are considered to be two-hops away. Similarly, node E, F,

and G follow hop 3, 4, and 5 respectively. However, where the

rank exceeds the 10 hops, a random hop id is assigned.

Figure 3 presents an example of DTS using a representative

cake-slicing scenario from Figure 1, and the example of NDS

in Figure 2, which also corresponds to Figure 1. Here, the

example of DTS uses a particular row from Figure 1 where S=

100 and N=D= 5 and Figure 2 provides hop id of nodes in the

network topology. In Figure 3, the root node is located at the

bottom. The nodes that are used for data gathering are aligned

on the left-hand side, and the computation of DTS threshold

(Tsd) takes place on the right-hand side. To compute Tsd, DTS

uses a bitwise operator (>>) between the slice (value) chosen

based on the hop distance and the constant of 3. Thus, Node

4

Fig. 3. Example of SSR’s DTS using 5-hop RPL topology.

A, and B get Tsd= 7, which is the highest estimate. Node C and

D get Tsd= 2 each, that is about 3.5 times less than the value of

Tsd at hop 1 and is as per the distribution shown in Fig. 1.

Finally, Node E, F, and G at hop 3 get Tsd= 1, Tsd = 0, Tsd = 0

respectively. With these heuristics being supplied on the run-

time, SSR replaces static distribution of excess cells in an on-

the-fly manner.

The original representation of DTS is available in [12]. For

the influence of DTS on network performance, refer to

performance evaluation of SSR, which is provided in [12].

Fig. 4. Example of SSR’s CSS using 5 hop RPL topology.

Cell Selection using SSR’s CSS closely follows the cake-

slicing distribution. In Figure 4, it is shown using Figure 1

where S= 100, and D= 5. CSS treats each corresponding slice

as a slotframe, which is then scanned thoroughly by nodes for

free cells until the demand of requested cells is met.

For example, the 1st slice contains 60 timeslots, Hence, it

contains 0- 60 slots where the 0th slot is a broadcast schedule,

used for bootstrapping.

The next slice is 20 slots long as per the distribution shown

in Figure 1, hence, the 2nd slotframe starts from 61 and ends

with 80. That is, exactly 20 slots.

The rest are shown in Figure 4 where the scheduler

allocates most slots to the left in the slotframe under normal

traffic conditions. However, if the occupancy of a slotframe

reaches 100%, the scheduler chronologically uses the next

available slotframe and this process continues until the

demand is met. However, if all slotframes are scanned and the

occupancy is high, SSR opts for a randomized selection and

drops packets upon failure to locate the sufficient volume of

free cells.

Fig. 5. Example of SSR’s PAS.

Figure 5 Demonstrates an example of PAS using slicing

hysteresis from Figure 1, where we retain a list of values from

a particular row (60, 20, 10, 6 and 4) as slicing hysteresis.

SSR uses this hysteresis to distinguish self-generated traffic

from forwarding traffic. The PAS further uses an example to

show how it functions. Here, P indicates the node’s self-

generated payload, and Rx indicates the forwarding payload.

PAS threshold is computed as the percentage of corresponding

slice indexed by the node’s position (hop id).

In the example given in Figure 5, each tab is divided into

two parts where the left-hand side of it shows node ID as

prefix, hierarchically organized in the topology in the same

order as Figure 2, and the remaining part of the tab contains

finalized transmission payload (T).

In the 1st tab, the T is calculated for Node A and B where

both nodes take 40% of forwarding packets, which is

calculated using (Rx * (1- PAS threshold)) provided PAS

threshold is a value between 0.00 and 1.00. The node’s self-

generated payload is collected to 60%, which is inversely

proportional to share of the forwarding payload to be

transmitted. Node C and D choose 80% of forwarding streams

and 20% of self-generated streams. Node E chooses 90% of

forwarding traffic and 10% of its own. Node F takes 94% of

forwarding traffic and 6% of its own. Finally, Node G, which

is located at the bottom of the hierarchy, chooses to take 96%

of forwarding packets and 4% of its own. In the next section,

we enhanced SSR to improve the scalability using a

Decentralized, Broadcast-based scheduler.

5

III. DECENTRALIZED, AND BROADCAST-BASED SCALABLE

SCHEDULING RESERVATION PROTOCOL

SSR follows a negotiation-led scheduling approach in

which nodes allocate and deallocate cells using 6Top

commands [6]. SSR follows a defined configuration where

each and every node exchange EBs using minimal cell as per

the RFC 8180 [31]. That is, in the large-scale network headed

by a single-sink node, the probability of collision remains a

key concern, not only in the minimal cell, which is also called

hard cell (only configured once) but also in the soft cells that

are allocated and deallocated on demand-basis [31]. The

collision in minimal cell is handled using back-off mechanism

provided in IEEE 802.15.4 and collided soft cells are relocated

using 6Top commands [18]. Furthermore, with the high

volume of soft cells collided, it can even lead to network

collapse [18]. The triggering point is the conflict of interest

with other nodes since the advertisement of real-time changes

in the slotframe is expensive.

In this paper, we propose the enhancement of SSR using a

decentralized, broadcast-based scheduling design, first

introduced by Tinka et al. [32], and extended by Municio et al.

[15]. According to this design, nodes advertise their reserved

cells in the network through more than one broadcast cell.

This improves propagation to lower the probability of

collisions. The approach selects a minimum of 3 broadcast

cells randomly.

As far as the topology formation is concerned, once the root

is configured, it triggers transmission of EBs, and DoDAG

information objects (DIO) messages to allow new nodes to

join. A node, when switched on, initiates listening at a

randomly chosen channel and receives EBs from nearby

nodes, thereby discovering nodes in its surrounding. The

joining node selects one of the neighbors as Join Proxy (JP) to

which it synchronizes its clock to and starts the joining

process [33]. A Join Proxy is an existing RPL neighbor

sharing connectivity metrics with joining node [31]. Further

information on how connectivity metrics are calculated by

RPL is available in RFC 6550 [7]. The joining process then

requires the node to follow the secure join operation [33].

Here, the joining node exchanges unicast messages with

security information, carried within EBs. Once the node is

authenticated, it sends DIS (DoDAG Information Solicitation)

messages [31] to solicit DIOs from RPL neighbors. The node

then deciphers the DIOs to acquire a preferred parent and rank

information [7]. Lastly, the joined node must add at least 1 Tx

cell with the corresponding parent using 6top unicast

messages [43], which are also carried by EBs. Hence, network

formation incurs a significant number of overheads.

The proposed solution follows the design principles of RPL

RFC 6550 where non-storing mode is default mode of

operation [7]. Here, multiple nodes send data to the root node

via a preferred parent. The root node populates path

information to the outgoing packet’s header information

leading to a downward trajectory to reach the corresponding

destination in DoDAG topology, i.e., source routing. Hence,

there is no requirement for a node in DoDAG to store an entire

set of routing entries. Instead, a single entry to the

corresponding Direct Acyclic Graph (DAG) parent is

sufficient. This is important as the nodes are memory-

constrained devices. The full set of routing entries is only

stored by the root, which is also responsible for computing the

shortest path to the destination. This mechanism is supported

by Destination Advertisement Object (DAO) and Destination

Advertisement Object-Acknowledgement (DAO-ACK)

unicast messages, sent periodically by non-root nodes in the

topology. The DAO messages contain downward routing

entries and are marked valid upon a timely receipt of DAO-

ACK [7]. If the destination is not found, then the packet is

dropped. This mechanism is discussed in more detail in [7].

The following scheduling restrictions are imposed by DeSSR:

● All source nodes send data to the root node via

preferred parent selection and follow RPL’s non-storing

routing mode of operation [7].

● A sensor node can either transmit or receive the packet

at a time hence it follows a half-duplex communication.

● Parents and children can transmit and receive a packet

using the same TSCH cell.

● A Child node from a common parent can either transmit

or receive packets simultaneously using the same time

slot and channel id (cell).

In this section, we propose DeSSR, and review the key

strategies of SSR towards the decentralized, broadcast-based

scheduling operation.

A. SSR, and Decentralized, Broadcast-based Scheduling

SSR anticipates requirements to monitor queue occupation

and adapts traffic conditions on nodes (motes) dynamically.

However, it allocates too many cells to nodes based on the

NDS distribution and ignores poor links (nodes) on the way to

root. Hence, further screening of nodes is necessary to avoid

bandwidth wastage. Apart from that, SSR uses the fixed value

of 127, which separates nodes from one another based on the

hop-distance. The potential problem with this constant is that

when nodes are allowed to use shared cells rapidly, the current

limit of 127 undermines the node’s participation.

SSR’s CSS is not suitable for decentralized, and broadcast-

based scheduling as the strategy demands adjacent Tx cells in

the slotframe thereby, triggering a high volume of collided

cells. Hence, the proposed solution must avoid using CSS.

One option to use is the random selection method, However, it

too does not promise a collision-free operation. As far as the

packet aggregation is concerned, it uses a unique strategy

based on the dynamicity of the cake-slicing heuristics. That is,

the aggregation follows dynamic selection of payload in the

node’s buffer. Hence, it will be implemented without any

modification. Similarly, the cake-slicing method.

B. Design principles of DeSSR

DeSSR is a distributed SF, which, on one hand, promotes

increased negotiation between nodes using enhanced NDS,

while eliminating poorly performing nodes to have extra cells

on the other hand. It filters the nodes based on PDR: a value

between 0.00 to 1.00. The proposed solution does not

introduce additional overheads while integrating PDR-based

screening on top of DTS. DeSSR allocates cells when the

available cells are not enough for a node to complete the

transmission of payload. The algorithm is shown in Figure 6.

6

 DeSSR Bandwidth Allocation Algorithm

DeSSR Allocation (Now_cells, Req_cells)

Now_cells← Number of cells in node buffer

Req_cells← Number of cells needed to match traffic

T← threshold to calculated, S← slotframe length

rank ← RPL rank of a node, ND← network depth

Interval← [256,512,368….N.]

pdr← packet delivery ratio of a node.

hop ← calculate_rank (rank, Interval)

T← int ((get Slicer(S, hop) >> number of parents) * pdr)

 if Req_cells> Now_cells AND Now_cells==0 then

 if Req_cells > 0 AND (pdr/1.5)>0.5 then

 Now_cells= Req_cells-Now_cells + (T+1)/2

 end if

 else if Req_cells < (Now_cells - T) then

 Now_cells = Now_cells- Req_cells- (T+1)/2

 else

 Now_cells= 0

 end if

End

Fig. 6. DeSSR’s bandwidth allocation algorithm.

DeSSR-led scheduling indicates that only the deserving

nodes are given excess cells ensuring the estimated PDR of

eligible nodes is greater than 0.5. As far as the role of NDS is

concerned, it provides a context to each node where the value

of the interval is reset from 127 to 256 out of many available

choices. This means, the higher the NDS interval, the higher

the participation.

The algorithm begins with the get Slicer (cake-slicing)

function, which generates a list of slices, indexed by node’s

hop id. The resultant value is processed using a bitwise right-

shift operator against the number of parents.

Currently, the number of parents that a node can have been

limited to 3 per DAG. But in mesh topology, this number can

be even greater than 3. Here a greater value will get a lower

dynamic threshold limit (T), and a lower number of children

will get a high T value.

The end results are multiplied with pdr and that is how T is

calculated for overprovisioning in DeSSR. The rest of the

algorithm follows the same rules for ADD and REMOVE

operation as SSR except an additional PDR-based screening

while adding new cells.

IV. PERFORMANCE EVALUATION

DeSSR’s performance is evaluated using the 6TiSCH

simulator [33], which is a discreate event-driven simulator. It

can be used to deploy and test large-scale networks and can

predict network behavior accurately and realistically

compared to mathematical models [33].

The simulator uses the algorithm provided by Pister et al.

[34] for collision-detection. The energy-consumption is based

on a realistic energy model, introduced by Vilajosana et al.

[35] for calculating charge consumed during various radio

activities. In their paper the authors provided the

measurements used for transmission, reception, and idle-

listening. The battery capacity is limited to 2200 milliampere-

hours (mAh).

The TSCH slotframe is configured using 101 slots with the

maximum duration of 10 milliseconds (ms) each and 16

channels. Hence each slotframe cycle lasts 1010ms.

The broadcast probability of EB and DIO is set to 0.1, and

0.22 respectively. The routing beacons including DIOs and

DAOs are sent per 1s and 60s respectively.

The experiment uses multiple simulation runs and for every

run, it generates a new topology. The nodes are positioned

randomly, and each one is connected to at least 3 RPL

neighbors whose PDR (Packet Delivery Ratio) is expected to

be about 0.5 or higher.

PDR is calculated based on Received Signal Strength

Indicator (RSSI) metrics [36]. The qualifying RSSI threshold

to allow packet reception is -97 Decibel Milliwatts (dBm).

Figure 7 captures a view of topology using the 6TiSCH

simulator [33].

Fig. 7. A view of topology in 6TiSCH simulator.

This experiment is divided based on the steady, and bursty

traffic pattern [21]. In the steady traffic scenario, the nodes

will experience a continuous flow of packets generated

periodically. In the bursty traffic scenario, a sample of burst

consisting of a stream of packets will be injected given

timestamps. In either scenario, packet’s destination is the root

alone. OTF [18], and LV [21] are selected for comparison

based on the literature review. The remaining set of

parameters are given in the corresponding tables.

A. Steady Traffic Experiment

The experiment uses the 6TiSCH simulator, which considers

a single IPv6 subnet in which data is gathered continuously at

a sample rate of 60 packets per minute. The payload is

generated soon after the network is configured.

In the 6TiSCH network, nodes take time to join the network

and the sooner a node is assigned rank, the sooner it starts

transmitting path information to the root through DAOs. The

data packets are transmitted using a multipath scenario

depending on the transmission schedule that nodes have

reserved with their preferred parent. The configuration

parameters for this experiment are given in Table 1.

7

 TABLE I

 CONFIGURATION PARAMETERS

Parameters Value

Nodes [100]

Area Square, [1*1] km

Housekeeping Period [5]s

Packet Generation Interval [1]s

Slot Duration [10]ms

Channel Density [16]

Slotframe Length [101]

Buffer Size [100] packets

NDS interval [256]

Radio Sensitivity [-97] dBm

Simulation cycles [100]

Simulation runs [100]

Confidence Interval [95] percent

Number of broadcast cells [3] cells

Number of RPL children [3]

Broadcast probability of EBs [0.1]

Broadcast probability of DIOs [0.33]

DIO period [1]s

DAO Period [60]s

Fig. 8. Application-generated packets over time.

 Figure 8 shows a steady packet generation scenario as soon

as the joining is complete, just slightly ahead of slotframe

cycle 20. After this, all SFs maintain a steady payload portion

of 100 packets over time. as all nodes have joined the network

(post configuration time).

Figure 9 depicts a stream of packets being sent to the root

where number of packets are shown on the Y-axis and

timestamps in slotframe cycles are given on the X-axis. The

presented results in Figure 9 shows the throughput in volume

of packets unstreamed by LV, OTF and DeSSR. Here, LV is

showing variations as a difference between lower and upper

mean values, computed at a 95% confidence interval. The

variations are triggered due to scheduling incompetence

against changing traffic conditions in dynamic topology. LV

distributes the payload equally between nodes and disregards

the fact that nodes closer to the root are responsible to send

more packets than those at a farther distance from the root.

Fig. 9. Application payload up streamed successfully.

The rest of the SFs show progress with the evidence of DeSSR

sending slightly more packets than OTF in the beginning.

Fig. 10. Cell consumption in steady traffic flow over time.

Sensor nodes depend on the slotted medium to dispatch the

payload. Figure 10 shows that OTF reserves more cells in

advance where a higher threshold limit (8 cells) translates into

the highest number of cells being scheduled. LV doesn’t use

overprovisioning, hence, the volume of scheduled cells by LV

is lower than OTF. Albeit, both SFs scheduled significantly

higher volumes of cells compared to DeSSR.

Fig. 11. Volume of collided cells over time.

8

In broadcast-based scheduling, collisions can be expected

where the key to control is reduced cell consumption. It is

evident through Figure 10 and Figure 11. Figure 11 reflects

that high cell consumption causes an increased volume of

collided cells and eventually triggers higher charge

Consumption. Since DeSSR’s consumption was the lowest,

hence the collided cells triggered over time are the lowest too.

Fig. 12. Lowest charge consumption in mA over time.

Figure 12 shows that charge consumption by DeSSR is

roughly the same as the others and this is due to the DeBraS

scheduling itself, where the negotiations take place frequently,

and beacons are dispatched frequently allowing more and

more nodes to participate in negotiations with other nodes.

Fig. 13. RPL rank-churn over time.

In the dynamic topology, the node’s rank increases for two

reasons: (1) downgrading link quality, and (2) interference.

The rank is a weight assigned by IETF RPL [7] for forming

routing topology where nodes advertise their rank frequently

in the network to probe the shortest path to the root. This

process is called preferred parent change [7]. While the rank

fluctuates, it triggers the additional number of 6Top cycles.

Thus, a lower-bound in rank-churn is preferred to a stable

network. In Figure 13, LV maintains a fairly steady portion

rank-churn over time, which contrasts rank-churn patterns of

OTF and DeSSR. The reason of rank oscillation by LV is poor

bandwidth allocation, which also leads to many

inconsistencies including poor Tx-buffer utilization.

Fig. 14. Node-churn over time upper-bound is preferred.

Contrary to the rank-churn, the node-churn is the process

that influences network performance positively if an upper-

bound is followed. In DeBraS-led operation, the nodes from

an uncommon parent can transmit or receive packets

simultaneously. When high node-churn is evident, nodes are

flexible to progress to the shortest path to root, which cuts

down latency, improves utilization of cell, and balances the

traffic load. However, if there are not enough cells provided to

probe the shortest path, the node-churn becomes

counterproductive. This is evident in Figure 14 where a lower-

bound node-churn is followed by LV while OTF and DeSSR

both exhibit a high node-churn over time.

Fig. 15. 6Top add/remove operations per slotframe cycle.

In general, the SFs add and delete cells to nodes as a result

of the changing traffic conditions. Figure 15 shows a volume

of ADD/DELETE transactions per slotframe cycle (time),

where ADD transactions are observed above the X-axis and

DELETE transactions are observed below the X-axis. The

results show that LV triggers ADD and DELETE transactions

most frequently compared to OTF and DeSSR because it lacks

overprovisioning. OTF, in order to suppress the recurrent

transactions, allocates a fixed number of cells. However, OTF

does not match the real-time demand, and that way, it under-

or-overestimates the actual demand. This also means, while it

underestimates the demand, a slightly more cycles of ADD

and DELETE are scheduled. DeSSR adapts the demand based

9

on the slicing heuristics where nodes closer to the root are

allowed to maintain a high throughput. Figure 15 shows that

DeSSR triggers a balanced number of overheads, which is

roughly the same as OTF despite the lowest consumption

observed by DeSSR. That is necessary to balance the recurrent

6Top overheads for the improved network performance.

Fig. 16. Transmission buffer utilization over time.

Figure 16 shows how the Tx-buffer is managed by SFs over

time based on the traffic adaption strategies. In this regard, LV

maintains a roughly steady portion with a high volume of

packets remains in the queue throughout the time. DeSSR and

OTF follow a non-linear pattern where DeSSR keeps the

lowest volume of packets in the queue to control congestion.

Fig. 17. Showing packet loss due to congestion over time.

Figure 17 depicts that LV triggers congestion throughout

the time and incurs packet loss. DeSSR and OTF trigger

congestion for a shorter time where DeSSR registers the

lowest estimate of congestion to Tx-buffer ratio.

In Figure 18, DeSSR’s latency is settling to the lowest over

time, while OTF maintains three peaks depending on the

multiple threshold limits. It shows that higher threshold causes

reduced latency. Unlike OTF, DeSSR settles latency to 1s

over the time, which is optimized to the point that it is free

from the trade-off with cell consumption. LV’s latency

remains largely between 2s and 3s and this kind of delay is not

ideal for real-time operation given there are other technologies

that are only rejected because of the high delay.

Fig. 18. Latency maintains a steady lower-bound.

B. Discussion

The steady experiment simulates the industrial deployment

using the 6TiSCH standard where the performance of DeSSR

was compared with LV and OTF using several key indicators.

The results confirmed that DeSSR offers high throughput

using the lowest volume of cells compared to other SFs. The

charge consumption is roughly the same as others because of

decentralized, and broadcast-based scheduling-led operations.

Notably, DeSSR showed strong performance over time

compared to the LV and OTF, and achieved lowest volume of

collided cells, lowest latency, lowest congestion in queue,

improved node-churn, and optimized Tx-buffer. However, it

triggered a slightly high 6top transactions as these were

necessary to adapt rapidly changing network dynamics.

C. Bursty Traffic Experiment

The bursty traffic experiment draws significance from the

real-world industrial scenarios such as leak detection [37].

According to this, nodes experience a sudden gust of traffic.

The experiment injects a sample of 25 packets per burst per

node in a network of 100 nodes at fixed timestamps of 20 and

60 respectively in slotframe cycles. For analysis, the results

are benchmarked with the OTF using multiple thresholds. The

queue length for all nodes is 100 packets. The remaining

configuration parameters are given in Table 2.

 TABLE II

 CONFIGURATION PARAMETERS

Parameters Value

Nodes [100]

Area Square, [1* 1]km

Housekeeping Period [5]s

Packet Generation Interval [1]s

Slot Duration [10]ms

Channel Density [16]

Slotframe Length [101]

Buffer Size [100] packets

NDS interval [256]

Radio Sensitivity [-97] dBm

Simulation cycles [100]

Simulation runs [100]

10

Fig. 19. Packets generated during traffic burst over time.

Figure 19 depicts the volume of traffic generated as per the

bursty traffic conditions where each node generates roughly

the 25 packets over the given time and this process repeats

twice per slotframe run. Because a TSCH slotframe repeats

itself over time hence for each repetition (run), two traffic

bursts are supplied per run. Both SFs consistently generate

2475 packets precisely at slotframe cycle 20 and 60

respectively.

Fig. 20. Total number of packets up streamed to root.

Fig. 21. Packet loss due to congestion in the queue.

Figure 20 shows packet transmission capability where OTF

drops more packets during the 1st peak compared to 2nd peak.

The reason is poor assessment of demand. On the other hand,

DeSSR sends more packets than all three variants of OTF

throughout time and it is evident in Figure 20.

In a sudden gust of heavy traffic, congestion can occur due

to fixed queue capacity. Figure 21 shows that each peak incurs

packet loss due to congestion where DeSSR’s loss is the

lowest considering a toll of 30 packets during 1st peak and 70

packets during the 2nd peak. OTF suffers the worst congestion

with the highest volume of cells.

Fig. 22. Cell consumption in a bursty traffic scenario.

Figure 22 demonstrates the volume of scheduled cells by

both SFs over the sudden arrival of a heavy payload.

According to this, DeSSR schedules the lowest portion of cells

on average and during both events despite there being no

packets to send. Conversely, OTF follows a fixed distribution

where the higher threshold limit translates into the high

consumption of cells and eventually causes an increased

collision.

The presented results in Figure 22 shows that DeSSR

scheduled the lowest volume of cells where it uses scheduled

cells efficiently to ensure reliable operation that is free from

performance trade-offs.

Fig. 23. Collided Tx cells as a function of time considering the

bursty traffic scenario.

11

Figure 23 shows the volume of collided cells triggered by

both SFs over time. Here, both SFs randomly select cells from

the slotframe, and it is possible that two or more nodes are

using the same Tx cells for transmission simultaneously under

common parent. So, the collision can be expected. Apart from

that, a higher consumption of cells can also influence collision

to increase. In Figure 22, DeSSR observes the lowest cell

consumption, hence the volume of collided cells triggered by

DeSSR is the lowest too as shown in Figure 23, and this is true

for both events, and for remaining times when there is no

activity (idle times).

Fig. 24. Charge consumption(mA) over time in bursty traffic.

Figure 24 shows a charge consumption over time by OTF,

and DeSSR. Here, both SFs consumed roughly the same

amount of battery charge whereas the DeSSR consumed

slightly less charge, however, the margin seems very thin. The

key reason is the decentralized, broadcast-based scheduling

itself where enhanced beacons take a toll of most charge

consumed by both SFs. Charge consumption is further

discussed in detail under Section IV (F) (1).

Fig. 25. Add/Remove 6Top operation per slotframe cycle.

Figure 25 shows 6Top ADD/DELETE activities over time

where ADD activities are the positive number, shown above

the X-axis and DELETE activities are the negative number,

shown below the X-axis. In the beginning, the scheduler

unanimously adds 40-45 cells to nodes towards bootstrapping.

This process is the same for both steady and bursty traffic

scenarios as can be compared with Figure 15. As the first

event unfolds at slotframe cycle 20 in Figure 25, Both SFs

generate marginally the same amounts of overheads except for

the OTF with the highest threshold limit. The reason is

obvious that each node is given 8 cells already by OTF and

when nodes change position, OTF does not have to allocate or

deallocate cells more often. On the contrary, DeSSR sends

substantially more packets than OTF’s high threshold using

the lowest volume of cells and when the nodes change their

parent frequently in search of closer parent to the root, it

releases occupied cells and allocates new ones in an adaptive

manner. The key benefit is that released cells are available for

other nodes to use and this is why it causes additional

ADD/DELETE transactions. The 2nd event at slotframe cycle

60 indicates the toll of 6Top ADD/DELETE transactions is

higher than the 1st event. The key reason is that more cells are

scheduled at this time by both SFs, as is shown in Figure 22.

D. Discussion

In the bursty traffic experiment, DeSSR outperformed OTF

considering high throughput, lowest number of packet loss due

to congestion, lowest scheduled cells, reduced collisions,

lower charge consumption, and a fairly-balanced 6Top cycles.

With these key achievements, DeSSR outperforms currently

popular decentralized, broadcast-based scheduling functions

and it achieved this without monitoring queue occupation.

However, further experimentation is ideal to test scalability of

DeSSR knowing that its packet transmission capability is

higher than the most SFs.

E. Scalability Analysis

This experiment tests the scalability of DeSSR, and it is

divided into three parts. In the first part, we test the reliability

in medium-sized networks against extreme traffic load. In the

2nd part, the network size is increased to 100 nodes. Finally,

in the 3rd part, we increased the buffer size. We have followed

the steady pattern depending on the packet period intervals.

The results are compared with multiple variants of the OTF.

The configuration parameters are given in Table 3.

 TABLE III

 CONFIGURATION PARAMETERS

Parameters Value

Nodes [50,100]

Area Square, [2*2]km

Housekeeping Period [5]s

Packet Generation Interval [1.0, 0.5, and 0.1] s

Slot Duration [10]ms

Keep Alive Period [10]ms

Channel Density [16]

Slotframe Length [101]

Buffer Size [10,100] packets

NDS interval [256]

Radio Sensitivity [-97] dBm

Simulation cycles [100]

Simulation runs [100]

12

1) Scalability Analysis of Medium-sized Network

In this experiment, a total of 50 nodes are deployed

randomly where queue length of all nodes is 10 packets

[22]. The experiment produces a number of subplots

reflecting the impact of varying traffic load over time

where buffer size is explicitly mentioned.

 Fig. 26. Payload generation over time.

Figure 26 is divided into three subplots depending on the

traffic load scenarios where each subplot observes steady

distribution of traffic over time. That is, about 50 packets

are generated per cycle under packet period 1s, 100

packets under packet period 0.5s, and 500 packets under

packet period 0.1s. These estimates correspond to the

total number of packets to be generated as per the given

traffic rate.

Fig. 27. Reliability for medium-range deployment.

Figure 27 shows that both OTF and DeSSR take a hit

and the packet loss is evident for a shorter time between

slotframe cycle 20 and 40 except that DeSSR's loss is

less pronounced.

In the 3rd subplot of Figure 27 particularly, we observe

intense load where DeSSR is capable of delivering a

high volume of traffic load while OTF is challenged due

to high consumption to collisions ratio. On the contrary,

DeSSR drops packets due to constrained buffer size.

Fig. 28. Latency for medium-range deployment.

Figure 28 shows latency over time where DeSSR, at

slotframe cycle 20 and 40, triggers the lowest delay of 2s

provided not all packets are delivered at this stage.

Thereafter, it remains fairly steady around 1s, and it is

the same for OTF too. At this stage, most packets are up

streamed successfully.

The 3rd subplot of Figure 28 tallies the gap between

trajectories of OTF and DeSSR, at slotframe cycle 20

and 40, and the delay is yet the lowest among all

trajectories of DeSSR, which is concerning. The reason

is too many cells were given to nodes, which the nodes

utilized to progress to shortest path and delivered a fairly

less amount of payload.

2) Scalability Analysis of Large-scale Network

The experiment is used for testing scalability and

robustness of DeSSR using 100 nodes. This time, the

network is twice as dense and queue length is 10 packets

for all nodes.

 Fig. 29. Payload generation over time in large networks.

Figure 29 depicts application-generated payload over

time where 100, 200, 1000 packets are generated for

most of the time following the period interval 1s, 0.5s,

and 0.1s respectively.

13

 Fig. 30. End-to-End reliability as a function of time.

Figure 30 shows three consecutive subplots where

reliability is shown on the Y-axis and time is given on

the X-axis. Here, both SFs drop packets between

slotframe cycle 20 and 60, due to congestion. However,

a leading gap is observed, which monitors sharp declines

in reliability of DeSSR and OTF as the load increases

proportionately. Here, DeSSR still sends more packets

than OTF and is more efficient in recovering from the

packet loss compared to OTF.

 Fig. 31. Packet loss due to congestion in the buffer.

 Fig. 32. Latency as a function of time, 100 nodes.

Figure 31 analyzes a backlog of packets that are lost due

to congestion. The results show that congestion is the

factor behind the loss incurred in Figure 30.

Figure 32 shows latency over time and the results are

more or less the same as shown in Figure 28. Hence, it

will not be accurate to predict the actual behavior.

3) Large-scale Network with Increased Queue Length

This experiment increases the queue length to 100

packets and uses a packet period of 0.5s. The presented

results show the impact of congestion in the queue, end-

to-end reliability, and latency. With previous approaches

including OTF, congestion caused poor performance

with OTF’s performance significantly degrading during

the temporary peak of traffic between slotframe

timestamp 20 and 60. The results presented are averaged

at a 95% confidence interval using 100 slotframe runs.

This drop in performance is indicated by an increase in

dropped packets leading to a reliability drop to about

75% and a latency of between 6 and 8s for OTF. DeSSR

performs significantly better with reliability staying

above 90% over time and latency not exceeding 4s.

 Fig. 33. Congestion in the extended buffer over time.

 Fig. 34. Reliability over time and extended size of buffer.

Figure 33 shows that at an early stage (slotframe cycle

20 and 40), congestion cannot be ruled out despite an

14

increase in buffer size. Here, both SFs drop packets due

to congestion, except DeSSR’s loss is 75% less than

OTF and it observes quick recovery over time.

Figure 34 shows that the extension to buffer size is

rewarding for both SFs. However, both SFs drop packets

in the beginning due to congestion, which negatively

impacts the end-to-end reliability as is shown in Figure

34. Here, DeSSR observes the lowest decline in

reliability and provides stability to the network fairly

quickly compared to the OTF.

 Fig. 35. Latency over using extended buffer scenarios.

Figure 35 shows end-to-end latency over time. Here,

OTF registers a maximum delay depending on the

threshold limits. That is, the higher the threshold limit,

the lower the delay. That is because nodes have enough

cells to probe the shortest path to the root. Results show

that OTF’s trajectories take longer to reach optimal

latency of 1s while the DeSSR achieves the target in a

fairly shorter time, and yet observes the lowest delay

comparatively.

F. Discussion

This section discusses the performance of DeSSR in terms

of side-effects considering charge-consumption, complexity,

and scalability.

1) Charge Consumption

In 6TiSCH network, charge consumption is impacted by

a number of aspects including the cost of network

formation, dynamics of SF, and management of costs

incurred due to propagation and control overheads.

Network bootstrap is an expensive period in low-power

and lossy networks, involving frequent EBs carrying

broadcast and unicast traffic. In a fully configured

DoDAG topology, nodes periodically generate EBs

ensuring nodes are synchronized [33]. Hence, an optimal

broadcast strategy is useful to reduce energy

consumption. Vucinic et al. [38] studied various

broadcast strategies to minimize the delay in network

formation by setting an optimal point to control portions

of EBs without ignoring the convergence delay and

collision. Therefore, all broadcast messages are carried

in a form of slotted aloha [31]. The author also proposed

an optimal threshold (0.1 and 0.33 for EB and DIO),

which is representative of the lowest network formation

time in the network of 45 nodes considering reduction in

the volume of EBs [33]. Municio et al. [33] showed the

delay in network formation increases in a steady-linear

fashion as the network size increases using the same

hysteresis. DeSSR uses the same value as described as

optimal in [38] and demonstrates a shorter bootstrap

period using more than one broadcast cell from the

TSCH slotframe. The remaining portion of the slotframe

is left unused for the SFs to implement.

In 6TiSCH network, nodes compute their radio duty-

cycle per slot depending on how long it takes to finish

the scheduled task. A variation in charge-consumption is

likely as different SFs take different approaches adapting

and managing the traffic in the network. Daneel et al.

[13] highlighted the role of SF carries to prevent

recurrent wastage of charge, triggered by poor

overprovisioning and static allocation of cells, i.e., a

mismatch between the actual traffic and predicted traffic.

No defined mechanism so far has been proven optimal.

Hence, charge consumption is dependent on the

priorities of different SFs [18] (refer to Section III for

review of SFs).

In a dynamic topology, nodes change parents frequently.

This has a considerable impact on the underlying TSCH

links [15]. That is, each parent-changing node must

relocate its resources from one parent to another parent.

Hence charge consumption varies from the point of how

and to what extent the movement of non-root nodes is

controlled. For this reason, many recently introduced

SFs do not allow leaf nodes to have a Tx cell. However,

this negatively affects the optimal path formation in RPL

routing. Thus, constraining parent-change is not only a

greedy setup but also has repercussions on overall

scalability of the network. Our proposal inherits some of

the key drawbacks of using multiple broadcast cells for

advertisement [15]. However, it permits non-leaf nodes

to have access to Tx cells. To analyze the impact of

broadcast cells on charge consumption, a separate

experiment is conducted using the same configuration

parameters as used in Table 2, except the range of

broadcast is set to be 1- 8 cells.

 Fig. 36. Charge consumed by the varying broadcast cells.

15

Figure 36 illustrates the cost of managing scheduling

dynamics indicating that the lowest number of broadcast

cells consume the lowest amount of charge. However,

this is not true with the highest portion comprising 7 – 8

cells with the presented results showing a moderate

charge-consumption that increases over time and is

about the same level as with 3- 4 cells. The highest

amount of charge is consumed with 6 and 5 broadcast

cells. Municio et al.[15] argues the key reason for this

behavior being the increased waiting time for

contention-access in large-scale networks. Hence, the

charge-consumption decreases in larger networks.

DeSSR retains the same number of broadcast cells as

used by other algorithms.

2) Complexity

The complexity of DeSSR is analyzed in terms of

control overheads (6Top transactions). This is further

illustrated in Figure 15 where key SFs are shown to have

added and deleted negotiated cells over time. The

exchange is facilitated using 6Top unicast transactions,

which take a longer time to execute and are resource

intensive. Hence, the fewer number of cells are used the

better. DeSSR manages complexity of control overheads

by allowing extra cells to be reserved for the nodes

closer to the sink and ensuring a strong PDR. However,

this is not an absolute allocation. For nodes which

change parent, the resources attached are only diverted

to the new parent depending on the criteria provided by

DeSSR. Hence the requirement is managed dynamically.

This is evident in the analysis presented in Section

IV(A), and (C).

The complexity of EBs overshadows the complexity due

to control overheads. This is shown under Figure 12

where no significant variations are present in charge

consumption by DeSSR, LV and OTF, with DeSSR

observing the lowest cell consumption, lowest collision,

and roughly same complexity level as OTF. This

suggests the complexity of DeSSR in terms of

propagation is comparable to the other SFs.

DeSSR does not add new overheads, instead, it allows a

high availability of collision-free cells without causing

trade-offs with latency and reliability. It achieves

improved scalability allowing hundreds of nodes to use

spare cells under a single DoDAG tree.

The flow of RPL control messages is unaffected by

DeSSR’s scheduling approach.

3) Scalability

We studied performance degradation factors in large-

scale networks using multiple simulation-based

experiments, and benchmarked results of DeSSR against

other SFs in Section IV (E).

The selection of SFs was made as per the literature

review presented in Section II (A). A number of recently

published SFs such ALICE, and MSF, do not qualify for

this comparison due to poor propagation, and limited

throughput [14].

The significance of the contribution by DeSSR is

presented using the following points:

• Improved availability of Tx cells at both steady and

bursty traffic conditions. (Figure 10 and Figure 22 in

Section IV).

• Improved throughput despite using the lowest

portion of cells. (Figure 20, and 27).

• Reduced collision among Tx cells so that extra cells

can be allocated to nodes experiencing a temporary

peak. (Figure 11 and Figure 12).

• DeSSR’s complexity in terms of 6Top overheads is

comparable with OTF and is significantly lower

than LV. (Figure 15).

• There are no trade-offs involved with latency and

charge consumption. (Figure 9, Figure 16 and

Figure 18).

Further experiments are carried out to test scalability

using several hundred nodes. E-OTF’s performance, as

per the literature review, has been unknown for larger

networks. Hence, DeSSR and E-OTF are included in the

experiment to test performance considering the

scalability being the prominent concern. The E-OTF is

configured with no extra cells and the rest of the

configuration parameters are the same as shown in Table

2 except the network density is increased to several

hundred nodes.

Fig. 37. Scalability of DeSSR over several hundred

nodes using 60 packets per minutes.

 Figure 37 highlights the contribution DeSSR makes for

large-scale networks of several hundreds of nodes in

size. Figure 37 shows DeSSR’s reliability to be at least

99% even for networks up to 700 nodes (95%

confidence interval). The results indicate a drop of

performance of E-OTF beyond 400 nodes. This makes

DeSSR a strong candidate for managing large-scale

networks without ignoring the fundamental need of

reliable and scalable operation.

V. CONCLUSION

This article presents DeSSR following the aim to improve

scalability of IEEE802.15.4e networks. The work of DeSSR

implemented TCSH-MAC mode in a decentralized and

broadcast-based operation. The key contribution is provided

through PDR-based DTS and using flexible NDS assessment.

16

The performance of DeSSR was extensively tested using

steady and bursty traffic experiments in a large-scale network

of 100 nodes under packet generation period of 1s. Results

showed that DeSSR outperformed both LV & OTF and

achieved best results in steady traffic experiment. In a bursty

traffic experiment, DeSSR’s performance was superior to

multiple versions of OTF thresholds. Towards scalability,

DeSSR got tested with varying buffer sizes and varying traffic

conditions. Results showed, in both medium-scale and large-

scale networks, DeSSR maintains a significant lead over OTF.

Finally, the scalability test was conducted using large

networks up to 700 nodes. The results show that DeSSR

significantly outperforms E-OTF for larger networks.

REFERENCES

[1] Ericsson, "Connected Industries," September 2020.

[Online]. Available:

https://www.ericsson.com/assets/local/internet-of-

things/docs/connected-industries-a-guide-to-enterprise-

digital-transformation-success.pdf.

[2] M. Kuzlu, M. Pipattanasomporn and S. Rahman,

"Review of communication technologies for smart

homes/building applications," 2015 IEEE Innovative

Smart Grid Technologies - Asia (ISGT ASIA), 2015,

pp. 1-6, doi: 10.1109/ISGT-Asia.2015.7437036.

[3] D. Dujovne, T. Watteyne, X. Vilajosana and P.

Thubert, “6TiSCH: deterministic IP-ena-bled industrial

internet (of things),” IEEE Comm. Mag., vol. 52, no.

12, pp. 36-41, 2014.

[4] E. Kim, D. Kaspar and J. Vasseur, “Design and

Application Spaces for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs),” Document

RFC 6568, Internet Engineering Task Force, 2012.

[5] T. Watteyne, M. R. Palattella, L.A. Grieco. Using

IEEE802.15.4e Time-Slotted Channel

Hopping((TSCH) in the Internet of Things (IoT):

Problem Statement. Internet Engineering Task Force,

IETF, 2015.

[6] Q. Wang, X. Vilajosana and T. Watteyne, “6TiSCH

Operation Sublayer (6top),” 04 06 2014. [Online].

Available: https://tools.ietf.org/html/draft-wang-6tisch-

6top-sublayer-01. [Accessed 07 03 2020].

[7] P. Thubert, “ROLL: Internet Draft,” IETF ROLL, 11

06 2012. [Online]. Available:

https://tools.ietf.org/html/draft-thubert-roll-asymlink-

02. [Accessed 1 10 2019].

[8] R. T. Hermeto, G. Antoine and T. Fabrice, “Scheduling

for IEEE802.15.4-TSCH and slow channel hopping

MAC in low power industrial wireless networks: A

survey,” Computer Communication, vol. 114, pp. 84-

105, 2017.

[9] F. Righetti, C. Vallati, S. K. Das and G. Anastasi,

“Analysis of Distributed and Autonomous Scheduling

Functions for 6TiSCH,” IEEE Access, vol. 8, pp.

158243-158262, 2020

[10] A. R. Urke, Ø. Kure and K. Øvsthus, "A Survey of

802.15.4 TSCH Schedulers for a Standardized

Industrial Internet of Things," Sensors, vol. 22, no. 1,

2022.

[11] S. Hammoudi, A. Bentaleb, S. Harous and Z. Aliouat,

"Scheduling in IEEE 802.15.4e Time Slotted Channel

Hopping: A Survey," 2020 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON), 2020, pp.

0331-0336, doi:

10.1109/UEMCON51285.2020.9298043.

[12] K. Kumar and M. Kolberg, “Improving Scalability of

6TiSCH Networks using Smart Scheduling

Reservation”, in IEEE Sensor journal, Under review,

2022.

[13] G. Daneel, B. Spinnewyn, S. Latre and J. Famaey,

“ReSF: recurrent Low-Latency scheduling in IEEE

802.15.4e TSCH networks,” Ad-Hoc Networks, vol.

69, pp. 80-88, 2018.

[14] F. Righetti, C. Vallati, A. Gavioli and G. Anastasi,

"Performance Evaluation of Adaptive Autonomous

Scheduling Functions for 6TiSCH Networks," in IEEE

Access, vol. 9, pp. 127576-127594, 2021, doi:

10.1109/ACCESS.2021.3112266.

[15] E. Municio and S. Latre, “Decentralized broadcast-

based scheduling for dense multihop TSCH networks,”

in MobiArch '16 Proceedings of the Workshop on

Mobility in the Evolving Internet Architecture, NY,

USA, 2016.

[16] M. Vucinic, M. Pejanovic-Djurisic and T. Watteyne,

"SODA: 6TiSCH Open Data Action," 2018 IEEE

Workshop on Benchmarking Cyber-Physical Networks

and Systems (CPSBench), 2018, pp. 42-46, doi:

10.1109/CPSBench.2018.00014

[17] N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco,

G. Boggia and M. Dohler, "Decentralized Traffic

Aware Scheduling in 6TiSCH Networks: Design and

Experimental Evaluation," in IEEE Internet of Things

Journal, vol. 2, no. 6, pp. 455-470, Dec. 2015, doi:

10.1109/JIOT.2015.2476915.

[18] M. R. Palattella et al., "On-the-Fly Bandwidth

Reservation for 6TiSCH Wireless Industrial

Networks," in IEEE Sensors Journal, vol. 16, no. 2, pp.

550-560, Jan.15, 2016, doi:

10.1109/JSEN.2015.2480886.

[19] R. Soua, E. Livolant and P. Minet, “DiSCA: A

distributed scheduling for convergecast in multichannel

wireless sensor networks,” in 2015 IFIP/IEEE

International Symposium on Integrated Network

Management (IM), Ottawa, ON, Canada, 2015.

[20] A. Aijaz and U. Raza, “DeAMON: a decentralized

adaptive multi-hop scheduling protoc-ol for 6Tisch

wireless networks,” IEEE Sensors Journal, vol. 17, no.

20, pp. 1-10, 2017.

[21] K. Kralevska, D. J. Vergados, Y. Jiang and A.

https://tools.ietf.org/html/draft-thubert-roll-asymlink-02
https://tools.ietf.org/html/draft-thubert-roll-asymlink-02

17

Michalas, "A Load Balancing Algorithm for Resource

Allocation in IEEE 802.15.4e Networks," 2018 IEEE

International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops),

2018, pp. 675-680, doi:

10.1109/PERCOMW.2018.8480306.

[22] J. D. Vergados , K. Kralevska, Y. Jiang and A.

Michalas, "Local voting: A new distributed bandwidth

reservation algorithm for 6TiSCH networks,"

Computer Networks, vol. 180, no. 107384, 2020.

[23] S. Duaquennoy, B. A. Nahas, T. Watteyne and O.

Landsiedel, “Orchestra: Robust Mesh Networks

Through Autonomously Scheduled TSCH,” in ACM

Conference on Embedded Networked Sensor Systems

(Sensys), Seoul, South Korea, 2015.

[24] S. Kim, H. -S. Kim and C. Kim, "ALICE: Autonomous

Link-based Cell Scheduling for TSCH," 2019 18th

ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), Montreal, QC,

Canada, 2019, pp. 121-132, doi:

10.1145/3302506.3310394.

[25] S. Jeong, J. Paek, H. S. Kim and S. Bahk, “TESLA:

Traffic-Aware Elastic Slotframe Adjustment in TSCH

Networks,” IEEE Access, vol. 7, pp. 130468 - 130483,

2019.

[26] Q. Wang, X. Vilajosana, and T. Watteyne, 6top

Protocol (6P), Internet Engineering Task Force Std.

RFC8480, August 2018.

[27] T. Chang, X. Vilajosana, M. Vucinic, S. Duaquennoy

and D. Dujovne, “6TiSCH Minimal Scheduling

Function (MSF),” 2 July

2019.[Online].Available:https://tools.ietf.org/html/d-

raft-ietf-6tisch-msf-04. [Accessed 5 August 2019]

[28] Y. Tanaka, P. Minet, M. Vucinic, X. Vilajosana and T.

Watteyne, "YSF: a 6TiSCH Scheduling Function

Minimizing Latency of Data Gathering in IIoT," IEEE

Internet of Things, pp. 2327-4662, 2021.

[29] F. Righetti, C. Vallati, G. Anastasi and S. K. Das,

"Analysis and improvement of the on-the-fly

bandwidth reservation algorithm for 6tisch", IEEE

WoWMoM, 2018.

[30] H. Wang and A. O. Fapojuwo, "Design and

Performance Evaluation of a Hysteresis-Free On-the-

Fly Scheduling Function for 6TiSCH," in IEEE

Internet of Things Journal, vol. 8, no. 13, pp. 10499-

10508, 1 July1, 2021, doi:

10.1109/JIOT.2021.3049218

[31] V. Xavier, T. Watteyne, T. Chang, M. Vucinic, S.

Doquennoy and P. Thubert, “IETF 6TiSCH: A

Tutorial,” IEEE, vol. 22, no. 1, pp. 595-615, 2019.

[32] A. Tinka, T. Watteye, K. S. Pister and A. M. Bayen,

“A decentralised scheduling algorithm for time

synchronised channel hopping,” Mobi. Comm., vol.

11, no. 1, pp. 1-16, 2011.

[33] E. Municio, G. Daneels, M. Vucinic, S. Latre, J.

Famaey, Y. Tanaka, K. Brun, k. Muraoka, X.

Vilajosana and T. Watteyne, “Simulating 6TiSCH

network,” Telecommuni-cation Journal, pp. 1-17,

2018.

[34] K. S. J. Pister, T. Watteyne, A. Nicola, X. Vilajosana

and M. Kazushi, “Simple Distributed Scheduling with

Collision Detection,” IEEE sensors, vol. 16, no. 15, p.

5848–5849, 2016.

[35] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T.

Chang and K. S. J. Pister, “A realistic Energy

Consumption Model for TSCH Networks,” IEEE

Sensors, vol. 14, no. 2, pp. 482-489, 2014.

[36] M. Vučinić, T. Chang, B. Škrbić, E. Kočan, M.

Pejanović-Djurišić and T. Watteyne,“Key Performance

Indicators of the Reference 6TiSCH Implementation in

Internet-of-Things Scenarios,” IEEE Access, vol. 8, pp.

79147 - 79157, 2020.

[37] T. G. van Kessel et al., "Methane Leak Detection and

Localization Using Wireless Sensor Networks for

Remote Oil and Gas Operations," 2018 IEEE

SENSORS, 2018, pp. 1-4, doi:

10.1109/ICSENS.2018.8589585.

[38] Vučinić Mališa, Watteyne Thomas, Vilajosana Xavier.

Broadcasting Strategies in 6TiSCH Networks. Internet

Technology Letters. 2017.

Kaushal Kumar was born in Nagla

Bihari Village, Sakaraya, Mathura, Uttar

Pradesh, India in 1983. He received the

MSc in computer science from the

University of Stirling, UK, in 2008, and

the MBA from Edinburgh Napier

University, UK, in 2013. He is a tutor in

the computer science department, and a

student who is currently pursuing a Ph.D. degree in computer

science at the University of Stirling, Stirling, UK.

Mario Kolberg is a Senior Lecturer of

computing science and Associate Dean at

the University of Stirling. His research

interests include Peer-to-Peer overlay

networks, Wireless Sensor Networks, and

Internet of Things. Mario is editor of the

bi-annually published Consumer

Communication Networking Series within

the IEEE Communications Magazine. Mario is also on the

editorial Board of the Springer Journal ‘Peer-to-Peer

Networking and Applications’ and has a long-standing

involvement with the IEEE CCNC conference series. Dr.

Kolberg has published more than 60 papers in leading journals

and conferences. He is a member of a number of international

conferences and program committees on networking and

communications. He is a Senior Member of the IEEE and

holds a PhD from the University of Strathclyde, UK.

https://tools.ietf.org/html/d-raft-ietf-6tisch-msf-04
https://tools.ietf.org/html/d-raft-ietf-6tisch-msf-04

