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ABSTRACT
Automating mineral delineation and rock type analysis using remote sensing imaging data is a critical application of machine
learning. Traditional machine learning methods often struggle with accuracy and precise map generation. This study aims to
enhance performance through a refined deep learning model. In this work, we present a deep learning pipeline to map the mineral
deposits in the study area. Initially, we apply a deep convolutional neural network (CNN) to a specialized mineral dataset to map
mineral deposits within the study area. Subsequently, we build a hybrid model combining deep CNN layers with a support vector
machine (SVM). This merger significantly improves classification accuracy from an initial 92.7% to 95.3%. In our approach, CNN
layers function as feature extractors while the SVM serves as the classification model. Moreover, we conduct an evaluation of the
SVM using polynomial kernels of degrees 3, 6, 9, and 12. The results indicate that the SVM with a degree of 12 achieved the highest
classification accuracy, followed by degrees 9, 6, and 3. Experimental results demonstrate the effectiveness of our proposed method
for classifying remote sensing imaging data, showcasing its potential for advancing mineral delineation and rock type analysis.

1 | Introduction

One of the vital procedures in the mineral exploration pro-
cess is to use geological map to analyze and visualize fea-
tures that are linked with the mineral deposits. These maps
include basic data that is relevant to many different fields, such
as the study of earthquakes, the development of infrastruc-
ture, and the search for groundwater and deep Earth resources
[1–4]. Mineral perspective mapping and geological mapping
have experienced significant transformations due to the advance-
ments in remote sensing techniques, satellite imagery utilization,
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LiDAR data incorporation, enhanced geological understanding,
and improved mapping efficiency. Most of the developments in
the field can be attributed to the integration of remote sens-
ing data with conventional field observations conducted on the
ground [5, 6].

Carbonate species such as CaCO3 and MgCO3 play crucial roles
in geological studies but are challenging to identify manually,
especially in rugged terrains that require extensive labor and
resources [7, 8]. The advent of multispectral remote sensing, par-
ticularly through platforms like Sentinel-2, has provided a viable
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approach for visually detecting carbonates and other geological
formations. This has prompted an imperative need to enhance
the utilization of satellite imagery for more effective mapping of
geological features [9].

The development of image-processing techniques to highlight,
distinguish, and categorize geological features has advanced sig-
nificantly. Although geological mapping utilizing remote sens-
ing data has shown success with a variety of machine learning
techniques, including supervised classification techniques, there
is stillroom for improvement in these approaches to enhance
the accuracy of classification algorithms and precise perspec-
tive map generation [10]. Because machine learning algorithms
are data-driven, they can identify patterns in high-dimensional
data, which makes them an appropriate choice for handling
the increasing databases of remotely collected information in
geological mapping applications [11]. Notable machine learn-
ing techniques, including dimensionality reduction approaches,
k-nearest neighbors (KNN), naive Bayes (NBs), random forests
(RFs), support vector machines (SVMs), and multilayer percep-
trons (MLP), have been employed to analyze remotely sensed
data for geological purposes [12–15].

SVM, recognized as a powerful machine learning approach, has
demonstrated effectiveness in tasks such as automated identifica-
tion of carbonates and supervised classification, providing robust
insights into geological features [16, 17]. However, challenges
persist in accurately mapping lithological units. Thus, further
enhancing SVM capabilities for accurate mapping of rocks, urban
areas, vegetation, and water bodies remains a promising avenue.
This entails integrating spectral characteristics from diverse data
sources, including Sentinel-2 for carbonate and lithological map-
ping, Landsat 8, Digital Elevation Models (DEMs), and Advanced
Land-Observing Satellite/Phased Array Type L-Band Synthetic
Aperture Radar (ALOS/PALSAR) data [18, 19].

Convolutional neural networks (CNNs) represent a significant
advancement in addressing challenges within geological remote
sensing. CNNs are well known for their prowess in image clas-
sification, and thus, they offer a promising potential to enhance
geological mapping processes. CNNs excel in analyzing remote
sensing data, exhibiting the capability to make precise predic-
tions without extensive image preprocessing and effectively han-
dling spatial variations. This resilience to spatial differences
renders CNNs highly dependable for processing remote sens-
ing information in geological studies [20, 21]. Recent studies
underscore their effectiveness in geological mapping, demon-
strating superior performance across diverse applications [22,
23]. Although CNNs have been less explored in mapping poten-
tial mineralization zones, their established success in geological
mapping and initial surface material classification underscore
their potential to transform mineral exploration and mapping
methodologies [24].

A novel deep learning approach, integrating CNN and SVM,
was proposed for warship sample acquisition, employing trans-
fer learning for validation [25]. Sun et al. utilized a CNN-based
method to classify high spectral wetland remote sensing imagery,
comparing it with Texture-Spectrum SVM (TSPSVM) and Spec-
tral Feature SVM (SP-SVM) approaches [26]. Han et al. [27], used
a pre-trained AlexNet to classify remote-sensing image scenes.

Additionally, the authors in [28, 29] introduced an innovative
ship target recognition method that integrates feature aggrega-
tion with transfer learning from SAR images. Their approach
involved crafting test datasets with diverse resolutions, sizes, sea
conditions, and sensor types, highlighting the pivotal role of
CNNs in feature extraction and classifier development tailored
to various forms of remote-sensing images. However, despite
the advancements achieved in previous research, we must con-
front and address persistent challenges and limitations [30, 31].
Conventional methods in machine learning such as NBs, RFs,
and KNN often struggle to achieve high accuracy and precise
map generation in geological mapping [32]. These methods have
inherent limitations when dealing with high-dimensional and
complex remote sensing data. In addition, the manual identifi-
cation of carbonate species and other geological formations is
labor-intensive and resource-consuming, particularly in complex
environments, requiring the development of automated tech-
niques that improve accuracy and efficiency. While SVM-based
approaches have been promising in the classification of min-
erals, their performances can be further improved when inte-
grated with deep learning models like CNNs [26]. Likewise,
CNNs excel in feature extraction but can benefit from the clas-
sification robustness of SVMs. Hence, it is pertinent to explore
the potential of machine learning and deep learning hybrid
models in remote sensing data. One key challenge in devel-
oping a hybrid model is to achieve model generalization so
that the trained model can adapt to data from diverse geologi-
cal terrains [33]. This study addresses these challenges through
an in-depth analysis of various polynomial kernel degrees in
SVM to identify the optimal configuration and evaluate the
trained model using unseen test data from a different geologi-
cal location. By highlighting these shortcomings and addressing
them with our hybrid model, we developed a model to demon-
strate how our approach advances mineral mapping methodolo-
gies, contributing significantly to the field of geological remote
sensing.

In this study, we build a hybrid model combining CNN and
SVM and use it for mineral mapping. The ability of SVMs
with higher-degree polynomial kernels to represent complex,
non-linear connections in high-dimensional feature spaces
allows them to work better than other machine learning algo-
rithms on the task of classification of minerals. To convert the
initial feature space into a higher-dimensional space, the SVM
can be effectively used with a higher-degree polynomial kernel,
allowing SVMs to identify nonlinear correlations in mineral data
that a linear kernel would overlook. We then explore the poten-
tial of the hybrid model and the effect of varying SVM polyno-
mial degrees on the classification performance. By systematically
investigating these modifications, we aim to enhance the effi-
cacy of the hybrid model, providing valuable insights to optimize
mineral mapping techniques for remote sensing data. Our results
demonstrate a notable improvement in model accuracy and the
potential for enhanced map generation.

2 | Background

This section highlights the applications of machine learning and
deep learning methods in mineral exploration.
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Geological mapping has been revolutionized by the integration
of remote sensing information and advanced machine learning
methods. This has allowed for more efficient and cost-effective
mapping of lithological units and geological formations [34–36].
The use of remote sensing multispectral imagery, particu-
larly with advancements in sensors available via platforms like
Sentinel-2, has enhanced the visual examination of geological
features [37, 38]. In recent years, the domain of mineral explo-
ration has experienced notable progress. The incorporation of
machine learning methods in remote sensing data analysis has
emerged as a pivotal factor in augmenting the capabilities of deep
neural models [39–41]. Study in [42] has developed a compressed
sensing-based method for 3D rain field tomographic reconstruc-
tion using simulated satellite signals, enhancing meteorological
data analysis for better weather prediction. Additionally, another
study conducted in [43], introduced the Modality Fusion Vision
Transformer, which significantly improved collaborative classifi-
cation of hyperspectral and LiDAR data.

2.1 | Support Vector Machine

SVM represents a significant leap forward in contemporary
machine learning [44, 45]. A standout characteristic of SVM lies
in its utilization of kernel functions. Constructing a linear bound-
ary within a high-dimensional space, the kernel function adeptly
handles nonlinear problems within the input feature vector set.
Simultaneously, it transforms non-convex optimization into con-
vex optimization, effectively overcoming challenges associated
with local minima and facilitating global optimization in classifi-
cation. The essence of SVM lies in the determination of an opti-
mal classification hyperplane, expressed as 𝜔

𝑇
𝑥 + 𝑏 = 0, where

𝜔 is the weight vector, 𝑥 is the input feature vector, and 𝑏 is the
bias term. To achieve this, the SVM formulation incorporates a
constraint: [

𝑦

(
𝜔
𝑇
𝑥 + 𝑏

)
≥ 1 − 𝜉

]

where 𝑦 represents the target output, and 𝜉 is a slack vari-
able accounting for deviations from the optimal classification.
The subsequent expression for the optimal classification hyper-
plane is:

min

(
1
2
∥ 𝜔∥

2
+ 𝐶

𝑁∑

𝑖=1
𝜉
𝑖

)

Note that 𝐶 is the penalty coefficient. The objective of using 𝐶 is
to regulate the wide-margin classification objectives while also
keeping the misclassification minimum. SVM maps the input
data into a higher dimensional space using the kernel func-
tion. This, in turn, enables the hyper-plane between samples that
are otherwise highly non-linearly separable. We use the Radial
Basis Function (RBF) as the kernel function 𝐾, as shown in
Equation (1):

𝐾

(
𝑥
𝑖
, 𝑥

𝑗

)
= exp

(

−

∥ 𝑥
𝑖
− 𝑥

𝑗
∥

2

2𝜎2

)

(1)

Here, the parameter 𝜎 determines the kernel width that in turns
impacts the decision boundary smoothness. For complex data
with non-linear separation, the RBF kernel is a common choice
for SVM classifiers.

2.2 | CNNs in Mineral Data Processing

Deep learning models, including CNNs have demonstrated sig-
nificant potential in computer vision applications such as image
classification and object detection [46, 47]. In the domain of
mineral exploration in remote sensing images, the potential of
CNNs has been explored to analyze geological and remote sens-
ing data for identifying mineral deposits and predicting their
characteristics [48].

Typically, CNN architecture comprises multiple convolution and
pooling layers. In the convolutional layers, kernel functions are
multiplied and added with the input features to extract complex
feature maps. Then, by using subsampling layers, these traits
are expanded into higher levels, improving their resilience and
abstraction.

Consider a 𝑑-dimensional input data, that is, 𝑥 ∈ ℝ𝑑. For a given
input 𝑥, the output of any convolution layer 𝑙 can be expressed by
Equation (2) as:

ℎ
𝑙

ij = 𝑓

(
𝑁

𝑙∑

𝑖,𝑗

(
𝑘
𝑙

ij ∗ 𝑥

)
+ 𝑏

𝑙

𝑗

)

(2)

Here, 𝑓(⋅) is an activation function, which could be sigmoid, Rec-
tified Linear Unit (ReLU), or hyperbolic tangent. The symbol ∗
denotes the convolution operation, and 𝑁

𝑙
denotes the number

of input feature maps. The term 𝑘
𝑙

ij represents the kernel operat-
ing on the 𝑖th feature map of layer 𝑙 − 1 to produce the 𝑗th feature
map of layer 𝑙, and 𝑏

𝑙

𝑗
is the bias for the 𝑗th feature map of layer

𝑙. If 𝑙 = 1, then ℎ
1
𝑥
= 𝑥 is the input layer. The convolution layers

generate features that are then directed to the pooling layer. Com-
mon pooling functions, such as average pooling, sub-sampling,
and max-pooling, are employed in this stage. The outcome of
sub-sampling is described in Equation (3):

𝑆
𝑙

𝑗
= 𝑔

(

𝛾 ⋅
1

𝑛 × 𝑛

∑

𝑖,𝑗

(
ℎ
𝑙−1
ij

)
+ 𝑏

𝑙

𝑗

)

(3)

Here, the average of an 𝑛 × 𝑛 patch of the previous layer’s 𝑗th fea-
ture map is taken, multiplied by a trainable scalar 𝛾, and added
to a bias 𝑏𝑙

𝑗
, passing through a non-linear function 𝑔(⋅). Convo-

lution layers are typically followed by pooling layers to minimize
computational complexity and spatial size. This lessens the pos-
sibility of overfitting and improves feature robustness as well. We
have utilized the max pooling activation function in the study.

2.3 | Hybrid Models for Minerals Data
Processing

Ensemble models refer to the integration of multiple machine
learning algorithms or models to improve the overall perfor-
mance [49]. In the context of mineral exploration, this technique
has been used to combine the strengths of various approaches,
including SVMs and deep neural networks, thus, achieving more
accurate and robust predictions. The merger of models can help
overcome the limitations of individual algorithms and enhance
the overall predictive power [50, 51].
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Traditional classification methods for remote sensing imagery
often rely on conventional feature extraction and selection tech-
niques. However, these approaches can exhibit limitations in per-
tinence, accuracy, and computational efficiency when applied to
complex remote sensing images [26]. Recent advancements in
machine learning algorithms and spatial modeling techniques
have significantly advanced the predictive modeling of min-
eral prospects in specific regions, such as the southern Jiangxi
province of China. These studies have employed a range of
methods including artificial neural networks (ANNs), CNN,
SVM, and RFs [39]. In another study, Wan et al. [52] proposed
a CNN-SVM-based multi-scale spectral-spatial remote sensing
approach to classify coral reef environments on Zhaoshu Island
and Zhong Island in China. Additionally, Hajaj et al. [53] utilized
SVM, 1D-CNN, RF, and KNN for lithological mapping in complex
hydrothermal areas. These contributions are valuable for explo-
ration geologists seeking suitable techniques for precise min-
eral mapping in diverse metallogenic provinces. Further notable
contributions in remote sensing imagery analysis are reported
in [54, 55].

2.4 | Recently Used Methods for Mineral
Exploration

In a study by Eskandari et al. [56], the existing gaps among
UAV photogrammetry, satellite remote sensing, and field data
were bridged in order to better define the criteria for locating
chromite-bearing mineralized zones. The study exercised three
steps toward achieving the goals by first, employing satellite
remote sensing to identify the most promising lithological units
for chromite mineralization. Second, the ultra-resolution RGB
Minerals orthomosaic data was obtained by unmanned aerial
vehicle (UAV) mapping which was then utilized to manually dis-
tinguish geological units and structures. In the final step, the
SVM was used to categorize lithological units and peridotites with
varying serpentinization levels. Another recent study by Iqbal
et al. [57], analyzed the existing applications of Artificial Intel-
ligence (AI) and machine learning in mineral exploration and
assessed their potential and limitations. It explored the potential
benefits and drawbacks of incorporating AI and machine learn-
ing approaches into this industry while making important rec-
ommendations for future research and development to improve
the use of AI and ML in mineral exploration. The noteworthy of
them are; the integration of machine learning and deep learn-
ing hybrid approaches to witness significant accuracy, enhanc-
ing the AI-based models’ precision by using other data sources,
such as geological, geochemical, and remote sensing data, and
the involvement of easily understandable and comprehensible
AI methods like rule-based models and decision trees in mineral
exploration to better understand the geological knowledge in con-
textual data. In [58], the authors provided a method for determin-
ing the most optimum and efficient machine learning strategy
for lithological mapping, utilizing advanced space-borne ther-
mal emission and reflection radiometer (ASTER) remote sensing
data. This study compared traditional machine algorithms (RF
and SVM) to novel ensemble machine learning techniques (gra-
dient boosting, eXtreme Gradient Boosting, and deep learning
ANN) for spatial modeling of lithological units. Another study
in [59] provided a course for the field’s development by introduc-
ing some of the most recent deep learning approaches that have

not previously been used for remote sensing, such as graph deep
learning methods, Bayesian deep learning, variational autoen-
coders, and transformer recurrent neural networks. In [19], the
integration of three separate multispectral remote-sensing data
sets, namely Landsat 8 operational land imager (OLI), ASTER,
and Sentinel-2, was used to obtain a detailed classified map of the
study region. Traditional machine learning methods, like SVMs,
and MLP as well as deep learning methods, that is, CNN, were
applied to the available satellite data.

3 | Methodology

3.1 | Geology of Study Area and Image
Acquisition

The Mardan and Buner region of Khyber Pakhtunkhwa (KP)
Pakistan is well known for having abundant mineral deposits.
Massive amounts of marble, soapstone, granite, limestone, iron
ores, and other valuable minerals have been identified through a
survey conducted by the KP Government Minerals Department,
as documented on the department’s portal.i These resources
have been made available for open leasing to several businesses
for extraction and processing. Substantial carbonated mineral
deposits are available there, which can be seen using the coordi-
nates 32∘12′11′′ N and 72∘20′07′′ E, as well as in the surrounding
area. While visiting the location, a survey team from the Lab of
the National Centre for Big Data and Cloud Computing (NCBC),
University of Engineering and Technology Peshawar, collected
field samples and the research area’s coordinates through the
Global Positioning System (GPS). Following this, remote sens-
ing data of the intended study region (Sentinel-2) was down-
loaded from The United States Geological Survey (USGS) Earth
Explorer,ii as shown in Figure 1.

To prevent biases in the final results, the data sets used for
training and testing were gathered from separate and indepen-
dent geological sites during the data acquisition process. Two
large areas were chosen to gather training data: the Shahbaz
Garhi region in Rustam (Mardan district) and the Pathorra region
(Buner district) mines. Test data, used for validation, were col-
lected from the Bagh mine, which served as an additional inde-
pendent location. There is adequate data available at these places
spanning a wide geographic area dispersed over miles, providing
sufficient coverage for the study.

3.2 | Preprocessing

During the experimentation, remote sensing granules underwent
a variety of processes and treatments, as shown in Figure 2 to
transform them into useful, informative maps. In Figure 2, the
left side represents the processing steps responsible for prepar-
ing the refined dataset polygons from the downloaded remote
sensing imagery of the study area location. Specifically, it com-
prises three modules that provide information related to; (a)
the source of the remote sensing data for the study area, (b)
the preprocessing steps employed to prepare the remote sens-
ing data, and (c) the extraction and normalization of min-
eral’s related particular dataset points from the imagery. The
right side of Figure 2 represents the steps that are adapted
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FIGURE 1 | (a) Mineral polygons available in the intended study area. (b) Sentinel-2 imagery of the intended study area.

FIGURE 2 | The workflow of the study. The left side represents the data acquisition, various preprocessing, and data extraction steps. The right side
represents the 1-dimensional data preparation, model training for feature extraction and classification, and visualization steps of the study area map.

for: (a) generating the 1-dimensional CSV file containing the
reflectance values of minerals and other classes as collected
from the study area, (b) the proposed model training and clas-
sification workflow using various parameters, and (c) the final
visualization of the resulting study area map which highlights

the potential zones of interest. To accomplish goals like data
refinement, data dimensionality reduction, and several other
tasks, the treatments involve preprocessing, image processing,
and classification processes. The following steps are covered
in detail:

5 of 15
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Preprocessing procedures are essential for transforming raw
remote sensing data into usable reflectance images, enabling
accurate analysis and interpretation. Two primary objectives
were pursued in this process: noise removal and conversion of
radiance data to reflectance images. Initially, the raw data under-
went cleaning to eliminate atmospheric noise artifacts. Subse-
quently, the radiance data captured by the sensors was converted
into reflectance images. This conversion is crucial as it standard-
izes the data and facilitates spectrum mapping and object iden-
tification. Each pixel in remote sensing imagery is represented
by a Digital Number (DN), which aggregates information from
various ground features within the pixel’s footprint. To derive
meaningful reflectance values, these DN readings are first trans-
formed into surface radiance images through Radiometric Cal-
ibration (RC). Subsequently, the radiance images are converted
into Absolute Reflectance (AR) images using the method found
in Equation (4).

𝜌 =
𝜋 ⋅ 𝐿

𝛿

𝑑2 ⋅ ESUN
𝛿
⋅ cos(𝜃𝑠)

(4)

𝜌, unitless planetary reflectance; 𝐿
𝛿
, spectral radiance at the

sensor’s aperture; 𝑑, Earth–Sun distance in astronomical units;
ESUN

𝛿
, mean solar exoatmospheric irradiance;

𝜃
𝑠
, Solar zenith angle.

The resulting absolute reflectance (AR) images represent data
that has undergone both geometric and atmospheric corrections,
ensuring suitability for subsequent tasks such as feature iden-
tification and classification. These adjustments are crucial for
preparing imagery optimally for accurate scientific analysis. This
is worth mentioning that geometric correction is an important
preprocessing method that aligns RS imagery in correct way in
the geographic space. It adjusts the images to a standard coordi-
nate system and maps the projection environment to carry accu-
rate spatial information of pixels within the imagery. Geometric
correction is responsible for locating the control points within
the imagery that coincide with specific surface points such as
construction sites, roads, vegetation, and other objects. Using
mathematical transformations on the map axis points to align the
control points with their known locations, the resulting imagery
turns into an accurate representation of the study area location.
Most of these correction procedures are typically applied to Level
1 (L1) data as hyperspectral data is commonly delivered in L1 for-
mat, necessitating manual corrections of this nature. However,
for the proposed study project utilizing Sentinel-2 multispectral
granules, the data was obtained in Level 2 (L2) format from
the USGS Earth Explorer. Granules in L2 format have already
undergone geometric and atmospheric adjustments by the data
provider, eliminating the need for additional processing steps.
Despite the preprocessing done by the data provider, it remains
essential to provide readers with a basic understanding of the
associated terminology for clarity and comprehension.

To improve visual quality and facilitate detailed analysis, selected
bands from Sentinel-2 imagery were stacked and resampled to
achieve a spatial resolution of 10 m. The resampling method con-
verts an image of low spatial resolution into a higher resolution
which provides more insight into the surface area. We employed
the nearest neighbor resampling algorithm to convert Sentinel-2

low spatial resolution bands of 20 m into 10-m bands. The stacked
imagery consisted of all the chosen bands in a layered fashion.
Layer stacking is important to generate imagery that holds the
reflectance of all the selected bands in a layered fashion making
it suitable for classification task. We employed a layer-stacking
algorithm to get the desired stacked imagery. When viewing
remote sensing data, various false color combinations can be
employed to highlight specific features and characteristics. In this
study, bands 7, 5, and 3 of the Sentinel-2 imagery were assigned
to the red, green, and blue channels, respectively. This combi-
nation is often utilized to enhance the visualization of natural
exposures of minerals and geological structures within the study
region. Lastly, the data were standardized to make it ready for the
subsequent application. A common preprocessing step in data
analysis is normalization, which involves modifying the data to
have a mean (average) of 0 and a standard deviation of 1. By doing
this, the original data’s scale will no longer influence the analy-
sis and the data will be more comparable. After being recovered
from the satellites imagery, the data for the current study is nor-
malized. Standardization is carried out to guarantee that every
variable (band reflection value) is given the same weight in the
analysis, getting rid of any potential bias brought on by variations
in the data’s magnitude.

3.3 | 1-Dimensional Data Vectors Preparation

Shapefiles containing training polygons representing different
class members within the study area were utilized to create
clean Region of Interest (ROI) masks for each class. These ROIs
were manually defined to accurately capture specific features of
interest. Pixel reflectance values corresponding to the ROIs were
extracted and recorded into CSV files. These CSV files serve as
essential input data for training deep learning and machine learn-
ing models, providing the necessary feature vectors for classifi-
cation tasks. Table 1 summarizes the total number of polygons
and associated pixels for each class member within the training
and test sets, offering insights into the dataset’s composition and
distribution, as reported in [60].

We saved the shape files for the training polygons we made of
the different class members from the study area. The imported
shape files were used to manually create clean ROIs for every
class member, and the pixel reflectance values were recorded and
stored in CSV files for use as input in deep learning and machine
learning models. Table 1 displays the total number of polygons
and pixels for each class member in the training-test set.

In contrast to two-dimensional image or time series data, our
dataset consists of one-dimensional reflectance values measured
by satellite sensors, which are stored in CSV files. We have
designed a 1-D CNN-SVM model tailored to the characteristics of
this dataset for testing and classification purposes. A single ROI
may contain one or more pixels, depending on the size of the ROI
that is produced. A pixel resolution of 10× 10 is associated with
Sentinel-2 data with a spatial resolution of 10 m. Pixel size refers
to the area that Sentinel-2 sensors cover in a single pixel when
gathering a surface image. To prepare for model training and
evaluation, the dataset was split into training and test sets using
various ratios, including 80:20, 70:30, and 60:40 for training-test
splits. Improved performance was observed with a 70:30 ratio,

6 of 15 Engineering Reports, 2025
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TABLE 1 | Training and test sets data preparation details, data reported from [60].

Class members Training polygons Test polygons Number of pixels

Urban 327 112 23,502
Trees/vegetation 410 133 24,823
Water 67 23 25,027
Carbonates 319 129 31,253
Rocks 378 123 27,145

Total= 1501 Total= 520 —
Grant total= 2021 Total Pixels= 131,750

FIGURE 3 | 1-D CNN-ANN architecture.

indicating a balanced distribution between training and test data.
The selected model was trained using 70 epochs to ensure suffi-
cient learning and convergence. It was crucial to maintain the
independence of training and test datasets to avoid introducing
biases in the evaluation and validation of model performance.

3.4 | The Proposed Model: 1-D CNN-SVM
Merger

The study focused on evaluating a novel hybrid model archi-
tecture combining 1-Dimensional CNN (1-D CNN) layers with
an SVM, as illustrated in the methodology diagram in Figure 2.
Initially, a neural network model was constructed using con-
volutional layers followed by max-pooling layers (1-D CNN).
This architecture was designed to extract feature maps from the
one-dimensional CSV files during the feature engineering pro-
cess. The extracted feature maps were subsequently fed into
dense layers of an ANN to perform classification across different

categories. The combined 1-D CNN-ANN architecture is depicted
in Figure 3. The 1-D CNN-ANN model achieved ̃93% accuracy
when trained and tested on the dataset. Various configurations of
convolutional layers and max pooling layers were explored, with
the most effective setup involving two convolutional layers and
two max pooling layers.

Subsequently, the proposed model integrated the 1-D CNN archi-
tecture with SVM to assess whether further improvements in
classification accuracy could be achieved. In this hybrid model,
the convolutional layers were responsible for feature extraction
and dimensionality reduction through filter operations, while
the SVM model handled the classification tasks across multiple
categories. The integration of SVM with the 1-D CNN architec-
ture aimed to leverage the strengths of both approaches, enhanc-
ing the model’s overall performance in classifying the carbon-
ated data accurately. In all our implementations, we employed
ReLU as the activation function. CNN is a multilayered design
that receives its initial input data from the input layer. The
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FIGURE 4 | 1-D CNN-SVM-polynomial degree 12 classification
report.

FIGURE 5 | 1-D CNN-SVM polynomial degree 9 classification report.

design skeleton used in this study is based on one-dimensional
(1D) spectral reflectance data collected across many bands. It
gets the 1D spectral reflectance data as an input from the input
layer which passes the data to convolutional layers. Being the
core part of the architecture, the CNN layers process the 1D
spectral reflectance data with adaptable filters, known as ker-
nels. The model obtained optimum results by using a couple
of CNN layers with the first containing 32 filters that convolve
over the input data. These filters recognize features and patterns,
spectral properties, and absorption features in the reflectance
data. Following this, the second convolutional layer with 64 fil-
ters is applied which seeks to extract more complicated spectral
information by merging and expanding the patterns observed in
the previous layer. This hierarchical feature extraction approach
improves the model’s ability to identify subtle spectral properties
required for accurate mineral classification. The pooling layer is

FIGURE 6 | 1-D CNN-SVM polynomial degree 6 classification report.

FIGURE 7 | 1-D CNN-SVM polynomial degree 3 classification report.

located in the midst of the subsequent convolutional layers and is
mostly used for picking features and information filtering. Pool-
ing layers are often introduced at regular intervals between con-
volutional layers. The two most common pooling strategies are
Max Pooling, which selects the maximum value of the sliding
window, and Average Pooling which selects the sliding window’s
average value. We have utilized two Max pooling layers in the des-
ignated CNN architecture (Figures 4–7 and Tables 2–5).

In our experiments, we evaluated the performance of SVM with
different degrees of polynomials, that is, degrees 3, 6, 9, and 12.
In each experiment, we trained and tested the hybrid model inde-
pendently for each value of the polynomial degree. Thus, a sys-
tematic assessment is performed to analyze the impact of chang-
ing the polynomial degree on the classification accuracy.

8 of 15 Engineering Reports, 2025
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TABLE 2 | Confusion matrix for polynomial degree 12.

Model Carbonates Rocks Trees Water Urban

Hybrid model Carbonates 97.28 1.4 0 1.3 0.12
Rocks 1.12 94.46 4.07 0.18 0.16
Trees 0 6.42 92.92 0.24 0.42
Water 1.79 1.5 0.49 95.21 1.01
Urban 0.05 1.22 0.65 0.57 97.5

TABLE 3 | Confusion matrix for polynomial degree 9.

Model Carbonates Rocks Trees Water Urban

Hybrid model Carbonates 96.82 1.53 0 1.61 0.04
Rocks 0.9 94.07 4.49 0.35 0.19
Trees 0 7.17 92.21 0.17 0.45
Water 2.9 1.71 0.56 93.85 0.99
Urban 0.05 1.25 0.79 0.71 97.21

TABLE 4 | Confusion matrix for polynomial degree 6.

Model Carbonates Rocks Trees Water Urban

Hybrid model Carbonates 96.27 1.82 0 1.87 0.04
Rocks 0.73 93.98 4.41 0.62 0.26
Trees 0 7.69 91.76 0.14 0.4
Water 24.96 2.19 0.76 91.24 0.85
Urban 0 1.55 0.9 0.81 96.74

TABLE 5 | Confusion matrix for polynomial degree 3.

Model Carbonates Rocks Trees Water Urban

Hybrid model Carbonates 95.23 2.17 0 2.38 0.21
Rocks 0.46 93.83 4.32 1.1 0.29
Trees 0 8.73 90.8 0.12 0.35
Water 8.62 3.5 1.25 85.96 0.66
Urban 0.08 2.06 1.25 1.06 95.55

TABLE 6 | Confusion matrix for ANN-softmax.

Model Carbonates Rocks Trees Water Urban

ANN (dense
layers)

Carbonates 3391 81 0 4 0
Rocks 3 8166 319 0 70
Trees 0 712 3502 0 24
Water 9 0 0 7162 23
Urban 4 49 12 50 3571

TABLE 7 | Confusion matrix for 1-D CNN-RF architecture.

Model Carbonates Rocks Trees Water Urban

Hybrid Model Carbonates 98.65 2.41 0 1.1 0.11
Rocks 1.08 93.01 5.4 1.54 1
Trees 0 3.82 93.4 0.22 1
Water 0.23 0.65 0.85 94.92 0.22
Urban 0.04 0.11 0.35 2.22 97.67
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FIGURE 8 | ANN-softmax classification report.

FIGURE 9 | 1-D CNN-RF classification report.

In this study, apart from implementing and evaluating the pro-
posed model, we have also investigated other models on a locally
generated mineral dataset of a 1-dimensional format specifically
designed for the models under study. The study mainly focuses
on investigating the performance of DL-ML hybrid approaches,
especially the proposed 1-D CNN-SVM merger on mineral’s
study, yet providing the detailed outcomes of baselines like
ANN-Softmax, CNNs, and a 1-D CNN-RF hybrid model on the
same dataset for the purpose of comparison and reader under-
standability detailed in Section 3.5. More recent baseline deep
learning models like LSTM and RNNs [61, 62] are suitable for
handling multi-dimensional data like grids and time series data
for crop studies, environmental monitoring, and glaciers analysis
which need temporal data for detecting changes over the years.

3.5 | Comparison With ANN-Softmax and 1-D
CNN-RF Hyrbrid Models

During the experimentation, we evaluated the performance of
the additional models on the same dataset, that is, a dense lay-
ered neural network architecture combined with Softmax layer

(ANN-Softmax) and a 1-Dimensional CNN-Random Forest (1-D
CNN-RF) hybrid model. In the former, the data enters the dense
layers using its input layer which is designed to handle the satel-
lite image’s spectrum information. Each dense layer consists of
interconnected neurons, representing pixels from the satellite
data, and its values encode the pixel’s intensity or spectral prop-
erties. Dense layers, also called fully connected layers, perform
the feature extraction. We experimented with various number of
dense layers combined with Softmax layer to classify mineral’s
and rock data into various classes. However, better results were
achieved when we used two dense layers followed by a Softmax
layer that performed the final classification of the input data.
Softmax layer turns the raw output from the preceding layers into
a probability distribution across classes. Each neuron in this layer
represents the probability that the input belongs to a particular
class. In the 1-D CNN-RF hybrid model combining the CNN with
a random forest model, we used the same CNN architecture with
similar parameters and input dataset, as we used in our proposed
1-D CNN-SVM model. CNN was used to extract features from the
input data whereas the random forest part was used to classify the
data in various classes. RFs method develops a combination of
decision trees based on the extracted patterns and features. Every

10 of 15 Engineering Reports, 2025
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FIGURE 10 | The classified resultant map (Sentinel-2) of the intended study region yielded by the proposed model with different legends showing
the texture of the study area.

single tree makes prediction of its own based on the input data.
The overall classification decision was established averaging the
individual trees prediction. The performance evaluation of both
the models is presented in the results section. Their confusion
matrices and complete classification reports in graphical repre-
sentation are presented in Tables 6 and 7 and Figures 8 and 9,
respectively.

4 | Results and Discussion

In this section, we present the results obtained for delineating
mineral zones and report the improvements in classification per-
formance as obtained by combining SVM with the CNN model,
thus, assessing the effectiveness of the hybrid model.

The SVM algorithm was evaluated using various degrees of
polynomial kernels to classify the data into multiple classes.
Here, we present the detailed results of these experiments, high-
lighting the performance achieved with each polynomial degree.
Notably, the model with a polynomial degree of 12 consistently
demonstrated superior results. This optimal setting significantly
enhanced the performance of the convolutional layers, leading
to improved accuracy and effectiveness in classifying the dataset.
Figures 4–7 and Tables 2–5 illustrate detailed experimentation

results and classification reports of the proposed 1-D CNN-SVM
model. Additionally, the resultant classified map of the study area
generated by the model with polynomial degree 12 is shown in
Figure 10.

The findings reveal several important insights supported by
detailed classification reports and statistical analyses. Specifi-
cally, the SVM model’s ability to capture complex data corre-
lations improves with higher polynomial degrees, allowing for
better adaptation to intricate patterns within the dataset. This
capability is particularly crucial when dealing with the complex,
nonlinear interactions observed in mineral zones. A polynomial
degree of 12 exhibits superior performance by accurately captur-
ing subtle features and nuances in the training data that might
be missed by lower-degree polynomials. This level of complex-
ity strikes an optimal balance between model variance and bias,
resulting in enhanced overall accuracy.

The model’s accuracy and Kappa score were analyzed for
each degree, demonstrating distinct performance characteristics.
Specifically, at a polynomial degree of 12, the model achieves
the highest accuracy of 95.26% and a Kappa score of 0.936. As
the degree decreases to 9 and 6, accuracy and Kappa scores
decline accordingly. For example, degree 9 polynomial yielded an
accuracy of 94.46% and a Kappa score of 0.925%, and degree 6
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polynomial achieved an accuracy of 93.26% and a Kappa score
of 0.9095%. The outcomes from the other tested models stood
runner up yielding better accuracies and Kappa scores. The
ANN-Softmax model generated 93.4% accuracy and a Kappa
score of 0.927 whereas the 1-D CNN-RF merger obtained 94.01%
accuracy and a Kappa score of 0.931. These values show greater
promise of DL-ML hybrid approaches for mineral and rock study
by utilizing multispectral sensors’ bands. The performance of
dense layers and convolutional layers in mineral’s classification
sees significant improvement when merged with conventional
machine learning models, especially RFs and SVMs. Further-
more, the resultant classified map effectively distinguishes min-
eralization zones with greater clarity and detail. Mineral zones
within the Pathorra (Buner district) and Rustam were accurately
mapped and cross-verified during site visits by team members
from the National Center for Big Data and Cloud Computing
(NCBC) lab.

To avoid any potential bias and overfitting of the model training,
we ensured the independent collection of training and test data
using the GeoSurveyiii mobile application for data collection. This
approach helped in keeping the test set data independent and hid-
den from the model training. The accuracy of the models reported
in the study is for the independent test set. Furthermore, dur-
ing the training of the neural network training, we adopted the
“dropout” strategy in which some of the neurons in the hidden
layers are dropped out (deactivated) at random. The deactivated
neurons neither participate in the forward pass nor get weight
updates during the backpropagation. The dropout strategy effec-
tively implies that distinct neurons were disregarded at every
training iteration, and it proves to be an effective approach to
overcoming the potential overfitting of the model. Randomly gen-
erated points within the study area, recorded via GPS coordi-
nates, were cross-checked against the classified map to validate
the identification of mineralization zones. These results under-
score the effectiveness of the proposed methodology in leveraging
deep learning and machine learning techniques for accurate min-
eral zone delineation and mapping within the study area.

5 | Conclusion and Future Work

The successful implementation of the hybrid CNN-SVM model
for mineral deposit mapping presents exciting opportunities for
extending this research to other valuable minerals found across
different regions of the country. Future efforts will focus on
leveraging the combined power of deep neural networks and
machine learning algorithms to enhance accuracy and efficiency
in mapping minerals such as gypsum, granite, soapstone, coal,
iron, and copper. Expanding the scope of this study will involve
adapting the hybrid model to accommodate different sensors
and datasets. Specifically, we plan to explore the application of
similar models with alternative sensor technologies, evaluating
their effectiveness in diverse geological settings. Furthermore,
future research will investigate the integration of ensemble mod-
els and transfer learning techniques to further optimize min-
eral mapping processes. Ensemble approaches, combining multi-
ple models for improved prediction accuracy, and transfer learn-
ing, leveraging pre-trained models for enhanced performance
in specific tasks, hold promise for advancing the capabilities

of remote sensing data analysis. We are extending the experi-
mentation phase toward the performance evaluation of ensem-
ble approaches like bagging and boosting on the same dataset
and intend to compose a separate comprehensive research arti-
cle on their outcomes which illustrates complete classification
reports and a comparative analysis discussion. We intend to con-
duct similar experiments on close-range remote sensing data
acquired through LiDAR (Light Detection and Ranging) and
assess the mapping capabilities of various hybrid models while
benefiting from the high-resolution spatial information provided
by LiDAR. Our future work will also assess newer ensemble
learning methods and transfer learning approaches to enhance
accuracy while obtaining scalability and robustness of mineral
explorations and mapping processes.
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Appendix A

A.1 | Hardware Specifications

The model developed in the study were run on a Windows-based com-
puter with Intel Xeon Processor 64 GB memory, equipped with an
NVIDIA RTX 16000 GPU. The model training took 1 h and 15 min to com-
plete the preset epochs. It took 25 min on the test set data to generate the
given outcomes.

A.2 | Image Processing

The image processing stage is essential for enhancing image quality
and removing undesired and redundant bands while preserving rele-
vant features such as lines and edges in the picture data. During this
stage, techniques like Principal Components Analysis (PCA) and Mini-
mum Noise Fraction (MNF) are commonly employed to optimize remote
sensing (RS) data. MNF offers distinct advantages over PCA due to
its multi-fold operations on RS data, which effectively reduce spectral
dimensions while mitigating noise and eliminating tainted bands. This
process is crucial as hyperspectral data often contains noise and unwanted
bands, particularly from water vapor and air pollution, resulting in poor
band quality. Regular cleaning of such bands is necessary to enhance
data quality. In the study, multispectral data were utilized, and care-
ful selection of appropriate bands was conducted for layer stacking,
as outlined in Table A1. This selection process ensures that only rele-
vant and high-quality bands are retained for subsequent analysis and
interpretation.

A.3 | Alternative Sources of Data

We have used publicly accessible Sentinel-2 remote sensing data, which
can be obtained for every region included in the study from several
sources like USGS. As alternatives, comparable data with similar bands
(VNIR, SWIR, and TIR) can also be obtained from other multispectral
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TABLE A1 | The selected minerals bands for layer stacking.

Sentinel-2 Satellite’s spectral, spatial, and radiometric resolution details

Index Spectral bands Wavelengths Resolution Radiometric resolution

1 Ultra-Blue Aerosol Band) 443 nm 60 m 12 bits
2 Blue 490 nm 10 m —
3 Green 560 nm — —
4 Red 665 nm — —
5–7 Visible Near-Infrared (VNIR) 705–783 nm 20 m —
8 Visible Near-Infrared (VNIR) 842 nm 10 m —
8a Visible Near-Infrared (VNIR) 865 nm 20 m —
9 Shortwave-Infrared (SWIR) 940 nm 60 m —
10 Shortwave-Infrared (SWIR) 1375 nm — —
11 Shortwave-Infrared (SWIR) 1610 nm 20 m —
12 Shortwave-Infrared (SWIR) 2190 nm — —

sensors such as Landsat 9, Landsat 8, Landsat 7, and ASTER for the
mapping of minerals [63]. In addition to distant space-borne satellites,
alternative platforms and approaches for data acquisition include UAVs
(also known as drones), piloted aircraft, balloons, ground-based radars,
LiDAR, and field spectrometers [64].
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