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Conscious awareness plays a major role in human cognition and adaptive behavior,

though its function in multisensory integration is not yet fully understood, hence,

questions remain: How does the brain integrate the incoming multisensory signals with

respect to different external environments? How are the roles of these multisensory

signals defined to adhere to the anticipated behavioral-constraint of the environment?

This work seeks to articulate a novel theory on conscious multisensory integration (CMI)

that addresses the aforementioned research challenges. Specifically, the well-established

contextual field (CF) in pyramidal cells and coherent infomax theory (Kay et al., 1998; Kay

and Phillips, 2011) is split into two functionally distinctive integrated input fields: local

contextual field (LCF) and universal contextual field (UCF). LCF defines the modulatory

sensory signal coming from some other parts of the brain (in principle from anywhere in

space-time) and UCF defines the outside environment and anticipated behavior (based

on past learning and reasoning). Both LCF and UCF are integrated with the receptive

field (RF) to develop a new class of contextually-adaptive neuron (CAN), which adapts

to changing environments. The proposed theory is evaluated using human contextual

audio-visual (AV) speech modeling. Simulation results provide new insights into

contextual modulation and selective multisensory information amplification/suppression.

The central hypothesis reviewed here suggests that the pyramidal cell, in addition to

the classical excitatory and inhibitory signals, receives LCF and UCF inputs. The UCF

(as a steering force or tuner) plays a decisive role in precisely selecting whether to

amplify/suppress the transmission of relevant/irrelevant feedforward signals, without

changing the content e.g., which information is worth paying more attention to? This,

as opposed to, unconditional excitatory and inhibitory activity in existing deep neural

networks (DNNs), is called conditional amplification/suppression.

Keywords: universal contextual field, pyramidal cell, multisensory integration, coherent infomax neuron,

contextually-adaptive neuron, deep neural network, audio-visual speech processing

1. INTRODUCTION

What is conscious awareness? Think of a well-trained and experienced car driver who automatically
identifies and follows the traffic protocols in different surrounding environments (e.g., street,
highway, city centre) by simply interpreting the visual scenes directly (such as buildings,
school etc.). Similarly, imagine a car with slightly defective parking sensors that sometimes
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miscalculates the distance to the nearest object. In this case, the
audio input is ambiguous and the driver cannot fully rely on
parking sensors for precise maneuvering decisions, e.g., while
reversing the car. To tackle this problem, the driver automatically
starts utilizing visual cues to leverage the complementary
strengths of both ambiguous sound (reversing-beeps) and visuals
for optimized decision making. These are a few examples of
conscious awareness, where the external environment helps
establishing the anticipated behavior and the corresponding
optimal roles of incoming multisensory signals.

Nonetheless, it raises crucial questions: How does it happen
in the brain? How do the incoming sensory signals (such
as vision and sound) integrate with respect to the situation?
How does a neuron originate a precise control command
complying with the anticipated behavioral-constraint of the
environment? Certainly, defining the context and its relevant
features knowing when a change in context has taken place are
challenging problems in modeling human behavior (Gonzalez
et al., 2008). It is also claimed in the literature that context
could be of infinite dimensions but humans have a unique
capability of correlating the significant context and set its
boundaries intuitively (Gonzalez et al., 2008). However, once
the context is identified, it is relatively easy to utilize and
set its bounds to more precisely define the search space
for the selection of best possible decision (Gonzalez et al.,
2008).

A simple example of contextual modulation is shown in
Figure 1. It can be seen that the ambiguous RF input (in
the top row) is interpreted as “B” or “13” depending on the
LCF (i.e., “A,” “C,” “12,” and “14”) and UCF (i.e., knowledge
of English alphabets and numeral system). Similarly, it is
observed that in noisy environments (e.g., a busy restaurant, bar,
cocktail party), human brain naturally utilizes other modalities
(such as lips, body language, facial expressions) to perceive
speech or the conveyed message [i.e., speech-in-noise (SIN)
perception] (Sumby and Pollack, 1954; McGurk andMacDonald,
1976; Summerfield, 1979; Patterson and Werker, 2003). This
multimodal nature of speech is well-established in the literature;
it is understood how speech is produced by the vibration of
vocal folds and configuration of the articulatory organs. The
developed AV speech processingmodels are depicted in Figure 2.
Two distinctive input variables RF and LCF are defining the
incoming sensory inputs (i.e., sound and vision), whereas the
UCF input is defining three different surrounding environments:
Restaurant, Cafe, and Home. In any environment, multisensory
information streams are available, but their optimal integration
depends on the outside environment. For example, in a busy cafe
and restaurant environment (multi-talker speech perception),
the processor utilizes other modalities (i.e., lips as LCF) to
disambiguate the noisy speech, whereas in the Home scenario
(with little or zero noise), LCF has a Null role.

Hence, coordination and specialization are necessary to
produce coherent thoughts, percepts, and actions, which are
well-adapted to different situations and long-term goals (Phillips
et al., 2015). However, the understanding of specialization
and coordination is still a major issue within the cognitive
and neurosciences. The hypothesis reviewed in Phillips et al.

(2015) suggests that this is mostly achieved by a widely
distributed process of contextual modulation, which amplifies
and suppresses the transmission of signals that are relevant and
irrelevant to current circumstances, respectively. Nevertheless,
selective modulation (amplification/attenuation) of incoming
multisensory information with respect to the outside world
is poorly understood. In addition, not much progress has
been made on the use of conscious awareness and contextual
modulation to show enhanced processing, learning, and
reasoning. In this research article, the aforementioned interesting
observations are discussed and a new perspective in terms of
CMI with some future research directions is comprehensively
presented. The rest of the paper is organized as follows: section
2 discusses the conceptual foundation and motivation that leads
to the development of a CANmodel. Section 3 presents the CAN
and contextually-adaptive neural network (CANN) structures. In
sections 4 and 5, the proposed theory is utilized for AV speech
processing. Finally, conclusion and future research directions are
presented in sections 6 and 7, respectively.

2. MOTIVATION AND CONTRIBUTION

For a long time, it was believed that the consciousness depends on
neurons firing and synchronization at certain frequency bands.
Massimini et al. (2005) suggested that consciousness is not
critically dependent on them, but rather on the ability of the brain
to integrate multisensory information. This brain ability depends
on the effective connectivity1 among functionally specialized
regions of the thalamocortical system. At a granular level,
evidence gathered in the literature suggests that the multisensory
interaction emerges at the primary cortical level (Stein and
Stanford, 2008; Stein et al., 2009). The divisive/multiplicative
gain modulations are widely spread in mammalian neocortex
with an indication of amplification or attenuation via contextual
modulation (Galletti and Battaglini, 1989; Salinas and Sejnowski,
2001; Phillips et al., 2018).

Scientists have presented several models and empirical results
on the role of contextual modulation to disambiguate the
ambiguous input (Kay and Phillips, 1997; Kay et al., 1998;
Phillips, 2001; Phillips and Silverstein, 2013). For example, in
Kay et al. (1998), the contextual modulation was demonstrated
using a simple edge detection problem to reveal its effectiveness
in recognizing specific patterns with noisy RF input. It was shown
how surrounding regions (CF) in different parallel streams
helped detecting the edge within any particular region and played
a significant role in combating noisy input. This idea is called a
coherent infomax theory or coherent infomax neuron (Kay et al.,
2017; Lizier et al., 2018).

The physiological studies in Phillips and Singer (1997) have
suggested that biological neurons, in addition to the classical
excitatory and inhibitory signals, do receive contextual inputs.
These contextual inputs possibly fulfill the gain-controlling
RC role (Fox and Daw, 1992). The authors in Kepecs and
Raghavachari (2002) used a two-compartment model of

1Effective connectivity is the ability of neuronal groups to causally affect other

neuronal groups within a system.
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FIGURE 1 | Ambiguous decision making and contextual modulation.

FIGURE 2 | Human AV speech modeling in three different environments. Please note that the role of LCF changes with respect to the outside environment (UCF). For

example, in the first two environments, LCF has a modulatory role, whereas in the third environment, it has a Null role.

pyramidal neurons to capture the spatial extent of neuronal
morphology. Their study simulated three neurons, each receiving
the same α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), representing the informational input i.e., a word
“green.” The three neurons also received distinct contextual
input via NMDA receptors, representing specific noun groups:
objects, people and fruits. It is to be noted that the word “green,”
when expressed with a contextual input, varies in meaning, e.g.,
a color green or an unripe fruit. The simulation results showed
that even though each neuron received the same strong AMPA
input, their firing was uncorrelated and context-dependent.

An overlay of a coherent infomax neural processor on
layer 5 pyramidal cells is shown in Figure 3A (Wibral et al.,
2017), highlighting potential parallels to existing physiological
mechanisms. In two sites of integration, one is at the soma and
the other at the top of the apical trunk. The driving excitatory
(Re) or inhibitory (Ri) signals arrive via basal and perisomatic
synapses, whereas the modulatory excitatory (Ce) or inhibitory

(Ci) signals arrive via synapses on the tuft dendrites at the top
of the apical trunk. Na+ at the somatic integration site initiates
sodium spikes that backpropagate up to the apical trunk. Ca2+ at
the apical integration site initiates calcium spikes, which amplify
the neural response (Phillips et al., 2015).

In light of the aforementioned literature, in this paper,
the contextual AV speech processing is used to demonstrate
contextual modulation. Specifically, the CF in coherent infomax
theory (Kay et al., 1998; Kay and Phillips, 2011) is split into
two fields: LCF and UCF. LCF defines the modulatory sensory
signal coming from some other parts of the brain (in principle
from anywhere in space-time) and UCF defines the outside
environment and anticipated behavior (based on past learning
and reasoning). Both LCF and UCF are integrated with the
RF to develop a new class of contextually-adaptive neuron,
which adapts to changing situations (shown in Figure 3B). For
evaluation and comparative analysis, two distinctive multimodal
multistreams (lip movements as LCF and noisy speech as
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FIGURE 3 | Coherent infomax vs. contextually-adaptive neural processor. (A) Coherent infomax neural processor (Phillips et al., 2015; Wibral et al., 2017): (i) with

multidimensional inputs X1;X2, and output Y. (ii) with local weighted summation of inputs: X1 receptive field [excitatory (Re) or inhibitory (Ri )] and X2 contextual field

[excitatory (Ce) or inhibitory (Ci )]. (iii) overlay on a layer 5 pyramidal cells. (B) Proposed CAN.

RF) are used to study the role of LCF in SIN perception
(ranging from a very noisy environment to almost zero noise).
Furthermore, going beyond the theory of coherent infomax,
UCF is introduced as a fourth new dimension to represent the
outside environment and anticipated behavior. Its effectiveness
is shown in terms of enhanced learning and processing, using
three distinctive multimodal multistreams (lip movements as
LCF, noisy speech as RF, and outside environment/anticipated
behavior as UCF).

3. CONTEXTUALLY-ADAPTIVE NEURON
(CAN)

The proposed CAN is presented in Figure 4. The output of the
neuron depends on three functionally distinctive integrated input
variables: driving (RF), modulatory (LCF), and UCF. The RF
is defining the ambiguous sensory signal, LCF is defining the
modulatory sensory signal coming from other parts of the brain,
and UCF is defining the outside world and anticipated behavior.
The interaction among RF, LCF, and UCF is shown in Figure 5A.
The output is denoted by the random variable Y, whereas X,
Z, and U represent RF, LCF, and UCF, respectively. In CANN,
the CAN in one stream is connected to all other CANs in the
neighboring stream of the same layer as shown in Figure 5B.
This is achieved through shared connections among the neurons
that guide learning and processing with respect to local and
universal contexts.

3.1. Mathematical Modeling
The CAN (Y) in CANN interacts by exchanging the excitatory
and inhibitory spikes probabilistically (in the form of bipolar
signal trains). In steady state, the stochastic spiking behavior
of the network has a “product form” property (product of
firing rates and transition probabilities) which defines a state
probability distribution with easily solvable non-linear network
equations. The firing from neuron y to succeeding neuron w
in the network is according to the Poisson process, represented
by the synaptic weights w+

yw = ry[P
+
yx + P+yz + P+yu] and w−

yw

= ry[P
−
yx + P−yz + P−yu], where P+yx, P

+
yz , P

+
yu and P−yx, P

−
yz , P

−
yu

represent the probabilities of excitatory and inhibitory RF, LCF,
and UCF signals, respectively. The term ry represents the firing
rate of the CAN. The terms w+

yx, w
+
yz , w

+
yu and w−

yx, w
−
yz , w

−
yu

represent the RF, LCF, and UCF synaptic weights (i.e., the rates
of positive and negative signal transmission) that network learns
through the process of learning or training. In the network,
CAN receives exogenous signals positive/negative from the inside
(within the network) or outside world, according to Poisson
arrival streams of rates 3x, λx, respectively. The potential (Y)
of the CAN represents its state that increases/decreases with
respect to an incoming signal coming from the inside or outside
world. The proposed neural structure is implemented using
G-networks that possess a product-form asymptotic solution
(Gelenbe, 1993a).

The CAN in firing state transmits an impulse to neuron w
with a Poisson rate (ry) and probability P+(y,w) or P−(y,w)
depending on the incoming signal being excitatory or inhibitory.
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FIGURE 4 | CAN structure: the output depends on three functionally distinctive integrated input variables: driving (RF), modulatory (LCF), and UCF. The RF is defining

the ambiguous sensory signal, LCF is defining the modulatory sensory signal coming from other parts of the brain, and UCF is defining the outside world and

anticipated behavior. WX , WZ , and WU are representing the receptive, local contextual, and universal contextual field connections, respectively.

The transmitted signal can also leave the network and go outside
the world with probability d(y) such that:

d(y)+

N
∑

x=1

[P+(y, x)+ P−(y, x)]+

N
∑

z=1

[P+(y, z)

+ P−(y, z)]+

N
∑

u=1

[P+(y, u)+ P−(y, u)] = 1 (1)

Where,

w+(y,w) = ry[P
+(y, x)+ P+(y, z)+ P+(y, u)] ≥ 0,

w−(y,w) = ry[P
−(y, x)+ P−(y, z)+ P−(y, u)] ≥ 0 (2)

The firing rate of CAN can be written as:

r(y) = (1− d(y))−1(

N
∑

x=1

[w+(y, x)+ w−(y, x)]

+

N
∑

z=1

[w+(y, z)+ w−(y, z)]+

N
∑

u=1

[w+(y, u)+ w−(y, u)]) (3)

If Y(t) is the potential of CAN then in n number of
neurons, vector Y(t) = (y1(t), y2(t), ..., yn(t)) can be modeled
as a continuous-time Markov process. The stationary joint

probability of the network is given as:

lim
n→∞

P(Y(t)) = y1(t), y2(t), ..., yn(t) =

n
∏

y=1

(1− qy)q
ny
y ,

qy =
Q+
Y

ry + Q−
Y

(4)

where Q+
Y and Q−

Y are the average rates of +ive and -ive signals at
the CAN (y), given as:

Q+
Y =

N
∑

x=1

qxw
+(y, x)+

N
∑

z=1

qzw
+(y, z)+

N
∑

u=1

quw
+(y, u) (5)

Q−
Y =

N
∑

x=1

qxw
−(y, x)+

N
∑

z=1

qzw
−(y, z)+

N
∑

u=1

quw
−(y, u) (6)

The probability that CAN (Y) is excited can be written as:

qy =

∑N
x=1 qxw

+(y, x)+
∑N

z=1 qzw
+(y, z)+

∑N
u=1 quw

+(y, u)

[W+
W +W−

W]+
∑N

w=1 qxw
−(y, x)+

∑N
z=1 qzw

−(y, z)+
∑N

u=1 quw
−(y, u)

(7)

wherew+(y, x),w−(y, x),w+(y, z),w−(y, z)w+(y, u),w+(y, u) are
the positive and negative RF, LCF, and UCF weights. W+

W and
W−

W are the positive and negative weights between CAN and
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FIGURE 5 | Interaction among RF, LCF, and UCF in CAN and CANN. (A) CAN: The filtering rules (precise information integration) are enforced by the positive and

negative synaptic weights associated with each input field. (B) CANN: multilayered multiunit network of similar CANs, where the CAN in one stream is connected to all

other CANs in neighboring streams of the same layer. The figure on the right is providing detailed information about connections using two RF and LCF units in each

processor, with one UCF and one output unit each.
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succeeded neuron w. For training and weights update, state-of-
the-art gradient descent algorithm is used (Gelenbe, 1993b). The
RF input (qx) is given as:

qx =
Q+
x

[w(x, y)+ + w(x, y)−]+ Q−
x

(8)

Q+
x = 3x +

N
∑

v=1

qvw
+(x, v) (9)

Q−
x = λx +

N
∑

v=1

qvw
−(x, v) (10)

where qv is the potential of the preceding neuron v and qu
and qz are potentials of the incoming UCF and LCF neurons,
respectively. It is to be noted that w(x, y)+ and w(y, x)+

are different.

3.2. Information Decomposition
A Venn diagram of the information theoretic measures for
distinctive integrated input variables is depicted in Figure 6,
where RF, LCF, and UCF are represented by the green,
orange, and grayish pink ellipses, respectively. The output (Y)
is represented by the blue ellipse. In information processing
equations, the output is denoted by the random variable Y,
whereas RF, LCF, and UCF are represented by X, Z, and
U, respectively.

The mutual information shared between random variables X
(RF) and Y (output) can be written as (Kay and Phillips, 2011):

I(X;Y) = H(X)−H(X|Y) (11)

Where, H(X) is the Shannon entropy associated with the
distribution of X and H(X|Y) is the Shannon entropy associated

FIGURE 6 | Venn diagram of information theoretic measures for distinctive

integrated input variables RF, LCF, and UCF represented by the green ellipse,

orange ellipse, and grayish pink ellipse, respectively. The output (Y) is

represent by the blue ellipse. The UCF (U) and associated H(U|X,Y ,Z) is

interpreted as the information contained in U but not in X, Y, and Z. The output

(Y) and associated H(Y |X,Z,U) is interpreted as the information contained in Y

but not in X, Z, and U. The LCF (Z) and associated H(Z|X,Y ,U) is interpreted

as the information contained in Z but not in X, Y, and U. The RF (X) and

associated H(X|Y ,Z,U) is interpreted as the information contained in X but not

in Y, Z, and U.

with the conditional distribution of X given Y. It is defined as the
information contained in X but not in Y (Kay and Phillips, 2011).
It is assumed that the mutual information is always non-negative
when random variables are stochastically independent (Kay and
Phillips, 2011). Since we are dealing with four random variables,
the conditional mutual information can be written as:

I(X;Y|Z,U) = H(Y|Z,U)−H(Y|X,Z,U) (12)

This is the conditional mutual information shared between X
and Y, having observed Z and U. It is defined as the information
shared between X and Y but not shared with Z and U.

The four-way mutual information shared among four random
variables X, Y, Z, and U can be defined as:

I(X;Y;Z;U) = I(X;Y)− I(X;Y|Z,U)

= I(X;Z)− I(X;Z|Y ,U) =

I(X;U)− I(X;U|Y ,Z) = I(Y;Z)− I(Y;Z|X,U)

= I(Y;U)− I(Y;U|X,Z) (13)

If the four-way mutual information is positive, Shannon entropy
associated with the distribution of Y can be defined as (Kay and
Phillips, 2011):

H(Y) = I(Y;X;Z;U)+ I(Y;X|Z,U)+ I(Y;Z|X,U)

+ I(Y;U|X,Z)+H(Y;X|Z,U) (14)

In case the random variables are discrete, the integrals are
replaced by summations, and the probability mass function can
be written as (Kay and Phillips, 2011):

H(Y) = −

∫

p(y) log p(y)dy (15)

H(Y|X) = −

∫ ∫

p(y|x) log p(y|x)p(x)dydx (16)

H(Y|X,Z) = −

∫ ∫ ∫

p(y|x, z)

log p(y|x, z)p(x, z)dydxdz (17)

H(Y|X,Z,U) = −

∫ ∫ ∫ ∫

p(y|x, z, u)

log p(y|x, z, u)p(x, z, u)dydxdzdu (18)

The objective function to be maximized can be defined as:

F = φ0I(Y;X;Z;U)+ φ1I(Y;X|Z,U)

+ φ2I(Y;Z|X,U)+ φ3I(Y;U|X,Z)

+ φ4H(Y;X|Z,U) (19)

I(Y;X|Z,U) is the information that the output shares with
the RF (X) and is not contained in the LCF and UCF units.
I(Y;Z|X,U) is the information that the output shares with the
LCF and not contained in the RF and UCF units. I(Y;U|X,Z)
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is the information that the output shares with the UCF and not
contained in the RF and LCF units.

The values of φ′s are tunable within the range [−1, 1].
Different φ values allow investigating specific mutual/shared
information, such that:

f (x) =



















F = I(Y;X), if φ1 = 1,φ2 = φ3 = φ4 = 0

F = I(Y;Z), if φ2 = 1,φ1 = φ3 = φ4 = 0

F = I(Y;U), if φ3 = 1,φ1 = φ2 = φ4 = 0

I(Y;X;Z;U), otherwise

4. CASE STUDY: HUMAN BEHAVIORAL
MODELING/AV SPEECH PROCESSING

Human speech recognition in a noisy environment is known
to be dependent upon both aural and visual cues, which are
combined by sophisticated multi-level integration strategies to
improve intelligibility (Adeel et al., 2019b). The correlation
between the visible properties of articulatory organs (e.g., lips,
teeth, tongue) and speech reception has been previously shown
in numerous behavioral studies (Sumby and Pollack, 1954;
McGurk and MacDonald, 1976; Summerfield, 1979; Patterson
andWerker, 2003). Therefore, clear visibility of some articulatory
organs could be effectively utilized to extract a clean speech signal
out of a noisy audio signal. The proposed CMI theory is evaluated
using human AV speechmodeling. The developed AVmodels are
illustrated in section 1 and Figure 2.

4.1. Audio-Visual Corpus and Feature
Extraction
For contextual AV speech modeling, the AV ChiME3 corpus is
developed by mixing the clean Grid videos (Cooke et al., 2006)
with the ChiME3 noises (Barker et al., 2015) [cafe, street junction,
public transport (bus), pedestrian area] for signal-to-noise ratio
(SNRs) ranging from −12 to 12 dB (Adeel et al., 2019b). The
pre-processing includes sentence alignment and incorporation of
prior visual frames. Sentence alignment is performed to remove
the silence time from the video and prevent the model from
learning redundant or insignificant information. Prior multiple
visual frames are used to incorporate temporal information
to improve mapping between visual and audio features. The
Grid corpus comprises 34 speakers, each speaker reciting 1,000
sentences. Out of 34 speakers, a subset of 5 speakers is selected
(two white females, two white males, and one black male)
with a total of 900 command sentences each. The subset fairly
ensures the speaker independence criteria (Adeel et al., 2019b). A
summary of the acquired visual dataset is presented in Tables 1,
2, where the full and aligned sentences, total number of sentences,
used sentences, and removed sentences are clearly defined (Adeel
et al., 2019b).

For audio features, log filter-bank (FB) vectors are used. The
input audio signal is sampled at 50 kHz and segmented into N
16 ms frames with 800 samples per frame and 62.5% increment
rate. Afterwards, a hamming window and Fourier transformation
is applied to produce the 2,048-bin power spectrum. Finally, a
23-dimensional log-FB is applied, followed by the logarithmic

TABLE 1 | Used grid corpus sentences (Adeel et al., 2019b).

Full sentences Aligned sentences

Speaker ID Grid ID No. of sentences Removed Used Removed Used

Speaker 1 S1 1,000 11 989 11 989

Speaker 2 S15 1,000 164 836 164 836

Speaker 3 S26 1,000 16 984 71 929

Speaker 4 S6 1,000 9 991 9 991

Speaker 5 S7 1,000 11 989 11 989

TABLE 2 | Summary of the train, test, and validation sentences (Adeel et al.,

2019b).

Speakers Train Validation Test Total

1 692 99 198 989

2 585 84 167 836

3 650 93 186 929

4 693 99 199 991

5 692 99 198 989

All 3,312 474 948 4,734

compression to produce the 23-D log-FB signal (Adeel et al.,
2019b).

The visual features are extracted from the Grid Corpus videos
recorded at 25 fps using a 2D-DCT based standard and a widely
used visual feature extraction method. Firstly, the video files are
processed to extract a sequence of individual frames. Secondly,
a Viola-Jones lip detector (Viola and Jones, 2001) is used to
identify the lip-region by defining the Region-of-Interest (ROI)
in terms of a bounding box. Object detection is performed using
Haar feature-based cascade classifiers. The method is based on
machine learning where cascade function is trained with positive
and negative images. Finally, the object tracker (Ross et al., 2008)
is used to track the lip regions across the sequence of frames.
The visual extraction procedure produced a set of corner points
for each frame, where lip regions are then extracted by cropping
the raw image. In addition, to ensure good lip tracking, each
sentence is manually validated by inspecting a few frames from
each sentence. The aim of manual validation is to delete those
sentences in which lip regions are not correctly identified (Abel
et al., 2016; Adeel et al., 2019b).

5. EXPERIMENTS

Signal processing in the cerebral cortex is expected to comprise
a common multipurpose algorithm that produces widely
distributed but coherent and relevant activity patterns (Kay and
Phillips, 2011). The coherent infomax exhibits specification of
such algorithm. According to the theory of coherent infomax,
local processors are able to combine reliable signal coding
because of the existence of two classes of synaptic connections:
driving connections (RF) and contextual connections (CF). The
authors in Kay and Phillips (2011) made the biological relevance
of this theory and showed that the coherent infomax is consistent
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FIGURE 7 | State-of-the-art network level AV deep LSTM model with 1000 LSTM and 162 MLP cells (noisy audio to clean audio mapping): CMI at the network level

(Adeel et al., 2019a). The figure on the right depicts the hybrid deep LSTM-CANN model.

FIGURE 8 | Proposed novel shallow CANN: CMI at the neural level. Three streams, three layered multisensory multiunit network of several similar CANs (where the

CAN in one stream is connected to all other CANs in the neighboring streams). The CANN has 12 CANs, 4 RF neurons, 4 LCF neurons, 8 UCF neurons, and 1 output

neuron, in total 29 neurons.

with a particular Bayesian interpretation for the contextual
guidance of learning and processing. However, this theory was
evaluated using a simple edge detection problem to demonstrate
the role of contextual modulation in improving feature detection
with noisy inputs (Kay et al., 1998). The authors showed that how
surrounding regions in different parallel streams (via contextual
modulation) helped detecting the edges within any particular
region and played a modulatory role in combating noisy input.
More details including different properties of the coherent
infomax are comprehensively presented in Kay and Phillips
(1997), Kay et al. (1998), Phillips (2001), Phillips and Silverstein
(2013), Kay et al. (2017), and Phillips et al. (2018).

Going beyond a simple edge detection problem, in this
subsection, we demonstrate how parallel streams constituting

visual information play a modulatory role to disambiguate
the noisy speech signal. For this, a hybrid deep LSTM and
CANN models are developed for network and neural level
multisensory integrations, shown in Figure 7 (Adeel et al., 2019a)
and Figure 8, respectively. In Figure 7, the model on the right
depicts the hybrid deep LSTM-CANN, which is a part of our
ongoing work. Both LSTM and CANN models are trained with
the AV ChiME3 dataset for SNRs ranging form −12 to 12 dB.
Noisy audio and visual features of time instance tk, tk−1, ..., tk−5

are feeded into LSTM and CANN models. The aim is to map
noisy audio to clean audio features. The first LSTM layer has
250 cells, which encoded the input and passed its hidden state
to the second LSTM layer, which has 300 cells. Finally, the
optimized latent features from both LSTM models are fused
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FIGURE 9 | Single stream (RF only): Network level visual only (lip-reading

driven) deep learning performance. The figure presents an overall behavior of

an LSTM model when different number of visual frames are added. Please

note the improvement in learning upon prior visual frames integration (Adeel

et al., 2019b).

using two dense layers. Specifically, the optimal features extracted
from each LSTM network are concatenated into a single vector.
The concatenated vector is then feeded into a fully connected
multilayered perceptron (MLP) network. The MLP network
comprises three layers with 100 and 40 ReLU neurons in the first
two layers and 22 linear neurons in the last layer. The UCF is
integrated in the second last layer. The training procedure for
CANN is comprehensively presented in section 5.3.1. Both deep
LSTM and CANN architectures are trained with the objective to
minimize the mean squared error (MSE) between the predicted
and the actual clean audio features. The MSE (20) between
the estimated audio logFB features and clean audio features
is minimized using the stochastic gradient decent algorithm
and the RMSProp optimizer. RMSprop is an adaptive learning
rate optimizer which divides the learning rate by the moving
average of the magnitudes of recent gradients to make learning
more efficient. Moreover, to reduce overfitting, dropout (0.20)
was applied after every LSTM layer. The MSE cost function
C(aestimated, aclean) can be written as (Adeel et al., 2019b):

C(aestimated, aclean) =

n
∑

i=1

0.5(aestimated(i)− aclean(i))
2 (20)

where aestimated and aclean are the estimated and clean audio
features, respectively.

5.1. Single Stream: RF Only
The deep LSTM model is trained only with visual cues (RF only)
considering multiple prior frames (ranging from 1 visual frame
to 18 prior visual frames). The simulation results are shown in
Figure 9 (Adeel et al., 2019b). The training is performed with six
different aligned datasets (i.e., 1, 2, 4, 8, 14, and 18 prior visual
frames). It can be seen that by moving from 1 visual frame to
18 visual frames, a significant performance improvement could
be achieved. The LSTM model with 1 visual frame achieved the

FIGURE 10 | Parallel multistreams (RF + LCF): learning and processing results.

It is to be noted that the integration of LCF significantly improved learning.

FIGURE 11 | MOS for overall speech perception—these results are obtained

through subjective listening tests, conducted in terms of MOS with

self-reported normal-hearing listeners. The listeners were presented with a

single stimulus (i.e., enhanced speech only) and were asked to rate the

re-constructed speech on a scale of 1–5. The five rating choices were: (5)

Excellent (when the listener feels an unnoticeable difference compared to the

target clean speech), (4) Good (perceptible but not annoying), (3) Fair (slightly

annoying), (2) Poor (annoying), and (1) Bad (very annoying).

MSE of 0.092, whereas with 18 visual frames, the model achieved
the least MSE of 0.058. The LSTM model exploited the temporal
information effectively and showed consistent reduction in MSE.
This is mainly because of its inherent recurrent architectural
property and the ability of retaining state over longer time spans
using cell gates.

5.2. Parallel Multistreams: RF + LCF
In this experiment, the deep LSTM model is feeded with noisy
audio cues (as RF) and visual cues (as LCF). The training results
of AV model (RF + LCF) are depicted in Figure 10, where the
improvement in learning and processing due to LCF integration
is evident (Adeel et al., 2019a). The speech perception results in
terms of speech quality are shown in Figure 11. The used speech
enhancement framework is out of the scope of this paper and
is comprehensively presented in Adeel et al. (2019b). It can be

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 15

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Adeel Conscious Multisensory Integration

FIGURE 12 | Spectrogram of a randomly selected utterance of −9dB SNR from AV ChiME3 corpus [X-axis: Time; Y-axis: Frequency (Hz)]: (A) Clean, (B) Noisy, (C)

RF-only enhanced speech, (D) RF + LCF enhanced speech. Note that RF + LCF model recovered some of the frequency components better than RF-only at low SNR.

seen that at high level of background noise (e.g., busy restaurant),
visual-only cues are outperforming audio-only cues. In contrast,
at low level of background noise (high SNR), audio-only cues
are outperforming visual-only cues. It shows that visual cues
are fairly less effective for speech enhancement at low or zero
background noise which is analogous to human audio-visual
speech processing. However, AV (RF + LCF) model outperforms
both audio-only and visual-only models in all situations (at
both low and high SNRs). The AV model is leveraging the
complementary strengths of both audio and visual cues. At
high background noise, LCF is acting as a modulatory signal
and helping the model to disambiguate the noisy audio speech
signal. At low level of background noise, the role of LCF
starts decreasing [eventually reaches to Null (hypothetically)—
ceiling effect]. This phenomenon is more clear in Figure 12,
where the spectrogram of a randomly selected utterance of

−9 dB SNR is depicted. However, for in-depth and neural
level analysis, the CANN is modeled and trained in section
5.3.1 to enable better quantification of this amplification and
suppression process.

5.3. Beyond Coherent Infomax: RF + LCF +
UCF
So far, it is seen how LCF could play a modulatory or
null role upon changing the context (outside environment).
However, contextual identification and transition (from one
context to another) are two difficult problems. Given any desired
human behavior to be modeled, a set of appropriate contexts
associated with the anticipated behaviors and actions could be
identified and grouped together to develop a computationally
efficient model (given a broader understanding of the task in
hand) (Gonzalez et al., 2008). In this subsection, the deep
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LSTM model is trained with three distinctive multimodal
multistreams: lip movements as LCF, noisy speech as RF, and
the outside environment/anticipated behavior as UCF. For
contextual information (UCF integration), five dynamic real-
world commercially-motivated scenarios are considered: cafe,
restaurant, public transport, pedestrian area, and home. Please
note that a specific SNR range defines a particular environment
(UCF), represented by a unique pattern. The training results
are presented in Figure 13 where a significant improvement in
learning is evident. Hence, given a broader understanding of the
task in hand (acquired through incoming sensory signals (having
a high correlation to the external world), specific situation,
and associated anticipated behavior), an enhanced learning and
optimized decision making could be achieved.

5.3.1. CANN: RF + LCF + UCF

So far, the end-to-end multimodal deep learning models have
demonstrated CMI at the network level. However, the underlying
neural processing in deep learning models is elusive and it

FIGURE 13 | Deep LSTM learning and processing results: it is to be noted

that RF + LCF + UCF model outperforms both RF-only and RF + LCF models.

is difficult to analyze the precise information processing. For
example, in case of deep LSTM driven AV processing, it is
difficult to quantify the selective amplification or suppression
of multisensory AV information at different levels. To address
these problems, the proposed novel AV-CANN model (shown
in Figure 8) is trained using AV ChiME3 corpus. For training,
the deep problem was transformed into a shallow problem.
Specifically, the evaluated shallow CANN model predicts one
coefficient at a time (i.e., coefficient by coefficient prediction).
The data samples include 2D-logFB (speech features) and 2D-
DCT (visual features) coefficients for 1,000 utterances from Grid
and ChiME3 Corpora (Speaker 1 of the Grid). The number of
clean logFB audio features are 22× 205,712. The combined noisy
logFB audio features are 22× 205,712 (for−12,−9,−6,−3, 0, 3,
6, 9, and 12 dB SNRs). Similarly, the DCT visual features are 25
× 205,712 in total.

In AV CANN model, the filter bank (audio cues) and DCT
(visual cues) coefficients are represented as signals coming
from the outside world according to Poisson arrival streams
of rates (3x, λx). These inputs are converted into average
rate of positive and negative signals, given by Equations (9)
and (10). Specifically, a set of successive inputs is denoted as

X = (x(1)...., x(K)), Where, x(k) = (3
(k)
x , 3

(k)
x ) are pairs of

excitation and inhibition signals entering each neuron from the
outside world.

Figure 14 depicts the prediction of clean logFB coefficients,
where it can be seen that RF + LCF + UCF model outperformed
both RF + LCF and RF-only models, achieving MSE of 0.051,
0.064, and 0.072, respectively. It is also worth mentioning that
the shallow CANN with only 29 spiking neurons performed
comparably to deep LSTM unimodal network (RF-only). In
conjunction with the coherent infomax theory, the enhanced
learning in CANN is due to a widely distributed and shared
activity pattern. The CANN discovered and exploited the
associative relations between the features extracted within each
of the RF, LCF, and UCF streams.

FIGURE 14 | CANN learning and processing results: clean audio features prediction with A-only (RF), AV (RF + LCF), and AV with UCF models. It is to be noted that

RF + LCF + UCF model outperforms both RF-only and RF + LCF models.
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6. DISCUSSION AND CONCLUSIONS

It is worth mentioning that the author has not claimed to
know the origin of consciousness, instead, proposed a theory
on its possible function in multisensory integration. A two-
compartment neuron with distinct somatic (RF) and apical
(CF) zones of integration is well-established (Larkum et al.,
2009; Kay and Phillips, 2011; Larkum, 2013; Larkum and
Phillips, 2016) and supported for effective learning in deep
networks (Lillicrap et al., 2020). However, the apical input (CF),
coming from the feedback and lateral connections, is far more
diverse with far greater implications for ongoing learning and
processing in the brain. CMI theory emphasizes the importance
of understanding and defining the roles of different kinds of
contexts in pyramidal cells. Thus, it puts forward the idea
of dissecting CF into LCF and UCF, to better understand
the amplification and suppression of relevant and irrelevant
signals, with respect to different external environments and
anticipated behaviors.

Preliminary results shed light on selective
amplification/attenuation of AV signals. It is shown that in
different environmental conditions (represented as UCF),
roles of audio and visual cues change, e.g., in high-level
of background noise, visual cues (as LCF) modulate the
noisy audio cues (RF), whereas, in low-level of background
noise, LCF becomes relatively less effective, with no role
(hypothetically) in zero background noise. Furthermore, in
terms of enhanced learning and processing, the parallel three-
stream (RF + LCF + UCF) deep neural network model out
performs the parallel two-stream (RF + LCF) and single-stream
(RF-only) models. Similar results are obtained with a shallow
contextually-adaptive neural network (CANN), which also
enables quantification of multiway mutual/shared information
at the neural level. The integration of RF, LCF, and UCF
guides learning and processing while enables the network
to explore and exploit the associative relations between the
features extracted within different fields for optimized decision
making.

These findings suggest that the pyramidal cell, in addition
to the classical excitatory and inhibitory signals, receives
the LCF and UCF inputs. The UCF (as a steering force or
tuner) helps pyramidal cells in precisely selecting the relevant
or useful feedforward signals from overwhelming available
information and deciding whether to amplify/suppress
their transmission e.g., which information is worth
paying more attention to? This is called conditional
amplification/suppression (with respect to the outside world) as
opposed to unconditional excitatory and inhibitory activity in
existing DNNs.

The distinctive role of UCF (as a tuner) quite strongly
implicates that it is closely related to consciousness (Bachmann
and Anthony, 2014; Phillips et al., 2016). Overall, the
proposed CMI theory improves our understanding of the
mechanisms responsible to produce coherent thoughts,
percepts, and actions, which are well-adapted to different
situations and long-term goals. The distinction between
different contextual fields (LCF and UCF) is certainly a

move in the right direction. However, the presented basic
mathematical model and results should be taken with care.
The CMI neural model needs to be significantly improved
by incorporating the observed network behavior, which
conditionally amplifies/suppresses the RF-LCF signals with
respect to different external environments.

7. FUTURE RESEARCH DIRECTIONS

Future work aims to quantify the suppression and attenuation of
multisensory signals in terms of four basic arithmetic operators
(addition, subtraction, multiplication and division) and their
various forms (Kay et al., 2017). We will analyze how the
information in CANN is decomposed into components unique
to each other having multiway mutual/shared information.
The ongoing and future work also includes studying the
application of CMI theory to a range of real-world problems,
including: (i) computational modeling of AV processing in
Alzheimer’s and Parkinson’s diseases, and schizophrenia (Phillips
et al., 2015, 2016), (ii) natural human-robot interactions,
(iii) low-power neuromorphic chips, (iv) brain-computer
interface, and (v) neurofinance. Furthermore, several other
areas within psychology and neuroscience could potentially
benefit from the proposed theory (e.g., Héericé et al., 2016;
Karim et al., 2017). Defense Advanced Research Projects
Agency (DARPA) recently announced a USD 2 billion
campaign to develop the next wave of artificial intelligence
(AI) technologies (Szu et al., 2019). Specifically, DARPA
seeks contextual reasoning in AI systems to create more
collaborative and trusting partnerships between humans and
machines. In this context, the proposed theory represents a
step change.
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