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A B S T R A C T

Antimicrobial resistance is one of the biggest threats to global health, food security, and development.
Antibiotic overuse and misuse are the main drivers for the emergence of resistance. It is crucial to optimise the
use of existing antibiotics in order to improve medical outcomes, decrease toxicity and reduce the emergence
of resistance. We formulate the design of antibiotic dosing regimens as an optimisation problem, and use
an evolutionary algorithm suited to continuous optimisation (differential evolution) to solve it. Regimens are
represented as vectors of real numbers encoding daily doses, which can vary across the treatment duration.
A stochastic mathematical model of bacterial infections with tuneable resistance levels is used to evaluate the
effectiveness of evolved regimens. The objective is to minimise the treatment failure rate, subject to a constraint
on the maximum total antibiotic used. We consider simulations with different levels of bacterial resistance, two
ways of administering the drug (orally and intravenously), as well as coinfections with two strains of bacteria.
Our approach produced effective dosing regimens, with an average improvement in lowering the failure rate
30%, when compared with standard fixed-daily-dose regimens with the same total amount of antibiotic.
1. Introduction

Antibiotics are one of the most commonly prescribed drugs not only
in human health but also in animal health and agriculture [1,2]. Many
decades after the discovery of the first antibiotics, bacterial infections
have again become a global threat [3]. The World Health Organisation
(WHO) has stated that ‘‘antimicrobial resistance is a global crisis that
threatens a century of progress in health and achievement’’ [4]. A
recent study using machine learning to analyse antimicrobial resistance
research trends reveals that the number of publications in this topic
increased by 450% between 1999 and 2018, a testimony of its growing
relevance [5]. The overuse and misuse of antibiotics are driving the
evolution of resistant bacteria strains. To deal with this complex threat,
a range of approaches are required, including not only the development
of new antibiotics, but critically novel strategies to optimise the use
of existing drugs [6,7]. There are clear opportunities for mathematical
modelling and artificial intelligence to contribute to this challenge.

Traditional antibiotic regimes apply a constant daily dose for a fixed
number of days. However, medical and biological evidence suggests
that regimes with varying daily doses can be more effective. Exam-
ples are treatments with an initial higher dose followed by a lower
maintenance dose, as well as tapered regimes [8–10]. It is crucial to
improve the precision of current antibiotics use. Precision use involves
better choice of drugs, but also better dosing and treatment duration.
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Improving the precision can lead to better clinical outcomes of infec-
tious diseases, while minimising toxicity and the emergence of drug
resistance [7].

Evolutionary algorithms have been applied to optimise antibiotic
dosing regimens [11–15]. To apply evolutionary algorithms in this con-
text, two key components are required: (i) a representation or encoding
of candidate solutions (dosing regimens); and (ii) a fitness (objective)
function that measures the quality of the evolved dosing regimens. In
order to measure the effectiveness of a regimen, a simulation model
of bacterial infection and the effects of drug concentration is required.
A problem formulation can also include constraints and/or multiple
objectives.

This work uses the stochastic mathematical model of a generic
bacterial infection and the effect of an antibiotic agent first introduced
in [11]. This initial formulation [11] considered a single aggregated
objective to be minimised with terms for the total antibiotic and the
proportion of unsuccessful model runs (failure rate). Solutions were
encoded as vectors of integer numbers indicating daily dosages, and
a simple genetic algorithm was used to optimise dosing regimens. A
follow-up work [13] used the same mathematical model and solution
encoding, but considered formulations with two and three objectives
to be minimised, including the failure rate, the total antibiotic used,
vailable online 24 September 2022
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and the maximum antibiotic concentration at any given point during
treatment. A classic multi-objective evolutionary algorithm, NSGA-
II [16] was used to explore the space of possible dosing regimes to
approximate Pareto-optimal trade-offs. A subsequent extension [15],
considered a similar multi-objective formulation (with two objectives:
failure rate and total antibiotic to be minimised), but added a phar-
macodynamics component to the bacterial model to account for the
delay of ingested drug to reach the blood stream. Two population
based multi-objective optimisation algorithms were contrasted, with
the classic NSGA-II producing best results.

Here, we use our most recent bacterial infection model [15], but
make two fundamental changes to the optimisation problem formula-
tion. Firstly, the total amount of antibiotic is treated as a constraint
rather than an objective. The single objective to be minimised is
the regimen failure rate. This is because reducing the failure rate
is the prominent aim of any successful treatment, while reducing
the total amount of antibiotic used is a secondary goal. Therefore,
exploring the whole trade-off of these two goals, as it is done by
multi-objective evolutionary algorithms, is not interesting in practice.
The second fundamental change relies on the representation of can-
didate dosing regimens. While all previous work but [15] use an
integer representation with discretised dose values, we use instead real-
numbers for representing daily dosages. We argue that this encoding
allows the exploration of a wider search space of possible dosing
regimens. Moreover, this encoding prompted us to use an evolutionary
algorithm specifically tailored to continuous optimisation (differential
evolution [17,18]), rather than standard genetic algorithms. Our study
also departs from previous work as we experiment with varied levels of
bacterial resistance, coinfections with two strains of bacteria, and two
ways of administering the drug: orally and intravenously. We contrast
the optimised dosing regimens against the standard practice of fixed-
daily doses with the same total amount of antibiotic. In summary, our
study is guided by the following research questions.

How do optimised regimens vary according to the:

1. antimicrobial resistance level?
2. form of administering antibiotics, orally vs. intravenously?
3. presence of a single bacterial strain vs. two strains of bacteria with
different resistance levels?

2. Related work

Other group of authors have used genetic algorithms to optimise
antibiotic dosing regimens. Cicchese et al. [12] use genetic algorithms
and surrogate-assisted optimisation to design regimens to treat Tu-
berculosis infections. Their formulation assumes that doses are fixed
across the treatment, and vary instead the frequency of application of
multiple drugs. The single objective function has two terms measuring
the average time to eradication, and the dose size and frequency of
antibiotics. Treatments are evaluated using a hybrid, multiscale model
that combines agent-based modelling with differential equations, and a
pharmacokinetic model.

Colin et al. [14] use a genetic algorithm to optimise a dosing
guideline for intermittent infusion of vancomycin in adults. They en-
code dosing regimens as combinations of discretised loading doses,
maintenance doses and dosing intervals. Although the loading and
maintenance doses can vary across candidate solutions, a given solution
holds the same loading and maintenance dose with varying dosing
intervals. The formulation uses a single objective function with several
constraints, and only focuses on the pharmacokinetic model (antibiotic
concentrations), without explicitly modelling the bacteria infection, to
simulate an adult patient population.

Our formulation differs from previous work mainly in the type of
encoding candidate dosing regimens. The underlying simulation model
of bacterial infection and interaction with antibiotics is also different
from the approaches described above. Moreover, we contrast two ways
of administering the drug (orally vs. intravenously) and experiment
with varied levels of bacterial resistance, as well as coinfections with
two strains of bacteria.
2
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3. Methodology

3.1. Biomedical background

Once an antibiotic is chosen, conventional treatments have three
main characteristics: the concentration of each dose, the time interval
between doses and the total number of doses given. These character-
istics are usually decided by the manufacturer or a health body, and
usually consist of fixed sized doses at fixed time intervals. For example,
a course of Amoxicillin may be 250 mg taken 3 times daily for 5 to
7 days [19]. While these fixed-dose treatments may be effective, they
may not be the optimal dose or duration to administer the antibiotic
most efficaciously. Although we are taking a theoretical approach, our
parameters are ‘loosely’ based around an E. coli UTI infection being
treated with Amoxicillin. This is in comparison to some of our previous
work, where parameters were more arbitrarily chosen [11,13,15].

Dose regimens are often based on Pharmacokinetics and Pharma-
codynamics studies of target populations. One significant characteristic
of the bacterial population is minimum inhibitory concentration (MIC).
This is the lowest concentration (in 𝜇g/mL) of an antibiotic that inhibits
the population growth of a given strain of bacteria. In this work,
we have chosen four MIC values: sensitive, 8 μg/mL, intermediate,
16 μg/mL and 24 μg/mL, and resistant, 32 μg/mL [20].

For short-term infections, there is often only one type of bacteria
present in the host, which is the case for most healthy people when
they are suffering from a bacterial infection. Later in this study, we
consider immunosuppressed hosts. Here, the body is more susceptible
to infection, and this could result in the host having multiple bacterial
infections at the same time. Alternatively, two strains can also be
present when a mutation occurs to create a more antibiotic resistant
one.

3.2. Mathematical model

The mathematical model used follows a similar formulation as
in [10,11,13,15], where a population of bacteria is simulated with a
Markov chain approach using the Gillespie algorithm [21], and the
effect of an antibiotic treatment to eradicate the infection is considered
as detailed below. The model simulates the bacteria population through
the duration of treatment plus an extra 3 days to allow the antibiotic
in the blood to dissipate and to establish if the bacteria population has
reached the count of 0 (treatment is successful) or not (treatment is not
successful, or failed).

A 𝑛-day treatment is denoted as a vector 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛), where 𝑥𝑖
represents the dosage taken on day 𝑖, with 𝑥𝑖 ≥ 0. In this formulation,
𝑖 are real positive numbers, 𝑥𝑖 ∈ R. The maximum total antibiotic,
𝑛
𝑖=1 𝑥𝑖, is selected based on the amount needed to cure the host
ith a fixed daily-dose regimen, for the specific MIC of the bacteria
etermined empirically using the model. The time interval between
oses is fixed at 24 h throughout this study.

Antibiotic Modelling. Pharmacokinetics/Pharmacodynamics
PK/PD) modelling is the basis of modern-day pharmacotherapy. Phar-
acokinetics describes the drug concentration over time inside the
ost, while Pharmacodynamics observes the effects of the drug on the
nfection and on the host. In other words, pharmacokinetics answers the
uestion ‘what the body does to the drug’, while pharmacodynamics —

what the drug does to the body’ [22,23]. In our study, when the drug is
irst taken, it enters the stomach at concentration 𝐶𝑆 ; this concentration
ecreases as it moves from the digestive system into the blood, whereby
hey become effective in fighting the bacterial infection, with this
oncentration denoted as 𝐶𝐵 . This process is modelled by equations
n Table 2. Parameters 𝑎 and 𝑔 correspond to the degradation half-life
f the time the antibiotic takes to be absorbed in the gastric juices and

n the host’s blood — 15 h in the gastric juices and half an hour in the
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Algorithm 1: Outline of the stochastic mathematical model with one bacteria strain.
1: 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = {𝑥1, 𝑥2, . . .𝑥𝑛}
2: initial bacteria population 𝐵 = 700
3: initial antibiotic concentrations 𝐶𝐵 = 0, 𝐶𝑆 = 0
4: 𝑡𝑖𝑚𝑒 = 0 minutes
5: time step 𝜏 = 15 minutes
6: 𝑒𝑛𝑑_𝑜𝑓 _𝑑𝑎𝑦 = 1440 minutes (= 24 hours)
7: 𝑑𝑒𝑎𝑑𝑙𝑦_𝑙𝑒𝑣𝑒𝑙_𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 = 2000
8: for day 1 until the last day of treatment + 3 extra days do
9: 𝐶𝑆 = 𝐶𝑆 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(𝑑𝑎𝑦) (take dose)
0: while 𝑡𝑖𝑚𝑒 ≤ 𝑒𝑛𝑑_𝑜𝑓 _𝑑𝑎𝑦 and 0 < 𝐵 < 𝑑𝑒𝑎𝑑𝑙𝑦_𝑙𝑒𝑣𝑒𝑙_𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 do
1: calculate average number of bacteria created 𝑝1 (Table 2)
2: calculate average number of bacteria deaths 𝑝2 (Table 2)
3: update bacteria population: 𝐵 = 𝐵 + 𝑃 (𝜏𝑝1) − 𝑃 (𝜏𝑝2)
4: update time: 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 + 𝜏
5: update antibiotic concentrations, 𝐶𝑆 and 𝐶𝐵 (Table 2)
6: if 𝐵 ≥ 𝑑𝑒𝑎𝑑𝑙𝑦_𝑙𝑒𝑣𝑒𝑙_𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 then
7: Treatment is unsuccessful
8: end if
9: end while
0: end for
1: if 𝐵 ≤ 0 then
2: Treatment is successful
3: else
4: Treatment is unsuccessful
5: end if
Table 1
Mathematical model parameter values and references.
Parameter Description and reference Value

a Absorption rate of antibiotics in the stomach [24] 33.27 h−1

g Degradation rate of antibiotics in the blood [24] 1.11 h−1

p Proportion of antibiotics that reaches the blood [24] 95%
m Immune system response rate [25] 0.1 h−1

r Replication rate of bacteria [26] 0.5 h−1

𝑏1 Maximum kill rate of the antibiotic (as 𝐶𝐵 → ∞) 2.5 h−1

𝑏2 Level of antibiotic giving half max kill rate [11] 1.5137 h−1 ×𝑚𝑖𝑐
mic Min inhibitory concentration (MIC) 8,16,24 or 32 μg∕mL
k Hill coefficient in antibiotic induced death 4
blood [24]. As about 5% of the antibiotic is lost in the gastric juices,
the values for 𝑝 is set to 0.95. [24].

Bacteria modelling (one strain). Where a single type of bacteria
is present in the host, there are two events that happen: birth of
bacteria (𝑝1) and death of bacteria (𝑝2) shown in Table 2. In 𝑝1,
the term 𝑟𝐵 represents the bacteria’s binary fission for the time step,
producing exponential growth at rate 𝑟 - this form is based on biological
experiments carried in [10], where bacteria grew exponentially and the
hosts (larvae) died before any slow down of bacteria growth occurred;
hence, we omit a carrying capacity in this term, and instead include a
host death threshold if the bacteria exceeds 2000. In 𝑝2, we sum the
natural death of the bacteria, due to the host’s immune system 𝑚, and
ntibiotic induced death rate represented by parameters 𝑏1, 𝑏2, 𝑚𝑖𝑐 and
.

The pseudocode, for one-strain model, can be seen in Algorithm 1,
ith parameters presented in Table 1.

Bacteria modelling (two strains). When modelling two strains
f bacteria, 𝑆 denotes the bacterial strain with a lower MIC and is
ore susceptible to the antibiotic, while 𝑅 denotes the bacterial strain

with a higher MIC, being more resistant and requiring a higher dose
of antibiotics. In this case, the mathematical equations in Table 2 are
replaced by those in Table A.1. There are now five events that take
place in the simulation: birth of new bacteria of each type (𝑝1 and 𝑝2),
death of each type of bacteria (𝑝 and 𝑝 ) and finally 𝑝 representing the
3

3 4 5
Table 2
List of all events for simulating the population of bacteria during treatment.

Events Description Bacteria population (𝐵)
change

𝑝1 Birth of new bacteria 𝑟𝐵

𝑝2 Death of bacteria 𝑚𝐵 +
𝑏1𝐶𝑘

𝐵

𝐶𝑘
𝐵 + 𝑏𝑘2

𝐵

𝐶𝐵 Concentration of antibiotics
in the blood

𝐶𝐵 + 𝜏(𝑝𝑎𝐶𝑆 − 𝑔𝐶𝐵 )

𝐶𝑆 Concentration of antibiotics
in the stomach

𝐶𝑆 − 𝜏𝑎𝐶𝑆

horizontal gene transfer process (resistance gene from the 𝑅 bacteria
strain is passed on to the 𝑆 bacteria strain.

Implementation and technical set up. To speed up the simulation
process, we use an approximation of the Gillespie algorithm, known as
Tau-leaping [21]. Following preliminary model runs, we settled on a
fixed time step of 𝜏 = 15 minutes, and updated the number of bacteria
using the equation in Algorithm 1 (line 14), where 𝑃 (𝜏𝑝𝑖) is a Poisson
distributed random variable with mean 𝜏𝑝𝑖.

Our implementation uses Python with the Numba JIT compiler [27]
to parallelise the simulation runs on up to 32 computer cores, signifi-
cantly speeding up the process.
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Table 3
Values for the minimum inhibitory concentration (MIC), and maximum total antibiotic
used.

MIC [μg/mL] 8 16 24 32

Total antibiotic [mg] higher 150 300 450 600
lower 125 250 400 550

3.3. Computational optimisation

Problem formulation. The task at hand is formulated as an optimi-
ation problem. Specifically, as a single objective minimisation problem
ith a single linear constraint. The objective to minimise is the failure

ate 𝑓𝑟 measured as the ratio of simulation runs, using the stochastic
odel described in Section 3.2, where the bacteria population is not

radicated, that is where the bacteria population size is above zero after
hree days of the last regimen dose. This can be interpreted as treatment
ailure. We used a number of 10 000 simulation runs, and the failure

rate is the ratio of the number of runs where the bacterial population
is eradicated out of the 10 000 runs.

The constraint accounts for a maximum total antibiotic allowed
or treatment. The total antibiotic used by a regimen vector 𝑥 =
(𝑥1, 𝑥2,… , 𝑥𝑛), is simply the sum ∑𝑛

𝑖=1 𝑥𝑖 of its daily doses. The max-
mum total antibiotic allowed is modelled as a hard constraint, which
eans that a regimen vector that exceeds the allowed maximum 𝐴𝑡𝑜𝑡𝑎𝑙

s deemed invalid and thus discarded by the optimisation process. More
ormally, the optimisation problem can be stated as follows:

Find vector 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛), 𝑥𝑖 ∈ R+

to minimise function 𝑓𝑟
subject to the constraint ∑𝑛

𝑖=1 𝑥𝑖 ≤ 𝐴𝑡𝑜𝑡𝑎𝑙

In our experiments the duration of treatment was set to 10 days,
= 10 and no upper bound is imposed on the daily doses. Table 3

eports the minimum inhibitory concentration (MIC) values used in our
xperiments. For each MIC value, two values for the total antibiotic
onstraint were considered, which we name here in relative terms lower
nd higher. The higher values were selected in such a way that the
est fixed-dose treatments in simulation reach a failure rate below 1%.
he lower values allow us to explore the impact on the failure rate
f reducing the total amount of antibiotic for both for fixed-dose and
ptimised treatments.

Differential Evolution (DE) is a population based stochastic search
ethod, designed to solve continuous optimisation problems, and able

o handle non-differentiable, nonlinear and multimodal objective func-
ions [17]. DE is amongst the state-of-the-art evolutionary algorithms
or continuous optimisation, and has been successfully applied to a
ariety of problems in science and engineering [28]. The growing
vidence supporting the excellent performance of DE in terms of accu-
acy, convergence speed and robustness, in domains including electron-
cs, manufacturing, machine learning, bioinformatics and biomedical-
ngineering [18,28], makes it an ideal choice for our purposes.

A feature of DE, distinguishing it from other evolutionary algo-
ithms, is its differential mutation operator. Given a population of
andidate solutions in R𝑛 a new mutant vector 𝑥′ is produced by adding

a perturbation vector to an existing one, 𝑥′ = 𝑥 + 𝑝, where the pertur-
bation vector 𝑝 is the scaled vector difference of two other, randomly
chose population members 𝑝 = 𝐹 × (𝑦 − 𝑧). The other reproduction
operator is uniform crossover, subject to a crossover rate parameter
𝐶𝑟 ∈ [0, 1]. In general, a DE algorithm has three control parameters, the
scaling or mutation factor 𝐹 , the population size 𝑃 and the crossover
rate 𝐶𝑟. Table 4 reports the DE control parameter values used in our
experiments. Our experiments use dithering for the mutation factor 𝐹 ,
as it can help the speed of convergence. Dithering uniformly at random
(from a given tuple (min, max)) changes the mutation constant on a
4

generation by generation basis. Over the years, several DE variants
Table 4
Differential evolution control parameter values.
Parameter Description Value

F Scaling factor (mutation) (0.7, 1)
𝑃 Population size 150
Cr Crossover rate 0.7

have been proposed [18]. Here we use the classic ‘rand/1/bin’ strategy,
where ‘rand’ indicates that base vectors are randomly chosen, ‘1’ means
that only one vector difference is used to form the mutated population,
and the term ‘bin’ (from binomial distribution) indicates that uniform
crossover is employed when creating the trial population.

Stopping condition. The stopping condition for the DE runs was
et as a maximum number of iterations. We used a maximum of 4 000

iterations for experiments with MIC = 8 μg/mL, 8 000 iterations for MIC
= 16 and MIC = 24 μg/mL, and 10 000 iterations for MIC = 32 μg/mL.
We needed to scale up the iterations with the MIC value as a larger
amount of antibiotic was required the higher the MIC, which resulted
in an increased feasible search space. Fig. 1 shows typical DE failure
rate convergence profiles. The failure rate appears to stabilise (within
a margin of error) well before the chosen iteration bounds.

Constraint Handling. A common way of handling constraints
within evolutionary algorithms is to apply penalty functions. In its
simplest form, the function to be minimised can be computed by
penalising the objective function with a weighted sum of constraint
violations. A disadvantage of this approach, however, is that one or
more additional penalty parameters are expected to be set by the user
a priory, which requires additional effort. Therefore, in our experiments
we adopted the constraint handling technique proposed in [29], where
the replacement rule of the DE algorithm is modified. Specifically,
when compared with the corresponding member in the population, a
trial (mutant) vector will be selected if: (i) it is feasible and provides
a lower or equal objective function value, (ii) it is feasible while the
current vector is unfeasible, or (iii) it is infeasible but provides a lower
or equal constraint violation. This method has the advantage in our
formulation of not requiring any additional parameter value other than
the total antibiotic (𝐴𝑡𝑜𝑡𝑎𝑙) constraint value.

Implementation and technical set up. The optimisation process
was implemented in Python using NumPy [30] and the Differential
Evolution algorithm with its associated constraint handling methods
available in SciPy [31]. A total of 10 DE runs were conducted for each
MIC and 𝐴𝑡𝑜𝑡𝑎𝑙 constraint values.

Re-evaluation of best-found solutions. As the underlying mathe-
matical model of bacterial infection is stochastic, the evaluation of the
failure rate 𝑓𝑟 during DE runs is susceptible to noise. This is due to both
the mathematical model using a fixed number of 10 000 simulation runs,
and the greedy DE selection bias, where noise could produce optimistic
estimates of the failure rate. To counter these inaccuracies, all final
solutions are re-evaluated by running the stochastic model 1 000 000
times. Binomial confidence intervals (with 95% confidence limit) are
then calculated for each of the failure rates 𝑓𝑟, and these confidence
intervals are used when comparing solutions in order to establish which
one truly performs best.

4. Results

Our results are organised into 3 subsections, reporting experiments
with a single strain of bacteria and antibiotic administered orally
Section 4.1, a single strain of bacteria and antibiotic administered
intravenously Section 4.2, and two strains of bacteria and antibiotic
administered orally Section 4.3. For all experiments, the antibiotic is

administered at fixed 24-hour intervals for the duration of treatment.



Artificial Intelligence In Medicine 133 (2022) 102405M. Goranova et al.

f
a
t

t
a
s
f
t
t
t
o
o

i
F
s
a
i
m
a

4

m
r
f
F
o

Fig. 1. Failure rate convergence over DE iterations for experiments with different MIC values and total antibiotic constraint 𝐴𝑡𝑜𝑡𝑎𝑙 as indicated in Table 3.
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4.1. Single bacteria strain and oral administration

We start by contrasting the effectiveness of fixed-dose treatments
against those optimised by DE. In order to identify the fixed-dose
benchmarks, we compute the failure rates, using the mathematical
model, of fixed-dose treatments with duration between 5 and 10 days,
for all the MIC and total antibiotic constraint values. The daily doses of
fixed-dose treatments are simply the total antibiotic values divided by
the number of treatment days. The resulting failure rates are plotted
in Fig. 2. We have re-scaled the plot to only include treatments with
𝑓𝑟 ≤ 8% so some data points are missing from the last two plots.

We observe that treatments of length 6, 7 and 8 days provide the
lowest failure rate 𝑓𝑟, while 9 and 10 days regimens produce the highest
ailure rates 𝑓𝑟, especially for bacteria with MIC 8 and 16 μg/mL which
ligns with the clinical experiences of antibiotic courses of 7 days being
he most commonly prescribed.

To compare the best fixed-dose treatments against the DE-optimised
reatments, we completed 10 runs of DE for every combination of MIC
nd total antibiotic. The resulting scatter plot of failure rates can be
een in Fig. 3. For comparison, the figure also shows the best fixed-dose
ailure rates (taken from Fig. 2) as a black coloured marker. Note that
he failure rates 𝑓𝑟 of all optimised regimens are based on re-evaluating
he mathematical model 1 000 000 times. In addition, the dose was set
o 0 for each day when a DE-optimised treatment recommended a dose
f less than 5 mg as doses under 5 mg have little effect on the success
f the treatment

We observe that the fixed-dose treatments are less effective, that
s, have a higher failure rate 𝑓𝑟 than any of the optimised treatments.
or the treatments where the MIC is 8 and 16 we can see that even a
mall increase in the total antibiotic results in an improvement from
round 𝑓𝑟 = 2.25% to 𝑓𝑟 = 0.3%, whereas with MIC at 24 and 32, the
mprovement is slightly less. This is expected, as a higher MIC requires
ore antibiotic to kill the bacteria, so adding 50 mg of antibiotic

mounts to a lesser relative increase of the total amount of antibiotic.

.1.1. Dosage profile of optimised treatments
Fig. 4 plots the dosage profiles of the three best optimised treat-

ents. The best treatments are those with lowest failure rates after
e-evaluation. For comparison, the (constant) dosage profile of the best
ixed-dose treatment (as determined in Fig. 2) is also shown in black.
ailure rates and confidence intervals are listed on the right-hand side
5

f each plot.
Across all experiments, we observe that the failure rates of the best
ptimised treatments are approximately between 20% and 35% lower
han the failure rate of the corresponding best fixed-dose treatment. The
ailure rate reduction appears to diminish with higher MIC and higher
otal antibiotic values. For instance, the lowest failure rate reduction of
1% is found for the experiment with MIC = 32 μg/mL and the higher
otal antibiotic constraint of 600 mg (Fig. 4(h)).

None of the experiments produce a clear best optimised treatment,
s the confidence intervals of several optimised treatments overlap.
n addition to being virtually indistinguishable by failure rate, the
osage profiles of the three best optimised treatments appear to follow
similar pattern.

• All optimised treatments for a given MIC value and antibiotic
constraint agree on the treatment duration. In most cases, this is
the same as the length of the corresponding fixed-dose treatment
(except for the experiments with MIC = 8 or 16 μg/mL and the
lower antibiotic constraint, where optimised treatments take one
day longer).

• All optimised treatments start with a high dose on the first day,
followed by 𝑛−2 doses that are roughly similar to the correspond-
ing fixed-dose treatment, and tapering off with a lower dose on
the final day, where 𝑛 is the duration of the treatment. The first
and last doses vary across experiments. In most cases, the first
dose is approximately 150% of the second dose, and the final dose
is about 50% of the second dose.

4.1.2. Distribution of time to clear infections
In addition to treatment failure rates, we investigate the time to clear

he infection of successful treatments by counting the number of days
t takes for the bacterial population to drop to zero. Fig. 5 plots the
istributions of the time to clear for each experiment, both for the best
ixed-dose treatment (the left-most column of each plot) and for the
hree best optimised treatments. Distributions are presented as colour-
oded columns, where the height of each colour block corresponds to
he number of hosts (out of 1 000 000) that cleared the infection on the
iven day of the treatment. Shown on top of each column is the expected
time to clear the infection in days. Note that even though treatments are
at most 8 days long, hosts may clear the infection after the last day of
treatment. Failed treatments, that is, cases where the infection is not
cleared within 13 days, are excluded from the distributions.

Across most experiments, we observe that optimised treatments
clear infections faster. In particular, most optimised treatments clear
significantly more infections on or before day 4 than the corresponding
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Fig. 2. Treatments with fixed daily doses by MIC value, maximum total antibiotic and length. The plot has been re-scaled so only solutions with 𝑓𝑟 ≤ 8% are presented.
Fig. 3. Optimised treatments with different daily doses by MIC value and maximum total antibiotics. The black markers represent the fixed treatment with the lowest failure rate
𝑓𝑟 for that configuration.
fixed-dose treatments, resulting in a reduction of the expected time to
clear by between 0.4 and 0.8 days. The exception are the experiments
with MIC levels 8 and 16 μg/mL and lower total antibiotic constraint,
where the distributions of time to clear of the optimised treatments are
very similar to the distributions of the corresponding fixed dose treat-
ments. However, the optimised treatments in these two experiments
are one day longer than the fixed dose treatments, which explains why
we do not observe improvements in the time to clear infections in these
cases. (Note that we were only optimising the failure rate of treatments,
not the time to clear infections.)

4.1.3. Discussion
Our results suggest an optimal treatment duration of 7 days if

optimised against the lower total antibiotics constraint, and 8 days if
optimised against the higher constraint. This is broadly in line with
clinical practice, where most of the treatments prescribed are 5 or 7
days long.
6

We find that some optimised treatments are slightly longer than
the fixed-dose ones, but perform better. We see a bigger improvement
of failure rate when the MIC levels of the bacteria are at susceptible
and intermediate resistance levels (8 and 16 μg/mL) to the antibiotics
than when they are more resistant (24 and 32 μg/mL). As these are the
majority of bacterial infections in hospitals, the optimised treatments
would reduce the number of cases where bacteria survive after the end
of the treatment, thereby reducing the risk of resistant strains emerging.

We also observe that optimised treatments clear infections faster
than the corresponding fixed-dose treatments. This effect appears
stronger when MIC levels are at the more resistant end (24 and
32 μg/mL). Thus, optimised treatments confer a second advantage,
particularly for infections with resistant bacteria, by helping more
patients recover quickly, thereby potentially reducing the burden on
hospitals.
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Fig. 4. Comparison of the dosage profile of the three best optimised treatments against the best fixed-dose treatment (coloured in black and shaped with a circle). Failure rates
𝑓𝑟 are listed on the right-hand side, with confidence intervals in square brackets.
We attribute both the improvements in the failure rate and in
the time to clear infections to the higher first-day dose of optimised
treatments.

4.2. Single bacteria strain and intravenous administration

When antibiotics are injected intravenously, they go directly into
the blood stream rather than through the stomach as in the previous
Section 4.1. In terms of the mathematical model (described in Sec-
tion 3.2) 𝐶𝑆 , the concentration of antibiotics in the stomach, is set
to zero, and 𝑝, the proportion of antibiotics that reaches the blood,
is set to one (instead of the previous value of 0.95). In order to
keep results comparable, the experiments reported here explore the
same combinations of MIC value and total antibiotics constraint as in
Section 4.1.

The scatter plot in Fig. 6 compares the failure rates of the best
fixed-dose treatments against ten DE-optimised treatments. We ob-
serve a similar picture as for orally administered treatments, that is,
DE-optimised treatments tend to have lower failure rates, and the
difference between lower and higher total antibiotics constraint dimin-
ishes the higher the MIC value. We also observe that failure rates are
lower than for the respective orally administered treatments in Fig. 3,
which confirms that administering the drug intravenously increases
effectiveness.

Fig. 7 plots the dosage profiles of the three best optimised treat-
ments. For comparison, the profile of the best fixed-dose treatment is
also shown in black colour. Failure rates and confidence intervals are
7

listed on the right-hand side of each plot.
Across experiments with the lower total antibiotics constraint, we
observe that the failure rates of the best optimised treatments are
approximately between 15% and 30% lower than the failure rate of
the corresponding best fixed-dose treatment. However, we see almost
no improvement in failure rates for experiments with the higher total
antibiotics constraint. In fact, the confidence intervals of many of the
DE-optimised treatments overlap the confidence interval of the best
fixed-dose treatment.

The general shape of the dosage profiles is similar to the shape
of the orally administered treatments: a high first dose, followed by
roughly constant doses, and tapering off on the final day. However,
more than half of the optimised treatments are a day longer than
the best fixed-dose treatment. In contrast, most orally administered
treatments matched the fixed-dose treatment in duration.

4.2.1. Discussion
As observed in Fig. 7, DE barely manages to improve on the failure

rate of the fixed-dose treatment in experiments with the higher total
antibiotics constraint. There are two hypotheses for this — due to the
stochastic nature of the mathematical model, the fitness function might
be too noisy, making it difficult for the DE to find the optimal solution;
or the fixed-dose failure rate is already near the optimal value.

To check whether the failure of DE in finding better solutions is
down to the noisy fitness function, we performed additional experi-
ments, increasing the number of runs of the mathematical model from
10 000 to 100 000, thereby reducing the noise on the fitness function by
an order of magnitude (yet increasing the computational cost by an
order of magnitude). The best failure rates found in these experiments
ranged from 0.17%±0.01% to 0.19%±0.01%. This is an improvement on
the best fixed-dose failure rates of 0.22%± 0.01%, although the relative
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Fig. 5. Distributions of the time to clear the infection, comparing the best fixed-dose treatment (left-most column of each plot) to the three best optimised treatments. Expected
time to clear is shown on top of each column. Each treatment was evaluated 1 000 000 times.
mprovement of about 15% to 20% is smaller than observed in other
xperiments.

The additional experiments suggest that noise on the fitness function
ay prevent DE from converging to the optimum. However, the modest

mprovements despite reducing the noise by an order of magnitude also
uggest that there is not a single optimal treatment but a wide basin of
reatments with very similar near-optimal failure rates.
8

4.3. Two bacteria strains with oral administration

In cases when people are immunocompromised, it is common that
they could carry multiple types of bacteria or several strains of the same
type of bacteria. In this set of results, we are modelling the case when
95% of the bacterial population have a resistance of MIC = 8 μg/mL and
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r

Fig. 6. Optimised treatments administered intravenously by MIC value and maximum total antibiotics. The black markers represent the fixed-dose treatment with the lowest failure
ate 𝑓𝑟 for that configuration.
Fig. 7. Comparison of the dosage profile of the three best optimised intravenous treatments against the best fixed-dose treatment (in black). Failure rates 𝑓𝑟 are listed on the
right-hand side, with confidence intervals in square brackets.
5% of the bacterial population make up a strain with a more resistant
MIC (16, 24 or 32 μg/mL). Antibiotics are administered orally.

We first examined treatments using the same total amount of an-
tibiotics as in the experiments with only one strain of bacteria in
Section 4.1. We observed failure rates around 10% when the more
resistant strain has MIC = 16 μg/mL. However, the failure rates rise
to an average of 97% for MIC = 24 μg/mL, and to 100% for MIC
= 32 μg/mL. This shows that if a patient is treated for less resistant
9

bacteria when a more resistant strain is present even in small amounts,
the treatment will likely fail.

It seems plausible that treating a multi-strain infection will require
more antibiotics than would be required for the less susceptible strain
on its own, and less than would be required to treat the most resistant
strain on its own. This is confirmed by the findings in Fig. 8, which
plots failure rates for combinations of the total antibiotics constraint
and the MIC value of the more resistant strain. We are showing the
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Fig. 8. Treatments with 𝑓𝑟 ≤ 1% when there are two strains of bacteria — one with MIC = 8 μg/mL that makes 95% of the initial bacteria population and one that corresponds
to the MIC shown in the plot that makes 5% of the initial bacteria population.
result of five runs of the DE with 10 000 iterations for each scenario.
For each MIC value, the figure shows two treatments that differ by 50
mg in the total amount of antibiotics used. The treatments with the
lower total antibiotics constraint are 7 days long, the treatments with
the higher constraint are 8 days. The shape of the treatments is not
shown but follows the same pattern we observed before — high first
dose, roughly constant middle doses, and tapering off with a smaller
final dose.

4.3.1. Discussion
We saw that even if a small percentage of the bacteria population

develops a mutation increasing resistance, the treatment could become
unsuccessful. Thus, more antibiotics are needed where a multi-strain
infection is suspected. In our model, we found that the amount of
antibiotics needed to guarantee a failure rate well below 1% is quite
close to the amount of antibiotics required to treat that the more
resistant strain on its own — even though that more resistant strain
makes up only 5% of the initial bacteria population.

4.4. Extrapolating the optimised regimens

As observed in Figs. 4 and 7, the shape of optimised treatments
always follows the same pattern: a high first dose, followed by roughly
constant doses, and tapering off on the final day. The ratio of first to
second doses varies across experiments but is often close to 1.5. This
leads us to extrapolate the following simple way of formulating an
optimised treatment without running the DE algorithm.

Suppose the standard fixed-dose regime is a daily dose of 2 × 𝑥 mg
over 𝑛 days. Then the extrapolated optimised dose regime consists of a
first dose of 3 × 𝑥 mg, followed by 𝑛− 2 doses of 2 × 𝑥 mg, followed by
a final dose of 𝑥 mg. Table 5 contrasts the failure rates of the best DE-
optimised treatments (orally administered) against the failure rates of
treatments of the same length but using the extrapolated dosage regime.
This shows a slight further improvement (around 5 to 10%) of failure
rates across the board. (We see a similar improvement for intravenously
administered drugs.)

The extrapolated dose regime could easily be implemented in a
real-life scenario where 𝑥 mg is the dosage of a single pill, and the
patient takes 3 pills on the first day of treatment, followed by 𝑛 − 2
days of 2 pill doses, and 1 pill on the final day. Our modelling predicts
that such a dose regime would significantly improve treatment failure
rates compared to the standard fixed dose treatment. However, these
predictions need to be clinically validated.
10
Table 5
Comparison of failures rates 𝑓𝑟 of the best fixed-dose treatments, the best DE-optimised
treatments, and the corresponding extrapolated treatments.

MIC [μg/mL] 8 16 24 32
Total antibiotics [mg] 125 250 400 550
treatment length [days] 7 7 7 7

𝑓𝑟 fixed dose [%] 2.76 ± 0.03 2.74 ± 0.03 1.41 ± 0.02 1.00 ± 0.02
𝑓𝑟 best DE [%] 2.09 ± 0.03 2.06 ± 0.03 1.02 ± 0.02 0.76 ± 0.02
𝑓𝑟 extrapolated [%] 2.00 ± 0.03 1.98 ± 0.03 0.98 ± 0.02 0.71 ± 0.02

MIC [μg/mL] 8 16 24 32
Total antibiotics [mg] 150 300 450 600
Treatment length [days] 8 8 8 8

𝑓𝑟 fixed dose [%] 0.36 ± 0.01 0.38 ± 0.01 0.38 ± 0.01 0.38 ± 0.01
𝑓𝑟 best DE [%] 0.28 ± 0.01 0.27 ± 0.01 0.29 ± 0.01 0.30 ± 0.01
𝑓𝑟 extrapolated [%] 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.01

5. Conclusion

Antimicrobial resistance is a growing global threat to healthcare
and food production. To deal with this complex challenge, a range
of approaches are required, critically including novel strategies to
optimise the use of existing antibiotics. This study uses mathematical
modelling and state-of-the-art evolutionary algorithms for optimising
dosing regimes tailored to bacterial infections with different level of
resistance. We also explored two forms of administering antibiotics
(orally and intravenously), as well as infections with a single strain
and two strains of bacteria. Our formulation encodes dosing regimens
as vectors of real numbers and uses a linear constraint on the total
antibiotic used.

Our main goal was to design optimised regimens with lower failure
rate than the standard fixed-daily dose regimens for the same amount
of antibiotic. The resulting optimised regimes have varying daily doses
and achieve an improved lower failure rate of between 20% and 35%
when compared to fixed-dose regimens with the same amount of drug.
All optimised regimens, for 𝑛 days in duration, start with a high dose
on the first day, followed by 𝑛−2 doses that are roughly similar to the
corresponding fixed-dose regimen, and tapering off with a lower dose
on the final day. The first and last doses vary across experiments. In
most cases, the first dose is approximately 150% of the second dose,
and the final dose is about 50% of the second dose.

A general pattern can thus be extrapolated of how treatments could
be optimised, where the first dose is 3 × 𝑥 mg, followed by 2 × 𝑥 mg
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Table A.1
List of all events for simulating the population of bacteria during treatment where two
strains of bacteria are present. Here, 𝑆 bacteria is more susceptible with a lower MIC
and 𝑅 is more resistant with a higher MIC.

Events Description Bacteria population (𝑆,𝑅)
change

𝑝1 Birth of new S bacteria strain 𝑟𝑆𝑆

𝑝2 Birth of new R bacteria strain 𝑟𝑅𝑅

𝑝3 Death of S bacteria 𝑚𝑆𝑆 +
𝑏𝑆1𝐶

𝑘𝑆
𝑏

𝐶𝑘𝑆
𝑏 + 𝑏𝑘𝑆𝑆2

𝑆

𝑝4 Death of R bacteria 𝑚𝑅𝑅 +
𝑏𝑅1𝐶

𝑘𝑅
𝑏

𝐶𝑘𝑅
𝑏 + 𝑏𝑘𝑅𝑅2

𝑅

𝑝5 S bacteria becomes R due to the
horizontal gene transfer process

𝜃𝑆𝑅

and last dose of 𝑥 mg, where 2 × 𝑥 mg is the standard daily fixed dose
urrently prescribed. It is important to note that different antibiotics
ave different levels of toxicity, however, taking an extra dose of
ntibiotics is unlikely to cause serious harm. It is important to note
hat clinical validation is needed, however that is beyond the scope of
his study.

As an interdisciplinary project, future work can follow several di-
ections. First, a real-world validation of the findings of this study
ould be desirable. Second, the underlying mathematical model can
e extended to incorporate, for example, patient attributes and regi-
ens with multiple drugs. Finally, additional state-of-the-art compu-

ational techniques could be incorporated for managing noise, con-
traints, multiple objectives, and reducing the computational running
imes.

ppendix. Two strains of bacteria — Table

See Table A.1.
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