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Abstract

Explaining the decisions made by population-based metaheuristics can often be con-

sidered difficult due to the stochastic nature of the mechanisms employed by these

optimisation methods. As industries continue to adopt these methods in areas that

increasingly require end-user input and confirmation, the need to explain the internal

decisions being made has grown. In this article, we present our approach to the extrac-

tion of explanation supporting features using trajectory mining. This is achieved

through the application of principal components analysis techniques to identify new

methods of tracking population diversity changes post-runtime. The algorithm search

trajectories were generated by solving a set of benchmark problems with a genetic

algorithm and a univariate estimation of distribution algorithm and retaining all visited

candidate solutions which were then projected to a lower dimensional sub-space. We

also varied the selection pressure placed on high fitness solutions by altering the selec-

tion operators. Our results show that metrics derived from the projected sub-space

algorithm search trajectories are capable of capturing key learning steps and how solu-

tion variable patterns that explain the fitness function may be captured in the principal

component coefficients. A comparative study of variable importance rankings derived

from a surrogate model built on the same dataset was also performed. The results

show that both approaches are capable of identifying key features regarding variable

interactions and their influence on fitness in a complimentary fashion.
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1 | INTRODUCTION

Population-based metaheuristics such as evolutionary algorithms (EA) have seen an increase in applications that involve end-user interactions.

These are typically found in areas such as transport and logistics (Abduljabbar et al., 2019), medical applications (e.g., Ochoa et al., 2020) and engi-

neering (Brownlee et al., 2020). These metaheuristics use high-level search metaphors, often nature-inspired, implemented as complex, non-

deterministic sequences of operations on solution populations, leaving the solution process intractable to explanations based on analogies to

human reasoning. This increase has highlighted the need for the decision processes behind these system to be more understandable and
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interpretable by end-users. This, in turn, may help build a level of trust in the solutions generated by these systems, as seen in conclusions and

recommendations of the public health genetics foundation (Ordish et al., 2020).

The field of explainable artificial intelligence (XAI) aims to develop techniques that enable us to systematically derive knowledge or decision-

making insights from machine learning models. With this adoption of AI methods such as EAs, early studies undertaken help define explainability's

core concepts and taxonomies (Adadi & Berrada, 2018; Arrieta et al., 2020). Numerous definitions of explainability exist, and for the purpose of

this article, we mean it to regard the explanation of otherwise black-box systems.

Interpretability of models and AI systems is key to achieving this goal. As noted by Murdoch et al. (2019), this can be difficult to define but

can be understood broadly as the ‘extraction of relevant knowledge from a machine-learning model concerning relationships either contained in

data or learned by the model’ which also applies to metaheuristics. Two significant metaheuristic approaches are genetic algorithms (GA) and esti-

mation of distribution (EDA) algorithms. Both explore a solution space using a population-based search metaheuristic. As a GA explores the search

space its natural evolution inspired operators are used to evolve from one set of solutions to the next. Each successive population is created

through natural-selection, breeding and mutation of higher (or lower) fitness candidate solutions with an overall aim of improving population fit-

ness until convergence has occurred. In doing so, these populations of solutions represent an implicitly learned interpretation of the structure of

the optimisation problem being solved. The EDA can be considered an iteratively-focused estimation of the distribution of high-value solutions.

Each successive population of solutions is created by the sampling of an explicit probabilistic model of the problem structure, updated based on

the distribution of candidate solutions. Here, problem structure refers to the graphical dependency relationship between solution variables and

their joint influence on fitness value. This has been variously interpreted in the EDA literature through Bayesian, Markov or Gaussian probabilistic

models (Shakya et al., 2012).

While the search processes of these metaheuristics can be easily explained, their non-deterministic nature means that the quality of the end

solutions returned cannot be predicted or explained. We seek to mine features from these processes that are explanatory of why the final set of

solutions arrived at by these metaheuristics are of high quality.

For both GAs and EDAs, each generation of solutions created can be considered to contain implicit knowledge gained by an algorithm at spe-

cific points in the optimisation processes. In this article, we collect all visited solutions in the search space, separated by generation and optimisa-

tion run. Each generation can be said to represent the general position of the algorithm as it samples multiple non-distinct solutions. Using this

method, we can define a trajectory as a collection of solution populations, ordered by generation, representing the movement of the search algo-

rithm over the course of an optimisation run.

We hypothesize that the trajectories generated in this process can be mined for valuable information regarding population changes that can

aid in generating explanations for our end-user target audience of researchers and algorithm developers. Our approach involves the projection of

the high-dimension solutions space to a lower dimension space that can be used to generate more easily understood visualisations and provide a

possible source of new metrics. This is accomplished through the application of principal components analysis (PCA). The results can then be used

to generate explanations with the aim of increasing an end-user understanding of the problem being solved and the process by which the algo-

rithms have arrived at the provided set of solutions. We also explore a further method of explanation support involving the use of surrogate

modelling to derive feature importance values from the population of solutions. This process attempts to describe the variation in the internal fit-

ness model generated by a surrogate over the course of an optimisation run to isolate feature importance.

The rest of the article is structured as follows. Section 2 highlights related work in the area of search trajectory analysis through applied visuali-

sation techniques. Section 3 outlines the concept of entropic divergence and how this is used as measure of population diversity change. This is

followed by the background method used to translate the algorithm trajectories into a lower dimension space as well as the new metrics derived

from that space for comparison to the entropic divergence measurement. Section 4 outlines the experimental setup that covers the algorithms

used, the problems they were used to solve and the construction of a surrogate model based on the metaheuristic trajectories. Section 5 highlights

the results and performance between the newly created population metrics and the entropic divergence are shown and discussed. This section also

highlights the findings regarding problem structure, post-PCA projection variable loadings, and a comparison of the PCA loadings with the results

of mining surrogate models. Section 6 sets out our conclusions based on the results of these tests and outlines planned continuations of this work.

2 | RELATED WORK

In this section, we review work related to the use of algorithm search trajectories in the XAI field in two categories: the visualisation of search tra-

jectories using dimension reduction and analysis of the search landscape, and the deriving of feature importances from generated solutions.

2.1 | Visualisation

Previous work covering the visualisation of algorithm trajectories using PCA can be seen in Collins (2003). In this work, PCA is used to attempt to

attribute algorithm design to the search path taken and compare algorithm solution quality. Other examples of work involving the exploration of
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algorithm paths via dimension reduction include work by Pohlheim (2006) in which Sammon mapping is explored as a method of reduction for

visualisation and Michalak (2019) in which Euclidean embedding is applied. These works focus on the visualisation of an algorithm through the

search space as a means of exploration and how these visualisations may, in some way, aid in the understating of the search methods employed.

Their aims are somewhat similar to those in this article however our approaches also have the potential to be used in extracting features from

algorithm paths.

Landscape analysis, a survey of which can be seen in Malan (2021), can be considered a key set of tools for the generation of explanations

regarding algorithm behaviour. Recent methods of visualisation and analysis of the landscape involve the creation of search trajectory networks

(Ochoa et al., 2021a; 2021b) which highlight algorithm behavioural differences through their search of the problem landscape using Local Optima

Networks. These networks chart the ability of a search algorithm to move from one local optimum or basin of attraction to another. By doing so,

algorithm search behaviours can be compared by reducing the search landscape to a connected network of visited local optima. The concept of

STNs has since been extended to multi-objective evolutionary algorithms (Lavinas et al., 2022). More recently, a move towards ‘explainable
landscape-aware optimization’ and analysis (Trajanov et al., 2021; 2022) developments have seen a move towards the prediction of algorithm per-

formance based on landscape analysis.

2.2 | Feature importance

The method of feature extraction explored in this article is the use of surrogate models (Jin, 2011). This involves the creation of an explicit model

of the solution populations to attempt to capture any sensitivities the fitness function has to specific problem variables. The methods used in this

article are similar to those of Singh et al. (2022) and Wallace et al. (2021) in which feature importance is captured by a surrogate model trained at

various stages of a search trajectory. These features can then help support explanations by highlighting learning steps in the algorithm run and

identifying solution variable patterns that describe the fitness function. Further approaches that aim to develop some level of understanding

regarding algorithm behaviour include sensitivity analysis (SA). In SA, the aim is to measure how different values of an independent variable

impact a particular dependent variable under a given set of assumptions. Applications of this method can be seen in Cortez and Embrechts (2013)

and Wright et al. (2012), In which SA is used to calculate solution fitness sensitivity to changes in variable values. Similarly, SA and visualisation

techniques have been used together to provide valuable insights into feature importance, making models more interpretable and transparent

(Cortez & Embrechts, 2011; 2013). The introduced visualisation techniques aim to further enhance the understanding of these models.

GAs, however, are often utilised as tools to enhance XAI techniques such in fuzzy logic systems Duygu Arbatli and Levent Akin (1997) and

counterfactual creation Sharma et al. (2020) and are rarely the focus of such analyses. Thus, the contributions of this article are as follows:

1. A proposal to use PCA to mine and visualise explanations of metaheuristic behaviour from search trajectories.

2. Application of the approach to two metaheuristics (GA and EDA).

3. Analysis of the effects of algorithm configuration choice on recovered features by varying the selection operators used.

4. Comparison with a related approach to mining explanations, surrogate modelling, that generates fitness models on the same algorithmic runs.

3 | FEATURE EXTRACTION

As higher quality solutions are found by the population-based metaheuristics used in this article, population diversity tends to reduce as the sea-

rch converges on a set of optimal or near-optimal solutions. As the search process continues, key learning's regarding the fitness function are rep-

resented implicitly by the populations of solutions. By monitoring the change in population diversity throughout the optimisation runs, we aim to

generate a set of features capable of relating variable patterns to the fitness function. There exist several metrics used to measure the change in

population diversity over the course of an optimisation run by these search methods. In Hien and Hoai (2006) a brief review of many of these

metrics can be found. The metrics covered include the hamming distance, the sum of pair-wise comparison in the number of variable differences

between two solutions and moment of inertia Morrison & Jong, 2001. This provides a ‘…single method of computing population diversity that is

computationally more efficient than normal pair-wise diversity measures for medium and large sized EA problems’. An alternative method for

population diversity measurement is the Kullback–Leibler entropic divergence (KLd) distance measure. This measure is based around the concept

of information gain and Shannon's entropy (Shannon, 1948) in which ‘…the entropy of a random variable is defined in terms of its probability dis-

tribution’ (Cutello et al., 2010). The authors of that work also note that this method has the potential to quantify the transition from the explora-

tion to exploitation. The ability to associate changes in energy to the generation of higher quality solutions by an algorithm supports our search

for explanatory features and so KLd was selected for this article.
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3.1 | Entropic divergence

The Kullback–Leibler entropic divergence is a population diversity distance as defined Equation (1).

KLdðPkQÞ¼
X
x � X

PðxÞlog PðtÞðxÞ
Qðt0ÞðxÞ

 !
, ð1Þ

where P and Q are vectors of marginal probabilities for two different populations in the trajectory (MacKay, 2003).

Using Equation (1) it is possible to track the information gain from the initial population generated by the algorithms as QðxÞ remains constant

as the probability vector of the generation t¼0. This metric is called the ‘global learning’ and it measures the total information gain from initial

population to the population at any given t. The expected behaviour for this metric is to increase over time until a ‘steady state’ is arrived at.

It is also shown in Cutello et al. (2010) that it is possible to use this equation to measure the information gain between two consecutive

populations where QðiÞðxÞ and Pðiþ1ÞðxÞ are used. This is known as ‘local learning’ with the values calculated expected to increase until the search

has reached a near-optimal solution. At this point, as the remaining population diversity is reduced and the population of solutions converges, the

‘local’ information gain values should show a bell-curve or peak. This peak may show the point at which the algorithm transitions from primarily

exploring the search space to utilising implicit problem structure to improve solution quality. When this happens, it is expected that the values will

decrease as the diversity within the population decreases.

3.2 | Principal components analysis

The benchmark problems used in this article are comprised of relatively simple, low-level variable interactions. To generate a large enough dataset

consisting of a sufficient number of generations before convergence a problem size of 40 was selected. As our aim is to detect features with some

explanatory power relating to the fitness function, PCA was used to for the decomposition of these search trajectories. This decomposition

allowed us to reduce the overall dimensionality of the resulting datasets for visualisation purposes. The process of reducing the dimensionality of

the algorithm trajectory population datasets can be achieved through the use of PCA. This allows us to project the higher dimensional space

of the solutions to a three-dimensional subspace as ‘PCA produces linear combinations of the original variables to generate the axes, also known

as principal components, or PCs’ (Holland, 2019).

The components are an mutually orthogonal set of vectors calculated such that the first will account for the maximum possible variation in

the original data. Each subsequent component will account for the next highest possible variation. This can be continued until the number of com-

ponents is equal to the dimensions of the original data. A summary of the calculation of linear combination and weights from Holland (2019) can

be seen in Equation (2).

PC1 ¼ a11X1þa12X2þ���a1pXp

PC1 ¼ at1X

PC ¼XA:

ð2Þ

Here we show how a component is created from the linear combination of the variables in a solution and the resulting eigenvectors. In

Equation (2), X is the matrix of variables in a solution and matrix Adenotes the matrix of eigenvectors of the PCA decomposition. The elements of

the matrix A are also known as the ‘loadings.’ These describe the contribution each variable has to a given component. These values can be either

positive or negative, representing the correlation between the component and variable. The larger the absolute value of the loading, the stronger

that relationship is. This feature of the components can be used to help explain aspects of the optimisation problem solved. The resulting datasets

were then mined with the intent of finding these features.

3.3 | Sub-space derived features

3.3.1 | Population cluster centres

The dimensionality of the dataset is reduced through the projection of the data into a lower dimension set based on the principal components cal-

culated using Equation (2). In this article, we project into a three-dimensional sub-space to help visualise the population as a cluster. This is

achieved by creating a three-dimensional subspace from the first three components calculated. Figure 1a is an example of a single search trajec-

tory visualisation post-PCA projection. Each point in Figure 1a represents a solution. The centre of each population of solutions can be found by
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calculating the point that minimizes the sum of squared Euclidean distances between itself and each point in the set. This process results in a set

of points in 3D space that represents the algorithm's search trajectory from the initial population to the final population as shown in Figure 1b,c is

an illustrative example of 100 search trajectories presented in the same subspace. Here, the centres of each population are used as in Figure 1b,

with each colour representing a separate optimisation run and resulting search trajectory.

It is important to note that this method does not chart the algorithm trajectory in objective space and does not explicitly reflect the fitness

landscape but instead can be used to measure the direction and magnitude of changes in population diversity after being projected into this

subspace.

3.3.2 | Angle from origin

The projection of the search trajectories into the lower dimension, PCA derived subspace results in a series of population centres or ‘centroids.’
These represent the overall position of the a given generation of solutions in the subspace. Each optimisation run will generate a series of these

centroids, ordered by generation number, as seen in Figure 1b. As these sets are ordered by generation number, it is possible to calculate features

that depend on this ordering, much like the local and global information gain values. The angle from trajectory origin measures the angle between

the centroid of the initial starting population in the trajectory and each subsequent population that was created. Each of the two points in the

space are represented by the centroids coordinates as a vector of (PC1, PC2, PC3) coefficients in place of x, y and z coordinates. In order to calcu-

late the acute angle α between two vectors we use the inverse cosine of vector products as seen in Equation (3). It is also possible to calculate the

angle between clusters by altering Equation (3) using Ci and Ciþ1, where (i< ¼0< ¼maxGen). This allows for the angle between consecutive

populations to be calculated.

α ¼ arccos
C0 �Ci

C0k k Cik k
� �

C0,Ci ¼ Cluster Centroids ðx; y; zÞ:
ð3Þ

4 | EXPERIMENTAL SETUP

Detailed in this section are the parameters used to generate the necessary datasets for analysis for the purpose of feature extraction as outlined

in Section 3. Here we highlight the selection criteria used, algorithm run settings, problems sets tested and details covering the generation and

mining of surrogate models.

4.1 | Selection methods

The selection methods used by GAs and other EAs determine which subset of solutions from a population are used to generate the next popula-

tion. It is possible that the selection methods used by the algorithms could be attributed to some level of variable dependency detected in the

F IGURE 1 Illustrative example of algorithm trajectory projected along top three principal components. (a) Single run cloud (b) single run
centres (c) 100 run centres.

FYVIE ET AL. 5 of 23
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results. To avoid bias in the results due to a single selection method being used, it was decided to gather results using three selection profiles as

seen in Table 1. This was done to use methods of differing selection pressure to determine the potential impact of the selection operator on the

results.

The selection methods used tend to favour solutions with a higher fitness than those with a lower fitness value. Because of this it is possible

that certain variable dependencies would only be captured due to the selection method behaviour. To address this, the selection pressure placed

on high fitness solutions was varied by applying both a top 50% and 20% selection criteria in the truncation selection method as well as a tourna-

ment size of 5 in the tournament selection method. This provided a set of results containing a variety of selection pressure values to be used in

determining the specific impact of the selection operator in the experiments.

4.2 | Algorithm runs

Two population-based solvers were selected to generate a series of population trajectories for use in this study. These were a GA and a modified

population based incremental learning (PBIL) algorithm (Baluja, 2002; Baluja & Caruana, 1995) in which a negative mutation rate and mutation

shift value is introduced. These algorithms were selected for the purpose of comparing the results of a univariate solver and a more traditional GA

on problems with different structure. Each algorithm was run on the set of outlined problems in order to generate the trajectories used in the

analysis phase of this trial.

A length of 40 bits was selected for all problems being solved. This was done due to the relative simplicity of the optimisation problems being

used in this article. A length of 40 bits allowed for sufficiently long optimisation runs to generated enough populations of solutions for our analy-

sis. A population size of 100 was selected to provide a large enough selection pool for all selection methods trialled. Each optimisation run would

then run for a total of 100 generations. With the aim of mining features from a large number of search trajectories a total of 100 optimisation runs

for each algorithm, problem and selection combination was used. The aim of this article is to mine features capable of relating variable values and

fitness from the search trajectories. Due to this, no further attempts are made to tune the run-time parameters of the algorithms beyond some

preliminary runs as the algorithm specifics are not the focus of this article.

4.2.1 | Genetic algorithm

The GA used was an adaptation of the canonical genetic algorithm (Holland, 1992). Figure 2 shows the main steps involved as the GA generates

new populations during an optimisation run.

Table 2 outlines the values used in the running of the GA during these experiments. The GA-specific run setting of mutation rate was set to

0.005 after some preliminary tuning runs.

P shows the number of solutions in each population. maxGen is the maximum number of generations before termination. mutRate is the

mutation rate within the GA. Selection is the selection method used within the GA for solution comparison and reproduction. Crossover is the

crossover type used in this trial with a rate of 1 and so occurs each generation. N is the problem length. runs is the number of runs for each prob-

lem the GA ran for.

4.2.2 | Population based incremental learning

PBIL is a form of EDA. The probability vector is updated and mutated each generation as seen in Equations (4) and (5):

pðX1,…,XNÞ¼
YN
i¼1

pðXiÞ, ð4Þ

TABLE 1 Selection operators.

Selection type Pool size Relative selection pressure

Truncation 20% Top 20% by fitness High

Truncation 50% Top 50% by fitness Low

Tournament Randomly selected 5 High

6 of 23 FYVIE ET AL.
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pðXiÞ¼ 1
N

XN
j¼1

xij: ð5Þ

Here the vector of marginal probabilities PV ¼ðpðX1Þ,…,pðXnÞÞ is created by calculating the arithmetic mean of each variable X in a population

of size N. As the solutions are comprised of bit strings we will see that values will range from 0 to 1.

Table 3 outlines the values used for the PBIL algorithm, seen in Algorithm 1, in this trial. Here, N is the population size, additional to these,

the PBIL used a mutShift value that was applied to mutated probability vector values. learnRate is the learning rate of the algorithm.

The algorithm-specific run settings of mutation rate, mutation shift, learning rate and negative learning rate were selected based on the

results of Baluja (1994).

4.3 | Benchmark problems

4.3.1 | The 1D checkerboard

The 1D checkerboard function scores the chromosome based on the sum of adjacent variables that do not share the same value Baluja &

Davies, 1997. The function is seen here in Equation (6).

CHECKl
1DðxÞ¼

Xl�2

i¼0

1, xi ≠ xiþ1

0, xi ¼ xiþ1

� �
: ð6Þ

Because the function scores only adjacent variables it is possible to have two possible global maxima. As an example, for a bit string of length

5 the two possible would be [01010] and [10101]. The implementation of the problem used in this experiment also checks the first and last allele

to check if they match. This allows for a total fitness value equal to the bit-string length for an ideal solution.

4.3.2 | The royal road

The royal road function scores chromosomes based on collections of variable values based on a specified set of schema that the solution must ful-

fil in order to score an optimal value (Forrest & Mitchell, 1993). below, Equation (7) specifies the fitness function for the royal road problem with

a schema block size of 5, as used in this experiment.

F IGURE 2 Genetic algorithm operators.

TABLE 2 GA run specifications.

P N runs maxGen mutRate Selection Crossover

100 40 100 100 0.005 Tournament and truncation Random 1-Point

TABLE 3 PBIL run specifications.

P N runs maxGen mutRate mutShift learnRate Selection

100 40 100 100 0.005 0.05 0.1 Tournament and truncation

FYVIE ET AL. 7 of 23

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13494 by U

niversity O
f Stirling Sonia W

, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



R1ðxÞ¼
X5
i¼1

δiðxÞoðsiÞ; where δiðxÞ¼
1 if x� si
0 otherwise

� �
: ð7Þ

As noted by Forrest and Mitchell (1993) the equation represents the fitness function, such that R1 is a sum of terms relating to partially speci-

fied schema. The schemata are subsets of solutions that match the partial specification, si. As an example, one partially specified schema with a

size of 5 could be represented as [11111***** …] where unspecified members are denoted by ‘*’
A given bit-string x is an instance of a specific schema s,x� s if x matches s in the defined positions within that schema. oðsiÞ defines the order

of si which is the the number of defined bits in si. The royal road function was designed to ‘capture one landscape feature of particular relevance

to GAs: the presence of fit low-order building blocks that recombine to produce fitter, higher-order building blocks’ (Mitchell et al., 1991).

4.3.3 | The Trap-5

The Trap-5 concatenated problem is designed to be intentionally deceptive (Goldberg, 1989a; 1989b), such that they ‘deceive evolutionary algo-

rithms into converging on a local optimum. This is particularly a problem for algorithms which do not consider interactions between variables’
(Brownlee, 2009). As with the royal road problem, the bit-strings are partitioned into blocks and their fitness scored separately. Seen in

Equation (8a) is the function of a trap of order k.

fðxÞ¼
Xn=k
i¼1

trapkðxbiþ1
þ�� �þxbiþk

Þ, ð8aÞ

trapkðuÞ¼ fhigh if u¼ k, f low�u
f low
k�1

otherwise

� �
: ð8bÞ

Blocks within the bit-string are scored according to the fitness function in Equation (8b). A Trap5 problem with a bit-string length of 10 would

have the values n=10, k=5, fhigh = 5 and f low = 4. The further from the goal of each trap containing five 1's, the higher the fitness value, with only

a maximum achieved when the whole trap is comprised of 1s, leading the algorithm away from the optimal value.

Algorithm 1 Population-based incremental learning (PBIL).
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4.4 | Mining surrogate models

Our experiments also compare with another approach to explaining solution quality: mining surrogate models as proposed by Wallace et al.

(2021). We briefly recap the approach here. Surrogate models (Brownlee et al., 2015; Jin, 2011) are usually used to speed up an NDA by replicat-

ing a costly true function and replacing calls to it with calls to a much cheaper model. Wallace et al. (2021) noted that the surrogate represents an

explicit model of the population, and proposed mining this model to capture the sensitivity of the objective function to the problem variables. The

idea is that the model is biased by the population of the NDA, and so represents another view of the algorithm's understanding of the problem.

For the experiments presented here, the final population of each algorithm's run was used as training data for a support vector regression

(SVR) model, implemented in scikit-learn (version 1.0.2). We used the default parameter settings for the SVR model, the model input features are

simply the problem variables X and the target for prediction is fitness fðXÞ. The purpose is to replicate the surrogate model that would be obtained

at the end of an algorithm's run. The best (highest fitness) solution, which we refer to as the seed, is then taken from the population and evaluated

against this model. The Hamming-1 neighbourhood of this solution is also evaluated against the surrogate, allowing us to determine the change in

surrogate fitness due to mutating each variable in the solution. In a slight modification of the procedure in Wallace et al. (2021), we also set the

sign of the ‘importance’ measure to be negative if the corresponding bit in the starting seed solution was 1: this provides an indication of

the direction of the relationship between that variable and fitness. This gives us a measure of both each variable's importance, and its correlation

with fitness, in the vicinity of the high-fitness solution. More formally, this probing process is as shown in Algorithm 2.

In the results section, we report the mean change in surrogate fitness for each variable, aggregated over the 100 repeated runs of each algo-

rithm. Note that a separate surrogate model was constructed and probed for each of the repeated runs.

5 | RESULTS

We hypothesize that is it possible to derive features from algorithm trajectories that can aid in generating explanations for end-users similar in

nature to existing known metrics such as the Kullback–Leibler entropic divergence values. For two population-based NDAs—a GA and a univari-

ate population-based incremental learner—we generated a total of 100 algorithm trajectories on each of the three test function, selection opera-

tor pairs used. These trajectories were transformed using PCA to allow the projection of the populations into a lower dimension space for the

purpose of visualisation and feature extraction.

5.1 | Global information gain and angle from origin

The results of the comparison of global information and angle from origin values calculated for the Trap 5 function are shown in Figure 3 for the GA

and Figure 4 for the PBIL. These are split by selection operator and have been scaled between 0.0 and 1.0 to allow for a direct comparison of the

Algorithm 2 Method for probing variables in a solution with respect to the surrogate fitness function

FYVIE ET AL. 9 of 23
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behaviour rather than the values themselves. These figures show that angle from origin values in both algorithms across selection operators closely

follow that of the global information gain. Both metrics detect the increase in information gained as the algorithms solve the supplied problem. This

behaviour is closely matched in the results for both the 1D checker and royal road problems, as seen in Appendix A.1 (Figures A1 and A2) and

Appendix A.2 (Figures A3 and A4) for both algorithms. This is reflected in the results shown in Table 4 in which all have strongly correlated values.

5.2 | Local information gain and inter-cluster angle

The local information gain and inter-cluster angle comparison results are more varied than those of the global information and appear to be show-

ing that learning behaviour differs between algorithms on the same problem and selection operator. Shown in Figures 5 and 6 are the results for

the GA and PBIL on the Trap 5 problem respectively. The GA results show a distinct lag of approximately 10 generations before detecting the

maximum angle when compared to the local information gain in the Truncation-20 and tournament results. The Truncation-50 results show that

the information gain and inter-cluster angle values take considerably longer to peak before trending towards 0, showing a significantly different

behaviour to that of the other two selection operators. These results are reflected in the wider range of correlation coefficients calculated for the

Truncation-50 selection seen in Table 4.

The inter-cluster angle results calculated for the populations generated by the PBIL do not share the same pattern of behaviour as the local

information gain. The results show a peak approximately 25 to 30 generations later than the local information gain and so these events do not

co-occur at the same point in the trajectory in all problems tested. This difference in behaviour is reflected in the wider range of correlation coeffi-

cients calculated and shown in Table 4. This is seen across all selection operator results and is highly similar across all problems. The results for

the 1D checker and royal road for both GA and PBIL are shown in Appendix A.3 (Figures A5 and A6) and Appendix A.4 (Figures A7 and A8).

5.3 | Correlation

Table 4 displays the Spearman correlation coefficients of local and global information gain to the inter-cluster and angle from origin features

extracted. Global information shows a strong positive correlation to the angle from origin feature with a range of 0.88 to 0.99 in the GA results

F IGURE 3 GA global information versus PCA angles on Trap5 by selection. (a) GA Trap5 Trunc20 mean global (b) GA Trap5 Trunc50 mean
global (c) GA Trap5 tour mean global.

F IGURE 4 PBIL global information versus PCA angles on Trap5 by selection. (a) PBIL Trap5 Trunc20 mean global (b) PBIL Trap5 Trunc50
mean global (c) PBIL Trap5 tour mean global.
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and 0.88 to 1.0 in the PBIL across all problems and selection operators. Local information correlation values show a higher degree of variation in

both positive and negative directions. The PBIL results span �0.86 to 0.39 in the 1D checkerboard values, giving a range of 1.25. The GA results

for the Trap5 problem show both positive and negative correction with values of �0.69 to 0.83, a range of 1.52.

The results show a clear difference between the two algorithms when local information gain is compared to the inter-cluster-angle results.

This may be due to the fact that the PBIL increments the probabilistic model gradually over successive populations so local information gain accu-

mulates before it is reflected in inter-cluster angle change. As a GA can be considered a Markov process, the probability of each population is only

dependant to the current state of the system. This can also be seen when global information gain is compared to angle from origin. The PBIL

reaches maximum global information later in the trajectory than the GA with a shallower, almost linear ascent in these trials. The PBIL reaches a

F IGURE 5 GA local information versus PCA angles on Trap5 by selection. (a) GA Trap5 Trunc20 mean local (b) GA Trap5 Trunc50 mean local
(c) GA Trap5 tour mean local.

F IGURE 6 PBIL local information versus PCA angles on Trap5 by selection. (a) PBIL Trap5 Trunc20 mean local (b) PBIL Trap5 Trunc50 mean
local (c) PBIL Trap5 tour mean local.

TABLE 4 Spearman correlation coefficient.

PBIL GA

Problem Selection Local to inter-cluster Global to origin Local to inter-cluster Global to origin

Trap5 Truncation 20% �0.73 1.0 �0.69 0.99

Truncation 50% �0.78 1.0 0.83 0.98

Tournament 5 �0.72 0.97 0.36 0.96

1D checkerboard Truncation 20% �0.86 1.0 0.94 0.88

Truncation 50% 0.39 0.88 0.39 0.88

Tournament 5 �0.75 1.0 0.5 0.99

Royal road Truncation 20% �0.83 1.0 0.77 0.98

Truncation 50% �0.79 1.0 0.23 0.99

Tournament 5 �0.81 1.0 0.82 0.97

Note: Bold values indicate where the p-value associated with the correlation was <0:05.
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point at which global information gain stops increasing late in the optimisation run whereas the GA has a steeper global information gain rate,

reaching the maximum value between generations 10 and 20. This may be due to the GA taking a more varied path across the search space than

the PBIL which tends to have less varied performance. Together, these show that it is possible to detect differences in algorithm behaviour over

the same optimisation problems through the differences in both sets of results.

5.4 | PCA explained variation

The values in Table 5 show the mean percentage of variance in the original data explained by the first three principal components, broken down

by algorithm and problem.

The results show that for the PBIL, total variation explained by the first three principal components ranged 22% for Truncation-50 and 29%

for Truncation-20. Similar values are found in all three problems in the PBIL results with Truncation 50 showing the lowest value and Truncation

20 showing the highest, closely followed by Tournament 5.

The explained variation results for the GA show a similar pattern to that of the PBIL with the gap between Truncation-20 and tournament

values smaller, with the tournament having a marginally higher value of 41% to Truncation-20's 40% in the royal road problem results.

5.5 | Principal component loadings

The results of plotting the mean loadings calculated for each algorithm and problem pair can be seen in Figures 7–12. The Figures 7–9 contain

the plotted results of the GA on each of the three test problems and Figures 10–12 show those of the PBIL.

The results for the Trap5 problem are shown in Figures 7 and 10 for the GA and PBIL respectively. Across all three selection methods, the

GA results show all 8 blocks of 5 consecutive bits possess similar values and are distinct from the next block. This reflects the expected fitness

function structure of the Trap5 problem in which each block of 5 bits requires the same value of 1 to achieve the highest fitness of 5. However, if

that block is comprised of four 0's and one 1, then a score of 4 is achieved. The results for the Trap5 problem for the PBIL however, do not show

any strong relation to the expected fitness function structure across the selection methods. Since PBIL is univariate, it cannot detect multivariate

interactions between the bits in each block, preventing this structure from being detected.

TABLE 5 PCA variance explained by first three components.

Explained variance %

Algorithm Problem Selection PC1 PC2 PC3 Total

PBIL Trap5 Truncation 20% 20 5 3 29

Truncation 50% 13 5 4 22

Tournament 5 18 5 3 26

Checker Truncation 20% 19 5 3 27

Truncation 50% 13 5 4 22

Tournament 5 17 5 3 26

Royal road Truncation 20% 18 5 3 27

Truncation 50% 13 5 4 22

Tournament 5 16 5 3 25

GA Trap5 Truncation 20% 33 8 6 47

Truncation 50% 27 8 5 40

Tournament 5 33 8 5 47

Checker Truncation 20% 29 8 6 43

Truncation 50% 24 7 6 37

Tournament 5 28 8 6 42

Royal road Truncation 20% 27 7 5 40

Truncation 50% 25 7 5 36

Tournament 5 28 8 5 41
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The 1D checkerboard results, shown in Figures 8 and 11, show that the recorded loadings reflect the patterns of the PCA coefficients. In

those plots, we can see that adjacent variables in the solutions discovered by the GA have opposing values. This pattern is also observed in the

results of the PBIL on the same 1D checkerboard problem seen in Figure 11. It is important to note that the 1D checkerboard problem has two

global optimal solutions. The loadings recorded match closely the mathematical structure of the fitness functions such that adjacent values in the

bitstring should take opposing values. This is due to both global optimal solutions being binary complements of each other. Both algorithms how-

ever show instances in which the loadings did not conform to the expected pattern, showing a flip in the alternating sequence at three or more

points in the bit-string. The Truncation-50 results for the PBIL (Figure 11b) show the highest number of non-conformities to this expected struc-

ture. The 1D checkerboard results show that some bivariate interaction was detected but this will be accidental.

F IGURE 7 GA mean loading values information versus PCA angles on Trap5 by selection. (a) GA Trap5 Trunc20 mean loading (b) GA Trap5
Trunc50 mean loading (c) GA Trap5 tour mean loading.

F IGURE 8 GA mean loading values information versus PCA angles on 1D checkerboard by selection. (a) GA 1DChecker Trunc20 mean
loading (b) GA 1DChecker Trunc50 mean loading (c) GA 1DChecker tour mean loading.

F IGURE 9 GA mean loading values information versus PCA angles on royal road by selection. (a) GA royal road Trunc20 mean loading (b) GA
royal road Trunc50 mean loading (c) GA royal road tour mean loading.
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The results of the royal road problem are shown in Figure 9 for the GA and 12 for the PBIL. In this problem, like the Trap5 problem, each

block of 5 bits requires the same value of 1 to achieve the best fitness however a fitness of 0 is assigned to any other combination of values in

each block. The GA results show some partial problem structure detection, with consecutive blocks of 5 bits having similar values that do not

match the next blocks. There are, however, only a few instances of this occurring. The PBIL results do not show any clear pattern that would

match the expected structure defined by the fitness function. These results show that the algorithm trajectories reflect the simpler features of the

problem structure that the algorithms have learned but the higher-order features are less likely to be recovered.

5.6 | Surrogate mining

We now consider the results of mining surrogates fitted to the final population of each of the algorithm runs. Each plot in Figures 13–18 shows

the mean contribution to surrogate fitness for each variable, over the 100 surrogates constructed from the final population of each repeated run

F IGURE 11 PBIL mean loading values information versus PCA angles on 1D checkerboard by selection. (a) PBIL 1DChecker Trunc20 mean
loading (b) PBIL 1DChecker Trunc50 mean loading (c) PBIL 1DChecker tour mean loading.

F IGURE 12 PBIL mean loading values information versus PCA angles on royal road by selection. (a) PBIL 1DChecker Trunc20 mean loading

(b) PBIL 1DChecker Trunc50 mean loading (c) PBIL 1DChecker tour mean loading.

F IGURE 10 PBIL mean loading values information versus PCA angles on Trap5 by selection. (a) PBIL Trap5 Trunc20 mean loading (b) PBIL
Trap5 Trunc50 mean loading (c) PBIL Trap5 tour mean loading.
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of the algorithm. Note that positive values indicate that the optimal value was a 0 and negative values indicate that it was a 1 (we have chosen

this way round to match the results more easily with the PCA loadings). We observe that the surrogate mining approach has also picked up key

characteristics of the problem; but with some differences. For Trap5, surrogate mining (Figures 13 and 16 and Figures 7 and 10) has found all vari-

ables to be equal in importance, with the ideal value for each being a 1. The groupings are not visible because, although the surrogate is trained

on the whole population, the mining procedure probes variables in isolation. In contrast, the PCA loadings reflect that some sub-optimal members

of the final population have groups set to the locally-optimal 0. For royal road (Figures 15 and 18), the relative importance of variables in each

problem is approximately the same, as was the case with the PCA loadings. Here, the populations have largely converged to set of solutions in

which the variables have the value of 1. This is reflected in the loadings. For 1D checkerboard, both approaches show the chain pattern of alter-

nating bits. Different weights are associated with each variable (i.e., some appear to contribute more than others to fitness), though the overall

F IGURE 14 GA contribution to surrogate fitness per variable on 1D checkerboard by selection. (a) GA 1DChecker Trunc20 contribution to
surrogate fitness per variable (b) GA 1DChecker Trunc50 contribution to surrogate fitness per variable (c) GA 1DChecker tour contribution to
surrogate fitness per variable.

F IGURE 13 GA contribution to surrogate fitness per variable on Trap5 by selection. (a) GA Trap5 Trunc20 contribution to surrogate fitness
per variable (b) GA Trap5 Trunc50 contribution to surrogate fitness per variable (c) GA Trap5 tour contribution to surrogate fitness per variable.

F IGURE 15 GA contribution to surrogate fitness per variable on royal road by selection. (a) GA 1DChecker Trunc20 contribution to
surrogate fitness per variable (b) GA 1DChecker Trunc50 contribution to surrogate fitness per variable (c) GA 1DChecker tour contribution to
surrogate fitness per variable.
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pattern of these weights is similar between the PCA loadings and the surrogate mining. The 1D checkerboard problem does not actually have the

property of differing variable contributions to fitness as all bits contribute equally to the fitness function. Once the algorithm has begun to assem-

ble chains of alternating sequences, however, their contribution may begin to vary. Bits within those sequences will contribute more as mutating

them will drop two points of fitness (a point for the variable either side of the one being mutated). As such, the explanatory methods have rev-

ealed that the population has begun to detect the key component of the problem. The less clear patterns for PBIL on 1D checkerboard again

reveal that algorithm's inability to capture the variable interactions that are needed to solved the problem efficiently.

A visual comparison of the results from the PCA and surrogate mining approaches suggests that both identify similar characteristics of the

optimal solutions. In order to determine more precisely how similar the results are we now also consider a quantitative comparison of the

F IGURE 16 PBIL contribution to surrogate fitness per variable on Trap5 by selection. (a) PBIL Trap5 Trunc20 contribution to surrogate
fitness per variable (b) PBIL Trap5 Trunc50 contribution to surrogate fitness per variable (c) PBIL Trap5 tour contribution to surrogate fitness per
variable.

F IGURE 17 PBIL contribution to surrogate fitness per variable on 1D checkerboard by selection. (a) PBIL 1DChecker Trunc20 contribution
to surrogate fitness per variable (b) PBIL 1DChecker Trunc50 contribution to surrogate fitness per variable (c) PBIL 1DChecker tour contribution
to surrogate fitness per variable.

F IGURE 18 PBIL contribution to surrogate fitness per variable on royal road by selection. (a) PBIL royal road Trunc20 mean loading (b) PBIL
royal road Trunc50 mean loading (c) PBIL royal road tour mean loading.
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‘importance’ values for each variable derived from the PCA loadings and the surrogate mining approach. For each problem and algorithm, we

computed the Spearman rank correlation between the PCA loading values and the contributions to surrogate fitness for all variables. The correla-

tion results can be seen in Table 6. Most of the correlations are strong and positive, indicating that the overall trends in variable importance identi-

fied by both approaches are similar. That is, explanations generated by the PCA approach and those generated by the surrogate mining approach

are similar enough to suggest that they are coming from the problem rather than artefacts of the explanation approaches themselves. This adds

some confidence that both approaches are identifying something fundamental about the problem. We suspect that the lower values for PBIL are

due to the more heavily converged population when using a high selective pressure, causing the surrogate to fit less well.

The two approaches give a slightly different perspective: the patterns seen for the surrogate mining approach correspond more closely to our

intuitive understanding of the problems (especially for Trap5), but the patterns seen in the PCA loadings reflect the variation in the population

itself. There is a broader philosophical question around whether the explanations for the optimisation problem or the particular solver are more

useful: we suggest that both have an important role to play in bringing insight into the optimisation results. That the approaches are largely in

agreement about the contribution of each variable to fitness provides some measure of confidence that both approaches are providing some

insight into the algorithm's choice of solution.

6 | CONCLUSIONS

In this article, we presented the results of the application of PCA to the trajectories created by two population-based search metaheuristics. This

was done to mine features that can enrich explanations regarding how these algorithms traverse the search space and present significant solution

features detected by the algorithms. We generated a collection of algorithm trajectories by solving a set of benchmark problems with a GA and a

modified PBIL algorithm and projected the resulting trajectories into a lower-dimensional space through the application of PCA. This process

resulted in a dataset that was mined using a novel set of angular-based metrics. The final generations of these trajectories were also used to cre-

ate a surrogate model with the aim of mining features related to the sensitivity of the objective function to the problem variables.

Our evaluation of these metrics when compared to the Kullback–Leibler entropic divergence measure of both local information and global

information gain shows that there is potential to capture a similar level of detail regarding the global information learned. These metrics were used

to detect differing algorithm behaviour on the same problems as seen between the PBIL and GA in the inter-cluster angle values. In this evalua-

tion, a set of selection methods was introduced to monitor the effect of differing levels of selection pressure on the derived and established met-

rics. The results show that the GA is considerably more sensitive to selection pressure when generating populations with higher fitness solutions

regarding global information gain. The PBIL results have shown that selection pressure plays a lesser role in higher fitness solution generation than

the GA in both local and global metrics, however, its overall performance was less due to its univariate nature. The highly correlated findings relat-

ing to information gain show that the features being detected do show a relation between the variable value choices being made internally by the

metaheuristic and the fitness of a candidate solution. It was shown that principal component loadings can be used to represent what the algo-

rithms have learned in terms of variable contributions to overall fitness. This can be seen in the eigenvector values for the GA that implied the fit-

ness function structure of the optimisation problem for the 1D checkerboard and Trap5 problem. This feature in the PBIL results shows partial

structure detection only in the 1D checkerboard problem and shows that some structure has not been captured using the features used in these

tests. Being univariate, PBIL is incapable of creating probability features that capture higher-level features with interactions as found in the

remaining problems. Finally, we fitted surrogate models to the final populations of each algorithm run and mined these models using a probing

procedure to extract a measure of each variable's contribution to fitness. The surrogate modelling results show a broad level of alignment with

those of the PCA analysis with some exceptions. In the results for the Trap5 problem, the surrogate results did not detect the variable groups that

were found in the PCA approach.

TABLE 6 Spearman rank correlation between PCA loadings and variable importance mined from the surrogates.

Alg and selection Trap5 1D checkerboard Royal road

GA truncation 20% 0.891 0.800 0.760

GA truncation 50% 0.904 �0.112 0.522

GA tournament 0.708 0.905 0.427

PBIL truncation 20% 0.085 0.150 0.315

PBIL truncation 50% 0.308 0.398 0.571

PBIL tournament 0.713 0.537 0.513

Note: Bold values indicate where the p-value associated with the correlation was <0:05.
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The results of this article have shown that the PC-derived features are associated with the algorithm learnings regarding problem structure.

As a similar set of results were extracted from the surrogate model, this adds a further degree of confidence in these findings for both approaches.

These techniques can be considered a stepping stone towards supporting explanations by relating changes in information gain and variable impor-

tance ranking to the discovery of specific interaction features.

Knowing the sensitivity of the objectives to individual variables is one form of explanation for solution quality. In a real-world application,

such information could enable a decision-maker to make informed refinements to the generated solutions to accommodate goals not included in

the original definition of fitness. (For example, aesthetics in a design problem, or personal preferences in a rostering problem.) Furthermore, if the

identified sensitivities are counter-intuitive, then it may indicate problems in the definition of the problem as represented by the fitness function.

If the importance is as expected, it provides confidence that the problem solved by the algorithm accurately reflects reality.

6.1 | Future work

Trajectories record the important series of decisions made by a metaheuristic, based on the internal operators at work. Further work is planned

regarding the construction of explanations based on these points of change and detectable, fitness-related features at these points. Future work

can be summarized in three main objectives:

1. The continued detection of fitness-related features surrounding these points of change as seen in the local and global information behaviours.

2. To translate features derived from the search to narration to explain the decision processes that explain the final set of solutions arrived at by

the metaheuristic.

3. To extend the experimental set to include additional metaheuristics and analysis techniques including SA.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Martin Fyvie https://orcid.org/0000-0001-8491-7008

John A. W. McCall https://orcid.org/0000-0003-1738-7056

Lee A. Christie https://orcid.org/0000-0001-8878-0344

Alexander E. I. Brownlee https://orcid.org/0000-0003-2892-5059

Manjinder Singh https://orcid.org/0000-0003-4720-3473

REFERENCES

Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, 11(1), 189.

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.
Arrieta, A. B., Díaz-Rodríguez, N., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F.

(2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58,

82–115.
Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning (Technical

Report).

Baluja, S. (2002). An empirical comparison of seven iterative and evolutionary heuristics for static function optimization (extended abstract).

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm. Carnegie Mellon University.

Baluja, S., & Davies, S. (1997). Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space.

Brownlee, A. (2009). Multivariate Markov networks for fitness modelling in an estimation of distribution algorithm (PhD thesis). Robert Gordon University.

Brownlee, A. E., Wright, J. A., He, M., Lee, T., & McMenemy, P. (2020). A novel encoding for separable large-scale multi-objective problems and its applica-

tion to the optimisation of housing stock improvements. Applied Soft Computing, 96, 106650.

Brownlee, A. E. I., Woodward, J., & Swan, J. (2015). Metaheuristic design pattern: Surrogate fitness functions. In Proceedings of the Companion Publication

of the 2015 Annual Conference on Genetic and Evolutionary Computation (pp. 1261–1264). ACM Press.

Collins, T. (2003). Applying software visualization technology to support the use of evolutionary algorithms. Journal of Visual Languages & Computing, 14,

123–150.
Cortez, P., & Embrechts, M. (2013). Using sensitivity analysis and visualization techniques to open black box data mining models. Information Sciences, 225,

1–17.
Cortez, P., & Embrechts, M. J. (2011). Opening black box data mining models using sensitivity analysis. In 2011 IEEE Symposium on Computational Intelli-

gence and Data Mining (CIDM) (pp. 341–348). IEEE.
Cutello, V., Nicosia, G., Pavone, M., & Stracquadanio, G. (2010). Entropic divergence for population based optimization algorithms. In IEEE Congress on Evo-

lutionary Computation (pp. 1–8). IEEE.
Duygu Arbatli, A., & Levent Akin, H. (1997). Rule extraction from trained neural networks using genetic algorithms. Nonlinear Analysis: Theory, Methods &

Applications, 30(3), 1639–1648.

18 of 23 FYVIE ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13494 by U

niversity O
f Stirling Sonia W

, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8491-7008
https://orcid.org/0000-0001-8491-7008
https://orcid.org/0000-0003-1738-7056
https://orcid.org/0000-0003-1738-7056
https://orcid.org/0000-0001-8878-0344
https://orcid.org/0000-0001-8878-0344
https://orcid.org/0000-0003-2892-5059
https://orcid.org/0000-0003-2892-5059
https://orcid.org/0000-0003-4720-3473
https://orcid.org/0000-0003-4720-3473


Forrest, S., & Mitchell, M. (1993). Relative building-block fitness and the building-block hypothesis. In L. D. Whitley (Ed.), Foundations of genetic algorithms

(Vol. 2, pp. 109–126). Elsevier.
Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: Part I, a gentle introduction. Complex Systems, 3, 129–152.
Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part II, deception and its analysis. Complex Systems, 3, 153–171.
Hien, N. T., & Hoai, N. X. (2006). A brief overview of population diversity measures in genetic programming. Proceedings of the 3rd Asian-Pacific Workshop

on Genetic Programming, 128–139.
Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. The

MIT Press.

Holland, S. M. (2019). Principal components analysis PCA. University of Georgia.

Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 1(2), 61–70.
Lavinas, Y., Aranha, C., & Ochoa, G. (2022). Search trajectories networks of multiobjective evolutionary algorithms. In J. L. Jiménez Laredo, J. I. Hidalgo, &

K. O. Babaagba (Eds.), Applications of evolutionary computation (pp. 223–238). Springer.
MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge University Press.

Malan, K. (2021). A survey of advances in landscape analysis for optimisation. Algorithms, 14, 40.

Michalak, K. (2019). Low-dimensional Euclidean embedding for visualization of search spaces in combinatorial optimization. IEEE Transactions on Evolution-

ary Computation, 23(2), 232–246.
Mitchell, M., Forrest, S., & Holland, J. H. (1991). The royal road for genetic algorithms: Fitness landscapes and ga performance. In Proceedings of the First

European Conference on Artificial Life. MIT Press.

Morrison, R. W., & Jong, K. A. D. (2001). Measurement of population diversity. In P. Collet, C. Fonlupt, J. K. Hao, E. Lutton, & M. Schoenauer (Eds.), Artificial

evolution (pp. 31–41). Springer.
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings

of the National Academy of Sciences, 116(44), 22071–22080.
Ochoa, G., Christie, L. A., Brownlee, A. E., & Hoyle, A. (2020). Multi-objective evolutionary design of antibiotic treatments. Artificial Intelligence in Medicine,

102, 101759.

Ochoa, G., Malan, K., & Blum, C. (2021a). Search trajectories illuminated. ACM SIGEVOlution, 14, 1–5.
Ochoa, G., Malan, K., & Blum, C. (2021b). Search trajectory networks: A tool for analysing and visualising the behaviour of metaheuristics. Applied Soft Com-

puting, 109, 107492.

Ordish, J., Brigden, T., & Hall, A. (2020). Black box medicine and transparency. PHG Foundation.

Pohlheim, H. (2006). Multidimensional scaling for evolutionary algorithms—Visualization of the path through search space and solution space using

sammon mapping. Artificial Life, 12(2), 203–209.
Shakya, S., Mccall, J., Brownlee, A., & Owusu, G. (2012). DEUM—Distribution estimation using Markov networks. In S. Shakya & R. Santana (Eds.), Markov

networks in evolutionary computation (Vol. 14, pp. 55–71). Springer.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.
Sharma, S., Henderson, J., & Ghosh, J. (2020). CERTIFAI: Counterfactual explanations for robustness, transparency, interpretability, and fairness of artificial

intelligence models. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. ACM.

Singh, M., Brownlee, A. E. I., & Cairns, D. (2022). Towards explainable metaheuristic: Mining surrogate fitness models for importance of variables. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO '22 (pp. 1785–1793). Association for Computing Machinery.
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APPENDIX A: INFORMATION GAIN RESULTS

A.1 | GA: Global information

A.2 | PBIL: Global information

F IGURE A2 GA global information versus PCA on royal road by selection. (a) GA royal road Trunc20 mean global (b) GA royal road Trunc50
mean global (c) GA royal road tour mean global.

F IGURE A1 GA global information versus PCA angles on 1D checkerboard by selection. (a) GA 1DChecker Trunc20 mean global (b) GA
1DChecker Trunc50 mean global (c) GA 1DChecker tour mean global.

F IGURE A3 PBIL global information versus PCA angles on 1D checkerboard by selection. (a) PBIL 1DChecker Trunc20 mean global (b) PBIL
1DChecker Trunc50 mean global (c) PBIL 1DChecker tour mean global.
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A.3 | GA: Local information

F IGURE A4 PBIL global information versus PCA angles on royal road by selection. (a) PBIL royal road Trunc20 mean global (b) PBIL royal
road Trunc50 mean global (c) PBIL royal road tour mean global.

F IGURE A5 GA local information versus PCA angles on checker by selection. (a) GA 1DChecker Trunc20 mean local (b) GA 1DChecker
Trunc50 mean local (c) GA 1DChecker tour mean local.

F IGURE A6 GA local information versus PCA angles on royal road by selection. (a) GA royal road Trunc20 mean local (b) GA royal road
Trunc50 mean local (c) GA royal road tour mean local.
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A.4 | PBIL: Local information

F IGURE A7 PBIL local information versus PCA angles on 1D checkerboard by selection. (a) PBIL 1DChecker Trunc20 mean local (b) PBIL
1DChecker Trunc50 mean local (c) PBIL 1DChecker tour mean local.

F IGURE A8 PBIL local information versus PCA angles on royal road by selection. (a) PBIL royal road Trunc20 mean local (b) PBIL royal road
Trunc50 mean local (c) PBIL royal road tour mean local.
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