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Abstract. The field of Automated Machine Learning (AutoML) has
as its main goal to automate the process of creating complete Machine
Learning (ML) pipelines to any dataset without requiring deep user ex-
pertise in ML. Several AutoML methods have been proposed so far, but
there is not a single one that really stands out. Furthermore, there is a
lack of studies on the characteristics of the fitness landscape of AutoML
search spaces. Such analysis may help to understand the performance of
different optimization methods for AutoML and how to improve them.
This paper adapts classic fitness landscape analysis measures to the con-
text of AutoML. This is a challenging task, as AutoML search spaces in-
clude discrete, continuous, categorical and conditional hyperparameters.
We propose an ML pipeline representation, a neighborhood definition
and a distance metric between pipelines, and use them in the evaluation
of the fitness distance correlation (FDC) and the neutrality ratio for a
given AutoML search space. Results of FDC are counter-intuitive and
require a more in-depth analysis of a range of search spaces. Results of
neutrality, in turn, show a strong positive correlation between the mean
neutrality ratio and the fitness value.

Keywords: Fitness landscape analysis · Automated machine learning ·
Fitness distance correlation · Neutrality.

1 Introduction

The recent hype on machine learning (ML) and its application to a wide range
of problems that are close to the general public has increased the interest in
the area and, consequently, the number of people using ML to solve a wide
range of problems [24]. However, the performance of an ML solution to a spe-
cific learning problem depends heavily on the choice of data preprocessing and
learning algorithms, as well as on their hyperparameters. Although the choice of
an ML solution can be manually made, this is a hard and not effective process.
Considering the number of ML algorithms, combinations among them and their
associated hyperparameters, the number of choices can grow exponentially. Fur-
thermore, manual tuning requires an inherent expertise in the choice of methods
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and the possible values of their hyperparameters [24]. Hence, it is a challenging
task for people who have little knowledge in ML.

The area of Automated Machine Learning (AutoML) has emerged as a solu-
tion to the aforementioned issue, becoming very popular over the past decades [8].
Its main objective is to automate the process of recommending or creating com-
plete machine learning pipelines to any dataset without requiring deep user
knowledge on the learning task itself [8]. A machine learning pipeline is a se-
quence of tasks to follow when performing data analysis in a specific dataset.
It can include preprocessing steps (e.g., data cleaning, data discretization and
feature selection [23]), a machine learning model (such as a classifier or a regres-
sor), and postprocessing steps that may help to combine the results of several
ML models (for instance, a voting method [23]).

Several optimization methods have been proposed to solve the problem of
automatically generating ML pipelines, including those based on Bayesian op-
timization (e.g., Auto-WEKA and AutoSKLearn), evolutionary search (e.g.,
RECIPE and TPOT), multi-fidelity optimization (e.g., Hyperband) and hier-
archical planing (e.g., ML-Plan) [8,24]. However, there is not a single one that
seems to outperform all the others and, in most cases, very similar results are
obtained by different methods.

AutoML methods based on optimization techniques rely on two main compo-
nents: a search space and an optimization method. The search space comprises
the main building blocks (e.g., the preprocessing methods, the learning mod-
els, the postprocessing approaches and their associated hyperparameters) from
previously designed ML pipelines. The optimization method is responsible for
finding the best combinations of ML components to build the most effective
pipelines according to a quality metric to a given dataset.

There is still very little knowledge on how the characteristics of the search
space impact AutoML methods. These search spaces are difficult to analyze, as
they include discrete, continuous, categorical and conditional variables [8]. A
better understanding of AutoML search spaces can help to explain the perfor-
mance of existing algorithms and lead to the development of new ones, designed
to explore the peculiarities of these spaces [14].

One way to analyze the characteristics of the search spaces is through fitness
landscape analysis (FLA) [19]. The fitness landscape of a problem is given by the
values of fitness obtained by all possible solutions present in the search space. The
idea of FLA methods is to gain a better understanding of algorithm performance
on a related set of problem instances, creating an intuitive understanding of how
a heuristic algorithm explores the fitness landscape. However, as AutoML search
spaces contain mixed types of variables, performing FLA in this case is more
challenging because the notion of neighborhood or distance function needed by
FLA metrics is not straightforward.

Fitness landscape analysis of algorithm configuration and machine learning
pipeline generation is still in its early stages [7,15]. In this paper, we propose
a way of measuring the distance between machine learning pipelines and adapt
typical FLA metrics to the complex search spaces of AutoML. We then adapt the
fitness distance correlation (FDC) and the neutrality ratio metrics for AutoML
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search spaces. Results of FDC are initially counter-intuitive and require a more
in-depth analysis of a range of search spaces. Results of neutrality, in turn, show
a strong positive correlation between the mean neutrality ratio and the fitness
value. A next step is to investigate whether this is beneficial or detrimental to
different search methods.

2 Problem Definition

Before defining the fitness landscape of an AutoML problem, we formally de-
fine the problem itself. AutoML can be cast as the Combined Algorithm Se-
lection and Hyperparameter optimization (CASH) problem [6,20]. Given a set
A = {A(1), A(2), . . . , A(k)} of learning algorithms, where each algorithm A(j) has
a hyperparameter space Λ(j), the CASH problem is defined in Eq. 1. In its orig-
inal formulation [20], CASH is defined as a minimization problem. Here we cast
it as a maximization problem, replacing the loss function with a gain function.

A∗λ∗ ∈ argmax
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

G(A
(j)
λ ,D(i)

train,D
(i)
valid), (1)

where G(A
(j)
λ ,D(i)

train,D
(i)
valid) is the gain achieved when a learning algorithm A,

with hyperparameters λ, is trained and validated on disjoint training and val-

idation sets D(i)
train and D(i)

valid, respectively, on each partition 1 ≤ i ≤ k of a
k-fold cross-validation procedure. The main idea of this paper is to analyse the
characteristics of the search space of algorithms A and the hyperparameters λ(j)

of each Aj ∈ A.

3 AutoML Fitness Landscape

Stadler [19] defines a fitness landscape as having three components: (i) a set X
of configurations; (ii) a notion X of neighborhood or distance on X, and (iii) a
fitness function f : X → R. The set X of configurations and the neighborhood
definition X define the configuration space of the problem. Depending on X , one
fitness function can be associated with several different fitness landscapes [14].
The next sections discuss these three components in the context of AutoML.

3.1 Configurations

The first component of a fitness landscape is a set X of configurations. In the
case of the AutoML problem tackled in this paper, X corresponds to all valid
classification machine learning pipelines that can be generated to solve a given
problem. An ML pipeline can be defined as the sequence of algorithms that trans-
form a feature vector #»x ∈ Xd (with d dimensions) into a target vector #»y ∈ Y,
which contains discrete values (i.e., class labels) for classification problems [24].
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Machine learning pipelines: A typical machine learning pipeline is composed
of preprocessing steps (e.g., data cleaning and feature selection), a machine learn-
ing modeling step (e.g., a classification or regression algorithm), and some post-
processing steps that may help to combine the results of several models [23].

For the sake of simplicity, in this first analysis we consider only classification
pipelines composed of up to three preprocessing algorithms and one classifier,
without any postprocessing steps. The pipelines are generated by creating deriva-
tion trees from a proposed context-free grammar (CFG). One of the benefits of
using CFGs [18] to represent the AutoML search spaces is that they organize
prior knowledge (from specialists) about the problem, properly guiding the opti-
mization process. In addition, the grammar also gives flexibility in the definition
of the search space, as the grammar rules can be modified anytime. Finally, the
grammar can introduce semantics along with its syntax, possibly allowing the
evaluation of the complexity of the search space.

The grammar defines the order of the preprocessing algorithms and guar-
antees a classification algorithm is always present in a pipeline. The search
space the grammar defines is composed of 18 preprocessing and 23 classifi-
cation algorithms. Given these algorithms an their associated hyperparame-
ters, the grammar contains 148 terminal symbols and 128 non-terminal sym-
bols and production rules, generating a search space with an estimated size of
7.88e9(feat − 1)2 + 1.62e18(feat − 1) + 1.05e13 pipeline configurations, where
feat is the number of features of the dataset3. The complete grammar and other
supplementary material are available online4.

An example of a pipeline, which is a derivation tree from the grammar,
is shown in Fig. 1, where algorithm names correspond to tree nodes with sharp
edges. Hyperparameter names are represented as rounded rectangles with dashed
lines, whereas their values correspond to the ellipses. In this paper, pipelines are
initialized at random by uniformly choosing production rules from the grammar.

3.2 Neighborhood and Distance Between Pipelines

The second component of a fitness landscape is a notion X of neighborhood or
a distance metric between the elements of the set X of configurations, described
in Section 3.1. Considering the complexity of the AutoML search space, which
contains categorical, discrete, continuous and conditional parameters, and the
lack of literature on the analysis of such spaces, we propose a simple neighbor-
hood definition and a distance metric between our tree-based pipelines, adapted
from the metric proposed by Ekárt & Németh for genetic programs [5].

Neighborhood definition: We defined the neighborhood N(s) of machine
learning pipeline s as the set that contains all trees that result from the ap-
plication of a mutation operator on a random node of the tree (i.e., the selected
node is replaced by another component generated by its parent node on the

3 When determining the search space size, for continuous hyperparameters, we simplify
and always consider 100 values, regardless of the size of the interval.

4 https://cgpimenta.github.io/EvoCOP2020 CGPimenta/

https://cgpimenta.github.io/EvoCOP2020_CGPimenta/
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BernoulliNB <binarizer> <alpha> <fit_prior>

<imputation> <bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 TrueSimpleImputer

median

<strategy>

<simpleImputer>

Fig. 1: Tree representation of a machine learning pipeline.

tree). Fig. 2 shows two neighbors of the pipeline from Fig. 1. Grey subtrees indi-
cate where the mutation operation was employed. Considering that changing an
algorithm by another can have a much bigger impact than changing the value
of a hyperparameter, we define the probability p(x) of choosing a node x from
tree T as the mutation point as a function that increases with the distance from
the root. The exceptions are the terminal symbols (leaves of the tree), which are
only changed when their parent node is selected. In order to do that, we give
a weight w(x) to each node that is directly proportional to the probability of
choosing it, as defined in Eq. 2.

In this way, the root tree (<start> symbol) has weight 1, and the weight
increases according to the level of the node in the tree. In our case, the pre-
processing symbol has weight 2, the classification and preprocessing subgroups
weight 3. The non-terminals representing algorithm names have weight 4 and
those representing hyperparameter names, weight 5. p(x) is then given by Eq. 3.

w(x) =

{
tree level if non-terminal symbol

0 if terminal symbol
(2)

p(x) =
w(x)∑
x∈T w(x)

(3)

Garciarena et al. [7] proposed a similar definition for the neighborhood of
an ML pipeline, where they changed a randomly chosen algorithm or hyperpa-
rameter by another feasible value. The neighborhood we proposed here can be
considered as an extension of their approach, and is based on the typical mu-
tation operator used in grammar-based genetic programming [11]. For example,
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BernoulliNB <binarizer> <alpha> <fit_prior>

<imputation> <bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 FalseSimpleImputer

median

<strategy>

<simpleImputer>

(a) Value of the fit prior hyperparameter changed from
True to False.

BernoulliNB <binarizer> <alpha> <fit_prior>

<bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 TrueSimpleImputer

most_frequent

<strategy>

<simpleImputer>

<imputation> <dimensionality>

<SelectKBest>

SelectKBest

5

<k>

(b) Whole preprocessing subtree mutated.

Fig. 2: Two neighbors of the pipeline from Fig. 1. Grey subtrees indicate mutation
points.

the proposed neighborhood can change all preprocessing steps of a pipeline at
once, something the original approach does not allow.

Distance between pipelines: In the context of ML pipelines, the distance
dist(Tx, Ty) between two trees Tx and Ty must reflect the impact of changing
either an algorithm or a hyperparameter. For example, the impact of changing
a linear model by an ensemble for the classification task will probably have a
more significant impact in fitness than changing the number of models used by
the ensemble (a hyperparameter). For this reason, determining the distances
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between any two symbols of the grammar is not straightforward and depends on
expert knowledge. In order to define these distances, we classified the symbols
of the grammar into 17 disjoint sets A0, A1, . . . , A16:

– A0: NULL symbol
– A1: <start> symbol
– A2: <preprocessing> symbol
– A3: <classification> symbol
– A4: Imputation algorithms
– A5: Data range manipulation algo-

rithms
– A6: Dimensionality manipulation

algorithms
– A7: Näıve Bayes

– A8: Linear models

– A9: Neural networks

– A10: Nearest neighbors

– A11: Discriminant analysis

– A12: Trees

– A13: Ensembles

– A14: Discrete hyperparamenters

– A15: Continuous hyperparameters

– A16: Categorical hyperparameters

A list of the algorithms in each set is available online4. The set A0 is reserved
to a special NULL symbol, used to treat cases in which a node in a tree does not
have a corresponding node in the other. For i, j ∈ {0, 1, . . . , 16}, the distance
d(x, y) between two symbols x ∈ Ai and y ∈ Aj is defined as a constant that
depends on the class a symbol belongs to. If x and y have the same label,
d(x, y) = 0. Table 1 shows the values of the constants used in this work.

Table 1: Distances d(x, y) between symbols w.r.t. their partitions.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A0 1 0 8 0 4 4 4 0 0 0 0 0 0 0 0 0 0
A1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A5 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A6 4 0 0 0 0 0 1 2 2 2 2 2 2 2 0 0 0
A7 0 0 0 0 0 0 2 1 2 2 2 2 2 2 0 0 0
A8 0 0 0 0 0 0 2 2 1 2 2 2 2 2 0 0 0
A9 0 0 0 0 0 0 2 2 2 1 2 2 2 2 0 0 0
A10 0 0 0 0 0 0 2 2 2 2 1 2 2 2 0 0 0
A11 0 0 0 0 0 0 2 2 2 2 2 1 2 2 0 0 0
A12 0 0 0 0 0 0 2 2 2 2 2 2 1 2 0 0 0
A13 0 0 0 0 0 0 2 2 2 2 2 2 2 1 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5

Note that to make this analysis possible, the grammar defined here lim-
its the pipelines to have at most three preprocessing algorithms and exactly
one classifier. Given this restriction, we represent a tree Ti with root ri as

Ti = ri(c
(i)
1 , c

(i)
2 , . . . , c

(i)
m ), where the root has m children nodes, denoted by

c
(i)
j , j ∈ {1, 2, . . . ,m}. Each node is represented by its label (i.e., its name) and

can be considered as the root of a subtree. Let us consider Tx as the pipeline
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in Fig. 1. rx corresponds to the <start> node. It has two children, c
(x)
1 and

c
(x)
2 , which correspond to the nodes <preprocessing> and <classification>,

respectively. We define a function ch1(N) that returns the first child of node

N . In this example, the <imputation> group is denoted as ch1(c
(x)
1 ), whereas

<bernoulliNB> is given by ch1(c
(x)
2 ).

The distance between two trees Tx and Ty will initially depend on whether
they include preprocessing steps or only a classification algorithm. Eq. 4 shows
four possible cases: neither Tx nor Ty have preprocessing steps, and only the
distance from the classification algorithm (distclf ) is accounted for (C1); both
trees have preprocessing steps, and we calculate the distances from the two sides
of the tree (distpre and distclf ) (C2); only Tx (C3) or Ty (C4) have a prepro-
cessing step, so we calculate the distance between the classification subtrees and
add a constant k to the distance, where k = d(<preprocessing>, NULL) is the
distance between the <preprocessing> non-terminal and the NULL symbol,
which is greater than the distance between any two preprocessing algorithms.

dist(Tx, Ty) =


distclf (ch1(c

(x)
1 ), ch1(c

(y)
1 )) C1

distpre(c
(x)
1 , c

(y)
1 ) + distclf (ch1(c

(x)
2 ), ch1(c

(y)
2 )) C2

k + distclf (ch1(c
(x)
1 ), ch1(c

(y)
2 )) C3

k + distclf (ch1(c
(x)
2 ), ch1(c

(y)
1 )) C4

(4)

To the best of our knowledge, the way we calculate the distance between two
preprocessing subtrees cannot be expressed in closed form, and function distpre
is described in Algorithm 1, where children(N) is a function that returns all the
children of node N . Sets A and B are initialized with the preprocessing groups
of trees Tx and Ty, respectively (line 3). The first component of the distance is
calculated as the distance from all groups that are only present in one of the
trees to the NULL symbol (lines 4 and 5). The second component consists of
the distances between groups that are present in both trees (line 6). The loop
in lines 7-16 compares the groups in the intersection. Function get node(l,X)
returns the node in set X whose label is l. For each group, if the algorithms in
trees Tx and Ty are different, we add their distance to the total distance (line
11). If they are the same, we add to the total distance the distance between
the values of their hyperparameters (lines 13 and 14). The total distance is then
returned in line 17.

As an example, consider that Alg. 1 receives the pipelines from Fig. 1 and
Fig. 2b as Tx and Ty, respectively. In line 3, set A receives node <imputation>

and B receives nodes <imputation> and <dimensionality>. Thus, the dif-
ference between the two sets is composed of node <dimensionality> and its
distance to the NULL symbol is added to the total distance. In line 4, intersect
gets the symbol <imputation> and the corresponding nodes in trees Tx and Ty
are retrieved in lines 8 and 9. algA and algB correspond to the same algorithm,
so the distances between the values of their hyperparameters are added to the
total distance.
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Algorithm 1 Distance between preprocessing subtrees

1: procedure distpre(Tx, Ty) . The root of Tx and Ty is the <preprocessing> symbol
2: distance← 0
3: A← {n | n ∈ children(Tx)}; B ← {n | n ∈ children(Ty)}
4: diff ← (A− B) ∪ (B − A)

5: distance← distance+
∑|diff|

i=1 d(diffi, NULL)

6: intersect← A ∩ B
7: for all label ∈ intersect do
8: algA← ch1(get node(label, A))
9: algB ← ch1(get node(label, B))
10: if algA 6= algB then . Different algorithms
11: distance← distance+ d(algA, algB)
12: else . Same algorithm; check hyperparameters
13: hpA← children(algA); hpB ← children(algB)

14: distance← distance+
∑|hpA|

i=2 d(ch1(hpAi), ch1(hpBi))

15: end if
16: end for
17: return distance
18: end procedure

Eq. 5 handles the case of the distance between the classification algorithms.
In the first case of the equation, the algorithms are the same. Thus, the roots r1

and r2, which correspond to the non-terminals with the names of the algorithms,
have the same number of children, m. In this case, the distance between the trees
is the summation of the distance between the values of the hyperparameters of
each algorithm. If the algorithms are the same, the distance between the trees
is the distance between the algorithms, given in Table 1.

distclf (Tx, Ty) =

{∑m
j=2 d(ch1(c

(x)
j ), ch1(c

(y)
j )) if rx = ry,

d(rx, ry) otherwise.
(5)

3.3 Fitness Function

The final component of the fitness landscape is a fitness function f : X → R
that maps each element of the set X of configurations to a real number. Here
we deal with multiclass classification problems with class imbalance. Therefore,
we defined the fitness function as the weighted F-measure [23] to evaluate the
pipeline’s learning model on the dataset of interest.

F-measure is defined in Eq. 6 for binary classification problems, where TP,
FP and FN are the number of true positives, false positives and false negatives
of the pipeline’s learning model on the dataset, respectively.

F -measure =
2 · TP

2 · TP + FP + FN
, (6)

As we deal with multiclass classification problems, we use a one-vs-all ap-
proach, transforming a problem of c classes into c binary classification prob-
lems to calculate the F-measure. We then calculate a weighted average of the
F-measure over the c binary classification problems.
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4 AutoML Fitness Landscape Analysis

For continuous optimization problems with two variables, fitness landscapes can
be visualized, where the XY plane is the search space and fitness represents
the third dimension. However, given the complexity of real world problems,
this approach is not feasible. Several metrics have been proposed to describe
and compare fitness landscapes for different problems. These metrics evaluate a
number of features of optimization problems that play a role in the performance
of search algorithms, such as modality, fitness distribution in the search space,
ruggedness, degree of variable interdependency, evolvability, neutrality, among
others [14,19].

After we have defined the fitness landscape of AutoML problems, we will
use these metrics to perform an analysis of the characteristics of this space.
We focus on two metrics: the fitness distance correlation (FDC) and the mean
neutrality ratio of the landscape. FDC is a popular way of measuring how the
fitness function correlates with the distance to the global optimum, which is a
way of measuring problem difficulty [9]. Neutrality, on the other hand, indicates
the presence of regions in the search space with equal (or nearly equal, in the
case of continuous spaces) fitness function values, which can have positive or
negative impacts on the performance of optimization algorithms [14].

Fitness Distance Correlation: The fitness distance correlation (FDC) mea-
sure was proposed by the authors in [9] to give a global view of problem difficulty
for genetic algorithms, but it has been frequently used as a metric to evaluate
the fitness landscape of other optimization problems [14]. In its original formu-
lation, FDC requires knowledge of the global optimum, which is unfeasible for
AutoML problems. The authors in [10] proposed an adaption of FDC, called
FDCs, for continuous problems with no known global optimum. Given a sam-
ple of n points X = {x1, . . . , xn} from the search space with associated fitness
values F = {f1, . . . , fn} with mean f , the best point in the sample is denoted
by x∗. The Euclidean distance from x∗ to every point xi ∈ X is denoted by
D∗ = {d∗1, . . . , d∗n}, with mean d∗. FDCs is given by Eq. 7. From here on, we
denote FDCs simply by FDC.

FDCs =

∑n
i=1(fi − f)(d∗i − d∗)√∑n

i=1(fi − f)2

√∑n
i=1(d∗i − d∗)2

(7)

FDC returns a value between -1 (perfect anti-correlation) and +1 (perfect
correlation). For maximization problems, search spaces with low FDC values
are considered easy, values around 0 are difficult, and high values correspond
to misleading spaces [9,10]. Given the nature of the AutoML search space, we
replace the Euclidean distances D∗ used in Eq. 7 by the distance measure defined
in Eq. 4.

Neutrality: Neutrality identifies the presence of regions in the landscape with
equal or similar fitness [17]. Its role in determining the ability of an optimization
method to find good solutions has been a topic of discussion, especially in the
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Table 2: Datasets used in the experiments.
Dataset Instances Features Classes Missing Source
breast-w 699 9 2 Yes OpenML
diabetes 768 8 2 No OpenML
stalog-segment 2310 19 7 No UCI
vehicle 846 18 4 No OpenML
wilt 4839 5 2 No OpenML
wine-quality-red 1599 11 6 No OpenML

context of evolutionary algorithms. There is evidence that neutrality can both
make the search space easier to explore [21] or get some algorithms stuck in
regions of the search space with equal fitness, preventing them from exploring
areas with possibly better results [14].

In the context of AutoML, we define a neutral neighborhood N≈(s) of a
solution s as the set N≈(s) = {s′ ∈ N(s) | |f(s′) − f(s)| < δ} for some small
constant δ ≥ 0, where f(s) is the fitness of s and N(s) is a sample of the complete
neighborhood of s, as defined in Section 3.2.

The cardinality of N≈(s) is called the neutrality degree of s, whereas the
neutrality ratio of s is given by |N≈(s)|/|N(s)| [21]. These metrics give us an
overview of the neutrality level of the landscape.

5 Experimental Analysis

In this section, we present the FDC and neutrality results for six classification
datasets, obtained either from UCI [2] or OpenML [22]. Table 2 summarizes their
main characteristics, including the number of instances, features and classes, the
presence or absence of missing values, and the data source. Correlation analyses
are reported considering Spearman’s rank correlation coefficient (ρ) and the two-
sided p-value for the hypothesis test (null hypothesis is that the two sets of data
are uncorrelated) [25].

All pipeline configurations were generated using algorithms implemented in
the Python library Scikit-learn [13] and evaluated using 5-fold cross-validation.
All results reported correspond to an average of 30 independent samples from
the search space.

5.1 Fitness Distance Correlation Analysis

For the FDC analysis, we generated 30 random samples of the search space of
varying sizes, ranging from 500 to 3,000 in intervals of 500. The pipelines in
each sample were generated by randomly selecting production rules from the
grammar.

Fig. 3 shows the FDC values for different sample sizes. Observe that increas-
ing the sample size has little effect on FDC, showing our sample is able to capture
the overall trend of this metric in the evaluated search space. We found a slight
positive correlation between FDC and the mean fitness (ρ = 0.222, p < 0.01),
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which is somewhat unexpected, since higher FDC values (in our case, values that
are closer to 0) should be related to harder problems.

We tried to find a relation between the mean values of accuracy reported in
the OpenML repository for the datasets used in the experiments and the values of
FDC. For example, breast-w has mean accuracy of 0.93 and FDC values always
smaller than -0.2. Diabetes, in turn, has a mean accuracy of 0.75 and values
of FDC always in the interval [-0.05, 0]. However, this is not consistent for all
datasets. Wilt, for instance, has an accuracy of 0.98 and FDC values as small as
diabetes. Analysis of FDC for a greater number of datasets and looking at their
main characteristics are yet to be performed. Further, FDC results are correlated
with the distance measure used in this work, and a more in-depth evaluation of
this measure is also subject of future work.

However, for AutoML problems, there may be other factors related to low
fitness apart from the difficulty of the problem. In order to fully understand the
relation between FDC and problem difficulty in the context of AutoML, further
experimentation varying the search space is necessary.

500 1000 1500 2000 2500 3000

Sample size

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

F
D

C

Fig. 3: FDC values for different sample sizes.

5.2 Neutrality Analysis

For the analysis of the neutrality of the search space, we performed random
walks starting from a random position. For each point of the walk (solution), we
evaluated the fitness function of a given number of neighbors and analyzed the
neutrality ratio. One of the neighbors was then selected as the next [starting]
point of the walk. Here we report the mean neutrality ratio of the complete walk.
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Recall that, for continuous spaces, we consider regions that are neutral within
a specified tolerance δ for the fitness difference between two solutions. For each
dataset, we defined δ as the standard deviation of the mean fitness of 30 inde-
pendent random samples of size 1000.

Fig. 4 shows the neutrality ratios for different walk lengths (100, 200, 300
and 400) and neighborhood sizes (5, 10, 15 and 20). The tolerance δ for each
dataset is shown in the title of the corresponding plot. As we can see, increasing
the walk length and the neighborhood size does not have a strong impact on the
average neutrality ratio, but the variance decreases. We found a strong positive
correlation between the mean neutrality ratio and the fitness value (ρ = 0.715,
p = 0.0). This result shows higher neutrality in regions of the search space with
higher fitness values. However, in order to understand how neutrality affects the
performance of different AutoML optimization methods, further experimentation
with variations of the search space and its neutrality ratio are also necessary.

6 Related Work

Fitness landscape analysis has been vastly explored for typical optimization
problems [14], but the literature regarding such analysis for machine learning
problems is scarce. Much of the effort has been directed to neural network error
landscapes. Rakitianskaia et al. [16] measured FDC, ruggedness and gradients
to evaluate the error landscape of fully-connected neural networks used for clas-
sification. They showed that the ruggedness of the landscapes decreases with an
increase in the number of hidden layers of the network, making the landscape
“harder” to explore, whereas the results for FDC indicate that it can be used to
determine the searchability of different network architectures for specific prob-
lems. Another study analyzed neutrality in such landscapes, whose presence can
hinder population-based methods for training neural networks [1]. The authors
proposed two measures of neutrality based on random walks on the landscape
and suggested that they can be used to study the relation between neutrality
and the performance of search algorithms.

In [4], the authors explored different subsets of the unbounded neural network
search space using random walks. They found high-magnitude fitness gradients
and more rugged landscapes for larger search spaces, specially for large steps
of the random walk. Searchability metrics, on the other hand, decrease with an
increase in the size of the search space. These properties reflect a greater diffi-
culty in searching larger spaces. A subsequent study by the same group proposed
a progressive random walk method for sampling network error landscapes [3].
The authors noted that methods based on random walks may not cover regions
with high fitness values, thus not representing the search space well. The re-
sults showed that the proposed method is more computationally efficient than
population-based walks and is very successful in finding areas of high fitness.

The landscape of the algorithm configuration problem has been evaluated
in [15] in terms of the modality and convexity of parameter responses. The au-
thors defined parameter response slices by parameter p within a given window
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Fig. 4: Neutrality ratios for varying walk lengths and neighborhood sizes. The
tolerance δ for each dataset is shown in parentheses.

around an optima found by the Sequential Model-based Algorithm Configura-
tion (SMAC), keeping all other parameters fixed and measuring the performance
of the algorithm as a function of p. This procedure is repeated for all parameters
being considered. They evaluated algorithms for three typical optimization prob-
lems, namely SAT, MIP and TSP, and concluded that many of the parameter
slices appear to be uni-modal and convex, both on instance sets and on indi-
vidual instances, although the former leads to a more rugged landscape. This
algorithm configuration analysis is related to the problem of hyperparameter
optimization of machine learning algorithms, but it does not consider neither
algorithm selection nor categorical parameters.

Garcianera et al. [7], in turn, performed an analysis of a subset of the search
space explored by TPOT [12], an AutoML tool that uses genetic programming to
evolve machine learning pipelines for regression and classification problems. The



FLA of AutoML Search Spaces 15

authors defined a neighborhood relation in which two pipelines are neighbors if
they differ in a single algorithm or parameter. Using a reduced grid search, they
compared the classification accuracy of TPOT with stochastic, random-restart
hill climbing and random search. The results suggest the existence of several
regions with high fitness, but which are prone to overfitting. However, the paper
fails to analyze other characteristics of the fitness landscape and how they can
influence the performance of optimization methods.

7 Conclusions and Future Work

The main contribution of this paper is the definition of a fitness landscape for
AutoML problems. We proposed a flexible representation for machine learning
pipelines that captures the relative importance of changing an algorithm by
another or modifying the value of a hyperparameter. We use this representation
to define a notion of neighborhood and the distance between pipelines. We found
a strong correlation between the mean fitness ratio and fitness values, and a high
correlation between fitness values and neutrality.

Having defined the components of the AutoML search space, the next steps
include modifying the search space to evaluate how the metrics change in re-
sponse to the size of the space. We also plan on testing other sampling strategy
to take into account the differences in the size of the search space induced by
categorical, discrete and continuous hyperparameters. Another possible direction
of future work is analysing how different AutoML optimization methods behave
in the presence of different levels of neutrality and for different FDC values.
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