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Abstract
Decentralisation is one of the promises introduced by blockchain technologies: fair and secure
interaction amongst peers with no dominant positions, single points of failure or censorship. De-
centralisation, however, appears difficult to be formally defined, possibly a continuum property of
systems that can be more or less decentralised, or can tend to decentralisation in their lifetime. In this
paper we focus on decentralisation in quorum-based approaches to open (permissionless) consensus
as illustrated in influential protocols such as the Ripple and Stellar protocols. Drawing from game
theory and computational complexity, we establish limiting results concerning the decentralisation
vs. safety trade-off in Ripple and Stellar, and we propose a novel methodology to formalise and
quantitatively analyse decentralisation in this type of blockchains.
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1 Introduction

To allow “any two willing parties to transact directly with each other without the need
for a trusted third party" [29] was one of the main motivations for the introduction of
the Bitcoin blockchain, and several earlier attempts at digital currencies. A blockchain is
a distributed state machine in charge of guaranteeing the correctness and trustability of
data,1 e.g., monetary transactions in the case of Bitcoin. State updates are recorded in a
chain of data blocks. Data are protected by replication of the state, i.e., of the chain of

1 Blockchains can also make the computation trustable, e.g., guaranteeing the fair and untamperable
execution of agreements among peers encoded as programs.
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blocks, within a network of peers. The blockchain protocol must guarantee some form of
distributed consensus allowing peers to agree on the information contained in the blockchain,
e.g., who has been paid, and that no double spending of virtual coins has occurred, without
the supervision of a centralised authority – a currency without a central bank.

Context: the quest for decentralisation

In this paper we address decentralisation in distributed consensus. Decentralisation is a
key concern in permissionsless blockchains, where participation is allowed in a generally
unrestricted way. Permissionless blockchains are clearly exposed to the presence of Byzantine
peers, i.e., dishonest peers trying to exploit the network and not bound to the blockchain
protocol. Byzantine distributed consensus is a long-standing problem, from Lamport’s
characterisation [25] and the FLP impossibility result [12], to the subsequent research on
data replication and consistency based on Byzantine Fault-tolerant consensus (BFT), [27, 36].
Several proposals are currently competing in a multi-billion market, addressing the so-called
blockchain trilemma, i.e., achieving security, scalability and decentralisation together.

One of the breakthroughs of Bitcoin was the introduction of the Proof-of-Work (PoW) [9]
as a mechanism to enable a probabilistic Byzantine distributed consensus. Informally speaking,
by solving a computationally hard problem one of the peers is entitled to create the next
block, cryptographically linked to the previous ones. Under the assumption that Byzantine
computational power is suitably limited within the network, the probability that enough
work can be channeled to alter block history decreases with the ageing of the blocks [15].
Bitcoin reaches finality with an acceptable probability in about one hour (6 blocks), with
limited transactions per second.2

In Proof-Of-Stake (PoS) blockchains peers contribute to the definition of the next block
with a probability proportional to the stake (coins), rather than computational power, they
detain in the system. Safety follows from the honest peers detaining the majority of stake.
Scalability improves in Proof-of-Stake, but the management of security typically results in
being more complex.

The BFT paradigm has also been proposed for blockchain consensus, providing scalability
in transaction per second thanks to low transaction latency and high throughput. BFT,
however, is more constrained in terms of the scalability in the number of peers [40], since
the number and identity of peers needs to be known and in some cases fixed [5]. This
kind of blockchain has been proposed, for instance, for financial services, where a limited
number of known and certified peers need to exchange fast and numerous transactions. It is
worth remarking that if consensus requires control on peers, a centralised authority might be
required, with implications also on identity, privacy and censorship.

Research question

In this paper we focus on BFT blockchains based on quorum systems [39]. In such systems
consensus emerges from neighbourhoods of peers. The properties of such neighborhoods,
together with assumptions on Byzantine failure thresholds, are then essential to guarantee
the liveness and safety of the consensus protocol, that is, whether honest peers are able to
eventually reach consensus on a correct next state. At the heart of these protocols is a notion
of trust between peers: nodes select which other nodes to trust, and listen to, in the network.
The paper focuses on the following research question:

To what extent can consensus be decentralized, when based on peer-to-peer trust relations?

2 More technical and comprehensive introductions to blockchains can be found in [2, 30, 41].
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We take an analytical approach and establish theorems that point to the existence of inherent
tradeoffs between safety and decentralization for approaches based on such trust networks.
We use tools from game theory (specifically the theory of command games [20, 19]) and
computational complexity theory. The interface of methods from theoretical economics
and computational complexity have proven extremely prolific in other areas of computer
science and artificial intelligence, such as computational social choice theory [3, 18]. Our
paper showcases these methods for general investigations on blockchain consensus and
decentralisation.

We will specifically consider Ripple [6, 37] and Stellar [28], two quorum-based blockchains
attempting to extend the applicability of the BFT paradigm from a permissioned to a
permissionless setting, aiming at improving decentralisation. Ripple provides frictionless
global payments and corporate-oriented efficient transactions. It currently relies on a list of
“authorised” validators3 in charge of the correctness of transactions. Access is permissioned
and each peer will need to have in their neighbourhood of trust a number of validators
from the list. While the list was originally entirely composed by Ripple validators, today
third-party validators, e.g., private companies and universities, have been included. Stellar
provides payments and asset management to corporate and individuals, and aims to push
decentralisation further by offering open membership and allowing peers to autonomously
define their trust networks, i.e., the set of validators that they trust. However, strong
constraints hold on the topology of such trust networks.

Both Ripple and Stellar have been object of criticism with respect to the level of
decentralisation of their current implementations, and the need for further research on
protocols like Ripple and Stellar is emphasised, for instance, in [4].

Related work

Even though at the time of writing Ripple and Stellar are, respectively, the third and twelfth
blockchain systems in terms of market capitalization,4 little foundational work exists on
their protocols. Correctness analyses of Ripple have been proposed in [6], and of Stellar in
[28, 17]. A specific study on the issue of decentralisation in Stellar has also very recently
been presented in [23]. The paper investigates the network of Stellar’s peer-to-peer trust
relations by means of an extended version of PageRank used to evaluate nodes’ influence.
Findings about the current status show centralisation on two critical validators, which are
controlled by the Stellar Foundation. Our paper contributes further general results on the
level of decentralization that could reasonably be achieved in systems like Ripple and Stellar.

Paper contribution and outline

The paper makes three contributions. First it develops a novel theoretical framework,
rooted in economic theory (command games [20, 19], power indices [33, 1]), to ascertain the
influence that peers can exert on each other in quorum systems based on trust networks. This
contributes a novel methodology for a much needed quantitative evaluation of decentralisation
in blockchain with respect to its consensus layer. The proposed methods are applied to
Ripple and Stellar (Theorem 25). Second, it establishes an “impossibility of decentralisation”
result for a class of consensus protocols of the Ripple type (Theorem 16), which are based on

3 At the time of writing the list consists of about 30 validators, available at https://xrpcharts.ripple.
com

4 Source: https://coinmarketcap.com/all/views/all/. Retrieved on 11th May 2020.
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trust networks with a fixed threshold of tolerable Byzantine peers. This results shows that,
in such systems, a necessary condition for safety is the existence of validators that must be
trusted by every peer in the network, hindering the possibility of full decentralisation. Third,
it develops an appraisal of computational barriers to decentralization in protocols like Stellar,
that are based on so-called federated Byzantine agreement systems. Specifically, we show
that constraints that are necessary to guarantee the safety of the network require peers to be
able to solve problems that are computationally intractable in principle (Theorems 21 and
22). This result identifies computational difficulties for the construction of safe peer-to-peer
trust networks, thereby pointing to computational barriers for the full decentralisation of
Stellar.

A Byzantine model of trust network is introduced in Section 2, impossibility and in-
tractability results are presented in Section 3, and decentralisation measures in Section 4.
Section 5 concludes. All proofs are provided in a technical appendix.

2 Preliminaries

The paper is concerned with systems based on the following high-level blueprint: nodes hold
opinions on a value (e.g, whether a transaction should be recorded or not); they validate
an opinion when they observe enough nodes, among those they trust, that hold the same
opinion (agreement); some nodes may be Byzantine; and no two honest nodes should be able
to validate opinions with different values (safety). Crucially, nodes are able to autonomously
decide which other nodes to trust. This section defines the above set-up formally.

2.1 Opinions and Opinion Profiles
Let N be the set of nodes, with n = |N |, and let H ⊆ N the set of honest nodes and
B = N \H the set of Byzantine nodes. The opinion of a honest node i ∈ N is a value in
{0, 1}. At any given time, the collection of each node’s opinions defines an opinion profile
that associates a “genuine” opinion from {0, 1} to every honest node (the opinion that the
node reveals to the network). And to each Byzantine node in N \H it associates a function
from honest nodes to opinions. This function represents the value that each Byzantine node
would reveal to each honest node.

I Definition 1. An opinion profile o : N → {0, 1} ∪ {0, 1}H such that o(i) ∈ {0, 1} if
i ∈ H and o(i) ∈ {0, 1}H if i ∈ B. Given x ∈ {0, 1}, x represents the element of singleton
{0, 1} \ {x}.

The definition makes some simplifications, which are worth flagging. Even from the perspective
of binary valued opinions, it would be more realistic to work with a ternary set of opinions
containing 1, 0 plus an undefined value representing undecided nodes. Also, the definition
rules out the possibility for a Byzantine node to reveal inconsistent values (that is, 1 and
0 to a same node). However, such simplifications are not fundamental, and the results we
present would carry over to these more general settings.

We define then what it means for a node to observe an agreement among other nodes, in
a given opinion profile.

I Definition 2. Let an opinion profile o be given. A set of nodes C ⊆ N is said to
agree (in o) from the perspective of i ∈ N if for all j, k ∈ H ∩ C and j′, k′ ∈ B ∩ C,
o(j) = o(k) = o(j′)(i) = o(k′)(i).
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That is, a node i observes agreement in a set of nodes C whenever the honest nodes in that
set hold the same opinion, and that opinion is also the opinion revealed to i by the Byzantine
nodes in C.

2.2 Byzantine Trust Networks
We now shift to the definition of the structures of peer-to-peer trust relations underpinning
consensus in the systems we are focusing on.

I Definition 3. A Byzantine trust network (BTN) is a tuple T = 〈N,H, Ti, Ci〉 where:
N = {1, . . . , n} is a finite set of nodes.
H ⊆ N is the set of honest nodes. B = N\H is the set of Byzantine nodes. We denote
with bi = |B∩Ti|

|Ti| the ratio of Byzantine nodes in Ti, and with b = max {bi}i∈H the largest
such ratio.
Ti ⊆ N , for each node i ∈ H, is the non-empty set of nodes that i trusts, i.e., its trust
set.5
Ci ⊂ 2Ti , with i ∈ H. We refer to Ci as the set of winning coalitions for node i. For
ease of presentation we will refer to winning coalitions also via a function C : N → 22N

assigning the set Ci of subsets of N to each i ∈ H.
We will sometimes assume that, for all i, i ∈ Ti. We will also sometimes assume that for all
i ∈ H, {i} ∈ Ci. In such a case the BTN is said to be vetoed.

Intuitively, a winning coalition C ∈ Ci for i is a set of nodes such that, if all its members
agree from the perspective of i, then their opinion is validated by i (cf. [32]). We define the
notion of validation formally below (Definition 8). When {i} belongs to Ci, i cannot validate
an opinion unless it also holds such opinion (it holds a veto for its own validation).
I Remark 4. In the Stellar white paper [28] BTN are referred to as federated Byzantine
agreement systems (FBAS), or as federated Byzantine quorum systems in [17], and the winning
coalitions of a node are referred to as quorum slices. BTNs are also known structures in
the economic theory literature, where they are referred to as command games [20, 19], or as
simple game structures [22].

A natural class of BTNs is obtained by associating a quota, or threshold, qi ∈ (0.5, 1] to
each honest node i:6

I Definition 5. A Quota Byzantine Trust Network (QBTN) is a BTN such that for all
i ∈ H there exists a quota qi ∈ (0.5, 1] such that:

Ci = {C ⊆ Ti | |C| ≥ qi · |Ti|} .

A QBTN is therefore denoted by a tuple T = 〈N,H, Ti, qi〉. A QBTN is said to be uniform
whenever qi = qj for any i, j ∈ H. It is said to be effective whenever qi ∈ (0.5 + b, 1− b] for
any i ∈ H.

Intuitively, QBTNs are BTNs where the winning coalitions of a node are determined by a
numerical quota: i’s validation is determined whenever at least a fraction qi of nodes in Ti
hold that opinion. This quota should be set in such a way that: i) the quota is met whenever
the honest nodes in Ti agree, and ii) if the quota is met for an opinion x, then there is at least

5 Ripple and Stellar refer to trust sets as unique node lists (UNLs).
6 Cf. [16].
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an honest majority of nodes with opinion x in the trust set of i. That is, qi ∈ (0.5 + b, 1− b],
which is the case for what we called effective QBTNs. For this constraint to be met the
fraction of Byzantine nodes in each Ti should therefore fall in the interval [0, 0.25).

I Remark 6. It is worth observing that in this context the largest possible ration of Byzantine
nodes b in a BTN plays a slightly different role than in the standard BFT failure models
where, classically, safety would require b < 1

3 |Ti| [31, 8, 25]. In the standard BFT failure
models one is interested in making sure that any two simple majorities intersect in some
honest node in order for the system not to fork. In a BTN, the role of b is slightly different:
it is to guarantee that an honest node can always safely validate an opinion because a honest
majority exists in its trust set, that agrees on that opinion.

The Ripple consensus protocol [6, 37] is based on uniform QBTNs with quotas qi = 0.8
and b = 0.2. The Stellar consensus protocol as described in [28] does not rely on QBTNs but
requires the more general class of vetoed BTNs.

I Remark 7. In Definition 3 we associate winning coalitions only to honest nodes. We do
this for simplicity but it should be clear that trivial collections of winning coalitions can be
associate also to Byzantine nodes. Since the validation by a Byzantine node i is not influenced
by any other node its trivial collection of winning coalitions is the set {C ⊆ N | {i} ⊆ C},
that is, the set of all coalitions containing i. Intuitively, this amounts to stating that i is the
only node influencing its own opinion.

2.3 Validation and Safety
Intuitively, a node i validates an opinion whenever a winning coalition of nodes trusted by i
agrees on that opinion, from the perspective of i. Given an opinion profile o we denote by

T o
j (x) = {i ∈ Tj | o(i) = x if i ∈ H, and o(i)(j) = x if i ∈ B} (1)

the set of nodes trusted by i who hold opinion x (if they are honest), or reveal opinion x to i
(if they are Byzantine).

I Definition 8. Let a BTN and an opinion profile o be given. Way say that i ∈ N validates
x ∈ {0, 1} (in o) if T o

i (x) ∈ Ci.

In a QBTN, an honest node i validates an opinion whenever there are at least qi · |Ti| nodes
with the same opinion among the nodes it trusts.

I Remark 9. BTNs are a generalization of so-called Byzantine quorum systems [27]. Each
BTN naturally induces the set of quora {Q ⊆ N | ∀i ∈ Q,∃C ∈ Ci : C ⊆ Q}. In words, a
quorum is a set of nodes that contains a winning coalition for each node in the set (cf. [28]).
Intuitively, it is a set of nodes that have the means to stably validate an opinion. For a set
of quora to be a Byzantine quorum system, quora also need to pairwise intersect. We will
come back to this in Section 3.2.

To introduce safety formally, we need some auxiliary notions. Let s : N → 2N be a
function picking, for any agent i, one coalition out of Ci. Each function s induces an operator
Fs : 2N → 2N such that Fs(C) =

⋃
i∈C s(i), collecting, for each i in C, the winning coalition

s(i) picked by function s. We can then recursively construct sets of nodes by joining winning
coalitions of nodes in earlier sets. Such a construction reaches a fixpoint where for each
node in the set a winning coalition is already contained in the set. Formally, for C ⊆ N :
F 0
s (C) = C and Fn+1

s (C) = Fs(
⋃

0≤k≤n F
k
s (C)). Define then F ?s (C) =

⋃
0≤n F

n
s (C). As N
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is finite, there exists a non-negative integer n such that Fns (C) = F ?s (C). Observe that for
any C ⊆ N , F ?s (C) is such that for all i ∈ F ?s (C) there is a D ∈ Ci such that D ⊆ F ?s (C).
That is, F ?s (C) is a quorum (cf. Remark 9).

I Definition 10. Let a BTN and an opinion profile o be given. We then say that an opinion
profile o is:

forked (or, is a fork) if there are two honest nodes i, j ∈ H such that i validates x and j
validates x in o.
strongly forked (or, is a strong fork) if there are two honest nodes i, j ∈ H and a function
s such that all nodes in F ?s ({i}) agree on x and all nodes in F ?s ({j}) agree on x.

So, a fork is a profile where two honest nodes i and j have validated two different opinions.
A strong fork is a fork where, in addition, there is a winning coalition for i agreeing on x
and a winning coalition for j agreeing on x, and all nodes in that winning coalition for i also
have a winning coalition agreeing on x and all nodes in that winning coalition for j have a
winning coalition agreeing on x, and so on. In short, a strong fork is a “stable” fork.

I Definition 11. A BTN is safe if there exists no forked profile for it. It is weakly safe if
there exists no strongly forked profile for it.

Safety rules out the possibility that two honest nodes may settle on different opinions, and
therefore the possibility that the run of any consensus protocol on the BTN would generate
a stream of opinion profiles that contains a profile where two nodes have validated different
values. Weak safety allows for forks of only a limited kind. It rules out the possibility that
forks are of a “deep” kind in the sense that they involve all winning coalitions upon which
the diverging opinions are rooted. Clearly safety implies weak safety but not vice versa.

It is finally worth stressing that the above notions of safety and weak safety are protocol
independent: they concern all consensus protocols where validation depends locally on the
values relayed by trusted nodes on a given BTN, like the Ripple or Stellar protocols.7

3 (De)centralisation and (In)tractability

This section explores inherent limitations present in the above notion of safety for BTNs,
establishing general limitative results for the class of consensus protocols based on them, such
as Ripple and Stellar. First, it focuses on uniform QBTNs (Definition 5), as exemplified by
the Ripple consensus protocol, showing that safety drastically limits the freedom of nodes in
selecting trustees. Second, it focuses on safety for general BTNs (Definition 3), as exemplified
by the Stellar consensus protocol, showing that, even though safety in such settings allows
for more freedom on the part of nodes, it does require single nodes to solve decision problems
that are, in principle, computationally intractable.

3.1 Safety Implies Centralization in Uniform QBTNs
We show that the safety of uniform QBTNs implies that nodes cannot be fully free to choose
their trust set. The result builds on ideas and techniques from [6].

We first define some notation:

βij = min {|Ti ∩ Tj |, b · |Ti|, b · |Tj |} . (2)

7 However, it is worth stressing we are not considering protocols where validation may depend on
information richer than just nodes’ opinions.
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Intuitively, βij denotes the maximum possible number of Byzantine nodes present in the
intersection of the trust sets of i and j. Such a number equals the maximum amount of
Byzantine nodes assumed by the node, either i or j, that tolerates fewer Byzantine nodes.
Such a number cannot obviously exceed the size of the intersection itself.

I Lemma 12 ([6]). Let 〈N,H, Ti, qi〉 be an effective QBTN. For any profile o and node
i ∈ H, if |T o

i (x)| > 0 then for any j ∈ H,

|T o
j (x) ∩H| ≥ |Ti ∩ Tj |+ |T o

i (x)| − |Ti| − βij (3)
|T o
j (x)| ≤ |Tj | − |Ti ∩ Tj | − |T o

i (x)|+ |Ti|+ βij (4)

This lemma establishes a lower bound on the number of honest nodes with opinion x that a
honest node j can observe in its trust set, given the number of nodes (not necessarily honest)
that another honest node i observes. It is used in the proof of Lemma 14. Notice that the
bound in (3) and (4) are not necessarily strict, as illustrated in the following example.

I Example 13. Let 〈N,H, Ti, qi〉 be such that: N = {1, . . . , 9}, B = {5} (recall N = H ∪B),
T1 = T2 = T3 = T4 = {1, 2, 3, 4, 5} and T6 = T7 = T8 = T9 = {5, 6, 7, 8, 9}, q1 = q2 =
q4 = q5 = 1 − 1

9 . Let then o be such that o(1) = o(2) = o(3) = o(4) = 1, o(6) = o(7) =
o(8) = o(9) = 0, finally o(5) be such that o(5)(1) = o(5)(2) = o(5)(3) = o(5)(4) = 0
and o(5)(6) = o(5)(7) = o(5)(8) = o(5)(9) = 1. So no honest node in {1, 2, 3, 4, 5} can
see a honest node with opinion 0 and, vice versa, no honest node in {5, 6, 7, 8, 9} can see a
honest node with opinion 1. But honest nodes in both set can see a (Byzantine) node with
opposite opinion. Let now j = 1 and i = 2. We have, |T 1

j ∩H| = 5 + 5 − 5 − 1 = 4 and
|T 0
j | = 5− 5− 5 + 5 + 1 = 1.

I Lemma 14. Let T = 〈N,H, Ti, qi〉 be a safe, uniform and effective QBTN. Then for all
i, j ∈ H: |Ti ∩ Tj | > b

1−b · (|Ti|+ |Tj |).

Notice that the maximum size of the intersection of two trust sets is obviously 1
2 (|Ti|+ |Tj |).8

Lemma 14 establishes a lower bound on the size of the intersection of trust sets required by
safety. The intuition behind the lemma is the following one. In order to make it impossible
for two honest nodes to validate opposite values, their trust sets should intersect to the
extent that any two winning coalitions for the two nodes would also have to intersect and
contain at least one honest node.

I Lemma 15. Let 〈N,H, Ti, qi〉 be a uniform BTN. If for all i, j ∈ H, |Ti ∩ Tj | > 0.25 ·
(|Ti|+ |Tj |), then

⋂
i∈H Ti 6= ∅.

Intuitively, if any two trust sets have a large enough intersection (larger than a quarter of
their combined size or, equivalently, larger than half their average size) then they must all
intersect.

I Theorem 16. In uniform QBTNs with effective quotas, if b ≥ 0.2 then safety implies the
existence of nodes that are trusted by all honest nodes.

Proof. The result follows directly from Lemmas 14 and 15 and the observations that: in
effective QBTNs where b ≥ 0.2 it follows that b ≤ 0.25; and for b ∈ [0.2, 0.25] we have that
b

1−b ≥ 0.25 as desired. J

8 This is the case, for instance, in QBTNs where |Ti| = |Tj | for all i, j ∈ H.
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2 3
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5 6

Figure 1 Example from [28] of a vetoed BTN lacking QI. Arrows denote which nodes each node
trusts (reflexive arrows omitted). C(1) = C(2) = C(3) = {{1, 2, 3}} and C(4) = C(5) = C(6) =
{{4, 5, 6}}.

If we understand decentralisation as the property of trust networks in which nodes have
full freedom on whom to trust in the network, then the theorem can be interpreted as a
general impossibility result for consensus based on QBTNs: if quotas are uniform and set
appropriately w.r.t. the postulated maximum share of Byzantine nodes in trust sets, and
if such share is large enough, then the existence of nodes that are trusted by everyone is a
necessary condition for the safety of consensus. Furthermore, beyond limiting the choice of
nodes, a (limited) set of such nodes clearly represents a dominant position and a risk factor.

In general, Theorem 16 is relevant for any consensus protocol that could be run on uniform
QBTNs. In particular, it applies to the Ripple consensus protocol when the maximum
fraction b of Byzantine nodes in trust sets is set to 0.2. In a way, Theorem 16 provides an
ex-post analytical justification to the current design of the Ripple trust network where all
trust sets are required to include a same subset of nodes (cf. [6]). Currently Ripple relies on
a single UNL mostly controlled by Ripple, although plans for further decentralisation are
under discussion.9

3.2 Safety and Quorum Intersection in BTNs
In this and the next section we consider the general case of (vetoed) BTNs, to which Theorem
16 does not apply. This more general setting applies instead to Stellar as described in its
white paper [28], where the Stellar consensus protocol does not presuppose uniformity of
quotas. Actually, Stellar aims to offer open membership and freedom in choosing its own
trust networks, which, together with BFT good scalability, would yield a decentralised and
efficient blockchain. In such a setting an intuitive necessary condition for safety is that trust
networks are sufficiently “interconnected”, in the following sense.

I Definition 17 ([28]). A vetoed BTN enjoys quorum intersection (QI) whenever for any
two sets Q1, Q2 ⊆ H, if Q1 and Q2 are quora, then Q1 ∩Q2 6= ∅.

I Example 18. In Figure 1 the quora are {1, 2, 3}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}. This BTN does
not enjoy QI, but both of its disjoint components (with support {1, 2, 3} and {4, 5, 6}) do.
Suppose instead that {1, 2, 3, 5} ∈ C(3), that is, 3 also trusts 5. Then the system would
satisfy QI with quora: {4, 5, 6}, {1, 2, 3, 4, 5, 6}.

I Example 19. In a BTN T where ∀i ∈ N , C(i) = {N}, the set N of all nodes is the unique
quorum, and T trivially enjoys quorum intersection.

In fact, there is a close relationship between quorum intersection and the property of
weak safety:

I Theorem 20. A vetoed BTN is weakly safe iff any two quora intersect and such intersection
contains at least one honest node.

9 Cf. https://xrpcharts.ripple.com/.
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Clearly, nodes in a BTN cannot know which nodes are Byzantine so their best effort in order
to guarantee weak safety is to guarantee QI is not violated.10

3.3 The Intractability of Maintaining Quorum Intersection

Quorum intersection is in fact assumed by all the existing correctness analyses of Stellar
[28, 17]. It is furthermore stressed in [28, p. 9] that: “[. . . ] it is the responsibility of each node
i to ensure Ci [notation adapted] does not violate quorum intersection.” The key question,
from a safety perspective, becomes therefore whether single nodes can reasonably be tasked
with maintaining QI. Apart from incentive issues, which have also been flagged [23], we argue
that this is a problematic requirement from a merely computational standpoint. This might
not be an issue in the current, small-scale, Stellar configuration (although an instance of
QI failure has been recently reported [26]), but it is something to be considered in a path
towards full decentralisation with a full-scale number of nodes and validators. As our analysis
below shows, maintaining QI is a computationally intractable problem.

We present two results. First we show that deciding whether a given BTN satisfies QI is
intractable.11 Second, we show that deciding whether adding a new trust set with winning
coalitions preserves QI on a given BTN is also computationally intractable (again coNP-hard).
This is arguably the decision problem that nodes need to solve when linking to the Stellar
network. We argue that these results point to a possible computational bottleneck for the
scalability of the consensus model of Stellar.

We first define the problem of deciding whether QI holds in a given BTN.
Quorum-Intersection

Input: A BTN T = 〈N, C〉 where the sets C(i) for i ∈ N are listed explicitly.12

Question: Is it the case that for each two quora Q1, Q2, Q1 ∩Q2 6= ∅?

I Theorem 21. Quorum-Intersection is coNP-complete.

The intractability result of Theorem 21 says that it may be computationally hard, in
practice, to check QI. Such a result is robust in the sense that the related problem of checking
whether QI holds after the insertion of one new winning coalition by a node into a system
that already satisfies QI, is also coNP-complete. (actually coNP-hard).

Coalition-Addition-Quorum-Intersection

Input: Two BTNs T = 〈N, C〉 and T ′ = 〈N, C′〉, such that T ′ satisfies QI, and such
that T is obtained from T ′ by adding one single coalition to C′(i) for some i ∈ N , where
the sets C(i) and C′(i) for all i ∈ N are listed explicitly.
Question: Is it the case that for each two quora Q1, Q2 of T Q1 ∩Q2 6= ∅?

I Theorem 22. Coalition-Addition-Quorum-Intersection is coNP-complete.

10However, a BTN could be complemented by a more fine-grained failure model consisting of a set of sets
of possible Byzantine nodes representing the possible failure scenarios that nodes may encounter (cf.
[17]).

11An equivalent result has also been recently presented in [24]. That paper provides a proof of NP-
completeness (via reduction from the Set Splitting Problem) of the complementary problem for which
we prove coNP-completeness (via 3SAT).

12For the purpose of this and the following result we do not need to take into consideration the H and Ti

elements of a BTN (Definition 3). We therefore omit them for conciseness.
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4 Quantifying Influence on Consensus in BTNs

Theorem 16 showed that, in uniform QBTNs, safety implies the existence of nodes that
are trusted by all honest nodes. While this can definitely be interpreted as a high level
of centralisation required by safety, it is worth trying to precisely quantify the effect that
the existence of all-trusted nodes has on consensus. In PoW and PoS protocols it is
straightforward, at least by first approximation, to understand what the influence of each
node is on the consensus process: each node will be able to determine a fraction of blocks
corresponding to the node’s share of total hashing power (PoW) or of total stakes (PoS). For
consensus based on voting over trust structures, like in Ripple and Stellar, quantifying nodes’
influence in a principled way is not obvious. This section proposes a methodology for such
quantification that leverages the theory of voting games.

4.1 Influence Matrices
A BTN (Definition 3) associates to each honest node i a structure 〈Ti, Ci〉. Such structures are
known in game theory as simple games, that is a set of agents endowed with a set of winning
coalitions. Such structures have been extensively studied to provide exact quantifications
of power, for instance, in voting. In this section we show how techniques based on simple
games provide a principled way to quantify influence in BTNs. We study the influence of j
over i in a BTN as the power of j in the simple game that the BTN associates to i.

The Penrose-Banzhaf index [33, 1] of a node j in the simple game 〈Ti, Ci〉 of node i is

Bi(j) = 1
2n−1

∑
C⊆N\{j}

v(C ∪ {j})− v(C) (5)

where v is the characteristic function of Ci.13 Essentially, the index counts the number of
times in which j is decisive in turning a losing coalition into a winning one, that is, one that
can determine the validation of an opinion by i. Equivalently, Bi(j) can be interpreted as
the probability that j determines whether i validates a specific opinion, assuming all other
agents in Ti have opinions distributed uniformly at random.

The normalised version NBi(j) of the Penrose-Banzhaf index is:

NBi(j) = Bi(j)∑
k∈N Bi(k) (6)

For any agent j 6∈ Ti we stipulate NB(j) = 0, as nodes that i does not trust cannot
influence i’s opinion directly – in game-theoretic jargon they are “dummy agents” in i’s
simple game. Byzantine nodes are assigned degenerate simple games containing a singleton
winning coalition that has themselves as only member (cf. Remark 7 above). Byzantine
agents cannot be influenced: for all i ∈ N\H from the degenerate simple game associated to
i, NBi(i) = 1, and NBi(j) = 0 for each j 6= i.

Given a BTN, we associate to each honest node i a vector [NBi(1), . . . ,NBi(n)] of
normalized Penrose-Banzhaf indices capturing the influence that each node has on i. Clearly∑
j∈N NBi(j) = 1 and NB(j) > 0 only if j ∈ Ti, for any i ∈ N . Notice that the vector of

a Byzantine node i is therefore degenerate: NBi(i) = 1 and NBi(j) = 0 for each j 6= i. It

13That is, for any C ⊆ N , v(C) = 1 iff C ∈ Ci.
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follows that each BTN T induces a stochastic N ×N matrix

I(T ) =


I11 I12 I13 . . . I1n
I21 I22 I23 . . . I2n
...

...
...

. . .
...

In1 In2 In3 . . . Inn


where Iij denotes the normalized Penrose-Banzhaf index NBi(j) of node j in the simple
game associated to i. We call such matrix I(T ) = [Iij ]i,j∈N the influence matrix (of T ). We
will drop reference to T when no confusion arises. The matrix encodes the direct influence
that each node has on each other in the sense of being decisive for the validation of an
opinion. Matrices of this type have a long history in the mathematical modeling of influence
in economics and the social sciences dating back to [13, 7], and have recently received renewed
attention [21].14 Similar matrices, but based on the Shapley-Shubik power index [38] instead
of the Penrose-Banzhaf one, have been studied in [20, 19].15

I Example 23. Consider the following BTN with no Byzantine nodes and consisting
of 6 agents all having a same set of 5 agents as trust set: N = H = {1, 2, 3, 4, 5, 6},
Ti = {1, 2, 3, 4, 5} for all i ∈ N and qi = 0.8 for all i ∈ N . By (5) and (6) for each
i ∈ {1, 2, 3, 4, 5, 6} we have Bj(i) = 2

8 and NBj(i) = 1
5 , for each node j ∈ {1, 2, 3, 4, 5}. The

influence matrix describing this BTN consists of 6 identical row vectors
[ 1

5
1
5

1
5

1
5

1
5 0.

]
Consider now a variant of the above BTN where node 5 is Byzantine. The influence matrix
describing this variant consists of 5 identical vectors

[ 1
5

1
5

1
5

1
5

1
5 0.

]
for the rows

corresponding to nodes 1− 4 and 6, and the degenerate row vector
[
0 0 0 0 1 0.

]
for

the row of node 5. That is, all the nodes in Ti have the same influence on honest nodes, but
no honest node influences 5.

4.2 Limit Influence
Influence matrices describe the extent of direct influence between nodes. But influence is not
only direct: by influencing nodes k that in turn influence node i, a node j can exert indirect
influence on the opinions that i validates. This type of indirect influence is captured by the
powers of the influence matrix:
I1
ij = Iij represents the probability that j can directly sway i to validate a value x. This is
j’s direct influence on i.

I2
ij =

∑
k∈N Iik · Ikj represents the probability that j can sway i’s validation in two steps, by

swaying the validation of intermediate nodes k which in turn sway i’s validation directly.
This is j’s indirect (2-step) influence on i.

Ikij more generally represents j’s indirect (k-step) influence on i.
So the influence (direct or indirect) of j on i in a BTN is given by the total probability
of all ways in which j can determine the value of i’s validation. Formally this amounts to
limt→∞(It)ij , provided such limit exists. In yet other words, this denotes the likelihood that
j is decisive for i to validate an opinion.

We are then in the position to quantify what the influence is of each node on every other
node by taking the limit of the power of the influence matrix of the BTN T , that is:

I(T )∞ = lim
t→∞

I(T )t (7)

14 See also [34, 35] for an overview of such models.
15For a comparison between these two power indeces we refer the reader to [11].
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If the limit matrix in (7) exists, we say that the influence matrix I(T ) is regular. We say
that it is fully regular when its limit matrix exists and it is such that all rows are identical.16
Intuitively, regularity means that it is possible to precisely quantify the influence of each
node on each other node; full regularity means that every node has the same influence on
every other node.

I Example 24. Consider again the two BTNs introduced in Example 23. In the first case,
where all nodes are honest, all nodes belonging to some trust set have positive and – given
the symmetry built in the example – the same influence:

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0


=



1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0



2

= lim
t→∞



1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0



t

In the second case, where node 5 is Byzantine, the only node having positive influence (total
influence 1 in this example) is precisely 5:

lim
t→∞



1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

1
5

1
5

1
5

1
5

1
5 0

0 0 0 0 1 0
1
5

1
5

1
5

1
5

1
5 0



t

=



0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0


In other words, the only node having influence on which values will be validated by other
nodes, and therefore on agreement, is the Byzantine node.

4.3 Limit Influence in Ripple and Stellar
Theorem 16 established that in uniform QBTNs, and therefore Ripple, safety requires
centralisation in the sense of demanding the existence of a non-empty set of nodes trusted
by all other nodes. While this does not apply in general to Stellar, recent studies have
highlighted that Stellar enjoys a similar level of centralisation.17

Here we put the above methodology at work to study limit influence in centralised BTNs,
that is BTNs where nodes exist that are trusted by all nodes. We show (Theorem 25) that:
the existence of nodes trusted by all nodes makes it possible to establish limit influence (first
claim); this limit influence is such that every node has the same limit influence on every
other node (second claim) when at most one Byzantine node exists in the BTN; but if only
just one all-trusted node trusts a Byzantine node, no honest node has limit influence on any
other honest node (third claim). That is, in a centralised BTN the power of deciding whether
an opinion can become consensus or not is, in principle, all in the hands of Byzantine nodes.

16The “regularity” and “full regularity” terminology are borrowed from [14] and [34].
17Data analysis of the current Stellar network has shown [23] that one of the three Stellar foundations

validators is included in all trust sets. If we treat the Stellar foundation to be operating as one node,
Stellar satisfies de facto the same level of centralisation that we have shown is analytically required for
Ripple.
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I Theorem 25. Let T be a BTN. If T is such that
⋂
i∈H Ti 6= ∅ then:

1) I(T ) is regular;
2) I(T ) is fully regular if in addition T is such that |B| ≤ 1;
3) and, if there exists j ∈

(⋂
i∈H Ti

)
∩ H such that Tj ∩ B 6= ∅ then for all j, k ∈ H,

I(T )∞jk = 0.
Again, it is worth noticing that this is a general protocol-independent result: it concerns all
protocols working on centralized BTNs where consensus is determined through validations
locally dependent on trusted nodes. In particular, it applies to the setup of the Ripple trust
network under the assumption of safety (by Theorem 16) and to the current setup of the
Stellar trust network.

5 Conclusions

We addressed decentralisation in the specific context of BFT consensus based on open quorum
systems, showcasing the relevance of tools from economic theory (command games, power
indices) and computational complexity theory. In doing so we focused on a general class of
consensus, linking decentralisation to a precise measure of the influence of each peer in the
network (a theme extensively studied in economics), an analysis of the structural properties
of the consensus network, and the computational complexity of problems related to safe
consensus. The obtained limiting results on Ripple and Stellar are coherent with the current
practice and the proposals that industry is putting forward to improve decentralisation. We
argue that the obtained results show this is a promising approach to the formal analysis of
decentralisation.

Our results point to several avenues of future research. We are planning to extend our
analysis to other blockchains based on BFT consensus that are currently being developed,
noticeably Cobalt [10] as an evolution of the Ripple/Stellar tradition. More generally, we also
want to explore the applicability of the methodology beyond the framework of Byzantine trust
networks, since measures of the relative influence of peers are of interest for other blockchain
frameworks, e.g. PoS. At the same time, we also intend to build on such measures to
address the relationships between influence, decentralisation and, crucially, revenue. Properly
understanding such mechanisms will serve to the long-term goal of designing more reliable
and robust blockchains. On the application side, the development of a prototype analysis
toolkit and collection of relevant data is also an ongoing activity.
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A Technical appendix

A.1 Proofs of Section 2
A.1.1 Lemma 12
Proof. (3) By assumption |T o

i (x)| > 0. So j observes at least |T o
i (x) ∩ Tj ∩H| nodes with

opinion x in Tj . Those are the honest nodes among the nodes with opinion x that both i
and j can observe. So

|T o
j (x) ∩H| ≥ |T o

i (x) ∩ Tj ∩H|.

Now among the nodes in T o
i (x) ∩ Tj there are at most βij Byzantine nodes that could reveal

the opposite opinion x to j. So,

|T o
i (x) ∩ Tj ∩H| ≥ |T o

i (x) ∩ Tj | − βij .

The claim is finally established by the following series of (in)equalities:

|T o
i (x) ∩ Tj ∩H| ≥ |T o

i (x) ∩ Tj | − βij
≥ |T o

i (x)| − |Ti\Tj | − βij
= |T o

i (x)| − |Ti|+ |Ti ∩ Tj | − βij

(4) By assumption |T o
i (x)| > 0. So, by (3), |T o

j (x)∩H| = |Ti ∩Tj |+ |T o
i (x)| − |Ti| −βij

whenever only the honest nodes in Tj have opinion x. It follows that

|T o
j (x)| ≤ |Tj | − (|Ti ∩ Tj |+ |T o

i (x)| − |Ti| − βij)
= |Tj | − |Ti ∩ Tj | − |T o

i (x)|+ |Ti|+ βij .

This completes the proof. J
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A.1.2 Lemma 14
Proof. The proof consists of two sub-arguments. First we show that safety implies that,
for all i, j ∈ H:

|Ti ∩ Tj | > b · (|Ti|+ |Tj |) + βij (8)

By safety (Definition 11), if |T o
i (x)| ≥ qi|Ti| with i ∈ H, then for all j ∈ H T o

j (x) < q|Tj |.
Assume T o

i (x) ≥ q|Ti| with i ∈ H. By Lemma 12 and safety we have:

T o
j (x) ≤ |Tj | − |Ti ∩ Tj | − q|Ti|+ |Ti|+ βij

< q|Tj |.

From |Tj | − |Ti ∩ Tj | − q|Ti|+ |Ti|+ βij < q|Tj | and the assumption on the effectiveness of q
(that is, q ∈ (0.5 + b, 1− b]) we thus obtain

b · (|Ti|+ |Tj |) + βij ≤ (1− q) · (|Ti|+ |Tj |) + βij

= |Tj | − q|Tj | − q|Ti|+ |Ti|+ βij

< |Ti ∩ Tj |

as desired.18
Second We show that safety also implies that, for all i, j ∈ H:

b · (|Ti|+ |Tj |) + βij >
b

1− b (|Ti|+ |Tj |) (9)

We have established that safety implies that for all i, j ∈ H, |Ti∩Tj | > b ·(|Ti|+ |Tj |)+βij
(8), that is, the size of the intersection of the trust sets of i and j should be larger than the
maximum possible fraction of Byzantine nodes times the combined size of the trust sets, plus
βij . Now recall the definition of βij (2). By (8) it cannot be the case that βij = |Ti ∩ Tj |. So
βij = b|Tk| where Tk is the the smallest set between Ti and Tj . Now assume, w.l.o.g. that
|Ti| ≥ |Tj | and so that |Tj | = x · |Ti| with x ∈ (0, 1]. By (8) we have:

|Ti ∩ Tj | > b(|Ti|+ |Tj |) + βij

= b(|Ti|+ x|Ti|) + bx|Ti|
= b|Ti|(1 + 2x)

From this, and the fact that a set is always at least as large as its intersection with another
we obtain a lower bound for x by the following series of inequalities:

x|Ti| ≥ |Ti ∩ Tj |
x|Ti| > b|Ti|(1 + 2x)

x > b(1 + 2x)
x > b+ 2bx

x− 2bx > b

x(1− 2b) > b

x >
b

1− 2b

18Cf. [6, Proposition 4].
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By substituting b
1−2b for x in (8) we thus obtain a lower bound for |Ti ∩ Tj | in b. We then

reformulate (8) in terms of the combined size α = |Ti|+ |Tj | of the two trust sets:

|Ti ∩ Tj | > b(|Ti|+ x|Ti|︸ ︷︷ ︸
α

) + bx|Ti|

> b(|Ti|+
b

1− 2b |Ti|) + b
b

1− 2b |Ti|

= bα+ b
b

1− 2b
1− 2b
1− b α as|Ti| = α

1− 2b
1− b

= bα(1 + b

1− b )

= b

1− bα

So safety implies that the size of the intersection of Ti and Tj must be larger than the fraction
b

1−b of the combined size of the two sets. J

A.1.3 Lemma 15
Proof. The proof is by induction on |H|. Base if |H| = 1 the claim holds trivially. Step
Now assume the claim holds for |H| = m (IH). We prove it holds for |H| = m+ 1. So assume
for all i, j ∈ H, |Ti ∩ Tj | > 0.25 · (|Ti|+ |Tj |), and let k be the m+ 1th node in H. By IH we
know that

⋂
i∈H\{k} Ti 6= ∅. Now take one of the smallest (w.r.t. size) Ti with i ∈ H\ {k}

and call it Tj . There are two cases. |Tk| ≤ |Tj | . Then |Tj ∩ Tk| > 0.5 · |Tk|. Since Tj
was smallest amongst the Ti, it also hols that ∀i ∈ H |Ti ∩ Tk| > 0.5 · |Tk|. From this we
conclude that

⋂
i∈H Ti 6= ∅. |Tk| > |Tj | Then |Tj ∩ Tk| > 0.5 · |Tj |. Since Tj was smallest

amongst the Ti, it also hols that ∀i ∈ H |Ti ∩ Tj | > 0.5 · |Tj |, from which we also conclude⋂
i∈H Ti 6= ∅. J

A.1.4 Theorem 20
Proof. Left to right Straightforwardly proven by contraposition. Right to left Proceed
by contraposition and assume there is a profile o, a function s and agents 1 and 2 such that
all k ∈ C1 = F ?s ({1}) agree on x and all k ∈ C2 = F ?s ({2}) agree on x. Observe that C1 and
C2 are quora containing (since the BTN is vetoed) 1 and 2. There are two cases. Either
C1 ∩ C2 = ∅, or if that is not the case then C1 ∩ C2 ⊆ B as only Byzantine nodes can reveal
different opinions to different nodes. Hence C1 and C2 are either disjoint or their intersection
contains only Byzantine nodes. J

A.1.5 Theorem 21
Proof. To see that the problem is contained in coNP, we describe a nondeterministic
polynomial-time algorithm to decide whether T = 〈N, C〉 does not have the quorum intersec-
tion property. The algorithm guesses two disjoint sets Q1, Q2 ⊆ N . Then, for each u ∈ [2]
and for each i ∈ Qu, the algorithm checks if there is some C ∈ C(i) such that C ⊆ Qu. That
is, the algorithm verifies that Q1 and Q2 are quora (which is the case if and only if all checks
succeed). Clearly, all checks can be performed in polynomial time. Thus, deciding whether T
has the quorum intersection property is in coNP.

To show coNP-hardness, we reduce from the coNP-complete propositional unsatisfia-
bility problem (UNSAT). Let ϕ be a propositional formula containing the propositional
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variables x1, . . . , xn. Without loss of generality, we may assume that ϕ is in 3CNF, i.e.,
that ϕ = c1 ∧ · · · ∧ cm and that for each j ∈ [m], cj = (Tj,1 ∨Tj,2 ∨Tj,3), where Tj,1, Tj,2, Tj,3
are literals. We construct a command game T = 〈N, C〉 that has the quorum intersection
property if and only if ϕ is unsatisfiable.

We let:

N = {z0, z1} ∪ {cj | j ∈ [m]} ∪ {yi, pi, ni | i ∈ [n]}.

That is, we have nodes z0, z1, a node cj for each clause of ϕ, and nodes yi, pi, ni for each
variable occurring in ϕ.

We define the sets of winning coalitions of the nodes in N as follows:

C(z0) = {{z0, y1, . . . , yn}};
C(z1) = {{z1, c1, . . . , cm}};
C(yi) = {{yi, pi}, {yi, ni}} foreach i ∈ [n];
C(cj) = {{cj , σ(Tj,1)}, {cj , σ(Tj,2)}, {cj , σ(Tj,3)}} foreach j ∈ [m];
C(pi) = {{pi, z0}, {pi, z1}} foreach i ∈ [n]; and
C(ni) = {{ni, z0}, {ni, z1}} foreach i ∈ [n];

where for each positive literal xi, we let σ(xi) = pi; and for each negative literal ¬xi, we
let σ(¬xi) = ni.

We argue that T = 〈N, C〉 has the quorum intersection property if and only if ϕ is
unsatisfiable. We show the equivalent statement that T = 〈N, C〉 does not have the quorum
intersection property if and only if ϕ is satisfiable.

(⇒) Suppose that there exist Q1, Q2 ∈ QT such that Q1 ∩ Q2 = ∅. We may assume
without loss of generality that Q1 and Q2 are core quora. We know that neither Q1 nor Q2
can contain both z0 and z1, because each quorum of T must contain either z0 or z1 (by the
specific construction of T ). Thus, we may assume that z0 ∈ Q2 and z1 ∈ Q1.

Then also {y1, . . . , yn} ⊆ Q2. Moreover, for each i ∈ [n], we know that then either pi ∈ Q2
or ni ∈ Q2 (and not both). We also know that {c1, . . . , cm} ⊆ Q1. Now define the truth
assignment α : {x1, . . . , xn} → {0, 1} as follows. For each i ∈ [n], we let α(xi) = 1 if ni ∈ Q2
and we let α(xi) = 0 if pi ∈ Q2.

We show that α satisfies ϕ. Take an arbitrary clause cj of ϕ. Due to the construction
of C(cj), we know that Q1 contains (at least) one of σ(Tj,1), σ(Tj,2), σ(Tj,3). Take some u ∈ [3]
such that σ(Tj,u) ∈ Q1. We show that α satisfies Tj,u. To derive a contradiction, suppose
the contrary, i.e., that α does not satisfy Tj,u. Then σ(Tj,u) ∈ Q2 (by the construction of α),
and thus Q1 ∩Q2 6= ∅, which contradicts our initial assumption that Q1 ∩Q2 = ∅. Thus, we
can conclude that α satisfies Tj,u. This concludes our proof that ϕ is satisfiable.

(⇐) Conversely, suppose that ϕ is satisfiable, i.e., that there is some truth assignment α :
{x1, . . . , xn} → {0, 1} that satisfies all clauses of ϕ. For each clause cj , define ρ(cj) to be
some literal Tj,u in cj that is satisfied by α. Moreover, for each i ∈ [n], let µ(xi) = ni
if α(xi) = 1 and µ(xi) = pi if α(xi) = 0. Consider the following two sets Q1, Q2 ⊆ N :

Q1 = {z1, c1, . . . , cm} ∪ {σ(ρ(cj)) | j ∈ [m]}; and
Q2 = {z0, y1, . . . , yn} ∪ {µ(xi) | i ∈ [n]};

It is straightforward to verify that Q1 and Q2 are both quora, i.e., that Q1, Q2 ∈ QT .
Moreover, since it holds that Q1 ∩ Q2 = ∅, we know that T does not satisfy the quorum
intersection property. J
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A.1.6 Theorem 22
Proof sketch. Membership in coNP follows directly from Proposition 21. We show coNP-
hardness by modifying the reduction given in the proof of Proposition 21. We describe
a reduction from UNSAT. Let ϕ be a propositional formula containing the propositional
variables x1, . . . , xn. Without loss of generality, we may assume that ϕ is in 3CNF. Moreover,
without loss of generality, we may assume that ϕ[x1 7→ 1] is unsatisfiable. We construct the
command game T = 〈N, C〉 as in the proof of Proposition 21. Moreover, we transform T
into T ′ by removing the coalition {y1, n1} from C(y1). By a similar argument as the one used
in the proof of Proposition 21, we know that the command game T ′ satisfies the quorum
intersection property, because ϕ[x1 7→ 1] is unsatisfiable. Moreover, T satisfies the quorum
intersection property if and only if ϕ is unsatisfiable. J

A.2 Proofs of Section 4
A.2.1 Theorem 25
Proof. We first need to introduce some auxiliary notation. Given an influence matrix I,
G(I) = 〈N,E〉 denotes the (directed) graph of I, where E = {ij | Iji > 0}. Intuitively ji ∈ E
whenever j influences i (i.e., has a positive Banzhaf-Penrose index in i’s simple game). By
assumption there exist nodes that influence all other honest nodes (themselves included). Let
now E(

⋂
i∈H Ti) =

{
i ∈ N | ∃j ∈

⋂
i∈H Ti, ij ∈ E

}
, that is, the set of nodes that influence

some node that influences all honest nodes. We distinguish three cases.
|B| = 0 So there are no Byzantine nodes in T , and N = H = E(

⋂
i∈H Ti) It follows

that G(I(T )) is strongly connected (there exists a path from every node to every node) and
aperiodic (there are no two cycles in the graph whose length is divided by an integer larger
than 1). Trivially, it is also closed (there exists no node outside G(I(T )) that influences
nodes in G(I(T ))). The full regularity of I then follows from known results on influence
matrices (cf. [34, Lemma 11]): if G(I) contains only one strongly connected component and
is aperiodic, then I is fully regular.
|B| = 1 and E(

⋂
i∈H Ti) ∩B 6= ∅ So there exists exactly one Byzantine node in N , which

furthermore belongs to E(
⋂
i∈H Ti) (that is, it influences at least one honest node influencing

in turn all honest nodes). Call i such Byzantine agent. Recall that, by construction, ii ∈ E.
So the subgraph consisting of i and the self-loop ii is the only closed, aperiodic, strongly
connected component of G(I(T )). Full regularity therefore follows by know results as in the
previous case.
|B| ≥ 1 or E(

⋂
i∈H Ti) ∩B = ∅ So there exist several Byzantine nodes in N or there

are Byzantine nodes which do not influence nodes in
⋂
i∈H Ti. Both such cases determine the

existence, by arguments analogous to those provided for the previous two cases, of several
closed, aperiodic strongly connected components in G(I(T )). The regularity of I then follows
again from known results on influence matrices (cf. [34, Theorem 12], [21, Theorem 8.1]: if
all closed strongly connected components of G(I) are aperiodic, then I is regular.

In all three cases I is regular, proving claim 1). In the first two cases (|B| ≤ 1) I is
furthermore fully regular, establishing claim 2). Finally, to prove claim 3) we reason as
follows. If there exists a honest agent in

⋂
i∈H Ti trusting a Byzantine agent, then the only

closed strongly connected components of G(I) are the Byzantine nodes. In the limit, such
nodes will therefore be the only ones having positive influence. J
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