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Summary

Understanding the distribution and extent of suitable habitats is critical for the conservation of
endangered and endemic taxa. Such knowledge is limited for many Central African species,
including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of
only two species in the family Picathartidae endemic to the forests of Central Africa. Despite
growing concerns about land-use change resulting in fragmentation and loss of forest cover in
the region, neither the extent of suitable habitat nor the potential species’ distribution is well
known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes
with environmental variables to model the potential global distribution. We used a Maximum
Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-
necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest
cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded
from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only
2,490 km2 (14.4%) are within protected areas where conservation designations are strictly
enforced. These findings show a smaller global distribution of predicted suitable habitat forthe
Grey-necked Picathartes than previously thought. This work provides evidence to inform a
revision of the International Union for Conservation of Nature (IUCN) Red List status, andmay
warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”.

Introduction

The African tropical lowland forest is the second largest rainforest block on the planet and home
to many species of global conservation concern (Myers et al. 2000). Forest cover throughout the
region is being lost due to logging, agricultural expansion, and human settlement (IPBES 2018).
Accurately quantifying the distribution and habitat preferences of rare, cryptic, and elusive
species in tropical forests can be extremely challenging and population declines can go unnoticed
(Préau et al. 2018). For many species, even basic information (such as population size and
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distribution) is lacking, making it difficult to know which geo-
graphical areas should be prioritised formonitoring and protection.

TheGrey-necked PicathartesPicathartes oreas is one of only two
species in the enigmatic and poorly known family Picathartidae
(Bian et al. 2006). This species is endemic to forested Central Africa
(McKelvey et al. 2008), and its known distribution is restricted to
six countries: Cameroon, the Central African Republic, Republic of
Congo, Equatorial Guinea, Gabon, and Nigeria (Birdlife Inter-
national 2022). Grey-necked Picathartes prefers closed-canopy
forest, access to fresh water, and large overhanging rock faces
(Awa et al. 2009), and occasionally tree trunks or buttresses
(Waltert and Mühlenberg 2000), where it builds nests from mud
and fine plantmaterial, often in colonies (Bian et al. 2006, Awa et al.
2009). These habitat requirements and unusual nesting behaviour
mean that colonies are often relatively remote and inaccessible
(Awa et al. 2009), although in central Gabon they have been
observed on the undersides of bridges and it has been suggested
that use of such structuresmay bemore widespread than previously
thought (Christy and Maisels 2007). The Grey-necked Picathartes
is thought to be naturally rare across its range and since year 2000,
its global population is considered to be declining with certainly
fewer than 10,000mature individuals (BirdLife International 2022).
It is currently listed as “Near Threatened” on the International
Union for Conservation of Nature (IUCN) Red List (Birdlife Inter-
national 2022), and in Appendix I of the Convention on Inter-
national Trade in Endangered Species of Wild Fauna and Flora
(CITES 2021). The main threats to Grey-necked Picathartes are
habitat loss and degradation, as well as hunting by humans
(BirdLife International 2022).

Nest counts are the standard method for estimating Grey-
necked Picathartes populations (Bian et al. 2006), and a large
number of colonies are known from Cameroon, which is con-
sidered to be the species’ stronghold (BirdLife International
2022). In Nigeria, a study in the forest blocks of Cross River (the
western limit of the species’ range) found 164 breeding individuals
(Atuo et al. 2016). Colony size can vary from >100 nests (Mont
MbamMinkom: Thompson and Fotso 1995), >50 nests (Dja Faunal
Reserve: Christy 1994), and >30 nests (Korup National Park and
Mount Nlonako: Bian et al. 2006, Dowsett-Lemaire and Dowsett
unpublished report). However, most colonies are thought to con-
tain only 10–15 individuals (Fotso 1999 in BirdLife International
2022). The most detailed studies of the species’ ecology to date have
been in Mont Mbam Minkom forest (Awa 2008, Awa et al. 2009),
an unprotected Important Bird Area (IBA) in the central region of
Cameroon (Fotso et al. 2001), and in the Cross River region of
south-east Nigeria (Atuo et al. 2014, 2016).

The limited geographical scope of studies of Grey-necked
Picathartes means that there is a lack of baseline data from which
to evaluate trends and population status. A few colonies are rela-
tively well-known, but little is known about the species’ wider
distribution, with only a few published records from some range
states (e.g. Equatorial Guinea, Gabon, and the Republic of Congo).
The current Grey-necked Picathartes distributionmapwas adopted
by IUCN/BirdLife International from the Grey-necked Picathartes
action plan and is based on ad hoc location reports of the species’
nests (Bian et al. 2006) and does not include two known sites in the
Republic of Congo (Mamonekene and Bokandza-Paco 2006: Gear
2013), or more recent records such as those of Cassidy et al. (2010)
in the Central African Republic. No attempt has been made to date
to estimate the species’ potential range. However, we know that
since 2001, suitable habitat (closed-canopy forest) is declining

across its range, especially in Cameroon (Global Forest Watch
2022, Hansen et al. 2013).

Species distribution models (SDMs) are used to estimate the
actual and potential distribution of poorly known species (Préau
et al. 2018). SDMs integrate known occurrences of species with
environmental variables (e.g. temperature, precipitation, forest
cover) to create spatially continuous projections of potentially
suitable habitat (Pearson and Dawson 2003, Peterson et al. 2011).
SDMs typically use machine-learning algorithms to characterise
the distribution of a species in geographical and environmental
space, and have been adopted widely in ecology and conservation
(Jennings and Veron 2015, Peterson et al. 2017, DeMatteo et al.
2017, Freeman et al. 2019). These tools can be used by conservation
practitioners to estimate the most suitable areas for a species, infer
the probability of presence in regions where no systematic surveys
are available/possible, and identify previously unknown areas of
habitat that should be investigated further for the species’ presence
(Elith et al. 2011, Freeman et al. 2019, Bradfer-Lawrence et al.
2021).

In this study, we compiled the largest known database of Grey-
necked Picathartes nest-site locations from its six known range
states (Cameroon, Nigeria, Central African Republic, Equatorial
Guinea [Bioko], Gabon, Republic of Congo), and used Maximum
Entropy (MaxEnt) models to predict the potential distribution of
the species across its entire range. The main objectives of this study
were to: (1) identify the most important areas that should be
prioritised for monitoring and protection; (2) identify potential
suitable areas that have not been surveyed; (3) better inform con-
servation strategies and actions for the species’ long-term survival.

Methods

Study area

The study region lies between 8°S–7°N and 8°E–18°E within the
western half of the Guineo-Congolian regional centre of endemism
(White 1983) (Figure 1). This area includes three of the BirdLife
International-designated Endemic Bird Areas: the Cameroon and
Gabon lowlands, the Gabon-Cabinda Coast, and the Cameroon
Mountains (Stattersfield et al. 1998, http://datazone.birdlife.org/
eba/results?reg=14&cty=0). The study region covers the entire
published range for the Grey-necked Picathartes (BirdLife Inter-
national 2022), buffered by 200 km (total area = 100,860 km2). This
is considered large enough to extend well beyond the range of likely
suitable habitat for the Grey-necked Picathartes (e.g., beyond the
forest–savannah transition zone in Cameroon, and well beyond the
range of known colonies).

Nest-site locations

Nest-site locations for Grey-necked Picathartes were obtained from
three sources. First, we searched the Global Biodiversity Informa-
tion Facility (GBIF) database for all nest records of the species since
2000 (www.gbif.org). Second, we reviewed published and unpub-
lished reports to identify and contact researchers likely to have GPS
coordinates of nest sites. Third, we conducted ad hoc field surveys
with the assistance of local ecoguards and field assistants in Cam-
eroon to identify new nest locations (Campo Ma’an National Park,
NkomNational Park, and the proposed Ebo Forest National Park).
The combined number of nest-site locations obtained from GBIF,
responses from researchers, and field surveys in Cameroon totalled
339 (Table 1).
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Spatial sampling bias layer

Species occurrence data, such as our nest-site records, are fre-
quently spatially biased, as surveys are often focused on known
sites and/or readily accessible locations (Phillips et al. 2009). This
leads to a bias in environmental values, and hence a mismatch with
the background points randomly selected from the wider study
region (Barber et al. 2022). To control for the effect of spatial bias,
we created a proxy for survey effort using a Target Group Sampling
approach whereby records for other birds are used to estimate
sampling effort under the assumption that the Grey-necked
Picathartes would also have been recorded if it were detected

(Ponder et al. 2001, Phillips et al. 2006, Rinnan 2015). We created
a species list for all birds with ranges that overlap our study region
(BirdLife International 2022).We used this species list to download
all records between 2000 and 2021 from GBIF, which gave 200,105
individual records from 814 species within our study region. From
these data, we generated aGaussian kernel density estimate with the
kde2d function from the R package MASS, using the default band-
width (v7.3.54;Venables and Ripley 2002). We used this layer to
differentially weight known presences and background points
based on sampling effort, where locations in areas of low sampling
effort were weighted more heavily than locations in areas where
sampling effort was high.

Environmental predictors

Environmental predictors came from five sources. The distribution
of most species is constrained by climate, so we used 30 arc second
Worldclim bioclimatic data (v2.1;Fick and Hijmans 2017). We did
not include theWorldclim variables that combine temperature and
precipitation (i.e. bio08, bio09, bio18, and bio19), as these have
sampling artefacts (Escobar et al. 2014). We also created a forest
cover layer from the 30 m resolution Hansen Global Forest Change
data (v1.9;Hansen et al. 2013). Using the year 2000 base layer, we
then subtracted all pixels where forest has since been lost, to give a
“Forest Cover in 2021” layer. To account for the potential influence
of anthropogenic pressures on forest habitat, we included the 30 m
resolution Forest Landscape Integrity Index (Grantham et al. 2020).
This combines both observed and inferred human pressures on
extant forest (e.g. from infrastructure, agriculture, etc.), as habitat
quality may be severely impaired even if the forest canopy is
relatively intact. As a measure of vegetation health, we extracted
both the Normalised Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) from 250 m resolution MODIS
(Didan 2015). For both layers we generatedmean values for the year
2021. We used both NDVI and EVI because the latter does not
saturate as rapidly at higher levels of vegetation chlorophyll, a
potential issue in tropical regions (Huete et al. 1997). Finally, we
used 3 arc second Shuttle Radar Topography Mission (SRTM)-
derived elevation data (Farr et al. 2007), from which we also
calculated slope using the Terrain Analysis plugin in QGIS
(v2.14). Prior to modeling, we resampled all layers to a resolution
of 30 arc seconds to match the Worldclim variables. In all resam-
pling, we usedmean values, except the slope layerwhere we used the
maximumvalue. This gave us a total of 21 potential predictor layers:
15 bioclimatic, two forest status, two vegetation indices, elevation,
and slope (Table S1). We used variance inflation factors to
remove highly correlated variables with the “vifstep” function
(default threshold = 10) from the R package usdm (v1.1.18;Naimi
et al. 2014). This left us with 11 input variables prior to modeling:
“Bio02 – Diurnal temperature”, “Bio03 – Isothermality”, “Bio11 –
Temperature during coldest quarter”, “Bio14 – Minimum
precipitation”, “Bio15 – Precipitation seasonality”, “Bio16 – Pre-
cipitation in wettest quarter”, “Enhanced Vegetation Index”, “For-
est Cover in 2021”, “Forest Landscape Integrity”, “Altitude”, and
“Maximum Slope” (Table S1).

Species distribution modelling

To avoid inflating parameter estimates, we reduced the 339 nest-
site locations to only one observation in each 30 arc second pixel,
matching the resolution of the environmental predictors. The
195 occupied pixels were combined with 5,000 randomly selected

Figure 1. Map showing the study region in grey, with numbers of the Grey-necked
Picathartes nest records from between 2000 and 2021 shown in 0.5 degree squares.

Table 1. Total number of nest-site locations between 2000 and 2021 for each
country in the study region.

Country Number of nest-site locations

Central African Republic 3

Nigeria 82

Gabon 28

Cameroon 216

Equatorial Guinea 7

Republic of Congo 3

Bird Conservation International 3
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pixels as background points. Probability of selecting a background
point was weighted by the kernel density estimate (see above), but
with points at least 20 km from known presences (Geue and
Thomassen 2020). We checked the level of spatial autocorrelation
in the predictor layers using the R package blockCV (v2.1.1;Valavi
et al. 2019), finding a median range of 514.9 km. This distance was
used to divide the combined presence and background points into
five spatial cross-validation folds with the blockCV function
“spatialBlock”, with each point appearing in only a single cross-
validation fold. During model refinement, each cross-validation
fold is held out in turn as a test set to assess model performance
(see below). We attempted to find an even split of Picathartes
presence records among the five folds, but due to the clustered
nature of the data and relatively high level of spatial autocorrelation
in the predictor layers, the best we could achieve was 94, 32, 27, 23,
and 19 records per fold.

We used maximum entropy to model the potential global
distribution of Grey-necked Picathartes using MaxEnt (v3.4.3;
Phillips et al. 2018), implemented via the R package SDMtune
(v1.1.4;Vignali et al. 2020). A single-method model, such as we
used here, is not necessarily inferior to ensemble methods as the
models are tuned to obtain the optimal parameter settings (Hao
et al. 2020). Best practice is considered to retain a completely
unseen testing dataset for final model assessment, however we
had too few and unevenly distributed presence records to conduct
a robust test in this way. Therefore, we adopted a two-pronged
approach: we built a full model using all data in order to maximise
predictive power (i.e. without a truly independent testing set), but
we also ran sub-models with only four of the folds as defined above,
retaining the fifth fold as the unseen testing set. This allowed us to
assess the robustness of the dataset; if the sub-models corresponded
to each other and to the final full model, it implies consistent
associations between Picathartes presence and environmental
predictors. Each initial model used the remaining 11 predictor
layers. We tuned the models using the SDMtune function
“optimiseModel”, which finds the combination of hyperpara-
meters and maximises the Area Under the receiver-operator
Curve (AUC) value (Swets 1988). For the final model, the highest
AUC was obtained with linear and quadratic feature classes, a
regularisation multiplier of 0.7 and 500 iterations. With the tuned
models we assessed predictor importance using leave-one-out
Jackknife tests, using a contribution threshold of 20%. Predictor
layers were removed from the model if their exclusion did not
reduce the AUC value (Vignali et al. 2020). In the final full model
this left only “Maximum Slope” and “Forest Cover in 2021”
(Figure 3).

Model fit was assessed using three metrics: the Boyce Index
(Hirzel et al. 2006), which is considered the most appropriate
measure of model performance with presence-only data; the
True Skill Statistic (TSS; Allouche et al. 2006); and the AUC
(Swets 1988). For both the Boyce Index and the TSS, values of
close to 1 indicate good model fit and 0 indicates models no
better than random, for the AUC, values of >0.9 indicate a good
fit and 0.5 indicates the model is no better than random. We
generated response curves for the predictors in the final full
model to visually examine associations between environmental
variables and probability of habitat suitability. Finally, we used
Moran’s I to check for spatial autocorrelation in the probability
of occurrence values, using the R package “lctools” (v0.2.8;
Kalogiru 2020). All analyses were conducted in R (v3.6.0;R Core
Team 2019).

To quantify the total area of potentially suitable habitat, we
calculated the area in the study region where the predicted suit-
ability exceeded the final full model’sMaximum training sensitivity
plus specificity value. We then determined the proportion of this
area inside protected areas, using data from the World Database
of Protected Areas (UNEP-WCMC/IUCN 2022), considering
reserves where protection is strictly enforced (i.e. National Parks,
Wildlife Reserves, and Wildlife Sanctuaries; full list in
Supplementary material).

Results

Model performance was high; the final full MaxEnt model had a
Boyce Index value of 0.973, an AUC value of 0.871, and a TSS value
of 0.568. The sub-models had a mean Boyce Index value of 0.943,
mean AUC of 0.842, and mean TSS of 0.632 (Table S2). Jackknife
variable importance of the predictor layers in the final full model
are shown in Figure 3 and response curves in Figure 4. The two
layers retained were: “Maximum Slope”, the most important pre-
dictor with probability of occupancy peaking at 40 degrees; and
“Forest Cover in 2021”, with highest occupancy probability at
around 70% canopy cover. Despite correcting for sampling bias,
spatial autocorrelation was present in the predicted occurrences
(Moran’s I = 0.59, expected I = �0.0002, resampling z = 63.48,
resampling P <0.001, randomisation z = 63.52, and randomisation

Figure 2. Areas predicted as potentially most suitable for Grey-necked Picathartes
nests using the Maximum training sensitivity plus specificity value as the minimum
threshold.
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P <0.001). Based on visual comparison of spatial patterns in the
predictors and final predictive map, it seems likely that spatial
dependence in the slope layer is driving this result rather than
sampling bias.

Areas predicted as potentially most suitable for Grey-necked
Picathartes are shown in Figure 2 (a full resolution raster is available

in Supplementary material). Four key areas are highlighted by the
model. (1) Most of the submontane and montane forest of the
south-west and north-west regions of Cameroon, and south-
easternNigeria, especially above 1,000m (the “Cameroon-Nigerian
Afromontane highlands” of White et al. 1983). This includes, in
Cameroon, the higher altitude parts of the Mount Cameroon,

Figure 4. Response curves +/- 1 standard deviation showing change in occupancy probability over the ranges of the environmental predictors included in the final model. These
changes in predicted occupancy are to one environmental predictor while the other is allowed to co-vary.

Figure 3. Output of the jackknife test showing training Area Under the receiver-operator Curve (AUC) for the final full model with both predictor variables, and for separate models
constructed with only one variable each.
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Takamanda, and Bakossi National Parks and several forest
reserves and wildlife reserves (e.g. BanyamboWildlife Sanctuary).
In Nigeria, important protected areas include the south of the
Gashaka-Gumti and Cross River National Parks. (2) The high-
lands north-east of Douala in Cameroon’s Littoral Region, includ-
ing the proposed Ebo forest National Park. (3) Most of the area
above 600 m in southern coastal Cameroon, and a transboundary
mountain chain that runs from the Monte Alan and Monte Mitra
region (Equatorial Guinea) through the Monts de Cristal to the
Monts du Chaillu (central and south-east Gabon) and into the
Batéké Plateau (Republic of Congo). Important protected areas
included east of the Campo Ma’an National Park (Cameroon),
Monte Alen and Pico Basile National Parks and La Caldera de San
Carlos Scientific Reserve (Equatorial Guinea), and Monts de
Cristal, Lope, and Birougou National Parks (Gabon). (4) The
Mont Doudou and Mayombe forest ecosystem transboundary
area above about 500–600 m, consisting of a mountain ridge
running along the coast of Gabon, Congo, Cabinda, and the
Democratic Republic of the Congo, running parallel to the Atlan-
tic coast. Important protected areas include Moukalaba-Doudou
National Park and the Mayombe highlands (Gabon), Conkouati-
Douli National Park and the Dimonika Biosphere Reserve
(Republic of Congo), and the eastern end of the Mayumba
National Park (Cabinda, Angola). Based on the threshold used,
the model did not predict high probability of presence in other
areas known to be occupied and used as data points in our model,
including the Dja Faunal Reserve in Cameroon, Ivindo National
Park in Gabon, and Dzanga-Sangha National Park in the Central
African Republic. Based on our survey of the literature and from
contacting local experts, these sites have only a single record or
(sometimes large) colony each. Likewise, several sites which had
no records included in our analysis were predicted to have high
probability of presence, includingMonts de Cristal andMayumba
National Parks in Gabon, most likely due to the lack of surveys.
However, an area just to the north of the Congo–Cameroon
border overlapping with the Nki National Park in Cameroon
and the proposed Messok-Dja protected area in Congo is high-
lighted as suitable for Grey-necked Picathartes.

We also present a weighted map derived from the five sub-
models in Figure S2. Each potentially suitable pixel was weighted by
the model’s AUC value. General patterns follow those outlined
above for the final full model, implying consistent associations
between Picathartes presence records and environmental predict-
ors. Our final model suggested there is a total of 17,327 km2 of
potentially suitable habitat for the Grey-necked Picathartes in the
study region. However, only 2,490 km2 (14.4%) of this is within
protected areas where conservation designations are strictly
enforced.

Discussion

Little is known about the ecology and distribution of the Grey-
necked Picathartes. This study is the first to model its potential
global distribution. Results from our final model showed that the
species’ predicted suitable habitat within its known range (Figure 2)
is best explained by maximum slope and forest cover.

Important predictors influencing Grey-necked
Picathartes distribution

The most important predictor in the model was maximum slope.
According to our results, potential suitability increases as the slope

increases above 40 degrees, meaning Grey-necked Picathartes pre-
fers moderately steep terrain. The high significance is likely due to
the specialised nesting requirements of Picathartes species, in caves,
cliffs, and overhanging rocks in rugged, often steep and less easily
cleared areas of forest (Thompson and Fotso 1995, Awa et al. 2009,
Monticelli et al. 2011, Burgess et al. 2016). This suggests that nest-
site availability is a strong limiting factor to the distribution of the
species. Interestingly, some of the largest colonies (e.g. in the
Dja Forest Reserve, Cameroon, where we had a record of a single
large colony with >50 nests) occur in relatively flat areas, whereas
in rugged terrain, colonies generally comprise much fewer nests,
often just one or two (GT, RCW, FM, MHS, pers. obs, Harter and
Shirley 2007). This suggests that colonial nesting by Grey-necked
Picathartes in relatively flat areas may be an adaptation to low nest-
site availability. The two nest sites located under concrete bridges in
Lope National Park (Gabon) were both single nests, and both were
re-located in 2018 at the same sites (Van Giersbergen and Ngonga
Ndjibadi 2018), suggesting long nest-site fidelity.

The second important contributor in our model was forest
cover, which is not surprising given the nesting habitat require-
ments of the species (Bian et al. 2006, Awa et al. 2009). We found
that potential suitability increased with forest cover between
50% and 75% and then declines above 75%. This means that
medium-high forest cover is most important for Grey-necked
Picathartes nest sites, although they may well use closed-canopy
forest for their foraging and non-breeding requirements.
According to Atuo et al. (2016), Grey-necked Picathartes nest-
site occurrence is positively correlated with the number of emer-
gent trees, highlighting the importance of canopy forest for the
species.

Forest cover is thought to be important for supporting insects,
earthworms, millipedes, centipedes, and small vertebrates, consti-
tuting the main food sources for the ground-dwelling Grey-necked
Picathartes (Awa 2008). In addition, closed-canopy forest likely
reduces the otherwise direct impact that a rainstorm may have on
mud nests (Atuo et al. 2016). The two sites under bridges in Lope,
Gabon, were in a savannah–forest mosaic where only narrow
gallery forests cross the landscape close to the nests.

The predicted suitability map suggests a smaller area may be
suitable for Grey-necked Picathartes than the current published
distributionmap, largely where there is steep ground. This confirms
that the species is more range restricted than previously suggested.
Greater consideration should be given to Grey-necked Picathartes
protection: the species has a small, fragmented population size
which is continuing to decline (BirdLife International 2022), has
highly specific nesting habitat requirements (Awa et al. 2009), and
there are increasing anthropogenic activities in its narrow range.
We therefore propose a revision of the IUCN Red List status, as our
results may warrant upgrading the species’ status from “Near
Threatened” to “Vulnerable”.

Priority regions for monitoring and protection

The mountainous (or hilly) regions of west Central Africa above
about 500–1,000m are themost suitable predicted habitat for Grey-
necked Picathartes. The largest proportion of suitable area by far is
in Cameroon and Gabon. Much of the small country of Equatorial
Guinea (including the island of Bioko) is suitable for the species, as
the continental part of that nation lies at the north-western end of
Monts du Chaillu mountain chain, and Bioko is an island at the
southern end of the “Cameroon Line”mountain chain. A small area
of eastern Nigeria is also suitable.
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Most reports of Grey-necked Picathartes are from Cameroon
(estimated population around 4,000), followed by Nigeria and
Gabon (estimated population around 1,000 individuals in each
country), and Equatorial Guinea (estimated population around
500 individuals) (Bian et al. 2006, Awa et al. 2009, Birdlife Inter-
national 2022). This present study suggests that there may be larger
populations of Grey-necked Picathartes in Cameroon and Gabon
than anywhere else, if they occupy the modelled suitable habitats,
and flags the need for more intensive surveys of potential nesting
sites, including the central mountain chain of Gabon, and la Cal-
dera de San Carlos in Equatorial Guinea, and man-made locations
such as under bridges.

We identified 17,327 km2 of suitable habitat for Grey-necked
Picathartes, but only 14.4% of this is within protected areas where
conservation designations are strictly enforced. Protection is likely
critical for Grey-necked Picathartes. In Sierra Leone, Picathartes
gymnocephalus colony activity declined in unprotected forest, while
colonies inside protected areas remained stable, suggesting that P.
gymnocephalus colony occupancy and the number of active nests
are influenced by human disturbance levels (Burgess et al. 2016).
Assuming similar factors influence Grey-necked Picathartes, then
unprotected areas known to be occupied should be protected as a
matter of urgency. In Cameroon for instance, some predicted areas
of suitability where the species has been found fall within existing
IBAs, but these are unprotected with no legal status. These include
Mount Mbam Minkom forest in the central region of Cameroon,
Mount Kupe in the south-west region of Cameroon, the Mount
Nlonako forest and Ebo forest, north-east of the Douala Littoral
region of Cameroon in Yabassi Keys Biodiversity Area (Fotso et al.
2001). We recently found over 100 nests in the Ebo forest, under-
scoring its importance for this species. It is critical that other
unsurveyed areas are also visited, as confirmed occupancy would
aid protection efforts; in Cameroon, Grey-necked Picathartes is
listed as a fully protected species by the Ministry of Forests and
Wildlife (Awa et al. 2009).

Conservation implications

Grey-necked Picathartes is listed as “Near Threatened” according
to the IUCN/BirdLife criteria largely because of its population size,
estimated at 2,500–9,999 individuals (BirdLife International 2022).
The regional conservation action plan for the species was drafted in
2006 but has not yet been implemented (Bian et al. 2006). This
study shows that the area for suitability of the species is small
compared with the existing predicted distribution of the species.
Forest loss is a major threat for this and many other species in the
region. Conservation action should be then undertaken in the area
for the survival of these species found there, using the Grey-necked
Picathartes as a flagship/umbrella species to enable conservation of
these areas (Awa et al. 2009). To ensure conservation of Grey-
necked Picathartes, we recommend: (1) an assessment of the popu-
lation status and distribution of the Grey-necked Picathartes in
predicted suitable areas found in this study, with unprotected areas
as the main survey targets; (2) the development of a strategic
conservation awareness campaign to improve awareness of the
threats facing biodiversity in these potential suitable areas, using
Grey-necked Picathartes as a flagship species; (3) an assessment of
the level of tolerance of the species to human activities; (4) ecological
research into the dispersal pattern of the species to understand how
resilient populations are to habitat fragmentation.

Study limitations

This study did not explore how predictor variables might change
over time (such as with climate change) to affect the future distri-
bution of Grey-necked Picathartes (Araujo and Guisan 2006,
Andriamasimanana and Alison 2013). Other environmental vari-
ables (e.g. soil type or additional measures of human activities) as
well as species ecology (e.g. dependency on fine-scale habitat
resources, competition, and reproductive rates) should also be
considered in the future (Andriamasimanana and Alison 2013).
We were unable to include at least one variable (distance from nest
site to water) previously found to be important for Grey-necked
Picathartes. This variable often drives the distribution of terrestrial
species (Bradie and Leung 2017), including, specifically, the con-
generic P. gymnocephalus (Burgess et al. 2016, Monticelli et al.
2011), and could account for some of the unexplained variation
in our model (Bian et al. 2006, Awa et al. 2008). Unfortunately,
distance to water was not available at sufficiently fine resolutions in
publicly accessible datasets to use in an analysis of this scale, and we
recommend that this information is collected in future whenmoni-
toring nests of Grey-necked Picathartes.

Conclusions

We estimated the global distribution of Grey-necked Picathartes
using MaxEnt modeling, finding that slope and forest cover are the
most important predictors of its occurrence. The predicted distri-
bution suggests that less habitat is suitable for the species than
previously thought. Given the species’ restricted range and very
specific habitat requirements, we suggest that surveys are carried
out across all range states, prioritising potentially suitable unpro-
tected areas identified by our model, in order to better estimate the
global population, and that future work investigates the dispersal
ability of fragmented populations.
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