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Free-living competitive racewalkers
and runners with energy availability
estimates of <35 kcal·kg fat-free
mass−1·day−1 exhibit peak serum
progesterone concentrations
indicative of ovulatory
disturbances: a pilot study
M. Carolina Castellanos-Mendoza1*, Stuart D. R. Galloway1 and
Oliver C. Witard2

1Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of
Stirling, Stirling, United Kingdom, 2Centre for Human and Applied Physiological Sciences, Faculty of Life
Sciences and Medicine, King’s College London, London, United Kingdom

Introduction: The release of luteinising hormone (LH) before ovulation is
disrupted during a state of low energy availability (EA). However, it remains
unknown whether a threshold EA exists in athletic populations to trigger
ovulatory disturbances (anovulation and luteal phase deficiency) as indicated by
peak/mid-luteal serum progesterone concentration (Pk-PRG) during the
menstrual cycle.
Methods: We assessed EA and Pk-PRG in 15 menstrual cycles to investigate the
relationship between EA and Pk-PRG in free-living, competitive (trained-elite)
Guatemalan racewalkers (n= 8) and runners (n= 7) [aged: 20 (14–41) years;
post-menarche: 5 (2–26) years; height: 1.53 ± 0.09 m; mass: 49 ± 6 kg (41 ± 5 kg
fat-free mass “FFM”)]. EA was estimated over 7 consecutive days within the
follicular phase using food, training, and physical activity diaries. A fasted blood
sample was collected during the Pk-PRG period, 6–8 days after the LH peak,
but before the final 2 days of each cycle. Serum progesterone concentration
was quantified using electrochemiluminescence immunoassay.
Results: Participants that reported an EA of <35 kcal·kg FFM−1·day−1 (n= 7)
exhibited ovulatory disturbances (Pk-PRG ≤9.40 ng·mL−1). Athletes with EA
≥36 kcal·kg FFM−1·day−1 (n= 8) recorded “normal”/“potentially fertile” cycles
(Pk-PRG >9.40 ng·mL−1), except for a single racewalker with the lowest reported
protein intake (1.1 g·kg body mass−1·day−1). EA was positively associated with
Pk-PRG [r(9) = 0.79, 95% confidence interval (CI): 0.37–0.94; p= 0.003;
1− β= 0.99] after excluding participants (n= 4) that likely under-reported/
reduced their dietary intake.
Conclusions: The result from the linear regression analysis suggests that an EA≥
36 kcal·kg FFM−1·day−1 is required to achieve “normal ovulation.” The threshold EA
associated with ovulatory disturbances in athletes and non-invasive means of
monitoring the ovulatory status warrant further research.
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1. Introduction

Energy availability (EA) is a concept in sports nutrition

developed by Loucks et al. (1) to represent dietary energy intake

(EI) available to support all physiological processes and human

health. Accordingly, EA is calculated by subtracting the total

energy cost of exercise in surplus of non-exercise waking activity

[exercise energy expenditure (EEE)] from EI and then

normalising to individual fat-free mass (FFM). Hence, the unit of

expression for EA is kcal·kg FFM−1·day−1. Healthy females

typically achieve energy balance at ≈45 kcal·kg FFM−1·day−1 (2).

However, restricting EA to 30 kcal·kg FFM−1·day−1 results in a

decline in biomarkers of bone formation (3) and hormonal

changes, specifically a decrease in the concentration of insulin,

triiodothyronine, and leptin and an increase in the concentration

of cortisol (4).

The pulsatile release of luteinising hormone (LH) is disrupted

at a threshold EA of <30 kcal·kg FFM−1·day−1 (4). Moreover, the

concentration of follicle-stimulating hormone is increased as EA

declines to 10 kcal·kg FFM−1·day−1, although this trend is

reported only if EA restriction is caused by EEE (1).

Furthermore, bone resorption is increased at an EA of 10 kcal·kg

FFM−1·day−1 (3). These physiological changes were documented

in young women after 4–5 days of EA restriction under

controlled laboratory conditions (1, 3, 4). Since estimates of self-

reported EA are prone to error, research conducted on free-living

athletes has failed to determine thresholds or associations

between EA and disruptions to metabolic hormones (5) or

ovulatory disturbances (6), i.e., anovulation and luteal (post-

ovulatory) phase deficiency. Hence, carefully designed studies are

warranted to fill this gap in knowledge.

The surge in LH concentration stimulates ovulation (7), and

the ovarian follicle responsible for releasing the ovum develops

into a transient gland that mainly produces progesterone (8).

“Ovulation” is assumed with a serum progesterone concentration

of ≥3.0 ng·mL−1 [≥9.54 nmol·L−1 (9)] or a peak concentration of

>6.0 ng·mL−1 (10). Nevertheless, ovulatory cycles may exhibit

“luteal phase deficiency or defect,” defined as a serum

progesterone concentration of <5.0 ng·mL−1 assessed at any

timepoint during the luteal phase (11). The luteal phase is

typically ∼14 days in duration, regardless of the length of the

menstrual cycle (7). Luteal phase deficiency exhibited as “late

ovulation” or “short luteal phase” (<10 days as of the second day

after the LH peak) is associated with a peak serum progesterone

concentration of <10.0 ng·mL−1 (12). In contrast, a single mid-

luteal serum progesterone concentration of >9.4 ng·mL−1

indicates a “potentially fertile” cycle (13).

Ovulatory menstrual cycles have lower bone resorption rates

during their luteal phase compared with anovulatory cycles (10),

but optimum peak progesterone concentrations for bone health

remain to be fully elucidated. When the oestradiol status is

maintained, luteal phase defects cause no apparent change in

bone health after 3 months (14). However, during a 1-year

follow-up, ≥2 cycles with a “short luteal phase” [<10 days by

basal body temperature (BBT) quantitative interpretation] are

associated with a decline in bone mineral density, with women
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exhibiting anovulation more prone to greater spinal bone loss

(15). This association between frequent ovulatory disturbances

and negative changes in bone mass has been confirmed in

several prospective studies (16). Moreover, bone health,

menstrual function, and EA constitute a triad (17) within a host

of health issues characterised by the syndrome of Relative Energy

Deficiency in Sport or “RED-S” (18), as observed in athletes that

chronically fail to meet energy demands. Athletes in a state of

low energy availability (LEA), defined as <30 kcal·kg

FFM−1·day−1, that experience menstrual disturbances, i.e.,

oligomenorrhoea or amenorrhoea, often exhibit a lower resting

metabolic rate (RMR) than eumenorrheic athletes who report

adequate EA, i.e., ≥45 kcal·kg FFM−1·day−1 (19). Interestingly,

the frequency of injury is greater in athletes with menstrual

disturbances (20), while female endurance athletes with

symptoms of LEA are at higher risk of developing bone stress

injury due to exhibiting poor bone health (21). Accordingly, with

regard to long-term health and performance in female athletes,

energy restriction should not trigger anovulation or ≥2 “short

luteal phases” per year (15). Nonetheless, whether a threshold

exists for the association of EA with ovulatory disturbances

remains unknown.

By design, female runners (22–24) and racewalkers (22) are

frequently in a state of LEA and exhibit ovulatory disturbances

(14, 15, 25), especially when failing to increase EI with training

overload (26). However, to our knowledge, no study has

investigated the association between EA and peak progesterone

concentration or identified the threshold of EA that compromises

fertility [mid-luteal serum progesterone ≤9.4 ng·mL−1 (13)].

Therefore, the primary aim of this study is to estimate EA during

free-living conditions using a field-based methodology and

explore the relationship between EA and subsequent peak

progesterone concentration in competitive racewalkers and

runners that were not using hormonal contraception.
2. Materials and methods

This study received ethical approval for invasive research in

human participants from the NHS, Invasive or Clinical Research

(NICR) Committee at the University of Stirling (1 June 2017,

NICR 16/17—Paper No. 58) and local endorsements from three

sports institutions in Guatemala (refer to Ethics statement).
2.1. Eligibility and recruitment

The Low Energy Availability in Females Questionnaire

(LEAF-Q) was used to determine study eligibility: score <8

points, “not at risk of LEA” (27). The criteria included

participants that self-reported being non-smokers, not pregnant

or lactating, not taking medications associated with any chronic

disease, ≥2 years post-menarche, without signs or symptoms of

perimenopause, not using hormonal contraception during the

preceding 6 months, and “naturally menstruating” (11) in three

previous menstrual cycles. A total of 34 eligible athletes were
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informed regarding this study through the cooperation of coaches

and staff members from the National Athletics Federation. In

total, 28 Guatemalan racewalkers and runners voluntarily

agreed to participate in this research, and provided informed

consent prior to their involvement. However, only 26 athletes

started the study.
2.2. Study design and data collection

Figure 1 summarises the study protocol and illustrates the

timing of assessments during each menstrual cycle.

Researchers explained all data collection procedures and

monitored athletes in person and via chat apps or phone

calls. Prospective observational data were collected under free-

living conditions.
2.3. Basal body temperature

Athletes conducted daily measurements of sublingual BBT

using a digital thermometer (Omron MC−343F) with an

accuracy of 0.1°C. The BBT chart was tracked throughout the

menstrual cycle (Figure 1). A female is assumed to have ovulated
FIGURE 1

Overview of the study protocol during a 28-day menstrual cycle. *Points of ref
day 15 to 16, is doubtful at the beginning because BBT was back to the pre
awakening after a night-time sleep, while still in bed. BBT log included rema
alter BBT such as alcohol ingestion, signs and symptoms of infections, durati
stress (28).
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after observing 3 consecutive days of elevated BBT measurements

(28) that are higher than those of the previous 6 days

(Sensiplan® rules for quantitative interpretation of BBT requires

further verification of algorithms to confirm ovulation). This shift

from lower to higher BBT provided a benchmark to schedule

progesterone assessment if the day of LH peak was missed, i.e.,

day 1 of elevated BBT reflected day 1 of the luteal or “high-BBT”

phase.
2.4. Luteinising hormone detection or
“ovulation testing”

Participants used the hLH Cassette 002L040 (UltiMedTM,

Germany) to self-detect LH peak concentrations in urine

following manufacturer instructions. This rapid-

chromatographic-immunoassay test detects LH only and not LH

metabolites. First-morning urine was not assayed because it

could miss the LH peak (29). Moreover, given that most athletes

are under the time pressure of training or school in the morning,

volunteers conducted this test during the expected peak of LH

(Figure 1) once a day at 8 p.m. or 10 a.m. if forgotten the night

before. The first author notified the participants individually

when to start testing, e.g., day 11 if expecting a 28-day cycle or
erence are stated in order of priority. The shift from low to high BBT, from
vious lower BBT level on day 17. BBT was measured immediately upon
rks about vaginal discharge to define cycle length and factors that could
on and quality of sleep, use of medications, and unusual environment or
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earlier/later for shorter/longer cycles. Qualitative detection of LH

[≥30 mIU·ml−1] continued until the day after a positive result.

Given that surges in LH concentration vary in amplitude,

duration, and peak configuration (single, double, multiple, or

plateau), the day of ovulation as determined by ultrasound may

occur at the onset or end, during, or after the LH peak (30).

However, ovulation occurs on the day (15%), the day after

(76%), or ≥2 days after the first detection (9%) and not before

urinary detection of LH >30 IU·L−1 (31). During cycles with long

LH surges, higher BBT measurements begin the day after

ovulation [Supplemental Figure 2B in Direito et al. (30)].

Therefore, we define the “day of LH peak” as the last consecutive

day with a positive detection of LH and the presumed ovulation

day as the final day of the follicular phase. We adhere to the

definition of Schliep et al. (12) for the “presumed ovulation day”

as the day of LH peak plus 1 day. LH was positive for two

consecutive days in three menstrual cycles. In two of these cycles,

the luteal phase length was the same as the high-BBT phase length.
2.5. Progesterone quantification

The participants involved in the study resided in four different

cities. Two accredited laboratories (Centro Médico and TecniScan)

determined serum progesterone concentrations using

electrochemiluminescence immunoassay with an automated

Cobas e601 analyser (Roche Diagnostics). Identical results were

obtained for extremely low progesterone concentration, although

differences of 1.01–1.10 ng·mL−1 were observed between

laboratories for duplicate analysis of samples with intermediate

and high concentrations. The average peak progesterone

concentration of duplicates was used in the data analysis. To

minimise participant burden, we planned blood withdrawal once

within the expected progesterone peak period of each cycle. The

athletes were encouraged to be euhydrated for blood sampling

that was scheduled at 7 a.m. in an overnight fasted state. Blood

vacutainers were centrifuged to separate the serum and were

refrigerated until further analysis within 48 h.

“Peak progesterone” refers to a concentration quantified 6–9

days after the day of LH peak, but before the final 2 days of the

cycle (10). In line with this definition, we documented

progesterone concentration 6–8 days after the day of LH peak for

six participants. Despite missing the LH peak (n = 6),

progesterone concentration was quantified during days 5–8 of the

high-BBT phase, within the mid-luteal period defined by BBT

interpretation (13) and without statistical differences in the

timing of assessment between groups of cycles by ovulatory

status (Table 1). For cases with no LH surge during expected

peak and progesterone concentrations indicative of anovulation,

we verified that quantification occurred within the period before

the end of the cycle with expected high concentrations (13). The

peak, mid-luteal, and progesterone concentrations quantified

during the expected peak are all indicative of the ovulatory status

of a menstrual cycle. Therefore, we classified ovulatory status

with progesterone concentrations as follows: “anovulatory” if

≤6.00 ng·mL−1 (10), “luteal phase defect” if 6.01–9.40 ng·mL−1,
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and “potentially fertile” or “normal ovulatory” if >9.40 ng·mL−1

(13). Three cycles had peak (n = 2) or mid-luteal (n = 1)

progesterone concentrations that approached the critical cut-off

point between “ovulatory disturbed” and “potentially fertile”

(9.00–10.00 ng·mL−1). We highlight that the Quantitative Basal

Temperature (QBT) method (32) and Sensiplan® rules were both

consistent with the progesterone concentrations in classifying

these cycles as “luteal phase defect” (n = 2) or “normal ovulatory”

(n = 1).
2.6. Energy availability

Prior to expected ovulation and within days 3–12 of the

menstrual cycle, the food diaries, training diaries, and physical

activity questionnaires were completed over 7 consecutive days to

estimate EA based on the 7-day average of both EI and EEE

(refer to Supplementary Table S1 for data collection details). A

7-day period represents the repetitive lifestyle pattern and a

complete training micro-cycle, including all types of workouts

and 1 day of rest over the weekend whereas a longer period was

considered too onerous (33). The estimation period for EA

occurred prior to the day of the LH peak or the end of the

follicular phase as shown by the quantitative interpretation of

BBT (Table 1). If an athlete reported any difference between the

first and second weeks of the studied cycle in terms of (i) dietary

pattern due to travelling or festivities likely changing EI, (ii)

amount of regular food consumed, or (iii) training volume

(intensified or tapered), the estimated EA was deemed non-

representative of the follicular phase, and the cycle was discarded

from the analysis.

2.6.1. Dietary assessment
The participants recorded a weighed and photographed food

diary that included the data on family meal recipes with the

consumed proportion. All athletes weighed their food, except for

two runners who reported portion sizes using measuring cups

and spoons. If unable to weigh food (unplanned eating), the

photograph and description of a meal or snack were used to

estimate the portion size and weight. To ensure valid and

accurate data, an accredited Sports Dietitian (first author)

interviewed the athletes daily and within 7 days following the

dietary register week and checked all food items for their code

and weight to confirm the agreement with the portion reported

or photographed prior to conducting dietary analysis with

NutrINCAP® (version 2.1) software. NutrINCAP® uses the Food

Composition Tables of Central America, with the possibility to

incorporate data for additional products. Data were verified by

double-checking the records of days with low or high energy or

nutrient intakes. The Diet Quality Index International (DQI-I)

score (34) was estimated.

2.6.2. Exercise “training and physical activity”
energy expenditure

The first author and assistant researchers documented the

training in printed form by observation or, otherwise, it was self-
frontiersin.org
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TABLE 1 Details and timing of assessments during menstrual cycles.

n Timing of assessment

The 7-day period of energy availability estimation ended before expected ovulation, specifically on:
3 Day of the anovulatory cycles 10 ± 2, 9–12

6 Days before the “day of LH peak” 6 ± 3, 2–9

6 Days before the “last day of the follicular phase” by BBT 9 ± 3, 6–14

LH
Not detected 2 Progesterone during the expected peak period by cycle length indicative of

anovulationFalse positivea 1

Detection, LH+ 6 On 1 day only (n = 3), for 2 consecutive days (n = 3)

Missed detectionb 6 Progesterone during the peak period by BBT indicative of ovulation

Day of LH peak 6 Day of the cycle 16 ± 3, 12–21

Serum progesterone quantificationc 6 By Centro Médico (CM)

8 By TecniScan (TS)

1 By both laboratories

15 Day of the cycle 24 ± 3, 19–32

6 Days after the “day of LH peak” 8 (6–8)

6 Day of the luteal (post-ovulatory) phase by LH peak 7 (5–7)

6 Day of the high-BBT phased if LH detection was missed 6 ± 1, 5–8

15 Days before the last day of the cycle 5 (4–10)

Timing of serum progesterone (PRG) quantificatione

Ovulatory status

Anovulatory Luteal phase defect Potentially fertile High PRG

Progesterone concentration cut-offs, ng·mL−1 <6.00 6.00–9.40 9.41–16.00 >16.00
N 3 5 4 3

Day of the cycle 23 ± 3 24 ± 2 24 ± 1 26 ± 7

21–27 21–27 23–25 19–32

Days after the “day of LH peak” 7 8 (6–8) 8 6

(false LH+) n = 4 n = 1 n = 1

Day of the luteal phase, defined by LH peak 7 (5–7) 7 5

n = 4 n = 1 n = 1

Day of the high-BBT phase (n =missed LH detection) 5f 6 ± 1, 5–8f 6f

n = 1 n = 3 n = 2

Days before the last day of the cycle 5 (5–8)f 6 (4–10) 7 (4–9) 5 (5–9)

LH, Luteinizing hormone. Day of LH peak: last consecutive day with positive urinary detection of LH (LH+). BBT, basal body temperature. Last day of the follicular phase: day

of LH peak + 1 day (12) or the last day of the “low-BBT phase” by BBT quantitative interpretation.
aProgesterone of 2.89 ng·mL−1 was quantified 5 days before the last day of the cycle on day 7 after LH+, thus false LH+ for ovulation.
bA participant forgot to test on the day that could have been LH+, the others (n= 5) had shorter or longer cycles than expected.
cCM quantified 0.62, 11.13, and 22.82, while TS quantified, respectively, 0.62, 10.03, and 23.83 ng·mL−1.
dHigh-BBT phase length was defined by Sensiplan® rules (n= 5) and the Quantitative Basal Temperature “QBT” method (n= 1).
eThere was no significant difference in progesterone quantification timing between groups of cycles classified by their ovulatory status.
fWithin the period of expected high progesterone concentrations and within the mid-luteal period for the ovulatory (13).
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reported by the athlete. The participants also detailed their physical

activity outside of training to the nearest minute. The first author

assigned metabolic equivalent of tasks (METs) value for each

physical activity after interviewing the athlete to verify the

accuracy of self-reported information or observations made by

assistant researchers. If METs data were unavailable for

adolescents, i.e., running >12.9 km·h−1, the adult value was used

(Table 2). After data tabulation, EEE was estimated using Excel®

365. EEE was calculated as the total energy cost of training and

physical activity minus the energy cost of being awake but not

exercising over the same period (see non-exercise energy cost

below).

2.6.2.1. Resting metabolic rate
Due to a lack of validated equations for our specific athletic

population, we chose the Harris and Benedict (35) equation to
Frontiers in Sports and Active Living 05
estimate RMR in adult participants, as it predicts RMR in female

athletes (40) including sports that predispose a low body mass

type (41). The Schofield (36) equation that predicts RMR from

body mass was used in our adolescent participants with a 5%

correction, as suggested by the Institute of Nutrition of Central

America and Panama “INCAP” (42).

2.6.2.2. Non-exercise energy cost
The non-exercise energy cost was defined as 1.3 × RMR per minute,

multiplied by the time engaged in training and physical activity

(Table 2). This conversion factor is based on the estimated

energy cost of a 10-h rest plus a 14-h very light activity in adults

(43). This value was substituted in adolescents for 1.33, which

was estimated with data from Torún et al. (42) using the same

rest-activity ratio and accounting for growth energy estimates in

females aged 14–17.9 years.
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TABLE 3 Metabolic equivalents of tasks (METs) used to estimate the total
cost of exercise.

Racewalking

speed,
km·h−1

METs Assumed due to:

<8.0 Regular
walking

Hagber and Coyle (45)

8.0–9.7 Running

> 9.7 Running +
1.6

“1.6 METs”: oxygen consumption data of
highly-trained male and female racewalkers in
Mora-Rodriguez et al. (46) comparing running
and racewalking at 10.9 km·h−1

Typical training activitiesa

Running or
racewalking

0.2b Flat surface with ∼1 kg around each wrist

0.3b Uphill

0.4b Uphill (very steep)

0.5b Flat surface wearing a vest of at least 5 kg

4.0 Continuously active gymnastics or callisthenics
Isometric exercises, e.g., maintaining tough yoga
positions

5.0 Technique drills or multiple jump exercises
Resistance exercises, moderate effort

6.0 Tough resistance exercises with own body mass
(e.g., pull-ups, push-ups), high intensity

8.0 Gym circuit, severe effort, and minimal rest

aWe used heart rate values upon task completion to assign METs for specific

activities not included in databases, e.g., heart rates immediately after “technique

drills” and “resistance exercises–moderate effort” were similar.
bAmounts added to the specific METs: determined from the adult database (37);

e.g., the difference between walking or running at a specific speed on “inclined”

and “flat” surfaces.

TABLE 2 Equations to estimate energy availability.

Abbreviations Equation or definition Units
FFM: fat-free mass FFM ¼ body mass� body fat massa kg

RMR: resting metabolic rate

RMR, female adult aged ≥18 years: Harris and Benedict (35) kcal
dayRMR, female adolescent aged 14–17.9 years: bSchofield (36)− 5%

RMR per minute RMR
min

¼ RMR � 1 day
1440 min

kcal
min

METs: metabolic equivalent of tasks Databases. Adult: Ainsworth et al. (37). Adolescent: Butte et al. (38).

TPA: training + physical activity activity ≥4 METs + 3.5–3.9 METs if completed for ≥10 min·day−1

cTECsA: total energy cost of a specific activity (sA)
TECsA ¼ (MET sA)

RMR
min

(min sA) kcal

TECE: total energy cost of exercise “TPA” TECE ¼ STECsA kcal
dECBANE: energy cost of being awake but not exercising, during the time engaged in TPA

ECBANE ¼ 1:3 � RMR
min

� minTPA
day

kcal
day

EEE: exercise “TPA” energy expenditure EEE ¼ TECE� ECBANE kcal
day

EA: energy availability
EI: dietary energy intake

EA ¼ EI� EEE
FFM

kcal
kg FFM � day

aBody fat percentage, to estimate body fat mass, as per the equation in Yuhasz (39) that requires 6 skinfolds.
bPredicts RMR from body mass.
cAs per Butte et al. (38).
dFactor 1.3 for adults, but 1.33 for adolescents.
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2.6.2.3. Total energy cost of exercise “training and physical
activity”
The total energy cost of exercise was estimated from the data analysis

of training diaries, excluding passive stretching, and physical activity

questionnaires. Physical activity was defined as efforts ≥3.5 METs.

The data regarding non-training activities ≥4 METs (i.e., dancing,

physical-household chores such as wood piling, biking, or walking

for transportation, carrying a backpack or child) were included in

the estimation of EEE (44). Moderate household chores equivalent

to 3.5–3.9 METs (i.e., floor or bathroom cleaning) were computed

if completed for ≥10 min per day. METs were used as a multiple

of individual RMR (Table 2). Regular walking, running, and

corrected running METs were used to estimate the total energy

cost of racewalking according to speed (Table 3).

2.6.3. Body composition
FFM was estimated during the previous or studied menstrual

cycle using a two-compartment body composition model with

anthropometry [equation proposed by Yuhasz (39)]. All

measurements were conducted before the first training session

using the International Society for the Advancement of

Kinanthropometry (ISAK) methodology by the same qualified

anthropometry practitioner (Supplementary Table S1). The

assessment was not undertaken before or during menstruation

(vaginal discharge of the inner lining of the uterus) when self-

reported scores for fluid retention or bloating (puffiness +

oedema + nocturia) are typically highest (47). The technical error

of measurement of skinfolds used to estimate body fat percentage

was ≤3.6%.
2.7. Ovulatory status prior to study

The participants were not required to be “eumenorrheic” (11).

Two athletes recorded their BBT during the menstrual cycle prior
Frontiers in Sports and Active Living 06
to participation in the study. Several participants voluntarily

repeated the study during the following cycle as data generated

in the first attempt were discarded from the analysis as explained

in Supplementary Table S2. Therefore, we documented the

ovulatory status of the menstrual cycle prior to this study in
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six participants as per progesterone (n = 3), BBT (n = 2), and LH

(n = 1).
2.8. Statistical analysis

EI relative to the measured RMR (EI:mRMR) <1.35 has been

recognised as incompatible with long-term survival (48) and is

typically used as an indicator of presumed EI underreporting

(44). Although RMR was not measured, EI was the average of

only 7 days, and ovulatory disturbances were expected (14, 15,

25), particularly if associated with reports of low EI. Hence, we

chose to present data for all volunteers but conduct correlation

analysis excluding four participants with EI relative to estimated

RMR (EI:eRMR) <1.35. The relationship between EA and peak/

mid-luteal progesterone was analysed using Pearson’s correlation

coefficient, r(n−2), with estimated 95% confidence interval (CI).

We used a regression analysis to determine the EA required by

our participants to achieve fertile progesterone concentrations.

Descriptive statistics are presented as mean ± SD (including

range if the data set is skewed and if minimum and maximum

values are critical) or median (range) if not normally distributed

as per Shapiro–Wilk test (IBM©-SPSS®). We compared three

“anovulatory” cycles with those exhibiting the three highest

progesterone concentrations, introducing an additional ovulatory

status group: “high progesterone” (>16.0 ng·mL−1). One-way

analysis of variance (ANOVA) with Tukey’s HSD post-hoc test was

conducted to investigate the differences in EA between menstrual

cycles with “anovulatory,” “luteal phase defect,” “potentially

fertile,” and “high” peak/mid-luteal progesterone and also to

explore the differences in variables among groups of participants

classified by ovulatory status. The data of a variable were

presented and analysed non-parametrically if it was not normally

distributed in one or more of these groups. Kruskal–Wallis with

Dunn’s post-hoc test was used as the non-parametric alternative.

Significance level for all tests was set at an α = 0.05. The post-hoc

power (1− β) was estimated using G*Power 3.1.9.4 (49).
3. Results

Two of the 26 volunteers who started this study dropped out.

We failed to quantify the progesterone concentration within the

peak period for five athletes. The ovulatory status of 19

participants was recorded based on their progesterone

concentration, but four cases were excluded. The lost cases and

final exclusions are described in Supplementary Table S2.
3.1. Participants

The final data set consisted of competitive racewalkers (n = 8)

and runners (n = 7), 5 (2–26) years post-menarche, with training

and performance classification (50) from trained (tier 2) to elite/

international level (tier 4). The descriptive characteristics of the

participants are shown in Table 4. A total of 15 menstrual cycles
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were examined, with each participant contributing one cycle for

analysis (Table 5).

The ovulatory status of nine athletes prior to this study was

unknown. In six participants, the menstrual cycle prior to this

study exhibited normal ovulation based on BBT interpretation

(n = 1) and peak progesterone concentration (n = 1) and

ovulatory disturbances based on mid-luteal progesterone (n = 2),

BBT (n = 1), and LH (n = 1) measurements. The ovulatory status

remained constant during the study in four athletes, whereas a

marginal change was reported in two participants, i.e., luteal

phase defect into either anovulatory or potentially fertile.
3.2. Ovulatory status

Eight menstrual cycles that were considered normal in length

displayed “ovulatory disturbances”: “anovulation” (n = 3), “short

luteal phase” (12) (n = 1), and LH peak at expected timing

during the cycle but with progesterone concentration indicative

of “luteal phase deficiency” (n = 4). The cycles with progesterone

indicative of anovulation were also deemed “anovulatory” by

BBT quantitative interpretation (no high-BBT phase). However,

only seven cycles were “potentially fertile,” including a longer-

than-normal or “oligomenorrheic” (11) 37-day cycle. Consistent

with the findings of Direito et al. (30), a large variation (22–44

days) in ovulatory cycle length was reported (27–37 days).
3.3. Diet

All participants reported an omnivorous diet with DQI-I scores

of 67 ± 9 points [0–100 points (34)] with food records including

two or more protein sources, and seven or more grain portions

daily. Four registers included all food groups each day with three

displaying frequent intake of nuts and/or seeds. Eight records

exhibited low intake of fruits and/or vegetables, some detailing a

monotonous pattern of intake. Although the DQI-I score was not

associated with ovulatory status, scores >70 points were only

achieved by athletes with “normal ovulatory” cycles, while those

with ovulatory disturbances obtained all ≤3 of 6 points in the

“empty-calorie” DQI-I component. Macronutrient and fibre

intake are described in Table 5.
3.4. Energy availability and progesterone

Estimates of EA and progesterone concentrations indicative of

the ovulatory status of the studied menstrual cycles ranged from 28

to 46 kcal·kg FFM−1·day−1 and 0.41–22.51 ng·mL−1, respectively.

EA in our participants that exhibited ovulatory disturbances

(32 ± 3 kcal·kg FFM−1·day−1) appeared to be greater than in

runners with more severe menstrual abnormalities, i.e.,

amenorrhoea [18 ± 7 kcal·kg lean body mass−1·day−1 (24)]. The

ovulatory peak/mid-luteal progesterone concentrations of our

participants (7.63–22.51 ng·mL−1) are within the range [5.39–

78.5 nmol·L−1 (1.69–24.69 ng·mL−1)] quantified using similar
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TABLE 4 Characteristics, body composition, training, and physical activity of participants.

Ovulatory status

Anovulatory Luteal phase
defect

Potentially
fertile

High
PRG

Total

Serum progesterone (PRG) cut-offs, ng·mL−1 <6.00 6.00–9.40 9.41–16.00 >16.00
N 3 5 4 3 15

Characteristics
Rw: racewalkers, n
R: runners, n

Rw = 2 Rw = 2 Rw = 3 Rw = 1 Rw = 8

R = 1 R = 3 R = 1 R = 2 R = 7

Training and performance calibre,a n per tier 2: n = 1 2: n = 4 2: n = 1 2: n = 1 2: n = 7

3: n = 2 3: n = 1 3: n = 3 3: n = 1 3: n = 7

4: n = 1 4: n = 1

Chronological age, years 18 18 24 20 20

(16–20) (14–21) (17–41) (19–22) (14.8–41.1)

Gynaecological age, years post-menarche 3 4 12 6 5

(1.7–5.0) (2–8) (4–26) (4–9) (1.7–26.1)

LEAF-Q score,b points 6 4 5 6 5

(3–7) (0–5) (1–9) (2–8) (0–9)

Anthropometry and body composition
Body mass, kg 48.2 ± 0.6 49.2 ± 5.3 50.3 ± 8.1 46.3 ± 7.6 49 ± 6

40–61

Height, m 1.53 ± 0.01 1.49 ± 0.04 1.54 ± 0.14 1.55 ± 0.15 1.53 ± 0.09
1.39–1.74

Body mass index, kg·m−2 20.5 20.6 21.0 19.1 20.5

(20.5–21.1) (19.4–25.9) (20.2–21.9) (18.0–20.4) (18.0–25.9)

Sum of 8 skinfolds, mm * ’ ’ *

106 110 82 83 96

(90–114) (96–162) (80–101) (71–87) (71–162)

Body fat, %
as per Yuhasz (39)

* ’ ’ *

15 16 13 14 15

(15–17) (15–22) (13–16) (12–14) (12–22)

Training and physical activity “TPA”≥ 3.5 metabolic equivalent of tasks (METs)
Volume, km per week 62 23 62 44 44

(40–103) (12–90) (18–92) (26–60) (12–103)

Volume, h per week 6 5 9 5 6

(5–23) (3–12) (5–14) (4–8) (3–23)

EEE: exercise “TPA” energy expenditure, kcal per day 493 195 443 388 385

(318–690) (150–572) (204–696) (189–394) (150–696)

Significant differences between groups: * and ‘ p < 0.05.
aAs per McKay et al. (50); tier 2: local level representation; tier 3: competitive athletes at both the National (Guatemala) and Central American levels.
bLEAF-Q: Low Energy Availability (LEA) in Females Questionnaire, score ≥8 points = risk for LEA (27). Two athletes with 8 and 9 points were accepted as scores reflected

respectively 3-week absence of training (posterior tibial syndrome) and postpartum amenorrhoea.

Castellanos-Mendoza et al. 10.3389/fspor.2023.1279534
methodology during the intermediate luteal phase defined by

Anckaert et al. (51). Eleven participants reported “reduced” EA

(30–45 kcal·kg FFM−1·day−1), whereas three athletes and one

runner reported LEA and adequate EA, respectively. A positive

correlation was observed between EA and progesterone

concentration [statistics of significant correlation using our entire

sample (n = 15) not shown]. After excluding four cases for

possible underreporting or reduced EI while recording diet (EI:

eRMR <1.35), a moderate correlation was observed between

EA and progesterone [r(9) = 0.79, 95% CI: 0.37–0.94; p = 0.003;

1− β = 0.99], with EA explaining 63% (r2 = 0.63) of progesterone

variance (Figure 2). Athletes with a reported EA <35 kcal·kg

FFM−1·day−1 (n = 7) had all ovulatory disturbed cycles. In

contrast, seven of eight participants with EA ≥36 kcal·kg
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FFM−1·day−1 exhibited progesterone indicative of “normal

ovulation.” Interestingly, the exception was the racewalker that

reported the lowest protein intake (1.1 g·kg body mass−1·day−1)

and the highest percentage of EI derived from refined sugars

(14%) in this subgroup. Linear regression analysis with EA as a

predictor of peak/mid-luteal progesterone [serum progesterone

concentration = 1.13 (EA)− 30.77] indicates that EA ≥36 kcal·kg
FFM−1·day−1 is required to achieve normal ovulation. EA

estimated during cycles with “high” progesterone was greater

[F(3, 11) = 7.45, p = 0.005; 1− β = 0.78] than EA during cycles

with concentrations indicative of “anovulation” (p = 0.010) and

“luteal phase deficiency” (p = 0.014) [mean ± SD (95% CI)]:

42 ± 4 (31–52) vs. 31 ± 2 (26–36) and 33 ± 4 (28–37) kcal·kg

FFM−1·day−1 (Figure 3).
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TABLE 5 Diet and menstrual cycles of participants.

Ovulatory status

Anovulatory Luteal phase defect Potentially fertile High PRG Total

Serum progesterone (PRG) cut-offs, ng·mL−1 <6.00 6.00–9.40 9.41–16.00 >16.00
N 3 5 4 3 15

Reported dietary intake, 7-day average
Energy (EI),
kcal

* *

1,756 ± 265 1,583 ± 202 2,096 ± 282 1,982 ± 174 1,834 ± 302
1,329–2,349

Energy,
kcal per kg body mass

* ’ * ’

36 ± 6 32 ± 3 42 ± 4 43 ± 3 38 ± 6; 28–46

EI:eRMR ** **

1.36 ± 0.21 1.23 ± 0.14 1.62 ± 0.16 1.54 ± 0.02 1.42 ± 0.22; 1.06–1.81

EI:eRMR < 1.35, n 1 3 0 0 4

Protein,
g per kg body mass

* ** ** *

1.1 (0.9–1.3) 1.0 (0.8–1.1) 1.4 (1.4–1.7) 1.3 (1.2–1.7) 1.2 (0.8–1.7)

Carbohydrate, g per kg body mass 5.4 ± 1.5 4.9 ± 1.0 6.4 ± 1.1 6.6 ± 1.1 5.7 ± 1.3; 4.0–7.7

Carbohydrate, g per kg fat-free mass 5.6 (5.3–8.5) 5.4 (4.7–7.4) 7.3 (5.9–9.1) 7.8 (6.3–8.7) 6.7 (4.7–9.1)

Energy from refined sugars,a

% kcal
* ** ’ ** ’ *

14.4 ± 4.2 10.7 ± 2.8 4.6 ± 1.3 6.8 ± 3.2 9.0 ± 4.5; 3.1–19.2

Fibre,
grams

* ** * **

12 (12–14) 11 (10–15) 25 (17–28) 16 (9–17) 14 (9–28)

Diet quality index international “DQI-I,” points 64 ± 5 62 ± 8 73 ± 7 69 ± 13 67 ± 9; 50–82

Menstrual cycle
Length, days 29 ± 3 31 ± 2 31 ± 3 32 ± 5 31 ± 3

27–32 27–33 28–34 28–37 27–37

Luteal phase length by
LH detection in urine (≥30 mIU·mL−1), days

12 ± 2 13 ± 2

9–13 15 14 9–15

n = 4b n = 1 n = 1 n = 6

High-BBT phase length by
Sensiplan® rules, days
(n =missed LH detection)

11 ± 2 12 ± 2

15 10–13 11 10–15

n = 1b n = 3 n = 2 n = 6

Serum progesterone,
ng·mL−1

* ** * “ ** ** “

10.34 ± 5.932.96 ± 2.58 8.64 ± 0.69 10.90 ± 1.38 19.83 ± 3.34

0.41–5.57 7.63–9.36 9.58–12.84 16.09–22.51

eRMR, estimated resting metabolic rate.

Significant differences between groups: * and ‘ p < 0.05 or ** and “ p < 0.01.
aReported dietary energy from added table sugar and refined sugars within commercial food, drinks, and candy.
bHigh BBT phase length was indicated by the Quantitative Basal Temperature “QBT” method; PRG was quantified 10 days before the last day; Sensiplan® rules and QBT

method indicated both a “luteal phase deficiency.”
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4. Discussion

This observational study explored the relationship between EA

(estimated with field-based methodology) and the subsequent

peak/mid-luteal serum progesterone concentration, which is

indicative of the ovulatory status of a menstrual cycle. Our data

in free-living Guatemalan competitive racewalkers and runners

who prospectively recorded ≥3 cycles of normal length before

this study showed a positive correlation between EA and the

subsequent peak/mid-luteal progesterone concentration

(Figure 2). Ovulatory disturbances (peak/mid-luteal progesterone

≤9.40 ng·mL−1) were observed with EA <35 kcal·kg FFM−1·day−1,

and “normal ovulation” was associated with EA ≥36 kcal·kg
FFM−1·day−1. Our estimates of EA (Figure 3) successfully

distinguished between ovulation with “high” progesterone
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(>16.00 ng·mL−1) and both “anovulation” (≤6.00 ng·mL−1) and

“luteal phase deficiency” (6.01–9.40 ng·mL−1).

Five days of LEA during the follicular phase of the menstrual

cycle has been shown to disrupt the pulsatile release of LH (4).

We provide further evidence of anovulation (n = 2) and luteal

phase deficiency (n = 1) with progesterone concentrations during

the expected peak or peak period in trained-to-highly-trained

athletes who reported LEA (28–<30 kcal·kg FFM−1·day−1) during

7 consecutive days within the follicular phase of the same cycle.

Insulin is critical in the control of reproduction, i.e., hyper and

hypo-insulinemia are associated with disturbed gonadotropin-

releasing hormone and LH pulse and release patterns (52).

However, insulin declines linearly with acute EA restriction (4).

Moreover, daily energy deficits (caloric restriction + exercise) of

470–813 kcal generate an incidence of ovulatory disturbances
frontiersin.org

https://doi.org/10.3389/fspor.2023.1279534
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 2

Correlation between energy availability and progesterone concentration. LP, luteal phase; FFM, fat-free mass; EI, reported energy intake; eRMR, estimated
resting metabolic rate; EEE, reported exercise “training and physical activity” energy expenditure. Shapes of data points indicate EI:eRMR with triangles
also showing the highest reported EEE. Colours in data points indicate reported protein intake.

FIGURE 3

Energy availability by ovulatory status. FFM, fat-free mass; Error bars, reported mean energy availability (EA) ± SD. Significant differences between groups:
′p= 0.010 and *p= 0.014. The gynaechological age of participants is depicted in the colours of the data points. CASE HISTORIES (thick-border data
points). ANOVULATORY. (1) Reported daily protein intake of 1.3 g·kg body mass−1 and exercise “training and physical activity” energy expenditure (EEE)
of 690 kcal·day−1. LUTEAL PHASE DEFECT. (2) Lowest EA: The following 2 cycles were deemed ovulatory disturbed and anovulatory by quantitative
interpretation of basal body temperature. (3) Highest EA: reported daily protein intake of 1.1 g·kg body mass−1; percentage energy intake derived from
refined sugars of 14%. HIGH PROGESTERONE. (4) This elite athlete [tier 4 (50)] reported EA during the competitive season (not her highest training volume).
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during the first menstrual cycle of 38%–42% (including 13%

anovulation within the highest deficit), with incidence rates

increasing and luteal phase length decreasing over three

menstrual cycles (53). According to Lieberman et al. (54), the
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likelihood of ovulatory disturbances and oligomenorrhoea

increases with a decrease in EA, with >50% probability of

experiencing these disruptions with LEA, but not supporting the

notion that a specific threshold of EA exists. Nevertheless, in this
frontiersin.org

https://doi.org/10.3389/fspor.2023.1279534
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


Castellanos-Mendoza et al. 10.3389/fspor.2023.1279534
study (54), EEE was calculated as “total energy cost of exercise

minus RMR,” while Loucks et al. (1) deducted for “non-exercise

waking activity.” Furthermore, it is not clear whether the

oligomenorrheic cycles reported were ovulatory disturbed which

is prudent since several studies have documented extended

ovulatory cycles of 36–44 days (30, 55). Intuitively, individual

factors influence the onset and degree of ovulatory or menstrual

disturbance during energy deficit (53). Despite these

observations, it appears that acute EA restriction before (from

follicular recruitment, i.e., late luteal phase of previous cycle, to

LH peak) or after ovulation (from LH peak to menses) has a

similar impact on the luteal phase of the actual menstrual cycle.

Hence, irrespective of phase of the ovarian cycle in which an

abrupt onset of short-term exercise occurred, the luteal phase

was disturbed in women who did not increase their EI (56).

Notably, these previous studies (4, 53, 54, 56) were conducted in

habitually sedentary eumenorrheic women rather than in athletic

populations. Hence, a strength of the present study is the

specialised group of competitive endurance athletes recruited,

although we did not control for the ovulatory status of the

previous cycle. Therefore, our current investigation should be

considered a pilot study to extend understanding regarding the

effect of EA on the ovulatory status of free-living athletes. Future

intervention studies are warranted to understand the effect of EA

restriction on normal ovulation in eumenorrheic athletes and

should be long-term (2–3 cycles) in design with a follow-up

included (Supplementary Table S3). Given that research into

how psychological stress might impact menstrual function is

inconclusive (57), future studies should focus on monitoring

heart rate variability (HRV) as an indicator of autonomic

nervous function while being cognisant that HRV changes in

response to progesterone fluctuations during normal menstrual

cycles (58).

Free-living estimates of EA in highly trained and elite athletes

have been considered “snapshots,” and thus not necessarily an

accurate representation of long-term EA status (19). Our 7-day

estimates of EA are self-reported as representative of the

follicular phase, i.e., without changes in diet and exercise in the

first 14 days of the studied menstrual cycle. We verified that the

EA estimation period ended before the expected ovulation

(Table 1) and showed that estimates of EA were related to the

ovulatory status of the same menstrual cycle. This relationship is

consistent with the findings of Lieberman et al. (54) that

reported EA as a predictor of menstrual disturbances within the

same but not the subsequent cycle. Moreover, Schliep et al. (12)

showed an association between hormonal deficiencies in the

follicular phase and hormonal deficiencies in the luteal phase of

the same cycle. Accordingly, our observations represent an acute

rather than a chronic state of EA and can only be interpreted as

the relationship between EA status before ovulation and its

impact on the ovulatory status within the same menstrual cycle.

Estimates of EA under free-living conditions have previously

been shown to discriminate between amenorrhoea and

eumenorrhea [31 ± 2 vs. 37 ± 2 kcal·kg lean body mass−1·day−1 ±

SEM, respectively (6)]. However, no distinction was observed for

subclinical ovulatory status as diagnosed with urinary metabolites
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of oestradiol and progesterone, i.e., no evidence of a statistical

difference was reported regarding estimates of EA in physically

active females who consistently exhibited ovulatory, disturbed, or

anovulatory cycles during one to three menstrual cycles. Several

methodological differences existed between our estimates of EA

and those of Reed et al. (6), particularly regarding assessments of

EEE, body composition, and RMR. Reed et al. (6) assessed EI

over a 3-day period that was not standardised to a cycle phase,

while we estimated EI and EEE simultaneously during the

follicular phase with a similar timing of EA restriction in

previous studies (1, 4). Given that ovulatory disturbances were

expected (14, 15, 25), and since EI and expenditure are increased

after ovulation (59), concomitant with slightly higher RMR

during the luteal phase (60), we avoided the unfair comparison

of EI between participants that would be influenced by ovulatory

status. There is a lack of a single protocol for the assessment of

EA in free-living situations (5). Hence, the design of our protocol

did not include self-reporting a difference in diet or exercise

during the first 2 weeks of the studied menstrual cycle. However,

during the first two cycles studied, we recognised the importance

of exhibiting EA estimates representative of the follicular phase.

Our free-living estimates of EA were correlated with peak/mid-

luteal progesterone concentration and distinguished between

ovulatory status. To our knowledge, this is the first report of a

significant association between EA and peak/mid-luteal

progesterone concentration in free-living competitive endurance

athletes.

Monitoring the menstrual cycle of athletes in a free-living

situation is challenging. In the context of “normal ovulatory” or

“fertile” menstrual cycles, progesterone remains elevated from

day 10 to day 5 prior to menstruation (13). Progesterone was

assessed 4 days before the last day in two cycles, near the

midpoint of their post-ovulatory phases. One of these cycles

exhibited a 9-day (short) luteal phase with progesterone

concentration quantified 6 days after the day of LH peak.

However, if the assessment was planned 9 days after the LH

peak [within the peak period in “normal” cycles (10)], we would

have failed to document peak progesterone with a quantification

scheduled 1 day before the last of this cycle. Thus, practitioners

or researchers that use our protocol to control for cycle phase or

document progesterone concentration during the peak period in

athletes with expected ovulatory disturbances should consider

that assessments are based on “normal” cycles. In the present

study, as ovulatory disturbances became severe, it was more

difficult to quantify progesterone within the peak period, which

in a normal cycle is from about 2 days before until 2 days after

the middle of the luteal phase.

Prior evidence suggests that normal-length menstrual cycles

may mask ovulatory disturbances (15, 25). The prevalence rate of

ovulatory disturbances in our cohort of athletes was 53% which

falls within the range (29%–79%) that was previously reported in

active females (14, 15, 25). Our data also suggest that monitoring

menstrual cycle length effectively detects disturbances until

deemed clinically evident with substantial delay or absence of

menstruation. However, recent evidence indicates that menstrual

cycle monitoring is not widespread, with only 54% of elite and
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highly trained athletes tracking their cycles (61). Hence,

rather than waiting until the period is absent, practitioners

are encouraged to take a proactive approach to detecting LEA at

an early stage as consequences of RED-S such as anaemia,

decreased muscle strength and glycogen stores, vulnerability to

illness, and stress fractures can be detrimental to health and

performance (18). Thus, in practical terms, practitioners

supporting athletes vulnerable to RED-S may attempt to

monitor the ovulatory status of those individuals not using

hormonal contraception because hormonal contraceptives will

often prevent ovulation. Based on our LH detection analysis, it

was possible to record short luteal phases [positive urinary LH

detection ≤10 days before the last day of the cycle, defining a

luteal length of <10 days (12)], although this activity required

continued searching from the expected timing of LH peak until

almost the end of the menstrual cycle. Whereas Park et al. (55)

documented anovulation in 4.7% of cycles with LH surges,

we observed three false LH “positives for ovulation” with a

level of urinary detection of ≥30 mIU·mL−1 (Table 1 and

Supplementary Table S2). Furthermore, we documented

normal-length luteal phases with peak progesterone indicative

of “luteal phase deficiency.” Therefore, monitoring the timing of

“ovulation” is not sufficient in athletic populations, where the

assessment of hormonal adequacy in the luteal phase becomes

important.

Establishing comprehensive guidelines for EA restriction to

achieve body composition goals in female athletes warrants

further investigation, alongside practical means of monitoring

ovulatory status. In female athletes, a decline in body mass of

0.7% per week appears commensurate with resistance training

goals (62). However, recommendations for EA restriction without

disturbing the ovulatory status to the extent of impairing long-

term health and performance remain undetermined. While

fertility might not be a concern for many athletes, ovulatory

cycles also have a role in bone health (10, 15). Indeed, a lower

than expected bone mineral density (z-score < 0) has been

associated with LEA (63). In addition, athletes should be aware

that LEA impairs muscle protein synthesis (64) and that failure

of progesterone to rise adequately during the menstrual cycle is

not only associated with LEA but also with impaired athletic

performance (65), i.e., when athletes fail to increase EI with

increased training loads, ovulatory disturbances are induced and

performance is impaired (26). Hence, the practitioner may

monitor progesterone during the peak period as a tool to

confirm an EA status that is sufficient to maintain normal

ovulatory function in naturally menstruating athletes, instead of

the time-consuming estimation of EA. However, there could be

exceptions in terms of ovulatory or menstrual disturbances

without obvious indications of chronic energy deficiency, such as

in polycystic ovary syndrome (66). Moreover, the quantitative

interpretation of carefully documented BBT during menstrual

cycles may be considered equally promising as a non-invasive

and low-cost screening tool to assess ovulatory status. Our BBT

data support the use of BBT quantitative interpretation to

indicate a peak, mid-luteal, or progesterone concentration at the

expected peak (Castellanos-Mendoza et al., unpublished
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observations), although further validation in the context of

preventing LEA is needed. Given that some female athletes use

hormonal contraception methods that may mask LEA (67) as

users may interpret withdrawal bleeding as a “period” when they

may otherwise have menstrual disturbances, it remains relevant

to establish the minimum EA required to maintain normal

ovulation to guide the prescription of energy restriction. Since

access to gold standard methods is limited, a parallel estimation

of EA with accessible methodology and an indication of the

equivalent energy deficit is useful for practitioners. In

Supplementary Tables S2, S3, we provide our feasibility analysis

and suggestions for future research.

The challenges of estimating EA in a field setting are well

recognised (5, 67); hence, care was taken in the present study to

minimise the chance of possible errors, with special emphasis on

the estimation of EI and the total energy cost of training and

physical activity (Methods and Supplementary Table S1). While

adding food images to food diaries may reduce the margin of

error (68), participant motivation and “attitude to food” likely

influence the validity of self-reported EI (69). In terms of energy

balance (EB) expressed as percentage of total energy expenditure

(TEE), the reported mean error of EI by weighed diet records

without food images was −34% to −1% in female athletes with

estimated TEE by doubly labelled water (DLW) (33, 69). The

highest difference was observed in runners that were required to

self-report dietary intake over 3 weeks, and light-weight rowers.

In contrast, the smallest difference was documented when

dietitians weighed food portions during meals, with snacks and

sports drinks considered as the source of individual error

[−18.4% to +19.2% (70)]. Nevertheless, most previous studies

included a shorter EI assessment period than estimation of TEE,

and no study controlled EEE or derived “EEE + NEAT (non-

exercise activity thermogenesis)” from TEE and RMR as in Silva

et al. (71). Moreover, the degree of error explained by

undereating, underreporting, and/or dietary analysis drawbacks

remains unknown (69). Although the limitations of using METs

to estimate individual energy cost of exercise are recognised (37,

38), 11 of 25 studies reviewed by Burke et al. (5) used METs as

an independent metric of self-reported EEE estimation. To our

knowledge, no validation study has been conducted to address

the error in using METs to estimate EEE from training and

physical activity diaries in female athletes. TEE determined by

DLW ranged from 2,350 to 3,735 kcal·day−1 in free-living female

runners (72, 73) that on average were older, taller, of greater

body mass, and with higher training volume than the

participants of this study. Interestingly, the estimated TEE

[eRMR·1.3 (1.33 for adolescents) + EEE] with our data was

1,821–2,453 kcal·day−1, with EB remarkably similar to previous

reports (−11% ± 12%; −30% to +17%).

To our knowledge, this study is novel in suggesting that a

threshold for EA is associated with ovulatory disturbances and in

highlighting the impact of EA on the serum peak/mid-luteal

progesterone concentration. A graphical summary of the short-

term effects of LEA on hormones [Figure 3 in Areta et al. (74)]

shows the lack of evidence in terms of peak progesterone

concentration. Linear regression analysis suggests that EA =
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35 kcal·kg FFM−1·day−1 reflects ovulatory disturbances, but this EA

value was not reported. Due to our study limitations, including lack

of precision in field-based methods, lack of control of variables

known to alter the menstrual cycle in a free-living setting, a

small sample size, and use of two laboratories to quantify

progesterone, we report the threshold EA between ovulatory

disturbances and “normal ovulation” with a gap representing our

observations without statistical analysis. These EA thresholds for

ovulatory disturbances (EA <35 kcal·kg FFM−1·day−1) and

“normal ovulation” (EA ≥36 kcal·kg FFM−1·day−1) are based on

the participants studied with our methodology. Highlighting the

pilot nature of this study, we speculate that other methods to

estimate EA and participant restriction by training and

performance classification, or years after menarche (y.a.m.) [2–4

y.a.m. “adolescents” vs. > 14 y.a.m. “mature women” (75)] likely

impact the threshold EA for ovulatory disturbances. While our

analysis is limited to carbohydrate intake per FFM (Table 5) as

we did not assess the intensity or metabolic effect of EEE, it

remains unknown if carbohydrate availability [intake minus

oxidation during exercise (76)] has a greater impact than EA on

the ovulatory status.

Two additional limitations are associated with this study. First,

recreationally active (tier 1) and world-class (tier 5) athletes were

not represented, while elite (tier 4) athletes (50) were

underrepresented and most participants (87%) were between 2

and 9 years post-menarche. Consequently, our findings can only

reliably be extrapolated to trained and highly trained (tier 2–3)

female athletes aged 14–23 years given that most participants

were within this age range except for two aged 27 and 41 years.

Second, we did not conduct interviews or questionnaires to

investigate eating behaviour to objectively verify “restrictive

eaters” and discern whether the low EI was due to “consciously

eating less while keeping a detailed register of food intake” rather

than “underreporting.” Nevertheless, we excluded athletes with

EI:eRMR <1.35 to formulate our conclusion.
5. Conclusions

We conclude that EA during the follicular phase of the

menstrual cycle impacts the ovulatory status of the same cycle in

competitive racewalkers and runners. Our free-living estimates of

EA <35 and ≥36 kcal·kg FFM−1·day−1 are associated with

subsequent progesterone concentrations indicative of ovulatory

disturbances and normal ovulation, respectively. Further research

is warranted to elucidate the threshold EA associated with

ovulatory disturbances in athletes and develop non-invasive

means of monitoring ovulatory status in trained individuals.
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