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aCollege of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; bNatural Sciences, University of Stirling, 
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ABSTRACT
Chinese satellite carrying synthetic aperture radar (SAR) with spatial resolution up to 1 m, 
denoted as 1mC-SAR, is the successor of Gaofen-3 (GF-3). The main purpose of this study is to 
conduct the preliminary analysis of wind and wave retrieval from more than 400 1mC-SAR 
images acquired in quad-polarization stripmap (QPS), which are located at China coastal waters 
on April 2023. The co-polarized (vertical−vertical [VV] and horizontal−horizontal [HH]) geophy-
sical model function (GMF), denoted as CSARMOD-GF, is employed for wind speed retrieval 
from those images taking prior information on wind directions from European Centre for 
Medium-Range Weather Forecasts (ECMWF). Validation against the wind products from 
Haiyang-2 (HY-2) (2B/2C/2D) scatterometers yields a 1.78/1.91 m/s root mean squared error 
(RMSE) with a 0.22/0.23 scatter index (SI) for SAR retrievals at VV/HH polarization channels. 
Moreover, the accuracy of SAR-derived winds at spatial resolution of 2 km for QPS-I and 6 km 
for QPS-II is relatively higher than that achieved from the retrievals at spatial resolution of 4 km 
for QPS-I and 12 km. The wave slop spectrum is inverted from co-polarized image by polari-
metric technique, in which the term of wind speed is included in the model transfer function 
(MTF) of tilt modulation. Significant wave height (SWH) retrievals are compared with the 
simulations by the third-generation numeric wave model, denoted as WAVEWATCH-III 
(WW3), showing a 0.53 m RMSE with a 0.36 SI. This behavior is also confirmed as comparing 
with SAR-derived wave spectra and WW3-simulated wave spectra, i.e. a 0.79 correlation 
coefficient (Cor) and a 0.92 squared error (Err). The variation of bias in wind speed and SWH 
indicates an increasing tendency with the growth of sea state, meaning that calibration is 
a heedful issue for 1mC-SAR.
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Introduction

At present, remote sensing is an advanced technique 
for upper oceanic dynamics monitoring over global 
seas. For instance, significant wave height (SWH) is 
measured by altimeter (Shao, Jiang, et al., 2021a). The 
wave spectrum can be retrieved from synthetic aper-
ture radar (SAR) (Shao, Jiang, et al., 2022a) and wave 
spectrometer (Surface Wave Investigation and 
Monitoring, SWIM) (Hao, Shao, Shi, et al., 2023a), 
especially at extreme sea state (Shao et al., 2020). The 
spatial resolution of SAR-derived wave spectrum is 1– 
3 km (Zhong et al., 2023), which is better than an 18  
km spatial resolution of wave spectrum measured by 
SWIM. In this sense, SWIM data is popularly used for 
analyzing wave characteristic in large scale (Yao et al.,  
2023), while SAR wave retrievals are beneficial to 
oceanography at coastal waters (Shao et al., 2023) 
and polar region (Shao, Zhao, et al., 2022b).

During the Seasat mission in 1978, it has been 
revealed that sea surface dynamics and target are 
detectable by SAR via Bragg backscattering mechan-
ism (Alpers & Bruning, 1986), that is, the electromag-
netic wave resonant with gravity waves generated by 

sea surface wind. A strong dependence between sea 
state and azimuth scattering effects has been demon-
strated using ERS-1/2 wave model data (Kerbaol et al.,  
1998). At moderate radar incidence angle (i.e. 
20°–60°), the sea surface backscattering signal repre-
sented by normalized radar cross section (NRCS) in 
co-polarization (vertical-vertical [VV] and horizontal- 
horizontal [HH]) has linear relation with wind speed 
up to 25 m s−1, and this is also applicable for scatte-
rometer (Long & Mendel, 1991) and SAR (Grieco 
et al., 2015; Migliaccio & Reppucci, 2006; Portabella 
et al., 2002). A geophysical model function (GMF) at 
C-band (~5.3 GHz) relating with NRCS and a wind 
vector was originally designed for wind retrieval from 
scatterometer, i.e. CMOD4 (Stoffelen & Anderson,  
1997), CMOD-IFR developed at French Research 
Institute for Exploitation of the Oceans (IFREMER) 
(Quilfen et al., 1998) and CMOD5 (Hersbach et al.,  
2007). The latest version of CMOD family is CMOD7 
(Stoffelen et al., 2017) that is a look-table avoiding 
errors during model fitting process. With the accumu-
lation of SAR data, the GMFs at C-band is directly 
developed through collocated dataset consisting of 
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SAR image and winds from moored buoys or 
European Center for Medium Weather Forecasting 
(ECMWF), i.e. C-SARMOD2 for Sentinel-1 (S-1) (Lu 
et al., 2018) and CSARMOD-GF for Chinese Gaofen-3 
(GF-3) (Shao, Nunziata, et al., 2021b). Recently, a few 
studies have been conducted for wind speed retrieval 
through the Doppler shift of C-band radar return 
signals from the ocean (Mouche, Collard, et al.,  
2017) and the azimuth cutoff wavelength (Corcione 
et al., 2018; Grieco et al., 2016). In addition, an empiri-
cal algorithm was proposed to retrieve the wind speed 
based on the co- and cross-polarized SAR measure-
ments (Mouche, Chapron, et al., 2017). In previous 
studies, it is found that error of SAR-derived wind 
speed by co-polarized GMFs is within 2 m s−1 as 
validated against the wind product of scatterometer 
(Shao et al., 2019) or the measurements from National 
Data Buoy Center (NDBC) buoys (Yang et al., 2011). 
At wind speed >25 m s−1, the SAR-measured NRCS 
suffers saturation problem in tropical cyclone (TC) 
(Hu et al., 2023). Thus, NRCS in vertical-horizontal 
(VH) polarization that is independent with wind 
direction is used for TC wind retrieval (Gao et al.,  
2021; G. S. Zhang et al., 2017), and the accuracy of 
wind speed is 3–5 m s−1 with maximum wind speed up 
to 70 m s−1 (Lai et al., 2023; Zhao et al., 2023).

SAR wave retrieval algorithms include two 
approaches: theoretical-based algorithm based on the 
wave mapping mechanism, i.e. tilt, hydrodynamic 
modulation (Keller & Wright, 1975), and velocity 
bunching (Alpers & Bruning, 1986); and empirical 
and machine learning-based models relating SAR- 
measured variables with wave parameters (Li et al.,  
2010; Wang et al., 2022). Based on a quasi-linear 
approximation, the model transfer functions (MTFs) 
of the above modulations are derived, which are the 
function of radar incidence angle. Recently, the MTFs 
of tilt (Y. Zhang et al., 2020) and velocity bunching 
(Hao, Shao, Yao, et al., 2023b) are significantly 
improved, in which the term of wind is included. 
The first SAR wave retrieval algorithm is called the 
Max-Planck Institute Algorithm (MPI) (Hasselmann 
& Hasselmann, 1991), which proposes a method for 
solving wave spectrum through SAR intensity spec-
trum as employing the first-guess wave spectrum from 
a numeric model. In the scheme of a semi-parametric 
retrieval algorithm (SPRA) (Mastenbroek & Valk,  
2000) and parameterized first-guess spectrum method 
(PFSM) (Jiang et al., 2023; J. Sun & Guan, 2006), the 
first-guess wave spectrum is generated by a parametric 
wave function (i.e. the Joint North Sea Wave Project 
model [JONSWAP]) (Shao, Jiang, et al., 2022a), in 
which the wind retrieved from SAR or scatterometer 
is used. Additionally, the partition rescaling and shift 
algorithm (PARSA) (Schulz-Stellenfleth et al., 2005) is 
specifically designed for wave retrieval utilizing the 
SAR look-cross spectrum, and the polarimetric 

technique can be implemented for fully polarimetric 
SAR data (He et al., 2006). In the literature, the mag-
nitude of capillary wave determines the retune energy 
backscattered from the sea surface. It has been 
revealed that SWH has linear relation with NRCS 
qualitatively associated with tilt and hydrodynamic 
modulation (Ji et al., 2018) and azimuthal cutoff wave-
length representing the velocity bunching (Hao, Shao, 
Yao, et al., 2023b). Following this rationale, several 
empirical models have been developed for various 
C-band SARs, i.e. Envisat-ASAR (Li et al., 2011), S-1 
(Stopa & Mouche, 2017) and GF-3 (Zhu et al., 2018). 
As confirmed in recent studies (Pleskachevsky et al.,  
2022), the machine learning is also a promising tech-
nique for constructing the SAR wave retrieval 
algorithm.

Since April 2023, Chinese SAR satellite that is the 
successor of GF-3 (Z. F. Sun et al., 2022), denoted as 
1mC-SAR, starts distributing data for domestic inves-
tigator. In this study, the main purpose is to confirm 
the applicability of wind and wave retrieval from 
1mC-SAR image. The remainder of this study is orga-
nized as follows: Dataset gives the description of the 
dataset, including the 1mC-SAR images, European 
Centre for Medium-Range Weather Forecasts 
(ECMWF), the wind speed from the Haiyang-2 (HY- 
2) constellation and simulations from the third- 
generation numeric wave model WAVEWATCH-III 
(WW3). The methodology of GMF for SAR wind and 
polarimetric technique for SAR wave retrieval are 
introduced in Methodology. The validation and error 
analysis are discussed in Results and discussion. At 
last, the conclusions are summarized in Conclusions.

Dataset

The description of 1mC-SAR images as well as 
ECMWF reanalysis (ERA-5) data is first introduced 
in this section. Then the SWH measurements from 
HY-2 (2B/2C/2D) and wave simulation by WW3 are 
briefly described.

1mC-SAR image

The satellite 1mC-SAR was launched on 
November 2021 and starts distributing data after 
1 year of satellite in orbit testing. The technical para-
meters of 1mC-SAR are listed in Table 1. In this study, 
the images located at China coastal waters are col-
lected on April 2023. These images are acquired in 
quad-polarization stripmap (QPS)-I/II mode. The 
calibration method is as same as that for GF-3 (Zhu 
et al., 2020):

wherein σ0 is the NRCS; DN is the value of SAR 
intensity; and M and N are the constants companied 
with SAR raw data. As a case show, Figure 1 depicts 
the calibrated image on 9 April 2023 at 21:57 UTC, i.e., 
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(a) VV-polarization and (b) HH-polarization. The 
whole image is divided into 256 × 256 pixel sub- 
scenes with a spatial coverage of 2 km for QPS-I and 
6 km for QPS-II and then the sub-scenes are smoothed 
using a 3 × 3 Gaussian filter.

It is recognized that the pattern on the two- 
dimensional SAR image spectrum at 800–3000 m 
length is vertical to the true wind direction (Shao 
et al., 2023); however, there is 180° ambiguity of SAR- 
derived wind direction by using the two-dimensional 
Fast Fourier Transform (FFT-2). In this sense, the 
prior information on wind direction from ERA-5 at 
0.25° grid is employed to remove that ambiguity. 
Figure 2(a) shows the sub-scene as highlighted by 
red rectangle in Figure 1(a). The corresponding SAR 

intensity spectrum at length of 1–3 km is displayed in 
Figure 2(a), where the red arrow represents the SAR- 
derived wind direction after taking the ERA-5 wind 
vector on 9 April 2023 at 22:00 UTC (Figure 3).

HY-2

HY-2B satellite carrying scatterometer and altimeter 
operates since 2019 and then its sisters HY-2C and 
HY-2D are continuously launched. In our previous 
study (Shao, Jiang, et al., 2021a), the statistical analysis 
shows that the RMSE for wind speed (ASCAT and HY- 
2B) and for SWH (Jason-3 and HY-2B) is 0.78 m/s and 
0.29 m. It is confirmed that wind speed and SWH 
products from HY-2B that proceeded as geophysical 

Table 1. Technical parameters of 1mC-SAR.
Satellite Altitude 755 km

Frequency of Electromagnetic Wave 5.3 GHz
Conventional Incidence Angle 20°–50°
Extended Incidence Angle 10°–60°

Imaging Mode Resolution/m Swath/m Polarization

Spotlight Mode 1 10 Single-pol
Stripmap Mode Ultra Fine Stripmap 3 30 Single-pol

Fine Stripmap-I 5 50 Dual-pol
Fine Stripmap-II 10 100 Dual-pol
Standard Stripmap 25 130 Dual-pol
Quad-Polarization Stripmap-I 8 30 Full-pol
Quad-Polarization Stripmap-II 25 40 Full-pol

TOPSAR Mode Narrow Scan 50 300 Dual-pol
Wide Scan 100 500 Dual-pol
Global Observing 500 650 Dual-pol

Wave Mode 8 20 Full-pol
Extended Mode Low Incidence Angle 25 130 Dual-pol

High Incidence Angle 25 80 Dual-pol

(a) (b)

Figure 1. Normalized radar cross-section (NRCS) map of 1mC-SAR synthetic aperture radar (SAR) image on 9 April 2023 at 21:57 
UTC: (a) vertical−vertical (VV) and (b) horizontal−horizontal (HH) polarization.
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data records (GDRs) are quite reliable. As well as SAR, 
the footprint of SWIM onboard CFOSAT has a spatial 
coverage of 18 × 18 km in a spiral direction of 360°, and 
SWIM provides the wave product at incidence angles of 
6°, 8° and 10° following the footprint. It is concluded in 
Hao, Shao, Yao, et al. (2023b) that the wave product at 
incidence angle of 10° has the best performance through 
the comparison with the simulation by Simulating 
Waves Nearshore (SWAN). Fortunately, there is no 
available SWH derived from HY-2 and Jason-2/3 

altimeters and wave spectra from SWIM at the SAR 
acquisition moments. However, the GDRs products of 
HY-2B/2C/2D scatterometers are used for validation of 
SAR wind in this study. It should be noted that the time 
difference between SAR acquisition moments is within 
3 h and the distance between them is less than 5 km. 

(a) (b)

Figure 2. (a) The sub-scene extracted from image at red rectangle in Figure 1a. (b) The corresponding SAR intensity spectrum by 
using the two-dimensional Fast Fourier Transform (FFT-2) at length of 1–3 km, where the red arrow represents the SAR-derived 
wind direction.

Figure 3. Wind map from European Centre for Medium-Range 
Weather Forecasts (ECMWF) reanalysis (ERA-5) data on 
9 April 2023 at 22:00 UTC.

Figure 4. Wind map from Haiyang-2B (HY-2B) scatterometer 
on 8 April 2023 at 10:41–12:26 UTC.
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Figure 4 shows the wind map from HY-2B scatterom-
eter on 8 April 2023 at 10:41–12:26 UTC.

Simulations from WW3

Numeric models are popularly applied for predicting 
and hindcasting sea surface waves, especially at 
extreme sea state (Shao et al., 2020). As revealed in 
previous studies (Hao, Shao, Yao, et al., 2023b; Sun 
et al., 2022), wave simulation from WW3 
(WAVEWATCH III Development Group, 2019) has 
been used as auxiliary data in the SAR oceanography. 
Here, ERA-5 winds at 0.25° grids and 1-hour intervals 
are treated as the forcing fields in the WW3 using the 
default settings. The simulated region is 40°N, 85°N 
latitude 0°E, 360°E longitude and the time is on April– 
May 2023. The water depths are derived from the 
General Bathymetric Chart of the Oceans (GEBCO) 
bathymetric data, that is smoothed to be ~1-km hor-
izontal resolution. The spatial resolution of outputs 
from WW3 is 0.05° at intervals of 0.5 h. Although 
there are no HY-2 footprints passing the spatial cover-
age of collected 1mC-SAR SAR images, SWHs mea-
sured by HY-2 are used to validate the WW3 

simulations. Figure 5 presents WW3-simulated SWH 
map on 10 April 2023 at 21:30 UTC, in which the color 
spots represent the measurements from HY-2B alti-
meter. In this case, the pattern of WW3-simulated 
SWH is consistent with that from HY-2B. Two metric 
parameters, i.e. a root mean squared error (RMSE) 
(Equation (1)) and scatter index (SI) (Equation (2)), 
are used for error analysis between scalars, i.e. wind 
speed and SWH inverted from SAR image and model 
simulation. 

in which, n-elements Xi and X represent the SAR 
retrievals and its average value; and Yi and Y represent 
the observations and its average value. Figure 6 dis-
plays the statistical analysis of WW3-simulated SWH 
for a 0.1 m bin, indicating a 0.40 m RMSE and a 0.35 
SI. Table 2 shows the comprehensive evaluation 
results of the simulated Significant wave height simu-
lated by WW3 under different sea states. It is worth 
noting that most of the data sets come from low sea 
states (0 ~ 1.5 m). Although the RMSE of SWH is 
higher at high sea states (>3 m), the statistical results 
of the entire data set are satisfactory under three 
different sea state conditions. Therefore, we think the 
simulations from WW3 is reliable.

Methodology

In this section, the methodology for SAR wind and 
wave retrieval is briefly presented. In particular, the 
novel tilt MTF used in SAR wave retrieval algorithm is 
described. Additionally, two metric parameters for 
error analysis wave spectrum are exhibited.

GMF for SAR wind retrieval

According to Bragg backscattering theory, the SAR 
roughness is correlated with the magnitude of capil-
lary wave; on the contrary, the distribution of sea 
surface wave is determined by wind and sea fetch. It 
is reasonable that backscattering signal linearly 
relates with wind speed, and this is confirmed 
through analyzing the scatterometer-measured 
NRCS with respect to ECMWF wind (Stoffelen & 
Anderson, 1997). Based on the finding, GMF relat-
ing NRCS with a wind vector and incidence angle θ 
is stated as: 

in which σ0 is the linear NRCS; U10 is the sea surface 
wind speed at 10 m height; θ is radar incidence angle; 

Figure 5. Significant wave height (SWH) map from 
WAVEWATCH-III (WW3) on 10 April 2023 at 21:30 UTC, in 
which the color spots represent the measurements from HY- 
2B altimeter.
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and φ is wind direction relative to flight orientation. 
After knowing wind direction, wind speed is conveni-
ently retrieved from SAR image. In previous study 
(Shao, Nunziata, et al., 2021b), CSARMOD-GF is spe-
cifically adopted for co-polarized (VV and HH) GF-3 
based on the formulation of C-SARMOD2. Because 
the calibration method of 1mC-SAR is same to that of 
GF-3, CSARMOD-GF is directly used here. It is recog-
nized that noise floor is also an essential issue for SAR 
wind retrieval, especially for cross-polarization. 
However, there are limited 1mC-SAR images available 
for this study, which is insufficient for analyzing the 
noise floor. Therefore, the noise floor is not discussed 
here.

Polarimetric technique for SAR wave retrieval

In the literature, hydrodynamic modulation and 
velocity bunching keep unchanged under different 
polarizations. Therefore, the variation in the differ-
ence of backscattering cross section modulation 
between polarization orientation ϕ and co- 
polarization is expressed as follows (Zhu et al.,  
2018): 

where 

in which <ðσhhvv
0 Þ is the real parts of the correlation 

between VV-polarized NRCS σvv
0 and HH-polarized 

NRCS σhh
0 ; σhv

0 is the NRCS in horizontal−vertical 
(HV) polarization; @�=@r represents the partial deri-
vative of wave slop � relative to slant direction r; and 
Ttilt

ϕ is the tilt MTF at polarization orientation ϕ, i.e. 
polarization orientation in VV (ϕ = 90°) and HH 
polarization (ϕ = 0°). The tilt MTF is decomposed 
into two components perpendicular to (kx) and paral-
lel to (kl) the radar look direction, which will be 
described in later section. Therefore, the expressions 
can be simplified as follows: 

Figure 6. Comparison of SWH between WW3 simulations and HY-2 altimeters for a 0.1 m bin.

Table 2. Statistical analysis of significant wave heights simulated by WW3 versus the measure-
ments from Hiayang-2 (HY-2) altimeters.

Wave Parameters Sea States Sample Numbers

Evaluation Metrics

SI RMSE

Significant wave height 0 ~ 1.5 m 16571 0.4315 0.3285
1.5 ~ 3 m 3468 0.1173 0.4540

>3 m 169 0.0930 0.4952
Total 20208 0.3468 0.4008
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in which @�=@l and @�=@x represents the wave slop in 
the range and azimuth directions, respectively. The 
SWH Hs is practically calculated by root mean square 
slop Srms (Equation (10)) and the wave-slop direc-
tion ψ. 

Collectively, the diagrammatic sketch of this study is 
illustrated in detail in Figure 7.

MTF of tilt modulation

It is well known that the tilt modulation represents 
the variation in the NRCS in terms of radar inci-
dence angle. Tilt MTF at polarization orientation ϕ 
is the sum of two components in kx and kl 
direction: 

in which i = 
ffiffiffiffiffiffiffi
� 1
p

; and A and B are the complex coeffi-
cients. As known in He, the components of the tilt MTF 
at polarization orientation ϕ in the radar look direction 
kl and radar flight direction kx have the formulations: 

where 

Because the coefficient B is assumed to be zero in 
VV and HH polarization, the c-polarized MTFs of 
tilt modulation are reduced to be theoretical 
expressions of incidence angle (Hasselmann & 
Hasselmann, 1991). In recent work (Zhang et al.,  
2021), reanalysis tilt MTF including both radar 
incidence angle θ and wind speed U10 is proposed 
based on C-band GMF. 

in which kl is the wave number in radar look direction; 
i is an imaginary number; pp denotes the VV or HH 
polarization; and the values of matrix a are listed in 
Table 3. The reanalysis tilt MTF has been implemen-
ted for wave retrieval from quad-polarized GF-3 image 
by the polarimetric technique (Shao et al., 2023), in 
which ϕ is set as 45° in Equations (12)–(14).

Figure 7. The diagrammatic sketch of this study.
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Table 3. Values of coefficients in Equation (5) in vertical 
−vertical (VV) and horizontal−horizontal (HH) polarization.

Coefficient VV HH

a1 0.007799 0.008398
a2 1.21723e–15 1.226019e–05
a3 0.002941 0.005492
a4 −3.635699e–14 5.00855e–15
a5 0.008508 0.008506
a6 −3.365627e–14 8.150555e–15
a7 −0.685241 −0.714355
a8 1.303660e–12 −3.285571e–13
a9 −0.595169 −0.792862
a10 29.084355 30.901273

(a) (b)

(c) (d)

Figure 8. Wind speed retrieval maps corresponding to the (a) VV-polarized image by 256 × 256 sub-scenes and (c) VV-polarized 
image by 512 × 512 sub-scenes in Figure 1a; (b) HH-polarized image by 256 × 256 sub-scenes and (d) HH-polarized image by 
512 × 512 sub-scenes in Figure 1b.
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Metric parameters

In order to compare the wave spectrum between SAR 
retrievals and WW3 simulation, the correlation coeffi-
cient (Cor) (Equation (16)) and the squared error 
(Err) (Equation (17)) are employed, in which k is the 
wave number. It is necessary to figure out that the 
wave spectra of two sources are similar with Cor 
approaching 1 and becomes smaller than that of Err. 
These two parameters have been taken for analyzing 
the accuracy of numerical simulation of ocean waves 
in recent studies (Hao, Shao, Shi, et al., 2023a; Yao 
et al., 2023). 

It should be noted that the SAR-derived wave slop 
spectrum ξ(k) has to be converted into wave spectrum 
ψ(k) that is consistent with simulation from WW3. 
The method follows the equation below. 

Results and discussion

The accuracy of co-polarized SAR wind retrieval is 
first presented as validated against wind speeds from 
HY-2 scatterometers. Then SAR wave retrievals are 
compared with the SWHs from HY-2 altimeters and 
wave spectra simulated by WW3. At last, the error 
analysis is conducted.

Validation of wind retrieval

Co-polarized GMF, namely CSARMOD-GF, is 
implemented for VV-polarized and HH-polarized 
image, and the wind retrieval maps with different 
spatial grid corresponding to the image in Figure 1 
(a,b) are shown in Figure 8, i.e. Figures 8(a,b) by 
256 × 256 sub-scenes (i.e. 2 km for QPS-I and 6 km) 
and Figures 8(c,d) by 512 × 512 sub-scenes (i.e. 4  
km for QPS-I and 12 km) respectively. Although 
the pattern of VV-polarized wind retrievals is con-
sistent with that of HH-polarized wind retrievals, 
there is slight difference between them. With the 
spatial grid increasing, the accuracy of wind speed 

(a) (b)

(c) (d)

Figure 9. Comparison of wind speed retrievals with the measurements from HY-2 scatterometer: (a) VV-polarization and (b) HH- 
polarization by 256 × 256 sub-scenes; (c) VV-polarization and (b) HH-polarization by 512 × 512 sub-scenes.

EUROPEAN JOURNAL OF REMOTE SENSING 9



retrievals increase. The sub-scenes with different 
spatial grid extracted from image are collocated 
with the swath data of HY-2 scatterometers, and 
more than 1000 matchups are available for valida-
tion, as exhibited in Figure 9, i.e. Figures 9(a,b) by 
256 × 256 sub-scenes and Figures 9(c,d) by 512 ×  
512 sub-scenes, respectively. It is observed that 
RMSE of VV-polarized SAR-derived wind speeds 
by 256 × 256 sub-scenes is 1.78 m/s with a 0.22 SI 
(Figure 9(a)), which is better than a 1.91 m/s RMSE 
of HH-polarized SAR-derived wind speeds with 
a 0.22 SI (Figure 9(b)). It is reasonable that sea 
surface roughness is more sensitive with VV- 
polarized backscattering signal than that in HH- 
polarization. However, there is apparent under- 
estimation of SAR wind retrieval. This behavior is 
also found in the comparison of SAR retrievals by 
512 × 512 sub-scenes, i.e. a 1.89 m/s with a 0.23 SI 
for VV-polarization (Figure 9(c)) and a 1.96 m/s 
with a 0.23 SI for HH-polarization (Figure 9(c)). 
We think this is probably caused by inaccurate 
calibration of 1mC-SAR image, and the 
spatial grid is also an important issue for wind 
retrieval.

Validation of wave retrieval

The wave slop spectrum is retrieved from images by 
polarimetric technique taking SAR-derived wind. As 
an example, Figure 10(a) depicts the sub-scene of 
256 × 256 extracted at the red rectangle in Figure 1 
(a), i.e., (a) VV-polarization, (b) HH-polarization, (c) 
HV-polarization and (d) polarization orientation of 
45°. The two-dimensional SAR slop spectrum is 
shown in Figure 11(a), and the one-dimensional SAR- 
derived wave slop spectrum are illustrated in Figure 11 
(b). In this case, the SAR-derived SWH is 0.76 m, 
which is close to a 0.81 m from WW3. Figure 12 
shows the comparison of collocated SWH with the 
WW3 simulations, yielding a 0.53 m RMSE with 
a 0.36 SI. Simultaneously, SAR-derived wave spectra 
are compared with WW3-simulated wave spectra, 
yielding a 0.79 Cor and a 0.92 Err.

Discussion

Figure 13 shows the variation in the wind speed rela-
tive to the measurements from HY-2 scatterometers, 
in which the Figures 13(a,b) represent the bias 

(a) (b)

(c) (d)

Figure 10. The sub-scene of 256 × 256 extracted at red rectangle in Figure 1a, i.e., (a) VV-polarization, (b) HH-polarization, (c) HV- 
polarization and (d) polarization orientation of 45°.
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between SAR retrievals in VV-polarization and HH- 
polarization minus the measurements from HY-2 
scatterometers. The bias is grouped into bins of 1 m/ 
s wind speed, and the bias increases with increasing 
wind speed from 2 m/s. However, the bias decreases 
with wind speed greater than 10 m/s. Similarly, the 
variation in the SAR retrievals relative to SWHs from 
WW3 for a bin 0.2 m of SWH is presented in 
Figure 14, indicating an increasing tendency with 
growth of sea state. This behavior is consistent with 
the variation in wind speed because the error of wind 
speed is inherent in the tilt MTF used in polarimetric 
technique.

Conclusions

The successor of GF-3 with spatial resolution up to 1  
m, called 1mC-SAR, operationally starts releasing data 
since 2023. In our work, the preliminary analysis of 
wind and wave retrieval from 1mC-SAR image is 
conducted so as to confirm the applicability of 1mC- 
SAR for upper oceanic dynamics monitoring. In par-
ticular, the updated tilt MTFs considering the term of 
wind are implemented in polarimetric technique for 
SAR wave retrieval.

More than 400 images acquired in QPS mode are 
collected at China coastal waters during the period 
of April 2023. Wind directions are obtained from 

(a) (b)

Figure 11. (a) The two-dimensional SAR slop spectrum and (b) one-dimensional SAR-derived wave slop spectrum.

Figure 12. Comparison of SAR retrievals with the SWHs simulated by WW3.
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images when employing ERA-5 data. Then co- 
polarized GMF CSARMOD-GF is used for SAR 
wind speed retrieval, in which wind direction and 
incidence angle are taken as prior information. Wind 
speed retrievals are collocated with the measure-
ments from HY-2 scatterometers, and comparisons 
yield a 1.78/1.91 m/s RMSE with a 0.22/0.23 SI in 
VV/HH-polarization. It is believed that the under- 
estimation of SAR wind retrievals is caused by inac-
curate calibration of image. In addition, it was found 
that the accuracy of SAR-derive winds by 256 × 256 
sub-scenes is relatively higher than that gained from 
the results by 512 × 512 sub-scenes. Afterwards, the 
wave spectrum is inverted from SAR intensity 

spectrum by polarimetric technique with updated 
tilt MTF. Validation against the simulated SWHs 
from WW3 concludes the accuracy of VV-polarized 
retrievals is comparable, i.e. 0.53 m RMSE with 
a 0.36 SI. This result is also found in the comparison 
of wave spectra with WW3 simulations, i.e. a 0.79 
Cor with a 0.92 Err. However, the bias of SWH 
indicates an increasing tendency with the growth of 
sea state, which is consistent with the variation of 
bias in wind speed. This is probably caused by the 
inaccurate wind speed used in tilt MTF.

It is supposedly that the calibration of 1mC-SAR 
necessitates to be improved. In the future, the TC can 
be simultaneously monitored by HY-2, CFOSAT and 

(a) (b)

Figure 13. The variation in the wind speed relative to the measurements from HY-2 scatterometers: (a) VV-polarization and (b) HH- 
polarization. The bias is grouped into bins of 1 m/s wind speed.

Figure 14. The variation in the SWH relative to the WW3 simulations, in which the bias is grouped into bins of 0.2 m SWH.
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1mC-SAR, and this campaign brings a precious 
opportunity to conduct TC dynamics research based 
on multi-source satellites.
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