This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

Let’s Talk With Developers, Not About
Developers: A Review of Automatic Program
Repair Research

Emily Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall, Seemundur Haraldsson, John
Woodward

Abstract—Automatic program repair (APR) offers significant potential for automating some coding tasks. Using APR could reduce the
high costs historically associated with fixing code faults and deliver significant benefits to software engineering. Adopting APR could
also have profound implications for software developers’ daily activities, transforming their work practices. To realise the benefits of
APR it is vital that we consider how developers feel about APR and the impact APR may have on developers’ work. Developing APR
tools without consideration of the developer is likely to undermine the success of APR deployment. In this paper, we critically review
how developers are considered in APR research by analysing how human factors are treated in 260 studies from Monperrus’s Living
Review of APR. Over half of the 260 studies in our review were motivated by a problem faced by developers (e.g., the difficulty
associated with fixing faults). Despite these human-oriented motivations, fewer than 7% of the 260 studies included a human study. We
looked in detail at these human studies and found their quality mixed (for example, one human study was based on input from only one
developer). Our results suggest that software developers are often talked about in APR studies, but are rarely talked with. A more
comprehensive and reliable understanding of developer human factors in relation to APR is needed. Without this understanding, it will
be difficult to develop APR tools and techniques which integrate effectively into developers’ workflows. We recommend a future

research agenda to advance the study of human factors in APR.

Index Terms—Human factors, software development, Automatic Program Repair

1 INTRODUCTION

E investigate how the human factors associated with

developers are considered in automatic program re-
pair (APR) research,and, where human studies have been
conducted, we evaluate their quality. APR is an increasingly
important area of software engineering research, being the
first relatively mature application of automatic code gener-
ation. Automatically fixing code faults promises many po-
tential benefits, including improving the quality of software
[1], reducing the development time spent on fault fixing
[2] and lowering the overall costs of software development
[3]. These benefits are very attractive to software companies
with several (e.g., Facebook) already trying out APR tech-
niques in their development pipeline [4].

APR is distinct from many of the other tools used by
developers. Whilst other tools offer developers assistance in
their work, APR has the potential to remove the developer
entirely from the process of bug fixing. Realising the benefits
of APR techniques requires a significant transformation of
software developers” working practices. For successful APR
exploitation, developers need to accept the automation of
their previously manual fixing tasks and embrace and use
new APR tools and techniques. Developers will need to

e E. Winter, D. Bowes and T. Hall are with School of Computing and
Communications, Lancaster University.

e V. Nowack and]. Woodward are with School of Electronic Engineering
and Computer Science, Queen Mary University of London

e S. Counsell is with Department of Computer Science, Brunel University
of London

e S. Haraldsson is with Department of Computing Science and Mathemat-
ics, University of Stirling

change some of their day-to-day tasks. Some tasks may
be removed (for example, reducing manual fault-finding
and fault-fixing) and replaced with others (for example,
providing APR tools with specifications or verifying auto-
matically generated patches). Fully automated APR tools
may lead to developer workloads being restructured in
unknown and possibly unpopular ways, given the freeing
up of time previously taken up with manual code repair.
Overall, APR tools and techniques are likely to disrupt the
workflow and working practices of software developers,
and may also impact developer job satisfaction, motiva-
tion and retention. Developing APR tools and techniques
that are acceptable to developers is critical to successfully
capitalising on the benefits that APR promises. Given the
potential of APR to disrupt software developers” workflows
it is essential that the significant socio-technical implications
of APR are considered in APR research.For example, there
is a risk that developers feel threatened by APR, resisting
the technology’s adoption. Resistance is common when new
technologies replace humans in the work place (e.g. [5] [6])
and requires great effort to overcome. The interplay between
APR and developers must be carefully understood and APR
technology offered to developers appropriately. To avoid
APR being rejected by developers, research effort must be
targeted at understanding the human factors related to APR
tools.

In his 2020 keynote [7], Westley Weimer (one of the
originators of APR), highlighted the urgent need to better
understand the human factors associated with developer
use of APR. We respond directly to Weimer’s call for greater

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

understanding by providing a comprehensive analysis of
the current state-of-the-art in APR human factors research.
We hope our analysis will equip future researchers with
a helpful base on which to motivate and design human
studies in APR. Our results should enable the acceleration
of APR human factors research and help generate a clearer
understanding of how APR tools should be designed for
positive interaction with human developers.

Our aim is to investigate the extent to which human
factors are taken into account by existing APR research. We
critically review APR studies reported in the literature. Our
review is similar to a systematic literature review [8] except
that we use an existing corpus of APR studies rather than
identifying those studies ourselves. We analyse 260 APR
studies curated in Monperrus’s Living Review on Auto-
matic Program Repair [9] in terms of their consideration of
developer human factors. We identify whether APR studies
are motivated by problems faced by software developers
and whether studies claim that the APR tool or technique
being proposed is helpful to software developers. We looked
in detail at any research that included a human study,
evaluating the quality of these human studies to get a better
understanding of the maturity and reliability of existing
knowledge related to human factors in APR.

The results of our review of APR research suggest that
there is considerable work still to be done in understand-
ing APR in relation to developers. Of 186 Living Review
papers that introduced a new tool or technique, 65% were
motivated by a problem that software developers face (for
example, the difficulty of fixing faults) and 34% claimed
that their tool or technique would be helpful to software
developers (for example, by saving developer time), despite
presenting no human study to demonstrate this. Less than
7% of studies in the Living Review (17 of 260) include some
form of human study. Our quality assessment finds that the
quality of these 17 studies varied, with few justifying key
study design decisions, such as why particular sampling
strategies or data collection methods were used. Overall,
our research suggests that automatic program repair studies
frequently talk about developers, but very rarely talk with
developers.

Successfully transferring APR into industrial practice
depends on APR techniques complementing, rather than
disrupting, developers” working practices and workflows.
Our findings suggest that significantly more APR research
needs to examine the developer human factors, and the
quality of human studies must improve if APR technical
progress is to be effectively exploited by industry. Despite
Software Engineering being recognised as both a social and
technical activity [10] [11], technical innovation continues
to dominate Software Engineering research [12]. Neglecting
the social and human dimension of technical innovation is
not unique to APR and underpins the lack of practitioner
uptake that has plagued much Software Engineering re-
search. For example, most debugging tools developed by
software engineering researchers have not been adopted
widely by professional software developers [13]. APR is a
relatively new area of Software Engineering. As such we
now have a chance to address the socio-technical balance
in future research. We advocate embedding consideration
of developers alongside technical innovation to enable the

development of tools and techniques likely to transfer into
industrial practice. On the basis of our review, we develop
and present a future research agenda to advance the study
of human factors in APR.

Our research aim to advance the study of human factors
in APR has certain caveats. It is not our recommenda-
tion that all studies in APR include a user study. There
are many cases where this would not be appropriate and
could in fact slow down the pace of innovation in APR.
It is important that innovative approaches be published,
though they may not be at a stage where a user study
would be appropriate. Instead, we simply encourage more
APR researchers to carry out thorough and well-motivated
user studies, both ‘scoping studies’ that explore developer
needs and user evaluations. Perhaps counter-intuitively, we
caution against user studies being seen as prerequisites for
publishing research results. Research carried out by Buse et
al. found that ‘highly selective conferences tend to publish
a larger proportion of papers containing user evaluations’
[14]. Our quality assessment of the human studies in APR
suggests that this may result in poorly-designed user studies
tacked onto the end of technical papers as a way of fulfilling
the expectations of peer review. We would encourage a
shift within the SE community, away from expecting a user
study as a form of validation — which may allow for the
publication of poor user studies — to instead having higher
standards for user studies when they are presented.

This paper is structured as follows: Section 2 outlines re-
lated work; Section 3 highlights our aims, research questions
and contribution; and Section 4 describes our methodology.
Sections 5 and 6 provide findings and discussion. In Section
7 we make recommendations for future developer-centred
research in APR. Before concluding (Section 9), we identify
some threats to validity and action taken to mitigate them
(Section 8).

2 RELATED WORK

Reviews of secondary literature — including systematic liter-
ature reviews, annotated bibliographies and various kinds
of literature synthesis — are common in software engi-
neering. There have been two surveys specifically of the
APR literature. Gazzola, Micucci and Mariani [2] surveyed
108 papers, which they categorised into different types of
APR, such as the different kinds of algorithms deployed.
Monperrus’s bibliography [15] similarly divides work on
APR into its different technical approaches or types. Neither
of these reviews identifies papers that include a human
study, although in their section on ‘empirical evidence’,
Gazzola et al. mention one study with developers. Within
APR, there have also been more specific reviews, such as
Liu et al.’s critical review on how APR systems are evalu-
ated [16]. In addition, there have been several systematic
literature reviews of different human factors in software
engineering, such as motivation [17] and personality [18],
as well as a more overarching systematic literature review
of ‘behavioural software engineering’ [19].

Our work can be broadly positioned alongside such
studies. However, systematic literature reviews and syn-
thesis studies tend to cover more established areas of re-
search. For example, research synthesis aims to compare

Page 2 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

and contrast evidence from multiple sources in order ‘to
build knowledge and reach conclusions about the empirical
support for a phenomenon’ [20]. By contrast, human factors
are under-studied in APR and not yet an established field
of research, making many synthesis approaches unsuitable.
Similarly to Liu et al.’s recent study that provided a critical
review on the evaluation of APR systems [16], we take a
critical and evaluative approach to assess a less developed
research space. Our goal is to understand the current state
of research in human factors in APR and how such research
can be advanced. Liu et al.’s study considered the metrics
used in the evaluation of APR systems (for example, num-
ber of correct patches generated, time needed to generate
patches), and does not examine the role of human studies in
APR evaluation. However, our research supports their find-
ing that it is difficult to compare APR tools and techniques
due to widely varying methods of evaluation.

Our work also has similarities in approach to Storey et
al.’s [12] review of human aspects in the publications that
appeared at ICSE and in the Empirical Software Engineering
journal during a one year snapshot (2017). Storey et al.
focus on who benefits from a research study, what the main
type of research contribution is and how the research was
carried out. We similarly consider whether the APR papers
we review introduce a new tool/technique and, in our
quality assessment of the existing human studies, identify
the research methods used. However, we also provide an in-
depth quality assessment of existing human studies within
APR, in order to understand the current state of the field and
identify potential research gaps. This enriches the focus of
Storey et al. of ‘how much’ with an additional focus on ‘how
well’. In addition, we respond to Storey et al.’s invitation
for similar studies considering other venues and publication
dates by suggesting that considering the state of human
factors within different software engineering sub-fields may
also be of benefit.

In focusing on APR, our work demonstrates that Storey
et al.’s findings apply to the specific software engineering
area of APR. Whilst APR was not the topic of any of the
151 articles reviewed by Storey et al., our findings largely
mirror Storey et al.’s that ‘although a majority of these
papers claim the contained research should benefit human
stakeholders, most focus predominantly on technical contri-
butions” and rarely involve human studies [12]. Whilst there
is not necessarily any reason to expect that APR would be
different to software engineering more generally, we wanted
to thoroughly assess the state of human factors research
in APR in order to present recommendations specifically
tailored to the APR domain. This is important because APR
is a new and rapidly advancing field of software engineering
— with vast potential to impact upon software developers’
work — that has so far not been explored qualitatively or
quantitatively to the extent that other areas of software
engineering have.

By focusing specifically on APR, we also uncover some
strikingly different findings from Storey et al.’s study. For
example, whilst Storey et al. find a high number of papers
that use mining software repositories as a research strategy,
we find only a small number of APR papers that use
software repositories as a source of data, which we discuss
in Section 4. This may be a result of the nascent nature of

APR, providing an important opportunity to reflect on the
state of the field at this early stage. We hope our work
may inspire similar studies in more established areas of
software engineering to aid comparison. This is important
to ensure we gain understanding of different sub-fields, and
the similarities and differences between them.

We provide a thorough discussion of human studies
within APR in this paper. However, it is worth mentioning
here a couple of relevant studies that have been published
since we conducted our analysis, and are included in the
more recent version of Monperrus’s Living Review. Noller et
al.’s survey of 103 participants found high willingness from
participants to review automatically generated patches [21].
The survey results also provide indications of what might
increase developer trust in automatically generated patches,
such as test cases, explanations of the patch, and evidence of
patch correctness. Alarcon et al.’s experimental study also
considered trust in APR, and found that the source of the
repair (human vs. automated) had significant influence on
trust perceptions and intentions, participants having higher
trust in human repairs than automated repairs [22]. Both
these studies demonstrate recent advances in human factors
research in APR.

3 AIms

The aim of this paper is to provide an assessment of the
current state of the APR literature when it comes to the
consideration of human factors. This paper addresses four
core research questions.

e RQI: To what extent, and in what ways, does the
APR literature consider human factors?

e RQ2: What are the strengths and weaknesses of ex-
isting human studies within the APR literature?

e RQ3: What are the key findings of existing APR
human studies?

e RQ4: What future research directions are needed to
progress the study of human factors within APR?

In addressing these questions through an in-depth re-
view of 260 Living Review papers, we make the following
contributions:

o Contribution 1: We provide the first in-depth review
of the extent to which human factors are considered
in the APR literature.

o Contribution 2: Drawing on existing quality assess-
ment criteria for empirical studies in software engi-
neering, we propose a new set of quality assessment
criteria. Our criteria aim to be more robust and
replicable to allow for future evaluations of human
studies in APR. In addition, they are designed for
use with different kinds of empirical study, both
qualitative and quantitative.

o Contribution 3: We assess APR human studies for
quality and identify their current strengths and
weaknesses

o Contribution 4: We offer a series of recommendations
for future APR research that thoroughly considers
human factors. In so doing, we hope to inspire a
wave of human-centered APR research more atten-
tive to the needs of developers and can subsequently
offer APR solutions that meet these needs.

Page 3 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

Fig. 1. Publication dates of the Living Review items (December 2019
version)

70

60
30
20
10 I
o anan 1l
D D> D> NN

4 METHODOLOGY

%3
(=]

N
(=]

Number of items

Our review used the Living Review [9] as a corpus and
involved two main phases: firstly, a broad consideration of
how much and in what ways APR research is considering
developers; and, secondly, an in-depth quality assessment
of human studies within APR. In this Section, we introduce
our corpus (the Living Review) and our overall approach,
before outlining the main methods we used to answer our
research questions. Please see the appendix for an overview
of each author’s involvement.

4.1 Our Corpus- the Living Review

We use Martin Monperrus’s “The Living Review on Auto-
mated Program Repair’ [9] as an already-existing corpus
of the key APR literature. The Living Review is a 'live’
version of Monperrus’s widely-cited bibliography on APR
[15] and is updated every two to three months. We used the
December 2019 version of the Living Review. Figure 1 shows
the publication dates of all 264 works in the December 2019
version, demonstrating the growth of the APR field since
the early 2000s.

Others have previously used the Living Review as a
corpus for their own studies. Durieux et al. used the Living
Review to identify existing test-suite repair tools [23], while
Wang et al. used it to identify automated patch correctness
assessment techniques [24]. Similarly to our own study, Liu
et al. used the Living Review to extract relevant papers for
their critical review of APR evaluation [25]. Using the Living
Review as an APR corpus has two other advantages. Firstly,
whilst it should not be considered fully comprehensive, by
comparison to the other main APR literature review [2], the
Living Review includes more than double the number of
papers. Secondly, the Living Review is regularly maintained
rather than being static. This means that it would be possible
to re-assess our findings in the future, applying our method
to new APR work.

4.2 Our Approach

As mentioned in Section 2, a review of an under-developed
research area, such as human factors in APR, needs a
different approach to most systematic literature reviews
and research syntheses. As well as exploring trends and
themes within the APR literature, we also take a critical
approach, identifying the strengths and weaknesses of the
current literature in order to make recommendations for
APR research that includes consideration of human factors.
In taking such an approach, our work can be positioned
alongside other recent software engineering publications,
such as [26], [27] and [28].

4.3 RQ1- To What Extent, and in What Ways, Does the
APR Literature Consider Human Factors?

To address RQ1, we conducted a review of the Living
Review papers. First, we searched each Living Review paper
to identify those that included a human study, using five
key search terms: “user’, ‘human’, ‘developer’, ‘engineer’
and ‘programmer’. From this, we found 17 items from the
Living Review that included a human study (6.5% of the 260
Living Review papers we had access to). We extracted these
17 papers for in-depth analysis in order to answer RQ2.
We concentrated our focus for RQ1 on the vast majority
of Living Review papers that did not include a human
study and whether software developers were nonetheless
considered; if so, we explored in what ways.

Similarly to Liu et al. [25], we reviewed the 243 Liv-
ing Review papers with a series of questions designed to
critically review an under-explored research domain. These
questions (see Table 1) aim to capture the extent to which
developers are taken into consideration in APR research.

All 243 Living Review papers (excluding the 17 human
studies) were imported into SLuRp, a software system de-
signed for the management of systematic literature reviews
[29]. SluRp automatically highlighted five key search terms
(as also used to identify the human studies) ‘developer’, ‘en-
gineer’, "human’, ‘user” and ‘programmer’. We also added
a further three key search terms that emerged as useful
when trialling the review questions- ‘manual’, ‘expert” and
‘practitioner’. These were also highlighted automatically by
SIuRp. (The number of occurrences of each search term can
be found in the Appendix.)

Each paper was reviewed by two authors of this study
independently, assigned randomly by SLuRP. The review
protocol was: to read the abstract, introduction and con-
clusion of each paper; and to use the yellow highlighted
search terms to review the rest of the paper in order to
answer the review questions. One author was excluded from
the review process to act as an independent mediator and
moderator of disagreements between pairs of reviewers,
ensuring consistency across moderation.

The answers to the review questions (see Table 1) were
recorded by each reviewer on SLuRp. Each review question
had a “yes’/‘no’ tick-box answer, followed by free-text space
for reviewers to provide cut-and-paste quotations from the
paper as evidence for their answer. Quotations were also
collected in order to thematically analyse them later, as a
way of adding depth to the ‘yes’ responses.

Page 4 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

TABLE 1
Questions for review of Living Review papers

Question H
1 Does the paper report on the development of a new APR tool/technique?
2 Does the paper identify as motivation a problem that developers currently face?
3 Does the paper state that their APR tool/technique will be helpful to developers (e.g. reduced effort)?
4 Does the paper state that their proposed APR tool/technique will change developers’ activities (e.g. introduce new tasks)?

TABLE 2
Reviewer agreement for each review question

Question H Percent agreement

1 91.3
2 72.7
3 77.9
4 82.3

Three different question versions were trialled with a
small subset of eight papers reviewed by all authors. This
led to refinement of the questions (with final versions shown
in Table 1) and the establishment of shared understanding
among the authors. Of the remaining 235 papers that were
each reviewed by two authors, there was 79.7% agreement
across all of the 940 answers (four ‘yes’/‘no’ questions for
each paper). The percentage agreement varied across the
four questions, as summarised in Table 2. Cohen’s Kappa
scores for each pair of reviewers for each question are pro-
vided in the appendix. All findings subsequently reported
also include the eight papers used in the trial.

The moderator assessed the 191 conflicts between pairs
of reviewers and resolved the majority of these conflicts.
Unresolved conflicts (a total of 56, or 6.0% of all answers)
were discussed by the pair of reviewers, managed over
email in the case of simpler conflicts and verbally for more
complex conflicts. All discussion and decisions were noted
in SLuRp.

The next phase was to conduct a thematic analysis of the
quotations that had been collected for Q2, Q3 and Q4 (see
Table 1) as part of the review process. Thematic analysis ‘is
a method for identifying, analyzing, and reporting patterns
(themes) within data’ [20] and it is particularly appropriate
for more explorative research. Two authors worked together
to create a codebook, which included definitions of each
code and an example quotation. This codebook was de-
veloped inductively (see [30]), working from the data to
establish thematic codes, rather than coming up with a pre-
determined list of themes that were then applied to the data.

Once the codebook was established (see Tables 8, 9 and
10), three authors were assigned on SLuRp to each paper.
We assigned three authors, rather than two, because the
thematic analysis involved a more complex subjective, inter-
pretive judgement than the yes/no judgement of the review.
Multiple thematic codes could be chosen for a single quota-
tion, where applicable. We also included a box for ‘other’,
which could be used for reviewers to suggest additional
thematic codes. Again, one author acted as independent
moderator of any disagreements, not taking part in the
reviewing.

Similarly to the prior process, we undertook pilots to
ensure that all authors understood the thematic codes.
After the full thematic coding was complete, all conflicts
were moderated, discussed where needed, and decisions
recorded in SLuRp. The agreement levels for the completed
thematic analysis are shown in Table 3. To summarise, there
was a majority of at least partial agreement for all three
questions that were thematically coded: 89.2% for Q2 quota-
tions; 86.0% for Q3 quotations; and 74.4% for Q4 quotations.

Disagreement arose when the quote was slightly am-
biguous or required more interpretation. For example, one
reviewer commented, ‘partially I would agree with X too,
because there is some additional information but it’s not
very clear’, whilst another reviewer commented on their in-
terpretation process: ‘I would say that it’s “effort reduction”
as I interpret the stated “helpfulness” to be less work to look
for where to fix’.

4.4 RQ2- What are the Strengths and Weaknesses of
Existing Human Studies Within the APR Literature?

To address RQ2, we conducted a quality assessment of the
17 papers from the Living Review that included some form
of human study. Human studies were found using the key
search terms, outlined under Section 4.3. The criterion for
inclusion as a human study was that contact with humans
was direct and elicited, what Storey et al. refer to as ‘engag-
ing humans’ [12]. We did not include, for example, analysis
of developer patches or comments about automatically gen-
erated patches that were publicly available on repositories
such as Github. However, we did examine all four of these
studies that appeared in the Living Review, and their key
features and findings are summarised in Table 4.

Of these four studies that did not engage with devel-
opers directly, none are large enough to be considered as
software repository mining studies, but they share similar-
ities with this approach. Such studies cannot be quality as-
sessed using the same criteria as studies that engage directly
with developers to elicit specific data. Developers are not
actively participating in a primary empirical study; rather,
secondary ad hoc data generated by developers is collected
and analysed. Our aim was to establish quality criteria for
empirical studies that directly engaged humans, and that
could be broadly applied to a wide range of user studies;
therefore we excluded these four studies from our main
analysis. In Section 6, we consider the current paucity of
mining software repository studies in APR when compared
with Storey et al.’s review of software engineering more
generally.

We wanted to establish how well direct human studies
had been carried out to understand the current state of APR

Page 5 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

TABLE 3
Thematic coding agreement, by review question (see Table 1)

Agreement H Thematic codes for Q2 H Thematic codes for Q3 H Thematic codes for Q4
Perfect agreement 18.6% 12.5% 8.5%
All 3 reviewers agree on at least one code 41.1% 26.6% 17.0%
2 reviewers agree on at least one code 29.5% 46.9% 48.9%
No agreement 10.9% 14.1% 25.5%
TABLE 4

APR papers that study developers indirectly

Paper Nature of study [31] Findings

[32] Bug reports containing automatically generated | Bug reports including automatically generated
patches submitted to open source software de- | patches were addressed in 66% of cases (over a
velopers two week period)

[33] Automatically generated patches submitted as | 5 out of 12 patches were accepted
GitHub Pull Requests (PRs)

[34] Automatically generated patches submitted as | 89% of automatically generated PRs were ac-
PRs cepted

[4] Acceptance of Getafix fix suggestions at Face- | 42% of Getafix fix suggestions were accepted
book

research with developers. We used existing work on quality
assessment within SE to consider ways of assessing the APR
human studies, specifically two lists of quality criteria that
had been developed for use within empirical SE [31] [35].
Table 5 summarises and compares these two lists of criteria
by theme.

We used the comparison of these two existing quality
criteria to identify six core categories for quality assessment
criteria: aims, research design, recruitment, data collection,
analysis and findings, and limitations. These were designed
to be applicable to all kinds of empirical studies, both
quantitative and qualitative. For each of our categories, we
developed three separate tick-box criteria, shown in the
Table 6. Following Dybéa and Dingseyr [35], we chose to use
‘yes’/no’ answers. Table ?? demonstrates how our quality
assessment criteria map onto the categories we identified
in [31] and [35], including why we chose not to use some
of these categories. We excluded control group as a quality
criterion, because control groups are only appropriate for
experimental design not for all empirical studies, and we
aimed to develop a list of quality assessment criteria appro-
priate for all human studies.

Two authors assessed each paper and then discussed
their answers. Agreement was often simple, as in the case
of one reviewer having missed something. Overall, inter-
rater agreement was 78.4%. The Cohen Kappa coefficient
was 0.569, indicating ‘moderate agreement’ [36] and a level
of agreement beyond chance. The percentage agreement for
each of the quality criteria are provided in the appendix.

Agreement between the authors was generally very
strong, except for ‘Aims’ and ‘Data Collection-What'. Dis-
agreement here arose when aims and data collection were
reported fairly implicitly, indicating the degree to which
core elements of a human study are not necessarily being
clearly and explicitly reported.

Having agreed independently in 78.4% of cases, discus-
sion led to quick agreement in a further 20.0% of cases,

leaving just 1.6% of cases where the opinion of a third author
was needed. Kitchenham et al. found discussion a highly
important part of quality review processes [37], and this was
reaffirmed by our experiences.

5 FINDINGS

5.1 RQ1- To What Extent, and in What Ways, Does the
APR Literature Consider Human Factors?

Table 7 summarises the results of the review questions over
the 243 APR papers. These results indicate three core find-
ings. Firstly, the APR papers make some significant claims
about developers without having conducted a human
study. Of the 81.1% of papers that introduced a new tool
or technique, 67.0% mention a problem that developers cur-
rently face as a motivation for their work and 36.0% specify
that their APR tool/technique will be helpful to developers.
These statements are made without any interaction with
software developers. The evidence base for these claims is
discussed in Section 6.

Secondly, there remain many papers that do not con-
sider the developer at all and are purely technical in
their outlook. Of the papers that introduced a new tool
or technique, 33.0% did not state as motivation a problem
currently faced by developers and 64.0% do not specify that
their tool or technique will be helpful to developers. These
papers are grounded in technical motivations or challenges
(such as improving on the shortcomings of other tools or
techniques) and the authors’ technical achievements and
contribution.

Finally, keeping humans ‘out of the loop” would seem
to be a key goal of APR, with only 21.8% of papers that
introduced a new tool or technique stating that the tool
would introduce a new task or activity for developers, such
as verifying and choosing patches or writing a specification.
Stressing the lack of required human input was more com-
mon.

Page 6 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

TABLE 5

Existing quality criteria

Category

Summarised criteria from [31]

Summarised criteria from [35]

Mapping onto our own quality
criteria (see Table 6)

1. Empirical study

N/A

Based on research?

N/ A- Prerequisite

2. Research context

N/A

Description of research context?

Aims

3. Research design

Description of experiment design?

Research design appropriate to re-
search aims?

Research design

4. Recruitment N/A Recruitment strategy appropriate || Recruitment

to research aims?
5. Control group N/A Was there a control group? N/A- Not universal
6. Research units Description of sam- || N/A N/A- Not universal

ple/experimental units?

7. Data collection

Description of data collection pro-
cedures and measures?

Data addresses research issue?

Data collection

8. Data analysis

Definition of data analysis proce-
dures?

Rigorous data analysis?

Analysis and findings

9. Reflexivity Discussion of experimenter bias? Consideration of researcher- || Limitations
participant relationship?
10. Limitations Discussion of study limitations? N/A Limitations

11. Findings

Clear statement of findings?

Clear statement of findings?

Analysis and findings

12. Replicability

Evidence that the experiment can
be used by others?

N/A

Data collection

13. Research signifi- || N/A Study of value for research or || Too subjective
cance practice?
TABLE 6
APR human studies quality criteria
Shorthand H Full criteria
Aims Aim(s) of human study clearly stated
Aims-RQs Research question(s) and/or hypotheses specifically related to the human study
Aims-Motivation Clear motivation for the human study
Research Design Research design clearly described
Research Design-Aims Research design well suited to the aims of the study
Research Design-Motivation Utilised methods clearly motivated
Recruitment-Who Who the participants are and where they were recruited from
Recruitment-How How participants were recruited
Recruitment-Motivation Recruitment choices and /or sampling strategy clearly motivated
Data Collection-How How data was collected is clearly explained
Data Collection-What What kind of data was collected is clearly explained
Data Collection- Replicability Public availability of data collection tools and/or data
Analysis and Findings-How How the data was analysed is clearly explained
Analysis and Findings-Motivation || The analytical procedures used are clearly motivated
Analysis and Findings-Findings Findings are clearly described and explained
Limitations-Validity Consideration of validity
Limitations-Generalizability Consideration of generalizability
Limitations-Reliability Consideration of reliability and trustworthiness
TABLE 7
Review question results
Question H Percent of papers marked ‘yes’

1-Does the paper report on the development of a new APR tool/technique?

2-Does the paper identify as motivation a problem that developers currently face?

3-Does the paper state that their tool will be helpful to developers (e.g. reduced effort)?

4-Does the paper state that their tool/technique changes developers activities (e.g. introduces new tasks)?

81.1
54.3
29.2
17.7

We considered the quotations collected in more detail

using thematic analysis. Tables 8, 9 and 10 show the thematic

Page 7 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%

30.0%
20.0%
10.0%
0.0% - —

Q & & < & . =3
K & P F S
S @ & o < > Q o & L 3
N N Gy © > S & « & 5
Q > 85 oM & & Q N &
& < & S S & <2 g R
< . o & & &£ SRS
> & & Q3 o & & N
« o & 0 S & &
N S SN
CO & &
N & & <SS
SN <
CRT= current repair 6(’0 <
h S &
technique N By

Fig. 2. Thematic code percentages for Q2 quotations - Does the paper
identify as motivation a problem that developers currently face?

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%

Difficulty Effort Usability
reduction reduction

0.0%
User
understanding

Efficiency

Fig. 3. Thematic code percentages for Q3 quotations - Does the paper
state that their tool will be helpful to developers (e.g. reduced effort)?

codes, their definitions, and an indicative quotation from
the Living Review papers. Figures 2, 3 and 4 show the
percentage of quotes that were coded with each of the
thematic codes (quotations could be coded with multiple
thematic codes, where appropriate).

For Q2 (Does the paper identify as motivation a prob-
lem that developers currently face?), the main motivation
identified in the papers was that fixing faults takes a lot
of developer time and effort, featuring as a motivation
for over 60% of the quotations collected for Q2. The next
most prevalent theme was ‘difficulty’, that developers find
program repair difficult. This applied to over 30% of Q2
quotations.

For Q3 (Does the paper state that their tool will be
helpful to developers (e.g. reduced effort)?), the key finding
was that reduction of developer effort was the main bene-
fit promised to developers. Perhaps surprisingly, the theme
‘usability” was the least common, with few papers claiming
that they had developed a tool that would be usable by
developers. As none of the papers in this part of our review
included a human study, none of these assertions are based
on having trialled or evaluated the tool or technique with
developers.

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%

20.0% I I
10.0%
> o o

Added Additional Additional Additional Additional Additional Flexibility
value tasks tasks tasks tasks tasks
required: required: required: required: required:
guided manual spec testing verification

application application

Fig. 4. Thematic code percentages for Q4 quotations - Does the paper
state that their tool/technique changes developers activities (e.g. intro-
duces new tasks)?

For Q4 (Does the paper state that their toolltechnique
changes developers’ activities (e.g. introduces new tasks)?),
the most common additional task required was that de-
velopers had to provide some form of specification to the
APR tool. Whilst most of the codes are a type of additional
task, the codes ‘added value” and ‘flexibility” refer to how
this additional work was positioned in the papers. ‘Added
value’ refers to when the paper stressed that developers
were given information to assist them with the new task
and ‘flexibility” refers to when the paper indicated that the
additional tasks gave developers choice or options over the
process. Flexibility was the more prevalent of these themes,
representing the main way in which the introduction of new
tasks was positioned, and perhaps justified, emphasising
developer choice and agency.

Another key finding for Q4 is that, whilst manual
debugging was presented as difficult (Q2 quotations), the
new developer tasks resulting from APR tools/techniques
were presented as straightforward or easy; for example,
‘the programmer is required to define a catalog of hotspots,
syntactic constructs considered to be error-prone. Instead of
manually searching for hotspots, programmers just define a
catalog of syntactic constructs’ [38] (our italics). It is unclear
to what extent such tasks are indeed easy.

To summarise, in answer to ‘RQ1- To what extent, and in
what ways, does the APR literature consider human factor?”,
we find that around two thirds of APR papers make some
significant claims about developers without having con-
ducted a human study, while around a third of papers are
purely technical in outlook not considering human factors
at all. A key stated motivation for APR research was that
developers spend much time and effort fixing faults, while a
main stated benefit of the research was to reduce developer
effort. Additional tasks required as a result of APR, such
as providing specifications, were generally positioned as
straightforward.

5.2 RQ2- What are the strengths and weaknesses of
existing human studies within the APR literature?

We found 17 human studies in the Living Review, including
one PhD thesis [39]. Date of publication ranged from 2006 to

Page 8 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

TABLE 8
Thematic codes for Q2- Does the paper identify as motivation a problem that developers currently face?

Thematic code | Definition

| Indicative quotation

Difficulty

Developers find program repair hard

Manually debugging a defective program is no-
toriously difficult

Fault localisation

Localising the fault is a challenge for developers

The programmer’s ever recommencing fight
against error involves two tasks: finding faults;
and correcting them

Frustration

Developers find program repair frustrating

Even a non-scalable automatic repair method
can help save a lot of time and avoid much
frustration

Mistakes when coding
nal code

Developers prone to making mistakes in origi-

Programmers make mistakes

Mistakes: when fixing faults
ing faults

Developers prone to making mistakes when fix-

Human developers often introduce new defects
over the course of repairing others

Need for advanced skills
advanced skills

Program repair requires the developer to have

Unfortunately, correctly fixing distributed tim-
ing bugs is challenging for developers, as it
involves global reasoning beyond one thread
or one node, and often requires non-traditional
synchronization

Shortcomings of a current repair

technique: too many options many options to sift through

Current technique provides developers with too

Even with automated bug localization, the pro-
grammer must still assess these locations to
choose where and how to fix the program

Shortcomings of a current repair

technique: understandability struggle to understand

Current technique yields output that developers

This kind of correction is not readable and can-
not be easily understood and verified by the
design engineer

Tedium Developers find program repair boring Even if the bug’s cause is known, detecting a
bug in such programs and generating a bug fix
patch manually is a tedious task

Time/effort Program repair takes a lot of developer | Localizing and fixing bugs is known to be an

time/effort

effort-prone and time-consuming task for soft-
ware developers

Time pressures
surised timeframes

Program repair has to be conducted within pres-

Modern software applications must satisfy strict
release requirements that impose short bug fix-
ing and maintenance cycles, putting significant
pressure on developers

2019, with only three studies published between 2013 and
six studies published in 2018. This does suggest that the
number of human studies is increasing as the field grows,
though only in proportion to the growth of the field (as 2018
has the largest number of papers in the Living Review, see
Figure 1).

Table 11 highlights some key details of the human stud-
ies we found in the Living Review: the type of study, the
number of participants and, where it was stated, who these
participants were. UGs refers to undergraduate students;
PGs to postgraduates; and AMTs to Amazon Mechanical
Turk workers. Table 11 shows that the most commonly used
research methods were (quasi)experimental and survey-
based. The number of participants, however, varied greatly,
ranging from just one to several hundred. The implications
of the common types of study and the kinds of participants
recruited are discussed in Section 6.

APR human studies are highly tool specific. Fourteen
of the seventeen papers introduce a new tool or technique
that the authors developed and then conduct a human study
to test out this tool/technique. The exceptions were [39],
[43] and [53]: these all presented participants with patches
generated from other tools or taken from benchmark suites.
For example, Fry et al. consider how maintainable partic-
ipants considered automatically generated patches taken
from a benchmark suite, while Tao et al. study developers’
reactions to high- and low-quality patches. The implications
of this are also considered in Section 6.

5.2.1 Quality assessment results

We evaluated each of the 17 human studies according to
the 18 quality criteria shown in Table 6, meaning that each
human study was given a score out of 18. The highest score
achieved by a human study paper was 17 [53], while the
lowest score was 2. The mean score was 8.3 and the median
score was 9, demonstrating the fairly low scores achieved
by individual papers.

The quality criteria also helped to highlight the strengths
and weaknesses of human studies in the APR field, sum-
marised in Figure 5. This figure highlights some major
weaknesses in the current APR human studies. Specifically,
APR human studies are not currently well motivated and
justified. Only one paper explained why the method they
used had been adopted and was appropriate: Cambronero
et al. explained that their experiment had been chosen to
‘model a scenario, inherent in the use of generate-and-
validate automatic patch generation, in which the developer
is given patches that validate but may or may not be correct’
[41]. The remaining studies gave no justification for their
choice of method and why it might be well suited to their
research aims and questions: in such cases, the method was
just announced without any motivation. Similarly, analytical
procedures taken - such as the choice of particular statistical
tests - were rarely justified. Few papers explained why
they had recruited the participants they had, or what their
sampling strategy was and why this was appropriate. All
the papers seemed to use some form of convenience or

Page 9 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

TABLE 9
Thematic codes for Q3- Does the paper state that their tool will be helpful to developers (e.g. reduced effort)?

Thematic code Definition

| Indicative quotation

Difficulty reduction
task

Proposed tool/technique removes a challenging

Beanbag program is much easier than manually
implementing the fixing procedure

Efficiency
ficient

Proposed tool/technique makes things more ef-

Wolverine, by virtue of this seamless integra-
tion of debugging and repair, allows advanced
debug-repair strategies [...] facilitating signifi-
cant speed ups during repair

Time/ effort reduction
time/effort

Proposed tool/technique will save developer

By automatically building fixes for bugs in real-
world programs, it can help curb the large
amount of resources - in time and effort — that
programmers devote to debugging

Usability

Proposed tool/technique is easy to use

This approach [provides] a clear, predictable
fixing semantics, so that end users can clearly
know how their updates affect other parts of the
model

User understanding
derstanding

Proposed tool/technique contributes to user un-

Programmers viewing the analysis output can
use such patches as guides, starting points, or as
an additional way of understanding what went
wrong where

TABLE 10
Thematic codes for Q4- Does the paper state that their tool/technique changes developers’ activities (e.g. introduces new tasks)?

Thematic code | Definition

| Indicative quotation

Added value
before

The developer is given more information than

The fixes that pass validation are presented to
the user, heuristically ranked according to how
likely they are correct

Additional tasks required: man-
ual application

The developer has to apply the repair

By suggesting that an identifier be inserted or
modified, the choice is still up to the program-
mer

Additional tasks required: test-
ing

The developer has to carry out tests

We assume that programmers should decide
the behavior of a merged program and usually
prepare test cases to check if it behaves correctly

Additional tasks required: spec
ification

The developer has to provide some sort of spec-

To fix the bugs in a program with this novel
approach, a user needs only to provide either a
formal specification or a set of unit tests

Additional tasks required: veri-

The developer has to check provided fix and/or

In general, user interaction is necessary to se-

fication choose between possible fixes lect the desired repair from the set of possible
repairs given by the algorithm
Flexibility The developer is given choices/options on the | In practice, the choice of which mutant opera-

process

tors to use would come down to the intuition,
needs, and resources of the programmers and
software engineers applying the strategy

volunteer sample, but the nature of the sample was never
identified or explained. Though a little more common, very
few papers explained why their chosen participants were
the right people to take part in the human study. Based on
this overall absence of thorough explanation and justifica-
tion, the current state of APR human studies seems to be
fairly under-developed.

A lack of maturity in current APR human studies is also
demonstrated by examples where the conclusions offered
by studies were not in line with the data presented. One
study concluded that ‘through a user study, we have shown
that Fix-It can reduce the human effort in code review to
a significant extent” [40]. However, the user study included
only one person, who considered that Fix-It was able to pro-
vide fixes in 43% of cases, which does not necessarily equate
with a reduction in human effort (as it does not take into
account time taken to validate fixes, etc.). Similarly, another
paper, reporting on participants’ answers to the question
‘does FIXML help to understand your mistakes when you

cannot resolve them by yourself?’, includes ‘neutral’ re-
sponses with ‘yes’ responses and as a result over-states how
many participants gained understanding through using the
tool [49]. This also indicates that peer reviewers may not
give due consideration to human studies that represent just
a small part of predominantly technical papers, meaning
that misleading reports of human study findings may be
published.

In answer to ‘RQ2- What are the strengths and weak-
nesses of existing human studies within the APR litera-
ture?’, we find that human studies within APR are currently
characterised by a lack of methodological diversity. Whilst
the human studies generally had well described research
design, data collection and findings, they were often poorly
motivated with little justification of key decisions (such as
choice of methods or type of participants).

Page 10 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

TABLE 11

APR human studies includ

ed in the Living Review

Paper || Experiment? || Survey? || Other? || Number and make-up of participants
Balachandran [40] Elicited developer feedback 1

Cambronero [41] X X 12 (all PGs)

Daniel [42] X X 18 (13 PGs, 3 UGs, 2 industry professionals)
Fry [43] X X 150 (27 UGs, 14 PGs, 116 AMTs)

Gulwani [44] X X 52

Hata [45] X 20 (5 UGs, 14 PGs, 1 Professor)

Kaleeswaran [46] X 10 (2 PGs, 8 industry professionals)

Kalyanpur [47] X 12

Kim [48] X 153 (17 PGs,72 UGs, 164 industry professionals)
Le [39] X X 35

Lee [49] X X 18 (all UGs)

Liu [50] X 7

Mahajan [51] X 240 (all AMTs)

Mabhajan [52] X 37 (all UGs)

Tao [53] X X 95 (44 PGs, 28 industry professionals, 23 AMTs)
Tomida [54] Tool demo followed by discussion 7 (4 PGs, 1 UG, 2 professors)

Yi [55] X X 300 (263 UGs and 37 TAs)

HUMAN STUDIES QUALITY
m Marked as 'yes'

RESEARCH DESIGN: RESEARCH DESIGN CLEARLY DESCRIBED

DATA COLLECTION-WHAT: WHAT KIND OF DATA WAS COLLECTED IS CLEARLY EXPLAINED

ANALYSIS AND FINDINGS-FINDINGS: FINDINGS ARE CLEARLY DESCRIBED AND EXPLAINED

RESEARCH DESIGN-AIMS: RESEARCH DESIGN WELL SUITED TO THE AIMS OF THE STUDY

AIMS: AIM(S) OF HUMAN STUDY CLEARLY STATED

AIMS-RQS: RESEARCH QUESTION(S) AND/OR HYPOTHESES SPECIFICALLY RELATED TO THE HUMAN STUDY
LIMITATIONS-VALIDITY: CONSIDERATION OF VALIDITY

DATA COLLECTION-HOW: HOW DATA WAS COLLECTED IS CLEARLY EXPLAINED

DATA COLLECTION-REPLICABILITY: PUBLIC AVAILABILITY OF DATA COLLECTION TOOLS AND/OR DATA
LIMITATIONS-GENERALIZABILITY: CONSIDERATION OF GENERALIZABILITY

RECRUITMENT-WHO: WHO THE PARTICIPANTS ARE AND WHERE THEY WERE RECRUITED FROM
RECRUITMENT-HOW: HOW PARTICIPANTS WERE RECRUITED

ANALYSIS AND FINDINGS-HOW: HOW THE DATA WAS ANALYSED IS CLEARLY EXPLAINED
AIMS-MOTIVATION: CLEAR MOTIVATION FOR THE HUMAN STUDY

ANALYSIS AND FINDINGS-MOTIVATION: THE ANALYTICAL PROCEDURES USED ARE CLEARLY MOTIVATED
LIMITATIONS-RELIABILITY: CONSIDERATION OF RELIABILITY AND TRUSTWORTHINESS
RECRUITMENT-MOTIVATION: RECRUITMENT CHOICES AND/OR SAMPLING STRATEGY CLEARLY MOTIVATED

RESEARCH DESIGN-MOTIVATION: UTILISED METHODS CLEARLY MOTIVATED

Fig. 5. Human studies strengths and weaknesses

5.3 RQ3- What are the key findings of existing APR
human studies?

We also provide here a summary of the key findings re-
ported in the human studies. The findings can be placed
into three main categories:

o Attitudinal: Participants’ reactions to, and feelings
about, the tool

o Tool performance: How the tool performed in the con-
text of the human study

o Human performance: How participants performed un-
der the task conditions

Table 12 summarises the key findings of these human
studies, split into these key categories and divided into sub-
categories.

ASSESSMENT CRITERIA

m Marked as 'no'

~H-~Hl~
3

M-l

H H B

1

The findings in the ‘human performance’ category
(i.e., how participants performed under experimental con-
ditions) are surprisingly mixed. Two papers found that
having access to the tool or its generated patches did not
improve participants’ ability to successfully complete the
task [47] [41], whilst two papers found that it did [46] [53].
Similarly, two papers reported that having access to the
tool or its generated patches did not improve participants’
ability to complete the task quickly [53] [41], whilst two
papers found that it did [47] [46]. One study found that one
group of participants (teaching assistants) completed the
task quicker with access to the tool and one group (students)
completed it slower [55].

Not all the findings of these human studies were posi-

Page 11 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Transactions on Software Engineering

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

TABLE 12
Key findings of APR human studies

Attitudinal

H No. of human studies

Participants found the tool/patches/repairs useful

Participants expressed some critical feedback about the tool/patches/repairs

Participants rated after-repair version of website better than pre-repair version (readability/aesthetics)
Participants considered the tool able to fix errors

Participants felt that the tool/patches/repairs would save their time

Participants felt that the tool/patches/repairs would lead them to respond quicker to a bug report
Participants rated the tool’s generated patches better than those generated by another tool
Participants rated the tool’s generated patches similarly to human-written ones

Participants considered the task(s) easier when they had access to the tool/patches/repairs

5 [42] [45] [44] [46] [49]
3 [42] [50] [53]

2[51] [52]

1 [40]

1[50]

1[50]

1[48]

1[48]

1 [46]

Tool performance

No. of human studies

The tool was successfully able to fix errors and/or generate patches
Generated patches/repairs were similar to human-written ones

3 [42] [44] [49]
1[42]

Human performance

No. of human studies

Access to tool/patches/repairs decreased the time it took participants to debug/complete task
Access to tool/patches/repairs did not decrease the time it took participants to debug/complete task

3 [46] [47] [55]
3 [41] [53] [55]

Different types of participants made varyingly effective use of repairs/patches 2 [53] [55]
Access to tool/patches/repairs improved participants’ ability to debug/complete task 2 [46] [53]
Access to tool/patches/repairs did not improve participants” ability to debug/complete task 2 [41] [47]
Access to tool/patches/repairs led to participants introducing more faults that those who did not have access 1[42]

Participants were able to understand generated patches with documentation as well as they did human patches || 1 [43]

tive. In contrast to the claims made in Living Review papers
without human studies that APR tools would be helpful
to developers, several of the human studies did not show
that the APR tools were in fact helpful. Cambronero et al.’s
study found little difference between the performance of
two groups of participants in terms of time taken to perform
the tasks and the number of correct patches submitted [41].
Both groups had been asked to repair defects and were
given the location of the defective lines of code, but one
group had access to five automatically generated patches,
of which one was correct. Cambronero et al. concluded
that ‘solely providing subjects with automatically generated
patches may not be sufficient to see an effect in terms of
patch integration productivity [...] Subjects spent most of
their time trying to understand the defect and the way
the provided patches related to the original source code
containing the defect’ [41]. From this, it seems that an
understanding of the original defect may be a prerequisite
for developer patch acceptance, indicating that work needs
to be done into how automatically generated patches are
presented to developers.

Daniel et al.’s study found that more faults were intro-
duced by participants that had access to their tool than
those that did not. In contrast to the caution exhibited by
Cambronero et al.’s participants regarding patch acceptance,
Daniel et al. suggest that these participants might have
‘become overly reliant on the tool. This can be mitigated by
training users to carefully inspect the repairs suggested by
ReAsssert rather than accepting them blindly” [42]. The re-
sults from [41] and [42] present a more complex picture than
the simplistic message of ‘our new tool will help software
developers’ provided by many of the Living Review papers
that do not include a human study. In particular, the con-
trasting findings relating to patch acceptance suggest that

the issue of what influences developers’ patch acceptance
requires further research. Daniel et al.’s suggestion of the
risk of developer complacency also opens up key research
questions around how patch acceptance is best managed
and what tooling might be appropriate to ensure careful
developer validation of patches.

Alongside positive feedback, there was also critical feed-
back provided by participants in some of the human studies.
In Tao et al.’s study, participants said: that the generated
patches may be confusing, misleading or incomplete; that
they may either overcomplicate or oversimplify the prob-
lem; that they may not be helpful for unfamiliar code; that
they may not work if the test suite is not sufficient [53].
The participants in Liu et al.’s study voiced some concern
about the accuracy of the patches generated by the tools [50].
Daniel et al.’s participants expressed the concern that the
tool could make developers more careless (and this seems
to be supported by the fact that participants with access to
the tool introduced more faults) [42]. Again, this complicates
the more simplistic picture provided by the papers reviewed
in the first part of our study. Research is needed to explore
these developer concerns in more depth and identify ways
of mitigating them through tool design.

To summarise, in answer to ‘RQ3- What are the key
findings of existing APR human studies?’, we find some
mixed findings as to the helpfulness of APR for participants
(in terms of aiding participants in their completion of a
given task, for example), as well as evidence of negative
developer feedback.

Page 12 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

6 DISCUSSION
6.1 Fault fixing as ‘Difficult’: Common Knowledge?

We found little empirical evidence presented for fault fixing
being time-consuming and/or difficult. Analysis of the Q2
quotes (Does the paper identify as motivation a problem that
developers currently fix?) demonstrates that the idea of fault
fixing as time-consuming or difficult was often expressed
in general, rather than specific terms. Of the 40 quotations
that were coded with “difficulty’, 15 referred to difficulty in
very generic terms. The same applies for 26 out of 75 quota-
tions thematically coded with ‘time/effort’. In addition, the
difficulty and time-consuming nature of fault fixing is often
referred to as established fact or as ‘common knowledge’,
and rarely backed-up with an appropriate citation. Only one
of the references used to support the idea of fixing faults
between time-consuming and/or difficult was in fact an
empirical study with developers. For the code “difficulty’,
over half the quotations did not include a reference at all to
support this claim.

The notion that fixing faults is a difficult activity is not
necessarily backed up by the literature. As recently as 2018,
Beller et al. stated: ‘surprisingly we have little knowledge on
how software engineers debug software problems in the real
world, whether they use dedicated debugging tools, and
how knowledgeable they are about debugging’ [56]. Bohme
et al. agree, asserting that ‘how humans actually debug is
still not really well explored” [57]. Such work suggests that
we don’t yet know much about how developers fix faults,
let alone how they feel about it.

6.2 Do Developers Want to be Out of the Loop?

One reason for papers not often stating that their proposed
APR tool or technique would lead to new tasks or activities
for developers is that full automation of repair is a key goal
of many papers. Full automation may be a key technical
goal in terms of proving the efficacy of an APR system,
but there is a need to explore whether developers in fact
want to be out of the loop in this way. Some findings from
existing human studies would suggest that developers do
not necessarily want this, such as the participants in [41]
who took a long time trying to understand both the original
defect and the automatically generated patch. This demands
further research, otherwise we may find APR innovation
that is highly unpopular with developers and at odds with
their workplace values.

The concern expressed by participants in [42] that de-
velopers might become careless also points to the potential
advantages of manual debugging, such as taking care when
writing code to avoid needless errors. Manual debugging
also gives developers the opportunities to learn from their
mistakes, and future work needs to consider the risks of
deskilling posed by APR advances.

The idea of program repair bots is an interesting one in
terms of allowing for interaction between the human devel-
oper and the APR tool. Monperrus, for example, envisages
‘conversational systems for patch explanation: developers
would be able to ask questions about the patch behaviour,
and the program repair bots would answer to those ques-
tions” [58]. Van Tonder and Le Goues also consider the
possibilities of repair bots, the effectiveness of which depend

‘on successful integration with human processes of software
development’ [59]. Whilst this work is currently nascent and
at the conceptual stage, our research findings suggest repair
bots could be a promising direction, particularly, for exam-
ple, for aiding developer understanding of automatically
generated patches.

6.3 Beyond tool-specific studies

APR human studies are currently highly tool-specific, eval-
uating in some way an APR tool or technique introduced
in the rest of the paper. This is significant, because these
human studies reveal little about how developers feel about
APR more generally. This may indicate an assumption that
APR is the future and will be easily embedded into in-
dustry, and it is just a question of the refining of specific
tools or techniques, or even a competition to produce the
best. Whilst developers may comment on the likelihood
of adopting the specific tool under investigation, this does
not necessarily reveal much about their attitudes towards
APR tools and techniques more generally, often instead
reflecting the particular advantages or disadvantages of
the proposed tool. Owing to this specificity, the human
studies may not provide other researchers working within
the APR field with many takeaways for their own work, the
findings instead being more applicable to how the proposed
tool/technique might be further developed.

It is also challenging to compare the results of these
human studies. Whilst one tool-specific study did com-
pare their own proposed tool to GenProg [48], a genetic-
programming based repair tool [60], the rest of the studies
compare their proposed tool to 'no tool’. In addition, the
studies conducted — though largely of similar types, a sur-
vey or a task-based experiment — varied. For experimental
studies, the type of tasks performed by participants differed,
as did the control and experimental conditions. These condi-
tions included, for example, one group of participants with
and one group without the repair technique/tool introduced
in the paper [47] [42] [55] or one task where participants
had use of the tool and one task where they could not use
the tool [46]. The different experimental conditions make
comparison of the tools challenging.

The surveys also had highly varied approaches. Two
survey-based studies by the same authors elicited feedback
on the aesthetics of an original webpage versus the same
webpage repaired by their tool [52] [51]; one involved asking
a developer to feedback on the tool’s capability to find fixes
for different faults [40]; one involved a small number of de-
velopers being asked whether the patches generated would
save time and be beneficial [50]; one asked participants to
review patches [48]; and the remaining study asked partic-
ipants to rank fixes (both incorrect and correct) according
to their understandability and helpfulness [45]. Again, this
variety of empirical measures limits comparability between
human studies when it comes to considering the usefulness
of these APR tools for developers. This makes it difficult
to understand what kind of APR tools might most benefit
developers. In addition, fewer than half the human studies
included some form of replication package, meaning that it
would be difficult to replicate many of the studies with a
different tool/technique to enable comparison.

Page 13 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

6.4 The Limits of Usability

The majority of human studies within APR share a common
emphasis — i.e., the use of human participants to test or
validate a proposed tool or technique. Whether stated or
not, all these studies test the hypothesis that their proposed
tool or technique leads humans to achieve a better outcome
in some way (be that faster, more efficient, or more correct).
Whilst there might be some element of attitudinal study,
such as participants’ opinions on the helpfulness of the tool,
the main focus is very much on the tool or technique’s
usability, with human studies used to validate the tool, and
confirm its efficacy.

However, there are limits to the focus on usability. Singer
et al. highlight the strong focus within tool development
on usability testing suggesting that usability does not in
fact equate with usefulness, and argue that ‘the usability
approach cannot speak to the issue of whether a user will
adopt and use a new tool in the workplace because that
is not the point, or the focus of usability’ [61]. This is
because usability testing normally occurs outside normal
work settings, this being the case in the APR human studies
we evaluate. Experimental studies separate the user from
their normal forms of behaviour as they are isolated from
the other resources they might usually use in their work,
such as in-house tools or the advice of colleagues. Singer
et al. highlight that ‘during usability testing, the user is
essentially forced to use the software. In consequence, it is
impossible to collect data on whether the user would use
the software if he [sic] were given a choice between his
[sic] existing work practices and the new software’ [61]. This
highlights the need to ground new tool design in the study
of both existing practices and the use of tools in realistic
settings.

6.5 Participation of Professional Developers

Professional developers were under-represented as partici-
pants in the APR human studies. Of the seventeen studies,
11 involved a majority of either undergraduate or postgrad-
uate students [42] [44] [55] [45] [49] [52] [41] [54], or Amazon
Mechanical Turk workers [51], or both [43] [53] (see Table
11).

The use of students in software engineering research has
been recently defended [62], but it remains a contested area
[63]. As discussed earlier, we found that very few papers
provided a justification for their recruitment choices, i.e.,
why students might be appropriate participants. Given the
lack of rationale provided, it is therefore hard to judge
whether students were suitable research participants for
the APR human studies. However, we would argue that
the under-representation of professional developers in APR
human studies is problematic for a field that is highly moti-
vated, as shown in the first part of our study, by problems
faced by developers.

6.6 Paucity of Mining Software Repository Studies

Storey et al. [12] include mining software repository studies
in a category they term ‘data strategies’, defined as ‘em-
pirical studies that rely primarily on archival, generated
or simulated data’, and find that this strategy is the most

commonly used in their sample of papers. By contrast, we
find only a small number of papers in our study of APR
publications that engage with data from software reposito-
ries. This probably reflects the nascent stage of APR.

Should APR aim to mirror other fields in software en-
gineering and increase its number of software repository
mining studies, such as submitting patches and collecting
acceptance rates and feedback? Certainly, such studies are
highly scalable with the potential to yield large quantities
of data, as well as often being straightforward to replicate.
They may also offer a high degree of realism. However,
these studies also have their limitations. As Weimer com-
ments about his own study [32], ‘this experiment only shows
that patches work, it does not show why” and that “probing
studies, presumably involving human subjects, remain as
future work’. Whilst we welcome the insight that might be
provided from larger studies gathering developer feedback
more indirectly, we argue this should complement, rather
than replace, more in-depth empirical studies with develop-
ers. Storey et al. also caution against over-reliance on data
mining studies, specifying that the data collected is ‘inad-
equate for understanding previous human behaviour and
can be misleading in terms of predicting future developer
behaviours’ [12].

6.7 Barriers to conducting human studies

It is not clear why the quality of human studies within APR
is not higher. It may be that APR researchers tend to be tech-
nical experts who lack the skills and experience to perform
high quality human studies (as also speculated by Storey et
al [12]). Or it may be that APR researchers struggle with the
barriers to user evaluation in SE that Buse et al. report, such
as difficulty recruiting participants and the time needed
to design and carry out human studies [14]. However, it
should be noted that these barriers are not necessarily any
different in software engineering than in other disciplines
where user studies are much more readily carried out, such
as psychology. Buse et al. also suggest that peer reviewers
tend to look for some form of user evaluation, which may
have the unintended side effect of small user studies being
added to predominantly technical papers. This suggests that
applying guidelines to peer review of user studies would be
helpful and such guidelines exist [64]. However, future work
is needed to establish the reasons underpinning the lack of
quality in human APR studies that we report.

7 RECOMMENDATIONS: RQ4- WHAT FUTURE RE-
SEARCH DIRECTIONS ARE NEEDED TO PROGRESS
THE STUDY OF HUMAN FACTORS WITHIN APR?

In response to our analysis of the APR literature and to
answer RQ4, we make a series of recommendations for
improving the study of human factors within APR. These
recommendations are split into three key areas: methods;
reporting of human studies; and the scope of human factor
research. Both ‘methods” and ‘reporting’ largely respond to
the weaknesses of APR human studies that we uncovered
through our quality assessment. In the ‘scope’ recommen-
dation, we consider the fact that the APR human studies we
considered were mainly tool specific and suggest that APR

Page 14 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

human studies could be broadened in scope to include more
general studies as well as tool evaluations.

It should be noted here that we are not recommending
that all APR research include a human study, but rather
that more human studies be conducted in APR and that
attention is given to their quality. Particularly, we would
encourage studies that give greater attention to what the
developer needs and wants from APR, as well as well-
conducted evaluation studies using professional developers
with varying levels of experience of APR technology (from
none to expert). Kirbas et al.’s previous work on the adop-
tion of APR at Bloomberg, London [65], reports scepticism
and suspicion of APR. Only through exposing developers
to the technology and its benefits did developers begin to
view APR as a useful and positive influence in their roles.
Work on fine-tuning and improving the human experience
of APR tools in Bloomberg is an ongoing challenge and not
static.

Whilst we consider APR to be distinct in its potential im-
pact upon software developers, it is not necessarily the case
that new methods or techniques are required to research
its human factors. As such, the recommendations we offer
here may well be applicable to other software engineering
domains.

7.1 Methods

Human studies should make use of a diversity of methods:
The small number of existing human studies demonstrate a
reliance on very few methods, being either some form of
controlled, task-based experiment or a survey. Both of these
methods have distinct advantages. A controlled experiment,
for example, allows the researcher to consider the impact
of a single variable (in this case, use or non-use of the
proposed APR tool or its generated patches) in a controlled
environment that reduces the potential impact of other
variables. A survey allows the researcher to collect the views
and opinions of more participants than could feasibly take
part in a controlled experiment and enables the collection
of both qualitative and quantitative data. However, surveys
and controlled experiments, like all methods, have their
limitations.

The study of human factors in APR would benefit from
far greater methodological diversity of a relatively radical
nature. For example, we see few industry-academic studies
where the authors have actually spent concerted amounts
of time in the organisation they’ve collaborated with. Seminal
and ground-breaking work on bug detection and prediction
by Ostrand, Weyuker and Bell in the past [66] has shown the
value of joint understanding, knowledge and co-operation
between industry and academia. Both Ostrand and Weyuker
worked in academia and industry during periods of their
research. APR requires understanding developer processes,
nuances and/or tacit knowledge that cannot be gained
through on-site research meetings only. Whilst valuable
approaches, some of the most commonly-used methods in
APR research currently (e.g., surveys or experiments) may
not map onto the use of planned APR tools or techniques
in natural and realistic settings. Ethnographic studies offer
one possible approach for studying how a tool or technique
might be used in ‘messier’, but more realistic, environments;

see [67] for an overview of using ethnography in software
engineering research.

7.2 Reporting of Human Studies

Human studies must be comprehensively reported: One
perhaps unintended consequence of the increased focus on
human factors in software engineering is minimal human
studies being tacked onto the ends of predominantly techni-
cal papers. In the majority of cases, these very small studies
were poorly justified, contextualised and designed. There
is no doubt that the technical and human need to be more
fully integrated into software engineering publications, re-
flecting the inherent socio-technical nature of the software
engineering enterprise. However, a scantly described study
taking up a couple of a paragraphs in a full paper does
not strike us as the right approach. As predominantly
technical papers are likely to be reviewed by academics
with predominantly-technical expertise and less expertise in
human studies, poorly-designed human studies that make
up a very small part of the paper may escape the attention
of peer reviewers. We found several examples of human
studies where results were erroneously reported (see 5.3).
However, if such findings were taken at face value they
could negatively impact upon future work. Human studies
should be thorough and they should also be fully reported
in order to allow for replication, where necessary.

The need for clear motivation: The human studies were
most clearly lacking in terms of motivation and provision
of rationale. This included motivation for performing the
human study at all and clearly motivated research methods
and research design, recruitment and sampling rationale,
and data analysis approaches. Justification of key method-
ological decisions and choices should be a cornerstone of all
human studies, and be taken into account in peer review
processes.

7.3 The Scope of Human Factors Research

Human studies should be general as well as tool-specific:
The human studies reported were predominantly tool-
specific; that is, they reported on the results of a study of
a particular tool or technique. This is an important way in
which academic software engineers test and validate the
APR tools or techniques they are developing. However,
there is also a need for some more general studies of APR
to address rather different kinds of research questions. For
example, how do software practitioners’ currently find and
fix faults? Debugging, and its associated processes, is an
under-researched and poorly understood area [68], yet un-
derstanding these processes plays a pivotal role considering
how APR is best introduced to developers.

Other questions include: How do developers feel about
proposed APR tools and techniques? How do they think
APR would change their workflow and the everyday nature
of their working life? What disadvantages do developers
perceive in APR? The work in [65] showed that an unantici-
pated side-effect of APR was greater awareness of opportu-
nities by developers for cleaning and refactoring their code
[69], in essence widening the reach of APR.

All these types of questions would allow for the develop-
ment of increased understanding of software practitioners’

Page 15 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

attitudes towards APR and most importantly, if negative,
how to change those attitudes. Whilst there are notable
exceptions (such as Facebook’s adoption of Getafix), adop-
tion of academia-built tools within industry remains uneven
and slow [70] [71]; and understanding software developers’
attitudes towards APR might help diminish this industry-
academia gap. It is also important to understand the gaps
between academic and industry priorities for the adoption
of APR, as a recent paper on the introduction of APR at
Bloomberg demonstrates [65].

8 THREATS TO VALIDITY

In this Section, we highlight and discuss two key threats
to validity: the selection of papers we reviewed; and the
interpretive judgements involved in reviewing.

Rather than carrying out our own systematic literature
review, we used an existing corpus of APR literature, the
Living Review [9]. The Living Review is a large and compre-
hensive bibliography, and has been used by other research
as a corpus [23] [24] [16]. However, it may not be fully
comprehensive as it is maintained by only one person,
and in addition it may be biased towards more technical
studies at the expense of more developer-focused research.
To mitigate this threat, we carried out a search for ‘automatic
program repair’ AND (‘human factors” OR ‘human study’
OR ‘user study’) on ACM Digital Library, IEEE Xplore and
arXiv. We looked at all the papers that emerged from these
searches and, by using the protocol described in Section
4 to determine whether a paper included a human study,
found one APR human study that was not included in
the Living Review. This human study [72] confirms our
core findings in that it is a minimally-described experiment
(with participants asked to review human-written repairs
and automated repairs), featuring undergraduate students
and Amazon Mechanical Turk workers as its participants.
As a result, we are confident that our quality assessment
of human factors within APR is representative of the APR
literature.

All parts of our review involved human judgement and
interpretation, which poses challenges for replicability. To
address this threat, all reviewing involved at least two
authors. Where the judgement involved was more complex
(as in the case of the thematic analysis), three authors
were allocated to each review. All conflicts were thoroughly
discussed, and discussion was recorded in SLuRp.

It should be noted that our findings are not generalisable
to other areas of software engineering, and future research
would be needed to explore the state of human factors
research in other domains. However, our method (such as
the questions used to answer RQ1 and our quality criteria)
could be widely used within other SE domains.

9 CONCLUSION

This paper has presented the first review of the state of
human factors research in APR. In answer to RQ1 To what
extent, and in what ways, does the APR literature consider human
factors?, we find that developers are very often talked about
but far less frequently talked with. In addition, many of
the claims made about developers are unsubstantiated and

presented as ‘common knowledge’ with little evidence to
back them up. In fact, we know very little about developers’
experiences of debugging [56] [57], let alone their feelings
about this part of their work. Of the papers that introduced
a new tool or technique, there were also just over one third
that were not motivated by a problem currently faced by
developers and were purely technical in outlook.

RQ2 assessed the strengths and weaknesses of existing
APR human studies. We find that human studies within
APR are rare (less than 7% of papers in the Living Re-
view) and of highly mixed quality. In particular, we find
that human studies in APR are not sufficiently and clearly
motivated, with little rationale provided for key decisions
made, such as research design and participant recruitment
strategies. We also find that APR human studies are highly
tool-specific, telling us little about how tools compare to
each other and even less about how developers might feel
about APR more generally. There has also been as of yet little
research with professional developers, many studies recruit-
ing undergraduate students and/or Amazon Mechanical
Turk workers as participants.

The findings of the existing APR human studies (RQ3:
What are the key findings of existing APR human studies?) reveal
a mixed picture in terms of the efficacy of APR tools and
techniques when it comes to their actual use, prompting
questions regarding how automatically generated patches
are best presented to developers. More research is needed to
thoroughly investigate developer concerns related to APR
and consider how to carefully address these concerns. We
also find that APR human studies are highly tool-specific,
telling us little about how tools compare to each other and
even less about how developers might feel about APR more
generally.

In our recommendations (RQ4- What future research direc-
tions are needed to progress the study of human factors within
APR?), we suggest that future APR research should be not
only tool-specific but also broader in focus, considering
developer attitudes towards APR more generally, as well as
exploring how APR tools would fit into developers’ existing
workflows, complementing rather than disrupting existing
practices. We also recommend that future APR research
make use of a diversity of methods, including qualitative
research methods, and that, in publications, human studies
be comprehensively reported and clearly motivated.

There are many thorough and sophisticated human stud-
ies in software engineering (for example, [73] [74]). There is
no need for APR researchers to re-invent the wheel when it
comes to empirical studies, but collaboration with software
engineering researchers more focused on the human-side
or with social scientists is clearly needed. We suggest that
interdisciplinary research that brings together both social
and technical expertise may be an important future step in
APR.

Our key finding that human factors are under-studied
in APR is mirrored in software engineering more generally
[12]; APR is certainly not the exception. Many studies have
maligned the industry-academia gap, where tools devel-
oped in academia are not widely adopted in industry. The
emergence of APR as an important field of research within
software engineering represents a key opportunity to ensure
that future APR research and development is developer-

Page 16 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

centred and that the tools developed in coming years fully
realise their potential to benefit developers.

ACKNOWLEDGMENTS

This work is funded by EPSRC grant number
EP/5005749/2.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

Bl
(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

X. D. Le, “Towards efficient and effective automatic program re-
pair,” in 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2016, pp. 876-879.

L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Transactions on Software Engineering, vol. 45,
no. 1, pp. 34-67, Jan 2019.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE “12. IEEE Press, 2012,
p. 3-13.

J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix:
Learning to fix bugs automatically,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360585

N. Abbas and N. Policek, “’don’t be the same, be better”: an
exploratory study on police mobile technology resistance,” Police
Practice and Research, vol. 22, no. 1, pp. 849-868, 2021. [Online].
Available: https:/ /doi.org/10.1080/15614263.2020.1728271

M. Alohali, F. Carton, and Y. O’Connor, “Investigating the
antecedents of perceived threats and user resistance to health
information technology: a case study of a public hospital,” Journal
of Decision Systems, vol. 29, no. 1, pp. 27-52, 2020. [Online].
Available: https:/ /doi.org/10.1080/12460125.2020.1728988

W. Weimar, “Program repair, patch quality, and human factors,”
May 2021, keynote at 2nd International Workshop on Automated
Program Repair (APR 2021).

B. A. Kitchenham, I. C. Society, S. L. Pfleeger, L. M. Pickard, P. W.
Jones, D. C. Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary
Guidelines for Empirical Research in Software Engineering,” Main,
vol. 28, no. 8, pp. 721-734, 2002.

M. Monperrus, “The living review on automated program repair,”
HAL/archives-ouvertes.fr, Tech. Rep. hal-01956501, 2018.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
Empirical Methods for Software Engineering Research,” in Guide
to Advanced Empirical Software Engineering, ser. Guide to advanced
empirical software engineering. Springer, 2008, pp. 285-311.

H. Robinson, J. Segal, and H. Sharp, “Ethnographically-informed
empirical studies of software practice,” Information and Software
Technology, vol. 49, no. 6, pp. 540 — 551, 2007, qualitative Software
Engineering Research.

M. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou,
“The who, what, how of software engineering research: a socio-
technical framework,” Empirical Software Engineering, vol. 25, pp.
4097-4129, 2020.

M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld,
“Studying the advancement in debugging practice of professional
software developers,” Software Quality Journal, vol. 25, no. 1, pp.
83-110, 2017.

R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers
of user evaluation in software engineering research,” SIGPLAN
Not., vol. 46, no. 10, p. 643-656, Oct. 2011. [Online]. Available:
https://doi.org/10.1145/2076021.2048117

M. Monperrus, “Automatic software repair: A bibliography,”
ACM Comput. Surv., vol. 51, no. 1, Jan. 2018. [Online]. Available:
https://doi.org/10.1145/3105906

K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. E
Bissyandé, “A critical review on the evaluation of automated
program repair systems,” Journal of Systems and Software, vol. 171,
p. 110817, 2021.

S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Mo-
tivation in Software Engineering: A systematic literature review,”
Information and software technology, vol. 50, no. 9, pp. 860-878, 2008.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Soomro, N. Salleh, E. Mendes, J. Grundy, G. Burch, and
A. Nordin, “The effect of software engineers’ personality traits
on team climate and performance: a systematic literature review,”
Information and Software Technology, vol. 73, 01 2016.

P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software
engineering: A definition and systematic literature review,” Journal
of Systems and Software, vol. 107, pp. 15 — 37, 2015.

D. S. Cruzes and T. Dybd, “Research synthesis in software en-
gineering: A tertiary study,” Information and Software Technology,
vol. 53, no. 5, pp. 440 — 455, 2011, special Section on Best Papers
from XP2010.

Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury,
“How to trust auto-generated code patches? A developer
survey and empirical assessment of existing program repair
tools,” CoRR, vol. abs/2108.13064, 2021. [Online]. Available:
https:/ /arxiv.org/abs/2108.13064

G. M. Alarcon, C. Walter, A. M. Gibson, R. F. Gamble, A. Capiola,
S. A. Jessup, and T.]. Ryan, “Would you fix this code for
me? effects of repair source and commenting on trust in
code repair,” Systems, vol. 8, no. 1, 2020. [Online]. Available:
https://www.mdpi.com/2079-8954/8/1/8

T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical
review of java program repair tools: A large-scale experiment
on 2,141 bugs and 23,551 repair attempts,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 302-313. [Online].
Available: https:/ /doi.org/10.1145/3338906.3338911

S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin,
“Automated patch correctness assessment: How far are we?” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 968-980.

K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F.
Bissyandé, “A critical review on the evaluation of automated
program repair systems,” Journal of Systems and Software, vol. 171,
p. 110817, 2021.

X. Huang, H. Zhang, X. Zhou, M. A. Babar, and S. Yang,
“Synthesizing qualitative research in software engineering: A
critical review,” in Proceedings of the 40th International Conference
on Software Engineering, ser. ICSE "18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1207-1218.
[Online]. Available: https://doi.org/10.1145/3180155.3180235
K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: A critical review and guidelines,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE "16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 120-131. [Online]. Available:
https://doi.org/10.1145/2884781.2884833

H. Zhang, X. Huang, X. Zhou, H. Huang, and M. A.
Babar, “Ethnographic research in software engineering: A
critical review and checklist,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 659-670. [Online]. Available:
https://doi.org/10.1145/3338906.3338976

D. Bowes, T. Hall, and S. Beecham, “SLuRp: A tool to
help large complex systematic literature reviews deliver valid
and rigorous results,” in Proceedings of the 2nd International
Workshop on Evidential Assessment of Software Technologies,

ser. EAST ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 33-36. [Online]. Available:
https://doi.org/10.1145/2372233.2372243

D. S. Cruzes and T. Dyba, “Recommended steps for

thematic synthesis in software engineering,” in Proceedings
of the 2011 International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’11. USA: IEEE
Computer Society, 2011, p. 275-284. [Online]. Available:
https://doi.org/10.1109/ESEM.2011.36

B. Kitchenham, D. I. K. Sjeberg, T. Dyba, O. P. Brereton, D. Budgen,
M. Host, and P. Runeson, “Trends in the quality of human-
centric software engineering experiments—a quasi-experiment,”
IEEE Transactions on Software Engineering, vol. 39, no. 7, pp. 1002-
1017, 2013.

W. Weimer, “Patches as better bug reports,” in Proceedings of
the 5th International Conference on Generative Programming and

Page 17 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

[48]

(49]

[50]

[51]

[52]

Component Engineering, ser. GPCE ‘06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 181-190. [Online].
Available: https:/ /doi.org/10.1145/1173706.1173734

M. Monperrus, S. Urli, T. Durieux, M. Martinez, B. Baudry, and
L. Seinturier, “Human-competitive patches in automatic program
repair with repairnator,” 2018.

D. Marcilio, C. A. Furia, R. Bonifdcio, and G. Pinto, “Automatically
generating fix suggestions in response to static code analysis
warnings,” in 2019 19th International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2019, pp. 34-44.

T. Dybd and T. Dingseyr, “Empirical studies of agile software
development: A systematic review,” Information and Software Tech-
nology, vol. 50, no. 9, pp. 833 — 859, 2008.

J. R. Landis and G. G. Koch, “The measurement
of observer agreement for categorical data,” Biometrics,
vol. 33, no. 1, pp. 159-174, 1977. [Online]. Available:

http:/ /www.jstor.org/stable /2529310

B. Kitchenham, D. I. K. Sjeberg, O. P. Brereton, D. Budgen,
T. Dyba, M. Host, D. Pfahl, and P. Runeson, “Can we evaluate the
quality of software engineering experiments?” in Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM "10. New York, NY, USA:
Association for Computing Machinery, 2010. [Online]. Available:
https:/ /doi.org/10.1145/1852786.1852789

C. Kern and]. Esparza, “Automatic error correction of java
programs,” in Formal Methods for Industrial Critical Systems,
S. Kowalewski and M. Roveri, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 67-81.

X. B. D. Le, “Overfitting in Automated Program Repair: Chal-
lenges and Solutions,” Ph.D. dissertation, Singapore Management
University, 2018.

V. Balachandran, “Fix-it: An extensible code auto-fix component in
review bot,” in IEEE 13th International Working Conference on Source
Code Analysis and Manipulation, SCAM 2013, 2013, pp. 167-172.

J. P. Cambronero, J. Shen, J. Cito, E. Glassman, and M. Ri-
nard, “Characterizing developer use of automatically generated
patches,” arXiv preprint arXiv:1907.06535, 2019.

B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert:
Suggesting Repairs for Broken Unit Tests,” in Proceedings of the
24th IEEE/ACM International Conference on Automated Software En-
gineering, 2009, pp. 433-444.

Z. P. Fry, B. Landau, and W. Weimer, “A Human Study of Patch
Maintainability,” in Proceedings of the International Symposium on
Software Testing and Analysis, 2012, pp. 177-187.

S. Gulwani, I. Radi¢ek, and F. Zuleger, “Automated clustering and
program repair for introductory programming assignments,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2018, pp. 465-480.

H. Hata, E. Shihab, and G. Neubig, “Learning to generate cor-
rective patches using neural machine translation,” arXiv preprint
1812.07170, 2018.

S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint:
Automated Synthesis of Repair Hints,” in Proceedings of the Inter-
national Conference on Software Engineering, 2014, pp. 266-276.

A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau, “Repairing
Unsatisfiable Concepts in OWL Ontologies,” in The Semantic Web:
Research and Applications, 2006, vol. 4011, pp. 170-184.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic Patch Generation
Learned From Human-Written Patches,” in Proceedings of ICSE,
2013.

J. Lee, D. Song, S. So, and H. Oh, “Automatic diagnosis and cor-
rection of logical errors for functional programming assignments,”
Proceedings of OOPSLA, 2018.

C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2Fix: Automatically
Generating Bug Fixes From Bug Reports,” in Proceedings of the In-
ternational Conference on Software Testing, Verification and Validation
(ICST), 2013, pp. 282-291.

S. Mahajan, N. Abolhassani, P. McMinn, and W. G. Halfond,
“Automated repair of mobile friendly problems in web pages,”
in Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 140-150.

S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond, “Auto-
mated repair of internationalization presentation failures in web
pages using style similarity clustering and search-based tech-
niques,” in International Conference on Software Testing, Verification
and Validation. 1EEE, 2018, pp. 215-226.

(53]

[54]

[55]

[56]

(57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

(671

[68]

[69]

[70]

Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically Generated
Patches As Debugging Aids: a Human Study,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 64-74.

Y. Tomida, Y. Higo, S. Matsumoto, and S. Kusumoto, “Visualizing
code genealogy: How code is evolutionarily fixed in program
repair?” in Proceedings of the Working Conference on Software Visual-
ization, 2019.

J.Yi, U. Ahmed, A. Karkare, S. Tan, and A. Roychoudhury, “A fea-
sibility study of using automated program repair for introductory
programming assignments,” in Proceedings of ESEC/FSE, 2017.

M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On
the dichotomy of debugging behavior among programmers,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE "18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 572-583. [Online]. Available:
https://doi.org/10.1145/3180155.3180175

M. Bohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe,
and A. Zeller, “Where is the bug and how is it fixed?
an experiment with practitioners,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: Association for
Computing Machinery, 2017, p. 117-128. [Online]. Available:
https:/ /doi.org/10.1145/3106237.3106255

M. Monperrus, “Explainable software bot contributions: Case
study of automated bug fixes,” in Proceedings of the Ist
International Workshop on Bots in Software Engineering, ser.
BotSE 19. IEEE Press, 2019, p. 12-15. [Online]. Available:
https:/ /doi.org/10.1109/BotSE.2019.00010

R. van Tonder and C. Le Goues, “Towards s/engineer/bot: Princi-
ples for program repair bots,” in 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE), 2019, pp. 43-47.
C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions
on Software Engineering, vol. 38, no. 1, pp. 54-72, 2012.

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An exam-
ination of software engineering work practices,” in Proceedings of
the 1997 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON 97. IBM Press, 1997, p. 21.

D. Falessi, N. Juristo, C. Wohlin, B. Turhan,]J. Miinch,
A. Jedlitschka, and M. Oivo, “Empirical software engineering
experts on the use of students and professionals in experiments,”
Empirical Softw. Engg., vol. 23, no. 1, p. 452-489, Feb. 2018.
[Online]. Available: https://doi.org/10.1007 /s10664-017-9523-3
R. Feldt, T. Zimmermann, G. R. Bergersen, D. Falessi, A. Jedl-
itschka, N.]. Juzgado, J. Miinch, M. Oivo, P. Runeson, M. J.
Shepperd, D. I. K. Sjeberg, and B. Turhan, “Four commentaries
on the use of students and professionals in empirical software
engineering experiments,” Empirical Software Engineering, vol. 23,
pp. 3801-3820, 2018.

P. Ralph, S. Baltes, D. Bianculli, Y. Dittrich, M. Felderer,
R. Feldt, A. Filieri, C. A. Furia, D. Graziotin, P. He, R. Hoda,
N. Juristo, B. A. Kitchenham, R. Robbes, D. Méndez,]J. Molleri,
D. Spinellis, M. Staron, K. Stol, D. A. Tamburri, M. Torchiano,
C. Treude, B. Turhan, and S. Vegas, “ACM SIGSOFT empirical
standards,” CoRR, vol. abs/2010.03525, 2020. [Online]. Available:
https:/ /arxiv.org/abs/2010.03525

S. Kirbas, E. Windels, O. McBello, K. Kells, M. Pagano, R. Szalan-
ski, V. Nowack, E. Winter, S. Counsell, D. Bowes, T. Hall, S. Har-
aldsson, and J. Woodward, “On the introduction of automatic
program repair in bloomberg,” IEEE Software, 2021.

T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the
location and number of faults in large software systems,” IEEE
Trans. Software Eng., vol. 31, no. 4, pp. 340-355, 2005. [Online].
Available: https:/ /doi.org/10.1109 /TSE.2005.49

H. Sharp, Y. Dittrich, and C. B. de Souza, “The role of ethnographic
studies in empirical software engineering,” IEEE Transactions on
Software Engineering, vol. 42, no. 08, pp. 786-804, aug 2016.

H. Lieberman, “The debugging scandal and what to do about it
(introduction to the special section),” Commun. ACM, vol. 40, no. 4,
pp. 26-29, 1997.

M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

V. Ivanov, A. Rogers, G. Succi, J. Yi, and V. Zorin, “What
do software engineers care about? gaps between research and
practice,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY,

Page 18 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3152089, IEEE

Transactions on Software Engineering

[71]

[72]

[73]

[74]

USA: Association for Computing Machinery, 2017, p. 890-895.
[Online]. Available: https://doi.org/10.1145/3106237.3117778

L. Briand, “Embracing the engineering side of software engineer-
ing,” IEEE Software, vol. 29, no. 4, pp. 96-96, 2012.

M. Endres, G. Sakkas, B. Cosman, R. Jhala, and W. Weimer, “Infix:
Automatically repairing novice program inputs,” in Proceedings of
the 34th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE "19. IEEE Press, 2019, p. 399-410. [Online].
Available: https:/ /doi.org/10.1109/ ASE.2019.00045

M. Petre, “Uml in practice,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE “13. IEEE Press, 2013,
p. 722-731.

D. van der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun,
M. Petre, M. Levine, J. Towse, and A. Rashid, “Schrédinger’s
security: Opening the box on app developers’ security rationale,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE '20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 149-160. [Online].
Available: https:/ /doi.org/10.1145/3377811.3380394

Emily Winter is a Senior Research Associate
at Lancaster University, specialising in the socio-
technical dimension of Software Engineering. A
sociologist by background (PhD, Lancaster Uni-
versity, 2017), her interests are centered around
the perceptions and attitudes of software devel-
opers about the technologies that they build and
the tools that they use.

Vesna Nowack received the PhD degree
in Computer Architecture from Universitat
Politecnica de Catalunya, Spain, in 2016. She
became a teaching assistant at Technische
Universitat Dresden, Germany in 2017. Since
June 2019, she has been a postdoctoral
researcher at Queen Mary University of
London, UK. Her current research focuses on
automatic program repair, in particular genetic
improvement, generation of fix patterns and
application of repair tools in industry.

David Bowes is a Senior Lecturer in Computer
Science at the Lancaster University. David has
developed significant expertise in analysing de-
fects in software over a period of over ten years
and published widely in the area of defect pre-
diction. He is an expert in software develop-
ment and brings a focus on the production of
successful tools. He has previously developed
tools to collect data, analyse defective code,
and assess the performance of defect prediction
models. David has a deep knowledge of analysis

methods, having built many defect prediction models.

(o0
¥ * "

Steve Counsell is a Professor of Software En-
gineering in the Department of Computer Sci-
ence at Brunel and Head of the Brunel Soft-
ware Engineering Laboratory (BSEL). His PhD
is from the University of London (2002) and he
has published over 190 research papers on top-
ics including data mining, software refactoring,
software evolution and defect analysis. He is a
Fellow of the British Computer Society and was a
software developer in industry prior to academia.
Steve has worked extensively on large research

projects with industry in the past.

Tracy Hall is a professor with Lancaster Uni-
versity. Her research interests include software
engineering, code analysis and defect predic-
tion. Contact her at tracy.hall@lancaster.ac.uk;
https://www.lancaster.ac.uk/scc/about-
us/people/tracy-hall

Saemundur O. Haraldsson is a Lecturer at the
University of Stirling. He has co-organised ev-
ery tutorial on Genetic Improvement at GECCO,
PPSN, and CEC. He has co-authored multiple
publications on the subject, including two that
have received best paper awards the first com-
prehensive survey on Gl which was published in
2017. He has been invited to give talks on the
subject in multiple venues for academical, indus-
trial, and general public audiences worldwide.
His PhD thesis (submitted in May 2017) details

his work on the world’s first live Gl integration in an industrial application.

John R. Woodward received the B.Sc. degree
in theoretical physics, M.Sc. degree in cognitive
science, and Ph.D. degree in computer science,
all from the University of Birmingham, U.K. He is
currently with School of Electronic Engineering
and Computer Science at Queen Mary Univer-
sity of London U.K, where he is the head of
the Operational Research Group. Previously he
was with the European Organization for Nuclear
Research (CERN), Switzerland, where he con-
ducted research into particle physics, the Royal

Air Force as an Environmental Noise Scientist, and Electronic Data
Systems as a Systems Engineer.

Page 19 of 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

