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• Elicitation is used to derive probabilities 
of septic tank faecal organism losses. 

• Expert consensus is strong that high risk 
conditions yield 93 % loss to 
watercourses. 

• Likelihood of faecal organism losses 
drops to 5 % for low-risk conditions. 

• Soil properties are critical in driving 
losses; slope and distance are secondary. 

• Septic tanks with intermediate risk 
conditions are priority for empirical 
research.  
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A B S T R A C T   

Septic tank systems (STS) in rural catchments represent a potential source of microbial pollution to watercourses; 
however, data concerning the risk of faecal indicator organism (FIO) export from STS to surface waters are 
scarce. In the absence of empirical data, elicitation of expert judgements can provide an alternative approach to 
aid understanding of FIO pollution risk from STS. Our study employed a structured elicitation process using the 
Sheffield Elicitation Framework to obtain expert judgements on the proportion of FIOs likely to be delivered from 
STS to watercourses, based on 36 scenarios combining: (i) septic tank effluent movement risk, driven by soil 
hydro-morphological characteristics; (ii) distance of septic tank to watercourse; and (iii) degree of slope. Experts 
used the tertile method to elicit a range of values representing their beliefs of the proportion of FIOs likely to be 
delivered to a watercourse for each scenario. The experts judged that 93 % of FIOs would likely be delivered from 
an STS to a watercourse under the highest risk scenario that combined (i) very high STS effluent movement risk, 
(ii) STS distance to watercourse <10 m, and (iii) a location on a steep slope with gradient >25 %. Under the 
lowest risk scenario, the proportion of FIOs reaching a watercourse would likely reduce to 5 %. Expert confidence 
was high for scenarios that represented extremes of risk, while uncertainty increased for scenarios depicting 
intermediate risk conditions. The behavioural aggregation process employed to obtain a consensus among the 
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experts proved to be useful for highlighting both areas of strong consensus and high uncertainty. The latter 
therefore represent priorities for future empirical research to further improve our understanding of potential 
pollution risk from septic tanks and in turn enable better assessments of potential threats to water quality in rural 
catchments throughout the world where decentralised wastewater systems are common.   

1. Introduction 

Managing faecal pollution of watercourses is complex due to a va-
riety of potential catchment sources that include agricultural manage-
ment, urban wastewater discharges and wildlife contributions (Afolabi 
et al., 2020; Neill et al., 2018; Oliver et al., 2016). Human sources of 
faecal pollution are often associated with sewage overflows; however, 
there are potential losses from other rural sources, including septic tanks 
(Humphrey et al., 2018; Iverson et al., 2020; Richards et al., 2016). 
Catchment characteristics, e.g., population size, land use, topography 
and soil type, will influence the composition and magnitude of faecal 
loading to receiving waters (D’Arcy et al., 2022), and in large mixed 
catchments, streams and rivers can be impacted by a combination of 
multiple faecal sources and a diversity of hydrological pathways deliv-
ering pollutants from land to water. This often makes understanding 
pollution signals in catchments challenging due to their integration of 
multiple upstream influences. 

The relative importance of STS as a contributor of microbial pollu-
tion to watercourses, as measured via faecal indicator organisms (FIOs), 
is relatively unknown. Although much research has investigated diffuse 
FIO pollution from agriculture (e.g., Neill et al., 2020; Oliver et al., 
2010; Porter et al., 2019) and point source inputs from wastewater 
discharges (Igere et al., 2020; Li et al., 2015; Naidoo and Olaniran, 
2013), decentralised wastewater treatment has received limited inves-
tigation as a source of FIOs to water (Beal et al., 2005; Murphy et al., 
2020). This is likely due to several factors, including: a lack of data on 
septic tank locations in catchments (Withers et al., 2012); poor records 
of tank maintenance (Akoumianaki and Ibiyemi, 2022), uncertainties 
regarding tank condition, age, and treatment levels (Richards et al., 
2016). Additionally, sampling from intricate diffuse septic tank effluent 
pathways is complex (Tamang et al., 2022) and generally, there is un-
certainty associated with FIO fate and transfer dynamics in response to a 
suite of varying and interacting environmental variables (Afolabi et al., 
2020; Buckerfield et al., 2019b). The lack of quantitative evidence on 
the contribution of STS to FIO pollution in receiving waters under a 
range of hydrological and environmental scenarios, especially in rural 
areas, presents a challenge for regulators and environmental decision- 
makers who have a responsibility for managing catchment water qual-
ity (Beal et al., 2005; Schwetschenau et al., 2022). 

In contrast to the limited quantitative data on FIO export from STS, 
there is a growing body of evidence that documents the risk posed to 
downstream ecological water quality from nitrogen (N) and phosphorus 
(P) loss from septic tanks (Brewton et al., 2022; Iverson et al., 2018). The 
lack of FIO data in the UK and much of Europe reflects the historical 
focus on nutrient losses, from which FIO losses have been inferred rather 
than directly measured (Gill and Mockler, 2016; Glendell et al., 2022; 
Withers et al., 2014). Spatially targeted management and mitigation 
measures within catchments can help to reduce FIO loading to receiving 
waters and alleviate subsequent downstream impacts at end-point re-
ceptors such as bathing zones and shellfish harvesting waters (Oliver 
et al., 2016). Effective prioritisation of mitigation, however, first re-
quires an understanding of the spatial distribution of FIO sources within 
a catchment, and in rural catchments STS may represent localised hot-
spots of FIO pollution risk to nearby watercourses. 

An improved understanding of which factors influence the transport 
and delivery of FIOs discharged from STS to receiving waters is therefore 
crucial to assist catchment risk assessment. Anecdotally, factors such as 
the angle of slope of soakaway fields, distance to watercourse, and soil 
characteristics can govern the risk of effluent movement in different soil 

types (Gagkas and Lilly, 2019; Glendell et al., 2018). Together these 
factors can influence the transfer of FIOs from STS to receiving waters, 
but quantitative evidence to support this is still lacking (Gill and 
Mockler, 2016). One approach to better understand the relative risks of 
FIOs discharged from STS is through the elicitation of judgements from 
experts in water and environmental management, which would provide 
an opportunity to assess the likelihood of lesser-known risks when 
quantitative evidence is scarce (e.g., Fish et al., 2009; Glendell et al., 
2022; Oliver et al., 2010). 

Expert elicitation involves knowledge acquisition from a group of 
experts about one or more uncertain quantities, which can then inform 
decision-making or can be used as prior information to augment limited 
data in statistical models, for example, in the Bayesian approach to 
statistics (O’Hagan, 2006). In this approach, formal elicitation of prior 
distributions is only used in situations where prior information is 
appreciable and empirical data is limited. Therefore, elicitation of expert 
knowledge is regarded as complementary to, rather than a substitute for, 
primary research (Best et al., 2020). Elicitation of expert knowledge is 
not only a practical aid when data are limited in complex environmental 
systems, but also helps to reveal areas of agreement as well as un-
certainties surrounding the quantity of interest (QoI) for which the 
knowledge is being elicited (Krueger et al., 2012). Despite having ben-
efits, there are concerns over expert-elicited data, such as: accuracy 
relative to typical values derived from experiments (O’Hagan, 2006); 
performance over an ensemble of cases (Kahneman et al., 2021) and 
reproducibility across different expert groups. It is therefore important 
that approaches to expert elicitation follow a structured methodology to 
address these concerns and ensure efficiency (Courtney Jones et al., 
2023). Several structured methods exist for quantifying expert knowl-
edge over an unknown QoI. These include, among others: Delphi (von 
der Gracht, 2012), the Classical Method (Quigley et al., 2018), the 
‘Investigate, Discuss, Estimate, Aggregate’ (IDEA) protocol (Hanea et al., 
2018a); and the Sheffield Elicitation Framework (SHELF) (Gosling, 
2018). All approaches begin with an individual elicitation stage allow-
ing experts to give individual judgements followed by a group consensus 
stage that employs mathematical aggregation (in the case of Delphi and 
the Classical method) or behavioural aggregation (SHELF) or a mix of 
both approaches (IDEA). 

In this study, the SHELF methodology was used to elicit expert 
judgements on the proportion of FIOs likely to be delivered to surface 
waters from STS based on a pre-defined set of 36 scenarios of STS soil 
effluent movement risk, distance to watercourse and slope. The specific 
objectives of the elicitation were to: (i) determine individual judge-
ments, (ii) employ a deliberative approach to derive consensus judge-
ments across a range of experts for the 36 scenarios under investigation 
and (iii) provide an alternative approach to understating FIO pollution 
from STS. 

2. Materials and methods 

SHELF is a package of documents, templates and software designed 
to carry out elicitation of probability distributions over an unknown QoI 
from a group of experts. Detailed steps and processes in the SHELF 
methodology are given in Gosling (2018). Here, we describe how this 
process was implemented. 

2.1. Defining the Quantity of Interest (QoI) 

The unknown QoI was defined as the proportion of FIOs (pFIO) that 
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could be transferred to a surface water body on an annual time step from 
STS depending on STS effluent movement risk, STS distance to water-
course and slope. The pFIO was specified as percentage where values 
close to 0 % represented a low likelihood of delivery and those close to 
100 % represented a high likelihood of delivery. For the purposes of the 
elicitation, it was assumed that all STS were associated with a soakaway. 
Some inappropriate ad-hoc systems may exist, including STS that 
directly discharge to watercourses; however, to constrain uncertainties 
such STS were not considered. Therefore, our focus was on FIOs that 
could be delivered via surface, sub-surface and groundwater pathways. 

STS effluent movement through these three pathways is charac-
terised using the Hydrology of Soil Types (HOST) (Boorman et al., 1995) 
conceptual models (Fig. 1), which were deployed to guide the elicita-
tion. HOST is a UK soil classification scheme devised to predict river 
flows at ungauged catchments, by linking soil morphology (presence of a 
gleyed layer, a slowly permeable layer or peaty topsoil) and hydrology 
(soil infiltration and percolation) to conceptual models of surface/sub- 
surface flow pathways through the soil profile (Gagkas and Lilly, 
2019). To guide this elicitation, experts used HOST classes (Table 1) 
grouped based on their conceptual soil and hydrological pathways and 
translated into STS effluent movement risk, and pathways driving risk 
(Glendell et al., 2018). This classification was informed by previous 
assessment of the role of soils in determining water quality risks (Lilly 
and Baggaley, 2014). 

The distance from STS to watercourse was specified as Euclidean 
distance between the STS discharge point and nearest receiving water. 
Distances (in metres) of <10, 10–50 and > 50 were selected for the 
elicitation scenarios based on a range of STS distances to watercourse 
determined from a national-scale dataset of modelled STS locations and 
associated stream network data (Glendell et al., 2022). Although specific 
evidence of the influence of STS distance to watercourse on FIO delivery 
is scarce, experts were guided by the assumption that for low perme-
ability soils, STS located <50 m to a surface water body will deliver 100 
% of their effluent to the surface water body while for those located 
>200 m, the amount of effluent reaching the water is reduced to 
negligible levels (0 %) (Gill and Mockler, 2016). Slope represented the 
angle of inclined land associated with the STS distance to a receiving 
water. Steeper slopes (25 %) are generally associated with high surface 
water FIO contamination risk because they promote more rapid water 
flow compared to gentle slopes (5 %) (Glendell et al., 2022). These three 

factors, STS effluent movement risk, STS distance to watercourse, and 
slope, were used to generate 36 Scenarios (Table 2) for which experts 
gave a range of values characterising the QoI. 

2.2. SHELF Expert Elicitation Workshop 

The recruitment of an appropriate number of experts (4–8) with 
relevant expertise or knowledge of the QoI is key to the workshop 
element of the SHELF elicitation process (O’Hagan, 2006). Criteria for 
expert selection are primarily expertise in a field of relevance to the 
defined quantity of interest. Potential experts were identified and 

Fig. 1. HOST conceptual models of water movement and respective HOST classes present in Scotland (Gagkas et al., 2021).  

Table 1 
STS effluent movement risk factors based on HOST classes and pathways driving 
risk.  

Risk 
factor 

HOST class groupings Characteristics of HOST 
class groupings 

Pathways 
driving risk 

Very 
high 

HOST4, HOST7, 
HOST8, HOST9, 
HOST10, HOST12, 
HOST26, HOST28, 
HOST29 

Free draining (sandy) soil 
& deep groundwater (GW) 

Leaching to 
GW 

Poorly draining soil or soil 
with peaty topsoil & 
shallow GW or basin peat 

Surface runoff 
& leaching to 
GW 

Soil with peaty topsoil & 
no GW or Upland blanket 
peat 

Surface runoff 

High HOST5, HOST14, 
HOST18, HOST24 
HOST15 
HOST27 

Relatively free draining 
soil & deep GW 

Leaching to 
GW, some 
runoff 

Relatively poor draining 
soil & deep GW 

Surface runoff, 
some leaching 
to GW 

Poor draining soil & no 
GW 

Surface runoff 

Soil with peaty topsoil & 
deep GW 

Surface runoff, 
some leaching 
to GW 

Soil with thin peaty 
topsoil & no GW 

Surface runoff 

Medium HOST6, HOST13, 
HOST17, HOST19, 
HOST22 

Free draining soil & deep 
GW 

Leaching to 
GW 

Relatively free draining 
soil & no GW 

Surface runoff 

Low HOST16 Free draining soil & no 
GW 

Some surface 
runoff  
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recruited based on knowledge of the transfer dynamics of FIOs in the 
environment, experience in STS-related work and broad knowledge of 
the management of catchment-scale diffuse pollution sources of FIOs. 
Invitations were sent by email to eight experts in research/academia and 
environmental regulation. Five experts from research and academia 
were available to participate in the workshop; however, the regulators 
declined the invitation. The expertise of the team spanned the fields of 
environmental microbiology, soil and catchment science and water 
resource management. The experts were furnished with an evidence 
dossier (available in the Supplementary materials), which gave a concise 
summary of existing information in the literature linked to the factors 
that influence FIO transfer from STS and subsequent delivery to water-
courses. The dossier together with the scenarios of STS effluent move-
ment risk, distance to watercourse, and slope were shared two weeks 
prior to the workshop to allow experts enough time to read the docu-
ments and provide additional evidence. To enable experts to understand 
how to make probability judgements, one week before the workshop all 
the experts took a self-paced SHELF e-learning course accessed through 
the SHELF website (https://shelf.sites.sheffield.ac.uk/e-learning-cou 
rse). The elicitation workshop was held in-person over a single day 
(total of 7 h), starting with an information sharing session to discuss any 
issues from the evidence dossier and the e-learning course. 

2.2.1. Individual elicitation 
The tertile method (generates two tertiles-T1 and T2, which divide 

the plausible range of values elicited for the unknown QoI, into three 
intervals each with a 0.33 probability) was used at the individual elic-
itation stage. To eliminate potential bias from over-confidence and 
anchoring, experts began by defining a plausible range (i.e., between 0, 
denoting the lower limit (L), and 100, denoting the upper limit (U)) 
within which a value of pFIO was likely to lie for all scenarios. For each 
scenario, experts individually elicited a median value at which they 
judged it equally likely for pFIO to be below or above. Experts then 
elicited a lower tertile 1 (T1) and an upper tertile 2 (T2) by giving values 
that divided the plausible range into three equiprobable regions mean-
ing that T1 was a value between L and M and T2 was a value between M 
and U. A further rule guiding the elicitation at this stage was that the 
tertiles had to be elicited in such a way that the interval between T1 and 
T2 (t) was less than the interval between L and T1 (l) and between M and 
T2 (u). The values were recorded in real-time on online excel 
spreadsheets. 

2.2.2. Fitting probability distribution curves 
Beta distributions were fitted and plotted in the SHELF R package, 

version 1.9.0, using pre-prepared code in R markdown scripts and 
feedback was generated in real time for the consensus group discussion. 
Beta distributions were used as the best fitting distribution to constrain 

Table 2 
Elicitation scenarios, consensus values and summary statisticsa of the consensus plots and linear aggregation plotsb of expert judgements.  

Elicitation scenarios Consensus values Summary statistics of consensus beta distributions 

Number STS effluent 
movement risk 

STS distance to 
watercourse (m) 

Slope 
(%) 

Tertile 1 Median Tertile 2 x y Mean x/ 
(x + y) 

Variance xy/((x + y) 
^2*(x + y + 1)) 

Credible 
intervals 

P(X < x) 
= 0.33 

P(X < x) 
= 0.5 

P(X < x) 
= 0.66 

5 % 95 
% 

1 

Very High 

<10 
>25 90 93 95 17.7 1.65 0.915 0.004 79.4 98.8 

2 5 to 25 75 82 87 6.24 1.63 0.793 0.019 53.1 96.7 
3 0–5 66* 73* 78* 7.42 2.99 0.713 0.018 47 90.7 
4 

10 to 50 
>25 65 70 75 10.8 4.77 0.694 0.013 49.3 86.5 

5 5 to 25 70 75 80 10.2 3.59 0.740 0.013 53.4 90.6 
6 0–5 57 66 72 4.91 2.75 0.641 0.027 35.1 88.6 
7 

>50 
>25 65 67 72 19 9.07 0.677 0.008 52.7 81.2 

8 5 to 25 46* 56* 65* 2.96 2.39 0.553 0.039 21.7 86.4 
9 0–5 40* 50* 63* 1.91 1.84 0.509 0.053 13.3 88 
10 

High 

<10 
>25 65 78 81 3.54 1.37 0.721 0.034 37.1 96.4 

11 5 to 25 68 75 78 9.91 3.7 0.728 0.014 51.8 89.9 
12 0–5 55 60 64 13.1 8.88 0.596 0.010 42.1 75.9 
13 

10 to 50 
>25 60* 65* 70* 10.9 5.98 0.646 0.013 45 82.2 

14 5 to 25 50* 59 68 3.37 2.41 0.583 0.036 25.5 87.6 
15 0–5 43 54 63 2.6 2.29 0.532 0.042 18.7 86.1 
16 

>50 
>25 40 50 58 2.95 3 0.496 0.036 18.5 80.8 

17 5 to 25 39* 47* 56* 3.16 3.47 0.477 0.033 18.4 77.9 
18 0–5 32* 41* 49* 2.67 3.74 0.417 0.033 13.5 73 
19 

Moderate 

<10 
>25 55 60 64 13.1 8.88 0.596 0.010 42.1 75.9 

20 5 to 25 42* 48* 55* 5.37 5.7 0.485 0.021 25 72.4 
21 0–5 35 40 45 7.2 10.6 0.404 0.013 22.4 59.7 
22 

10 to 50 
>25 36* 43* 52* 3.23 4.07 0.442 0.030 16.8 73.6 

23 5 to 25 33* 40* 46* 4.28 6.32 0.404 0.021 17.7 65.2 
24 0–5 25* 33* 40* 2.51 4.85 0.341 0.027 9.89 63.6 
25 

>50 
>25 25 30 40 2.32 4.66 0.332 0.028 8.86 63.3 

26 5 to 25 22 29 36 2.42 5.49 0.306 0.024 8.34 58.8 
27 0–5 15 21 26 2.2 7.57 0.225 0.016 5.22 46.4 
28 

Low 

<10 
>25 27 33 40 3.4 6.49 0.344 0.021 12.6 59.9 

29 5 to 25 19 26 36 1.54 3.68 0.295 0.033 4.68 63.8 
30 0–5 15 21 28 1.75 5.66 0.236 0.021 4.21 51.4 
31 

10 to 50 
>25 13* 19* 28* 1.23 4.1 0.231 0.028 2.37 55.8 

32 5 to 25 15 20 25 2.52 9.19 0.215 0.013 5.72 43.1 
33 0–5 8 10 12 4.28 36.1 0.106 0.002 3.99 19.5 
34 

>50 
>25 4.5 8 13.5 0.77 5.61 0.121 0.014 0.33 36.9 

35 5 to 25 5 7 9 2.25 26.2 0.079 0.002 1.7 17.4 
36 0–5 3 5 7 1.23 18.4 0.063 0.003 0.55 17  

a x and y are shape parameters specifying the beta distribution and used to calculate the mean and variance. 
b Consensus mean and tertile judgements marked by an asterisk (*) were automatically generated in SHELF, by linear aggregation for Scenarios where experts could 

not reach consensus. 
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the experts’ judgements within the 0–1 range (Gosling, 2018). 

2.2.3. Group consensus 
The experts used the tertile method where they agreed to consensus 

median and tertile values. In cases where the experts could not reach 
consensus, they agreed to use a linear pool automatically generated in 
the SHELF R package representing a weighted average of the individual 
distributions summing to 1 (O’Hagan, 2006). Although desirable, ex-
perts are not expected to reach a consensus that represents all their 
views but might be asked to give the perspective of a Rational Impartial 
Observer (RIO) who has seen their judgements and has been listening to 
their discussions. After all scenarios in each effluent movement risk 
category were judged by the experts, we reviewed all 9 scenarios as a 
series to discuss and confirm the determined probability distributions. 
Therefore, any unusual distributions were discussed, and revisions made 
as needed. 

3. Results 

Five experts participated in the elicitation workshop. The individual 
expert judgements elicited for each of the 36 scenarios are presented in 
the supplementary material. Consensus values determined during the 
group discussion stage together with the 36 scenarios that guided the 
elicitation and summary statistics describing the consensus probability 
density functions provide a detailed overview of the discussion 
(Table 2). Exemplars of individual and consensus probability density 
functions depicting judgements for the highest and lowest proportion of 
FIOs likely to be delivered to a watercourse from an STS are represented 
in Figs. 2 and 3, respectively. High uncertainty in the expert judgements 
for intermediate risk scenarios is represented by less overlap in the in-
dividual probability distribution curves (e.g., Fig. 4). In instances where 
experts could not reach a consensus, they relied on a linear pool (e.g., 
Fig. 5). Fig. 6 shows the distribution curves for all the 36 scenarios. 

3.1. Overview of findings 

The experts judged that scenario 1 with very high STS effluent 
movement risk where STS were located within 10 m of a watercourse on 
a steep slope with gradient >25 %, posed the highest risk of FIO export, 
with 93 % of FIOs judged likely to be transferred from an STS to the 
watercourse. The high confidence in this value is evident from the 
overlap of the individual expert probability distribution curves, the 
narrow range of the consensus curve (Fig. 2) and constrained 90 % 
credible interval (CI) of 79.4–98.8 %. For scenario 36, which repre-
sented low risk conditions where STS effluent movement risk was low, 
STS were located at a distance >50 m from a watercourse on a gentle 
slope of 0–5 %, experts were confident that the FIO proportion likely to 

be transferred to the watercourse was reduced to 5 %. In common with 
scenario 1, there was strong consensus in the range of values provided 
for scenario 36 as evidenced in the high overlap of individual probability 
distribution curves and narrow range of the consensus curve (Fig. 3). 
Expert confidence in the elicited values for these two scenarios is 
attributed to the combination of driving factors representing extreme 
conditions that were likely to increase or decrease the proportion of FIOs 
that would be transferred to a watercourse. 

Uncertainty in individual expert judgements was high in scenarios 
7–24 representing intermediate conditions (Fig. 6). Individual proba-
bility distribution curves for these scenarios had less overlap and the 
resultant consensus curves had a wide CI implying a wide dispersion of 
the value of pFIO from the median. Scenario 9 had the largest CI of 
13.3–88 % and therefore the highest uncertainty (Fig. 4). The experts 
could not reach a consensus for this scenario and therefore agreed to use 
a linear pool that averaged their individual judgements (Fig. 5). The 
linear pool generated tertile values (T1 = 40 %, T2 = 63 %) and a me-
dian of 50 %, giving the proportion of FIOs likely to be delivered to a 
watercourse for this scenario equally likely to be below or above 50 %. 
There were a total of 10 scenarios for which experts opted to use a linear 
pool as an alternative to reaching consensus. Of those 10 scenarios, 60 % 
were within the moderate to high STS effluent movement risk category, 
demonstrating increased uncertainty within these categories. High un-
certainty for these scenarios is evidence that different experts attached 
different levels of importance to the factors included in the elicitation. 

3.2. Factors that were considered more influential than others 

Three experts considered STS effluent movement risk classifications 
under the HOST model to be the most influential factor. Their assess-
ment was grounded in their prior experience with HOST models and the 
perception that soil characteristics played a significant role in deter-
mining the hydrological connectivity of a system, which, in turn, facil-
itated the transfer of FIOs. Two experts deemed the angle of slope to be 
the primary factor influencing the transportation of FIOs. They noted 
that steep slopes encourage overland flow, leading to the delivery of 
FIOs to watercourses. In contrast, gentle slopes facilitate the retention of 
effluent within the landscape, resulting in the natural die-off of FIOs and 
preventing their entry into watercourses. Distance was secondary as 
effluent surface runoff potential or leaching to groundwater was likely to 
be influenced first by soil hydro-morphological properties and slope, 
irrespective of whether a STS was located close to a watercourse or not. 
The high importance of STS effluent movement risk relative to the HOST 
classes is reflected in the shift in the range of values elicited for pFIO in 
relation to low (5–33 %), medium (21–43 %), high (41–78 %) or very 
high (50–93 %) STS effluent movement risk. Slope was considered to 
have a significant influence on pFIO if the STS was located <10 m from a 

Fig. 2. Probability density curves of 5 individual expert judgements (left) and consensus beta distribution (right) of the proportion of FIOs (median 93) likely to be 
delivered to a watercourse under the highest risk Scenario 1 combining very high STS effluent movement risk, septic tank distance to watercourse of <10 m and steep 
slope > 25 %. The red regions in panel b represent the 5th (79.4) and 95th percentiles (98.8). 
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watercourse, compared to being >50 m away. A steep slope of 25 % 
compared to gentle slope of 5 % increased pFIO by an average of 9 % if a 
STS was located >50 m from a watercourse across all four STS effluent 
movement risk classes. However, the same change in gradient (5 % to 
25 %) increased pFIO by approximately 20 % if the STS distance to a 

watercourse was <10 m. Similarly, the influence of distance on pFIO was 
considered significant if a STS was located on a steep slope compared to 
a gentle slope. STS located on a steep slope, <10 m to a watercourse 
would deliver approximately 27 % more FIOs compared to those located 
>50 m away. If a STS was located on a gentle slope, the same change in 
distance (10 to 50 m) resulted in reduction of pFIO delivered by an 
average of 19 %. 

4. Discussion 

Here, we have successfully used the SHELF approach to elicit expert 
judgements on the proportion of FIOs that could be potentially trans-
ferred from STS to receiving waters. Our study, therefore, provides 
useful findings linking different scenarios of STS locations in catchments 
(as governed by effluent movement risk properties of soils, slope and 
proximity to water) and expert judgements of FIO transfer to receiving 
waters. Levels of uncertainty associated with expert judgements in the 
estimated risk of FIO loss from STS to water varied across different 
scenarios, but the information derived from the elicitation procedure 
provides useful data on relative importance of STS site characteristics 
and magnitudes of uncertainty attributed to different scenarios. To 
improve our predictions of FIO risk to water quality within a catchment, 
we need to understand the role of different FIO sources, including 
contributions from STS (Beal et al., 2005; Richards et al., 2016; Tuholske 
et al., 2021). In the absence of empirical data, the expert judgements 
obtained in this study provide both a first estimate for FIO transfer from 
STS to watercourses and a quantification of the uncertainty involved. 

Fig. 3. Individual expert probability density curves (left) and consensus beta distribution curve (right) of the proportion of FIOs (median 5 %) likely to be delivered 
to a watercourse under Scenario 36 combining low STS effluent movement risk, septic tank distance to watercourse of >50 m and gentle slope 0–5 %. The red regions 
on panel b represent the 5th (0.55) and 95th percentiles (17.0). 

Fig. 4. Individual probability density curves with less overlap (left) and wide range consensus beta distribution curve (right) showing high uncertainty in judgements 
given for Scenario 9 combining very high STS effluent movement risk, septic tank distance to watercourse of >50 m and gentle slope 0–5 %. The red regions on panel 
b represent the 5th (13.3) and 95th percentiles (88.0). 

Fig. 5. Linear pool (LP) of individual expert judgements which experts used for 
Scenario 9 where they could not reach a consensus. The LP tertile and median 
values were used to plot the consensus probability density curve for Scenario 9 
in Fig. 4(b). 
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Fig. 6. Individual expert distribution curves (left) vs probability density functions (right) for the 36 elicitation Scenarios. SN denotes Scenario Numbers. The x-axis 
shows the elicited proportions of FIOs on a scale of 0–100. The y-axis shows the likelihood of observing these proportions on a probability distribution function. The 
scale of the y-axis varies from 0 to 0.2 for the individual expert distribution curves and 0 to 0.12 on the consensus probability density functions. See the Supple-
mentary material for the original plots with actual scales of axes. 
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These outputs contribute to an improved understanding of how FIO loss 
from STS may vary in different catchment situations, which is funda-
mentally important for informing accurate risk assessment approaches 
at the landscape scale and to parameterise risk-based models (Fish et al., 
2009; Oliver et al., 2009). 

Our findings highlighted strong consensus in expert judgements 
made for scenarios representing extreme conditions, for example, the 
scenario representing the highest and lowest risks. Uncertainty was high 
for scenarios representing intermediate conditions revealing different 
weighting of the factors that drive FIO transfer from STS to watercourses 
and highlighting important areas for future investigation to ensure tar-
geted interventions to minimise potential pollution. There was a general 
pattern of decline in the median FIO loss with increasing scenario 
number within each of the effluent movement risk categories (Table 2). 
However, closer inspection revealed occasional increases in FIO loss that 
reflects the trade-off in how experts perceived risk associated with dis-
tance to watercourse vs slope. The patterns are consistent across each 
effluent movement risk category, signalling a degree of robustness in 
how experts assigned and reflected on their judgements. 

Expert values and preferences may differ based on expertise and 
previous research experience, but extreme scenarios can be points of 
agreement when several factors are under consideration as interactions 
between factors are probably more obvious and can be imagined with 
relative ease (Ban et al., 2014). Our approach used a combination of 
three factors (effluent movement risk, distance and slope) and the 
extreme scenarios represented areas with combined effect of extreme 
levels of these three factors for which interactions were obvious and 
resulted in experts reaching consensus with relative ease. This demon-
strated that the experts assigned similar levels of importance to the 
factors that guided the elicitation since making predictive judgements is 
a matter of value and preference of those making the judgements 
(O’Hagan, 2006). Further, the judgements made for these scenarios 
were supported by available evidence from the literature that reports 
FIO delivery loads from STS relative to distance to watercourse thresh-
olds, i.e., 100 % delivery if STS are located <50 m to a watercourse and 
significant reduction to negligible levels if STS are situated >200 m from 
a watercourse (Gill and Mockler, 2016). As the factors varied in the 
intermediate scenarios, uncertainty increased demonstrating that ex-
perts attached different levels of importance to the factors and in-
teractions thereof (Donfrancesco et al., 2023). However, these scenarios 
were highly debatable due to limited evidence on the influence of, for 
example, 50 m distance or slope of 5–25 % even if the effluent move-
ment risk was high (Jansen et al., 2020). 

While there is very limited evidence for the specific context of FIO 
delivery from STS to receiving waters, experts will likely be aware of the 
evidence base that supports ideas of FIO transfer from land to water (e. 
g., by different soil types and field slopes), and FIO delivery being 
influenced by distance to streams or buffer strips (Buckerfield et al., 
2019a, 2019b; Gagkas and Lilly, 2019; Glendell et al., 2018; Murphy 
et al., 2015; Neill et al., 2020). The challenge for this elicitation process 
then becomes one of translating that wider expert understanding to the 
STS scenarios devised for this study. To aid this process, a clear defini-
tion of the QoI supported by scientific evidence is important to avoid 
ambiguity and potential misinterpretation of the elicitation results by 
the end users (Gosling, 2018; Verzobio et al., 2021). While other studies 
in conservation biology have involved experts in structuring the iden-
tified QoI to determine what was most manageable (Fitzgerald et al., 
2021), in this study, the experts were presented with pre-defined sce-
narios that they discussed and revised accordingly. This was necessary to 
avoid any ambiguity, which can potentially be high when the structure 
of the QoI is pre-defined (Höfer et al., 2020). This approach was also 
more straightforward as it averted potential conflicting views among the 
experts in structuring the QoI and reduced the duration required for the 
elicitation workshop. In large scale elicitation processes, such an 
approach can potentially increase efficiency as parts of the elicitation 
process can be outsourced to specialised contractors (European Food 

Safety Authority, 2014). 
The discussions preceding the elicitation helped to clarify ambigu-

ities in the QoI, highlighting the importance of close engagement of 
experts prior to and in the initial stages of elicitation (von Haefen et al., 
2023). One such ambiguity clarified before the elicitation procedure was 
that of the FIO delivery timeframe under consideration. The experts 
observed that the timeframe for FIO delivery from STS to receiving 
waters could be on an annual, seasonal or event-driven basis, all of 
which would have different outcomes dependent on prevailing hydro-
logical and environmental conditions. Therefore, the delivery of FIOs 
over an annual timeframe was confirmed for our investigation, estab-
lishing a measurement timeframe meaningful to the experts and ulti-
mately the users of the results of this elicitation process (Quigley and 
Walls, 2021). A further source of uncertainty was in the phrasing used to 
define distance. For instance, >50 m could be interpreted as 51 m or any 
distance thereafter; slope of >25 % could be 26 % through to 100 %. 
Using discrete values rather than a range would likely be less ambiguous 
in structuring the QoI because a discrete value can form a common 
reference point; however, this would present a challenge for future FIO 
model parameterisation using the probability density functions deter-
mined through elicitation for any STS not included in the specified 
distance or slope. 

Eliciting the QoI based on a single factor, for example just slope, 
rather than integrating all three factors would have been conceptually 
easier but would not represent how these factors interact in reality. 
Furthermore, evidence is available for how these factors in isolation 
influence FIO STS effluent movement risk based on factors such as dis-
tance (Tamang et al., 2022), soil properties (Gagkas and Lilly, 2019) and 
slope (Glendell et al., 2022). Thus the 36 scenarios devised in our study 
intended to bring this evidence together to explore expert opinion of 
how these conditions interact to influence FIO delivery. While this was 
desirable for our study, having many scenarios can potentially increase 
elicitation burden, resulting in declining quality of information provided 
by the experts due to a longer elicitation process and participant fatigue 
(Fraser et al., 2023). Similar studies utilising the IDEA (Investigate, 
Discuss, Estimate, Aggregate) protocol, recommend asking no >15–20 
questions in a single day of face-to-face elicitation to avoid expert fa-
tigue (Hemming et al., 2020; Speirs-Bridge et al., 2010), although this 
will depend on the complexity of the questions, available time, and 
motivations of the experts. In our study, experts indicated that the 
number of scenarios was daunting at first but became easy to work 
through as the workshop progressed. Structuring the elicitation sce-
narios into four categories helped to break the 36 scenarios into a 
manageable workload, and reduce expert fatigue (Falconer et al., 2021). 
Another strategy the experts used, which made the process less daunt-
ing, was to begin by making judgements for the two extreme scenarios 1 
and 36, followed by a consensus discussion of these two scenarios. This 
helped the experts to familiarise themselves with the process, build 
confidence to work through the rest of the scenarios and provided an 
important calibration step to help deal with the issue of relativity across 
scenarios. During post elicitation workshop discussion, the experts 
suggested that a longer workshop, for example, focussed on individual 
elicitations in one day and the consensus discussions on another day 
would have made the process less tiring; however, approaches are often 
constrained by competing demands on availability, time and resources 
(Fitzgerald et al., 2021). 

The experts adopted different methods to arrive at a consensus and 
this varied between scenarios. For some scenarios, experts who specified 
widely varying distributions shifted their judgements to reflect the be-
liefs of the group. For other scenarios, the experts selected a single 
expert distribution they found representative of their joint beliefs and 
adjusted their judgements accordingly. Where experts could not reach a 
consensus, they used a linear pool which was a weighted average of their 
individual distributions generated in the SHELF R package. To avoid 
distraction, which can potentially arise from some experts preferring to 
use the linear pool as a fall-back for a seemingly objective way of 
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combining their judgements (Gosling, 2018), the linear pool was not 
included in the visualization of the density curves shown at the begin-
ning of the consensus discussion. Rather, it was shown to experts after 
they opted to use it. Where experts felt that the linear pool did not 
represent their beliefs, they used an average of the values generated by 
the linear pool and a single expert distribution they found representative 
of their beliefs. This consensus building process not only reveals the 
level of flexibility within SHELF, but most importantly allows for iter-
ative discussion of the QoI considering relevant evidence and has been 
found to be effective at capturing group opinion (Kahneman et al., 
2021). The flexibility of the experts during this consensus building stage 
speaks to the group dynamics during elicitation. The results of an elic-
itation process are prone to biases such as overconfidence and group-
think, i.e., when a group reaches consensus without critical reasoning, if 
one expert dominates the discussion. Structured elicitation processes 
managed by an experienced facilitator who understands the dynamics of 
group discussions and decision-making based on group consensus, can 
help to ensure that the knowledge of all experts is recognised and 
therefore incorporated in the outcome of the elicitation (O’Hagan, 2006; 
Randle et al., 2019; Speirs-Bridge et al., 2010). Further, providing initial 
judgements privately and independently helps experts to retain inde-
pendence in their judgements, thus mitigating against groupthink and 
deference to dominating personalities (Hanea et al., 2022). 

Some limitations inherent in the analysis of expert judgements 
include: determining how representative the judgements are of all the 
experts and typical values likely to be obtained through laboratory 
analysis (O’Hagan, 2006); and reproducibility of the judgements over an 
ensemble of cases (Kahneman et al., 2021) and with a different group of 
experts. Unlike the IDEA protocol which has two rounds of individual 
elicitation before and after discussion (Hemming et al., 2018), the 
SHELF approach asks experts to create a consensus distribution after 
discussion and feedback, which corresponds to the group only, making it 
difficult to assess the impact of group discussions on individual distri-
butions. Our study therefore relied on feedback from the experts on the 
level of engagement during discussions. All experts agreed that everyone 
was involved in the workshop and listened to others’ opinions, and that 
no one dominated the discussion. One expert in the group was 
outspoken but posed reflective questions that encouraged discussion 
among the group. Experiments show that this group discussion phase 
often improves group judgements by improving both expert confidence 
and accuracy, denoting correspondence between the expert predictions 
and the observed outcomes (Hanea et al., 2018b); and improving indi-
vidual judgements in terms of calibration and statistical accuracy 
(Hemming et al., 2020). The behavioural aggregation process embedded 
in SHELF significantly improves the quality of expert elicited data as the 
resultant consensus probability distribution represents the experts’ 
subjective belief and collective uncertainty in a quantitative way 
consistent with probability theory and available evidence (O’Hagan, 
2006). Our elicitation relied on this consensus building process to refine 
elicitation results. Additionally, experts took the SHELF e-learning 
course to equip them with knowledge and practice in eliciting personal 
probability distributions to enhance the quality of the judgements given. 

It is important to highlight the transferability of the expert judge-
ments, and combined probability density functions, that characterise the 
risk of FIO delivery from STS to watercourses across different scenarios 
derived from our study. The scenarios we used conceptualised STS-to- 
watercourse transfer using three key risk factors that are generally 
applicable across large areas of the world where STS are used as a 
decentralised wastewater management system. The degree of slope on 
which STS are situated and their proximity to a watercourse are highly 
transferable environmental variables and well recognised risk factors 
(Tyre et al., 2023; Wiesner-Friedman et al., 2022). Although the notion 
of effluent movement risk, represented by HOST in our study, makes the 
elicited proportions more representative of the UK, these can be modi-
fied to fit classifications of soils and associated hydrological pathways 
outside of the UK as a generalised concept (Baykus et al., 2022; Tamang 

et al., 2022). While the three risk factors integrated into our combined 
scenarios are recognised as key drivers of FIO risk (Glendell et al., 2018), 
the expert judgements provide only a first approximation of the likeli-
hood of annual FIO delivery from STS to watercourses. This is because 
FIO transfer processes and their successful delivery to surface waters will 
be influenced by other environmental factors, such as potential impacts 
of artificial drainage networks, vegetation cover and landscape features, 
including microtopography (Lane et al., 2009; Reaney et al., 2019; 
Thomas et al., 2017). However, the level of influence on FIO transfer and 
delivery of such environmental variables is secondary to the main 
environmental factors considered in our elicitation approach; they 
contribute a degree of nuance to the over-riding patterns of FIO transfer 
as influenced by slope, distance and effluent movement risk. Their 
importance will also vary depending on geographic region, catchment 
type and landscape management approaches, and to determine the in-
fluence of different vegetation, drainage and microtopography requires 
more tailored, site-specific investigation, which is currently lacking. By 
linking together existing knowledge and structured expert judgements it 
is possible to develop first approximation assessments of FIO risks 
associated with STS as driven by generalised risk factors and in turn 
constrain the parameterisation of models that include FIO delivery co-
efficients from STS to better reflect a wider range of catchment risks. 

5. Conclusion 

In this study, we have demonstrated the usefulness of expert elici-
tation via the SHELF protocol for the acquisition of FIO proportions 
likely to be delivered from septic tanks to watercourses. Expert 
consensus was strong that the highest risk conditions would deliver over 
90 % FIOs to the nearest watercourse and the proportion significantly 
dropped to 5 % for low-risk conditions. The high uncertainty sur-
rounding FIO proportions likely to be delivered to watercourses from 
septic tanks under intermediate risk conditions highlighted important 
areas for further investigation through empirical research. Therefore, 
our application of the SHELF approach has delivered novel data to un-
derpin risk assessment and model development in support of better land 
management decisions aimed at mitigating risk of pollution from septic 
tanks. In the absence of empirical data, the probability density functions 
derived from our expert elicitation provide an important dataset to help 
parameterise models designed to predict FIO pollution risk from mul-
tiple sources at the landscape scale. 
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