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Abstract: Background: Turning is a complex measure of gait that accounts for over 50% of daily steps.
Traditionally, turning has been measured in a research grade laboratory setting, however, there is
demand for a low-cost and portable solution to measure turning using wearable technology. This
study aimed to determine the suitability of a low-cost inertial sensor-based device (AX6, Axivity) to
assess turning, by simultaneously capturing and comparing to a turn algorithm output from a previ-
ously validated reference inertial sensor-based device (Opal), in healthy young adults. Methodology:
Thirty participants (aged 23.9 ± 4.89 years) completed the following turning protocol wearing the
AX6 and reference device: a turn course, a two-minute walk (including 180◦ turns) and turning in
place, alternating 360◦ turn right and left. Both devices were attached at the lumbar spine, one Opal
via a belt, and the AX6 via double sided tape attached directly to the skin. Turning measures included
number of turns, average turn duration, angle, velocity, and jerk. Results: Agreement between the
outcomes from the AX6 and reference device was good to excellent for all turn characteristics (all
ICCs > 0.850) during the turning 360◦ task. There was good agreement for all turn characteristics (all
ICCs > 0.800) during the two-minute walk task, except for moderate agreement for turn angle (ICC
0.683). Agreement for turn outcomes was moderate to good during the turns course (ICCs range;
0.580 to 0.870). Conclusions: A low-cost wearable sensor, AX6, can be a suitable and fit-for-purpose
device when used with validated algorithms for assessment of turning outcomes, particularly during
continuous turning tasks. Future work needs to determine the suitability and validity of turning in
aging and clinical cohorts within low-resource settings.

Keywords: inertial sensors; turning; validation; wearables

1. Introduction

Turning is a vital component of gait with over 50% of daily steps consisting of turns [1].
Turning requires the complex control of dynamic balance in a stable medial-lateral plane
and coordination to re-orientate towards the new direction [2]. Turning characteristics
including turn velocity, turn duration, number of steps in a turn, and smoothness during
turning (jerk) which can be impaired in clinical populations including movement disorders
and concussion [2–7]. Such research delineates the benefits of assessing turns in clinical pop-
ulations, nonetheless previous mobility literature has mainly focused on straight-line gait
analysis within laboratories [8,9], which may not fully represent functional impairments.

Assessment of comprehensive measures of turning are advantageous and provide
detailed outcomes in both healthy and clinical populations [10,11]. However, conventional
laboratory assessments within controlled environments can often lead to altered perfor-
mance [12]. Traditional kinematic analysis methods such as optical motion capture systems
allow for objective quantification of human movement [13] and are regarded as the ‘gold
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standard’ method [14,15]. However, such systems pose several barriers to implementation
within clinical, and low-resource settings, including cost [16,17], access [18], and reduced
ecological validity [5,19,20]. Accessible, affordable, and miniaturized wearable technology
enables unobtrusive and continuous monitoring of turning in a range of environments (i.e.,
laboratory, home, community, clinic, etc.), providing a holistic overview of capabilities and
relevant issues that can be explored [21,22]. Turning can be measured using a single (data
logging) low-cost sensor on the waist, which can reduce patient burden and facilitates long
term/continuous (7 day) monitoring of turning outside of clinical settings [21].

Previous work has demonstrated the validity of turning metrics obtained from a
research-grade inertial sensor system/algorithm (Opal V1 and V2, APDM) compared to
gold-standard motion capture [21,23]. Here, we sought to determine the suitability of a
lower-cost option (in this case the AX6, Axivity) compared to the previous research-grade
device, as more cost-effective alternatives could be used for pragmatic deployment in a
range of settings. Therefore, the current study aimed to determine the suitability of the AX6
inertial sensor-based device against a validated approach during turning tasks in healthy
young adults.

2. Methods
2.1. Participants

Thirty healthy young adults were invited to participate in this study. Participants were
included in the study if; (1) they were aged between 18–40, and (2) they were able to stand
and walk independently. Participants were excluded if they had comorbidities impacting
on gait (e.g., muscular injuries). Prior to the study, participants were provided with an
information sheet detailing the purpose and procedure of the study before providing
written consent. Ethical approval was received from a Northumbria University Research
Ethics Committee (Reference Number: 3672).

2.2. Demographic and Clinical Assessments

Age, height, and weight were recorded for all participants (Table 1).

Table 1. Demographic characteristics of participants.

Male (n = 18) Female (n = 12)

Age (years) 23.6 ± 5.4 23.7 ± 4.0
Height (cm) 175.2 ± 9.5 174.8 ± 6.3
Weight (kg) 77.3 ± 12.5 76 ± 12.1

2.3. Equipment

Participants were fitted with the previously validated wearable reference tool (Opal
inertial sensors 2000◦/s gyroscope, magnetometer, and triaxial accelerometer sampling
frequency of 128 Hz, version 1, APDM Wearable Technologies of Clario, Portland, OR, USA).
In line with the previous turning algorithm validation studies [21,23], the reference device
was attached at approximately the fifth lumbar vertebrae (L5) via a Velcro strap belt and
synchronized with a laptop following each task. The AX6 (Axivity; 100 Hz accelerometer
and 2000◦/s gyroscope) sensor was taped at approximately L5 using double sided tape
(Figure 1), under the Opal for direct comparison of algorithm performance. The time was
recorded and synchronized with the laptop at the beginning and end of each task. After
the three tasks were complete, data from the device were downloaded.
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Figure 1. Participant set-up.

2.4. Gait Assessment

Participants were asked to perform three tasks sequentially: Figure of eight turns
course, two-minute walk, and 360◦ rotations clockwise and counter-clockwise. To familiar-
ize the participant with the course, the assessor walked the participant through the turns
course twice before allowing the participants to have a solo practice.

• Task 1: The turns course included six turns per lap (Figure 2), the turns were comprised
of two turns at 45◦, 90◦ and 135◦ [24,25]. Each participant was asked to perform eight
laps of the course at a pace comfortable to them (48 turns in total), participants were
instructed to follow the tape markers of the course.

• Task 2: The second assessment involved participants walking at a comfortable speed
back and forth between two lines set 5m apart. Participants were instructed to perform
the 180◦ turn ‘as smoothly as possible’ at either end.

• Task 3: The final assessment consisted of the participant turning 360◦ clockwise and
then counter-clockwise back and forth for two minutes in a fixed position. Participants
were again asked to complete the turns as smoothly as possible.
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2.5. Data Processing

At the commencement and conclusion of each task, the time was synchronized with
the laptop and recorded by the assessor (i.e., time-stamp extraction). At the end of the
trial, all device data were downloaded onto a laptop. Data (accelerometer and gyroscope)
were processed for each device (Opal and AX6, Axivity Ltd, Newcastle upon Tyne, UK)
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separately using MATLAB® (2018R, Mathworks, MA, USA). The previously validated
turning algorithm was used to process data from both sensors (Opal and AX6), with turns
extracted from walking bouts within the three separate tasks [21,23]. Specifically, turns
were detected using the horizontal (yaw) rotation rate of the waist sensor (Opal or AX6); a
turn was detected when the yaw was >15◦/s. A minimum of 35◦ trunk rotation around the
vertical plane and a duration of 0.5–10 s was required for classification. The integration of
the angular rate of the waist sensor around the vertical axis helped define the turn angles.
Turning outcomes included the number of turns, average turn velocity (◦/s), peak turn
velocity (◦/s), duration (s), turn angle (◦), and jerk (◦/s2). All turns were combined for
the analysis.

2.6. Data Analysis

All data analysis was undertaken using SPSS® (version 26, IBM, Armonk, NY, USA).
Demographic characteristics were calculated as means and standard deviations (SD). Data
were inspected through visual analysis of boxplots and followed by Kolmogorov–Smirnov
test for normality. Intra-class correlation coefficients (ICC) were used to assess the absolute
agreement between the Opal devices and the AX6. ICC values were classified based on
research conducted by Koo and Li [26] and were as follows; Excellent (>0.90), good (0.75–
0.89), moderate (0.50–0.74), and poor (<0.50). To demonstrate the bias within the limits of
agreement (LoA), Bland–Altman plots were used [27]. Statistical significance was set at
p < 0.05.

3. Results
3.1. Participant Demongraphics

A total of 30 participants completed the study (18 male and 12 female), on average
participants aged 23.9 ± 4.9 years, see Table 1 for demographic details of participants.

3.2. Turning Validation

Table 2 displays the descriptive data for turning characteristics from both the Opal and
AX6 sensor, in addition to agreement between the two. Figures 3–5 display an additional
visual representation of agreement via Bland–Altman plots.
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Table 2. Mean difference, ICC2.1, mean difference (p), limits of agreement (LOA%), and Pearson correlation between OPAL and AX6 sensors for turning characteristics
for three turns tasks.

Task Turn Characteristics AX6 (n = 30) OPAL (n = 30) Agreement

Mean (SD) Mean (SD) Mean
Difference ICC Lower

Bound
Upper
Bound p LoA

(%) LoA95% Pearson r Pearson p

Turning Course Number 43.33 (8.98) 42.37 (10.27) −0.97 0.873 0.751 0.937 <0.285 22.2 9.526 0.881 <0.001
Duration (s) 1.55 (0.21) 1.61 (0.31) 0.07 0.576 0.277 0.773 <0.156 30.6 0.484 0.618 <0.001

Angle (◦) 110.03 (20.82) 114.47 (26.00) 4.44 0.722 0.493 0.857 <0.177 30.7 34.427 0.740 <0.001
Peak Velocity (◦/s) 123.01 (19.78) 123.00 (21.43) −0.01 0.833 0.679 0.917 <0.997 19.0 23.330 0.836 <0.001
Mean Velocity (◦/s) 56.38 (6.85) 55.23 (6.89) −1.15 0.716 0.484 0.854 <0.231 18.2 10.139 0.716 <0.001

Jerk 15.79 (3.86) 18.80 (5.25) 3.00 0.872 0.748 0.937 <0.01 26.5 4.575 0.914 <0.001

2MW Number 23.03 (3.95) 21.90 (2.98) −1.13 0.632 0.356 0.806 <0.048 26.2 5.885 0.657 <0.001
Duration (s) 1.98 (0.30) 1.98 (0.30) 0.00 0.840 0.691 0.921 <0.906 16.8 0.332 0.840 <0.001

Angle (◦) 172.10 (11.49) 172.47 (11.20) 0.37 0.683 0.432 0.835 <0.823 10.3 17.725 0.683 <0.001
Peak Velocity (◦/s) 178.79 (25.33) 181.63 (30.03) 2.84 0.842 0.694 0.921 <0.329 17.0 30.638 0.854 <0.001
Mean Velocity (◦/s) 80.71 (10.69) 83.67 (11.97) 2.96 0.824 0.662 0.912 <0.022 16.1 13.210 0.829 <0.001

Jerk 17.21 (3.23) 19.84 (3.84) 2.63 0.888 0.778 0.945 <0.01 17.8 3.292 0.901 <0.001

Turning in place Number 42.10 (8.31) 41.33 (8.51) −0.77 0.992 0.984 0.996 <0.01 4.9 2.038 0.993 <0.001
Duration 2.91 (0.54) 2.88 (0.52) −0.03 0.989 0.978 0.995 <0.02 5.2 0.152 0.990 <0.001

Angle 349.94 (20.60) 352.72 (23.51) 2.78 0.906 0.811 0.954 <0.124 5.4 18.833 0.913 <0.001
Peak Velocity (◦/s) 190.62 (27.41) 189.84 (30.85) −0.77 0.855 0.718 0.928 <0.790 16.2 30.779 0.861 <0.001
Mean Velocity (◦/s) 123.57 (21.43) 125.77 (24.29) 2.20 0.922 0.843 0.962 <0.193 14.2 17.750 0.929 <0.001

Jerk 17.84 (3.33) 20.57 (3.80) 2.73 0.944 0.885 0.973 <0.01 12.2 2.352 0.952 <0.001
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for (A) Number, (B) Duration, (C) Angle, (D) Peak velocity, (E) Mean velocity, (F) Jerk.

3.3. Task 1—Turning Course

Agreement between the outcomes from the AX6 and Opal was weakest during the
turning course task with ICC values ranging between moderate and good agreement
(Table 2 and Figure 3). Moderate agreement was shown for duration, turn angle and mean
velocity (ICC 0.576 to 0.722, LoA% 18.2 to 30.7). Number of turns, peak velocity, and jerk
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displayed a good level of agreement for the static turning task (ICC 0.833 to 0.873, LoA%
19.0 to 26.5).

3.4. Task 2—Two-Minute Walk

Agreement was stronger for the two-minute walk (2MW) task, with all gait charac-
teristics, excluding turn angle displaying good agreement (ICC 0.824 to 0.888, LoA% 16.1
to 26.2 Turn angle ICC 0.683, LoA% 10.3). Agreement was strongest for the Jerk variable
during the two-minute walk (ICC 0.888, LoA% 17.8) (Table 2 and Figure 4).

3.5. Task 3—Turning in Place

Agreement was strongest between the two sensors during the turning 360◦ in a fixed
position task. In this task excellent agreement was shown for duration, turn angle, mean
velocity, and jerk (ICC 0.906 to 0.989 & LoA% 5.2 to 14.2). Peak velocity displayed a good
level of agreement for the static turning task (ICC 0.855 & LoA% 16.2) (Table 2 and Figure 5).

4. Discussion

This study investigated the suitability of a low-cost wearable inertial-based sensor
(AX6) as a tool for assessment of turning characteristics in healthy young adults. Outcomes
from the AX6 were compared to those from the previously validated research grade refer-
ence standard (Opal) [23]. Data from the AX6 and validated reference device showed good
to excellent absolute agreement for turning analysis characteristics of turn number, dura-
tion, angle, peak velocity, mean velocity and jerk, comparable to previous validation studies
using inertial sensors on the lumbar region to measure gait characteristics [28,29]. The gen-
eral agreement of the devices was good to excellent, the turning in place for two-minutes
task demonstrated the best agreement (ICC range = 0.850–0.990). The similar design, func-
tion and turn detection algorithm, stated previously in a study by El-Gohary et al. (2013),
of the two devices explains these findings [23,30]. The discrepancies that were identified
between the devices may be attributed to slight differences in sensor location. Both devices
were placed by the L5 vertebrae, however, the AX6 was attached using double sided tape
directly to the skin and the validated reference tool was attached using a belt, that may lead
to unwanted movement. Device placement has been proven to have a significant effect on
gait characteristics and variability [31], and therefore likely has similar impact on measures
of turning, i.e., Jerk. The validated reference tool sensor displayed significantly higher
mean jerk values in all 3 tasks, this could be attributed to looser fitting of the sensor straps
causing additional vibrations of the device [32].

Characteristics of turning quality (duration, angle, velocity, and jerk) obtained poorer
results. Turn duration displayed moderate agreement between sensors during the turns
course task compared to good to excellent agreement displayed during the two-minute
walk and turning in place tasks. The complexity of the tasks may account for this, the turns
course utilizes three different turning angles (45◦, 90◦, and 135◦) compared to the other two
tasks which only incorporate one turning angle (Task 2—180◦, Task 3—360◦). Although
valid identification of the start and stop times of turns does not necessarily correlate
with accurate turn angle estimation [33], the reduced sampling rate of the AX6 (100 Hz)
compared to the validated reference tool (128 Hz) may have led to less evident start and
stops of turning, particularly for smaller 45◦ or 90◦ turns, thus influencing turn duration.

For turn angle, the AX6 tended to underestimate compared to the validated reference
tool, with excellent agreement during the turning in place task. Previous research reinforces
such findings, as when validating devices for turning that with increasing magnitude of
turns came increasing accuracy [34]. An alternative explanation may be that the algorithm
used in the current study detects turns at a minimum threshold of 35◦ and the smallest turn
used in this study is 45◦. It is possible that the participants performed these 45◦ turns at
smaller turning angles leading to the sensors not accurately detecting these turns. Wearable
sensors have been proven to mistakenly measure one larger turn as two smaller turns
which may affect the turning quality measures [35]. Although, this is more likely to be
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seen in clinical populations such as Parkinson’s disease due to hesitations that may lead
to slower turns [11]. This suggests further work needs to validate the low-cost sensor in
clinical populations.

For the number of turns detected, the magnitude of the turn does not seem to have
had an effect. The agreement was excellent in task 3 which included the largest turns (360◦)
followed by task 1 showing good agreement for a range of smaller turns (45◦, 90◦, and 135◦)
and moderate in task 2 which involved medium sized turns (180◦). The original validation
of the algorithm using the validated reference tool demonstrated a sensitivity of 0.90 and
0.76 when compared with motion capture analysis and video rater and a specificity of 0.75
and 0.65 [23]. This lower specificity value suggests the tendency of the algorithm to falsely
record a turn. This is consistent with the present finding that the AX6 sensor predicted
larger mean number of turns in each task (e.g., 23.0 vs. 21.9). Detection of additional
spurious turn in the AX6 data compared to the Opal sensor may be due to errors relying
on observer timestamp recording to start and end the trial with the AX6 (i.e., manual
data extraction), which is an automated process by the reference tool sensor start and stop
software. Previous studies have shown that manual recording of mobility is prone to errors
in starting and stopping recording when compared to inertial sensors [36,37].

4.1. Limitations

The primary aim of this study was to determine the suitability of a cost-effective
inertial-based device for turning tasks. However, there are several limitations that need
to be considered. First, our study only analyzed the agreement within a small sample of
healthy young adults; therefore, findings cannot be assumed to be applicable to clinical or
older adult populations. Second, supplementary research is necessary to determine whether
the AX6 devices (or other similar lower cost inertial measurement units) are scalable to
more natural environments involving wider populations. Third, the sensors in this study
were not attached together and therefore we may have seen some interference within our
analysis. Finally, the wearable sensor requires the data collected to be downloaded and
manually analyzed, therefore may currently be inapplicable for a clinical setting due to the
need for trained personnel. Albeit it is a step towards implementing wearable technology
for turning analysis in a such settings.

4.2. Implications

The potential for wearable sensors to be adapted for use in a variety of populations
and settings has previously been explored [17]. Numerous studies have indicated that
wearable devices can be utilized to highlight gait characteristics that distinguish clinical
populations such as mTBI [38] and PD [39] from control subjects, as well as assess fall
risk [22,40,41]. Following further validation in clinical populations as well as in free-living
environments, the AX6 may provide a cost-friendly, objective method of gait analysis in
low-resource settings.

5. Conclusions

The AX6 demonstrated good to excellent agreement for turning characteristics includ-
ing number of turns, peak velocity, mean velocity, and jerk. The AX6 provides a valid
measure of turning in a laboratory setting for healthy young participants. Validation of
turning characteristics using the AX6 Axivity sensor is now required in aging and clinical
populations, as well as the home and community environment to provide habitual outcome
measures. The affordability of the AX6 provides an opportunity for low-resource settings
to uptake wearable sensors for use in larger populations.



Sensors 2022, 22, 9322 11 of 13

Author Contributions: Conceptualization, S.S. and R.M. (Rosie Morris); Methodology, J.B., A.B., S.S.
and R.M. (Rosie Morris); Formal analysis, R.M. (Rachel Mason), J.B., M.M., S.S. and R.M. (Rosie
Morris); Investigation, S.S.; Resources, S.S. and R.M. (Rosie Morris); Data curation, R.M. (Rachel
Mason), J.B., A.B., D.P., L.T.P., S.S. and R.M. (Rosie Morris); Writing—original draft, R.M. (Rachel
Mason); Writing—review & editing, R.M. (Rachel Mason), J.B., A.B., D.P., L.T.P., G.B., A.G., M.M.,
S.S. and R.M. (Rosie Morris); Supervision, R.M. (Rachel Mason), S.S. and R.M. (Rosie Morris); Project
administration, A.B., D.P., S.S. and R.M. (Rosie Morris); Funding acquisition, S.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was funded by grants from the Private Physiotherapy Educational Foundation
(A1 grant scheme; PI: Morris, PI: Stuart, A2 grant scheme; PI: Powell) and a Northumbria University
PhD studentship (PI: Godfrey). Additionally, work was supported by a Northumbria University col-
laborative PhD studentship with DANU Sport (PI: Stuart) and, in part, by the Parkinson’s Foundation
(PF-FBS-1898, PF-CRA-2073) (PI: Stuart).

Institutional Review Board Statement: Northumbria University Research Ethics Committee (Refer-
ence Number: 3672).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this
study.

Data Availability Statement: Data is available on request.

Acknowledgments: The authors would like to thank all participants who took their time to complete
this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Glaister, B.C.; Bernatz, G.C.; Klute, G.K.; Orendurff, M.S. Video task analysis of turning during activities of daily living. Gait

Posture 2007, 25, 289–294. [CrossRef] [PubMed]
2. Stuart, S.; Parrington, L.; Martini, D.N.; Kreter, N.; Chesnutt, J.C.; Fino, P.C.; King, L.A. Analysis of Free-Living Mobility in People

with Mild Traumatic Brain Injury and Healthy Controls: Quality over Quantity. J. Neurotrauma 2020, 37, 139–145. [CrossRef]
[PubMed]

3. Bertoli, M.; Della Croce, U.; Cereatti, A.; Mancini, M. Objective measures to investigate turning impairments and freezing of gait
in people with Parkinson’s disease. Gait Posture 2019, 74, 187–193. [CrossRef]

4. Crenna, P.; Carpinella, I.; Rabuffetti, M.; Calabrese, E.; Mazzoleni, P.; Nemni, R.; Ferrarin, M. The association between impaired
turning and normal straight walking in Parkinson’s disease. Gait Posture 2007, 26, 172–178. [CrossRef] [PubMed]

5. Mellone, S.; Mancini, M.; King, L.A.; Horak, F.B.; Chiari, L. The quality of turning in Parkinson’s disease: A compensatory
strategy to prevent postural instability? J. Neuroeng. Rehabil. 2016, 13, 39. [CrossRef]

6. Powell, D.; Stuart, S.; Godfrey, A. Sports related concussion: An emerging era in digital sports technology. NPJ Digit. Med. 2021, 4,
164. [CrossRef]

7. Stack, E.; Ashburn, A. Dysfunctional turning in Parkinson’s disease. Disabil. Rehabil. 2008, 30, 1222–1229. [CrossRef]
8. Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will my patient fall? JAMA 2007, 297, 77–86. [CrossRef]
9. Studenski, S.; Perera, S.; Wallace, D.; Chandler, J.M.; Duncan, P.; Rooney, E.; Fox, M.; Guralnik, J.M. Physical Performance

Measures in the Clinical Setting. J. Am. Geriatr. Soc. 2003, 51, 314–322. [CrossRef]
10. Angelini, L.; Hodgkinson, W.; Smith, C.; Dodd, J.M.; Sharrack, B.; Mazzà, C.; Paling, D. Wearable sensors can reliably quantify

gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting. J. Neurol. 2020, 267,
2897–2909. [CrossRef]

11. Schaafsma, J.D.; Balash, Y.; Gurevich, T.; Bartels, A.L.; Hausdorff, J.M.; Giladi, N. Characterization of freezing of gait subtypes
and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 2003, 10, 391–398. [CrossRef] [PubMed]

12. Robles-García, V.; Corral-Bergantiños, Y.; Espinosa, N.; Jácome, M.A.; García-Sancho, C.; Cudeiro, J.; Arias, P. Spatiotemporal Gait
Patterns During Overt and Covert Evaluation in Patients With Parkinson’s Disease and Healthy Subjects: Is There a Hawthorne
Effect? J. Appl. Biomech. 2015, 31, 189–194. [CrossRef] [PubMed]

13. Carse, B.; Meadows, B.; Bowers, R.; Rowe, P. Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a
new low-cost optical 3D motion analysis system. Physiotherapy 2013, 99, 347–351. [CrossRef] [PubMed]

14. Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human movement analysis using stereopho-to-grammetry. Part 1:
Theoretical background. Gait Posture 2005, 21, 186–196. [PubMed]

15. Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability
of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62.
[CrossRef]

http://doi.org/10.1016/j.gaitpost.2006.04.003
http://www.ncbi.nlm.nih.gov/pubmed/16730441
http://doi.org/10.1089/neu.2019.6450
http://www.ncbi.nlm.nih.gov/pubmed/31354032
http://doi.org/10.1016/j.gaitpost.2019.09.001
http://doi.org/10.1016/j.gaitpost.2007.04.010
http://www.ncbi.nlm.nih.gov/pubmed/17532636
http://doi.org/10.1186/s12984-016-0147-4
http://doi.org/10.1038/s41746-021-00538-w
http://doi.org/10.1080/09638280701829938
http://doi.org/10.1001/jama.297.1.77
http://doi.org/10.1046/j.1532-5415.2003.51104.x
http://doi.org/10.1007/s00415-020-09928-8
http://doi.org/10.1046/j.1468-1331.2003.00611.x
http://www.ncbi.nlm.nih.gov/pubmed/12823491
http://doi.org/10.1123/jab.2013-0319
http://www.ncbi.nlm.nih.gov/pubmed/25536440
http://doi.org/10.1016/j.physio.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23747027
http://www.ncbi.nlm.nih.gov/pubmed/15639398
http://doi.org/10.1186/s12984-020-00685-3


Sensors 2022, 22, 9322 12 of 13

16. Simon, S.R. Quantification of human motion: Gait analysis—Benefits and limitations to its application to clinical problems. J.
Biomech. 2004, 37, 1869–1880. [CrossRef]

17. Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J.
Biomed. Health Inform. 2016, 20, 1521–1537. [CrossRef]

18. Reid, S.; Held, J.M.; Lawrence, S. Reliability and Validity of the Shaw Gait Assessment Tool for Temporospatial Gait Assessment
in People With Hemiparesis. Arch. Phys. Med. Rehabil. 2011, 92, 1060–1065. [CrossRef]

19. Brodie, M.A.D.; Coppens, M.; Lord, S.R.; Lovell, N.; Gschwind, Y.J.; Redmond, S.J.; Del Rosario, M.; Wang, K.; Sturnieks, D.L.;
Persiani, M.; et al. Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits
are different. Med. Biol. Eng. Comput. 2016, 54, 663–674. [CrossRef]

20. Tamburini, P.; Storm, F.; Buckley, C.; Bisi, M.C.; Stagni, R.; Mazzà, C. Moving from laboratory to real life conditions: Influence on
the assessment of variability and stability of gait. Gait Posture 2018, 59, 248–252. [CrossRef]

21. Mancini, M.; El-Gohary, M.; Pearson, S.; McNames, J.; Schlueter, H.; Nutt, J.G.; King, L.A.; Horak, F.B. Continuous monitoring of
turning in Parkinson’s disease: Rehabilitation potential. NeuroRehabilitation 2015, 37, 3–10. [CrossRef] [PubMed]

22. Weiss, A.; Herman, T.; Giladi, N.; Hausdorff, J.M. Objective Assessment of Fall Risk in Parkinson’s Disease Using a Body-Fixed
Sensor Worn for 3 Days. PLoS ONE 2014, 9, e96675. [CrossRef] [PubMed]

23. El-Gohary, M.; Pearson, S.; McNames, J.; Mancini, M.; Horak, F.; Mellone, S.; Chiari, L. Continuous Monitoring of Turning in
Patients with Movement Disability. Sensors 2013, 14, 356–369. [CrossRef] [PubMed]

24. Stuart, S.; Parrington, L.; Martini, D.; Popa, B.; Fino, P.C.; King, L.A. Validation of a velocity-based algorithm to quantify saccades
during walking and turning in mild traumatic brain injury and healthy controls. Physiol. Meas. 2019, 40, 044006. [CrossRef]

25. Parrington, L.; Jehu, D.A.; Fino, P.C.; Stuart, S.; Wilhelm, J.; Pettigrew, N.; Murchison, C.F.; El-Gohary, M.; Vanderwalker, J.;
Pearson, S.; et al. The Sensor Technology and Rehabilitative Timing (START) Protocol: A Randomized Controlled Trial for the
Rehabilitation of Mild Traumatic Brain Injury. Phys. Ther. 2020, 100, 687–697. [CrossRef]

26. Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr.
Med. 2016, 15, 155–163. [CrossRef]

27. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986,
1, 307–310. [CrossRef]

28. Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Instrumenting gait with an accelerometer: A system and algorithm
examination. Med. Eng. Phys. 2015, 37, 400–407. [CrossRef]

29. Morris, R.; Stuart, S.; McBarron, G.; Fino, P.C.; Mancini, M.; Curtze, C. Validity of Mobility Lab (version 2) for gait assessment in
young adults, older adults and Parkinson’s disease. Physiol. Meas. 2019, 40, 095003. [CrossRef]

30. Powell, D.; Nouredanesh, M.; Stuart, S.; Godfrey, A. Investigating the AX6 inertial-based wearable for instrumented physical
capability assessment of young adults in a low-resource setting. Smart Health 2021, 22, 100220. [CrossRef]

31. Del Din, S.; Hickey, A.; Hurwitz, N.; Mathers, J.C.; Rochester, L.; Godfrey, A. Measuring gait with an accelerometer-based
wearable: Influence of device location, testing protocol and age. Physiol. Meas. 2016, 37, 1785–1797. [CrossRef]

32. Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010,
10, 7772–7788. [CrossRef] [PubMed]

33. Rehman, R.Z.U.; Klocke, P.; Hryniv, S.; Galna, B.; Rochester, L.; Del Din, S.; Alcock, L. Turning Detection During Gait: Algorithm
Validation and Influence of Sensor Location and Turning Characteristics in the Classification of Parkinson’s Disease. Sensors 2020,
20, 5377. [CrossRef] [PubMed]

34. Pham, M.H.; Elshehabi, M.; Haertner, L.; Heger, T.; Hobert, M.A.; Faber, G.S.; Salkovic, D.; Ferreira, J.J.; Berg, D.; Sanchez-Ferro, Á.;
et al. Algorithm for Turning Detection and Analysis Validated under Home-Like Conditions in Patients with Parkinson’s Disease
and Older Adults using a 6 Degree-of-Freedom Inertial Measurement Unit at the Lower Back. Front. Neurol. 2017, 8, 135.
[CrossRef]

35. Mancini, M.; Shah, V.V.; Stuart, S.; Curtze, C.; Horak, F.B.; Safarpour, D.; Nutt, J.G. Measuring freezing of gait during daily-life:
An open-source, wearable sensors approach. J. Neuroeng. Rehabil. 2021, 18, 1–13. [CrossRef] [PubMed]

36. Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go test a useful predictor of risk of falls in community
dwelling older adults: A systematic review and meta- analysis. BMC Geriatr. 2014, 14, 14. [CrossRef]

37. Kleiner AF, R.; Pacifici, I.; Vagnini, A.; Camerota, F.; Celletti, C.; Stocchi, F.; De Pandis, M.F.; Galli, M. Timed Up and Go evaluation
with wearable devices: Validation in Parkinson’s disease. J. Bodyw. Mov. Ther. 2018, 22, 390–395. [CrossRef]

38. Powell, D.; Godfrey, A.; Parrington, L.; Campbell, K.R.; King, L.A.; Stuart, S. Free-living Turning Rather Than Gait Differentiates
People with Chronic Mild Traumatic Brain Injury from Controls. J. Neuroeng. Rehabil. 2022, 19, 49–56. [CrossRef]

39. Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Spain, R.I.; Nutt, J.G.; El-Gohary, M.; Curtze, C.; Horak, F.B. Quantity
and quality of gait and turning in people with multiple sclerosis, Parkinson’s disease and matched controls during daily living. J.
Neurol. 2020, 267, 1188–1196. [CrossRef]

http://doi.org/10.1016/j.jbiomech.2004.02.047
http://doi.org/10.1109/JBHI.2016.2608720
http://doi.org/10.1016/j.apmr.2011.02.014
http://doi.org/10.1007/s11517-015-1357-9
http://doi.org/10.1016/j.gaitpost.2017.10.024
http://doi.org/10.3233/NRE-151236
http://www.ncbi.nlm.nih.gov/pubmed/26409689
http://doi.org/10.1371/journal.pone.0096675
http://www.ncbi.nlm.nih.gov/pubmed/24801889
http://doi.org/10.3390/s140100356
http://www.ncbi.nlm.nih.gov/pubmed/24379043
http://doi.org/10.1088/1361-6579/ab159d
http://doi.org/10.1093/ptj/pzaa007
http://doi.org/10.1016/j.jcm.2016.02.012
http://doi.org/10.1016/S0140-6736(86)90837-8
http://doi.org/10.1016/j.medengphy.2015.02.003
http://doi.org/10.1088/1361-6579/ab4023
http://doi.org/10.1016/j.smhl.2021.100220
http://doi.org/10.1088/0967-3334/37/10/1785
http://doi.org/10.3390/s100807772
http://www.ncbi.nlm.nih.gov/pubmed/22163626
http://doi.org/10.3390/s20185377
http://www.ncbi.nlm.nih.gov/pubmed/32961799
http://doi.org/10.3389/fneur.2017.00135
http://doi.org/10.1186/s12984-020-00774-3
http://www.ncbi.nlm.nih.gov/pubmed/33397401
http://doi.org/10.1186/1471-2318-14-14
http://doi.org/10.1016/j.jbmt.2017.07.006
http://doi.org/10.1186/s12984-022-01030-6
http://doi.org/10.1007/s00415-020-09696-5


Sensors 2022, 22, 9322 13 of 13

40. Del Din, S.; Galna, B.; Godfrey, A.; Bekkers EM, J.; Pelosin, E.; Nieuwhof, F.; Mirelman, A.; Hausdorff, J.M.; Rochester, L. Analysis
of Free-Living Gait in Older Adults With and Without Parkinson’s Disease and With and Without a History of Falls: Identifying
Generic and Disease-Specific Characteristics. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 500–506. [CrossRef]

41. Mancini, M.; Schlueter, H.; El-Gohary, M.; Mattek, N.; Duncan, C.; Kaye, J.; Horak, F.B. Continuous Monitoring of Turning
Mobility and Its Association to Falls and Cognitive Function: A Pilot Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71,
1102–1108. [CrossRef] [PubMed]

http://doi.org/10.1093/gerona/glx254
http://doi.org/10.1093/gerona/glw019
http://www.ncbi.nlm.nih.gov/pubmed/26916339

	Introduction 
	Methods 
	Participants 
	Demographic and Clinical Assessments 
	Equipment 
	Gait Assessment 
	Data Processing 
	Data Analysis 

	Results 
	Participant Demongraphics 
	Turning Validation 
	Task 1—Turning Course 
	Task 2—Two-Minute Walk 
	Task 3—Turning in Place 

	Discussion 
	Limitations 
	Implications 

	Conclusions 
	References

