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A B S T R A C T   

Per-/Poly- fluoroalkyl substances represent emerging persistent organic pollutants. Their toxic effects can be 
broad, yet little attention has been given to organisms at the microscale. To address this knowledge shortfall, the 
unicellular eukaryote Tetrahymena pyriformis was exposed to increasing concentrations (0–5000 μM) of PFOA/ 
PFOS and monitored for cellular motility, division and function (i.e., phagocytosis), reactive oxygen species 
generation and total protein levels. Both PFOA/PFOS exposure had negative impacts on T. pyriformis, including 
reduced motility, delayed cell division and oxidative imbalance, with each chemical having distinct toxicological 
profiles. T. pyriformis represents a promising candidate for assessing the biological effects these emerging 
anthropogenically-derived contaminants in a freshwater setting.   

1. Introduction 

Whilst drinking water supplies in developed countries are rendered 
safe through the function of treatment plants, contaminants such as 
antibiotics, hormones, anti-inflammatory drugs and a number of 
Persistent Organic Pollutants (POPs) can remain. Perfluoroalkyl and 
Polyfluoroalkyl Substances (PFAS) are examples of POPs and are a 
family of synthetic chemicals employed as part of stain- and water- 
resistant fabric manufacture, cleaning products, paints, fire-fighting 
foams and in cookware (Gomes et al., 2020). Two of these PFAS, Per-
fluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS), 
are of increasing concern as they are now commonly found in water-
bodies largely due to industrial waste emissions and they are highly 
persistent in the environment (Grandjean, 2018). As “bioaccumulants”, 
they are found in various higher organisms in our ecosystems including 
earthworms (Karnjanapiboonwong et al., 2018; Navarro et al., 2016), 
mussels (Liu and Gin, 2018), fish (Teunen et al., 2021), birds (Kannan 
et al., 2001), plants (Ghisi et al., 2019), marine and land mammals 
(Giesy and Kannan et al., 2002; Kudo et al., 2003). These “forever 
chemicals” are linked to the formation of cancer and organ damage in 
humans and are also associated with the negative impacts on the 
development of children (Blake and Fenton, 2020). Whilst it is encour-
aging that there is an increasing awareness of this family of chemicals 
and their impact on human populations and the environment, there are 
gaps in our understanding on PFAS effects in microorganisms in aquatic 

and non-aquatic environments (Ahrens and Bundschuh et al., 2014). 
To study the impact of PFAS on aquatic microorganisms, the uni-

cellular eukaryotic microorganism, Tetrahymena pyriformis was adopted. 
This is a free-living, ciliated model organism, one of the most highly 
developed protozoans with several specialised organelles that are 
functionally similar to higher organisms (Sauvant et al., 1999). Many 
ground-breaking studies into telomerase structure and activity, 
self-splicing RNA and ribozymes were conducted using the Tetrahymena 
organism as a model organism (e.g., Blackburn and Gall, 1978; Greider 
and Blackburn, 1985; Latham and Cech, 1989). This organism is also a 
suitable model to study microbial pathogenesis and host-pathogen in-
teractions (Dayeh et al., 2005; Pang et al., 2012). This is clearly seen in 
the study of phagocytosis, as Tetrahymena can engulf foreign objects 
through its oral apparatus in an actin-dependent manner, with the 
involvement of lectins localised on the cell surface, like that of 
mammalian phagocytes (Cassidy-Hanley, 2012; Csaba, 2016; Gray et al., 
2012; Williams et al., 2006). Furthermore, axenic cultures of Tetrahy-
mena pyriformis are readily available, cost efficient to culture and 
thereby allowing larger experimental numbers to be utilised and thus 
improving statistical discrimination. They are relatively large, easily 
visible and transparent, allowing us to visualise using basic microscopic 
techniques and is, in recent years, a popular model to study bacterial 
virulence (Lainhart et al., 2009; Li et al., 2011; Pang et al., 2012; Woods 
et al., 2022). 

Herein it is shown that PFOA and PFOS decrease growth of 
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Tetrahymena pyriformis in a dose and time dependent manner. Size and 
the ability to phagocytose are negatively affected by both chemicals 
whereas protein concentration and reactive oxygen species production 
increased in the presence of PFAS. Together, these data provide a basis 
for further studies investigating how PFAS can impact on aquatic 
microeukaryote using a simple, controllable experimental system that 
can be extrapolated to freshwater bodies. 

2. Materials and methods 

2.1. Reagents 

All key reagents, such as proteose peptone (LP0085, Oxoid), tryptone 
(LP0042, Oxoid), dipotassium phosphate (P3786), potassium chloride 
(P/4280/53), perfluorooctanoic acid (PFOA, Acros 173960050), per-
fluorooctanesulfonic acid (PFOS, Aldrich 77283) were purchased from 
either Fisher Scientific or Sigma-Aldrich, UK (now MERCK) in their 
purest form. 

2.2. Tetrahymena pyriformis growth and maintenance 

Tetrahymena pyriformis (Carolina Biological Supply Company, US) 
was purchased from Blades Biological Ltd (UK) and is maintained in 
Tetrahymena medium, (0.5% (w/v) proteose peptone, 0.5% tryptone, 
0.02% dipotassium phosphate, pH 7.2) at 25 oC before use. 

2.3. Cell viability assay of Tetrahymena pyriformis to PFAS 

One thousand or 106 T. pyriformis grown in medium were exposed to 
either 500 – 5 μM or 5000 – 39 μM of PFOA or PFOS for 2 h or 6 days, 
respectively, in a 25 ◦C incubator. Historically PFAS can be found in 
groundwater from 1 to 15 μM in sites where aqueous film-forming foams 
(containing PFAS) were used (Schultz et al., 2004). Cell viability was 
assessed by either motility or cell counts. For motility, cells were 
observed visually using light microscopy (CX31, Olympus). For cell 
counts, 10 μl was taken from each sample and mixed with an equal 
volume of 2.5% glutaraldehyde. Numbers of T. pyriformis were 
enumerated using a hemacytometer (FastRead-102) under a light mi-
croscope (CX31, Olympus). 

2.4. Generation of reactive oxygen species 

Approximately 1 × 106 T. pyriformis grown in medium were exposed 
to 5000 – 39 μM of PFOA or PFOS for 1 h, respectively, in a 25 ◦C 
incubator. 100 μl of cell suspension was aliquot into 3 wells of a white 
96-well microplate, along with 200 μM luminol and read in plate reader 
with luminescence capability (GloMax Discover System, Promega) for 
10 min at 25 oC to obtain the baseline. This is followed by equal volume 
of a 1:10,000 diluted Black Indian ink (Winsor and Newton, UK) and 
read for a further 60 min at 25 oC. 

2.5. Size determination of Tetrahymena pyriformis 

Twenty microlitres of a mixture containing equal volumes of cell 
suspension (exposed to 500, 50 or 5 μM of PFOA or PFOS) and 2.5% 
glutaraldehyde was placed on a clean microscope slide without cover-
slip. Individual T. pyriformis were imaged using an upright (light) mi-
croscope (CX31, Olympus) with an eyepiece camera (BF960, Swift 
Optical Instruments Ltd) controlled using the Swift EasyView software 
(V1.20.08.041615). The area of each T. pyriformis was measured using 
the ImageJ software (National Institutes of Health). At least 48 up to 78 
organisms from all samples were measured across three independent 
experiments. 

2.6. Phagocytosis assay 

After 6 days exposure of T. pyriformis to PFAS, cells were diluted 1:10 
with nutrient deficient, sterile Chalkey’s medium (1.710 mM NaCl, 
0.054 mM KCl, 0.060 mM CaCl2H2O) for 24 h in a 25 oC incubator. Cells 
were mixed with an equal volume of a 1:10,000 diluted Black Indian ink 
(Winsor and Newton, UK) and incubated for 30 min at 25 oC. Equal 
volumes 2.5% glutaraldehyde solution were added to fix cells. For 
counting of phagocytosed ink, T. pyriformis were visualised under a 
microscope using a 40x objective. Between 47 and 61 T. pyriformis per 
sample across three independent experiments were counted for the 
number of black vesicles located within each cell. Phagocytosis index 
was defined as the number of black vesicles engulfed per T. pyriformis 
cell. 

2.7. Protein quantitation assay 

T. pyriformis exposed to PFAS for 6 days were counted and washed 3 
times in cold PBS. Cells were resuspended in 1 ml lysis buffer (10 mM 
Tris-Cl, 50 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, protease in-
hibitors, #88666 from Pierce), sonicated gently, by pulsing for 5 min, 
before centrifuging for 5 min at 16,000g at 4 ◦C (3–30KS, Sigma 
Laborzentrifugen GmbH). Supernatants were recovered and protein 
content determined using the Micro BCA Protein Assay (#23235, 
Thermo Fisher) with BSA as a standard. Data across three independent 
experiments was expressed as amount of protein (μg)/number of cells. 

2.8. Statistical analyses 

ANOVA or non-linear least square fit regression were used, along 
with Tukey’s and sum-of-square F-test multiple comparisons tests, 
respectively, to assess the effects of PFAS for all experimental endpoints. 
EC50 was determined using non-linear fit (variable slope). All analyses 
were performed in GraphPad Prism 9.4.0., (San Diego, California USA, 
www.graphpad.com). Sample sizes can be found within the respective 
methods sections. 

3. Results 

3.1. PFAS toxic effects on Tetrahymena pyriformis 

PFAS effects in microorganisms from aquatic and non-aquatic envi-
ronments are limited (Lau et al., 2007; Ahrens and Bundschuh, 2014). 
To determine the toxicity of PFAS, PFOA and PFOS were serially diluted 
from 5000 μM to 39 μM in medium. Within 5 min post exposure, motility 
of T. pyriformis was consistently inhibited at concentrations > 2500 μM 
PFOS and PFOA-intact cells were still visible (Fig. 1A; Supplement video 
1). Within 2 h, motility was inhibited by 2500 μM and 156 μM of PFOA 
and PFOS, respectively (Fig. 1B). Concomitantly, there was also a sig-
nificant difference seen between cell counts from PFOA and PFOS (5.8% 
of total variation, P < 0.0001) with EC50 values of PFOA and PFOS 
estimated at 1724 μM and 103 μM, respectively (Fig. 1C). PFAS are toxic 
to T. pyriformis, with PFOS more potent than PFOA. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.etap.2022.103954. 

PFAS-induced toxicity was further explored for the presence of 
reactive oxygen species using a luminol assay to detect hydrogen 
peroxide, one of the products of this process (Redza-Dutordoir and 
Averill-Bates, 2016). 1250 μM of PFOA generated the highest and fastest 
peak in luminescence production at 9.3 min compared to all the other 
doses including its PFOA-free control whereas 2500 μM of PFOA showed 
delayed (18.6 min) response (Fig. 2A). Results for T. pyriformis exposed 
to PFOS were interesting as while there was a minor delay in peak 
luminescence production compared to its PFOS-free control (12.4 min c. 
f. 9.3 min), the intensity of luminescence produced was inversely pro-
portional to concentration of PFOS with the highest peak coming from 
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39 μM PFOS (Fig. 2B). The decline in luminescence could be due to 
increasing cell death, which suggests a higher level of oxidative stress 
generated by PFOS compared to PFOA. 

3.2. Long-term effects of PFAS on Tetrahymena pyriformis 

As the doubling time for T. pyriformis was reported to be 3–4 h at 
27 ◦C (Bearden et al., 1997), to understand the long-term effects of PFAS 
on T. pyriformis, they were cultured for up to 6 days in the presence of 
subtoxic concentrations of PFOA and PFOS (5, 50, 500 μM). During the 
first 48 h, there were minor, non-significant increases in cell counts in 

samples cultured in both PFOA (P = 0.98) and PFOS (P = 0.72) as well 
as the control. From 72 h onwards, cell counts were significantly higher 
with T. pyriformis cultured in 5 and 50, but not 500 μM PFOA compared 
to 24 h (Fig. 3A). Interestingly, with PFOS, from 72 h onwards, cell 
counts were significantly higher with T. pyriformis cultured in 5, but not 
50 μM and furthermore, fewer viable cells were counted in medium 
containing 500 μM PFOS (Fig. 3B). Furthermore, from 72 h onwards, 
fewer cells were observed in medium containing 50 and 500 μM PFOS 
but not PFOA. From the data obtained after 96-day exposure period, 
EC50 values of 157.2 μM (65.1 mg/L) and 26.4 μM (13.2 mg/L) for 
PFOA and PFOS were obtained. This suggests there are different 
long-term effects of PFOA and PFOS on cell growth. 

3.3. Size and phagocytosis regulated by PFAS 

To determine if PFAS regulates phagocytosis, cells were cultured in 
medium containing 50 – 500 μM PFOA or PFOS for 6 days, starved 
overnight before being challenged with ink. There were significant de-
creases in phagocytosis with T. pyriformis cultured in both 50 μM PFOA 
(4.64 ± 0.35 c.f. 2.78 ± 0.30, P = 0.006) and PFOS (4.64 ± 0.35 c.f. 
3.07 ± 0.33, P = 0.03) (Fig. 4A). It was established that the size and dry 
weight of Tetrahymena and Paramecium is dependent on several growth 
conditions including temperature and medium composition (Hellun-
g-Larsen and Andersen, 1989; Iwamoto et al., 2005; Seyfert et al., 1984). 
T. pyriformis cultured in medium containing 5 μM PFOA for 6 days 
showed small but significant increase in size (9164.8 ± 342.3 c.f. 
7885.7 ± 248.8, P = 0.03). This was not observed in higher concen-
trations of PFOA or in PFOS (Fig. 4B). Interestingly, there was no 
concomitant increase in protein content per cell from T. pyriformis 
cultured in 5 μM PFOA (0.018 ± 0.002 c.f. 0.022 ± 0.001, P = 0.99), 
although there was a 2-fold increase in protein content with cells 
cultured in 50 μM PFOA (0.018 ± 0.002 c.f. 0.035 ± 0.003, P = 0.02) 
and 500 μM PFOA (0.018 ± 0.002 c.f. 0.038 ± 0.007, P = 0.004) when 
compared to the non-treated control (Fig. 4C). Both PFOA and PFOS 
perturbs feeding function, only PFOA delayed cell division. 

4. Discussion 

The toxic effects of PFAS on the function of the unicellular protist, 
Tetrahymena pyriformis, is reported in this study. PFAS are persistent 

Fig. 1. PFAS affects cell proliferation. Tetrahymena pyr-
iformis were exposed to 5000 – 39 μM of PFOA and PFOS, 
incubated at 25 ◦C and observed for motility (A, B), cell 
counts (B) and ROS production (C). Representative images 
captured at < 5 min, from cells cultured in 2500 μM PFOA 
(i) and PFOS (ii), or in no-PFAS control conditions (iii) (A). 
Representative table where motile cells (+) and non-motile 
cells (-) from 5 independent experiments after 2 h is shown 
(B), after which cells were fixed and counted using a he-
mocytometer, with a total of 30 of the “16-squares” were 
enumerated, as described in the Section 2 (C).   

Fig. 2. PFAS causes ROS production. Tetrahymena pyriformis were incubated 
with 25 ◦C with luminol for a baseline reading in a plate reader before acti-
vating with India ink and recorded further for 60 min. Significance in mean cell 
counts was determined using two-way ANOVA and a Tukey’s multiple com-
parisons test. *** p ≤ 0.001; ** p ≤ 0.01. Results were based on the average of 
5 independent experiments. 
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contaminants of global concern due to diverse reported negative health 
effects (reviewed by Fenton et al., 2021). PFAS are a family of chemicals 
that consist of 4–14 carbon backbones with hydrogen atoms replaced 
with fluorine and charged functional groups. In the case of PFOA and 
PFOS, both have an 8-carbon backbone with either a carboxylate or 
sulphonate charged functional group, respectively. PFAS possess 
amphipathic structures resembling fatty acids and may affect cell 
function by activating nuclear receptors or other proteins, altering cell 
membrane potential, cytosolic pH and/or mitochondrial calcium dis-
tribution. This destabilises the antioxidant defence system which leads 
to oxidative DNA damage and apoptosis (Tsuda, 2016; Bonato et al., 
2020; Kleszczyński and Składanowski, 2009, 2011; Kleszczyński et al., 
2009). Their non-metabolisable properties means their reaction(s) are 

irreversible and persistent (Solan and Lavado, 2022). 
While PFAS are monitored in the freshwater environment, organisms 

like fish, eels, mussels and aquatic insects (e.g., dragonflies, damselflies) 
that live as larvae in water before emerging after the last metamorphosis 
have received much attention (e.g. Amphipoda, Araneae, and Coleop-
tera) (Augustsson et al., 2021; Koch et al., 2020; Kumar et al., 2022; 
Teunen et al., 2021). An understudied area of focus is freshwater benthic 
macroinvertebrates (BMIs), bottom-dwelling organisms that consume 
high levels of pollutants (Brase et al., 2022). The pelagic zone is rela-
tively underexplored due to its heterogeneity, and this was addressed in 
this report by characterising the impact of PFAS on T. pyriformis. 

Broadly, PFOS was more toxic towards T. pyriformis when compared 
to PFOA across the same concentration ranges. This differential toxicity 

Fig. 3. Long-term impact of PFAS on Tetrahy-
mena pyriformis proliferation. Cells were 
exposed to 500 – 5 μM of PFOA or PFOS 6 days 
at 25 ◦C. Cell viability was assessed by cell 
counts by fixing equal volumes of cell suspen-
sion with glutaraldehyde and enumerated using 
a hemacytometer (FastRead-102) under a light 
microscope. Graphs were plotted along with 
non-linear least square fit regression (second 
order polynomial) with sum-of-square F-test 
comparison method. Results were based on the 
average of 3 independent experiments, with a 
total of 30 of the “16-squares” enumerated.   

Fig. 4. Size and function changes to Tetrahy-
mena pyriformis in the presence of PFAS. Cells 
were exposed to 500 – 5 μM of PFOA or PFOS 6 
days at 25 ◦C. Samples of cell suspension were 
taken for size determination by light micro-
scopy (A) and protein quantification by BCA 
assay (B). Cells were also assessed for phago-
cytic function by mixing equal volumes of cell 
suspension with ink for 30 min at 25 ◦C, before 
fixing with glutaraldehyde and uptake of ink 
was determined by light microscopy (C). Sig-
nificance was determined using two-way 
ANOVA and a Tukey’s multiple comparisons 
test. **** p ≤ 0.0001, *** p ≤ 0.001, ** 
p ≤ 0.01, * p ≤ 0.05. 48–78 (A) or 47–61 (C) 
organisms from all samples were measured 
across 3 independent experiments 
.   
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was also reported in other freshwater organisms, e.g., PFAS shared 
comparable EC50 toxicities between T. pyriformis (PFOA: 1724 μM / 
714 mg/L and PFOS: 103 μM / 52 mg/L), green neon shrimps (Neo-
caridina denticulate); PFOA: 2400 μM / 1000 mg/L and PFOS: 400 μM / 
200 mg/L) water fleas (Daphnia magna; PFOA: 720 μM / 298 mg/L and 
PFOS: 386 μM / 193 mg/L; Moina macrocopa; PFOA: 481 μM / 
199.51 mg/L and PFOS: 36 μM / 18 mg/L) and zebrafish (Danio rerio; 
PFOA: 2427 μM / 1005 mg/L and PFOS: 214 μM / 107 mg/L) (Ji et al., 
2008; Li, 2009; Ye et al., 2009). 

Interestingly, in mammals, PFOA, not PFOS, decreases total antiox-
idant capacity, though PFOS is only slightly cytotoxic and more hae-
molytic than PFOA (Florentin et al., 2011; Kawamoto et al., 2008; 
Wielsoe et al., 2015). In other non-mammalian organisms, both PFOA 
and PFOS induce reactive oxygen species formation in various verte-
brate and invertebrate species, e.g., mice, rat, human, hamster, fish and 
mussel. This leads to oxidative damage, mitochondrial dysfunction, 
apoptosis and autophagy (Liu and Gin, 2018; Lopez-Arellano et al., 
2019; Qian et al., 2010; Reistad et al., 2013; Shi and Zhou, 2010; Suh 
et al., 2017; Tang et al., 2018; Wen et al., 2021; Zeng et al., 2021; Zhao 
et al., 2011). While PFOS and PFOA were both shown to increase ROS 
generation in T. pyriformis, ROS formation differs between the 2 ago-
nists. Lower dose of PFOS or higher dose of PFOA generated higher ROS 
levels. While the doses of PFOA and PFOS that illicit a ROS response 
were generally higher (> 156 μM) than some published elsewhere with 
non-mammalian organisms – 0.8 μM for zebrafish (Danio rerio) embryos 
or 0.02 μM for goldfish (Carassius auratus) lymphocytes, those studies 
used the more oxidant-sensitive probe dichlorodihydrofluorescein 
diacetate (DCF-DA) unlike the use of luminol in this current study (Shi 
and Zhou, 2010; Tang et al., 2018). 

Concerning potential long-term effects of PFAS on T. pyriformis to 
PFAS, subacute concentrations of PFOA and PFOS showed growth over a 
6-day (144 h) period, with no significant difference between the con-
centrations. However, there was a significant decrease at 500 μM PFOA, 
50 and 500 μM PFOS compared to their respective controls. Growth 
decreased after 96 h, likely due to space constraints of the flask. Inter-
estingly, after 96 h exposure period, the EC50 value for PFOA 157.2 μM 
(65.1 mg/L) was lower than that observed in Daphnia magna (220 – 
239 mg/L; (Ding et al., 2012; Barmentlo et al., 2015) although EC50 of 
those studies were related to sexual reproduction to form neonates and 
were not asexual reproduction. Interestingly, the data on the toxico-
logical impact of PFOA/PFOS at environmental levels (up to 15 μM) on 
organisms are limited and conflicted and is determined by organisms 
and duration of exposure. The midges (Chironomus tentans and Chiro-
nomus dilutus) and damselfly (Enallagma cyathigerum) are sensitive to 
chronic PFOA/PFOS exposure, with reduced weight, survivability, 
biomass and total emergence at < 150 μg/L (300 nM) PFOS (MacDonald 
et al., 2004; McCarthy et al., 2021; Bots et al., 2010). Those that survive 
and emerge exhibit behavioural changes e.g., reduced rate of swimming, 
response to predator attack and foraging (Van Gossum et al., 2009). 
However, in another midge species, Chironomus riparius, reduced growth 
was apparent at most/several generations in a multigeneration study, 
though survival, development, and reproduction were unaffected 
(Marziali et al., 2019). 

T. pyriformis use their cilia to sweep particles (including ink) into 
their oral groove and into a food vacuole in an actin-dependent process 
similar to that seen in mammalian phagocytes (Bozzone, 2000; Williams 
et al., 2006). After 6 days of culture in PFOA or PFOS, there were sig-
nificant decreases in phagocytosis with T. pyriformis cultured in both 
50 μM PFOA and PFOS. This U-shaped dose response suggest that any 
concentration lower (5 μM) or higher (500 μM) than the optimum would 
either be suboptimal or exhibit compensatory effects, respectively 
(Calabrese and Baldwin, 2001). Interestingly, in another unicellular 
protist, Paramecium caudatum, PFOS, not PFOA, caused the effect of 
making the organisms swim backward, largely due to increased intra-
cellular Ca2+ concentration around the ciliary system (Kawamoto et al., 
2008). 

Cell size is determined by a finely tuned process between cell growth 
(mass or volume) and division. Therefore, increased growth rates with a 
constant rate of division leads to larger cell sizes. In yeast, environ-
mental stressors such as nutrient composition and elevated temperatures 
can perturb this process with the mechanisms and functional relevance 
of this phenomenon still controversial (Aldea et al., 2017; Miettinen 
et al., 2017; Terhorst et al., 2020). Long term exposure of T. pyriformis to 
PFAS coincided with a minor increase in size, when measured micro-
scopically. Interestingly, this increase in size (only at 5 μM PFOA) was 
also complemented with an increase in protein levels (50 and 500 μM for 
both PFOA/S). It is possible that this increase in protein levels in 
T. pyriformis causes irreparable cell damage due to an accumulation of 
impaired and misfolded proteins, a process known as proteotoxicity. 
Proteotoxicity is known to be triggered by several factors including 
oxidative stress due to environmental insults (Peters et al., 2021; Wang 
et al., 2022). Therefore, proteotoxicity would be reflected with cell 
death via the apparent lack of an increase in cell size at the higher 
PFOA/S (50 and 500 μM) doses (Kane et al., 2021; Shibata and Mor-
imoto, 2014; Shor et al., 2013). 

To conclude, PFAS demonstrated broad toxicity toward the micro-
eukaryote T. pyriformis, with differential toxicities being chemical spe-
cific (i.e., PFOA versus PFOS). This present study has its limitations with 
short time scales and relatively high concentrations of PFOA/PFOS in 
order to obtain EC50 estimates. However, in real aquatic ecosystems, 
Tetrahymena are chronically exposed to, and bioaccumulate low levels of 
PFOA/PFOS over its relatively short life cycle (2–3 h under optimal 
conditions; (Ruehle et al., 2016) and over many generations. 
T. pyriformis represent a promising candidate for assessing the biological 
effects of anthropogenically-derived contaminants in an aquatic setting. 
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