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Abstract—There is a need for mapping of forest areas with young
stands under regeneration in Norway, as a basis for conducting
tending, or precommercial thinning (PCT), whenever necessary.
The main objective of this article is to show the potential of mul-
titemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) data for charac-
terization and detection of forest stands under regeneration. We
identify the most powerful radar and optical features for discrim-
ination of forest stands under regeneration versus other forest
stands. A number of optical and radar features derived from multi-
temporal S-1 and S-2 data were used for the class separability and
cross-correlation analysis. The analysis was performed on forest
resource maps consisting of the forest development classes and age
in two study sites from south-eastern Norway. Important features
were used to train the classical random forest (RF) classification
algorithm. A comparative study of performance of the algorithm
was used in three cases: I) using only S-1 features, II) using only S-2
optical bands, and III) using combination of S-1 and S-2 features.
RF classification results pointed to increased class discrimination
when using S-1 and S-2 data in relation to S-1 or S-2 data only. The
study shows that forest stands under regeneration in the height
interval for PCT can be detected with a detection rate of 91%
and F-1 score of 73.2% in case III as most accurate, while tree
density and broadleaf fraction could be estimated with coefficient
of determination (R2) of about 0.70 and 0.80, respectively.

Index Terms—Forest stands under regeneration, precommercial
thinning (PCT), radar backscattering coefficient, random forest
(RF) classification, remote sensing, repeat-pass interferometric
coherence magnitude, Sentinel-1 (S-1), Sentinel-2 (S-2), spectral
bands, synthetic aperture radar (SAR).

I. INTRODUCTION

THERE is a need for mapping of forest areas with young
stands under regeneration, in order to ensure that required

precommercial thinning (PCT) is carried out. The objective of
PCT is to enhance the growth of the most commercially valuable
trees by reducing the density of undesired trees that compete for
light, water, and nutrients [1]. Such forest management deci-
sions are made for forest stands, which represent the minimum
area unit for forest management and are generally small and
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homogeneous forest areas [0.5–10 hectares (ha)]. In many cases,
there is a need to remove a number of small trees to get an
appropriate stand density, correct tree species or mixture, and
evenly distributed trees over the area, as well as to remove
trees having unwanted properties such as damage, diseases,
and poor quality [2]–[4]. Typically, young stands of Norway
spruce have a considerable inmixing of broadleaved trees, whose
growth rate at low age competes with the spruce trees. In other
cases, there are too many trees of Norway spruce or Scots pine
due to natural regeneration without plantation. Based on forest
management statistics forest authorities have for many years
reported blue to low tending activity. Without doing anything,
the long-term consequences can be a low forest production, poor
timber quality, and high risk for snow and wind damage [5], [6].
We have seen a decrease in the number of foresters and the time
they spend in the forest, and this increases the need for digital
forest data.

By selecting the future crop trees, PCT operations are key to
ensure the future value of a forest stand. Knowledge on where
to perform PCT is, thus, important in a context of precision
forestry [1]. Currently in Norway, field visits are carried out by
local forest managers to determine whether to perform PCTs or
not. However, such methods are subjective and costly; thus, new
methods based on the use of remotely sensed data have been
proposed. Drones are being increasingly used for information
management in regeneration forests [7]. However, their use
can be applied only at a local scale on selected forest stands.
On the other end of the scale, there is the need for regional
or even national maps to provide insights in which are the
potential areas requiring PCTs. Within this context, satellite
remote sensing can provide an important tool for effective and
low-cost monitoring of young forest stands. The availability,
frequency, and coverage of satellite remote sensing data have
increased considerably during the last years, in particular due to
the European Union’s Copernicus program with the Sentinel-1
(S-1) and Sentinel-2 (S-2) [8], [9]. Optical images, like from
S-2, typically have the advantage of being largely designed
for forest and vegetation monitoring [7], [10]–[12] because of
their high spatio-temporal resolution, wide spatial coverage, and
broad spectrum. However, they are severely affected by cloud
cover and meteorological conditions, and they are dependent on
solar illumination, so it is difficult to acquire adequate and clear
S-2 images in boreal and high latitude areas. The optical data
can be supplemented with data from synthetic aperture radar
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(SAR) sensors, like S-1, which in general are unaffected by
day–night, clouds, and almost any weather condition. Despite
a completely different measurement method, SAR is promising
for mapping and monitoring of forests [13], [14], in particular
for stem volume and biomass estimation [15]–[17]. However,
terrain topography has a significant impact on the geometric
and radiometric qualities of SAR images [18], [19].

A S-1 satellite with a C-band and dual-polarization (VV/VH)
sensor provides a promising opportunity for mapping of forest
stands at no cost. Some studies reported that the backscatter
coefficients and interferometric SAR (InSAR) coherence mag-
nitude in SAR time series are the most useful SAR features in
land cover classification [20]–[22]. An important implication
here is that these parameters are influenced by forest structure
and age [23]. Several authors have investigated the possibility to
model forest age using SAR backscattering intensity [16],[24],
[25]. Radar backscattering coefficient is expected to increase
with increasing tree height and age and, therefore, can be used
to map forest age [25]–[27]. Pulliainen et al. [28] showed that the
mean backscattering intensity of several ERS-1 images increases
with forest volume. In another study, Quegan et al. [24] assessed
the potential of time series of the C-band SAR backscattering
coefficient for forest biomass mapping. Furthermore, they noted
a relationship between forest stand age and backscatter: the
scattering from the soil decreases with the growing age, resulting
in a reduction of the overall backscatter. Authors in [26] and [27]
used the SAR backscatter data combined with Landsat TM data
for mapping regenerating forest stages and concluded that the
combination of SAR and optical bands was essential for the
discrimination between regenerating forest stages.

The potential of C-band multitemporal interferometric co-
herence observations for land-cover mapping became evident
after the launch of ERS-1 in 1991. A large number of studies
confirmed the high potential of repeat-pass coherence magni-
tude calculated from multitemporal InSAR data for biomass
estimation, forest-type classification, and clear-cut (CC) detec-
tion [29]–[31]. Authors in [24],[30], and [32]–[34] showed that
C-band repeat-pass coherence acquired at short-term intervals
shows a decline with increasing biomass. For different forest
stands, the coherence decreases with an increase in the number
of leaves, needles, and small branches in the stand. It was
shown in [35] that multitemporal InSAR data are very well
suited to stem volume retrieval in boreal forests. Santoro et
al. [36] underlined the exponential relationship between ERS 1/2
tandem coherences and the stem volume. In another study, Pinto
et al. [23] investigated the use of repeat-pass interferometric
coherence to model forest age using NASA’s L-band uninhabited
aerial vehicle synthetic aperture radar (UAVSAR) datasets. Their
results indicated that coherence measurements from L-band
repeat-pass systems can estimate forest age accurately and with
no saturation.

Given these observations and the fact that forest structure
changes with age, it is conceivable that interferometric coher-
ence magnitude and the backscattering coefficient could be used
to map the forest age. The joint use of repeat-pass coherence
and the backscattering coefficient allows better discrimination
of forest stands that cannot be deduced by considering intensity

or coherence alone. Therefore, the S-1 backscatters and InSAR
coherence magnitude from all within-year observations are em-
ployed to map forest age classes and to detect young stands
under regeneration in need of PCT.

The spectral reflectance of forest canopies in optical remote
sensing data has been measured and modeled to understand the
relationship between spectral signatures and forest parameters,
e.g., [37] and [38]. It has been shown that the forest reflectance
generally decreases with the height and age of trees. During the
early growth stage of forest stands, the satellite signal is mainly
dominated by the reflectance coming from the ground vegeta-
tion, exposed soil, or rocks. As height increases and trees grow
more, the canopies close, the ground vegetation becomes less
dominant in the reflectance characteristics, and total leaf area of
the canopy becomes dominant. Height growth comes into effect
mostly through the amount of internal shadowing, especially in
the shortwave infrared (SWIR) wavelengths because of good
atmospheric penetration [5]. This study also aims to show the
potential of the spectral characteristics of S-2 to discriminate
young stands under regeneration from older stands and CCs.

Of the machine-learning algorithms, the random forest
(RF) [39], [40] is an exceptionally flexible ensemble learning
method that has been gaining attention in forest-type clas-
sifications [41]. RF can effectively handle high-dimensional,
noisy, and multisource datasets without overfitting and achiev-
ing higher classification accuracy than other well-known clas-
sifiers, such as support vector machines [42] and k-nearest
neighbors [43], while the estimated importance of variables
in the classification can be used to analyze the input features.
Moreover, RF is a simple classifier for parameter settings and
requires no sophisticated parameter tuning. The main objective
of this study is to characterize and detect young regenerated
forests (REF) from the other forest stands in need of PCT using
multitemporal S-1 and S-2 data. Three cases have been tested
for the RF classification: I) only Sentinel-1 features, II) only S-2
spectral bands, and III) combination of S-1 and S-2 features.

The remainder of this article is organized as follows. Section II
describes the study areas, datasets, preprocessing workflow, and
the algorithm used for supervised classification and regression.
Results and discussions are presented in Section III. Section IV
concludes this article.

II. MATERIAL AND METHODS

A. Study Sites

We selected two study areas from the south-eastern part of
Norway. The first study site was located in Ås municipality
in the Viken county. This area was located between latitudes
59◦35.9′N–59◦45.7′N and longitudes 10◦40.8′E–10◦55.2′E.
The second study side was located in Romedal with a center
coordinate of 60◦37.5′N, 11◦30.0′E, and is a part of Stange
municipality in the Innlandet county.

The areas are characterized by terrain heights ranging from
250–600 m above the sea level. The climate is continental with
cold and snowy winters and warm and somewhat dry summers.
The geology is dominated by shallow till on bedrock with
gneiss and granite. The forest is dominated by Norway spruce
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(Picea abies (L.) Karst.) followed by scots pine (pinus sylvestris
L.) mixed with a smaller fraction of various broadleaved tree
species. The forest management is based on stands with a mean
area of 2.5 ha, and these are typically fairly even-aged and
homogeneous with regard to tree species composition and site
productivity.

B. Reference Data

As ground reference, we had two datasets, i.e., forest resource
maps used in the first step (detecting forest stands under regen-
eration in the relevant height stage), and a field inventory in
some selected forest stands under regeneration for the second
step (classifying the need for PCT/tending).

For both study areas, we obtained access to a forest resource
map consisting of forest stand polygons and a number of key
attributes for each stand such as forest age class, site index, total
volume, pine, spruce, and deciduous volume, and registration
date. The forest resource maps were generated from forest
planning companies, and they used image matching with aerial
photographs for stand delineation. The forest resource dataset
for Ås was made based on aerial imagery in 2007 and airborne
laser scanning in 2009. The forest resource dataset for Romedal
was based on airborne imagery and laser scanning in 2017.
An example of a forest resource map in Ås municipality is
shown in Fig. 1(a). We projected these datasets as forest resource
data to the year 2018, by using a state-of-the-art program for
forest growth modeling, and CC data taken from Global Forest
Watch (GFW) [44]. For each stand, the forest resource data
contained the developmental stage and the state of forest stands
of five maturity classes, which are defined in the National Forest
Inventory (NFI)’s field work protocol as follows [45], [46]:
� class I: CC;
� class II: REF;
� class III: young production forest (YPF);
� class IV: older production forest (OPF); and
� class V: old forest (OF).
Forest growth varies with age, tree species, and site produc-

tivity, and the maturity class of a stand is set based on these three
properties. Within the context of this study, we refer to stands
in the development of class II, as stands that have been har-
vested and where the next tree generation is regenerated either
through planting or through natural seed dispersal, and where the
dominant trees have not yet reached the merchantable size [1].
Such forest stands account for 17% (or 15.1 mill. ha) of the total
productive forest area in Norway [45]. We identified stands in the
development stage for tending as stands having mean tree height
between 1.3 and 6.0 m. This made up a fraction of age class
II. For each site index class, we used forest growth models to
select age intervals where the trees would be within these height
limits. On intermediate and high site index, we expected the main
driver for tending to be fast growing broadleaves represented by
growth curves for birch [47], while for low site index classes
we considered the height growth of spruce [48] to be the main
driver.

We carried out a field inventory, where we measured: first,
the number of trees per ha for spruce, pine, and broadleaved

Fig. 1. (a) Example of a forest resource map in Ås municipality over an
orthophoto image showing reference classes, where class I= CC; class II=
REF; class III= YPF; class IV = OPF; and class V= Old Forest (OF). (b)
and (c) Two example stands showing the field plot design. Yellow color: stand
outline. Brown points: field plot clusters.

species, and, second, the tree density per ha for the same tree
species [1]. The field plot measurements included trees having
heights of at least 50 cm. We collected the field-plot dataset based
on a systematic and clustered sampling design. Each cluster was
composed of five 50 m2 circular field plots, i.e., one located in the
center of the cluster and the remaining four at a 10 m distance in
each cardinal direction. Each field plot was subdivided into four
quadrants of 12.5 m2 each according to the cardinal directions. In
total, the field-plot data comprised 217 clusters and 1084 plots.
Two sample stands including field plots located in our test sites
are shown in Fig. 1(b) and (c).

C. Sentinel-1 Data

The European Space Agency (ESA) has developed the
Copernicus program which is currently composed of six Sen-
tinel missions. S-1 Terrain Observation with Progressive Scan
(TOPS) [49], [50] mode data shows its importance for forest
mapping and monitoring. S-1 maintains a systematic routine
operation that covers almost the entire land area on the Earth.
The wide swath coverage of S-1 provides an efficient tool for
monitoring forest stands at national and regional scales. For
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TABLE I
SUMMARY OF S-1 A/B IW SLC DATA: RELATIVE ORBIT NUMBER (RON), ORBITAL PASS IN ASCENDING (ASC), OR DESCENDING (DSC) MODES, PERIOD OF

OBSERVATION BETWEEN START AND END DATES AND THE NUMBER OF ACQUISTIONS (SLC) INVOLVED, SUBSWATHS (SW) USED AT EACH SITE

interferometric applications and time series analysis, it is desired
to have a short temporal baseline and high coherence. Both
S-1 A and S-1B provide 12 revisiting times, and the combined
revisiting time between S-1 A and S-1B is 6 days. Together
this generates 8 images for every 12-day period in the southern
part of Norway by combining four relative orbits. S-1 SLC
products consist of focused SAR data provided in slant-range
geometry with an original spatial resolution of 3×22 m in range
and azimuth, respectively.

All S-1 SLC IW images in both ascending and descending or-
bits and VV/VH polarization configuration covering both study
areas from the year 2018 were downloaded from the Copernicus
Open Access Hub1 using Python API Sentinelsat.2 This study
uses 122 ascending and 60 descending images from the 139th

and 146th relative orbits between January 3, 2018 and December
29, 2018. The period of time and the amount of preprocessed
data considered per site are summarized in Table I.

D. Preprocessing of Sentinel-1 Data

The preprocessing steps carried out with the input SLC S-1
data were as follows.

1) TOPS Splitting and Update of Orbits: The entire pro-
cessing workflow is generated using the Sentinel Application
Platform (SNAP)3 Graph Builder interface. As the S-1 TOPSAR
SLC image is formed by several bursts and three subswaths,
we extracted the desired AOI with minimum number of bursts,
and whenever possible within a single subswath in order to
minimize the processing time. Initial processing steps involved
the splitting of S-1 IW SLC data. Each TOPS scene was first
split by defining subswath, polarization, and bursts covering the
AOI. At the same time, we applied the orbit correction using the
Apply Orbits operator.

2) TOPS Geocoded Radar Backscatter: The SAR image pro-
cessing chain consists of the following six steps: 1) radiometric
calibration to obtain sigma0 (σ0); 2) thermal noise removal; 3)
TOPSAR deburst; 4) subsetting; 5) range Doppler terrain correc-
tion against the geometric distortions (layover, foreshortening,
and shadow); and 6) convert SAR backscatter intensities into
decibel-scale (dB). Terrain correction was conducted using the
recently released digital terrain model (DTM) of 10 m pixel
spacing produced by the Norwegian mapping authority.4 The

1[Online]. Available: https://scihub.copernicus.eu/dhus/
2[Online]. Available: https://sentinelsat.readthedocs.io/en/stable/
3SNAP software: [Online]. Available: http ://step.esa.int/main/download/
4[Online]. Available: https://hoydedata.no/LaserInnsyn/

image pixels were obtained at the final geocoded pixel spac-
ing of 10×10 m in the Universal Transverse Mercator (UTM)
coordinate system.

3) TOPS Coregistration and Geocoded Coherence Magni-
tude: The repeat-pass interferometric coherence magnitude de-
scribes the degree of correlation between two SAR acquisitions
and, for this reason, it represents the key indicator to assess
the quality of the interferometric phase. Under the assump-
tion of ergodicity [51], the coherence magnitude of two SLC
acquisitions, which are precisely coregistered at the subpixel
level, is estimated for each pixel over a local neighborhood of
complex scattering vectors z(1), z(2), z(3), . . . , z(N) from a
spatial neighborhood centered at pixel s:

ρ(z1, z2) =

∣∣∣∣∣
∑

i∈W z1(i)z2(i)
†√∑

i∈W |z1(i)|2
∑

i∈W |z2(i)|2

∣∣∣∣∣ , 0 ≤ ρ ≤ 1

(1)
where z1 is the complex value of a pixel in the first acquisition,
and z2 is the corresponding complex value in the second ac-
quisition. | · | and † denote the absolute value and the complex
conjugate, respectively, andN represents the number of pixels in
window W . We computed repeat-pass coherence magnitude for
all images that were 6-day neighbors in time, and here we refer
to the two images as master and slave. Each master–slave was
used to create two independent stacks, one for the pair of master
and coregistered slave SLCs and a second for the corresponding
coherence generation [52]. The TOPS coregistration includes
geometric coregistration of two S-1 SLC split products (master
and slave) of the same subswath using the orbits of two products
and a DTM. The coherence estimation was calculated using a
box-car filter with three samples in azimuth and ten samples in
range. Debursting of both the SLCs and the estimated coherence
is carried out to obtain spatially continuous images. Spatial sub-
setting is applied to the coregistered and debursted coherence.
Finally, terrain correction is again conducted to obtain precise
geocoded coherence magnitude at pixel spacing of 10 m. If the
AOI covers more than one subswath, the processing steps can
be extended by processing and merging multiple swaths.

4) Multitemporal Stack of Products: When properly stacked
data from a time series of radar data are available, it is recom-
mended to preprocess time series data stacks with a multitem-
poral speckle filter [53]. It was already demonstrated in [54] that
using the time series for a full year significantly increases the
classification accuracy of forest versus nonforest compared to a
single scene. The authors also concluded that the classification
accuracy can further be improved when only considering the
annual mean of multitemporal copolarized (VV) and cross-
polarized (VH) backscatters. With M number of SLC SAR

https://scihub.copernicus.eu/dhus/
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images, the correlation coefficient ρ in (1) can be computed
temporally. The use of temporal averaging allowed us to provide
more accurate values by filtering out random temporal variations
due to changes in weather conditions while significantly reduc-
ing speckle noise [53], [55]. With a time series of images at
different times {t1, t2, . . . , tM}, the arithmetic mean (AM) of
6-day coherence maps is calculated using

ρvv =
1

M − 1

(
M−1∑
t=1

ρ(zt, zt+1)

)
. (2)

Different objects have different properties in the temporal aver-
age time, for example, building areas and man-made structures
have much higher coherence values, and forested and water areas
have lower coherence values [54], [56]. As the forest develops
and denser canopy is formed by age, the coherence values
decreases. Together with the temporal average of repeat-pass
coherences, the temporal average of the radar backscatter in both
VV and VH channels and the ratio between them are calculated
as follows:

σ0
vv =

1

M

M∑
t=1

σ0
vv

σ0
vh =

1

M

M∑
t=1

σ0
vh

Rvhvv =
1

M

M∑
t=1

σ0
vh

σ0
vv
.

(3)

Following the steps described in this section, the AOI of each
site was processed to generate the multitemporal coherence mag-
nitude and backscatter intensity data. The geocoded S-1 products
are used for the calculation of the aggregated images. The false
color composite images of these products for the Romedal area in
both ascending and descending orbits are shown in Fig. 2(a) and
(b), where coherence over CCs and bare lands is significantly
higher than over older forest classes characterized by higher
radar backscatter intensity. A zoom-up area is shown in Fig. 2(d)
together with a corresponding airborne orthophoto image in
Fig. 2(f) covering the blue frame depicted in Fig. 2(a)–(c).
This confirms higher repeat-pass coherence values and lower
backscatter intensities over CC stands with yellow outlines and
also slightly higher short-term repeat-pass coherence values over
the REF stands with red outlines.

E. Sentinel-2 Data

The S-2 mission comprises a constellation of two polar-
orbiting satellites placed in the same sun-synchronous orbit.
It provides wide swath width (290 km) and high revisit time,
10 days at the equator with one satellite and 5 days with two
satellites under the same viewing angles, which results in 2–3
days at mid-latitudes. At high latitudes, S-2 swaths overlap and
some regions will be observed twice or more every 10 days,
but with different viewing angles. However, we can only use
summer images when the vegetation is developed, and we have
sufficiently strong solar radiation to be able to utilize the spectral

TABLE II
CHOSEN SPECTRAL BANDS OF THE S-2

properties. Clouds, however, are a common problem, and in
practice, we can expect that by assembling cloudless pixels, we
will be able to obtain one such cloud-free composite image per
year. Both S-2 A and S-2B acquire 13 spectral bands in the
visible, the near infrared (NIR), and the SWIR.

We selected a number of cloud-free S-2 datasets in level
2 A, where most bands were provided in 10×10 m spatial
resolution. We resampled the 20 m bands to 10 m pixel spacing
and reprojected onto the WGS-84 UTM coordinates. For Ås,
we found two cloud free scenes in 2018, i.e., on 30th June and
5th July, and for Romedal, we found one cloud-free scene in
2016 (16th August) and two cloud-free scenes in 2018 (30th
June, 5th July). The scenes were acquired from the 8th and 51st

relative orbits. For each pixel, we extracted the median of the
three values. This resulted in nine selected bands in Table II for
each study area, all having 10 m resolution, and we partly used
these bands as they were. The false color composite image of
two spectral bands and the Normalized Difference Vegetation
Index (NDVI) [57] for the Romedal area is shown in Fig. 2(c)
with zoom-up area in Fig. 2(e), where CC stands represent higher
SWIR and red-edge (REDG) values and lower NDVI values, and
other forest stands are discriminated with larger NDVI values
than elsewhere.

F. Modeling and Prediction

We carried out the classification of forest development and
age classes with the RF classifier and the need for PCT in
forest stands under regeneration with the RF regressor using
the implementation provided by the scikit-learn package in the
Python language.

1) Random Forest (RF) Classification: Decision tree clas-
sifiers have been known for a long time but they have shown
problems related to overfitting and lack of generalization. The
main idea behind RF is that it allows using high-dimensional
and correlated data while minimizing the risk of overfitting [39],
[40]. The RF classifier consists of many decision trees. To clas-
sify a new instance, each decision tree provides a classification
for input data; RF collects the classifications and chooses the
most voted prediction as the result. The input of each tree is a
sampled data from the original dataset. In addition, a subset of
features is randomly selected from the optional features to grow
the tree at each node [58]. Essentially, the RF enables a large
number of weak or weakly correlated classifiers to form a strong
classifier.
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Fig. 2. (a) RGB composite of yearly average products of S-1 data in ascending orbit. (b) RGB composite of yearly average products of S-1 data in descending
orbit. (c) RGB composite of median image of S-2 summer-time acquisitions (R: NDVI, G: REDG, B: SWIR). Bottom row shows the close-up of the area limited
by the blue rectangle in the top row: (d) S-1, (e) S-2, and (f) airborne orthophoto image. The outlines of ground-truth REF and CC stands are shown in red and
yellow, respectively. Outlines of other forest stands are not illustrated.

TABLE III
CHARACTERISTICS OF THE REFERENCE DATA SHOWING THE NUMBER OF TRAINING AND TESTING SAMPLES OF EACH FOREST

AGE CLASS AND THE TOTAL NUMBERS

The reference data of both test sites were first combined
in order to cover a range of different growing conditions and
were randomly split into two independent datasets at the stand
level where 75% of the stands of each forest age class were
selected for training the RF classification algorithm and the

remaining 25% of the stands were left for testing. This divi-
sion of the original reference data is described in Table III.
The resulting number of stands and, hence, the number of
pixels of each forest age class, clearly varies among classes,
showing that the training set is imbalanced. This can cause an
overfitting toward the majority classes, which leads to reduced
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classification accuracy for each individual class. To avoid this
problem, the initial training set was subsampled so that all
forest age classes had exactly the same number of training
pixels.

Having trained the RF classification algorithm using the sub-
sampled training data, the performance of the classification is
presented in three cases: 1) S-1 variables; 2) S-2 variables; and 3)
combination of both S-1 and S-2 variables. The evaluation is then
performed over the whole set of testing data, which is formed by
all pixels of the forest stands initially selected for testing (25% of
the total stands). From the classification results obtained over the
pixels in the testing data, the confusion matrix [59] is computed,
which allows derivation of some metrics: recall, precision, and
F-1 score [60] for each of the five forest age classes as well as
the overall accuracy (OA) and Cohen’s Kappa coefficient [61].

2) RF Regression: The aim of using the RF regression is to
model the tree density and fraction of broadleaved trees in young
forest stands under regeneration using S-1 and S-2 features. We
estimated the stand density (number of trees per ha) and the frac-
tion of broadleaved trees in the young stands under regeneration.
We used field plots at the cluster level to train the RF between the
input explanatory variables and the forest biophysical variables.
We cross-validated the RF model at the cluster level using a
leave-one-out cross-validation (LOOCV) technique [62]. The
technique is run iteratively by removal of a single cluster and
fitting a RF model on the remaining set of field clusters, and
the prediction of the variables on the remaining observations.
The cross-validated predictions are then utilized to calculate the
coefficient of determination (R2) and the root-mean-square error
(RMSE) and its respective values as the percentage of the mean
broadleaved fraction and mean tree density per ha.

III. RESULTS AND DISCUSSION

This section begins with a cross-correlation analysis of radar
and optical variables for the target class in this study. Thereafter,
the class separability between forest age classes for different
radar and optical features is presented, followed by pixelwise
classification results, ROC curves, and stand-level classification
results. Finally, statistical analysis of the relationship between
satellite parameters and forest inventory data is presented, and
prediction maps of forest biophysical parameters and the PCT
are shown. The workflow of the proposed methodology for
detection of forest stands under regeneration in need of PCT
is shown in Fig. 3.

A. Cross-Correlation Analysis of Radar and Optical Features

As discussed before, there are a number of variables and
features derived from S-1 and S-2 that we test for forest age
classification and young forest detection. This high dimension-
ality will significantly increase the training time of the machine
learning model, it can make the model very complicated which
in turn may lead to overfitting. Before using these features as
inputs to the RF classification, we analyze the cross correlation
between all pairs of the features listed below.

Fig. 3. Flowchart of the proposed method for young forest detection in this
article, where NoT stands for the number of trees, and BLF stands for broadleaf
fraction.

1) S-1 features from both ascending and descending orbits

X1 =
[
ρvv, σ0

vv, σ
0
vh, Rvhvv

]
Asc

X2 =
[
ρvv, σ0

vv, σ
0
vh, Rvhvv

]
Dsc

.
(4)

2) S-2 spectral bands

X3=[B02,B04,B05,B06,B07,B08,B11,B12,B8A] .

(5)

The correlation coefficients between all pairs of S-1 and S-2
features for the REF ground-truth stands were calculated and
are presented in the correlation matrices in Fig. 4. When there
is a high correlation between two parameters, they show similar
properties for the forest type. Highly correlated features decrease
the training speed, decrease model interpretability, and, most
importantly, decrease generalization performance on the test
set. In case of low correlation, both features will contribute
to the improvement of the REF discrimination. As in Fig. 4,
all correlations marked red and blue represent high and low
correlations, respectively. For example, normalized backscatter
coefficients of both the VV and VH channels represent high
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Fig. 4. Cross-correlation matrix between all pairs of S-1 and S-2 features from
the REF ground-truth pixels.

Fig. 5. Distributions of different forest age classes for different parameters of
S-1 data. The curves of the target class, i.e., REF, are shown in dark green.

correlation. There are high correlations between optical bands
6, 7, 8, and 8 A, and also between bands 11 and 12.

B. Distribution Separability

To assess the separability of forest age classes with S-1 and
S-2 data, we first looked at the distribution of different optical
and radar features within each class at the pixel level. Fig. 5

shows the distribution of the annual mean of the 6-day repeat-
pass coherence magnitude, backscatter intensity in VV and VH
as well as the ratio between channels between ascending and
descending orbits, per forest age class. We have chosen to show
the distributions of temporal mean rather than the unaggregated
data to yield more pronounced differences between classes as
well as mitigate the underlying variability in the SAR variables
either due to noise, seasonality, or other effects. Fig. 5(a) and
(b) represents the yearly average 6-day coherence magnitude
distributions of ground-truth forest stands for both ascending
and descending tracks, where the REF shown in the dark green
curve represents slightly higher mean coherence than the other
forest age classes, which is to be expected because in young
forests there are less volume scattering effects and a lesser
fraction of the radar energy is backscattered from trees under
generation. It is also clear that the CC class represents high
repeat-pass coherence magnitude and is well separated from the
other forest age classes. The other forest classes are found to
the left of these two classes, which is expected due to higher
vegetation density and tree height with respect to the REF class.
It is shown in Fig. 5(c) and (d) that for CC stands shown in the
light green curve, the radar backscatter is mostly lower than the
other classes. The reason for this is that volume scattering within
the tree canopies of the older forest stands is higher than in the
younger forest stands and grassy CCs. For the REF class, its
curve is skewed more to the left and forest in the regeneration
phase has produced lower backscatter compared to the other
forest classes, whereas the backscatter values of the older forest
types are larger. As in Fig. 5(e)–(h), similar signatures for forest
stands in the VV channel and the ratio between VH and VV
were extracted.

The distributions of different forest classes for S-2 bands are
shown in Fig. 6. Looking at the curves of S-2 spectral bands
confirms that the REF produces greater reflectance than the other
forest classes. This is because the forest reflectance generally
decreases with the age and height of trees. During the early
growth stage of young forest stands, the satellite signal is mainly
dominated by the reflectance of the ground vegetation, exposed
soil, or land. As forest biomass increases, the reflectance prop-
erties and total leaf area of the canopy becomes more dominant
than the ground vegetation. It is evident in Fig. 6(c)–(h) that
the reflectance of the REDG, NIR, and SWIR bands from the
REF is greater than that of the other forest classes. The greater
reflectance of the REF with respect to other forest classes in the
SWIR band is probably an effect of the growing trees and the
shadows they cause [5].

Spectral VIs are commonly used in addition to spectral bands
as the input of the supervised classification system in remote
sensing literature. More specifically, we also computed the four
commonly used VIs from S-2 spectral bands for the separability
analysis: the NDVI, the enhanced vegetation index (EVI) [63],
the moisture stress index (MSI) [64], and the normalized differ-
ence moisture index (NDMI) [65]. The probability distributions
of the forest age classes for these VIs are shown in Fig. 7. It is
evident that there is a good separation between the CC class and
the other forest age classes, whereas the REF class overlapps
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Fig. 6. Distributions of different forest age classes for different parameters of
S-2 data. The curves of the target class, i.e., REF, are shown in dark green.

Fig. 7. Distributions of different forest age classes for the four vegetation
indices: NDVI, EVI, MSI, and NDMI.

Fig. 8. RF confusion matrix for forest-type mapping and discrimination, where
CC = Clear Cut; REF = Regenerated Forest (target class); YPF= Young
Production Forest; OPF = Older Production Forest; and OF= Old Forest.
(a) S-1. (b) S-2. (c) S-1 and S-2.

Fig. 9. ROC curves of the RF classifier, represented as “one versus rest” for
each forest class in the dataset. Numbers in brackets are the AUC values. The
ROC curve of the target class, i.e., REF, is shown in dark green.

with other classes and a separation between the REF and the
older forest classes is not possible based on the VIs.

C. Pixelwise Classification of Forest Age Classes

The input features for classification in this research include
the S-2 spectral bands, VIs, S-1 backscattering coefficients, and
repeat-pass coherence in both ascending and descending orbits.
Often in a high-dimensional feature set, there remain several
features which are redundant meaning these features are nothing
but extensions of the other essential features. These redundant
features do not effectively contribute to the model training as
well. So, clearly, there is a need to extract the most important
and the most relevant features for a dataset in order to get the
most effective predictive performance. We selected the most
important variables based on the cross-correlation analysis, class
separability, and the features’ importance ranked by the RF
method. By doing this, the data redundancy and computation
load can be effectively reduced. We selected the following
features for the RF classifier:
� the annual average of the backscatter intensity time series

of the VH channel in both ascending and descending orbits;
� the annual average of the InSAR coherence magnitude time

series of the VV channel in both ascending and descending
orbits;

� the median value of REDG (B06) of the selected acquisi-
tions; and

� the median value of SWIR (B11) of the selected acquisi-
tions.

Fig. 10(a) shows a ground truth map of forest stands in the
Romedal site for the close-up area in Fig. 2 that were to be
visually inspected for the experiments. The forest-stand classi-
fication results are shown in this section, and the performance
of the classification is presented in three alternatives; 1) S-1
variables, 2) S-2 variables, and 3) combination of both S-1 and
S-2 variables. The performance of the classification in three
cases is assessed by comparing with the ground truth obtained
from the forest resource map. The confusion matrix [59] is
obtained by combining data from both test sites. Fig. 8 provides
such a confusion matrix obtained for all three cases. One can see
that most classes are identified accurately. In particular, the REF
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Fig. 10. Comparison of S-1 and S-2 input features for stand-level classification in the Romedal site with five classes based on the RF classification strategy. The
REF as the target class is illustrated in red and the other forest age classes in other colors. (a) Ground-truth map of forest age classes and classification maps of a
close-up area in Romedal in three cases. (b) S-1 features. (c) S-2 features. (d) Combination of S-1 and S-2 features.

TABLE IV
PIXELWISE CLASSIFICATION RESULTS OF TEST SITES IN ÅS AND ROMEDAL

FROM: (TOP) S-1 FEATURES; (MIDDLE) S-2 BANDS; AND (BOTTOM)
COMBINATION OF S-1 AND S-2 FEATURES

as a target class in this study is detected with detection rates
over 70%. The reason for the detection rate for the CC class
might be the mismatch between the year of ground-truth data
and that of the satellite data. It might be that some of the OF
had been harvested between the collection of ground-truth data
and satellite observations. The recall, precision, and F-1 score
for each forest class are listed in Table IV. Regarding the use
of only S-1 variables, the results of this study indicate that the
interferometric coherence is a formidable source of information

Fig. 11. RF confusion matrix for young forest detection. Where REF =
Regenerated Forest versus the other forest stands. The result is obtained on
combined data from both the Ås and Romedal study sites. (a) S-1. (b) S-2. (c)
S-1 and S-2.

TABLE V
STAND-LEVEL CLASSIFICATION RESULTS OF TEST SITES IN ÅS AND ROMEDAL

FROM: (TOP) S-1 FEATURES; (MIDDLE) S-2 BANDS; AND (BOTTOM)
COMBINATION OF S-1 AND S-2 FEATURES

for forest resource mapping, having produced an OA of over
75%. It should be highlighted that 6-day InSAR coherence
magnitude is shown to perform better than backscatter intensity
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Fig. 12. Scatterplots of predicted (y-axis) versus the ground reference values (x-axis) at the cluster level for the biophysical variables: stand density (upper row)
and broadleaf fraction (lower row) based on the RF regression analysis for three alternatives: S-1, S-2, and S-1 and S-2. Each point corresponds to a forest cluster
of 250 m2. The variables include the broadleaf fraction in percentage and tree density (N; trees ha−1). The error metrics (both RMSE and statistical R2 measure)
are also shown.

Fig. 13. Prediction maps of: (Left) the number of trees ha−1; (Middle) the broadleaf fraction; (Right) the need for PCT.

for forest age classification, although this analysis has shown
that it is beneficial to include both backscatter intensity and
coherence magnitude as both observables are complementary,
improving accuracy of results when both are combined. A differ-
ent sensitivity of S-2 spectral bands for forest age classification
has been observed. The SWIR, in particular, has shown a good
potential to discriminate between the REF, older forest stands,
and CCs. The combination of both S-1 and S-2 proves to be
complementary.

D. ROC Curve

Machine learning classifiers predict the class labels with a cer-
tain confidence, but the threshold for the prediction of a certain
label can be set by the user depending on tuning parameters in the

classifier. The receiver operating characteristic (ROC) curve [66]
shows the diagnostic ability of a classifier as its discrimination
threshold is varied. Usually, it is shown for a binary system, but it
can also be used in multiclass classifications, where it calculates
the “one versus the rest” characteristics for each represented
class. The horizontal axis shows the false positive rate and the
vertical axis shows the true positive rate at different steps. Good
classifier performance is characterized by a curve, which has a
large integral value, also known as the area under curve (AUC).
There are usually multiple classes in the remote sensing images,
and we suppose that all of them are divided into two classes,
namely, target class and nontarget class. Target class is the one
to be evaluated, while the remaining classes are considered to
be of nontarget class. Then the classification of multiple classes
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was converted to binary classification, and consequently the
ROC curve could be obtained. In this study, the ROC curve
was derived for each forest age class, from which AUC was
derived to evaluate the performance of the RF classifier. ROC
curves for each forest class with the corresponding AUC are
shown in Fig. 9. The performance of the RF classifier is varied
for different forest classes. To be specific, the best performance
of the RF was for CCs and the target class, i.e., REF.

E. Stand-Level Classification of Forest Age Classes

In this study, we classify forest stands rather than single pixels.
The rationale for this is partly that foresters use stands as the
unit in their management, and do not need forest data with
a higher spatial resolution and partly because we in this way
reduce random noise in the data by aggregating variables to
larger spatial units. Using outlines of forest stands from the forest
resource map, we aggregated the pixel-based classification maps
to the stand level for testing performance of the RF classification.
Since the aim of this article is detection of forest stands under
regeneration, we grouped non-REF classes as a single class
in the analysis so that we had only two classes for the final
validation: REF versus the other forest stands. We then evaluated
the accuracy of the REF detection results. Fig. 10 (b)–(d) shows
stand-level classification results for a close-up area in Fig. 2.
The confusion matrix of the REF versus the other forest classes
is shown in Fig. 11 for all three alternatives. It is clear that in all
cases, we are able to detect REF stands with high accuracy. The
recall, precision, and F-1 score for the target class (REF) versus
other forest stands are reported in Table V. Pixelwise classifica-
tion accuracy using SAR bands alone was around 67.6% for the
five forest age classes. When non-REF classes were merged into
a single class, the classification accuracy increased to around
83.8%. A dataset comprising SAR and optical bands showed
increased classification accuracy in relation to SAR data alone.
Following merging of non-REF classes, the OA was around
89.1%.

F. Statistical Analysis of the Relationship Between Retrieval
Satellite Variables and Forest Inventory Data

In this section, we model the biophysical parameters of stands
under regeneration using satellite and field-inventory data and
decide for tending/PCT based on prediction maps. For analysis
of correlation between the S-1 and S-2 variables and forest
properties, we used the RF regression for modeling tree density
and broadleaf fraction in the REF stands. These variables were
obtained from 50 m2 circle-shaped plots in the field inventory
data. We modeled the forest parameters in the cluster level,
which are taken from the average of every five plots inside a
cluster. We found that a sample of one plot of five clusters may
not be sufficient to estimate the biophysical parameters as in this
study. The results of the correlation analysis indicate that the
biophysical parameters of the forest stands under regeneration
are highly correlated with the S-1 and S-2 features. Prediction of
the broadleaf fraction and tree density was obtained with higher
coefficients of determination R2, and lower RMSE when using
both S-1 and S-2 than S-1 and S-2 variables alone. The results
of the correlation analysis are plotted in Fig. 12.

G. Prediction Maps of the Number of Trees, Broadleaf
Fraction, and PCT

After modeling the biophysical parameters with a trained RF
regression obtained from the field inventory and satellite data,
we used this model for prediction of the number of trees and
broadleaf fraction at each pixel. Fig. 13(a) and (b) shows the
prediction maps of the number of trees and broadleaf fraction,
respectively. These maps were then used to decide on PCT with
the given thresholds. In this study, we performed thresholding
of pixels above 2500 trees per ha and 30% broadleaf fraction.
Fig. 13(c) shows the PCT maps where red pixels represent the
areas in need of PCT.

IV. CONCLUSION

In this research, we analyzed and demonstrated the value of
multitemporal S-1 and S-2 for characterization and mapping
of young forests under regeneration in two study sites from
southeastern Norway. The main aim was to test the SAR and
optical features to discriminate forest stands under regeneration
from other forest stands. In general, the separability of forest
stands under regeneration from other stands can be dependent on
the study site. A larger selection of study sites may be required
to determine whether this is due to the characteristics of the
individual study sites and forest types found in each site. The
transferability of the approach for detection of forest stands
under regeneration using time-series of remotely sensed data
and , however, is challenged by the lack of samples used to
train the supervised algorithm, especially for inaccessible steep
mountainous areas and change in phonological cycles caused by
climate variations in a mountainous area.

We first extracted multitemporal radar backscattering coef-
ficients (VV/VH) and 6-day repeat-pass coherence magnitudes
in the VV channel from S-1 SLC products for both ascending
and descending orbits. We then applied temporal averaging of
these products to mitigate variations in backscatter and coher-
ence values not attributable to land cover, such as topography,
seasonality, and random fluctuations. It is expected that denser
forest exhibits less annual variability in backscatter compared
to a growing forest or bare soil. This may be explained by two
factors. First, large biomass values are likely to be above the
saturation point for biomass-backscatter relationships, and sec-
ond, the emitted radar signal is unlikely to reach the soil through
dense canopies, and differences in soil moisture and roughness
will not change the backscatter [24], [54]. We will consider using
the standard deviation of all available S-1 variables as a new
feature set in the RF classification algorithm in our future work.
We also derived the S-2 spectral bands and VIs of cloud-free
composite images in summer to be fused with the S-1 features.

We provided a systematic investigation of S-1 parameters and
S-2 spectral bands for the specific purpose of discrimination
between forest stands under regeneration versus the other forest
age classes using class separability, cross-correlation analysis,
and the features’ importance ranked by the RF approach. We
found that the most powerful S-1 features were first the repeat-
pass coherence and second the radar backscatter intensity of
the VH channel. For the S-2 spectral bands, we found that the
NIR, SWIR, and REDG channels presented a good separability
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between the REF class and the other classes, but having high
correlation between some parameters in the cross-correlation
analysis of the REF class, we ended up choosing the REDG
(B06) and SWIR (B11) bands as inputs of the RF classification.
The use of spectral VIs did not provide a good separation
between the REF and the other classes.

We used the most important features chosen in the previous
step to train the classical RF classification algorithm. We did
a comparative study of performance of the algorithm in three
cases: 1) using only S-1 features; 2) using only S-2 optical
bands; and 3) using combination of S-1 and S-2 features. For
the purpose of discrimination of the REF stands, the use of
six chosen S-1 and S-2 features was seen to perform at least
as well as all features, i.e., all S-1 and S-2 parameters. This
indicates that the selected features not only contain sufficient
information for the purpose investigated here but also reduce
the computational cost of the training and prediction steps of
the supervised machine learning algorithm. Regarding the use
of only S-1 variables, the classification results of this study
indicated that the 6-day interferometric coherence was shown
to perform better than the backscatter intensity for forest age
classification, although this analysis showed that it is beneficial
to include both backscatter intensity and coherence. We showed
that the S-2 spectral features provided slightly better accuracies
than the S-1 variables for discrimination of the REF, old forest
stands, and CCs, and a combination of S-1 and S-2 parameters
yielded the best results. We used the RF regression for the
analysis of correlation between the S-1 and S-2 variables and
forest properties in forest stands under regeneration, and we
estimated tree density and broadleaf fraction in the cluster level
with coefficient of determination (R2) of about 0.70 and 0.80,
respectively. The cluster-level RMSE of the tree density and
broadleaf fraction were about 2795 trees ha−1 and 11.44%,
respectively. Model accuracy improved at the cluster-level scale
(250 m2) as compared to the plot-level scale (50 m2).

To conclude, this study has shown that time series data of both
S-1 and S-2 will make a useful contribution to discriminating
forest stands under regeneration from other stands, and also to
finding forest stands in need of PCT. More accurate classification
of forest stands under regeneration in boreal areas has a signifi-
cant practical value in supporting the effective management and
protection of forest resources.
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