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Abstract

Semantic representation is a way of expressing the meaning of a text that

can be processed by a machine to serve a particular natural language processing

(NLP) task that usually requires meaning comprehension such as text summari-

sation, question answering or machine translation. In this paper, we present a

semantic parsing model based on neural networks to obtain semantic represen-

tation of a given sentence. We utilise semantic representation of each sentence

to generate semantically informed sentence embeddings for extrinsic evaluation

of the proposed semantic parser, in particular for the semantic textual similar-

ity task. Our neural parser utilises self-attention mechanism to learn semantic

relations between words in a sentence to generate semantic representation of a

sentence in UCCA (Universal Conceptual Cognitive Annotation) semantic an-

notation framework (Abend & Rappoport, 2013), which is a cross-linguistically

applicable graph-based semantic representation. The UCCA representations

are conveyed into a Siamese Neural Network built on top of two Recursive Neu-

ral Networks (Siamese-RvNN) to derive semantically informed sentence embed-

dings which are evaluated on semantic textual similarity task. We conduct both

single-lingual and cross-lingual experiments with zero-shot and few-shot learn-

ing, which have shown superior performance even in low-resource scenario. The
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experimental results show that the proposed self-attentive neural parser out-

performs the other parsers in the literature on English and German, and shows

significant improvement in the cross-lingual setting for French which has com-

paratively low sources. Moreover, the results obtained from other downstream

tasks such as sentiment analysis confirm that semantically informed sentence

embeddings provide higher-quality embeddings compared to other pre-trained

models such as SBERT (Reimers et al., 2019) or SimCSE (Gao et al., 2021),

which do not utilise such structured information.

Keywords: Semantic parsing, UCCA, self-attention, semantic textual

similarity, Siamese Network, Recursive Neural Network

1. Introduction

Semantics is concerned with meaning defined by relations between words in

a sentence. Revealing semantic relations between words or a group of words in

a sentence helps to better understand natural languages and this will eventually

aid in developing linguistically motivated semantic models in natural language

processing (NLP) applications. While semantics is the study of the relations be-

tween the building blocks of a sentence (i.e. words or a group of words) and their

implicit meaning, semantic representation reflects the meaning of the text in a

rather structured form (e.g. graph-based or tree-based representation) (Abend

& Rappoport, 2017). Semantic parsing is the task of mapping a text given in

a natural language to its formal representation which provides an abstraction

of its meaning that can be easily processed by a machine to serve a particular

NLP task. Semantic parsing has recently been dominated by tree-structured

representations
1
.

Graphs have been receiving increasing attention in NLP in recent years due

1
“Embedding” and “representation” are used interchangeably in the literature; “represen-

tation” is also used for semantic parsing. In this paper, “representation” is used to refer to

semantic parse tree, whereas “embedding” is used to refer to the distributed low-dimensional

vectors to distinguish the two terms.
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to their ability to express and generate adequate target structures, especially

for sentence-level syntactic analysis and semantic representation of a text. The

increasing popularity of graph-based semantic representations has led to the pro-

posal of various semantic representation frameworks such as Abstract Meaning

Representation (AMR) (Banarescu et al., 2013), Universal Conceptual Cogni-

tive Annotation (UCCA) (Abend & Rappoport, 2013), bilexical Semantic De-

pendencies (SDP) (Oepen et al., 2016), Universal Decompositional Semantics

(UDS) (White et al., 2016), and Parallel Meaning Bank (PMB) (Abzianidze

et al., 2017). These graph-based representations have proven to be beneficial in

Natural Language Understanding (NLU) tasks and have already demonstrated

their applicability in a variety of NLP tasks such as summarisation (Dohare &

Karnick, 2017; Liu et al., 2018), paraphrase detection (Issa et al., 2018; Blloshmi

et al., 2020), machine translation (Song et al., 2019; Sulem et al., 2020), ques-

tion answering (Kapanipathi et al., 2020; Xu et al., 2021), and text simplifica-

tion (Sulem et al., 2018).

In the last decade, representation of words in a low-dimensional space has

provided a profound way of expressing meaning in a compact vector-based form,

that are well-known as word embeddings in the literature. Many neural ap-

proaches have been introduced to that end (Devlin et al., 2019; Liu et al.,

2019; Peters et al., 2018), all competing with each other for better embeddings

(usually evaluated on an independent task). Advances in neural word repre-

sentation techniques have paved the way for representative embeddings for also

larger units such as phrases and sentences (Kiros et al., 2015; Hill et al., 2016;

Conneau et al., 2017; Logeswaran & Lee, 2018; Cer et al., 2018; Reimers et al.,

2019). Sentence embeddings, one of the concerns of this research, are utilised in

many NLP applications such as question answering (Yao et al., 2013; Severyn &

Moschitti, 2013), short answer grading (Ramachandran et al., 2015), text sum-

marisation (Wang et al., 2016; Nova, 2019), evaluation of machine translation

models (Chan & Ng, 2008; Liu et al., 2011; Wang et al., 2017). The aforemen-

tioned NLP applications generally benefit from sentence embeddings to assess

the semantic similarity between two phrases or sentences. This is also known as
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Semantic Textual Similarity (STS) that is the evaluation of pairs of sentences

or phrases according to their degree of semantic similarity.

Our main research question is whether semantic representation can be used

to learn better sentence embeddings that lead to more accurate sentence simi-

larity evaluation. We introduce a neural semantic parser model that generates a

semantic representation of a sentence, and employ the obtained semantic repre-

sentations to evaluate the semantic similarity between two sentences in semantic

textual similarity task.

Graph-based UCCA (Universal Conceptual Cognitive Annotation) (Abend

& Rappoport, 2013) semantic representation is one of the graph-based semantic

representations that has recently gained attention. It is a cross-linguistically

applicable semantic annotation scheme (Abend & Rappoport, 2013) that can

be learned as a universal representation across languages. The UCCA repre-

sentation is built upon a multi-layer structure where each layer specifies the

semantic relations it encodes between the building blocks of a sentence. Since

the UCCA representation framework is introduced as a paragraph-level anno-

tation, it enables extending the sentence-level annotation to paragraph-level

annotation. The UCCA semantic annotation is illustrated by directed acyclic

graphs (DAGs) whose leaves, called terminals, correspond to word tokens and

multi-tokens (not necessarily corresponding to syntactically complete phrases)

in a sentence. In this work, we use UCCA-based semantic representation to gen-

erate semantically informed sentence embeddings, which has not been studied

before in the literature.

In order to learn UCCA-based semantic representations, we introduce a

neural semantic parser that approaches the semantic parsing task as a con-

stituency parsing problem
2
. Our model is inspired by the non-projective de-

pendency parser of Nilsson & Nivre (2005), which has been used in semantic

parsing (Jiang et al., 2019; Zhang et al., 2019) but not for UCCA-based an-

2
Constituency parsing is the process of extracting grammatical categories which are usually

a group of words that belong to a phrase such as a noun phrase or a verb phrase in a sentence.
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notation before. To learn sentence embeddings, we adopt a Siamese Recursive

Neural Network (Siamese-RvNN), which is a combination of a Siamese Net-

work (Chopra et al., 2005) and a Recursive Neural Network (Socher et al.,

2010). Siamese networks (Chopra et al., 2005) are dual-branch networks with

bound weights having built on the same network, which is copied and merged

with an energy function. In the proposed Siamese structure, the same set of

weights is used recursively for each UCCA-based representation in the form of a

directed acyclic graph. To the best of our knowledge, this is the first attempt to

generate sentence embeddings based on UCCA-based semantic representations

using Siamese neural networks.

We evaluated both our proposed semantic parser model for learning UCCA-

based semantic graphs and Siamese-RvNN for learning sentence embeddings.

Our semantic parser model outperformed the other participants in SemEval

2019 (Hershcovich et al., 2019) in both English and German, for both labeled

and unlabeled annotation. We also obtained the best results on semantic textual

similarity using our proposed Siamese-RvNN model. The results show that using

semantically informed sentence embeddings is superior to even recent sentence

embedding approaches such as SBERT (Reimers et al., 2019) and SimCSE (Gao

et al., 2021).

In summary, the contribution of this study is 5-fold:

• We propose a neural semantic parser model that learns UCCA-based se-

mantic representations of sentences.

• We introduce a neural network architecture for evaluating semantic textual

similarity between two sentences.

• We conducted single-lingual and cross-lingual experiments for the seman-

tic parsing task. For the cross-lingual experiments, we performed both

few-shot and zero-shot learning due to the insufficient size of the available

training data in French.

• We obtained state-of-the-art semantic parsing results in English and Ger-
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man in single-lingual setting. The results show that the cross-lingual

model performs better in low-resource languages.

• Our proposed Siamese-RvNN model outperforms other approaches in the

semantic textual similarity task. We also obtained competitive results in

transfer learning tasks by using semantically informed sentence embed-

dings in downstream NLP tasks such as sentiment analysis.

The paper is organised as follows: Section 2 briefly describes the UCCA

semantic representation and annotation, Section 3 discusses related work on

both UCCA parsing and semantic textual similarity, Section 4 explains the

proposed semantic parser used to learn UCCA semantic-graphs and the Siamese

networks used to learn sentence embeddings based on their UCCA semantic-

graphs, Section 5 presents our experimental results along with the datasets,

evaluation measures, and experimental setup for both tasks, and finally Section 6

concludes the paper with the potential future goals.

2. UCCA Semantic Representation

UCCA is both cognitively and linguistically inspired semantic representa-

tion framework Abend & Rappoport (2013). The UCCA representation of a

sentence includes some relations and arguments, which makes it deviate from

syntactic analysis; e.g. dependency parsing, where syntactic roles matter in

annotation but not the actual semantic relations between the arguments. The

UCCA semantic representation of a sentence is basically a DAG, where a node

can be either a terminal or a non-terminal compromising several tokens that are

jointly viewed as a single entity according to some semantic or cognitive consid-

eration. However, those joint units may not directly correspond to syntactically

complete phrases as in syntactic parsing but rather are related to each other

based on their semantic roles.

The edges of the graphs refer to the role of the child in the relation (i.e.

semantic categories) such as scene elements (Process, State, Participant, Ad-
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Figure 1: An Example of UCCA annotation for the sentence “He had tied a sheet around a

beam and hanged himself.”

verbial), elements of the non-scene units (Center, Elaborator, Connector, Rela-

tor), and inter-scene relations (Parallel Scene, Linker, Ground), and other roles

(Function).

An example UCCA representation is illustrated in Figure 1. In the example,

there are two Scenes having a relation called Process that correspond to two

actions: “tied” and “hanged”. “and” is a Linker between the two Scenes. Par-

ticipant of the Process is the terminal “He”, who is affected by the Processes.

“He” has got two parents connected by a primary and a remote edge (dashed)

for both Scenes. It is an example of a discontinuous unit (due to “He”), which

is a Participant of the two Scenes.

3. Related Work

The related work on both UCCA-based semantic parsing and semantic tex-

tual similarity is given separately in the following two subsections.

7



3.1. UCCA-based Semantic Parsing

TUPA parser (Hershcovich et al., 2017) is the first parser proposed for gen-

erating UCCA representations. It is a neural transition-based parser model that

includes additional transition actions and features to handle discontinuous and

remote nodes in UCCA graphs. Hershcovich et al. (2018) extend the TUPA

parser with multi-task learning by utilising other semantic graph representa-

tions, namely AMR (Banarescu et al., 2013), UD (Nivre et al., 2020, 2016), and

SDP (Oepen et al., 2016).

The UCCA framework has been the main theme in some share tasks; e.g.

“Cross-lingual Semantic Parsing with UCCA” at SemEval 2019 (Hershcovich

et al., 2019) and “Meaning Representation Parsing (MRP)” cross-framework

shared task (Oepen et al., 2020, 2019) in 2019 and 2020.

Current UCCA-based semantic parsers can be categorised based on their

approaches as follows: (i) transition-based (Hershcovich et al., 2017; Pütz &

Glocker, 2019; Lyu et al., 2019), (ii) graph-based (Cao et al., 2019; Droganova

et al., 2019; Koreeda et al., 2019; Li et al., 2019; Na et al., 2019; Wang et al.,

2019a; Zhang et al., 2019) , (iii) composition-based (Che et al.; Donatelli et al.,

2019; Oepen & Flickinger, 2019), and (iv) encoder-decoder based (Dou et al.,

2020; Na & Min, 2020; Cai & Lam, 2020).

Transition-based approaches (Bai & Zhao, 2019; Che et al.; Lai et al., 2019;

Straka & Straková, 2019) define a sequence of actions that eventually build

semantic graphs. Some of the transition-based approaches extend the models

by adding extra actions (Arviv et al., 2020; Lai et al., 2019), adding new fea-

tures (Pütz & Glocker, 2019; Bai & Zhao, 2019), or layers (Lyu et al., 2019; Che

et al.).

Graph-based approaches (Cao et al., 2019; Droganova et al., 2019; Koreeda

et al., 2019; Li et al., 2019; Na et al., 2019; Wang et al., 2019a; Zhang et al.,

2019) generally tackle the task as a search problem to find the graph with

the highest score among all possible graphs for a given input. Some of the

approaches use the existing neural parser architectures introduced especially for

dependency parsing (NeurboParser (Peng et al., 2017), JAMR (Flanigan et al.,
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2014), and UDPipe (Straka & Straková, 2017)), whereas others introduce other

neural architectures for UCCA-based semantic representation using a graph-

based approach (Li et al., 2019; Zhang et al., 2019; Jiang et al., 2019; Koreeda

et al., 2019; Na et al., 2019).

Composition-based approaches follow the compositionality principle and per-

forms semantic parsing as a result of a derivation process in which both lexi-

cal and syntactic-semantic rules are incorporated to develop a semantic graph

parser (Che et al.; Donatelli et al., 2019; Oepen & Flickinger, 2019).

Finally, encoder-decoder approaches use an encoder-decoder architecture to

convert an input sentence into a semantic graph (Dou et al., 2020; Na & Min,

2020; Cai & Lam, 2020) as performed in machine translation.

3.2. Semantic Textual Similarity

The identification of STS in short texts was proposed in 2006 (Li et al.,

2006; Mihalcea et al., 2006), where the goal was to identify whether two text

segments are paraphrases of each other or not. Between 2012 and 2017, the

semantic similarity task has been one of the main tasks in SemEval (Agirre

et al., 2012, 2013, 2014, 2015, 2016) and the proposed models based on neural

networks (Šarić et al., 2012; Afzal et al., 2016; He et al., 2015; He & Lin, 2016a;

Shao, 2017) not only were able to identify a similarity between two texts, but

also were able to generate a similarity score (usually between 0 and 5).

Measuring semantic similarity between texts has been performed using sev-

eral methods in the literature (Majumder et al., 2016): (i) topological method,

which utilises external semantic resources such as WordNet in order to assess

the similarity between two texts using topological distance on such semantic

networks (Ramage et al., 2009; Jiang & Conrath, 1997; Sussna, 1993; Sánchez

et al., 2012; Gutiérrez et al., 2016), (ii) statistical similarity that exploits mainly

statistical vector-based models along with dimension reduction techniques to as-

sess the similarity between two texts (Gabrilovich et al., 2007; Ando, 2000; Jiang

& Conrath, 1997) , (iii) semantic-based method that combines a set of similarity

measures such as soft cardinality (Jimenez et al., 2012), word n-gram overlap to

9



predict the similarity between texts (Afzal et al., 2016; Sultan et al., 2016), sym-

bolic regression (Martinez-Gil & Chaves-Gonzalez, 2020), (iv) machine learning

method, which builds a mathematical model based on lexical, syntactic and

semantic features to compute the similarity between given texts (Shao, 2017;

Reimers et al., 2019; Gao et al., 2021; Wu et al., 2021; Zhang & Lan, 2021).

Semantic similarity methods have recently made the most out of recent de-

velopments in neural networks, especially the recent neural word embedding

approaches. The most commonly used neural network architectures for se-

mantic similarity are Convolutional Neural Networks (CNN) (Kim, 2014; Shao,

2017), Long short Term Memory Networks (LSTM) (Tien et al., 2019), Bidi-

rectional Long Short Term Memory (BiLSTM) (He & Lin, 2016b), Recursive

Tree LSTMs (Tai et al., 2015) and Decomposable Attention Model (DAM) using

n-grams (Lopez-Gazpio et al., 2019).

Since pre-trained language models obtained from BERT (Devlin et al., 2019)

and RoBERTa (Liu et al., 2019) achieved state-of-the-art results on sentence-

pair regression-classification tasks such as question answering (Qu et al., 2019;

Chaybouti et al., 2021), natural language inference (Bowman et al., 2015), they

are also applied to the semantic textual similarity task (Reimers et al., 2019;

Yin et al., 2020; Li et al., 2020; Cheng, 2021; Xia et al., 2021).

Semantic similarity has also been used in other tasks such as recommenda-

tion systems (Bougiatiotis & Giannakopoulos, 2018), code clone detection (She-

neamer, 2021).

4. Self-Attentive UCCA Semantic Parser and Learning Sentence Em-

beddings using UCCA Representation

In this section, we describe the proposed self-attentive semantic parser model

that generates UCCA-based semantic representation of a given sentence and the

Siamese Recursive Neural Network (Siamese-RvNN) model that is proposed to

assess the semantic similarity between sentences for which UCCA-based seman-

tic graphs are obtained from the proposed neural parser.
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Figure 2: The proposed system’s overview

The overview of the proposed model flow is shown in Figure 2. First, we

train the self-attentive semantic parser model on the UCCA dataset, which is

illustrated as Task1. Then, we obtain UCCA representations of the sentences

in the STS dataset using the self-attentive semantic parser. Finally, we use the

UCCA semantic representations to train universal sentence embeddings to pre-

dict the similarity between sentence pairs for the STS task, which is illustrated

in Task2. The details of each model are given in the following subsections.

4.1. Self-Attentive UCCA Semantic Parser

We adopt the constituency parsing model based on self-attention mechanism

proposed by Kitaev & Klein (2018) to learn the UCCA semantic representations

of a given text. The parser is built on an encoder-decoder architecture, where the

encoder is based on self-attention mechanism and the decoder is based on CYK

(Cocke-Younger-Kasami) algorithm (Chappelier & Rajman, 1998). The overall

view of the encoder-decoder architecture is given in Figure 3. The parser follows

a chart-based constituency parsing approach where the constituency tree T of

an input sentence s = {w1,⋯, wn} with words wi is defined as a set of labeled

11



Figure 3: The architecture overview of the self-attentive semantic parser model

spans:

T = {(it, jt, lt) ∶ t = 1,⋯, ∣T ∣} (1)

where it and jt refer to the beginning and ending positions of the t
th

span

respectively with the label set lt ∈ L.

We assign a score s(T ) to each tree, which is decomposed as follows:

s(T ) = ∑
(i,j,l)∈T

s(i, j, l) (2)

Here, s(i, j, l) denotes per-span scores predicted by the model.

Each word wt is mapped into a dense vector xt which is a concatenation of the

word embedding ewt
, PoS tag embedding ept

, dependency label embedding edt
,

entity type embedding eet , and entity iob (inside-outside-beginning) category

12



Figure 4: An overview of the self-attention encoder

embedding eeobt :

xt = ewt
⊕ ept

⊕ edt
⊕ eet ⊕ eeobt (3)

The overview of the encoder along with the remote edge recovery is given in

Figure 4. The encoder consists of multiple self-attention layers
3

and only one

of them is depicted in the figure for simplicity reasons. The encoder learns a

context vector yt for each position t for a word vector xt.

An MLP classifier with two fully-connected layers with ReLU activation

function assigns labeling scores s(i, j, l) to each span using the encoder output.

We integrate remote edge recovery that also shares the same encoder to recover

remote edges in trees (Jiang et al., 2019) as shown in Figure 4. Therefore,

the model incorporates two independent MLPs to predict remote edges and

candidate parent nodes that use the same encoder.

The parsing loss is the sum of the cross-entropy losses introduced by both

remote edges Lremote and non-terminal node pairs Lnon−terminal as indicated

3
In our model, the encoder involves 8 self-attention layers.
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(a) The cat is drinking some milk (b) The milk is being drunk by a cat

Figure 5: UCCA-based semantic representations of a sentence pair (A:Participant, P:Process,

F:Function, E:Elaborator, C:Center, R:Relator).

below:

L = Lremote + Lnon−terminal (4)

As for inference, CYK (Cocke-Younger-Kasami) algorithm (Chappelier &

Rajman, 1998) is used to generate a globally optimized tree T̂ for each sentence

that acts as a decoder in the model (see Figure 3). Therefore the tree with the

maximum score is identified by the CYK algorithm as follows:

T̂ = arg max
T

s(T ) (5)

The output of the semantic parser model is a UCCA (Abend & Rappoport,

2013) representation of the sentence in the form of a directed graph. An example

of a sentence pair annotated by UCCA semantic graph using the self-attentive

neural semantic parser is given in Figure 5.

4.2. Siamese Recursive Neural Network (Siamese-RvNN)

Recursive Neural Network (RvNN) (Socher et al., 2010) is a type of neural

network in which the same set of weights is applied recursively over a structured

input. Each recursive network processes the nodes in topological order in the

given structure (in the form of a graph or a tree) and recursively applies trans-

formations to generate further representations from the previously computed

representations of children.

14



We build the RvNN model with graphs constructed by the self-attentive

UCCA semantic parser (see Figure 5) with a list of words represented as d-

dimensional vectors in a pre-trained word embedding matrix L ∈ IR
d×∣V∣

where

∣V ∣ is the size of the vocabulary.

As illustrated in Figure 6, we obtain the representation of “The cat” by the

composition of “The” and ”cat”, “some milk” by the composition of “some” and

“milk” and the representation of “The cat is drinking some milk” is obtained

by the vectors of “The cat”, “is”, “drinking” and “some milk”. The composi-

tional sentence embedding is eventually generated based on the UCCA semantic

representation of the sentence, which also gives semantically-informed sentence

embeddings.

The composition is applied using a fully connected layer (i.e. one-layer MLP)

for each node in the semantic graph. The mean of the input vectors is fed

into the MLP since RvNN is adopted for non-binary trees that are the UCCA

representation of sentences. For example, in Figure 6, x1 (The) and x2 (cat)

are combined by the following nonlinear composition with weights W and the

parent vector y1 is computed and y1, x3 (is), x4 (drinking) and y2 are used to

compute y3 as follows:

y1 = f(Wg(x1, x2) + b) (6)

y3 = f(Wg(y1, x3, x4, y2) + b) (7)

where f is a nonlinear activation function ReLU, g is the representation ex-

tractor function that is mean in the model, W is the weight matrix (with a

dimensionality of d × d, where d is the embedding dimension of pre-trained

word embedding) and b corresponds to bias vector in that layer. A single MLP

is used for the model, therefore the weights are the same for all sentences in the

dataset.

Here we combine Siamese Networks with RvNNs. Siamese networks (Chopra

et al., 2005) are dual-branch networks with bound weights. In other words, they

are built on the same network copied and merged with an energy function.

15



Figure 6: The composition process for “The cat is drinking some milk.” using a Recursive

Neural Network

Figure 7: Overview of the Siamese-RvNN model architecture

The Siamese architecture is given in Figure 7. There are two networks

RvNNa and RvNNb that simultaneously process one of the sentences in a given

sentence pair. An example pair of sentences is given in Figure 5. The training

set consists of triplets (x1, x2, y), where x1 and x2 are sentences in a pair in

the training set, and y is the similarity score that is between [0, 5] and defines

the semantic similarity between the two sentences. The goal is to minimise

the distance between semantically similar sentences and maximise the distance

between dissimilar sentences in the embedding space for each pair, which is

followed during training.

We use the Manhattan distance (Craw, 2017) which performs comparatively

16



better than other distance metrics in Recurrent Neural Networks (Yih et al.,

2011; Mueller & Thyagarajan, 2016; Pontes et al., 2018) to measure the simi-

larity between sentences in a pair as follows:

g = exp(−αH(a)
− βH

(b)) ∈ [0, 1] (8)

Here, g is computed by the model where H
(a)

is the output of network RvNNa

and H
(b)

is the output of network RvNNb. α ve β are two parameters that

are used to apply weighting on the output of the two RvNN models: H
(a)

and

H
(b)

. We rescale the output to ensure that the similarity is in the range of

[0, 5].

5. Evaluation and Results

In this section, we provide the details of our experimental setting and the

results of our evaluation for both semantic parsing and semantic textual simi-

larity.

5.1. Experimental Setting and Results for Semantic Parsing

Datasets We used the SemEval 2019 shared task dataset (Hershcovich et al.,

2019) in this study because it is especially built for cross-lingual parsing. The

details of the datasets are given in Table 1. The dataset includes English,

German, and French languages from Wikipedia and Twenty Thousand Leagues

Under the Sea. We performed two single-lingual experiments similar to (Hersh-

covich et al., 2019) for English: 1. In-domain setting using English-Wiki corpus

for both training and testing purposes (a separate validation set under the same

dataset is used for testing) 2. Out-of-domain setting using English-Wiki cor-

pus for training and the English-20K validation set for testing purposes. We

only performed in-domain experiments for German and French, since only one

dataset is available for both languages.

Since there is not enough training data available for French in the SemEval

2019 dataset, we conducted cross-lingual experiments by merging the training
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datasets of three languages to train the model in a cross-lingual setting. In

this way, we expect the model to utilise all the training data as if it comes

from a single language. This helps to share the languages’ parameters using

the similarities in different languages while learning the language differences

concurrently.

English-Wiki English-20K German-20K French-20K

Train 4,113 0 5,211 15

Validation 514 0 651 238

Test 515 492 652 239

Table 1: Number of sentences in each dataset in Semeval 2019 Dataset (Hershcovich et al.,

2019)

Evaluation Metrics We followed the official evaluation metrics (Hersh-

covich et al., 2019) used in SemEval 2019. The evaluation method measures a

matching score between each output graph Go = (Vo, Eo, lo) predicted by the

model and its corresponding gold graph Gg = (Vg, Eg, lg) over the same se-

quence of nodes. Labeled precision and recall metrics are calculated by dividing

the number of matching edges in Go and Gg with their corresponding labels to

∣Eo∣ and ∣Eg∣ respectively.

F1 is the harmonic mean of precision and recall:

F1 = 2 ⋅
Precision ⋅Recall

Precision ×Recall
(9)

Unlabeled precision, recall, and F1 are computed analogously, but without

requiring a label matching for the edges. In all experiments, we evaluate both

primary and remote edges separately.

Hyperparameters and Implementation Details The semantic parser

model and the RvNN-Siamese architecture for the semantic similarity task

are implemented using PyTorch and both are publicly available at https:

//github.com/necvabolucu/UCCA-transformer. For the encoder, we used a

self-attention layer with the same parameter values as in Vaswani et al. (2017).
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The word embedding dimensionality is 100 with an embedding dimensionality

of 50 for PoS tags, 50 for dependency tags, 25 for entity types, and 25 for the

entity iob types. We used Adam optimizer (Kingma & Ba, 2014) and early

stopping during training because of the variations in the size of the training

sets.

All syntactic embeddings (i.e. word, PoS tags, dependency tags, entity types,

and entity iob types) are randomly initialised in the single-lingual experiments.

In addition to the syntactic embeddings, we used pre-trained fasttext (Bo-

janowski et al., 2017a) character n-gram based word embeddings. Additionally,

we used BERT embeddings as contextualised embeddings to incorporate contex-

tual information. For the cross-lingual models, we conducted experiments with

and without contextual embeddings in addition to the syntactic embeddings.

Results The results of both single-lingual and cross-lingual experiments

on SemEval 2019 (Hershcovich et al., 2019) datasets for English, French and

German are given in Table 2.

For the single-lingual setting, the use of fasttext embeddings (Bojanowski

et al., 2017b) along with BERT contextualised embeddings (Devlin et al., 2019)

in addition to syntactic embeddings outperforms the other settings in all lan-

guages. For the cross-lingual setting, the results have slightly decreased for all

languages except French. However, the results for French have improved signif-

icantly. The cross-lingual setting helps predict remote edges in French, while

it is not sufficient to predict remote edges in single-lingual setting due to the

insufficient amount of training data for French. We did not perform experi-

ments with pre-trained fasttext embeddings as they are trained independently

for different languages and are not available as multilingual embeddings. Using

BERT improves F1 scores by about 4% for English, 5% for German, and 4% for

French in the cross-lingual setting.

Comparative results of our model with other participants of Semeval 2019 (Her-
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Single-Lingual Exp. Cross-Lingual Exp.

Prim. Rem. Avg Prim. Rem. Avg

English-Wiki

syntactic emb. 74.5 2.1 73.04 74.8 44.7 74.19

syntactic emb. ⊕ fasttext 77.9 53.0 77.4 - - -

syntactic emb. ⊕ bert 78.3 52.8 77.79 79.6 48.5 78.97

syntactic emb. ⊕ fasttext ⊕ bert 80.2 55.4 79.7 - - -

English-20K

syntactic emb. 71.0 7.9 68.87 72.7 23.6 71.04

syntactic emb. ⊕ fasttext 73.8 25.0 72.15 - - -

syntactic emb. ⊕ bert 75.45 28.6 73.87 75.9 29.4 74.33

syntactic emb. ⊕ fasttext ⊕ bert 76.2 29.3 74.62 - - -

German-20K

syntactic emb. 77.3 31.5 76.09 80.4 49.3 79.58

syntactic emb. ⊕ fasttext 83.6 60.2 82.98 - - -

syntactic emb. ⊕ bert 85.1 63.7 84.54 86.2 53.6 85.34

syntactic emb. ⊕ fasttext ⊕ bert 86.7 65.1 86.13 - - -

French-20K

syntactic emb. 43.1 0 41.67 65.4 15.3 63.74

syntactic emb. ⊕ fasttext 43.2 0 41.77 - - -

syntactic emb. ⊕ bert 44.5 0 43.02 68.7 45.5 67.93

syntactic emb. ⊕ fasttext ⊕ bert 46.2 0 44.67 - - -

Table 2: Single-Lingual and Cross-Lingual Experimental Results on Semeval 2019 dataset

shcovich et al., 2019)
4

are given in Table 3. The results show that our model

achieves state-of-the-art performance among the other parsers in English and

German. The model proposed by Jiang et al. (2019) outperforms the other

models in French. However, our results on unlabeled edges are still competitive

with that of Jiang et al. (2019).

Error Analysis We characterize the errors of our semantic parser by con-

4
We report the official results given in Hershcovich et al. (2019)
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English-Wiki

Labeled Unlabeled

All Prim. Rem. All Prim. Rem.

Tupa ♣ 72.8 73.3 47.2 85.0 85.8 48.4

HLT@SUDA ♠ 77.4 77.9 52.2 87.2 87.9 52.5

UC Davis ♡ 72.2 73.0 0 85.5 86.4 0

CUNY-PekingU ♦ 71.8 72.3 49.5 84.5 85.2 50.1

DANGNT@UIT.VNU-HCM ★ 70.0 70.7 0 81.7 82.6 0

GCN-Sem _ 65.7 66.4 0 80.9 81.8 0

Self-Attentive UCCA Parser 79.7 80.2 55.4 89.6 90.3 55.3

English-20K

HLT@SUDA ♠ 72.7 73.6 31.2 85.2 86.4 32.1

Tupa ♣ 67.2 68.2 23.7 82.2 83.5 24.3

CUNY-PekingU ♦ 66.9 67.9 27.9 82.3 83.6 29.0

GCN-Sem _ 62.6 63.7 0 80.0 81.4 0

Self-Attentive UCCA Parser 74.62 76.2 29.3 87.69 89.7 30.1

German-20K

HLT@SUDA ♠ 84.9 85.4 64.1 92.8 93.4 64.7

Tupa ♣ 79.1 79.6 59.9 90.3 91.0 60.5

TüPa ⊛ 78.1 78.8 40.8 89.4 90.3 41.2

XLangMo 78.0 78.4 61.1 89.4 90.1 61.4

MaskParse@Deskiñ ⊘ 74.2 74.8 47.3 87.1 88.0 47.6

Self-Attentive UCCA Parser 86.13 86.7 65.1 94.1 94.4 64.5

French-20K

HLT@SUDA ♠ 75.2 76.0 43.3 86.0 87.0 45.1

XLangMo 65.6 66.6 13.3 81.5 82.8 14.1

MaskParse@Deskiñ ⊘ 65.4 66.6 24.3 80.9 82.5 25.8

Tupa ♣ 48.7 49.6 2.4 74.0 75.3 3.2

TüPa ⊛ 45.6 46.4 0 73.4 74.6 0

Self-Attentive UCCA Parser 67.93 68.7 45.5 84.8 85.5 54.6

Table 3: Comparative F-1 results of our model with other participants of UCCA framework

at Semeval 2019. (♣: (Hershcovich et al., 2017), ♠: (Jiang et al., 2019), ♡: (Yu & Sagae,

2019), ★: Nguyen & Tran (2019), ⊛: Pütz & Glocker (2019), _: Taslimipoor et al. (2019),

⊘: Marzinotto et al. (2019)).
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ducting further experiments to analyze the effects of structural and linguistic

features of sentences on the accuracy of the parser.

• Sentence Length: The results for the different sentence lengths are given in

Table 4. The results show that the longer the sentences are, the lower the

F-1 scores are for the remote edges except for the English-Wiki dataset.

Since UCCA can be extended to represent paragraph-level annotation, the

semantic structure of longer sentences can also be efficiently represented

using the UCCA framework. The results obtained from the primary edges

for longer sentences already confirm this. The frequency of a remote edge

is 1 or 0 in each sentence in the dataset, which does not let the model

learn the remote edges properly. Therefore, the efficiency of the model is

more crucial for primary edges compared to remote edges.

• Semantic Categories: We analyze the results of each semantic category

to further evaluate the performance of the model according to each cate-

gory. The results obtained from each category are given in Table 5. The

frequency of Adverbial (A), Function (F), Ground (G), Linker (L), Con-

nector (C) and State (S) are comparatively lower than the other semantic

categories in the dataset
5
. While the model struggles with predicting

categories with low frequency, more frequent categories are learned more

accurately by the model.

Zero-shot and Few-shot Cross-Lingual Model: Zero-shot learning (Wang

et al., 2019b; Tran & Bisazza, 2019) and few-shot learning (Lauscher et al., 2020)

have recently shown outstanding success in various NLP tasks such as depen-

dency parsing and text classification. Zero-shot cross-lingual model is used when

no or few annotated examples are available in the target language. In contrast,

few-shot cross-lingual model is used when a small amount of training data is

available during training. Due to the insufficient size of the French dataset,

5
The details of the dataset can be found in (Hershcovich et al., 2019).
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we performed both few-shot and zero-shot learning for French as part of the

cross-lingual experiments.

In the zero-shot setting, we performed cross-lingual experiments without us-

ing the French dataset during training, whereas we included the French dataset

in few-shot learning during training. The results are given in Table 6. The

results show that even a small amount of data significantly improves the results

in few-shot learning compared to zero-shot learning.

Labeled Unlabeled

Primary Remote Avg Primary Remote Avg

single-lingual 46.2 0 44.67 68.9 0 66.62

zero-shot 57.2 16.2 56.42 78.6 16.2 76.53

few-shot 68.7 45.5 67.93 85.8 54.6 84.48

Table 6: Effect of French dataset on cross-lingual model

5.2. Semantic Textual Similarity

Datasets We evaluated the Siamese-RvNN model on several STS tasks us-

ing the output of the semantic parser model. We evaluated on 7 datasets that

provide labels between 0 and 5 that correspond to a degree of semantic similar-

ity:

• SICK Dataset (Marelli et al., 2014) is compiled for sentence level

semantic similarity/relatedness task.

• STS Datasets (Agirre et al., 2012, 2013, 2014, 2015, 2016; Cer

et al., 2017) involve 6 different datasets released by SemEval in years

between 2012 to 2017 for the STS task.

We also evaluated the Siamese-RvNN model on 7 other transfer learning

tasks with given datasets:

• Movie Review (MR) (Pang & Lee, 2005) is a dataset annotated for senti-

ment classification task with 2 classes (binary classification).
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• Customer Review (CR) (Hu & Liu, 2004) is a dataset annotated for prod-

uct review classification task with 2 classes (binary classification).

• Subjectivity / Objectivity (SUBJ) (Pang & Lee, 2004) is a dataset anno-

tated for subjectivity objectivity classification task with 2 classes (binary

classification).

• Multi-Perspective Question and Answering (MPQA) (Wiebe et al., 2005)

is a dataset annotated for opinion polarity classification task with 2 classes

(binary classification).

• Stanford Sentiment Analysis 2 (SST-2) (Socher et al., 2013) is a dataset

annotated for sentiment classification task with 2 classes (binary classifi-

cation).

• Text Retrieval Conference (TREC) (Voorhees & Tice, 2000) is a dataset

annotated for question type classification task with 6 classes.

• The Microsoft Research Paraphrase Corpus (MRPC) (Dolan et al., 2004)

is a dataset annotated for paraphrase detection task with 2 classes (binary

classification).

Evaluation Metric We use the SentEval toolkit (Conneau & Kiela, 2018)

to evaluate the results obtained from the STS task and use Spearman’s rank

correlation ρ as the evaluation metric (Reimers et al., 2016). We use the ac-

curacy metric in all transfer learning tasks and follow the same configurations

defined in SentEval
6
.

Hyperparameters and Implementation Details For the STS task, we

use a combination of SNLI (Bowman et al., 2015) and MNLI (Williams et al.,

2018) as in Reimers et al. (2019); Gao et al. (2021) to finetune embeddings. In

all STS experiments, we assigned coefficients α = β = 1. We used a batch size of

16, the Adam optimizer (Kingma & Ba, 2014) for training, BERT (Devlin et al.,

6
https://github.com/facebookresearch/SentEval
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2019) (base-uncased) pre-trained embeddings, a dropout of 0.2 and a learning

rate of 1e − 4 in the proposed Siamese-RvNN model.

We use semantically-informed sentence embeddings obtained from the Re-

cursive Neural Network to train a logistic regression classifier for the transfer

learning tasks. In all transfer-learning experiments, 10-fold cross-validation is

performed as used in (Reimers et al., 2019).

Results Table 7 shows the evaluation results for 7 STS tasks. The Siamese-

RvNN model significantly improves the results on all datasets except SICK-R.

Our model outperforms the previous best average Spearman’s correlation with

an improvement from 83.76 to 83.98, indicating that semantic annotation with

UCCA helps to learn better sentence embeddings than other models such as

SBERT (Reimers et al., 2019) that uses pre-trained BERT along with Siamese

and triple networks, and SimCSE (Gao et al., 2021), a simple contrastive sen-

tence embedding framework, which uses pre-trained BERT and ROBERTA with

an MLP layer that can generate sentence embeddings from either unlabeled or

labeled data. These two models use only pretrained language models to capture

sentence embeddings without using any semantic structure of the text.

Transfer Learning Task Results Table 8 shows the evaluation results of

the transfer learning tasks. Siamese-RvNN achieves the best performance in 2

out of 7 tasks. Although we were not able to outperform the state-of-the-art

results on average, we generally achieved competitive results compared to other

methods.

6. Conclusion

We propose two models for two subtasks, namely a self-attentive seman-

tic parser that uses both syntactic and semantic embeddings to learn UCCA

semantic-graphs, and Siamese Recursive Neural Network (Siamese-RvNN) to

generate semantically informed sentence embeddings using UCCA semantic-

graphs for the semantic textual similarity task. For the second task, we used

the parser model to generate UCCA representations. We obtained state-of-the-
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art semantic parsing results in English and German. We also observed that the

cross-lingual model performs better for low-resource languages. The results for

the French are remarkably better with the cross-lingual model.

Our proposed Siamese-RvNN model outperforms other sentence embedding

approaches on semantic textual similarity task. We also obtained competitive

results on transfer learning tasks.

In the future, we would like to investigate the contribution of phrases to the

STS task and perform both semantic parsing and sentence embeddings gener-

ation in multilingual setting. In addition, our semantic parsing models suggest

that further research in cross-lingual learning has the potential to lead to im-

provements in creating a dataset for languages without resources.
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