
Vol.:(0123456789)

SN Computer Science           (2022) 3:185  
https://doi.org/10.1007/s42979-022-01064-6

SN Computer Science

ORIGINAL RESEARCH

Recombination and Novelty in Neuroevolution: A Visual Analysis

Stefano Sarti1  · Jason Adair1  · Gabriela Ochoa1 

Received: 12 August 2021 / Accepted: 10 February 2022 
© The Author(s) 2022

Abstract
Neuroevolution has re-emerged as an active topic in the last few years. However, there is a lack of accessible tools to analyse, 
contrast and visualise the behaviour of neuroevolution systems. A variety of search strategies have been proposed such as 
Novelty search and Quality-Diversity search, but their impact on the evolutionary dynamics is not well understood. We pro-
pose using a data-driven, graph-based model, search trajectory networks (STNs) to analyse, visualise and directly contrast the 
behaviour of different neuroevolution search methods. Our analysis uses NEAT for solving maze problems with two search 
strategies: novelty-based and fitness-based, and including and excluding the crossover operator. We model and visualise 
the trajectories, contrasting and illuminating the behaviour of the studied neuroevolution variants. Our results confirm the 
advantages of novelty search in this setting, but challenge the usefulness of recombination.

Keywords Neuroevolution · NEAT · Algorithm analysis · Complex networks · Search trajectory networks · Novelty search · 
Recombination

Introduction

NeuroEvolution of Augmenting Topologies (NEAT) is one 
of the most influential algorithms for evolving the topol-
ogy and weights of neural networks. When proposed in 
2002 [32], NEAT provided solutions to the existing chal-
lenges of evolving complex topologies by facilitating the 
crossover between individuals of different sizes, adding new 
structure incrementally, and protecting innovations by spe-
ciation. NEAT is, therefore, a complex algorithmic system. 
Successful applications of NEAT include evolving neural 
network controllers for robots [29, 37], evolving both con-
trollers and morphology [3, 11], and evolving innovative 
video game content [12, 34]. Neuroevolution has also been 

used in biochemistry [9], geosciences [36], and to address 
open questions in natural evolution  [5].

Apart from standard statistical analysis and comparisons, 
there is a lack of accessible tools to analyse and visualise 
the dynamic behaviour of neuroevolution systems. Since 
neuroevolution traverses complex search spaces and solves 
complex tasks, we argue that analytical tools can help to 
improve our understanding and inform the design of better 
systems. In a recent study, Sarti and Ochoa [28] applied, 
for the first time, search trajectory networks (STNs) [20] 
to study neuroevolution. In [28], the behaviour of the clas-
sic NEAT algorithm with and without recombination was 
analysed on two simple benchmark functions: XOR and 
double-pole balancing. Contrary to what is reported in the 
original NEAT article [32], the analysis in [28] reveals that 
NEAT without crossover performs significantly better on 
the studied domains. The advantage of using recombination 
within NEAT is, therefore, not clear. Several studies report 
contrasting views on the role of recombination in NEAT, as 
discussed in detail in “Related Work”. Moreover, a recent 
systematic review of NEAT [25] urges for revisiting the roles 
of its various components and operators. Such studies are 
particularly relevant as NEAT-specific operators render it 
incompatible with many other evolutionary algorithms, and 
hence NEAT cannot always benefit from advancements in 
the field [14].

This article is part of the topical collection “Applications of 
bioinspired computing (to real world problems)” guest edited by 
Aniko Ekart, Pedro Castillo and Juanlu Jiménez-Laredo.
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The main goal of the present article is to extend the anal-
ysis reported in [28] by incorporating a more challenging 
domain: maze navigation, and a successful neuroevolution 
strategy: novelty search. Our main contributions are to:

– Extend and generalise the application of STNs to model 
the dynamic NEAT algorithm variants on more complex 
domains.

– Explore the interplay between crossover and novelty as 
mechanisms for exploration and diversity in neuroevolu-
tion.

– Shed new light on the role of crossover in neuroevolution 
systems.

The rest of the article is organised as follows. The next 
section overviews related work covering both the role of 
crossover in NEAT and search trajectory networks. The third 
section describes the methodology, including the benchmark 
domain, the NEAT variants, and parameter values used. An 
analysis contrasting the performance of the NEAT variants 
is presented in the fourth section. The fifth section describes 
the STNs model and how it was adapted to deal with NEAT 
genomes, followed by a discussion of results derived from 
the STNs analysis. Finally, the last section summarises our 
main findings and suggest directions for future work.

Related Work

Neuroevolution of Augmenting Topologies (NEAT)

NEAT [32] is one of the earliest successful neuroevolution 
algorithms of the category known as Topology and Weight 
Evolving Artificial Neural Networks (TWEANN). To date, 
NEAT has been used successfully in diverse applications, 
spanning from dynamically evolving agents and content for 
video games [12, 34], generating complex musical composi-
tions [13], evolving reaction networks in synthetic biochemi-
cal systems [9], prediction in geosciences [36], generating 
trading signals for financial markets [18], and estimating the 
measurement of the top quark from the Tevatron particle 
collider [1].

The objective of this system is to simultaneously dis-
cover effective weight values and topologies for neural net-
works through evolutionary computation. When first intro-
duced [32], NEAT outperformed the best fixed-topology 
neuroevolution methods. It has since seeded many different 
variants [25], but the characteristics of the underlying algo-
rithm remain.

These characteristics include complexification, which 
allows the system to begin from a minimal topology, 
increasing in complexity based on the problem domain, 
while retaining the simplest solution that can solve the task. 

Speciation discretises the population into separate niches 
according to genetic distance (similarity between genomes) 
and the use of explicit fitness sharing. This protects inno-
vation and maintains diversity, avoiding the best perform-
ing solution to pervade the entire population, giving the 
opportunity for under-performing, yet interesting ones to 
evolve. Historical markings were introduced to overcome 
the problem of crossing over neural networks with similar 
topologies that compute the same function, but are differ-
ently organised [26].

Crossover (also known as genomes recombination) ena-
bles two highly performing genomes to produce an offspring 
which inherits important traits derived from both its parents. 
This is where historical markings allow the identification 
of matching and excess or disjoint genes. Matching genes 
are those that both parents have, whereas disjoint/excess 
are those that belong to just one of the parents. Matching 
genes are taken from the highest performing parent, the non-
matching ones are chosen at random.

This operator, although innovative in some ways, has 
often been acknowledged as a primary source for debate on 
its usefulness in the evolution of ANNs [2, 38]. The follow-
ing section provides an overview of the research specifically 
related to this operator.

The Role of Crossover in NEAT

NEAT consists of an encoding for neural networks with 
specialised operators to address the challenges of evolving 
increasingly complex topologies. The inclusion of historical 
markings in NEAT allowed the crossover operator to create 
valid offspring by identifying regions of each genome that 
were compatible. Each of these components was examined 
in a series of ablation experiments in Stanley and Miikku-
laine [32] and each was determined to not only increase the 
performance of NEAT, but are independent and necessary 
for its application [33]. It was noted, however, that the non-
mating NEAT, that is, NEAT without crossover, converged 
on the target fitness threshold significantly faster than the 
other ablation studies. This suggests that of all the operators, 
crossover contributes comparatively less.

These ablation experiments were performed again on a 
derivative of NEAT known as odNEAT [30], a decentral-
ised version of NEAT designed to facilitate online learning 
within groups of autonomous robots. When crossover was 
ablated, a small reduction in the number of successful runs 
was observed (in comparison to the other operator ablation 
experiments) but the average number of evaluations of each 
robot increased by 18.9%, further supporting the contribu-
tion of crossover in neuroevolution. This finding is further 
supported by the same authors in [31] where ablation of the 
crossover in odNEAT was found to have a larger detrimental 
effect than that of the ablation of speciation.
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These finding are not universal. NEAT was further com-
pared against EANT2 in Siebel and Sommer [29], where the 
authors use an evolution strategy to develop the topology of 
neural networks through reinforcement learning, and apply 
it to a task which controls robots in a visual surveying sce-
nario. While EANT2 is not a direct extension of NEAT, its 
operators are closely inspired by it: the authors note that they 
were not able to develop a crossover variant which contrib-
uted to the success of the algorithm.

Real et al. [27] proposed an algorithm to optimise the 
architectures of convolutional neural networks (CNNs). The 
architecture of each CNN was encoded as a graph with each 
of the vertices representing rank-3 tensors. Two of which 
encode the spatial coordinates of an underlying image, and 
the third is the number of channels. The operators applied 
in this evolutionary algorithm are again inspired by NEAT: 
while the mutation operators were demonstrated to be highly 
successful in the application, three variations on crossover 
failed to improve upon the results and were consequently 
discarded.

More recently, however, NEAT has been extended for use 
in deep neural networks. Costa et al. [6] proposed COEGAN 
which was based of the NEAT extension DeepNEAT [16]. 
In this work, they combine neuroevolution and coevolution 
to assist in the training of Generative Adversarial Networks. 
To create new offspring, they initially attempted to utilise 
both mutation and crossover operators. Their preliminary 
investigations discovered that the crossover operator led to 
the rapid saturation of the number of layers in the neural 
network, suggesting premature convergence.

The contributions of the crossover operator must be 
weighed up against the advantages of integration with more 
recent advancements in the field of search. Mouret and Don-
cieux [17] introduced a new variant of NSGA-II in which 
the encodings developed in NEAT are adapted for use with 
evolving neural network topologies. To achieve this, they 
were able to forego the crossover operator and achieve state-
of-the art results. In light of the recent advances in NEAT 
implementations that do not include a crossover operator, 
Papavasileiou et al. [25] suggest that it is prominent to begin 
revisiting the original ablation studies.

Search Trajectory Networks (STNs)

Search trajectory networks (STNs) are a data-driven, graph-
based model of search trajectories where nodes represent 
a given state of the search process and edges represent 
search progression between consecutive states. The STNs 
model was inspired by local optima networks (LONs) [22], 
which are a graph model of fitness landscapes where nodes 
are local optima and edges are transitions among optima 
with a given search operator. STNs differ from LONs in 
that the nodes represent states of the search process, not 

necessarily local optima, which generalises and extends the 
use of this graph-based model of search dynamics. Once a 
system is modelled as a graph (network) it can be visual-
ised and analysed with the plethora of powerful analytical 
and visualisation tools provided by the science of complex 
networks [19]. STNs were initially proposed to characterise 
differential evolution and particle swarm optimisation for 
several classical continuous optimisation benchmark func-
tions [21]. STN analysis was later extended to cover not only 
population-based algorithms but also stochastic local search 
methods, and both continuous and combinatorial optimisa-
tion problems [20].

Methodology

Benchmark Domain

We use the classic 2-D maze navigation domain outlined 
in [15]. The task involves an agent (robot) controlled by a 
neural network navigating a maze from a starting point to 
and end point, for a fixed number of time steps.

Agent’s sensors and actuators The agent architecture is 
presented in Fig. 1. The agent has six rangefinder sensors 
that indicate the distance to the nearest obstacle. These 
are rays (represented as arrows in Fig. 1) which originate 
from the centre of the agent and detect obstacles that are in 
close proximity, returning the distance to such obstacles. 
The four pie-slice radar sensors are known as the field of 
view (FOV) that orient the agent towards the goal (maze 
exit point). When the line from the goal location to the cen-
tre of the robot falls within these (FOV degrees are speci-
fied in Fig. 1), the specific radar sensor becomes activated. 

Fig. 1  Architecture of the maze-navigating agent. The agent is com-
prised of six rangefinder sensors for obstacles detection and four pie-
slice radar sensors acting as a compass to detect the goal orientation. 
Pie-slice labels indicate the degree range of the compass, and arrow 
labels indicate the rangefinder sensors positions, both in reference to 
the agent’s orientation. Illustration adapted from [24]
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The activation of the sensors are returned as inputs for the 
maze-navigating agent to compute behaviours and stored to 
represent the state of the agent at each simulation time steps.

The outputs computed by the ANN are relative to the 
available actions that the agent can take. There are two actu-
ators (actions) which relate to forces that either rotate and/
or propel the agent’s body. These correspond to changes in 
linear and/or angular velocity.

The maze domain is relevant for testing novelty search 
as it has a deceptive fitness landscape. The fitness function 
used in [15] is how close the agent is to the goal at the end 
of the maze navigation simulation. The navigation is made 
difficult as the maze has walls that form “culs-de-sac”. These 
dead ends that lead close to the goal are local optima to 
which an objective-based algorithm may converge. This is 
especially accentuated in the hard maze map (see Fig. 2b), 
where the local optima that can trap the search progress are 
highlighted in red. We used the two maps designed in [15], 
described as follows.

Medium Maze (low deception). Figure  2a shows the 
map for the medium maze. This configuration is of low to 
medium difficulty. The map presents areas of low deception 
that can be circumvented by the agent without major diffi-
culty. The path from the starting point (dark-grey dot) to the 
goal (yellow dot) is reasonably linear with a lower chance, 
as compared to the hard map, for the agent to get trapped in 
between walls.

Hard Maze (high deception). Figure 2b illustrates the hard 
maze configuration. This map is harder as the placement of 
the walls generate local minima (red-shaded circles) capa-
ble of trapping the search progress of agents traversing the 
maze. These areas of high deception are what most chal-
lenges the neuroevolution search strategies.

NEAT Variants

We contrast two NEAT variants, the standard fitness-based 
NEAT [32] versus Novelty search as proposed in [15]. For 
these two strategies, we consider the algorithms with and 

without the crossover operator. Therefore, our study con-
siders four NEAT variants that we name: Novelty_X, Nov-
elty_NoX, Fitness_X and Fitness_NoX. Representing novelty 
search with and without crossover, and fitness-based search 
with and without crossover, respectively.

Fitness‑Based Search

Standard evolutionary algorithms use a fitness function to 
guide the search process. The original NEAT variant was 
guided by a fitness function. In the maze domain, the fitness 
function measures the quality of an agent based on its prox-
imity to the goal at the end of the navigation task evaluation 
process:

Equation  1 is used to calculate the Euclidean distance 
between the agent’s simulated location with respect to the 
goal (exit point of the maze). L represents the specific root-
mean-squared error function used for the proximity evalua-
tion, where a denotes the position of the agent at the end of 
the simulation and b the location of the maze exit (expressed 
as 2-dimensional coordinates):

Using the above equation, it is possible to define the fit-
ness function as illustrated in Eq. 2. R exit refers to the radius 
(0.05) of the exit circumference, this is defined as the solu-
tion threshold, which in set to 0.95. Any resulting scores 
equal or exceeding this value will be returned as 1.0. In 
Eq. 3, the fitness function is normalised. D initdenotes the 
initial distance of the agent from the maze goal:

(1)L =

√√√√
2∑

i=1

(
ai − bi

)2
.

(2)F =

{
1.0 L <= R exit

Fn otherwise
.

(3)Fn =
L − D init

D init

.

Fig. 2  Maze navigation maps. 
In both maps, the dark-grey dot 
represents the starting position 
of the agent and the yellow 
dot represents the goal. In the 
hard maze, the landscape local 
optima are highlighted in red. 
Image adapted from [24]

(a) Medium map.
(b) Hard map.
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This way values are normalised to be in the rage of (0, 1]. In 
the case that the values negatively exceed this range, these 
will be adjusted and returned as 0.01. In summary, the closer 
an agent can approach the radius of the exit point, the higher 
will its scaled fitness be.

Novelty Search

This search strategy has been introduced in [15], an early 
publication which described the benefits of abandoning 
objectives in the pursuit of novelty. The authors specifically 
detailed the performance improvement of NEAT using this 
counter-intuitive strategy. Essentially, the idea is to define 
an objective function which uses the novelty of the agents’ 
behaviours as a metric of performance. Novelty, specific to 
NEAT, can either be considered structural (novelty in the 
ANNs topologies) or, as it is in our scenario, behavioural 
novelty (novelty of the ANNs explorative behaviours).

Differently from fitness search, the interest diverges from 
seeking the highest proximity to the exit point, for the objec-
tive of achieving solvers which exhibit diverse explorative 
behaviours. The aim is to drive the evolutionary process 
towards diversity and reward those actions that yield path 
towards new and unexplored locations of the domain. The 
hope is to evolve neurocontrollers capable of finding unfore-
seen tactics to escape the maze’s basins of attractions, ulti-
mately to identify the goal:

In this specific scenario, the performance of the genomes 
producing the neurocontrollers are calculated using the 
metric of sparseness. To do so, the implementation, derived 
from [24], similarly to [15], uses the k-nearest neighbours 
algorithm outlined in Eq. 4.

Increased sparseness is obtained by neurocontrollers 
capable of tracing exploratory trajectories (Cartesian coordi-
nates) towards least visited locations of the maze. Therefore, 
the novelty metric is determined by the distance between the 
two trajectory vectors (one for each compared agent). This 
sparseness assessment is achieved by comparing historical 
novelty items that are logged in a novelty archive and items 
generated from the current population. The resulting metric 
is used to assign the fitness of a given agent based on the 
novelty of its behaviours.

In Eq.  4, dist(x,�) is the novelty score denoting the 
behavioural difference between two agents, computed as 
the distance between the two trajectory vectors (one vector 
per agent; x and � ). Trajectory vectors, which are traced 
by agents, are comprised of bi-dimensional maze coordi-
nates of size n. xj and �j are the values of the compared 
vectors (x and � ) at position j. To simplify the calculation, 

(4)dist(x,�) =
1

n

n∑

j=n

|||xj − �j
|||.

in this implementation, only the agent’s trial end coordinates 
( j = n ) are considered as the coordinates of interest. This 
way we can determine the final position of the agent and, 
therefore, the distance to the goal.

Parameters

Table 1 outlines the parameters values used in our experi-
ments, we emulate the values used in [15]. All parameters, 
with the exception of the solver time steps, are identical for 
both maze maps. Similarly, the parameter values are the 
same for the four algorithm variants. The only difference 
between the crossover and no-crossover variants is the abla-
tion or removal of the crossover operator. The k parameter 
in the k-nearest neighbours algorithm is required for the 
sparseness calculation, necessary only for novelty search. 
The solver time steps had to be increased for the hard maze, 
as for this specific implementation [24], our tests have shown 
that 400 time steps were not a sufficient allowance to reach 
the goal in this map.

The coefficients c1, c2 and c3 are all NEAT-specific 
parameters. The first two relating to the excess and disjoint 
genes, and the last relating to the average weight differ-
ence of matching genes. This is a fundamental step in the 
algorithm to generate species; this similarity check reduces 
compatible genomes from the entire population into niches.

Table 1  NEAT parameter values used

The k parameter (k-nearest neighbours) is relevant only for the nov-
elty search variants

Parameter Value

Population size 250
Maximum generations 1000
Solver time steps (medium maze) 400
Solver time steps (hard maze) 600
Solution fitness value 1.00
Fitness threshold 0.95
Bias range [– 30, 30]
Weight range [– 30, 30]
c1 1
c2 1
c3 3
Probability add link 0.1
Probability add node 0.005
k (k-nearest neighbours) 16
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Performance Analysis

Experiments’ Setup

For each algorithm variant and maze map, 30 runs were 
executed with the parameter settings outlined in Table 1. 
For both maps, a genome with fitness 1.0 is considered to 
solve the maze. In other words, a run is successful if the 
best fitness achieved reaches a value of 1.00. To measure 
algorithm performance, we consider three metrics: (i) the 
success rate, which computes the ratio of runs reaching a 
solution, (ii) the best fitness attained at the end of the run, 
averaged over 30 runs and (iii) the number of generations to 
reach a solution for the successful runs, averaged over the 
number of successful runs for each variant. We also studied 
the distribution of values for the best fitness and the number 
of generations across the 30 runs.

Results and Discussion

Table 2 shows the performance metrics for the four algo-
rithm variants on the two maze maps. On both maps, novelty 
search produces higher success rates and average best fitness 
than fitness-based search, confirming the findings reported 
in [15]. The differences in the best fitness attained are statis-
tically significant ( p < 0.001 ) according to the Mann–Whit-
ney test. The variants contrasted in [15] all used crossover. 
Our comparison instead includes variants without crossover, 
so we can contrast the usefulness of this operator within both 
novelty search and fitness-based search.

On the medium map (left part of Table 2), we can see 
that Novelty_X and Novelty_NoX have the same success 
rate. However, the successful runs without crossover reach 
a solution much faster (fewer evaluations on average) than 
the crossover variant. This result is statistically significant 

( p < 0.01 ) according to the Mann–Whitney test. This sug-
gest that crossover hinders the search progress for novelty 
search. In contrast, fitness-based search on the medium map 
produces a higher success rate, higher best average fitness, 
and a lower number of evaluations to reach a solution when 
recombination is used. Therefore, crossover seems to be 
helpful for fitness-based NEAT, in this specific case. How-
ever, the differences in performance between Fitness_X and 
Fitness_NoX, are not statistically significant.

On the hard map (right part of Table 2), we can see that 
Novelty_NoX has a higher success rate than Novelty_X and 
reaches a higher fitness on average. This supports the sug-
gestion that crossover is not useful for novelty search and 
it hinders the performance. The difference in best fitness 
between Novelty_X and Novelty_NoX are statistically sig-
nificant ( p < 0.001 ). Fitness-based search on the hard maps 
fails to reach a solution for both variants (X and NoX). The 
success rate is zero, and the best fitness reached by all runs 
is consistently 0.7629, indicating that the search gets trapped 
in a local optimum. The number of generations each variant 
took to find this local optimum are not significantly different, 
indicating no tangible effect to the inclusion of crossover in 
this scenario. These results are, therefore, not useful for us to 
assess whether recombination can help fitness-based NEAT.

Figure 3a and b provides a visual comparison of the per-
formance achieved for all variants in each domain, that is 
the best performance averaged over the 30 runs executed. 
As outlined above, in the medium maze (Fig. 3a), the Nov-
elty_NoX variant visibly outperforms all other search strate-
gies in terms of speed to solution. As for the fitness quality, 
both novelty with and without recombination reach similar 
fitness values at the end of the iterations. Both variants of the 
fitness search strategy, on the other hand, reach sub-optimal 
fitness on average, with the variant with active recombina-
tion outperforming its counterpart both in terms of speed 

Table 2  Performance metrics

Best fitness and generations are mean values with standard deviations in parenthesis. Mean generations are computed for the successful runs 
only

Medium map Hard map

Crossover

Novelty_X Fitness_X Novelty_X Fitness_X

Success rate 86.67% (26 runs) 20.0% (6 runs) 3.33% (1 runs) 0.0% (0 runs)
Best fitness 0.9842 (0.0422) 0.9264 (0.0387) 0.77 (0.0437) 0.7629 (0.0)
Generations 422.54 (309.89) 417.67 (361.71) 623.0 (0.0) -

No Crossover

Novelty_NoX Fitness_NoX Novelty_NoX Fitness_NoX

Success rate 86.67% (26 runs) 6.67% (2 runs) 13.33% (4 runs) 0.0% (0 runs)
Best fitness 0.9857 (0.0376) 0.9109 (0.0324) 0.7933 (0.0855) 0.7629 (0.0)
Generations 265.38 (243.63) 583.0 (265.0) 719.75 (165.6) -
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and quality of solution. This finding highlights the benefit 
of active recombination in this specific scenario.

In Fig. 3b, we observe that predominantly, all variants 
and search strategies rapidly achieve a sub-optimal fitness 
in the region of 0.76. This rapid increase is followed by 
immediate stagnation around these values. The stagnation 
of fitness is due to the search process getting trapped in the 
first local minimum (second red area in the upper left-hand 
side of Fig. 2b).

Both variants of the objective function reach true stagna-
tion, without any visible oscillating behaviours as opposed 
to the novelty search variants. If we were to magnify the 
visualisation enough, we would be able to visibly perceive 
a very marginal difference in the two lines in favour of the 
Fitness_NoX variant. This being not enough to assume supe-
riority of this variant. From Fig. 3b, we can observe that 
the novelty variants start to diverge around halfway point. 
Novelty_NoX increases in performance while its counterpart 
does not vary. Eventually, Novelty_X begins to increase in 
average performance but never reaches the levels obtained 
by its ablated counterpart.

In Fig. 4, we provide a magnified version of the conver-
gence plot discussed above. In this visualisation we clearly 
appreciate the specific differences of the novelty search 
variants. We specifically observe that the beginning of the 
divergence in best average performance between the two 
variants happens approximately at generation 400 of 1000. 
Novelty_NoX increases steadily until generation 900 to a 
value of 0.80 of 1.00, to then proceed to adjust to lower 
levels (concluding approx. at 0.789). On the other hand, 
Novelty_X climbs slightly, to higher values and progresses 
steadily until generations endpoint.

To further corroborate our analysis of the solutions 
achieved in the hard map, we visualised the navigation paths 
of the best genome evolved by each NEAT variant out of 
the 30 runs. Figure 5 illustrates the exploratory paths in the 
Cartesian behavioural space, traced by the four NEAT vari-
ants. The illustration shows that both fitness-based NEAT 
variants (in blue) get trapped in the left dead-end; this is the 
local optimum that caused the stagnation seen in the con-
vergence plots. In contrast, the navigation paths of the two 
novelty search variants (in red) reach the goal (yellow dot). 
If we visually contrast the paths of Novetly_NoX (dark red) 
and Novelty_X (bright red), it appears that Novetly_NoX is 

(a) Medium Maze Domain (b) Hard Maze Domain

Fig. 3  Convergence plots representing the averaged fitness performance over 30 runs for all variants tested in the medium maze (a) and in the 
hard maze (b) domains

Fig. 4  Convergence plot representing the averaged fitness perfor-
mance over 30 runs for all variants tested in the hard maze domain. 
Specifically magnified to highlight salient differences in the novelty 
search strategy



 SN Computer Science           (2022) 3:185   185  Page 8 of 15

SN Computer Science

faster (more direct) in identifying the left turn required to 
reach the diagonal channel of the maze, and in identifying 
the goal (maze exit location).

To further analyse the distribution of the performance 
metrics for all NEAT variants, we produced violin plots for 
both the best fitness at the end of the run, and the number of 
generations to reach a solution. These results are discussed 

as follows first for the medium maze and then for the hard 
maze.

Medium Map

Figure 6 shows violin plots with the distribution of best fit-
ness values on the medium map and the four NEAT variants. 
Novelty search is shown at the left in two shades of red for 
the variants with and without crossover, while fitness-based 
search is shown on the right with two shades of blue. The 
individual 30 data points for each variant are also overlaid 
as black dots. The distributions clearly confirm that the final 
best fitness values for novelty search are considerably higher 
than those found by fitness-based search.

The two novelty search variants (X and NoX) (left plots 
in red, Fig. 6), show similar distributions, with Novelty_
NoX slightly skewed towards higher values and a tighter 
distribution. For fitness-based search, a higher concentra-
tion resides nearer higher values for the crossover variant 
crossover (bright blue).

Figure 7 shows violin plots with the distribution of the 
number of generations to reach a solution for all variants. 
The individual 30 data points for each variant are also over-
laid as black dots; when a solution is not reached within the 
maximum of 1000 generations the black dots appear above 
the dotted line. Here, lower values indicate better perfor-
mance, as they are indicative of a faster convergence. The 

Fig. 5  Navigation paths of the best genomes evolved by each NEAT 
variants

Fig. 6  Violin plots denoting the 
distribution of the best fitness 
values on the medium map for 
all NEAT variants. Overlaid, are 
swarm plots demonstrating the 
individual data points for each 
NEAT variant

Fig. 7  Violin plots denoting 
the distribution of the number 
of generations taken by each 
variant to reach a solution on 
the medium map. Overlaid 
are swarm plots showing the 
individual data points for each 
variant—points that lie above 
the dotted line represent runs 
that failed to reach a solution
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plot clearly indicates a faster convergence of the novelty 
variants as compared to the fitness-based variants.

For novelty search, the variant with no crossover (dark 
red, Fig. 7) shows a tighter distribution towards lower gen-
eration values than the variant with crossover (bright red), 
supporting that crossover slows down the progress for 
novelty search. The situation is reversed for fitness-based 
search, where the variant with crossover (light blue, Fig. 7) 
shows a tendency towards lower values. However, for the 
fitness variants, most runs are unsuccessful, as indicated by 
the majority of data points above the dotted line. Therefore, 
crossover seems to be of some use for fitness-based search 
on this maze, but this strategy is not competitive against 
novelty search.

Hard Map

Figure 8 shows violin plots with the distribution of best fit-
ness values on the medium map and the four NEAT variants. 
The distributions confirm again for this map that the final 
best fitness values for novelty search are higher than those 
found by fitness-based search. However, for both novelty and 
fitness-based search, the bulk of the distribution is around 
the local optimum with a fitness value of approximately 
0.76. Novelty search has a few points above (and below) 
this value, whereas for fitness-based search all the data 
points reach a fixed fitness corresponding the local optimum 

trapping the search process. Novelty search without crosso-
ver has a larger number of successful runs for this map, as 
compared to the variant with crossover.

In terms of the number of generations to reach a solution, 
Fig. 9 shows violin plots with the distributions for all NEAT 
variants. The individual 30 data points for each variant are 
also overlaid as black dots. We can see that all the runs were 
unsuccessful for the fitness-based variants on the right, as 
all the dots appear above the dotted line. For Novelty_X, 
only one run out of 30 was successful, whereas four Nov-
elty_NoX runs out 30 reached a solution, with a number of 
generations that varied from over 550 to almost 1000. These 
results seem to indicate that crossover can be detrimental for 
novelty search.

Search Trajectory Networks (STNs) Analysis

The original STN model definitions can be found in [20], we 
reproduce them here for completeness, and also introduce a 
model variation that we named compressed STNs (CSTNs). 
This compressed model is inspired by a similar idea applied 
to local optima networks [23], to deal with search spaces 
with a large amount of neutrality, that is, adjacent portions 
of the search space with the same fitness. Modelling neutral-
ity is relevant for NEAT, as it is well known that there are 
many ways to set neural network weights that instantiate the 

Fig. 8  Violin plots denoting the 
distribution of the best fitness 
values on the hard map for all 
NEAT variants. Overlaid are 
swarm plots demonstrating the 
individual data points for each 
NEAT variant

Fig. 9  Violin plots denoting the 
distribution of the number of 
generations taken by each vari-
ant to reach a solution on the 
hard map. Overlaid are swarm 
plots showing the individual 
data points for each variant—
points that lie above the dotted 
line represent runs that failed to 
reach a solution
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same behaviour, owing to function-preserving re-scaling of 
weights, permuting units or redundant mappings [35].

Definitions

To define a network model, we need to specify their nodes 
and edges. The relevant definitions are given as follows.

Representative solution is a solution to the problem (in this 
study, an evolved neural network) at a given iteration that 
represents the status of the search process. For population-
based algorithms such as NEAT, the solution with best fit-
ness in the population at a given iteration is chosen as the 
representative solution.

Location is a non-empty subset of solutions that results from 
a predefined mapping process. Each solution in the search 
space is mapped to one location. Several similar solutions 
are generally mapped to the same location, as the locations 
represent a partition of the search space. We use the proce-
dure for mapping NEAT genotypes to locations proposed 
in [28], summarised as follows “Mapping NEAT Genotypes 
to Locations” for completeness.

Search trajectory Given a sequence of representative solu-
tions in the order in which they are encountered during the 
search process, a search trajectory is defined as a sequence 
of locations formed by replacing each solution with its cor-
responding location.

Node is a location in a search trajectory of the search process 
being modelled. The set of nodes is denoted by N.

Edges Edges are directed and connect two consecutive 
locations in the search trajectory. Edges are weighted with 
the number of times a transition between two given nodes 
occurred during the process of sampling and constructing 
the STN. The set of edges is denoted by E.

Search Trajectory Network (STN) is a directed graph 
STN = (N,E) , with node set N, and edge set E as defined 
above.

Compressed Node is a node that aggregates a set of con-
nected nodes (a connected component) in the STN with the 
same fitness value. The set of compressed nodes is denoted 
by CN.

Compressed edges The set of edges is defined as above for 
the STN model. However, after compression, there are no 
edges between nodes with the same fitness, as connected 
components with the same fitness become a single node. The 
set of edges among compressed nodes are also aggregated 

and their weights summed. We call this set compressed 
edges, CE.

Compressed STN is the directed graph CSTN = (CN,CE) , 
where nodes are the compressed nodes CN and edges the 
compressed edge set CE.

Merged CSTN Once the CSTN models for a set of algo-
rithm–problem pairs are constructed, we can proceed to 
merge the CSTNs of different algorithms for a given prob-
lem. Let us assume we have two algorithms. The merged 
CSTN model of the two algorithms for a given problem is 
obtained by the graph union of the two individual graphs 
for that problem. The merged graph contains the nodes 
and edges that are present in at least one of the algorithm 
graphs. Attributes are kept for the nodes and edges indicat-
ing whether they were visited by both algorithms or by one 
of them only.

Mapping NEAT Genotypes to Locations

NEAT genotypes encode both topologies and connection 
weights and can grow or shrink through generations. To 
map NEAT genotypes to locations that serve as STNs nodes, 
in [28], we proposed using the Python object serialisation 
facilities. The idea is to serialise NEAT genomes and use the 
resulting byte streams as location signatures. Since the sig-
natures are unique and contain all the genotypic information, 
they provide a faithful representation for the STNs nodes.

Figure 10 details the mapping process. NEAT genotypes 
encode both neural network units and connections. Each unit 
has an identifying id (key) and a bias value. Each connec-
tion can be either enabled or disabled, and has a weight. 
This information is extracted and used to construct a pseudo-
phenotypical vector representation (NN representation in 
Fig. 10). The mapping is completed by passing this vector 
representation to the pickle.dumps function, which pro-
duces a flattened, compressed representation of the genotype 
as a byte stream.

Before the data are mapped, the numerical precision of 
the weights and bias values needs to be reduced. The goal is 
to partition the search space, and thus reduce the number of 
possible locations. This search space partitioning is funda-
mental for STNs modelling [20, 21] and allows manageable 
visual representations. In the experiments reported in this 
paper, the partition is achieved by rounding off to 1e − 0 
the numeric values in the genotype (weights and biases, as 
they are bounded in the range [– 30, 30], see Table 1), and 
to 1e − 2 for the fitness values.
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Sampling and Model Construction

The data to construct the models are gathered while the 
algorithm variants are running. Specifically, the required 
output from a run is a list of steps connecting two adjacent 
representative solutions in the search process. Each search 
step is stored as an entry in a log file containing the two con-
secutive representative solutions being linked with the step; 
these transitions become the edges of the network model. 
Once the data logs of a predefined number of runs of a given 
variant–problem pair are gathered, a post-processing maps’ 
solution to locations, aggregates all the locations and transi-
tions, and constructs a network object.

To extract the models, 9 out of the 30 independent runs 
were selected for each algorithm variant on the 2 maze prob-
lems. Specifically, for each variant and problem, we ranked 
the 30 runs (seeds) according to fitness and then took the 
top 3, the bottom 3, and 3 intermediate runs. The idea was 
to select a representative sample of the 30 runs. These runs 
were then repeated, now keeping logs of the search process.

Network Metrics and Visualisation

Once a system is modelled as a graph, many structural 
properties can be computed. The most basic metrics are the 
number of nodes and edges, but a variety of other metrics 
could be calculated; such as the degree distribution, length 
of paths, community structure, and centrality of nodes to 
name a few [19]. To keep things simple, in our approach, 
we use six network metrics to assess the structure of the 
trajectories, and thus bring insight into the behaviour of the 
search variants studied. These metrics are summarised in 
Table 3. It is worth noting that additional metrics could also 
be considered.

The justification of this selection of metrics is as follows. 
The total number of nodes, nodes, gives an idea of the 
amount of the search space that was explored. The number 
of nodes that reach the fitness target, solutions, indicates 
how many different locations solve the target problem. The 
ratio of the number of compressed nodes to the total number 
of nodes reflects the amount of neutrality in the explored 
space, that is, the proportion of adjacent solutions with the 

Fig. 10  Mapping NEAT genotypes to locations using Python object serialisation (pickle.dumps)

Table 3  Description of network 
metrics Nodes Number of nodes

Solutions Number of nodes that reach the desired fitness target
c-ratio Measures the relationship between the total number of nodes and the number of 

compressed nodes
w-edges Number of worsening edges
n-paths Number of shortest paths from start nodes to solution nodes in the CSTN
p-length Average lengths of the shortest paths from start nodes to solution nodes in the CSTN
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same fitness. The higher this value, the higher is the neutral-
ity. This metric is computed as follows: c-ratio = 1.0 − |CN|

|N|  . 
The number of worsening edges, i.e. edges that link a node 
with higher fitness to a node with lower fitness (w-edges), is 
indicative of the amount of non-greedy exploration during 
the search process. The last two metrics capture the number 
and length of the shortest paths from start nodes to solutions 
in the CSTNs, these metrics are indicative of the reachability 
of solutions. If no solution is achieved, these last two metrics 
are not defined.

Visualisation is a powerful tool that may allow us to 
appreciate structural features which can be difficult to infer 
from the network metrics alone. Node-edge diagrams, 
used here, are the most common visual representation of 
a network. Node-edge diagrams assign nodes to points in 
the 2-dimensional Euclidean space, and connect adjacent 
nodes by lines. For directed graphs, arrowheads are used to 
indicate the direction of connections. Nodes are then drawn 
on top of the edges using simple geometric shapes (such 
as circles or squares). Typically, the most important attrib-
utes of nodes and edges are assigned to visual properties 
(such as size and colour) of the shapes and lines. The graph 
visualisations in this paper were produced with the igraph 
library [7] of the R programming language. We considered 
force-directed layout algorithms [10], which strive to satisfy 
some generally accepted criteria, such as distributing the 
nodes evenly on the plane, minimising the number of edges 
crossing and keeping edges lengths approximately uniform.

Figure 11 illustrates the merged CSTNs for the two maze 
maps. Nodes and edges are decorated to highlight relevant 
features. Compressed node sizes are proportional to number 
of individual nodes (locations) they contain. The meaning 
of the node colours is indicated in the plots legend; the start 
of trajectories are represented as dark-grey squares, the end 
nodes reaching a solution as yellow circles, and the sub-
optimal end nodes as dark-grey triangles. The intermedi-
ate nodes and edges visited by each algorithm variant are 
coloured circles with the colour convention followed in 
“Performance Analysis”. When a node in the merged CSTN 

is visited by the two variants, it is visualised in light grey. 
Finally, bright green lines are used to highlight worsening 
edges, that is, edges that go from a location of higher fitness 
to a location of lower fitness. This is relevant to appreciate 
the explorative (non-greedy) dynamics of novelty search.

Note that the R scripts used for creating, visualising and 
analysing the STN models presented in this paper follow 
those provided on the STN GitHub repository.1

Results and Discussion

Table 4 shows the values of the network metrics described 
in Table 3 for the two mazes and the four algorithm variants. 
The following main observations can be gathered from these 
metrics:

– The number of nodes is consistently larger for novelty 
search compared to fitness search. This confirms the 
stronger explorative power of novelty search.

– Novelty search is also the strategy reaching a larger num-
ber of different solutions. Confirming the superiority of 
this approach for maze domains.

– Novelty search has a much larger number of worsening 
edges as compared to fitness search. This is consistent 
with the non-greedy exploration of novelty search.

– In novelty search, the no-crossover variant achieves a 
larger number of solutions on both mazes. Indeed, nov-
elty without crossover is the only strategy achieving mul-
tiple solutions in the hard maze, and in the medium maze, 
it has a larger number of paths to solutions and these 
paths are shorter on average. These findings challenge 
the usefulness of crossover in novelty search.

– In fitness search and the medium maze, the crossover 
variant produced a larger number of solutions and a 
larger number of paths to solutions than the variant with-
out crossover. Potentially suggesting that crossover can 
be useful as an exploration mechanism in fitness-based 

Table 4  Network metrics Medium maze Hard maze

Novelty Fitness Novelty Fitness

X NoX X NoX X NoX X NoX

Nodes 322 798 185 190 1523 1065 138 146
Solutions 48 520 39 2 1 12 0 0
c-ratio 0.20 0.66 0.48 0.50 0.09 0.09 0.81 0.77
w-edges 155 163 2 7 826 555 0 0
n-path 8 9 6 1 1 2 0 0
p-length 21.25 19.67 11.33 11.00 43 91 NA NA

1 https:// github. com/ gabro 8a/ STNs. git.

https://github.com/gabro8a/STNs.git
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search. More research is required as these results could 
not be confirmed on the hard maze, as fitness search 
failed to solve the most deceptive domain.

– In the large maze, the compressed ratio is very large for 
fitness search, indicating that the search traverses many 
different sub-optimal solutions with the same fitness. 
In contrast, this metric is rather low for novelty search, 
indicating that a wide diversity of candidate solutions is 
explored.

Figure 11 shows the merged CSTNs for the two maze 
maps. We merge the trajectories with and without crosso-
ver for both novelty-based search and fitness-based search. 
These illustrations reveal the following main observations, 
which complement what was observed in the metrics.

– Novelty search, Fig. 11a and c, shows longer trajecto-
ries than fitness search (in terms of number of nodes and 
edges) and the novelty search trajectories reveal a larger 
number of worsening (bright green) edges.

– Novelty search trajectories, Fig. 11a and c, reach a larger 
number of solution (yellow) nodes, which are of larger 
size.

– Novelty_NoX, dark-red trajectories in Figs. 11a and c, 
reach a higher number solutions (yellow nodes) which 
are of larger size, as compared to the crossover variant 
in bright red. The opposite happens with fitness search 
in the medium maze, Fig. 11b with the crossover variant 
in bright blue reaches a higher number of solutions than 
the no-crossover variant.

– For the hard maze, fitness search trajectories (Fig. 11d) 
are rather short, featuring from zero to a handful of 
edges. Moreover, all trajectories end in a sub-optimal 
location of large size (dark-grey triangles). This indicates 
that the trajectories quickly reach a local optimum, but 
many different neural networks produce the same sub-
optimal fitness.

Fig. 11  Merged CSTNs for 
fitness and novelty search on 
the two maze maps. Each sub-
figure merges the trajectories 
with and without crossover. The 
size of nodes is proportional to 
the number of locations in the 
compressed nodes
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Overarching Discussion

In this research, we examined the role of recombination 
in neuroevolution, with specific focus on the evolutionary 
dynamics between search gradients based on novelty versus 
fitness. In contrast to our previous research [28] where the 
problem domains were simple reinforcement learning bench-
marks, here we wanted to assess the applicability of STNs 
to different search strategies by assessing the usefulness of 
crossover in harder domains.

Due to the deceptive characteristics of the maze problem, 
reliance on the fitness gradient for search can be demon-
strably insufficient; requiring the use of novelty-based fit-
ness, and providing an ideal use-case for the advanced visual 
analysis and modelling technique: STNs. In [28], the perfor-
mance analysis and STNs analysis demonstrated similar, but 
complementary and independent findings. This suggested 
that STNs are applicable to NEAT and can offer an insight 
into its inner workings. This paper builds upon these find-
ings by demonstrating the value of the complementary, and 
different, information provided via STN analysis in neuro-
evolution. Both analyses are useful and can be performed 
in isolation.

While statistical analysis paints a comprehensive picture 
of the performance behaviour of the evaluated variants, 
performing just this type of analysis could have suggested 
that fundamentally different solutions were similar, simply 
because they achieved similar results. Contrary to this, the 
STN analysis drills down into the genomes’ characteristics, 
presenting an accurate picture of the inherent optimisation 
search process—highlighting salient differences that are oth-
erwise missed by the statistics lens.

In summary, performance analysis is useful to highlight 
which algorithm or variant performs best in a particular set-
ting or whether the performance is comparably equal; STNs 
help further to identify “why” a specific solution is differ-
ent (or similar) from the perspective of the search space 
dynamics.

Conclusions

We analysed the role of crossover in the behaviour and per-
formance of fitness-based NEAT and novelty NEAT in the 
maze domain. We conducted both a standard comparative 
analysis and a search trajectory networks (STNs) analysis. 
To use STNs, we adapted the tool to incorporate complex 
neural genomes, and search spaces with large amounts of 
neutrality, as it is well known that there are many ways to set 
a neural network that instantiate the same behaviour.

Our results confirm the advantage of novelty search over 
fitness-based search in a deceptive domain such as evolving 

neural controllers for maze navigation. As for the role of 
crossover, it seems that it can help the search process for 
fitness-based search. The advantage of using of recombina-
tion is less clear when novelty search is used. Our findings 
on the maze navigation domain indicate that Novelty search 
without crossover is more effective at reaching good solu-
tions. Without recombination, a larger number of trajectories 
reach a successful neural network design, and they do so 
with shorter trajectories (shortest paths in the trajectory net-
work). However, the trajectories with recombination seem 
to explore more widely the search space, as indicated by the 
longer trajectories. Therefore, recombination brings addi-
tional population diversity which can potentially be useful 
in yet more complex domains. Recombination in evolution-
ary computation is generally useful as it can bring diversity 
without destroying good solution components. We argue, 
therefore, that the role of recombination within Novelty 
search deserves further investigation. In particular, the inter-
play between the diversity brought by the two mechanisms, 
novelty and recombination, is not yet well understood.

Future work will analyse search algorithms that hybridise 
novelty and fitness; it is now well known that both com-
ponents are required for effective neuroevolution, as the 
growing body of work in quality-diversity optimisation [4, 
8] indicates.
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