
Vol.:(0123456789)

SN Computer Science (2022) 3:185
https://doi.org/10.1007/s42979-022-01064-6

SN Computer Science

ORIGINAL RESEARCH

Recombination and Novelty in Neuroevolution: A Visual Analysis

Stefano Sarti1 · Jason Adair1 · Gabriela Ochoa1

Received: 12 August 2021 / Accepted: 10 February 2022
© The Author(s) 2022

Abstract
Neuroevolution has re-emerged as an active topic in the last few years. However, there is a lack of accessible tools to analyse,
contrast and visualise the behaviour of neuroevolution systems. A variety of search strategies have been proposed such as
Novelty search and Quality-Diversity search, but their impact on the evolutionary dynamics is not well understood. We pro-
pose using a data-driven, graph-based model, search trajectory networks (STNs) to analyse, visualise and directly contrast the
behaviour of different neuroevolution search methods. Our analysis uses NEAT for solving maze problems with two search
strategies: novelty-based and fitness-based, and including and excluding the crossover operator. We model and visualise
the trajectories, contrasting and illuminating the behaviour of the studied neuroevolution variants. Our results confirm the
advantages of novelty search in this setting, but challenge the usefulness of recombination.

Keywords Neuroevolution · NEAT · Algorithm analysis · Complex networks · Search trajectory networks · Novelty search ·
Recombination

Introduction

NeuroEvolution of Augmenting Topologies (NEAT) is one
of the most influential algorithms for evolving the topol-
ogy and weights of neural networks. When proposed in
2002 [32], NEAT provided solutions to the existing chal-
lenges of evolving complex topologies by facilitating the
crossover between individuals of different sizes, adding new
structure incrementally, and protecting innovations by spe-
ciation. NEAT is, therefore, a complex algorithmic system.
Successful applications of NEAT include evolving neural
network controllers for robots [29, 37], evolving both con-
trollers and morphology [3, 11], and evolving innovative
video game content [12, 34]. Neuroevolution has also been

used in biochemistry [9], geosciences [36], and to address
open questions in natural evolution [5].

Apart from standard statistical analysis and comparisons,
there is a lack of accessible tools to analyse and visualise
the dynamic behaviour of neuroevolution systems. Since
neuroevolution traverses complex search spaces and solves
complex tasks, we argue that analytical tools can help to
improve our understanding and inform the design of better
systems. In a recent study, Sarti and Ochoa [28] applied,
for the first time, search trajectory networks (STNs) [20]
to study neuroevolution. In [28], the behaviour of the clas-
sic NEAT algorithm with and without recombination was
analysed on two simple benchmark functions: XOR and
double-pole balancing. Contrary to what is reported in the
original NEAT article [32], the analysis in [28] reveals that
NEAT without crossover performs significantly better on
the studied domains. The advantage of using recombination
within NEAT is, therefore, not clear. Several studies report
contrasting views on the role of recombination in NEAT, as
discussed in detail in “Related Work”. Moreover, a recent
systematic review of NEAT [25] urges for revisiting the roles
of its various components and operators. Such studies are
particularly relevant as NEAT-specific operators render it
incompatible with many other evolutionary algorithms, and
hence NEAT cannot always benefit from advancements in
the field [14].

This article is part of the topical collection “Applications of
bioinspired computing (to real world problems)” guest edited by
Aniko Ekart, Pedro Castillo and Juanlu Jiménez-Laredo.

 * Stefano Sarti
 stefano.sarti@stir.ac.uk

 Jason Adair
 jason.adair@stir.ac.uk

 Gabriela Ochoa
 gabriela.ochoa@stir.ac.uk

1 University of Stirling, Stirling, Scotland

http://orcid.org/0000-0002-1780-2259
http://orcid.org/0000-0003-0198-9095
http://orcid.org/0000-0001-7649-5669
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01064-6&domain=pdf

 SN Computer Science (2022) 3:185 185 Page 2 of 15

SN Computer Science

The main goal of the present article is to extend the anal-
ysis reported in [28] by incorporating a more challenging
domain: maze navigation, and a successful neuroevolution
strategy: novelty search. Our main contributions are to:

– Extend and generalise the application of STNs to model
the dynamic NEAT algorithm variants on more complex
domains.

– Explore the interplay between crossover and novelty as
mechanisms for exploration and diversity in neuroevolu-
tion.

– Shed new light on the role of crossover in neuroevolution
systems.

The rest of the article is organised as follows. The next
section overviews related work covering both the role of
crossover in NEAT and search trajectory networks. The third
section describes the methodology, including the benchmark
domain, the NEAT variants, and parameter values used. An
analysis contrasting the performance of the NEAT variants
is presented in the fourth section. The fifth section describes
the STNs model and how it was adapted to deal with NEAT
genomes, followed by a discussion of results derived from
the STNs analysis. Finally, the last section summarises our
main findings and suggest directions for future work.

Related Work

Neuroevolution of Augmenting Topologies (NEAT)

NEAT [32] is one of the earliest successful neuroevolution
algorithms of the category known as Topology and Weight
Evolving Artificial Neural Networks (TWEANN). To date,
NEAT has been used successfully in diverse applications,
spanning from dynamically evolving agents and content for
video games [12, 34], generating complex musical composi-
tions [13], evolving reaction networks in synthetic biochemi-
cal systems [9], prediction in geosciences [36], generating
trading signals for financial markets [18], and estimating the
measurement of the top quark from the Tevatron particle
collider [1].

The objective of this system is to simultaneously dis-
cover effective weight values and topologies for neural net-
works through evolutionary computation. When first intro-
duced [32], NEAT outperformed the best fixed-topology
neuroevolution methods. It has since seeded many different
variants [25], but the characteristics of the underlying algo-
rithm remain.

These characteristics include complexification, which
allows the system to begin from a minimal topology,
increasing in complexity based on the problem domain,
while retaining the simplest solution that can solve the task.

Speciation discretises the population into separate niches
according to genetic distance (similarity between genomes)
and the use of explicit fitness sharing. This protects inno-
vation and maintains diversity, avoiding the best perform-
ing solution to pervade the entire population, giving the
opportunity for under-performing, yet interesting ones to
evolve. Historical markings were introduced to overcome
the problem of crossing over neural networks with similar
topologies that compute the same function, but are differ-
ently organised [26].

Crossover (also known as genomes recombination) ena-
bles two highly performing genomes to produce an offspring
which inherits important traits derived from both its parents.
This is where historical markings allow the identification
of matching and excess or disjoint genes. Matching genes
are those that both parents have, whereas disjoint/excess
are those that belong to just one of the parents. Matching
genes are taken from the highest performing parent, the non-
matching ones are chosen at random.

This operator, although innovative in some ways, has
often been acknowledged as a primary source for debate on
its usefulness in the evolution of ANNs [2, 38]. The follow-
ing section provides an overview of the research specifically
related to this operator.

The Role of Crossover in NEAT

NEAT consists of an encoding for neural networks with
specialised operators to address the challenges of evolving
increasingly complex topologies. The inclusion of historical
markings in NEAT allowed the crossover operator to create
valid offspring by identifying regions of each genome that
were compatible. Each of these components was examined
in a series of ablation experiments in Stanley and Miikku-
laine [32] and each was determined to not only increase the
performance of NEAT, but are independent and necessary
for its application [33]. It was noted, however, that the non-
mating NEAT, that is, NEAT without crossover, converged
on the target fitness threshold significantly faster than the
other ablation studies. This suggests that of all the operators,
crossover contributes comparatively less.

These ablation experiments were performed again on a
derivative of NEAT known as odNEAT [30], a decentral-
ised version of NEAT designed to facilitate online learning
within groups of autonomous robots. When crossover was
ablated, a small reduction in the number of successful runs
was observed (in comparison to the other operator ablation
experiments) but the average number of evaluations of each
robot increased by 18.9%, further supporting the contribu-
tion of crossover in neuroevolution. This finding is further
supported by the same authors in [31] where ablation of the
crossover in odNEAT was found to have a larger detrimental
effect than that of the ablation of speciation.

SN Computer Science (2022) 3:185 Page 3 of 15 185

SN Computer Science

These finding are not universal. NEAT was further com-
pared against EANT2 in Siebel and Sommer [29], where the
authors use an evolution strategy to develop the topology of
neural networks through reinforcement learning, and apply
it to a task which controls robots in a visual surveying sce-
nario. While EANT2 is not a direct extension of NEAT, its
operators are closely inspired by it: the authors note that they
were not able to develop a crossover variant which contrib-
uted to the success of the algorithm.

Real et al. [27] proposed an algorithm to optimise the
architectures of convolutional neural networks (CNNs). The
architecture of each CNN was encoded as a graph with each
of the vertices representing rank-3 tensors. Two of which
encode the spatial coordinates of an underlying image, and
the third is the number of channels. The operators applied
in this evolutionary algorithm are again inspired by NEAT:
while the mutation operators were demonstrated to be highly
successful in the application, three variations on crossover
failed to improve upon the results and were consequently
discarded.

More recently, however, NEAT has been extended for use
in deep neural networks. Costa et al. [6] proposed COEGAN
which was based of the NEAT extension DeepNEAT [16].
In this work, they combine neuroevolution and coevolution
to assist in the training of Generative Adversarial Networks.
To create new offspring, they initially attempted to utilise
both mutation and crossover operators. Their preliminary
investigations discovered that the crossover operator led to
the rapid saturation of the number of layers in the neural
network, suggesting premature convergence.

The contributions of the crossover operator must be
weighed up against the advantages of integration with more
recent advancements in the field of search. Mouret and Don-
cieux [17] introduced a new variant of NSGA-II in which
the encodings developed in NEAT are adapted for use with
evolving neural network topologies. To achieve this, they
were able to forego the crossover operator and achieve state-
of-the art results. In light of the recent advances in NEAT
implementations that do not include a crossover operator,
Papavasileiou et al. [25] suggest that it is prominent to begin
revisiting the original ablation studies.

Search Trajectory Networks (STNs)

Search trajectory networks (STNs) are a data-driven, graph-
based model of search trajectories where nodes represent
a given state of the search process and edges represent
search progression between consecutive states. The STNs
model was inspired by local optima networks (LONs) [22],
which are a graph model of fitness landscapes where nodes
are local optima and edges are transitions among optima
with a given search operator. STNs differ from LONs in
that the nodes represent states of the search process, not

necessarily local optima, which generalises and extends the
use of this graph-based model of search dynamics. Once a
system is modelled as a graph (network) it can be visual-
ised and analysed with the plethora of powerful analytical
and visualisation tools provided by the science of complex
networks [19]. STNs were initially proposed to characterise
differential evolution and particle swarm optimisation for
several classical continuous optimisation benchmark func-
tions [21]. STN analysis was later extended to cover not only
population-based algorithms but also stochastic local search
methods, and both continuous and combinatorial optimisa-
tion problems [20].

Methodology

Benchmark Domain

We use the classic 2-D maze navigation domain outlined
in [15]. The task involves an agent (robot) controlled by a
neural network navigating a maze from a starting point to
and end point, for a fixed number of time steps.

Agent’s sensors and actuators The agent architecture is
presented in Fig. 1. The agent has six rangefinder sensors
that indicate the distance to the nearest obstacle. These
are rays (represented as arrows in Fig. 1) which originate
from the centre of the agent and detect obstacles that are in
close proximity, returning the distance to such obstacles.
The four pie-slice radar sensors are known as the field of
view (FOV) that orient the agent towards the goal (maze
exit point). When the line from the goal location to the cen-
tre of the robot falls within these (FOV degrees are speci-
fied in Fig. 1), the specific radar sensor becomes activated.

Fig. 1 Architecture of the maze-navigating agent. The agent is com-
prised of six rangefinder sensors for obstacles detection and four pie-
slice radar sensors acting as a compass to detect the goal orientation.
Pie-slice labels indicate the degree range of the compass, and arrow
labels indicate the rangefinder sensors positions, both in reference to
the agent’s orientation. Illustration adapted from [24]

 SN Computer Science (2022) 3:185 185 Page 4 of 15

SN Computer Science

The activation of the sensors are returned as inputs for the
maze-navigating agent to compute behaviours and stored to
represent the state of the agent at each simulation time steps.

The outputs computed by the ANN are relative to the
available actions that the agent can take. There are two actu-
ators (actions) which relate to forces that either rotate and/
or propel the agent’s body. These correspond to changes in
linear and/or angular velocity.

The maze domain is relevant for testing novelty search
as it has a deceptive fitness landscape. The fitness function
used in [15] is how close the agent is to the goal at the end
of the maze navigation simulation. The navigation is made
difficult as the maze has walls that form “culs-de-sac”. These
dead ends that lead close to the goal are local optima to
which an objective-based algorithm may converge. This is
especially accentuated in the hard maze map (see Fig. 2b),
where the local optima that can trap the search progress are
highlighted in red. We used the two maps designed in [15],
described as follows.

Medium Maze (low deception). Figure 2a shows the
map for the medium maze. This configuration is of low to
medium difficulty. The map presents areas of low deception
that can be circumvented by the agent without major diffi-
culty. The path from the starting point (dark-grey dot) to the
goal (yellow dot) is reasonably linear with a lower chance,
as compared to the hard map, for the agent to get trapped in
between walls.

Hard Maze (high deception). Figure 2b illustrates the hard
maze configuration. This map is harder as the placement of
the walls generate local minima (red-shaded circles) capa-
ble of trapping the search progress of agents traversing the
maze. These areas of high deception are what most chal-
lenges the neuroevolution search strategies.

NEAT Variants

We contrast two NEAT variants, the standard fitness-based
NEAT [32] versus Novelty search as proposed in [15]. For
these two strategies, we consider the algorithms with and

without the crossover operator. Therefore, our study con-
siders four NEAT variants that we name: Novelty_X, Nov-
elty_NoX, Fitness_X and Fitness_NoX. Representing novelty
search with and without crossover, and fitness-based search
with and without crossover, respectively.

Fitness‑Based Search

Standard evolutionary algorithms use a fitness function to
guide the search process. The original NEAT variant was
guided by a fitness function. In the maze domain, the fitness
function measures the quality of an agent based on its prox-
imity to the goal at the end of the navigation task evaluation
process:

Equation 1 is used to calculate the Euclidean distance
between the agent’s simulated location with respect to the
goal (exit point of the maze). L represents the specific root-
mean-squared error function used for the proximity evalua-
tion, where a denotes the position of the agent at the end of
the simulation and b the location of the maze exit (expressed
as 2-dimensional coordinates):

Using the above equation, it is possible to define the fit-
ness function as illustrated in Eq. 2. R exit refers to the radius
(0.05) of the exit circumference, this is defined as the solu-
tion threshold, which in set to 0.95. Any resulting scores
equal or exceeding this value will be returned as 1.0. In
Eq. 3, the fitness function is normalised. D initdenotes the
initial distance of the agent from the maze goal:

(1)L =

√√√√
2∑

i=1

(
ai − bi

)2
.

(2)F =

{
1.0 L <= R exit

Fn otherwise
.

(3)Fn =
L − D init

D init

.

Fig. 2 Maze navigation maps.
In both maps, the dark-grey dot
represents the starting position
of the agent and the yellow
dot represents the goal. In the
hard maze, the landscape local
optima are highlighted in red.
Image adapted from [24]

(a) Medium map.
(b) Hard map.

SN Computer Science (2022) 3:185 Page 5 of 15 185

SN Computer Science

This way values are normalised to be in the rage of (0, 1]. In
the case that the values negatively exceed this range, these
will be adjusted and returned as 0.01. In summary, the closer
an agent can approach the radius of the exit point, the higher
will its scaled fitness be.

Novelty Search

This search strategy has been introduced in [15], an early
publication which described the benefits of abandoning
objectives in the pursuit of novelty. The authors specifically
detailed the performance improvement of NEAT using this
counter-intuitive strategy. Essentially, the idea is to define
an objective function which uses the novelty of the agents’
behaviours as a metric of performance. Novelty, specific to
NEAT, can either be considered structural (novelty in the
ANNs topologies) or, as it is in our scenario, behavioural
novelty (novelty of the ANNs explorative behaviours).

Differently from fitness search, the interest diverges from
seeking the highest proximity to the exit point, for the objec-
tive of achieving solvers which exhibit diverse explorative
behaviours. The aim is to drive the evolutionary process
towards diversity and reward those actions that yield path
towards new and unexplored locations of the domain. The
hope is to evolve neurocontrollers capable of finding unfore-
seen tactics to escape the maze’s basins of attractions, ulti-
mately to identify the goal:

In this specific scenario, the performance of the genomes
producing the neurocontrollers are calculated using the
metric of sparseness. To do so, the implementation, derived
from [24], similarly to [15], uses the k-nearest neighbours
algorithm outlined in Eq. 4.

Increased sparseness is obtained by neurocontrollers
capable of tracing exploratory trajectories (Cartesian coordi-
nates) towards least visited locations of the maze. Therefore,
the novelty metric is determined by the distance between the
two trajectory vectors (one for each compared agent). This
sparseness assessment is achieved by comparing historical
novelty items that are logged in a novelty archive and items
generated from the current population. The resulting metric
is used to assign the fitness of a given agent based on the
novelty of its behaviours.

In Eq. 4, dist(x,�) is the novelty score denoting the
behavioural difference between two agents, computed as
the distance between the two trajectory vectors (one vector
per agent; x and �). Trajectory vectors, which are traced
by agents, are comprised of bi-dimensional maze coordi-
nates of size n. xj and �j are the values of the compared
vectors (x and �) at position j. To simplify the calculation,

(4)dist(x,�) =
1

n

n∑

j=n

|||xj − �j
|||.

in this implementation, only the agent’s trial end coordinates
(j = n) are considered as the coordinates of interest. This
way we can determine the final position of the agent and,
therefore, the distance to the goal.

Parameters

Table 1 outlines the parameters values used in our experi-
ments, we emulate the values used in [15]. All parameters,
with the exception of the solver time steps, are identical for
both maze maps. Similarly, the parameter values are the
same for the four algorithm variants. The only difference
between the crossover and no-crossover variants is the abla-
tion or removal of the crossover operator. The k parameter
in the k-nearest neighbours algorithm is required for the
sparseness calculation, necessary only for novelty search.
The solver time steps had to be increased for the hard maze,
as for this specific implementation [24], our tests have shown
that 400 time steps were not a sufficient allowance to reach
the goal in this map.

The coefficients c1, c2 and c3 are all NEAT-specific
parameters. The first two relating to the excess and disjoint
genes, and the last relating to the average weight differ-
ence of matching genes. This is a fundamental step in the
algorithm to generate species; this similarity check reduces
compatible genomes from the entire population into niches.

Table 1 NEAT parameter values used

The k parameter (k-nearest neighbours) is relevant only for the nov-
elty search variants

Parameter Value

Population size 250
Maximum generations 1000
Solver time steps (medium maze) 400
Solver time steps (hard maze) 600
Solution fitness value 1.00
Fitness threshold 0.95
Bias range [– 30, 30]
Weight range [– 30, 30]
c1 1
c2 1
c3 3
Probability add link 0.1
Probability add node 0.005
k (k-nearest neighbours) 16

 SN Computer Science (2022) 3:185 185 Page 6 of 15

SN Computer Science

Performance Analysis

Experiments’ Setup

For each algorithm variant and maze map, 30 runs were
executed with the parameter settings outlined in Table 1.
For both maps, a genome with fitness 1.0 is considered to
solve the maze. In other words, a run is successful if the
best fitness achieved reaches a value of 1.00. To measure
algorithm performance, we consider three metrics: (i) the
success rate, which computes the ratio of runs reaching a
solution, (ii) the best fitness attained at the end of the run,
averaged over 30 runs and (iii) the number of generations to
reach a solution for the successful runs, averaged over the
number of successful runs for each variant. We also studied
the distribution of values for the best fitness and the number
of generations across the 30 runs.

Results and Discussion

Table 2 shows the performance metrics for the four algo-
rithm variants on the two maze maps. On both maps, novelty
search produces higher success rates and average best fitness
than fitness-based search, confirming the findings reported
in [15]. The differences in the best fitness attained are statis-
tically significant (p < 0.001) according to the Mann–Whit-
ney test. The variants contrasted in [15] all used crossover.
Our comparison instead includes variants without crossover,
so we can contrast the usefulness of this operator within both
novelty search and fitness-based search.

On the medium map (left part of Table 2), we can see
that Novelty_X and Novelty_NoX have the same success
rate. However, the successful runs without crossover reach
a solution much faster (fewer evaluations on average) than
the crossover variant. This result is statistically significant

(p < 0.01) according to the Mann–Whitney test. This sug-
gest that crossover hinders the search progress for novelty
search. In contrast, fitness-based search on the medium map
produces a higher success rate, higher best average fitness,
and a lower number of evaluations to reach a solution when
recombination is used. Therefore, crossover seems to be
helpful for fitness-based NEAT, in this specific case. How-
ever, the differences in performance between Fitness_X and
Fitness_NoX, are not statistically significant.

On the hard map (right part of Table 2), we can see that
Novelty_NoX has a higher success rate than Novelty_X and
reaches a higher fitness on average. This supports the sug-
gestion that crossover is not useful for novelty search and
it hinders the performance. The difference in best fitness
between Novelty_X and Novelty_NoX are statistically sig-
nificant (p < 0.001). Fitness-based search on the hard maps
fails to reach a solution for both variants (X and NoX). The
success rate is zero, and the best fitness reached by all runs
is consistently 0.7629, indicating that the search gets trapped
in a local optimum. The number of generations each variant
took to find this local optimum are not significantly different,
indicating no tangible effect to the inclusion of crossover in
this scenario. These results are, therefore, not useful for us to
assess whether recombination can help fitness-based NEAT.

Figure 3a and b provides a visual comparison of the per-
formance achieved for all variants in each domain, that is
the best performance averaged over the 30 runs executed.
As outlined above, in the medium maze (Fig. 3a), the Nov-
elty_NoX variant visibly outperforms all other search strate-
gies in terms of speed to solution. As for the fitness quality,
both novelty with and without recombination reach similar
fitness values at the end of the iterations. Both variants of the
fitness search strategy, on the other hand, reach sub-optimal
fitness on average, with the variant with active recombina-
tion outperforming its counterpart both in terms of speed

Table 2 Performance metrics

Best fitness and generations are mean values with standard deviations in parenthesis. Mean generations are computed for the successful runs
only

Medium map Hard map

Crossover

Novelty_X Fitness_X Novelty_X Fitness_X

Success rate 86.67% (26 runs) 20.0% (6 runs) 3.33% (1 runs) 0.0% (0 runs)
Best fitness 0.9842 (0.0422) 0.9264 (0.0387) 0.77 (0.0437) 0.7629 (0.0)
Generations 422.54 (309.89) 417.67 (361.71) 623.0 (0.0) -

No Crossover

Novelty_NoX Fitness_NoX Novelty_NoX Fitness_NoX

Success rate 86.67% (26 runs) 6.67% (2 runs) 13.33% (4 runs) 0.0% (0 runs)
Best fitness 0.9857 (0.0376) 0.9109 (0.0324) 0.7933 (0.0855) 0.7629 (0.0)
Generations 265.38 (243.63) 583.0 (265.0) 719.75 (165.6) -

SN Computer Science (2022) 3:185 Page 7 of 15 185

SN Computer Science

and quality of solution. This finding highlights the benefit
of active recombination in this specific scenario.

In Fig. 3b, we observe that predominantly, all variants
and search strategies rapidly achieve a sub-optimal fitness
in the region of 0.76. This rapid increase is followed by
immediate stagnation around these values. The stagnation
of fitness is due to the search process getting trapped in the
first local minimum (second red area in the upper left-hand
side of Fig. 2b).

Both variants of the objective function reach true stagna-
tion, without any visible oscillating behaviours as opposed
to the novelty search variants. If we were to magnify the
visualisation enough, we would be able to visibly perceive
a very marginal difference in the two lines in favour of the
Fitness_NoX variant. This being not enough to assume supe-
riority of this variant. From Fig. 3b, we can observe that
the novelty variants start to diverge around halfway point.
Novelty_NoX increases in performance while its counterpart
does not vary. Eventually, Novelty_X begins to increase in
average performance but never reaches the levels obtained
by its ablated counterpart.

In Fig. 4, we provide a magnified version of the conver-
gence plot discussed above. In this visualisation we clearly
appreciate the specific differences of the novelty search
variants. We specifically observe that the beginning of the
divergence in best average performance between the two
variants happens approximately at generation 400 of 1000.
Novelty_NoX increases steadily until generation 900 to a
value of 0.80 of 1.00, to then proceed to adjust to lower
levels (concluding approx. at 0.789). On the other hand,
Novelty_X climbs slightly, to higher values and progresses
steadily until generations endpoint.

To further corroborate our analysis of the solutions
achieved in the hard map, we visualised the navigation paths
of the best genome evolved by each NEAT variant out of
the 30 runs. Figure 5 illustrates the exploratory paths in the
Cartesian behavioural space, traced by the four NEAT vari-
ants. The illustration shows that both fitness-based NEAT
variants (in blue) get trapped in the left dead-end; this is the
local optimum that caused the stagnation seen in the con-
vergence plots. In contrast, the navigation paths of the two
novelty search variants (in red) reach the goal (yellow dot).
If we visually contrast the paths of Novetly_NoX (dark red)
and Novelty_X (bright red), it appears that Novetly_NoX is

(a) Medium Maze Domain (b) Hard Maze Domain

Fig. 3 Convergence plots representing the averaged fitness performance over 30 runs for all variants tested in the medium maze (a) and in the
hard maze (b) domains

Fig. 4 Convergence plot representing the averaged fitness perfor-
mance over 30 runs for all variants tested in the hard maze domain.
Specifically magnified to highlight salient differences in the novelty
search strategy

 SN Computer Science (2022) 3:185 185 Page 8 of 15

SN Computer Science

faster (more direct) in identifying the left turn required to
reach the diagonal channel of the maze, and in identifying
the goal (maze exit location).

To further analyse the distribution of the performance
metrics for all NEAT variants, we produced violin plots for
both the best fitness at the end of the run, and the number of
generations to reach a solution. These results are discussed

as follows first for the medium maze and then for the hard
maze.

Medium Map

Figure 6 shows violin plots with the distribution of best fit-
ness values on the medium map and the four NEAT variants.
Novelty search is shown at the left in two shades of red for
the variants with and without crossover, while fitness-based
search is shown on the right with two shades of blue. The
individual 30 data points for each variant are also overlaid
as black dots. The distributions clearly confirm that the final
best fitness values for novelty search are considerably higher
than those found by fitness-based search.

The two novelty search variants (X and NoX) (left plots
in red, Fig. 6), show similar distributions, with Novelty_
NoX slightly skewed towards higher values and a tighter
distribution. For fitness-based search, a higher concentra-
tion resides nearer higher values for the crossover variant
crossover (bright blue).

Figure 7 shows violin plots with the distribution of the
number of generations to reach a solution for all variants.
The individual 30 data points for each variant are also over-
laid as black dots; when a solution is not reached within the
maximum of 1000 generations the black dots appear above
the dotted line. Here, lower values indicate better perfor-
mance, as they are indicative of a faster convergence. The

Fig. 5 Navigation paths of the best genomes evolved by each NEAT
variants

Fig. 6 Violin plots denoting the
distribution of the best fitness
values on the medium map for
all NEAT variants. Overlaid, are
swarm plots demonstrating the
individual data points for each
NEAT variant

Fig. 7 Violin plots denoting
the distribution of the number
of generations taken by each
variant to reach a solution on
the medium map. Overlaid
are swarm plots showing the
individual data points for each
variant—points that lie above
the dotted line represent runs
that failed to reach a solution

SN Computer Science (2022) 3:185 Page 9 of 15 185

SN Computer Science

plot clearly indicates a faster convergence of the novelty
variants as compared to the fitness-based variants.

For novelty search, the variant with no crossover (dark
red, Fig. 7) shows a tighter distribution towards lower gen-
eration values than the variant with crossover (bright red),
supporting that crossover slows down the progress for
novelty search. The situation is reversed for fitness-based
search, where the variant with crossover (light blue, Fig. 7)
shows a tendency towards lower values. However, for the
fitness variants, most runs are unsuccessful, as indicated by
the majority of data points above the dotted line. Therefore,
crossover seems to be of some use for fitness-based search
on this maze, but this strategy is not competitive against
novelty search.

Hard Map

Figure 8 shows violin plots with the distribution of best fit-
ness values on the medium map and the four NEAT variants.
The distributions confirm again for this map that the final
best fitness values for novelty search are higher than those
found by fitness-based search. However, for both novelty and
fitness-based search, the bulk of the distribution is around
the local optimum with a fitness value of approximately
0.76. Novelty search has a few points above (and below)
this value, whereas for fitness-based search all the data
points reach a fixed fitness corresponding the local optimum

trapping the search process. Novelty search without crosso-
ver has a larger number of successful runs for this map, as
compared to the variant with crossover.

In terms of the number of generations to reach a solution,
Fig. 9 shows violin plots with the distributions for all NEAT
variants. The individual 30 data points for each variant are
also overlaid as black dots. We can see that all the runs were
unsuccessful for the fitness-based variants on the right, as
all the dots appear above the dotted line. For Novelty_X,
only one run out of 30 was successful, whereas four Nov-
elty_NoX runs out 30 reached a solution, with a number of
generations that varied from over 550 to almost 1000. These
results seem to indicate that crossover can be detrimental for
novelty search.

Search Trajectory Networks (STNs) Analysis

The original STN model definitions can be found in [20], we
reproduce them here for completeness, and also introduce a
model variation that we named compressed STNs (CSTNs).
This compressed model is inspired by a similar idea applied
to local optima networks [23], to deal with search spaces
with a large amount of neutrality, that is, adjacent portions
of the search space with the same fitness. Modelling neutral-
ity is relevant for NEAT, as it is well known that there are
many ways to set neural network weights that instantiate the

Fig. 8 Violin plots denoting the
distribution of the best fitness
values on the hard map for all
NEAT variants. Overlaid are
swarm plots demonstrating the
individual data points for each
NEAT variant

Fig. 9 Violin plots denoting the
distribution of the number of
generations taken by each vari-
ant to reach a solution on the
hard map. Overlaid are swarm
plots showing the individual
data points for each variant—
points that lie above the dotted
line represent runs that failed to
reach a solution

 SN Computer Science (2022) 3:185 185 Page 10 of 15

SN Computer Science

same behaviour, owing to function-preserving re-scaling of
weights, permuting units or redundant mappings [35].

Definitions

To define a network model, we need to specify their nodes
and edges. The relevant definitions are given as follows.

Representative solution is a solution to the problem (in this
study, an evolved neural network) at a given iteration that
represents the status of the search process. For population-
based algorithms such as NEAT, the solution with best fit-
ness in the population at a given iteration is chosen as the
representative solution.

Location is a non-empty subset of solutions that results from
a predefined mapping process. Each solution in the search
space is mapped to one location. Several similar solutions
are generally mapped to the same location, as the locations
represent a partition of the search space. We use the proce-
dure for mapping NEAT genotypes to locations proposed
in [28], summarised as follows “Mapping NEAT Genotypes
to Locations” for completeness.

Search trajectory Given a sequence of representative solu-
tions in the order in which they are encountered during the
search process, a search trajectory is defined as a sequence
of locations formed by replacing each solution with its cor-
responding location.

Node is a location in a search trajectory of the search process
being modelled. The set of nodes is denoted by N.

Edges Edges are directed and connect two consecutive
locations in the search trajectory. Edges are weighted with
the number of times a transition between two given nodes
occurred during the process of sampling and constructing
the STN. The set of edges is denoted by E.

Search Trajectory Network (STN) is a directed graph
STN = (N,E) , with node set N, and edge set E as defined
above.

Compressed Node is a node that aggregates a set of con-
nected nodes (a connected component) in the STN with the
same fitness value. The set of compressed nodes is denoted
by CN.

Compressed edges The set of edges is defined as above for
the STN model. However, after compression, there are no
edges between nodes with the same fitness, as connected
components with the same fitness become a single node. The
set of edges among compressed nodes are also aggregated

and their weights summed. We call this set compressed
edges, CE.

Compressed STN is the directed graph CSTN = (CN,CE) ,
where nodes are the compressed nodes CN and edges the
compressed edge set CE.

Merged CSTN Once the CSTN models for a set of algo-
rithm–problem pairs are constructed, we can proceed to
merge the CSTNs of different algorithms for a given prob-
lem. Let us assume we have two algorithms. The merged
CSTN model of the two algorithms for a given problem is
obtained by the graph union of the two individual graphs
for that problem. The merged graph contains the nodes
and edges that are present in at least one of the algorithm
graphs. Attributes are kept for the nodes and edges indicat-
ing whether they were visited by both algorithms or by one
of them only.

Mapping NEAT Genotypes to Locations

NEAT genotypes encode both topologies and connection
weights and can grow or shrink through generations. To
map NEAT genotypes to locations that serve as STNs nodes,
in [28], we proposed using the Python object serialisation
facilities. The idea is to serialise NEAT genomes and use the
resulting byte streams as location signatures. Since the sig-
natures are unique and contain all the genotypic information,
they provide a faithful representation for the STNs nodes.

Figure 10 details the mapping process. NEAT genotypes
encode both neural network units and connections. Each unit
has an identifying id (key) and a bias value. Each connec-
tion can be either enabled or disabled, and has a weight.
This information is extracted and used to construct a pseudo-
phenotypical vector representation (NN representation in
Fig. 10). The mapping is completed by passing this vector
representation to the pickle.dumps function, which pro-
duces a flattened, compressed representation of the genotype
as a byte stream.

Before the data are mapped, the numerical precision of
the weights and bias values needs to be reduced. The goal is
to partition the search space, and thus reduce the number of
possible locations. This search space partitioning is funda-
mental for STNs modelling [20, 21] and allows manageable
visual representations. In the experiments reported in this
paper, the partition is achieved by rounding off to 1e − 0
the numeric values in the genotype (weights and biases, as
they are bounded in the range [– 30, 30], see Table 1), and
to 1e − 2 for the fitness values.

SN Computer Science (2022) 3:185 Page 11 of 15 185

SN Computer Science

Sampling and Model Construction

The data to construct the models are gathered while the
algorithm variants are running. Specifically, the required
output from a run is a list of steps connecting two adjacent
representative solutions in the search process. Each search
step is stored as an entry in a log file containing the two con-
secutive representative solutions being linked with the step;
these transitions become the edges of the network model.
Once the data logs of a predefined number of runs of a given
variant–problem pair are gathered, a post-processing maps’
solution to locations, aggregates all the locations and transi-
tions, and constructs a network object.

To extract the models, 9 out of the 30 independent runs
were selected for each algorithm variant on the 2 maze prob-
lems. Specifically, for each variant and problem, we ranked
the 30 runs (seeds) according to fitness and then took the
top 3, the bottom 3, and 3 intermediate runs. The idea was
to select a representative sample of the 30 runs. These runs
were then repeated, now keeping logs of the search process.

Network Metrics and Visualisation

Once a system is modelled as a graph, many structural
properties can be computed. The most basic metrics are the
number of nodes and edges, but a variety of other metrics
could be calculated; such as the degree distribution, length
of paths, community structure, and centrality of nodes to
name a few [19]. To keep things simple, in our approach,
we use six network metrics to assess the structure of the
trajectories, and thus bring insight into the behaviour of the
search variants studied. These metrics are summarised in
Table 3. It is worth noting that additional metrics could also
be considered.

The justification of this selection of metrics is as follows.
The total number of nodes, nodes, gives an idea of the
amount of the search space that was explored. The number
of nodes that reach the fitness target, solutions, indicates
how many different locations solve the target problem. The
ratio of the number of compressed nodes to the total number
of nodes reflects the amount of neutrality in the explored
space, that is, the proportion of adjacent solutions with the

Fig. 10 Mapping NEAT genotypes to locations using Python object serialisation (pickle.dumps)

Table 3 Description of network
metrics Nodes Number of nodes

Solutions Number of nodes that reach the desired fitness target
c-ratio Measures the relationship between the total number of nodes and the number of

compressed nodes
w-edges Number of worsening edges
n-paths Number of shortest paths from start nodes to solution nodes in the CSTN
p-length Average lengths of the shortest paths from start nodes to solution nodes in the CSTN

 SN Computer Science (2022) 3:185 185 Page 12 of 15

SN Computer Science

same fitness. The higher this value, the higher is the neutral-
ity. This metric is computed as follows: c-ratio = 1.0 − |CN|

|N| .
The number of worsening edges, i.e. edges that link a node
with higher fitness to a node with lower fitness (w-edges), is
indicative of the amount of non-greedy exploration during
the search process. The last two metrics capture the number
and length of the shortest paths from start nodes to solutions
in the CSTNs, these metrics are indicative of the reachability
of solutions. If no solution is achieved, these last two metrics
are not defined.

Visualisation is a powerful tool that may allow us to
appreciate structural features which can be difficult to infer
from the network metrics alone. Node-edge diagrams,
used here, are the most common visual representation of
a network. Node-edge diagrams assign nodes to points in
the 2-dimensional Euclidean space, and connect adjacent
nodes by lines. For directed graphs, arrowheads are used to
indicate the direction of connections. Nodes are then drawn
on top of the edges using simple geometric shapes (such
as circles or squares). Typically, the most important attrib-
utes of nodes and edges are assigned to visual properties
(such as size and colour) of the shapes and lines. The graph
visualisations in this paper were produced with the igraph
library [7] of the R programming language. We considered
force-directed layout algorithms [10], which strive to satisfy
some generally accepted criteria, such as distributing the
nodes evenly on the plane, minimising the number of edges
crossing and keeping edges lengths approximately uniform.

Figure 11 illustrates the merged CSTNs for the two maze
maps. Nodes and edges are decorated to highlight relevant
features. Compressed node sizes are proportional to number
of individual nodes (locations) they contain. The meaning
of the node colours is indicated in the plots legend; the start
of trajectories are represented as dark-grey squares, the end
nodes reaching a solution as yellow circles, and the sub-
optimal end nodes as dark-grey triangles. The intermedi-
ate nodes and edges visited by each algorithm variant are
coloured circles with the colour convention followed in
“Performance Analysis”. When a node in the merged CSTN

is visited by the two variants, it is visualised in light grey.
Finally, bright green lines are used to highlight worsening
edges, that is, edges that go from a location of higher fitness
to a location of lower fitness. This is relevant to appreciate
the explorative (non-greedy) dynamics of novelty search.

Note that the R scripts used for creating, visualising and
analysing the STN models presented in this paper follow
those provided on the STN GitHub repository.1

Results and Discussion

Table 4 shows the values of the network metrics described
in Table 3 for the two mazes and the four algorithm variants.
The following main observations can be gathered from these
metrics:

– The number of nodes is consistently larger for novelty
search compared to fitness search. This confirms the
stronger explorative power of novelty search.

– Novelty search is also the strategy reaching a larger num-
ber of different solutions. Confirming the superiority of
this approach for maze domains.

– Novelty search has a much larger number of worsening
edges as compared to fitness search. This is consistent
with the non-greedy exploration of novelty search.

– In novelty search, the no-crossover variant achieves a
larger number of solutions on both mazes. Indeed, nov-
elty without crossover is the only strategy achieving mul-
tiple solutions in the hard maze, and in the medium maze,
it has a larger number of paths to solutions and these
paths are shorter on average. These findings challenge
the usefulness of crossover in novelty search.

– In fitness search and the medium maze, the crossover
variant produced a larger number of solutions and a
larger number of paths to solutions than the variant with-
out crossover. Potentially suggesting that crossover can
be useful as an exploration mechanism in fitness-based

Table 4 Network metrics Medium maze Hard maze

Novelty Fitness Novelty Fitness

X NoX X NoX X NoX X NoX

Nodes 322 798 185 190 1523 1065 138 146
Solutions 48 520 39 2 1 12 0 0
c-ratio 0.20 0.66 0.48 0.50 0.09 0.09 0.81 0.77
w-edges 155 163 2 7 826 555 0 0
n-path 8 9 6 1 1 2 0 0
p-length 21.25 19.67 11.33 11.00 43 91 NA NA

1 https:// github. com/ gabro 8a/ STNs. git.

https://github.com/gabro8a/STNs.git

SN Computer Science (2022) 3:185 Page 13 of 15 185

SN Computer Science

search. More research is required as these results could
not be confirmed on the hard maze, as fitness search
failed to solve the most deceptive domain.

– In the large maze, the compressed ratio is very large for
fitness search, indicating that the search traverses many
different sub-optimal solutions with the same fitness.
In contrast, this metric is rather low for novelty search,
indicating that a wide diversity of candidate solutions is
explored.

Figure 11 shows the merged CSTNs for the two maze
maps. We merge the trajectories with and without crosso-
ver for both novelty-based search and fitness-based search.
These illustrations reveal the following main observations,
which complement what was observed in the metrics.

– Novelty search, Fig. 11a and c, shows longer trajecto-
ries than fitness search (in terms of number of nodes and
edges) and the novelty search trajectories reveal a larger
number of worsening (bright green) edges.

– Novelty search trajectories, Fig. 11a and c, reach a larger
number of solution (yellow) nodes, which are of larger
size.

– Novelty_NoX, dark-red trajectories in Figs. 11a and c,
reach a higher number solutions (yellow nodes) which
are of larger size, as compared to the crossover variant
in bright red. The opposite happens with fitness search
in the medium maze, Fig. 11b with the crossover variant
in bright blue reaches a higher number of solutions than
the no-crossover variant.

– For the hard maze, fitness search trajectories (Fig. 11d)
are rather short, featuring from zero to a handful of
edges. Moreover, all trajectories end in a sub-optimal
location of large size (dark-grey triangles). This indicates
that the trajectories quickly reach a local optimum, but
many different neural networks produce the same sub-
optimal fitness.

Fig. 11 Merged CSTNs for
fitness and novelty search on
the two maze maps. Each sub-
figure merges the trajectories
with and without crossover. The
size of nodes is proportional to
the number of locations in the
compressed nodes

Start
End
Solution
Shared
Novelty_NoX
Novelty_X
Worsening

(a) Novelty, medium map

Start
End
Solution
Shared
Fitness_NoX
Fitness_X
Worsening

(b) Fitness, medium map

Start
End
Solution
Shared
Novelty_NoX
Novelty_X
Worsening

(c) Novelty, hard map

Start
End
Solution
Shared
Fitness_NoX
Fitness_X
Worsening

(d) Fitness, hard map

 SN Computer Science (2022) 3:185 185 Page 14 of 15

SN Computer Science

Overarching Discussion

In this research, we examined the role of recombination
in neuroevolution, with specific focus on the evolutionary
dynamics between search gradients based on novelty versus
fitness. In contrast to our previous research [28] where the
problem domains were simple reinforcement learning bench-
marks, here we wanted to assess the applicability of STNs
to different search strategies by assessing the usefulness of
crossover in harder domains.

Due to the deceptive characteristics of the maze problem,
reliance on the fitness gradient for search can be demon-
strably insufficient; requiring the use of novelty-based fit-
ness, and providing an ideal use-case for the advanced visual
analysis and modelling technique: STNs. In [28], the perfor-
mance analysis and STNs analysis demonstrated similar, but
complementary and independent findings. This suggested
that STNs are applicable to NEAT and can offer an insight
into its inner workings. This paper builds upon these find-
ings by demonstrating the value of the complementary, and
different, information provided via STN analysis in neuro-
evolution. Both analyses are useful and can be performed
in isolation.

While statistical analysis paints a comprehensive picture
of the performance behaviour of the evaluated variants,
performing just this type of analysis could have suggested
that fundamentally different solutions were similar, simply
because they achieved similar results. Contrary to this, the
STN analysis drills down into the genomes’ characteristics,
presenting an accurate picture of the inherent optimisation
search process—highlighting salient differences that are oth-
erwise missed by the statistics lens.

In summary, performance analysis is useful to highlight
which algorithm or variant performs best in a particular set-
ting or whether the performance is comparably equal; STNs
help further to identify “why” a specific solution is differ-
ent (or similar) from the perspective of the search space
dynamics.

Conclusions

We analysed the role of crossover in the behaviour and per-
formance of fitness-based NEAT and novelty NEAT in the
maze domain. We conducted both a standard comparative
analysis and a search trajectory networks (STNs) analysis.
To use STNs, we adapted the tool to incorporate complex
neural genomes, and search spaces with large amounts of
neutrality, as it is well known that there are many ways to set
a neural network that instantiate the same behaviour.

Our results confirm the advantage of novelty search over
fitness-based search in a deceptive domain such as evolving

neural controllers for maze navigation. As for the role of
crossover, it seems that it can help the search process for
fitness-based search. The advantage of using of recombina-
tion is less clear when novelty search is used. Our findings
on the maze navigation domain indicate that Novelty search
without crossover is more effective at reaching good solu-
tions. Without recombination, a larger number of trajectories
reach a successful neural network design, and they do so
with shorter trajectories (shortest paths in the trajectory net-
work). However, the trajectories with recombination seem
to explore more widely the search space, as indicated by the
longer trajectories. Therefore, recombination brings addi-
tional population diversity which can potentially be useful
in yet more complex domains. Recombination in evolution-
ary computation is generally useful as it can bring diversity
without destroying good solution components. We argue,
therefore, that the role of recombination within Novelty
search deserves further investigation. In particular, the inter-
play between the diversity brought by the two mechanisms,
novelty and recombination, is not yet well understood.

Future work will analyse search algorithms that hybridise
novelty and fitness; it is now well known that both com-
ponents are required for effective neuroevolution, as the
growing body of work in quality-diversity optimisation [4,
8] indicates.

Declarations

 Conflict of Interest On behalf of all the authors, the corresponding
author states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Aaltonen T, Adelman J, Akimoto T, Albrow e.a. Measurement of
the top-quark mass with dilepton events selected using neuroevo-
lution at CDF. Phys Rev Lett. 2009;102(15):1–7. https:// doi. org/
10. 1103/ PhysR evLett. 102. 152001.

 2. Angeline PJ, Saunders GM, Pollack JB. An evolutionary algorithm
that constructs recurrent neural networks. IEEE Trans Neural Net-
works. 1994;5(1):54–65.

 3. Buchanan E, Le Goff LK, Li W, Hart E, Eiben AE, De Carlo M,
Winfield AF, Hale MF, Woolley R, Angus M, Timmis J, Tyrrell

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.102.152001
https://doi.org/10.1103/PhysRevLett.102.152001

SN Computer Science (2022) 3:185 Page 15 of 15 185

SN Computer Science

AM. Bootstrapping artificial evolution to design robots for autono-
mous fabrication. Robotics. 2020;9(4):1–24. https:// doi. org/ 10.
3390/ robot ics90 40106.

 4. Chatzilygeroudis K, Cully A, Vassiliades V, Mouret JB. Quality-
diversity optimization: a novel branch of stochastic optimization.
In: Black box optimization, machine learning, and no-free lunch
theorems. Springer; 2021. pp. 109–135.

 5. Clune J, Mouret JB, Lipson H. The evolutionary origins of modu-
larity. Proc R Soc B. 2013;280:20122863.

 6. Costa V, Lourenço N, Machado P. Coevolution of generative
adversarial networks. In: International conference on the appli-
cations of evolutionary computation (part of EvoStar). Springer;
2019. pp. 473–487.

 7. Csardi G, Nepusz T. The igraph software package for complex
network research. Inter J Complex Syst. 2006;1695(5):1–9.

 8. Cully A, Demiris Y. Quality and diversity optimization: a
unifying modular framework. IEEE Trans Evol Comput.
2018;22(2):245–59.

 9. Dinh H, Aubert N, Noman N, Fujii T, Rondelez Y, Iba H. An
effective method for evolving reaction networks in synthetic bio-
chemical systems. IEEE Trans Evol Comput. 2015;19(3):374–86.

 10. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed
placement. Softw Pract Exp. 1991;21(11):1129–64.

 11. Goff LKL, Buchanan E, Hart E, Eiben AE, Li W, De Carlo M,
Winfield AF, Hale MF, Woolley R, Angus M, Timmis J, Tyrrell
AM. Morpho-evolution with learning using a controller archive
as an inheritance mechanism. IEEE Trans Cogn Dev Syst. 2022.
https:// doi. org/ 10. 1109/ TCDS. 2022. 31485 43.

 12. Hastings E, Guha R, Stanley K. Automatic content generation in
the galactic arms race video game. IEEE Trans Comput Intell AI
Games. 2009;1(4):245–63.

 13. Hoover A, Stanley K. Exploiting functional relationships in musi-
cal composition. Connect Sci. 2009;21(2–3):227–51.

 14. Le Goff LK, Hart E, Coninx A, Doncieux S. On pros and cons of
evolving topologies with novelty search. The 2020 conference on
artificial life. 2020. https:// doi. org/ 10. 1162/ isal_a_ 00291.

 15. Lehman J, Stanley KO. Abandoning objectives: evolution through
the search for novelty alone. Evol Comput. 2011;19(2):189–222.
https:// doi. org/ 10. 1162/ EVCO_a_ 00025.

 16. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon
O, Raju B, Shahrzad H, Navruzyan A, Duffy N, et al. Evolving
deep neural networks. In: Artificial intelligence in the age of neu-
ral networks and brain computing. Elsevier; 2019. pp. 293–312.

 17. Mouret JB, Doncieux S. Encouraging behavioral diversity
in evolutionary robotics: an empirical study. Evol Comput.
2012;20(1):91–133.

 18. Nadkarni J, Ferreira Neves R. Combining neuroevolution and
principal component analysis to trade in the financial markets.
Expert Syst Appl. 2018;103:184–95.

 19. Newman MEJ. Networks: an introduction. Oxford: Oxford Uni-
versity Press; 2010.

 20. Ochoa G, Malan KM, Blum C. Search trajectory networks: a tool
for analysing and visualising the behaviour of metaheuristics.
Appl Soft Comput. 2021. https:// doi. org/ 10. 1016/j. asoc. 2021.
107492.

 21. Ochoa G, Malan KM, Blum C. Search trajectory networks of
population-based algorithms in continuous spaces. In: Castillo
PA, Jiménez Laredo JL, Fernández de Vega F, editors. Applica-
tions of evolutionary computation. EvoApplications 2020. Lecture
Notes in Computer Science, vol 12104. Cham: Springer. https://
doi. org/ 10. 1007/ 978-3- 030- 43722-0_5.

 22. Ochoa G, Tomassini M, Verel S, Darabos C. A study of NK
landscapes’ basins and local optima networks. In: GECCO '08:

Proceedings of the 10th annual conference on Genetic and evolu-
tionary computation. USA: Association for Computing Machin-
ery. 2008. https:// doi. org/ 10. 1145/ 13890 95. 13892 04

 23. Ochoa G, Veerapen N, Daolio F, Tomassini M. Understanding
phase transitions with local optima networks: Number partition-
ing as a case study. In: Evolutionary computation in combinato-
rial optimization, EvoCOP, Lecture Notes in Computer Science,
2017. vol. 10197, pp. 233–248. https:// doi. org/ 10. 1007/ 978-3-
319- 55453-2_ 16.

 24. Omelianenko I. Hands-on neuroevolution with python. Birming-
ham: Packt Publishing Limited; 2019.

 25. Papavasileiou E, Cornelis J, Jansen B. A systematic literature
review of the successors of “neuroevolution of augmenting topol-
ogies’’. Evol Comput. 2021;29(1):1–73.

 26. Radcliffe NJ. Genetic set recombination and its application to
neural network topology optimisation. Neural Comput Appl.
1993;1(1):67–90. https:// doi. org/ 10. 1007/ BF014 11376.

 27. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le QV,
Kurakin A. Large-scale evolution of image classifiers. In: Precup
D, Teh YW, editors. Proceedings of the 34th International Con-
ference onMachine Learning. Proceedings of Machine Learning
Research. PMLR; 2017. p. 2902–2911.

 28. Sarti S, Ochoa G. A NEAT visualisation of neuroevolution trajec-
tories. In: Applications of evolutionary computation, lecture notes
in computer science, vol. 12694. Springer; 2021. pp. 714–728.
https:// doi. org/ 10. 1007/ 978-3- 030- 72699-7_ 45.

 29. Siebel NT, Sommer G. Evolutionary reinforcement learn-
ing of artificial neural networks. Int J Hybrid Intell Syst.
2007;4(3):171–83.

 30. Silva F, Urbano P, Correia L, Christensen AL. odNEAT: an
algorithm for decentralised online evolution of robotic control-
lers. Evol Comput. 2015;23(3):421–49. https:// doi. org/ 10. 1162/
evco_a_ 00141.

 31. Silva F, Correia L, Christensen AL. Evolutionary online behav-
iour learning and adaptation in real robots. Roy Soc Open Sci.
2017;https:// doi. org/ 10. 1098/ rsos. 160938.

 32. Stanley KO, Miikkulainen R. Evolving neural networks through
augmenting topologies. Evol Comput. 2002;10(2):99–127.

 33. Stanley KO, Miikkulainen R. Competitive coevolution through
evolutionary complexification. J Artif Intell Res. 2004;21:63–100.

 34. Stanley K, Bryant B, Miikkulainen R. Real-time neuroevo-
lution in the nero video game. IEEE Trans Evol Comput.
2005;9(6):653–68.

 35. Stanley KO, Clune J, Lehman J, Miikkulainen R. Designing neural
networks through neuroevolution. Nat Mach Intell. 2019;2:24–35.

 36. Wang G, Cheng G, Carr T. The application of improved neuro-
evolution of augmenting topologies neural network in marcellus
shale lithofacies prediction. Comput Geosci. 2013;54:50–65.

 37. Wen R, Guo Z, Zhao T, Ma X, Wang Q, Wu Z. Neuroevolution
of augmenting topologies based musculor-skeletal arm neurocon-
troller. In: 2017 IEEE international instrumentation and measure-
ment technology conference (I2MTC), 2017; pp. 1–6. https:// doi.
org/ 10. 1109/ I2MTC. 2017. 79697 27.

 38. Yao X, Liu Y. Towards designing artificial neural networks by
evolution. Appl Math Comput 1998;9(1):83–90. https:// doi. org/
10. 1016/ S0096- 3003(97) 10005-4.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/robotics9040106
https://doi.org/10.3390/robotics9040106
https://doi.org/10.1109/TCDS.2022.3148543
https://doi.org/10.1162/isal_a_00291
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1016/j.asoc.2021.107492
https://doi.org/10.1016/j.asoc.2021.107492
https://doi.org/10.1007/978-3-030-43722-0_5
https://doi.org/10.1007/978-3-030-43722-0_5
https://doi.org/10.1145/1389095.1389204
https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/BF01411376
https://doi.org/10.1007/978-3-030-72699-7_45
https://doi.org/10.1162/evco_a_00141
https://doi.org/10.1162/evco_a_00141
https://doi.org/10.1098/rsos.160938
https://doi.org/10.1109/I2MTC.2017.7969727
https://doi.org/10.1109/I2MTC.2017.7969727
https://doi.org/10.1016/S0096-3003(97)10005-4
https://doi.org/10.1016/S0096-3003(97)10005-4

	Recombination and Novelty in Neuroevolution: A Visual Analysis
	Abstract
	Introduction
	Related Work
	Neuroevolution of Augmenting Topologies (NEAT)
	The Role of Crossover in NEAT
	Search Trajectory Networks (STNs)

	Methodology
	Benchmark Domain
	NEAT Variants
	Fitness-Based Search
	Novelty Search

	Parameters

	Performance Analysis
	Experiments’ Setup
	Results and Discussion
	Medium Map
	Hard Map

	Search Trajectory Networks (STNs) Analysis
	Definitions
	Mapping NEAT Genotypes to Locations
	Sampling and Model Construction
	Network Metrics and Visualisation
	Results and Discussion

	Overarching Discussion
	Conclusions
	References

