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Abstract: Circadian rhythms, characterized by approximately 24 h cycles, play a pivotal role in
enabling various organisms to synchronize their biological activities with daily variations. While
ubiquitous in Eukaryotes, circadian clocks remain exclusively characterized in Cyanobacteria among
Prokaryotes. These rhythms are regulated by a core oscillator, which is controlled by a cluster of three
genes: kaiA, kaiB, and kaiC. Interestingly, recent studies revealed rhythmic activities, potentially tied
to a circadian clock, in other Prokaryotes, including purple bacteria such as Rhodospirillum rubrum,
known for its applications in fuel and plastic bioproduction. However, the pivotal question of how
light and dark cycles influence protein dynamics and the expression of putative circadian clock genes
remains unexplored in purple non-sulfur bacteria. Unraveling the regulation of these molecular
clocks holds the key to unlocking optimal conditions for harnessing the biotechnological potential
of R. rubrum. Understanding how its proteome responds to different light regimes—whether under
continuous light or alternating light and dark cycles—could pave the way for precisely fine-tuning
bioproduction processes. Here, we report for the first time the expressed proteome of R. rubrum
grown under continuous light versus light and dark cycle conditions using a shotgun proteomic
analysis. In addition, we measured the impact of light regimes on the expression of four putative
circadian clock genes (kaiB1, kaiB2, kaiC1, kaiC2) at the transcriptional and translational levels using
RT-qPCR and targeted proteomic (MRM-MS), respectively. The data revealed significant effects of
light conditions on the overall differential regulation of the proteome, particularly during the early
growth stages. Notably, several proteins were found to be differentially regulated during the light or
dark period, thus impacting crucial biological processes such as energy conversion pathways and the
general stress response. Furthermore, our study unveiled distinct regulation of the four kai genes at
both the mRNA and protein levels in response to varying light conditions. Deciphering the impact
of the diel cycle on purple bacteria not only enhances our understanding of their ecology but also
holds promise for optimizing their applications in biotechnology, providing valuable insights into
the origin and evolution of prokaryotic clock mechanisms.

Keywords: circadian clock; diel cycle; kai operon; purple bacteria; proteomics

1. Introduction

Circadian clocks are endogenous biological mechanisms that synchronize a wide array
of biological processes oscillating with the diel cycle [1]. While ubiquitous in Eukaryotes,
circadian clocks were initially characterized solely in oxygenic photosynthetic bacteria,
specifically Cyanobacteria, among Prokaryotes [2,3]. The circadian clock of Synechococcus
elongatus, a model organism in the study of cyanobacterial circadian rhythms, relies on
Kai proteins (i.e., KaiA, KaiB, and KaiC), forming a core oscillator that synchronizes with
environmental signals and controls gene expression [4,5]. For a more in-depth under-
standing of the KaiABC oscillator’s functioning and its regulatory network, please refer
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to reviews Cohen & Golden [6]; Swan and colleagues [7]; Snijder & Axmann [8]. The
composition and functioning of Kai systems in Cyanobacteria exhibit significant variation,
albeit being less extensively documented [9]. For example, the globally distributed ma-
rine Prochlorococcus marinus features a simplified clock mechanism lacking KaiA [10]. In
contrast, Synechocystis sp. PCC 6803 encodes multiple Kai proteins, suggested to play a
role in fine-tuning the core oscillator [11–14]. Importantly, the presence of Kai proteins is
not exclusive to Cyanobacteria. Bioinformatic analyses have revealed that homologs of Kai
proteins are widespread in Prokaryotes and present in purple bacteria [9,15,16]. A recent
comprehensive review emphasizes the importance of circadian clocks in Prokaryotes and
their potential applications in various fields, including medical research, environmental
sciences, and biotechnology [17].

Evidence for circadian clocks in non-photosynthetic Prokaryotes has been limited,
despite the overwhelming evidence of the ubiquity of cyclic mechanisms in different
ecosystems. Recent investigations have unveiled circadian rhythms in Bacillus subtilis, a
non-photosynthetic bacterium, exhibiting a synchronized 24 h light or temperature cycles
with phase-specific characteristics of entrainment [18,19]. Interestingly, this bacterial species
does not harbor any Kai protein homologs. Similarly, the gastrointestinal bacterium Kleb-
siella aerogenes displayed an endogenously generated, temperature-compensated circadian
rhythm in swarming motility [20].

Rhythmic activities in purple non-sulfur bacteria harboring Kai homologs have been
reported in three species: Rhodopseudomonas palustris [21], Rhodobacter sphaeroides [22], and
Rhodospirillum rubrum [23]. Interestingly, purple non-sulfur bacteria also exhibit high
metabolic versatility and find applications in various biotechnological fields, including
bioproduction, biofertilization, and wastewater treatment [24].

In this study, we investigated the diel cycle response of the purple non-sulfur and
nitrogen fixating R. rubrum, which exhibits a highly versatile metabolism capable of both
photoautotrophic and heterotrophic growth [25]. This makes this bacterium particularly
interesting for biotechnological applications such as bioplastic and hydrogen fuel produc-
tion [26,27]. R. rubrum possesses two homologs of the circadian clock kaiB and kaiC genes
and one potential homolog of one of the gene kaiA of Synechocystis sp. PCC 6803 [14].
Interestingly, rhythmic activity of the uptake hydrogenase (Hup), an enzyme involved in
the consumption of H2, was reported using an enzyme assay [23]. The authors suggested
that the rhythmic hydrogenase activity could be involved in a mechanism coordinating the
energy metabolism in R. rubrum. However, information is still missing about the general
response and the expression of kai genes of R. rubrum under the diel cycle.

We conducted the first comprehensive molecular investigation to unveil the effects of
light regimes on both the proteome and kai gene expression in R. rubrum. We cultivated
R. rubrum under controlled light conditions using a phytotron, and subjected the bacterial
cultures to two distinct light exposures: continuous light exposure (LL) and a 12 h light–
dark cycle (LD). Using cutting-edge methodologies, we applied Shotgun Proteomics with
Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) analysis
to precisely capture dynamic fluctuations across the entire proteome. Furthermore, we
specifically examined the regulatory expression of the two kaiB and kaiC gene homologs
at both the transcriptional and translational levels, using reverse transcription quantita-
tive polymerase chain reaction (RT-qPCR) and multiple reaction monitoring (MRM-MS)
(Figure 1). This comprehensive molecular study, with implications for biotechnological
applications, not only enhances the understanding of R. rubrum’s molecular responses but
more broadly provides valuable insights into the molecular clock in Prokaryotes, especially
non-photosynthetic organisms.
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2. Results and Discussion
2.1. Impact of Light Conditions on R. rubrum Growth

The impact of the light and dark cycle on bacterial growth was negligible in the lag
phase and the early exponential phase (Figure 2). From 72 h, the optical density was
significantly higher under continuous light exposure and reached a final average maximum
of 3.16 ± 0.07 (LL) and 2.69 ± 0.09 (LD) (p-value = 0.002) (Figure 2). R. rubrum is a
facultative anaerobe capable of aerobic heterotrophic growth and anaerobic photosynthesis
growth [25]. In this experimental setup, heterotrophic growth was clearly favored as R.
rubrum was in the oxic condition. However, the color of the cultures in both LL and LD
conditions turned from whitish to reddish overtime, which suggests that photosynthesis
was progressively activated [28].
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Figure 2. Growth curves of R. rubrum under different light conditions. Growth curves were computed
based on optical density (OD, 680 nm). Light and dark phases in the LD condition are represented on
the time axis in yellow and grey, respectively. Significant differences between LL and LD samples are
shown with a ** (p-value ≤ 0.05) and were calculated with a t-test.

2.2. Proteomic Analysis of R. rubrum under the LD Cycle

For the first time, we present a comprehensive quantitative analysis of the entire
proteome during a 56 h growth period of R. rubrum under LL and LD conditions. A
total of 1901 unique proteins were identified, covering 50% of the predicted R. rubrum
proteome (3835 proteins). Non-supervised Pareto-PCA analysis revealed that the LL and
LD proteomes were mainly grouped based on the growth stages: (i) the lag phase proteomes
(LL: 48 h and 56 h, LD: 48 h); (ii) the early exponential phase proteomes (LL: 64 h, LD: 56 h
and 64 h); (iii) the mid exponential phase proteomes (LL and LD: 72 h); and (iv) the late
exponential phase proteomes (LL and LD: 80 h, 88 h, and 96 h) (Figure 3). In the earliest
stages (groups 1 and 2), an exception was noted where the LL and LD 56 h proteomes
exhibited distinct grouping. This observation suggests a differential proteome regulation
between LL and LD cultures during the early exponential phase (Figure 3).
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Figure 3. Non-supervised Pareto-PCA analysis of R. rubrum proteomes under different light con-
ditions. Scatter plot of the first two components PC1 (48.7%) and PC2 (8.0%). LD proteomes are
represented by orange-filled shapes with black outlines, while LL proteomes are represented by
yellow-filled shapes with orange outlines. Each shape represents a sampling time point (h: hours),
and ‘a’, ‘b’, and ‘c’ represent replicates.

2.2.1. Cyclic Protein Regulation

We investigated the up- and downregulated proteins in LL compared to LD conditions
for each sampling point. In total, 548 proteins were found to be significantly up- and/or
downregulated at one or more of the seven time points (Figure 4). The time point with the
highest number of regulated proteins was 56 h, featuring 97 upregulated and 149 down-
regulated proteins (Figure 4). This observation aligned with the PCA analysis, indicating
significant separation between LL 56 h and LD 56 h proteomes (Figure 3) LL downregulated
proteins were prevalent during the late exponential phase (80 h–96 h), suggesting upregu-
lation of these functions under LD conditions (Figure 4). To enhance the interpretation of
protein regulation, we categorized them into protein regulation profiles (Table S1). Most
proteins (i.e., 411) exhibited either up- or downregulation at a single time point, with only
20 proteins displaying a cyclic regulation profile (strictly up or downregulated over two
consecutive light or dark time points). This phenomenon may be attributed to the dynamic
fluctuations in proteome phenotype occurring throughout bacterial growth, independent
of light conditions (Figure 3).

Interestingly, we observed differential regulation of numerous transcriptional regula-
tory proteins depending on light conditions, particularly during time points corresponding
to dark phases in the LD condition (Table S2). These proteins were involved in various
biological processes such as carbohydrate metabolism, oxidative and metal stress response,
and virulence factors. While the process of genetic information transfer from DNA to
mRNA and then to proteins is well established, there are still significant gaps in our under-
standing of how modifications at each stage of gene expression can impact downstream
cellular activities [29]. This has potential implications for interpreting the impact of the light
and dark cycle on R. rubrum. While light–dark induced oscillations at the mRNA level are
well documented in clock-controlled Cyanobacteria such as Synechococcus or Prochlorococcus,
significant discrepancies between diel oscillations at mRNA and protein levels exist [30–32].
For instance, in S. elongatus, only 14% of its proteome displays LD oscillation [32], while
30% to 60% of the mRNA levels exhibit cyclic profiles [30,33].
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Figure 4. Up- and downregulated proteins in the LL condition compared to the LD condition in R.
rubrum. Network STRING analysis results are illustrated for each subset of up- and downregulated
proteins. The absence of illustration indicates that no significant functional enrichment was identified.
Light and dark phases in the LD condition are represented on the time axis in yellow and grey,
respectively.

2.2.2. Impact of Light Conditions on Biological Processes

To decipher the biological interactions and protein network of the differentially regu-
lated proteins, we used the STRING database [34] (Figure 4). Despite achieving satisfactory
proteome coverage for R. rubrum, we noted that 114 of the regulated proteins were anno-
tated with uncharacterized functions. Interestingly, these proteins were among the most
highly regulated across all proteomes, suggesting their potential involvement in various
biological processes discussed subsequently.

This analysis revealed that some of the up and downregulated proteins formed func-
tional networks (Figure 4). These functional groupings were observed during the cor-
responding dark phases in the LD condition and during the late growth phase. At the
beginning of the first dark phase (i.e., 56 h), ribosomal proteins, and proteins involved in
oxidative phosphorylation, protein export, and bacterial secretion system were enriched
among LL upregulated proteins. At the end of the first dark phase (i.e., 64 h), proteins
involved in transcription repair and organic solvent tolerance were enriched among LL
upregulated proteins. In the late growth phase (i.e., 96 h), ribosomal proteins and proteins
involved in electron transfer activity were enriched among LL downregulated proteins,
while proteins involved in miss-match repair system were enriched among LL upregulated
proteins. These results suggest that under the LL condition, R. rubrum faces higher stress,
inducing upregulation of repair systems. On the other hand, under LD conditions, R.
rubrum might have reduced its metabolic activity (protein synthesis/export and oxidative
phosphorylation) during the first dark period then increased it over the late growth phase.

Differential regulation of proteins involved in photosynthesis and oxygenic respiration
were observed over time under different light treatments. A total of 34 proteins were found
to be up/down regulated in LL compared to LD conditions (Table S3). These proteins were
involved in both respiratory and photochemical electron transport systems, photosynthesis
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reaction centers, bacteriochlorophyll biosynthesis, and ATP synthesis. While no clear
distinct metabolic pattern was observed between LL and LD conditions, proteins involved
in light-harvesting protein synthesis were upregulated under LD conditions in the early
growth phase (i.e., 48 h to 72 h). Under LL conditions, proteins involved in anoxygenic
respiration were overall upregulated in early growth and then downregulated in late
growth. Since the respiratory and the photochemical electron transport systems of R. rubrum
are associated [35], further investigation under strict photoautotrophic or heterotrophic
growth conditions should better reflect the potential impact of the diel cycle on the energetic
metabolism regulation of R. rubrum.

Stress-related proteins were also differentially regulated between LL and LD-grown R.
rubrum cultures (Table S4). The heat shock protein Hsp20, involved in the response to an
array of stresses, including hyperthermia, reactive oxygen species (ROS), or heavy metals
toxicity [36], was overall upregulated in LD cultures. In contrast, copper/zinc superox-
ide dismutase was found to be strongly upregulated at 56 h in LL conditions (FC: 4.33,
p-value = 0.04), correlating with the strong upregulation of NADH ubiquinone oxidore-
ductase at the same time in LL (FC: 4.85, p-value = 0.000095), a major source of ROS [37].
Moreover, we observed LL upregulated transcription repair systems (Figure 4), and a
strong upregulation of the SOS-response transcriptional repressor LexA in LL cultures (FC
(72 h): 3.89, p-value = 0.006, FC (80 h): 35.21, p-value = 0.00028). LexA is a DNA repair
system repressor, which is cleaved from DNA by RecA when DNA is damaged [38,39].
These results suggest that R. rubrum cultures maintained under LL conditions are exposed
to higher oxidative stress and light-induced damage when compared to LD cycles [26].

The nitrogen regulatory protein P-II was observed at one time point (i.e., 56 h) and
was strongly upregulated in the LD condition during the first dark phase (Table S5). This
observation refers to the only study presenting rhythmic activity of the uptake hydrogenase,
involved in the consumption of H2 produced by nitrogenase hydrogen [23]. Another small
subset of proteins associated with virus defense mechanism (e.g., CRISPR system) or host
integration factor were differentially regulated between LL and LD conditions (Table S5).
In the environment, viral infection was shown to follow a diel pattern, occurring during
the night [40]. We also observed four proteins involved in motility (i.e., flagellin) that were
upregulated during the dark periods, as well as chemotaxis-related proteins (Table S5).
Bacteria utilize motility and chemotaxis (i.e., regulation of motility towards chemical
attractants and away from chemical repellents) for optimal growth [41]. Interestingly, diel
motility patterns have been observed in the environment [42,43]. Additionally, in the
gastrointestinal bacterium Klebsiella aerogenes, an endogenously generated, temperature-
compensated circadian rhythm in swarming motility has been recently identified [20].

2.3. Kai Gene Expression

Interestingly, the four homologous circadian clock proteins, KaiB1, KaiB2, KaiC1 and
KaiC2, were all detected in the SWATH analyses of R. rubrum. However, only KaiC1 and
KaiC2 were found to be slightly differentially regulated at a single time point (i.e., 88 h)
(Table S5). We quantified the expression of the four kai gene homologs using both RT-qPCR
and targeted proteomic (Figures 5 and 6). Since measurements were conducted on samples
from two distinct experiments (Figure 1), direct comparisons were limited.

At the transcriptional level, the expression of kai mRNAs in R. rubrum cultures main-
tained under LL and LD conditions was markedly influenced by the light condition, exhibit-
ing significant fluctuations in relative abundance (Figure 5). In LL conditions, kaiB2 and
kaiC2 mRNAs were overexpressed and reached maximal abundances three and ten times
higher than in LD, respectively. In contrast, kaiB1 and kaiC1 were twice more expressed in
LD than in LL.
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Results were presented as a relative expression ratio of the targeted gene (kaiB1, kaiC1, kaiB2, or kaiC2)
genes versus a reference gene (16S rRNA) for each sample time, in comparison with the expression at
T0 (i.e., 48 h). Light and dark phases in the LD condition are represented on the time axis in yellow
and grey, respectively. Significant differences between LL and LD samples are shown with a * (p-value
≤ 0.1) or ** (p-value ≤ 0.05) and were calculated with a t-test.

At the translational level, the expression of Kai proteins under LD conditions showed
less variability than under LL conditions (Figure 6). Differences were primarily observed
in the late growth phase, where KaiC1, KaiB2, and KaiC2 proteins in LL displayed a higher
intensity compared to LD. In contrast, the intensity of LL KaiB1 was higher than LD KaiB1
until 64 h then remained similar.

While the current data do not allow us to provide definitive conclusions regarding
the rhythmic transcriptional or translational regulation of kai genes under light and dark
periods, they demonstrate that R. rubrum actively expresses these genes and that their
expression is influenced by light conditions at both mRNA and protein levels. The discrep-
ancy observed between RT-qPCR and MRM-MS results can be attributed to several factors,
including post-transcriptional and post-translational modifications, as well as differences
in experimental methodologies and inherent limitations of each technique.

Although in S. elongatus, kaiB and kaiC genes exhibit diel rhythmicity at both transcrip-
tional and translational levels [30,44], it is important to note that the primary regulation
of the Kai oscillator occurs at the post-translational level through a phosphorylation and
dephosphorylation cycle [6]. The role of Kai proteins in R. rubrum is still unknown and
their function might be related to a timing system that has yet to be identified. Upon
closer examination of the position of kai genes in the genome of R. rubrum, we observe that
kaiB2 and kaiC2 are preceded by the gene Rru_A3293, recently identified as an ortholog of
the kaiA3 gene in Synechocystis by Köbler and colleagues [14]. Further investigations into
the transcriptional and translational expression of kai gene homologs should incorporate
Rru_A3293 to provide a more comprehensive understanding of clock component regulation.
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Additionally, a more detailed analysis, such as phosphorylated peptide enrichment mass
spectrometry, could provide valuable insights into the potential regulation of the Kai oscil-
lator. In addition to phosphorylation, other factors such as protein stability, degradation
rates, and translational efficiency could contribute to the observed differences between
transcriptomic and proteomic profiles.
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Figure 6. Evolution of the relative abundance of kai mRNAs in R. rubrum depending on light condi-
tions. Light and dark phases in the LD condition are represented on the time axis in yellow and grey,
respectively. Significant differences between LL and LD samples are shown with a * (p-value ≤ 0.1) or
** (p-value ≤ 0.05) and were calculated with a t-test.

Moreover, it is worth noting that both kaiBC1 and kaiBC2 gene clusters are preceded
by a histidine kinase containing a PAS domain, namely Rru_A2544 and Rru_A3296, re-
spectively. In R. sphaeroides, a similar protein was identified in close proximity to the
N-terminal region of the kaiBC gene operon. R. sphaeroides exhibits a unique pattern
of gene expression controlled by oxygen levels (20.5 h under aerobic conditions and
10.6–12.7 h under anaerobic conditions), suggesting a potential role for the histidine kinase
protein in sensing oxygen and transducing redox signals to the central clock [22,45]. Thus,
it is conceivable that the time-keeping mechanism of R. rubrum may be influenced by
environmental factors other than light, similar to the role of oxygen in R. sphaeroides [22].
Given that purple bacteria coexist within diverse communities, including clock-controlled
organisms like Cyanobacteria, which rhythmically release organic compounds throughout
the day [46], primary production could emerge as another significant driver of rhythmicity
in purple bacteria [47]. Future investigations should delve into variations in light and other
physicochemical parameters to elucidate the multifaceted role of Kai proteins in R. rubrum.
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3. Materials and Methods
3.1. Bacterial Culture Conditions and Sampling

In this study, R. rubrum ATCC 11170 was grown in two independent experiences for
downstream RT-qPCR and proteomics analyses, respectively (Figure 1). In both experiences,
R. rubrum was plated on supplemented malate-ammonium medium (SMN) [48] agar Petri
dishes at 30 ◦C in complete darkness. Single colony-forming units were inoculated in
15 mL of SMN liquid medium and pre-cultured at 25 ◦C, under aerobic conditions and
shaken at 150 rpm. For each experience, pre-cultures were grown under two different
light conditions: (i) continuous light exposure (LL) and (ii) a 12/12 h light and dark cycle
(LD). After 72 h, LL and LD pre-cultures with similar optical density (2.1 ± 0.1 at 680 nm)
were selected and 35 µL was inoculated in 150 mL of SMN liquid medium (n = 3). The
culture flasks were exposed to similar light, temperature, and shaking conditions as the
pre-culture. Every 8 h, 6 mL of bacterial culture were sampled from each flask, from the
end of the lag phase (~40 h) until the beginning of the stationary phase (~96 h). Samples
were collected at 04:00 p.m. (i.e., 48 h after the start of the experiment), 00:00 a.m. (i.e.,
56 h), 08:00 a.m. (i.e., 64 h), 04:00 p.m. (i.e., 72 h), 00:00 a.m. (i.e., 80 h), 08:00 a.m. (i.e., 88 h),
and 04:00 p.m. (i.e., 96 h). In total, 7 samples were collected per replicate and per light
condition. In the LD condition, light was switched off from 08:00 p.m. to 08:00 a.m. The
optical density was measured immediately after sampling by spectrophotometry (680 nm).
Cells were harvested by centrifugation (16,000× g, 4 ◦C). Cell pellets were washed twice
with BupHTM PBS solution (Thermo Fisher Scientific, Waltham, MA, USA) and stored at
−20 ◦C for downstream RT-qPCR and proteomics analyses.

3.2. Protein and RNA Isolation

For the RT-qPCR experiment, total RNA was extracted using the RNeasy Protect
Bacteria Mini Kit (50) (Qiagen, Hilden, Germany) following the manufacturer’s instructions.
RNA concentration was measured using a Nanodrop spectrophotometer. The Reverse
Transcriptase Core Kit (300) (Eurogentec, Seraing, Belgium) was used according to the
manufacturer’s instructions to generate complementary DNA (cDNA) from the RNA
templates. Briefly, RNA template (15 ng/µL) was mixed with random nonamers (2.5 µM),
dNTPs (500 µM of each dNTP), MgCl2 (5 mM), EuroScript RT (1.25 U/µL), RNAse inhibitor
(0.4 U/µL), RNase free water and reaction buffer. The reverse transcription was performed
in a real-time thermocycler with an initial step of 10 min at 25 ◦C, followed by a reverse
transcription step of 30 min at 48 ◦C and finally, with inactivation of the RT enzyme during
5 min at 95 ◦C. cDNA was stored at 4 ◦C until qPCR analyses.

For the proteomic analyses, proteins were extracted using extraction buffer (guani-
dinium hydrochloride 6 M; K2HPO4 50 mM) and ultrasonication (4 ◦C, 3 × 10 s, amplitude:
20%, IKA U50 sonicator (Staufen, Germany)). The protein content of the supernatant was
assessed using the Bradford assay [49] with bovine gamma globulin as standard. Subse-
quently, 50 µg of the proteins were reduced with 1.5-dithioerythritol (DTE), alkylated with
iodoacetamide (IAA), and precipitated overnight using acetone at −20 ◦C. The resulting
protein pellets were solubilized in 50 mM ammonium bicarbonate containing 1 µg of
trypsin and incubated overnight at 37 ◦C. The trypsin digest was stopped by adding 0.5%
formic acid in water (vol/vol [0.1% final concentration]). Peptides were quantified using the
Pierce™ Quantitative Colorimetric Peptide Assay kit (Thermo Fisher Scientific, Waltham,
MA, USA). Samples were then stored at −20 ◦C for subsequent proteomics analyses.

3.3. RT-qPCR Analyses

cDNA served as a template for qPCR assay using the Takyon™ Rox SYBR Core Kit
blue dTTP (1250) (Eurogentec, Seraing, Belgium). The primers used for qPCR assay were
targeting the Rru_A2542 (hereafter kaiC1), Rru_A2543 (hereafter kaiB1), Rru_A3294 (here-
after kaiB2), and Rru_A3295 (hereafter kaiC2) reverse transcripts of R. rubrum (Table 1). The
physicochemical properties of each pair of primers were checked using the ThermoFisher
Scientific Multiple Primer Analyzer tool [50]. Specificity was confirmed using SnapGene
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Viewer 4.2.11 (Dotmatics, Bishop’s Stortford, UK), and classic PCR of pure R. rubrum culture.
Quantification was performed using a StepOnePlus Real-Time PCR System (Thermo Fisher
Scientist). The relative concentration of Kai was calculated as the ratio of their expression
and that of the 16S rRNA using universal primers 518R and 341F (Table 1) according to
Pfaffl and colleagues [51] (1). Results were presented as a relative expression ratio of the
targeted genes (kaiB1, kaiC1, kaiB2, or kaiC2) versus a reference gene (16SrRNA) for each
sample time, in comparison with the expression at T0 (i.e., 48 h).

Ratio = (Etarget)∆CP target (T0 − Tx)/(Eref)
∆CP ref (T0 − Tx) (1)

where E is the PCR efficiency calculated as defined in Ramakers and colleagues [52] and
CP is the crossing point of the amplification curve with the threshold.

Table 1. Primer sequences targeting kai gene homologs in R. rubrum.

Primers

Forward (5′–3′) Reverse (5′–3′)
16S rRNA CCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG
kaiB1 GCCCACGGAAACTAACGCTC GTTCCGCGCAAATCCGTTC
kaiB2 GATGTGATCGACAGTCCCGC AGATCAAGGATGCGGCACAC
kaiC1 TTCAGCGTTCTTCCCGTCTC GACCAGGATGCTTGATCCCC
kaiC2 TCTTTTCCGCCCAGTTCCTG TCGACGAAGCTCCATTTCCC

qPCR reactions were performed for each DNA sample (n = 3) and targeted gene
combination using the SYBRTM Green master mix (Applied BiosystemsTM, Waltham, MA,
USA). Each qPCR consisted in a serial of dilution (2.5, 1.2, 0.6 and 0.3 ng/µL) of cDNA
template and qPCR mix following fabricant instruction. After an initial denaturation step
at 94 ◦C during 10 min, 40 cycles of 15 s at 95 ◦C, 30 s at 60 ◦C and 30 s at 72 ◦C were
performed followed by a final denaturation step (60 to 90 ◦C, +0.3 ◦C/min).

3.4. Proteomic Analysis

Protein identification and quantification were performed according to a label-free
strategy on a UHPLC HRMS platform (Eksigent 2D Ultra-AB Sciex TripleTOF 6600+).
For each sample, the peptides were separated in a 15-cm C18 column (YMCC18) using a
linear acetonitrile gradient (5 to 35% [vol/vol] in 75 min) in water containing 0.1% (vol/vol)
formic acid at a flow rate of 5 µL min−1. For protein identification, data were acquired
in the data-dependent acquisition mode (DDA) for 4 µg peptides on column. Mass spec-
tra (MS) were acquired over the range of 400–1250 m/z in the high-resolution mode
(resolution > 35,000), with a 250 ms accumulation time. MS/MS spectra were acquired over
the range of 100–1500 m/z. The precursor selection parameters were as follows: intensity
threshold, 100 cps; maximum precursors per cycle, 90; accumulation time, 25 ms; and
exclusion time after two spectra, 15 s. These parameters lead to a duty cycle of 4 s per
cycle to ensure that high-quality extracted ion chromatograms (XICs) were obtained for
peptide quantification. ProteinPilot Software (v5.0.1—ABSciex, Framingham, MA, USA)
was used to perform database searches against the UniProt database, restricted to R. rubrum
ATCC 11170 entries. The search parameters included differential amino acid mass shifts for
carbamidomethyl cysteine, all biological modifications, and missed trypsin cleavage sites.

For whole-protein relative quantitation analyses, the instrument was set to the SWATH
mode. Briefly, 100 incremental steps were defined as windows of variable m/z values over a
400–1250 m/z mass range. The MS/MS working time for each window was 50 ms, leading
to a duty cycle of 5 s per cycle. The ion chromatogram of the top six fragments of each
peptide was extracted, and their area under the curve was integrated. PeakView® software
(version 2.1.0.11041, ABSciex, Framingham, MA, USA) was used for the SWATH processing
of all proteins identified considering an FDR below 1% (as determined by ProteinPilot).
The retention time (RT) was recalibrated automatically with PepCalMix standard (ABSciex,
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Framingham, MA, USA), with retention times in the range of 20–85 min. The intensity
of peptides was individually normalized based on a summed area of all peptides for
each sample. Only proteins quantified with a minimum of 2 peptides were considered.
A non-supervised Pareto-PCA analysis was performed according to the area of protein
curve to discriminate comparative groups (MarkerViewTM MarkerView™ 1.2.1 ABSciex,
Framingham, MA, USA). For proteome comparisons, only fold changes higher than 1.5
(upregulated in LL compared to LD) or lower than 0.66 (downregulated in LL compared to
LD) and having a p-value lower than 0.05 were further considered. The function of each
differentially abundant protein was checked manually by using Uniprot, and the NCBI
database.

The MRM analyses were performed using a QTRAP 6500+ instrument (SCIEX) fitted
with an electrospray ionization source (150 ◦C, 4500 V). Transition selection and MRM
method optimization were performed using the Skyline software (20.2.0.343 MacCoss Lab,
Seattle, WA, USA) on protein extracted from R. rubrum grown under light and dark cycle.
The best transitions (y or b ions) were chosen for each peptide and at least two peptides
were analyzed for each protein. Peptides were separated on a C18-reversed-phase column
(YMC TriArt C18, 0.3 mm, 150 mm) and eluted using a gradient of 5–35% acetonitrile with
0.1% formic acid over 20 min at a flow rate of 5 µL/min. MRM data were acquired in the
scheduled mode with a two-minute retention time window and a maximum cycle time of
1.5 s. Skyline software (20.2.0.343 MacCoss Lab) was used for visual inspection of MRM
data and area under the curve integration. Peak picking for each peptide was manually
refined using the transition intensity ratio and retention time as leading parameters. The
intensity of all transitions was summed up for each peptide. Protein abundance was
obtained as the average of the Ln-transformed area under the curve of each target peptide
detected in the three samples.

4. Conclusions

Deciphering the influence of the diel cycle on purple bacteria holds significant promise
for enhancing our understanding of their ecological roles, optimizing their application in
biotechnology, and unraveling the origins and evolution of prokaryotic clock mechanisms.
This study represents a pioneering effort in providing a comprehensive molecular analysis
of the diel cycle’s impact on the photoheterotroph R. rubrum, a species previously identified
as a potential candidate for a role in the circadian rhythm due to the presence of kai genes.
Our findings unveil a noteworthy influence of light conditions on protein expression,
particularly during the early growth stage.

Numerous proteins involved in transcriptional regulation, energy conversion, stress
response, and, to a lesser extent, motility, viral defense and chemotaxis exhibited differential
regulation under continuous light exposure compared to a light and dark cycle. Light
emerged as a key factor shaping the expression of kai genes at both the transcriptional and
translational levels, hinting at their potential involvement in a time-keeping mechanism
that remains to be fully elucidated.

Moving forward, there are several promising avenues for further research to enhance
our understanding of R. rubrum’s response to the diel cycle. One pivotal area of inves-
tigation involves capturing the diel transcriptional cycle of R. rubrum under controlled
conditions, particularly through continuous culture in a chemostat. In addition to tran-
scriptomic studies, integrating phosphoproteomics into the workflow holds substantial
potential. This advanced technique can reveal the phosphorylation events within the pro-
teome, providing a more nuanced view of the regulatory dynamics associated with the
Kai oscillator. Such investigations may uncover key signaling pathways and refine our
understanding of temporal adaptations at the post-translational level.

Another promising avenue is the exploration of upstream and downstream genes
associated with the Kai oscillator to unravel the broader regulatory network governing
circadian rhythms in R. rubrum and potentially in other bacterial species. This comprehen-
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sive approach has the potential to unveil novel regulatory mechanisms and broaden our
understanding of the multifaceted roles of circadian rhythms in bacterial physiology.
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