
Local Search Pivoting Rules and the Landscape Global Structure
Sara Tari

Univ. Littoral Côte d’Opale
LISIC, F-62100 Calais, France
sara.tari@univ-littoral.fr

Gabriela Ochoa
University of Stirling

Stirling, Scotland, United Kingdom,
gabriela.ochoa@stir.ac.uk

ABSTRACT
In local search algorithms, the pivoting rule determines which
neighboring solution to select and thus strongly influences the be-
havior of the algorithm and its capacity to sample good-quality local
optima. The classical pivoting rules are first and best improvement,
with alternative rules such as worst improvement and maximum
expansion recently studied on hill-climbing algorithms. This article
conducts a thorough empirical comparison of five pivoting rules
(best, first, worst, approximated worst and maximum expansion)
on two benchmark combinatorial problems, NK landscapes and
the unconstrained binary quadratic problem (UBQP), with varied
sizes and ruggedness. We present both a performance analysis of
the alternative pivoting rules within an iterated local search (ILS)
framework and a fitness landscape analysis and visualization using
local optima networks. Our results reveal that the performance of
the pivoting rules within an ILS framework may differ from their
performance as single climbers and that worst improvement and
maximum expansion can outperform classical pivoting rules.
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1 INTRODUCTION
Local search algorithms are widely-used to tackle combinatorial
optimization problems. Their ability to find good-quality solutions
varies according to several factors such as their components, the
neighborhood-relation, the budget allotted to the search, and the
instance to optimize. A way to improve our understanding of local
search behavior is to empirically study them using fitness land-
scapes as a tool for their analysis. This concept helps to visualize
and measure characteristics of the search space according to the
neighborhood-relation under consideration. Among the various
techniques available with fitness landscapes, local optima networks
(LONs) are some of the most capable of displaying the global land-
scape structure and are well-suited to analyze the behavior induced
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by different components. One of the critical components of a lo-
cal search is its pivoting rule that determines which neighbor to
select at each step of the search. This rule plays an essential role
in guiding the search and, therefore, in its ability to find good-
quality solutions. This ability may vary according to the instance
to tackle, but also when the pivoting rules interact with other lo-
cal search components. As these interactions can be numerous
and complex, deconstructing algorithms can help to build them
better in the future. For example, knowing the impact of pivoting
rules in straightforward local searches as hill-climbers is helpful,
as these can be whole mechanisms in more elaborate optimization
algorithms.

Two widely-used classical pivoting rules are the first and best
improvement. They have both been empirically compared on var-
ious contexts [6, 19, 26], but also within single hill-climbers on
large NK landscapes of different ruggedness levels in [2]. This work
show that performing smaller steps during the climbing process
with first improvement often leads to better-quality local optima,
which led to the proposition of theworst improvement that performs
the slightest improvement at each step of the search [3]. Within
single hill-climbers the worst improvement outperforms classical
pivoting rules on non-smooth landscapes, and seem to avoid be-
ing trapped prematurely into low-quality local optima. This work
led to the proposition of the maximum expansion that explicitly
seeks to keep the most improving possibilities during the climbing
process [23]. The maximum expansion outperforms the aforemen-
tioned pivoting rules on large NK and UBQP landscapes, including
classical pivoting rules using the same amount of knowledge to nav-
igate the landscape (i.e., the same extended neighborhood vision).
The approximation of the worst improvement proposed in [3] was
compared to the first improvement within an iterated local search
framework (ILS) for the same evaluation budget to observe whether
alternative pivoting rules can be competitive for the same budget of
evaluations [24] While first improvement performs better on large
NK landscapes, the approximation of worst improvement outper-
forms first improvement on large UBQP landscapes. A landscape
analysis of the ruggedness levels highlighted that UBQP landscapes
are locally rugged but globally smooth, in contrast to the uniform
ruggedness repartition of NK landscapes.

The work in this paper follows these previous studies on pivoting
rules. As hill-climbers can be components within more powerful
local search, the natural follow-up in the study of alternative pivot-
ing rules is to observe what happens when hill-climbers interact
with another component. Here, we focus on an iterated local search
framework to observe the differences in the relative efficiency of
pivoting rules when climbers are combined with perturbations.
Moreover, we use LONs to understand better the behavior induced
by these different pivoting rules and compare the global structures
of some NK and UBQP landscapes of the aforementioned studies.
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Indeed, LONs are often more useful than an estimation of rugged-
ness performed by indicators to display the differences in the global
structure of landscapes. The contributions of the paper are (1) an
experimental comparison of classical and alternative pivoting rules
within iterated local search algorithms, (2) a comparison of the
local optima networks built with these different pivoting rules, (3)
a comparison of the local optima networks of NK landscapes and
UBQP landscapes.

The paper is organized as follows. Section 2 presents the concepts
related to fitness landscapes and local optima networks, and the
landscapes used in this study. We then present the iterated local
search framework we focus on, as well as the pivoting rules in
section 3. In section 4 we provide the experimental protocol and
the results of the experimental analysis of pivoting rules within
an ILS. The local optima network analysis is provided in section 5.
Finally, we discuss this work and point out some perspectives.

2 FITNESS LANDSCAPES
Fitness landscapes were introduced by Wright [28] in the biology
field to depict the evolution process and are nowadays used in
several fields to study complex systems [1, 12]. This concept is
also widely used in evolutionary computation, where the analogy
between an individual with a fitness and a solution with a score is
easy tomake. Fitness landscapes then provide away to abstract from
the problem instances and to study the behavior of neighborhood-
based methods in a theoretical or empirical way.

2.1 Definitions
Afitness landscape is a triplet (X,N , 𝔣), whereX refers to the search
space, N : X → 2X to the neighborhood relation that connects
a set of neighboring solutions to each candidate solution, and 𝔣 is
a fitness function which, by associating a value to each solution,
provides a measure of its quality. A fitness landscape corresponds to
a graph where each vertex corresponds to a solution in the search
space, and edges represent the neighborhood relations between the
different solutions.

In a maximization context, the best solution of a fitness land-
scape, called global optimum, has the highest fitness value and
corresponds in a pictorial way to the highest peak (definition 2.1).
The peaks of a fitness landscape are called local optima and cor-
respond to solutions with no improving neighbors. Among those
solutions, those without same-fitness (or neutral) neighbors are
called strict local optima (definition 2.2). The basin of attraction of a
local optimum is defined by all the solutions from which the local
optimum is reachable by applying improving mutations only. Thus,
the probability of reaching a given local optimum correlates with
the size of its basin.

Definition 2.1. A global optimum of a landscape 𝑃 = (X,N , 𝔣) is
a solution such that 𝑥∗ ∈ argmax𝑥 ∈X 𝔣(𝑥).

Definition 2.2. A (strict) local optimum of a landscape is a solu-
tion 𝑥 such that ∀𝑥 ′ ∈ N (𝑥), 𝔣(𝑥 ′) (<) ≤ 𝔣(𝑥).

While it is common to use algebraic properties of the problem in
fitness landscape analysis [22, 27], another primary approach con-
sists of extracting statistical properties to characterize a landscape
from a sample of solutions. Some of themost studied properties with

this approach are ruggedness, neutrality, and dimension. Rugged-
ness mainly refers to the number and distribution of local optima
within the landscape and the size of their basins of attraction. A
rugged landscape has many local optima with small basins of attrac-
tion; a smooth landscape has a few local optima with large basins of
attraction. As a result, finding good-quality solutions is often easier
on smooth landscapes and harder on rugged landscapes. One of
the best-known indicators used to estimate the ruggedness levels
is the autocorrelation function [25]. Various other properties are
used to characterize landscapes, most of which are described and
discussed in [14, 15, 21].

Those different indicators give information on some properties
of landscapes; however, the resulting output generally does not
take into account the structural variations of different landscape
areas that may induce difficulties for some optimization algorithms.
Network-based models such as local optima networks can highlight
such differences.

2.2 Local Optima Networks
Local optima networks (LONs) [16] are a model of fitness land-
scapes suited to characterizing their global structure. LONs convey
a compressed view of a landscape as a network (or graph) where
nodes are local optima, according to a given neighborhood, and
edges are possible transitions among optima according to a pertur-
bation or escape operator. In this article, we use a recently proposed
LON variant, the monotonic LON (MLON) model [18], in which
edges are restricted to non-deteriorating transitions. To specify the
model, we need to define the nodes and edges. The relevant defini-
tions are given below, and the process for sampling and empirically
constructing the models is described later in Section 5.

Nodes. The nodes correspond to local (and global) optima ac-
cording to a given neighborhood N , as defined above (Definitions
2.1 and 2.2). The set of nodes is denoted as 𝐿.

Monotonic perturbation edges. There is an edge from local
optimum 𝑙1 to local optimum 𝑙2, if 𝑙2 can be obtained after applying a
random perturbation ( P 1-flips in this paper) to 𝑙1 followed by local
search, and 𝑓 (𝑙2) ≥ 𝑓 (𝑙1). These edges are called monotonic as they
record only non-deteriorating transitions between local optima.
Edges are weighted with frequencies of transition computed during
the construction process (described in Section 5). The weight is the
number of times a transition between two local optima occurred.
The set of edges is denoted by 𝐸.

Monotonic LON. is the directed graph MLON = (𝐿, 𝐸), with
node set 𝐿, and edge set 𝐸 as defined above.

2.3 Problems
Here, we consider large landscapes derived from two pseudo-Boolean
combinatorial optimization problems: NK landscapes [10, 11] that
display tunable ruggedness levels, and the unconstrained binary
quadratic problem (UBQP) that can be used to reformulate a wide
range of real problems [5]

NK landscapes. These benchmark problems are determined by
means of two parameters: 𝑁 and 𝐾 . 𝑁 determines the number
of decision variables and directly affects the size of the search
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space (2𝑁 solutions), while𝐾 determines the interdependency levels
between variables. When 𝐾 = 0, the resulting landscape is entirely
smooth, and there is no variable interdependency. When 𝐾 = 𝑁 − 1,
the resulting landscape is entirely rugged and corresponds to a
landscape whose peaks are randomly determined.

We use a set of instances with various sizes 𝑁 ∈ {128, 256, 512}
and various levels of variable interdependency 𝐾 ∈ {2, 4, 6, 8, 10}.

UBQP. An instance of UBQP is composed of a matrix 𝑄 contain-
ing 𝑁 × 𝑁 integers. A solution is a bit-string 𝑥 of size 𝑁 , where
each 𝑥𝑖 ∈ {0, 1} corresponds to the 𝑖𝑡ℎ bit of 𝑥 .

We use a set of instances with 𝑁 ∈ {128, 256, 512} and different
densities generatedwith the generator proposed in [20]. The density
𝑑 affects the rate of zeros in the matrix 𝑄 : 𝑑 = 0 leads to a matrix
filled with zeros, except on its diagonal, whereas 𝑑 = 100 leads to a
matrix without zeros (except on its diagonal).

For both problems, the neighborhood relation under considera-
tion is the 1-flip operator, which consists of flipping the value of a
single bit in the solution.

3 ALGORITHMS
A local search algorithm consists of iteratively modifying a single
solution following a given move-policy until a stopping criterion is
reached. This class of metaheuristics is naturally more exploitative,
whereas population-based metaheuristics tend to explore more.

Four aspects mainly determine local search algorithms: the ini-
tial solution, the neighborhood relation, the move policy, and the
stopping criterion. The move policy determines which neighbor-
ing solution to select and thus strongly influences the behavior of
local search algorithms. As the neighborhood relation, the move
policy strongly influences the algorithm capacity to determine a
good-quality search space sample. Many local search types exist,
and their difference mainly lies in the move policy, which can be
more or less sophisticated.

3.1 Local Search
Strict hill-climbing algorithms correspond to a class of local search
algorithms that only select improving neighbors at each step of the
search.The neighbor 𝑥 ′ of a solution 𝑥 is improving if its fitness
value is strictly superior. Strict hill-climbers naturally stop when
the current solution is a local optimum. Note that non-strict hill-
climbers also accept neutral neighbors, but in that case, determining
the stopping criterion can be more challenging.

Only accepting improving moves is an incomplete move-policy
as there are often several improving neighbors for a given solution.
Thus, many hill-climbers can be distinguished according to their
sub-move-policy on a non-deteriorating neighbor. We elaborate
this aspect in section 3.2.

As hill-climbers are straightforward, they are often used as a
component of more sophisticated metaheuristics such as iterated
local search (ILS) [8, 13]. A generic ILS is determined by a local
search, a perturbation phase, and an acceptance criterion. The local
search returns a solution, and the acceptance criterion determines if
this solution is stored, then the perturbation phase applies changes
to the last solution stored. The process is repeated until the stopping
criterion is met.

In this paper, we focus on a straightforward ILS described in algo-
rithm 1. This ILS alternates a strict hill-climber and a perturbation
phase that applies P random moves to the last-encountered local
optimum, meaning that the last stored solution is always replaced
(except when consecutive hill-climbers reach the same local opti-
mum). While hill-climbers can be viewed as an exploitative process,
the perturbation phase adds diversity to the search by allowing the
deterioration of the current solution. It can help escape the basins
of attraction of local optima to reach promising fitness landscape
areas. In the following, we study the impact of different pivoting
rules on the behavior of this ILS.

Algorithm 1 Iterated local search used in this work.
1: Choose 𝑥0 ∈ X (initialization)
2: 𝑥 ← 𝑥0
3: 𝑥∗ ← 𝑥

4: 𝑥 ← HillClimber(𝑥)
5: if 𝑓 (𝑥) > 𝑓 (𝑥∗) then
6: 𝑥∗ ← 𝑥

7: end if
8: while stopping criterion not reached do
9: 𝑥 ← applyRandomMoves(P, 𝑥)
10: 𝑥 ← HillClimber(𝑥)
11: if 𝑓 (𝑥) > 𝑓 (𝑥∗) then
12: 𝑥∗ ← 𝑥

13: end if
14: end while
15: return 𝑥∗

3.2 Pivoting Rules
To be complete, the move policy of a hill-climbing algorithm must
determine the improving neighbor to select at each step of the
search. This selection strategy, also called pivoting rule, strongly in-
fluences a given hill-climber ability to reach good-quality solutions.
In this work, we focus on the following pivoting rules:
• The best improvement (B) is a deterministic pivoting rule
that consists of selecting the improving neighbor with the
highest fitness value.
• The first improvement (F) is a stochastic pivoting rule that
consists of selecting the first evaluated improving neighbor.
• The worst improvement [3] (W), mentioned under the name of
least ascent in [9], is deterministic and consists of selecting
the improving neighbor with the lowest fitness value.
• The approximated worst improvement [3] (W𝜅 ) is a stochastic
strategy halfway between the first and worst improvement.
It consists of selecting the solution with the lowest fitness
value among 𝜅 randomly generated improving neighbors.
• The maximum expansion [23] (E) consists of selecting the
improving neighbor with the highest expansion score, i.e.
with the highest number of improving solutions.

The first and best improvement are widely used in the litera-
ture and correspond to what we can call classic pivoting rules. The
best improvement is an intuitive way of selecting a neighbor and
requires to evaluate the whole neighborhood of the current solu-
tion. The first improvement is particularly competitive as it often
requires fewer evaluations than best improvement to reach local
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optima. The other three pivoting rules are rarely encountered in
the literature and are referred to as alternative pivoting rules is
the following. The worst improvement requires to evaluate the
whole neighborhood of the current solution and often requires
more steps than classical pivoting rules. The approximated worst
improvement was proposed to keep the principle and efficiency
of the worst improvement while reducing the run duration. The
maximum expansion was proposed to observe the effect of a move
policy that explicitly seeks to keep the most improving capacities.
The calculation of the expansion score requires the evaluation of
solutions distant from 1 and 2 mutations of the current solution.
This rule was previously competed against classical pivoting rules
and adaptations of classical pivoting rules in an extended neigh-
borhood context to ensure the relevance of the expansion criterion.
Note that in the case of maximum expansion score equality, we
consider the version that selects the improving neighbor with the
best fitness value among those of maximal expansion score.

4 PERFORMANCE ANALYSIS
4.1 Experimental Protocol
These experiments investigate the efficiency of the pivoting rules
presented in section 3.2 within the ILS process described by algo-
rithm 1. In particular, we focus on the first, best, and worst improve-
ment, the approximated worst using 𝜅 = 2 (W2) and the maximum
expansion. To observe the differences induced by the number of
perturbations of the ILS, we use P = {5, 10} for both problems.

For each triplet (P, pivoting rule, landscape), we conducted 30
runs from the same set of 30 randomly generated solutions. We
use a given number of climbing processes as stopping criterion:
10 000 on NK landscapes and 5 000 on UBQP landscapes, as these
landscapes were found to be easier to solve [24]. Indeed, most of
the ILS variants considered here attain the known global optimum
on UBQP landscapes, which is not the case on NK landscapes. Note
that we use the number of climbing processes instead of a number
of evaluations to compare the pivoting rules to (1) construct LONs
from the same number of local optima for each pivoting rule, (2) to
observe the differences for the same number of perturbations phases.
While such results are less interesting in practice than running the
ILS for the same amount of time, it allows us to observe the relative
efficiency differences between the pivoting rules with perturbations
compared to the one observed within single hill-climbers.

4.2 Results
NK landscapes. Results of the experiments are reported in table

1. Following these results, the worst improvement is systematically
less efficient than first improvement to reach good-quality local
optima. This particular result differs from the results on single
climbing processes over most of these landscapes. W2 is usually
outperformed by F but outperforms W. This result is coherent with
the variation in efficiency of the two aforementioned pivoting rules.
F was already more efficient than W2 within these ILS for the same
number of evaluations and than in this configuration, the higher
number of evaluations performed by worst improvement does not
induce a different relative efficiency. A hypothesis would be that us-
ing worst improvement within climbing processes is more efficient
when starting for a low or medium-quality solution. The maximum

expansion outperforms most of the pivoting rules on these land-
scapes, as previously observed within single hill-climbers. Due to
the evaluation of two neighborhood levels, this strategy requires
a significantly higher number of evaluations than other pivoting
rules to achieve 10 000 climbing processes. However, W requires
a significantly higher number of evaluations than F but achieves
inferior results in this context. In climbers only, the efficiency of
the maximum expansion and the worst improvement was almost
always positively correlated. Our results show limitations to the
hypothesis that correlates the behavior of these two pivoting rules.

When using 5 perturbations, B is outperformed by several pivot-
ing rules, except when 𝑁 = 128 and on smooth landscapes 𝐾 = 2.
However, when using 10 perturbations, this pivoting rule outper-
forms several of the other pivoting rules and is the only one to
generally perform better with more perturbations. B seems to re-
quire more perturbations to escape from the basins of attractions
than the other pivoting rules.

UBQP landscapes. Results are reported in table 2. When using 5
perturbations W and W2 always reach the global optimum. It is the
case of E and F on most landscapes. On the contrary, it is seldom
the case for B. These results are globally consistent with previous
results using climbers only or comparing F and W2 within an ILS
for the same number of perturbations. On these landscapes, W and
its variant remain among the most efficient pivoting rules. When
using P = 10 perturbations, the different pivoting rules always
reach the global optimum except B when 𝑁 > 128. Nevertheless,
using a larger number of perturbations also seems beneficial for
this last pivoting rule, as well as F, B, W2 and E which all require
less climbing processes, while it is the opposite for W.

5 LOCAL OPTIMA NETWORK ANALYSIS
To further understand the performance differences among the five
pivoting rules, we studied the induced fitness landscapes using the
monotonic local optima network model (MLON) defined in section
2.2. The MLONs were sampled and constructed for a representative
set of instances with 𝑁 = 256 for the two studied problems. The
number of perturbations considered was P = 5. For each of these
instances a MLON was constructed by aggregating all the unique
nodes and edges encountered across 30 independent runs of the
ILS algorithm (Alg. 1) with each pivoting rule.

5.1 Network Metrics
We aim to identify fitness landscape features that correlate with
and help to explain the performance differences among the pivoting
rules. Many network properties can be computed from LONs, the
most basic are the number of nodes and edges, but a variety of
metrics have been studied [16–18]. We focus here on four network
properties that help us to asses the landscapes global structure.
These metrics are summarized in Table 3. For characterizing the
multi-funnel structure, we measure the size of the connected com-
ponent containing the best found solution (best-comp). Connected
components have been associated to funnel structures [17]. A fun-
nel refers to a grouping of local optima, forming a coarse-level
gradient towards a high quality solution at the end. Funnels can
be considered as basins of attraction at the level of local optima.
When sub-optimal funnels exist, search can get trapped and fail to
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Table 1 Best local optimum found and pivoting rules performance within ILS on each NK landscapes over 30 runs. For each pivoting rule,
the average fitness and a rank are given. The ranking for each (landscape, P) is obtained according to a Mann-Whitney statistical test with
𝛼 = 0.05 and a Bonferroni correction. Grey cells indicate a statistical dominance between the same pivoting rule using a different number of
perturbations. Purple underline values indicate whether the best local optimum is found on at least one run.

land. best LO P = 5 P = 10
F B W W2 E F B W W2 E

128 2 0.74237 0.7402 0.7409 0.7363 0.7384 0.7401 0.7405 0.7417 0.7370 0.7391 0.7407
2 1 5 4 2 2 1 5 4 2

128 4 0.79586 0.7943 0.7910 0.7918 0.7929 0.7958 0.7933 0.7951 0.7890 0.7906 0.7957
2 3 4 3 1 3 2 5 4 1

128 6 0.80045 0.7908 0.7872 0.7855 0.7884 0.7983 0.7871 0.7929 0.7792 0.7826 0.7979
2 3 4 3 1 3 2 5 4 1

128 8 0.80257 0.7851 0.7838 0.7786 0.7817 0.7952 0.7784 0.7850 0.7758 0.7766 0.7920
2 2 5 3 1 3 2 4 3 1

128 10 0.79445 0.7748 0.7752 0.7697 0.7712 0.7863 0.7684 0.7737 0.7690 0.7690 0.7823
2 2 4 4 1 3 2 3 3 1

256 2 0.74477 0.7406 0.7426 0.7322 0.7380 0.7443 0.7402 0.7440 0.7333 0.7384 0.7443
3 2 5 4 1 3 2 5 4 1

256 4 0.79403 0.7887 0.7826 0.7865 0.7877 0.7931 0.7880 0.7893 0.7842 0.7863 0.7933
2 5 4 3 1 3 2 5 4 1

256 6 0.80741 0.7944 0.7831 0.7898 0.7929 0.8011 0.7913 0.7926 0.7819 0.7865 0.8025
2 5 4 2 1 3 2 5 4 1

256 8 0.79799 0.7839 0.7702 0.7750 0.7811 0.7923 0.7751 0.7802 0.7675 0.7721 0.7887
2 5 4 3 1 3 2 5 4 1

256 10 0.79147 0.7722 0.7624 0.7640 0.7685 0.7826 0.7642 0.7721 0.7592 0.7616 0.7777
2 4 4 3 1 3 2 5 4 1

512 2 0.75185 0.7435 0.7471 0.7365 0.7400 0.7507 0.7441 0.7499 0.7373 0.7414 0.7509
3 2 5 4 1 3 2 5 4 1

512 4 0.78740 0.7769 0.7667 0.7741 0.7752 0.7845 0.7772 0.7757 0.7722 0.7750 0.7855
2 5 4 3 1 2 2 5 3 1

512 6 0.80260 0.7896 0.7676 0.7856 0.7882 0.7939 0.7888 0.7781 0.7800 0.7841 0.7992
2 5 4 3 1 2 5 4 3 1

512 8 0.79766 0.7845 0.7601 0.7789 0.7827 0.7881 0.7811 0.7700 0.7687 0.7752 0.7927
2 5 4 3 1 2 4 4 3 1

512 10 0.78438 0.7742 0.7529 0.7671 0.7722 0.7799 0.7702 0.7616 0.7563 0.7631 0.7797
2 5 4 3 1 2 3 5 3 1

reach the global optimum despite a large computational effort. The
centrality of good solutions has been found to correlate with search
difficulty [7]. As a measure of the centrality and reachability of the
global optimum, we computed the normalized incoming strength
(weighted degree) of the global optimal solution (strength). This
is computed as the sum of the incoming strengths of the globally
optimal nodes divided by the maximum incoming strengths for all
nodes.

Figure 1 shows the MLONs metrics for each pivoting rule on
the different NK landscapes of size 𝑁 = 256. Except for best im-
provement, the number of unique nodes and the average fitness
of all nodes correlates negatively with the pivoting rules relative
efficiency. Despite finding fewer nodes with a good fitness value,
best improvement never reaches the best local optimum found on
each landscapes for this number of perturbations and achieves poor
values for the incoming strength and the size of the best compo-
nent. For most pivoting rules, the incoming strength and the size of
the best component values are low, which indicates that these are

difficult problems. However, they are often high for the maximum
expansion, which is always the most efficient, and higher than zero
on one landscape for the first improvement. Figure 2 shows the
MLONs metrics on UBQP landscapes of varied densities. The most
efficient pivoting rules find more different local optima than other
pivoting rules. The relative efficiency of pivoting rules correlates
positively to this number, except between first improvement and
the maximum expansion. This difference seems linked to ability
of worst improvement of escaping the basins of attraction of the
different local optima encountered during the search, which is ben-
eficial to reach the best local optima. The average fitness value
is almost similar for each pivoting rule, which is not surprising
as the global optimum is often reached. The incoming strength
correlates well with the pivoting rule performance, and the size of
the best component is fully correlated with the relative efficiency
of pivoting rules. A notable observation for this last metric is that
best improvement is significantly below the values achieved with
other pivoting rules despite the metric normalization.
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Figure 1: MLON metrics as described in Table 3, for NK landscapes with 𝑁 = 256 and varied K.
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Figure 2: MLON metrics as described in Table 3, for UBQP landscapes with 𝑁 = 256 and varied densities.
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Table 2 Global optimum and pivoting rules performance for ILS on each UBQP landscape. For each pivoting rule, the value above corresponds
to the number of runs where the global optimum is found; the values below report the number of climbing processes required for this aim.

land. best LO P = 5 P = 10
F B W W2 E F B W W2 E

128 25 24087.0 30 29 30 30 30 30 30 30 30 30
78±44 1519±1060 39±34 43±30 29±26 39±31 407±441 45±44 31±27 19±16

128 50 33440.0 30 30 30 30 30 30 30 30 30 30
16±11 410±549 7±6 8±5 3±3 8±4 66±83 7±4 10±7 3±2

128 100 51130.0 30 21 30 30 30 30 30 30 30 30
44±33 1427±1386 6±5 13±16 7±7 27±27 472±807 7±6 9±9 4±4

256 25 70861.0 21 3 30 30 25 30 7 30 30 30
817±1351 1443±1051 133±99 363±569 538±1071 341±414 1155±1118 137±151 134±114 172±209

256 50 102914.0 30 14 30 30 30 30 18 30 30 30
126±195 2562±1427 52±43 66±53 65±90 38±49 885±729 112±105 63±46 26±29

256 100 146377.0 23 1 30 30 27 30 4 30 30 30
1528±1487 2759 58±50 272±280 1264±1261 495±512 1156±486 44±41 94±104 249±286

512 10 134112.0 30 5 30 30 30 30 10 30 30 30
694±684 417±580 203±175 271±274 184±227 315±281 2217±1966 121±88 163±162 71±67

512 50 288521.0 30 0 30 30 30 30 4 30 30 30
154±209 - 16±16 54±69 47±91 68±110 2174±1189 19±17 24±16 11±13

512 100 424728.0 18 2 30 30 24 30 1 30 30 30
1084±1611 455±283 25±19 289±371 744±1237 311±358 279 20±16 45±42 128±217

Table 3 Description of network metrics.

nodes Number of nodes (unique local optima).
fitness Average fitness of all the nodes.
strength Incoming strength (weighted degree) of the best

local optimum, normalized by the maximum
incoming strength.

best-comp Size (number of nodes) of the component con-
taining the best local optimum, normalized by
the total number of nodes.

5.2 Network Visualization
Visualization plays a fundamental role in network analysis, often
revealing structural features that are difficult to asses by computing
statistical metrics only. To produce network plots we use the R
statistics package and the graph layout methods implemented in
the igraph library [4]. Our visualization used varied color and sizes
to highlight relevant aspects of the LONs.

Figure 3 (top) shows the the network visualization for the NK
instance with 𝑁 = 256 and 𝑘 = 2, where the sampling process used
a perturbation size P = 5. Since for NK landscapes the number of
nodes is too large for visualization purposes (see nodes in Fig.1),
the networks were pruned to only show local optima with fitness
value above the 90 percentile. The plots for the two pivoting rules
producing the best and worst performance in this instance, respec-
tively MEb and best, are shown. The MLON constructed with best
improvement does not contain the best local optimum found during
the experiments. The 10% of best local optima of the MLON form
several small components and are not connected to the best com-
ponent. The MLON constructed with maximum expansion displays

several small components and a large one containing most of the
best local optima including the best one.

Figure 3 (bottom) shows the the network visualization for the
UBQP instance with 𝑁 = 256 and density = 50, where the sam-
pling process used a perturbation size P = 5. The plots for the two
pivoting rules producing the best and worst performance in this
instance, respectivelyW2 and best, are shown. The MLON obtained
with best improvement displays several small components. The
one containing the global optimum is slightly larger and the global
optimum is the solution with the highest incoming strength. For
worst improvement, the local optima are located in a single funnel.
This result illustrates the ability of worst improvement to efficiently
navigate through several good local optima, which seems necessary
to find the global optimum on most runs.

The MLON models with the most efficient pivoting rules on
each problem highlight a big valley structure on UBQP landscapes,
which would explain why these landscapes are easier to solve for a
given same size than NK landscapes. It also corroborates the results
of the previous ruggedness study on these landscapes which are
locally rugged but globally smooth.

6 CONCLUSIONS
In this paper, we empirically compared classical and alternative
pivoting rules within an iterated local search framework on large
pseudo-Boolean fitness landscapes. We observed that for the same
number of climbing processes, alternative pivoting rules can be
efficient. On NK landscapes, the pivoting rules relative efficiency
differs from the one observed within single-climbing processes.
However, the maximum expansion remains the most efficient to
reach good-quality solutions. On UBQP landscapes, the worst im-
provement and its approximation are still the most efficient pivoting
rules within the iterated local search. The analysis of the MLONs
revealed that the efficiency of the pivoting rules correlates well
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(a) NK, 𝐾 = 2, pivot = best (b) NK, 𝐾 = 2, pivot = MEb

(c) UBQP, density = 50, pivot = best (d) UBQP, density = 50, pivot = W2

Figure 3: MLONs for representative NK andUBQP instances with 𝑁 = 256. The pivoting rule is shown in the sub-captions. Since
the networks are too large for NK landscapes, they were pruned to show only the nodes with fitness above the 90 percentile.
The best-found optimum is indicated in red, while the local optima belonging the same connected component of the best are
visualized in pink. Blue nodes represent the largest connected sub-optimal connected component in the network. In the NK
landscape, the best pivoting rule failed to locate the best solution. The reminder nodes are visualized in light gray. The size of
nodes is proportional to their incoming weighted degree (strength).

with the number of nodes, the average fitness value of the network,
the strength, and the size of the component containing the best
local optimum. The MLON models on UBQP landscapes reveal a
big valley structure, which makes them easier to solve.

Similar experiments should be conducted on several iterated lo-
cal search frameworks to further understand the behavior induced
by classic and alternative pivoting rules, using different kinds of
perturbations and acceptance criteria. Ideally, this should be done

according to different stopping criteria, including several budgets of
evaluations and of climbing processes. Conducting a similar study
on permutation-based problems, such as the flow-shop schedul-
ing problem or the quadratic assignment problem, would help to
improve the understanding of classic and alternative pivoting rules.
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